Letscher, R. T.; Moore, J. K.; Teng, Y. -C.; ...
2014-06-16
Dissolved organic matter (DOM) plays an important role in the ocean's biological carbon pump by providing an advective/mixing pathway for ~ 20% of export production. DOM is known to have a stoichiometry depleted in nitrogen (N) and phosphorus (P) compared to the particulate organic matter pool, a~fact that is often omitted from biogeochemical-ocean general circulation models. However the variable C : N : P stoichiometry of DOM becomes important when quantifying carbon export from the upper ocean and linking the nutrient cycles of N and P with that of carbon. Here we utilize recent advances in DOM observational data coveragemore » and offline tracer-modeling techniques to objectively constrain the variable production and remineralization rates of the DOM C / N / P pools in a simple biogeochemical-ocean model of DOM cycling. The optimized DOM cycling parameters are then incorporated within the Biogeochemical Elemental Cycling (BEC) component of the Community Earth System Model and validated against the compilation of marine DOM observations. The optimized BEC simulation including variable DOM C : N : P cycling was found to better reproduce the observed DOM spatial gradients than simulations that used the canonical Redfield ratio. Global annual average export of dissolved organic C, N, and P below 100 m was found to be 2.28 Pg C yr -1 (143 Tmol C yr -1), 16.4 Tmol N yr -1, and 1 Tmol P yr -1, respectively with an average export C : N : P stoichiometry of 225 : 19 : 1 for the semilabile (degradable) DOM pool. DOC export contributed ~ 25% of the combined organic C export to depths greater than 100 m.« less
Letscher, R. T.; Moore, J. K.; Teng, Y. -C.; ...
2015-01-12
Dissolved organic matter (DOM) plays an important role in the ocean's biological carbon pump by providing an advective/mixing pathway for ~ 20% of export production. DOM is known to have a stoichiometry depleted in nitrogen (N) and phosphorus (P) compared to the particulate organic matter pool, a fact that is often omitted from biogeochemical ocean general circulation models. However the variable C : N : P stoichiometry of DOM becomes important when quantifying carbon export from the upper ocean and linking the nutrient cycles of N and P with that of carbon. Here we utilize recent advances in DOM observationalmore » data coverage and offline tracer-modeling techniques to objectively constrain the variable production and remineralization rates of the DOM C : N : P pools in a simple biogeochemical-ocean model of DOM cycling. The optimized DOM cycling parameters are then incorporated within the Biogeochemical Elemental Cycling (BEC) component of the Community Earth System Model (CESM) and validated against the compilation of marine DOM observations. The optimized BEC simulation including variable DOM C : N : P cycling was found to better reproduce the observed DOM spatial gradients than simulations that used the canonical Redfield ratio. Global annual average export of dissolved organic C, N, and P below 100 m was found to be 2.28 Pg C yr -1 (143 Tmol C yr -1, 16.4 Tmol N yr -1, and 1 Tmol P yr -1, respectively, with an average export C : N : P stoichiometry of 225 : 19 : 1 for the semilabile (degradable) DOM pool. Dissolved organic carbon (DOC) export contributed ~ 25% of the combined organic C export to depths greater than 100 m.« less
NASA Astrophysics Data System (ADS)
Broder, Tanja; Knorr, Klaus-Holger; Biester, Harald
2017-04-01
Peatlands and peaty riparian zones are major sources of dissolved organic matter (DOM), but are poorly understood in terms of export dynamics and controls thereof. Thereby quality of DOM affects function and behavior of DOM in aquatic ecosystems, but DOM quality can also help to track DOM sources and their export dynamics under specific hydrologic preconditions. The objective of this study was to elucidate controls on temporal variability in DOM concentration and quality in stream water draining a bog and a forested peaty riparian zone, particularly considering drought and storm flow events. DOM quality was monitored using spectrofluorometric indices for aromaticity (SUVA254), apparent molecular size (SR) and precursor organic material (FI), as well as PARAFAC modeling of excitation emission matrices (EEMs). Indices for DOM quality exhibited major changes due to different hydrologic conditions, but patterns were also dependent on season. Stream water at the forested site with mineral, peaty soils generally exhibited higher variability in DOM concentrations and quality compared to the outflow of an ombrotrophic bog, where DOM was less susceptible to changes in hydrologic conditions. During snowmelt and spring events, near-surface protein-like DOM pools were exported. A microbial DOM fraction originating from groundwater and deep peat layers was increasing during drought, while a strongly microbially altered DOM fraction was also exported by discharge events with dry preconditions at the forested site. This might be due to accelerated microbial activity in the peaty riparian zone of the forested site under these preconditions. Our study demonstrated that DOM export dynamics are not only a passive mixing of different hydrological sources, but monitoring studies have to consider that DOM quality depends on hydrologic preconditions and season. Moreover, the forested peaty riparian zone generated the most variability in headwater DOM quantity and quality, as could be tracked by the used spectrofluorometric indices.
Henneberry, Yumiko K.; Kraus, Tamara E.C.; Nico, Peter S.; Horwath, William R.
2012-01-01
The objective was to assess the interaction of Fe coprecipitated with dissolved organic matter (DOM) and its effect on Fe (hydr)oxide crystallinity and DOM retention under abiotic reducing conditions. A Fe-based coagulant was reacted with DOM from an agricultural drain and the resulting precipitate (floc) was exposed to S(-II) and Fe(II). Solution concentrations of Fe(II/III) and DOM were monitored, floc crystallinity was determined using X-ray diffraction, and the composition and distribution of functional groups were assessed using scanning transmission X-ray microscopy (STXM) and near edge X-ray absorption fine structure (NEXAFS) spectroscopy. Results indicate coprecipitation of Fe(III) with DOM forms a non-crystalline floc that withstands crystallization regardless of change in pH, Fe:DOM ratio and type of reductant added. There was no evidence that exposure to reducing conditions led to release of DOM from the floc, indicating that coprecipitation with complex natural DOM in aquatic environments may stabilize Fe (hydr)oxides against crystallization upon reaction with reduced species and lead to long term sequestration of the DOM. STXM analysis identified spatially distinct regions with remarkable functional group purity, contrary to the model of DOM as a relatively uniform complex polymer lacking identifiable organic compounds. Polysaccharide-like OM was strongly and directly correlated with the presence of Fe but showed different Fe binding strength depending on the presence of carboxylic acid functional groups, whereas amide and aromatic functional groups were inversely correlated with Fe content.
Webizing mobile augmented reality content
NASA Astrophysics Data System (ADS)
Ahn, Sangchul; Ko, Heedong; Yoo, Byounghyun
2014-01-01
This paper presents a content structure for building mobile augmented reality (AR) applications in HTML5 to achieve a clean separation of the mobile AR content and the application logic for scaling as on the Web. We propose that the content structure contains the physical world as well as virtual assets for mobile AR applications as document object model (DOM) elements and that their behaviour and user interactions are controlled through DOM events by representing objects and places with a uniform resource identifier. Our content structure enables mobile AR applications to be seamlessly developed as normal HTML documents under the current Web eco-system.
Quantification of plume opacity by digital photography.
Du, Ke; Rood, Mark J; Kim, Byung J; Kemme, Michael R; Franek, Bill; Mattison, Kevin
2007-02-01
The United States Environmental Protection Agency (USEPA) developed Method 9 to describe how plume opacity can be quantified by humans. However, use of observations by humans introduces subjectivity, and is expensive due to semiannual certification requirements of the observers. The Digital Opacity Method (DOM) was developed to quantify plume opacity at lower cost, with improved objectivity, and to provide a digital record. Photographs of plumes were taken with a calibrated digital camera under specified conditions. Pixel values from those photographs were then interpreted to quantify the plume's opacity using a contrast model and a transmission model. The contrast model determines plume opacity based on pixel values that are related to the change in contrast between two backgrounds that are located behind and next to the plume. The transmission model determines the plume's opacity based on pixel values that are related to radiances from the plume and its background. DOM was field tested with a smoke generator. The individual and average opacity errors of DOM were within the USEPA Method 9 acceptable error limits for both field campaigns. Such results are encouraging and support the use of DOM as an alternative to Method 9.
Platikanov, Stefan; Tauler, Roma; Rodrigues, Pedro M S M; Antunes, Maria Cristina G; Pereira, Dilson; Esteves da Silva, Joaquim C G
2010-09-01
This study focuses on the factors that affect trihalomethane (THMs) formation when dissolved organic matter (DOM) fractions (colloidal, hydrophobic, and transphilic fractions) in aqueous solutions were disinfected with chlorine. DOM fractions were isolated and fractionated from filtered lake water and were characterized by elemental analysis. The investigation involved a screening Placket-Burman factorial analysis design of five factors (DOM concentration, chlorine dose, temperature, pH, and bromide concentration) and a Box-Behnken design for a detailed assessment of the three most important factor effects (DOM concentration, chlorine dose, and temperature). The results showed that colloidal fraction has a relatively low contribution to THM formation; transphilic fraction was responsible for about 50% of the chloroform generation, and the hydrophobic fraction was the most important to the brominated THM formation. When colloidal and hydrophobic fraction solutions were disinfected, the most significant factors were the following: higher DOM fraction concentration led to higher THM concentration, an increase of pH corresponded to higher concentration levels of chloroform and reduced bromoform, higher levels of chlorine dose and temperature produced a rise in the total THM formation, especially of the chlorinated THMs; higher bromide concentration generates higher concentrations of brominated THMs. Moreover, linear models were implemented and response surface plots were obtained for the four THM concentrations and their total sum in the disinfection solution as a function of the DOM concentration, chlorine dose, and temperature. Overall, results indicated that THM formation models were very complex due to individual factor effects and significant interactions among the factors. In order to reduce the concentration of THMs in drinking water, DOM concentrations must be reduced in the water prior to the disinfection. Fractionation of DOM, together with an elemental analysis of the fractions, is important issue in the revealing of the quality and quantity characteristics of DOM. Systematic study composed from DOM fraction investigation and factorial analysis of the responsible parameters in the THM formation reaction can, after an evaluation of the adjustment of the models with the reality, serves well for the evaluation of the spatial and temporal variability in the THM formation in dependence of DOM. However, taking into consideration the natural complexity of DOM, different operations and a strict control of them (like coagulation/flocculation and filtration) has to be used to quantitatively remove DOM from the raw water. Assuming that this study represents a local case study, similar experiments can be easily applied and will supply with relevant information every local water treatment plant meeting problems with THM formation. The coagulation/flocculation and the filtration stages are the main mechanisms to remove DOM, particularly the colloidal DOM fraction. With the objective to minimize THMs generation, different unit operation designed to quantitatively remove DOM from water must be optimized.
van Selm, M J; Gibson, W I; Travers, M J; Moseley, G L; Hince, D; Wand, B M
2018-04-20
Visualizing one's own painful body part appears to have an effect on reported pain intensity. Furthermore, it seems that manipulating the size of the viewed image can determine the direction and extent of this phenomenon. When visual distortion has been applied to clinical populations, the analgesic effects have been in opposition to those observed in some experimental pain models. To help resolve this problem, we explored the effect of visualisation and magnification of the visual image on reported pain using a delayed onset muscle soreness (DOMS) pain model. We induced DOMS in the quadriceps of 20 healthy volunteers. Forty-eight hours later, participants performed a series of painful contractions of the DOMS-affected muscle under four randomised conditions: (1) Viewing the injured thigh; (2) Viewing the contralateral thigh; (3) Viewing a neutral object; and (4) Viewing the injured thigh through magnifying glasses. For each condition, participants rated their pain intensity during a series of painful contractions. We observed that direct visualisation of the injured thigh had no effect on pain intensity when compared to viewing the contralateral thigh or neutral object. However, magnification of the DOMS-affected leg during the performance of painful contractions caused participants to report more pain than when viewing the injured thigh normally. These results further demonstrate that the effect of visualisation varies between different pain conditions. These results may have implications for the integration of visual feedback into clinical practice. We present delayed onset muscle soreness as a model for exploring visually induced analgesia. Our findings suggest that this phenomenon is expressed differently in exogenous and endogenous experimental pain models. Further exploration may offer a potential pathway for the integration of visual analgesia into the management of clinical pain. © 2018 European Pain Federation - EFIC®.
The Acquisition of Differential Object Marking in L2 Spanish Learners
ERIC Educational Resources Information Center
Martoccio, Alyssa Marie
2012-01-01
This dissertation tests a grammatical structure, differential object marking (DOM), which is particularly difficult for L2 learners to acquire. DOM is a phenomenon in which some direct objects are morphologically marked to distinguish them from subjects (Comrie, 1979). In Spanish, animate and specific direct objects are marked with the preposition…
A statistic-thermodynamic model for the DOM degradation in the estuary
NASA Astrophysics Data System (ADS)
Zheng, Quanan; Chen, Qin; Zhao, Haihong; Shi, Jiuxin; Cao, Yong; Wang, Dan
2008-03-01
This study aims to clarify the role of dissolved salts playing in the degradation process of terrestrial dissolved organic matter (DOM) at a scale of molecular movement. The molecular thermal movement is perpetual motion. In a multi-molecular system, this random motion also causes collision between the molecules. Seawater is a multi-molecular system consisting from water, salt, and terrestrial DOM molecules. This study attributes the DOM degradation in the estuary to the inelastic collision of DOM molecule with charged salt ions. From statistic-thermodynamic theories of molecular collision, the DOM degradation model and the DOM distribution model are derived. The models are validated by the field observations and satellite data. Thus, we conclude that the inelastic collision between the terrestrial DOM molecules and dissolved salt ions in seawater is a decisive dynamic mechanism for rapid loss of terrestrial DOM.
NASA Astrophysics Data System (ADS)
van Verseveld, W. J.; Graham, C. B.; Barnard, H. R.; McDonnell, J. J.; Lajtha, K.; Brooks, R. J.; Bond, B. J.
2006-12-01
The link between water flow paths, dissolved organic matter (DOM) sources and DOM production is poorly understood. The few investigations that have explored such relations in forest systems have relied passively on natural rainfall and drainage events. As a result, it has been difficult to identify the first order controls on water- biogeochemical processes. While we often assume an unlimited supply of DOM in our hydro-biogeochemical models, few studies have explicitly tested this. This work reports on a 24-day sprinkler experiment in Watershed-10 at the H.J. Andrews Experimental Forest in Oregon, USA. Our research objectives were: (1) To quantify the labile DOM pool in the upper soil layers at the hillslope scale, (2) To resolve the dominant flowpath at the hillslope scale that flush DOM from the soil profile to the stream channel, and (3) quantify the mixing between sprinkler water and hillslope subsurface flux. We injected 0,8 L of 100% deuterium into the sprinkler water for 24 hours and sampled soil and groundwater at daily to 2 days intervals throughout the 24 day experiment. We extracted 10 soil samples each week from the test hillslope and an adjacent similar reference plot and incubated them to quantify potential N mineralization and supply of organic carbon and nitrogen. Preliminary results suggested that DOM was transport-limited during the sprinkler experiment. Shallow lateral flow through the unsaturated zone; at 30 cm depth was very likely the dominant DOM pathway to the stream for the first two days (and 95 mm of sprinkled water) of the sprinkler experiment. After more than 4 days (and 395 mm of sprinkled water), saturation occurred at 100 cm, and deeper flowpaths became activated. These results challenge many of the assumptions in hydro-biogeochemical models where an unlimited supply of DOM is usually assumed.
The objective of this poster is by comparing nutrient and DOM concentrations in small and large streams, we hope to better understand: (1) watershed controls on stream nutrient and DOM concentrations; and (2) the variability of nutrient and DOM concentrations within a river netwo...
ERIC Educational Resources Information Center
Balasch Rodriguez, Sonia
2011-01-01
This sociolinguistic-variationist investigation sheds light on two little-studied issues concerning Spanish DOM, or variable use of a before animate "direct objects" (DOs), in vernacular language: the complex interaction of co-occurring linguistic (type of verb; definiteness, specificity, grammatical number, topicality, type and…
Li, Lu-lu; Jiang, Tao; Lu, Song; Yan, Jin-long; Gao, Jie; Wei, Shi-qiang; Wang, Ding-yong; Guo, Nian; Zhao, Zhena
2014-09-01
Dissolved organic matter (DOM) is a very important component in terrestrial ecosystem. Chromophoric dissolved organic matter (CDOM) is a significant constituent of DOM, which can be measured by ultraviolet-visible (UV-Vis) absorption spectrum. Thus the relationship between CDOM and DOM was investigated and established by several types of models including single-wavelength model, double-wavelength model, absorption spectrum slope (S value) model and three-wavelength model, based on the UV-Vis absorption coefficients of soil and sediment samples (sampled in July of 2012) and water samples (sampled in November of 2012) respectively. The results suggested that the three-wavelength model was the best for fitting, and the determination coefficients of water, soil and sediment data were 0. 788, 0. 933 and 0. 856, respectively. Meanwhile, the nominal best model was validated with the UV-Vis data of 32 soil samples and 36 water samples randomly collected in 2013, showing the RRMSE and MRE were 16. 5% and 16. 9% respectively for soil DOM samples, 10. 32% and 9. 06% respectively for water DOM samples, which further suggested the prediction accuracy was higher in water DOM samples as compared with that in soil DOM samples.
NASA Astrophysics Data System (ADS)
Catalán, N.; Casas-Ruiz, J. P.; von Schiller, D.; Proia, L.; Obrador, B.; Zwirnmann, E.; Marcé, R.
2017-01-01
Controls on the degradation of dissolved organic matter (DOM) are complex but key to understand the role of freshwaters in the carbon cycle. Both the origin and previous degradation history have been suggested to determine DOM reactivity, but it is still a major challenge to understand the links between DOM composition and biodegradation kinetics. An appropriate context to study these links are intermittent rivers, as summer drought naturally diversifies DOM sources and sinks. Here we investigated the biodegradation kinetics of DOM in the main aquatic environments present in a temporary river. During dark incubations we traced the dynamics of bulk DOM and its main chromatographic fractions defined using LC-OCD: high molecular weight substances (HMWS), low molecular weight substances (LMWS), and humic substances and building blocks. Bulk DOM decay patterns were successfully fitted to the reactivity continuum (RC) biodegradation model. The RC parameters depicted running waters as the sites presenting a more reactive DOM, and temporary pools, enriched in leaf litter, as the ones with slowest DOM decay. The decay patterns of each DOM fraction were consistent throughout sites. LMWS and HMWS decayed in all cases and could be modeled using the RC model. Notably, the dynamics of LMWS controlled the bulk DOM kinetics. We discuss the mechanistic basis for the chromatographic fractions' kinetics during biodegradation and the implications that preconditioning and summer drought can have for DOM biodegradation in intermittent rivers.
Characterization and origin of polar dissolved organic matter from the Great Salt Lake
Leenheer, J.A.; Noyes, T.I.; Rostad, C.E.; Davisson, M.L.
2004-01-01
Polar dissolved organic matter (DOM) was isolated from a surface-water sample from the Great Salt Lake by separating it from colloidal organic matter by membrane dialysis, from less-polar DOM fractions by resin sorbents, and from inorganic salts by a combination of sodium cation exchange followed by precipitation of sodium salts by acetic acid during evaporative concentration. Polar DOM was the most abundant DOM fraction, accounting for 56% of the isolated DOM. Colloidal organic matter was 14C-age dated to be about 100% modern carbon and all of the DOM fractions were 14C-age dated to be between 94 and 95% modern carbon. Average structural models of each DOM fraction were derived that incorporated quantitative elemental and infrared, 13C-NMR, and electrospray/mass spectrometric data. The polar DOM model consisted of open-chain N-acetyl hydroxy carboxylic acids likely derived from N-acetyl heteropolysaccharides that constituted the colloidal organic matter. The less polar DOM fraction models consisted of aliphatic alicyclic ring structures substituted with carboxyl, hydroxyl, ether, ester, and methyl groups. These ring structures had characteristics similar to terpenoid precursors. All DOM fractions in the Great Salt Lake are derived from algae and bacteria that dominate DOM inputs in this lake.
Croue, J.-P.; Benedetti, M.F.; Violleau, D.; Leenheer, J.A.
2003-01-01
Humic substances typically constitute 40-60% of the dissolved organic matter (DOM) in surface waters. However, little information is available regarding the metal binding properties of the nonhumic hydrophilic portion of the DOM. In this study, humic and nonhumic DOM samples were isolated from the South Platte River (Colorado, DOC = 2.6 mg??L-1, SUVA254 = 2.4 L/mg??m) using a two-column array of XAD-8 and XAD-4 resins. The three major isolated fractions of DOM, which accounted for 57% of the bulk DOM, were characterized using a variety of analytical tools. Proton and copper binding properties were studied for each fraction. The main objective of this work was to compare the structural and chemical characteristics of the isolated fractions and test models describing DOM reactivity toward metal ions. The characterization work showed significant structural differences between the three isolated fractions of DOM. The hydrophobic acid fraction (i.e., humic substances isolated from the XAD-8 resin) gave the largest C/H, C/O, and C/N ratios and aromatic carbon content among the three isolated fractions. The transphilic acid (TPHA) fraction ("transphilic" meaning fraction of intermediate polarity isolated from the XAD-4 resin) was found to incorporate the highest proportion of polysaccharides, whereas the transphilic neutral (TPHN) fraction was almost entirely proteinaceous. The gradual increase of the charge with pH for the three DOM fractions is most likely caused by a large distribution of proton affinity constants for the carboxylic groups, as well as a second type of group more generally considered to be phenolic. In the case of the DOM fraction enriched in proteinaceous material (i.e., TPHN fraction), the results showed that the amino groups are reponsible for the charge reversal. For low copper concentrations, nitrogen-containing functional groups similar to those of amino acids are likely to be involved in complexation, in agreement with previously published data.
Graham, Andrew M.; Aiken, George R.; Gilmour, Cynthia
2013-01-01
Dissolved organic matter (DOM) is a key component of fate and transport models for most metals, including mercury (Hg). Utilizing a suite of diverse DOM isolates, we demonstrated that DOM character, in addition to concentration, influences inorganic Hg (Hg(II)i) bioavailability to Hg-methylating bacteria. Using a model Hg-methylating bacterium, Desulfovibrio desulfuricansND132, we evaluated Hg-DOM-sulfide bioavailability in washed-cell assays at environmentally relevant Hg/DOM ratios (∼1–8 ng Hg/mg C) and sulfide concentrations (1–1000 μM). All tested DOM isolates significantly enhanced Hg methylation above DOM-free controls (from ∼2 to >20-fold for 20 mg C/L DOM solutions), but high molecular weight/highly aromatic DOM isolates and/or those with high sulfur content were particularly effective at enhancing Hg methylation. Because these experiments were conducted under conditions of predicted supersaturation with respect to metacinnabar (β-HgS(s)), we attribute the DOM-dependent enhancement of Hg(II)i bioavailability to steric and specific chemical (e.g., DOM thiols) inhibition of β-HgS(s) growth and aggregation by DOM. Experiments examining the role of DOM across a wide sulfide gradient revealed that DOM only enhances Hg methylation under fairly low sulfide conditions (≲30 μM), conditions that favor HgS nanoparticle/cluster formation relative to dissolved HgS species.
Craven, Alison M.; Aiken, George R.; Ryan, Joseph N.
2012-01-01
The ratio of copper to dissolved organic matter (DOM) is known to affect the strength of copper binding by DOM, but previous methods to determine the Cu2+–DOM binding strength have generally not measured binding constants over the same Cu:DOM ratios. In this study, we used a competitive ligand exchange–solid-phase extraction (CLE-SPE) method to determine conditional stability constants for Cu2+–DOM binding at pH 6.6 and 0.01 M ionic strength over a range of Cu:DOM ratios that bridge the detection windows of copper-ion-selective electrode and voltammetry measurements. As the Cu:DOM ratio increased from 0.0005 to 0.1 mg of Cu/mg of DOM, the measured conditional binding constant (cKCuDOM) decreased from 1011.5 to 105.6 M–1. A comparison of the binding constants measured by CLE-SPE with those measured by copper-ion-selective electrode and voltammetry demonstrates that the Cu:DOM ratio is an important factor controlling Cu2+–DOM binding strength even for DOM isolates of different types and different sources and for whole water samples. The results were modeled with Visual MINTEQ and compared to results from the biotic ligand model (BLM). The BLM was found to over-estimate Cu2+ at low total copper concentrations and under-estimate Cu2+ at high total copper concentrations.
Modeling Effects of Lability on Microbial Uptake of DOM in River Reaches
NASA Astrophysics Data System (ADS)
Li, A.; Drummond, J. D.; Bowen, J. C.; Cory, R. M.; Kaplan, L.; Packman, A. I.
2017-12-01
Rivers are hotspots for biological degradation of dissolved organic matter (DOM), contributing to 1.8 petagrams of carbon emissions per year. DOM represents approximately 60% of the total mass of organic carbon transported within river networks, fueling stream ecosystem metabolism. Not all DOM is biodegradable, biodegradation rates vary based on lability, and lability decreases with reaction time. Fluorescent fractions of DOM (FDOM) are often used as proxies of DOM lability. Humic-like FDOM, previously considered recalcitrant and thought to contribute minimally to the biodegradable DOM pools, has recently been shown to contribute more than 50% to DOM uptake in bioreactor columns colonized by bacteria in stream water. Protein-like FDOM, a proxy for the biodegradable DOM pool, also contributes to the recalcitrant DOM pool in bioreactors. However, the contribution of different lability pools to DOM uptake at the reach scale remains elusive. Here we combine local-scale results from a bioreactor study and measures of stream geomorphology parameters to model reach-scale DOM uptake in White Clay Creek, a Pennsylvania piedmont stream with an intact, forested riparian zone and inputs from upland agriculture. Steady state modeling of a point-source, continuous injection of FDOM shows that humic-like FDOM contributes up to 80% of the total removal of FDOM at the reach scale, suggesting its importance to in-stream DOM uptake. Tryptophan-like FDOM, a protein-like FDOM, contributes to 80% of the remaining fraction of FDOM at the reach scale that incorporates longer timescales of transport and retention. This is consistent with recent local-scale findings that the lability of tryptophan-like FDOM decreases substantially with reaction time in bioreactors, such that it becomes much more recalcitrant as it travels downstream. Steady state modeling of a distributed source, continuous injection of FDOM shows that contributing sources distribute differently along the river reach for each FDOM component, due to their different uptake patterns. Thus, variations of DOM lability are important for estimating reach-scale microbial uptake and contributing sources of in-stream DOM.
What Do We Know about DOM Chemical Composition Based on Its Optical Properties?
NASA Astrophysics Data System (ADS)
Aiken, G.
2016-02-01
Dissolved organic matter (DOM) optical measurements (UV-Vis light absorbance and fluorescence) provide useful information related to DOM composition and reactivity, and can serve as proxies for DOM concentration and the concentrations of some metals, such as mercury. While these measurements are useful for a range of objectives, they only measure aromatic molecules that absorb UV-Vis light and a smaller subset of these molecules that fluoresce. They provide no information about the substantial fraction of DOM that is non-chromophoric. Based on chromatographic fractionation on XAD resins, DOM optical properties measured on whole water samples strongly correlate with both the concentration and composition of the hydrophobic acid (HPOA) fraction of the DOM. In this presentation the results of DOM optical measurements, DOM fractionation analyses, and 13C-nuclear magnetic resonance (NMR) and ultrahigh-resolution mass spectrometry (FTICR_MS) of HPOA fractions obtained from a wide range a natural waters will be presented to examine the relationships between DOM optical properties and DOM chemical composition. The HPOA fractions within and between rivers exhibit a wide range of optical behaviors reflective of sources and transformations compared to other DOM fractions. While, 13C-NMR and FTICR-MS analyses generally show greater relative concentrations of aromatic molecules for those samples with strong optical signals, they also indicate that the HPOA fractions are mostly composed of a large number of non-chromophoric molecules, such as carbohydrates carboxyl-rich alicyclic molecules (CRAM), and other aliphatic molecules, all of which have implications regarding DOM reactivity, biolability, sources, and age. The utility and short-comings of employing optical data for assessing sources and transformations of DOM in natural waters will be examined using case studies involving organic matter in the Yukon River Basin and riverine export of DOM to the Gulf of Maine.
NASA Astrophysics Data System (ADS)
Lu, Yujuan; Yan, Mingquan; Korshin, Gregory V.
2017-09-01
The speciation, bioavailability and transport of Pb(II) in the environment are strongly affected by dissolved organic matter (DOM). Despite the importance of these interactions, the nature of Pb(II)-DOM binding is insufficiently attested. This study addressed this deficiency using the method of differential absorbance spectroscopy in combination with the non-ideal competitive adsorption (NICA)-Donnan model. Differential absorbance data allowed quantifying the interactions between Pb(II) and DOM in a wide range of pH values, ionic strengths and Pb(II) concentrations at an environmentally relevant DOM concentration (5 mg L-1). Changes of the slopes of the log-transformed absorbance spectra of DOM in the range of wavelength 242-262 and 350-400 nm were found to be predictive of the extent of Pb(II) bound by DOM carboxylic groups and of the total amount of DOM-bound Pb(II), respectively. The results also demonstrated the preferential involvement of DOM carboxylic groups in Pb(II) binding. The spectroscopic data allowed optimizing selected Pb(II)-DOM complexation constants used in the NICA-Donnan Model. This resulted in a markedly improved performance of that model when it was applied to interpret previously published Pb(II)-fulvic acid datasets.
ERIC Educational Resources Information Center
Banerjee, Kyle
2002-01-01
Discusses XML, how it has transformed the way information is managed and delivered, and its impact on libraries. Topics include how XML differs from other markup languages; the document object model (DOM); style sheets; practical applications for archival materials, interlibrary loans, digital collections, and MARC data; and future possibilities.…
NASA Astrophysics Data System (ADS)
Moon, Jung-Won; Goltz, Mark N.; Ahn, Kyu-Hong; Park, Jae-Woo
2003-02-01
In order to contain the movement of organic contaminants in groundwater, a subsurface sorption barrier consisting of sand or clay minerals coated with a cationic surfactant has been proposed. The effectiveness of such a sorption barrier might be affected by the presence of dissolved organic matter (DOM) in the groundwater. To study the impact of DOM on barrier performance, a series of batch experiments were performed by measuring naphthalene and phenanthrene sorption onto sand coated with cetylpyridinium chloride (CPC) and bentonite coated with hexadecyltrimethylammonium bromide (HDTMA) in the presence of various concentrations of DOM. The overall soil-water distribution coefficient ( K*) of naphthalene and phenanthrene onto CPC-coated sand decreased with increasing DOM concentration, whereas the K* of the compounds onto HDTMA-coated bentonite slightly increased with increasing DOM concentration. To describe the overall distribution of polycyclic aromatic hydrocarbons (PAHs) in the systems, a competitive multiphase sorption (CMS) model was developed and compared with an overall mechanistic sorption (OMS) model. The modeling studies showed that while the OMS model did not explain the CPC-coated sand experimental results, a model that included competitive sorption between DOM and PAH did. The experimental results and the modeling study indicated that there was no apparent competition between DOM and PAH in the HDTMA-coated bentonite system, and indicated that in groundwater systems with high DOM, a barrier using HDTMA-coated bentonite might be more effective.
NASA Astrophysics Data System (ADS)
polimene, Luca
2014-05-01
Marine dissolved organic matter (DOM) is the main source of carbon, nutrients and energy for marine prokaryotes, the most abundant life form in the oceans. Only a fraction of assimilated DOM is used by prokaryotes to synthesise new biomass (particulate organic matter, POM), while the rest is used for respiration or is excreted back into the environment as recalcitrant DOM (RDOM). The relative proportions of assimilated DOM that is distributed either to POM, respiration or RDOM is not constant but highly variable depending on the environmental conditions (e.g. nutrient availability, quality/quantity of DOM, temperature). This metabolic plasticity allows bacteria to shape the biogeochemistry of the surrounding waters by modulating three key carbon/energy fluxes fundamental for the functioning of the marine ecosystem: i) the transition from DOM to POM, ii) the remineralisation of carbon and nutrients, and iii) the transformation of labile DOM into recalcitrant DOM. The explicit representation of these processes (and their relative efficiency) in marine ecosystem models is a crucial (and challenging) issue which cannot be overlooked if we want to properly simulate marine biogeochemical cycles under present and climate changing conditions. This talk will provide an overview of how state of the art marine ecosystem models represent the interactions between DOM and bacteria, highlighting strengths and limits of the approaches currently used. A summary of future developments along with issues still open on the topic will also be presented and discussed.
NASA Astrophysics Data System (ADS)
Rikta, S. Y.; Tareq, Shafi M.; Uddin, M. Khabir
2018-03-01
Solid waste production is rapidly increasing in Bangladesh and landfill leachate is the consequence of the decomposition of this waste. These leachates contain heavy metals and significant amount of dissolved organic matter (DOM). DOM is known to have considerable role in heavy metals speciation. Hence, it is important to characterize DOM/leachate and evaluate toxic metals binding affinity of DOM. The objectives of this study were to characterize the DOM in landfill leachate through physico-chemical and optical analyses and to investigate the toxic metals (Ni2+, Pb2+ and Hg2+) binding affinity of three different ages (fresh sample L-1, young sample L-2 and mature sample L-3) DOM samples. Results suggested that leachate is a potential pollutant which contained very high organic pollutant load. Conditional stability constant (Log K) and percentages of fluorophores that correspond to metal binding (% f) values indicated that young DOM sample (L-2) had the highest binding affinity to all the three metals ions. In general, DOM samples showed the following order affinity to the metal ions; Ni2+ binding affinity: L-2 > L-3 > L-1, Pb2+ binding affinity: L-2 > L-3 > L-1 and Hg2+ binding affinity: L-2 > L-1 > L-3.
NASA Astrophysics Data System (ADS)
Inamdar, S. P.; Singh, S.
2013-12-01
Understanding how dissolved organic matter (DOM) varies spatially in catchments and the processes and mechanisms that regulate this variation is critical for developing accurate and reliable models of DOM. We determined the concentrations and composition of DOM at multiple locations along a stream drainage network in a 79 ha forested, Piedmont, watershed in Maryland, USA. DOM concentrations and composition was compared for five stream locations during baseflow (drainage areas - 0.62, 3.5, 4.5, 12 and 79 ha) and three locations (3.5, 12, 79 ha) for storm flow. Sampling was conducted by manual grab samples and automated ISCO samplers. DOM composition was characterized using a suite of spectrofluorometric indices which included - HIX, a254, and FI. A site-specific PARAFAC model was also developed for DOM fluorescence to determine the humic-, fulvic-, and protein-like DOM constituents. Hydrologic flow paths during baseflow and stormflow were characterized for all stream locations using an end-member mixing model (EMMA). DOM varied notably across the sampled positions for baseflow and stormflow. During baseflow, mean DOC concentrations for the sampled locations ranged between 0.99-3.1 mg/L whereas for stormflow the range was 5.22-8.11 mg/L. Not surprisingly, DOM was more humic and aromatic during stormflow versus baseflow. The 3.5 ha stream drainage location that contained a large wetland yielded the highest DOC concentration as well as the most humic and aromatic DOM, during both, baseflow and stormflow. In contrast, a headwater stream location (0.62 ha) that received runoff from a groundwater seep registered the highest mean value for % protein-like DOM (30%) and the lowest index for aromaticity (mean a254 = 6.52) during baseflow. During stormflow, the mean % protein-like DOM was highest at the largest 79 ha drainage location (mean = 11.8%) and this site also registered the lowest mean value for a254 (46.3). Stream drainage locations that received a larger proportion of runoff along surficial flow paths produced a more aromatic and humic DOM with high DOC concentrations; whereas those with a greater proportion of groundwater contributions produced DOM with greater % of protein-like content. Overall, our observations suggest that occurrence of wetlands and the nature of hydrologic flow paths were the key determinants for the spatial pattern of DOM.
Topographic attributes as a guide for automated detection or highlighting of geological features
NASA Astrophysics Data System (ADS)
Viseur, Sophie; Le Men, Thibaud; Guglielmi, Yves
2015-04-01
Photogrammetry or LIDAR technology combined with photography allow geoscientists to obtain 3D high-resolution numerical representations of outcrops, generally termed as Digital Outcrop Models (DOM). For over a decade, these 3D numerical outcrops serve as support for precise and accurate interpretations of geological features such as fracture traces or plans, strata, facies mapping, etc. These interpretations have the benefit to be directly georeferenced and embedded into the 3D space. They are then easily integrated into GIS or geomodeler softwares for modelling in 3D the subsurface geological structures. However, numerical outcrops generally represent huge data sets that are heavy to manipulate and hence to interpret. This may be particularly tedious as soon as several scales of geological features must be investigated or as geological features are very dense and imbricated. Automated tools for interpreting geological features from DOMs would be then a significant help to process these kinds of data. Such technologies are commonly used for interpreting seismic or medical data. However, it may be noticed that even if many efforts have been devoted to easily and accurately acquire 3D topographic point clouds and photos and to visualize accurate 3D textured DOMs, few attentions have been paid to the development of algorithms for automated detection of the geological structures from DOMs. The automatic detection of objects on numerical data generally assumes that signals or attributes computed from this data allows the recognition of the targeted object boundaries. The first step consists then in defining attributes that highlight the objects or their boundaries. For DOM interpretations, some authors proposed to use differential operators computed on the surface such as normal or curvatures. These methods generally extract polylines corresponding to fracture traces or bed limits. Other approaches rely on the PCA technology to segregate different topographic plans. This approach assume that structural or sedimentary features coincide with topographic surface parts. In this work, several topographic attributes are proposed to highlight geological features on outcrops. Among them, differential operators are used but also combined and processed to display particular topographic shapes. Moreover, two kinds of attributes are used: unsupervised and supervised attributes. The supervised attributes integrate an a priori knowledge about the objects to extract (e.g.: a preferential orientation of fracture surfaces, etc.). This strategy may be compared to the one used for seismic interpretation. Indeed, many seismic attributes have been proposed to highlight geological structures hardly observable due to data noise. The same issue exist with topographic data: plants, erosions, etc. generate noise that make interpretation sometimes hard. The proposed approach has been applied on real case studies to show how it could help the interpretation of geological features. The obtained 'topographic attributes' are shown and discussed.
Traving, Sachia J.; Rowe, Owen; Jakobsen, Nina M.; Sørensen, Helle; Dinasquet, Julie; Stedmon, Colin A.; Andersson, Agneta; Riemann, Lasse
2017-01-01
Increased river loads are projected as one of the major consequences of climate change in the northern hemisphere, leading to elevated inputs of riverine dissolved organic matter (DOM) and inorganic nutrients to coastal ecosystems. The objective of this study was to investigate the effects of elevated DOM on a coastal pelagic food web from the coastal northern Baltic Sea, in a 32-day mesocosm experiment. In particular, the study addresses the response of bacterioplankton to differences in character and composition of supplied DOM. The supplied DOM differed in stoichiometry and quality and had pronounced effects on the recipient bacterioplankton, driving compositional changes in response to DOM type. The shifts in bacterioplankton community composition were especially driven by the proliferation of Bacteroidetes, Gemmatimonadetes, Planctomycetes, and Alpha- and Betaproteobacteria populations. The DOM additions stimulated protease activity and a release of inorganic nutrients, suggesting that DOM was actively processed. However, no difference between DOM types was detected in these functions despite different community compositions. Extensive release of re-mineralized carbon, nitrogen and phosphorus was associated with the bacterial processing, corresponding to 25–85% of the supplied DOM. The DOM additions had a negative effect on phytoplankton with decreased Chl a and biomass, particularly during the first half of the experiment. However, the accumulating nutrients likely stimulated phytoplankton biomass which was observed to increase towards the end of the experiment. This suggests that the nutrient access partially outweighed the negative effect of increased light attenuation by accumulating DOM. Taken together, our experimental data suggest that parts of the future elevated riverine DOM supply to the Baltic Sea will be efficiently mineralized by microbes. This will have consequences for bacterioplankton and phytoplankton community composition and function, and significantly affect nutrient biogeochemistry. PMID:28337180
Variation of organic matter quantity and quality in streams at Critical Zone Observatory watersheds
Miller, Matthew P.; Boyer, Elizabeth W.; McKnight, Diane M.; Brown, Michael G.; Gabor, Rachel S.; Hunsaker, Carolyn T.; Iavorivska , Lidiia; Inamdar, Shreeram; Kaplan, Louis A.; Johnson, Dale W.; Lin, Henry; McDowell, William H.; Perdrial, Julia N.
2016-01-01
The quantity and chemical composition of dissolved organic matter (DOM) in surface waters influence ecosystem processes and anthropogenic use of freshwater. However, despite the importance of understanding spatial and temporal patterns in DOM, measures of DOM quality are not routinely included as part of large-scale ecosystem monitoring programs and variations in analytical procedures can introduce artifacts. In this study, we used consistent sampling and analytical methods to meet the objective of defining variability in DOM quantity and quality and other measures of water quality in streamflow issuing from small forested watersheds located within five Critical Zone Observatory sites representing contrasting environmental conditions. Results show distinct separations among sites as a function of water quality constituents. Relationships among rates of atmospheric deposition, water quality conditions, and stream DOM quantity and quality are consistent with the notion that areas with relatively high rates of atmospheric nitrogen and sulfur deposition and high concentrations of divalent cations result in selective transport of DOM derived from microbial sources, including in-stream microbial phototrophs. We suggest that the critical zone as a whole strongly influences the origin, composition, and fate of DOM in streams. This study highlights the value of consistent DOM characterization methods included as part of long-term monitoring programs for improving our understanding of interactions among ecosystem processes as controls on DOM biogeochemistry.
Origins and bioavailability of dissolved organic matter in groundwater
Shen, Yuan; Chapelle, Francis H.; Strom, Eric W.; Benner, Ronald
2015-01-01
Dissolved organic matter (DOM) in groundwater influences water quality and fuels microbial metabolism, but its origins, bioavailability and chemical composition are poorly understood. The origins and concentrations of dissolved organic carbon (DOC) and bioavailable DOM were monitored during a long-term (2-year) study of groundwater in a fractured-rock aquifer in the Carolina slate belt. Surface precipitation was significantly correlated with groundwater concentrations of DOC, bioavailable DOM and chromophoric DOM, indicating strong hydrological connections between surface and ground waters. The physicochemical and biological processes shaping the concentrations and compositions of DOM during its passage through the soil column to the saturated zone are conceptualized in the regional chromatography model. The model provides a framework for linking hydrology with the processes affecting the transformation, remineralization and microbial production of DOM during passage through the soil column. Lignin-derived phenols were relatively depleted in groundwater DOM indicating substantial removal in the unsaturated zone, and optical properties of chromophoric DOM indicated lower molecular weight DOM in groundwater relative to surface water. The prevalence of glycine, γ-aminobutyric acid, and d-enantiomers of amino acids indicated the DOM was highly diagenetically altered. Bioassay experiments were used to establish DOC-normalized yields of amino acids as molecular indicators of DOM bioavailability in groundwater. A relatively small fraction (8 ± 4 %) of DOC in groundwater was bioavailable. The relatively high yields of specific d-enantiomers of amino acids indicated a substantial fraction (15–34 %) of groundwater DOC was of bacterial origin.
R. Jaffe; D. McKnight; N. Maie; R. Cory; W. H. McDowell; J.L. Campbell
2008-01-01
Source, transformation, and preservation mechanisms of dissolved organic matter (DOM) remain elemental questions in contemporary marine and aquatic sciences and represent a missing link in models of global elemental cycles. Although the chemical character of DOM is central to its fate in the global carbon cycle, DOM characterizations in long-term ecological research...
Cleveland, C.C.; Neff, J.C.; Townsend, A.R.; Hood, E.
2004-01-01
Fluxes of dissolved organic matter (DOM) are an important vector for the movement of carbon (C) and nutrients both within and between ecosystems. However, although DOM fluxes from throughfall and through litterfall can be large, little is known about the fate of DOM leached from plant canopies, or from the litter layer into the soil horizon. In this study, our objectives were to determine the importance of plant-litter leachate as a vehicle for DOM movement, and to track DOM decomposition [including dissolve organic carbon (DOC) and dissolved organic nitrogen (DON) fractions], as well as DOM chemical and isotopic dynamics, during a long-term laboratory incubation experiment using fresh leaves and litter from several ecosystem types. The water-extractable fraction of organic C was high for all five plant species, as was the biodegradable fraction; in most cases, more than 70% of the initial DOM was decomposed in the first 10 days of the experiment. The chemical composition of the DOM changed as decomposition proceeded, with humic (hydrophobic) fractions becoming relatively more abundant than nonhumic (hydrophilic) fractions over time. However, in spite of proportional changes in humic and nonhumic fractions over time, our data suggest that both fractions are readily decomposed in the absence of physicochemical reactions with soil surfaces. Our data also showed no changes in the ??13C signature of DOM during decomposition, suggesting that isotopic fractionation during DOM uptake is not a significant process. These results suggest that soil microorganisms preferentially decompose more labile organic molecules in the DOM pool, which also tend to be isotopically heavier than more recalcitrant DOM fractions. We believe that the interaction between DOM decomposition dynamics and soil sorption processes contribute to the ??13C enrichment of soil organic matter commonly observed with depth in soil profiles.
Molecular Hysteresis of Dissolved Organic Matter in the Connecticut River Watershed
NASA Astrophysics Data System (ADS)
Wagner, S.; Hoyle, J. B.; Matt, S.; Raymond, P. A.; Saiers, J. E.; Dittmar, T.; Stubbins, A.
2017-12-01
Rainfall-runoff processes have emerged as key controllers of the quantity and quality of terrestrial dissolved organic matter (DOM) exported from the landscape to inland waters. Hydrological events result in increased river discharge and a concomitant release of large amounts of DOM into fluvial networks. This study is part of a Macrosystems project which aims to test the Pulse-Shunt Concept: where rivers are converted from active to passive pipes during high discharge events ("pulse"), transporting labile, terrestrial DOM downstream ("shunt"), and relocating biogeochemical hotspots for DOM from the upper to the lower reaches of the watershed. The primary objective of our study was to track hysteretic changes in riverine DOM molecular composition over the course of a storm event. Samples were collected from nested watersheds in the Passumpsic River catchment, a tributary of the Connecticut River (USA). High resolution monitoring (via in-situ sondes) and high frequency collection of discreet samples (for FT-ICR/MS and other analyses) was necessary to capture short-term, hydrologically-driven variations in DOM concentration and composition. At the onset of the discharge event, we observed a unique DOM signature, enriched in aliphatic, and potentially biolabile, DOM. During peak discharge, and along the falling limb of the hydrograph, an aromatic, terrestrial-type DOM signature was more prevalent. These initial findings support the pulse-shunt hypothesis, providing evidence for the release of labile forms of DOM into rivers during the onset of a storm event, which apparently persists across low-to-high stream orders. Insights into the molecular hysteresis of fluvial DOM spotlights the impact of watershed hydrology on biogeochemical cycling in river networks.
Larson, James H.; Frost, Paul C.; Xenopoulos, Marguerite A.; Williams, Clayton J.; Morales-Williams, Ana M.; Vallazza, Jonathan M.; Nelson, J. C.; Richardson, William B.
2014-01-01
Dissolved organic matter (DOM) influences the physical, chemical, and biological properties of aquatic ecosystems. We hypothesized that controls over spatial variation in DOM quantity and composition (measured with DOM optical properties) differ based on the source of DOM to aquatic ecosystems. DOM quantity and composition should be better predicted by land cover in aquatic habitats with allochthonous DOM and related more strongly to nutrients in aquatic habitats with autochthonous DOM. Three habitat types [rivers (R), rivermouths (RM), and the nearshore zone (L)] associated with 23 tributaries of the Laurentian Great Lakes were sampled to test this prediction. Evidence from optical indices suggests that DOM in these habitats generally ranged from allochthonous (R sites) to a mix of allochthonous-like and autochthonous-like (L sites). Contrary to expectations, DOM properties such as the fluorescence index, humification index, and spectral slope ratio were only weakly related to land cover or nutrient data (Bayesian R 2 values were indistinguishable from zero). Strongly supported models in all habitat types linked DOM quantity (that is, dissolved organic carbon concentration [DOC]) to both land cover and nutrients (Bayesian R2 values ranging from 0.55 to 0.72). Strongly supported models predicting DOC changed with habitat type: The most important predictor in R sites was wetlands whereas the most important predictor at L sites was croplands. These results suggest that as the DOM pool becomes more autochthonous-like, croplands become a more important driver of spatial variation in DOC and wetlands become less important.
NASA Astrophysics Data System (ADS)
Lewison, R. L.; Saumweber, W. J.; Erickson, A.; Martone, R. G.
2016-12-01
Dynamic ocean management, or management that uses near real-time data to guide the spatial distribution of commercial activities, is an emerging approach to balance ocean resource use and conservation. Employing a wide range of data types, dynamic ocean management in a fisheries context can be used to meet multiple objectives - managing target quota, bycatch reduction, and reducing interactions with species of conservation concern. There is a growing list of DOM applications currently in practice in fisheries around the world, yet the approach is new enough that both fishers and fisheries managers are unclear how DOM can be applied to their fishery. Here, we use the experience from dynamic ocean management applications that are currently in practice to address the commonly asked question "How can dynamic management approaches be implemented in a traditionally managed fishery?". Combining knowledge from the DOM participants with a review of regulatory frameworks and incentive structures, stakeholder participation, and technological requirements of DOM in practice, we identify ingredients that have supported successful implementation of this new management approach.
NASA Astrophysics Data System (ADS)
Harfmann, J.; Hernes, P.; Chuang, C. Y.; Kaiser, K.; Spencer, R. G.; Guillemette, F.
2017-12-01
Source origin of dissolved organic matter (DOM) is crucial in determining reactivity, driving chemical and biological processing of carbon. DOM source biomarkers such as lignin (a vascular plant marker) and D-amino acids (bacterial markers) are well-established tools in tracing DOM origin and fate. The development of high-resolution mass spectrometry and optical studies has expanded our toolkit; yet despite these advances, our understanding of DOM sources and fate remains largely qualitative. Quantitative data on DOM pools and fluxes become increasingly necessary as we refine our comprehension of its composition. In this study, we aim to calibrate and quantify DOM source endmembers by performing microbial incubations of multiple vascular plant leachates, where total DOM is constrained by initial vascular plant input and microbial production. Derived endmembers may be applied to endmember mixing models to quantify DOM source contributions in aquatic systems.
Influence of dissolved organic matter on sorption and desorption of MCPA in ferralsol.
Wu, Dongming; Yun, Yonghuan; Jiang, Lei; Wu, Chunyuan
2018-03-01
MCPA (4-chloro-2-methylphenoxyacetic acid) is an acidic herbicide, widely used in paddy fields. The presence of dissolved organic matter (DOM) modifies the sorption-desorption of herbicides in soils. In this study, effects of DOM on sorption- desorption of MCPA were tested using three typical ferralsol soil types from China: rhodic ferralsol, haplic ferralsol and paddy soil. DOM preparations were extracted from the paddy soil (DOM P ), from a compost mixture of cassava stems with chicken manure (DOM C ), and from rice straw (DOM R ). Sorption-desorption of MCPA in the tested soil types was shown to follow pseudo first-order kinetics, and the calculated isotherm data fitted well with a Freundlich equilibrium model in the range of the studied concentrations. MCPA was weakly sorbed by the soils, producing low Freundlich coefficient values (K f ) (0.854 to 4.237). The presence of DOM reduced the K f whereby DOM C had the strongest and DOM R the weakest effect. Presence of DOM also promoted MCPA desorption from the soils, again with DOM C having the strongest effect and DOM R the weakest. DOM coating changed the soil particle surface, as demonstrated by electron microscopy, and DOM also directly interacted with MCPA, as shown by Fourier-transform infrared spectroscopy. The experimental data were interpreted to suggest a competing sorption of DOM to ferralsol and an increased solubility of MCPA in the presence of DOM. The results indicate that the environmental risk of MCPA leaching to groundwater and surface flow is increased by presence of DOM, for instance as a result of organic fertilizer use. Copyright © 2017. Published by Elsevier B.V.
Singh, Shatrughan; Dash, Padmanava; Silwal, Saurav; Feng, Gary; Adeli, Ardeshir; Moorhead, Robert J
2017-06-01
Water quality of lakes, estuaries, and coastal areas serves as an indicator of the overall health of aquatic ecosystems as well as the health of the terrestrial ecosystem that drains to the water body. Land use and land cover plays not only a significant role in controlling the quantity of the exported dissolved organic matter (DOM) but also influences the quality of DOM via various biogeochemical and biodegradation processes. We examined the characteristics and spatial distribution of DOM in five major lakes, in an estuary, and in the coastal waters of the Mississippi, USA, and investigated the influence of the land use and land cover of their watersheds on the DOM composition. We employed absorption and fluorescence spectroscopy including excitation-emission matrix (EEM) combined with parallel factor (PARAFAC) analysis modeling techniques to determine optical properties of DOM and its characteristics in this study. We developed a site-specific PARAFAC model to evaluate DOM characteristics resulting in five diverse DOM compositions that included two terrestrial humic-like (C1 and C3), two microbial humic-like (C2 and C5), and one protein-like (C4) DOM. Our results showed elevated fluorescence levels of microbial humic-like or protein-like DOM in the lakes and coastal waters, while the estuarine waters showed relatively high fluorescence levels of terrestrial humic-like DOM. The results also showed that percent forest and wetland coverage explained 68 and 82% variability, respectively, in terrestrial humic-like DOM exports, while 87% variability in microbially derived humiclike DOM was explained by percent agricultural lands. Strong correlations between microbial humic-like DOM and fluorescence-derived DOM indices such as biological index (BIX) and fluorescence index (FI) indicated autochthonous characteristics in the lakes, while the estuary showed largely allochthonous DOM of terrestrial origin. We also observed higher concentrations of total dissolved phosphorous (TDP) and ammonium nitrogen (NH 4 -N) in coastal waters potentially due to photodegradation of refractory DOM derived from the sediment-bound organic matter in the coastal wetlands. This study highlights the relationships between the DOM compositions in the water and the land use and land cover in the watershed. The spatial variability of DOM in three different types of aquatic environments enhances the understanding of the role of land use and land cover in carbon cycling through export of organic matter to the aquatic ecosystems..
Gatch, Michael B.; Rutledge, Margaret A.; Carbonaro, Theresa; Forster, Michael J.
2010-01-01
Rationale There has been increased recreational use of dimethyltryptamine (DMT), but little is known of its discriminative stimulus effects. Objectives The present study assessed the similarity of the discriminative stimulus effects of DMT to other types of hallucinogens and to psychostimulants. Methods Rats were trained to discriminate DMT from saline. To test the similarity of DMT to known hallucinogens, the ability of (+)-lysergic acid diethylamide (LSD), (−)-2,5-dimethoxy-4-methylamphetamine (DOM), (+)-methamphetamine, or (±)3,4-methylenedioxymethyl-amphetamine (MDMA) to substitute in DMT-trained rats was tested. The ability of DMT to substitute in rats trained to discriminate each of these compounds was also tested. To assess the degree of similarity in discriminative stimulus effects, each of the compounds was tested for substitution in all of the other training groups. Results LSD, DOM, and MDMA all fully substituted in DMT-trained rats, whereas DMT fully substituted only in DOM-trained rats. Full cross-substitution occurred between DMT and DOM, LSD and DOM, and (+)-methamphetamine and MDMA. MDMA fully substituted for (+)-methamphetamine, DOM, and DMT, but only partially for LSD. In MDMA-trained rats, LSD and (+)-methamphetamine fully substituted, whereas DMT and DOM did not fully substitute. No cross-substitution was evident between (+)-methamphetamine and DMT, LSD, or DOM. Conclusions DMT produces discriminative stimulus effects most similar to those of DOM, with some similarity to the discriminative stimulus effects of LSD and MDMA. Like DOM and LSD, DMT seems to produce predominately hallucinogenic-like discriminative stimulus effects and minimal psychostimulant effects, in contrast to MDMA which produced hallucinogen- and psychostimulant-like effects. PMID:19288085
Complexation of Arsenite with Humic Acid in the Presence of Ferric Iron
Liu, Guangliang; Fernandez, Aymara; Cai, Yong
2011-01-01
In the presence of iron (Fe), dissolved organic matter (DOM) may bind considerable amounts of arsenic (As), through formation of Fe-bridged As-Fe-DOM complexes and surface complexation of As on DOM-stabilized Fe-colloids (collectively referred to as As-Fe-DOM complexation). However, direct (e.g., chromatographic and spectroscopic) evidence and fundamental kinetic and stability constants have been rarely reported for this As-Fe-DOM complexation. Using a size exclusion chromatography (SEC)-UV-inductively coupled plasma mass spectrometry (ICP-MS) technique, arsenite (AsIII)-Fe-DOM complexation was investigated after adding AsIII into the priorly prepared Fe-DOM. A series of evidence, including coelution of As, Fe, and DOM from the SEC column and coretention of As, Fe, and DOM by 3 kDa MWCO centrifugal filtration membrane, demonstrated the occurrence of AsIII-Fe-DOM complexation. The kinetic data of AsIII-Fe-DOM complexation were well described by a pseudo-first order rate equation (R2 = 0.95), with the rate constant (k′) being 0.17±0.04 1/h. Stability of AsIII-Fe-DOM complexation was characterized by apparent stability constant (Ks) derived from two-site ligand binding model, with log Ks ranging from 4.4±0.2 to 5.6±0.4. Considering the kinetics (within hours) and stability (similar to typical metal-humates) of AsIII-Fe-DOM complexation, this complexation needs to be included when evaluating As mobility in Fe and DOM rich environments. PMID:21322632
Actinide Sorption in Rainier Mesa Tunnel Waters from the Nevada Test Site
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, P; Zavarin, M; Leif, R
2007-12-17
The sorption behavior of americium (Am), plutonium (Pu), neptunium (Np), and uranium (U) in perched Rainier Mesa tunnel water was investigated. Both volcanic zeolitized tuff samples and groundwater samples were collected from Rainier Mesa, Nevada Test Site, NV for a series of batch sorption experiments. Sorption in groundwater with and without the presence of dissolved organic matter (DOM) was investigated. Am(III) and Pu(IV) are more soluble in groundwater that has high concentrations of DOM. The sorption K{sub d} for Am(III) and Pu(IV) on volcanic zeolitized tuff was up to two orders of magnitude lower in samples with high DOM (15more » to 19 mg C/L) compared to samples with DOM removed (< 0.4 mg C/L) or samples with naturally low DOM (0.2 mg C/L). In contrast, Np(V) and U(VI) sorption to zeolitized tuff was much less affected by the presence of DOM. The Np(V) and U(VI) sorption Kds were low under all conditions. Importantly, the DOM was not found to significantly sorb to the zeolitized tuff during these experiment. The concentration of DOM in groundwater affects the transport behavior of actinides in the subsurface. The mobility of Am(III) and Pu(IV) is significantly higher in groundwater with elevated levels of DOM resulting in potentially enhanced transport. To accurately model the transport behavior of actinides in groundwater at Rainier Mesa, the low actinide Kd values measured in groundwater with high DOM concentrations must be incorporated in predictive transport models.« less
Mishra, H; Polak, S; Jamei, M; Rostami-Hodjegan, A
2014-01-01
We aimed to investigate the application of combined mechanistic pharmacokinetic (PK) and pharmacodynamic (PD) modeling and simulation in predicting the domperidone (DOM) triggered pseudo-electrocardiogram modification in the presence of a CYP3A inhibitor, ketoconazole (KETO), using in vitro–in vivo extrapolation. In vitro metabolic and inhibitory data were incorporated into physiologically based pharmacokinetic (PBPK) models within Simcyp to simulate time course of plasma DOM and KETO concentrations when administered alone or in combination with KETO (DOM+KETO). Simulated DOM concentrations in plasma were used to predict changes in gender-specific QTcF (Fridericia correction) intervals within the Cardiac Safety Simulator platform taking into consideration DOM, KETO, and DOM+KETO triggered inhibition of multiple ionic currents in population. Combination of in vitro–in vivo extrapolation, PBPK, and systems pharmacology of electric currents in the heart was able to predict the direction and magnitude of PK and PD changes under coadministration of the two drugs although some disparities were detected. PMID:25116274
Influence of dissolved organic matter on the complexation of mercury under sulfidic conditions.
Miller, Carrie L; Mason, Robert P; Gilmour, Cynthia C; Heyes, Andrew
2007-04-01
The complexation of Hg under sulfidic conditions influences its bioavailability for microbial methylation. Neutral dissolved Hg-sulfide complexes are readily available to Hg-methylating bacteria in culture, and thermodynamic models predict that inorganic Hg-sulfide complexes dominate dissolved Hg speciation under natural sulfidic conditions. However, these models have not been validated in the field. To examine the complexation of Hg in natural sulfidic waters, octanol/water partitioning methods were modified for use under environmentally relevant conditions, and a centrifuge ultrafiltration technique was developed. These techniques demonstrated much lower concentrations of dissolved Hg-sulfide complexes than predicted. Furthermore, the study revealed an interaction between Hg, dissolved organic matter (DOM), and sulfide that is not captured by current thermodynamic models. Whereas Hg forms strong complexes with DOM under oxic conditions, these complexes had not been expected to form in the presence of sulfide because of the stronger affinity of Hg for sulfide relative to its affinity for DOM. The observed interaction between Hg and DOM in the presence of sulfide likely involves the formation of a DOM-Hg-sulfide complex or results from the hydrophobic partitioning of neutral Hg-sulfide complexes into the higher-molecular-weight DOM. An understanding of the mechanism of this interaction and determination of complexation coefficients for the Hg-sulfide-DOM complex are needed to adequately assess how our new finding affects Hg bioavailability, sorption, and flux.
Stormwater dissolved organic matter: influence of land cover and environmental factors.
McElmurry, Shawn P; Long, David T; Voice, Thomas C
2014-01-01
Dissolved organic matter (DOM) plays a major role in defining biological systems and it influences the fate and transport of many pollutants. Despite the importance of DOM, understanding of how environmental and anthropogenic factors influence its composition and characteristics is limited. This study focuses on DOM exported as stormwater from suburban and urban sources. Runoff was collected before entering surface waters and DOM was characterized using specific ultraviolet absorbance at 280 nm (a proxy for aromaticity), molecular weight, polydispersity and the fraction of DOM removed from solution via hydrophobic and H-bonding mechanisms. General linear models (GLMs) incorporating land cover, precipitation, solar radiation and selected aqueous chemical measurements explained variations in DOM properties. Results show (1) molecular characteristics of DOM differ as a function of land cover, (2) DOM produced by forested land is significantly different from other landscapes, particularly urban and suburban areas, and (3) DOM from land cover that contains paved surfaces and sewers is more hydrophobic than from other types of land cover. GLMs incorporating environmental factors and land cover accounted for up to 86% of the variability observed in DOM characteristics. Significant variables (p < 0.05) included solar radiation, water temperature and water conductivity.
Liang, Jian; Jiang, Tao; WeiI, Shi-Qiang; Lu, Song; Yan, Jin-Long; Wang, Qi-Lei; Gao, Jie
2015-03-01
This study aimed at evaluating the variability of the optical properties including UV-Vis and fluorescence characteristics of dissolved organic matter (DOM) from rainwater in summer and winter seasons. UV-Vis and fluorescence spectroscopy, together with Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model and fire events map, were conducted to characterize DOM and investigate its sources and contributions. The results showed that as compared with aquatic and soil DOM, rainwater DOM showed similar spectral characteristics, suggesting DOM in precipitation was also an important contributor to DOM pool in terrestrial and aquatic systems. The concentrations of DOC in rainwater were 0.88-12.80 mg x L(-1), and the CDOM concentrations were 3.17-21.11 mg x L(-1). Differences of DOM samples between summer and winter were significant (P < 0.05). In comparison to summer, DOM samples in winter had lower molecular weight and aromaticity, and also lower humification. Input of DOM in winter was predominantly derived from local and short-distance distances, while non-special scattering sources were identified as the main contributors in summer. Although absorption and fluorescence spectroscopy could be used to identify DOM composition and sources, there were obvious differences in spectra and sources analysis between rainwater DOM and the others from other sources. Thus, the classic differentiation method by "allochthonous (terrigenous) and autochthonous (authigenic)" is possibly too simple and arbitrary for characterization of DOM in rainwater.
Simulating Streamflow and Dissolved Organic Matter Export from small Forested Watersheds
NASA Astrophysics Data System (ADS)
Xu, N.; Wilson, H.; Saiers, J. E.
2010-12-01
Coupling the rainfall-runoff process and solute transport in catchment models is important for understanding the dynamics of water-quality-relevant constituents in a watershed. To simulate the hydrologic and biogeochemical processes in a parametrically parsimonious way remains challenging. The purpose of this study is to quantify the export of water and dissolved organic matter (DOM) from a forested catchment by developing and testing a coupled model for rainfall-runoff and soil-water flushing of DOM. Natural DOM plays an important role in terrestrial and aquatic systems by affecting nutrient cycling, contaminant mobility and toxicity, and drinking water quality. Stream-water discharge and DOM concentrations were measured in a first-order stream in Harvard Forest, Massachusetts. These measurements show that stream water DOM concentrations are greatest during hydrologic events induced by rainfall or snowmelt and decline to low, steady levels during periods of baseflow. Comparison of the stream-discharge data to calculations of a simple rainfall-runoff model reveals a hysteretic relationship between stream-flow rates and the storage of water within the catchment. A modified version of the rainfall-runoff model that accounts for hysteresis in the storage-discharge relationship in a parametrically simple way is capable of describing much, but not all, of the variation in the time-series data on stream discharge. Our ongoing research is aimed at linking the new rainfall-runoff formulation with coupled equations that predict soil-flushing and stream-water concentrations of DOM as functions of the temporal change in catchment water storage. This model will provide a predictive tool for examining how changes in climatic variables would affect the runoff generation and DOM fluxes from terrestrial landscape.
Molecular simulation of a model of dissolved organic matter.
Sutton, Rebecca; Sposito, Garrison; Diallo, Mamadou S; Schulten, Hans-Rolf
2005-08-01
A series of atomistic simulations was performed to assess the ability of the Schulten dissolved organic matter (DOM) molecule, a well-established model humic molecule, to reproduce the physical and chemical behavior of natural humic substances. The unhydrated DOM molecule had a bulk density value appropriate to humic matter, but its Hildebrand solubility parameter was lower than the range of current experimental estimates. Under hydrated conditions, the DOM molecule went through conformational adjustments that resulted in disruption of intramolecular hydrogen bonds (H-bonds), although few water molecules penetrated the organic interior. The radius of gyration of the hydrated DOM molecule was similar to those measured for aquatic humic substances. To simulate humic materials under aqueous conditions with varying pH levels, carboxyl groups were deprotonated, and hydrated Na+ or Ca2+ were added to balance the resulting negative charge. Because of intrusion of the cation hydrates, the model metal-humic structures were more porous, had greater solvent-accessible surface areas, and formed more H-bonds with water than the protonated, hydrated DOM molecule. Relative to Na+, Ca2+ was both more strongly bound to carboxylate groups and more fully hydrated. This difference was attributed to the higher charge of the divalent cation. The Ca-DOM hydrate, however, featured fewer H-bonds than the Na-DOM hydrate, perhaps because of the reduced orientational freedom of organic moieties and water molecules imposed by Ca2+. The present work is, to our knowledge, the first rigorous computational exploration regarding the behavior of a model humic molecule under a range of physical conditions typical of soil and water systems.
Awad, John; van Leeuwen, John; Chow, Christopher; Drikas, Mary; Smernik, Ronald J; Chittleborough, David J; Bestland, Erick
2016-05-05
Dissolved organic matter (DOM) in surface waters used for drinking purposes can vary markedly in character dependent on their sources within catchments. The character of DOM further influences the formation of disinfection by products when precursor DOM present in drinking water reacts with chlorine during disinfection. Here we report the development of models that describe the formation potential of trihalomethanes (THMFP) dependent on the character of DOM in waters from discrete catchments with specific land-use and soil textures. DOM was characterized based on UV absorbance at 254 nm, apparent molecular weight and relative abundances of protein-like and humic-like compounds. DOM character and Br concentration (up to 0.5 mg/L) were used as variables in models (R(2)>0.93) of THMFP, which ranged from 19 to 649 μg/L. Chloroform concentration (12-594 μg/L) and relative abundance (27-99%) were first modeled (R(2)>0.85) and from these, the abundances of bromodichloromethane and chlorodibromomethane estimated using power and exponential functions, respectively (R(2)>0.98). From these, the abundance of bromoform is calculated. The proposed model may be used in risk assessment of catchment factors on formation of trihalomethanes in drinking water, in context of treatment efficiency for removal of organic matter. Crown Copyright © 2016. Published by Elsevier B.V. All rights reserved.
Mckay, Garrett; Huang, Wenxi; Romera-Castillo, Cristina; Crouch, Jenna E; Rosario-Ortiz, Fernando L; Jaffé, Rudolf
2017-05-16
The antioxidant capacity and formation of photochemically produced reactive intermediates (RI) was studied for water samples collected from the Florida Everglades with different spatial (marsh versus estuarine) and temporal (wet versus dry season) characteristics. Measured RI included triplet excited states of dissolved organic matter ( 3 DOM*), singlet oxygen ( 1 O 2 ), and the hydroxyl radical ( • OH). Single and multiple linear regression modeling were performed using a broad range of extrinsic (to predict RI formation rates, R RI ) and intrinsic (to predict RI quantum yields, Φ RI ) parameters. Multiple linear regression models consistently led to better predictions of R RI and Φ RI for our data set but poor prediction of Φ RI for a previously published data set,1 probably because the predictors are intercorrelated (Pearson's r > 0.5). Single linear regression models were built with data compiled from previously published studies (n ≈ 120) in which E2:E3, S, and Φ RI values were measured, which revealed a high degree of similarity between RI-optical property relationships across DOM samples of diverse sources. This study reveals that • OH formation is, in general, decoupled from 3 DOM* and 1 O 2 formation, providing supporting evidence that 3 DOM* is not a • OH precursor. Finally, Φ RI for 1 O 2 and 3 DOM* correlated negatively with antioxidant activity (a surrogate for electron donating capacity) for the collected samples, which is consistent with intramolecular oxidation of DOM moieties by 3 DOM*.
Transport of dissolved organic matter in Boom Clay: Size effects
NASA Astrophysics Data System (ADS)
Durce, D.; Aertsens, M.; Jacques, D.; Maes, N.; Van Gompel, M.
2018-01-01
A coupled experimental-modelling approach was developed to evaluate the effects of molecular weight (MW) of dissolved organic matter (DOM) on its transport through intact Boom Clay (BC) samples. Natural DOM was sampled in-situ in the BC layer. Transport was investigated with percolation experiments on 1.5 cm BC samples by measuring the outflow MW distribution (MWD) by size exclusion chromatography (SEC). A one-dimensional reactive transport model was developed to account for retardation, diffusion and entrapment (attachment and/or straining) of DOM. These parameters were determined along the MWD by implementing a discretisation of DOM into several MW points and modelling the breakthrough of each point. The pore throat diameter of BC was determined as 6.6-7.6 nm. Below this critical size, transport of DOM is MW dependent and two major types of transport were identified. Below MW of 2 kDa, DOM was neither strongly trapped nor strongly retarded. This fraction had an averaged capacity factor of 1.19 ± 0.24 and an apparent dispersion coefficient ranging from 7.5 × 10- 11 to 1.7 × 10- 11 m2/s with increasing MW. DOM with MW > 2 kDa was affected by both retardation and straining that increased significantly with increasing MW while apparent dispersion coefficients decreased. Values ranging from 1.36 to 19.6 were determined for the capacity factor and 3.2 × 10- 11 to 1.0 × 10- 11 m2/s for the apparent dispersion coefficient for species with 2.2 kDa < MW < 9.3 kDa. Straining resulted in an immobilisation of in average 49 ± 6% of the injected 9.3 kDa species. Our findings show that an accurate description of DOM transport requires the consideration of the size effects.
High Resolution Seamless Dom Generation Over CHANG'E-5 Landing Area Using Lroc Nac Images
NASA Astrophysics Data System (ADS)
Di, K.; Jia, M.; Xin, X.; Liu, B.; Liu, Z.; Peng, M.; Yue, Z.
2018-04-01
Chang'e-5, China's first sample return lunar mission, will be launched in 2019, and the planned landing area is near Mons Rümker in Oceanus Procellarum. High-resolution and high-precision mapping of the landing area is of great importance for supporting scientific analysis and safe landing. This paper proposes a systematic method for large area seamless digital orthophoto map (DOM) generation, and presents the mapping result of Chang'e-5 landing area using over 700 LROC NAC images. The developed method mainly consists of two stages of data processing: stage 1 includes subarea block adjustment with rational function model (RFM) and seamless subarea DOM generation; stage 2 includes whole area adjustment through registration of the subarea DOMs with thin plate spline model and seamless DOM mosaicking. The resultant seamless DOM coves a large area (20° longitude × 4° latitude) and is tied to the widely used reference DEM - SLDEM2015. As a result, the RMS errors of the tie points are all around half pixel in image space, indicating a high internal precision; the RMS errors of the control points are about one grid cell size of SLDEM2015, indicating that the resultant DOM is tied to SLDEM2015 well.
A DOM Odyssey: The Tale of Molecular Transformations in an Aquifer near Bemidji, MN
NASA Astrophysics Data System (ADS)
Podgorski, D. C.; Zito, P.; Smith, D. F.; Cao, X.; Schmidt-Rohr, K.; Wagner, S.; Stubbins, A.; Aiken, G.; Cozzarelli, I.; Bekins, B. A.; Spencer, R. G.
2017-12-01
Analytical methods including fluorescence spectroscopy, NMR spectroscopy, and ultrahigh resolution mass spectrometry have significantly advanced the understanding of compositional controls on dissolved organic matter (DOM) processing and fate. Yet, we still heavily rely on extrapolation of chemical changes identified at the edges of the compositional continuum (i.e., endmembers) to assess DOM reactivity and stability. While extrapolation of chemical transformations is useful for determining relative changes in DOM composition, a comprehensive understanding of the underlying core structures and composition is required to develop advanced biogeochemical models. Studying DOM from natural systems is complicated by many variables associated with an open system including input from multiple sources, simultaneous photo-alteration and microbial processing, and obtaining samples that cover high spatial and temporal resolution. A 38-year biodegradation study at the National Crude Oil Spill Research site near Bemidji, MN provides a unique opportunity to monitor DOM in a relatively closed system. An extensively characterized 1 m thick oil body is confined to a 25 x 75 m2 area at the water table in the aquifer. Oxidized metabolites partition from the oil into the underlying aquifer increase the DOC concentration to > 100 ppm from < 2 ppm up-gradient from the oil body. This newly produced DOM is comprised of aliphatic compounds with high H/C, low O/C and blue-shifted fluorescence, similar in composition to permafrost- and algal-derived DOM. The aliphatic DOM is transported laterally from the oil pool by groundwater, creating a plume that ultimately discharges into the Unnamed Lake 325 m downgradient. More than 10 years later and hundreds of meters downgradient from the oil body, the DOC concentration has decreased to 3-5 ppm and the DOM is compositionally non-distinct. Microbes have left behind degradation products and selectively preserved compounds that exhibit red-shifted fluorescence and molecular formulas with O/C and H/C similar to those associated with the `island of stability'. Samples collected spatially from the DOM plume between these two endmembers provide sufficient temporal resolution to model both DOC concentration and DOM composition as a result of biodegradation.
Stream Dissolved Organic Matter Quantity and Quality Along a Wetland-Cropland Catchment Gradient
NASA Astrophysics Data System (ADS)
McDonough, O.; Hosen, J. D.; Lang, M. W.; Oesterling, R.; Palmer, M.
2012-12-01
Wetlands may be critical sources of dissolved organic matter (DOM) to stream networks. Yet, more than half of wetlands in the continental United States have been lost since European settlement, with the majority of loss attributed to agriculture. The degree to which agricultural loss of wetlands impacts stream DOM is largely unknown and may have important ecological implications. Using twenty headwater catchments on the Delmarva Peninsula (Maryland, USA), we investigated the seasonal influence of wetland and cropland coverage on downstream DOM quantity and quality. In addition to quantifying bulk downstream dissolved organic carbon (DOC) concentration, we used a suite of DOM UV-absorbance metrics and parallel factor analysis (PARAFAC) modeling of excitation-emission fluorescence spectra (EEMs) to characterize DOM composition. Percent bioavailable DOC (%BDOC) was measured during the Spring sampling using a 28-day incubation. Percent wetland coverage and % cropland within the watersheds were significantly negatively correlated (r = -0.93, p < 0.001). Results show that % wetland coverage was positively correlated with stream DOM concentration, molecular weight, aromaticity, humic-like fluorescence, and allochthonous origin. Conversely, increased wetland coverage was negatively correlated with stream DOM protein-like fluorescence. Percent BDOC decreased with DOM humic-like fluorescence and increased with protein-like fluorescence. We observed minimal seasonal interaction between % wetland coverage and DOM concentration and composition across Spring, Fall, and Winter sampling seasons. However, principal component analysis suggested more pronounced seasonal differences exist in stream DOM. This study highlights the influence of wetlands on downstream DOM in agriculturally impacted landscapes where loss of wetlands to cultivation may significantly alter stream DOM quantity and quality.
NASA Astrophysics Data System (ADS)
Oestreich, W. K.; Ganju, N. K.; Pohlman, J. W.; Suttles, S. E.
2016-02-01
Light availability is of primary importance to the ecological function of shallow estuaries. For example, benthic primary production by submerged aquatic vegetation is contingent upon light penetration to the seabed. A major component that attenuates light in estuaries is colored dissolved organic matter (CDOM). CDOM is often measured via a proxy, fluorescing dissolved organic matter (fDOM), due to the ease of in situ fDOM sensor measurements. Fluorescence must be converted to CDOM absorbance for use in light attenuation calculations. However, this CDOM-fDOM relationship varies among and within estuaries. We quantified the variability in this relationship within three estuaries along the mid-Atlantic margin of the eastern United States: West Falmouth Harbor (MA), Barnegat Bay (NJ), and Chincoteague Bay (MD/VA). Land use surrounding these estuaries ranges from urban to developed, with varying sources of nutrients and organic matter. Measurements of fDOM (excitation and emission wavelengths of 365 nm (±5 nm) and 460 nm (±40 nm), respectively) and CDOM absorbance were taken along a terrestrial-to-marine gradient in all three estuaries. The ratio of the absorption coefficient at 340 nm (m-1) to fDOM (QSU) was higher in West Falmouth Harbor (1.22) than in Barnegat Bay (0.22) and Chincoteague Bay (0.17). The CDOM : fDOM absorption ratio was variable between sites within West Falmouth Harbor and Barnegat Bay, but consistent between sites within Chincoteague Bay. Stable carbon isotope analysis for constraining the source of dissolved organic matter (DOM) in West Falmouth Harbor and Barnegat Bay yielded δ13C values ranging from -19.7 to -26.1 ‰ and -20.8 to -26.7 ‰, respectively. Concentration and stable carbon isotope mixing models of DOC (dissolved organic carbon) indicate a contribution of 13C-enriched DOC in the estuaries. The most likely source of 13C-enriched DOC for the systems we investigated is Spartina cordgrass. Comparison of DOC source to CDOM : fDOM absorption ratios at each site demonstrates the relationship between source and optical properties. Samples with 13C-enriched carbon isotope values, indicating a greater contribution from marsh organic material, had higher CDOM : fDOM absorption ratios than samples with greater contribution from terrestrial organic material. Applying a uniform CDOM : fDOM absorption ratio and spectral slope within a given estuary yields errors in modeled light attenuation ranging from 11 to 33 % depending on estuary. The application of a uniform absorption ratio across all estuaries doubles this error. This study demonstrates that light attenuation coefficients for CDOM based on continuous fDOM records are highly dependent on the source of DOM present in the estuary. Thus, light attenuation models for estuaries would be improved by quantification of CDOM absorption and DOM source identification.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haitzer, M.; Hoess, S.; Burnison, B.K.
1999-03-01
Quantity and quality of dissolved organic matter (DOM) and the time allowed for DOM to interact with organic contaminants can influence their bioavailability. The authors studied the effect of natural aquatic DOM that had been in contact with benzo[a]pyrene (B[a]P) for 1 to 12 d on the bioconcentration of B[a]P in the nematode Caenorhabditis elegans. Dissolved organic matter quality and quantity was varied by using DOM from three different sources, each in three different concentrations. A model, based on the assumption that only freely dissolved B[a]P is bioavailable, was employed to estimate biologically determined partition coefficients [K{sub p}(biol.)]. Expressing themore » data for each combination of DOM source and contact time in a single K{sub p} (biol.) value allowed a direct comparison of the effects of different DOM qualities and contact times. The results show that the effect of DOM from a specific source was dependent on DOM quantity, but they also observed a distinct effect of DOM quality (represented by different sampling locations) on the bioconcentration of B[a]P. Contact time had no significant influence for the effects of two DOM sources on the bioconcentration of B[a]P. However, the third DOM source was significantly more effective with increased contact time, leading to lower B[a]P bioconcentration in the nematodes.« less
NASA Astrophysics Data System (ADS)
Hsieh, C.; Li, M.
2013-12-01
Dissolved organic matter (DOM) is a chemically complex mixture of organic polymers that plays an important role in river ecosystems and originates from various sources. Some DOMs are autochthonous originating through phytoplankton and microbial activity in situ. On the other hand, some DOMs are allochthonous which are transported to river from the surrounding watershed by natural or anthropogenic activities. The studies of DOM in river are usually conducted at the watershed scale; however, factors of local spatial scale affecting DOM composition also need to take into consideration for the study of DOM in an urbanized watershed. Through increasing urbanization, changes in a watershed occur not only in land use patterns but also in river channel characteristics. The objective of this study is to investigate effects of different river channel characteristics and patterns on changes in DOM source and composition. In this study, we chose three tributaries of Tamsui river in Taiwan according to its land use pattern and river channel characteristics. At each sub-basin, river water samples were sampled from three study sites. River water DOM was measured by using optical measurements of UV absorption and fluorescence spectroscopy. Water samples were also collected for laboratory analysis of different water quality parameters. From our study sites, they are from three sub-basins which are in the similar physical environments but with different river channel types: the highly channelized Keelung river, the less channelized Xindian river, and less channelized Dahan river with five human-made wetlands. From the upstream to the urbanized downstream, composition of DOM showed variation among different sampled sites. In all three sub-basins, the trends of 5-day biochemical oxygen demand (BOD5) and suspended solids (SS) are also different. The changes in DOM source and composition as well as different water quality parmaters occur at the local spatial-scale depended on their river channel characters in urbanized watersheds. Based on our result, it indicates river channel characters which can have effects on biogeochemical processes of DOM. This knowledge can help us in understanding biogeochemical processes controlled or manipulated by anthropogenic activities at different spatial scales, and help us to make an integrative river health management in a watershed.
Barker, C.E.; Pawlewicz, M.J.
1993-01-01
In coal samples, published recommendations based on statistical methods suggest 100 measurements are needed to estimate the mean random vitrinite reflectance (Rv-r) to within ??2%. Our survey of published thermal maturation studies indicates that those using dispersed organic matter (DOM) mostly have an objective of acquiring 50 reflectance measurements. This smaller objective size in DOM versus that for coal samples poses a statistical contradiction because the standard deviations of DOM reflectance distributions are typically larger indicating a greater sample size is needed to accurately estimate Rv-r in DOM. However, in studies of thermal maturation using DOM, even 50 measurements can be an unrealistic requirement given the small amount of vitrinite often found in such samples. Furthermore, there is generally a reduced need for assuring precision like that needed for coal applications. Therefore, a key question in thermal maturation studies using DOM is how many measurements of Rv-r are needed to adequately estimate the mean. Our empirical approach to this problem is to compute the reflectance distribution statistics: mean, standard deviation, skewness, and kurtosis in increments of 10 measurements. This study compares these intermediate computations of Rv-r statistics with a final one computed using all measurements for that sample. Vitrinite reflectance was measured on mudstone and sandstone samples taken from borehole M-25 in the Cerro Prieto, Mexico geothermal system which was selected because the rocks have a wide range of thermal maturation and a comparable humic DOM with depth. The results of this study suggest that after only 20-30 measurements the mean Rv-r is generally known to within 5% and always to within 12% of the mean Rv-r calculated using all of the measured particles. Thus, even in the worst case, the precision after measuring only 20-30 particles is in good agreement with the general precision of one decimal place recommended for mean Rv-r measurements on DOM. The coefficient of variation (V = standard deviation/mean) is proposed as a statistic to indicate the reliability of the mean Rv-r estimates made at n ??? 20. This preliminary study suggests a V 0.2 suggests an unreliable mean in such small samples. ?? 1993.
Jason B. Fellman; Eran Hood; Richard T. Edwards; Jeremy B. Jones
2009-01-01
Dissolved organic matter (DOM) is an important component of aquatic food webs. We compare the uptake kinetics for NH4-N and different fractions of DOM during soil and salmon leachate additions by evaluating the uptake of organic forms of carbon (DOC) and nitrogen (DON), and proteinaceous DOM, as measured by parallel factor (PARAFAC) modeling of...
Wagner, Sasha; Jaffé, Rudolf; Cawley, Kaelin; Dittmar, Thorsten; Stubbins, Aron
2015-01-01
Optical properties are easy-to-measure proxies for dissolved organic matter (DOM) composition, source, and reactivity. However, the molecular signature of DOM associated with such optical parameters remains poorly defined. The Florida coastal Everglades is a subtropical wetland with diverse vegetation (e.g., sawgrass prairies, mangrove forests, seagrass meadows) and DOM sources (e.g., terrestrial, microbial, and marine). As such, the Everglades is an excellent model system from which to draw samples of diverse origin and composition to allow classically-defined optical properties to be linked to molecular properties of the DOM pool. We characterized a suite of seasonally- and spatially-collected DOM samples using optical measurements (EEM-PARAFAC, SUVA254, S275−295, S350−400, SR, FI, freshness index, and HIX) and ultrahigh resolution mass spectrometry (FTICR-MS). Spearman's rank correlations between FTICR-MS signal intensities of individual molecular formulae and optical properties determined which molecular formulae were associated with each PARAFAC component and optical index. The molecular families that tracked with the optical indices were generally in agreement with conventional biogeochemical interpretations. Therefore, although they represent only a small portion of the bulk DOM pool, absorbance, and fluorescence measurements appear to be appropriate proxies for the aquatic cycling of both optically-active and associated optically-inactive DOM in coastal wetlands. PMID:26636070
Effects of iron on optical properties of dissolved organic matter.
Poulin, Brett A; Ryan, Joseph N; Aiken, George R
2014-09-02
Iron is a source of interference in the spectroscopic analysis of dissolved organic matter (DOM); however, its effects on commonly employed ultraviolet and visible (UV-vis) light adsorption and fluorescence measurements are poorly defined. Here, we describe the effects of iron(II) and iron(III) on the UV-vis absorption and fluorescence of solutions containing two DOM fractions and two surface water samples. In each case, regardless of DOM composition, UV-vis absorption increased linearly with increasing iron(III). Correction factors were derived using iron(III) absorption coefficients determined at wavelengths commonly used to characterize DOM. Iron(III) addition increased specific UV absorbances (SUVA) and decreased the absorption ratios (E2:E3) and spectral slope ratios (SR) of DOM samples. Both iron(II) and iron(III) quenched DOM fluorescence at pH 6.7. The degree and region of fluorescence quenching varied with the iron:DOC concentration ratio, DOM composition, and pH. Regions of the fluorescence spectra associated with greater DOM conjugation were more susceptible to iron quenching, and DOM fluorescence indices were sensitive to the presence of both forms of iron. Analyses of the excitation-emission matrices using a 7- and 13-component parallel factor analysis (PARAFAC) model showed low PARAFAC sensitivity to iron addition.
Effects of iron on optical properties of dissolved organic matter
Poulin, Brett; Ryan, Joseph N.; Aiken, George R.
2014-01-01
Iron is a source of interference in the spectroscopic analysis of dissolved organic matter (DOM); however, its effects on commonly employed ultraviolet and visible (UV–vis) light adsorption and fluorescence measurements are poorly defined. Here, we describe the effects of iron(II) and iron(III) on the UV–vis absorption and fluorescence of solutions containing two DOM fractions and two surface water samples. In each case, regardless of DOM composition, UV–vis absorption increased linearly with increasing iron(III). Correction factors were derived using iron(III) absorption coefficients determined at wavelengths commonly used to characterize DOM. Iron(III) addition increased specific UV absorbances (SUVA) and decreased the absorption ratios (E2:E3) and spectral slope ratios (SR) of DOM samples. Both iron(II) and iron(III) quenched DOM fluorescence at pH 6.7. The degree and region of fluorescence quenching varied with the iron:DOC concentration ratio, DOM composition, and pH. Regions of the fluorescence spectra associated with greater DOM conjugation were more susceptible to iron quenching, and DOM fluorescence indices were sensitive to the presence of both forms of iron. Analyses of the excitation–emission matrices using a 7- and 13-component parallel factor analysis (PARAFAC) model showed low PARAFAC sensitivity to iron addition.
DOMstudio: an integrated workflow for Digital Outcrop Model reconstruction and interpretation
NASA Astrophysics Data System (ADS)
Bistacchi, Andrea
2015-04-01
Different Remote Sensing technologies, including photogrammetry and LIDAR, allow collecting 3D dataset that can be used to create 3D digital representations of outcrop surfaces, called Digital Outcrop Models (DOM), or sometimes Virtual Outcrop Models (VOM). Irrespective of the Remote Sensing technique used, DOMs can be represented either by photorealistic point clouds (PC-DOM) or textured surfaces (TS-DOM). The first are datasets composed of millions of points with XYZ coordinates and RGB colour, whilst the latter are triangulated surfaces onto which images of the outcrop have been mapped or "textured" (applying a tech-nology originally developed for movies and videogames). Here we present a workflow that allows exploiting in an integrated and efficient, yet flexible way, both kinds of dataset: PC-DOMs and TS-DOMs. The workflow is composed of three main steps: (1) data collection and processing, (2) interpretation, and (3) modelling. Data collection can be performed with photogrammetry, LIDAR, or other techniques. The quality of photogrammetric datasets obtained with Structure From Motion (SFM) techniques has shown a tremendous improvement over the past few years, and this is becoming the more effective way to collect DOM datasets. The main advantages of photogrammetry over LIDAR are represented by the very simple and lightweight field equipment (a digital camera), and by the arbitrary spatial resolution, that can be increased simply getting closer to the out-crop or by using a different lens. It must be noted that concerns about the precision of close-range photogrammetric surveys, that were justified in the past, are no more a problem if modern software and acquisition schemas are applied. In any case, LIDAR is a well-tested technology and it is still very common. Irrespective of the data collection technology, the output will be a photorealistic point cloud and a collection of oriented photos, plus additional imagery in special projects (e.g. infrared images). This dataset can be used as-is (PC-DOM), or a 3D triangulated surface can be interpolated from the point cloud, and images can be used to associate a texture to this surface (TS-DOM). In the DOMstudio workflow we use both PC-DOMs and TS-DOMs. Particularly, the latter are obtained projecting the original images onto the triangulated surface, without any downsampling, thus retaining the original resolution and quality of images collected in the field. In the DOMstudio interpretation step, PC-DOM is considered the best option for fracture analysis in outcrops where facets corresponding to fractures are present. This allows obtaining orientation statistics (e.g. stereoplots, Fisher statistics, etc.) directly from a point cloud where, for each point, the unit vector normal to the outcrop surface has been calculated. A recent development in this kind of processing is represented by the possibility to automatically select (segment) subset point clouds representing single fracture surfaces, which can be used for studies on fracture length, spacing, etc., allowing to obtain parameters like the frequency-length distribution, P21, etc. PC-DOM interpretation can be combined or complemented, depending on the outcrop morphology, with an interpretation carried out on a TS-DOM in terms of traces, which are the linear intersection of "geological" surfaces (fractures, faults, bedding, etc.) with the outcrop surface. This kind of interpretation is very well suited for outcrops with smooth surfaces, and can be performed either by manual picking, or by applying image analysis techniques on the images associated with the DOM. In this case, a huge mass of data, with very high resolution, can be collected very effectively. If we consider applications like lithological or mineral map-ping, TS-DOM datasets are the only suitable support. Finally, the DOMstudio workflow produces output in formats that are compatible with all common geomodelling packages (e.g. Gocad/Skua, Petrel, Move), allowing to directly use the quantitative data collected on DOMs to generate and calibrate geological, structural, or geostatistical models. I will present examples of applications including hydrocarbon reservoir analogue studies, studies on fault zone architecture, lithological mapping on sedimentary and metamorphic rocks, and studies on the surface of planets and small bodies in the Solar System.
NASA Astrophysics Data System (ADS)
Bhattacharya, R.; Osburn, C. L.
2017-12-01
Dissolved organic matter (DOM) exported from river catchments can influence the biogeochemical processes in coastal environments with implications for water quality and carbon budget. High flow conditions are responsible for most DOM export ("pulses") from watersheds, and these events reduce DOM transformation and production by "shunting" DOM from river networks into coastal waters: the Pulse-Shunt Concept (PSC). Subsequently, the source and quality of DOM is also expected to change as a function of river flow. Here, we used stream dissolved organic carbon concentrations ([DOC]) along with DOM optical properties, such as absorbance at 350 nm (a350) and fluorescence excitation and emission matrices modeled by parallel factor analysis (PARAFAC), to characterize DOM source, quality and fluxes under variable flow conditions for the Neuse River, a coastal river system in the southeastern US. Observations were made at a flow gauged station above head of tide periodically between Aug 2011 and Feb 2013, which captured low flow periods in summer and several high flow events including Hurricane Irene. [DOC] and a350 were correlated and varied positively with river flow, implying that a large portion of the DOM was colored, humic and flow-mobilized. During high flow conditions, PARAFAC results demonstrated the higher influx of terrestrial humic DOM, and lower in-stream phytoplankton production or microbial degradation. However, during low flow, DOM transformation and production increased in response to higher residence times and elevated productivity. Further, 70% of the DOC was exported by above average flows, where 3-4 fold increases in DOC fluxes were observed during episodic events, consistent with PSC. These results imply that storms dramatically affects DOM export to coastal waters, whereby high river flow caused by episodic events primarily shunt terrestrial DOM to coastal waters, whereas low flow promotes in-stream DOM transformation and amendment with microbial DOM.
Zhao, Chen; Wang, Chong-Chen; Li, Jun-Qi; Wang, Peng; Ou, Jia-Qi; Cui, Jing-Rui
2018-01-01
Dissolved organic matter (DOM) can strongly interact with both organic and inorganic contaminants to influence their transportation, transformation, bioavailability, toxicity and even their ultimate fate. Within this work, DOM was extracted from urban stormwater runoff samples collected from a regular sampling site of a typical residential area in Beijing, China. Copper(II) ions were selected as model to investigate the interactions between DOM and typical heavy metals. Both ultraviolet (UV) absorbance and fluorescence titration methods were introduced to determine the complex capacities (C L ) and conditional stability constants (log K M ) of bonding between DOM and copper (II) ions, which revealed that the values of C L were 85.62 and 87.23 μmol mg -1 and the log K M values were 5.37 and 5.48, respectively. The results suggested the successful complexation between DOM and copper(II) ions. Furthermore, morphology of the DOM binding to copper(II) ions was confirmed by both energy-dispersive X-ray spectroscopy (EDX) and X-ray photoelectron spectroscopy (XPS), which can facilitate to clarify the corresponding mechanism. The Cu 2p 3/2 peak at 933.7 eV and the characteristic shake-up peaks of Cu-O were found in the XPS spectra, implying that copper(II) ions might coordinate with hydroxyl (aliphatic or phenolic) or carboxyl groups. With these profitable results, it can be concluded that DOM in urban stormwater runoff has a strong binding affinity with copper(II) ions, which may further lead to potentially significant influence on their migration and transformation.
O’Donnell, Jonathan A.; Aiken, George R.; Swanson, David K.; Santosh, Panda; Butler, Kenna D.; Baltensperger, Andrew P.
2016-01-01
Recent climate change in the Arctic is driving permafrost thaw, which has important implications for regional hydrology and global carbon dynamics. Permafrost is an important control on groundwater dynamics and the amount and chemical composition of dissolved organic matter (DOM) transported by high-latitude rivers. The consequences of permafrost thaw for riverine DOM dynamics will likely vary across space and time, due in part to spatial variation in ecosystem properties in Arctic watersheds. Here we examined watershed controls on DOM composition in 69 streams and rivers draining heterogeneous landscapes across a broad region of Arctic Alaska. We characterized DOM using bulk dissolved organic carbon (DOC) concentration, optical properties, and chemical fractionation and classified watersheds based on permafrost characteristics (mapping of parent material and ground ice content, modeling of thermal state) and ecotypes. Parent material and ground ice content significantly affected the amount and composition of DOM. DOC concentrations were higher in watersheds underlain by fine-grained loess compared to watersheds underlain by coarse-grained sand or shallow bedrock. DOC concentration was also higher in rivers draining ice-rich landscapes compared to rivers draining ice-poor landscapes. Similarly, specific ultraviolet absorbance (SUVA254, an index of DOM aromaticity) values were highest in watersheds underlain by fine-grained deposits or ice-rich permafrost. We also observed differences in hydrophobic organic acids, hydrophilic compounds, and DOM fluorescence across watersheds. Both DOC concentration and SUVA254 were negatively correlated with watershed active layer thickness, as determined by high-resolution permafrost modeling. Together, these findings highlight how spatial variations in permafrost physical and thermal properties can influence riverine DOM.
NASA Astrophysics Data System (ADS)
Esfahani, Milad Rabbani; Pallem, Vasanta L.; Stretz, Holly A.; Wells, Martha J. M.
2018-01-01
Knowledge of the interactions between gold nanoparticles (GNPs) and dissolved organic matter (DOM) is significant in the development of detection devices for environmental sensing, studies of environmental fate and transport, and advances in antifouling water treatment membranes. The specific objective of this research was to spectroscopically investigate the fundamental interactions between citrate-stabilized gold nanoparticles (CT-GNPs) and DOM. Studies indicated that 30 and 50 nm diameter GNPs promoted disaggregation of the DOM. This result-disaggregation of an environmentally important polyelectrolyte-will be quite useful regarding antifouling properties in water treatment and water-based sensing applications. Furthermore, resonance Rayleigh scattering results showed significant enhancement in the UV range which can be useful to characterize DOM and can be exploited as an analytical tool to better sense and improve our comprehension of nanomaterial interactions with environmental systems. CT-GNPs having core size diameters of 5, 10, 30, and 50 nm were studied in the absence and presence of added DOM at 2 and 8 ppm at low ionic strength and near neutral pH (6.0-6.5) approximating surface water conditions. Interactions were monitored by cross-interpretation among ultraviolet (UV)-visible extinction spectroscopy, excitation-emission matrix (EEM) spectroscopy (emission and Rayleigh scattering), and dynamic light scattering (DLS). This comprehensive combination of spectroscopic analyses lends new insights into the antifouling behavior of GNPs. The CT-GNP-5 and -10 controls emitted light and aggregated. In contrast, the CT-GNP-30 and CT-GNP-50 controls scattered light intensely, but did not aggregate and did not emit light. The presence of any CT-GNP did not affect the extinction spectra of DOM, and the presence of DOM did not affect the extinction spectra of the CT-GNPs. The emission spectra (visible range) differed only slightly between calculated and actual mixtures of CT-GNP-5 or -10 with DOM, whereas emissions for mixtures of CT-GNP-30 or -50 with DOM were enhanced at the surface plasmon resonance (SPR) wavelength. The emission spectra (ultraviolet range) for protein-like constituents of DOM were quenched. Resonance Rayleigh scattering (RRS) was more intense for the CT-GNP-30 and -50 than for the CT-GNP-5 and -10 controls. Intensity-based DLS particle size distributions (PSDs) of DOM controls, CT-GNP-5 and -10 nm controls, and 5- and 10 nm GNP-DOM mixtures exhibited multimodal aggregation. Analyses of CT-GNP-5 and CT-GNP-10 nm mixtures with DOM indicated overcoating of DOM molecules occurred in close proximity (< 10 nm) to GNPs, whereas similar overcoating was not supported for the CT-GNP-30 or -50 mixtures with DOM. These fundamental observations can be exploited to improve our comprehension of nanomaterial interactions with environmental systems.
NASA Astrophysics Data System (ADS)
Lee, Jongyeol; Kim, Moonil; Lakyda, Ivan; Pietsch, Stephan; Shvidenko, Anatoly; Kraxner, Florian; Forsell, Nicklas; Son, Yowhan
2016-04-01
There have been demands on reporting national forest carbon (C) inventories to mitigate global climate change. Global forestry models estimate growth of stem volume and C at various spatial and temporal scales but they do not consider dead organic matter (DOM) C. In this study, we simulated national forest C dynamics in South Korea with a calibrated global forestry model (G4M model) and a module of DOM C dynamics in Korean forest C model (FBDC model). 3890 simulation units (1-16 km2) were established in entire South Korea. Growth functions of stem for major tree species (Pinus densiflora, P. rigida, Larix kaempferi, Quercus variabilis, Q. mongolica, and Q. acutissima) were estimated by internal mechanism of G4M model and Korean yield tables. C dynamics in DOMs were determined by balance between input and output (decomposition) of DOMs in the FBDC model. Annual input of DOM was estimated by multiplying C stock of biomass compartment with turnover rate. Decomposition of DOM was estimated by C stock of DOM, mean air temperature, and decay rate. C stock in each C pool was initialized by spin-up process with consideration of severe deforestation by Japanese exploitation and Korean War. No disturbance was included in the simulation process. Total forest C stock (Tg C) and mean C density (Mg C ha-1) decreased from 657.9 and 112.1 in 1954 to 607.2 and 103.4 in 1973. Especially, C stock in mineral soil decreased at a rate of 0.5 Mg C ha-1 yr-1 during the period due to suppression of regeneration. However, total forest C stock (Tg C) and mean C density (Mg C ha-1) gradually increased from 607.0 and 103.4 in 1974 to 1240.7 and 211.3 in 2015 due to the national reforestation program since 1973. After the reforestation program, Korean forests became C sinks. Model estimates were also verified by comparison of these estimates and national forest inventory data (2006-2010). High similarity between the model estimates and the inventory data showed a reliability of down-scaled global forestry model and integration of DOM C module. Finally, total C stock gradually increased to 1749.8 Tg C in 2050 at a rate of 2.5 Tg C yr-1 and it might be attributed to mature of forest. However, total forest C stock might be overestimated in the future due to the exclusion of disturbance in simulation. This study was supported by Korea Forest Service (S111315L100120) and Korean Ministry of Environment (2014001310008).
Wu, Wei; Sheng, Hongjie; Gu, Chenggang; Song, Yang; Willbold, Sabine; Qiao, Yan; Liu, Guangxia; Zhao, Wei; Wang, Yu; Jiang, Xin; Wang, Fang
2018-08-01
The widespread use of plastic film, especially in agricultural practices, has resulted in phthalic acid esters (PAEs) pollution, which poses risks for greenhouse soils. Application of composted manure is a common agricultural practice that adds extraneous dissolved organic matter (DOM) to the soil, however, the effect of extraneous DOM on the behavior of PAEs in agricultural soil is not clear. Dibutyl phthalate (DBP) was used as a model compound to investigate the effect and mechanism of extraneous DOM on the adsorption kinetics and isotherms of PAEs in two types of soils, through batch experiments and characterization of extraneous DOM and soils using fourier transform infrared spectroscopy (FTIR) and nuclear magnetic resonance (NMR). The equilibrium adsorption amount of DBP in black soil was higher than in red soil regardless of the presence of extraneous DOM, due to the higher organic matter content of black soil. Hydrophobic partition played a dominant role in the DBP adsorption process of soils with and without extraneous DOM. The addition of DOM enhanced the adsorption capacity of DBP through partition in the two soils, especially at high DBP concentrations. Additions of a lower concentration of DOM better enhanced the adsorption effect than the higher concentrated DOM, due to an increase in water solubility of DBP resulted from excessive extraneous DOM in aqueous phase. Differences in mineral composition of soils led to diverse adsorption mechanisms of DBP as affected by additions of extraneous DOM. The FTIR spectra indicated that the intra-molecular and intermolecular hydrogen bond interactions of carboxylic acids, aromatic CC and CO in amides were involved in DBP adsorption in soils. Therefore, addition of DOM may increase adsorption of DBP in soils and thus influence its bioavailability and transformation in soils. Copyright © 2018 Elsevier B.V. All rights reserved.
Awad, John; Fisk, Claire A; Cox, Jim W; Anderson, Sharolyn J; van Leeuwen, John
2018-09-01
Catchment properties influence the character and concentration of dissolved organic matter (DOM). Surface and subsurface runoff from discrete catchments were collected and DOM was measured and assessed in terms of its treatability by Enhanced Coagulation and potential for disinfection by-product (trihalomethane, THMFP) formation potential. Models were developed of [1] DOM character [i.e. SUVA and SpCoL] and concentration (measured as dissolved organic carbon), [2] treatability of DOM by coagulation/flocculation processes and [3] specific THMFP based on the catchment features including: (a) surface and sub-surface soil texture (% clay: 5-25%), (b) topography (% slope: 5-15%) and (c) vegetation cover [i.e. high photosynthetic vegetation, low photosynthetic vegetation and bare soil] extracted from RapidEye satellite imagery using spectral mixture analysis. From these models, a catchment management decision support tool was designed for application by catchment managers to support decision-making of land-use and expected water quality related to water resources for drinking water supply. Data sets used for models developing presented in this paper have been published in Research Data Australia (RDA) under the title of "Impacts of catchment properties on DOM and nutrients in waters from drinking water catchments". 1 These data sets are available in open access and published in June 2017. A catchment management decision support model (CMDSM) tool was developed. Macros created using Visual Basic for Applications in Excel 2010. Excel 2010 or higher is required to open the CMDSM tool. The tool is provided by the University of South Australia (UniSA) and is not currently available on-line so please contact the corresponding author for access or further information. Crown Copyright © 2018. Published by Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Benner, Ronald
2010-05-01
The ocean reservoir of dissolved organic matter (DOM) is among the largest global reservoirs (~700 Pg C) of reactive organic carbon. Marine primary production (~50 Pg C/yr) by photosynthetic microalgae and cyanobacteria is the major source of organic matter to the ocean and the principal substrate supporting marine food webs. The direct release of DOM from phytoplankton and other organisms as well as a variety of other processes, such as predation and viral lysis, contribute to the ocean DOM reservoir. Continental runoff and atmospheric deposition are relatively minor sources of DOM to the ocean, but some components of this material appear to be resistant to decomposition and to have a long residence time in the ocean. Concentrations of DOM are highest in surface waters and decrease with depth, a pattern that reflects the sources and diagenesis of DOM in the upper ocean. Most (70-80%) marine DOM exists as small molecules of low molecular weight (<1 kDalton). Surprisingly, high-molecular-weight (>1 kDalton) DOM is relatively enriched in major biochemicals, such as combined neutral sugars and amino acids, and is more bioavailable than low-molecular-weight DOM. The observed relationships among the size, composition, and reactivity of DOM have led to the size-reactivity continuum model, which postulates that diagenetic processes lead to the production of smaller molecules that are structurally altered and resistant to microbial degradation. The radiocarbon content of these small dissolved molecules also indicates these are the most highly aged components of DOM. Chemical signatures of bacteria are abundant in DOM and increase during diagenesis, indicating bacteria are an important source of slowly cycling biochemicals. Recent analyses of DOM isolates by ultrahigh-resolution mass spectrometry have revealed an incredibly diverse mixture of molecules. Carboxyl-rich alicyclic molecules are abundant in DOM, and they appear to be derived from diagenetically-altered terpenoids, such as sterols and hopanoids. Thermally-altered molecules, including black carbon, also appear to be important components of DOM, but their origins are unclear. We are rapidly acquiring novel information about the composition and molecular identity of DOM, and novel insights about the origins, transformations and fates this vast reservoir of DOM are emerging. This presentation will review and synthesize this information for comparison with non-living organic matter in other systems.
Fils, D.; Cervato, C.; Reed, J.; Diver, P.; Tang, X.; Bohling, G.; Greer, D.
2009-01-01
CHRONOS's purpose is to transform Earth history research by seamlessly integrating stratigraphic databases and tools into a virtual on-line stratigraphic record. In this paper, we describe the various components of CHRONOS's distributed data system, including the encoding of semantic and descriptive data into a service-based architecture. We give examples of how we have integrated well-tested resources available from the open-source and geoinformatic communities, like the GeoSciML schema and the simple knowledge organization system (SKOS), into the services-oriented architecture to encode timescale and phylogenetic synonymy data. We also describe on-going efforts to use geospatially enhanced data syndication and informally including semantic information by embedding it directly into the XHTML Document Object Model (DOM). XHTML DOM allows machine-discoverable descriptive data such as licensing and citation information to be incorporated directly into data sets retrieved by users. ?? 2008 Elsevier Ltd. All rights reserved.
Appiani, Elena; Page, Sarah E; McNeill, Kristopher
2014-10-21
Dissolved organic matter (DOM) is involved in numerous environmental processes, and its molecular size is important in many of these processes, such as DOM bioavailability, DOM sorptive capacity, and the formation of disinfection byproducts during water treatment. The size and size distribution of the molecules composing DOM remains an open question. In this contribution, an indirect method to assess the average size of DOM is described, which is based on the reaction of hydroxyl radical (HO(•)) quenching by DOM. HO(•) is often assumed to be relatively unselective, reacting with nearly all organic molecules with similar rate constants. Literature values for HO(•) reaction with organic molecules were surveyed to assess the unselectivity of DOM and to determine a representative quenching rate constant (k(rep) = 5.6 × 10(9) M(-1) s(-1)). This value was used to assess the average molecular weight of various humic and fulvic acid isolates as model DOM, using literature HO(•) quenching constants, kC,DOM. The results obtained by this method were compared with previous estimates of average molecular weight. The average molecular weight (Mn) values obtained with this approach are lower than the Mn measured by other techniques such as size exclusion chromatography (SEC), vapor pressure osmometry (VPO), and flow field fractionation (FFF). This suggests that DOM is an especially good quencher for HO(•), reacting at rates close to the diffusion-control limit. It was further observed that humic acids generally react faster than fulvic acids. The high reactivity of humic acids toward HO(•) is in line with the antioxidant properties of DOM. The benefit of this method is that it provides a firm upper bound on the average molecular weight of DOM, based on the kinetic limits of the HO(•) reaction. The results indicate low average molecular weight values, which is most consistent with the recent understanding of DOM. A possible DOM size distribution is discussed to reconcile the small nature of DOM with the large-molecule behavior observed in other studies.
Oestreich, W.K.; Ganju, Neil K.; Pohlman, John; Suttles, Steven E.
2016-01-01
Light availability is of primary importance to the ecological function of shallow estuaries. For example, benthic primary production by submerged aquatic vegetation is contingent upon light penetration to the seabed. A major component that attenuates light in estuaries is colored dissolved organic matter (CDOM). CDOM is often measured via a proxy, fluorescing dissolved organic matter (fDOM), due to the ease of in situ fDOM sensor measurements. Fluorescence must be converted to CDOM absorbance for use in light attenuation calculations. However, this CDOM–fDOM relationship varies among and within estuaries. We quantified the variability in this relationship within three estuaries along the mid-Atlantic margin of the eastern United States: West Falmouth Harbor (MA), Barnegat Bay (NJ), and Chincoteague Bay (MD/VA). Land use surrounding these estuaries ranges from urban to developed, with varying sources of nutrients and organic matter. Measurements of fDOM (excitation and emission wavelengths of 365 nm (±5 nm) and 460 nm (±40 nm), respectively) and CDOM absorbance were taken along a terrestrial-to-marine gradient in all three estuaries. The ratio of the absorption coefficient at 340 nm (m−1) to fDOM (QSU) was higher in West Falmouth Harbor (1.22) than in Barnegat Bay (0.22) and Chincoteague Bay (0.17). The CDOM : fDOM absorption ratio was variable between sites within West Falmouth Harbor and Barnegat Bay, but consistent between sites within Chincoteague Bay. Stable carbon isotope analysis for constraining the source of dissolved organic matter (DOM) in West Falmouth Harbor and Barnegat Bay yielded δ13C values ranging from −19.7 to −26.1 ‰ and −20.8 to −26.7 ‰, respectively. Concentration and stable carbon isotope mixing models of DOC (dissolved organic carbon) indicate a contribution of 13C-enriched DOC in the estuaries. The most likely source of 13C-enriched DOC for the systems we investigated is Spartina cordgrass. Comparison of DOC source to CDOM : fDOM absorption ratios at each site demonstrates the relationship between source and optical properties. Samples with 13C-enriched carbon isotope values, indicating a greater contribution from marsh organic material, had higher CDOM : fDOM absorption ratios than samples with greater contribution from terrestrial organic material. Applying a uniform CDOM : fDOM absorption ratio and spectral slope within a given estuary yields errors in modeled light attenuation ranging from 11 to 33 % depending on estuary. The application of a uniform absorption ratio across all estuaries doubles this error. This study demonstrates that light attenuation coefficients for CDOM based on continuous fDOM records are highly dependent on the source of DOM present in the estuary. Thus, light attenuation models for estuaries would be improved by quantification of CDOM absorption and DOM source identification.
PubMed Interact: an Interactive Search Application for MEDLINE/PubMed
Muin, Michael; Fontelo, Paul; Ackerman, Michael
2006-01-01
Online search and retrieval systems are important resources for medical literature research. Progressive Web 2.0 technologies provide opportunities to improve search strategies and user experience. Using PHP, Document Object Model (DOM) manipulation and Asynchronous JavaScript and XML (Ajax), PubMed Interact allows greater functionality so users can refine search parameters with ease and interact with the search results to retrieve and display relevant information and related articles. PMID:17238658
Wang, Ying; Zhang, Di; Shen, Zhenyao; Feng, Chenghong; Chen, Jing
2013-01-01
Dissolved organic matter (DOM) in sediment pore waters from Yangtze estuary of China based on abundance, UV absorbance, molecular weight distribution and fluorescence were investigated using a combination of various parameters of DOM as well as 3D fluorescence excitation emission matrix spectra (F-EEMS) with the parallel factor and principal component analysis (PARAFAC-PCA). The results indicated that DOM in pore water of Yangtze estuary was very variable which mainly composed of low aromaticity and molecular weight materials. Three humic-like substances (C1, C2, C4) and one protein-like substance (C3) were identified by PARAFAC model. C1, C2 and C4 exhibited same trends and were very similar. The separation of samples on both axes of the PCA showed the difference in DOM properties. C1, C2 and C4 concurrently showed higher positive factor 1 loadings, while C3 showed highly positive factor 2 loadings. The PCA analysis showed a combination contribution of microbial DOM signal and terrestrial DOM signal in the Yangtze estuary. Higher and more variable DOM abundance, aromaticity and molecular weight of surface sediment pore water DOM can be found in the southern nearshore than the other regions primarily due to the influence of frequent and intensive human activities and tributaries inflow in this area. The DOM abundance, aromaticity, molecular weight and fluorescence intensity in core of different depth were relative constant and increased gradually with depth. DOM in core was mainly composed of humic-like material, which was due to higher release of the sedimentary organic material into the porewater during early diagenesis. PMID:24155904
Wang, Yifan; Zhang, Xinyuan; Zhang, Xing; Meng, Qingjuan; Gao, Fengjie; Zhang, Ying
2017-08-01
This study was aim to investigate the interaction between soil-derived dissolved organic matter (DOM) and atrazine as a kind of pesticides during the sorption process onto black soil. According to the experimental data, the adsorption capacity of Soil + DOM, Soil and DOM were 41.80, 31.45 and 9.35 mg kg -1 , separately, which indicated that DOM significantly enhanced the adsorption efficiency of atrazine by soil. Data implied that the pseudo-second-order kinetic equation could well explain the adsorption process. The adsorption isotherms (R 2 > 0.99) had a satisfactory fit in both Langmuir and Freundlich models. Three-dimensional excitation-emission matrix (3D-EEM), synchronous fluorescence, two-dimensional correlation spectroscopy (2D-COS) and Fourier transform infrared spectroscopy (FT-IR) were selected to analyze the interaction between DOM and atrazine. 3D-EEM showed that humic acid-like substances were the main component of DOM. The fluorescence of DOM samples were gradually quenched with the increased of atrazine concentrations. Synchronous fluorescence spectra showed that static fluorescence quenching was the main quenching process. 2D-COS indicated that the order of the spectral changes were as following: 336 nm > 282 nm. Furthermore, the fluorescence quenching of humic-like fraction occurred earlier than that of protein-like fraction under atrazine surroundings. FT-IR spectra indicated that main compositions of soil DOM include proteins, polysaccharides and humic substances. The findings of this study are significant to reveal DOM played an important role in the environmental fate of pesticides during sorption process onto black soil and also provide more useful information for understanding the interaction between DOM and pesticides by using spectral responses. Copyright © 2017. Published by Elsevier Ltd.
Liu, Yina; Thornton, Daniel C O; Bianchi, Thomas S; Arnold, William A; Shields, Michael R; Chen, Jie; Yvon-Lewis, Shari A
2015-03-17
Brominated very short-lived substances (BrVSLS), such as bromoform, are important trace gases for stratospheric ozone chemistry. These naturally derived trace gases are formed via bromoperoxidase-mediated halogenation of dissolved organic matter (DOM) in seawater. Information on DOM type in relation to the observed BrVSLS concentrations in seawater, however, is scarce. We examined the sensitivity of BrVSLS production in relation to the presence of specific DOM moieties. A total of 28 model DOM compounds in artificial seawater were treated with vanadium bromoperoxidase (V-BrPO). Our results show a clear dependence of BrVSLS production on DOM type. In general, molecules that comprise a large fraction of the bulk DOM pool did not noticeably affect BrVSLS production. Only specific cell metabolites and humic acid appeared to significantly enhance BrVSLS production. Amino acids and lignin phenols suppressed enzyme-mediated BrVSLS production and may instead have formed halogenated nonvolatile molecules. Dibromomethane production was not observed in any experiments, suggesting it is not produced by the same pathway as the other BrVSLS. Our results suggest that regional differences in DOM composition may explain the observed BrVSLS concentration variability in the global ocean. Ultimately, BrVSLS production and concentrations are likely affected by DOM composition, reactivity, and cycling in the ocean.
Chen, W.; Westerhoff, P.; Leenheer, J.A.; Booksh, K.
2003-01-01
Excitation-emission matrix (EEM) fluorescence spectroscopy has been widely used to characterize dissolved organic matter (DOM) in water and soil. However, interpreting the >10,000 wavelength-dependent fluorescence intensity data points represented in EEMs has posed a significant challenge. Fluorescence regional integration, a quantitative technique that integrates the volume beneath an EEM, was developed to analyze EEMs. EEMs were delineated into five excitation-emission regions based on fluorescence of model compounds, DOM fractions, and marine waters or freshwaters. Volumetric integration under the EEM within each region, normalized to the projected excitation-emission area within that region and dissolved organic carbon concentration, resulted in a normalized region-specific EEM volume (??i,n). Solid-state carbon nuclear magnetic resonance (13C NMR), Fourier transform infrared (FTIR) analysis, ultraviolet-visible absorption spectra, and EEMs were obtained for standard Suwannee River fulvic acid and 15 hydrophobic or hydrophilic acid, neutral, and base DOM fractions plus nonfractionated DOM from wastewater effluents and rivers in the southwestern United States. DOM fractions fluoresced in one or more EEM regions. The highest cumulative EEM volume (??T,n = ????i,n) was observed for hydrophobic neutral DOM fractions, followed by lower ??T,n values for hydrophobic acid, base, and hydrophilic acid DOM fractions, respectively. An extracted wastewater biomass DOM sample contained aromatic protein- and humic-like material and was characteristic of bacterial-soluble microbial products. Aromatic carbon and the presence of specific aromatic compounds (as indicated by solid-state 13C NMR and FTIR data) resulted in EEMs that aided in differentiating wastewater effluent DOM from drinking water DOM.
Light limitation plays a central role in regulating DOM reactions in temperate watersheds
NASA Astrophysics Data System (ADS)
Yoon, B.; Hosen, J. D.; Kyzivat, E.; Fair, J. H.; Weber, L.; Aho, K. S.; Stubbins, A.; Lowenthal, R. S.; Raymond, P. A.
2017-12-01
Biological uptake and photochemical oxidation determine how much dissolved organic matter (DOM) can be removed and exported from inland waters. It is thus critical to understand the control on the biological and photochemical oxidation of DOM, and identify potential synergy between these two DOM removal processes. Yet, the variability of biological and photochemical lability, and the prevalence of priming effects between the two removal mechanisms are poorly understood at larger spatiotemporal scale. To address this knowledge gap, we analyzed the lability of 900 samples collected throughout the Connecticut River across two years (n = 510 for biolability, n=394 for photolability). Furthermore, we measured the effect of photochemical priming for biological removal and of biological priming for photochemical removal (n= 151, n=146, respectively). Our results show that photolability is on average 5 times greater than biolability, and that the mass of photolabile DOM can be predicted from UV absorbance at 254 nm. Photochemical DOM removal also led to additional "unlocking" of previously bio-recalcitrant DOM in 80% of the samples, and increased the biological lability by threefold on average. Scaling further, we extrapolate our model to estimate that the DOM fluxes leaving the Connecticut River and the Mississippi River are 49% and 45% photolabile, respectively. The significant photoreactivity observed across the samples and the subsequent increase in biolability demonstrate that sunlight is a more potent agent of DOM removal than the biological reactions. Yet, the photolability of DOM fluxes leaving the Connecticut River and Mississippi River indicates that the full photo-oxidation potential is not achieved due to light limitation.
NASA Astrophysics Data System (ADS)
Lajtha, K.; Lee, B. S.
2015-12-01
Dissolved organic matter (DOM) is a critical component of the carbon cycle linking terrestrial and aquatic ecosystems, yet DOM composition representative of DOM sources at headwater catchments in the western U.S is poorly understood. This study examined the effect of forest management history and hydrologic patterns on DOM chemistry at nine experimental watersheds located in the H.J. Andrews Long Term Ecological Research Experimental Forest of the Oregon Cascades. Stream water samples representing a three-week composite of each watershed were collected between May 2013 and February 2015 (32 events). DOM chemistry was characterized by examining UV and fluorescent properties of stream samples. Specific UV absorbance at 254 nm (SUVA254; Weishaar et al. 2003), generally indicative of aromaticity, showed the lowest value at the high elevation clear-cut site (watershed 6, 1,030 m) and the highest value at the low elevation clear-cut site (watershed 10, 680 m) throughout the study period. DOM fluorescent components, identified by this study using a multivariate statistical model, Parallel Factor Analysis (PARAFAC), did not differ significantly among experimental watersheds with varying forest management history. However, a protein-like DOM component exhibited temporal variations. Correlation analysis between the protein-like DOM and hydrologic patterns indicate that stream water during dry seasons come from protein-rich groundwater sources. This study shows UV and fluorescent spectroscopy DOM characterization is a viable finger printing method to detect DOM sources in pristine headwater streams at the western Cascades of Oregon where characterization of the stream water source with low DOC and DON concentrations is difficult.
Amphiphilic Copolymers Shuttle Drugs Across the Blood-Brain Barrier.
Clemens-Hemmelmann, Mirjam; Kuffner, Christiane; Metz, Verena; Kircher, Linda; Schmitt, Ulrich; Hiemke, Christoph; Postina, Rolf; Zentel, Rudolf
2016-05-01
Medical treatment of diseases of the central nervous system requires transport of drugs across the blood-brain barrier (BBB). Here, it is extended previously in vitro experiments with a model compound to show that the non-water-soluble and brain-impermeable drug domperidone (DOM) itself can be enriched in the brain by use of an amphiphilic copolymer as a carrier. This carrier consists of poly(N-(2-hydroxypropyl)-methacrylamide), statistically copolymerized with 10 mol% hydrophobic lauryl methacrylate, into whose micellar aggregates DOM is noncovalently absorbed. As tested in a BBB model efficient transport of DOM across, the BBB is achievable over a wide range of formulations, containing 0.8 to 35.5 wt% domperidone per copolymer. In neither case, the polymer itself is translocated across the BBB model. In vivo experiments in mice show that already 10 min after intraperitoneal injection of the polymer/domperidone (PolyDOM) formulation, domperidone can be detected in blood and in the brain. Highest serum and brain levels of domperidone are detected 40 min after injection. At that time point serum domperidone is increased 48-fold. Most importantly, domperidone is exclusively detectable in high amounts in the brain of PolyDOM injected mice and not in mice injected with bare domperidone. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Hur, Jin; Lee, Bo-Mi
2011-06-01
The heterogeneity of copper binding characteristics for dissolved organic matter (DOM) fractions was investigated based on the fluorescence quenching of the synchronous fluorescence spectra upon the addition of copper and two-dimensional correlation spectroscopy (2D-COS). Hydrophobic acid (HoA) and hydrophilic (Hi) fractions of two different DOM (algal and leaf litter DOM) were used for this study. For both DOM, fluorescence quenching occurred at a wider range of wavelengths for the HoA fractions compared to the Hi fractions. The combined information of the synchronous and asynchronous maps derived from 2D-COS provided a clear picture of the heterogeneous distribution of the copper binding sites within each DOM fraction, which was not readily recognized by a simple comparison of the changes in the synchronous fluorescence spectra upon the addition of copper. For the algal DOM, higher stability constants were exhibited for the HoA versus the Hi fractions. The logarithms of the stability constants ranged from 4.8 to 6.1 and from 4.5 to 5.0 for the HoA and the Hi fractions of the algal DOM, respectively, depending on the associated wavelength and the fitted models. In contrast, no distinctive difference in the binding characteristics was found between the two fractions of the leaf litter DOM. This suggests that influences of the structural and chemical properties of DOM on copper binding may differ for DOM from different sources. The relative difference of the calculated stability constants within the DOM fractions were consistent with the sequential orders interpreted from the asynchronous 2D-COS. It is expected that 2D-COS will be widely applied to other DOM studies requiring detailed information on the heterogeneous nature and subsequent effects under a range of environmental conditions. Copyright © 2011 Elsevier Ltd. All rights reserved.
Groenenberg, Jan E; Koopmans, Gerwin F; Comans, Rob N J
2010-02-15
Ion binding models such as the nonideal competitive adsorption-Donnan model (NICA-Donnan) and model VI successfully describe laboratory data of proton and metal binding to purified humic substances (HS). In this study model performance was tested in more complex natural systems. The speciation predicted with the NICA-Donnan model and the associated uncertainty were compared with independent measurements in soil solution extracts, including the free metal ion activity and fulvic (FA) and humic acid (HA) fractions of dissolved organic matter (DOM). Potentially important sources of uncertainty are the DOM composition and the variation in binding properties of HS. HS fractions of DOM in soil solution extracts varied between 14 and 63% and consisted mainly of FA. Moreover, binding parameters optimized for individual FA samples show substantial variation. Monte Carlo simulations show that uncertainties in predicted metal speciation, for metals with a high affinity for FA (Cu, Pb), are largely due to the natural variation in binding properties (i.e., the affinity) of FA. Predictions for metals with a lower affinity (Cd) are more prone to uncertainties in the fraction FA in DOM and the maximum site density (i.e., the capacity) of the FA. Based on these findings, suggestions are provided to reduce uncertainties in model predictions.
NASA Astrophysics Data System (ADS)
Rahikainen, Mika; Hoikkala, Laura; Soinne, Helena
2013-04-01
Bayesian belief nets (BBN) are capable of developing holistic understanding of the origin, transportation, and effects of dissolved organic matter (DOM) in ecosystems. The role of riverine DOM, transporting carbon and macronutrients N and P into lakes and coastal areas, has been largely neglected in research about processes influencing aquatic ecosystem functions although dissolved organic matter provides a significant nutrient source for primary producers in aquatic environments. This neglect has also contributed to the environmental policies which are focused in the control of inorganic N and P load. It is of great social and economic interest to gain improved knowledge of whether the currently applied policy instruments act in synchrony in mitigating eutrophication caused by N and P versus DOM load. DOM is a complex mixture of compounds that are poorly characterized. DOM export is strongly regulated by land use (urban, forest, agricultural land, peat land), in addition to soil type and soil organic carbon concentration. Furthermore, the composition of DOM varies according to its origin. The fate and effects of DOM loads in the fresh water and coastal environments depend, for example, on their biodegradability. Degradation kinetics again depends on the interactions between composition of the DOM pool and the receiving environment. Impact studies of dissolved organic matter pose a complicated environmental impact assessment challenge for science. There exists strategic uncertainty in the science about the causal dependencies and about the quality of knowledge related to DOM. There is a clear need for systematization in the approach as uncertainty is typically high about many key processes. A cross-sectorial, integrative analysis will aid in focusing on the most relevant issues. A holistic and unambiguous analysis will provide support for policy-decisions and management by indicating which outcome is more probable than another. The task requires coupling complex models of different environmental compartments (soil chemistry, agricultural management practices, aquatic processes, costs and benefits for society) with explicit treatment of uncertainty. In order to achieve policy relevance, these models have to be integrated into resource management. We use a Bayesian belief net to describe the probabilistic dependencies among the driving forces, processes, and impacts relevant to dissolved organic matter in boreal waterways.
NASA Astrophysics Data System (ADS)
Bernal, Susana; Lupon, Anna; Catalán, Núria; Castelar, Sara; Martí, Eugènia
2018-03-01
Streams are important sources of carbon to the atmosphere, though knowing whether they merely outgas terrestrially derived carbon dioxide or mineralize terrestrial inputs of dissolved organic matter (DOM) is still a big challenge in ecology. The objective of this study was to investigate the influence of riparian groundwater (GW) and in-stream processes on the temporal pattern of stream DOM concentrations and quality in a forested headwater stream, and whether this influence differed between the leaf litter fall (LLF) period and the remaining part of the year (non-LLF). The spectroscopic indexes (fluorescence index, biological index, humification index, and parallel factor analysis components) indicated that DOM had an eminently protein-like character and was most likely originated from microbial sources and recent biological activity in both stream water and riparian GW. However, paired samples of stream water and riparian GW showed that dissolved organic carbon (DOC) and nitrogen (DON) concentrations as well as the spectroscopic character of DOM differed between the two compartments throughout the year. A simple mass balance approach indicated that in-stream processes along the reach contributed to reducing DOC and DON fluxes by 50 and 30 %, respectively. Further, in-stream DOC and DON uptakes were unrelated to each other, suggesting that these two compounds underwent different biogeochemical pathways. During the LLF period, stream DOC and DOC : DON ratios were higher than during the non-LLF period, and spectroscopic indexes suggested a major influence of terrestrial vegetation on stream DOM. Our study highlights that stream DOM is not merely a reflection of riparian GW entering the stream and that headwater streams have the capacity to internally produce, transform, and consume DOM.
Knoth de Zarruk, K; Scholer, G; Dudal, Y
2007-09-01
Land spreading of organic materials introduces large amounts of dissolved organic matter (DOM) into the soil. DOM has the ability to form stable complexes with heavy metals and can facilitate their transport towards the groundwater. The effects on soil processes are difficult to assess, because different DOM components might react differently towards metal ions. The objective of this study was to investigate the fluorescence signature and the Cu2+-binding capacity of individual molecular size fractions of DOM from various sources. DOM extracted from leaf compost, chicken manure, sugar cane vinasse and a fulvic hypercalcaric cambisol was fractionated by the means of dialysis into four molecular size classes: MW<500, 500
Dissolved organic matter enhances microbial mercury methylation under sulfidic conditions
Graham, Andrew M.; Aiken, George R.; Gilmour, Cynthia
2012-01-01
Dissolved organic matter (DOM) is generally thought to lower metal bioavailability in aquatic systems due to the formation of metal–DOM complexes that reduce free metal ion concentrations. However, this model may not be pertinent for metal nanoparticles, which are now understood to be ubiquitous, sometimes dominant, metal species in the environment. The influence of DOM on Hg bioavailability to microorganisms was examined under conditions (0.5–5.0 nM Hg and 2–10 μM sulfide) that favor the formation of β-HgS(s) (metacinnabar) nanoparticles. We used the methylation of stable-isotope enriched 201HgCl2 by Desulfovibrio desulfuricans ND132 in short-term washed cell assays as a sensitive, environmentally significant proxy for Hg uptake. Suwannee River humic acid (SRHA) and Williams Lake hydrophobic acid (WLHPoA) substantially enhanced (2- to 38-fold) the bioavailability of Hg to ND132 over a wide range of Hg/DOM ratios (9.4 pmol/mg DOM to 9.4 nmol/mg DOM), including environmentally relevant ratios. Methylmercury (MeHg) production by ND132 increased linearly with either SRHA or WLHPoA concentration, but SRHA, a terrestrially derived DOM, was far more effective at enhancing Hg-methylation than WLHPoA, an aquatic DOM dominated by autochthonous sources. No DOM-dependent enhancement in Hg methylation was observed in Hg–DOM–sulfide solutions amended with sufficient l-cysteine to prevent β-HgS(s) formation. We hypothesize that small HgS particles, stabilized against aggregation by DOM, are bioavailable to Hg-methylating bacteria. Our laboratory experiments provide a mechanism for the positive correlations between DOC and MeHg production observed in many aquatic sediments and wetland soils.
Qualitative changes of riverine dissolved organic matter at low salinities due to flocculation
NASA Astrophysics Data System (ADS)
Asmala, Eero; Bowers, David G.; Autio, Riitta; Kaartokallio, Hermanni; Thomas, David N.
2014-10-01
The flocculation of dissolved organic matter (DOM) was studied along transects through three boreal estuaries. Besides the bulk concentration parameters, a suite of DOM quality parameters were investigated, including colored DOM (CDOM), fluorescent DOM, and the molecular weight of DOM as well as associated dissolved iron concentrations. We observed significant deviations from conservative mixing at low salinities (<2) in the estuarine samples of dissolved organic carbon (DOC), UV absorption (a(CDOM254)), and humic-like fluorescence. The maximum deviation from conservative mixing for DOC concentration was -16%, at salinities between 1 and 2. An associated laboratory experiment was conducted where an artificial salinity gradient between 0 and 6 was created. The experiment confirmed the findings from the estuarine transects, since part of the DOC and dissolved iron pools were transformed to particulate fraction (>0.2 µm) and thereby removing them from the dissolved phase. We also measured flocculation of CDOM, especially in the UV region of the absorption spectrum. Protein-like fluorescence of DOM decreased, while humic-like fluorescence increased because of salt-induced flocculation. Additionally, there was a decrease in molecular weight of DOM. Consequently, the quantity and quality of the remaining DOM pool was significantly changed after influenced to flocculation. Based on these results, we constructed a mechanistic, two-component flocculation model. Our findings underline the importance of the coastal filter, where riverine organic matter is flocculated and exported to the sediments.
NASA Astrophysics Data System (ADS)
Shaw, C.; Kurz, W. A.; Metsaranta, J.; Bona, K. A.; Hararuk, O.; Smyth, C.
2017-12-01
The Carbon Budget Model of the Canadian Forest Sector (CBM-CFS3) is a forest carbon budget model that operates on individual stands. It is applied from regional to national-scales in Canada for national and international reporting of GHG emissions and removals and in support of analyses of forest sector mitigation options and other scientific and policy questions. This presentation will review the history and continuous improvement process of representations of dead organic matter (DOM) and soil carbon modelling. Early model versions in which dead organic matter (DOM) pools only included litter, downed deadwood and soil, to the current version where these pools are estimated separately to better compare model estimates against field measurements, or new pools have been added. Uncertainty analyses consistently point at soil C pools as large sources of uncertainty. With the new ground plot measurements from the National Forest Inventory, and with a newly compiled forest soil carbon database, we have recently completed a model data assimilation exercise that helped reduce parameter uncertainties. Lessons learned from the continuous improvement process will be summarised and we will discuss how model modification have led to improved representation of DOM and soil carbon dynamics. We conclude by suggesting future research priorities that can advance DOM and soil carbon modelling in Canadian forest ecosystems.
Peng, Mingguo; Li, Huajie; Li, Dongdong; Du, Erdeng; Li, Zhihong
2017-06-01
Carbon nanotubes (CNTs) were utilized to adsorb DOM in micro-polluted water. The characteristics of DOM adsorption on CNTs were investigated based on UV 254 , TOC, and fluorescence spectrum measurements. Based on PARAFAC (parallel factor) analysis, four fluorescent components were extracted, including one protein-like component (C4) and three humic acid-like components (C1, C2, and C3). The adsorption isotherms, kinetics, and thermodynamics of DOM adsorption on CNTs were further investigated. A Freundlich isotherm model fit the adsorption data well with high values of correlation. As a type of macro-porous and meso-porous adsorbent, CNTs preferably adsorb humic acid-like substances rather than protein-like substances. The increasing temperature will speed up the adsorption process. The self-organizing map (SOM) analysis further explains the fluorescent properties of water samples. The results provide a new insight into the adsorption behaviour of DOM fluorescent components on CNTs.
Zhu, Long-Ji; Zhao, Yue; Chen, Yan-Ni; Cui, Hong-Yang; Wei, Yu-Quan; Liu, Hai-Long; Chen, Xiao-Meng; Wei, Zi-Min
2018-01-01
Atrazine is widely used in agriculture. In this study, dissolved organic matter (DOM) from soils under four types of land use (forest (F), meadow (M), cropland (C) and wetland (W)) was used to investigate the binding characteristics of atrazine. Fluorescence excitation-emission matrix-parallel factor (EEM-PARAFAC) analysis, two-dimensional correlation spectroscopy (2D-COS) and Stern-Volmer model were combined to explore the complexation between DOM and atrazine. The EEM-PARAFAC indicated that DOM from different sources had different structures, and humic-like components had more obvious quenching effects than protein-like components. The Stern-Volmer model combined with correlation analysis showed that log K values of PARAFAC components had a significant correlation with the humification of DOM, especially for C3 component, and they were all in the same order as follows: meadow soil (5.68)>wetland soil (5.44)>cropland soil (5.35)>forest soil (5.04). The 2D-COS further confirmed that humic-like components firstly combined with atrazine followed by protein-like components. These findings suggest that DOM components can significantly influence the bioavailability, mobility and migration of atrazine in different land uses. Copyright © 2016 Elsevier Inc. All rights reserved.
A global carbon assimilation system based on a dual optimization method
NASA Astrophysics Data System (ADS)
Zheng, H.; Li, Y.; Chen, J. M.; Wang, T.; Huang, Q.; Huang, W. X.; Wang, L. H.; Li, S. M.; Yuan, W. P.; Zheng, X.; Zhang, S. P.; Chen, Z. Q.; Jiang, F.
2015-02-01
Ecological models are effective tools for simulating the distribution of global carbon sources and sinks. However, these models often suffer from substantial biases due to inaccurate simulations of complex ecological processes. We introduce a set of scaling factors (parameters) to an ecological model on the basis of plant functional type (PFT) and latitudes. A global carbon assimilation system (GCAS-DOM) is developed by employing a dual optimization method (DOM) to invert the time-dependent ecological model parameter state and the net carbon flux state simultaneously. We use GCAS-DOM to estimate the global distribution of the CO2 flux on 1° × 1° grid cells for the period from 2001 to 2007. Results show that land and ocean absorb -3.63 ± 0.50 and -1.82 ± 0.16 Pg C yr-1, respectively. North America, Europe and China contribute -0.98 ± 0.15, -0.42 ± 0.08 and -0.20 ± 0.29 Pg C yr-1, respectively. The uncertainties in the flux after optimization by GCAS-DOM have been remarkably reduced by more than 60%. Through parameter optimization, GCAS-DOM can provide improved estimates of the carbon flux for each PFT. Coniferous forest (-0.97 ± 0.27 Pg C yr-1) is the largest contributor to the global carbon sink. Fluxes of once-dominant deciduous forest generated by the Boreal Ecosystems Productivity Simulator (BEPS) are reduced to -0.78 ± 0.23 Pg C yr-1, the third largest carbon sink.
Design, fabrication, and testing of nanostructured carbons and composites
NASA Astrophysics Data System (ADS)
Wang, Zhiyong
Many applications, such as catalysis, sensing, separation and energy storage and conversion, will benefit from the miniaturization of materials to nanometer length scales. This dissertation details my study of nanocomposites based on three-dimensionally ordered macroporous (3DOM) carbons and zirconia, and three-dimensionally ordered macroporous/mesoporous (3DOM/m) carbons. The macropores of these materials were produced using colloidal crystal templates while the mesopores were generated using surfactant templates. These solids are composed of close-packed and three-dimensionally interconnected spherical macropores surrounded by nanoscale solid or mesoporous wall skeletons. This unique architecture offers large surface areas, pore volumes, and good access into the bulk via a macroporous network. 3DOM carbons have been demonstrated as promising electrode materials for lithium ion batteries and sensors, but their electrochemical performance still needs to be improved. As a model system for the modification of the electrode, 3DOM C/TiO2 was synthesized by fabricating a conformal coating of TiO2 nanoparticles on the macropore walls of 3DOM C. My research further extended the micro-structural design of monolithic carbon from 3DOM to 3DOM/m. 3DOM/m C monoliths with high surface areas, controllable mesopore sizes, and mesopore ordering, were synthesized by three methods. One of the methods is simpler and more environment benign than previously reported methods. The mesopores in 3DOM/m C-based electrode provide room to accommodate secondary phases, such as graphitic carbon, SnO2 and Si which can improve the conductivity or lithium capacity of the electrode. Owing to this advantage, 3DOM/m C/C and 3DOM/m C/SnO2 exhibited significantly improved rate performance, lithium capacity and cycleability, compared with 3DOM C. To meet the demands of nano-sized functional materials in applications such as nano-device fabrication and drug delivery, mesoporous carbon nanoparticles with cubic, spherical and tetrapod shapes were also synthesized. In addition, new methods were developed to assemble nanocomposites of bifunctional catalyst components. These materials were designed for the potential direct conversion of synthesis gas to clean liquid fuels. Coatings of zeolite and cobalt nanoparticles were fabricated on 3DOM promoted zirconia. The 3DOM zirconia-based nanocomposites were characterized by a wide variety of techniques to illustrate their morphologies, internal structures, chemical compositions, porosity, and crystallographic phases.
Fate of 14C-labeled dissolved organic matter in paddy and upland soils in responding to moisture.
Chen, Xiangbi; Wang, Aihua; Li, Yang; Hu, Lening; Zheng, Hua; He, Xunyang; Ge, Tida; Wu, Jinshui; Kuzyakov, Yakov; Su, Yirong
2014-08-01
Soil organic matter (SOM) content in paddy soils is higher than that in upland soils in tropical and subtropical China. The dissolved organic matter (DOM) concentration, however, is lower in paddy soils. We hypothesize that soil moisture strongly controls the fate of DOM, and thereby leads to differences between the two agricultural soils under contrasting management regimens. A 100-day incubation experiment was conducted to trace the fate and biodegradability of DOM in paddy and upland soils under three moisture levels: 45%, 75%, and 105% of the water holding capacity (WHC). (14)C labeled DOM, extracted from the (14)C labeled rice plant material, was incubated in paddy and upland soils, and the mineralization to (14)CO2 and incorporation into microbial biomass were analyzed. Labile and refractory components of the initial (14)C labeled DOM and their respective half-lives were calculated by a double exponential model. During incubation, the mineralization of the initial (14)C labeled DOM in the paddy soils was more affected by moisture than in the upland soils. The amount of (14)C incorporated into the microbial biomass (2.4-11.0% of the initial DOM-(14)C activity) was less affected by moisture in the paddy soils than in the upland soils. At any of the moisture levels, 1) the mineralization of DOM to (14)CO2 within 100 days was 1.2-2.1-fold higher in the paddy soils (41.9-60.0% of the initial DOM-(14)C activity) than in the upland soils (28.7-35.7%), 2) (14)C activity remaining in solution was significantly lower in the paddy soils than in the upland soils, and 3) (14)C activity remaining in the same agricultural soil solution was not significantly different among the three moisture levels after 20 days. Therefore, moisture strongly controls DOM fate, but moisture was not the key factor in determining the lower DOM in the paddy soils than in the upland soils. The UV absorbance of DOM at 280 nm indicates less aromaticity of DOM from the paddy soils than from the upland soils. At any of the moisture levels, much more labile DOM was found in paddy soils (34.3-49.2% of the initial (14)C labeled DOM) compared with that in upland soils (19.4-23.9%). This demonstrates that the lower DOM content in the paddy soil compared with that in the upland soil is probably determined by the less complex components and structure of the DOM. Copyright © 2014 Elsevier B.V. All rights reserved.
Wendt, Dean E; Johnson, Collin H
2006-10-01
The uptake and utilization of dissolved organic matter (DOM) by marine invertebrates is a field that has received significant attention over the past 100 years. Although it is well established that DOM is taken up by marine invertebrates, the extent to which it contributes to an animal's survival, growth, and reproduction (that is, the ecological benefits) remains largely unknown. Previous work seeking to demonstrate the putative ecological benefits of DOM uptake have examined them within a single life stage of an animal. Moreover, most of the benefits are demonstrated through indirect approaches by examining (1) mass balance, or (2) making comparisons of oxyenthalpic conversions of transport rates to metabolic rate as judged by oxygen consumption. We suggest that directly examining delayed metamorphosis or the latent effects associated with nutritional stress of larvae is a better model for investigating the ecological importance of DOM to marine invertebrates. We also provide direct evidence that availability of DOM enhances survival and growth of the bryozoan Bugula neritina. That DOM offsets latent effects in B. neritina suggests that the underlying mechanisms are at least in part energetic.
NASA Astrophysics Data System (ADS)
Ianiri, H. L.; Timko, S.; Gonsior, M.
2016-02-01
Marine dissolved organic matter (DOM) is one of the largest reduced carbon reservoirs on Earth, yet we only have a limited understanding of its production, cycling, degradation, and overall structure. It was previously believed that a significant portion of refractory dissolved organic carbon (RDOC) in the ocean was derived from terrestrial sources, however recent studies indicated that the majority of marine DOM might be produced in situ by marine biota. Previous research has found that terrestrial and microbial DOM fluorescent signatures are similar, complicating the identification of the origins of marine fluorescent DOM (FDOM). However, photodegradation kinetics of terrestrial and microbial-derived DOM are expected to be different due to their assumed different chemical compositions. In this study we analyzed for the first time the photodegradation kinetics of microbial-derived DOM originating from different cyanobacteria strains. Cyanobacterial-derived DOM were exposed to simulated sunlight for a total of 20 hours while recording excitation emission matrix (EEM) fluorescence every twenty minutes to observe the photodegradation of this specific FDOM. Parallel Factor Analysis (PARAFAC) was applied to deconvolute the EEM matrices into six separate components. The photodegradation kinetics was then calculated for each component and compared with previously obtained photodegradation data of marine and terrestrial FDOM. This six component PARAFAC model was similar to those generated from open ocean data and global DOM data sets. The "humic-like" FDOM was also found in cyanobacteria FDOM and showed similar fluorescence intensities and percent fluorescence loss when compared to marine DOM. The degradation kinetics of the "humic-like" component of microbial-derived DOM was faster than that of terrestrial-derived DOM, and marine FDOM samples showed degradation kinetics more similar to microbial-derived FDOM. This indicates marine FDOM is more similar in chemical composition to microbial-derived FDOM than terrestrial-derived FDOM, supporting the hypothesis that the majority of marine FDOM is produced in situ.
Ohta, Shinri; Fukui, Naoki; Sakai, Kuniyoshi L.
2013-01-01
The nature of computational principles of syntax remains to be elucidated. One promising approach to this problem would be to construct formal and abstract linguistic models that parametrically predict the activation modulations in the regions specialized for linguistic processes. In this article, we review recent advances in theoretical linguistics and functional neuroimaging in the following respects. First, we introduce the two fundamental linguistic operations: Merge (which combines two words or phrases to form a larger structure) and Search (which searches and establishes a syntactic relation of two words or phrases). We also illustrate certain universal properties of human language, and present hypotheses regarding how sentence structures are processed in the brain. Hypothesis I is that the Degree of Merger (DoM), i.e., the maximum depth of merged subtrees within a given domain, is a key computational concept to properly measure the complexity of tree structures. Hypothesis II is that the basic frame of the syntactic structure of a given linguistic expression is determined essentially by functional elements, which trigger Merge and Search. We then present our recent functional magnetic resonance imaging experiment, demonstrating that the DoM is indeed a key syntactic factor that accounts for syntax-selective activations in the left inferior frontal gyrus and supramarginal gyrus. Hypothesis III is that the DoM domain changes dynamically in accordance with iterative Merge applications, the Search distances, and/or task requirements. We confirm that the DoM accounts for activations in various sentence types. Hypothesis III successfully explains activation differences between object- and subject-relative clauses, as well as activations during explicit syntactic judgment tasks. A future research on the computational principles of syntax will further deepen our understanding of uniquely human mental faculties. PMID:24385957
Ohta, Shinri; Fukui, Naoki; Sakai, Kuniyoshi L
2013-01-01
The nature of computational principles of syntax remains to be elucidated. One promising approach to this problem would be to construct formal and abstract linguistic models that parametrically predict the activation modulations in the regions specialized for linguistic processes. In this article, we review recent advances in theoretical linguistics and functional neuroimaging in the following respects. First, we introduce the two fundamental linguistic operations: Merge (which combines two words or phrases to form a larger structure) and Search (which searches and establishes a syntactic relation of two words or phrases). We also illustrate certain universal properties of human language, and present hypotheses regarding how sentence structures are processed in the brain. Hypothesis I is that the Degree of Merger (DoM), i.e., the maximum depth of merged subtrees within a given domain, is a key computational concept to properly measure the complexity of tree structures. Hypothesis II is that the basic frame of the syntactic structure of a given linguistic expression is determined essentially by functional elements, which trigger Merge and Search. We then present our recent functional magnetic resonance imaging experiment, demonstrating that the DoM is indeed a key syntactic factor that accounts for syntax-selective activations in the left inferior frontal gyrus and supramarginal gyrus. Hypothesis III is that the DoM domain changes dynamically in accordance with iterative Merge applications, the Search distances, and/or task requirements. We confirm that the DoM accounts for activations in various sentence types. Hypothesis III successfully explains activation differences between object- and subject-relative clauses, as well as activations during explicit syntactic judgment tasks. A future research on the computational principles of syntax will further deepen our understanding of uniquely human mental faculties.
NASA Astrophysics Data System (ADS)
Oestreich, W. K.; Ganju, N. K.; Pohlman, J.; Suttles, S. E.
2014-12-01
Light is of great importance to the health and ecological function of shallow estuaries. Primary production in such estuaries, which is typically dominated by seagrass, is contingent upon light penetration to the deeper part of the estuarine water column. A major component contributing to light attenuation in these systems is colored dissolved organic matter (CDOM). CDOM is most often measured via a proxy, fluorescing dissolved organic matter (fDOM), due to the ease of taking rapid, accurate fDOM measurements. Fluorescence data can then be converted to absorbance by CDOM for use in light attenuation models. However, this fDOM-CDOM conversion has proven to be quite variable between estuaries, and even between sites along a given estuary. We displayed and attempted to explain this variability through the study of three diverse estuaries: West Falmouth Harbor (MA), Barnegat Bay (NJ), and Chincoteague Bay (MD/VA). Land use surrounding these estuaries ranges from wastewater treatment to agricultural operations and residential communities. Measurements of fDOM and absorbance by CDOM (quantified via spectrophotometer measurement of 0.2μm-filtered samples) were taken along a gradient from terrestrial to oceanic end-members. These measurements yielded highly variable fDOM-CDOM relationships between estuaries. The mean ratio of absorption coefficient at 340nm (m-1) to fDOM (QSU) was much higher in West Falmouth Harbor (0.874) than in Barnegat Bay (0.227) and Chincoteague Bay (0.173). This fDOM-CDOM relationship was also observed to be variable between sites within West Falmouth Harbor and Barnegat Bay, but consistent throughout sites along Chincoteague Bay. This variability, both within and between estuaries, is likely due to differing CDOM sources as a result of differences in land use in the areas surrounding these estuaries. Stable carbon isotope analysis of DOC from each site and hydrodynamic model results will be used to differentiate sources and further elucidate the fDOM-CDOM relationship.
Dvorski, Sabine E-M; Gonsior, Michael; Hertkorn, Norbert; Uhl, Jenny; Müller, Hubert; Griebler, Christian; Schmitt-Kopplin, Philippe
2016-06-07
At numerous groundwater sites worldwide, natural dissolved organic matter (DOM) is quantitatively complemented with petroleum hydrocarbons. To date, research has been focused almost exclusively on the contaminants, but detailed insights of the interaction of contaminant biodegradation, dominant redox processes, and interactions with natural DOM are missing. This study linked on-site high resolution spatial sampling of groundwater with high resolution molecular characterization of DOM and its relation to groundwater geochemistry across a petroleum hydrocarbon plume cross-section. Electrospray- and atmospheric pressure photoionization (ESI, APPI) ultrahigh resolution mass spectrometry (FT-ICR-MS) revealed a strong interaction between DOM and reactive sulfur species linked to microbial sulfate reduction, i.e., the key redox process involved in contaminant biodegradation. Excitation emission matrix (EEM) fluorescence spectroscopy in combination with Parallel Factor Analysis (PARAFAC) modeling attributed DOM samples to specific contamination traits. Nuclear magnetic resonance (NMR) spectroscopy evaluated the aromatic compounds and their degradation products in samples influenced by the petroleum contamination and its biodegradation. Our orthogonal high resolution analytical approach enabled a comprehensive molecular level understanding of the DOM with respect to in situ petroleum hydrocarbon biodegradation and microbial sulfate reduction. The role of natural DOM as potential cosubstrate and detoxification reactant may improve future bioremediation strategies.
Fluorescence-based proxies for lignin in freshwater dissolved organic matter
Hernes, Peter J.; Bergamaschi, Brian A.; Eckard, Robert S.; Spencer, Robert G.M.
2009-01-01
Lignin phenols have proven to be powerful biomarkers in environmental studies; however, the complexity of lignin analysis limits the number of samples and thus spatial and temporal resolution in any given study. In contrast, spectrophotometric characterization of dissolved organic matter (DOM) is rapid, noninvasive, relatively inexpensive, requires small sample volumes, and can even be measured in situ to capture fine-scale temporal and spatial detail of DOM cycling. Here we present a series of cross-validated Partial Least Squares models that use fluorescence properties of DOM to explain up to 91% of lignin compositional and concentration variability in samples collected seasonally over 2 years in the Sacramento River/San Joaquin River Delta in California, United States. These models were subsequently used to predict lignin composition and concentration from fluorescence measurements collected during a diurnal study in the San Joaquin River. While modeled lignin composition remained largely unchanged over the diurnal cycle, changes in modeled lignin concentrations were much greater than expected and indicate that the sensitivity of fluorescence-based proxies for lignin may prove invaluable as a tool for selecting the most informative samples for detailed lignin characterization. With adequate calibration, similar models could be used to significantly expand our ability to study sources and processing of DOM in complex surface water systems.
NASA Technical Reports Server (NTRS)
Druon, J.N.; Mannino, A.; Signorini, Sergio R.; McClain, Charles R.; Friedrichs, M.; Wilkin, J.; Fennel, K.
2009-01-01
Continental shelves are believed to play a major role in carbon cycling due to their high productivity. Particulate organic carbon (POC) burial has been included in models as a carbon sink, but we show here that seasonally produced dissolved organic carbon (DOC) on the shelf can be exported to the open ocean by horizontal transport at similar rates (1-2 mol C/sq m/yr) in the southern U.S. Mid-Atlantic Bight (MAB). The dissolved organic matter (DOM) model imbedded in a coupled circulation-biogeochemical model reveals a double dynamics: the progressive release of dissolved organic nitrogen (DON) in the upper layer during summer increases the regenerated primary production by 30 to 300%, which, in turns ; enhances the DOC production mainly from phytoplankton exudation in the upper layer and solubilization of particulate organic matter (POM) deeper in the water column. This analysis suggests that DOM is a key element for better representing the ecosystem functioning and organic fluxes in models because DOM (1) is a major organic pool directly related to primary production, (2) decouples partially the carbon and nitrogen cycles (through carbon excess uptake, POM solubilization and DOM mineralization) and (3) is intimately linked to the residence time of water masses for its distribution and export.
Zhu, Fei-Die; Choo, Kwang-Ho; Chang, Hyun-Shik; Lee, Byunghwan
2012-05-01
The fate of endocrine disrupting chemicals (EDCs) in natural and engineered systems is complicated due to their interactions with various water constituents. This study investigated the interaction of bisphenol A (BPA) with dissolved organic matter (DOM) and colloids present in surface water and secondary effluent as well as its adsorptive removal by powdered activated carbons. The solid phase micro-extraction (SPME) method followed by thermal desorption and gas chromatography-mass spectrometry (GC-MS) was utilized for determining the distribution of BPA molecules in water. The BPA removal by SPME decreased with the increased DOM content, where the formation of BPA-DOM complexes in an aqueous matrix was responsible for the reduced extraction of BPA. Colloidal particles in water samples sorbed BPA leading to the marked reduction of liquid phase BPA. BPA-DOM complexes had a negative impact on the adsorptive removal of BPA by powered activated carbons. The complex formation was characterized based on Fourier transform infrared (FTIR) and ultraviolet-visible (UV-Vis) spectroscopy, along with the calculation of molecular interactions between BPA and functional groups in DOM. It was found that the hydrogen bonding between DOM and BPA would be preferred over aromatic interactions. A pseudo-equilibrium molecular coordination model for the complexation between a BPA molecule and a hydroxyl group of the DOM was developed, which enabled estimation of the maximum sorption site and complex formation constant as well as prediction of organic complexes at various DOM levels. Copyright © 2012 Elsevier Ltd. All rights reserved.
Constants for mercury binding by organic matter isolates from the Florida Everglades
Benoit, J.M.; Mason, R.P.; Gilmour, C.C.; Aiken, G.R.
2001-01-01
Dissolved organic matter (DOM) has been implicated as an important complexing agent for Hg that can affect its mobility and bioavailability in aquatic ecosystems. However, binding constants for natural Hg-DOM complexes are not well known. We employed a competitive ligand approach to estimate conditional stability constants for Hg complexes with DOM isolates collected from Florida Everglades surface waters. The isolates examined were the hydrophobic fraction of DOM from a eutrophic, sulfidic site (F1-HPoA) and the hydrophilic fraction from an oligotrophic, low-sulfide site (2BS-HPiA). Our experimental determinations utilized overall octanol-water partitioning coefficients (Dow) for 203Hg at 0.01 M chloride and across pH and DOM concentration gradients. Use of this radioisotope allowed rapid determinations of Hg concentrations in both water and octanol phases without problems of matrix interference. Conditional stability constants (1 = 0.06, 23??C) were log K??? = 11.8 for F1-HPoA and log K' = 10.6 for 2BS-HPiA. These are similar to previously published stability constants for Hg binding to low-molecular-weight thiols. Further, F1-HPoA showed a pH-dependent decline in Dow that was consistent with models of Hg complexation with thiol groups as the dominant Hg binding sites in DOM. These experiments demonstrate that the DOM isolates are stronger ligands for Hg than chloride ion or ethylenediamine-tetraacetic acid. Speciation calculations indicate that at the DOM concentrations frequently measured in Everglades, 20 to 40 ??M, significant complexation of Hg by DOM would be expected in aerobic (sulfide-free) surface waters. Copyright ?? 2001 Elsevier Science Ltd.
A global carbon assimilation system based on a dual optimization method
NASA Astrophysics Data System (ADS)
Zheng, H.; Li, Y.; Chen, J. M.; Wang, T.; Huang, Q.; Huang, W. X.; Li, S. M.; Yuan, W. P.; Zheng, X.; Zhang, S. P.; Chen, Z. Q.; Jiang, F.
2014-10-01
Ecological models are effective tools to simulate the distribution of global carbon sources and sinks. However, these models often suffer from substantial biases due to inaccurate simulations of complex ecological processes. We introduce a set of scaling factors (parameters) to an ecological model on the basis of plant functional type (PFT) and latitudes. A global carbon assimilation system (GCAS-DOM) is developed by employing a Dual Optimization Method (DOM) to invert the time-dependent ecological model parameter state and the net carbon flux state simultaneously. We use GCAS-DOM to estimate the global distribution of the CO2 flux on 1° ×1° grid cells for the period from 2000 to 2007. Results show that land and ocean absorb -3.69 ± 0.49 Pg C year-1 and -1.91 ± 0.16 Pg C year-1, respectively. North America, Europe and China contribut -0.96 ± 0.15 Pg C year-1, -0.42 ± 0.08 Pg C year-1 and -0.21 ± 0.28 Pg C year-1, respectively. The uncertainties in the flux after optimization by GCAS-DOM have been remarkably reduced by more than 60%. Through parameter optimization, GCAS-DOM can provide improved estimates of the carbon flux for each PFT. Coniferous forest (-0.97 ± 0.27 Pg C year-1) is the largest contributor to the global carbon sink. Fluxes of once-dominant deciduous forest generated by BEPS is reduced to -0.79 ± 0.22 Pg C year-1, being the third largest carbon sink.
River-derived dissolved organic matter (DOM) influences metabolism, light attenuation, and bioavailability of metals and nutrients in coastal ecosystems. Recent work suggests that DOM concentrations in surface waters vary seasonally because different organic matter pools are mobi...
Jiang, Tao; Liang, Jian; Zhang, Mu-xue; Wang, Ding-yong; Wei, Shi-qiang; Lu, Song
2016-02-15
As an important fraction of dissolved organic matter (DOM), chromophoric dissolved organic matter (CDOM) plays a key role in decision of the optical properties and photogeochemistry of DOM, and further affects pollutant fate and global carbon cycle. These optical properties are ascribed to two chromophoric systems including superposition of individual chromophores and charge-transfer (CT) complexation between electron donor (e.g., phenols and indoles) and acceptor (e.g., quinones and other oxidized aromatics) in DOM structures. Thus in this study, based on the "double-chromophoric system" model, DOM samples from four typical water-level fluctuation zones of Three Gorges Reservoir (TGR) areas were selected, to investigate the effect and contribution of charge-transfer complex to ultraviolet-visible (UV-Vis) absorption property of CDOM. Using NaBH, reduction method, original featureless absorption curve was classified into two independent curves caused by individual chromophoric group, which were derived from a simple superposition of independent chromophore and charge-transfer complex, respectively. Also, the changes in curve properties and specific parameters before and after NaBH4 reduction were compared. The results showed that in all DOM samples from the four sites of TGR, more than 35% of absorption was attributed from CT complex. Shibaozhai of Zhongxian and Zhenxi of Fuling showed the highest proportion ( > 50%). It suggested that the role of CT complex in CDOM property could not be neglected. After removal of CT complex, absorption curve showed blue-shift and CDOM concentration [a (355)] decreased significantly. Meanwhile, because of deforming of bonds by reduction, DOM structures became more dispersive and the molecular size was decreased, resulting in the lower spectral slope (S) observed, which evidentially supported that the supermolecular association structure of DOM was self-assembled through CT complex. Meanwhile, deceasing hydrophobic components led to decreased apparent aromaticity (lower SUVA values), whereas specific parameters including SUVA, CDOM and SR still were applicable for comparison among different DOM samples instead of the same sample without consideration of "double-cbromopboric system" model involving tbe role of CT complex. Comparatively, S(275-295) was dynamic due to tbe impact of CT effect. Furtbermore, establisbing DOC estimation model by short-wavelength range of CDOM was recommended because of its stability despite of CT complex.
[Evolution of Dissolved Organic Matter Properties in a Constructed Wetland of Xiao River, Hebei].
Ma, Li-na; Zhang, Hui; Tan, Wen-bing; Yu, Min-da; Huang, Zhi-gang; Gao, Ru-tai; Xi, Bei-dou; He, Xiao-song
2016-01-01
The evolution of water DOC and COD, and the source, chemical structure, humification degree and redox of dissolved organic matter (DOM) in a constructed wetland of Xiao River, Hebei, was investigated by 3D excitation--emission matrix fluorescence spectroscopy coupled with ultraviolet spectroscopy and chemical reduction, in order to explore the geochemical processes and environmental effects of DOM. Although DOC contributes at least 60% to COD, its decrease in the constructed wetland is mainly caused by the more extensive degradation of elements N, H, S, and P than C in DOM, and 65% is contributed from the former. DOM is mainly consisted of microbial products based on proxies f470/520 and BIX, indicating that DOM in water is apparently affected by microbial degradation. The result based on PARAFAC model shows that DOM in the constructed wetland contains protein-like and humus-like components, and Fulvic- and humic-like components are relatively easier to degrade than protein-like components. Fulvic- and humic-like components undergo similar decomposition in the constructed wetland. A common source of chromophoric dissolved organic matter (CDOM) and fluorescent dissolved organic matter (FDOM) exists; both CDOM and FDOM are mainly composed of a humus-like material and do not exhibit selective degradation in the constructed wetland. The proxies E2 /E3, A240-400, r(A, C) and HIX in water have no changes after flowing into the constructed wetland, implying that the humification degree of DOM in water is hardly affected by wet constructed wetland. However, the constructed wetland environment is not only beneficial in forming the reduced state of DOM, but also facilitates the reduction of ferric. It can also improve the capability of DOM to function as an electron shuttle. This result may be related to the condition that the aromatic carbon of DOM can be stabilized well in the constructed wetland.
DeVilbiss, Stephen E; Zhou, Zhengzhen; Klump, J Val; Guo, Laodong
2016-09-15
Green Bay, Lake Michigan, USA, is the largest freshwater estuary in the Laurentian Great Lakes and receives disproportional terrestrial inputs as a result of a high watershed to bay surface area ratio. While seasonal hypoxia and the formation of "dead zones" in Green Bay have received increasing attention, there are no systematic studies on the dynamics of dissolved organic matter (DOM) and its linkage to the development of hypoxia. During summer 2014, bulk dissolved organic carbon (DOC) analysis, UV-vis spectroscopy, and fluorescence excitation-emission matrices (EEMs) coupled with PARAFAC analysis were used to quantify the abundance, composition and source of DOM and their spatiotemporal variations in Green Bay, Lake Michigan. Concentrations of DOC ranged from 202 to 571μM-C (average=361±73μM-C) in June and from 279 to 610μM-C (average=349±64μM-C) in August. In both months, absorption coefficient at 254nm (a254) was strongly correlated to bulk DOC and was most abundant in the Fox River, attesting a dominant terrestrial input. Non-chromophoric DOC comprised, on average, ~32% of bulk DOC in June with higher terrestrial DOM and ~47% in August with higher aquagenic DOM, indicating that autochthonous and more degraded DOM is of lower optical activity. PARAFAC modeling on EEM data resulted in four major fluorescent DOM components, including two terrestrial humic-like, one aquagenic humic-like, and one protein-like component. Variations in the abundance of DOM components further supported changes in DOM sources. Mixing behavior of DOM components also indicated that while bulk DOM behaved quasi-conservatively, significant compositional changes occurred during transport from the Fox River to the open bay. Copyright © 2016 Elsevier B.V. All rights reserved.
Is Grammar Instruction Beneficial for Heritage Language Learners? Dative Case Marking in Spanish
ERIC Educational Resources Information Center
Montrul, Silvina; Bowles, Melissa
2010-01-01
Spanish heritage speakers have been shown to have incomplete knowledge of dative case marking with both animate direct objects (also known as differential object marking (DOM) or "a-personal") and dative experiencers with "gustar"-psych verbs in oral and written modes (Montrul, 2004; Montrul & Bowles, in press). In general, Spanish objects that…
Back to Basics: Incomplete Knowledge of Differential Object Marking in Spanish Heritage Speakers
ERIC Educational Resources Information Center
Montrul, Silvina; Bowles, Melissa
2009-01-01
The obligatory use of the preposition a with animate, specific direct objects in Spanish ("Juan conoce a Maria" "Juan knows Maria") is a well-known instance of Differential Object Marking (DOM; Torrego, 1998; Leonetti, 2004). Recent studies have documented the loss and/or incomplete acquisition of several grammatical features in Spanish heritage…
Baken, Stijn; Degryse, Fien; Verheyen, Liesbeth; Merckx, Roel; Smolders, Erik
2011-04-01
Dissolved organic matter (DOM) in surface waters affects the fate and environmental effects of trace metals. We measured variability in the Cd, Cu, Ni, and Zn affinity of 23 DOM samples isolated by reverse osmosis from freshwaters in natural, agricultural, and urban areas. Affinities at uniform pH and ionic composition were assayed at low, environmentally relevant free Cd, Cu, Ni, and Zn activities. The C-normalized metal binding of DOM varied 4-fold (Cu) or about 10-fold (Cd, Ni, Zn) among samples. The dissolved organic carbon concentration ranged only 9-fold in the waters, illustrating that DOM quality is an equally important parameter for metal complexation as DOM quantity. The UV-absorbance of DOM explained metal affinity only for waters receiving few urban inputs, indicating that in those waters, aromatic humic substances are the dominant metal chelators. Larger metal affinities were found for DOM from waters with urban inputs. Aminopolycarboxylate ligands (mainly EDTA) were detected at concentrations up to 0.14 μM and partly explained the larger metal affinity. Nickel concentrations in these surface waters are strongly related to EDTA concentrations (R2=0.96) and this is underpinned by speciation calculations. It is concluded that metal complexation in waters with anthropogenic discharges is larger than that estimated with models that only take into account binding on humic substances.
NASA Astrophysics Data System (ADS)
Zito, P.; Tarr, M. A.; Spencer, R. G.; Podgorski, D. C.
2017-12-01
Dissolved organic matter (DOM) is one of the most complex natural mixtures on Earth. It is generally comprised of hydrocarbons incorporating a diverse subset of oxygen-containing functional groups along with a small amount of nitrogen, sulfur and phosphorous heteroatoms all of which make it very difficult to chromatographically separate. The only way to directly characterize and quantify these structural and compositional changes is by separating the DOM continuum into defined bins of structure and chemistry. In this study, we take an alternate bottom-up approach that utilizes petroleum to work toward identifying the molecular structures of DOM. Although petroleum is the most structurally diverse mixture in nature, it is almost exclusively comprised of hydrocarbons with only trace quantities of heteroatoms, including oxygen. Here, crude oil was chromatographically separated into bins based on the number of aromatic rings to be used as a starting carbon source. Photochemically produced DOM from these aromatic ring bins provides unique opportunities to gain insight in the compositional controls associated with transport, processing and fate of DOM in natural systems. Here, we present EEMs data from individual ring fractions that were subjected to 24 hours of sunlight to use as a model to fingerprint specific aromatic regions in the DOM fraction. Results illustrate that the 1-, 2-, 3-, 4- and 5- ring fractions exhibit a wide range of structurally dependent excitation and emission spectra. A well-known red-shift in the emission and excitation occurs as the number of rings increase. In order to understand changes in the elemental composition of the data, ultra high-resolution mass spectrometry was used to obtain molecular level information. Together, these data will provide a tool to help understand the relationship of the composition and structure of DOM released into the environment in terms of aromaticity. It is well known that aromaticity is an important indicator of the chemical characteristics of DOM and can be used to explain the role of DOM in environmental processes. Thus, identifying these compounds in terms of aromaticity after photodegradation will provide information about the fate, transport and mechanisms of the photolabile and recalcitrant compounds in the environment.
NASA Astrophysics Data System (ADS)
Cory, R. M.; Harrold, K. H.; Neilson, B. T.; Kling, G. W.
2015-11-01
We investigated how absorption of sunlight by chromophoric dissolved organic matter (CDOM) controls the degradation and export of DOM from Imnavait Creek, a beaded stream in the Alaskan Arctic. We measured concentrations of dissolved organic carbon (DOC), as well as concentrations and characteristics of CDOM and fluorescent dissolved organic matter (FDOM), during ice-free periods of 2011-2012 in the pools of Imnavait Creek and in soil waters draining to the creek. Spatial and temporal patterns in CDOM and FDOM in Imnavait Creek were analyzed in conjunction with measures of DOM degradation by sunlight and bacteria and assessments of hydrologic residence times and in situ UV exposure. CDOM was the dominant light attenuating constituent in the UV and visible portion of the solar spectrum, with high attenuation coefficients ranging from 86 ± 12 m-1 at 305 nm to 3 ± 1 m-1 in the photosynthetically active region (PAR). High rates of light absorption and thus light attenuation by CDOM contributed to thermal stratification in the majority of pools in Imnavait Creek under low-flow conditions. In turn, thermal stratification increased the residence time of water and DOM, and resulted in a separation of water masses distinguished by contrasting UV exposure (i.e., UV attenuation by CDOM with depth resulted in bottom waters receiving less UV than surface waters). When the pools in Imnavait Creek were stratified, DOM in the pool bottom water closely resembled soil water DOM in character, while the concentration and character of DOM in surface water was reproduced by experimental photo-degradation of bottom water. These results, in combination with water column rates of DOM degradation by sunlight and bacteria, suggest that photo-degradation is the dominant process controlling DOM fate and export in Imnavait Creek. A conceptual model is presented showing how CDOM amount and lability interact with incident UV light and water residence time to determine whether photo-degradation is "light-limited" or "substrate-limited". We suggest that degradation of DOM in CDOM-rich streams or ponds similar to Imnavait is typically light-limited under most flow conditions. Thus, export of DOM from this stream will be less under conditions that increase the light available for DOM photo-degradation (i.e., low flows, sunny days).
NASA Astrophysics Data System (ADS)
Aiken, G.
2016-12-01
Nutrients and dissolved organic matter (DOM) delivered from terrestrial sources to coastal oceans are critical for ocean productivity and the blue carbon cycle. Assessing influences of these inputs on marine productivity is difficult due to the difficulty in monitoring the processes controlling carbon cycling over short time frames, as well as the lack of historical data to assess possible trends. In this presentation, results of a long-term study designed to assess productivity and water quality in the Gulf of Maine (GoM), and waters delivering terrestrially derived DOM to the GoM are presented. DOM in the major tributaries and discrete samples collected along transects in the GoM were characterized by many analytical approaches including measurement of DOM optical properties, DOM fractionation, isotopic , 13C-NMR and FTICR-MS analyses. The compositional information provided by these was combined with optical data obtained by an in-situ glider and remotely sensed satellite data. Results indicate that DOM associated with inflowing waters to the GoM is rich in aromatic compounds resulting in a large influx of terrestrially derived, chromophoric DOM. The net result of these inflows is that DOM in the GoM is more chromophoric than samples from the Sargasso Sea and mid-Pacific Ocean. Hydrologic analyses using discharge:concentration relationships along with historical river discharge data indicate that the amount of DOM from rivers to the GoM has increased over the past 80 years leading to a `yellowing' of the waters in the GoM. Indeed, comparisons of ocean color between the present study and observations made by Henry Bigelow in 1912-1913 using the Forel-Ule color scale indicate an increase in chromophoric DOM in the past century. Chromophoric DOM influences the productivity of aquatic systems by reducing light available for phytoplankton photosynthesis and growth. Over the course of this study, a decline in primary productivity was also observed, perhaps resulting from increased DOM fluxes to the GoM. Climate and hydrologic models predict increasing precipitation and runoff in the GoM watershed during this century, possibly resulting in an increase of terrestrial OM delivered to the GoM of 30% during the next 80 years. This could potentially influence productivity and blue carbon cycling in this marine system.
Bergamaschi, Brian A.; Kalve, Erica; Guenther, Larry; Mendez, Gregory O.; Belitz, Kenneth
2005-01-01
The ability to rapidly, reliably, and inexpensively characterize sources of dissolved organic material (DOM) in watersheds would allow water management agencies to more quickly identify problems in water sources, and to more efficiently allocate water resources by, for example, permitting real-time identification of high-quality water suitable for ground-water recharge, or poor-quality water in need of mitigation. This study examined the feasibility of using easily measurable intrinsic optical properties' absorbance and fluorescence spectra, as quantitative indicators of DOM sources and, thus, a predictor of water quality. The study focused on the Santa Ana River Basin, in southern California, USA, which comprises an area of dense urban development and an area of intense dairy production. Base flow in the Santa Ana Basin is primarily tertiary treated wastewater discharge. Available hydrologic data indicate that urban and agricultural runoff degrades water quality during storm events by introducing pathogens, nutrients, and other contaminants, including significant amounts of DOM. These conditions provide the basis for evaluating the use of DOM optical properties as a tracer of DOM from different sources. Sample spectra representing four principal DOM sources were identified among all samples collected in 1999 on the basis of basin hydrology, and the distribution of spectral variability within all the sample data. A linear mixing model provided quantitative estimates of relative endmember contribution to sample spectra for monthly, storm, and diurnal samples. The spectral properties of the four sources (endmembers), Pristine Water, Wastewater, Urban Water, and Dairy Water, accounted for 94 percent of the variability in optical properties observed in the study, suggesting that all important DOM sources were represented. The scale and distribution of the residual spectra, that not explained by the endmembers, suggested that the endmember spectra selected did not adequately represent Urban Water base flow. However, model assignments of sources generally agreed well with those expected, based on sampling location and hydrology. The results suggest that with a fuller characterization of the endmember spectra, analysis of optical properties will provide rapid quantitative estimates of the relative contribution of DOM sources in the Santa Ana Basin.
Mangalgiri, Kiranmayi P; Timko, Stephen A; Gonsior, Michael; Blaney, Lee
2017-07-18
Parallel factor analysis (PARAFAC) applied to fluorescence excitation emission matrices (EEMs) allows quantitative assessment of the composition of fluorescent dissolved organic matter (DOM). In this study, we fit a four-component EEM-PARAFAC model to characterize DOM extracted from poultry litter. The data set included fluorescence EEMs from 291 untreated, irradiated (253.7 nm, 310-410 nm), and oxidized (UV-H 2 O 2 , ozone) poultry litter extracts. The four components were identified as microbial humic-, terrestrial humic-, tyrosine-, and tryptophan-like fluorescent signatures. The Tucker's congruence coefficients for components from the global (i.e., aggregated sample set) model and local (i.e., single poultry litter source) models were greater than 0.99, suggesting that the global EEM-PARAFAC model may be suitable to study poultry litter DOM from individual sources. In general, the transformation trends of the four fluorescence components were comparable for all poultry litter sources tested. For irradiation at 253.7 nm, ozonation, and UV-H 2 O 2 advanced oxidation, transformation of the humic-like components was slower than that of the tryptophan-like component. The opposite trend was observed for irradiation at 310-410 nm, due to differences in UV absorbance properties of components. Compared to the other EEM-PARAFAC components, the tyrosine-like component was fairly recalcitrant in irradiation and oxidation processes. This novel application of EEM-PARAFAC modeling provides insight into the composition and fate of agricultural DOM in natural and engineered systems.
NASA Astrophysics Data System (ADS)
Osburn, Christopher L.; Anderson, Nicholas J.; Stedmon, Colin A.; Giles, Madeline E.; Whiteford, Erika J.; McGenity, Terry J.; Dumbrell, Alex J.; Underwood, Graham J. C.
2017-12-01
Dissolved organic matter (DOM) concentration and quality were examined from Arctic lakes located in three clusters across south-west (SW) Greenland, covering the regional climatic gradient: cool, wet coastal zone; dry inland interior; and cool, dry ice-marginal areas. We hypothesized that differences in mean annual precipitation between sites would result in a reduced hydrological connectivity between lakes and their catchments and that this concentrates degraded DOM. The DOM in the inland lake group was characterized by a lower aromaticity and molecular weight, a low soil-like fluorescence, and carbon stable isotope (δ13C-DOC) values enriched by 2‰ relative to the coastal group. DOC-specific absorbance (SUVA254) and DOC-specific soil-like fluorescence (SUVFC1) revealed seasonal and climatic gradients across which DOM exhibited a dynamic we term "pulse-process": Pulses of DOM exported from soils to lakes during snow and ice melt were followed by pulses of autochthonous DOM inputs (possibly from macrophytes), and their subsequent photochemical and microbial processing. These effects regulated the dynamics of DOM in the inland lakes and suggested that if circumpolar lakes currently situated in cool wetter climatic regimes with strong hydrological connectivity have reduced connectivity under a drier future climate, they may evolve toward an end-point of large stocks of highly degraded DOC, equivalent to the inland lakes in the present study. The regional climatic gradient across SW Greenland and its influence on DOM properties in these lakes provide a model of possible future changes to lake C cycling in high-latitude systems where climatic changes are most pronounced.
Eckler, J R; Chang-Fong, J; Rabin, R A; Smith, C; Teitler, M; Glennon, R A; Winter, J C
2003-07-01
The present investigation was undertaken to test the hypothesis that known metabolites of the phenylethylamine hallucinogen 1-(2,5-dimethoxy-4-methylphenyl)-2-aminopropane (DOM) are pharmacologically active. This hypothesis was tested by evaluating the ability of racemic DOM metabolites 2-O-desmethyl DOM (2-DM-DOM) and 5-O-desmethyl DOM (5-DM-DOM) to substitute for the stimulus properties of (+)lysergic acid diethylamide (LSD). The data indicate that both metabolites are active in LSD-trained subjects and are significantly inhibited by the selective 5-HT(2A) receptor antagonist M100907. Full generalization of LSD to both 2-DM-DOM and 5-DM-DOM occurred, and 5-DM-DOM was slightly more potent than 2-DM-DOM. Similarly, 5-DM-DOM had a slightly higher affinity than 2-DM-DOM for both 5-HT(2A) and 5-HT(2C) receptors. Additionally, it was of interest to determine if the formation of active metabolite(s) resulted in a temporal delay associated with maximal stimulus effects of DOM. We postulated that if metabolite formation resulted in the aforementioned delay, direct administration of the metabolites might result in maximally stable stimulus effects at an earlier pretreatment time. This hypothesis was tested by evaluating (1) the time point at which DOM produces the greatest degree of LSD-appropriate responding, (2) the involvement of 5-HT(2A) receptor in the stimulus effects of DOM at various pretreatment times by administration of M100907 and (3) the ability of 2-DM-DOM and 5-DM-DOM to substitute for the stimulus properties of LSD using either 15- or 75-min pretreatment time. The data indicate that (a) the DOM stimulus produces the greatest degree of LSD-appropriate responding at the 75-min time point in comparison with earlier pretreatment times and (b) the stimulus effects of DOM are differentially antagonized by M100907 and this effect is a function of DOM pretreatment time prior to testing. Both 2-DM-DOM and 5-DM-DOM were found to be most active, at all doses tested, using a 75-min versus a 15-min pretreatment time. The present data do not permit unequivocal acceptance or rejection of the hypothesis that active metabolites of (-)-DOM provide a full explanation of the observed discrepancy between brain levels of (-)-DOM and maximal stimulus effects.
Binding of mercury(II) to aquatic humic substances: Influence of pH and source of humic substances
Haitzer, M.; Aiken, G.R.; Ryan, J.N.
2003-01-01
Conditional distribution coefficients (KDOM???) for Hg(II) binding to seven dissolved organic matter (DOM) isolates were measured at environmentally relevant ratios of Hg(II) to DOM. The results show that KDOM??? values for different types of samples (humic acids, fulvic acids, hydrophobic acids) isolated from diverse aquatic environments were all within 1 order of magnitude (1022.5??1.0-1023.5??1.0 L kg-1), suggesting similar Hg(II) binding environments, presumably involving thiol groups, for the different isolates. KDOM??? values decreased at low pHs (4) compared to values at pH 7, indicating proton competition for the strong Hg(II) binding sites. Chemical modeling of Hg(II)-DOM binding at different pH values was consistent with bidentate binding of Hg(II) by one thiol group (pKa = 10.3) and one other group (pKa = 6.3) in the DOM, which is in agreement with recent results on the structure of Hg(II)-DOM bonds obtained by extended X-ray absorption fine structure spectroscopy (EXAFS).
The balance model of oxygen enrichment of atmospheric air
NASA Astrophysics Data System (ADS)
Popov, Alexander
2013-04-01
The study of turnover of carbon and oxygen is an important line of scientific investigation. This line takes on special significance in conditions of soil degradation, which leads to the excess content of carbon dioxide and, as result, decrease of oxygen in the atmosphere. The aim of this article is a statement the balance model of oxygen enrichment of atmospheric air (ratio O/C) depending on consumption and assimilation by plants of dissolved organic matter (DOM) and the value of the oxidation-reduction potential (Eh). Basis of model was the following: green vascular plants are facultative heterotrophic organisms with symbiotic digestion and nutrition. According to the trophology viewpoint, the plant consumption of organic compounds broadens greatly a notion about the plant nutrition and ways of its regulation. In particular, beside the main known cycle of carbon: plant - litter - humus - carbon dioxide - plant, there is the second carbon cycle (turnover of organic compounds): plant - litter - humus - DOM - plant. The biogeochemical meaning of consumption of organic compounds by plants is that plants build the structural and functional blocks of biological macromolecules in their bodies. It provides receiving of a certain "energy payoff" by plants, which leads to increase of plant biomass by both an inclusion of allochthonous organic molecules in plant tissues, and positive effect of organic compounds on plant metabolic processes. One more of powerful ecological consequence of a heterotrophic nutrition of green plants is oxygen enrichment of atmospheric air. As the organic molecules in the second biological cycle of carbon are built in plants without considerable chemical change, the atmospheric air is enriched on that amount of oxygen, which would be required on oxidation of the organic molecules absorbed by plants, in result. It was accepted that: plant-soil system was climax, the plant community was grassy, initial contents of carbon in phytomass was accepted as 1, annually from 60 to 100 % of the plant litter could arrive to the soil; coefficients of humification of both plant litter and DOM were 0.1 (10 %); DOM is formed as a result of hydrolytic destruction of plant litter, newly formed humic substances (HS) and humus; coefficient of possible absorption of DOM by plants - 0.1 (10 %); it was considered that all organic compounds affiliated into DOM had positive physiological effect on green plants; it was accepted that 1 % DOM absorbed by plants increases phytomass on 10 % (for example, at the expense of photosynthesis acceleration); Eh value was changed from 300 to 800 mV; depending on Eh (i) the coefficient of plant litter oxidation was in the range from 0.75 (75 %) to 0.8 (90 %), coefficient of oxidation of DOM and newly formed HS - from 0.85 (85 %) to 0.9 (90 %), and coefficient of humus oxidation from 0 (0 %) to 0.05 (5 %), and (ii) coefficient of hydrolytic destruction of plant litter and newly formed HS was in the range from 0.12 (12 %) to 0.07 (7 %), and coefficient of humus hydrolytic destruction from 0,05 (5 %) to 0 (0 %), accordingly; all dependences were quasilinear. The following conclusions have been made based on the modeling: (i) both phytomass and oxygen content in atmospheric air were increased with increase of DOM part absorbed by green vascular plants; (ii) the abundance of humus was increased with increase of DOM consumption by green plant (on 5 % at all Eh values) too; (iii) the increase of Eh with 300 to 800 mV led to reduction of oxygen in atmospheric air and to quadruple decrease of the abundance of humus.
The Influence of Water Circulation on Dissolved Organic Matter Dynamics in Bald Head Creek
NASA Astrophysics Data System (ADS)
Lebrasse, M. C.; Osburn, C. L.; Bohnenstiehl, D. R.; He, R.
2016-12-01
Dissolved organic matter (DOM) plays an important role in biogeochemical cycles in estuaries such as tidal creeks draining coastal wetlands such as salt marshes. However, significant knowledge gaps remain regarding the quantity and quality of the DOM that tidally exchanges between salt marshes and their adjacent estuaries. Tidal movements play a central role in lateral exchanges of materials and bidirectional flow results in the mixing of DOM from marsh plants and estuarine DOM. The aim of this study was to better understand the role of water circulation on the distribution and quality of DOM in Bald Head Creek, a tributary to the Cape Fear River estuary in eastern North Carolina. Dissolved organic carbon (DOC) concentration, stable carbon isotopes, and chromophoric DOM (CDOM) absorbance at 254 nm (a254) were used to distinguish between DOM quantity and quality at three locations along the creek: Site 3 (upstream), Site 2 (middle stream), and Site 1 (near the creek mouth). Samples were collected over four tidal cycles between March-August 2016 and compared to time series data collected approximately weekly from 2014-2016. DOM characteristics differed substantially over the tidal cycle. Higher CDOM and DOC concentration were observed at low tide than at high tide at all three sites, suggesting greater export of carbon from the marsh into the creek as the tides recede. Analysis of CDOM quality based on specific UV absorbance at 254 nm (SUVA254) and spectral slope ratio (SR) showed that the marsh end-member (Site 3) source of DOM had greater aromaticity and higher molecular weight. Site 1 showed greater variability over the tidal cycle most likely due to a greater tidal influence, being closer to the mouth. Additionally, an unmanned surface vehicle (USV) and a hydrodynamic model were used to map water circulation and DOC concentration along the creek to compute exchanges with the adjacent estuary. Results suggest that estuarine OM dynamics are strongly controlled by the circulation of water, especially for tidal creeks where tidal pumping can dominate lateral fluxes of DOM to adjacent waters.
NASA Astrophysics Data System (ADS)
Daugherty, E.; Lobo, G.; Pallud, C. E.; Borch, T.
2017-12-01
Mineral-organic associations contribute substantially to the long-term preservation of soil organic matter (SOM) and carbon sequestration. Iron-organic associations are especially important because iron (hydr)oxide minerals and surface coatings are prevalent and effective sorbents of SOM. While mineral-organic associations, and iron-organic associations in particular have been studied extensively, it remains unclear how the abiotic interactions between these soil components will be affected by shifting climate. Will DOM adsorption increase or decrease with rising temperature? Does the adsorption response to temperature depend on the type of DOM? To answer these questions, we investigated the impacts of temperature (7, 25, and 45˚C) and dissolved organic matter (DOM) type on DOM sorption to ferrihydrite-coated sand in a fixed bed column at neutral pH. Breakthrough curves of the standard humic substances at 25˚C indicated that humic acids were in general retained less than fulvic acids. Response to temperature varied from no effect to a marked increase in the quantity adsorbed. Modeling of DOM breakthrough curves using the advection-diffusion equation with a linear adsorption isotherm showed that the equilibrium distribution coefficient increased over time, with retardation factors increasing 4 to 10 times for every simulation. This suggests that the DOM adsorbed to the ferrihydrite-coated sand acts as a sorbent that is 4 to 10 times more powerful than the coated sand alone. Differences in breakthrough due to DOM type and temperature became less pronounced at slower flow rates, and breakthrough occurred at nearly half as many pore volumes at a flow rate of 0.01 mL min-1 vs. 0.05 mL min-1. These results suggest DOM adsorption was diffusion controlled at low flow rates and kinetically controlled at high flow rates, which may explain the increased temperature sensitivity at high flow rates. Analyses to determine adsorptive fractionation are ongoing, but preliminary data suggest that aromatic moieties may be selectively retained during initial contact between DOM and ferrihydrite. Our results suggest that water flow rate is likely to play an important role in determining the relative effects of temperature on DOM sorption to iron minerals.
Butera, Katie A; George, Steven Z; Borsa, Paul A; Dover, Geoffrey C
2018-03-05
Transcutaneous electrical nerve stimulation (TENS) is commonly used for reducing musculoskeletal pain to improve function. However, peripheral nerve stimulation using TENS can alter muscle motor output. Few studies examine motor outcomes following TENS in a human pain model. Therefore, this study investigated the influence of TENS sensory stimulation primarily on motor output (strength) and secondarily on pain and disability following exercise-induced delayed-onset muscle soreness (DOMS). Thirty-six participants were randomized to a TENS treatment, TENS placebo, or control group after completing a standardized DOMS protocol. Measures included shoulder strength, pain, mechanical pain sensitivity, and disability. TENS treatment and TENS placebo groups received 90 minutes of active or sham treatment 24, 48, and 72 hours post-DOMS. All participants were assessed daily. A repeated measures analysis of variance and post-hoc analysis indicated that, compared to the control group, strength remained reduced in the TENS treatment group (48 hours post-DOMS, P < 0.05) and TENS placebo group (48 hours post-DOMS, P < 0.05; 72 hours post-DOMS, P < 0.05). A mixed-linear modeling analysis was conducted to examine the strength (motor) change. Randomization group explained 5.6% of between-subject strength variance (P < 0.05). Independent of randomization group, pain explained 8.9% of within-subject strength variance and disability explained 3.3% of between-subject strength variance (both P < 0.05). While active and placebo TENS resulted in prolonged strength inhibition, the results were nonsignificant for pain. Results indicated that higher pain and higher disability were independently related to decreased strength. Regardless of the impact on pain, TENS, or even the perception of TENS, may act as a nocebo for motor output. © 2018 World Institute of Pain.
Phong, Diep Dinh; Hur, Jin
2015-12-15
Photocatalytic degradation of dissolved organic matter (DOM) using TiO2 as a catalyst and UVA as a light source was examined under various experimental settings with different TiO2 doses, solution pH, and the light intensities. The changes in UV absorbance and fluorescence with the irradiation time followed a pseudo-first order model much better than those of dissolved organic carbon. In general, the degradation rates were increased by higher TiO2 doses and light intensities. However, the exact photocatalytic responses of DOM to the irradiation were affected by many other factors such as aggregation of TiO2, light scattering, hydroxyl radicals produced, and DOM sorption on TiO2. Fluorescence excitation-emission matrix (EEM) coupled with parallel factor analysis (PARAFAC) revealed that the DOM changes in fluorescence could be described by the combinations of four dissimilar components including one protein-like, two humic-like, and one terrestrial humic-like components, each of which followed well the pseudo-first order model. The photocatalytic degradation rates were higher for protein-like versus humic-like component, whereas the opposite order was displayed for the degradation rates in the absence of TiO2, suggesting different dominant mechanisms operating between the systems with and without TiO2. Our results based on EEM-PARAFAC provided new insights into the underlying mechanisms associated with the photocatalytic degradation of DOM as well as the potential environmental impact of the treated water. This study demonstrated a successful application of EEM-PARAFAC for photocatalytic systems via directly comparing the kinetic rates of the individual DOM components with different compositions. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Wang, Zhihua; Fan, Xiaoxiao; Han, Dongmei; Gu, Fubo
2016-05-01
Novel alkali metal doped 3DOM WO3 materials were prepared using a simple colloidal crystal template method. Raman, XRD, SEM, TEM, XPS, PL, Hall and UV-Vis techniques were used to characterize the structural and electronic properties of all the products, while the corresponding sensing performances targeting ppb level NO2 were determined at different working temperatures. For the overall goal of structural and electronic engineering, the co-effect of structural and electronic properties on the improved NO2 sensing performance of alkali metal doped 3DOM WO3 was studied. The test results showed that the gas sensing properties of 3DOM WO3/Li improved the most, with the fast response-recovery time and excellent selectivity. More importantly, the response of 3DOM WO3/Li to 500 ppb NO2 was up to 55 at room temperature (25 °C). The especially high response to ppb level NO2 at room temperature (25 °C) in this work has a very important practical significance. The best sensing performance of 3DOM WO3/Li could be ascribed to the most structure defects and the highest carrier mobility. And the possible gas sensing mechanism based on the model of the depletion layer was proposed to demonstrate that both structural and electronic properties are responsible for the NO2 sensing behavior.Novel alkali metal doped 3DOM WO3 materials were prepared using a simple colloidal crystal template method. Raman, XRD, SEM, TEM, XPS, PL, Hall and UV-Vis techniques were used to characterize the structural and electronic properties of all the products, while the corresponding sensing performances targeting ppb level NO2 were determined at different working temperatures. For the overall goal of structural and electronic engineering, the co-effect of structural and electronic properties on the improved NO2 sensing performance of alkali metal doped 3DOM WO3 was studied. The test results showed that the gas sensing properties of 3DOM WO3/Li improved the most, with the fast response-recovery time and excellent selectivity. More importantly, the response of 3DOM WO3/Li to 500 ppb NO2 was up to 55 at room temperature (25 °C). The especially high response to ppb level NO2 at room temperature (25 °C) in this work has a very important practical significance. The best sensing performance of 3DOM WO3/Li could be ascribed to the most structure defects and the highest carrier mobility. And the possible gas sensing mechanism based on the model of the depletion layer was proposed to demonstrate that both structural and electronic properties are responsible for the NO2 sensing behavior. Electronic supplementary information (ESI) available: Raman, SEM, TEM, mapping, XPS and PL images; transient plot; response of 3DOM WO3/Li to NO2 concentration, sensing stability and the corresponding log (Sg - 1) versus log Cg curves. See DOI: 10.1039/c6nr00858e
Singlet oxygen in the coupled photochemical and biochemical oxidation of dissolved organic matter.
Cory, Rose M; McNeill, Kristopher; Cotner, James P; Amado, Andre; Purcell, Jeremiah M; Marshall, Alan G
2010-05-15
Dissolved organic matter (DOM) is a significant (>700 Pg) global C pool. Transport of terrestrial DOM to the inland waters and coastal zones represents the largest flux of reduced C from land to water (215 Tg yr(-1)) (Meybeck, M. Am. J. Sci. 1983, 282, 401-450). Oxidation of DOM by interdependent photochemical and biochemical processes largely controls the fate of DOM entering surface waters. Reactive oxygen species (ROS) have been hypothesized to play a significant role in the photooxidation of DOM, because they may oxidize the fraction of DOM that is inaccessible to direct photochemical degradation by sunlight. We followed the effects of photochemically produced singlet oxygen ((1)O(2)) on DOM by mass spectrometry with (18)O-labeled oxygen, to understand how (1)O(2)-mediated transformations of DOM may lead to altered DOM bioavailability. The photochemical oxygen uptake by DOM attributed to (1)O(2) increased with DOM concentration, yet it remained a minority contributor to photochemical oxygen uptake even at very high DOM concentrations. When DOM samples were exposed to (1)O(2)-generating conditions (Rose Bengal and visible light), increases were observed in DOM constituents with higher oxygen content and release of H(2)O(2) was detected. Differential effects of H(2)O(2) and (1)O(2)-treated DOM showed that (1)O(2)-treated DOM led to slower bacterial growth rates relative to unmodified DOM. Results of this study suggested that the net effect of the reactions between singlet oxygen and DOM may be production of partially oxidized substrates with correspondingly lower potential biological energy yield.
Jason B. Fellman; David V. D' Amore; Eran Hood; Richard D. Boone
2008-01-01
Understanding how the concentration and chemical quality of dissolved organic matter (DOM) varies in soils is critical because DOM influences an array of biological, chemical, and physical processes. We used PARAFAC modeling of excitation-emission fluorescence spectroscopy, specific UV absorbance (SUVA254) and biodegradable dissolved organic...
A field reverse osmosis system was used to isolate dissolved organic matter (DOM) from two lacustrine and two riverine surface water sources. The rejection of DOM was on the order of 99% and did not vary significantly with pressure. A simple mass balance model using a single m...
Wershaw, Robert L.
2004-01-01
Natural organic matter (NOM) has been studied for more than 200 years because of its importance in enhancing soil fertility, soil structure, and water-holding capacity and as a carbon sink in the global carbon cycle. Two different types of models have been proposed for NOM: (1) the humic polymer models and (2) the molecular aggregate models. In the humic polymer models, NOM molecules are depicted as large (humic) polymers that have unique chemical structures that are different from those of the precursor plant degradation products. In the molecular aggregate models, NOM is depicted as being composed of molecular aggregates (supramolecular aggregates) of plant degradation products held together by non-covalent bonds. The preponderance of evidence favors the supramolecular aggregate models. These models were developed by studying the properties of NOM extracted from soils and natural waters, and as such, they provide only a very generalized picture of the structure of NOM aggregates in soils and natural waters prior to extraction. A compartmental model, in which the structure of the NOM in each of the compartments is treated separately, should provide a more accurate representation of NOM in soil and sediment systems. The proposed NOM compartments are: (1) partially degraded plant tissue, (2) biomass from microorganisms, (3) organic coatings on mineral grains, (4) pyrolytic carbon, (5) organic precipitates, and (6) dissolved organic matter (DOM) in interstitial water. Within each of these compartments there are NOM supramolecular aggregates that will be dissolved by the solvent systems that are used by researchers for extraction of NOM from soils and sediments. In natural water systems DOM may be considered as existing in two subcompartments: (1) truly dissolved DOM and (2) colloidal DOM.
NASA Astrophysics Data System (ADS)
Wang, Chao; Guo, Weidong; Li, Yan; Stubbins, Aron; Li, Yizhen; Song, Guodong; Wang, Lei; Cheng, Yuanyue
2017-12-01
The Kuroshio intrusion from the West Philippine Sea (WPS) and mesoscale eddies are important hydrological features in the northern South China Sea (SCS). In this study, absorption and fluorescence of dissolved organic matter (CDOM and FDOM) were determined to assess the impact of these hydrological features on DOM dynamics in the SCS. DOM in the upper 100 m of the northern SCS had higher absorption, fluorescence, and degree of humification than in the Kuroshio Current of the WPS. The results of an isopycnal mixing model showed that CDOM and humic-like FDOM inventories in the upper 100 m of the SCS were modulated by the Kuroshio intrusion. However, protein-like FDOM was influenced by in situ processes. This basic trend was modified by mesoscale eddies, three of which were encountered during the fieldwork (one warm eddy and two cold eddies). DOM optical properties inside the warm eddy resembled those of DOM in the WPS, indicating that warm eddies could derive from the Kuroshio Current through Luzon Strait. DOM at the center of cold eddies was enriched in humic-like fluorescence and had lower spectral slopes than in eddy-free waters, suggesting inputs of humic-rich DOM from upwelling and enhanced productivity inside the eddy. Excess CDOM and FDOM in northern SCS intermediate water led to export to the Pacific Ocean interior, potentially delivering refractory carbon to the deep ocean. This study demonstrated that DOM optical properties are promising tools to study active marginal sea-open ocean interactions.
Kamjunke, Norbert; Oosterwoud, Marieke R; Herzsprung, Peter; Tittel, Jörg
2016-04-01
Enhanced concentrations of dissolved organic matter (DOM) in freshwaters are an increasing problem in drinking water reservoirs. In this study we investigated bacterial DOM degradation rates in the tributaries of the reservoirs and tested the hypotheses that (1) DOM degradation is high enough to decrease DOM loads to reservoirs considerably, (2) DOM degradation is affected by stream hydrology, and (3) phosphorus addition may stimulate bacterial DOM degradation. Bacterial biomass production, which was used as a measure of DOM degradation, was highest in summer, and was usually lower at upstream than at downstream sites. An important proportion of bacterial production was realized in epilithic biofilms. Production of planktonic and biofilm bacteria was related to water temperature. Planktonic production weakly correlated to DOM quality and to total phosphorus concentration. Addition of soluble reactive phosphorus did not stimulate bacterial DOM degradation. Overall, DOM was considerably degraded in summer at low discharge levels, whereas degradation was negligible during flood events (when DOM load in reservoirs was high). The ratio of DOM degradation to total DOM release was negatively related to discharge. On annual average, only 0.6-12% of total DOM released by the catchments was degraded within the tributaries. Copyright © 2016 Elsevier B.V. All rights reserved.
Halogen radicals contribute to photooxidation in coastal and estuarine waters
Parker, Kimberly M.; Mitch, William A.
2016-01-01
Although halogen radicals are recognized to form as products of hydroxyl radical (•OH) scavenging by halides, their contribution to the phototransformation of marine organic compounds has received little attention. We demonstrate that, relative to freshwater conditions, seawater halides can increase photodegradation rates of domoic acid, a marine algal toxin, and dimethyl sulfide, a volatile precursor to cloud condensation nuclei, up to fivefold. Using synthetic seawater solutions, we show that the increased photodegradation is specific to dissolved organic matter (DOM) and halides, rather than other seawater salt constituents (e.g., carbonates) or photoactive species (e.g., iron and nitrate). Experiments in synthetic and natural coastal and estuarine water samples demonstrate that the halide-specific increase in photodegradation could be attributed to photochemically generated halogen radicals rather than other photoproduced reactive intermediates [e.g., excited-state triplet DOM (3DOM*), reactive oxygen species]. Computational kinetic modeling indicates that seawater halogen radical concentrations are two to three orders of magnitude greater than freshwater •OH concentrations and sufficient to account for the observed halide-specific increase in photodegradation. Dark •OH generation by gamma radiolysis demonstrates that halogen radical production via •OH scavenging by halides is insufficient to explain the observed effect. Using sensitizer models for DOM chromophores, we show that halogen radicals are formed predominantly by direct oxidation of Cl− and Br− by 3DOM*, an •OH-independent pathway. Our results indicate that halogen radicals significantly contribute to the phototransformation of algal products in coastal or estuarine surface waters. PMID:27162335
Modeling rates of DOC degradation using DOM composition and hydroclimatic variables
NASA Astrophysics Data System (ADS)
Moody, C. S.; Worrall, F.
2017-05-01
The fluvial fluxes of dissolved organic carbon (DOC) from peatlands form an important part of that ecosystem's carbon cycle, contributing approximately 35% of the overall peatland carbon budget. The in-stream processes acting on the DOC, such as photodegradation and biodegradation, can lead to DOC loss and thus contribute CO2 to the atmosphere. The aim of this study was to understand what controls the rates of DOC degradation. Water samples from a headwater, peat-covered catchment, were collected over a 23 month period and analyzed for the DOC degradation rate and dissolved organic matter (DOM) composition in the context of hydroclimatic monitoring. Measures of DOM composition included 13C solid-state nuclear magnetic resonance spectroscopy, bomb calorimetry, and elemental analysis. Regression analysis showed that there was a significant role for the composition of the DOM in controlling degradation with degradation rates significantly increasing with the proportion of aldehyde and carboxylic acid functional groups but decreasing with the proportion of N-alkyl functional groups. The highest rates of DOC degradation occurred when aldehyde functionality was at its greatest and this occurred on the recession limb of storm hydrographs. Including this knowledge into models of fluvial carbon fate for an 818 km2 catchment gave an annual average DOC removal rate of 67% and 50% for total organic carbon, slightly lower than previously predicted. The compositional controls suggest that DOM is primarily being used as a ready energy source to the aquatic ecosystem rather than as a nutrient source.
Wang, Ying; Zhang, Manman; Fu, Jun; Li, Tingting; Wang, Jinggang; Fu, Yingyu
2016-10-01
The interaction between carbamazepine (CBZ) and dissolved organic matter (DOM) from three zones (the nearshore, the river channel, and the coastal areas) in the Yangtze Estuary was investigated using fluorescence quenching titration combined with excitation emission matrix spectra and parallel factor analysis (PARAFAC). The complexation between CBZ and DOM was demonstrated by the increase in hydrogen bonding and the disappearance of the C=O stretch obtained from the Fourier transform infrared spectroscopy analysis. The results indicated that two protein-like substances (component 2 and component3) and two humic-like substances (component 1 and 4) were identified in the DOM from the Yangtze Estuary. The fluorescence quenching curves of each component with the addition of CBZ and the Ryan and Weber model calculation results both demonstrated that the different components exhibited different complexation activities with CBZ. The protein-like components had a stronger affinity with CBZ than did the humic-like substances. On the other hand, the autochthonous tyrosine-like C2 played an important role in the complexation with DOM from the river channel and coastal areas, while C3 influenced by anthropogenic activities showed an obvious effect in the nearshore area. DOMs from the river channel have the highest binding capacity for CBZ, which may ascribe to the relatively high phenol content group in the DOM.
Jason B. Fellman; Eran Hood; David V. D' Amore; Richard T. Edwards; Dan White
2009-01-01
The composition and biodegradability of streamwater dissolved organic matter (DOM) varies with source material and degree of transformation. We combined PARAFAC modeling of fluorescence excitation-emission spectroscopy and biodegradable dissolved organic carbon (BDOC) incubations to investigate seasonal changes in the lability of DOM along a soil-stream continuum in...
NASA Astrophysics Data System (ADS)
Ward, C.; Cory, R. M.
2015-12-01
Thawing permafrost soils are expected to shift the chemical composition of DOM exported to and degraded in arctic surface waters. While DOM photo-degradation is an important component of the freshwater C cycle in the Arctic, the molecular controls on DOM photo-degradation remain poorly understood, making it difficult to predict how shifting chemical composition may alter DOM photo-degradation in arctic surface waters. To address this knowledge gap, we quantified the susceptibility of DOM draining the shallow organic mat and the deeper permafrost layer to complete photo-oxidation to CO₂ and partial photo-oxidation to compounds that remain in the DOM pool, and investigated changes in DOM chemical composition following sunlight exposure. DOM leached from the organic mat contained higher molecular weight, more oxidized and unsaturated aromatic species compared to permafrost DOM. Despite significant differences in initial chemical composition, permafrost and organic mat DOM had similar susceptibilities to complete photo-oxidation to CO₂. Concurrent losses of carboxyl moieties and shifts in chemical composition during photo-degradation indicated that carboxyl-rich tannin-like compounds in both DOM sources were likely photo-decarboxylated to CO₂. Permafrost DOM had a higher susceptibility to partial photo-oxidation compared to organic mat DOM, potentially due to a lower abundance of phenolic compounds that act as "antioxidants" and slow the oxidation of DOM. These results demonstrated how chemical composition controls the photo-degradation of DOM in arctic surface waters, and that DOM photo-degradation will likely remain an important component of the freshwater C budget in the Arctic with increased export of permafrost DOM to surface waters.
Martínez, Aingeru; Kominoski, John Stephen; Larrañaga, Aitor
2017-12-01
Climate change is increasing overall temporal variability in precipitation resulting in a seasonal water availability, both increasing periods of flooding and water scarcity. During low water availability periods, the concentration of leachates from riparian vegetation increases, subsequently increasing dissolved organic matter (DOM). Moreover, shifts in riparian vegetation by land use changes impact the quantity and quality of DOM. Our objective was to test effects of increasing DOM concentrations from Eucalyptus grandis (one of the most cultivated tree species in the world) leachates on the metabolism (respiration, R; gross primary productivity, GPP) and extracellular enzyme activities (EEAs) of freshwater biofilms. To test effects of DOM concentrations on freshwater biofilm functions, we incubated commercial cellulose sponges in a freshwater pond to allow biofilm colonization, and then exposed biofilms to five different concentrations of leaf-litter leachates of E. grandis for five days. To test if responses to DOM concentrations varied with colonization stage of biofilms, we measured treatment effects on biofilms colonizing standard substrates after one, two, three and four weeks of colonization. Increases in leachates concentrations enhanced biofilm heterotrophy, increasing R rates and decreasing GPP. Leachate concentrations did not affect biofilm EEAs, and changes in biofilm metabolism were not explained by treatment-induced changes in biofilm biomass or stoichiometry. We detected the lowest production:respiration ratios, i.e. more heterotrophic assemblages, with the most concentrated leachate solution and the most advanced biofilm colonization stages. Shifts in quantity of dissolved organic matter in freshwaters may further influence ecosystem metabolism and carbon processing. Copyright © 2017 Elsevier B.V. All rights reserved.
Differences in dissolved organic matter between reclaimed water source and drinking water source.
Hu, Hong-Ying; Du, Ye; Wu, Qian-Yuan; Zhao, Xin; Tang, Xin; Chen, Zhuo
2016-05-01
Dissolved organic matter (DOM) significantly affects the quality of reclaimed water and drinking water. Reclaimed water potable reuse is an effective way to augment drinking water source and de facto reuse exists worldwide. Hence, when reclaimed water source (namely secondary effluent) is blended with drinking water source, understanding the difference in DOM between drinking water source (dDOM) and reclaimed water source (rDOM) is essential. In this study, composition, transformation, and potential risk of dDOM from drinking water source and rDOM from secondary effluent were compared. Generally, the DOC concentration of rDOM and dissolved organic nitrogen (DON) content in reclaimed water source were higher but rDOM exhibited a lower aromaticity. Besides, rDOM comprises a higher proportion of hydrophilic fractions and more low-molecular weight compounds, which are difficult to be removed during coagulation. Although dDOM exhibited higher specific disinfection byproducts formation potential (SDBPFP), rDOM formed more total disinfection byproducts (DBPs) during chlorination including halomethanes (THMs) and haloacetic acids (HAAs) due to high DOC concentration. Likewise, in consideration of DOC basis, rDOM contained more absolute assimilable organic carbon (AOC) despite showing a lower specific AOC (normalized AOC per unit of DOC). Besides, rDOM exhibited higher biotoxicity including genotoxicity and endocrine disruption. Therefore, rDOM presents a greater potential risk than dDOM does. Reclaimed water source needs to be treated carefully when it is blended with drinking water source. Copyright © 2015. Published by Elsevier B.V.
Herlemann, Daniel P. R.; Manecki, Marcus; Meeske, Christian; Pollehne, Falk; Labrenz, Matthias; Schulz-Bull, Detlef; Dittmar, Thorsten; Jürgens, Klaus
2014-01-01
The biodegradability of terrigenous dissolved organic matter (tDOM) exported to the sea has a major impact on the global carbon cycle, but our understanding of tDOM bioavailability is fragmentary. In this study, the effects of preparative tDOM isolation on microbial decomposition were investigated in incubation experiments consisting of mesocosms containing mesohaline water from the Baltic Sea. Dissolved organic carbon (DOC) consumption, molecular DOM composition, bacterial activities, and shifts in bacterial community structure were compared between mesocosms supplemented with riverine tDOM, either as filtered, particle-free river water or as a concentrate obtained by lyophilization/tangential ultrafiltration, and those containing only Baltic Sea water or river water. As shown using ultra-high-resolution mass spectrometry (15 Tesla Fourier-transform ion cyclotron resonance mass spectrometry, FT-ICR-MS) covering approximately 4600 different DOM compounds, the three DOM preparation protocols resulted in distinct patterns of molecular DOM composition. However, despite DOC losses of 4–16% and considerable bacterial production, there was no significant change in DOM composition during the 28-day experiment. Moreover, tDOM addition affected neither DOC degradation nor bacterial dynamics significantly, regardless of the tDOM preparation. This result suggested that the introduced tDOM was largely not bioavailable, at least on the temporal scale of our experiment, and that the observed bacterial activity and DOC decomposition mainly reflected the degradation of unknown, labile, colloidal and low-molecular weight DOM, both of which escape the analytical window of FT-ICR-MS. In contrast to the different tDOM preparations, the initial bacterial inoculum and batch culture conditions determined bacterial community succession and superseded the effects of tDOM addition. The uncoupling of tDOM and bacterial dynamics suggests that mesohaline bacterial communities cannot efficiently utilize tDOM and that in subarctic estuaries other factors are responsible for the removal of imported tDOM. PMID:24718626
Chen, Xiao-Meng; Zhao, Yue; Ma, Ying-Ying; Zhu, Long-Ji; Yang, Tian-Xue; Wei, Zi-Min; Dong, Ying-Li; Wei, Qing-Bin
2018-01-01
The binding characteristics of phenanthrene with dissolved organic matter (DOM) were studied by the excitation emission matrix fluorescence spectroscopy with parallel factor analysis in four types of land use which derived from forest (F), meadow (M), cropland (C), and greenhouse (G). The results showed that the humification degree and binding characteristics of phenanthrene with DOM were distinct differences in the four soils. The binding capacities of humic-like components with phenanthrene were stronger than those of protein-like components. The log K derived from the Stern-Volmer equation significantly correlated with the humification degree of DOM (p < 0.05) in different types of land use. Besides, correlation analysis demonstrated that the potential binding index (Fk) obtained from the modified Stern-Volmer model was a more accurate parameter to describe the combination degree of DOM with phenanthrene than log K, which presented a decrease order of C > F > M > G. Therefore, the environmental impact of phenanthrene in different types of land use could be assessed deeply based on the Fk and DOM concentration. Copyright © 2017 Elsevier Inc. All rights reserved.
Adsorptive fractionation of dissolved organic matter (DOM) by carbon nanotubes.
Engel, Maya; Chefetz, Benny
2015-02-01
Dissolved organic matter (DOM) and carbon nanotubes are introduced into aquatic environments. Thus, it is important to elucidate whether their interaction affects DOM amount and composition. In this study, the composition of DOM, before and after interactions with single-walled carbon nanotubes (SWCNTs), was measured and the adsorption affinity of the individual structural fractions of DOM to SWCNTs was investigated. Adsorption of DOM to SWCNTs was dominated by the hydrophobic acid fraction, resulting in relative enhancement of the hydrophilic character of non-adsorbed DOM. The preferential adsorption of the HoA fraction was concentration-dependent, increasing with increasing concentration. Adsorption affinities of bulk DOM calculated as the normalized sum of affinities of the individual structural fractions were similar to the measured affinities, suggesting that the structural fractions of DOM act as independent adsorbates. The altered DOM composition may affect the nature and reactivity of DOM in aquatic environments polluted with carbon nanotubes. Copyright © 2014 Elsevier Ltd. All rights reserved.
Removal of dissolved organic matter by anion exchange: Effect of dissolved organic matter properties
Boyer, T.H.; Singer, P.C.; Aiken, G.R.
2008-01-01
Ten isolates of aquatic dissolved organic matter (DOM) were evaluated to determine the effect that chemical properties of the DOM, such as charge density, aromaticity, and molecular weight, have on DOM removal by anion exchange. The DOM isolates were characterized asterrestrial, microbial, or intermediate humic substances or transphilic acids. All anion exchange experiments were conducted using a magnetic ion exchange (MIEX) resin. The charge density of the DOM isolates, determined by direct potentiometric titration, was fundamental to quantifying the stoichiometry of the anion exchange mechanism. The results clearly show that all DOM isolates were removed by anion exchange; however, differences among the DOM isolates did influence their removal by MIEX resin. In particular, MIEX resin had the greatest affinity for DOM with high charge density and the least affinity for DOM with low charge density and low aromaticity. This work illustrates that the chemical characteristics of DOM and solution conditions must be considered when evaluating anion exchange treatment for the removal of DOM. ?? 2008 American Chemical Society.
Hu, Sihai; Wu, Yaoguo; Yi, Na; Zhang, Shuai; Zhang, Yuanjing; Xin, Xu
2017-09-01
Dissolved organic matter (DOM), as the most active organic carbon in the soil, has a coherent affinity with heavy metals from inherent and exogenous sources. Although the important roles of DOM in the adsorption of heavy metals in soil have previously been demonstrated, the heterogeneity and variability of the chemical constitution of DOM impede the investigation of its effects on heavy metal adsorption onto soil under natural conditions. Fresh DOM (FDOM) and degraded DOM (DDOM) from sugarcane rind were prepared, and their chemical properties were measured by Fourier-transform infrared spectrometry (FTIR), excitation-emission matrix (EEM) fluorescence spectroscopes, nuclear magnetic resonance (NMR), and molecular weight distribution (MWD). They were also used in batch experiments to evaluate their effects on the adsorption of Cu(II) onto farmland red soil. Based on our results, the chemical structure and composition of DDOM greatly varied; compared with FDOM, the C/O ratio (from 24.0 to 9.6%) and fluorescence index (FI) (from 1.4 to 1.0) decreased, and high molecular weight (>10 kDa) compounds increased from 23.18 to 70.51%, while low molecular weight (<3 kDa) compounds decreased from 56.13 to 12.13%; aromaticity and humification degree were markedly enhanced. The discrepancy of FDOM and DDOM in terms of chemical properties greatly influenced Cu(II) adsorption onto red soil by affecting DOM-Cu(II) complex capacity. The FDOM inhibited the adsorption of Cu(II), while DDOM promoted adsorption, which was significantly influenced by soil pH. Maximum adsorption capacity (Q m ) was 0.92 and 5.76 mg g -1 in the presence of FDOM and DDOM, respectively. The adsorption process with DDOM could be better described by the Langmuir model, while that with FDOM was better described by the Freundlich model. The impacts caused by the dynamic changes of the chemical properties of DOM under natural conditions should therefore be considered in the risk assessment and remediation of soils contaminated with heavy metals.
Characterization of Organic Matter Sources within a Matrix of Land Use in Northeast Utah
NASA Astrophysics Data System (ADS)
Kelso, J. E.; Baker, M. A.
2017-12-01
Dynamics of organic matter (OM) sources in natural aquatic systems have been studied for decades, but urban studies have revealed additional, less studied, OM sources such as stormwater, lawn clippings, and wastewater effluent. Traditionally the OM pool in freshwater systems has been defined as a homogenous pool of varying size classes: course particulate, fine particulate and dissolved OM. Our goal was to identify and quantify the composition of fine particulate OM (FPOM), and dissolved OM (DOM) as derived from autochthonous, terrestrial, and potential anthropogenic sources. We hypothesized anthropogenic changes in land use have increased the proportion of autochthonous sources of OM. We sampled OM at 33 sites in four watersheds in northeast Utah that encompass a range of land uses. Stable isotopes of carbon, nitrogen, and deuterium were collected for all size classes of OM, and DOM was analyzed with a spectrofluorometer. Stable isotopes were used to estimate the proportion of autochthonous and terrestrial sources of OM. Fluorescence indices and a PARAFAC model were created from DOM excitation emission matrices (EEMs). FPOM appeared to be a mixture of autochthonous and terrestrial sources but overlap in endmember isotope values made quantifying the proportion of each source difficult. Higher deuterium values (-120 to -80‰) were associated with sites receiving wastewater effluent, while sites with agriculture, forest, and urban land use had lower deuterium isotope values (-200 to -110). DOM Excitation Emission Matrices were resolved into a 5-component PARAFAC model. The percent of protein-like DOM components tended to be higher in urban versus non-urban sites (mean 35%, S.D. 12% versus mean 25%, S.D. 15%). We concluded deuterium isotopes may be used as a tracer or wastewater effluent and DOM is composed of more labile, protein-like DOM with increased wastewater input. A greater understanding of the sources of OM can inform management and policy decisions aimed at mitigating the effects of OM pollution. For example, evaluating tradeoffs between mitigating the effects of OM inputs from cattle grazing versus building or improving waste water treatment facilities can be further explored.
Granular activated carbon adsorption of MIB in the presence of dissolved organic matter.
Summers, R Scott; Kim, Soo Myung; Shimabuku, Kyle; Chae, Seon-Ha; Corwin, Christopher J
2013-06-15
Based on the results of over twenty laboratory granular activated carbon (GAC) column runs, models were developed and utilized for the prediction of 2-methylisoborneol (MIB) breakthrough behavior at parts per trillion levels and verified with pilot-scale data. The influent MIB concentration was found not to impact the concentration normalized breakthrough. Increasing influent background dissolved organic matter (DOM) concentration was found to systematically decrease the GAC adsorption capacity for MIB. A series of empirical models were developed that related the throughput in bed volumes for a range of MIB breakthrough targets to the influent DOM concentration. The proportional diffusivity (PD) designed rapid small-scale column test (RSSCT) could be directly used to scale-up MIB breakthrough performance below 15% breakthrough. The empirical model to predict the throughput to 50% breakthrough based on the influent DOM concentration served as input to the pore diffusion model (PDM) and well-predicted the MIB breakthrough performance below a 50% breakthrough. The PDM predictions of throughput to 10% breakthrough well simulated the PD-RSSCT and pilot-scale 10% MIB breakthrough. Copyright © 2013 Elsevier Ltd. All rights reserved.
Fasching, Christina; Ulseth, Amber J; Schelker, Jakob; Steniczka, Gertraud; Battin, Tom J
2016-03-01
Streams and rivers transport dissolved organic matter (DOM) from the terrestrial environment to downstream ecosystems. In light of climate and global change it is crucial to understand the temporal dynamics of DOM concentration and composition, and its export fluxes from headwaters to larger downstream ecosystems. We monitored DOM concentration and composition based on a diurnal sampling design for 3 years in an Alpine headwater stream. We found hydrologic variability to control DOM composition and the coupling of DOM dynamics in the streamwater and the hyporheic zone. High-flow events increased DOM inputs from terrestrial sources (as indicated by the contributions of humic- and fulvic-like fluorescence), while summer baseflow enhanced the autochthonous imprint of DOM. Diurnal and seasonal patterns of DOM composition were likely induced by biological processes linked to temperature and photosynthetic active radiation (PAR). Floods frequently interrupted diurnal and seasonal patterns of DOM, which led to a decoupling of streamwater and hyporheic water DOM composition and delivery of aromatic and humic-like DOM to the streamwater. Accordingly, DOM export fluxes were largely of terrigenous origin as indicated by optical properties. Our study highlights the relevance of hydrologic and seasonal dynamics for the origin, composition and fluxes of DOM in an Alpine headwater stream.
NASA Astrophysics Data System (ADS)
Cory, R. M.; Harrold, K. H.; Neilson, B. T.; Kling, G. W.
2015-07-01
We investigated how absorption of sunlight by chromophoric dissolved organic matter (CDOM) controls the degradation and export of DOM from Imnavait Creek, a beaded stream in the Alaskan Arctic. We measured concentrations of dissolved organic carbon (DOC), as well as concentrations and characteristics of CDOM and fluorescent dissolved organic matter (FDOM), during ice-free periods of 2011-2012 in the pools of Imnavait Creek and in soil waters draining to the creek. Spatial and temporal patterns in CDOM and FDOM in Imnavait Creek were analyzed in conjunction with measures of DOM degradation by sunlight and bacteria and assessments of hydrologic residence times and in situ UV exposure. CDOM was the dominant light attenuating constituent in the UV and visible portion of the solar spectrum, with high attenuation coefficients ranging from 86 ± 12 m-1 at 305 nm to 3 ± 1 m-1 in the photosynthetically active region (PAR). High rates of light absorption and thus light attenuation by CDOM contributed to thermal stratification in the majority of pools in Imnavait Creek under low-flow conditions. In turn, thermal stratification increased the residence time of water and DOM, and resulted in a separation of water masses distinguished by contrasting UV exposure (i.e., UV attenuation by CDOM with depth resulted in bottom waters receiving less UV than surface waters). When the pools in Imnavait Creek were stratified, DOM in the pool bottom water closely resembled soil water DOM in character, while the concentration and character of DOM in surface water was reproduced by experimental photo-degradation of bottom water. These results, in combination with water column rates of DOM degradation by sunlight and bacteria, suggest that photo-degradation is the dominant process controlling DOM fate and export in Imnavait Creek. A conceptual model is presented showing how CDOM amount and lability interact with incident UV light and water residence time to determine whether photo-degradation is "light-limited" or "substrate-limited". We suggest that degradation, and thus export, of DOM in CDOM-rich streams or ponds similar to Imnavait is typically light-limited under most flow conditions.
Zhou, Zhengzhen; Guo, Laodong
2015-06-19
Colloidal retention characteristics, recovery and size distribution of model macromolecules and natural dissolved organic matter (DOM) were systematically examined using an asymmetrical flow field-flow fractionation (AFlFFF) system under various membrane size cutoffs and carrier solutions. Polystyrene sulfonate (PSS) standards with known molecular weights (MW) were used to determine their permeation and recovery rates by membranes with different nominal MW cutoffs (NMWCO) within the AFlFFF system. Based on a ≥90% recovery rate for PSS standards by the AFlFFF system, the actual NMWCOs were determined to be 1.9 kDa for the 0.3 kDa membrane, 2.7 kDa for the 1 kDa membrane, and 33 kDa for the 10 kDa membrane, respectively. After membrane calibration, natural DOM samples were analyzed with the AFlFFF system to determine their colloidal size distribution and the influence from membrane NMWCOs and carrier solutions. Size partitioning of DOM samples showed a predominant colloidal size fraction in the <5 nm or <10 kDa size range, consistent with the size characteristics of humic substances as the main terrestrial DOM component. Recovery of DOM by the AFlFFF system, as determined by UV-absorbance at 254 nm, decreased significantly with increasing membrane NMWCO, from 45% by the 0.3 kDa membrane to 2-3% by the 10 kDa membrane. Since natural DOM is mostly composed of lower MW substances (<10 kDa) and the actual membrane cutoffs are normally larger than their manufacturer ratings, a 0.3 kDa membrane (with an actual NMWCO of 1.9 kDa) is highly recommended for colloidal size characterization of natural DOM. Among the three carrier solutions, borate buffer seemed to provide the highest recovery and optimal separation of DOM. Rigorous calibration with macromolecular standards and optimization of system conditions are a prerequisite for quantifying colloidal size distribution using the flow field-flow fractionation technique. In addition, the coupling of AFlFFF with fluorescence EEMs could provide new insights into DOM heterogeneity in different colloidal size fractions. Copyright © 2015 Elsevier B.V. All rights reserved.
Kimmance, Susan; McCormack, Paul
2017-01-01
The capacity of bacteria for degrading dissolved organic nitrogen (DON) and remineralising ammonium is of importance for marine ecosystems, as nitrogen availability frequently limits productivity. Here, we assess the capacity of a widely distributed and metabolically versatile marine bacterium to degrade phytoplankton-derived dissolved organic carbon (DOC) and nitrogen. To achieve this, we lysed exponentially growing diatoms and used the derived dissolved organic matter (DOM) to support an axenic culture of Alteromonas sp.. Bacterial biomass (as particulate carbon and nitrogen) was monitored for 70 days while growth dynamics (cell count), DOM (DOC, DON) and dissolved nutrient concentrations were monitored for up to 208 days. Bacterial biomass increased rapidly within the first 7 days prior to a period of growth/death cycles potentially linked to rapid nutrient recycling. We found that ≈75% of the initial DOC and ≈35% of the initial DON were consumed by bacteria within 40 and 4 days respectively, leaving a significant fraction of DOM resilient to degradation by this bacterial species. The different rates and extents to which DOC and DON were accessed resulted in changes in DOM stoichiometry and the iterative relationship between DOM quality and bacterial growth over time influenced bacterial cell C:N molar ratio. C:N values increased to 10 during the growth phase before decreasing to values of ≈5, indicating a change from relative N-limitation/C-sufficiency to relative C-limitation/N-sufficiency. Consequently, despite its reported metabolic versatility, we demonstrate that Alteromonas sp. was unable to access all phytoplankton derived DOM and that a bacterial community is likely to be required. By making the relatively simple assumption that an experimentally derived fraction of DOM remains resilient to bacterial degradation, these experimental results were corroborated by numerical simulations using a previously published model describing the interaction between DOM and bacteria in marine systems, thus supporting our hypothesis. PMID:28158278
NASA Astrophysics Data System (ADS)
Armstrong, A.; Epting, S.; Hosen, J. D.; Palmer, M.
2015-12-01
Dissolved organic matter (DOM) plays a central role in freshwater streams but key questions remain unanswered about temporal patterns in its quantity and composition. DOM in perennial streams in the temperate zone is a complex mixture reflecting a variety of sources such as leached plant material, organic matter from surrounding soils, and microbial processes in the streams themselves. Headwater perennial streams in the Tuckahoe Creek watershed of the Atlantic coastal plain (Maryland, USA) drain a mosaic of land cover types including row crops, forests, and both forested and marshy small depressional wetlands. Wetland-stream surface hydrologic connections generally occur between mid-fall and late spring, coinciding with peak wetland hydrologic expression (i.e. highest groundwater levels and surface inundation extent). When inundated, these wetlands contain high DOM concentrations, and surface connections may serve as conduits for downstream export. We hypothesized that changes in wetland-stream surface hydrologic connectivity would affect patterns of DOM concentration and composition in these streams. We deployed 6 sondes equipped with fluorescent DOM sensors in 4 perennial streams, 1 forested wetland, and the larger downstream channel draining all study sites for the 2015 water year. The 4 headwater streams drain areas containing forested wetlands and have documented temporary channel connections. Combined with baseflow and stormflow sampling, the sondes provided 15 minute estimates of dissolved organic carbon (DOC) concentrations. This resolution provided insights into patterns of DOC concentration across temporal scales from daily rhythms to seasonal changes, during both baseflow and storm conditions. Discrete measurements of absorbance and fluorescence provided information about DOM composition throughout the study. Together these measurements give a detailed record of DOM dynamics in multiple perennial headwater streams for an entire year. This information could inform future studies, such as investigations into stream network scale thresholds in DOM cycling, carbon cycling modelling for the study region, or understanding the impact of wetlands sometimes considered geographically isolated on downstream ecosystems.
Polimene, Luca; Clark, Darren; Kimmance, Susan; McCormack, Paul
2017-01-01
The capacity of bacteria for degrading dissolved organic nitrogen (DON) and remineralising ammonium is of importance for marine ecosystems, as nitrogen availability frequently limits productivity. Here, we assess the capacity of a widely distributed and metabolically versatile marine bacterium to degrade phytoplankton-derived dissolved organic carbon (DOC) and nitrogen. To achieve this, we lysed exponentially growing diatoms and used the derived dissolved organic matter (DOM) to support an axenic culture of Alteromonas sp.. Bacterial biomass (as particulate carbon and nitrogen) was monitored for 70 days while growth dynamics (cell count), DOM (DOC, DON) and dissolved nutrient concentrations were monitored for up to 208 days. Bacterial biomass increased rapidly within the first 7 days prior to a period of growth/death cycles potentially linked to rapid nutrient recycling. We found that ≈75% of the initial DOC and ≈35% of the initial DON were consumed by bacteria within 40 and 4 days respectively, leaving a significant fraction of DOM resilient to degradation by this bacterial species. The different rates and extents to which DOC and DON were accessed resulted in changes in DOM stoichiometry and the iterative relationship between DOM quality and bacterial growth over time influenced bacterial cell C:N molar ratio. C:N values increased to 10 during the growth phase before decreasing to values of ≈5, indicating a change from relative N-limitation/C-sufficiency to relative C-limitation/N-sufficiency. Consequently, despite its reported metabolic versatility, we demonstrate that Alteromonas sp. was unable to access all phytoplankton derived DOM and that a bacterial community is likely to be required. By making the relatively simple assumption that an experimentally derived fraction of DOM remains resilient to bacterial degradation, these experimental results were corroborated by numerical simulations using a previously published model describing the interaction between DOM and bacteria in marine systems, thus supporting our hypothesis.
NASA Astrophysics Data System (ADS)
Dubinenkov, I. V.; Perminova, I. V.; Bulygina, E. B.; Holmes, R. M.; Davydov, S.; Mann, P. J.; Vonk, J.; Zimov, S. A.
2010-12-01
The Arctic and Subarctic ecosystems are known to be the most vulnerable with respect to climate change. Hence, research on carbon cycling in the Arctic region is very important for understanding the current climatic trends and their consequences. The Kolyma River watershed is one of the Arctic Ocean’s largest. It is dominated by continuous permafrost which is underlain with rich organic soils susceptible to increased fluvial transport. The thaw of permafrost enhanced due to global warming might provide additional large source of organic carbon to the Kolyma River and to the Arctic Ocean as a whole. For estimating the contribution of this source to the total pool of organic carbon, specific structural features of permafrost dissolved organic matter (DOM) as opposed to the waterborne DOM of the Kolyma River should be identified and monitored. The objective of this work was to isolate a representive set of the DOM samples from permafrost soil and freshwater environments of the Kolyma River basin suitable for further structural analysis using high resolution Fourier Transform Ion Cyclotron Resonance Mass Spectroscopy (FTICR-MS) and 1H NMR spectroscopy. The isolation protocol of DOM used in this study has been developed by Dittmar et al, 2008 for sampling marine DOM for NMR studies. It is based on the solid phase extraction of DOM from seawater using PPL Varian Bond Elute cartridges Those cartridges were shown to possess the highest efficiency in DOM isolation from marine water. Prior to discharge through the cartridge, a water sample was filtered through 0.45 μm filter for separation of particulate matter and acidified to pH 2 using HCl. About 50mg of DOM could be sequestered from aqueous phase using one cartridge. Sorption extent was monitored by measurements of DOC concentration and UV-vis spectra at the inlet and outlet of the cartridge. It was determined that from 60 to 65% of the total DOC could be extracted from the tested samples of freshwater. As a result, we used from 20 to 40 liters of water sample per one cartridge depending on DOC concentration in water. To isolate DOM from permafrost soil samples, the water extract was first prepared and used for further isolation of DOM. The fluorescence measurements of the samples before and after discharge through the cartridge showed a lack of specific sorption. As an outcome of the undertaken studies a set of 19 samples from the different environments of the Kolyma River basin was collected including samples from the modern soil, transitory layer, permafrost, floodplain streams, permafrost melting streams, the Kolyma River mainstream and the Arctic Ocean. Each sample is represented by 50mg DOM, which enables its further analysis using Fourier transform ion cyclotron resonance mass spectrometry and 1H NMR spectroscopy. This study is part of the Polaris Project, an NSF-funded undergraduate field program based out of the Northeast Science Station in Cherskiy, Northeast Siberia (www.thepolarisproject.org).
Mechanistic design of concrete crossties and fastening systems - Phase 1.
DOT National Transportation Integrated Search
2017-04-28
The objective of this project is the development and deployment of resilient concrete crossties and fastening systems for heavy haul freight, intercity passenger, and rail transit applications. : For a variety of reasons, concrete crossties are a dom...
Ma, Li; Yates, Scott R
2018-06-03
This review summarizes the characterization and quantification of interactions between dissolved organic matter (DOM) and estrogens as well as the effects of DOM on aquatic estrogen removal. DOM interacts with estrogens via binding or sorption mechanisms like π-π interaction and hydrogen bonding. The binding affinity is evaluated in terms of organic-carbon-normalized sorption coefficient (Log K OC ) which varies with types and composition of DOM. DOM has been suggested to be a more efficient sorbent compared with other matrices, such as suspended particulate matter, sediment and soil; likely associated with its large surface area and concentrated carbon content. As a photosensitizer, DOM enhanced estrogen photodegradation when the concentration of DOM was below a threshold value, and when above, the acceleration effect was not observed. DOM played a dual role in affecting biodegradation of estrogens depending on the recalcitrance of the DOM and the nutrition status of the degraders. DOM also acted as an electron shuttle (redox mediator) mediating the degradation of estrogens. DOM hindered enzyme-catalyzed removal of estrogens while enhanced their transformation during the simultaneous photo-enzymatic process. Membrane rejection of estrogens was pronounced for hydrophobic DOM with high aromaticity and phenolic moiety content. Elimination of estrogens via photolysis, biodegradation, enzymolysis and membrane rejection in the presence of DOM is initiated by sorption, accentuating the role of DOM as a mediator in regulating aquatic estrogen removal. Published by Elsevier B.V.
Zhao, Linduo; Chen, Hongmei; Lu, Xia; Lin, Hui; Christensen, Geoff A; Pierce, Eric M; Gu, Baohua
2017-09-19
Natural dissolved organic matter (DOM) affects mercury (Hg) redox reactions and anaerobic microbial methylation in the environment. Several studies have shown that DOM can enhance Hg methylation, especially under sulfidic conditions, whereas others show that DOM inhibits Hg methylation due to strong Hg-DOM complexation. In this study, we investigated and compared the effects of DOM on Hg methylation by an iron-reducing bacterium Geobacter sulfurreducens PCA and a sulfate-reducing bacterium Desulfovibrio desulfuricans ND132 under nonsulfidic conditions. The methylation experiment was performed with washed cells either in the absence or presence of DOM or glutathione, both of which form strong complexes with Hg via thiol-functional groups. DOM was found to greatly inhibit Hg methylation by G. Sulfurreducens PCA but enhance Hg methylation by D. desulfuricans ND132 cells with increasing DOM concentration. These strain-dependent opposing effects of DOM were also observed with glutathione, suggesting that thiols in DOM likely played an essential role in affecting microbial Hg uptake and methylation. Additionally, DOM and glutathione greatly decreased Hg sorption by G. sulfurreducens PCA but showed little effect on D. desulfuricans ND132 cells, demonstrating that ND132 has a higher affinity to sorb or take up Hg than the PCA strain. These observations indicate that DOM effects on Hg methylation are bacterial strain specific, depend on the DOM:Hg ratio or site-specific conditions, and may thus offer new insights into the role of DOM in methylmercury production in the environment.
NASA Astrophysics Data System (ADS)
Ghani, Zaidi Ab; Yusoff, Mohd Suffian; Zaman, Nastaein Qamaruz; Andas, Jeyashelly; Aziz, Hamidi Abdul
2017-10-01
A study was conducted to investigate the efficiency of iron oxide nanoparticle (FeONPs) adsorption for removing of DOM in landfill leachate. FeONPs was directly prepared via sodium borohydride (KBH4) reduction method. Adsorption kinetics, isotherm and thermodynamic studies were developed to design the model for DOM removal. Pseudo first-order and pseudo second-order model have been studied to fit the experimental data. The regression results showed that the adsorption kinetics were more accurately represented by a pseudo second-order model. The Weber-Morris intraparticle diffusion model was used to analyze the adsorption kinetics data. The plot of qt versus t1/2 represents multi linearity, which showed that the adsorption processes occurred in more than one step. Adsorption isotherms were analyzed by Langmuir, Freundlich, Tempkin and Dubinin-Radushkevich, isotherms model. Equilibrium data were well fitted to the Dubinin- Radushkevich isotherm model. Maximum monolayer adsorption based on Langmuir was calculated to be 21.74 mg/g. Thermodynamic parameters such as free energy changes (ΔG°), enthalpy (ΔH°) and entropy (ΔS°) were evaluated between temperatures of 25 °C and 40 °C. The ΔG° was noticed progressively decrease from -9.620 -9.820 -10.021, and -10.222 kJ/mol as the temperature increase. The ΔH° and ΔS° values were found to be 2.350 kJ/mol and 40.165 J/mol.K respectively. The results showed that the overall adsorption process was endothermic and spontaneous. The results from this study suggested that FeNPs could be a viable adsorbent in managing higher DOM problems associated with landfill leachate.
Dissolved Organic Matter in Groundwater: a Shadow of its Former Self
NASA Astrophysics Data System (ADS)
Chapelle, F.
2017-12-01
The occurrence and dynamics of dissolved organic matter (DOM) are fundamentally different between ground- and surface water systems. The most obvious difference is that primary production, an important source of DOM to many surface waters, it is wholly absent from groundwater systems. Because of that, the composition and bioavailability of DOM is functionally linked to its residence time within the subsurface. While sorption/desorption processes segregate chemical fractions of DOM in both ground- and surface water systems, their effects are magnified by the much higher sediment/water mass ratio characteristic of groundwater systems. These differences, which often act in concert with each other, explain many observed characteristics of DOM in groundwater systems including (1) the low and nearly uniform DOM concentrations (0.5-1.0 mg/L) characteristic of many aquifers, (2) the progressive loss of carbohydrate and amino acid DOM and the enrichment of aromatic DOM, with increasing aquifer residence time (3) the progressive loss of VIS/UV absorption capacity (color) of DOM with increasing aquifer residence time, (4) the negative correlation between dissolved oxygen concentrations and DOM bioavailability, and (5) the positive correlation between DOM bioavailability and the final products of anoxic redox processes. Thus, while the principal sources of DOM to many groundwater systems are surface-derived, the dynamics unique to subsurface environments tend to render that DOM a shadow of its former self.
Enhancing SAMOS Data Access in DOMS via a Neo4j Property Graph Database.
NASA Astrophysics Data System (ADS)
Stallard, A. P.; Smith, S. R.; Elya, J. L.
2016-12-01
The Shipboard Automated Meteorological and Oceanographic System (SAMOS) initiative provides routine access to high-quality marine meteorological and near-surface oceanographic observations from research vessels. The Distributed Oceanographic Match-Up Service (DOMS) under development is a centralized service that allows researchers to easily match in situ and satellite oceanographic data from distributed sources to facilitate satellite calibration, validation, and retrieval algorithm development. The service currently uses Apache Solr as a backend search engine on each node in the distributed network. While Solr is a high-performance solution that facilitates creation and maintenance of indexed data, it is limited in the sense that its schema is fixed. The property graph model escapes this limitation by creating relationships between data objects. The authors will present the development of the SAMOS Neo4j property graph database including new search possibilities that take advantage of the property graph model, performance comparisons with Apache Solr, and a vision for graph databases as a storage tool for oceanographic data. The integration of the SAMOS Neo4j graph into DOMS will also be described. Currently, Neo4j contains spatial and temporal records from SAMOS which are modeled into a time tree and r-tree using Graph Aware and Spatial plugin tools for Neo4j. These extensions provide callable Java procedures within CYPHER (Neo4j's query language) that generate in-graph structures. Once generated, these structures can be queried using procedures from these libraries, or directly via CYPHER statements. Neo4j excels at performing relationship and path-based queries, which challenge relational-SQL databases because they require memory intensive joins due to the limitation of their design. Consider a user who wants to find records over several years, but only for specific months. If a traditional database only stores timestamps, this type of query would be complex and likely prohibitively slow. Using the time tree model, one can specify a path from the root to the data which restricts resolutions to certain timeframes (e.g., months). This query can be executed without joins, unions, or other compute-intensive operations, putting Neo4j at a computational advantage to the SQL database alternative.
Engel, Maya; Chefetz, Benny
2016-12-01
Adsorption of organic pollutants by carbon nanotubes (CNTs) in the environment or removal of pollutants during water purification require deep understanding of the impacts of the presence of dissolved organic matter (DOM). DOM is an integral part of environmental systems and plays a key role affecting the behavior of organic pollutants. In this study, the effects of solution chemistry (pH and ionic strength) and the presence of DOM on the removal of atrazine and lamotrigine by single-walled CNTs (SWCNTs) was investigated. The solubility of atrazine slightly decreased (∼5%) in the presence of DOM, whereas that of lamotrigine was significantly enhanced (by up to ∼70%). Simultaneous introduction of DOM and pollutant resulted in suppression of removal of both atrazine and lamotrigine, which was attributed to DOM-pollutant competition or blockage of adsorption sites by DOM. However the decrease in removal of lamotrigine was also a result of its complexation with DOM. Pre-introduction of DOM significantly reduced pollutant adsorption by the SWCNTs, whereas introduction of DOM after the pollutant resulted in the release of adsorbed atrazine and lamotrigine from the SWCNTs. These data imply that DOM exhibits higher affinity for the adsorption sites than the triazine-based pollutants. In the absence of DOM atrazine was a more effective competitor than lamotrigine for adsorption sites in SWCNTs. However, competition between pollutants in the presence of DOM revealed lamotrigine as the better competitor. Our findings help unravel the complex DOM-organic pollutant-CNT system and will aid in CNT-implementation in water-purification technologies. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Pedler Sherwood, B.; Sosa, O.; Nelson, C. E.; Repeta, D.; DeLong, E.
2016-02-01
Approximately 662 Pg of dissolved organic carbon (DOC) has accumulated in the global ocean, yet the biological and chemical constraints on DOC turnover remain poorly understood. High molecular weight dissolved organic matter (HMWDOM) is largely comprised of semi-labile polysaccharides. These polysaccharides resist degradation even in the presence of nutrient amendments, suggesting unknown factors of polysaccharide composition affect microbial degradation. In a series of microcosm incubations conducted at station ALOHA in the North Pacific Subtropical Gyre, we tested the affect of mild base (KOH-DOM) and acid (HCl-DOM) treatments on polysaccharide lability. KOH-DOM, HCl-DOM, and untreated HMWDOM was added to seawater from the deep chlorophyll maximum and 200m. Microcosms amended with KOH-DOM and HCl-DOM yielded higher bacterial abundance and greater carbon drawdown relative to untreated HMWDOM and unamended controls. Microcosms amended with KOH-DOM and HCl-DOM also showed significant production of fluorescent DOM (fDOM), whereas untreated HMWDOM and unamended controls showed a net decrease in fDOM as measured by parallel factor analysis of DOM excitation-emission spectra. Metagenomic analyses revealed that microcosms amended with untreated HMWDOM and controls became dominated by Alteromonas genera ( 60% total sequence reads). In contrast, KOH-DOM and HCl-DOM amended microcosms yielded greater bacterial diversity; Alteromonas genera comprised 25% of sequence reads, with differences primarily accounted for by proportional increases in vibrio, roseobacter, rugeria and marinomonas clades. Transcriptomic analyses identified differential gene expression during growth on each DOM fraction. This study provides new insight into specific chemical moieties that may limit the bacterial degradation rate of semi-labile HMWDOM in the ocean.
Linking Nuclear Reactions and Nuclear Structure on the Way to the Drip Line
NASA Astrophysics Data System (ADS)
Dickhoff, Willem
2012-10-01
The present understanding of the role of short- and long-range physics in determining proton properties near the Fermi energy for stable closed-shell nuclei has relied on data from the (e,e'p) reaction. Hadronic tools to extract such spectroscopic information have been hampered by the lack of a consistent reaction description that provides unambiguous and undisputed results. The dispersive optical model (DOM), originally conceived by Claude Mahaux, provides a unified description of both elastic nucleon scattering and structure information related to single-particle properties below the Fermi energy. The DOM provides the starting point to provide a framework in which nuclear reactions and structure data can be analyzed consistently to provide unambiguous spectroscopic information including its asymmetry dependence. Recent extensions of this approach include the treatment of non-locality to describe experimental data like the nuclear charge density based on information of the spectral density below the Fermi energy, the application of the DOM ingredients to the description of transfer reactions, a comparison of the microscopic content of the nucleon self-energy based on Faddeev-RPA calculations emphasizing long-range correlations with DOM potentials, and a study of the relation between a self-energy which includes the effect of short-range correlations with DOM potentials. The most recent Dom implementation currently in progress abandons the constraint of local potentials completely to allow an accurate description of various properties of the nuclear ground state.
NASA Astrophysics Data System (ADS)
Yang, Liyang; Chang, Soon-Woong; Shin, Hyun-Sang; Hur, Jin
2015-04-01
The source of river dissolved organic matter (DOM) during storm events has not been well constrained, which is critical in determining the quality and reactivity of DOM. This study assessed temporal changes in the contributions of four end members (weeds, leaf litter, soil, and groundwater), which exist in a small forested watershed (the Ehwa Brook, South Korea), to the stream DOM during two storm events, using end member mixing analysis (EMMA) based on spectroscopic properties of DOM. The instantaneous export fluxes of dissolved organic carbon (DOC), chromophoric DOM (CDOM), and fluorescent components were all enhanced during peak flows. The DOC concentration increased with the flow rate, while CDOM and humic-like fluorescent components were diluted around the peak flows. Leaf litter was dominant for the DOM source in event 2 with a higher rainfall, although there were temporal variations in the contributions of the four end members to the stream DOM for both events. The contribution of leaf litter peaked while that of deeper soils decreased to minima at peak flows. Our results demonstrated that EMMA based on DOM properties could be used to trace the DOM source, which is of fundamental importance for understanding the factors responsible for river DOM dynamics during storm events.
Zhao, Linduo; Chen, Hongmei; Lu, Xia; ...
2017-08-14
Natural dissolved organic matter (DOM) affects mercury (Hg) redox reactions and anaerobic microbial Hg methylation in the environment. Several studies have shown that DOM can enhance Hg methylation, especially under sulfidic conditions, whereas others show that DOM inhibits Hg methylation due to strong Hg-DOM complexation. Here, we investigated and compared the effects of DOM on Hg methylation by an iron-reducing bacterium Geobacter sulfurreducens PCA and a sulfate-reducing bacterium Desulfovibrio desulfuricans ND132 under non-sulfidic conditions. The methylation experiment was performed with washed cells either in the absence or presence of DOM or glutathione, both of which form strong complexes with Hgmore » via thiol-functional groups. DOM was found to greatly inhibit Hg methylation by G. Sulfurreducens PCA but enhance Hg methylation by D. desulfuricans ND132 cells with increasing DOM concentration. Furthermore, these strain-dependent opposing effects of DOM were also observed with glutathione, suggesting that thiols in DOM likely played an essential role in affecting cell Hg uptake and methylation. Additionally, DOM and glutathione decreased Hg sorption by G. sulfurreducens PCA, but not by D. desulfuricans ND132 cells, demonstrating that ND132 has a higher affinity to sorb or take up Hg than the PCA strain. Finally, these observations indicate that DOM effects on Hg methylation are bacterial strain specific, depend on the DOM:Hg ratio or site-specific conditions, and may thus offer new insights into the role of DOM in methylmercury production in the environment.« less
Chen, Meilian; Hur, Jin
2015-08-01
Dissolved organic matter (DOM) in sediments, termed here sediment DOM, plays a variety of important roles in global biogeochemical cycling of carbon and nutrients as well as in the fate and transport of xenobiotics. Here we reviewed sediment DOM, including pore waters and water extractable organic matter from inland and coastal sediments, based on recent literature (from 1996 to 2014). Sampling, pre-treatment, and characterization methods for sediment DOM were summarized. The characteristics of sediment DOM have been compared along an inland to coastal ecosystems gradient and also with the overlying DOM in water column to distinguish the unique nature of it. Dissolved organic carbon (DOC) from inland sediment DOM was generally higher than coastal areas, while no notable differences were found for their aromaticity and apparent molecular weight. Fluorescence index (FI) revealed that mixed sources are dominant for inland sediment DOM, but marine end-member prevails for coastal sediment DOM. Many reports showed that sediments operate as a net source of DOC and chromophoric DOM (CDOM) to the water column. Sediment DOM has shown more enrichment of nitrogen- and sulfur-containing compounds in the elemental signature than the overlying DOM. Fluorescent fingerprint investigated by excitation-emission matrix coupled with parallel factor analysis (EEM-PARAFAC) further demonstrated the characteristics of sediment DOM lacking in the photo-oxidized and the intermediate components, which are typically present in the overlying surface water. In addition, the biogeochemical changes in sediment DOM and the subsequent environmental implications were discussed with the focus on the binding and the complexation properties with pollutants. Copyright © 2015 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hashmi, Muzna; Shah, Aamer; Hameed, Abdul
Natural dissolved organic matter (DOM) affects mercury (Hg) redox reactions and anaerobic microbial Hg methylation in the environment. Several studies have shown that DOM can enhance Hg methylation, especially under sulfidic conditions, whereas others show that DOM inhibits Hg methylation due to strong Hg-DOM complexation. Here, we investigated and compared the effects of DOM on Hg methylation by an iron-reducing bacterium Geobacter sulfurreducens PCA and a sulfate-reducing bacterium Desulfovibrio desulfuricans ND132 under non-sulfidic conditions. The methylation experiment was performed with washed cells either in the absence or presence of DOM or glutathione, both of which form strong complexes with Hgmore » via thiol-functional groups. DOM was found to greatly inhibit Hg methylation by G. Sulfurreducens PCA but enhance Hg methylation by D. desulfuricans ND132 cells with increasing DOM concentration. These strain-dependent opposing effects of DOM were also observed with glutathione, suggesting that thiols in DOM likely played an essential role in affecting cell Hg uptake and methylation. Additionally, DOM and glutathione decreased Hg sorption by G. sulfurreducens PCA, but not by D. desulfuricans ND132 cells, demonstrating that ND132 has a higher affinity to sorb or take up Hg than the PCA strain. Our observations indicate that DOM effects on Hg methylation are bacterial strain specific, depend on the DOM:Hg ratio or site-specific conditions, and may thus offer new insights into the role of DOM in methylmercury production in the environment.« less
Zhuang, Wan-E; Yang, Liyang
2018-02-01
Dissolved organic matter (DOM) is an important component in the biogeochemistry and ecosystem function of aquatic environments at the highly populated land-ocean interface. The mobilization and transformation of DOM at this critical interface are increasingly affected by a series of notable global changes such as the increasing storm events, intense human activities, and accelerating glacier loss. This review provides an overview of the changes in the quantity and quality of DOM under the influences of multiple global changes. The profound implications of changing DOM for aquatic ecosystem and human society are further discussed, and future research needs are suggested for filling current knowledge gaps. The fluvial export of DOM is strongly intensified during storm events, which is accompanied with notable changes in the chemical composition and reactivity of DOM. Land use not only changes the mobilization of natural DOM source pools within watersheds but also adds DOM of distinct chemical composition and reactivity from anthropogenic sources. Glacier loss brings highly biolabile DOM to downstream water bodies. The changing DOM leads to significant changes in heterotrophic activity, CO 2 out gassing, nutrient and pollutant biogeochemistry, and disinfection by-product formation. Further studies on the source, transformations, and downstream effects of storm DOM, temporal variations of DOM and its interactions with other pollutants in human-modified watersheds, photo-degradability of glacier DOM, and potential priming effects, are essential for better understanding the responses and feedbacks of DOM at the land-ocean interface under the impacts of global changes.
Hashmi, Muzna; Shah, Aamer; Hameed, Abdul; ...
2017-08-01
Natural dissolved organic matter (DOM) affects mercury (Hg) redox reactions and anaerobic microbial Hg methylation in the environment. Several studies have shown that DOM can enhance Hg methylation, especially under sulfidic conditions, whereas others show that DOM inhibits Hg methylation due to strong Hg-DOM complexation. Here, we investigated and compared the effects of DOM on Hg methylation by an iron-reducing bacterium Geobacter sulfurreducens PCA and a sulfate-reducing bacterium Desulfovibrio desulfuricans ND132 under non-sulfidic conditions. The methylation experiment was performed with washed cells either in the absence or presence of DOM or glutathione, both of which form strong complexes with Hgmore » via thiol-functional groups. DOM was found to greatly inhibit Hg methylation by G. Sulfurreducens PCA but enhance Hg methylation by D. desulfuricans ND132 cells with increasing DOM concentration. These strain-dependent opposing effects of DOM were also observed with glutathione, suggesting that thiols in DOM likely played an essential role in affecting cell Hg uptake and methylation. Additionally, DOM and glutathione decreased Hg sorption by G. sulfurreducens PCA, but not by D. desulfuricans ND132 cells, demonstrating that ND132 has a higher affinity to sorb or take up Hg than the PCA strain. Our observations indicate that DOM effects on Hg methylation are bacterial strain specific, depend on the DOM:Hg ratio or site-specific conditions, and may thus offer new insights into the role of DOM in methylmercury production in the environment.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Linduo; Chen, Hongmei; Lu, Xia
Natural dissolved organic matter (DOM) affects mercury (Hg) redox reactions and anaerobic microbial Hg methylation in the environment. Several studies have shown that DOM can enhance Hg methylation, especially under sulfidic conditions, whereas others show that DOM inhibits Hg methylation due to strong Hg-DOM complexation. Here, we investigated and compared the effects of DOM on Hg methylation by an iron-reducing bacterium Geobacter sulfurreducens PCA and a sulfate-reducing bacterium Desulfovibrio desulfuricans ND132 under non-sulfidic conditions. The methylation experiment was performed with washed cells either in the absence or presence of DOM or glutathione, both of which form strong complexes with Hgmore » via thiol-functional groups. DOM was found to greatly inhibit Hg methylation by G. Sulfurreducens PCA but enhance Hg methylation by D. desulfuricans ND132 cells with increasing DOM concentration. Furthermore, these strain-dependent opposing effects of DOM were also observed with glutathione, suggesting that thiols in DOM likely played an essential role in affecting cell Hg uptake and methylation. Additionally, DOM and glutathione decreased Hg sorption by G. sulfurreducens PCA, but not by D. desulfuricans ND132 cells, demonstrating that ND132 has a higher affinity to sorb or take up Hg than the PCA strain. Finally, these observations indicate that DOM effects on Hg methylation are bacterial strain specific, depend on the DOM:Hg ratio or site-specific conditions, and may thus offer new insights into the role of DOM in methylmercury production in the environment.« less
2010-06-01
z ∃ dom(Y) • true A link is denoted by a function linki (X, Y) where X and Y are formal parameters representing entities and is evaluated as true or...X/rc ∃ dom(Y), • linki (Y, Z), and • τ(X)/r:c ∃ fi(τ(Y), τ(Z)). The addition of the filter, made possible by the protection types, distinguishes the
Visualizing DOM super-spectrum covariance in vanKrevelen space
NASA Astrophysics Data System (ADS)
Fatland, D. R.; Kalawe, J.; Stubbins, A.; Spencer, R. G.; Sleighter, R. L.; Abdulla, H. A.; Dittmar, T.
2011-12-01
We investigate the fate of terrigenous organic matter, DOM exported to the coastal marine environ. Many methods (fluor., FT-ICR-MS, NMR, 13C, lignin, etc) help characterize this DOM. We define a 'super spectrum' as amalgamation of analyses to a data stack and we search for physically significant patterns therein beginning with covariance across 31 samples from six circum-Arctic rivers: The Ob, Kolyma, Mackenzie, Yukon, Lena, and Yenisey sampled five times throughout the year. A vanKrevelen diagram is convenient to view distributions of molecules provided by Fourier Transform Ion Cyclotron Resonance Mass Spectometry (FT-ICR-MS). We augment this distribution space in the vertical dimension, for example to show peak height, molecular mass, principle component weighting or covariance. We use Worldwide Telescope, a virtual globe with strong data support from Microsoft Research to explore covariance results along 3+ dimensions (adding brightness, color and a parameter slide). The results show interesting covariance e.g. between molecules and PARAFAC peaks, a step towards fluorophore and cohort identification in the terrigenous DOM spectrum. Given the geoscience explosion in data volume and data complexity we feel these results should survive beyond the end point of a journal article. We are building a cloud-based Library on the Microsoft Azure platform to support this and subsequent analyses to enable data and methods to carry over and benefit other research groups and objectives.
Molecular Insights on Dissolved Organic Matter Transformation by Supraglacial Microbial Communities.
Antony, Runa; Willoughby, Amanda S; Grannas, Amanda M; Catanzano, Victoria; Sleighter, Rachel L; Thamban, Meloth; Hatcher, Patrick G; Nair, Shanta
2017-04-18
Snow overlays the majority of Antarctica and is an important repository of dissolved organic matter (DOM). DOM transformations by supraglacial microbes are not well understood. We use ultrahigh resolution mass spectrometry to elucidate molecular changes in snowpack DOM by in situ microbial processes (up to 55 days) in a coastal Antarctic site. Both autochthonous and allochthonous DOM is highly bioavailable and is transformed by resident microbial communities through parallel processes of degradation and synthesis. DOM thought to be of a more refractory nature, such as dissolved black carbon and carboxylic-rich alicyclic molecules, was also rapidly and extensively reworked. Microbially reworked DOM exhibits an increase in the number and magnitude of N-, S-, and P-containing formulas, is less oxygenated, and more aromatic when compared to the initial DOM. Shifts in the heteroatom composition suggest that microbial processes may be important in the cycling of not only C, but other elements such as N, S, and P. Microbial reworking also produces photoreactive compounds, with potential implications for DOM photochemistry. Refined measurements of supraglacial DOM and their cycling by microbes is critical for improving our understanding of supraglacial DOM cycling and the biogeochemical and ecological impacts of DOM export to downstream environments.
Benthic Light Availability Improves Predictions of Riverine Primary Production
NASA Astrophysics Data System (ADS)
Kirk, L.; Cohen, M. J.
2017-12-01
Light is a fundamental control on photosynthesis, and often the only control strongly correlated with gross primary production (GPP) in streams and rivers; yet it has received far less attention than nutrients. Because benthic light is difficult to measure in situ, surrogates such as open sky irradiance are often used. Several studies have now refined methods to quantify canopy and water column attenuation of open sky light in order to estimate the amount of light that actually reaches the benthos. Given the additional effort that measuring benthic light requires, we should ask if benthic light always improves our predictions of GPP compared to just open sky irradiance. We use long-term, high-resolution dissolved oxygen, turbidity, dissolved organic matter (fDOM), and irradiance data from streams and rivers in north-central Florida, US across gradients of size and color to build statistical models of benthic light that predict GPP. Preliminary results on a large, clear river show only modest model improvements over open sky irradiance, even in heavily canopied reaches with pulses of tannic water. However, in another spring-fed river with greater connectivity to adjacent wetlands - and hence larger, more frequent pulses of tannic water - the model improved dramatically with the inclusion of fDOM (model R2 improved from 0.28 to 0.68). River shade modeling efforts also suggest that knowing benthic light will greatly enhance our ability to predict GPP in narrower, forested streams flowing in particular directions. Our objective is to outline conditions where an assessment of benthic light conditions would be necessary for riverine metabolism studies or management strategies.
NASA Astrophysics Data System (ADS)
Traversa, A.; Loffredo, E.; Gattullo, C. E.; Senesi, N.
2009-04-01
Dissolved organic matter (DOM) from compost has a major role in numerous chemical and biological processes occurring in the bulk substrate or compost amended soil, and can exert allelochemical effects on plant germination and growth. The objectives of this study were: (i) to investigate comparatively the main properties of three DOM fractions isolated from a green compost (DOMGC), a mixed compost (DOMMC) and a green coffee compost (DOMGCC), and (ii) to evaluate their allelochemical effects on the germination and early growth of two horticultural plants of worldwide interest such as tomato and lettuce. The DOM was extracted from each compost with distilled water (1/10 w/v) under mechanical shaking for 15 min. The suspension was then centrifuged at 6000 rpm for 15 min and filtered sequentially through filters with decreasing particle size retention (from 11 to 0.45 μm). Each DOM sample was characterized by means of pH, electrical conductivity, total organic carbon (TOC), E4/E6 ratio, fluorescence and FT IR spectroscopies and HPLC analysis. Comparative evaluation of the three DOM samples indicated the occurrence of significant differences among them. In particular, the pH value was similar and close to neutrality for DOMMC and DOMGC, whereas it resulted alkaline (pH 8.3) for DOMGCC. The EC values were also similar (about 3.2 mS/cm) for DOMMC and DOMGC and almost half value for DOMGCC. The TOC content, the E4/E6 ratio, the ɛ280 value and the humification index followed the same order: DOMGCC>DOMMC>DOMGC. The fluorescence analysis of the three DOM samples showed the presence of a common fluorophore unit associated to simple aromatic units such as phenolic-like, hydroxy-substituted benzoic and cinnamic acid derivatives. The peak wavelengths observed in the fluorescence emission, excitation and synchronous scan spectra of DOMGCC were generally higher than those of the two other DOM samples, which can be ascribed to a more extended aromatic system of the former. The FT IR spectra of all DOM samples indicated the presence of aromatic phenolic structures, while the HPLC chromatograms suggested the presence of benzoic acid derivatives such as phthalic and salicylic acids. Seed germination and seedling early growth were performed in a Phytotron growth chamber at 23 ± 1 °C. Sets of 10 seeds of tomato and lettuce were separately placed on filter paper in Petri dishes and added with 3 ml of distilled water (control) and each DOM sample diluted in distilled water at ratios of 1:10 and 1:2. After 6 or 4 days, respectively for tomato and lettuce, the number of germinated seed, the length of primary root and shoot, and the fresh and dry weights of seedlings were measured. All experiments were replicated five times, and the data were statistically analyzed by one-way analysis of variance (ANOVA) and the least significant differences test (LSD). The percentage of germinated seeds was not altered by the presence of any DOM sample at the two doses. Conversely, significant allelochemical effects were produced by DOM on seedling early growth, in the order DOMGC > DOMMC > DOMGCC, particularly at the higher dose. The maximum stimulation of tomato growth was exerted by DOMGC at the higher dose with increases of 79 and 68%, respectively, for primary shoot length and seedling fresh weight. In the case of lettuce, these parameters increased to a maximum of 86 and 39% in the treatments with DOMMC and DOMGC, respectively, at the higher dose. Finally, significant correlations were obtained between the allelochemical effects and the DOM properties considered.
Louis, Yoann; Pernet-Coudrier, Benoît; Varrault, Gilles
2014-08-15
The zinc binding characteristics of dissolved organic matter (DOM) fractions from the Seine River Basin were studied after being separated and extracted according to their polarity: hydrophobic, transphilic, and hydrophilic. The applied experimental methodology was based on a determination of labile zinc species by means of differential pulse anodic stripping voltammetry (DPASV) at increasing concentrations of total zinc on a logarithmic scale and at fixed levels of: pH, ionic strength, and temperature. Fitting the DOM fractions with two discrete classes of ligands successfully allowed determining the conditional zinc binding constants (Ki) as well as total ligand density (LiT). The binding constants obtained for each DOM fraction were then compared and discussed with respect to the hydrophobic/hydrophilic nature and sample origin. Results highlighted a strong complexation of zinc to the effluent organic matter and especially the most hydrophilic fraction, which also displayed a very low specific UV absorbance. Although the biotic ligand model takes into account the quality of DOM through UV absorbance in the predictions of metal bioavailability and toxicity, this correction is not efficient for urban waters. Copyright © 2014 Elsevier B.V. All rights reserved.
Concurrent photolytic degradation of aqueous methylmercury and dissolved organic matter
Fleck, Jacob A.; Gill, Gary W.; Bergamaschi, Brian A.; Kraus, Tamara E.C.; Downing, Bryan D.; Alpers, Charles N.
2014-01-01
Monomethyl mercury (MeHg) is a potent neurotoxin that threatens ecosystem viability and human health. In aquatic systems, the photolytic degradation of MeHg (photodemethylation) is an important component of the MeHg cycle. Dissolved organic matter (DOM) is also affected by exposure to solar radiation (light exposure) leading to changes in DOM composition that can affect its role in overall mercury (Hg) cycling. This study investigated changes in MeHg concentration, DOM concentration, and the optical signature of DOM caused by light exposure in a controlled field-based experiment using water samples collected from wetlands and rice fields. Filtered water from all sites showed a marked loss in MeHg concentration after light exposure. The rate of photodemethylation was 7.5 × 10-3 m2 mol-1 (s.d. 3.5 × 10-3) across all sites despite marked differences in DOM concentration and composition. Light exposure also caused changes in the optical signature of the DOM despite there being no change in DOM concentration, indicating specific structures within the DOM were affected by light exposure at different rates. MeHg concentrations were related to optical signatures of labile DOM whereas the percent loss of MeHg was related to optical signatures of less labile, humic DOM. Relationships between the loss of MeHg and specific areas of the DOM optical signature indicated that aromatic and quinoid structures within the DOM were the likely contributors to MeHg degradation, perhaps within the sphere of the Hg-DOM bond. Because MeHg photodegradation rates are relatively constant across freshwater habitats with natural Hg–DOM ratios, physical characteristics such as shading and hydrologic residence time largely determine the relative importance of photolytic processes on the MeHg budget in these mixed vegetated and open-water systems.
Concurrent photolytic degradation of aqueous methylmercury and dissolved organic matter.
Fleck, Jacob A; Gill, Gary; Bergamaschi, Brian A; Kraus, Tamara E C; Downing, Bryan D; Alpers, Charles N
2014-06-15
Monomethyl mercury (MeHg) is a potent neurotoxin that threatens ecosystem viability and human health. In aquatic systems, the photolytic degradation of MeHg (photodemethylation) is an important component of the MeHg cycle. Dissolved organic matter (DOM) is also affected by exposure to solar radiation (light exposure) leading to changes in DOM composition that can affect its role in overall mercury (Hg) cycling. This study investigated changes in MeHg concentration, DOM concentration, and the optical signature of DOM caused by light exposure in a controlled field-based experiment using water samples collected from wetlands and rice fields. Filtered water from all sites showed a marked loss in MeHg concentration after light exposure. The rate of photodemethylation was 7.5×10(-3)m(2)mol(-1) (s.d. 3.5×10(-3)) across all sites despite marked differences in DOM concentration and composition. Light exposure also caused changes in the optical signature of the DOM despite there being no change in DOM concentration, indicating specific structures within the DOM were affected by light exposure at different rates. MeHg concentrations were related to optical signatures of labile DOM whereas the percent loss of MeHg was related to optical signatures of less labile, humic DOM. Relationships between the loss of MeHg and specific areas of the DOM optical signature indicated that aromatic and quinoid structures within the DOM were the likely contributors to MeHg degradation, perhaps within the sphere of the Hg-DOM bond. Because MeHg photodegradation rates are relatively constant across freshwater habitats with natural Hg-DOM ratios, physical characteristics such as shading and hydrologic residence time largely determine the relative importance of photolytic processes on the MeHg budget in these mixed vegetated and open-water systems. Published by Elsevier B.V.
Distribution, Source and Fate of Dissolved Organic Matter in Shelf Seas
NASA Astrophysics Data System (ADS)
Carr, N.; Mahaffey, C.; Hopkins, J.; Sharples, J.; Williams, R. G.; Davis, C. E.
2016-02-01
Dissolved organic matter (DOM) is a complex array of molecules containing carbon (DOC), nitrogen (DON) and phosphorous (DOP), and represents the largest pool of organic matter in the marine environment. DOM in the sea originates from a variety of sources, including allochthonous inputs of terrestrial DOM from land via rivers, and autochthonous inputs through in-situ biotic processes that include phytoplankton exudation, grazing and cell lysis. Marine DOM is a substrate for bacterial growth and can act as a source of nutrients for autotrophs. However, a large component of DOM is biologically refractory. This pool is carbon-rich and nutrient-poor, and can transport and store its compositional elements over large areas and on long time scales. The role of DOM in the shelf seas is currently unclear, despite these regions acting as conduits between the land and open ocean, and also being highly productive ecosystems. Using samples collected across the Northwest European Shelf Sea, we studied the distribution, source, seasonality and potential fate of DOM using a combination of analytical tools, including analysis of amino acids, DOM absorbance spectra and excitation emission matrices, in conjunction with parallel factor analysis (PARAFAC). Strong cross shelf and seasonal gradients in DOM source and lability were found. We observed a strong seasonally dependent significant correlation between salinity and terrestrial DOM in the bottom mixed layer, an enrichment of DOM at the shelf edge in winter and a three-fold increase in fresh marine DOM coinciding with the timing of a spring bloom. Together, our findings illustrate the dynamic nature of DOM in shelf seas over a seasonal cycle and, highlight the potential for DOM to play a key role in the carbon cycle in these regions.
Xu, Huacheng; Guan, Dong-Xing; Zou, Li; Lin, Hui; Guo, Laodong
2018-08-01
Effects of photochemical and microbial degradation on variations in composition and molecular-size of dissolved organic matter (DOM) from different sources (algal and soil) and the subsequent influence on Cu(II) binding were investigated using UV-Vis, fluorescence excitation-emission matrices coupled with parallel factor analysis, flow field-flow fractionation (FlFFF), and metal titration. The degradation processes resulted in an initial rapid decline in the bulk dissolved organic carbon and chromophoric and fluorescent DOM components, followed by a small or little decrease. Specifically, photochemical reaction decreased the aromaticity, humification and apparent molecular weights of all DOM samples, whereas a reverse trend was observed during microbial degradation. The FlFFF fractograms revealed that coagulation of both protein- and humic-like DOM induced an increase in molecular weights for algal-DOM, while the molecular weight enhancement for allochthonous soil samples was mainly attributed to the self-assembly of humic-like components. The Cu(II) binding capacity of algal-derived humic-like and fulvic-like DOM consistently increased during photo- and bio-degradation, while the soil-derived DOM exhibited a slight decline in Cu(II) binding capacity during photo-degradation but a substantial increase during microbial degradation, indicating source- and degradation-dependent metal binding heterogeneities. Pearson correlation analysis demonstrated that the Cu(II) binding potential was mostly related with aromaticity and molecular size for allochthonous soil-derived DOM, but was regulated by both DOM properties and specific degradation processes for autochthonous algal-derived DOM. This study highlighted the coupling role of inherent DOM properties and external environmental processes in regulating metal binding, and provided new insights into metal-DOM interactions and the behavior and fate of DOM-bound metals in aquatic environments. Copyright © 2018 Elsevier Ltd. All rights reserved.
Sorptive and desorptive fractionation of dissolved organic matter by mineral soil matrices.
Oren, Adi; Chefetz, Benny
2012-01-01
Interactions of dissolved organic matter (DOM) with soil minerals, such as metal oxides and clays, involve various sorption mechanisms and may lead to sorptive fractionation of certain organic moieties. While sorption of DOM to soil minerals typically involves a degree of irreversibility, it is unclear which structural components of DOM correspond to the irreversibly bound fraction and which factors may be considered determinants. To assist in elucidating that, the current study aimed at investigating fractionation of DOM during sorption and desorption processes in soil. Batch DOM sorption and desorption experiments were conducted with organic matter poor, alkaline soils. Fourier-transform infrared (FTIR) and UV-Vis spectroscopy were used to analyze bulk DOM, sorbed DOM, and desorbed DOM fractions. Sorptive fractionation resulted mainly from the preferential uptake of aromatic, carboxylic, and phenolic moieties of DOM. Soil metal-oxide content positively affected DOM sorption and binding of some specific carboxylate and phenolate functional groups. Desorptive fractionation of DOM was expressed by the irreversible-binding nature of some carboxylic moieties, whereas other bound carboxylic moieties were readily desorbed. Inner-sphere, as opposed to outer-sphere, ligand-exchange complexation mechanisms may be responsible for these irreversible, as opposed to reversible, interactions, respectively. The interaction of aliphatic DOM constituents with soil, presumably through weak van der Waals forces, was minor and increased with increasing proportion of clay minerals in the soil. Revealing the nature of DOM-fractionation processes is of great importance to understanding carbon stabilization mechanisms in soils, as well as the overall fate of contaminants that might be associated with DOM. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
Chen, Meilian; Kim, Sunghwan; Park, Jae-Eun; Kim, Hyun Sik; Hur, Jin
2016-07-01
Noting the source-dependent properties of dissolved organic matter (DOM), this study explored the recoverable compounds by solid phase extraction (SPE) of two common sorbents (C18 and PPL) eluted with methanol solvent for contrasting DOM sources via fluorescence excitation-emission matrix coupled with parallel factor analysis (EEM-PARAFAC) and Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS). Fresh algae and leaf litter extracts DOM, one riverine DOM, and one upstream lacustrine DOM were selected for the comparison. C18 sorbent was generally found to extract more diverse molecular formula, relatively higher molecular weight, and more heteroatomic DOM compounds within the studied mass range than PPL sorbent except for the leaf litter extract. Even with the same sorbent, the main molecular features of the two end member DOM were distributed on different sides of the axes of a multivariate ordination, indicating the source-dependent characteristics of the recoverable compounds by the sorbents. In addition, further examination of the molecular formula uniquely present in the two end members and the upstream lake DOM suggested that proteinaceous, tannin-like, and heteroatomic DOM constituents might be potential compound groups which are labile and easily degraded during their mobilization into downstream watershed. This study provides new insights into the sorbent selectivity of DOM from diverse sources and potential lability of various compound groups.
McCabe, Andrew J; Arnold, William A
2017-09-05
Dissolved organic matter (DOM) quantity and composition control the rate of formation (R f,T ) of triplet excited states of dissolved natural organic matter ( 3 DOM*) and the efficiency of 3 DOM* formation (the apparent quantum yield, AQY T ). Here, the reactivity of 3 DOM* in stormflow samples collected from watersheds with variable land covers is examined. Stormflow DOM reflects variability in DOM quantity and composition as a function of land cover and may be important in controlling the fate of cotransported pollutants. R f,T and AQY T were measured using 2,4,6-trimethylphenol in stormflow samples under simulated sunlight. The DOM source and composition was characterized using absorbance and fluorescence spectroscopies and high-resolution mass spectrometry. R f,T and the total rate of light absorption by the water samples (R a ) increased with the dissolved organic carbon (DOC) concentration. AQY T was independent of DOC concentration, but varied with DOM source: developed land cover (4-6%) ≈ open water > vegetated land cover (3%). AQY T was positively related to an index for microbial/algal DOM content and negatively related to DOM molecular weight, DOM aromaticity, and the content of polyphenols. This work demonstrates that TMP is an effective probe for the determination of R f,T and AQY T in whole water samples after accounting for the inhibition of TMP photodegradation by DOM.
Lin, Wei; Jiang, Ruifen; Shen, Yong; Xiong, Yaxin; Hu, Sizi; Xu, Jianqiao; Ouyang, Gangfeng
2018-04-13
Pre-equilibrium passive sampling is a simple and promising technique for studying sampling kinetics, which is crucial to determine the distribution, transfer and fate of hydrophobic organic compounds (HOCs) in environmental water and organisms. Environmental water samples contain complex matrices that complicate the traditional calibration process for obtaining the accurate rate constants. This study proposed a QSAR model to predict the sampling rate constants of HOCs (polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs) and pesticides) in aqueous systems containing complex matrices. A homemade flow-through system was established to simulate an actual aqueous environment containing dissolved organic matter (DOM) i.e. humic acid (HA) and (2-Hydroxypropyl)-β-cyclodextrin (β-HPCD)), and to obtain the experimental rate constants. Then, a quantitative structure-activity relationship (QSAR) model using Genetic Algorithm-Multiple Linear Regression (GA-MLR) was found to correlate the experimental rate constants to the system state including physicochemical parameters of the HOCs and DOM which were calculated and selected as descriptors by Density Functional Theory (DFT) and Chem 3D. The experimental results showed that the rate constants significantly increased as the concentration of DOM increased, and the enhancement factors of 70-fold and 34-fold were observed for the HOCs in HA and β-HPCD, respectively. The established QSAR model was validated as credible (R Adj. 2 =0.862) and predictable (Q 2 =0.835) in estimating the rate constants of HOCs for complex aqueous sampling, and a probable mechanism was developed by comparison to the reported theoretical study. The present study established a QSAR model of passive sampling rate constants and calibrated the effect of DOM on the sampling kinetics. Copyright © 2018 Elsevier B.V. All rights reserved.
Molecular-level dynamics of refractory dissolved organic matter
NASA Astrophysics Data System (ADS)
Niggemann, J.; Gerdts, G.; Dittmar, T.
2012-04-01
Refractory dissolved organic matter (DOM) accounts for most of the global oceanic organic carbon inventory. Processes leading to its formation and factors determining its stability are still largely unknown. We hypothesize that refractory DOM carries a universal molecular signature. Characterizing spatial and temporal variability in this universal signature is a key to understanding dynamics of refractory DOM. We present results from a long-term study of the DOM geo-metabolome in the open North Sea. Geo-metabolomics considers the entity of DOM as a population of compounds, each characterized by a specific function and reactivity in the cycling of energy and elements. Ten-thousands of molecular formulae were identified in DOM by ultrahigh resolution mass spectrometry analysis (FT-ICR-MS, Fourier-Transform Ion Cyclotron Resonance Mass Spectrometry). The DOM pool in the North Sea was influenced by a complex interplay of processes that produced, transformed and degraded dissolved molecules. We identified a stable fraction in North Sea DOM with a molecular composition similar to deep ocean DOM. Molecular-level changes in this stable fraction provide novel information on dynamics and interactions of refractory DOM.
Jeremiason, Jeffrey D.; Portner, Joshua C.; Aiken, George R.; Hiranaka, Amber J.; Dvorak, Michelle T.; Tran, Khuyen T.; Latch, Douglas E.
2015-01-01
This study examined the kinetics of photoreduction of Hg(II) and photodemethylation of methylmercury (MeHg+) attached to, or in the presence of, dissolved organic matter (DOM). Both Hg(II) and MeHg+ are principally bound to reduced sulfur groups associated with DOM in many freshwater systems. We propose that a direct photolysis mechanism is plausible for reduction of Hg(II) bound to reduced sulfur groups on DOM while an indirect mechanism is supported for photodemethylation of MeHg+ bound to DOM. UV spectra of Hg(II) and MeHg+ bound to thiol containing molecules demonstrate that the Hg(II)–S bond is capable of absorbing UV-light in the solar spectrum to a much greater extent than MeHg+–S bonds. Experiments with chemically distinct DOM isolates suggest that concentration of DOM matters little in the photochemistry if there are enough reduced S sites present to strongly bind MeHg+ and Hg(II); DOM concentration does not play a prominent role in photodemethylation other than to screen light, which was demonstrated in a field experiment in the highly colored St. Louis River where photodemethylation was not observed at depths ≥10 cm. Experiments with thiol ligands yielded slower photodegradation rates for MeHg+ than in experiments with DOM and thiols; rates in the presence of DOM alone were the fastest supporting an intra-DOM mechanism. Hg(II) photoreduction rates, however, were similar in experiments with only DOM, thiols plus DOM, or only thiols suggesting a direct photolysis mechanism. Quenching experiments also support the existence of an intra-DOM photodemethylation mechanism for MeHg+. Utilizing the difference in photodemethylation rates measured for MeHg+ attached to DOM or thiol ligands, the binding constant for MeHg+ attached to thiol groups on DOM was estimated to be 1016.7.
Influence of natural organic matter in porous media on fine particle transport.
Zhou, Yuhong; Cheng, Tao
2018-06-15
Although extensive research has been conducted to understand the effects of dissolved organic matter (DOM) on fine particle transport, less attention has been paid to natural organic matter (NOM) in the transport medium (i.e., immobile rock and sediment grains). The objective of this study is to elucidate the roles of NOM in the transport medium in mediating particle transport. We conducted experimental and modelling study on the transport of nanoscale titanium dioxide (nTiO 2 ) and illite colloid in columns packed with quartz sand under water-saturated conditions. Peat moss was used as an example NOM and packed in some of the columns to investigate its influence on particle transport. Experimental results showed that NOM may either increase or decrease particle transport depending on the specific conditions. NOM in the transport medium was found to attract particles and reduce particle mobility when the energy barrier between particle and NOM is low or non-existent. NOM also adsorb to Fe and Al oxyhydroxides and promote the transport of negatively-charged particles at low pH. Partial dissolution of NOM releases DOM, and the DOM adsorbs to and increases the transport of positively-charged particles. Additionally, NOM changes pore water pH, which influences particle mobility by affecting the interaction energy between the particle and transport medium. Modelling results showed that the deposition sites provided by peat moss are very heterogeneous, and the NOM from peat moss may reduce particle deposition rate by adsorbing to the particle and/or transport medium. Findings from this study demonstrate that NOM in the transport medium not only changes property of the medium, but also may alter water chemistry. Therefore, the role of NOM in mediating particle transport is complicated and dependent on the property of the particle, NOM, and mineralogical composition of the medium. Copyright © 2018 Elsevier B.V. All rights reserved.
Complete and Partial Photo-oxidation of Dissolved Organic Matter Draining Permafrost Soils.
Ward, Collin P; Cory, Rose M
2016-04-05
Photochemical degradation of dissolved organic matter (DOM) to carbon dioxide (CO2) and partially oxidized compounds is an important component of the carbon cycle in the Arctic. Thawing permafrost soils will change the chemical composition of DOM exported to arctic surface waters, but the molecular controls on DOM photodegradation remain poorly understood, making it difficult to predict how inputs of thawing permafrost DOM may alter its photodegradation. To address this knowledge gap, we quantified the susceptibility of DOM draining the shallow organic mat and the deeper permafrost layer of arctic soils to complete and partial photo-oxidation and investigated changes in the chemical composition of each DOM source following sunlight exposure. Permafrost and organic mat DOM had similar lability to photomineralization despite substantial differences in initial chemical composition. Concurrent losses of carboxyl moieties and shifts in chemical composition during photodegradation indicated that photodecarboxylation could account for 40-90% of DOM photomineralized to CO2. Permafrost DOM had a higher susceptibility to partial photo-oxidation compared to organic mat DOM, potentially due to a lower abundance of phenolic moieties with antioxidant properties. These results suggest that photodegradation will likely continue to be an important control on DOM fate in arctic freshwaters as the climate warms and permafrost soils thaw.
NASA Astrophysics Data System (ADS)
Cory, R. M.; Trusiak, A.; Ward, C.; Kling, G. W.; Tfaily, M.; Paša-Tolić, L.; Noel, V.; Bargar, J.
2017-12-01
The ongoing thawing of permafrost soils is the only environmental change that allows tremendous stores of organic carbon (C) to be converted into carbon dioxide (CO2) on decadal time scales, thus providing a positive and accelerating feedback to global warming. Evidence suggests that iron enhances abiotic reactions that convert dissolved organic matter (DOM) to CO2 in dark soils and in sunlit surface waters depending on its redox state and association with DOM (i.e., iron-DOM complexation). However, the complexation of iron in surface waters and soils remains too poorly understood to predict how iron influences the rates of oxidation of DOM to CO2. To address this knowledge gap, we characterized iron-DOM complexation in iron-rich soil and surface waters of the Arctic, in combination with measurements of DOM oxidation to CO2. These waters contain high concentrations of dissolved iron and DOM (up to 1 and 2 mM, respectively), and low concentrations of other potential ligands for iron such as sulfide, carbonate, chloride, or bromide. Ultra-high resolution mass spectrometry (FT-ICR MS) was used to identify ligands for iron within the DOM pool, and synchrotron based X-ray analysis (XAS and EXAFS) was used to assess iron's oxidation state, to detect iron complexation, and to constrain the chemical composition of the complexes. Across a natural gradient of dissolved iron and DOM concentrations, many potential ligands were identified within DOM that are expected to complex with iron (e.g., aromatic acids). EXAFS showed substantial complexation of reduced ferrous iron (Fe(II)) to DOM in arctic soil waters, on the basis of comparison to Fe(II)-DOM reference spectra. Identification of iron complexed to DOM in soil waters is consistent with strongly co-varying iron and DOM concentrations in arctic soil and surface waters, and supports our hypothesis that complexation of iron by DOM influences dark and light redox reactions that oxidize DOM to CO2. Understanding the molecular controls on the biogeochemical reactions that convert permafrost carbon to CO2 is critical for understanding the role of the Arctic in current and future climate change.
NASA Astrophysics Data System (ADS)
Sardana, A.; Aziz, T. N.; Cottrell, B. A.
2017-12-01
In this presentation we will discuss our ongoing work to characterize the photochemical behavior of dissolved organic matter (DOM) from wastewater treated in constructed wetlands. We have used a suite of spectroscopic and chromatographic techniques to characterize the DOM and to quantify the potential production of reactive oxygenated species (ROS). In the present study, DOM was fractionated based on its hydrophobicity and both the natural water isolates and fractionated DOM were characterized using SUVA254, spectral slope ratios, excitation emission matrix fluorescence spectroscopy (EEMs) and proton nuclear magnetic resonance (1H NMR). Photodegradation of wetland DOM and the formation of the hydroxyl radical (*OH), singlet oxygen (1O2), and the triplet-excited state (3DOM*) was also determined to assess the reactivity of DOM. EEM spectra exhibited the four main fluorescence peaks that are characteristic of DOM: peak A humic-like DOM, Peak C (fulvic or chromophoric DOM), Peak M (marine-like DOM), and peak T (tryptophan or protein-like absorbance). Two additional observed peaks with shorter emission wavelengths (A' Ex/Em = 243/278 nm and T' Ex/Em = 272/319 nm) were attributed to the microbial DOM in wastewater effluent. The spectral slope ratios decreased from 1.46 at the wetland inlet to 0.89 at the wetland outlet. The protein-like Peak T fluorescence decreased from 50% at the wetland inlet to 6.7% at the Wetland 2 outlet. A negative correlation between the percent fluorescence of Peak T and Peaks A, C and M confirmed the transition from the spectrum of pure wastewater with a primarily protein-like signature to a spectrum characteristic of terrestrially derived DOM. This transition coincided with enhanced formation rates and steady state concentrations of photochemically produced reactive intermediates (PPRIs). Size Exclusion Chromatography demonstrated that the influent wastewater had a lower molecular weight as compared to downstream wetland locations. Fractionation of DOM based on hydrophobicity followed by 1H NMR analysis indicated an increase in the complexity and composition of wetland effluent DOM. This presentation will summarize these findings and present results from our new microcosm constructed wetlands built to develop insights into DOM production and photochemical characteristics.
Zhang, Ziyang; Li, Kun; Zhang, Xiaoran; Li, Haiyan
2017-07-01
In this work, dissolved organic matter (DOM) was extracted from storm sewer sediments collected in four typical regions (residential, campus, traffic and business regions) in Beijing, China. The basic characteristics of DOM were analyzed by UV-visible spectroscopy (UV-Vis), excitation-emission matrix Fluorescence Spectroscopy and Fourier Transform Infrared Spectroscopy. Furthermore, the complexation between DOM and Cu(II) were investigated. The results showed that there were large amount of aromatic structure in the DOM extracted from storm sewer sediments. The microbial activities had also made a contribution to the DOM in storm sewer sediments. The composition of DOM influenced the complexing capacity of Cu(II) greatly, which may be attributed to the protein-like and humic-like substances in storm sewer sediments. This study demonstrated valuable information on the structure present in the DOM of storm sewer sediments and provided new insight for exploring the relationship between DOM and co-existing heavy metals in storm sewer sediments.
Caupos, Emilie; Touffet, Arnaud; Mazellier, Patrick; Croue, Jean-Philippe
2015-03-01
Solid-phase microextraction (SPME) was used to determine the equilibrium association constant for a pesticide, trifluralin (TFR), with dissolved organic matter (DOM). After optimization of the SPME method for the analysis of TFR, partition coefficients (K DOM) with three different sources of DOM were determined in buffered solutions at pH 7. Commercial humic acids and DOM fractions isolated from two surface waters were used. The values of log K DOM varied from 4.3 to 5.8, depending on the nature of the organic material. A good correlation was established between log K DOM and DOM properties (as measured with the H/O atomic ratio and UV absorbance), in agreement with literature data. This is consistent with the effect of polarity and aromaticity for governing DOM-pollutant associations, regardless of the origin of DOM. This association phenomenon is relevant to better understand the behavior of pesticides in the environment since it controls part of pesticide leaching and fate in aquatic systems.
Monroy-Muñoz, Irma Eloisa; Angeles-Martinez, Javier; Posadas-Sánchez, Rosalinda; Villarreal-Molina, Teresa; Alvarez-León, Edith; Flores-Dominguez, Carmina; Cardoso-Saldaña, Guillermo; Medina-Urrutia, Aida; Juárez-Rojas, Juan Gabriel; Posadas-Romero, Carlos; Alarcon, Gilberto Vargas
2017-10-01
The secretory phospholipase A 2 II A (sPLA 2 -IIA) encoded by PLA2G2A gene hydrolyzes phospholipids liberating free fatty acids (FFAs) and lysophospholipids. If lipolysis exceeds lipogenesis, the free fatty acids undergo a continuous release into circulation. A sustained excessive increase in this release contributes to metabolic disease. The aim of the present study was to evaluate the role of PLA2G2A gene polymorphisms as susceptibility markers for metabolic syndrome (MetS) and type 2 diabetes mellitus (T2DM) in Mexican population. Three PLA2G2A gene polymorphisms (rs876018, rs3753827 and rs11573156) were genotyped by 5' exonuclease TaqMan assays in a group of 338 patients with T2DM, 460 individuals with MetS and 366 healthy controls. Under codominant 1(codom1), dominant (dom) and additive (add) models adjusted by age, gender, body mass index (BMI), smoking habit, and hypertension, the rs876018T allele was associated with increased risk of MetS [Odds Ratio (OR)=1.66, P codom1 =0.005; OR=1.67, P dom =0.003; OR=1.49, P add =0.005] as compared to controls. On the other hand, under several models adjusted by the same variables, the rs3753827A (OR=1.52, P codom1 =0.039 and OR=1.49, P dom =0.039) and rs11573156C alleles (OR=6.46, P codom1 =0.013; OR=6.70, P codom2 =0.009; OR=6.65, P dom =0.009) were associated with increased risk of T2DM when compared with controls. In addition, the rs876018T allele was associated with hypercholesterolemia (P dom =0.017, P add =0.009) and risk of subclinical atherosclerosis (SA) (P dom =0.041) in MetS when compared with controls. Also, this allele was associated with SA in T2DM patients (P dom =0.007). The TAG haplotype was significantly associated with increased risk of MetS (OR=1.54, P=0.006). Results suggest that PLA2G2A polymorphisms are involved in the risk of developing MetS and T2D and are associated with SA in this group of patients. Copyright © 2016 Elsevier GmbH. All rights reserved.
Marriott, Amber L; Tasker, R Andrew; Ryan, Catherine L; Doucette, Tracy A
2016-02-01
Deficits in perceptual, informational, and attentional processing are consistently identified as a core feature in schizophrenia and related neuropsychiatric disorders. Neonatal injections of low doses of the AMPA/kainate agonist domoic acid (DOM) have previously been shown to alter various aspects of perceptual and attentional processing in adult rats. The current study investigated the effects of combined neonatal DOM treatment with isolation rearing on prepulse inhibition behaviour and relevant neurochemical measures, to assess the usefulness of these paradigms in modeling neurodevelopmental disorders. Daily subcutaneous injections of DOM (20 μg/kg) or saline were administered to male and female rat pups from postnatal days (PND) 8-14. After weaning, rats were either housed alone or in groups of 4. Both the magnitude and latency of prepulse inhibition were determined in adulthood (approximately 4.5 months of age) and post-mortem brain tissue was assayed using Western blot. Social isolation alone significantly lowered PPI magnitude in male (but not female) rats while DOM treatment appeared to make animals refractory to this effect. Combining social isolation and DOM treatment caused an additive decrease in PPI startle latency. No statistically significant differences were found in the expression of D1, D2, TH, GAD65 or GAD67 protein in either the prefrontal cortex or hippocampus, although some tendencies toward differences were noted. We conclude that both neonatal low-dose DOM and social isolation affect prepulse inhibition in rats but that each paradigm exerts these effects through different neuronal signalling systems. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Parvin, Fahmida; Nayna, Omme Kulsum; Tareq, Shafi M.; Rikta, Sharmin Yousuf; Kamal, Abdul KI
2018-05-01
This study explores the capacity of synthesized Fe2O3 nanoparticles (NPs) under sunlight for the degradation of dissolved organic matter (DOM) from synthetic (Procion blue dye) solution as well as from textile wastewater (TWW). Fe2O3 NPs were properly synthesized and confirmed by UV absorbance, FTIR spectra and SEM image analysis. Photocatalytic degradation of DOM from TWW and synthetic solution was performed by catalyst Fe2O3 NPs (5 mg/L) in the presence of solar irradiation (up to 40 h). The DOM degradation of the TWW and synthetic solution has been analyzed by fluorescence 3D excitation emission matrix (3D EEM). Synergistic effect was expected and it was found that the rate of decrease of fluorescence intensity increased with time. Within 20 h, for the synthetic solution, reduction of fluorescence intensity (80%) reaches an equilibrium. In contrast, the rate of decrease in the fluorescence intensity is highest (91%) in 40 h of irradiation for TWW. This reduction of fluorescence intensity indicates the degradation of DOM and can be expressed well by second-order model kinetics. Reduction of TOC, BOD5 and COD load again validated the degradation of DOM from TWW by catalyst Fe2O3 NPs-induced solar irradiation. We applied the treated wastewater on the plant to observe the reusability of the treated TWW, and the morphological data analysis of the plant demonstrates that the catalyst Fe2O3 NPs-induced solar-irradiated wastewater exhibits less adverse impact on plant morphology.
NASA Astrophysics Data System (ADS)
Sebestyen, S. D.; Shanley, J. B.; Pellerin, B.; Saraceno, J.; Aiken, G. R.; Boyer, E. W.; Doctor, D. H.; Kendall, C.
2009-05-01
There is a need to understand the coupled biogeochemical and hydrological processes that control stream hydrochemistry in upland forested catchments. At watershed 9 (W-9) of the Sleepers River Research Watershed in the northeastern USA, we use high-frequency sampling, environmental tracers, end-member mixing analysis, and stream reach mass balances to understand dynamic factors affect forms and concentrations of nitrogen and organic matter in streamflow. We found that rates of stream nitrate processing changed during autumn baseflow and that up to 70% of nitrate inputs to a stream reach were retained. At the same time, the stream reach was a net source of the dissolved organic carbon (DOC) and dissolved organic nitrogen (DON) fractions of dissolved organic matter (DOM). The in-stream nitrate loss and DOM gains are examples of hot moments of biogeochemical transformations during autumn when deciduous litter fall increases DOM availability. As hydrological flowpaths changed during rainfall events, the sources and transformations of nitrate and DOM differed from baseflow. For example, during storm flow we measured direct inputs of unprocessed atmospheric nitrate to streams that were as large as 30% of the stream nitrate loading. At the same time, stream DOM composition shifted to reflect inputs of reactive organic matter from surficial upland soils. The transport of atmospheric nitrate and reactive DOM to streams underscores the importance of quantifying source variation during short-duration stormflow events. Building upon these findings we present a conceptual model of interacting ecosystem processes that control the flow of water and nutrients to streams in a temperate upland catchment.
Sosa, Oscar A; Gifford, Scott M; Repeta, Daniel J; DeLong, Edward F
2015-01-01
The role of bacterioplankton in the cycling of marine dissolved organic matter (DOM) is central to the carbon and energy balance in the ocean, yet there are few model organisms available to investigate the genes, metabolic pathways, and biochemical mechanisms involved in the degradation of this globally important carbon pool. To obtain microbial isolates capable of degrading semi-labile DOM for growth, we conducted dilution to extinction cultivation experiments using seawater enriched with high molecular weight (HMW) DOM. In total, 93 isolates were obtained. Amendments using HMW DOM to increase the dissolved organic carbon concentration 4x (280 μM) or 10x (700 μM) the ocean surface water concentrations yielded positive growth in 4–6% of replicate dilutions, whereas <1% scored positive for growth in non-DOM-amended controls. The majority (71%) of isolates displayed a distinct increase in cell yields when grown in increasing concentrations of HMW DOM. Whole-genome sequencing was used to screen the culture collection for purity and to determine the phylogenetic identity of the isolates. Eleven percent of the isolates belonged to the gammaproteobacteria including Alteromonadales (the SAR92 clade) and Vibrio. Surprisingly, 85% of isolates belonged to the methylotrophic OM43 clade of betaproteobacteria, bacteria thought to metabolically specialize in degrading C1 compounds. Growth of these isolates on methanol confirmed their methylotrophic phenotype. Our results indicate that dilution to extinction cultivation enriched with natural sources of organic substrates has a potential to reveal the previously unsuspected relationships between naturally occurring organic nutrients and the microorganisms that consume them. PMID:25978545
Mostofa, Khan M G; Li, Wen; Wu, Fengchang; Liu, Cong-Qiang; Liao, Haiqing; Zeng, Li; Xiao, Min
2018-01-01
Sediment pore waters were examined in four Chinese lakes (Bosten, Qinghai, Chenghai and Dianchi) to characterise the sources of dissolved organic matter (DOM) and their microbial changes in the sediment depth profiles. Parallel factor (PARAFAC) modelling on the sample fluorescence spectra confirmed that the pore water DOM was mostly composed of two components with a mixture of both allochthonous and autochthonous fulvic acid-like substances in three lakes, except Lake Dianchi, and protein-like components in Lake Bosten. However, DOM in Lake Dianchi was composed of three components, including a fulvic acid-like, and two unidentified components, which could originate from mixed sources of either sewerage-impacted allochthonous or autochthonous organic matter (OM). Dissolved organic carbon (DOC) concentrations were typically high (583-7410 μM C) and fluctuated and increased vertically in the depth profile. The fluorescence intensity of the fulvic acid-like substance and absorbance at 254 nm increased vertically in the sediment pore waters of three lakes. A significant relationship between DOC and the fluorescence intensity of the fulvic acid-like component in the sediment pore waters of three lakes, except Lake Dianchi, suggested that the fulvic acid-like component could significantly contribute to total DOM and could originate via complex microbial processes in early diagenesis on OM (ca. phytoplankton, terrestrial plant material) in these lakes. Pore water DOM components could therefore be a useful indicator to assess the DOM sources of the lake sediment during sedimentation over the past several decades, which have been heavily affected by ambient terrestrial vegetation and human activities.
NASA Astrophysics Data System (ADS)
Wymore, Adam S.; Potter, Jody; Rodríguez-Cardona, Bianca; McDowell, William H.
2018-04-01
The advent of high-frequency in situ optical sensors provides new opportunities to study the biogeochemistry of dissolved organic matter (DOM) in aquatic ecosystems. We used fDOM (fluorescent dissolved organic matter) to examine the spatial and temporal variability in dissolved organic carbon (DOC) and dissolved organic nitrogen (DON) across a heterogeneous stream network that varies in NO3- concentration. Across the ten study streams fDOM explained twice the variability in the concentration of DOC (r2 = 0.82) compared to DON (r2 = 0.39), which suggests that the N-rich fraction of DOM is either more variable in its sources or more bioreactive than the more stable C-rich fraction. Among sites, DON molar fluorescence was approximately 3x more variable than DOC molar fluorescence and was correlated with changes in inorganic N, indicating that DON is both more variable in composition as well as highly responsive to changes in inorganic N. Laboratory results also indicate that the fDOM sensors we used perform as well as the excitation-emission wavelength pair generally referred to as the "tryptophan-like" peak when measured under laboratory conditions. However, since neither the field sensor not the laboratory measurements explained a large percentage of variation in DON concentrations, challenges still remain for monitoring the ambient pool of dissolved organic nitrogen. Sensor networks provide new insights into the potential reactivity of DOM and the variability in DOC and DON biogeochemistry across sites. These insights are needed to build spatially explicit models describing organic matter dynamics and water quality.
Shiu, Ruei-Feng; Lee, Chon-Lin; Chin, Wei-Chun
2017-12-15
Rivers drive large amounts of terrestrial and riverine organic matter into oceans. These organic materials may alter the self-assembly of marine dissolved organic matter (DOM) polymers into microgels and can even affect the behavior of existing natural microgels. We used Suwannee River humic acid, fulvic acid, and natural organic matter as a model of riverine organic matter (ROM) to investigate the impacts of ROM input on DOM polymer and microgel conversion. Our results indicated that the release of extra ROM, even at low concentrations (0.1-10 mg L -1 ), into the marine organic matter pool decreased the size of self-assembled DOM polymers (from 4-5 μm to < 1 μm) and dispersed the existing natural microgels into smaller particles (from 4-5 μm to 2-3 μm). The particle size of the microgel phase was also less sensitive than that of the DOM polymers to external changes (addition of ROM). This size reduction in DOM aggregation and existing microgels may be closely tied to the surface chemistry of the organic matter, such as negative surface charge stabilization and Ca 2+ cross-linking bridges. These findings reveal that ROM inputs may therefore impede the self-assembly of DOM polymers into particulate organic matter and reduce the sedimentation flux of organic carbon and other elements from surface water to the deep ocean, thereby disturbing the biological pump, the downward transportation of nutrients, and the marine organic carbon cycle. Copyright © 2017 Elsevier Ltd. All rights reserved.
Hur, Jin; Shin, Jaewon; Kang, Minsun; Cho, Jinwoo
2014-08-01
In this study, the variations in the fluorescent components of dissolved organic matter (DOM) were tracked for an aerobic submerged membrane bioreactor (MBR) at three different operation stages (cake layer formation, condensation, and after cleaning). The fluorescent DOM was characterized using excitation-emission matrix (EEM) spectroscopy combined with parallel factor analysis (PARAFAC). Non-aromatic carbon structures appear to be actively involved in the membrane fouling for the cake layer formation stage as revealed by much higher UV-absorbing DOM per organic carbon found in the effluent versus those inside the reactor. Four fluorescent components were successfully identified from the reactor and the effluent DOMs by EEM-PARAFAC modeling. Among those in the reactor, microbial humic-like fluorescence was the most abundant component at the cake layer formation stage and tryptophan-like fluorescence at the condensation stage. In contrast to the reactor, relatively similar composition of the PARAFAC components was exhibited for the effluent at all three stages. Tryptophan-like fluorescence displayed the largest difference between the reactor and the effluent, suggesting that this component could be a good tracer for membrane fouling. It appears that the fluorescent DOM was involved in membrane fouling by cake layer formation rather than by internal pore adsorption because its difference between the reactor and the effluent was the highest among all the four components, even after the membrane cleaning. Our study provided an insight into the fate and the behavior fluorescent DOM components for an MBR system, which could be an indicator of the membrane fouling.
Carotenoids are the likely precursor of a significant fraction of marine dissolved organic matter
Arakawa, Neal; Aluwihare, Lihini I.; Simpson, Andre J.; Soong, Ronald; Stephens, Brandon M.; Lane-Coplen, Daniel
2017-01-01
The ocean’s biota sequester atmospheric carbon dioxide (CO2) in part by producing dissolved organic matter (DOM) that persists in the ocean for millennia. This long-term accumulation of carbon may be facilitated by abiotic and biotic production of chemical structures that resist degradation, consequently contributing disproportionately to refractory DOM. Compounds that are selectively preserved in seawater were identified in solid-phase extracted DOM (PPL-DOM) using comprehensive gas chromatography (GC) coupled to mass spectrometry (MS). These molecules contained cyclic head groups that were linked to isoprenoid tails, and their overall structures closely resembled carotenoid degradation products (CDP). The origin of these compounds in PPL-DOM was further confirmed with an in vitro β-carotene photooxidation experiment that generated water-soluble CDP with similar structural characteristics. The molecular-level identification linked at least 10% of PPL-DOM carbon, and thus 4% of total DOM carbon, to CDP. Nuclear magnetic resonance spectra of experimental CDP and environmental PPL-DOM overlapped considerably, which indicated that even a greater proportion of PPL-DOM was likely composed of CDP. The CDP-rich DOM fraction was depleted in radiocarbon (14C age > 1500 years), a finding that supports the possible long-term accumulation of CDP in seawater. By linking a specific class of widespread biochemicals to refractory DOM, this work provides a foundation for future studies that aim to examine how persistent DOM forms in the ocean. PMID:28959723
Tejeda-Agredano, Maria-Carmen; Mayer, Philipp; Ortega-Calvo, Jose-Julio
2014-01-01
Binding of polycyclic aromatic hydrocarbons (PAHs) to dissolved organic matter (DOM) can reduce the freely dissolved concentration, increase apparent solubility or enhance diffusive mass transfer. To study the effects of DOM on biodegradation, we used phenanthrene and pyrene as model PAHs, soil humic acids as model DOM and a soil Mycobacterium strain as a representative degrader organism. Humic acids enhanced the biodegradation of pyrene when present as solid crystals but not when initially dissolved or provided by partitioning from a polymer. Synchronous fluorescence spectrophotometry, scintillation counting and a microscale diffusion technique were applied in order to determine the kinetics of dissolution and diffusive mass transfer of pyrene. We suggest that humic acids can enhance or inhibit biodegradation as a result of the balance of two opposite effects, namely, solubilization of the chemicals on the one hand and inhibition of cell adhesion to the pollutant source on the other. Copyright © 2013 Elsevier Ltd. All rights reserved.
Design of Xen Hybrid Multiple Police Model
NASA Astrophysics Data System (ADS)
Sun, Lei; Lin, Renhao; Zhu, Xianwei
2017-10-01
Virtualization Technology has attracted more and more attention. As a popular open-source virtualization tools, XEN is used more and more frequently. Xsm, XEN security model, has also been widespread concern. The safety status classification has not been established in the XSM, and it uses the virtual machine as a managed object to make Dom0 a unique administrative domain that does not meet the minimum privilege. According to these questions, we design a Hybrid multiple police model named SV_HMPMD that organically integrates multiple single security policy models include DTE,RBAC,BLP. It can fullfill the requirement of confidentiality and integrity for security model and use different particle size to different domain. In order to improve BLP’s practicability, the model introduce multi-level security labels. In order to divide the privilege in detail, we combine DTE with RBAC. In order to oversize privilege, we limit the privilege of domain0.
Djae, Tanalou; Bravin, Matthieu N; Garnier, Cédric; Doelsch, Emmanuel
2017-04-01
Parameterizing speciation models by setting the percentage of dissolved organic matter (DOM) that is reactive (% r-DOM) toward metal cations at a single 65% default value is very common in predictive ecotoxicology. The authors tested this practice by comparing the free copper activity (pCu 2+ = -log 10 [Cu 2+ ]) measured in 55 soil sample solutions with pCu 2+ predicted with the Windermere humic aqueous model (WHAM) parameterized by default. Predictions of Cu toxicity to soil organisms based on measured or predicted pCu 2+ were also compared. Default WHAM parameterization substantially skewed the prediction of measured pCu 2+ by up to 2.7 pCu 2+ units (root mean square residual = 0.75-1.3) and subsequently the prediction of Cu toxicity for microbial functions, invertebrates, and plants by up to 36%, 45%, and 59% (root mean square residuals ≤9 %, 11%, and 17%), respectively. Reparametrizing WHAM by optimizing the 2 DOM binding properties (i.e., % r-DOM and the Cu complexation constant) within a physically realistic value range much improved the prediction of measured pCu 2+ (root mean square residual = 0.14-0.25). Accordingly, this WHAM parameterization successfully predicted Cu toxicity for microbial functions, invertebrates, and plants (root mean square residual ≤3.4%, 4.4%, and 5.8%, respectively). Thus, it is essential to account for the real heterogeneity in DOM binding properties for relatively accurate prediction of Cu speciation in soil solution and Cu toxic effects on soil organisms. Environ Toxicol Chem 2017;36:898-905. © 2016 SETAC. © 2016 SETAC.
Cleveland, C.C.; Wieder, W.R.; Reed, S.C.; Townsend, A.R.
2010-01-01
Climate models predict precipitation changes for much of the humid tropics, yet few studies have investigated the potential consequences of drought on soil carbon (C) cycling in this important biome. In wet tropical forests, drought could stimulate soil respiration via overall reductions in soil anoxia, but previous research suggests that litter decomposition is positively correlated with high rainfall fluxes that move large quantities of dissolved organic matter (DOM) from the litter layer to the soil surface. Thus, reduced rainfall could also limit C delivery to the soil surface, reducing respiration rates. We conducted a throughfall manipulation experiment to investigate how 25% and 50% reductions in rainfall altered both C movement into soils and the effects of those DOM fluxes on soil respiration rates. In response to the experimental drought, soil respiration rates increased in both the -25% and -50% treatments. Throughfall fluxes were reduced by 26% and 55% in the-25% and-50% treatments, respectively. However, total DOM fluxes leached from the litter did not vary between treatments, because the concentrations of leached DOM reaching the soil surface increased in response to the simulated drought. Annual DOM concentrations averaged 7.7 ?? 0.8, 11.2 ?? 0.9, and 15.8 ?? 1.2 mg C/L in the control, -25%, and -50% plots, respectively, and DOM concentrations were positively correlated with soil respiration rates. A laboratory incubation experiment confirmed the potential importance of DOM concentration on soil respiration rates, suggesting that this mechanism could contribute to the increase in CO2 fluxes observed in the reduced rainfall plots. Across all plots, the data suggested that soil CO2 fluxes were partially regulated by the magnitude and concentration of soluble C delivered to the soil, but also by soil moisture and soil oxygen availability. Together, our data suggest that declines in precipitation in tropical rain forests could drive higher CO2 fluxes to the atmosphere both via increased soil O2 availability and through responses to elevated DOM concentrations. ?? 2010 by the Ecological Society of America.
Cleveland, Cory C.; Wieder, William R.; Reed, Sasha C.; Townsend, Alan R.
2010-01-01
Climate models predict precipitation changes for much of the humid tropics, yet few studies have investigated the potential consequences of drought on soil carbon (C) cycling in this important biome. In wet tropical forests, drought could stimulate soil respiration via overall reductions in soil anoxia, but previous research suggests that litter decomposition is positively correlated with high rainfall fluxes that move large quantities of dissolved organic matter (DOM) from the litter layer to the soil surface. Thus, reduced rainfall could also limit C delivery to the soil surface, reducing respiration rates. We conducted a throughfall manipulation experiment to investigate how 25% and 50% reductions in rainfall altered both C movement into soils and the effects of those DOM fluxes on soil respiration rates. In response to the experimental drought, soil respiration rates increased in both the -25% and -50% treatments. Throughfall fluxes were reduced by 26% and 55% in the -25% and -50% treatments, respectively. However, total DOM fluxes leached from the litter did not vary between treatments, because the concentrations of leached DOM reaching the soil surface increased in response to the simulated drought. Annual DOM concentrations averaged 7.7 ± 0.8, 11.2 ± 0.9, and 15.8 ± 1.2 mg C/L in the control, -25%, and -50% plots, respectively, and DOM concentrations were positively correlated with soil respiration rates. A laboratory incubation experiment confirmed the potential importance of DOM concentration on soil respiration rates, suggesting that this mechanism could contribute to the increase in CO2 fluxes observed in the reduced rainfall plots. Across all plots, the data suggested that soil CO2 fluxes were partially regulated by the magnitude and concentration of soluble C delivered to the soil, but also by soil moisture and soil oxygen availability. Together, our data suggest that declines in precipitation in tropical rain forests could drive higher CO2 fluxes to the atmosphere both via increased soil O2 availability and through responses to elevated DOM concentrations.
Characterization Of Dissolved Organic Mattter In The Florida Keys Ecosystem
NASA Astrophysics Data System (ADS)
Adams, D. G.; Shank, G. C.
2009-12-01
Over the past few decades, Scleractinian coral populations in the Florida Keys have increasingly experienced mortality due to bleaching events as well as microbial mediated illnesses such as black band and white band disease. Such pathologies seem to be most correlated with elevated sea surface temperatures, increased UV exposures, and shifts in the microbial community living on the coral itself. Recent studies indicate that corals’ exposure to UV in the Florida Keys is primarily controlled by the concentration of CDOM (Chromophoric Dissolved Organic Matter) in the water column. Further, microbial community alterations may be linked to changes in concentration and chemical composition of the larger DOM (Dissolved Organic Matter) pool. Our research characterized the spatial and temporal properties of DOM in Florida Bay and along the Keys ecosystems using DOC analyses, in-situ water column optical measurements, and spectral analyses including absorbance and fluorescence measurements. We analyzed DOM characteristics along transects running from the mouth of the Shark River at the southwest base of the Everglades, through Florida Bay, and along near-shore Keys coastal waters. Two 12 hour time-series samplings were also performed at the Seven-Mile Bridge, the primary Florida Bay discharge channel to the lower Keys region. Photo-bleaching experiments showed that the chemical characteristics of the DOM pool are altered by exposure to solar radiation. Results also show that DOC (~0.8-5.8 mg C/L) and CDOM (~0.5-16.5 absorbance coefficient at 305nm) concentrations exhibit seasonal fluctuations in our study region. EEM analyses suggest seasonal transitions between primarily marine (summer) and terrestrial (winter) sources along the Keys. We are currently combining EEM-PARAFAC analysis with in-situ optical measurements to model changes in the spectral properties of DOM in the water column. Additionally, we are using stable δ13C isotopic analysis to further characterize DOM sources. Information generated by our study will provide a valuable data set for better understanding DOM bio-geochemical dynamics along the Florida Keys ecosystem and information for future studies linking DOM and the coral community.
Dom34 Links Translation to Protein O-mannosylation
van Wijlick, Lasse; Geissen, René; Hilbig, Jessica S.; Lagadec, Quentin; Cantero, Pilar D.; Juchimiuk, Mateusz; Kluge, Sven; Wickert, Stephan; Alepuz, Paula; Ernst, Joachim F.
2016-01-01
In eukaryotes, Dom34 upregulates translation by securing levels of activatable ribosomal subunits. We found that in the yeast Saccharomyces cerevisiae and the human fungal pathogen Candida albicans, Dom34 interacts genetically with Pmt1, a major isoform of protein O-mannosyltransferase. In C. albicans, lack of Dom34 exacerbated defective phenotypes of pmt1 mutants, while they were ameliorated by Dom34 overproduction that enhanced Pmt1 protein but not PMT1 transcript levels. Translational effects of Dom34 required the 5′-UTR of the PMT1 transcript, which bound recombinant Dom34 directly at a CA/AC-rich sequence and regulated in vitro translation. Polysomal profiling revealed that Dom34 stimulates general translation moderately, but that it is especially required for translation of transcripts encoding Pmt isoforms 1, 4 and 6. Because defective protein N- or O-glycosylation upregulates transcription of PMT genes, it appears that Dom34-mediated specific translational upregulation of the PMT transcripts optimizes cellular responses to glycostress. Its translational function as an RNA binding protein acting at the 5′-UTR of specific transcripts adds another facet to the known ribosome-releasing functions of Dom34 at the 3′-UTR of transcripts. PMID:27768707
Dom34 Links Translation to Protein O-mannosylation.
van Wijlick, Lasse; Geissen, René; Hilbig, Jessica S; Lagadec, Quentin; Cantero, Pilar D; Pfeifer, Eugen; Juchimiuk, Mateusz; Kluge, Sven; Wickert, Stephan; Alepuz, Paula; Ernst, Joachim F
2016-10-01
In eukaryotes, Dom34 upregulates translation by securing levels of activatable ribosomal subunits. We found that in the yeast Saccharomyces cerevisiae and the human fungal pathogen Candida albicans, Dom34 interacts genetically with Pmt1, a major isoform of protein O-mannosyltransferase. In C. albicans, lack of Dom34 exacerbated defective phenotypes of pmt1 mutants, while they were ameliorated by Dom34 overproduction that enhanced Pmt1 protein but not PMT1 transcript levels. Translational effects of Dom34 required the 5'-UTR of the PMT1 transcript, which bound recombinant Dom34 directly at a CA/AC-rich sequence and regulated in vitro translation. Polysomal profiling revealed that Dom34 stimulates general translation moderately, but that it is especially required for translation of transcripts encoding Pmt isoforms 1, 4 and 6. Because defective protein N- or O-glycosylation upregulates transcription of PMT genes, it appears that Dom34-mediated specific translational upregulation of the PMT transcripts optimizes cellular responses to glycostress. Its translational function as an RNA binding protein acting at the 5'-UTR of specific transcripts adds another facet to the known ribosome-releasing functions of Dom34 at the 3'-UTR of transcripts.
Co-precipitation of dissolved organic matter by calcium carbonate in Pyramid Lake, Nevada
Leenheer, Jerry A.; Reddy, Michael M.
2008-01-01
Our previous research has demonstrated that dissolved organic matter (DOM) influences calcium carbonate mineral formation in surface and ground water. To better understand DOM mediation of carbonate precipitation and DOM co-precipitation and/or incorporation with carbonate minerals, we characterized the content and speciation of DOM in carbonate minerals and in the lake water of Pyramid Lake, Nevada, USA. A 400-gram block of precipitated calcium carbonate from the Pyramid Lake shore was dissolved in 8 liters of 10% acetic acid. Particulate matter not dissolved by acetic acid was removed by centrifugation. DOM from the carbonate rock was fractionated into nine portions using evaporation, dialysis, resin adsorption, and selective precipitations to remove acetic acid and inorganic constituents. The calcium carbonate rock contained 0.23% DOM by weight. This DOM was enriched in polycarboxylic proteinaceous acids and hydroxy-acids in comparison with the present lake water. DOM in lake water was composed of aliphatic, alicyclic polycarboxylic acids. These compound classes were found in previous studies to inhibit calcium carbonate precipitation. DOM fractions from the carbonate rock were 14C-age dated at about 3,100 to 3,500 years before present. The mechanism of DOM co-precipitation and/or physical incorporation in the calcium carbonate is believed to be due to formation of insoluble calcium complexes with polycarboxylic proteinaceous acids and hydroxy-acids that have moderately large stability constants at the alkaline pH of the lake. DOM co-precipitation with calcium carbonate and incorporation in precipitated carbonate minerals removes proteinaceous DOM, but nearly equivalent concentrations of neutral and acidic forms of organic nitrogen in DOM remain in solution. Calcium carbonate precipitation during lime softening pretreatment of drinking water may have practical applications for removal of proteinaceous disinfection by-product precursors.
How Reservoirs Alter DOM Amount and Composition: Sources, Sinks, and Transformations
NASA Astrophysics Data System (ADS)
Kraus, T. E.; Bergamaschi, B. A.; Hernes, P. J.; Doctor, D. H.; Kendall, C.; Losee, R. F.; Downing, B. D.
2011-12-01
Reservoirs are critical components of many water supply systems as they allow the storage of water when supply exceeds demand. However, during water storage biogeochemical processes can alter both the amount and composition of dissolved organic matter (DOM), which can in turn affect water quality. While the balance between production and loss determines whether a reservoir is a net sink or source of DOM, changes in chemical composition are also relevant as they affect DOM reactivity (e.g. persistence in the environment, removability during coagulation treatment, and potential to form toxic compounds during drinking water treatment). The composition of the DOM pool also provides information about the DOM sources and processing, which can inform reservoir management. We examined the concentration and composition of DOM in San Luis Reservoir (SLR), a large off-stream impoundment of the California State Water Project. We used an array of DOM chemical tracers including dissolved organic carbon (DOC) concentration, optical properties, isotopic composition, lignin phenol content, and structural groupings determined by 13C NMR. There were periods when the reservoir was i) a net source of DOM due to the predominance of algal production (summer), ii) a net sink due to the predominance of degradation (fall/winter), and iii) balanced between production and consumption (spring). Despite only moderate variation in bulk DOC concentration (3.0-3.6 mg C/L), substantial changes in DOM composition indicated that terrestrial-derived material entering the reservoir was being degraded and replaced by aquatic-derived DOM produced within the reservoir. Results suggest reservoirs have the potential to reduce DOM amount and reactivity via degradative processes, however, these benefits can be decreased or even negated by the production of algal-derived DOM.
NASA Astrophysics Data System (ADS)
Pickard, A.
2015-12-01
Aquatic systems in peatland catchments are subject to high loading of dissolved organic matter (DOM) from surrounding terrestrial environments. However the significance of photochemical transformation of DOM in peatland carbon budgets remains poorly constrained. In this study UV irradiation experiments were conducted on water samples collected over one year from two contrasting systems in Scotland: a stream draining a peatland with high levels of DOM and a reservoir draining a peat catchment with low levels of DOM. Further samples were collected from the high DOM system during two storm events. After experimental exposure, optical and chemical analyses were employed to determine photochemical lability of the DOM pool. At both sites irradiation-induced decreases in dissolved organic carbon (DOC) as a percentage of the total carbon pool were greatest in winter, suggesting that DOM was depleted in photo-reactive molecules in summer. Seasonal variability in DOC was high at the stream site and was positively correlated with CO₂ and CO photoproduction (r2 = 0.81 and 0.83, respectively; p<0.05). Lignin phenol analyses indicate considerable contribution of peat to the DOM pool at the stream site, particularly during summer. Whilst DOC concentrations did not vary greatly during storm events, UV-Vis absorbance indicators did, signifying changing DOM source material from activation of different hydrological pathways. The most photo-reactive DOM occurred 5-10 hours after peak discharge, suggesting that storms replenish photochemically labile DOM in headwater streams. Conservative estimates using data from this study suggest that up to 7% of the DOM pool of peatland streams can be lost (primarily as CO₂ and CO) upon exposure to 8 hours of environmentally representative UV irradiation. Further investigation in field campaigns under natural UV exposure are underway to assess the importance of photodegradation of DOM as a loss pathway of carbon based gases from aquatic systems.
Jiang, Tao; Chen, Xueshuang; Wang, Dingyong; Liang, Jian; Bai, Weiyang; Zhang, Cheng; Wang, Qilei; Wei, Shiqiang
2018-01-15
Dissolved organic matter (DOM) plays an important environmental and ecological role in inland aquatic systems, including lakes. In this study, using fluorescence analysis, we investigated the seasonal dynamics of DOM characteristics in Changshou Lake, which is a typical inland lake in the Three Gorges Reservoir (TGR) area. We also discuss the environmental implications of DOM for mercury (Hg) dynamics. Based on the origins of two end-members, the variations in DOM observed in this study in Changshou Lake suggest that hydrological processes (e.g., terrestrial inputs resulting from runoff and humic-like component residences) and biological activities (e.g., microbial and algae growth) are the two main principal components controlling the seasonal dynamics of DOM characteristics. Furthermore, the dynamics of dissolved Hg co-varied with variations in DOM properties, rather than with dissolved organic carbon (DOC) concentrations. This indicates that the previously reported simple correlations between DOC and Hg were not comprehensive and may lead to misunderstanding the interactions between DOM and Hg. Therefore, we recommend that when using DOM-Hg correlations to evaluate the role of DOM in the environmental fate of Hg, especially in field investigations of the spatial and temporal distribution of Hg, the properties of DOM must be taken into account. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Guéguen, C.; Mokhtar, M.; Perroud, A.; McCullough, G.; Papakyriakou, T.
2016-09-01
This work presents the results of a 4-year study (2009-2012) investigating the mixing and photoreactivity of dissolved organic matter (DOM) in the Nelson/Hayes estuary (Hudson Bay). Dissolved organic carbon (DOC), colored DOM, and humic-like DOM decreased with increasing salinity (r2 = 0.70-0.84). Removal of DOM was noticeable at low to mid salinity range, likely due to degradation and/or adsorption to particles. DOM photobleaching rates (i.e., decrease in DOM signal resulting from exposure to solar radiation) ranged from 0.005 to 0.030 h- 1, corresponding to half-lives of 4.9-9.9 days. Dissolved organic matter from the Nelson and Hayes Rivers was more photoreactive than from the estuary where the photodegradation of terrestrial DOM decreased with increasing salinity. Coincident with the loss of CDOM absorption was an increase in spectral slope S, suggesting a decrease in DOM molecular weight. Marked differences in photoreactivity of protein- and humic-like DOM were observed with highly humidified material being the most photosensitive. Information generated by our study will provide a valuable data set for better understanding the impacts of future hydroelectric development and climate change on DOM biogeochemical dynamics in the Nelson/Hayes estuary and coastal domain. This study will constitute a reference on terrestrial DOM fate prior to building additional generating capacity on the Nelson River.
Fu, Qing-Long; He, Jian-Zhou; Blaney, Lee; Zhou, Dong-Mei
2016-07-01
The fate and transport of roxarsone (ROX), a widely used organoarsenic feed additive, in soil is significantly influenced by the ubiquitous presence of soil-derived dissolved organic matter (DOM). In this study, fluorescence quenching titration and two-dimensional correlation spectroscopy (2D-COS) were employed to study ROX binding to DOM. Binding mechanisms were revealed by fluorescence lifetime measurement and Fourier transform infrared spectroscopy (FTIR). Humic- and protein-like fluorophores were identified in the excitation-emission matrix and synchronous fluorescence spectra of DOM. The conditional stability constant (log KC) for ROX binding to DOM was found to be 5.06, indicating that ROX was strongly bound to DOM. The binding order of ROX to DOM fluorophores revealed by 2D-COS followed the sequence of protein-like fluorophore ≈ the longer wavelength excited humic-like (L-humic-like) fluorophore > the shorter wavelength excited humic-like (S-humic-like) fluorophore. 2D-COS resolved issues with peak overlapping and allowed further exploration of the interaction between ROX and DOM. Results of fluorescence lifetime and FTIR spectra demonstrated that ROX interacted with DOM through the hydroxyl, amide II, carboxyl, aliphatic CH, and NO2 groups, yielding stable DOM-ROX complexes. The strong interaction between ROX and DOM implies that DOM plays an important role in the environmental fate of ROX in soil. Copyright © 2016 Elsevier Ltd. All rights reserved.
Freshwater DOM quantity and quality from a two-component model of UV absorbance
Carter, Heather T.; Tipping, Edward; Koprivnjak, Jean-Francois; Miller, Matthew P.; Cookson, Brenda; Hamilton-Taylor, John
2012-01-01
We present a model that considers UV-absorbing dissolved organic matter (DOM) to consist of two components (A and B), each with a distinct and constant spectrum. Component A absorbs UV light strongly, and is therefore presumed to possess aromatic chromophores and hydrophobic character, whereas B absorbs weakly and can be assumed hydrophilic. We parameterised the model with dissolved organic carbon concentrations [DOC] and corresponding UV spectra for c. 1700 filtered surface water samples from North America and the United Kingdom, by optimising extinction coefficients for A and B, together with a small constant concentration of non-absorbing DOM (0.80 mg DOC L-1). Good unbiased predictions of [DOC] from absorbance data at 270 and 350 nm were obtained (r2 = 0.98), the sum of squared residuals in [DOC] being reduced by 66% compared to a regression model fitted to absorbance at 270 nm alone. The parameterised model can use measured optical absorbance values at any pair of suitable wavelengths to calculate both [DOC] and the relative amounts of A and B in a water sample, i.e. measures of quantity and quality. Blind prediction of [DOC] was satisfactory for 9 of 11 independent data sets (181 of 213 individual samples).
NASA Astrophysics Data System (ADS)
Sauerwein, Meike; Hanke, Alexander; Kaiser, Klaus; Kalbitz, Karsten
2010-05-01
Effects of redox conditions on the adsorption of dissolved organic matter to soil minerals and differently aged paddy soils Meike Sauerwein1, Alexander Hanke2, Klaus Kaiser3, Karsten Kalbitz2 1) Dept. of Soil Ecology, Bayreuth Centre of Ecology and Environmental Research (BayCEER), University of Bayreuth, 95440 Bayreuth, Germany, meike.sauerwein@gmail.com 2) Institute of ecosystem dynamics and biodiversity, University of Amsterdam, 1018 WV, Netherlands, a.hanke@uva.nl, k.kalbitz@uva.nl 3) Soil Sciences, Martin Luther University Halle, 06099 Halle, Germany, klaus.kaiser@landw.uni-halle.de Current knowledge on dissolved organic matter (DOM) in soils is based mainly on observations and experiments in aerobic environments. Adsorption to soil minerals is an important mechanism of DOM retention and stabilization against microbial decay under oxic conditions. Under anoxic conditions where hydrous iron oxides, the potential main adsorbents of DOM, possibly dissolve, the importance of adsorption seems questionable. Therefore, we studied the adsorption of DOM to selected soil minerals and to mineral soils under oxic and anoxic conditions. In detail, we tested the following hypotheses: 1. Minerals and soils adsorb less DOM under anoxic conditions than under oxic ones. 2. The reduced adsorption under anoxic conditions is result of the smaller adsorption to hydrous Fe oxides whereas adsorption to clay minerals and Al hydroxides is not sensitive to changes in redox conditions 3. DOM adsorption will increase with the number of redox cycles, thus time of soil formation, due to increasing contents of poorly crystalline Fe oxides. This will, however, cause a stronger sensitivity to redox changes as poor crystalline Fe oxides are more reactive. 4. Aromatic compounds, being preferentially adsorbed under oxic conditions, will be less strongly adsorbed under anoxic conditions. We chose paddy soils as models because their periodically and regular exposure to changing redox cycles, with anoxic conditions during the rice growing period and oxic conditions during harvest and growth of other crops. Soils of a unique chronosequence of paddy soils (50, 300, 700 and 2000 years) in China were studied in direct comparison to non-paddy soils of the same age. In additions, selected soil minerals (goethite, ferrihydrite, amorphous Al hydroxide, hydrobiotite, nontronite and ripodolite), differing in their response to changes in redox conditions, were studied in order to indentify those mineral constituents responsible for redox-induced changes in DOM adsorption to the test soils. The DOM for the adsorption was extracted from composted rice straw as a surrogate for DOM percolating in paddy soils. Batch adsorption experiments were carried out with DOM pre-incubated to give oxic and anoxic conditions and maintaining these redox conditions during the whole procedure. The redox potential resulting from anoxic pre-incubation was about 100 mV, thus in the range of Fe reduction. Besides of dissolved organic carbon (DOC), we determined changes in the composition of DOM by the specific UV absorbance. We also analyzed main cations, anions and redox-sensitive elements to give a comprehensive picture of the effects of changing redox conditions on the dynamics of organic C, N, P, S, Fe and Al. First results indicated indeed less adsorption of DOM to Fe oxides under anoxic than under oxic conditions, with a more pronounced effect for ferrihydrite than for goethite. Maximum adsorption of DOM was more than 50% larger under oxic than under anoxic conditions. The effect was less pronounced but still detectable for clay minerals such as hydrobiotite, nontronite, and ripodolite. The specific UV absorbance of DOM contact with minerals was 20-50% stronger under anoxic than under oxic conditions. These changes in DOM composition indicated that preferential adsorption of aromatic compounds might be limited to aerated soils. We conclude that adsorption, although less strong than under oxic conditions, is an important mechanism of DOM retention also under anoxic conditions. Decreasing amounts of adsorbed DOM and changes in its composition might result in a less effective sorptive stabilization against microbial decay under anoxic than under oxic conditions.
He, Dongmei; Ruan, Honghua
2014-01-01
Since the late 1950s, land reclamation from lakes has been a common human disturbance to ecosystems in China. It has greatly diminished the lake area, and altered natural ecological succession. However, little is known about its impact on the carbon (C) cycle. We conducted an experiment to examine the variations of chemical properties of dissolved organic matter (DOM) and C mineralization under four land uses, i.e. coniferous forest (CF), evergreen broadleaf forest (EBF), bamboo forest (BF) and cropland (CL) in a reclaimed land area from Taihu Lake. Soils and lake sediments (LS) were incubated for 360 days in the laboratory and the CO2 evolution from each soil during the incubation was fit to a double exponential model. The DOM was analyzed at the beginning and end of the incubation using UV and fluorescence spectroscopy to understand the relationships between DOM chemistry and C mineralization. The C mineralization in our study was influenced by the land use with different vegetation and management. The greatest cumulative CO2-C emission was observed in BF soil at 0–10 cm depth. The active C pool in EBF at 10–25 cm had longer (62 days) mean residence time (MRT). LS showed the highest cumulative CO2-C and shortest MRT comparing with the terrestrial soils. The carbohydrates in DOM were positively correlated with CO2-C evolution and negatively correlated to phenols in the forest soils. Cropland was consistently an outlier in relationships between DOM chemistry and CO2-evolution, highlighting the unique effects that this land use on soil C cycling, which may be attributed the tillage practices. Our results suggest that C mineralization is closely related to the chemical composition of DOM and sensitive to its variation. Conversion of an aquatic ecosystem into a terrestrial ecosystem may alter the chemical structure of DOM, and then influences soil C mineralization. PMID:24905998
Pan-arctic trends in terrestrial dissolved organic matter from optical measurements
NASA Astrophysics Data System (ADS)
Mann, Paul; Spencer, Robert; Hernes, Peter; Six, Johan; Aiken, George; Tank, Suzanne; McClelland, James; Butler, Kenna; Dyda, Rachael; Holmes, Robert
2016-03-01
Climate change is causing extensive warming across arctic regions resulting in permafrost degradation, alterations to regional hydrology, and shifting amounts and composition of dissolved organic matter (DOM) transported by streams and rivers. Here, we characterize the DOM composition and optical properties of the six largest arctic rivers draining into the Arctic Ocean to examine the ability of optical measurements to provide meaningful insights into terrigenous carbon export patterns and biogeochemical cycling. The chemical composition of aquatic DOM varied with season, spring months were typified by highest lignin phenol and dissolved organic carbon (DOC) concentrations with greater hydrophobic acid content, and lower proportions of hydrophilic compounds, relative to summer and winter months. Chromophoric DOM (CDOM) spectral slope (S275-295) tracked seasonal shifts in DOM composition across river basins. Fluorescence and parallel factor analysis identified seven components across the six Arctic rivers. The ratios of 'terrestrial humic-like' versus 'marine humic-like' fluorescent components co-varied with lignin monomer ratios over summer and winter months, suggesting fluorescence may provide information on the age and degradation state of riverine DOM. CDOM absorbance (a350) proved a sensitive proxy for lignin phenol concentrations across all six river basins and over the hydrograph, enabling for the first time the development of a single pan-arctic relationship between a350 and terrigenous DOC (R2 = 0.93). Combining this lignin proxy with high-resolution monitoring of a350, pan-arctic estimates of annual lignin flux were calculated to range from 156 to 185 Gg, resulting in shorter and more constrained estimates of terrigenous DOM residence times in the Arctic Ocean (spanning 7 months to 2½ years). Furthermore, multiple linear regression models incorporating both absorbance and fluorescence variables proved capable of explaining much of the variability in lignin composition across rivers and seasons. Our findings suggest that synoptic, high-resolution optical measurements can provide improved understanding of northern high-latitude organic matter cycling and flux, and prove an important technique for capturing future climate-driven changes.
Sulfamethazine Sorption to Soil: Vegetative Management, pH, and Dissolved Organic Matter Effects.
Chu, Bei; Goyne, Keith W; Anderson, Stephen H; Lin, Chung-Ho; Lerch, Robert N
2013-01-01
Elucidating veterinary antibiotic interactions with soil is important for assessing and mitigating possible environmental hazards. The objectives of this study were to investigate the effects of vegetative management, soil properties, and >1000 Da dissolved organic matter (DOM) on sulfamethazine (SMZ) behavior in soil. Sorption experiments were performed over a range of SMZ concentrations (2.5-50 μmol L) using samples from three soils (Armstrong, Huntington, and Menfro), each planted to one of three vegetation treatments: agroforestry buffers strips (ABS), grass buffer strips (GBS), and row crops (RC). Our results show that SMZ sorption isotherms are well fitted by the Freundlich isotherm model (log = 0.44-0.93; Freundlich nonlinearity parameter = 0.59-0.79). Further investigation of solid-to-solution distribution coefficients () demonstrated that vegetative management significantly ( < 0.05) influences SMZ sorption (ABS > GBS > RC). Multiple linear regression analyses indicated that organic carbon (OC) content, pH, and initial SMZ concentration were important properties controlling SMZ sorption. Study of the two most contrasting soils in our sample set revealed that increasing solution pH (pH 6.0-7.5) reduced SMZ sorption to the Armstrong GBS soil, but little pH effect was observed for the Huntington GBS soil containing 50% kaolinite in the clay fraction. The presence of DOM (150 mg L OC) had little significant effect on the Freundlich nonlinearity parameter; however, DOM slightly reduced SMZ values overall. Our results support the use of vegetative buffers to mitigate veterinary antibiotic loss from agroecosystems, provide guidance for properly managing vegetative buffer strips to increase SMZ sorption, and enhance understanding of SMZ sorption to soil. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
Compositions and constituents of freshwater dissolved organic matter isolated by reverse osmosis.
Zhang, Yulong; Huang, Wen; Ran, Yong; Mao, Jingdong
2014-08-15
Dissolved organic matter (DOM) from riverine and lacustrine water was isolated using a reverse osmosis (RO) system. Solid-state (13)C nuclear magnetic resonance ((13)C NMR) was used to quantitatively evaluate the compositions and constituents of DOM, which are compared with previous investigations on marine DOM. Results indicated that concentration factor (CF) was a key metric controlling yield and sorption of DOM on the RO system. The sorption was likely non-selective, based on the (13)C NMR and δ(13)C analyses. Carbohydrates and lipids accounted for 25.0-41.5% and 30.2-46.3% of the identifiable DOM, followed by proteins (18.2-19.8%) and lignin (7.17-12.8%). The freshwater DOM contained much higher alkyl and aromatic C but lower alkoxyl and carboxyl C than marine DOM. The structural difference was not completely accounted for by using structure of high molecular weight (HMW) DOM, suggesting a size change involved in transformations of DOM during the transport from rivers to oceans. Copyright © 2014 Elsevier Ltd. All rights reserved.
The dissolved organic matter as a potential soil quality indicator in arable soils of Hungary.
Filep, Tibor; Draskovits, Eszter; Szabó, József; Koós, Sándor; László, Péter; Szalai, Zoltán
2015-07-01
Although several authors have suggested that the labile fraction of soils could be a potential soil quality indicator, the possibilities and limitations of using the dissolved organic matter (DOM) fraction for this purpose have not yet been investigated. The objective of this study was to evaluate the hypothesis that DOM is an adequate indicator of soil quality. To test this, the soil quality indices (SQI) of 190 arable soils from a Hungarian dataset were estimated, and these values were compared to DOM parameters (DOC and SUVA254). A clear difference in soil quality was found between the soil types, with low soil quality for arenosols (average SQI 0.5) and significantly higher values for gleysols, vertisols, regosols, solonetzes and chernozems. The SQI-DOC relationship could be described by non-linear regression, while a linear connection was observed between SQI and SUVA. The regression equations obtained for the dataset showed only one relatively weak significant correlation between the variables, for DOC (R (2) = 0.157(***); n = 190), while non-significant relationships were found for the DOC and SUVA254 values. However, an envelope curve operated with the datasets showed the robust potential of DOC to indicate soil quality changes, with a high R (2) value for the envelope curve regression equation. The limitations to using the DOM fraction of soils as a quality indicator are due to the contradictory processes which take place in soils in many cases.
Haddad, Monoem; Chaouachi, Anis; Wong, Del P; Castagna, Carlo; Hambli, Mourad; Hue, Olivier; Chamari, Karim
2013-07-02
The aim of this study was to assess the effects of the Hooper's Index variations (i.e., self-ratings of fatigue, stress, delayed onset muscle soreness (DOMS), and sleep) on rating of perceived exertion during a 10 min submaximal exercise training session (RPE-10 min) and then check the stability and the internal consistency of RPE-10 min. Seventeen junior soccer players took part in this study. The individual Hooper's indices taken before each training session were correlated with RPE-10 min during a constant intensity and duration effort (10 min) using Pearson product moment correlation. Intraclass correlation (ICC) was used to assess the internal consistency of the RPE-10 min. All individual correlations between RPE-10 min and quality of sleep and quantity of fatigue, stress, and DOMS were non-significant (p>0.05). No significant correlations were resulted between RPE-10 min and Hooper's Index in all athletes. The ICC of RPE-10 min was 0.77 thus demonstrating internal consistency. The results of the present study demonstrated the objectivity and utility of RPE as a psychological tool for monitoring training during traditional soccer training. Therefore, the results of the present study suggest that fatigue, stress, DOMS and sleep are not major contributors of perceived exertion during traditional soccer training without excessive training loads. It seems that psychobiological factors other than fatigue, stress, DOMS and sleep may have mediated the 10 min exercise perceptual intensity. © 2013.
NASA Astrophysics Data System (ADS)
Townsend, S. L.; Ziegler, S. E.
2005-05-01
The effect of solar radiation on dissolved organic matter (DOM) utilization was studied in two contrasting streams from June 2002 through October 2004. Moores Creek is an agricultural stream with elevated nutrient and dissolved organic carbon (DOC) concentrations. Huey Hollow is a forested stream with low nutrient and DOC concentrations. A series of experiments were conducted seasonally to assess how solar radiation influenced DOM utilization. Exposure of DOM to solar radiation significantly decreased its utilization during most seasons in both streams. Each stream experienced one seasonal period when exposure of DOM significantly increased bacterial production; during these periods, DOM appeared to be the least bioavailable and most photochemically reactive. Interestingly, in spring when bioavailability of DOM was lowest in Moores Creek solar radiation exposure further reduced DOM bioavailability. Elevated ammonium concentrations during this spring experiment suggest photochemically-enhanced humification may have been an important mechanism influencing DOM cycling. Bioassays using 15N-labeled ammonium indicated no significant effect of elevated ammonium on the utilization of DOM in either stream in fall 2004. Detection of elevated 15N in the DOM fractions, however, would reveal light stimulated humification under elevated ammonium concentrations not detected with the bioassay.
Xiao, Yi-Hua; Huang, Qing-Hui; Vähätalo, Anssi V; Li, Fei-Peng; Chen, Ling
2014-08-01
The authors studied the effects of dissolved organic matter (DOM) on the bioavailability of bisphenol A (BPA) and chloramphenicol by measuring the freely dissolved concentrations of the contaminants in solutions containing DOM that had been isolated from a mesocosm in a eutrophic lake. The abundance and aromaticity of the chromophoric DOM increased over the 25-d mesocosm experiment. The BPA freely dissolved concentration was 72.3% lower and the chloramphenicol freely dissolved concentration was 56.2% lower using DOM collected on day 25 than using DOM collected on day 1 of the mesocosm experiment. The freely dissolved concentrations negatively correlated with the ultraviolent absorption coefficient at 254 nm and positively correlated with the spectral slope of chromophoric DOM, suggesting that the bioavailability of these emerging organic contaminants depends on the characteristics of the DOM present. The DOM-water partition coefficients (log KOC ) for the emerging organic contaminants positively correlated with the aromaticity of the DOM, measured as humic acid-like fluorescent components C1 (excitation/emission=250[313]/412 nm) and C2 (excitation/emission=268[379]/456 nm). The authors conclude that the bioavailability of emerging organic contaminants in eutrophic lakes can be affected by changes in the DOM. © 2014 SETAC.
Dissolved organic matter reduces algal accumulation of methylmercury
Luengen, Allison C.; Fisher, Nicholas S.; Bergamaschi, Brian A.
2012-01-01
Dissolved organic matter (DOM) significantly decreased accumulation of methylmercury (MeHg) by the diatom Cyclotella meneghiniana in laboratory experiments. Live diatom cells accumulated two to four times more MeHg than dead cells, indicating that accumulation may be partially an energy-requiring process. Methylmercury enrichment in diatoms relative to ambient water was measured by a volume concentration factor (VCF). Without added DOM, the maximum VCF was 32 x 104, and the average VCF (from 10 to 72 h) over all experiments was 12.6 x 104. At very low (1.5 mg/L) added DOM, VCFs dropped by approximately half. At very high (20 mg/L) added DOM, VCFs dropped 10-fold. Presumably, MeHg was bound to a variety of reduced sulfur sites on the DOM, making it unavailable for uptake. Diatoms accumulated significantly more MeHg when exposed to transphilic DOM extracts than hydrophobic ones. However, algal lysate, a labile type of DOM created by resuspending a marine diatom in freshwater, behaved similarly to a refractory DOM isolate from San Francisco Bay. Addition of 67 μM L-cysteine resulted in the largest drop in VCFs, to 0.28 x 104. Although the DOM composition influenced the availability of MeHg to some extent, total DOM concentration was the most important factor in determining algal bioaccumulation of MeHg.
Controls on the dynamics of dissolved organic matter in soils: A review
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kalbitz, K.; Solinger, S.; Park, J.H.
Dissolved organic matter (DOM) in soils plays an important role in the biogeochemistry of carbon, nitrogen, and phosphorus, in pedogenesis, and in the transport of pollutants in soils. The aim of this review is to summarize the recent literature about controls on DOM concentrations and fluxes in soils. The authors focus on comparing results between laboratory and field investigations and on the differences between the dynamics of dissolved organic carbon (DOC), nitrogen (DON), and phosphorus (DOP). Both laboratory and field studies show that litter and humus are the most important DOM sources in soils. However, it is impossible to quantifymore » the individual contributions of each of these sources to DOM release. In addition, it is not clear how changes in the pool sizes of litter or humus may affect DOM release. High microbial activity, high fungal abundance, and any conditions that enhance mineralization all promote high DOM concentrations. However, under field conditions, hydrologic variability in soil horizons with high carbon contents may be more important than biotic controls. In subsoil horizons with low carbon contents, DOM may be adsorbed strongly to mineral surfaces, resulting in low DOM concentrations in the soil solution. There are strong indications that microbial degradation of DOM also controls the fate of DOM in the soil.« less
Leenheer, J.A.
2004-01-01
A comprehensive isolation, fractionation, and characterization research approach was developed for dissolved and colloidal organic matter (DOM) in water, and it was applied to various surface- and groundwaters to assess DOM precursors, DOM diagenesis, and DOM reactivity to water treatment processes. Major precursors for natural DOM are amino sugars, condensed tannins, and terpenoids. Amino sugar colloids derived from bacterial cell walls are incompletely removed by drinking water treatment and foul reverse osmosis membranes, but are nearly quantitatively removed by soil/aquifer treatment. When chlorinated, amino sugars produce low yields of regulated disinfection by-products (DBFs) but they produce significant chlorine demand that is likely caused by chlorination of free amino groups. Condensed tannins are major precursors for "blackwater" DOM such as that found in the Suwannee River. This DOM produces high yields of DBPs upon chorination, and is efficiently removed by coagulation/flocculation treatment. Terpenoid-derived DOM appears to be biologically refractory, infiltrates readily into groundwater with little removal by soil/aquifer treatment, gives low DBF-yields upon chlorination and is poorly removed by coagulation/flocculation treatments. Peptides derived from proteins are major components of the base DOM fraction (10% or less of the mass of DOM), and this fraction produces large yields of haloacetonitriles upon chorination.
He, Huan; Huang, Bin; Fu, Gen; Xiong, Dan; Xu, Zhixiang; Wu, Xinhao; Pan, Xuejun
2018-06-15
The photochemical conversion and microbial transformation of pollutants mediated by dissolved organic matter (DOM), including 17α-ethinylestradiol (EE2), are often accompanied in natural water. However, there are few studies to explore the connection and mechanism between the two processes. This research aims to investigate the mechanism of DOM after electrochemically modification mediated EE2 combining photodegradation and biodegradation in the environment and it want to explain the natural phenomena of DOM after electrochemical advanced treatment entering the water environment mediated EE2 natural degradation. The results showed that combining photodegradation with biodegradation rates of EE2 mediated by DOM and electrochemically modified DOM (E-DOM) were promoted obviously. The efficiency of EE2 biodegradation was shown to be strongly correlated with electron accepting capacity (EAC) of DOM. Electrochemical modification can increase the EAC of DOM leading to EE2 biodegradation accelerated, and it also can form more triplet-state DOM moieties to promote the EE2 photodegradation in irradiation conditions, due to the increasing of quinone-type structures in DOM. Moreover, cell polymeric secretion (CPS) secreted from the microorganism could be stimulated to an excited state by irradiation, and that also accelerated EE2 degradation. Photolysis combined with biochemical degradation yielded less toxic degradation products. This study shows that the emission of DOM in wastewater after electrochemical treatment could accelerate estrogen degradation and play a positive role on the pollutant transformation in the environment. Copyright © 2018 Elsevier Ltd. All rights reserved.
Chen, Ting-Chien; Hseu, Zeng-Yei; Jean, Jiin-Shuh; Chou, Mon-Lin
2016-09-01
The formation of an arsenic (As)-dissolved organic matter (DOM) complex is important in driving the release of arsenic in groundwater. This study collected groundwater samples from a 20 m deep well throughout 2014 and separated each into three subsamples by ultrafiltration: high molecular weight-DOM (HDOM, 0.45 μm-10 kDa), medium molecular weight-DOM (MDOM, 10-1 kDa), and low molecular weight-DOM (LDOM, <1 kDa) solutions. The fractional DOM was measured with a three-dimensional excitation-emission matrix (EEM) via fluorescence spectroscopy. A fluorescence quenching method was used to calculate the apparent stability constant (Ks) between arsenic and the fractional DOM. Based on the EEM records, three fluorescence indicators were further calculated to characterize the DOM sources, including the fluorescence index (FI), the biological index (BI), and the humification index (HI). The experimental results indicated that arsenic in the groundwater was mainly partitioned into the MDOM and LDOM fractions. All fractional DOMs contained humic acid-like substances and were considered as microbial sources. LDOM had the highest humification degree and aromaticity, followed by MDOM and HDOM. The As and DOM association could be formed by a Fe-bridge, which was demonstrated by the Ks values and fourier transform infrared (FTIR) spectra of the DOM. The formation of AsFe-DOM complex was only significant in the MDOM and LDOM. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Whitetree, A.; Van Stan, J. T., II; Wagner, S.; Guillemette, F.; Lewis, J.; Silva, L.; Stubbins, A.
2017-12-01
Studies on the fate and transport of dissolved organic matter (DOM) along the rainfall-to-discharge flow pathway typically begin in streams or soils, neglecting the initial enrichment of rainfall with DOM during contact with plant canopies. However, rain water can gather significant amounts of tree-derived DOM (tree-DOM) when it drains from the canopy, as throughfall, and down the stem, as stemflow. We examined the temporal variability of event-scale tree-DOM concentrations, yield, and optical (light absorbance and fluorescence) characteristics from an epiphyte-laden Quercus virginiana-Juniperus virginiana forest on Skidaway Island, Savannah, Georgia (USA). All tree-DOM fluxes were highly enriched compared to rainfall and epiphytes further increased concentrations. Stemflow DOC concentrations were greater than throughfall across study species, yet larger throughfall water yields produced greater DOC yields versus stemflow. Tree-DOM optical characteristics indicate it is aromatic-rich with FDOM dominated by humic-like fluorescence, containing 10-20% protein-like (tryptophan-like) fluorescence. Storm size was the only storm condition that strongly correlated with tree-DOM concentration and flux; however, throughfall and stemflow optical characteristics varied little across a wide range of storm conditions (from low magnitude events to intense tropical storms). Annual tree-DOM yields from the study forest (0.8-46 g-C m-2 yr-1) compared well to other yields along the rainfall-to- discharge flow pathway, exceeding DOM yields from some river watersheds.
Metal Ion Speciation and Dissolved Organic Matter Composition in Soil Solutions
NASA Astrophysics Data System (ADS)
Benedetti, M. F.; Ren, Z. L.; Bravin, M.; Tella, M.; Dai, J.
2014-12-01
Knowledge of the speciation of heavy metals and the role of dissolved organic matter (DOM) in soil solution is a key to understand metal mobility and ecotoxicity. In this study, soil column-Donnan membrane technique (SC-DMT) was used to measure metal speciation of Cd, Cu, Ni, Pb, and Zn in eighteen soil solutions, covering a wide range of metal sources and concentrations. DOM composition in these soil solutions was also determined. Our results show that in soil solution Pb and Cu are dominant in complex form, whereas Cd, Ni and Zn mainly exist as free ions; for the whole range of soil solutions, only 26.2% of DOM is reactive and consists mainly of fulvic acid (FA). The metal speciation measured by SC-DMT was compared to the predicted ones obtained via the NICA-Donnan model using the measured FA concentrations. The free ion concentrations predicted by speciation modelling were in good agreement with the measurements. Diffusive gradients in thin-films gels (DGT) were also performed to quantify the labile metal species in the fluxes from solid phase to solution in fourteen soils. The concentrations of metal species detected by DGT were compared with the free ion concentrations measured by DMT and the maximum concentrations calculated based on the predicted metal speciation in SC-DMT soil solutions. It is concluded that both inorganic species and a fraction of FA bound species account for the amount of labile metals measured by DGT, consistent with the dynamic features of this technique. The comparisons between measurements using analytical techniques and mechanistic model predictions provided mutual validation in their performance. Moreover, we show that to make accurate modelling of metal speciation in soil solutions, the knowledge of DOM composition is the crucial information, especially for Cu; like in previous studies the modelling of Pb speciation is not optimal and an updated of Pb generic binding parameters is required to reduce model prediction uncertainties.
Liu, Yong; Lou, Jun; Li, Fang-Bai; Xu, Jian-Ming; Yu, Xiong-Sheng; Zhu, Li-An; Wang, Feng
2014-08-01
Green manuring is a common practice in replenishment of soil organic matter and nutrients in rice paddy field. Owing to the complex interplay of multiple factors, the oxidation--reduction (redox) properties of dissolved organic matter (DOM) from green manure crops are presently not fully understood. In this study, a variety of surrogate parameters were used to evaluate the redox capacity and redox state of DOM derived from Chinese milk vetch (CMV, Astragalus sinicus L.) via microbial decomposition under continuously flooded (CF) and non-flooded (NF) conditions. Additionally, the correlation between the surrogate parameters of CMV-DOM and the kinetic parameters of relevant redox reactions was evaluated in a soil-water system containing CMV-DOM. Results showed that the redox properties of CMV-DOM were substantially different between the fresh and decomposed CMV-DOM treatments. Determination of the surrogate parameters via ultraviolet-visible/Fourier transform infrared absorption spectroscopy and gel permeation chromatography generally provided high-quality data for predicting the redox capacity of CMV-DOM, while the surrogate parameters determined by elemental analysis were suitable for predicting the redox state of CMV-DOM. Depending on the redox capacity and redox state of various moieties/components, NF-decomposed CMV-DOM could easily accelerate soil reduction by shuttling electrons to iron oxides, because it contained more reversible redox-active functional groups (e.g. quinone and hydroquinone pairs) than CF-decomposed CMV-DOM. This work demonstrates that a single index cannot interpret complex changes in multiple factors that jointly determine the redox reactivity of CMV-DOM. Thus, a multi-parametric study is needed for providing comprehensive information on the redox properties of green manure DOM.
How reservoirs alter drinking water quality: Organic matter sources, sinks, and transformations
Kraus, Tamara E.C.; Bergamaschi, Brian A.; Hernes, Peter J.; Doctor, Daniel H.; Kendall, Carol; Downing, Bryan D.; Losee, Richard F.
2011-01-01
Within reservoirs, production, transformation, and loss of dissolved organic matter (DOM) occur simultaneously. While the balance between production and loss determines whether a reservoir is a net sink or source of DOM, changes in chemical composition are also important because they affect DOM reactivity with respect to disinfection by-product (DBP) formation. The composition of the DOM pool also provides insight into DOM sources and processing, which can inform reservoir management. We examined the concentration and composition of DOM in San Luis Reservoir, a large off-stream impoundment of the California State Water Project. We used a wide array of DOM chemical tracers including dissolved organic carbon (DOC) concentration, trihalomethane and haloacetic acid formation potentials (THMFP and HAAFP, respectively), absorbance properties, isotopic composition, lignin phenol content, and structural groupings determined by 13C nuclear magnetic resonance (NMR). There were periods when the reservoir was a net source of DOC due to the predominance of algal production (summer), a net sink due to the predominance of degradation (fall–winter), and balanced between production and consumption (spring). Despite only moderate variation in bulk DOC concentration (3.0–3.6 mg C/L), changes in DOM composition indicated that terrestrial-derived material entering the reservoir was being degraded and replaced by aquatic-derived DOM produced within the reservoir. Substantial changes in the propensity of the DOM pool to form THMs and HAAs illustrate that the DBP precursor pool was not directly coupled to bulk DOC concentration and indicate that algal production is an important source of DBP precursors. Results suggest reservoirs have the potential to attenuate DOM amount and reactivity with respect to DBP precursors via degradative processes; however, these benefits can be decreased or even negated by the production of algal-derived DOM.
Human activities cause distinct dissolved organic matter composition across freshwater ecosystems.
Williams, Clayton J; Frost, Paul C; Morales-Williams, Ana M; Larson, James H; Richardson, William B; Chiandet, Aisha S; Xenopoulos, Marguerite A
2016-02-01
Dissolved organic matter (DOM) composition in freshwater ecosystems is influenced by the interactions among physical, chemical, and biological processes that are controlled, at one level, by watershed landscape, hydrology, and their connections. Against this environmental template, humans may strongly influence DOM composition. Yet, we lack a comprehensive understanding of DOM composition variation across freshwater ecosystems differentially affected by human activity. Using optical properties, we described DOM variation across five ecosystem groups of the Laurentian Great Lakes region: large lakes, Kawartha Lakes, Experimental Lakes Area, urban stormwater ponds, and rivers (n = 184 sites). We determined how between ecosystem variation in DOM composition related to watershed size, land use and cover, water quality measures (conductivity, dissolved organic carbon (DOC), nutrient concentration, chlorophyll a), and human population density. The five freshwater ecosystem groups had distinctive DOM composition from each other. These significant differences were not explained completely through differences in watershed size nor spatial autocorrelation. Instead, multivariate partial least squares regression showed that DOM composition was related to differences in human impact across freshwater ecosystems. In particular, urban/developed watersheds with higher human population densities had a unique DOM composition with a clear anthropogenic influence that was distinct from DOM composition in natural land cover and/or agricultural watersheds. This nonagricultural, human developed impact on aquatic DOM was most evident through increased levels of a microbial, humic-like parallel factor analysis component (C6). Lotic and lentic ecosystems with low human population densities had DOM compositions more typical of clear water to humic-rich freshwater ecosystems but C6 was only present at trace to background levels. Consequently, humans are strongly altering the quality of DOM in waters nearby or flowing through highly populated areas, which may alter carbon cycles in anthropogenically disturbed ecosystems at broad scales. © 2015 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Yamashita, Youhei; Boyer, Joseph N.; Jaffé, Rudolf
2013-09-01
The coastal zone of the Florida Keys features the only living coral reef in the continental United States and as such represents a unique regional environmental resource. Anthropogenic pressures combined with climate disturbances such as hurricanes can affect the biogeochemistry of the region and threaten the health of this unique ecosystem. As such, water quality monitoring has historically been implemented in the Florida Keys, and six spatially distinct zones have been identified. In these studies however, dissolved organic matter (DOM) has only been studied as a quantitative parameter, and DOM composition can be a valuable biogeochemical parameter in assessing environmental change in coastal regions. Here we report the first data of its kind on the application of optical properties of DOM, in particular excitation emission matrix fluorescence with parallel factor analysis (EEM-PARAFAC), throughout these six Florida Keys regions in an attempt to assess spatial differences in DOM sources. Our data suggests that while DOM in the Florida Keys can be influenced by distant terrestrial environments such as the Everglades, spatial differences in DOM distribution were also controlled in part by local surface runoff/fringe mangroves, contributions from seasgrass communities, as well as the reefs and waters from the Florida Current. Application of principal component analysis (PCA) of the relative abundance of EEM-PARAFAC components allowed for a clear distinction between the sources of DOM (allochthonous vs. autochthonous), between different autochthonous sources and/or the diagenetic status of DOM, and further clarified contribution of terrestrial DOM in zones where levels of DOM were low in abundance. The combination between EEM-PARAFAC and PCA proved to be ideally suited to discern DOM composition and source differences in coastal zones with complex hydrology and multiple DOM sources.
Human activities cause distinct dissolved organic matter composition across freshwater ecosystems
Williams, Clayton J.; Frost, Paul C.; Morales-Williams, Ana M.; Larson, James H.; Richardson, William B.; Chiandet, Aisha S.; Xenopoulos, Marguerite A.
2016-01-01
Dissolved organic matter (DOM) composition in freshwater ecosystems is influenced by interactions between physical, chemical, and biological processes that are controlled, at one level, by watershed landscape, hydrology, and their connections. Against this environmental template, humans may strongly influence DOM composition. Yet, we lack a comprehensive understanding of DOM composition variation across freshwater ecosystems differentially affected by human activity. Using optical properties, we described DOM variation across five ecosystem groups of the Laurentian Great Lakes Region: large lakes, Kawartha Lakes, Experimental Lakes Area, urban stormwater ponds, and rivers (n = 184 sites). We determined how between ecosystem variation in DOM composition related to watershed size, land use and cover, water quality measures (conductivity, dissolved organic carbon (DOC), nutrient concentration, chlorophyll a), and human population density. The five freshwater ecosystem groups had distinctive DOM composition from each other. These significant differences were not explained completely through differences in watershed size nor spatial autocorrelation. Instead, multivariate partial least squares regression showed that DOM composition was related to differences in human impact across freshwater ecosystems. In particular, urban/developed watersheds with higher human population densities had a unique DOM composition with a clear anthropogenic influence that was distinct from DOM composition in natural land cover and/or agricultural watersheds. This nonagricultural, human developed impact on aquatic DOM was most evident through increased levels of a microbial, humic-like parallel factor analysis component (C6). Lotic and lentic ecosystems with low human population densities had DOM compositions more typical of clear water to humic-rich freshwater ecosystems but C6 was only present at trace to background levels. Consequently, humans are strongly altering the quality of DOM in waters nearby or flowing through highly populated areas, which may alter carbon cycles in anthropogenically disturbed ecosystems at broad scales.
Photodegradation of dissolved organic matter in ice under solar irradiation.
Xue, Shuang; Wang, Chao; Zhang, Zhaohong; Song, Youtao; Liu, Qiang
2016-02-01
The photodegradation behavior of dissolved organic matter (DOM) with different origins in ice under solar irradiation was investigated. Exposure to sunlight at 2.7 × 10(5) J m(-2) resulted in dissolved organic carbon (DOC) reductions of 22.1-36.5% in ice. The naturally occurring DOM had higher photodegradation potentials than the wastewater-derived DOM in ice. Ultraviolet (UV)-absorbing compounds in DOM, regardless of DOM origin, had much higher photodegradation potentials than gross DOC in ice. The susceptibility of UV-absorbing compounds with natural origin to sunlight exposure in ice was higher than those derived from wastewater. Trihalomethane (THM) precursors were more susceptible to photochemical reactions than gross DOC and haloacetic acid (HAA) precursors in ice. THM precursors in naturally occurring DOM were more photoreactive than those in wastewater-derived DOM in ice, while the photoreactivity of HAA precursors in ice was independent of DOM origin. In ice, the photoreactivity of humic-like fluorescent materials, regardless of DOM origin, was higher than that of gross DOC and protein-like fluorescent materials. DOC reductions caused by sunlight irradiation were found to be negatively correlated to DOC levels, and positively correlated to the aromaticity of DOM. The photodegradation of both wastewater-derived and naturally occurring DOM in ice was significantly facilitated at both acid and alkaline pH, as compared to neutral pH. The photodegradation of DOM in ice, regardless of the origin, was facilitated by nitrate ion [Formula: see text] , nitrite ion [Formula: see text] , ferric ion (Fe(3+)) and ferrous ion (Fe(2+)), and on the other hand, was inhibited by chloridion ion (Cl(-)) and copper ion (Cu(2+)). Copyright © 2015 Elsevier Ltd. All rights reserved.
Maizel, Andrew C; Remucal, Christina K
2017-08-16
Excited triplet states of dissolved organic matter ( 3 DOM) are quantified directly with the species-specific probes trans,trans-hexadienoic acid (HDA) and 2,4,6-trimethylphenol (TMP), and indirectly with the singlet oxygen ( 1 O 2 ) probe furfuryl alcohol (FFA). Although previous work suggests that these probe compounds may be sensitive to solution conditions, including dissolved organic carbon concentration ([DOC]) and pH, and may quantify different 3 DOM subpopulations, the probes have not been systematically compared. Therefore, we quantify the apparent photoreactivity of diverse environmental waters using HDA, TMP, and FFA. By conducting experiments under ambient [DOC] and pH, with standardized [DOC] and pH, and with solid phase extraction isolates, we demonstrate that much of the apparent dissimilarity in photochemical measurements is attributable to solution conditions, rather than intrinsic differences in 3 DOM production. In general, apparent quantum yields (Φ 1 O 2 ≥ Φ 3 DOM,TMP ≫ Φ 3 DOM,HDA ) and pseudo-steady state concentrations ([ 1 O 2 ] ss > [ 3 DOM] ss,TMP > [ 3 DOM] ss,HDA ) show consistent relationships in all waters under standardized conditions. However, intrinsic differences in 3 DOM photoreactivity are apparent between DOM from diverse sources, as seen in the higher Φ 1 O 2 and lower Φ 3 DOM,TMP of wastewater effluents compared with oligotrophic lakes. Additionally, while conflicting trends in photoreactivity are observed under ambient conditions, all probes observe quantum yields increasing from surface wetlands to terrestrially influenced waters to oligotrophic lakes under standardized conditions. This work elucidates how probe selection and solution conditions influence the apparent photoreactivity of environmental waters and confirms that 3 DOM or 1 O 2 probes cannot be used interchangeably in waters that vary in [DOC], pH, or DOM source.
Biochar amendment to soil changes dissolved organic matter content and composition.
Smebye, Andreas; Alling, Vanja; Vogt, Rolf D; Gadmar, Tone C; Mulder, Jan; Cornelissen, Gerard; Hale, Sarah E
2016-01-01
Amendments of biochar, a product of pyrolysis of biomass, have been shown to increase fertility of acidic soils by enhancing soil properties such as pH, cation-exchange-capacity and water-holding-capacity. These parameters are important in the context of natural organic matter contained in soils, of which dissolved organic matter (DOM) is the mobile and most bioavailable fraction. The effect of biochar on the content and composition of DOM in soils has received little research attention. This study focuses on the effects of amendments of two different biochars to an acidic acrisol and a pH-neutral brown soil. A batch experiment showed that mixing biochar with the acrisols at a 10 wt.% dose increased the pH from 4.9 to 8.7, and this resulted in a 15-fold increase in the dissolved organic carbon concentration (from 4.5 to 69 mg L(-1)). The pH-increase followed the same trend as the release of DOM in the experiment, causing higher DOM solubility and desorption of DOM from mineral sites. The binding to biochar of several well-characterised reference DOM materials was also investigated and results showed a higher sorption of aliphatic DOM to biochar than aromatic DOM, with DOM-water partitioning coefficients (Kd-values) ranging from 0.2 to 590 L kg(-1). A size exclusion occurring in biochar's micropores, could result in a higher sorption of smaller aliphatic DOM molecules than larger aromatic ones. These findings indicate that biochar could increase the leaching of DOM from soil, as well as change the DOM composition towards molecules with a larger size and higher aromaticity. Copyright © 2015 Elsevier Ltd. All rights reserved.
Al-Reasi, Hassan A; Yusuf, Usman; Smith, D Scott; Wood, Chris M
2013-11-01
Dissolved organic matter (DOM), a heterogeneous substance found in all natural waters, has many documented abiotic roles, but recently, several possible direct influences of DOM on organism physiology have been reported. However, most studies have been carried out with a limited number of natural DOM isolates or were restricted to the use of commercial or artificial humic substances. We therefore employed three previously characterized, chemically-distinct natural DOMs, as well as a commercially available humic acid (Aldrich, AHA), at circumneutral (7-8) and acidic pH (~5), to examine DOM effects on whole-body Na(+) concentration, unidirectional influx and efflux rates of Na(+), and ammonia and urea excretion rates in Daphnia magna. Whole-body Na(+) concentration, Na(+) influx, and Na(+) efflux rates were all unaffected regardless of pH, suggesting no influence of the various natural DOMs on active uptake and passive diffusion of Na(+) in this organism. Ammonia and urea excretion rates were both increased by low pH. Ammonia excretion rates were reduced at circumneutral pH by the most highly colored, allochthonous DOM, and at low pH by all three natural DOMs, as well as by the commercial AHA. Urea excretion rates were not influenced by the presence of the various DOMs in circumneutral solutions, but were attenuated by the presence of two allochthonous DOM sources (isolated from Bannister Lake and Luther Marsh) at acidic pH. The observed reductions may be attributed partially to the higher buffering capacities of natural DOM sources, as well as their ability to interact with biological membranes as estimated by a new measure calculated from their acid-base titration characteristics, the Proton Binding Index (PBI). © 2013.
Source and Processes of Dissolved Organic Matter in a Bangladesh Groundwater
NASA Astrophysics Data System (ADS)
McKnight, D. M.; Simone, B. E.; Mladenov, N.; Zheng, Y.; Legg, T. M.; Nemergut, D.
2010-12-01
Arsenic contamination of groundwater is a global health crisis, especially in Bangladesh where an estimated 40 million people are at risk. The release of geogenic arsenic bound to sediments into groundwater is thought to be influenced by dissolved organic matter (DOM) through several biogeochemical processes. Abiotically, DOM can promote the release of sediment bound As through the formation of DOM-As complexes and competitive interactions between As and DOM for sorption sites on the sediment. Additionally, the labile portion of groundwater DOM can serve as an electron donor to support microbial growth and the more recalcitrant humic DOM may serve as an electron shuttle, facilitating the eventual reduction of ferric iron present as iron oxides in sediments and consequently the mobilization of sorbed As and organic material. The goal of this study is to understand the source of DOM in representative Bangladesh groundwaters and the DOM sorption processes that occur at depth. We report chemical characteristics of representative DOM from a surface water, a shallow low-As groundwater, mid-depth high-As groundwater from the Araihazar region of Bangladesh. The humic DOM from groundwater displayed a more terrestrial chemical signature, indicative of being derived from plant and soil precursor materials, while the surface water humic DOM had a more microbial signature, suggesting an anthropogenic influence. In terms of biogeochemical processes occurring in the groundwater system, there is evidence from a diverse set of chemical characteristics, ranging from 13C-NMR spectroscopy to the analysis of lignin phenols, for preferential sorption onto iron oxides influencing the chemistry and reactivity of humic DOM in high As groundwater in Bangladesh. Taken together, these results provide chemical evidence for anthropogenic influence and the importance of sorption reactions at depth controlling the water quality of high As groundwater in Bangladesh.
Chen, Meilian; Kim, Sung-Han; Jung, Heon-Jae; Hyun, Jung-Ho; Choi, Jung Hyun; Lee, Hyo-Jin; Huh, In-Ae; Hur, Jin
2017-09-15
In order to understand the characteristics and dynamics of dissolved organic matter (DOM) in the sediment of rivers affected by impoundments, we examined the vertical profiles and the benthic fluxes of DOM in four different core sediments located at upstream sites of weirs in major rivers of South Korea. In three out of four sites, exponential accumulation of dissolved organic carbon (DOC) with depth was observed with the signature of seasonal variability. Except for the site displaying a below-detection limit of Fe(II), the general accumulation trends of DOC with depth was concurrent with the increases of Fe(II) and NH 4 + and the decrease of PO 4 3- , signifying a close linkage of the DOM dynamics with anaerobic respiration via iron reduction, an important early diagenesis pathway. The estimated benthic fluxes from the cores revealed that the sediments likely serve as DOC, chromophoric DOM (CDOM), and fluorescent DOM (FDOM) sources to the overlying water. The benthic effluxes based on DOC were comparable to the ranges previously reported in lake and coastal areas, and those of CDOM and FDOM showed even higher levels. These findings imply that impoundment-affected river systems would change the DOM composition of the overlying water, ultimately influencing the subsequent water treatment processes such as disinfection byproducts production and membrane fouling. A simple mass balance model indicated that the impoundment-affected river sediments may operate as a net carbon sink in the environments due to a greater extent of sedimentation compared to the estimated benthic efflux and sediment biological respiration. Copyright © 2017 Elsevier Ltd. All rights reserved.
Al-Reasi, Hassan A; Smith, D Scott; Wood, Chris M
2012-03-01
Various quality predictors of seven different natural dissolved organic matter (DOM) and humic substances were evaluated for their influence on protection of Daphnia magna neonates against copper (Cu) toxicity. Protection was examined at 3 and 6 mg l(-1) of dissolved organic carbon (DOC) of each DOM isolate added to moderately hard, dechlorinated water. Other water chemistry parameters (pH, concentrations of DOC, calcium, magnesium and sodium) were kept relatively constant. Predictors included absorbance ratios Abs(254/365) (index of molecular weight) and Abs-octanol(254)/Abs-water(254) (index of lipophilicity), specific absorption coefficient (SAC(340); index of aromaticity), and fluorescence index (FI; index of source). In addition, the fluorescent components (humic-like, fulvic-like, tryptophan-like, and tyrosine-like) of the isolates were quantified by parallel factor analysis (PARAFAC). Up to 4-fold source-dependent differences in protection were observed amongst the different DOMs. Significant correlations in toxicity amelioration were found with Abs(254/365), Abs-octanol(254)/Abs-water(254), SAC(340), and with the humic-like fluorescent component. The relationships with FI were not significant and there were no relationships with the tryptophan-like or tyrosine-like fluorescent components at 3 mg C l(-1), whereas a negative correlation was seen with the fulvic-like component. In general, the results indicate that larger, optically dark, more lipophilic, more aromatic DOMs of terrigenous origin, with higher humic-like content, are more protective against Cu toxicity. A method for incorporating SAC(340) as a DOM quality indicator into the Biotic Ligand Model is presented; this may increase the accuracy for predicting Cu toxicity in natural waters.
Kim, Eun-Ah; Luthy, Richard G
2011-11-01
This study investigated the role of dissolved organic matter on mercury partitioning between a hydrophobic surface (polyethylene, PE) and a reduced sulfur-rich surface (polysulfide rubber, PSR). Comparative sorption studies employed polyethylene and polyethylene coated with PSR for reactions with DOM-bound mercuric ions. These studies revealed that PSR enhanced the Hg-DOM removal from water when DOM was Suwannee River natural organic matter (NOM), fulvic acid (FA), or humic acid (HA), while the same amount of 1,3-propanedithiol-bound mercuric ion was removed by both PE and PSR-PE. The differences for Hg-DOM removal efficiencies between PE and PSR-PE varied depending on which DOM was bound to mercuric ion as suggested by the PE/water and PSR-PE/water partition coefficients for mercury. The surface concentrations of mercury on PE and PSR-PE with the same DOM measured by x-ray photoelectron spectroscopy were similar, which indicated the comparable amounts of immobilized mercury on PE and PSR-PE being exposed to the aqueous phase. With these observations, two major pathways for the immobilization reactions between PSR-PE and Hg-DOM were examined: 1) adsorption of Hg-DOM on PE by hydrophobic interactions between DOM and PE, and 2) addition reaction of Hg-DOM onto PSR by a complexation reaction between Hg and PSR. The percent contribution of each pathway was derived from a mass balance and the ratios among aqueous mercury, PE-bound Hg-DOM, and PSR-bound Hg-DOM concentrations. The results indicate strong binding of mercuric ion with both dissolved organic matter and PSR polymer. The FT-IR examination of Hg-preloaded-PSR-PEs after the reaction with DOM corroborated a strong interaction between mercuric ion and 1,3-propanedithiol compared to Hg-HA, Hg-FA, or Hg-NOM interactions. Copyright © 2011 Elsevier Ltd. All rights reserved.
Composition and transformation of dissolved organic matter in the Baltic Sea
NASA Astrophysics Data System (ADS)
Seidel, Michael; Manecki, Marcus; Herlemann, Daniel P. R.; Deutsch, Barbara; Schulz-Bull, Detlef; Jürgens, Klaus; Dittmar, Thorsten
2017-05-01
The processing of terrestrial dissolved organic matter (DOM) in coastal shelf seas is an important part of the global carbon cycle, yet, it is still not well understood. One of the largest brackish shelf seas, the Baltic Sea in northern Europe, is characterized by high freshwater input from sub-arctic rivers and limited water exchange with the Atlantic Ocean via the North Sea. We studied the molecular and isotopic composition and turnover of solid-phase extractable (SPE) DOM and its transformation along the salinity and redox continuum of the Baltic Sea during spring and autumn. We applied ultrahigh-resolution mass spectrometry and other geochemical and biological approaches. Our data demonstrate a large influx of terrestrial riverine DOM, especially into the northern part of the Baltic Sea. The DOM composition in the central Baltic Sea changed seasonally and was mainly related to autochthonous production by phytoplankton in spring. Especially in the northern, river-dominated basins, a major fraction of riverine DOM was removed, likely by bio- and photo-degradation. We estimate that the removal rate of terrestrial DOM in the Baltic Sea (Bothnian Bay to the Danish Straits/Kattegat area) is 1.6 - 1.9 Tg C per year which is 43 to 51% of the total riverine input. The export of terrestrial DOM from the Danish Straits/Kattegat area towards the North Sea is 1.8 - 2.1 Tg C per year. Due to the long residence time of terrestrial DOM in the Baltic Sea (total of ca. 12 years), seasonal variations caused by bio- and photo-transformations and riverine discharge are dampened, resulting in a relatively invariant DOM molecular and isotopic signature exported to the North Sea. In the deep stagnant basins of the Baltic Sea, the DOM composition and dissolved organic nitrogen concentrations changed seasonally, likely because of vertical particle transport and subsequent degradation releasing DOM. DOM in the deep anoxic basins was also enriched in sulfur-containing organic molecules, pointing to abiotic sulfurization of DOM under sulfidic conditions.
Kim, Eun-Ah
2011-01-01
This study investigated the role of dissolved organic matter on mercury partitioning between a hydrophobic surface (polyethylene, PE) and a reduced sulfur-rich surface (polysulfide rubber, PSR). Comparative sorption studies employed polyethylene and polyethylene coated with PSR for reactions with DOM-bound mercuric ions. These studies revealed that PSR enhanced the Hg-DOM removal from water when DOM was Suwannee River natural organic matter (NOM), fulvic acid (FA), or humic acid (HA), while the same amount of 1,3-propanedithiol-bound mercuric ion was removed by both PE and PSR-PE. The differences for Hg-DOM removal efficiencies between PE and PSR-PE varied depending on which DOM was bound to mercuric ion as suggested by the PE/water and PSR-PE/water partition coefficients for mercury. The surface concentrations of mercury on PE and PSR-PE with the same DOM measured by x-ray – photoelectron spectroscopy were similar, which indicated the comparable amounts of immobilized mercury on PE and PSR-PE being exposed to the aqueous phase. With these observations, two major pathways for the immobilization reactions between PSR-PE and Hg- DOM were examined: 1) adsorption of Hg-DOM on PE by hydrophobic interactions between DOM and PE, and 2) addition reaction of Hg-DOM onto PSR by a complexation reaction between Hg and PSR. The percent contribution of each pathway was derived from a mass balance and the ratios among aqueous mercury, PE-bound Hg-DOM, and PSR-bound Hg-DOM concentrations. The results indicate strong binding of mercuric ion with both dissolved organic matter and PSR polymer. The FT-IR examination of Hg-preloaded-PSR-PEs after the reaction with DOM corroborated a strong interaction between mercuric ion and 1,3-propanedithiol compared to Hg-HA, Hg-FA, or Hg-NOM interactions. PMID:21872900
Karpuzcu, M Ekrem; McCabe, Andrew J; Arnold, William A
2016-02-01
Photochemical reactions involving a variety of photosensitizers contribute to the abiotic transformation of pesticides in prairie pothole lakes (PPLs). Despite the fact that triplet excited state dissolved organic matter (DOM) enhances phototransformation of pesticides by acting as a photosensitizer, it may also decrease the overall phototransformation rate through various mechanisms. In this study, the effect of DOM on the phototransformation of four commonly applied pesticides in four different PPL waters was investigated under simulated sunlight using photoexcited benzophenone-4-carboxylate as the oxidant with DOM serving as an anti-oxidant. For atrazine and mesotrione, a decrease in phototransformation rates was observed, while phototransformations of metolachlor and isoproturon were not affected by DOM inhibition. Phototransformation rates and the extent of inhibition/enhancement by DOM varied spatially and temporally across the wetlands studied. Characterization of DOM from the sites and different seasons suggested that the DOM type and variations in the DOM structure are important factors controlling phototransformation rates of pesticides in PPLs.
Formation of nanocolloidal metacinnabar in mercury-DOM-sulfide systems
Gerbig, Chase A.; Kim, Christopher S.; Stegemeier, John P.; Ryan, Joseph N.; Aiken, George R.
2011-01-01
Direct determination of mercury (Hg) speciation in sulfide-containing environments is confounded by low mercury concentrations and poor analytical sensitivity. Here we report the results of experiments designed to assess mercury speciation at environmentally relevant ratios of mercury to dissolved organic matter (DOM) (i.e., <4 nmol Hg (mg DOM)−1) by combining solid phase extraction using C18 resin with extended X-ray absorption fine structure (EXAFS) spectroscopy. Aqueous Hg(II) and a DOM isolate were equilibrated in the presence and absence of 100 μM total sulfide. In the absence of sulfide, mercury adsorption to the resin increased as the Hg:DOM ratio decreased and as the strength of Hg-DOM binding increased. EXAFS analysis indicated that in the absence of sulfide, mercury bonds with an average of 2.4 ± 0.2 sulfur atoms with a bond length typical of mercury-organic thiol ligands (2.35 Å). In the presence of sulfide, mercury showed greater affinity for the C18 resin, and its chromatographic behavior was independent of Hg:DOM ratio. EXAFS analysis showed mercury–sulfur bonds with a longer interatomic distance (2.51–2.53 Å) similar to the mercury–sulfur bond distance in metacinnabar (2.53 Å) regardless of the Hg:DOM ratio. For all samples containing sulfide, the sulfur coordination number was below the ideal four-coordinate structure of metacinnabar. At a low Hg:DOM ratio where strong binding DOM sites may control mercury speciation (1.9 nmol mg–1) mercury was coordinated by 2.3 ± 0.2 sulfur atoms, and the coordination number rose with increasing Hg:DOM ratio. The less-than-ideal coordination numbers indicate metacinnabar-like species on the nanometer scale, and the positive correlation between Hg:DOM ratio and sulfur coordination number suggests progressively increasing particle size or crystalline order with increasing abundance of mercury with respect to DOM. In DOM-containing sulfidic systems nanocolloidal metacinnabar-like species may form, and these species need to be considered when addressing mercury biogeochemistry.
NASA Astrophysics Data System (ADS)
Lajtha, K.; Yano, Y.; Crow, S.; Kaushal, S.
2006-12-01
Although the quality and quantity of DOM ultimately derives from plant detritus and soils in watersheds, three is substantial alteration of DOM as it passes from litter through the terrestrial landscape. As DOM is generated from plant and microbial detritus and processing, different fractions may be lost via respiration, form quasi-stable soil organic matter, or be temporarily sorbed to soil minerals. We followed the fate of DOC and DON from forested plots with experimentally altered detritus loads to determine the relative roles of original plant litter chemistry and soil transformations. Our study site was the DIRT (Detrital Input and Removal Treatment) plots at the H.J. Andrews Experimental Forest in Oregon, where treatments include detrital additions (wood vs. needle litter), litter exclusion, and root exclusions. Fractionation of detritus leachate solutions demonstrated significant differences in DOC chemistry from different detrital sources. Root leachates produced high quantities of hydrophilic neutral DOC, a fraction rich in labile sugars and polysaccharides; young wood extracts produced higher quantities of weak hydrophobic acids and hydrophobic neutrals (longer chain hydrocarbons); older wood had lower quantities of most labile constituents but was rich in strong hydrophobic acids. Although laboratory extracts of different litter types showed differences in DOM chemistry, soil solutions collected just below the forest floor from the differing detrital treatments were remarkably uniform and poor in labile constituents, suggesting microbial equalization of DOM leachate in the field. DOM quality and concentrations changed significantly with passage through soil profiles. DOC concentrations decreased through the soil profile in all plots to a greater degree than did dissolved organic nitrogen (DON), most likely due to preferential sorption of high C:N hydrophobic dissolved organic matter (DOM) in upper horizons. Percent hydrophobic DOM decreased significantly with depth, and the remaining hydrophilic DOM had a much lower and narrower C:N ratio than hydrophobic DOM. We also hypothesize that protein-reactive polyphenols, or tannins, may contribute to the decreased lability of N-rich DOM in soil solutions and thus significantly influence the quality of DOM delivered to streams.
The role of reactive oxygen species in the degradation of lignin derived dissolved organic matter
NASA Astrophysics Data System (ADS)
Waggoner, Derek C.; Wozniak, Andrew S.; Cory, Rose M.; Hatcher, Patrick G.
2017-07-01
Evidence suggests that reactive oxygen species (ROS) are important in transforming the chemical composition of the large pool of terrestrially-derived dissolved organic matter (DOM) exported from land to water annually. However, due to the challenges inherent in isolating the effects of individual ROS on DOM composition, the role of ROS in the photochemical alteration of DOM remains poorly characterized. In this work, terrestrial DOM was independently exposed to singlet oxygen (1O2), and superoxide (O2-rad under controlled laboratory conditions). Using ultra-high resolution mass spectrometry to track molecular level alterations of DOM by ROS, these findings suggest exposure to 1O2 (generated using Rose Bengal and visible light) removed formulas with an O/C > 0.3, and primarily resulted in DOM comprised of formulas with higher oxygen content, while O2-rad exposure (from KO2 in DMSO) removed formulas with O/C < 0.3 and produced aliphatic formulas (H/C > 1.5). Comparison of DOM altered by ROS in this study to riverine and coastal DOM showed that (20-80%) overlap in formulas, providing evidence for the role of ROS in shaping the composition of DOM exported from rivers to oceans.
The effect of source material in determining the photoreactivity of DOM in peatland aquatic systems
NASA Astrophysics Data System (ADS)
Pickard, Amy; Heal, Kate; McLeod, Andy; Dinsmore, Kerry
2016-04-01
Aquatic systems draining peatlands receive a high loading of dissolved organic matter (DOM) from surrounding terrestrial environments. However the fate of aquatic DOM remains poorly constrained, in part due to lack of knowledge regarding the photoreactivity of DOM and how this changes as a function of variability in source material. In this study water samples were collected monthly for a 13-month period from two contrasting aquatic systems in Scotland: a stream draining a peatland with high DOM concentrations (33.3 ± 14.2 mg DOC L-1) and a reservoir draining a peat catchment with low DOM concentrations (4.16 ± 0.91 mg DOC L-1). Controlled UV irradiation laboratory experiments were conducted on samples filtered to 0.2 μm in order to assess the photoreactivity of the DOM, measured as the unit mass of DOC lost upon irradiation. Experiments took place over 8h in temperature controlled conditions, with unirradiated samples used as controls. After exposure, a range of analytical techniques were used to characterise the DOM to yield information about its source material and to determine how this was related to the observed photoreactivity. Lignin phenol analyses indicate considerable contribution of Sphagnum to DOM at the stream site, particularly during summer, as demonstrated by high P-hydroxy/Vanillyl phenol ratios (P/V). Low P/V ratios were correlated with increased photoreactivity, (Pearson's: -0.410; p = 0.15, n = 13), suggesting that DOM from woody lignin sources within the catchment was more photolabile. Photoreactivity was also negatively correlated with Fluorescence Index (FI) values (Pearson's: -0.555; p = 0.055, n = 13), where low FI values are understood to indicate greater contribution of terrestrially derived material to aquatic DOM. Excitation-emission matrices (EEMs) indicate that DOM at the stream site was primarily comprised of a humic-like peak (Ex/Em = 340, 380/460 nm). However, there was also contribution from a protein-like peak (Ex/Em = 290, 320/350 nm), which was present in samples with lower photoreactivity. DOM at the reservoir site was primarily composed of the same identified protein-like peak, which may account for the lower observed photoreactivity of these samples. Although total DOC concentration is the dominant control on photo-induced DOC losses in peatland aquatic systems, these results show that organic matter characterisation can be used to further comprehend changes to DOM photoreactivity. Increased understanding of DOM processing in aquatic freshwater systems will allow the fate of DOM to be more accurately determined.
Zhou, Yuxuan; Yan, Mingquan; Liu, Ruiping; Wang, Dongsheng; Qu, Jiuhui
2017-05-15
Hardness cations are ubiquitous and abundant in source water, while the effect of hardness on the performance of coagulation for dissolved organic matter (DOM) removal in water treatment remains unclear due to the limitation of methods that can characterise the subtle interactions between DOM, coagulant and hardness cations. This work quantified the competition between coagulant Al 3+ and hardness cations to bind onto DOM using absorbance spectroscopy acquired at different Al 3+ concentrations in the absence and presence of Ca 2+ or Mg 2+ . The results indicate that, in the presence of either Mg 2+ or Ca 2+ , an increasing depression of the binding of Al 3+ -DOM could be observed in the differential spectra of DOM with the increasing of Mg 2+ or Ca 2+ at a level of 10, 100 and 1000 μM, with the observation being more significant at higher pH from 6.5 to 8.5. The results of zeta potentials of DOM indicate that the competition of hardness cations results in the negative DOM being less efficiently neutralised by Al 3+ . This study demonstrates that the removal of DOM by coagulation would significantly deteriorate with the presence of hardness cations, which would compete with coagulant Al 3+ to neutralise the unsaturated sites in DOM. Copyright © 2017 Elsevier Ltd. All rights reserved.
Mihalevich, Bryce A; Horsburgh, Jeffery S; Melcher, Anthony A
2017-10-30
Stormwater runoff in urban areas can contribute high concentrations of dissolved organic matter (DOM) to receiving waters, potentially causing impairment to the aquatic ecosystem of urban streams and downstream water bodies. Compositional changes in DOM due to storm events in forested, agricultural, and urban landscapes have been well studied, but in situ sensors have not been widely applied to monitor stormwater contributions in urbanized areas, leaving the spatial and temporal characteristics of DOM within these systems poorly understood. We deployed fluorescent DOM (FDOM) sensors at upstream and downstream locations within a study reach to characterize the spatial and temporal changes in DOM quantity and sources within an urban water conveyance that receives stormwater runoff. Baseflow FDOM decreased over the summer season as seasonal flows upstream transported less DOM. FDOM fluctuated diurnally, the amplitude of which also declined as the summer season progressed. During storms, FDOM concentrations were rapidly elevated to values orders of magnitude greater than baseflow measurements, with greater concentrations at the downstream monitoring site, revealing high contributions from stormwater outfalls between the two locations. Observations from custom, in situ fluorometers resembled results obtained using laboratory methods for identifying DOM source material and indicated that DOM transitioned to a more microbially derived composition as the summer season progressed, while stormwater contributions contributed DOM from terrestrial sources. Deployment of a mobile sensing platform during varying flow conditions captured spatial changes in DOM concentration and composition and revealed contributions of DOM from outfalls during stormflows that would have otherwise been unobserved.
Chemical and optical changes in freshwater dissolved organic matter exposed to solar radiation
Osburn, C.L.; Morris, D.P.; Thorn, K.A.; Moeller, R.E.
2001-01-01
We studied the chemical and optical changes in the dissolved organic matter (DOM) from two freshwater lakes and a Sphagnum bog after exposure to solar radiation. Stable carbon isotopes and solid-state 13C-NMR spectra of DOM were used together with optical and chemical data to interpret results from experimental exposures of DOM to sunlight and from seasonal observations of two lakes in northeastern Pennsylvania. Solar photochemical oxidation of humic-rich bog DOM to smaller LMW compounds and to DIC was inferred from losses of UV absorbance, optical indices of molecular weight and changes in DOM chemistry. Experimentally, we observed a 1.2??? enrichment in ??13C and a 47% loss in aromatic C functionality in bog DOM samples exposed to solar UVR. Similar results were observed in the surface waters of both lakes. In late summer hypolimnetic water in humic Lake Lacawac, we observed 3 to 4.5??? enrichments in ??13C and a 30% increase in aromatic C relative to early spring values during spring mixing. These changes coincided with increases in molecular weight and UV absorbance. Anaerobic conditions of the hypolimnion in Lake Lacawac suggest that microbial metabolism may be turning over allochthonous C introduced during spring mixing, as well as autochthonous C. This metabolic activity produces HMW DOM during the summer, which is photochemically labile and isotopically distinct from allochthonous DOM or autochthonous DOM. These results suggest both photooxidation of allochthonous DOM in the epilimnion and autotrophic production of DOM by bacteria in the hypolimnion cause seasonal trends in the UV absorbance of lakes.
Wang, Yulai; Yang, Changming; Li, Jianhua; Shen, Shuo
2014-09-01
Dissolved organic matter (DOM) that is derived from the soil of riparian buffer zones has a complex chemical composition, and it plays an important role in the transport and transformation of pollutants. To identify the source of DOM and to better understand its chemical and structural properties, we collected 33 soil samples from zones with fluctuating water levels along the major rivers on Chongming Island, evaluated the DOM contents in riparian soil, analyzed the chemical composition and functional groups and traced DOM origins by using liquid chromatography quadrupole time-of-flight mass spectrometry (LC-Q-TOF-MS) combined with clustering analysis. All sampling sites were divided into four groups by principal component analysis (PCA) on the basis of the DOM molecules. The results showed that there was no significant difference in the DOM contents between every two groups; however, the DOM fractions differed significantly among the different site groups in the following order: Σ lipids and Σ proteins>Σ sugars and Σ fatty acids>Σ amino acids, Σ indoles and Σ alkaloids. DOM in the riparian buffer zones originated from riparian plants, domestic sewage and agricultural activities, and the hydrophobic and amphiphilic fractions accounting for over 60% of the identified molecules were the dominant fractions. Our study has confirmed the heterogeneous properties of DOM, and it is of vital importance to isolate and characterize the various DOM fractions at the molecular level for a better understanding of the behavior and roles of DOM in the natural environment. Copyright © 2014 Elsevier Ltd. All rights reserved.
Identifying fluorescent pulp mill effluent in the Gulf of Maine and its watershed
Cawley, Kaelin M.; Butler, Kenna D.; Aiken, George R.; Larsen, Laurel G.; Huntington, Thomas G.; McKnight, Diane M.
2012-01-01
Using fluorescence spectroscopy and parallel factor analysis (PARAFAC) we characterized and modeled the fluorescence properties of dissolved organic matter (DOM) in samples from the Penobscot River, Androscoggin River, Penobscot Bay, and the Gulf of Maine (GoM). We analyzed excitation-emission matrices (EEMs) using an existing PARAFAC model (Cory and McKnight, 2005) and created a system-specific model with seven components (GoM PARAFAC). The GoM PARAFAC model contained six components similar to those in other PARAFAC models and one unique component with a spectrum similar to a residual found using the Cory and McKnight (2005) model. The unique component was abundant in samples from the Androscoggin River immediately downstream of a pulp mill effluent release site. The detection of a PARAFAC component associated with an anthropogenic source of DOM, such as pulp mill effluent, demonstrates the importance for rigorously analyzing PARAFAC residuals and developing system-specific models.
Whole-Body Vibration and the Prevention and Treatment of Delayed-Onset Muscle Soreness
Aminian-Far, Atefeh; Hadian, Mohammad-Reza; Olyaei, Gholamreza; Talebian, Saeed; Bakhtiary, Amir Hoshang
2011-01-01
Abstract Context: Numerous recovery strategies have been used in an attempt to minimize the symptoms of delayed-onset muscle soreness (DOMS). Whole-body vibration (WBV) has been suggested as a viable warm-up for athletes. However, scientific evidence to support the protective effects of WBV training (WBVT) on muscle damage is lacking. Objective: To investigate the acute effect of WBVT applied before eccentric exercise in the prevention of DOMS. Design: Randomized controlled trial. Setting: University laboratory. Patients or Other Participants: A total of 32 healthy, untrained volunteers were randomly assigned to either the WBVT (n = 15) or control (n = 17) group. Intervention(s): Volunteers performed 6 sets of 10 maximal isokinetic (60°/s) eccentric contractions of the dominant-limb knee extensors on a dynamometer. In the WBVT group, the training was applied using a vibratory platform (35 Hz, 5 mm peak to peak) with 100° of knee flexion for 60 seconds before eccentric exercise. No vibration was applied in the control group. Main Outcome Measure(s): Muscle soreness, thigh circumference, and pressure pain threshold were recorded at baseline and at 1, 2, 3, 4, 7, and 14 days postexercise. Maximal voluntary isometric and isokinetic knee extensor strength were assessed at baseline, immediately after exercise, and at 1, 2, 7, and 14 days postexercise. Serum creatine kinase was measured at baseline and at 1, 2, and 7 days postexercise. Results: The WBVT group showed a reduction in DOMS symptoms in the form of less maximal isometric and isokinetic voluntary strength loss, lower creatine kinase levels, and less pressure pain threshold and muscle soreness (P < .05) compared with the control group. However, no effect on thigh circumference was evident (P < .05). Conclusions: Administered before eccentric exercise, WBVT may reduce DOMS via muscle function improvement. Further investigation should be undertaken to ascertain the effectiveness of WBVT in attenuating DOMS in athletes. PMID:21214349
Transfer and contact-induced variation in child Basque.
Austin, Jennifer
2014-01-01
Young Basque-speaking children produce Differential Object Marking (DOM) and pre-verbal complementizers in their speech, variants argued to stem from contact with Spanish (Austin, 2006; Rodríguez-Ordóñez, 2013). In this paper, I claim that despite their contact-induced origin, these forms reflect distinct developmental tendencies on the part of the child acquiring Basque. Children's use of pre-verbal complementizers in Basque seems to be a relief strategy that bilingual children employ until they have acquired the post-verbal complementizers in Basque, which are low-frequency morphemes. In contrast, the use of DOM is present in the adult input, although children use this construction to a greater extent than adults do. Finally, I discuss the implications of these findings for the part that child learners play in advancing language change.
NASA Astrophysics Data System (ADS)
Hertkorn, N.; Harir, M.; Cawley, K. M.; Schmitt-Kopplin, P.; Jaffé, R.
2015-08-01
Wetlands provide quintessential ecosystem services such as maintenance of water quality, water supply and biodiversity, among others; however, wetlands are also among the most threatened ecosystems worldwide. They are usually characterized by high levels of natural dissolved organic matter (DOM), representing a critical component in wetland biogeochemistry. This study describes the first detailed, comparative, molecular characterization of DOM in sub-tropical, pulsed, wetlands, namely the Everglades (USA), the Pantanal (Brazil) and the Okavango Delta (Botswana), using optical properties, high field nuclear magnetic resonance (NMR) and ultrahigh resolution mass spectrometry (FT-ICRMS), and compares compositional features to variations in organic matter sources and flooding characteristics (i.e. differences in hydroperiod). While optical properties showed both similarities and differences between these ecosystems, these differences were mainly based on the degree of aromaticity of the DOM. Analogies were such that an established excitation emission matrix fluorescence parallel factor analysis (EEM-PARAFAC) model for the Everglades was perfectly applicable to the other two wetlands. High-field (500 and 800 MHz) NMR spectra with cryogenic detection provided exceptional coverage and chemical description of wetland solid phase extracted (SPE) DOM. Area-normalized 1H NMR spectra of selected samples revealed clear distinctions of samples along with pronounced congruence within the three pairs of wetland DOM. Within sample pairs (long vs. short hydroperiod sites), internal differences mainly referred to intensity variations (denoting variable abundance) rather than to alterations of NMR resonances positioning (denoting diversity of molecules). The relative disparity was largest between the Everglades long and short hydroperiod samples, whereas Pantanal and Okavango samples were more alike among themselves. Otherwise, molecular divergence was most obvious in the case of unsaturated protons (δH > 5 ppm). The larger discrimination observed between 1H NMR spectra of DOM from different wetlands in comparison with the intrinsic variance among DOM within each wetland readily suggests the presence of an individual molecular signature, characteristic of each particular wetland. 2-D NMR spectroscopy for a particular sample revealed a large richness of aliphatic and unsaturated substructures, likely derived from microbial sources such as periphyton in the Everglades. In contrast, the chemical diversity of aromatic wetland DOM likely originates from a combination of higher plant sources, progressive microbial and photochemical oxidation, and contributions from combustion-derived products (e.g. black carbon). In addition, FT-ICRMS spectra allowed far-reaching classifications of wetland DOM. While DOM of both Okavango and Pantanal showed near 57 ± 2 % CHO, 8 ± 2 % CHOS, 33 ± 2 CHNO, and < 1 % CHNOS molecules, the mass spectra of Everglades samples were fundamentally different compared to those as well as among long and short hydroperiod samples, as they were markedly enriched in CHOS and CHNOS at the expense of CHO and CHNO compounds. Here, four groups of CHOS molecules were differentiated as (a) saturated sulfolipids, (b) unsaturated sulfolipids, (c) molecularly diverse DOM-type CHOS molecules, (d) and particularly enriched in the Everglades short hydroperiod site, a large set of aromatic and oxygen-deficient "black sulphur" compounds. The significantly higher proportion of CHOS compounds in general for the Everglades samples is likely the result of higher inputs of agriculture-derived and sea spray derived sulphate to this wetland compared to the others. Although wetland DOM samples were found to share many molecular features, each sample was unique in its composition, which reflected specific environmental drivers and/or specific biogeochemical processes.
Why dissolved organic matter (DOM) enhances photodegradation of methylmercury
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qian, Yun; Yin, Xiangping Lisa; Brooks, Scott C
2014-01-01
Methylmercury (MeHg) is known to degrade photochemically, but it remains unclear what roles naturally dissolved organic matter (DOM) and complexing organic ligands play in MeHg photodegradation. Here we investigate the rates and mechanisms of MeHg photodegradation using DOM samples with varying oxidation states and origins as well as organic ligands with known molecular structures. All DOM and organic ligands increased MeHg photodegradation under solar irradiation, but the first-order rate constants varied depending on the oxidation state of DOM and the type and concentration of the ligands. Compounds containing both thiols and aromatics (e.g., thiosalicylate and reduced DOM) increased MeHg degradationmore » rates far greater than those containing only aromatic or thiol functional groups (e.g., salicylate or glutathione). Our results suggest that, among other factors, the synergistic effects of thiolate and aromatic moieties in DOM greatly enhance MeHg photodegradation.« less
NASA Astrophysics Data System (ADS)
Shen, Yuan; Benner, Ronald; Kaiser, Karl; Fichot, Cédric G.; Whitledge, Terry E.
2018-02-01
Rapid environmental changes in the Arctic Ocean affect plankton productivity and the bioavailability of dissolved organic matter (DOM) that supports microbial food webs. We report concentrations of dissolved organic carbon (DOC) and yields of amino acids (indicators of labile DOM) in surface waters across major Arctic margins. Concentrations of DOC and bioavailability of DOM showed large pan-Arctic variability that corresponded to varying hydrological conditions and ecosystem productivity, respectively. Widespread hot spots of labile DOM were observed over productive inflow shelves (Chukchi and Barents Seas), in contrast to oligotrophic interior margins (Kara, Laptev, East Siberian, and Beaufort Seas). Amino acid yields in outflow gateways (Canadian Archipelago and Baffin Bay) indicated the prevalence of semilabile DOM in sea ice covered regions and sporadic production of labile DOM in ice-free waters. Comparing these observations with surface circulation patterns indicated varying shelf subsidies of bioavailable DOM to Arctic deep basins.
Insights into the redox components of dissolved organic matters during stabilization process.
Yuan, Ying; Xi, Bei-Dou; He, Xiao-Song; Ma, Yan; Zhang, Hui; Li, Dan; Zhao, Xin-Yu
2018-05-01
The changes of dissolved organic matter (DOM) components during stabilization process play significant effects on its redox properties but are little reported. Composting is a stabilization process of DOM, during which both the components and electron transfer capacities (ETCs) of DOM change. The redox components within compost-derived DOM during the stabilization process are investigated in this study. The results show that compost-derived DOM contained protein-like, fulvic-like, and humic-like components. The protein-like component decreases during composting, whereas the fulvic- and humic-like components increase during the process. The electron-donating capacity (EDC), electron-accepting capacity (EAC), and ETC of compost-derived DOM all increase during composting but their correlations with the components presented significant difference. The humic-like components were the main functional component responsible for both EDC and ETC, whereas the protein- and fluvic-like components show negative effects with the EAC, EDC, and ETC, suggesting that the components within DOM have specific redox properties during the stabilization process. These findings are very meaningful for better understanding the geochemical behaviors of DOM in the environment.
Molecular Features of Dissolved Organic Matter Produced by Picophytoplankton
NASA Astrophysics Data System (ADS)
Ma, X.; Coleman, M.; Waldbauer, J.
2016-02-01
Compounds derived from picophytoplankton through exudation, grazing and viral lysis contribute a large proportion of labile DOM to the ocean. This labile DOM is rapidly turned over by and exchanged among microbial communities. However, identifying labile DOM compounds and tracking their sources and sinks in ocean ecosystems is complicated by the presence of non-labile DOM which has a significantly larger reservoir size and longer residence time. This study focuses on investigating labile DOM produced by single-strain cyanobacteria isolates via different modes of release and varied nutrient conditions. DOM compounds are analyzed by high-resolution mass spectrometry. Statistical comparison between intracellular and extracellular molecular data of Synechococcus WH7803 revealed noticeable differences in terms of compound number, size and structure. Incubation experiments using combined whole seawater and diluent of grazer-free or viral-free water at the BATS time-series station in Sargasso Sea yielded complimentary data to be synthesized with data from lab cultures. The compositional features of each type of DOM could serve as future proxies for different modes of DOM production in the oceans.
Shimabuku, Kyle K; Kennedy, Anthony M; Mulhern, Riley E; Summers, R Scott
2017-03-07
Dissolved organic matter (DOM) negatively impacts granular activated carbon (GAC) adsorption of micropollutants and is a disinfection byproduct precursor. DOM from surface waters, wastewater effluent, and 1 kDa size fractions were adsorbed by GAC and characterized using fluorescence spectroscopy, UV-absorption, and size exclusion chromatography (SEC). Fluorescing DOM was preferentially adsorbed relative to UV-absorbing DOM. Humic-like fluorescence (peaks A and C) was selectively adsorbed relative to polyphenol-like fluorescence (peaks T and B) potentially due to size exclusion effects. In the surface waters and size fractions, peak C was preferentially removed relative to peak A, whereas the reverse was found in wastewater effluent, indicating that humic-like fluorescence is associated with different compounds depending on DOM source. Based on specific UV-absorption (SUVA), aromatic DOM was preferentially adsorbed. The fluorescence index (FI), if interpreted as an indicator of aromaticity, indicated the opposite but exhibited a strong relationship with average molecular weight, suggesting that FI might be a better indicator of DOM size than aromaticity. The influence of DOM intermolecular interactions on adsorption were minimal based on SEC analysis. Fluorescence parameters captured the impact of DOM size on the fouling of 2-methylisoborneol and warfarin adsorption and correlated with direct competition and pore blockage indicators.
Solomon, Christopher T.; Jones, Stuart E.; Weidel, Brian C.; Buffam, Ishi; Fork, Megan L; Karlsson, Jan; Larsen, Soren; Lennon, Jay T.; Read, Jordan S.; Sadro, Steven; Saros, Jasmine E.
2015-01-01
Lake ecosystems and the services that they provide to people are profoundly influenced by dissolved organic matter derived from terrestrial plant tissues. These terrestrial dissolved organic matter (tDOM) inputs to lakes have changed substantially in recent decades, and will likely continue to change. In this paper, we first briefly review the substantial literature describing tDOM effects on lakes and ongoing changes in tDOM inputs. We then identify and provide examples of four major challenges which limit predictions about the implications of tDOM change for lakes, as follows: First, it is currently difficult to forecast future tDOM inputs for particular lakes or lake regions. Second, tDOM influences ecosystems via complex, interacting, physical-chemical-biological effects and our holistic understanding of those effects is still rudimentary. Third, non-linearities and thresholds in relationships between tDOM inputs and ecosystem processes have not been well described. Fourth, much understanding of tDOM effects is built on comparative studies across space that may not capture likely responses through time. We conclude by identifying research approaches that may be important for overcoming those challenges in order to provide policy- and management-relevant predictions about the implications of changing tDOM inputs for lakes.
Bioavailability of atrazine, pyrene and benzo[a]pyrene in European river waters
Akkanen, J.; Penttinen, S.; Haitzer, M.; Kukkonen, J.V.K.
2001-01-01
Thirteen river waters and one humic lake water were characterized. The effects of dissolved organic matter (DOM) on the bioavailability of atrazine, pyrene and benzo[a]pyrene (B[a]P) was evaluated. Binding of the chemicals by DOM was analyzed with the equilibrium dialysis technique. For each of the water samples, 24 h bioconcentration factors (BCFs) of the chemicals were measured in Daphnia magna. The relationship between DOM and other water characteristics (including conductivity, water hardness and pH), and bioavailability of the chemicals was studied by performing several statistical analyses, including multiple regression analyses, to determine how much of the variation of BCF values could be explained by the quantity and quality of DOM. The bioavailability of atrazine was not affected by DOM or any other water characteristics. Although equilibrium dialysis showed binding of pyrene to DOM, the bioavailability of pyrene was not significantly affected by DOM. The bioavailability of B[a]P was significantly affected by both the quality and quantity of DOM. Multiple regression analyses, using the quality (ABS270 and HbA%) and quantity of DOM as variables, explainedup to 70% of the variation in BCF of B[a]P in the waters studied. ?? 2001 Elsevier Science Ltd. All rights reserved.
SGM-based seamline determination for urban orthophoto mosaicking
NASA Astrophysics Data System (ADS)
Pang, Shiyan; Sun, Mingwei; Hu, Xiangyun; Zhang, Zuxun
2016-02-01
Mosaicking is a key step in the production of digital orthophoto maps (DOMs), especially for large-scale urban orthophotos. During this step, manual intervention is commonly involved to avoid the case where the seamline crosses obvious objects (e.g., buildings), which causes geometric discontinuities on the DOMs. How to guide the seamline to avoid crossing obvious objects has become a popular topic in the field of photogrammetry and remote sensing. Thus, a new semi-global matching (SGM)-based method to guide seamline determination is proposed for urban orthophoto mosaicking in this study, which can greatly eliminate geometric discontinuities. The approximate epipolar geometry of the orthophoto pairs is first derived and proven, and the approximate epipolar image pair is then generated by rotating the two orthorectified images according to the parallax direction. A SGM algorithm is applied to their overlaps to obtain the corresponding pixel-wise disparity. According to a predefined disparity threshold, the overlap area is identified as the obstacle and non-obstacle areas. For the non-obstacle regions, Hilditch thinning algorithm is used to obtain the skeleton line, followed by Dijkstra's algorithm to search for the optimal path on the skeleton network as the seamline between two orthophotos. A whole seamline network is constructed based on the strip information recorded in flight. In the experimental section, the approximate epipolar geometric theory of the orthophoto is first analyzed and verified, and the effectiveness of the proposed method is then validated by comparing its results with the results of the geometry-based, OrthoVista, and orthoimage elevation synchronous model (OESM)-based methods.
Hohenauer, Erich; Taeymans, Jan; Baeyens, Jean-Pierre; Clarys, Peter; Clijsen, Ron
2015-01-01
The aim of this review and meta-analysis was to critically determine the possible effects of different cooling applications, compared to non-cooling, passive post-exercise strategies, on recovery characteristics after various, exhaustive exercise protocols up to 96 hours (hrs). A total of n = 36 articles were processed in this study. To establish the research question, the PICO-model, according to the PRISMA guidelines was used. The Cochrane's risk of bias tool, which was used for the quality assessment, demonstrated a high risk of performance bias and detection bias. Meta-analyses of subjective characteristics, such as delayed-onset muscle soreness (DOMS) and ratings of perceived exertion (RPE) and objective characteristics like blood plasma markers and blood plasma cytokines, were performed. Pooled data from 27 articles revealed, that cooling and especially cold water immersions affected the symptoms of DOMS significantly, compared to the control conditions after 24 hrs recovery, with a standardized mean difference (Hedges' g) of -0.75 with a 95% confidence interval (CI) of -1.20 to -0.30. This effect remained significant after 48 hrs (Hedges' g: -0.73, 95% CI: -1.20 to -0.26) and 96 hrs (Hedges' g: -0.71, 95% CI: -1.10 to -0.33). A significant difference in lowering the symptoms of RPE could only be observed after 24 hrs of recovery, favouring cooling compared to the control conditions (Hedges' g: -0.95, 95% CI: -1.89 to -0.00). There was no evidence, that cooling affects any objective recovery variable in a significant way during a 96 hrs recovery period.
Hohenauer, Erich
2015-01-01
The aim of this review and meta-analysis was to critically determine the possible effects of different cooling applications, compared to non-cooling, passive post-exercise strategies, on recovery characteristics after various, exhaustive exercise protocols up to 96 hours (hrs). A total of n = 36 articles were processed in this study. To establish the research question, the PICO-model, according to the PRISMA guidelines was used. The Cochrane’s risk of bias tool, which was used for the quality assessment, demonstrated a high risk of performance bias and detection bias. Meta-analyses of subjective characteristics, such as delayed-onset muscle soreness (DOMS) and ratings of perceived exertion (RPE) and objective characteristics like blood plasma markers and blood plasma cytokines, were performed. Pooled data from 27 articles revealed, that cooling and especially cold water immersions affected the symptoms of DOMS significantly, compared to the control conditions after 24 hrs recovery, with a standardized mean difference (Hedges’ g) of -0.75 with a 95% confidence interval (CI) of -1.20 to -0.30. This effect remained significant after 48 hrs (Hedges’ g: -0.73, 95% CI: -1.20 to -0.26) and 96 hrs (Hedges’ g: -0.71, 95% CI: -1.10 to -0.33). A significant difference in lowering the symptoms of RPE could only be observed after 24 hrs of recovery, favouring cooling compared to the control conditions (Hedges’ g: -0.95, 95% CI: -1.89 to -0.00). There was no evidence, that cooling affects any objective recovery variable in a significant way during a 96 hrs recovery period. PMID:26413718
The removal kinetics of dissolved organic matter and the optical clarity of groundwater
NASA Astrophysics Data System (ADS)
Chapelle, Francis H.; Shen, Yuan; Strom, Eric W.; Benner, Ronald
2016-09-01
Concentrations of dissolved organic matter (DOM) and ultraviolet/visible light absorbance decrease systematically as groundwater moves through the unsaturated zones overlying aquifers and along flowpaths within aquifers. These changes occur over distances of tens of meters (m) implying rapid removal kinetics of the chromophoric DOM that imparts color to groundwater. A one-compartment input-output model was used to derive a differential equation describing the removal of DOM from the dissolved phase due to the combined effects of biodegradation and sorption. The general solution to the equation was parameterized using a 2-year record of dissolved organic carbon (DOC) concentration changes in groundwater at a long-term observation well. Estimated rates of DOC loss were rapid and ranged from 0.093 to 0.21 micromoles per liter per day (μM d-1), and rate constants for DOC removal ranged from 0.0021 to 0.011 per day (d-1). Applying these removal rate constants to an advective-dispersion model illustrates substantial depletion of DOC over flow-path distances of 200 m or less and in timeframes of 2 years or less. These results explain the low to moderate DOC concentrations (20-75 μM; 0.26-1 mg L-1) and ultraviolet absorption coefficient values ( a 254 < 5 m-1) observed in groundwater produced from 59 wells tapping eight different aquifer systems of the United States. The nearly uniform optical clarity of groundwater, therefore, results from similarly rapid DOM-removal kinetics exhibited by geologically and hydrologically dissimilar aquifers.
A Transformational Journey: Compositional Changes in Organic Matter during Desorption from Sediments
NASA Astrophysics Data System (ADS)
Matiasek, S. J.; Pellerin, B. A.; Spencer, R.; Bergamaschi, B. A.; Hernes, P.
2016-12-01
The release of organic matter (OM) from suspended particles via desorption is a critical component of OM cycling since dissolved OM (DOM) fuels aquatic ecosystems and is a precursor for disinfection by-products formation. This study assessed the elemental and molecular composition of DOM desorbed abiotically from sediments and soils of an irrigated agricultural watershed of northern California. Relative to mineral-bound OM, the released DOM was nitrogen-poor (lower carbon:nitrogen ratios) and depleted in amino acids and lignin phenols (lower carbon-normalized yields). Water-extracted DOM appeared substantially more degraded than its parent particulate OM with increased molar contributions of acidic amino acids, non-protein amino acids, and acidic lignin phenols, all molecular indicators of a more extensively processed OM pool. Desorption processes also significantly altered lignin compositional ratios which help distinguish vascular-plant sources of DOM. Specific optical parameters, including spectral slope, specific UV absorbance at 254 nm (SUVA254), and fluorescence index (FI), did not constitute useful proxies for the desorbed DOM pool, while absorption coefficients and fluorescence peak intensities were strongly correlated with extracted DOM concentrations and composition. This study highlights the profound impact of desorption on DOM composition which, if unaccounted for, could lead to misinterpretations of common biomarkers and optical proxies used to predict DOM sources and reactivity. Our findings suggest that sediments contribute a biogeochemically distinct source of DOM to surface waters, with potential impacts on aquatic health and drinking water quality.
Shift in the chemical composition of dissolved organic matter in the Congo River network
NASA Astrophysics Data System (ADS)
Lambert, Thibault; Bouillon, Steven; Darchambeau, François; Massicotte, Philippe; Borges, Alberto V.
2016-09-01
The processing of terrestrially derived dissolved organic matter (DOM) during downstream transport in fluvial networks is poorly understood. Here, we report a dataset of dissolved organic carbon (DOC) concentrations and DOM composition (stable carbon isotope ratios, absorption and fluorescence properties) acquired along a 1700 km transect in the middle reach of the Congo River basin. Samples were collected in the mainstem and its tributaries during high-water (HW) and falling-water (FW) periods. DOC concentrations and DOM composition along the mainstem were found to differ between the two periods because of a reduced lateral mixing between the central water masses of the Congo River and DOM-rich waters from tributaries and also likely because of a greater photodegradation during FW as water residence time (WRT) increased. Although the Cuvette Centrale wetland (one of the world's largest flooded forests) continuously releases highly aromatic DOM in streams and rivers of the Congo Basin, the downstream transport of DOM was found to result in an along-stream gradient from aromatic to aliphatic compounds. The characterization of DOM through parallel factor analysis (PARAFAC) suggests that this transition results from (1) the losses of aromatic compounds by photodegradation and (2) the production of aliphatic compounds by biological reworking of terrestrial DOM. Finally, this study highlights the critical importance of the river-floodplain connectivity in tropical rivers in controlling DOM biogeochemistry at a large spatial scale and suggests that the degree of DOM processing during downstream transport is a function of landscape characteristics and WRT.
NASA Astrophysics Data System (ADS)
Pellerin, B. A.; Shanley, J. B.; Saraceno, J.; Aiken, G.; Sebestyen, S. D.; Bergamaschi, B. A.
2012-12-01
Quantifying the fundamental linkages between hydrology and dissolved organic matter (DOM) dynamics in streams and rivers is critical for understanding carbon loads, ecosystem food webs and metal transport. Accurately assessing this relationship is difficult, however, given that rapid changes in water flow paths and associated DOM sources are often not captured by traditional discrete sampling intervals of weeks to months. We explored DOM - discharge relationships at Sleepers River below a 40.5 hectare USGS research watershed in northern Vermont by making 30 minute chromophoric DOM fluorescence (FDOM) measurements in-situ since October 2008 along with periodic discrete sampling for dissolved organic carbon. There is a tight coupling between the timing of increases in FDOM and discharge at Sleepers during events, but the ratio of FDOM to discharge exhibited considerable variability across seasons and events, as did FDOM-discharge hysteresis (FDOM variously peaked 1-4 hours after streamflow). Discrete DOM quality indicators (spectral slope, fluorescence index, SUVA) indicate DOM was predominantly terrestrial at all but the lowest flows, highlighting the important role of DOM-rich terrestrial flow paths as the primary source of stream DOM. Our results suggest that changes in flow paths are likely to be the primary drivers of future changes in DOM transport from this site rather than changes in DOM quality. Overcoming significant challenges inherent in continuous sensor deployments in watersheds (e.g. ice cover, suspended particles, remote communication and power) will allow for new insights into watershed biogeochemistry.
Internet Patient Records: new techniques
Moehrs, Sascha; Anedda, Paolo; Tuveri, Massimiliano; Zanetti, Gianluigi
2001-01-01
Background The ease by which the Internet is able to distribute information to geographically-distant users on a wide variety of computers makes it an obvious candidate for a technological solution for electronic patient record systems. Indeed, second-generation Internet technologies such as the ones described in this article - XML (eXtensible Markup Language), XSL (eXtensible Style Language), DOM (Document Object Model), CSS (Cascading Style Sheet), JavaScript, and JavaBeans - may significantly reduce the complexity of the development of distributed healthcare systems. Objective The demonstration of an experimental Electronic Patient Record (EPR) system built from those technologies that can support viewing of medical imaging exams and graphically-rich clinical reporting tools, while conforming to the newly emerging XML standard for digital documents. In particular, we aim to promote rapid prototyping of new reports by clinical specialists. Methods We have built a prototype EPR client, InfoDOM, that runs in both the popular web browsers. In this second version it receives each EPR as an XML record served via the secure SSL (Secure Socket Layer) protocol. JavaBean software components manipulate the XML to store it and then to transform it into a variety of useful clinical views. First a web page summary for the patient is produced. From that web page other JavaBeans can be launched. In particular, we have developed a medical imaging exam Viewer and a clinical Reporter bean parameterized appropriately for the particular patient and exam in question. Both present particular views of the XML data. The Viewer reads image sequences from a patient-specified network URL on a PACS (Picture Archiving and Communications System) server and presents them in a user-controllable animated sequence, while the Reporter provides a configurable anatomical map of the site of the pathology, from which individual "reportlets" can be launched. The specification of these reportlets is achieved using standard HTML forms and thus may conceivably be authored by clinical specialists. A generic JavaScript library has been written that allows the seamless incorporation of such contributions into the InfoDOM client. In conjunction with another JavaBean, that library renders graphically-enhanced reporting tools that read and write content to and from the XML data-structure, ready for resubmission to the EPR server. Results We demonstrate the InfoDOM experimental EPR system that is currently being adapted for test-bed use in three hospitals in Cagliari, Italy. For this we are working with specialists in neurology, radiology, and epilepsy. Conclusions Early indications are that the rapid prototyping of reports afforded by our EPR system can assist communication between clinical specialists and our system developers. We are now experimenting with new technologies that may provide services to the kind of XML EPR client described here. PMID:11720950
The composition and degradability of upland dissolved organic matter
NASA Astrophysics Data System (ADS)
Moody, Catherine; Worrall, Fred; Clay, Gareth
2016-04-01
In order to assess controls on the degradability of DOM in stream water, samples of dissolved organic matter (DOM) and particulate organic matter (POM) were collected every month for a period of 24 months from an upland, peat-covered catchment in northern England. Each month the degradability of the DOM was assessed by exposing river water to light for up to 24 hours, and the change in the dissolved organic carbon (DOC) concentration in the water was measured. To provide context for the analysis of DOM and its degradability, samples of peat, vegetation, and litter were also taken from the same catchment and analysed. The organic matter samples were analysed by several methods including: elemental analysis (CHN and O), bomb calorimetry, thermogravimetric analysis, pyrolysis GC/MS, ICP-OES, stable isotope analysis (13C and 15N) and 13C solid state nuclear magnetic resonance (NMR). The water samples were analysed for pH, conductivity, absorbance at 400nm, anions, cations, particulate organic carbon (POC) and DOC concentrations. River flow conditions and meteorology were also recorded at the site and included in the analysis of the composition and degradability of DOM. The results of multiple regression models showed that the rates of DOC degradation were affected by the N-alkyl, O-alkyl, aldehyde and aromatic relative intensities, gross heat, OR and C:N. Of these, the N-alkyl relative intensity had the greatest influence, and this in turn was found to be dependent on the rainfall and soil temperature in the week before sampling.
NASA Technical Reports Server (NTRS)
Korkin, Sergey V.; Lyapustin, Alexei I.; Rozanov, Vladimir V.
2012-01-01
A numerical accuracy analysis of the radiative transfer equation (RTE) solution based on separation of the diffuse light field into anisotropic and smooth parts is presented. The analysis uses three different algorithms based on the discrete ordinate method (DOM). Two methods, DOMAS and DOM2+, that do not use the truncation of the phase function, are compared against the TMS-method. DOMAS and DOM2+ use the Small-Angle Modification of RTE and the single scattering term, respectively, as an anisotropic part. The TMS method uses Delta-M method for truncation of the phase function along with the single scattering correction. For reference, a standard discrete ordinate method, DOM, is also included in analysis. The obtained results for cases with high scattering anisotropy show that at low number of streams (16, 32) only DOMAS provides an accurate solution in the aureole area. Outside of the aureole, the convergence and accuracy of DOMAS, and TMS is found to be approximately similar: DOMAS was found more accurate in cases with coarse aerosol and liquid water cloud models, except low optical depth, while the TMS showed better results in case of ice cloud.
NASA Astrophysics Data System (ADS)
Hall, E.; Fegel, T. S., II; Baron, J.; Boot, C. M.
2015-12-01
While alpine glaciers in montane regions represent the largest flux of dissolved organic matter (DOM) from global ice melt no research has examined the bioavailability of DOM melted out of glacial ice in the western continental United States. Furthermore, rock glaciers are an order of magnitude more abundant than ice glaciers in U.S., yet are not included in budgets for perennial ice carbon stores. Our research aims to understand differences in the bioavailability of carbon from ice glaciers and rock glaciers along the Central Rocky Mountains of Colorado. Identical microbial communities were fed standardized amounts of DOM from four different ice glacier-rock glaciers pairs. Using laboratory incubations, paired with mass spectrometry based metabolomics and 16S gene sequencing; we were able to examine functional definitions of DOM lability in glacial ice. We hypothesized that even though DOM quantities are similar in the outputs of both glacial types in our study area, ice glacial DOM would be more bioavailable than DOM from rock glaciers due to higher proportions of byproducts from microbial metabolism than rock glacier DOM, which has higher amounts of "recalcitrant" plant material. Our results show that DOM from ice glaciers is more labile than DOM from geologically and geographically similar paired rock glaciers. Ice glacier DOM represents an important pool of labile carbon to headwater ecosystems of the Rocky Mountains. Metabolomic analysis shows numerous compounds from varying metabolite pathways, including byproducts of nitrification before and after incubation, meaning that, similar to large maritime glaciers in Alaska and Europe, subglacial environments in the mountain ranges of the United States are hotspots for biological activity and processing of organic carbon.
Ly, Quang Viet; Hur, Jin
2018-06-01
This study assessed the relative contributions of different constitutes in dissolved organic matter (DOM) with two different sources (i.e., urban river and effluent) to membrane fouling on three types of ultrafiltration (UF) membranes via excitation emission matrix - parallel factor analysis (EEM-PARAFAC), size exclusion chromatography (SEC), and Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS). Two polyethersulfone membranes with different pore sizes and one regenerated cellulose membrane were used as representative hydrophobic (HPO) and hydrophilic (HPI) UF membranes, respectively. Although size exclusion effect was found to be the most prevailing rejection mechanism, the behaviors of individual fluorescent components (one tryptophan-like, one microbial-humic-like, and terrestrial humic-like) and different size fractions upon the UF filtration revealed that chemical interactions (e.g., hydrophobic interactions and hydrogen bonding) between DOM and membrane might play important roles in UF membrane fouling, especially for small sized DOM molecules. Based on the molecular level composition determined by FT-ICR-MS, the CHOS formula group showed a greater removal tendency toward the HPO membrane, while the CHONS group was prone to be removed by the HPI membrane. The changes in the overall molecular composition of DOM upon UF filtration were highly dependent on the sources of DOM. The molecules of more acidic nature tended to remain in the permeate of effluent DOM, while the river DOM was shifted into more nitrogen-enriched composition after filtration. Regardless of the DOM sources, the HPO membrane with a smaller pore size led to the most pronounced changes in the molecular composition of DOM. Copyright © 2018 Elsevier Ltd. All rights reserved.
Gücker, Björn; Silva, Ricky C S; Graeber, Daniel; Monteiro, José A F; Boëchat, Iola G
2016-04-15
Many tropical biomes are threatened by rapid land-use change, but its catchment-wide biogeochemical effects are poorly understood. The few previous studies on DOM in tropical catchments suggest that deforestation and subsequent land use increase stream water dissolved organic carbon (DOC) concentrations, but consistent effects on DOM elemental stoichiometry have not yet been reported. Here, we studied stream water DOC concentrations, catchment DOC exports, and DOM elemental stoichiometry in 20 tropical catchments at the Cerrado-Atlantic rainforest transition, dominated by natural vegetation, pasture, intensive agriculture, and urban land cover. Streams draining pasture could be distinguished from those draining natural catchments by their lower DOC concentrations, with lower DOM C:N and C:P ratios. Catchments with intensive agriculture had higher DOC exports and lower DOM C:P ratios than natural catchments. Finally, with the highest DOC concentrations and exports, as well as the highest DOM C:P and N:P ratios, but the lowest C:N ratios among all land-use types, urbanized catchments had the strongest effects on catchment DOM. Thus, urbanization may have alleviated N limitation of heterotrophic DOM decomposition, but increased P limitation. Land use-especially urbanization-also affected the seasonality of catchment biogeochemistry. While natural catchments exhibited high DOC exports and concentrations, with high DOM C:P ratios in the rainy season only, urbanized catchments had high values in these variables throughout the year. Our results suggest that urbanization and pastoral land use exerted the strongest impacts on DOM biogeochemistry in the investigated tropical catchments and should thus be important targets for management and mitigation efforts. Copyright © 2016 Elsevier B.V. All rights reserved.
Spencer, R.G.M.; Pellerin, B.A.; Bergamaschi, B.A.; Downing, B.D.; Kraus, T.E.C.; Smart, D.R.; Dahlgren, R.A.; Hernes, P.J.
2007-01-01
Dissolved organic matter (DOM) concentration and composition in riverine and stream systems are known to vary with hydrological and productivity cycles over the annual and interannual time scales. Rivers are commonly perceived as homogeneous with respect to DOM concentration and composition, particularly under steady flow conditions over short time periods. However, few studies have evaluated the impact of short term variability ( < 1 day) on DOM dynamics. This study examined whether diurnal processes measurably altered DOM concentration and composition in the hypereutrophic San Joaquin River (California) during a relatively quiescent period. We evaluated the efficacy of using optical in situ measurements to reveal changes in DOM which may not be evident from bulk dissolved organic carbon (DOC) measurement alone. The in situ optical measurements described in this study clearly showed for the first time diurnal variations in DOM measurements, which have previously been related to both composition and concentration, even though diurnal changes were not well reflected in bulk DOC concentrations. An apparent asynchronous trend of DOM absorbance and chlorophyll-a in comparison to chromophoric dissolved organic matter (CDOM) fluorescence and spectral slope S290-350 suggests that no one specific CDOM spectrophotometric measurement explains absolutely DOM diurnal variation in this system; the measurement of multiple optical parameters is therefore recommended. The observed diurnal changes in DOM composition, measured by in situ optical instrumentation likely reflect both photochemical and biologically-mediated processes. The results of this study highlight that short-term variability in DOM composition may complicate trends for studies aiming to distinguish different DOM sources in riverine systems and emphasizes the importance of sampling specific study sites to be compared at the same time of day. The utilization of in situ optical technology allows short-term variability in DOM dynamics to be monitored and serves to increase our understanding of its processing and fundamental role in the aquatic environment. Copyright ?? 2007 John Wiley & Sons, Ltd.
Understanding microbial/DOM interactions using fluorescence and flow cytometry
NASA Astrophysics Data System (ADS)
Fox, Bethany; Rushworth, Cathy; Attridge, John; Anesio, Alexandre; Cox, Tim; Reynolds, Darren
2015-04-01
The transformation and movement of dissolved organic carbon (DOC) within freshwater aquatic systems is an important factor in the global cycling of carbon. DOC within aquatic systems is known to underpin the microbial food web and therefore plays an essential role in supporting and maintaining the aquatic ecosystem. Despite this the interactions between bacteria and dissolved organic matter (DOM) are not well understood, although the literature indicates that the microbial processing of bioavailable DOM is essential during the production of autochthonous, labile, DOM. DOM can be broadly characterised by its fluorescing properties and Coble et al. (2014) define terrestrially derived DOM as exhibiting "peak C" fluorescence, whilst labile microbially derived DOM is defined as showing "peak T" fluorescence. Our work explores the microbial/DOM interactions by analysing aquatic samples using fluorescence excitation and emission matrices (EEMs) in conjunction with microbial consumption of dissolved oxygen. Environmental and synthetic water samples were subjected to fluorescence characterisation using both fluorescence spectroscopy and in situ fluorescence sensors (Chelsea Technologies Group Ltd.). PARAFAC analysis and peak picking were performed on EEMs and compared with flow cytometry data, used to quantify bacterial numbers present within samples. Synthetic samples were created using glucose, glutamic acid, nutrient-rich water and a standard bacterial seed. Synthetic samples were provided with terrestrially derived DOM via the addition of an aliquot of environmental water. Using a closed system approach, samples were incubated over time (up to a maximum of 20 days) and analysed at pre-defined intervals. The main focus of our work is to improve our understanding of microbial/DOM interactions and how these interactions affect both the DOM characteristics and microbial food web in freshwater aquatic systems. The information gained, in relation to the origin, microbial processing and subsequent production of DOM, will inform the development of a new generation of in situ fluorescence sensors. Ultimately, our aim is develop a novel technology that enables the monitoring of ecosystem health in freshwater aquatic systems.
Du, Yingxun; Zhang, Yuanyuan; Chen, Feizhou; Chang, Yuguang; Liu, Zhengwen
2016-10-15
Due to climate change, tree line advance is occurring in many alpine regions. Within the next 50 to 100years, alpine lake catchments are expected to develop increased vegetation cover similar to that of sub-alpine lake catchments which currently exist below the tree line. Such changes in vegetation could trigger increased allochthonous DOM inputs to alpine lakes. To understand the fate of allochthonous DOM in alpine lakes impacted by climate change, the photochemical reactivity of DOM in sub-alpine Lake Tiancai (located 200m below the tree line) was investigated by excitation emission matrix fluorescence combined with parallel factor analysis (EEM-PARAFAC) and UV-Vis spectra analysis. With photo-exposure, a decrease in apparent DOM molecular weight was observed and 32% DOM was photomineralized to CO2. Interestingly, the aromaticity of DOM increased after photodegradation, as evidenced by increases in both the specific UV absorbance at 254nm (SUVA254) and the humification index (HIX). Five EEM-PARAFAC components were identified, including four terrestrially-derived substances (C1, C2, C3 and C4; allochthonous) and one tryptophan-like substance (C5; autochthonous). Generally, allochthonous DOM represented by C2 and C3 exhibited greater photoreactivity than autochthonous DOM represented by C5. C4 was identified as a possible photoproduct with relatively high aromaticity and photorefractive tendencies and contributed to the observed increase in SUVA254 and HIX. UV light facilitated the photodegradation of DOM and had the greatest effect on the removal of C3. This study provides information on the transformation of EEM-PARAFAC components in a sub-alpine lake, which is important in understanding the fate of increased allochthonous DOM inputs to alpine lakes impacted by climate change. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Altmann, Jens; Jansen, Boris; Kalbitz, Karsten; Filley, Timothy
2013-04-01
Dissolved organic matter (DOM) is one of the most dynamic carbon pools linking the terrestrial with the aquatic carbon cycle. Besides the insecure contribution of terrestrial DOM to the greenhouse effect, DOM also plays an important role for the mobility and availability of heavy metals and organic pollutants in soils. These processes depend very much on the molecular characteristics of the DOM. Surprisingly the processes that determine the molecular composition of DOM are only poorly understood. DOM can originate from various sources, which influence its molecular composition. It has been recognized that DOM formation is not a static process and DOM characteristics vary not only between different carbon sources. However, molecular characteristics of DOM extracts have scarcely been studied continuously over a longer period of time. Due to constant molecular changes of the parent litter material or soil organic matter during microbial degradation, we assumed that also the molecular characteristics of litter derived DOM varies at different stages during root and needle decomposition. For this study we analyzed the chemical composition of root and leaf samples of 6 temperate tree species during one year of litter decomposition in a laboratory incubation. During this long-term experiment we measured continuously carbon and nitrogen contents of the water extracts and the remaining residues, C mineralization rates, and the chemical composition of water extracts and residues by Curie-point pyrolysis mass spectrometry with TMAH We focused on the following questions: (I) How mobile are molecules derived from plant polymers like tannin, lignin, suberin and cutin? (II) How does the composition of root and leaf derived DOM change over time in dependence on the stage of decomposition and species? Litter derived DOM was generally dominated by aromatic compounds. Substituded fatty acids as typically cutin or suberin derived were not detected in the water extracts. Fresh leaf and needle samples released a much higher amount of tannins than fresh root samples. At later litter decomposition stages the influence of tannins decreased and lignin derived phenols dominated the extracts. With ongoing litter degradation the degree of oxidation for the litter material increased, which was also reflected by the water extracted molecules.
NASA Astrophysics Data System (ADS)
Riedel, Thomas; Zark, Maren; Vähätalo, Anssi; Niggemann, Jutta; Spencer, Robert; Hernes, Peter; Dittmar, Thorsten
2016-09-01
Rivers carry large amounts of dissolved organic matter (DOM) to the oceans thereby connecting terrestrial and marine element cycles. Photo-degradation in conjunction with microbial turnover is considered a major pathway by which terrigenous DOM is decomposed. To reveal globally relevant patterns behind this process, we performed photo-degradation experiments and year-long bio-assays on DOM from ten of the largest world rivers that collectively account for more than one-third of the fresh water discharge to the global ocean. We furthermore tested the hypothesis that the terrigenous component in deep ocean DOM may be far higher than biomarker studies suggest, because of the selective photochemical destruction of characteristic biomolecules from vascular plants. DOM was molecularly characterized by a combination of non-targeted ultrahigh-resolution mass spectrometry and quantitative molecular tracer analyses. We show that the reactivity of DOM is globally related to broad catchment properties. Basins that are dominated by forest and grassland export more photo-degradable DOM than other rivers. Chromophoric compounds are mainly vascular plant-derived polyphenols, and partially carry a pyrogenic signature from vegetation fires. These forest and grassland dominated rivers lost up to 50% of dissolved organic carbon (DOC) during irradiation, and up to 85% of DOC was lost in total if subsequently bio-incubated for one year. Basins covered by cropland, on the other hand, export DOM with a higher proportion of photo-resistant and bio-available DOM which is enriched in nitrogen. In these rivers, 30% or less of DOC was photodegraded. Consistent with previous studies, we found that riverine DOM resembled marine DOM in its broad molecular composition after extensive degradation, mainly due to almost complete removal of aromatics. More detailed molecular fingerprinting analysis (based on the relative abundance of >4000 DOM molecular formulae), however, revealed clear differences between degraded riverine and deep-sea DOM (molecular Bray-Curtis dissimilarity of 50%). None of our experimental treatments enhanced the molecular similarity between the rivers and the deep ocean. We conclude that terrigenous DOM retains a specific molecular signature during photo-degradation on much longer time scales than previously assumed and that substantial, thus far unknown, molecular transformations occur prior to downward convection into the deep oceanic basins.
NASA Astrophysics Data System (ADS)
Aiken, G.; Spencer, R. G.; Butler, K.
2010-12-01
Dissolved organic matter (DOM) chemistry and flux are potentially useful, albeit, underutilized, indicators of watershed characteristics, climate influences on watershed hydrology and soils, and changes associated with resource management. Source materials, watershed geochemistry, oxidative processes and hydrology exert strong influences on the nature and reactivity of DOM in aquatic systems. The molecules that comprise DOM, in turn, control a number of environmental processes important for ecosystem function including light penetration and photochemistry, microbial activity, mineral dissolution/precipitation, and the transport and reactivity of hydrophobic compounds and metals (e.g. Hg). In particular, aromatic molecules derived from higher plants exert strong controls on aquatic photochemistry, and on the transport and biogeochemistry of metals. Assessment of DOM composition and transport, therefore, can provide a basis for understanding watershed processes and biogeochemistry of rivers and streams. Here we present results of multi-year studies designed to assess the seasonal and spatial variability of DOM quantity and quality for 57 North American Rivers. DOM concentrations and composition, based on DOM fractionation on XAD resins, ultraviolet (UV)/visible absorption and fluorescence spectroscopic analyses, and specific compound analyses, varied greatly both between sites and seasonally within a given site. DOM in these rivers exhibited a wide range of concentration (<80 to >4000 µM C* L-1) and specific ultra-violet absorbance at 254 nm (SUVA254) (0.6 to 5 L *mg C-1 *m-1), an optical measurement that is an indicator of aromatic carbon content. In almost all systems, UV absorbance measured at specific wavelengths (e.g. 254 nm) correlated strongly with DOM and hydrophobic organic acid (HPOA) content (aquatic humic substances). The relationships between dissolved organic carbon (DOC) concentration and absorbance for the range of systems were quite variable due to variation in the fraction of non-chromophoric DOM. However, the relationship between HPOA content and UV absorbance was stronger and more consistent because the HPOA fraction contains a greater percentage of UV absorbing compounds than other fractions of the DOM. These results demonstrate that optical properties, such as UV absorbance, are excellent proxies for DOC and HPOA concentrations within a given system. For a limited set of samples, we observed that optical measurements were strongly correlated with lignin phenols, a biomarker indicative of higher plant sources of DOM, and with Hg, which interacts strongly with DOM. Optical measurements are relatively inexpensive to obtain, provide critical information related to DOM composition and reactivity, and can be measured in situ. When combined with discharge data, optical measurements allow estimation of both DOM flux and reactivity in streams and rivers. The link between the nature and reactivity of DOM and its optical properties can be exploited to provide powerful monitoring tools to assess the impacts of climate change and management practices on overall water quality, on DOM transport and transformation, and on the transport of other chemical constituents of interest.
Zhang, Yixiang; Liang, Xinqiang; Wang, Zhibo; Xu, Lixian
2015-01-01
High content of organic matter in the downstream of watersheds underscored the severity of non-point source (NPS) pollution. The major objectives of this study were to characterize and quantify dissolved organic matter (DOM) in watersheds affected by NPS pollution, and to apply self-organizing map (SOM) and parallel factor analysis (PARAFAC) to assess fluorescence properties as proxy indicators for NPS pollution and labor-intensive routine water quality indicators. Water from upstreams and downstreams was sampled to measure dissolved organic carbon (DOC) concentrations and excitation-emission matrix (EEM). Five fluorescence components were modeled with PARAFAC. The regression analysis between PARAFAC intensities (Fmax) and raw EEM measurements indicated that several raw fluorescence measurements at target excitation-emission wavelength region could provide similar DOM information to massive EEM measurements combined with PARAFAC. Regression analysis between DOC concentration and raw EEM measurements suggested that some regions in raw EEM could be used as surrogates for labor-intensive routine indicators. SOM can be used to visualize the occurrence of pollution. Relationship between DOC concentration and PARAFAC components analyzed with SOM suggested that PARAFAC component 2 might be the major part of bulk DOC and could be recognized as a proxy indicator to predict the DOC concentration. PMID:26526140
NASA Astrophysics Data System (ADS)
Pitta, Elli; Zeri, Christina; Tzortziou, Maria; Mousdis, George; Scoullos, Michael
2017-10-01
The Dardanelles Straits - North Aegean Sea mixing zone is the area where the less saline waters of Black Sea origin supply organic material to the oligotrophic Mediterranean Sea. The objective of this work was to assess the seasonal dynamics of dissolved organic matter (DOM) in this region based on the optical properties (absorbance and fluorescence). By combining excitation-emission fluorescence with parallel factor analysis (EEM-PARAFAC), four fluorescent components were identified corresponding to three humic - like components and one amino acid - like. The latter was dominant during all seasons. Chromophoric DOM (CDOM) and dissolved organic carbon (DOC) were found to be strongly coupled only in early spring when conservative conditions prevailed and the two water masses present (Black Sea Waters - BSW and Levantine Waters - LW) could be identified by their absorption coefficients (a300) and spectral slopes S275-295. In summer and autumn the relationships collapsed. During summer two features appear to dominate the dynamics of CDOM: i) photodegradation that acts as an important sink for both the absorbing DOM and the terrestrially derived fluorescent humic substances and ii) the release of marine humic like fluorescent substances from bacterial transformation of DOM. Autumn results revealed a source of fluorescent CDOM of high molecular weight, which was independent of water mass sources and related to particle and sedimentary processes. The removal of the amino acid-like fluorescence during autumn provided evidence that although DOC was found to accumulate under low inorganic nutrient conditions, dissolved organic nitrogenous compounds could serve as bacterial substrate.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hodgkins, Suzanne B.; Tfaily, Malak M.; Podgorski, David C.
2016-08-01
The fate of carbon stored in permafrost-zone peatlands represents a significant uncertainty in global climate modeling. Given that the breakdown of dissolved organic matter (DOM) is often a major pathway for decomposition in peatlands, knowledge of DOM reactivity under different permafrost regimes is critical for determining future climate feedbacks. To explore the effects of permafrost thaw and resultant plant succession on DOM reactivity, we used a combination of Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS), UV/Vis absorbance, and excitation-emission matrix spectroscopy (EEMS) to examine the DOM elemental composition and optical properties of 27 pore water samples gathered frommore » various sites along a permafrost thaw sequence in Stordalen Mire, a thawing subarctic peatland in northern Sweden. The presence of dense Sphagnum moss, a feature that is dominant in the intermediate thaw stages, appeared to be the main driver of variation in DOM elemental composition and optical properties at Stordalen. Specifically, DOM from sites with Sphagnum had greater aromaticity, higher average molecular weights, and greater O/C, consistent with a higher abundance of phenolic compounds that likely inhibit decomposition. These compounds are released by Sphagnum and may accumulate due to inhibition of phenol oxidase activity by the acidic pH at these sites. In contrast, sites without Sphagnum, specifically fully-thawed rich fens, had more saturated, more reduced compounds, which were high in N and S. Optical properties at rich fens were indicated the presence of microbially-derived DOM, consistent with the higher decomposition rates previously measured at these sites. These results indicate that Sphagnum acts as an inhibitor of rapid decomposition and CH4 release in thawing subarctic peatlands, consistent with lower rates of CO2 and CH4 production previously observed at these sites. However, this inhibitory effect may disappear if Sphagnumdominated bogs transition to more waterlogged rich fens that contain very little to no living Sphagnum. Release of this inhibition allows for higher levels of microbial activity and potentially greater CH4 release, as has been observed in these fen sites.« less
Pan-arctic trends in terrestrial dissolved organic matter from optical measurements
Mann, Paul J.; Spencer, Robert G.M.; Hernes, Peter J.; Six, Johan; Aiken, George R.; Tank, Suzanne E.; McClelland, James W.; Butler, Kenna D.; Dyda, Rachael Y.; Holmes, Robert M.
2016-01-01
Climate change is causing extensive warming across Arctic regions resulting in permafrost degradation, alterations to regional hydrology and shifting amounts and composition of dissolved organic matter (DOM) transported by streams and rivers. Here, we characterize the DOM composition and optical properties of the six largest Arctic rivers draining into the Arctic Ocean to examine the ability of optical measurements to provide meaningful insights into terrigenous carbon export patterns and biogeochemical cycling. The chemical composition of aquatic DOM varied with season, spring months were typified by highest lignin phenol and dissolved organic carbon (DOC) concentrations with greater hydrophobic acid content, and lower proportions of hydrophilic compounds, relative to summer and winter months. Chromophoric DOM (CDOM) spectral slope (S275–295) tracked seasonal shifts in DOM composition across river basins. Fluorescence and parallel factor analysis identified seven components across the six Arctic rivers. The ratios of “terrestrial humic-like” vs. “marine humic-like” fluorescent components co-varied with lignin monomer ratios over summer and winter months, suggesting fluorescence may provide information on the age and degradation state of riverine DOM. CDOM absorbance (a350) proved a sensitive proxy for lignin phenol concentrations across all six river basins and over the hydrograph, enabling for the first time the development of a single pan-arctic relationship between a350 and terrigenous DOC (R2 = 0.93). Combining this lignin proxy with high-resolution monitoring of a350, pan-arctic estimates of annual lignin flux were calculated to range from 156 to 185 Gg, resulting in shorter and more constrained estimates of terrigenous DOM residence times in the Arctic Ocean (spanning 7 months to 2½ years). Furthermore, multiple linear regression models incorporating both absorbance and fluorescence variables proved capable of explaining much of the variability in lignin composition across rivers and seasons. Our findings suggest that synoptic, high-resolution optical measurements can provide improved understanding of northern high-latitude organic matter cycling and flux, and prove an important technique for capturing future climate-driven changes.
Pan-arctic trends in terrestrial dissolved organic matter from optical measurements
Mann, Paul J.; Spencer, Robert G. M.; Hernes, Peter J.; Six, Johan; Aiken, George R.; Tank, Suzanne E.; McClelland, James W.; Butler, Kenna D.; Dyda, Rachael Y.; Holmes, Robert M.
2016-01-01
Climate change is causing extensive warming across Arctic regions resulting in permafrost degradation, alterations to regional hydrology and shifting amounts and composition of dissolved organic matter (DOM) transported by streams and rivers. Here, we characterize the DOM composition and optical properties of the six largest Arctic rivers draining into the Arctic Ocean to examine the ability of optical measurements to provide meaningful insights into terrigenous carbon export patterns and biogeochemical cycling. The chemical composition of aquatic DOM varied with season, spring months were typified by highest lignin phenol and dissolved organic carbon (DOC) concentrations with greater hydrophobic acid content, and lower proportions of hydrophilic compounds, relative to summer and winter months. Chromophoric DOM (CDOM) spectral slope (S275–295) tracked seasonal shifts in DOM composition across river basins. Fluorescence and parallel factor analysis identified seven components across the six Arctic rivers. The ratios of “terrestrial humic-like” vs. “marine humic-like” fluorescent components co-varied with lignin monomer ratios over summer and winter months, suggesting fluorescence may provide information on the age and degradation state of riverine DOM. CDOM absorbance (a350) proved a sensitive proxy for lignin phenol concentrations across all six river basins and over the hydrograph, enabling for the first time the development of a single pan-arctic relationship between a350 and terrigenous DOC (R2 = 0.93). Combining this lignin proxy with high-resolution monitoring of a350, pan-arctic estimates of annual lignin flux were calculated to range from 156 to 185 Gg, resulting in shorter and more constrained estimates of terrigenous DOM residence times in the Arctic Ocean (spanning 7 months to 2½ years). Furthermore, multiple linear regression models incorporating both absorbance and fluorescence variables proved capable of explaining much of the variability in lignin composition across rivers and seasons. Our findings suggest that synoptic, high-resolution optical measurements can provide improved understanding of northern high-latitude organic matter cycling and flux, and prove an important technique for capturing future climate-driven changes.
NASA Astrophysics Data System (ADS)
Kuchle, Juliano; Scherer, Claiton Marlon dos Santos; Born, Christian Correa; Alvarenga, Renata dos Santos; Adegas, Felipe
2011-04-01
The Dom João Stage comprises an interval with variable thickness between 100 and 1200 m, composed of fluvial, eolian and lacustrine deposits of Late Jurassic age, based mainly on the lacustrine ostracod fauna (although the top deposits may extend into the Early Cretaceous). These deposits comprise the so-called Afro-Brazilian Depression, initially characterized as containing the Brotas Group of the Recôncavo Basin (which includes the Aliança and the Sergi Formations) and subsequently extended into the Tucano, Jatobá, Camamu, Almada, Sergipe, Alagoas and Araripe Basins in northeastern Brazil, encompassing the study area of this paper. The large occurrence area of the Dom João Stage gives rise to discussions about the depositional connectivity between the basins, and the real extension of sedimentation. In the first studies of this stratigraphic interval, the Dom João Stage was strictly associated with the rift phase, as an initial stage (decades of 1960-70), but subsequent analyses considered the Dom João as an intracratonic basin or pre-rift phase - without any relation to the active mechanics of a tectonic syn-rift phase (decades of 1980-2000). The present work developed an evolutionary stratigraphic and tectonic model, based on the characterization of depositional sequences, internal flooding surfaces, depositional systems arrangement and paleoflow directions. Several outcrops on the onshore basins were used to build composite sections of each basin, comprising facies, architectural elements, depositional systems, stratigraphic and lithostratigraphic frameworks, and paleocurrents. In addition to that, over a hundred onshore and offshore exploration wells were used (only 21 of which are showed) to map the depositional sequences and generate correlation sections. These show the characteristics and relations of the Dom João Stage in each studied basin, and they were also extended to the Gabon Basin. The results indicate that there were two main phases during the Dom João Stage, in which distinctive sedimentary environments were developed, reflecting depositional system arrangements, paleoflow directions were diverse, and continuous or compartmented basins were developed.
NASA Astrophysics Data System (ADS)
Hodgkins, Suzanne B.; Tfaily, Malak M.; Podgorski, David C.; McCalley, Carmody K.; Saleska, Scott R.; Crill, Patrick M.; Rich, Virginia I.; Chanton, Jeffrey P.; Cooper, William T.
2016-08-01
The fate of carbon stored in permafrost-zone peatlands represents a significant uncertainty in global climate modeling. Given that the breakdown of dissolved organic matter (DOM) is often a major pathway for decomposition in peatlands, knowledge of DOM reactivity under different permafrost regimes is critical for determining future climate feedbacks. To explore the effects of permafrost thaw and resultant plant succession on DOM reactivity, we used a combination of Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS), UV/Vis absorbance, and excitation-emission matrix spectroscopy (EEMS) to examine the DOM elemental composition and optical properties of 27 pore water samples gathered from various sites along a permafrost thaw sequence in Stordalen Mire, a thawing subarctic peatland in northern Sweden. The presence of dense Sphagnum moss, a feature that is dominant in the intermediate thaw stages, appeared to be the main driver of variation in DOM elemental composition and optical properties at Stordalen. Specifically, DOM from sites with Sphagnum had greater aromaticity, higher average molecular weights, and greater O/C, consistent with a higher abundance of phenolic compounds that likely inhibit decomposition. These compounds are released by Sphagnum and may accumulate due to inhibition of phenol oxidase activity by the acidic pH at these sites. In contrast, sites without Sphagnum, specifically fully-thawed rich fens, had more saturated, more reduced compounds, which were high in N and S. Optical properties at rich fens indicated the presence of microbially-derived DOM, consistent with the higher decomposition rates previously measured at these sites. These results indicate that Sphagnum acts as an inhibitor of rapid decomposition and CH4 release in thawing subarctic peatlands, consistent with lower rates of CO2 and CH4 production previously observed at these sites. However, this inhibitory effect may disappear if Sphagnum-dominated bogs transition to more waterlogged rich fens that contain very little to no living Sphagnum. Release of this inhibition allows for higher levels of microbial activity and potentially greater CH4 release, as has been observed in these fen sites.
NASA Astrophysics Data System (ADS)
Osburn, C. L.; Mikan, M.; Etheridge, J. R.; Burchell, M. R.; Birgand, F.
2015-12-01
Salt marshes are transitional ecosystems between terrestrial and marine environments. Along with mangroves and other vegetated coastal habitats, salt marshes rank among the most productive ecosystems on Earth, with critical global importance for the planet's carbon cycle. Fluorescence was used to examine the quality of dissolved and particulate organic matter (DOM and POM) exchanging between a tidal creek in a created salt marsh and its adjacent estuary in eastern North Carolina, USA. Samples from the creek were collected hourly over four tidal cycles in May, July, August, and October of 2011. Absorbance and fluorescence of chromophoric DOM (CDOM) and of base-extracted POM (BEPOM) served as the tracers for organic matter quality while dissolved organic carbon (DOC) and base-extracted particulate organic carbon (BEPOC) were used to compute fluxes. Fluorescence was modeled using parallel factor analysis (PARAFAC) and principle components analysis (PCA) of the PARAFAC results. Of nine PARAFAC components modeled, we used multiple linear regression to identify tracers for recalcitrant DOM; labile soil-derived source DOM; detrital POM; and planktonic POM. Based on mass balance, recalcitrant DOC export was 86 g C m-2 yr-1 and labile DOC export was 49 g C m-2 yr-1. The marsh also exported 41 g C m-2 yr-1 of detrital terrestrial POC, which likely originated from lands adjacent to the North River estuary. Planktonic POC export from the marsh was 6 g C m-2 yr-1. Using the DOM and POM quality results obtained via fluorescence measurements and scaling up to global salt marsh area, we estimated that the potential release of CO2 from the respiration of salt marsh DOC and POC transported to estuaries could be 11 Tg C yr-1, roughly 4% of the recently estimated CO2 release for marshes and estuaries globally.
NASA Astrophysics Data System (ADS)
Hofmann, Roland; Griebler, Christian
2017-04-01
Groundwater ecosystems are an essential resource for drinking water and at the same time constitute fascinating habitats subject to increasing (anthropogenic) disturbances. In our research, we look for ways to qualitatively and quantitatively access, and predict the resistance and resilience (potential) of groundwater ecosystems in consequence of selected disturbances. As a central goal we hope to identify and quantify the underlying biological and ecological key drivers of the microbial Carrying Capacity (mCC) - an ecological concept established in macro-ecology - we assume directly connected to the ecosystem's productivity and the resistance and resilience of aquifers. We further hypothesize, that the ecosystems' mCC is a result of available energy and constitutes a promising proxy for the potential of groundwater ecosystems to withstand impacts and recover from it. In a first approach we studied the dynamics of the microbial standing stock (biomass) and growth (productivity) productivity of a natural groundwater microbial community in parallel 2-D sediment flow-through systems. Selected zones of the model aquifers were disturbed by elevated DOM concentrations. Both the 'mobile' (free floating) and 'sessile' (sediment attached) microbial components were followed over time in terms of biomass, growth, and specific activities (ATP, carbon use efficiency) and taxonomic composition. Sediment regions supplied with elevated concentrations of natural DOM showed increased biomass, activities and taxonomic richness with the sediment community, while differences in the mobile microbial were marginal. Specifically, the carbon use efficiency was significantly increased in the DOM amended sediment zones. In contrast, the microbial community that received the mainly refractory natural background DOM was able to metabolize polymers more efficiently in substrate use tests (ECOLOG), seen as an adaptation to the energy-poor subsurface. Quasi-stationary conditions were reached in the model aquifers only after several weeks. The quantitative link between microbial productivity and mCC is currently evaluated.
Estimating the carbon dynamics of South Korean forests from 1954 to 2012
NASA Astrophysics Data System (ADS)
Lee, J.; Yoon, T. K.; Han, S.; Kim, S.; Yi, M. J.; Park, G. S.; Kim, C.; Kim, R.; Son, Y.
2014-03-01
Forests play an important role in the global carbon (C) cycle, and the South Korean forests also contribute to this global C cycle. While the South Korean forest ecosystem was almost completely destroyed by exploitation and the Korean War, it has successfully recovered because of national-scale reforestation programs since 1973. There have been several studies on the estimation of C stocks and balances in the South Korean forests over the past decades. However, a retrospective long-term study including biomass and dead organic matter (DOM) C and validating DOM C is still insufficient. Accordingly, we estimated the C stocks and balances of both biomass and DOM C during 1954-2012 using a~process-based model, the Korean Forest Soil Carbon model, and the 5th Korean National Forest Inventory (NFI) report. Validation processes were also conducted based on the 5th NFI and statistical data. Simulation results showed that the biomass C stocks increased from 36.4 to 440.4 Tg C and sequestered C at a rate of 7.0 Tg C yr-1 during 1954-2012. The DOM C stocks increased from 386.0 to 463.1 Tg C and sequestered C at a rate of 1.3 Tg C yr-1 during the same period. The estimates of biomass and DOM C stocks agreed well with observed C stock data. The annual net biome production (NBP) during 1954-2012 was 141.3 g C m-2 yr-1, which increased from -8.8 to 436.6 g C m-2 yr-1 in 1955 and 2012, respectively. Compared to forests in other countries and global forests, the annual C sink rate of South Korean forests was much lower, but the NBP was much higher. Our results could provide the forest C dynamics in South Korean forests before and after the onset of reforestation programs.
NASA Astrophysics Data System (ADS)
Sun, Yongjun; Zhu, Kexin; Khan, Bushra; Du, Xinpei; Hou, Lei; Zhao, Shuang; Li, Ping; Liu, Songbai; Song, Peng; Zhang, Hong; Jiang, Shuihong; Wang, Zhan; Zha, Shenghua
2018-01-01
In this study, the fouling behavior of PES ultrafiltration (UF) membrane with different DOM fractions including bovine serum albumin (BSA), sodium alginate (SA) and humic acid (HA) was systematically investigated. The result showed that the fouling mechanism of HA was cake formation while that of BSA and SA was caused by both pore blocking and cake formation due to the different particle size. Moreover, membrane fouling became more severe with the increase of feed concentration and TMP and it could be accurately described by the cake-complete model. The pore blocking resistance for SA was larger than that for BSA, whereas the cake resistance followed the sequence SA>BSA>HA. This observation offered insight into the differences in fouling behavior of the various DOM components and was further used as guidance for practical application.
NASA Astrophysics Data System (ADS)
Hansen, A. M.; Kraus, T. E. C.; Pellerin, B. A.; Fleck, J.
2014-12-01
Many studies use optical properties to infer dissolved organic matter (DOM) composition and origin; however, there are few controlled studies which examine the effects of environmental processing on different DOM sources. Our goal was to better understand the roles DOM plays in wetland environments of the Sacramento-San Joaquin Delta. Therefore, five endmember sources of DOM from this region were selected for use in this study: peat soil (euic, thermic Typic Medisaprists); three aquatic macrophytes (white rice (Oryza sativa); tule (Schoenoplectus acutus); cattail (Typha spp.)); and one diatom (Thalassiosira weissflogii). We measured DOM concentrations (mg C/L) and optical properties (absorbance and fluorescence) of these sources following biological and photochemical degradation over a three month period. DOM concentration decreased by over 90% in plant and algal leachates following 3 months of biodegradation, while photoexposure had negligible effects. The fluorescence index (FI), humic index (HI), specific UV absorbance at 254 nm (SUVA), and carbon-normalized fluorescence of Peaks C and A increased with biodegradation, whereas Peak T decreased. Photoexposure resulted in a decrease of the FI, HI and SUVA values. Our results emphasize the need to better understand how environmental processing affects DOM properties in aquatic environments; the frequently opposing effects of biodegradation and photodegradation, which occur simultaneously in nature, make it challenging to decipher the original DOM source without considering multiple parameters. This dataset can help us better identify which optical properties, either individual or in combination, can provide insight into how biogeochemical processes affect DOM in aquatic environments.
Gatch, Michael B; Rutledge, Margaret A; Carbonaro, Theresa; Forster, Michael J
2009-07-01
There has been increased recreational use of dimethyltryptamine (DMT), but little is known of its discriminative stimulus effects. The present study assessed the similarity of the discriminative stimulus effects of DMT to other types of hallucinogens and to psychostimulants. Rats were trained to discriminate DMT from saline. To test the similarity of DMT to known hallucinogens, the ability of (+)-lysergic acid diethylamide (LSD), (-)-2,5-dimethoxy-4-methylamphetamine (DOM), (+)-methamphetamine, or (+/-)3,4-methylenedioxymethyl amphetamine (MDMA) to substitute in DMT-trained rats was tested. The ability of DMT to substitute in rats trained to discriminate each of these compounds was also tested. To assess the degree of similarity in discriminative stimulus effects, each of the compounds was tested for substitution in all of the other training groups. LSD, DOM, and MDMA all fully substituted in DMT-trained rats, whereas DMT fully substituted only in DOM-trained rats. Full cross-substitution occurred between DMT and DOM, LSD and DOM, and (+)-methamphetamine and MDMA. MDMA fully substituted for (+)-methamphetamine, DOM, and DMT, but only partially for LSD. In MDMA-trained rats, LSD and (+)-methamphetamine fully substituted, whereas DMT and DOM did not fully substitute. No cross-substitution was evident between (+)-methamphetamine and DMT, LSD, or DOM. DMT produces discriminative stimulus effects most similar to those of DOM, with some similarity to the discriminative stimulus effects of LSD and MDMA. Like DOM and LSD, DMT seems to produce predominately hallucinogenic-like discriminative stimulus effects and minimal psychostimulant effects, in contrast to MDMA which produced hallucinogen- and psychostimulant-like effects.
O’Donnell, Jonathan A.; Aiken, George R.; Butler, Kenna D.; Guillemette, Francois; Podgorski, David C.; Spencer, Robert G. M.
2016-01-01
The boreal region stores large amounts of organic carbon (C) in organic-soil horizons, which are vulnerable to destabilization via warming and disturbance. Decomposition of soil organic matter (SOM) contributes to the production and turnover of dissolved organic matter (DOM). While temperature is a primary control on rates of SOM and DOM cycling, little is known about temperature effects on DOM composition in soil leachate. Here we conducted a 30 day incubation to examine the effects of temperature (20 versus 5°C) and SOM decomposition state (moss versus fibric versus amorphous horizons) on DOM composition in organic soils of interior Alaska. We characterized DOM using bulk dissolved organic C (DOC) concentration, chemical fractionation, optical properties, and ultrahigh-resolution mass spectrometry. We observed an increase in DOC concentration and DOM aromaticity in the 20°C treatment compared to the 5°C treatment. Leachate from fibric horizons had higher DOC concentration than shallow moss or deep amorphous horizons. We also observed chemical shifts in DOM leachate over time, including increases in hydrophobic organic acids, polyphenols, and condensed aromatics and decreases in low-molecular weight hydrophilic compounds and aliphatics. We compared ultrahigh-resolution mass spectrometry and optical data and observed strong correlations between polyphenols, condensed aromatics, SUVA254, and humic-like fluorescence intensities. These findings suggest that biolabile DOM was preferentially mineralized, and the magnitude of this transformation was determined by kinetics (i.e., temperature) and substrate quality (i.e., soil horizon). With future warming, our findings indicate that organic soils may release higher concentrations of aromatic DOM to aquatic ecosystems.
NASA Astrophysics Data System (ADS)
Van Stan, John T.; Wagner, Sasha; Guillemette, François; Whitetree, Ansley; Lewis, Julius; Silva, Leticia; Stubbins, Aron
2017-11-01
Studies on the fate and transport of dissolved organic matter (DOM) along the rainfall-to-discharge flow pathway typically begin in streams or soils, neglecting the initial enrichment of rainfall with DOM during contact with plant canopies. However, rain water can gather significant amounts of tree-derived DOM (tree-DOM) when it drains from the canopy, as throughfall, and down the stem, as stemflow. We examined the temporal variability of event-scale tree-DOM concentrations, yield, and optical (light absorbance and fluorescence) characteristics from an epiphyte-laden Quercus virginiana-Juniperus virginiana forest on Skidaway Island, Savannah, Georgia (USA). All tree-DOM fluxes were highly enriched in dissolved organic carbon (DOC) compared to rainfall, and epiphytes further increased concentrations. Stemflow DOC concentrations were greater than throughfall across study species, yet larger throughfall water yields produced greater DOC yields versus stemflow. Tree-DOM optical characteristics indicate it is aromatic-rich with fluorescent DOM dominated by humic-like fluorescence, containing 10-20% protein-like (tryptophan-like) fluorescence. Storm size was the only storm condition that strongly correlated with tree-DOM concentration and flux; however, throughfall and stemflow optical characteristics varied little across a wide range of storm conditions (from low magnitude events to intense tropical storms). Annual tree-DOM yields from the study forest (0.8-46 g C m-2 yr-1) were similar to other yields from discrete down-gradient fluxes (litter leachates, soil leachates, and stream discharge) along the rainfall-to-discharge flow path.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schumacher,M.; Christl, I.; Vogt, R.
The chemical composition and carbon isotope signature of aquatic dissolved organic matter (DOM) in five boreal forest catchments in Scandinavia were investigated. The DOM was isolated during spring and fall seasons using a reverse osmosis technique. The DOM samples were analyzed by elemental analysis, FT-IR, solid-state CP-MAS {sup 13}C-NMR, and C-1s NEXAFS spectroscopy. In addition, the relative abundance of carbon isotopes ({sup 12}C, {sup 13}C, {sup 14}C) in the samples was measured. There were no significant differences in the chemical composition or carbon isotope signature of the DOM sampled in spring and fall seasons. Also, differences in DOM composition betweenmore » the five catchments were minor. Compared to reference peat fulvic and humic acids, all DOM samples were richer in O-alkyl carbon and contained less aromatic and phenolic carbon, as shown by FT-IR, {sup 13}C-NMR, and C-1s NEXAFS spectroscopy. The DOM was clearly enriched in {sup 14}C relative to the NBS oxalic acid standard of 1950, indicating that the aquatic DOM contained considerable amounts of organic carbon younger than about 50 years. The weight-based C:N ratios of 31 {+-} 6 and the {delta}{sup 13}Cvalues of -29 {+-} 2{per_thousand}indicate that the isolated DOM is of terrestrial rather than aquatic origin. We conclude that young, hydrophilic carbon compounds of terrestrial origin are predominant in the samples investigated, and that the composition of the aquatic DOM in the studied boreal forest catchments is rather stable during low to intermediate flow conditions.« less
Characterization and Fate of Dissolved Organic Matter in the Lena Delta Region, Siberia
NASA Astrophysics Data System (ADS)
Goncalves-Araujo, R.; Stedmon, C. A.; Heim, B.; Dubinenkov, I.; Kraberg, A.; Moiseev, D.; Bracher, A.
2016-02-01
Connectivity between the terrestrial and marine environment in the Artic is changing as a result of climate change, influencing both freshwater budgets and the supply of carbon to the sea. This study characterizes the optical properties of dissolved organic matter (DOM) within the Lena Delta region and evaluates the behavior of DOM across the fresh water-marine gradient. Six fluorescent components (four humic-like; one marine humic-like; one protein-like) were identified by Parallel Factor Analysis (PARAFAC) with a clear dominance of allochthonous humic-like signals. Colored DOM (CDOM) and dissolved organic carbon (DOC) were highly correlated and had their distribution coupled with hydrographical conditions. Higher DOM concentration and degree of humification were associated with the low salinity waters of the Lena River. Values decreased towards the higher salinity Laptev Sea shelf waters. Results demonstrate different responses of DOM mixing in relation to the vertical structure of the water column, as reflecting the hydrographical dynamics in the region. Two mixing curves for DOM were apparent. In surface waters above the pycnocline there was a sharper decrease in DOM concentration in relation to salinity indicating removal. In the bottom water layer the DOM decrease within salinity was less. We propose there is a removal of DOM occurring primarily at the surface layer, which is likely driven by photodegradation and flocculation.
Giesler, Reiner; Björkvald, Louise; Laudon, Hoalmar; Mörth, Carl-Magnus
2009-01-15
The discharge of terrestrial dissolved organic matter (DOM) by streams is an important cross-system linkage that strongly influences downstream aquatic ecosystems. Isotopic tracers are important tools that can help to unravel the source of DOM from different terrestrial compartments in the landscape. Here we demonstrate the spatial and seasonal variation of delta34S of DOM in 10 boreal streams to test if the tracer could provide new insights into the origin of DOM. We found large spatial and seasonal variations in stream water delta34S-DOM values ranging from -5.2 per thousand to +9.6 per thousand with an average of +4.0 +/- 0.6 (N = 62; average and 95% confidence interval). Large seasonal variations were found in stream water delta34S-DOM values: for example, a shift of more than 10 per thousand during the spring snowmelt in a wetland-dominated stream. Spatial differences were also observed during the winter base flow with higher delta34S-DOM values in the fourth-order Krycklan stream at the outlet of the 68 km2 catchment compared to the small (< 1 km2) headwater streams. Our data clearly show that the delta34S-DOM values have the potential to be used as a tracer to identify and generate new insights about terrestrial DOM sources in the boreal landscape.
Balch, J; Guéguen, C
2015-01-01
In situ measurements of labile metal species using diffusive gradients in thin films (DGT) passive samplers are based on the diffusion rates of individual species. Although most studies have dealt with chemically isolated humic substances, the diffusion of dissolved organic matter (DOM) across the hydrogel is not well understood. In this study, the diffusion coefficient (D) and molecular weight (MW) of 11 aquatic DOM and 4 humic substances (HS) were determined. Natural, unaltered aquatic DOM was capable of diffusing across the diffusive gel membrane with D values ranging from 2.48×10(-6) to 5.31×10(-6) cm(2) s(-1). Humic substances had diffusion coefficient values ranging from 3.48×10(-6) to 6.05×10(-6) cm(2) s(-1), congruent with previous studies. Molecular weight of aquatic DOM and HS samples (∼500-1750 Da) measured using asymmetrical flow field-flow fractionation (AF4) strongly influenced D, with larger molecular weight DOM having lower D values. No noticeable changes in DOM size properties were observed during the diffusion process, suggesting that DOM remains intact following diffusion across the diffusive gel. The influence of molecular weight on DOM mobility will assist in further understanding and development of the DGT technique and the uptake and mobility of contaminants associated with DOM in aquatic environments. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Manalilkada Sasidharan, S.; Dash, P.; Singh, S.; Lu, Y.
2017-12-01
The objective of this research was to quantify the effects of photodegradation and biodegradation on the dissolved organic matter (DOM) concentration and composition in five distinct waterbodies with diverse types of watershed land use and land cover in the southeastern United States. The water bodies included an agricultural pond, a lake in a predominantly forested watershed, a man-made reservoir, an estuary, and a bay. Two sets of samples were prepared from these water bodies by dispensing filtered water samples to unfiltered samples in 10:1 ratio. The first set was kept in the sunlight during the day (12 hours), and colored dissolved organic matter (CDOM) absorption and fluorescence were measured periodically over a 30-day period for examining the effects of combined photo- and biodegradation. The second set of samples was kept in the dark for examining the effects of biodegradation alone, and CDOM absorption and fluorescence were measured at the same time as the sunlight-exposed samples. Subsequently, spectrometric results in tandem with multivariate statistical analysis were used to interpret the lability vs. composition of DOM. Parallel factor analysis (PARAFAC) revealed the presence of four DOM components (C1-C4). C1 and C4 were microbial tryptophan-like, labile lighter components, while C2 and C3 were terrestrial humic like or fulvic acid type, larger aromatic refractory components. The principal component analysis (PCA) also revealed two distinct groups of DOM - C1 and C4 vs. C2 and C3. The negative PC1 loadings of C2, C3, HIX, a254 and SUVA indicated humic-like or fulvic-like structurally complex refractory aromatic DOM originated from higher plants in forested areas. C1, C4, SR, FI and BI had positive PC1 loadings, which indicated structurally simpler labile DOM were derived from agricultural areas or microbial activity. There was a decrease in dissolved organic carbon (DOC) due to combined photo- and biodegradation, and transformation of components C2, C3 into components C1, C4 was at a much faster rate than only biodegradation. This observation suggests that the presence of sunlight facilitated the degradation of larger, recalcitrant, terrestrial humic-like compounds into smaller, labile microbial components.
1997-05-01
estuaries was modeled using phenanthrene, bacterial extracellular polymer and kaolinite clay as surrogates for a hydrophobic organic pollutant...coefficients obtained for phenanthrene sorption to kaolinite and bentonite in the presence of varying amounts of DOM represented by alginic acid and tannic...acid. 333 Table B.3: Literature values for sorption between phenanthrene, humic acid and kaolinite for [DOM]a = 10 mg/L 334 Table E.1: Sample output data
Creed, Irena F.; McKnight, Diane M.; Pellerin, Brian; Green, Mark B.; Bergamaschi, Brian; Aiken, George R.; Burns, Douglas A.; Findlay, Stuart E G; Shanley, James B.; Striegl, Robert G.; Aulenbach, Brent T.; Clow, David W.; Laudon, Hjalmar; McGlynn, Brian L.; McGuire, Kevin J.; Smith, Richard A.; Stackpoole, Sarah M.
2015-01-01
A better understanding is needed of how hydrological and biogeochemical processes control dissolved organic carbon (DOC) concentrations and dissolved organic matter (DOM) composition from headwaters downstream to large rivers. We examined a large DOM dataset from the National Water Information System of the US Geological Survey, which represents approximately 100 000 measurements of DOC concentration and DOM composition at many sites along rivers across the United States. Application of quantile regression revealed a tendency towards downstream spatial and temporal homogenization of DOC concentrations and a shift from dominance of aromatic DOM in headwaters to more aliphatic DOM downstream. The DOC concentration–discharge (C-Q) relationships at each site revealed a downstream tendency towards a slope of zero. We propose that despite complexities in river networks that have driven many revisions to the River Continuum Concept, rivers show a tendency towards chemostasis (C-Q slope of zero) because of a downstream shift from a dominance of hydrologic drivers that connect terrestrial DOM sources to streams in the headwaters towards a dominance of instream and near-stream biogeochemical processes that result in preferential losses of aromatic DOM and preferential gains of aliphatic DOM.
Poulin, Brett A.; Ryan, Joseph N.; Nagy, Kathryn L.; Stubbins, Aron; Dittmar, Thorsten; Orem, William H.; Krabbenhoft, David P.; Aiken, George R.
2017-01-01
Sulfate inputs to the Florida Everglades stimulate sulfidic conditions in freshwater wetland sediments that affect ecological and biogeochemical processes. An unexplored implication of sulfate enrichment is alteration of the content and speciation of sulfur in dissolved organic matter (DOM), which influences the reactivity of DOM with trace metals. Here, we describe the vertical and lateral spatial dependence of sulfur chemistry in the hydrophobic organic acid fraction of DOM from unimpacted and sulfate-impacted Everglades wetlands using X-ray absorption spectroscopy and ultrahigh-resolution mass spectrometry. Spatial variation in DOM sulfur content and speciation reflects the degree of sulfate enrichment and resulting sulfide concentrations in sediment pore waters. Sulfur is incorporated into DOM predominantly as highly reduced species in sulfidic pore waters. Sulfur-enriched DOM in sediment pore waters exchanges with overlying surface waters and the sulfur likely undergoes oxidative transformations in the water column. Across all wetland sites and depths, the total sulfur content of DOM correlated with the relative abundance of highly reduced sulfur functionality. The results identify sulfate input as a primary determinant on DOM sulfur chemistry to be considered in the context of wetland restoration and sulfur and trace metal cycling.
Metabolomics Reveal Optimal Grain Preprocessing (Milling) toward Rice Koji Fermentation.
Lee, Sunmin; Lee, Da Eun; Singh, Digar; Lee, Choong Hwan
2018-03-21
A time-correlated mass spectrometry (MS)-based metabolic profiling was performed for rice koji made using the substrates with varying degrees of milling (DOM). Overall, 67 primary and secondary metabolites were observed as significantly discriminant among different samples. Notably, a higher abundance of carbohydrate (sugars, sugar alcohols, organic acids, and phenolic acids) and lipid (fatty acids and lysophospholipids) derived metabolites with enhanced hydrolytic enzyme activities were observed for koji made with DOM of 5-7 substrates at 36 h. The antioxidant secondary metabolites (flavonoids and phenolic acid) were relatively higher in koji with DOM of 0 substrates, followed by DOM of 5 > DOM of 7 > DOM of 9 and 11 at 96 h. Hence, we conjecture that the rice substrate preprocessing between DOM of 5 and 7 was potentially optimal toward koji fermentation, with the end product being rich in distinctive organoleptic, nutritional, and functional metabolites. The study rationalizes the substrate preprocessing steps vital for commercial koji making.
Fractions and biodegradability of dissolved organic matter derived from different composts.
Wei, Zimin; Zhang, Xu; Wei, Yuquan; Wen, Xin; Shi, Jianhong; Wu, Junqiu; Zhao, Yue; Xi, Beidou
2014-06-01
An experiment was conducted to determine the fractions of molecular weights (MW) and the biodegradability of dissolved organic matter (DOM) in mature composts derived from dairy cattle manure (DCM), kitchen waste (KW), cabbage waste (CW), tomato stem waste (TSW), municipal solid waste (MSW), green waste (GW), chicken manure (CM), sludge (S), and mushroom culture waste (MCW). There were distinct differences in the concentration and MW fractions of DOM, and the two measures were correlated. Fraction MW>5kDa was the major component of DOM in all mature composts. Determined 5day biochemical oxygen demand (BOD5) of DOM was correlated to the concentration of DOM and all MW fractions except MW>5kDa, indicating that the biodegradability of DOM was a function of the content and proportion of fraction MW<5kDa. This study suggests that the amount and distribution of low MW fractions affect DOM biodegradability. Copyright © 2014 Elsevier Ltd. All rights reserved.
Evaluation of passive samplers for the collection of dissolved organic matter in streams.
Warner, Daniel L; Oviedo-Vargas, Diana; Royer, Todd V
2015-01-01
Traditional sampling methods for dissolved organic matter (DOM) in streams limit opportunities for long-term studies due to time and cost constraints. Passive DOM samplers were constructed following a design proposed previously which utilizes diethylaminoethyl (DEAE) cellulose as a sampling medium, and they were deployed throughout a temperate stream network in Indiana. Two deployments of the passive samplers were conducted, during which grab samples were frequently collected for comparison. Differences in DOM quality between sites and sampling methods were assessed using several common optical analyses. The analyses revealed significant differences in optical properties between sampling methods, with the passive samplers preferentially collecting terrestrial, humic-like DOM. We assert that the differences in DOM composition from each sampling method were caused by preferential binding of complex humic compounds to the DEAE cellulose in the passive samplers. Nonetheless, the passive samplers may provide a cost-effective, integrated sample of DOM in situations where the bulk DOM pool is composed mainly of terrestrial, humic-like compounds.
NASA Astrophysics Data System (ADS)
Jeanneau, Laurent; Pierson-Wickmann, Anne-Catherine; Jaffrezic, Anne; Lambert, Thibault; Gruau, Gérard
2013-04-01
Dissolved organic matter (DOM) is implied in (i) ecosystem services such as the support of biodiversity, (ii) the alteration of the drinkable water quality by formation of trihalomethane and (iii) the transfer of micropollutants from soils to rivers. Moreover, since DOM connects soils and oceans that are interacting with the atmosphere, understanding its biogeochemistry will help in investigating the carbon cycle and in creating strategies to mitigate climate change. DOM in headwater stream ecosystems is mainly inherited from allochtonous inputs with different reservoirs being mobilized during storm and interstorm events at the scale of an hydrological year. Those changes in DOM reservoirs, if accompanied by composition and reactivity changes, may impact DOM ecosystem services and drinking water production processes. Elucidating the compositional changes due to changes in the source of DOM in rivers has thus become a important axis of DOM research. The aim of this study is to test the ability of the molecular tools of the organic geochemistry and more specifically the combination of thermochemiolysis and gas chromatography - mass spectrometry (THM-GC-MS) to (i) link the variability of the river DOM composition to different DOM reservoirs in catchment soils and (ii) provide hypothesis on the nature and the mechanisms of formation (microbial growth, litter decomposition) of those reservoirs. This analytical method seems particularly adapted since it allows the differentiation between vegetal and microbial inputs and the determination of the extent of the biodegradation process of biomolecules such as lignin. To test this method, the molecular fingerprint of soil DOM has been investigated in the wetland area of a small (500 ha) agricultural catchment (the so-called Kervidy-Naizin catchment) located in Brittany, western France. The soil DOM was sampled fortnightly at three depths using zero-tension lysimeters during the hydrological year 2010-2011. The samples were freeze-dried and analyzed for their molecular composition using THM-GC-MS. Three chemical classes of compounds were investigated including lignin, polysaccharides and fatty acids. The combination of those results at the molecular scale with the results of investigations on spectroscopic (specific UV absorbance at 254 nm, SUVA) fingerprints, the isotopic (d13C) fingerprint of DOM and the hydrological data (water table depth) has highlighted (i) the correlation between molecular and bulk scales investigated using the SUVA and the proportion of lignin markers and (ii) the evolution of the molecular composition of soil DOM related to the changes of the water table depth, which could be linked to the mobilization of different reservoirs and/or to the succession of different mechanisms of production governed by the changes in hydrological regimes. This study highlights THM-GC-MS as a valuable tool to investigate the molecular composition of DOM. By differentiating the vegetal and the microbial components of DOM, it allows the investigation of the sources and mechanisms of DOM formation. Finally, its application to a catchment with hydrological data emphasizes the hydrological regime as a main driver of the evolution of the molecular composition of DOM.
Luilo, G B; Cabaniss, S E
2011-10-01
Chlorinating water which contains dissolved organic matter (DOM) produces disinfection byproducts, the majority of unknown structure. Hence, the total organic halide (TOX) measurement is used as a surrogate for toxic disinfection byproducts. This work derives a robust quantitative structure-property relationship (QSPR) for predicting the TOX formation potential of model compounds. Literature data for 49 compounds were used to train the QSPR in moles of chlorine per mole of compound (Cp) (mol-Cl/mol-Cp). The resulting QSPR has four descriptors, calibration [Formula: see text] of 0.72 and standard deviation of estimation of 0.43 mol-Cl/mol-Cp. Internal and external validation indicate that the QSPR has good predictive power and low bias (<1%). Applying this QSPR to predict TOX formation by DOM surrogates - tannic acid, two model fulvic acids and two agent-based model assemblages - gave a predicted TOX range of 136-184 µg-Cl/mg-C, consistent with experimental data for DOM, which ranged from 78 to 192 µg-Cl/mg-C. However, the limited structural variation in the training data may limit QSPR applicability; studies of more sulfur-containing compounds, heterocyclic compounds and high molecular weight compounds could lead to a more widely applicable QSPR.
NASA Astrophysics Data System (ADS)
Schmidt, Frauke; Koch, Boris P.; Goldhammer, Tobias; Elvert, Marcus; Witt, Matthias; Lin, Yu-Shih; Wendt, Jenny; Zabel, Matthias; Heuer, Verena B.; Hinrichs, Kai-Uwe
2017-06-01
Dissolved organic matter (DOM) in marine sediment pore waters derives largely from decomposition of particulate organic matter and its composition is influenced by various biogeochemical and oceanographic processes in yet undetermined ways. Here, we determine the molecular inventory of pore water DOM in marine sediments of contrasting depositional regimes with ultrahigh-resolution mass spectrometry and complementary bulk chemical analyses in order to elucidate the factors that shape DOM composition. Our sample sets from the Mediterranean, Marmara and Black Seas covered different sediment depths, ages and a range of marine environments with different (i) organic matter sources, (ii) balances of organic matter production and preservation, and (iii) geochemical conditions in sediment and water column including anoxic, sulfidic and hypersaline conditions. Pore water DOM had a higher molecular formula richness than overlying water with up to 11,295 vs. 2114 different molecular formulas in the mass range of 299-600 Da and covered a broader range of element ratios (H/C = 0.35-2.19, O/C = 0.03-1.19 vs. H/C = 0.56-2.13, O/C = 0.15-1.14). Formula richness was independent of concentrations of DOC and TOC. Near-surface pore water DOM was more similar to water column DOM than to deep pore water DOM from the same core with respect to formula richness and the molecular composition, suggesting exchange at the sediment-water interface. The DOM composition in the deeper sediments was controlled by organic matter source, selective decomposition of specific DOM fractions and early diagenetic molecule transformations. Compounds in pelagic sediment pore waters were predominantly highly unsaturated and N-bearing formulas, whereas oxygen-rich CHO-formulas and aromatic compounds were more abundant in pore water DOM from terrigenous sediments. The increase of S-bearing molecular formulas in the water column and pore waters of the Black Sea and the Mediterranean Discovery Basin was consistent with elevated HS- concentrations reflecting the incorporation of sulfur into biomolecules during early diagenesis. Sulfurization resulted in an increased average molecular mass of DOM and higher formula richness (up to 5899 formulas per sample). In sediments from the methanogenic zone in the Black Sea, the DOM pool was distinctly more reduced than overlying sediments from the sulfate-reducing zone. Bottom and pore water DOM from the Discovery Basin contained the highest abundances of aliphatic compounds in the entire dataset; a large fraction of abundant N-bearing formulas possibly represented peptide and nucleotide formulas suggesting preservation of these molecules in the life inhibiting environment of the Discovery Basin. Our unique data set provides the basis for a comprehensive understanding of the molecular signatures in pore water DOM and the turnover of sedimentary organic matter in marine sediments.
Ravichandran, M.; Aiken, G.R.; Ryan, J.N.; Reddy, M.M.
1999-01-01
Precipitation and aggregation of metacinnabar (black HgS) was inhibited in the presence of low concentrations (???3 mg C/L) of humic fractions of dissolved organic matter (DOM) isolated from the Florida Everglades. At low Hg concentrations (??? x 10-8 M), DOM prevented the precipitation of metacinnabar. At moderate Hg concentrations (5 x 10-5 M), DOM inhibited the aggregation of colloidal metacinnabar (Hg passed through a 0.1 ??m filter but was removed by centrifugation). At Hg concentrations greater than 5 x 10-4 M, mercury formed solid metacinnabar particles that were removed from solution by a 0.1 ??m filter. Organic matter rich in aromatic moleties was preferentially removed with the solid. Hydrophobic organic acids (humic and fulvic acids) inhibited aggregation better than hydrophilic organic acids. The presence of chloride, acetate, salicylate, EDTA, and cysteine did not inhibit the precipitation or aggregation of metacinnabar. Calcium enhanced metacinnabar aggregation even in the presence of DOM, but the magnitude of the effect was dependent on the concentrations of DOM, Hg, and Ca. Inhibition of metacinnabar precipitation appears to be a result of strong DOM-Hg binding. Prevention of aggregation of colloidal particles appears to be caused by adsorption of DOM and electrostatic repulsion.Precipitation and aggregation of metacinnabar (black HgS) was inhibited in the presence of low concentrations (???3 mg C/L) of humic fractions of dissolved organic matter (DOM) isolated from the Florida Everglades. At low Hg concentrations (???5??10-8 M), DOM prevented the precipitation of metacinnabar. At moderate Hg concentrations (5??10-5 M), DOM inhibited the aggregation of colloidal metacinnabar (Hg passed through a 0.1 ??m filter but was removed by centrifugation). At Hg concentrations greater than 5??10-4 M, mercury formed solid metacinnabar particles that were removed from solution by a 0.1 ??m filter. Organic matter rich in aromatic moieties was preferentially removed with the solid. Hydrophobic organic acids (humic and fulvic acids) inhibited aggregation better than hydrophilic organic acids. The presence of chloride, acetate, salicylate, EDTA, and cysteine did not inhibit the precipitation or aggregation of metacinnabar. Calcium enhanced metacinnabar aggregation even in the presence of DOM, but the magnitude of the effect was dependent on the concentrations of DOM, Hg, and Ca. Inhibition of metacinnabar precipitation appears to be a result of strong DOM-Hg binding. Prevention of aggregation of colloidal particles appears to be caused by adsorption of DOM and electrostatic repulsion.
NASA Astrophysics Data System (ADS)
Stadler, Masumi; Ejarque, Elisabet; Kainz, Martin J.
2017-04-01
Allochthonous and autochothonous dissolved organic matter (DOM) in lakes mainly originate from terrestrial and aquatic primary production, respectively. Due to their differing biochemical composition the degradability of DOM by microorganisms is expected to vary. The carbon use efficiency of bacteria and DOM biodegradability determine whether the consumed DOM is incorporated into microbial biomass or respired to CO2 and ultimately emitted into the atmosphere. Thus, understanding the interaction of biodegradable DOM and its consumers is crucial to increase our knowledge on the role of lakes in the global carbon cycling. However, interactions of specific aquatic DOM signatures and the microbial population still remain widely debated. The aim of this study was to explore how DOM biodegradability changes along a stream-lake continuum at different seasons of the year. We monitored DOM quantity and its optical properties, inorganic nutrients, CO2 and bacterial growth over 20 days in dark bioassays with water from the inflow, outflow and at three layers of an oligotrophic subalpine lake. Preliminary results reveal highest microbial abundance in the metalimnion in winter and summer (0.7 106 and 2.5 106 cells mL-1, respectively) and the inflow in spring and autumn (1 106 and 1.4 106 cells mL-1, respectively) after 20 days. Surprisingly, with the exception of winter samples final inflow bacterial abundance results high, despite its lowest initial natural cell concentration, providing evidence for effective utilisation of terrestrial DOM, even with its high humic signature as indicated by the humification index (HIX). Nonetheless, after a microbial biomass peak with the inflow yielding mostly highest after three days, at the final experimental stage microbial biomass does only marginally differ between all sites with the exception of autumn samples where outflow and metalimnion turn out most productive. Even though the DOM of all lake sites and the lake outflow were characterised by lower molecular weight (indicated by the slope ratio (SR)) and a higher autochthonous signature (BIX) in all seasons, rapid growth of inflow bacteria highlight the potential of terrestrially-derived DOM to support bacterial growth, and challenge previous ideas that autchthonously-produced DOM would be more labile than DOM of terrestrial origin.
Neural Mechanisms Underlying the Computation of Hierarchical Tree Structures in Mathematics
Nakai, Tomoya; Sakai, Kuniyoshi L.
2014-01-01
Whether mathematical and linguistic processes share the same neural mechanisms has been a matter of controversy. By examining various sentence structures, we recently demonstrated that activations in the left inferior frontal gyrus (L. IFG) and left supramarginal gyrus (L. SMG) were modulated by the Degree of Merger (DoM), a measure for the complexity of tree structures. In the present study, we hypothesize that the DoM is also critical in mathematical calculations, and clarify whether the DoM in the hierarchical tree structures modulates activations in these regions. We tested an arithmetic task that involved linear and quadratic sequences with recursive computation. Using functional magnetic resonance imaging, we found significant activation in the L. IFG, L. SMG, bilateral intraparietal sulcus (IPS), and precuneus selectively among the tested conditions. We also confirmed that activations in the L. IFG and L. SMG were free from memory-related factors, and that activations in the bilateral IPS and precuneus were independent from other possible factors. Moreover, by fitting parametric models of eight factors, we found that the model of DoM in the hierarchical tree structures was the best to explain the modulation of activations in these five regions. Using dynamic causal modeling, we showed that the model with a modulatory effect for the connection from the L. IPS to the L. IFG, and with driving inputs into the L. IFG, was highly probable. The intrinsic, i.e., task-independent, connection from the L. IFG to the L. IPS, as well as that from the L. IPS to the R. IPS, would provide a feedforward signal, together with negative feedback connections. We indicate that mathematics and language share the network of the L. IFG and L. IPS/SMG for the computation of hierarchical tree structures, and that mathematics recruits the additional network of the L. IPS and R. IPS. PMID:25379713
Catchment scale molecular composition of hydrologically mobilized dissolved organic matter
NASA Astrophysics Data System (ADS)
Raeke, Julia; Lechtenfeld, Oliver J.; Oosterwoud, Marieke R.; Bornmann, Katrin; Tittel, Jörg; Reemtsma, Thorsten
2016-04-01
Increasing concentrations of dissolved organic matter (DOM) in rivers of temperate catchments in Europe and North Amerika impose new technical challenges for drinking water production. The driving factors for this decadal increase in DOM concentration are not conclusive and changes in annual temperatures, precipitation and atmospheric deposition are intensely discussed. It is known that the majority of DOM is released by few but large hydrologic events, mobilizing DOM from riparian wetlands for export by rivers and streams. The mechanisms of this mobilization and the resulting molecular composition of the released DOM may be used to infer long-term changes in the biogeochemistry of the respective catchment. Event-based samples collected over two years from streams in three temperate catchments in the German mid-range mountains were analyzed after solid-phase extraction of DOM for their molecular composition by ultra-high resolution mass spectrometry (FT-ICR MS). Hydrologic conditions, land use and water chemistry parameters were used to complement the molecular analysis. The molecular composition of the riverine DOM was strongly dependent on the magnitude of the hydrologic events, with unsaturated, oxygen-enriched compounds being preferentially mobilized by large events. This pattern is consistent with an increase in dissolved iron and aluminum concentrations. In contrast, the relative proportions of nitrogen and sulfur bearing compounds increased with an increased agricultural land use but were less affected by the mobilization events. Co-precipitation experiments with colloidal aluminum showed that unsaturated and oxygen-rich compounds are preferentially removed from the dissolved phase. The precipitated compounds thus had similar chemical characteristics as compared to the mobilized DOM from heavy rain events. Radiocarbon analyses also indicated that this precipitated fraction of DOM was of comparably young radiocarbon age. DOM radiocarbon from field samples showed that also the event-mobilized DOM had higher radiocarbon content. Overall, hydrology not only controls the quantity of exported carbon from temperate catchments but also strongly influences the molecular composition by mobilizing distinct compound classes in conjunction with dissolved iron and aluminum. From these results future compositional changes in temperate river DOM can be assessed, given an expected increase in the magnitude of hydrologic events, and technical advice for drinking water production may be inferred.
NASA Astrophysics Data System (ADS)
Pape, Ellen; van Oevelen, Dick; Moodley, Leon; Soetaert, Karline; Vanreusel, Ann
2013-10-01
Sediments sampled from the Galicia Bank seamount and the adjacent slope (northeast Atlantic), and from a western Mediterranean slope site, were injected onboard with 13C-enriched dissolved organic matter (DOM) to evaluate nematode feeding strategies and the fate of DOM carbon in different benthic environments. We hypothesized that nematode 13C label assimilation resulted from either direct DOM uptake or feeding on 13C labeled bacteria. Slope sediments were injected with glucose ("simple" DOM) or "complex" diatom-derived DOM to investigate the influence of DOM composition on carbon assimilation. The time-series (1, 7 and 14 days) experiment at the seamount site was the first study to reveal a higher 13C enrichment of nematodes than bacteria and sediments after 7 days. Although isotope dynamics indicated that both DOM and bacteria were plausible candidate food sources, the contribution to nematode secondary production and metabolic requirements (estimated from biomass-dependent respiration rates) was higher for bacteria than for DOM at all sites. The seamount nematode community showed higher carbon assimilation rates than the slope assemblages, which may reflect an adaptation to the food-poor environment. Our results suggested that the trophic importance of bacteria did not depend on the amount of labile sedimentary organic matter. Furthermore, there was a discrepancy between carbon assimilation rates observed in the experiments and the feeding type classification, based on buccal morphology. Sites with a similar feeding type composition (i.e. the northeast Atlantic sites) showed large differences in uptake, whilst the nematode assemblages at the two slope sites, which had a differing trophic structure, took up similar amounts of the DOM associated carbon. Our results did not indicate substantial differences in carbon processing related to the complexity of the DOM substrate. The quantity of processed carbon (5-42% of added DOM) was determined by the bacteria, and was primarily respired. The bulk of the added 13C-DOM was not ingested by the benthic biota under study, and a considerable fraction was possibly adsorbed onto the sediment grains.
NASA Astrophysics Data System (ADS)
Stubbins, Aron; Silva, Leticia M.; Dittmar, Thorsten; Van Stan, John T.
2017-03-01
Studies of dissolved organic matter (DOM) transport through terrestrial aquatic systems usually start at the stream. However, the interception of rainwater by vegetation marks the beginning of the terrestrial hydrological cycle making trees the headwaters of aquatic carbon cycling. Rainwater interacts with trees picking up tree-DOM, which is then exported from the tree in stemflow and throughfall. Stemflow denotes water flowing down the tree trunk, while throughfall is the water that drips through the leaves of the canopy. We report the concentrations, optical properties (light absorbance) and molecular signatures (ultrahigh resolution mass spectrometry) of tree-DOM in throughfall and stemflow from two tree species (live oak and eastern red cedar) with varying epiphyte cover on Skidaway Island, Savannah, Georgia, USA. Both stemflow and throughfall were enriched in DOM compared to rainwater, indicating trees were a significant source of DOM. The optical and molecular properties of tree-DOM were broadly consistent with those of DOM in other aquatic ecosystems. Stemflow was enriched in highly colored DOM compared to throughfall. Elemental formulas identified clustered the samples into three groups: oak stemflow, oak throughfall and cedar. The molecular properties of each cluster are consistent with an autochthonous aromatic-rich source associated with the trees, their epiphytes and the microhabitats they support. Elemental formulas enriched in oak stemflow were more diverse, enriched in aromatic formulas, and of higher molecular mass than for other tree-DOM classes, suggesting greater contributions from fresh and partially modified plant-derived organics. Oak throughfall was enriched in lower molecular weight, aliphatic and sugar formulas, suggesting greater contributions from foliar surfaces. While the optical properties and the majority of the elemental formulas within tree-DOM were consistent with vascular plant-derived organics, condensed aromatic formulas were also identified. As condensed aromatics are generally interpreted as deriving from partially combusted organics, some of the tree-DOM may have derived from the atmospheric deposition of thermogenic and other windblown organics. These initial findings should prove useful as future studies seek to track tree-DOM across the aquatic gradient from canopy roof, through soils and into fluvial networks.
Novel applications of the dispersive optical model
NASA Astrophysics Data System (ADS)
Dickhoff, W. H.; Charity, R. J.; Mahzoon, M. H.
2017-03-01
A review of recent developments of the dispersive optical model (DOM) is presented. Starting from the original work of Mahaux and Sartor, several necessary steps are developed and illustrated which increase the scope of the DOM allowing its interpretation as generating an experimentally constrained functional form of the nucleon self-energy. The method could therefore be renamed as the dispersive self-energy method. The aforementioned steps include the introduction of simultaneous fits of data for chains of isotopes or isotones allowing a data-driven extrapolation for the prediction of scattering cross sections and level properties in the direction of the respective drip lines. In addition, the energy domain for data was enlarged to include results up to 200 MeV where available. An important application of this work was implemented by employing these DOM potentials to the analysis of the (d, p) transfer reaction using the adiabatic distorted wave approximation. We review these calculations which suggest that physically meaningful results are easier to obtain by employing DOM ingredients as compared to the traditional approach which relies on a phenomenologically-adjusted bound-state wave function combined with a global (nondispersive) optical-model potential. Application to the exotic 132Sn nucleus also shows great promise for the extrapolation of DOM potentials towards the drip line with attendant relevance for the physics of FRIB. We note that the DOM method combines structure and reaction information on the same footing providing a unique approach to the analysis of exotic nuclei. We illustrate the importance of abandoning the custom of representing the non-local Hartree-Fock (HF) potential in the DOM by an energy-dependent local potential as it impedes the proper normalization of the solution of the Dyson equation. This important step allows for the interpretation of the DOM potential as representing the nucleon self-energy permitting the calculations of spectral amplitudes and spectral functions above and below the Fermi energy. The latter feature provides access to quantities like the momentum distribution, charge density, and particle number which were not available in the original work of Mahaux and Sartor. When employing a non-local HF potential, but local dispersive contributions (as originally proposed by Mahaux and Sartor), we illustrate that it is impossible to reproduce the particle number and the measured charge density. Indeed, the use of local absorptive potentials leads to a substantial overestimate of particle number. However from detailed comparisons with self-energies calculated with ab initio many-body methods that include both short- and long-range correlations, we demonstrate that it is essential to introduce non-local absorptive potentials in order to remediate these deficiencies. We review the fully non-local DOM potential fitted to 40Ca where elastic-scattering data, level information, particle number, charge density and high-momentum-removal (e,e\\prime p) cross sections obtained at Jefferson Lab were included in the analysis. All these quantities are accurately described by assuming more or less traditional functional forms for the potentials but allowing for non-locality and the abandonment of complete symmetry around the Fermi energy for surface absorption which is suggested by ab initio theory. An important consequence of this new analysis is the finding that the spectroscopic factor for the removal of valence protons in this nucleus comes out larger by about 0.15 than the results obtained from the NIKHEF analysis of their (e,e\\prime p) data. This issue is discussed in detail and its implications clarified. Another important consequence of this analysis is that it can shed light on the relative importance of two-body and three-body interactions as far as their contribution to the energy of the ground state is concerned through application of the energy sum rule.
NASA Astrophysics Data System (ADS)
Walker, B. D.; Shen, Y.; Benner, R. H.; Druffel, E. R. M.
2014-12-01
Coastal upwelling zones are among the most productive regions in the world and play a major role in global carbon and nitrogen cycles. Recent research suggests that a substantial fraction of newly fixed organic matter is exported offshore in the form of dissolved organic matter (DOM). However, to date only a few studies have examined DOM composition in the context of production and export from upwelling systems. The ultimate fate and geochemical impact of coastal DOM exported to offshore and mesopelagic ecosystems also remains largely unknown. Between 2007-2009 we conducted a high-resolution biogeochemical time series at the Granite Canyon Marine Pollution Studies Lab in part to evaluate the seasonal production and export of DOM from the Central CA coast. Our previous work demonstrated substantial, albeit disparate, seasonal production of dissolved organic carbon and nitrogen (DOC, DON) - with high DON (and low C:N ratios) produced during upwelling and high DOC produced during summer/fall water column stratification (Walker and McCarthy, 2012). Here we present new total dissolved D/L amino acid (TDAA) and UV-oxidizable DOC radiocarbon (Δ14C) data with the goal of determining the relative sources (heterotrophic vs. autotrophic), bioavailability, microbial processing and 14C-ages of C-rich vs. N-rich DOM exported from this upwelling system. Our results suggest that C-rich DOM produced during water column stratification carries a large microbial signature (i.e. high D/L AA ratios and non-protein AA abundance), whereas N-rich DOM produced during upwelling appears to be fresh, autotrophic DOM (i.e. lowest D/L AA ratios and highest TDAA abundance). DOM Δ14C signatures also did not approximate in situ dissolved inorganic carbon (DIC), and instead were far more negative and highly correlated to water mass density. Together our results indicate a previously unrecognized source of highly labile yet pre-aged DOM potentially impacting offshore and mesopelagic ecosystems.
NASA Astrophysics Data System (ADS)
D'Andrilli, J.
2017-12-01
Excitation emission matrix fluorescence spectroscopy is widely applied for rapid dissolved organic matter (DOM) characterization in aquatic systems. Fluorescent DOM surveys are booming, not only as a central focus in aquatic environments, but also as an important addition to interdisciplinary research (e.g., DOM analysis in concert with ice core paleoclimate reconstructions, stream metabolism, hydrologic regimes, agricultural developments, and biological activity), opening new doors, not just for novelty, but also for more challenges with chemical interpretations. Recently, the commonly used protein- versus humic-like classifications of DOM have been ineffective at describing DOM chemistry in various systems (e.g., ice cores, wastewaters, incubations/engineered). Moreover, the oversimplification of such classifications used to describe fluorescing components, without further scrutiny, has become commonplace, ultimately producing vague reporting. For example, West Antarctic ice core DOM was shown to contain fluorescence in the low excitation/emission wavelength region, however resolved fluorophores depicting tyrosine- and tryptophan-like DOM were not observed. At first, as literature suggested, we reported this result as protein-like, and concluded that microbial contributions were dominant in deep ice. That initial interpretation would disintegrate the conservation paradigm of atmospheric composition during deposition, the crux of ice core research, and contradict other lines of evidence. This begged the question, "How can we describe DOM chemistry without distinct fluorophores?" Antarctic ice core DOM was dominated by neither tyrosine- nor tryptophan-like fluorescence, causing "unusual" looking fluorescent components. After further examination, deep ice DOM was reported to contain fluorescent species most similar to monolignols and tannin-like phenols, describing the precursors of lignin from low carbon producing environments, consistent with marine sediment records. Currently, we are working towards more detailed descriptions of fluorescence, thus accepting variation in and around protein- and humic-like regions, and achieving robust chemical interpretations of DOM chemistry, ultimately providing insight to its interwoven nature in the environment.
Qiu, Qingyan; Wu, Lanfang; Ouyang, Zhu; Li, Binbin; Xu, Yanyan
2016-03-01
Soil organic carbon (SOC) mineralization is important for the regulation of the global climate and soil fertility. Decomposition of SOC may be significantly affected by the supply of plant-derived labile carbon (C). To investigate the impact of plant-derived dissolved organic matter (DOM) and urea (N) additions on the decomposition of native SOC as well as to elucidate the underlying mechanisms of priming effects (PEs), a batch of incubation experiments was conducted for 250 days by application of (13)C-labeled plant-derived DOM and urea to soils. The direction of PE induced by the addition of DOM was different from the addition of N, i.e. it switched from negative to positive in DOM-amended soils, whereas in the N-treated soil it switched from positive to negative. Adding DOM alone was favorable for soil C sequestration (59 ± 5 mg C per kg soil), whereas adding N alone or together with DOM accelerated the decomposition of native SOC, causing net C losses (-62 ± 4 and -34 ± 31 mg C per kg soil, respectively). These findings indicate that N addition and its interaction with DOM are not favorable for soil C sequestration. Adding DOM alone increased the level of dissolved organic carbon (DOC), but it did not increase the level of soil mineral N. Changes in the ratio of microbial biomass carbon (MBC) to microbial biomass nitrogen (MBN) and microbial metabolic quotient (qCO2) after the addition of DOM and N suggest that a possible shift in the microbial community composition may occur in the present study. Adding DOM with or without N increased the activities of β-glucosidase and urease. Changes in the direction and magnitude of PE were closely related to changes in soil C and N availability. Soil C and N availability might influence the PE through affecting the microbial biomass and extracellular enzyme activity as well as causing a possible shift in the microbial community composition.
Ye, Nan; Wang, Zhuang; Wang, Se; Fang, Hao; Wang, Degao
2018-06-07
This study investigated the impact of dissolved organic matters (DOM) on the ecological toxicity of aluminum oxide nanoparticles (Al 2 O 3 NPs) at a relatively low exposure concentration (1 mg L -1 ). The unicellular green alga Scenedesmus obliquus was exposed to Al 2 O 3 NP suspensions in the presence of DOM (fulvic acid) at various concentrations (1, 10, and 40 mg L -1 ). The results show that the presence of DOM elevated the growth inhibition toxicity of Al 2 O 3 NPs towards S. obliquus in a dose-dependent manner. Moreover, the combination of DOM at 40 mg L -1 and Al 2 O 3 NPs resulted in a synergistic effect. The relative contribution of Al-ions released from Al 2 O 3 NPs to toxicity was lower than 5%, indicating that the presence of the particles instead of the dissolved ions in the suspensions was the major toxicity sources, regardless of the presence of DOM. Furthermore, DOM at 10 and 40 mg L -1 and Al 2 O 3 NPs synergistically induced the upregulation of intercellular reactive oxygen species levels and superoxide dismutase activities. Analysis of the plasma malondialdehyde concentrations and the observation of superficial structures of S. obliquus indicated that the mixtures of DOM and Al 2 O 3 NPs showed no significant effect on membrane lipid peroxidation damage. In addition, the presence of both DOM and Al 2 O 3 NPs contributed to an enhancement in both the mitochondrial membrane potential and the cell membrane permeability (CMP) in S. obliquus. In particular, Al 2 O 3 NPs in the presence of 10 and 40 mg L -1 DOM caused a greater increase in CMP compared to Al 2 O 3 NPs and DOM alone treatments. In conclusion, these findings suggest that DOM at high concentrations and Al 2 O 3 NPs synergistically interrupted cell membrane functions and triggered subsequent growth inhibition toxicity.
Transfer and contact-induced variation in child Basque
Austin, Jennifer
2015-01-01
Young Basque-speaking children produce Differential Object Marking (DOM) and pre-verbal complementizers in their speech, variants argued to stem from contact with Spanish (Austin, 2006; Rodríguez-Ordóñez, 2013). In this paper, I claim that despite their contact-induced origin, these forms reflect distinct developmental tendencies on the part of the child acquiring Basque. Children's use of pre-verbal complementizers in Basque seems to be a relief strategy that bilingual children employ until they have acquired the post-verbal complementizers in Basque, which are low-frequency morphemes. In contrast, the use of DOM is present in the adult input, although children use this construction to a greater extent than adults do. Finally, I discuss the implications of these findings for the part that child learners play in advancing language change. PMID:25653632
NASA Astrophysics Data System (ADS)
Rossel, P. E.; Bienhold, C.; Boetius, A.; Dittmar, T.
2016-02-01
Marine organic matter (OM) that sinks from surface waters to the seafloor is the energy and carbon source for benthic communities. These communities produce dissolved organic matter (DOM) in the process of remineralization, enriching the sediment porewater with fresh DOM compounds. In the Arctic Ocean, primary production is limited by nutrients and light and is thus strongly influenced by sea ice cover. Ice cover is expected to further decrease due to global warming, which may have important consequences for primary production and the quantity and quality of OM exported to the seafloor. This study focused on: 1) the molecular composition of the DOM in sediment pore waters of the deep Eurasian Arctic basins, 2) whether there is any relation between Arctic Ocean ice cover and DOM composition and 3) whether the DOM composition correlates with microbial community structure. Molecular data, obtained via 15 Tesla Fourier transform ion cyclotron resonance mass spectrometry, were statistically correlated with environmental parameters. The productive ice margin stations showed higher abundances of molecular formulae of peptides, unsaturated aliphatics and saturated fatty acids. This molecular trend is indicative of fresh OM and phytodetritus deposition, compared to the northernmost, ice-covered stations which had stronger aromatic signals. Benthic bacterial community structure, as assessed with the fingerprinting method ARISA, was significantly correlated with DOM molecular composition. Further analyses using Illumina next-generation sequencing will enable the taxonomic identification of specific bacterial groups and their interdependence with DOM compounds. This study contributes to the understanding of the coupling between Arctic Ocean productivity and its depositional regime, and provides first insights into potential links between microbial community structure and DOM molecular composition in Arctic sediments
NASA Astrophysics Data System (ADS)
Xi, Min; Zi, Yuanyuan; Wang, Qinggai; Wang, Sen; Cui, Guolu; Kong, Fanlong
2018-02-01
The contents and the spectral analysis of dissolved organic matter (DOM) in four typical wetlands, such as naked tidal, suaeda salsa, reed and spartina, were conducted to investigate the content, structure, and source of DOM in coastal wetland soil. The soil samples were obtained from Jiaozhou Bay in January, April, July, and October of 2014. Results showed that the DOM contents in soil of four typical wetland were in order of spartina wetland > naked tidal > suaeda salsa wetland > reed wetland in horizontal direction, and decreased with the increase of soil depth on vertical section. In addition, the DOM contents changed with the seasons, in order of spring > summer > autumn > winter. The structural characteristics of DOM in Jiaozhou Bay wetland, such as aromaticity, hydrophobicity, molecular weight, polymerization degree of benzene ring carbon frame structure and so on were in order of spartina wetland > naked tidal > suaeda salsa wetland > reed wetland in the horizontal direction. On the vertical direction, they showed a decreasing trend with the increase of soil depth. The results of three dimensional fluorescence spectra and fluorescence spectrum parameters (FI, HIX, and BIX) indicated that the DOM in Jiaozhou Bay was mainly derived from the biological activities. The contents and structure of DOM had certain relevance, but the contents and source as well as the structure and source of DOM had no significant correlation. The external pollution including domestic sewage, industrial wastewater, and aquaculture sewage affected the correlation among the content, structure and source of DOM by influencing the percentage of non-fluorescent substance in DOM and disturbing the determination of protein-like fluorescence.
Maizel, Andrew C; Remucal, Christina K
2017-10-01
There is a growing interest in water reuse and in recovery of nutrients from wastewater. Because many advanced treatment processes are designed to remove organic matter, a better understanding of the composition of dissolved organic matter (DOM) in wastewater is needed. To that end, we assessed DOM in the Nine Springs Wastewater Treatment Plant in Madison, Wisconsin by UV-visible spectroscopy and Fourier transform-ion cyclotron resonance mass spectrometry. Samples were collected from the influent and effluent of two different secondary treatment processes and their respective secondary clarifiers, the UV disinfection unit, and an Ostara treatment system, which produces struvite via chemical precipitation. The optical properties reveal that DOM throughout the plant is relatively aliphatic and is low in molecular weight compared to DOM in freshwater systems. Furthermore, the DOM is rich in heteroatoms (e.g., N, S, P, and Cl) and its molecular formulas are present in the lipid-, protein-, carbohydrate-, and lignin-like regions of van Krevelen diagrams. Secondary treatment produces DOM that is more aromatic and more complex, as shown by the loss of highly saturated formulas and the increase in the number of CHO, CHON, and CHOP formulas. The two secondary treatment processes produce DOM with distinct molecular compositions, while the secondary clarifiers and UV disinfection unit result in minimal changes in DOM composition. The Ostara process decreases the molecular weight of DOM, but does not otherwise alter its composition. The optical properties agree with trends in the molecular composition of DOM within the main treatment train of the Nine Springs plant. Copyright © 2017 Elsevier Ltd. All rights reserved.
Copper toxicity and organic matter: Resiliency of watersheds in the Duluth Complex, Minnesota, USA
Piatak, Nadine; Seal, Robert; Jones, Perry M.; Woodruff, Laurel G.
2015-01-01
We estimated copper (Cu) toxicity in surface water with high dissolved organic matter (DOM) for unmined mineralized watersheds of the Duluth Complex using the Biotic Ligand Model (BLM), which evaluates the effect of DOM, cation competition for biologic binding sites, and metal speciation. A sediment-based BLM was used to estimate stream-sediment toxicity; this approach factors in the cumulative effects of multiple metals, incorporation of metals into less bioavailable sulfides, and complexation of metals with organic carbon. For surface water, the formation of Cu-DOM complexes significantly reduces the amount of Cu available to aquatic organisms. The protective effects of cations, such as calcium (Ca) and magnesium (Mg), competing with Cu to complex with the biotic ligand is likely not as important as DOM in water with high DOM and low hardness. Standard hardness-based water quality criteria (WQC) are probably inadequate for describing Cu toxicity in such waters and a BLM approach may yield more accurate results. Nevertheless, assumptions about relative proportions of humic acid (HA) and fulvic acid (FA) in DOM significantly influence BLM results; the higher the HA fraction, the higher calculated resiliency of the water to Cu toxicity. Another important factor is seasonal variation in water chemistry, with greater resiliency to Cu toxicity during low flow compared to high flow.Based on generally low total organic carbon and sulfur content, and equivalent metal ratios from total and weak partial extractions, much of the total metal concentration in clastic streambedsediments may be in bioavailable forms, sorbed on clays or hydroxide phases. However, organicrich fine-grained sediment in the numerous wetlands may sequester significant amount of metals, limiting their bioavailability. A high proportion of organic matter in waters and some sediments will play a key role in the resiliency of these watersheds to potential additional metal loads associated with future mining operations.
O'Donnell, Jonathan A.; Aiken, George R.; Walvoord, Michelle Ann; Butler, Kenna D.
2012-01-01
Groundwater discharge to rivers has increased in recent decades across the circumpolar region and has been attributed to thawing permafrost in arctic and subarctic watersheds. Permafrost-driven changes in groundwater discharge will alter the flux of dissolved organic carbon (DOC) in rivers, yet little is known about the chemical composition and reactivity of dissolved organic matter (DOM) of groundwater in permafrost settings. Here, we characterize DOM composition of winter flow in 60 rivers and streams of the Yukon River basin to evaluate the biogeochemical consequences of enhanced groundwater discharge associated with permafrost thaw. DOC concentration of winter flow averaged 3.9 ± 0.5 mg C L−1, yet was highly variable across basins (ranging from 20 mg C L−1). In comparison to the summer-autumn period, DOM composition of winter flow had lower aromaticity (as indicated by specific ultraviolet absorbance at 254 nm, or SUVA254), lower hydrophobic acid content, and a higher proportion of hydrophilic compounds (HPI). Fluorescence spectroscopy and parallel factor analysis indicated enrichment of protein-like fluorophores in some, but not all, winter flow samples. The ratio of DOC to dissolved organic nitrogen, an indicator of DOM biodegradability, was positively correlated with SUVA254 and negatively correlated with the percentage of protein-like compounds. Using a simple two-pool mixing model, we evaluate possible changes in DOM during the summer-autumn period across a range of conditions reflecting possible increases in groundwater discharge. Across three watersheds, we consistently observed decreases in DOC concentration and SUVA254 and increases in HPI with increasing groundwater discharge. Spatial patterns in DOM composition of winter flow appear to reflect differences in the relative contributions of groundwater from suprapermafrost and subpermafrost aquifers across watersheds. Our findings call for more explicit consideration of DOC loss and stabilization pathways associated with changing subsurface hydrology in watersheds underlain by thawing permafrost.
Li, Anding; Zhang, Yan; Zhou, Beihai; Xin, Kailing; Gu, Yingnan; Xu, Weijie; Tian, Jie
2018-05-21
The molecular weight of dissolved organic matter (DOM) is one of the essential factors controlling the properties of metal complexes. A continuous ultrafiltration experiment was designed to study the properties of Cu complexes with different molecular weights in a river before and after eutrophication. The results showed that the concentration of DOM increased from 26.47 to 38.20 mg/L during the eutrophication process, however, DOM was still dominated by the small molecular weight fraction before and after eutrophication. The amount of Cu-DOM complexes increased with the increasing of molecular weight, however, the amounts of DOM-Cu complexes before eutrophication were higher than those after eutrophication. This is because DOM contained more -COOH and -OH before eutrophication and these functional groups are the active sites complexed with Cu.
Orem, W.H.; Hatcher, P.G.
1987-01-01
Dissolved organic matter (DOM) in pore waters from sediments of a number of different depositional environments was isolated by ultrafiltration using membranes with a nominal molecular weight cutoff of 500. This > 500 molecular weight DOM represents 70-98% of the total DOM in these pore waters. We determined the gross chemical structure of this material using both solid-state 13C nuclear magnetic resonance spectroscopy and elemental analysis. Our results show that the DOM in these pore waters appears to exist as two major types: one type dominated by carbohydrates and paraffinic structures and the second dominated by paraffinic and aromatic structures. We suggest that the dominance of one or the other structural type of DOM in the pore water depends on the relative oxidizing/reducing nature of the sediments as well as the source of the detrital organic matter. Under dominantly anaerobic conditions carbohydrates in the sediments are degraded by bacteria and accumulate in the pore water as DOM. However, little or no degradation of lignin occurs under these conditions. In contrast, sediments thought to be predominantly aerobic in character have DOM with diminished carbohydrate and enhanced aromatic character. The aromatic structures in the DOM from these sediments are thought to arise from the degradation of lignin. The large amounts of paraffinic structures in both types of DOM may be due to the degradation of unidentified paraffinic materials in algal or bacterial remains. ?? 1987.
Aschermann, Geert; Zietzschmann, Frederik; Jekel, Martin
2018-04-15
By simulating decreasing inflow concentrations, the extent of desorption of organic micropollutants (OMP) from three activated carbons (AC) was examined in laboratory batch tests. The tested AC showed strong differences in pore size distribution and could therefore be characterized as typical micro-, meso- and macroporous AC, respectively. Adsorption and desorption conditions were varied by using drinking water (containing dissolved organic matter (DOM)) and DOM-free pure water as background solutions to examine the influence of DOM on OMP desorption for the different AC. Under ideal conditions (adsorption and desorption in pure water) adsorption of the tested OMP was found to be highly up to completely reversible for all tested AC. Under real conditions (adsorption and desorption in drinking water) additional DOM adsorption affects desorption in different ways depending on the AC pore structure. For the micro- and mesoporous AC, an increased irreversibility of OMP adsorption was found, which shows that DOM adsorption prevents OMP desorption. This could be referred to pore blockage effects that occur during the parallel adsorption of DOM and OMP. For the macroporous AC, DOM adsorption led to an enhanced OMP desorption which could be attributed to displacement processes. These results show that smaller pores tend to be blocked by DOM which hinders OMP from desorption. The overall larger pores of the macroporous AC do not get blocked which could allow (i) OMP to desorb and (ii) DOM to enter and displace OMP. Copyright © 2018 Elsevier Ltd. All rights reserved.
Challoumas, Dimitrios; Artemiou, Andreas; Dimitrakakis, Georgios
2017-01-01
The aims of our study were to compare the dominant (DOM) and non-dominant (NDOM) shoulders of high-level volleyball athletes and identify possible associations of shoulder adaptations with spike speed (SS) and shoulder pathology. A total of 22 male volleyball players from two teams participating in the first division of the Cypriot championship underwent clinical shoulder tests and simple measurements around their shoulder girdle joints bilaterally. SS was measured with the use of a sports speed radar. Compared with the NDOM side, the DOM scapula was more lateralised, the DOM dorsal capsule demonstrated greater laxity, the DOM dorsal muscles stretching ability was compromised, and the DOM pectoralis muscle was more lengthened. Players with present or past DOM shoulder pain demonstrated greater laxity in their DOM dorsal capsule, tightening of their DOM inferior capsule, and lower SS compared with those without shoulder pain. Dorsal capsule measurements bilaterally were significant predictors of SS. None of the shoulder measurements was associated with team roles or infraspinatus atrophy, while scapular lateralisation was more pronounced with increasing years of experience, and scapular antetilting was greater with increasing age. Adaptations of the DOM shoulder may be linked to pathology and performance. We describe simple shoulder measurements that may have the potential to predict chronic shoulder injury and become part of injury prevention programmes. Detailed biomechanical and large prospective studies are warranted to assess the validity of our findings and reach more definitive conclusions.
Zhang, Junya; Cai, Xing; Qi, Lu; Shao, Chunyan; Lin, Yang; Zhang, Jin; Zhang, Yuanli; Shen, Peihong; Wei, Yuansong
2015-09-01
Sludge bio-drying in which sludge is dried by means of the heat generated by the aerobic degradation of its own organic substances has been widely used for sludge treatment. A better understanding of the evolution of dissolved organic matter (DOM) and its degradation drivers during sludge bio-drying could facilitate its control. Aeration is one of the key factors that affect sludge bio-drying performance. In this study, two aeration strategies (pile I-the optimized and pile II-the current) were established to investigate their impacts on the evolution of DOM and the microbial community in a full-scale sludge bio-drying plant. A higher pile temperature in pile I caused pile I to enter the DOM and microbiology stable stage approximately2 days earlier than pile II. The degradation of easily degradable components in the DOM primarily occurred in the thermophilic phase; after that degradation, the DOM components changed a little. Along with the evolution of the DOM, its main degradation driver, the microbial community, changed considerably. Phyla Firmicutes and Proteobacteria were dominant in the thermophilic stage, and genus Ureibacillus, which was the primary thermophilic bacteria, was closely associated with the degradation of the DOM. In the mesophilic stage, the microbial community changed significantly at first and subsequently stabilized, and the genus Parapedobacter, which belongs to Bacteriodetes, became dominant. This study elucidates the interplay between the DOM and microbial community during sludge bio-drying.
NASA Astrophysics Data System (ADS)
Wheeler, K. I.; Levia, D. F.; Hudson, J. E.
2017-09-01
In autumn, the dissolved organic matter (DOM) contribution of leaf litter leachate to streams in forested watersheds changes as trees undergo resorption, senescence, and leaf abscission. Despite its biogeochemical importance, little work has investigated how leaf litter leachate DOM changes throughout autumn and how any changes might differ interspecifically and intraspecifically. Since climate change is expected to cause vegetation migration, it is necessary to learn how changes in forest composition could affect DOM inputs via leaf litter leachate. We examined changes in leaf litter leachate fluorescent DOM (FDOM) from American beech (
The removal kinetics of dissolved organic matter and the optical clarity of groundwater
Chapelle, Francis H.; Shen, Yuan; Strom, Eric W.; Benner, Ronald
2016-01-01
Concentrations of dissolved organic matter (DOM) and ultraviolet/visible light absorbance decrease systematically as groundwater moves through the unsaturated zones overlying aquifers and along flowpaths within aquifers. These changes occur over distances of tens of meters (m) implying rapid removal kinetics of the chromophoric DOM that imparts color to groundwater. A one-compartment input-output model was used to derive a differential equation describing the removal of DOM from the dissolved phase due to the combined effects of biodegradation and sorption. The general solution to the equation was parameterized using a 2-year record of dissolved organic carbon (DOC) concentration changes in groundwater at a long-term observation well. Estimated rates of DOC loss were rapid and ranged from 0.093 to 0.21 micromoles per liter per day (μM d−1), and rate constants for DOC removal ranged from 0.0021 to 0.011 per day (d−1). Applying these removal rate constants to an advective-dispersion model illustrates substantial depletion of DOC over flow-path distances of 200 m or less and in timeframes of 2 years or less. These results explain the low to moderate DOC concentrations (20–75 μM; 0.26–1 mg L−1) and ultraviolet absorption coefficient values (a254 < 5 m−1) observed in groundwater produced from 59 wells tapping eight different aquifer systems of the United States. The nearly uniform optical clarity of groundwater, therefore, results from similarly rapid DOM-removal kinetics exhibited by geologically and hydrologically dissimilar aquifers.
Jiang, Ping; Liu, Guangliang; Cui, Wenbin; Cai, Yong
2018-06-01
The geochemical model PHREEQC, abbreviated from PH (pH), RE (redox), EQ (equilibrium), and C (program written in C), was employed on the datasets generated by the USEPA Everglades Regional Environmental Monitoring and Assessment Program (R-EMAP) to determine the speciation distribution of inorganic mercury (iHg) in Everglades water and to explore the implications of iHg speciation on mercury cycling. The results suggest that sulfide and DOM were the key factors that regulate inorganic Hg speciation in the Everglades. When sulfide was present at measurable concentrations (>0.02 mg/L), Hg-S complexes dominated iHg species, occurring in the forms of HgS 2 2- , HgHS 2 - , and Hg(HS) 2 that were affected by a variety of environmental factors. When sulfide was assumed nonexistent, Hg-DOM complexes occurred as the predominant Hg species, accounting for almost 100% of iHg species. However, when sulfide was presumably present at a very low, environmentally relevant concentration (3.2 × 10 -7 mg/L), both Hg-DOM and Hg-S complexes were present as the major iHg species. These Hg-S species and Hg-DOM complex could be related to methylmercury (MeHg) in environmental matrices such floc, periphyton, and soil, and the correlations are dependent upon different circumstances (e.g., sulfide concentrations). The implications of the distribution of iHg species on MeHg production and fate in the Everglades were discussed. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Wünsch, Urban; Murphy, Kathleen; Stedmon, Colin
2017-04-01
Absorbance and fluorescence spectroscopy are efficient tools for tracing the supply, turnover and fate of dissolved organic matter (DOM). The fluorescent fraction of DOM (FDOM) can be characterized by measuring excitation-emission matrices and decomposing the combined fluorescence signal into independent underlying fraction using Parallel Factor Analysis (PARAFAC). Comparisons between studies, facilitated by the OpenFluor database, reveal highly similar components across different aquatic systems and between studies. To obtain PARAFAC models in sufficient quality, scientists traditionally rely on analyzing dozens to hundreds of samples spanning environmental gradients. A cross-validation of this approach using different analytical tools has not yet been accomplished. In this study, we applied high-performance size-exclusion chromatography (HPSEC) to characterize the size-dependent optical properties of dissolved organic matter of samples from contrasting aquatic environments with online absorbance and fluorescence detectors. Each sample produced hundreds of absorbance spectra of colored DOM (CDOM) and hundreds of matrices of FDOM intensities. This approach facilitated the detailed study of CDOM spectral slopes and further allowed the reliable implementation of PARAFAC on individual samples. This revealed a high degree of overlap in the spectral properties of components identified from different sites. Moreover, many of the model components showed significant spectral congruence with spectra in the OpenFluor database. Our results provide evidence of the presence of ubiquitous FDOM components and additionally provide further evidence for the supramolecular assembly hypothesis. They demonstrate the potential for HPSEC to provide a wealth of new insights into the relationship between optical and chemical properties of DOM.
Landa, M; Cottrell, M T; Kirchman, D L; Kaiser, K; Medeiros, P M; Tremblay, L; Batailler, N; Caparros, J; Catala, P; Escoubeyrou, K; Oriol, L; Blain, S; Obernosterer, I
2014-06-01
Dissolved organic matter (DOM) and heterotrophic bacteria are highly diverse components of the ocean system, and their interactions are key in regulating the biogeochemical cycles of major elements. How chemical and phylogenetic diversity are linked remains largely unexplored to date. To investigate interactions between bacterial diversity and DOM, we followed the response of natural bacterial communities to two sources of phytoplankton-derived DOM over six bacterial generation times in continuous cultures. Analyses of total hydrolysable neutral sugars and amino acids, and ultrahigh resolution mass spectrometry revealed large differences in the chemical composition of the two DOM sources. According to 454 pyrosequences of 16S ribosomal ribonucleic acid genes, diatom-derived DOM sustained higher levels of bacterial richness, evenness and phylogenetic diversity than cyanobacteria-derived DOM. These distinct community structures were, however, not associated with specific taxa. Grazing pressure affected bacterial community composition without changing the overall pattern of bacterial diversity levels set by DOM. Our results demonstrate that resource composition can shape several facets of bacterial diversity without influencing the phylogenetic composition of bacterial communities, suggesting functional redundancy at different taxonomic levels for the degradation of phytoplankton-derived DOM. © 2013 Society for Applied Microbiology and John Wiley & Sons Ltd.
Kothawala, Dolly N; Köhler, Stephan J; Östlund, Anna; Wiberg, Karin; Ahrens, Lutz
2017-09-15
Drinking water treatment plants (DWTPs) are constantly adapting to a host of emerging threats including the removal of micro-pollutants like perfluoroalkyl substances (PFASs), while concurrently considering how background levels of dissolved organic matter (DOM) influences their removal efficiency. Two adsorbents, namely anion exchange (AE) and granulated active carbon (GAC) have shown particular promise for PFAS removal, yet the influence of background levels of DOM remains poorly explored. Here we considered how the removal efficiency of 13 PFASs are influenced by two contrasting types of DOM at four concentrations, using both AE (Purolite A-600 ® ) and GAC (Filtrasorb 400 ® ). We placed emphasis on the pre-equilibrium conditions to gain better mechanistic insight into the dynamics between DOM, PFASs and adsorbents. We found AE to be very effective at removing both PFASs and DOM, while largely remaining resistant to even high levels of background DOM (8 mg carbon L -1 ) and surprisingly found that smaller PFASs were removed slightly more efficiently than longer chained counterparts, In contrast, PFAS removal efficiency with GAC was highly variable with PFAS chain length, often improving in the presence of DOM, but with variable response based on the type of DOM and PFAS chain length. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Gonsior, Michael; Luek, Jenna; Schmitt-Kopplin, Philippe; Grebmeier, Jacqueline M.; Cooper, Lee W.
2017-10-01
Changes in the molecular composition of dissolved organic matter (DOM) and its light absorbing chromophoric component (CDOM) are of particular interest in the Arctic region because of climate change effects that lead to warmer sea surface temperatures and longer exposure to sunlight. We used continuous UV-vis (UV-vis) spectroscopy, excitation emission matrix fluorescence and ultrahigh resolution mass spectrometry during a transect from the Aleutian Islands in the Bering Sea to the Chukchi Sea ice edge through Bering Strait to determine the variability of DOM and CDOM. These data were combined with discrete sampling for stable oxygen isotopes of seawater, in order to evaluate the contributions of melted sea ice versus runoff to the DOM and CDOM components. This study demonstrated that high geographical resolution of optical properties in conjunction with stable oxygen ratios and non-targeted ultrahigh resolution mass spectrometry was able to distinguish between different DOM sources in the Arctic, including identification of labile DOM sources in Bering Strait associated with high algal blooms and sampling locations influenced by terrestrially-derived DOM, such as the terrestrial DOM signal originating from Arctic rivers and dirty/anchor sea ice. Results of this study also revealed the overall variability and chemodiversity of Arctic DOM present in the Bering and Chukchi Seas.
Everett, C.R.; Chin, Y.-P.; Aiken, G.R.
1999-01-01
A 1,000-Dalton tangential-flow ultrafiltration (TFUF) membrane was used to isolate dissolved organic matter (DOM) from several freshwater environments. The TFUF unit used in this study was able to completely retain a polystyrene sulfonate 1,800-Dalton standard. Unaltered and TFUF-fractionated DOM molecular weights were assayed by high-pressure size exclusion chromatography (HPSEC). The weight-averaged molecular weights of the retentates were larger than those of the raw water samples, whereas the filtrates were all significantly smaller and approximately the same size or smaller than the manufacturer-specified pore size of the membrane. Moreover, at 280 nm the molar absorptivity of the DOM retained by the ultrafilter is significantly larger than the material in the filtrate. This observation suggests that most of the chromophoric components are associated with the higher molecular weight fraction of the DOM pool. Multivalent metals in the aqueous matrix also affected the molecular weights of the DOM molecules. Typically, proton-exchanged DOM retentates were smaller than untreated samples. This TFUF system appears to be an effective means of isolating aquatic DOM by size, but the ultimate size of the retentates may be affected by the presence of metals and by configurational properties unique to the DOM phase.
Cadmium accumulation in zebrafish (Danio rerio) eggs is modulated by dissolved organic matter (DOM).
Burnison, B Kent; Meinelt, Thomas; Playle, Richard; Pietrock, Michael; Wienke, Andreas; Steinberg, Christian E W
2006-08-23
Experiments were conducted to investigate factors influencing the accumulation of cadmium (Cd(2+)) into zebrafish (Danio rerio) eggs. The accumulation of (109)Cd was affected by: (1) concentration, (2) time, (3) presence of dissolved organic material (DOM), (4) different origin of DOM and (5) different parts of fish eggs. Over a 5-h exposure, zebrafish eggs showed a steady increase in Cd-accumulation. DOM-concentrations over 15ppm carbon (C) decreased Cd-uptake significantly. Both samples of DOM, brown water marsh (LM) and a eutrophic pond (SP), at 16.9ppmC, reduced the Cd-accumulation in the chorion, perivitelline liquid and the embryo. Cd was mainly accumulated in the egg's outer shell chorion (61%) and only small amounts passed through the chorion into the perivitelline liquid (38%) and embryo (1%). In the presence of LM-DOM, the accumulation of Cd into the egg components was decreased by 43% (chorion), 52% (perivitelline liquid) and 52% (embryo), respectively, compared with the control group. Similarly, the presence of SP-DOM reduced the Cd-accumulation by 29% (chorion), 61% (perivitelline liquid) and 60% (embryo), respectively, compared with the controls. DOM-concentration should be taken into consideration when determining ecotoxicological effects of Cd on fish populations.
Lawson, Emily C; Bhatia, Maya P; Wadham, Jemma L; Kujawinski, Elizabeth B
2014-12-16
Runoff from glaciers and ice sheets has been acknowledged as a potential source of bioavailable dissolved organic matter (DOM) to downstream ecosystems. This source may become increasingly significant as glacial melt rates increase in response to future climate change. Recent work has identified significant concentrations of bioavailable carbon and iron in Greenland Ice Sheet (GrIS) runoff. The flux characteristics and export of N-rich DOM are poorly understood. Here, we employed electrospray ionization (ESI) coupled to Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) to determine the elemental compositions of DOM molecules in supraglacial water and subglacial runoff from a large GrIS outlet glacier. We provide the first detailed temporal analysis of the molecular composition of DOM exported over a full melt season. We find that DOM pools in supraglacial and subglacial runoff are compositionally diverse and that N-rich material is continuously exported throughout the melt season, as the snowline retreats further inland. Identification of protein-like compounds and a high proportion of N-rich DOM, accounting for 27-41% of the DOM molecules identified by ESI FT-ICR MS, may suggest a microbial provenance and high bioavailability of glacially exported DOM to downstream microbial communities.
Retenation of soluble organic nutrients by a forested ecosystem
R.G. Qualls; B.L. Haines; Wayne T. Swank; S.W. Tyler
2002-01-01
We document an example of a forested watershed at the Coweeta Hydrologic Laboratory with an extraordinary tendency to retain dissolved organic matter (DOM) generated in large quantities within the ecosystem. Our objectives were to determine fluxes of dissolved organic C, N, and P (DOC,D ON, DOP, respectively), in water draining through each stratum of the ecosystem and...
NASA Astrophysics Data System (ADS)
Beggs, Katherine M. H.; Summers, R. Scott; McKnight, Diane M.
2009-12-01
Relationships between chlorine demand and disinfection by-product (DBP) formation during chlorination and fluorescence of dissolved organic matter (DOM) were developed. Fluorescence excitation and emission (EEM) spectroscopy was employed, and parameters including fluorescence index, redox index, and overall fluorescence intensity (OFI) were correlated to chlorine demand and DBP formation. The EEMs were also analyzed using a well established global parallel factor analysis (PARAFAC) model which resolves the fluorescence signal into 13 components, including quinone-like and protein-like components. Over an 8-day chlorination period the OFI and sum of the 13 PARAFAC loadings decreased by more than 70%. The remaining identified quinone-like compounds within the DOM were shifted to a more oxidized state. Quinone fluorescence was strongly correlated to both reduced fluorescence intensity and to chlorine demand which indicates that fluorescence may be used to track the chlorine oxidation of DOM. Quinone fluorescence was also correlated strongly with both classes of regulated DBPs: total trihalomethanes and haloacetic acids. Quinone-like components were found to be strongly correlated to overall, short-term, and long-term specific DBP formation. The results of this study show that fluorescence is a useful tool in tracking both DOM oxidation and DBP formation during chlorination.
Toward understanding the role of individual fluorescent components in DOM-metal binding.
Wu, Jun; Zhang, Hua; Yao, Qi-Sheng; Shao, Li-Ming; He, Pin-Jing
2012-05-15
Knowledge on the function of individual fractions in dissolved organic matter (DOM) is essential for understanding the impact of DOM on metal speciation and migration. Herein, fluorescence excitation-emission matrix quenching and parallel factor (PARAFAC) analysis were adopted for bulk DOM and chemically isolated fractions from landfill leachate, i.e., humic acids (HA), fulvic acids and hydrophilic (HyI) fraction, to elucidate the role of individual fluorescent components in metal binding (Cu(II) and Cd(II)). Three components were identified by PARAFAC model, including one humic substance (HS)-like, one protein-like and one component highly correlated with the HyI fraction. Among them, the HS-like and protein-like components were responsible for Cu(II) binding, while the protein-like component was the only fraction involved in Cd(II) complexation. It was further identified that the slight quenching effect of HA fraction by Cd(II) was induced by the presence of proteinaceous materials in HA. Fluorescent substances in the HyI fraction of landfill leachate did not play as important a role as HS did. Therefore, it was suggested that the potential risk of aged leachate (more humified) as a carrier of heavy metal should not be overlooked. Copyright © 2012 Elsevier B.V. All rights reserved.
Lin, Yu-Shih; Koch, Boris P.; Feseker, Tomas; Ziervogel, Kai; Goldhammer, Tobias; Schmidt, Frauke; Witt, Matthias; Kellermann, Matthias Y.; Zabel, Matthias; Teske, Andreas; Hinrichs, Kai-Uwe
2017-01-01
Ocean margin sediments have been considered as important sources of dissolved organic carbon (DOC) to the deep ocean, yet the contribution from advective settings has just started to be acknowledged. Here we present evidence showing that near-surface heating of sediment in the Guaymas Basin, a young extensional depression, causes mass production and discharge of reactive dissolved organic matter (DOM). In the sediment heated up to ~100 °C, we found unexpectedly low DOC concentrations in the pore waters, reflecting the combined effect of thermal desorption and advective fluid flow. Heating experiments suggested DOC production to be a rapid, abiotic process with the DOC concentration increasing exponentially with temperature. The high proportions of total hydrolyzable amino acids and presence of chemical species affiliated with activated hydrocarbons, carbohydrates and peptides indicate high reactivity of the DOM. Model simulation suggests that at the local scale, near-surface heating of sediment creates short and massive DOC discharge events that elevate the bottom-water DOC concentration. Because of the heterogeneous distribution of high heat flow areas, the expulsion of reactive DOM is spotty at any given time. We conclude that hydrothermal heating of young rift sediments alter deep-ocean budgets of bioavailable DOM, creating organic-rich habitats for benthic life. PMID:28327661
Yang, Chenghu; Liu, Yangzhi; Zhu, Yaxian; Zhang, Yong
2016-03-15
The autochthonous dissolved organic matter (DOM) released by Microcystis aeruginosa (M. aeruginosa-DOM) during its growth period was characterized by spectroscopy. Furthermore, the relationships between the M. aeruginosa-DOM spectroscopic descriptors and the pyrene binding coefficient (KDOC) values were explored. The results showed that the spectroscopic characteristics of the M. aeruginosa-DOM and the binding properties of pyrene were dynamically changed along with the algae growth. Pearson correlation analysis demonstrated that a higher pyrene KDOC value was observed for the M. aeruginosa-DOM that has a higher humification index (HIX) value, a lower biological index (BIX) value and a lower absorption ratio (E2/E3). The presence of protein-like and long-wavelength-excited humic-like components may impose negative and positive effects on binding of pyrene by the M. aeruginosa-DOM, respectively. Principal component analysis (PCA) further supported that the binding affinity of pyrene may be primarily influenced by the humification degree of the M. aeruginosa-DOM. Copyright © 2016 Elsevier Ltd. All rights reserved.
Lv, Jitao; Zhang, Shuzhen; Wang, Songshan; Luo, Lei; Cao, Dong; Christie, Peter
2016-03-01
Adsorption by minerals is a common geochemical process of dissolved organic matter (DOM) which may induce fractionation of DOM at the mineral-water interface. Here, we examine the molecular fractionation of DOM induced by adsorption onto three common iron oxyhydroxides using electrospray ionization coupled with Fourier-transform ion cyclotron resonance mass spectrometry (ESI-FT-ICR-MS). Ferrihydrite exhibited higher affinity to DOM and induced more pronounced molecular fractionation of DOM than did goethite or lepidocrocite. High molecular weight (>500 Da) compounds and compounds high in unsaturation or rich in oxygen including polycyclic aromatics, polyphenols and carboxylic compounds had higher affinity to iron oxyhydroxides and especially to ferrihydrite. Low molecular weight compounds and compounds low in unsaturation or containing few oxygenated groups (mainly alcohols and ethers) were preferentially maintained in solution. This study confirms that the double bond equivalence and the number of oxygen atoms are valuable parameters indicating the selective fractionation of DOM at mineral and water interfaces. The results of this study provide important information for further understanding the behavior of DOM in the natural environment.
NASA Astrophysics Data System (ADS)
Borgen, M.; Spencer, R. G.; Mann, P. J.; Vonk, J. E.; Bulygina, E. B.; Holmes, R. M.
2012-12-01
Terrigenous dissolved organic matter (DOM) has historically been thought to be refractory as it is mobilized into and transported through Arctic fluvial networks. However, a growing body of evidence suggests that this DOM, largely leached from vegetation, soils, and litter during the annual freshet, is highly biolabile. This study examined DOM leached from these dominant endmembers of the Kolyma River watershed in the Siberian Arctic. As leachates progressed through time, measurements of dissolved organic carbon (DOC), optical parameters to assess DOM composition, and biodegradation incubations were undertaken. This suite of measurements allowed examination of the rate and composition of leached DOC into the aquatic system and quantification of the biolability of the DOM from the diverse range of endmembers examined. Of all the endmembers, vascular plants leached the greatest amount of DOC and results will be presented relating DOC concentration and DOM composition to initial source material. Furthermore, controls on DOM biolability, enzymatic activity, and the ultimate fate of terriginous DOC in Siberian fluvial systems will be discussed.
Oulehle, Filip; Hruska, Jakub
2009-12-01
The concentration of chemical oxygen demand (COD), a common proxy for dissolved organic matter (DOM), was measured at seven drinking-water reservoirs and four streams between 1969 and 2006. Nine of them showed significant DOM increases (median COD change +0.08 mg L(-1) yr(-1)). Several potential drivers of these trends were considered, including air temperature, rainfall, land-use and water sulfate concentration. Temperature and precipitation influenced inter-annual variations, but not long-term trends. The long-term DOM increase was significantly associated with declines of acidic deposition, especially sulfur deposition. Surface water sulfate concentrations decreased from a median of 62 mg L(-1)-27 mg L(-1) since 1980. The magnitude of DOM increase was positively correlated with average DOM concentration (R(2) = 0.79, p < 0.001). Simultaneously, DOM concentration was positively correlated with the proportion of Histosols within the catchments (R(2) = 0.79, p < 0.001). A focus on the direct removal of DOM by water treatment procedures rather than catchment remediation is needed.
Dissolved Organic Matter Composition and Export from U.S. Rivers
NASA Astrophysics Data System (ADS)
Aiken, G.; Butman, D. E.; Spencer, R. G.; Raymond, P.
2012-12-01
Dissolved organic matter (DOM) chemistry and flux are potentially useful indicators of watershed characteristics, climate influences on watershed hydrology and soils, and changes associated with water and land resource management. Organic source materials, watershed geochemistry, oxidative processes and hydrology strongly influence the nature and reactivity of DOM in aquatic systems. The molecules that comprise DOM, in turn, control a number of environmental processes important for ecosystem function including light penetration and photochemistry, microbial activity, mineral dissolution/precipitation, and the transport and reactivity of hydrophobic compounds and metals. In particular, aromatic molecules derived from higher plants exert strong controls on aquatic photochemistry, and on the transport and biogeochemistry of metals. Assessment of DOM composition and transport, therefore, can provide a basis for understanding watershed processes and biogeochemistry of rivers and streams. Here we present results of a multi-year study designed to assess the seasonal and spatial variability of DOM quantity and quality for 15 large North American river basins. Samples were collected from the mouths of the rivers using a sampling program designed to capture hydrologic and seasonal variability of DOM export. DOM concentrations and composition, based on DOM fractionation on XAD resins, chromophoric dissolved organic matter (CDOM) parameters (ultraviolet /visible absorption and fluorescence spectroscopy), specific compound analyses, and DO14C content varied greatly both between sites and seasonally within a given site. DOM in these rivers exhibited a wide range of concentration and carbon specific ultra-violet absorbance at 254 nm (SUVA254), an optical measurement that is an indicator of DOM aromatic carbon content. In almost all systems, CDOM optical parameters correlated strongly with DOC concentration and hydrophobic organic acid (HPOA) content (aquatic humic substances). In particular, SUVA254 was found to correlate strongly with the proportion of HPOA and Δ14C. Relationships between dissolved organic carbon (DOC) concentration and absorbance for individual rivers were quite variable due to differences in the fraction of non-chromophoric DOM. Notably, the relationship between UV absorption coefficients and DOC concentration for four rivers that drain arid regions and/or are heavily influenced by impoundments were statistically weak.although similar trends for these rivers were not observed for Δ14C. Basins with high discharge, high density of vegetation cover, and low population densities exported younger, more aromatic DOM. Conversely, old DOM was exported from low discharge watersheds draining arid regions and watersheds impacted by high population densities. While individual watershed characteristics control DOC concentrations, CDOM parameters and DO14C content, overall discharge dominated the flux of both CDOM and DO14C to coastal waters. The link between the nature and reactivity of DOM and its optical properties can be exploited to provide powerful monitoring tools to assess the impacts of climate change, land-use change, and management practices on overall water quality and on DOM transport and transformation.
Through a Gender Lens: A View of Gender and Leadership Positions in a Department of Medicine.
Monroe, Anne K; Levine, Rachel B; Clark, Jeanne M; Bickel, Janet; MacDonald, Susan M; Resar, Linda M S
2015-10-01
Despite increasing numbers in academic medicine, women remain underrepresented in top leadership positions. The objectives of this study were to characterize leadership positions held by department of medicine (DOM) faculty at all ranks at one Academic Health Center and to compare leadership positions held by male and female faculty. This was a cross-sectional survey to collect information on all leadership positions from 16 divisions in the DOM at the Johns Hopkins University School of Medicine in early 2012, including type of position, method used to fill the position, and financial compensation. Chi-square testing was used to compare leadership position characteristics by rank and gender. The study included 474 DOM faculty at the rank of instructor or higher; 38% were women. Of the 258 leadership positions identified, 35% were held by women. More leadership positions among assistant professors were held by women compared with men (56% of positions vs. 44%), with women assistant professors more likely to hold a leadership position than men (p=0.03). Numbers of women faculty declined at higher ranks, with leadership positions remaining proportionate to faculty representation. Most division director positions (88%) were held by men, and most leadership positions were compensated (89%) and appointed by the DOM chair or a division director (80%). Leadership positions held by women and men were proportionate to faculty representation, although the top leadership positions were held almost exclusively by men. While female assistant professors were more likely to hold leadership positions than male assistant professors, these positions appear to be low status positions and it is not clear that they contribute to professional advancement, as few women hold the rank of full professor. Effective interventions are needed to address the gender disparity in top leadership positions.
Nature and transformation of dissolved organic matter in treatment wetlands
Barber, L.B.; Leenheer, J.A.; Noyes, T.I.; Stiles, E.A.
2001-01-01
This investigation into the occurrence, character, and transformation of dissolved organic matter (DOM) in treatment wetlands in the western United States shows that (i) the nature of DOM in the source water has a major influence on transformations that occur during treatment, (ii) the climate factors have a secondary effect on transformations, (iii) the wetlands receiving treated wastewater can produce a net increase in DOM, and (iv) the hierarchical analytical approach used in this study can measure the subtle DOM transformations that occur. As wastewater treatment plant effluent passes through treatment wetlands, the DOM undergoes transformation to become more aromatic and oxygenated. Autochthonous sources are contributed to the DOM, the nature of which is governed by the developmental stage of the wetland system as well as vegetation patterns. Concentrations of specific wastewaterderived organic contaminants such as linear alkylbenzene sulfonate, caffeine, and ethylenediaminetetraacetic acid were significantly attenuated by wetland treatment and were not contributed by internal loading.
NASA Technical Reports Server (NTRS)
Mannino, A.; Dyda, R. Y.; Hernes, P. J.; Hooker, Stan; Hyde, Kim; Novak, Mike
2012-01-01
Estuaries and coastal ocean waters experience a high degree of variability in the composition and concentration of particulate and dissolved organic matter (DOM) as a consequence of riverine/estuarine fluxes of terrigenous DOM, sediments, detritus and nutrients into coastal waters and associated phytoplankton blooms. Our approach integrates biogeochemical measurements (elemental content, molecular analyses), optical properties (absorption) and remote sensing to examine terrestrial DOM contributions into the U.S. Middle Atlantic Bight (MAB). We measured lignin phenol composition, DOC and CDOM absorption within the Chesapeake and Delaware Bay mouths, plumes and adjacent coastal ocean waters to derive empirical relationships between CDOM and biogeochemical measurements for satellite remote sensing application. Lignin ranged from 0.03 to 6.6 ug/L between estuarine and outer shelf waters. Our results demonstrate that satellite-derived CDOM is useful as a tracer of terrigenous DOM in the coastal ocean
Knold, Lone; Reitov, Marianne; Mortensen, Anna Birthe; Hansen-Møller, Jens
2002-01-01
A rapid and quantitative method for the extraction, derivatization, and liquid chromatography with fluorescence detection of ivermectin (IVM) and doramectin (DOM) residues in porcine liver was developed and validated. IVM and DOM were extracted from the liver samples with acetonitrile, the supernatant was evaporated to dryness at 37 degrees C under nitrogen, and the residue was reconstituted in 1-methylimidazole solution. After 2 min at room temperature, IVM and DOM were converted to a fluorescent derivative and then separated on a Hypersil ODS column. The derivatives of IVM and DOM were detected and quantitated with high specificity by fluorescence (excitation: 365 nm, emission: 475 nm). Abamectin was used as an internal standard. The mean extraction efficiencies from fortified samples (15 ng/g) were 75% for IVM and 70% for DOM. The limit of detection was 0.8 ng/g for both IVM and DOM.
Chromophoric Dissolved Organic Matter in Southwestern Greenland Lakes
NASA Astrophysics Data System (ADS)
Osburn, C. L.; Giles, M. E.; Underwood, G. J. C.
2014-12-01
Dissolved organic matter (DOM) is an important property of Arctic lake ecosystems, originating from allochthonous inputs from catchments and autochthonous production by plankton in the water column. Little is known about the quality of DOM in Arctic lakes that lack substantial inputs from catchments and such lakes are abundant in southwestern Greenland. Colored dissolved organic matter (CDOM), the fraction that absorbs ultraviolet (UV) and visible light, is the controlling factor for the optical properties of many surface waters and as well informs on the quality of DOM. We examined the quality of CDOM in 21 lakes in southwestern Greenland, from the ice sheet to the coast, as part of a larger study examining the role of DOM in regulating microbial communities in these lakes. DOM was size fractioned and absorbance and fluorescence was measured on each size fraction, as well as on bulk DOM. The specific ultraviolet absorbance (SUVA) at 254 nm (SUVA254), computed by normalizing absorption (a254) to dissolved organic carbon (DOC) concentration, provided an estimate of the aromatic carbon content of DOM. SUVA values were generally <2, indicating low aromatic content. Parallel factor analysis (PARAFAC) of CDOM fluorescence was used to determine the relative abundance of allochthonous and autochthonous DOM in all size fractions. Younger lakes near the ice sheet and lakes near the coast had lower amounts of CDOM and appeared more microbial in quality. However, lakes centrally located between the ice sheet and the coast had the highest CDOM concentrations and exhibited strong humic fluorescence. Overall distinct differences in CDOM quality were observed between lake locations and among DOM size fractions.
Schwartz-Zimmermann, Heidi E.; Fruhmann, Philipp; Dänicke, Sven; Wiesenberger, Gerlinde; Caha, Sylvia; Weber, Julia; Berthiller, Franz
2015-01-01
Recently, deoxynivalenol-3-sulfate (DON-3-sulfate) was proposed as a major DON metabolite in poultry. In the present work, the first LC-MS/MS based method for determination of DON-3-sulfate, deepoxy-DON-3-sulfate (DOM-3-sulfate), DON, DOM, DON sulfonates 1, 2, 3, and DOM sulfonate 2 in excreta samples of chickens and turkeys was developed and validated. To this end, DOM-3-sulfate was chemically synthesized and characterized by NMR and LC-HR-MS/MS measurements. Application of the method to excreta and chyme samples of four feeding trials with turkeys, chickens, pullets, and roosters confirmed DON-3-sulfate as the major DON metabolite in all poultry species studied. Analogously to DON-3-sulfate, DOM-3-sulfate was formed after oral administration of DOM both in turkeys and in chickens. In addition, pullets and roosters metabolized DON into DOM-3-sulfate. In vitro transcription/translation assays revealed DOM-3-sulfate to be 2000 times less toxic on the ribosome than DON. Biological recoveries of DON and DOM orally administered to broiler chickens, turkeys, and pullets were 74%–106% (chickens), 51%–72% (roosters), and 131%–151% (pullets). In pullets, DON-3-sulfate concentrations increased from jejunum chyme samples to excreta samples by a factor of 60. This result, put into context with earlier studies, indicates fast and efficient absorption of DON between crop and jejunum, conversion to DON-3-sulfate in intestinal mucosa, liver, and possibly kidney, and rapid elimination into excreta via bile and urine. PMID:26569307
NASA Astrophysics Data System (ADS)
Dalmagro, Higo J.; Johnson, Mark S.; de Musis, Carlo R.; Lathuillière, Michael J.; Graesser, Jordan; Pinto-Júnior, Osvaldo B.; Couto, Eduardo G.
2017-08-01
The Cerrado (savanna) and Pantanal (wetland) biomes of Central Western Brazil have experienced significant development activity in recent decades, including extensive land cover conversion from natural ecosystems to agriculture and urban expansion. The Cuiabá River transects the Cerrado biome prior to inundating large areas of the Pantanal, creating one of the largest biodiversity hot spots in the world. We measured dissolved organic carbon (DOC) and the optical absorbance and fluorescence properties of dissolved organic matter (DOM) from 40 sampling locations spanning Cerrado and Pantanal biomes during wet and dry seasons. In the upper, more agricultural region of the basin, DOC concentrations were highest in the rainy season with more aromatic and humified DOM. In contrast, DOC concentrations and DOM optical properties were more uniform for the more urbanized middle region of the basin between wet and dry seasons, as well as across sample locations. In the lower region of the basin, wet season connectivity between the river and the Pantanal floodplain led to high DOC concentrations, a fourfold increase in humification index (HIX) (an indicator of DOM humification), and a 50% reduction in the spectral slope (SR). Basin-wide, wet season values for SR, HIX, and FI (fluorescence index) indicated an increasing representation of terrestrially derived DOM that was more humified. Parallel factor analysis identified two terrestrially derived components (C1 and C2) representing 77% of total fluorescing DOM (fDOM). A third, protein-like fDOM component increased markedly during the wet season within the more urban-impacted region.
Lei, Hong-jun; Han, Yu-ping; Liu, Xin; Xu, Jian-xin
2015-07-01
The behavior of pesticide in soil is influenced by dissolved organic matter (DOM) through competition adsorption, adsorption, solubilization, accelerated degradation, and so on. Thus DOM and its components play an important role in the environmental risk in the soil ecosystem and groundwater environment. Currently, most studies focused on the short-term effect of high concentration of DOM on the pesticide residues. However, soil DOM is mainly at low level. Therefore, there is of some practical significance to probe into the environmental behavior of soil pesticides under natural level of DOM. Thus a site investigation was conducted in the farmland with long-term application history of pesticide. By using the three dimensional excitation-emission fluorescence matrix (3D-EEM) technology, together with the fluorescence regional integration (FRI) quantitative method, the long-term effects of pesticide residues under low concentration of natural DOM were analyzed. Results showed that: (1) The long-term effects of the natural DOM components on the environment behavior of most soil organochlorine pesticides were not significant except for a few pesticides such as y-HCH, p, p'-DDE, etc. (2) The influencing effects of DOM components on different type of pesticides were varied. Among which, the content of tyrosine component showed a significantly negative correlation (p < 0.05) with the concentration of y-HCH and p, p'-DDE. There were significant positive correlations (p < 0.05) between the byproducts of microbial degradation in DOM components and the concentration of heptachlor. There were also a significant positive correlation (p < 0.05) between the content of active humus component of humic acid in the DOM and the concentration of heptachlor epoxide. These results suggested that the distribution of different types of pesticides residue in the soil was influenced by different components at different levels of significance. (3) The humification degree of soil organic matter showed minor effect of DOM on the pesticide residues in the soil. In this study, 3D-EEM and FRI technology were firstly coupled in use for studying the influence of different components of DOM in soil on the environmental behavior of pesticides, which provides a new idea for the research on the mechanism of pesticides transportation and transformation in soil and groundwater environment.
Sadeghi, Seyedali; Newman, Cassidy; Cortes, Daniel H
2018-01-01
Long-distance running competitions impose a large amount of mechanical loading and strain leading to muscle edema and delayed onset muscle soreness (DOMS). Damage to various muscle fibers, metabolic impairments and fatigue have been linked to explain how DOMS impairs muscle function. Disruptions of muscle fiber during DOMS exacerbated by exercise have been shown to change muscle mechanical properties. The objective of this study is to quantify changes in mechanical properties of different muscles in the thigh and lower leg as function of running distance and time after competition. A custom implementation of Focused Comb-Push Ultrasound Shear Elastography (F-CUSE) method was used to evaluate shear modulus in runners before and after a race. Twenty-two healthy individuals (age: 23 ± 5 years) were recruited using convenience sampling and split into three race categories: short distance (nine subjects, 3-5 miles), middle distance (10 subjects, 10-13 miles), and long distance (three subjects, 26+ miles). Shear Wave Elastography (SWE) measurements were taken on both legs of each subject on the rectus femoris (RF), vastus lateralis (VL), vastus medialis (VM), soleus, lateral gastrocnemius (LG), medial gastrocnemius (MG), biceps femoris (BF) and semitendinosus (ST) muscles. For statistical analyses, a linear mixed model was used, with recovery time and running distance as fixed variables, while shear modulus was used as the dependent variable. Recovery time had a significant effect on the soleus ( p = 0.05), while running distance had considerable effect on the biceps femoris ( p = 0.02), vastus lateralis ( p < 0.01) and semitendinosus muscles ( p = 0.02). Sixty-seven percent of muscles exhibited a decreasing stiffness trend from before competition to immediately after competition. The preliminary results suggest that SWE could potentially be used to quantify changes of muscle mechanical properties as a way for measuring recovery procedures for runners.
Sipler, Rachel E; Kellogg, Colleen T E; Connelly, Tara L; Roberts, Quinn N; Yager, Patricia L; Bronk, Deborah A
2017-01-01
Warming at nearly twice the global rate, higher than average air temperatures are the new 'normal' for Arctic ecosystems. This rise in temperature has triggered hydrological and geochemical changes that increasingly release carbon-rich water into the coastal ocean via increased riverine discharge, coastal erosion, and the thawing of the semi-permanent permafrost ubiquitous in the region. To determine the biogeochemical impacts of terrestrially derived dissolved organic matter (tDOM) on marine ecosystems we compared the nutrient stocks and bacterial communities present under ice-covered and ice-free conditions, assessed the lability of Arctic tDOM to coastal microbial communities from the Chukchi Sea, and identified bacterial taxa that respond to rapid increases in tDOM. Once thought to be predominantly refractory, we found that ∼7% of dissolved organic carbon and ∼38% of dissolved organic nitrogen from tDOM was bioavailable to receiving marine microbial communities on short 4 - 6 day time scales. The addition of tDOM shifted bacterial community structure toward more copiotrophic taxa and away from more oligotrophic taxa. Although no single order was found to respond universally (positively or negatively) to the tDOM addition, this study identified 20 indicator species as possible sentinels for increased tDOM. These data suggest the true ecological impact of tDOM will be widespread across many bacterial taxa and that shifts in coastal microbial community composition should be anticipated.
Li, Yingjie; Liu, Xiangliang; Zhang, Biaojun; Zhao, Qun; Ning, Ping; Tian, Senlin
2018-03-01
The ubiquity of sulfonamides (SAs) in natural waters requires insight into their environmental fate for ecological risk assessment. Extensive studies focused on the effect of univariate water constituents on the photochemical fate of SAs, yet the multivariate effects of water constituents in environmentally relevant concentrations on SA photodegradation are poorly understood. Here, response surface methodology was employed to explore the integrative effects of main water constituents (dissolved organic matter (DOM), NO 3 - , HCO 3 - , Cu 2+ ) on the photodegradation of a representative SA (sulfamethazine). Results showed that besides single factors, interaction of factors also significantly impacted the photodegradation. Radical scavenging experiments indicated that triplet-excited DOM ( 3 DOM*) was responsible for the enhancing effect of DOM on the photodegradation. Additionally, DOM may also quench the 3 DOM*-mediated oxidation intermediate of sulfamethazine causing the inhibiting effect of DOM-DOM interaction. We also found that HCO 3 - was oxidized by triplet-excited sulfamethazine producing CO 3 ˙ - , and the high reactivity of CO 3 ˙ - with sulfamethazine (second-order rate constant 2.2 × 10 8 M -1 s -1 ) determined by laser flash photolysis revealed the enhancing photodegradation mechanism of HCO 3 - . This study is among the first attempts to probe the photodegradation of SAs considering the integrative effects of water constituents, which is important in accurate ecological risk assessment of organic pollutants in the aquatic environment.
Effects of molecular size fraction of DOM on photodegradation of aqueous methylmercury.
Kim, Moon-Kyung; Won, A-Young; Zoh, Kyung-Duk
2017-05-01
This study investigated the photodegradation kinetics of MeHg in the presence of various size fractions of dissolved organic matter (DOM) with MW < 3.5 kDa, 3.5 < MW < 10 kDa, and MW > 10 kDa. The DOM fraction with MW < 3.5 kDa was most effective in MeHg photodegradation. Increasing UV intensity resulted in the increase of photodegradation rate of the MeHg in all size of DOM fractions. Higher rates of MeHg degradation was observed at higher pH. For the portion of MW < 3.5 kDa, the photodegradation rate of MeHg increased with increasing DOM concentration, indicating that radicals such as singlet oxygen ( 1 O 2 ) radicals can be effectively produced by DOM. At higher portion of MW > 3.5 kDa, the inhibition of MeHg degradation was observed due to the effect of DOM photo-attenuation. Our result indicates that radical mediated reaction is the main mechanism of photodegradation of MeHg especially in the presence of MW < 3.5 kDa. Our results imply that the smaller molecular weight fraction (MW < 3.5 kDa) of DOM mainly increased the photodegradation rate of MeHg. Copyright © 2017 Elsevier Ltd. All rights reserved.
Qiu, Linlin; Cui, Hongyang; Wu, Junqiu; Wang, Baijie; Zhao, Yue; Li, Jiming; Jia, Liming; Wei, Zimin
2016-06-15
Bacterioplankton plays a significant role in the circulation of materials and ecosystem function in the biosphere. Dissolved organic matter (DOM) from dead plant material and surface soil leaches into water bodies when snow melts. In our study, water samples from nine sampling sites along the Heilongjiang watershed were collected in February and June 2014 during which period snowmelt occurred. The goal of this study was to characterize changes in DOM and bacterioplankton community composition (BCC) associated with snowmelt, the effects of DOM, environmental and geographical factors on the distribution of BCC and interactions of aquatic bacterioplankton populations with different sources of DOM in the Heilongjiang watershed. BCC was measured by denaturing gradient gel electrophoresis (DGGE). DOM was measured by excitation-emission matrix (EEM) fluorescence spectroscopy. Bacterioplankton exhibited a distinct seasonal change in community composition due to snowmelt at all sampling points except for EG. Redundancy analysis (RDA) indicated that BCC was more closely related to DOM (Components 1 and 4, dissolved organic carbon, biochemical oxygen demand and chlorophyll a) and environmental factors (water temperature and nitrate nitrogen) than geographical factors. Furthermore, DOM had a greater impact on BCC than environmental factors (29.80 vs. 15.90% of the variation). Overall, spring snowmelt played an important role in altering the quality and quantity of DOM and BCC in the Heilongjiang watershed. Copyright © 2016 Elsevier B.V. All rights reserved.
Jiang, Tao; Kaal, Joeri; Liang, Jian; Zhang, Yaoling; Wei, Shiqiang; Wang, Dingyong; Green, Nelson W
2017-12-15
Soil-derived dissolved organic matter (DOM) has a major influence in biogeochemical processes related to contaminant dynamics and greenhouse gas emissions, due to its reactivity and its bridging role between the soil and aquatic systems. Within the Three Gorges Reservoir (TGR, China) area, an extensive water-fluctuation zone periodically submerges the surrounding soils. Here we report a characterization study of soil-derived DOM across the TGR areas, using elemental and optical analysis, infrared spectroscopy (FTIR), pyrolysis-GC-MS (Py-GC-MS) and thermally assisted hydrolysis and methylation (THM-GC-MS). The results showed that the soil DOM from the TGR area is a mixture of "allochthonous" (i.e., plant-derived/terrigenous) and "autochthonous" (i.e., microbial) origins. The terrigenous DOM is composed primarily of phenolic and aliphatic structures from lignin and aliphatic biopolymers (i.e. cutin, suberin), respectively. Multivariate statistics differentiated between two fractions of the microbial DOM, i.e. chitin-derived, perhaps from fungi and arthropods in soil, and protein-derived, partially sourced from algal or aquatic organisms. Molecular proxies of source and degradation state were in good agreement with optical parameters such as SUVA 254 , the fluorescence index (FI) and the humification index (HIX). The combined use of elemental analysis, fluorescence spectroscopy, and Py-GC-MS provides rigorous and detailed DOM characterization, whereas THM-GC-MS is useful for more precise but qualitative identification of the different phenolic (cinnamyl, p-hydroxyphenyl, guaiacyl, syringyl and tannin-derived) and aliphatic materials. With the multi-methodological approach used in this study, FTIR was the least informative, in part, because of the interference of inorganic matter in the soil DOM samples. The soil DOM from the TGR's water fluctuation zone exhibited considerable compositional diversity, mainly related to the balance between DOM source (microbial- or plant-derived), local vegetation and anthropogenic activities (e.g., agriculture). Finally, the relationship between DOM composition and its potential reactivity with substances of environmental concerns in the TGR area are also discussed. Copyright © 2017 Elsevier B.V. All rights reserved.
Wei, Huaibin; Yu, Huibin; Pan, Hongwei; Gao, Hongjie
2018-05-01
UV-visible absorption spectroscopy combined with principal component analysis (PCA) and two-dimensional correlation (2D correlation) is used to trace components of dissolved organic matter (DOM) extracted from soils in a larger estuarine delta and to investigate spatial variations of DOM fractions. Soil samples of different depths were collected from native halophyte soils along a saline gradient, i.e., Suaeda salsa Comm. (SSC), Chenopodium album Comm. (CAC), Phragmites australis Comm. (PAC), and Artemisia selengensis Comm. (ASC). Molecular weights of DOM within the SSC soil profile were the lowest, followed by the CAC, PAC, and ASC soil profiles. Humification degree of DOM within the ASC soil profile was the highest, followed by the PAC, SSC, and CAC soil profiles. DOM within the soil profiles mainly contained phenolic, carboxylic, microbial products, and aromatic and alkyl groups through the PCA, which presented the significant differentiation among the four native halophyte soil profiles. The 2D UV correlation spectra of DOM within the SSC soil profile indicated that the variations of the phenolic groups were the largest, followed by the carboxylic groups, microbial products, and humified organic materials according to the band changing order of 285 → 365 → 425 → 520 nm. The 2D UV correlation spectra of DOM within the CAC soil profiles determined that the decreasing order of the variations was phenolic groups > carboxylic groups > microbial products according the band changing order of 285 → 365 → 425 nm. The 2D UV correlation spectra of DOM within the PAC soil profile proved that the variations of the phenolic groups were larger than those of the carboxylic groups according to the band changing order of 285 → 365 nm. The 2D UV correlation spectra of DOM within the ASC soil profile demonstrated that the variations of the phenolic groups were larger than those of the other DOM fractions according to the broad cross-peak at 285/365-700 nm.
Zhou, Wenjun; Ren, Lingwei; Zhu, Lizhong
2017-04-01
Clay minerals are the most popular adsorbents/amendments for immobilizing heavy metals in contaminated soils, but the dissolved organic matter (DOM) in soil environment would potentially affect the adsorption/immobilization capacity of clay minerals for heavy metals. In this study, the effects of DOM derived from chicken manure (CM) on the adsorption of cadmium (Cd 2+ ) on two clay minerals, bentonite and zeolite, were investigated. The equilibrium data for Cd 2+ sorption in the absence or presence of CM-DOM could be well-fitted to the Langmuir equation (R 2 > 0.97). The presence of CM-DOM in the aqueous solution was found to greatly reduce the adsorption capacity of both minerals for Cd 2+ , in particular zeolite, and the percentage decreases for Cd 2+ sorption increased with increasing concentrations of Cd 2+ as well as CM-DOM in aqueous solutions. The adsorption of CM-DOM on zeolite was greater than that on bentonite in the absence of Cd 2+ , however, a sharp increase was observed for CM-DOM sorption on bentonite with increasing Cd 2+ concentrations but little change for that on zeolite, which can be attributed to the different ternary structures on mineral surface. The CM-DOM modified clay minerals were utilized to investigate the effect of mineral-adsorbed CM-DOM on Cd 2+ sorption. The adsorbed form was found to inhibit Cd 2+ sorption, and further calculation suggested it primarily responsible for the overall decrease in Cd 2+ sorption on clay minerals in the presence of CM-DOM in aqueous solutions. An investigation for the mineral surface morphology suggested that the mineral-adsorbed CM-DOM decreased Cd 2+ sorption on bentonite mainly through barrier effect, while in the case of zeolite, it was the combination of active sites occupation and barrier effect. These results can serve as a guide for evaluating the performance of clay minerals in immobilizing heavy metals when animal manure is present in contaminated soils. Copyright © 2017 Elsevier Ltd. All rights reserved.
Heiss, Rafael; Kellermann, Marion; Swoboda, Bernd; Grim, Casper; Lutter, Christoph; May, Matthias S; Wuest, Wolfgang; Uder, Michael; Nagel, Armin M; Hotfiel, Thilo
2018-06-12
Study Design Controlled laboratory study with repeated measures. Background Delayed-onset muscle soreness (DOMS) is one of the most common reasons for impaired muscle performance in sports. However, little consensus exists regarding which treatments may be most effective and the underlying mechanisms are poorly understood. Objectives To investigate the influence of compression garments on the development of DOMS, focusing on changes in muscle perfusion and muscle stiffness. Methods Muscle perfusion and stiffness, calf circumference, muscle soreness, passive ankle dorsiflexion, and creatine kinase levels were assessed on participants before (baseline) a DOMS-inducing eccentric calf exercise intervention and 60 h later (follow-up). After DOMS induction, a sports compression garment (18-21 mmHg) was worn on one randomized calf until follow-up. The contralateral calf served as an internal control. Muscle perfusion was assessed using contrast-enhanced ultrasound (peak enhancement [PE] and wash-in area under the curve [WiAUC]), while muscle stiffness was assessed using acoustic radiation force impulse (shear wave velocities [SWV]). An MRI scan of both lower legs was also performed during the follow-up testing session to characterize the extent of exercise-induced muscle damage. Comparisons were made between limbs and over time. Results SWV values of the medial gastrocnemius showed a significant interaction between time and limb (p=0.006) with the non-compressed muscle demonstrating lower muscle stiffness values at follow-up compared to baseline or the compressed muscle. No significant differences in soleus muscle stiffness were noted between limb or over time, as was the case for muscle perfusion metrics (PE and WiAUC) for the medial gastrocnemius and soleus muscles. Further, compression had no significant effect on passive ankle dorsiflexion, muscle soreness, calf circumference, or injury severity per MRI. Conclusion Continuous wearing of compression garments during the inflammation phase of DOMS may play an important role in regulating muscle stiffness; however, they have no significant effects on intramuscular perfusion or other common clinical assessments. J Orthop Sports Phys Ther, Epub 12 Jun 2018. doi:10.2519/jospt.2018.8038.
Hydro-climatic control of stream dissolved organic carbon in headwater catchment
NASA Astrophysics Data System (ADS)
Humbert, Guillaume; Jaffrezic, Anne; Fovet, Ophélie; Gruau, Gérard; Durand, Patrick
2014-05-01
Dissolved organic matter (DOM) is a key form of the organic matter linking together the water and the carbon cycles and interconnecting the biosphere (terrestrial and marine) and the soil. At the landscape scale, land use and hydrology are the main factors controlling the amount of DOM transferred from soils to the stream. In an intensively cultivated catchment, a recent work using isotopic composition of DOM as a marker has identified two different sources of DOM. The uppermost soil horizons of the riparian wetland appear as a quasi-infinite source while the topsoil of the hillslope forms a limited one mobilized by water-table rise and exported to the stream across the upland-riparian wetland-stream continuum. In addition to the exportation of DOM via water fluxes, climatic factors like temperature and precipitation regulate the DOM production by influencing microbial activity and soil organic matter degradation. The small headwater catchment (5 km²) of Kervidy-Naizin located in Brittany is part of the Environment Research Observatory (ORE) AgrHys. Weather and the hydro-chemistry of the stream, and the groundwater levels are daily recorded since 1993, 2000 and 2001 respectively. Over 13 contrasted hydrological years, the annual flow weighted mean concentration of dissolved organic carbon (DOC) is 5.6 mg.L-1 (sd = 0.7) for annual precipitation varying from 488mm to 1327mm and annual mean temperatures of 11°C (sd = 0.6). Based on this considerable dataset and this annual variability, we tried to understand how the hydro-climatic conditions determinate the stream DOC concentrations along the year. From the fluctuations of water table depth, each hydrologic year has been divided into three main period: i) progressive rewetting of the riparian wetland soils, ii) rising and holding high of the water table in the hillslope, iii) drawdown of the water-table, with less and less topsoil connected to the stream. Within each period base flow and storm flow data were first pooled then treated separately and the influence of preceding periods was tested. This hydrological division of time allowed us to identify climate effect on the topsoil DOM stores of the wetland and hillslope separately. Meteorological and hydro-pedological variables, like soil temperatures or duration of the water saturation in the organo-mineral horizons have been used to interpret the DOC concentrations and fluxes at the outlet within each period. The three hydrological periods contribute respectively to less than 17%, more than 63%, and less than 26% of the annual DOM exportation with flow weighted mean concentration of DOC of 9.5, 6.1, and 3.8 mg.L-1. Considering several DOM sources with different properties of depletion under climatic control, the main output of the work is to provide a modified conceptual model of the DOC dynamics.
The composition and character of DOM from an upland peat catchment - sources, roles and fate
NASA Astrophysics Data System (ADS)
Worrall, F.; Moody, C.; Clay, G.; Boothroyd, I.; Burt, T. P.
2017-12-01
The fluvial fluxes of dissolved organic carbon (DOC) from peatlands form an important part of that ecosystem's carbon cycle, contributing approximately 35% of the overall peatland carbon budget. The source, role and fate of this component of the carbon cycle was explored for a peat covered catchment in the north east of England with dissolved organic matter (DOM) being sampled from both a first-order peat-hosted stream and soil water at two depths within the peat profile. All DOM samples were analysed within the context of analysing the particulate organic matter (POM) from the catchment; the peat profile; and biomass. All samples were analysed using: elemental analysis (C, H, N, O, P and S); bomb calorimetry; thermogravimetric analysis (TGA); 13C solid state NMR; and S isotopes. Furthermore, the degradation of fresh DOC was examined over periods of 70 hours every month for 23 months. The analysis has shown that: DOM is highly oxidised compared to all other organic in the ecosystem and DOM did not exist until [C]/[O] < 1.44. The DOM was dominantly the product of lignin breakdown and not the processing of proteins or carbohydrates, i.e. it was not an intermediate of oxidation to CO2. DOM could only be sourced from high in the peat profile at most above 41 cm depth. Thermodynamic inhibition shows that only DOM from the surface layers could be reactive in the catotelmic layers of the peat. There was a significant role for the composition of the DOM in controlling degradation with degradation rates significantly increasing with the proportion of aldehyde and carboxylic acid functional groups but decreasing with the proportion of N-alkyl functional groups. The study meant that is was possible to consider the behaviour of DOM in terms of its thermodynamic properties (DH, DS & DG) for both formation and reaction.
Pain-evoked trunk muscle activity changes during fatigue and DOMS.
Larsen, L H; Hirata, R P; Graven-Nielsen, T
2017-05-01
Muscle pain may reorganize trunk muscle activity but interactions with exercise-related muscle fatigue and delayed onset muscle soreness (DOMS) is to be clarified. In 19 healthy participants, the trunk muscle activity during 20 multi-directional unpredictable surface perturbations were recorded after bilateral isotonic saline injections (control) and during unilateral and bilateral hypertonic saline-induced low back pain (LBP) in conditions of back muscle fatigue (Day-1) and DOMS (Day-2). Pain intensity and distribution were assessed by visual analogue scale (VAS) scores and pain drawings. The degree of fatigue and DOMS were assessed by Likert scale scores. Root-mean-square electromyographic (RMS-EMG) signals were recorded post-perturbation from six bilateral trunk muscles and the difference from baseline conditions (Delta-RMS-EMG) was extracted and averaged across abdominal and back muscles. In DOMS, peak VAS scores were higher during bilateral control and bilateral saline-induced pain than fatigue (p < 0.001) and during bilateral compared with unilateral pain (p < 0.001). The saline-induced pain areas were larger during DOMS than fatigue (p < 0.01). In response to surface perturbations during fatigue and DOMS, the back muscle Delta-RMS-EMG increased during bilateral compared with unilateral pain and control injections (p < 0.001) and decreased during unilateral pain compared with control injections (p < 0.04). In DOMS compared with fatigue, the post-perturbation Delta-RMS-EMG in back muscles was higher during bilateral pain and lower during unilateral pain (p < 0.001). The abdominal Delta-RMS-EMG was not significantly affected. Facilitated and attenuated back muscle responses to surface perturbations in bilateral and unilateral LBP, respectively, was more expressed during exercise-induced back muscle soreness compared with fatigue. Back muscle activity decreased during unilateral and increased during bilateral pain after unpredictable surface perturbations during muscle fatigue and DOMS. Accumulation effects of DOMS on pain intensity and spreading and trunk muscle activity after pain-induction. © 2017 European Pain Federation - EFIC®.
NASA Astrophysics Data System (ADS)
Dolan, E. M.; Perdrial, J. N.; Vazquez, A.; Hernández, S.; Chorover, J.
2010-12-01
Elizabeth Dolan1,2, Julia Perdrial3, Angélica Vázquez-Ortega3, Selene Hernández-Ruiz3, Jon Chorover3 1Deptartment of Soil, Environmental, and Atmospheric Science, University of Missouri. 2Biosphere 2, University of Arizona. 3Deptartment of Soil, Water, and Environmental Science, University of Arizona. Abstract: The behavior of dissolved organic matter (DOM) in soil is important to many biogeochemical processes. Extraction methods to obtain DOM from the unsaturated zone remain a current focus of research as different methods can influence the type and concentration of DOM obtained. Thus, the present comparison study involves three methods for soil solution sampling to assess their impact on DOM quantity and quality: 1) aqueous soil extracts, 2) solution yielded from laboratory installed suction cup samplers and 3) solutions from field installed suction cup samplers. All samples were analyzed for dissolved organic carbon and total nitrogen concentrations. Moreover, DOM quality was analyzed using fluorescence, UV-Vis and FTIR spectroscopies. Results indicate higher DOC values for laboratory extracted DOM: 20 mg/L for aqueous soil extracts and 31 mg/L for lab installed samplers compared to 12 mg/L for field installed samplers. Large variations in C/N ratios were also observed ranging from 1.5 in laboratory extracted DOM to 11 in field samples. Fluorescence excitation-emission matrices of DOM solutions obtained for the laboratory extraction methods showed higher intensities in regions typical for fulvic and humic acid-like materials relative to those extracted in the field. Similarly, the molar absorptivity calculated from DOC concentration normalization of UV-Vis absorbance of the laboratory-derived solutions was significantly higher as well, indicating greater aromaticity. The observed differences can be attributed to soil disturbance associated with obtaining laboratory derived solution samples. Our results indicate that laboratory extraction methods are not comparable to in-situ field soil solution extraction in terms of DOM.
Hernández-Terán, Alejandra; Wegier, Ana; Benítez, Mariana; Lira, Rafael; Escalante, Ana E.
2017-01-01
Agronomic management of plants is a powerful evolutionary force acting on their populations. The management of cultivated plants is carried out by the traditional process of human selection or plant breeding and, more recently, by the technologies used in genetic engineering (GE). Even though crop modification through GE is aimed at specific traits, it is possible that other non-target traits can be affected by genetic modification due to the complex regulatory processes of plant metabolism and development. In this study, we conducted a meta-analysis profiling the phenotypic consequences of plant breeding and GE, and compared modified cultivars with wild relatives in five crops of global economic and cultural importance: rice, maize, canola, sunflower, and pumpkin. For these five species, we analyzed the literature with documentation of phenotypic traits that are potentially related to fitness for the same species in comparable conditions. The information was analyzed to evaluate whether the different processes of modification had influenced the phenotype in such a way as to cause statistical differences in the state of specific phenotypic traits or grouping of the organisms depending on their genetic origin [wild, domesticated with genetic engineering (domGE), and domesticated without genetic engineering (domNGE)]. In addition, we tested the hypothesis that, given that transgenic plants are a construct designed to impact, in many cases, a single trait of the plant (e.g., lepidopteran resistance), the phenotypic differences between domGE and domNGE would be either less (or inexistent) than between the wild and domesticated relatives (either domGE or domNGE). We conclude that (1) genetic modification (either by selective breeding or GE) can be traced phenotypically when comparing wild relatives with their domesticated relatives (domGE and domNGE) and (2) the existence and the magnitude of the phenotypic differences between domGE and domNGE of the same crop suggest consequences of genetic modification beyond the target trait(s). PMID:29259610
NASA Astrophysics Data System (ADS)
Kelly, Tara; Rocha, Carlos
2014-05-01
Submarine Groundwater Discharge (SGD) constitutes an "invisible" link between land and sea, transporting allochthonous and autochthonous dissolved organic matter (DOM), nutrients and metals to the ocean via the subterranean estuary. The latter acts as a powerful bioreactor where groundwater, in transit from land to sea, mixes with seawater leading to active modulation of both DOM content and chemical makeup of SGD. DOM in freshwater systems is a key component of the global carbon cycle. Climate change may hence increase the concentration of allochthonous carbon entering the oceans as terrestrial DOC is released from soils at higher temperatures, and transported via SGD. Presently, little is known about the effects of SGD-borne DOM on coastal carbon cycling. SGD therefore represents a dynamic reservoir and analysis is critical to forecast future environmental management programmes, both on a local and global scale. Labile DOM plays a crucial role in microbial remineralisation processes, and as it breaks down it contributes to the groundwater nutrient pool. Locally, this could add to eutrophication. However, if refractory carbon is present, it will be recalcitrant to mineralisation in transit and at the subterranean estuary. This putative additional input will thus imply the contribution of SGD to oceanic carbon storage. This study is focused on Kinvara Bay (Galway, western Ireland), the focal point for waters discharging from the Gort-Kinvara karstic aquifer. This aquifer represents the ideal study location for evaluation of SGD contribution to the coastal DOM pool, as SGD is focused in the bay, surface drainage is very limited, and groundwater travels across a large catchment area with a short residence time, minimising DOM modification in transit. DOM samples collected in the field have been analysed using Three-Dimensional Excitation Emission Matrix Fluorescence (3D-EEMF) and High Temperature Catalytic Oxidation. PARAFAC is subsequently used as a tool to elucidate the types, sources (marine vs terrigeneous) and fractional composition of DOM, both in SGD plumes and in surface waters.
After the flood: consistency in DOM response to the 2010/2011 Australian floods
NASA Astrophysics Data System (ADS)
Shutova, Y.; Baker, A.; Bridgeman, J.; Henderson, R.
2014-12-01
The 2010/2011 floods in Eastern Australia were one of the worst on record, causing more than one billion AUD of damages and killing 35 people. This field campaign, monitoring raw water DOM concentration and character on three contrasting rivers across the region captured the late recession curve (October 2011- September 2012). DOM was characterized using fluorescence excitation-emission matrix (EEM) spectra with PARAFAC analysis; δ 13C-DOC; and molecular size using liquid chromatography with organic carbon, UV254 and nitrogen detection (LC-OCD) to identify DOC fractions: biopolymers, humic substance (HS), building blocks (BB), low molecular weight acids, and low molecular weight neutrals. Despite the difference in catchment and climatic zones, similar trends were observed in all three rivers, where DOC concentrations gradually decreased in river streams over a year from 8-11 mgCL-1 to 3-4 mgCL-1, followed by similar changes of HS, BB and fluorescent terrestrially delivered DOM components (C1-C3). In Allyn and Patterson rivers the proportion of HS, fluorescent terrestrially delivered DOM components (C1, C2) in DOC have decreased, in contrast to Logan River, where the ratio of HS/DOC was highly variable and showed no particular trends. The proportion of other DOC components remained almost the same. Molecular weight of the HS declined from 700 gmol-1 to 610 gmol-1 in all sites. δ 13C-DOC increased during monitoring, this could be linked to general decrease of DOM proportion delivered from C4 type plants after the flood. Overall, although DOC concentration decreased over the year post flood at all sites, most importantly the composition of DOM changed, with major changes occurring in proportion of humic-like and fluorescent terrestrially delivered DOM. Therefore it is important to monitor DOM character to be able to assess the impact of climate change and extreme weather events on the DOM transport and transformation.
Replacement Sequence of Events Generator
NASA Technical Reports Server (NTRS)
Fisher, Forest; Gladden, Daniel Wenkert Roy; Khanampompan, Teerpat
2008-01-01
The soeWINDOW program automates the generation of an ITAR (International Traffic in Arms Regulations)-compliant sub-RSOE (Replacement Sequence of Events) by extracting a specified temporal window from an RSOE while maintaining page header information. RSOEs contain a significant amount of information that is not ITAR-compliant, yet that foreign partners need to see for command details to their instrument, as well as the surrounding commands that provide context for validation. soeWINDOW can serve as an example of how command support products can be made ITAR-compliant for future missions. This software is a Perl script intended for use in the mission operations UNIX environment. It is designed for use to support the MRO (Mars Reconnaissance Orbiter) instrument team. The tool also provides automated DOM (Distributed Object Manager) storage into the special ITAR-okay DOM collection, and can be used for creating focused RSOEs for product review by any of the MRO teams.
Goldberg, S J; Nelson, C E; Viviani, D A; Shulse, C N; Church, M J
2017-09-01
Nitrogen frequently limits oceanic photosynthesis and the availability of inorganic nitrogen sources in the surface oceans is shifting with global change. We evaluated the potential for abrupt increases in inorganic N sources to induce cascading effects on dissolved organic matter (DOM) and microbial communities in the surface ocean. We collected water from 5 m depth in the central North Pacific and amended duplicate 20 liter polycarbonate carboys with nitrate or ammonium, tracking planktonic carbon fixation, DOM production, DOM composition and microbial community structure responses over 1 week relative to controls. Both nitrogen sources stimulated bulk phytoplankton, bacterial and DOM production and enriched Synechococcus and Flavobacteriaceae; ammonium enriched for oligotrophic Actinobacteria OM1 and Gammaproteobacteria KI89A clades while nitrate enriched Gammaproteobacteria SAR86, SAR92 and OM60 clades. DOM resulting from both N enrichments was more labile and stimulated growth of copiotrophic Gammaproteobacteria (Alteromonadaceae and Oceanospirillaceae) and Alphaproteobacteria (Rhodobacteraceae and Hyphomonadaceae) in weeklong dark incubations relative to controls. Our study illustrates how nitrogen pulses may have direct and cascading effects on DOM composition and microbial community dynamics in the open ocean. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.
Li, Qunliang; Lu, Yanyu; Guo, Xiaobo; Shan, Guangchun; Huang, Junhao
2017-03-01
Composting is an effective method in treating solid organic wastes, in which dissolved organic matter (DOM) plays an important role in transformation of organic matter and microbial activity. Therefore, an understanding of the properties and evolution of DOM during composting is crucial. In this study, DOM was studied using elemental analysis, spectroscopic analysis (UV-vis, FTIR, and pyrolysis-GC/MS), and colloidal analysis during a 120-day composting. Results showed that the content of N and O in DOM increased while C and H content declined progressively over the composting time. Aliphatic C-H stretching, aromatic C=C or C=O stretching of amide groups, and C-O stretch (carbohydrates) showed an obvious decrease, while COO- and C-N groups had a significant increase. The evolution of DOM indicated a gradual decrease of the lipid and polysaccharide fractions, whereas an increase of aromatic and nitrogenous compounds was observed. The DOM also showed a more stable status, and an accumulation of small molecular compounds occurred with composting proceeded. Taken together, these results shed a good insight into the properties and evolution of DOM during a composting process.
Hansen, Angela; Kraus, Tamara; Pellerin, Brian; Fleck, Jacob; Downing, Bryan D.; Bergamaschi, Brian
2016-01-01
Advances in spectroscopic techniques have led to an increase in the use of optical properties (absorbance and fluorescence) to assess dissolved organic matter (DOM) composition and infer sources and processing. However, little information is available to assess the impact of biological and photolytic processing on the optical properties of original DOM source materials. We measured changes in commonly used optical properties and indices in DOM leached from peat soil, plants, and algae following biological and photochemical degradation to determine whether they provide unique signatures that can be linked to original DOM source. Changes in individual optical parameters varied by source material and process, with biodegradation and photodegradation often causing values to shift in opposite directions. Although values for different source materials overlapped at the end of the 111-day lab experiment, multivariate statistical analyses showed that unique optical signatures could be linked to original DOM source material even after degradation, with 17 optical properties determined by discriminant analysis to be significant (p<0.05) in distinguishing between DOM source and environmental processing. These results demonstrate that inferring the source material from optical properties is possible when parameters are evaluated in combination even after extensive biological and photochemical alteration.
Zhu, Yanzhong; Song, Yonghui; Yu, Huibin; Liu, Ruixia; Liu, Lusan; Lv, Chunjian
2017-08-08
UV-visible absorption spectroscopy coupled with principal component analysis (PCA) and hierarchical cluster analysis (HCA) was applied to characterize spectroscopic components, detect latent factors, and investigate spatial variations of dissolved organic matter (DOM) in a large-scale lake. Twelve surface water samples were collected from Dongjianghu Lake in China. DOM contained lignin and quinine moieties, carboxylic acid, microbial products, and aromatic and alkyl groups, which in the northern part of the lake was largely different from the southern part. Fifteen spectroscopic indices were deduced from the absorption spectra to indicate molecular weight or humification degree of DOM. The northern part of the lake presented the smaller molecular weight or the lower humification degree of DOM than the southern part. E 2/4 , E 3/4 , E 2/3 , and S 2 were latent factors of characterizing the molecular weight of DOM, while E 2/5 , E 3/5 , E 2/6 , E 4/5 , E 3/6 , and A 2/1 were latent factors of evaluating the humification degree of DOM. The UV-visible absorption spectroscopy combined with PCA and HCA may not only characterize DOM fractions of lakes, but may be transferred to other types of waterscape.
NASA Astrophysics Data System (ADS)
Aiken, G. R.; Gilmour, C. A.; Krabbenhoft, D. P.; Orem, W.
2007-12-01
Interactions of mercury (Hg) with dissolved organic matter (DOM) play important roles in controlling reactivity, bioavailability and transport of Hg in aquatic systems. Laboratory experiments using a variety of organic matter isolates from surface waters in the Florida Everglades indicate that DOM binds Hg very strongly and is the dominant ligand for Hg in the absence of sulfide. These experiments have also shown that the presence of DOM influences the geochemical behavior of cinnabar (HgS) through the stabilization of nanocolloidal HgS resulting in relatively high Hg concentrations under supersaturated conditions with respect to HgS, a common condition in waters containing measurable sulfide concentrations. In this paper, the results of in-situ mesocosm experiments designed to directly measure the effects of DOM -Hg interactions on Hg biogeochemistry will be described. In these experiments, mesocosms (wetland enclosures), located in the central Everglades region of Water Conservation Area 3A (WCA 3A15), were amended with isotopically enriched Hg (200Hg, 202Hg), sulfate (SO4=) and the hydrophobic organic acid (HPOA) fraction of DOM from a site (F1) in the eutrophic northern Everglades. The use of stable isotope spikes in these studies allowed us to examine the delivery of Hg to surface soils (which are the predominant zones of methylation); partitioning of Hg and MeHg among phases (which impacts bioavailability); net MeHg production; loss of Hg and MeHg through photodemethylation, reduction and volatization; and bioaccumulation. The F1 HPOA isolate, obtained using XAD resins, was more aromatic, had a greater specific ultra-violet absorbance and had previously been shown to be more reactive with Hg than the DOM present at the 3A15 site. The F1 HPOA isolate formed strong DOM-Hg complexes (KDOM') = 1023.2 L kg-1 at pH = 7.0 and I = 0.1) and effectively inhibited the precipitation of HgS in laboratory experiments. Select mesocosms were amended with either F1-HPOA or SO4= resulting in a range of concentrations for each constituent. For the DOM amended mesocosms, DOC concentrations increased from 50-100% and the overall SUVA increased from 2.9 to 3.7 L mg C-1 m-1 relative to control mesocosms, indicating that both the concentration and overall reactivity of the DOM in the amended mesocosms had been altered substantially. In these mesocosms, the concentrations of both ambient and isotopically enriched dissolved Hg increased significantly compared to controls. Greater concentrations of both dissolved ambient and labeled methylmercury were also observed in the DOM amended mesocosms indicating that the added DOM increased Hg bioavailabilty of both Hg pools for methylation. In addition, DOM shielded Hg and MeHg from photodemethylation and volatilization, however, it inhibited subsequent MeHg bioaccumulation. Overall, the addition of DOM resulted in increased concentrations of labeled methylmercury comparable to those measured in mesocosms amended with SO4= suggesting that DOM is an important constituent influencing the methylation of Hg. This effect is likely due to increased concentrations of dissolved Hg in the DOM amended mesocosms.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kirchman, David L.
2008-12-09
The flux of dissolved organic matter (DOM) through aquatic bacterial communities is a major process in carbon cycling in the oceans and other aquatic systems. Our work addressed the general hypothesis that the phylogenetic make-up of bacterial communities and the abundances of key types of bacteria are important factors influencing the processing of DOM in aquatic ecosystems. Since most bacteria are not easily cultivated, the phylogenetic diversity of these microbes has to be assessed using culture-independent approaches. Even if the relevant bacteria were cultivated, their activity in the lab would likely differ from that under environmental conditions. This project foundmore » variation in DOM uptake by the major bacterial groups found in coastal waters. In brief, the data suggest substantial differences among groups in the use of high and molecular weight DOM components. It also made key discoveries about the role of light in affecting this uptake especially by cyanobacteria. In the North Atlantic Ocean, for example, over half of the light-stimulated uptake was by the coccoid cyanobacterium, Prochlorococcus, with the remaining uptake due to Synechococcus and other photoheterotrophic bacteria. The project also examined in detail the degradation of one organic matter component, chitin, which is often said to be the second most abundant compound in the biosphere. The findings of this project contribute to our understanding of DOM fluxes and microbial dynamics supported by those fluxes. It is possible that these findings will lead to improvements in models of the carbon cycle that have compartments for dissolved organic carbon (DOC), the largest pool of organic carbon in the oceans.« less
Photochemical Production of Singlet Oxygen from Dissolved Organic Matter in Ice.
Fede, Alexis; Grannas, Amanda M
2015-11-03
Dissolved natural organic matter (DOM) is a ubiquitous component of natural waters and an important photosensitizer. A variety of reactive oxygen species (ROS) are known to be produced from DOM photochemistry, including singlet oxygen, 1O2. Recently, it has been determined that humic-like substances and unknown organic chromophores are significant contributors to sunlight absorption in snowpack; however, DOM photochemistry in snow/ice has received little attention in the literature. We recently showed that DOM plays an important role in indirect photolysis processes in ice, producing ROS and leading to the efficient photodegradation of a probe hydrophobic organic pollutant, aldrin.1 ROS scavenger experiments indicated that 1O2 played a significant role in the indirect photodegradation of aldrin. Here we quantitatively examine 1O2 photochemically produced from DOM in frozen and liquid aqueous solutions. Steady-state 1O2 production is enhanced up to nearly 1000 times in frozen DOM samples compared to liquid samples. 1O2 production is dependent on the concentration of DOM, but the nature of the DOM source (terrestrial vs microbial) does not have a significant effect on 1O2 production in liquid or frozen samples, with different source types producing similar steady-state concentrations of 1O2. The temperature of frozen samples also has a significant effect on steady-state 1O2 production in the range of 228-262 K, with colder samples producing more steady-state 1O2. The large enhancement in 1O2 in frozen samples suggests that it may play a significant role in the photochemical processes that occur in snow and ice, and DOM could be a significant, but to date poorly understood, oxidant source in snow and ice.
NASA Astrophysics Data System (ADS)
Lee, B. S.; Lajtha, K.
2014-12-01
Dissolved organic matter (DOM) leaching through soil affects soil carbon sequestration and the carbon metabolism of receiving water bodies. Improving our understanding of the sources and fate of DOM at varying spatial and temporal patterns is crucial for land management decisions. However, little is known about how DOM sources change with land use types and seasonal flow patterns. In the Willamette River Basin (WRB), which is home to Oregon's major cities including Portland and Salem, forested headwaters transition to agricultural and urban land. The climate of WRB has a distinctive seasonal pattern with dry warm summers and wet winters driven by winter precipitation and snowmelt runoff between November and March. This study examined DOM fluorescence characteristic in stream water from 21 locations collected monthly and 16 locations collected seasonally to identify the sources and fate of DOM in the upper WRB in contrasting land uses. DOC and dissolved organic nitrogen concentrations increased as the flow rate increased during winter precipitation at all sites. This indicates that increased flow rate increased the connectivity between land and nearby water bodies. DOM fluorescent properties varied among land use types. During the first precipitation event after a long dry summer, a microbial DOM signature in agricultural areas increased along with nitrate concentrations. This may be because accumulated nutrients on land during the dry season flowed to nearby streams during the first rain event and promoted microbial growth in the streams. During the month of the highest flow rate in 2014, sampling sites near forest showed evidence of a greater terrestrial DOM signature compared to its signature during the dry season. This indicates fluorescent DOM characteristics in streams vary as the flow connectivity changes even within the same land type.
Xu, Huacheng; Guo, Laodong
2017-06-15
Dissolved organic matter (DOM) is ubiquitous in natural waters. The ecological role and environmental fate of DOM are highly related to the chemical composition and size distribution. To evaluate size-dependent DOM quantity and quality, water samples were collected from river, lake, and coastal marine environments and size fractionated through a series of micro- and ultra-filtrations with different membranes having different pore-sizes/cutoffs, including 0.7, 0.4, and 0.2 μm and 100, 10, 3, and 1 kDa. Abundance of dissolved organic carbon, total carbohydrates, chromophoric and fluorescent components in the filtrates decreased consistently with decreasing filter/membrane cutoffs, but with a rapid decline when the filter cutoff reached 3 kDa, showing an evident size-dependent DOM abundance and composition. About 70% of carbohydrates and 90% of humic- and protein-like components were measured in the <3 kDa fraction in freshwater samples, but these percentages were higher in the seawater sample. Spectroscopic properties of DOM, such as specific ultraviolet absorbance, spectral slope, and biological and humification indices also varied significantly with membrane cutoffs. In addition, different ultrafiltration membranes with the same manufacture-rated cutoff also gave rise to different DOM retention efficiencies and thus different colloidal abundances and size spectra. Thus, the size-dependent DOM properties were related to both sample types and membranes used. Our results here provide not only baseline data for filter pore-size selection when exploring DOM ecological and environmental roles, but also new insights into better understanding the physical definition of DOM and its size continuum in quantity and quality in aquatic environments. Copyright © 2017 Elsevier Ltd. All rights reserved.
[The Influence of Runoff Pollution to DOM Features in an Urban Wastewater Treatment Plant].
He, Li; Ji, Fang-ying; Lai, Ming-sheng; Xu, Xuan; Zhou, Wei-wei; Mao, Bo-lin; Yang, Ming-jia
2015-03-01
Combined with wastewater treatment process, the sewage in sunny and rainy day was collected from a wastewater treatment plant in Chongqing. Three-dimensional fluorescence spectra was used to investigate the characteristic fluorescence of dissolved organic matter (DOM). DOM dissolved organic carbon (DOC), chemical oxygen demand (COD), fluorescence index (ƒ450/500) and fluorescence intensity ratio γ (A, C) of fulvic acid in ultraviolet and visible region were used to analyze the impact of rain runoff pollution on sewage DOM. According to the experimental data, the DOM fluorescence fingerprints of this wastewater treatment plant were quite different from typical municipal sewage, and the main component was tryptophan with low excitation wavelength (Peak S), then the tryptophan with long wavelength excitation (Peak T) followed. A2/O process had an approximative degradation of the protein-like both in sunny day and rainy day, but had a better degradation of fulvic-like, DOC and COD in rainy day than that in sunny day. Morever, the fluorescence peaks got red-shifted after the biological treatment. The differences of DOM fluorescence fingerprint between sunny and rainy day were significant, the fluorescence center of UV fulvic (Peak A) in rainy day getting blue-shifted obviously, shifting from 240 - 248/390 - 440 to 240 - 250/370 - 400 nm. Although the DOM types in sunny and rainy day were the same, the source of fulvic got more complex by runoff and the component ratio of DOM also changed. Compared with the sunny day, the proportion of Peak S in DOM dereased by 10%, and the proportion of Peak A increased by 7% in rainy day.
Liu, Shasha; Zhu, Yuanrong; Liu, Leizhen; He, Zhongqi; Giesy, John P; Bai, Yingchen; Sun, Fuhong; Wu, Fengchang
2018-03-01
Complexation and coagulation of plant-derived dissolved organic matter (DOM) by metal cations are important biogeochemical processes of organic matter in aquatic systems. Thus, coagulation and fractionation of DOM derived from aquatic plants by Ca(II), Al(III), and Fe(III) ions were investigated. Metal ion-induced removal of DOM was determined by analyzing dissolved organic carbon in supernatants after addition of these metal cations individually. After additions of metal ions, both dissolved and coagulated organic fractions were characterized by use of fluorescence excitation emission matrix-parallel factor (EEM-PARAFAC) analysis and Fourier transform infrared (FT-IR) spectroscopy. Addition of Ca(II), Fe(III) or Al(III) resulted in net removal of aquatic plant-derived DOM. Efficiencies of removal of DOM by Fe(III) or Al(III) were greater than that by Ca(II). However, capacities to remove plant-derived DOM by the three metals were less than which had been previously reported for humic materials. Molecular and structural features of plant-derived DOM fractions in associations with metal cations were characterized by changes in fluorescent components and infrared absorption peaks. Both aromatic and carboxylic-like organic matters could be removed by Ca(II), Al(III) or Fe(III) ions. Whereas organic matters containing amides were preferentially removed by Ca(II), and phenolic materials were selectively removed by Fe(III) or Al(III). These observations indicated that plant-derived DOM might have a long-lasting effect on water quality and organisms due to its poor coagulation with metal cations in aquatic ecosystems. Plant-derived DOM is of different character than natural organic matter and it is not advisable to attempt removal through addition of metal salts during treatment of sewage. Copyright © 2017 Elsevier Ltd. All rights reserved.
Molecular fractionation of dissolved organic matter with metal salts.
Riedel, Thomas; Biester, Harald; Dittmar, Thorsten
2012-04-17
Coagulation of dissolved organic matter (DOM) by hydrolyzing metals is an important environmental process with particular relevance, e.g., for the cycling of organic matter in metal-rich aquatic systems or the flocculation of organic matter in wastewater treatment plants. Often, a nonremovable fraction of DOM remains in solution even at low DOM/metal ratios. Because coagulation by metals results from interactions with functional groups, we hypothesize that noncoagulating fractions have a distinct molecular composition. To test the hypothesis, we analyzed peat-derived dissolved organic matter remaining in solution after mixing with salts of Ca, Al, and Fe using 15 T Electrospray Ionization Fourier-Transform Ion Cyclotron Resonance Mass Spectrometry (ESI-FT-ICR-MS). Addition of metals resulted in a net removal of DOM. Also a reduction of molecular diversity was observed, as the number of peaks from the ESI-FT-ICR-MS spectra decreased. At DOM/metal ratios of ∼9 Ca did not show any preference for distinct molecular fractions, while Fe and Al removed preferentially the most oxidized compounds (O/C ratio >0.4) of the peat leachate. Lowering DOM/metal ratios to ∼1 resulted in further removal of less oxidized as well as more aromatic compounds ("black carbon"). Molecular composition in the residual solution after coagulation was more saturated, less polar, and less oxidized compared to the original peat leachate and exhibited a surprising similarity with DOM of marine origin. By identifying more than 9200 molecular formulas we can show that structural properties (saturation and aromaticity) and oxygen content of individual DOM molecules play an important role in coagulation with metals. We conclude that polyvalent cations not only alter the net mobility but also the very molecular composition of DOM in aquatic environments.
Saraceno, John F.; Shanley, James B.; Downing, Bryan D.; Pellerin, Brian A.
2017-01-01
In situ fluorescent dissolved organic matter (fDOM) measurements have gained increasing popularity as a proxy for dissolved organic carbon (DOC) concentrations in streams. One challenge to accurate fDOM measurements in many streams is light attenuation due to suspended particles. Downing et al. (2012) evaluated the need for corrections to compensate for particle interference on fDOM measurements using a single sediment standard in a laboratory study. The application of those results to a large river improved unfiltered field fDOM accuracy. We tested the same correction equation in a headwater tropical stream and found that it overcompensated fDOM when turbidity exceeded ∼300 formazin nephelometric units (FNU). Therefore, we developed a site-specific, field-based fDOM correction equation through paired in situ fDOM measurements of filtered and unfiltered streamwater. The site-specific correction increased fDOM accuracy up to a turbidity as high as 700 FNU, the maximum observed in this study. The difference in performance between the laboratory-based correction equation of Downing et al. (2012) and our site-specific, field-based correction equation likely arises from differences in particle size distribution between the sediment standard used in the lab (silt) and that observed in our study (fine to medium sand), particularly during high flows. Therefore, a particle interference correction equation based on a single sediment type may not be ideal when field sediment size is significantly different. Given that field fDOM corrections for particle interference under turbid conditions are a critical component in generating accurate DOC estimates, we describe a way to develop site-specific corrections.
Photochemical behavior of dissolved and colloidal organic matter in estuarine and oceanic waters.
Zhu, Wen-Zhuo; Yang, Gui-Peng; Zhang, Hong-Hai
2017-12-31
Chromophoric dissolved organic matter (CDOM), carbohydrates, and amino acids were analyzed to investigate the photochemistry of total dissolved (<0.22μm) organic matter (DOM), high-molecular-weight (HMW, 1kDa-0.22μm) DOM and low-molecular-weight (LMW, <1kDa) DOM at stations in the Yangtze River and its coastal area, and in the Western Pacific Ocean. Results revealed that the humic-like and tryptophan-like CDOM fluorescent components in riverine, coastal, and oceanic surface waters were photodegraded during irradiation. However, the photochemical behavior of tyrosine-like component was obscured by the excessive fluorescence intensities of humic- and tryptophan-like fluorescent components. Light sensitivity varied depending on the source material; terrestrially derived DOM was more susceptible to irradiation than autochthonous DOM. In contrast to the expected photodegradation of CDOM, photo-induced synthetic reaction transformed the LMW matters to polysaccharides (PCHO) and degradation reaction decomposed the HMW DOM to Monosaccharides. Colloidal DOM preferentially underwent photodegradation, whereas permeate DOM mainly photosynthesized PCHO. The total hydrolysable amino acid (THAA) pool changed because of the additional input by the photodegradation of DOM or THAA itself. The compositions of THAA changed during the irradiation experiments, indicating that the different photochemical behavior of individual amino acids were related to their different original photoreactivities; the relatively stable amino acids (e.g., Ser and Gly) significantly accumulated during irradiation, whereas photo-active aromatic amino acids (e.g. Tyr and His) were prone to photodegradation. The data presented here demonstrated that irradiation significantly influence the conversion between dissolved and colloid organic matter. These results can promote the understanding of irradiation effect on the carbon and nitrogen cycle in riverine, estuarine and oceanic ecosystems. Copyright © 2017 Elsevier B.V. All rights reserved.
Dissolved organic matter in the unsaturated zone: the view from the cave
NASA Astrophysics Data System (ADS)
Baker, A.; Duan, W.; Rutlidge, H.; McDonough, L.; Oudone, P.; Meredith, K.; Andersen, M. S.; O'Carroll, D. M.; Coleborn, K.; Treble, P. C.
2017-12-01
Soil organic matter content is typically a few percent of the total soil composition. Diffuse recharge can mobilise some of this soil-derived organic matter. While soil pore water dissolved organic matter (DOM) concentrations are up to 100 ppm, the resulting groundwater dissolved organic matter concentration is typically less than 2ppm. Dissolved organic matter transported from the soil can be both biodegraded and sorbed to minerals, and the relative importance of these two processes in the unsaturated zone is poorly understood. Caves in karstified limestone uniquely provide direct access to water percolating from the soil to the groundwater. Cave percolation waters can be analysed for their DOM concentration and character. This provides insights into the extent and type of biological and chemical processing of DOM during transport from the soil to the groundwater. We determine the concentration and characteristics of DOM in cave percolation waters using liquid chromatography (LC-OCD) and optical spectrophotometry (fluorescence and absorbance). We sample DOM from multiple caves in SE Australia (Cathedral Cave, Wellington; South Glory and Harrie Wood Caves, Yarrangobilly), permitting comparison of unsaturated zone DOM properties at different depths (up to 30m below land surface) and different climate zones (montane and temperate). We use caves with long-term hydrological monitoring programs so that DOM in waters of contrasting residence times can be compared. Additionally, we compare these cave percolation water DOM characteristics to those from local and regional groundwater, sampled from nearby wells. Our results will help improve our understanding of how DOM is processed from soil to groundwater, and is also relevant to speleothem scientists interested in using organic matter preserved in speleothems as a paleoclimate or paleoenvironmental proxy.
Source to sink characterization of dissolved organic matter in a tropical karst system
NASA Astrophysics Data System (ADS)
Lechleitner, Franziska; Lang, Susan Q.; McIntyre, Cameron; Baldini, James U. L.; Dittmar, Thorsten; Eglinton, Timothy I.
2016-04-01
Karst systems are widespread surface features present on all continents. They are characterized by complex hydrology with a multitude of possible flow regimes, from diffuse seepage through the host rock to fracture flow in larger conduits. As stalagmite proxy records are important indicators of past terrestrial climate conditions, detailed understanding of the biogeochemistry of cave systems and their relationships to the overlying karst network is crucial. Microbial communities that drive the carbon cycle in caves are nourished by dissolved organic matter (DOM) carried with water into the cave system. Water samples from the Yok Balum cave in Belize were collected for DOM analysis, including soil waters, drip waters and pool waters from inside the cave. Additionally, DOM extracts from a stalagmite from the same cave were analysed to examine DOM signatures and test their applicability for reconstruction of environmental conditions. Ultrahigh-resolution mass spectrometry (via the ESI-FT-ICR-MS technique) yielded detailed molecular fingerprints on DOM from these samples. Several thousand molecular formulae of DOM compounds were identified. In addition, radiocarbon analyses were performed on the DOM samples to gain information on karst turnover times. A principal component analysis of the molecular data revealed a clear gradient between soil waters and cave waters, as soil waters were enriched in highly unsaturated oxygen-rich compounds (typical for vascular plants), which were much less abundant in drip waters. Conversely, peptides, which can originate from bacterial processes, were present only in the drip waters. Our data clearly show connectivity between the cave and overlaying soils, and reworking of DOM by the cave bacterial community. Furthermore, we found molecular evidence for the selective removal of vascular plant-derived DOM in the caves, possibly due to abiotic interactions with minerals.
Klapstein, Sara J; Ziegler, Susan E; Risk, David A; O'Driscoll, Nelson J
2018-06-01
Methylmercury (MeHg) bioaccumulation is a growing concern in ecosystems worldwide. The absorption of solar radiation by dissolved organic matter (DOM) and other photoreactive ligands can convert MeHg into less toxic forms of mercury through photodemethylation. In this study, spectral changes and photoreactivity of DOM were measured to assess the potential to control photoreactions and predict in situ MeHg concentration. Water samples collected from a series of lakes in southwestern Nova Scotia in June, August, and September were exposed to controlled ultraviolet-A (UV-A) radiation for up to 24hr. Dissolved organic matter photoreactivity, measured as the loss of absorbance at 350nm at constant UV-A irradiation, was positively dependent on the initial DOM concentration in lake waters (r 2 =0.94). This relationship was consistent over time with both DOM concentration and photoreactivity increasing from summer into fall across lakes. Lake in situ MeHg concentration was positively correlated with DOM concentration and likely catchment transport in June (r=0.77) but not the other sampling months. Despite a consistent seasonal variation in both DOM and Fe, and their respective correlations with MeHg, no discernable seasonal trend in MeHg was observed. However, a 3-year dataset from the 6 study lakes revealed a positive correlation between DOM concentration and both Fe (r=0.91) and MeHg concentrations (r=0.51) suggesting a more dominant landscape mobility control on MeHg. The DOM-MeHg relationships observed in these lakes highlights the need to examine DOM photoreactivity controls on MeHg transport and availability in natural waters particularly given future climate perturbations. Copyright © 2018. Published by Elsevier B.V.
Hydrological changes of DOM composition and biodegradability of rivers in temperate monsoon climates
NASA Astrophysics Data System (ADS)
Shin, Yera; Lee, Eun-Ju; Jeon, Young-Joon; Hur, Jin; Oh, Neung-Hwan
2016-09-01
The spatial and hydrological dynamics of dissolved organic matter (DOM) composition and biodegradability were investigated for the five largest rivers in the Republic of Korea (South Korea) during the years 2012-2013 using incubation experiments and spectroscopic measurements, which included parallel factor analysis (PARAFAC). The lower reaches of the five rivers were selected as windows showing the integrated effects of basin biogeochemistry of different land use under Asian monsoon climates, providing an insight on consistency of DOM dynamics across multiple sites which could be difficult to obtain from a study on an individual river. The mean dissolved organic carbon (DOC) concentrations of the five rivers were relatively low, ranging from 1.4 to 3.4 mg L-1, due to the high slope and low percentage of wetland cover in the basin. Terrestrial humic- and fulvic-like components were dominant in all the rivers except for one, where protein-like compounds were up to ∼80%. However, terrestrial components became dominant in all five of the rivers after high precipitation during the summer monsoon season, indicating the strong role of hydrology on riverine DOM compositions for the basins under Asian monsoon climates. Considering that 64% of South Korea is forested, our results suggest that the forests could be a large source of riverine DOM, elevating the DOM loads during monsoon rainfall. Although more DOM was degraded when DOM input increased, regardless of its sources, the percent biodegradability was reduced with increased proportions of terrestrially derived aromatic compounds. The shift in DOM quality towards higher percentages of aromatic terrestrial compounds may alter the balance of the carbon cycle of coastal ecosystems by changing microbial metabolic processes if climate extremes such as heavy storms and typhoons become more frequent due to climate change.
Molecular alteration of marine dissolved organic matter under experimental hydrothermal conditions
NASA Astrophysics Data System (ADS)
Hawkes, Jeffrey A.; Hansen, Christian T.; Goldhammer, Tobias; Bach, Wolfgang; Dittmar, Thorsten
2016-02-01
Marine dissolved organic matter (DOM) is a large (660 Pg) pool of reduced carbon that is subject to thermal alteration in hydrothermal systems and sedimentary basins. In natural high-temperature hydrothermal systems, DOM is almost completely removed, but the mechanism and temperature dependence of this removal have not been studied to date. We investigated molecular-level changes to DOM that was solid-phase extracted (SPE-DOM) from the deep ocean of the North Pacific Ocean. This complex molecular mixture was experimentally exposed to temperatures between 100 and 380 °C over the course of two weeks in artificial seawater, and was then characterised on a molecular level via ultrahigh-resolution Fourier-transform ion cyclotron mass spectrometry (FT-ICR-MS). Almost 93% of SPE-DOM was removed by the treatment at 380 °C, and this removal was accompanied by a consistent pattern of SPE-DOM alteration across the temperatures studied. Higher molecular weight and more oxygen rich compounds were preferentially removed, suggesting that decarboxylation and dehydration of carboxylic acid and alcohol groups are the most rapid degradation mechanisms. Nitrogen containing compounds followed the same overall trends as those containing just C, H and O up to 300 °C. Above this temperature, the most highly altered samples contained very little of the original character of marine DOM, instead being mainly composed of very low intensity N- and S- containing molecules with a high H/C ratio (>1.5). Our results suggest that abiotic hydrothermal alteration of SPE-DOM may already occur at temperatures above 68 °C. Our experiments were conducted without a sedimentary or mineral phase, and demonstrate that profound molecular alteration and almost complete removal of marine SPE-DOM requires nothing more than heating in a seawater matrix.
Dissolution of cinnabar (HgS) in the presence of natural organic matter
Waples, J.S.; Nagy, K.L.; Aiken, G.R.; Ryan, J.N.
2005-01-01
Cinnabar (HgS) dissolution rates were measured in the presence of 12 different natural dissolved organic matter (DOM) isolates including humic, fulvic, and hydrophobic acid fractions. Initial dissolution rates varied by 1.3 orders of magnitude, from 2.31 ?? 10-13 to 7.16 ?? 10-12 mol Hg (mg C)-1 m-2 s-1. Rates correlate positively with three DOM characteristics: specific ultraviolet absorbance (R2 = 0.88), aromaticity (R2 = 0.80), and molecular weight (R2 = 0.76). Three experimental observations demonstrate that dissolution was controlled by the interaction of DOM with the cinnabar surface: (1) linear rates of Hg release with time, (2) significantly reduced rates when DOM was physically separated from the surface by dialysis membranes, and (3) rates that approached constant values at a specific ratio of DOM concentration to cinnabar surface area, suggesting a maximum surface coverage by dissolution-reactive DOM. Dissolution rates for the hydrophobic acid fractions correlate negatively with sorbed DOM concentrations, indicating the presence of a DOM component that reduced the surface area of cinnabar that can be dissolved. When two hydrophobic acid isolates that enhanced dissolution to different extents were mixed equally, a 20% reduction in rate occurred compared to the rate with the more dissolution-enhancing isolate alone. Rates in the presence of the more dissolution-enhancing isolate were reduced by as much as 60% when cinnabar was prereacted with the isolate that enhanced dissolution to a lesser extent. The data, taken together, imply that the property of DOM that enhances cinnabar dissolution is distinct from the property that causes it to sorb irreversibly to the cinnabar surface. Copyright ?? 2005 Elsevier Ltd.
NASA Astrophysics Data System (ADS)
Possinger, A. R.; Zachman, M.; Lehmann, J.
2016-12-01
An important, yet largely overlooked case of soil organic carbon (SOC) stabilization through mineral-organic associations is the co-precipitation of dissolved organic matter (DOM) into mineral precipitates as they form. The contribution of co-precipitated DOM to the mineral-stabilized SOC pool is expected to be greatest in soil environments with frequent mineral dissolution and precipitation processes. Compared to surface adsorption, properties of mineral-organic co-precipitates are expected to differ at both the particle scale (e.g., total carbon (C) content and composition) and the molecular scale (e.g., impurities in mineral structure), with potential implications for stability and C turnover; additionally, these properties vary across C sources, amounts, and forms. Consequently, high-resolution visualization and characterization combined with bulk chemical measurements is needed to provide a more complete understanding of co-precipitate formation processes and properties, especially as a function of C co-precipitant characteristics. In this study, we evaluate the effect of model C compound and DOM chemical properties (e.g., iron-binding affinity) on the formation, structure, and chemical properties of ferrihydrite (Fh) (Fe3+3O2 •0.5H2O) co-precipitates. Salicylic acid (SA), sucrose and water-extractable DOM from coniferous or deciduous-dominated organic soils were either adsorbed to pre-formed Fh or co-precipitated with Fh. At a C/Fe ratio 10, the amount of co-precipitated C differed among all organic compounds, and for DOM, was more than 2X greater for co-precipitation than adsorption, suggesting a greater capacity for C retention. To probe the molecular-scale C spatial distribution of Fh-SA particles, we obtained Scanning Transmission Electron Microscopy with Electron Energy Loss Spectroscopy (STEM-EELS) maps at a nanometer-scale spatial pixel resolution. Additionally, we will present chemical characteristics of organic-Fh co-precipitates and adsorption complexes investigated in bulk using C Near-Edge X-ray Absorption Fine Structure (NEXAFS) and Fourier Transform Infrared (FT-IR) spectroscopy. Ultimately, these observations of model co-precipitation systems will be used to better interpret observations of putative co-precipitated OM in natural soils.
NASA Astrophysics Data System (ADS)
Osburn, Christopher L.; Mikan, Molly P.; Etheridge, J. Randall; Burchell, Michael R.; Birgand, François
2015-07-01
Fluorescence was used to examine the quality of dissolved and particulate organic matter (DOM and POM) exchanging between a tidal creek in a created salt marsh and its adjacent estuary in eastern North Carolina, USA. Samples from the creek were collected hourly over four tidal cycles in May, July, August, and October 2011. Absorbance and fluorescence of chromophoric DOM (CDOM) and of base-extracted POM (BEPOM) served as the tracers for organic matter quality while dissolved organic carbon (DOC) and base-extracted particulate organic carbon (BEPOC) were used to compute fluxes. Fluorescence was modeled using parallel factor analysis (PARAFAC) and principle components analysis (PCA) of the PARAFAC results. Of nine PARAFAC components (C) modeled, C3 represented recalcitrant DOM and C4 represented fresher soil-derived source DOM. Component 1 represented detrital POM, and C6 represented planktonic POM. Based on mass balance, recalcitrant DOC export was 86 g C m-2 yr-1 and labile DOC export was 49 g C m-2 yr-1; no planktonic DOC was exported. The marsh also exported 41 g C m-2 yr-1 of detrital terrestrial POC, which likely originated from lands adjacent to the North River estuary. Planktonic POC export from the marsh was 6 g C m-2 yr-1. Assuming the exported organic matter was oxidized to CO2 and scaled up to global salt marsh area, respiration of salt marsh DOC and POC transported to estuaries could amount to a global CO2 flux of 11 Tg C yr-1, roughly 4% of the recently estimated CO2 release for marshes and estuaries globally.
NASA Astrophysics Data System (ADS)
Boyd, Thomas J.; Barham, Bethany P.; Hall, Gregory J.; Osburn, Christopher L.
2010-09-01
Ultrafiltered and low molecular weight dissolved organic matter (UDOM and LMW-DOM, respectively) fluorescence was studied under simulated estuarine mixing using samples collected from Delaware, Chesapeake, and San Francisco Bays (USA) transects. UDOM was concentrated by tangential flow ultrafiltration (TFF) from the marine (>33 PSU), mid-estuarine (˜16 PSU), and freshwater (<1 PSU) members. TFF permeates (<1 kDa) from the three members were used to create artificial salinity transects ranging from ˜0 to ˜36, with 4 PSU increments. UDOM from the end- or mid-members was added in equal amounts to each salinity-mix. Three-dimensional fluorescence excitation-emission matrix (EEMs) spectra were generated for each end-member permeate and UDOM through the full estuarine mixing transect. Fluorescence components such as proteinaceous, terrigenous, and marine derived humic peaks, and certain fluorescent ratios were noticeably altered by simulated estuarine mixing, suggesting that LMW DOM and UDOM undergo physicochemical alteration as they move to or from the freshwater, mid-estuarine, or coastal ocean members. LMW fluorescence components fit a decreasing linear mixing model from mid salinities to the ocean end-member, but were more highly fluorescent than mixing alone would predict in lower salinities (<8). Significant shifts were also seen in UDOM peak emission wavelengths with blue-shifting toward the ocean end-member. Humic-type components in UDOM generally showed lower fluorescent intensities at low salinities, higher at mid-salinities, and lower again toward the ocean end-member. T (believed to be proteinaceous) and N (labile organic matter) peaks behaved similarly to each other, but not to B peak fluorescence, which showed virtually no variation in permeate or UDOM mixes with salinity. PCA and PARAFAC models showed similar results suggesting trends could be modeled for DOM end- and mid-member sources. Changes in fluorescence properties due to estuarine mixing may be important when using CDOM as a proxy for DOM cycling in coastal systems.
Turnover time of fluorescent dissolved organic matter in the dark global ocean.
Catalá, Teresa S; Reche, Isabel; Fuentes-Lema, Antonio; Romera-Castillo, Cristina; Nieto-Cid, Mar; Ortega-Retuerta, Eva; Calvo, Eva; Álvarez, Marta; Marrasé, Cèlia; Stedmon, Colin A; Álvarez-Salgado, X Antón
2015-01-29
Marine dissolved organic matter (DOM) is one of the largest reservoirs of reduced carbon on Earth. In the dark ocean (>200 m), most of this carbon is refractory DOM. This refractory DOM, largely produced during microbial mineralization of organic matter, includes humic-like substances generated in situ and detectable by fluorescence spectroscopy. Here we show two ubiquitous humic-like fluorophores with turnover times of 435±41 and 610±55 years, which persist significantly longer than the ~350 years that the dark global ocean takes to renew. In parallel, decay of a tyrosine-like fluorophore with a turnover time of 379±103 years is also detected. We propose the use of DOM fluorescence to study the cycling of resistant DOM that is preserved at centennial timescales and could represent a mechanism of carbon sequestration (humic-like fraction) and the decaying DOM injected into the dark global ocean, where it decreases at centennial timescales (tyrosine-like fraction).
Maizel, Andrew C; Li, Jing; Remucal, Christina K
2017-09-05
The North Temperate Lakes Long-Term Ecological Research site includes seven lakes in northern Wisconsin that vary in hydrology, trophic status, and landscape position. We examine the molecular composition of dissolved organic matter (DOM) within these lakes using Fourier transform-ion cyclotron resonance mass spectrometry (FT-ICR MS) and quantify DOM photochemical activity using probe compounds. Correlations between the relative intensity of individual molecular formulas and reactive species production demonstrate the influence of DOM composition on photochemistry. For example, highly aromatic, tannin-like formulas correlate positively with triplet formation rates, but negatively with triplet quantum yields, as waters enriched in highly aromatic formulas exhibit much higher rates of light absorption, but only slightly higher rates of triplet production. While commonly utilized optical properties also correlate with DOM composition, the ability of FT-ICR MS to characterize DOM subpopulations provides unique insight into the mechanisms through which DOM source and environmental processing determine composition and photochemical activity.
NASA Astrophysics Data System (ADS)
Hertkorn, N.; Harir, M.; Koch, B. P.; Michalke, B.; Grill, P.; Schmitt-Kopplin, P.
2012-04-01
High-field NMR and FTMS of SPE-derived marine dissolved organic matter (SPE-DOM) from the South Atlantic Ocean provided molecular level information of complex unknowns with unprecedented coverage of carbon and resolution. SPE-DOM represented major oceanic regimes of general significance: 5 m (near surface photic zone), 48 m (fluorescence maximum), 200 m (upper mesopelagic zone) and 5446 m (30 m above ground). 1H NMR spectra showed rather smooth bulk NMR envelopes with a few percent of visibly resolved signatures. 1H NMR spectra of SPE-DOM indicated considerable variance in abundance for all major chemical environments. Two-dimensional NMR spectra of SPE-DOM displayed exceptional resolution. JRES (sensitive but limited resolution), COSY (highly resolved) and HMBC NMR (informative but limited S/N ratio) spectra depicted resolved molecular signatures in excess of a certain minimum abundance. COSY cross peaks were most diverse for sample FMAX and conformed to >1,500 molecules present. Classical methyl groups terminating aliphatic chains represented only ~ 15 % of total methyl in all marine DOM investigated; 2 % of methyl was bound to olefinic carbon. Methyl ethers were abundant in surface marine DOM, and the chemical diversity of carbohydrates was larger than that of freshwater and soil DOM. TOCSY and HSQC cross peaks enabled unprecedented depiction of sp2-hybridized carbon chemical environments in marine SPE-DOM with discrimination of isolated and conjugated olefins as well as ?,?-unsaturated double bonds. Olefinic protons were more abundant than aromatic protons; relative HSQC cross peak integrals indicated more abundant olefinic carbon than aromatic carbon in all marine DOM as well. Furan, pyrrol and thiophene derivatives were marginal. Benzene derivatives and phenols as well as six-membered nitrogen heterocycles were prominent. Various key polycyclic aromatic hydrocarbon substructures suggested the presence of thermogenic organic matter (TMOC) in marine DOM at all water depths. Eventually, olefinic unsaturation in marine DOM will be more directly traceable to ultimate biogenic precursors than aromatic unsaturation. The conformity of key NMR signatures suggests the presence of a numerous set of identical molecules throughout the entire ocean column even if the investigated water masses belonged to different oceanic regimes and currents. High field (12 T) negative electrospray ionization FTICR mass spectra showed abundant CHO, CHNO, CHOS and CHNOS molecular series with slightly increasing numbers of mass peaks and average mass from surface to bottom SPE-DOM. The proportion of CHO and CHNO molecular series increased from surface to depth whereas CHOS and especially CHNOS molecular series markedly declined. The exhaustive characterization of complex unknowns in marine DOM will enable a meaningful assessment of individual marine biogeosignatures which carry the holistic memory of the oceanic water masses.
NASA Astrophysics Data System (ADS)
Pellerin, B. A.; Bergamaschi, B. A.; Downing, B. D.; Saraceno, J.; Fleck, J.; Shanley, J. B.; Aiken, G.; Boss, E.; Fujii, R.
2009-12-01
A critical challenge for understanding the sources, character and cycling of dissolved organic matter (DOM) is making measurements at the time scales in which changes occur in aquatic systems. Traditional approaches for data collection (daily to monthly discrete sampling) are often limited by analytical and field costs, site access and logistical challenges, particularly for long-term sampling at a large number of sites. The ability to make optical measurements of DOM in situ has been known for more than 50 years, but much of the work on in situ DOM absorbance and fluorescence using commercially-available instruments has taken place in the last few years. Here we present several recent examples that highlight the application of in situ measurements for understanding DOM dynamics in riverine systems at intervals of minutes to hours. Examples illustrate the utility of in situ optical sensors for studies of DOM over short-duration events of days to weeks (diurnal cycles, tidal cycles, storm events and snowmelt periods) as well as longer-term continuous monitoring for months to years. We also highlight the application of in situ optical DOM measurements as proxies for constituents that are significantly more difficult and expensive to measure at high frequencies (e.g. methylmercury, trihalomethanes). Relatively simple DOM absorbance and fluorescence measurements made in situ could be incorporated into short and long-term ecological research and monitoring programs, resulting in advanced understanding of organic matter sources, character and cycling in riverine systems.
Microbial Community Response to Terrestrially Derived Dissolved Organic Matter in the Coastal Arctic
Sipler, Rachel E.; Kellogg, Colleen T. E.; Connelly, Tara L.; Roberts, Quinn N.; Yager, Patricia L.; Bronk, Deborah A.
2017-01-01
Warming at nearly twice the global rate, higher than average air temperatures are the new ‘normal’ for Arctic ecosystems. This rise in temperature has triggered hydrological and geochemical changes that increasingly release carbon-rich water into the coastal ocean via increased riverine discharge, coastal erosion, and the thawing of the semi-permanent permafrost ubiquitous in the region. To determine the biogeochemical impacts of terrestrially derived dissolved organic matter (tDOM) on marine ecosystems we compared the nutrient stocks and bacterial communities present under ice-covered and ice-free conditions, assessed the lability of Arctic tDOM to coastal microbial communities from the Chukchi Sea, and identified bacterial taxa that respond to rapid increases in tDOM. Once thought to be predominantly refractory, we found that ∼7% of dissolved organic carbon and ∼38% of dissolved organic nitrogen from tDOM was bioavailable to receiving marine microbial communities on short 4 – 6 day time scales. The addition of tDOM shifted bacterial community structure toward more copiotrophic taxa and away from more oligotrophic taxa. Although no single order was found to respond universally (positively or negatively) to the tDOM addition, this study identified 20 indicator species as possible sentinels for increased tDOM. These data suggest the true ecological impact of tDOM will be widespread across many bacterial taxa and that shifts in coastal microbial community composition should be anticipated. PMID:28649233
Huang, Huiping; Chow, Christopher W K; Jin, Bo
2016-04-01
Understanding the complexity of dissolved organic matter (DOM) in stormwater has drawn a lot of interest, since DOM from stormwater causes not only environmental impacts, but also worsens downstream aquatic quality associated with water supply and treatability. This study introduced and employed high-performance size exclusion chromatography (HPSEC) coupled with an ultraviolet-visible (UV-vis) diode array detector to assess changes in stormwater-associated DOM characteristics. Stormwater DOM was also analysed in relation to storm event characteristics, water quality and spectroscopic analysis. Statistical tools were used to determine the correlations within DOM and water quality measurements. Results showed that dissolved organic carbon (DOC) and UV absorbance at 254 nm (UV254) as conventional DOM parameters were found to be correlated well to the changes in stormwater quality during each of the three storm events studied. Both detector wavelengths (210 and 254 nm) and their ratio (A210/A254) were found to provide additional information on the physiochemical properties of stormwater-associated DOM. This study indicated that A210/A254 is an important parameter which could be used to estimate the DOM proportions of functional groups and conjugated carbon species. This study provided also an understanding of stormwater quality constituents through assessing variability and sensitivity for various parameters, and the additional information of rainfall characteristics on runoff quality data for a better understanding of parameter correlations and influences. Copyright © 2015. Published by Elsevier B.V.
Tai, Chao; Li, Yanbin; Yin, Yongguang; Scinto, Leonard J; Jiang, Guibin; Cai, Yong
2014-07-01
Photodegradation is the major pathway of methylmercury (MeHg) degradation in many surface waters. However, the mechanism of MeHg photodegradation is still not completely understood. Dissolved organic matter (DOM) is expected to play a critical role in MeHg photodegradation. By using several techniques, including N2/O2 purging and the addition of stable isotope (Me(201)Hg), scavengers, competing ligands, and a singlet oxygen ((1)O2) generator, the role played by MeHg-DOM complexation in MeHg photodegradation of Everglades surface water was investigated. DOM appeared to be involved in MeHg photodegradation via the formation MeHg-DOM complexes based on three findings: (1) MeHg was quickly photodegraded in solutions containing DOM extracts; (2) degradation of MeHg did not occur in deionized water; and (3) addition of competing complexation reagents (dithiothreitol-DTT) dramatically prohibited the photodegradation of MeHg in Everglades water. Further experiments indicated that free radicals/reactive oxygen species, including hydroxyl radical (·OH), (1)O2, triplet excited state of DOM ((3)DOM*), and hydrated electron (e(-)aq), played a minor role in MeHg photodegradation in Everglades water, based on the results of scavenger addition, (1)O2 generator addition and N2/O2 purging. A pathway, involving direct photodegradation of MeHg-DOM complexes via intramolecular electron transfer, is proposed as the dominant mechanism for MeHg photodegradation in Everglades water.
Kwon, Matt Hyoung; Callaway, Heather; Zhong, Jim; Yedvobnick, Barry
2013-05-20
Targeted genetic studies can facilitate phenotypic analyses and provide important insights into development and other complex processes. The SWI2/SNF2 DNA-dependent ATPase Domino (Dom) of Drosophila melanogaster, a component of the Tip60 acetyltransferase complex, has been associated with a wide spectrum of cellular processes at multiple developmental stages. These include hematopoiesis, cell proliferation, homeotic gene regulation, histone exchange during DNA repair, and Notch signaling. To explore the wider gene network associated with Dom action, we used RNAi directed against domino (dom) to mediate loss-of-function at the wing margin, a tissue that is readily scored for phenotypic changes. Dom RNAi driven through GAL4-UAS elicited dominant wing nicking that responded phenotypically to the dose of dom and other loci known to function with dom. We screened for phenotypic modifiers of this wing phenotype among 2500 transpositions of the EP P element and found both enhancers and suppressors. Several classes of modifier were obtained, including those encoding transcription factors, RNA regulatory proteins, and factors that regulate cell growth, proliferation and autophagy, a lysosomal degradation pathway that affects cell growth under conditions of starvation and stress. Our analysis is consistent with prior studies, suggesting that Dom acts pleiotropically as a positive effector of Notch signaling and a repressor of proliferation. This genetic system should facilitate screens for additional loci associated with Dom function, and complement biochemical approaches to their regulatory activity.
Yang, Liyang; Zhuang, Wan-E; Chen, Chen-Tung Arthur; Wang, Bing-Jye; Kuo, Fu-Wen
2017-03-15
The submarine hydrothermal systems are extreme environments where active cycling of dissolved organic matter (DOM) may occur. However, little is known about the optical properties and bioavailability of hydrothermal DOM, which could provide valuable insights into its transformation processes and biogeochemical reactivity. The quantity, quality, and bioavailability of DOM were investigated for four very different hydrothermal vents east of Taiwan, using dissolved organic carbon (DOC), absorption spectroscopy, and fluorescence excitation-emission matrices-parallel factor analysis (EEM-PARAFAC). The DOC and absorption coefficient a 280 were both lower in the two hydrothermal vents off the Orchid Island and on the Green Island than in the surrounding seawater and the two vents off the Kueishantao Island, indicating effective removals of DOM in the former two hydrothermal systems owing to possible adsorption/co-precipitation and thermal degradation respectively. The four hydrothermal DOM showed notable differences in the absorption spectral slope S 275-295 , humification index HIX, biological index BIX, EEM spectra, and the relative distributions of seven PARAFAC components. The results demonstrated a high diversity of chemical composition and transformation history of DOM under contrasting hydrothermal conditions. The little change in the hydrothermal DOC after 28-day microbial incubations indicated a low bioavailability of the bulk DOM, and different PARAFAC components showed contrasting bioavailability. The results have profound implications for understanding the biogeochemical cycling and environmental effects of hydrothermal DOM in the marine environments. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Hutchins, Ryan H. S.; Aukes, Pieter; Schiff, Sherry L.; Dittmar, Thorsten; Prairie, Yves T.; del Giorgio, Paul A.
2017-11-01
Soils export large amounts of organic matter to rivers, and there are still major uncertainties concerning the composition and reactivity of this material and its fate within the fluvial network. Here we reconstructed the pattern of movement and processing of dissolved organic matter (DOM) along a soil-stream-river continuum under summer baseflow conditions in a boreal region of Québec (Canada), using a combination of fluorescence spectra, size exclusion chromatography and ultrahigh resolution mass spectrometry. Our results show that there is a clear sequence of selective DOM degradation along the soil-stream-river continuum, which results in pronounced compositional shifts downstream. The soil-stream interface was a hot spot of DOM degradation, where biopolymers and low molecular weight (LMW) compounds were selectively removed. In contrast, processing in the stream channel was dominated by the degradation of humic-like aromatic DOM, likely driven by photolysis, with little further degradation of either biopolymers or LMW compounds. Overall, there was a high degree of coherence between the patterns observed in DOM chemical composition, optical properties, and molecular profiles, and none of these approaches pointed to measurable production of new DOM components, suggesting that the DOM pools removed during transit were likely mineralized to CO2. Our first order estimates suggest that rates of soil-derived DOM mineralization could potentially sustain over half of the measured CO2 emissions from this stream network, with mineralization of biopolymers and humic substances contributing roughly equally to these fluvial emissions.
Dissolved organic matter kinetically controls mercury bioavailability to bacteria.
Chiasson-Gould, Sophie A; Blais, Jules M; Poulain, Alexandre J
2014-03-18
Predicting the bioavailability of inorganic mercury (Hg) to bacteria that produce the potent bioaccumulative neurotoxin monomethylmercury remains one of the greatest challenges in predicting the environmental fate and transport of Hg. Dissolved organic matter (DOM) affects mercury methylation due to its influence on cell physiology (as a potential nutrient) and its influence on Hg(II) speciation in solution (as a complexing agent), therefore controlling Hg bioavailability. We assessed the role of DOM on Hg(II) bioavailability to a gram-negative bacterium bioreporter under oxic pseudo- and nonequilibrium conditions, using defined media and field samples spanning a wide range of DOM levels. Our results showed that Hg(II) was considerably more bioavailable under nonequilibrium conditions than when DOM was absent or when Hg(II) and DOM had reached pseudoequilibrium (24 h) prior to cell exposure. Under these enhanced uptake conditions, Hg(II) bioavailability followed a bell shaped curve as DOM concentrations increased, both for defined media and natural water samples, consistent with bioaccumulation results in a companion paper (this issue) observed for amphipods. Experiments also suggest that DOM may not only provide shuttle molecules facilitating Hg uptake, but also alter cell wall properties to facilitate the first steps toward Hg(II) internalization. We propose the existence of a short-lived yet critical time window (<24 h) during which DOM facilitates the entry of newly deposited Hg(II) into aquatic food webs, suggesting that the bulk of mercury incorporation in aquatic food webs would occur within hours following its deposition from the atmosphere.
THE INFLUENCE OF DOM CHARACTER ON OZONE DECOMPOSITION RATES AND RCT
The effects of DOM character on ozonation of natural waters and solutions of DOM isolates were investigated. Batch kinetic investigations measured O3 decomposition rate constants and Rct values. Rct describes the ratio of ?OH concentration to O3 concentration, and thus provides...
Delayed onset muscle soreness : treatment strategies and performance factors.
Cheung, Karoline; Hume, Patria; Maxwell, Linda
2003-01-01
Delayed onset muscle soreness (DOMS) is a familiar experience for the elite or novice athlete. Symptoms can range from muscle tenderness to severe debilitating pain. The mechanisms, treatment strategies, and impact on athletic performance remain uncertain, despite the high incidence of DOMS. DOMS is most prevalent at the beginning of the sporting season when athletes are returning to training following a period of reduced activity. DOMS is also common when athletes are first introduced to certain types of activities regardless of the time of year. Eccentric activities induce micro-injury at a greater frequency and severity than other types of muscle actions. The intensity and duration of exercise are also important factors in DOMS onset. Up to six hypothesised theories have been proposed for the mechanism of DOMS, namely: lactic acid, muscle spasm, connective tissue damage, muscle damage, inflammation and the enzyme efflux theories. However, an integration of two or more theories is likely to explain muscle soreness. DOMS can affect athletic performance by causing a reduction in joint range of motion, shock attenuation and peak torque. Alterations in muscle sequencing and recruitment patterns may also occur, causing unaccustomed stress to be placed on muscle ligaments and tendons. These compensatory mechanisms may increase the risk of further injury if a premature return to sport is attempted.A number of treatment strategies have been introduced to help alleviate the severity of DOMS and to restore the maximal function of the muscles as rapidly as possible. Nonsteroidal anti-inflammatory drugs have demonstrated dosage-dependent effects that may also be influenced by the time of administration. Similarly, massage has shown varying results that may be attributed to the time of massage application and the type of massage technique used. Cryotherapy, stretching, homeopathy, ultrasound and electrical current modalities have demonstrated no effect on the alleviation of muscle soreness or other DOMS symptoms. Exercise is the most effective means of alleviating pain during DOMS, however the analgesic effect is also temporary. Athletes who must train on a daily basis should be encouraged to reduce the intensity and duration of exercise for 1-2 days following intense DOMS-inducing exercise. Alternatively, exercises targeting less affected body parts should be encouraged in order to allow the most affected muscle groups to recover. Eccentric exercises or novel activities should be introduced progressively over a period of 1 or 2 weeks at the beginning of, or during, the sporting season in order to reduce the level of physical impairment and/or training disruption. There are still many unanswered questions relating to DOMS, and many potential areas for future research.
NASA Astrophysics Data System (ADS)
Hertkorn, N.; Harir, M.; Koch, B. P.; Michalke, B.; Grill, P.; Schmitt-Kopplin, P.
2012-01-01
Non target high resolution organic structural spectroscopy of marine dissolved organic matter (DOM) isolated on 27 November 2008 by means of solid phase extraction (SPE) from four different depths in the South Atlantic Ocean off the Angola coast (3.1° E; -17.7° S; Angola basin) provided molecular level information of complex unknowns with unprecedented coverage and resolution. The sampling was intended to represent major characteristic oceanic regimes of general significance: 5 m (FISH; near surface photic zone), 48 m (FMAX; fluorescence maximum), 200 m (upper mesopelagic zone) and 5446 m (30 m above ground). 800 MHz proton (1H) nuclear magnetic resonance (NMR) 1H NMR, spectra were least affected by fast and differential transverse NMR relaxation and produced at first similar looking, rather smooth bulk NMR envelopes reflecting intrinsic averaging from massive signal overlap. Visibly resolved NMR signatures were most abundant in surface DOM but contributed at most a few percent to the total 1H NMR integral and were mainly limited to unsaturated and singly oxygenated carbon chemical environments. The relative abundance and variance of resolved signatures between samples was maximal in the aromatic region; in particular, the aromatic resolved NMR signature of the deep ocean sample at 5446 m was considerably different from that of all other samples. When scaled to equal total NMR integral, 1H NMR spectra of the four marine DOM samples revealed considerable variance in abundance for all major chemical environments across the entire range of chemical shift. Abundance of singly oxygenated CH units and acetate derivatives declined from surface to depth whereas aliphatics and carboxyl-rich alicyclic molecules (CRAM) derived molecules increased in abundance. Surface DOM contained a remarkably lesser abundance of methyl esters than all other marine DOM, likely a consequence of photodegradation from direct exposure to sunlight. All DOM showed similar overall 13C NMR resonance envelopes typical of an intricate mixture of natural organic matter with noticeable peaks of anomerics and C-aromatics carbon whereas oxygenated aromatics and ketones were of too low abundance to result in noticeable humps at the S/N ratio provided. Integration according to major substructure regimes revealed continual increase of carboxylic acids and ketones from surface to deep marine DOM, reflecting a progressive oxygenation of marine DOM, with concomitant decline of carbohydrate-related substructures. Isolation of marine DOM by means of SPE likely discriminated against carbohydrates but produced materials with beneficial NMR relaxation properties: a substantial fraction of dissolved organic molecules present allowed the acquisition of two-dimensional NMR spectra with exceptional resolution. JRES, COSY and HMBC NMR spectra were capable to depict resolved molecular signatures of compounds exceeding a certain minimum abundance. Here, JRES spectra suffered from limited resolution whereas HMBC spectra were constrained because of limited S/N ratio. Hence, COSY NMR spectra appeared best suited to depict organic complexity in marine DOM. The intensity and number of COSY cross peaks was found maximal for sample FMAX and conformed to about 1500 molecules recognizable in variable abundance. Surface DOM (FISH) produced a slightly (~25%) lesser number of cross peaks with remarkable positional accordance to FMAX (~80% conforming COSY cross peaks were found in FISH and FMAX). With increasing water depth, progressive attenuation of COSY cross peaks was caused by fast transverse NMR relaxation of yet unknown origin. However, most of the faint COSY cross peak positions of deep water DOM conformed to those observed in the surface DOM, suggesting the presence of a numerous set of identical molecules throughout the entire ocean column even if the investigated water masses belonged to different oceanic regimes and currents. Aliphatic chemical environments of methylene (CH2) and methyl (CH3) in marine DOM were nicely discriminated in DEPT HSQC NMR spectra. Classical methyl groups terminating aliphatic chains represented only ~15% of total methyl in all marine DOM investigated. Chemical shift anisotropy from carbonyl derivatives (i.e. most likely carboxylic acids) displaced aliphatic methyl 1H NMR resonances up to δH ~1.6 ppm, indicative of alicyclic geometry which furnishes more numerous short range connectivities for any given atom pairs. A noticeable fraction of methyl (~2%) was bound to olefinic carbon. The comparatively large abundance of methyl ethers in surface marine DOM contrasted with DOM of freshwater and soil origin. The chemical diversity of carbohydrates as indicated by H2CO-groups (δC ~ 62 ± 2 ppm) and anomerics (δC ~ 102 ± 7 ppm) exceeded that of freshwater and soil DOM considerably. HSQC NMR spectra were best suited to identify chemical environments of methin carbon (CH) and enabled discrimination of olefinic and aromatic cross peaks (δC > 110 ppm) and those of doubly oxygenated carbon (δC < 110 ppm). The abundance of olefinic protons exceeded that of aromatic protons; comparison of relative HSQC cross peak integrals indicated larger abundance of olefinic carbon than aromatic carbon in all marine DOM as well. A considerable fraction of olefins seemed isolated and likely sterically constrained as judged from small nJHH couplings associated with those olefins. High S/N ratio and fair resolution of TOCSY and HSQC cross peaks enabled unprecedented depiction of sp2-hybridized carbon chemical environments in marine DOM with discrimination of isolated and conjugated olefins as well as α, β-unsaturated double bonds. However, contributions from five-membered heterocycles (furan, pyrrol and thiophene derivatives) even if very unlikely from given elemental C/N and C/S ratios and upfield proton NMR chemical shift (δH < 6.5 ppm) could not yet been ruled out entirely. In addition to classical aromatic DOM, like benzene derivatives and phenols, six-membered nitrogen heterocycles were found prominent contributors to the downfield region of proton chemical shift (δH > 8 ppm). Specifically, a rather confined HSQC cross peak at δH/δC = 8.2/164 ppm indicated a limited set of nitrogen heterocycles with several nitrogen atoms in analogy to RNA derivatives present in all four marine DOM. Appreciable amounts of extended HSQC and TOCSY cross peaks derived from various key polycyclic aromatic hydrocarbon substructures suggested the presence of previously proposed but NMR invisible thermogenic organic matter (TMOC) in marine DOM at all water depths. Eventually, olefinic unsaturation in marine DOM will be more directly traceable to ultimate biogenic precursors than aromatic unsaturation of which a substantial fraction originates from an aged material which from the beginning was subjected to complex and less specific biogeochemical reactions like thermal decomposition. The variance in molecular mass as indicated from Fourier transform ion cyclotron resonance (FTICR) mass spectra was limited and could not satisfactorily explain the observed disparity in NMR transverse relaxation of the four marine DOM samples. Likewise, the presence of metal ions in isolated marine DOM remained near constant or declined from surface to depth for important paramagnetic ions like Mn, Cr, Fe, Co, Ni and Cu. Iron in particular, a strong complexing paramagnetic ion, was found most abundant by a considerable margin in surface (FISH) marine DOM for which well resolved COSY cross peaks were observed. Hence, facile relationships between metal content of isolated DOM (which does not reflect authentic marine DOM metal content) and transverse NMR relaxation were not observed. High field (12 T) negative electrospray ionization FTICR mass spectra showed at first view rather conforming mass spectra for all four DOM samples with abundant CHO, CHNO, CHOS and CHNOS molecular series with slightly increasing numbers of mass peaks from surface to bottom DOM and similar fractions (~50%) of assigned molecular compositions throughout all DOM samples. The average mass increased from surface to bottom DOM by about 10 Dalton. The limited variance of FTICR mass spectra probably resulted from a rather inherent conformity of marine DOM at the mandatory level of intrinsic averaging provided by FTICR mass spectrometry, when many isomers unavoidably project on single nominal mass peaks. In addition, averaging from ion suppression added to the accordance observed. The proportion of CHO and CHNO molecular series increased from surface to depth whereas CHOS and especially CHNOS molecular series markedly declined. The abundance of certain aromatic CHOS compounds declined with water depth. For future studies, COSY NMR spectra appear best suited to assess organic molecular complexity of marine DOM and to define individual DOM molecules of yet unknown structure and function. Non-target organic structural spectroscopy at the level demonstrated here covered nearly all carbon present in marine DOM. The exhaustive characterization of complex unknowns in marine DOM will reveal a meaningful assessment of individual marine biogeosignatures which carry the holistic memory of the oceanic water masses (Koch et al., 2011).
Dissolved oxygen and its response to eutrophication in a tropical black water river.
Rixen, Tim; Baum, Antje; Sepryani, Harni; Pohlmann, Thomas; Jose, Christine; Samiaji, Joko
2010-08-01
The Siak is a typical, nutrient-poor, well-mixed, black water river in central Sumatra, Indonesia, which owes its brown color to dissolved organic matter (DOM) leached from surrounding, heavily disturbed peat soils. We measured dissolved organic carbon (DOC) and oxygen concentrations along the river, carried out a 36-h experiment in the province capital Pekanbaru and quantified organic matter and nutrient inputs from urban wastewater channels into the Siak. In order to consider the complex dynamic of oxygen in rivers, a box-diffusion model was used to interpret the measured data. The results suggest that the decomposition of soil derived DOM was the main factor influencing the oxygen concentration in the Siak which varied between approximately 100 and 140 micromol l(-1). Additional DOM input caused by wastewater discharges appeared to reduce the oxygen concentrations by approximately 20 micromol l(-1) during the peak-time in household water use in the early morning and in the early evening. Associated enhanced nutrient inputs appear to reduce the impact of the anthropogenic DOM by favoring the photosynthetic production of oxygen in the morning. A reduction of 20 micromol l(-1), which although perhaps not of great significance in Pekanbaru, has strong implications for wastewater management in the fast developing areas downstream Pekanbaru where oxygen concentrations rarely exceed 20 micromol l(-1). Copyright 2010 Elsevier Ltd. All rights reserved.
Zhou, Jinjun; Huang, Haiping; Xuan, Jie; Zhang, Jianrong; Zhu, Jun-Jie
2010-10-15
A sensitive electrochemical aptasensor was successfully fabricated for the detection of adenosine triphosphate (ATP) by combining three-dimensionally ordered macroporous (3DOM) gold film and quantum dots (QDs). The 3DOM gold film was electrochemically fabricated with an inverted opal template, making the active surface area of the electrode up to 9.52 times larger than that of a classical bare flat one. 5′-thiolated ATP-binding aptamer (ABA) was first assembled onto the 3DOM gold film via sulfur–gold affinity. Then, 5′-biotinated complementary strand (BCS) was immobilized via hybridization reaction to form the DNA/DNA duplex. Since the tertiary structure of the aptamer was stabilized in the presence of target ATP, the duplex can be denatured to liberate BCS. The reaction was monitored by electrochemical stripping analysis of dissolved QDs which were bound to the residual BCS through biotin-streptavidin system. The decrease of peak current was proportional to the amount of ATP. The unique interconnected structure in 3DOM gold film along with the "built-in" preconcentration remarkably improved the sensitivity. ATP detection with high selectivity, wide linear dynamic range of 4 orders of magnitude and high sensitivity down to 0.01 nm were achieved. The results demonstrated that the novel strategy was feasible for sensitive ATP assay and provided a promising model for the detection of small molecules.
Jia, Hanzhong; Li, Li; Fan, Xiaoyun; Liu, Mingdeng; Deng, Wenye; Wang, Chuanyi
2013-07-15
In the present study, phenanthrene is employed as a model to explore the roles played by three soil organic matter (SOM) fractions, i.e., dissolved organic matter (DOM), humic acid (HA), and fulvic acid (FA), in its photodegradation with assistance of Fe(III)-smectite under visible-light. Slight decrease in phenanthrene photodegradation rate was observed in the presence of DOM, which is explained in terms of oxidative-radical competition between DOM and target phenanthrene molecules due to the high electron-donor capacity of phenolic moieties in DOM. On the other hand, a critic content is observed with FA (0.70mg/g) and HA (0.65mg/g). Before reaching the critic content, the removal of phenanthrene is accelerated; while after that, the photodegradation rate is suppressed. The acceleration of phenanthrene degradation can be attributed to the photosensitization of FA and HA. Due to the strong interaction between phenanthrene and the phenyl rings, however, the retention of phenanthrene on SOM-Fe(III)-smectite in the presence of high content of HA or FA is enhanced, thus slowing down its photodegradation. Those observations provide valuable insights into the transformation and fate of PAHs in the natural soil environment and open a window for using clay-humic substances complexes for remediation of contaminated soil. Copyright © 2013 Elsevier B.V. All rights reserved.
Du, Ziyan; He, Yingsheng; Fan, Jianing; Fu, Heyun; Zheng, Shourong; Xu, Zhaoyi; Qu, Xiaolei; Kong, Ao; Zhu, Dongqiang
2018-03-01
Dissolved black carbon (DBC) is ubiquitous in aquatic systems, being an important subgroup of the dissolved organic matter (DOM) pool. Nevertheless, its aquatic photoactivity remains largely unknown. In this study, a range of spectroscopic indices of DBC and humic substance (HS) samples were determined using UV-Vis spectroscopy, fluorescence spectroscopy, and proton nuclear magnetic resonance. DBC can be readily differentiated from HS using spectroscopic indices. It has lower average molecular weight, but higher aromaticity and lignin content. The apparent singlet oxygen quantum yield (Φ singlet oxygen ) of DBC under simulated sunlight varies from 3.46% to 6.13%, significantly higher than HS, 1.26%-3.57%, suggesting that DBC is the more photoactive component in the DOM pool. Despite drastically different formation processes and structural properties, the Φ singlet oxygen of DBC and HS can be well predicted by the same simple linear regression models using optical indices including spectral slope coefficient (S 275-295 ) and absorbance ratio (E 2 /E 3 ) which are proxies for the abundance of singlet oxygen sensitizers and for the significance of intramolecular charge transfer interactions. The regression models can be potentially used to assess the photoactivity of DOM at large scales with in situ water spectrophotometry or satellite remote sensing. Copyright © 2017 Elsevier Ltd. All rights reserved.
X3DOM as Carrier of the Virtual Heritage
NASA Astrophysics Data System (ADS)
Jung, Y.; Behr, J.; Graf, H.
2011-09-01
Virtual Museums (VM) are a new model of communication that aims at creating a personalized, immersive, and interactive way to enhance our understanding of the world around us. The term "VM" is a short-cut that comprehends various types of digital creations. One of the carriers for the communication of the virtual heritage at future internet level as de-facto standard is browser front-ends presenting the content and assets of museums. A major driving technology for the documentation and presentation of heritage driven media is real-time 3D content, thus imposing new strategies for a web inclusion. 3D content must become a first class web media that can be created, modified, and shared in the same way as text, images, audio and video are handled on the web right now. A new integration model based on a DOM integration into the web browsers' architecture opens up new possibilities for declarative 3 D content on the web and paves the way for new application scenarios for the virtual heritage at future internet level. With special regards to the X3DOM project as enabling technology for declarative 3D in HTML, this paper describes application scenarios and analyses its technological requirements for an efficient presentation and manipulation of virtual heritage assets on the web.
Real, Francisco J; Benitez, F Javier; Acero, Juan L; Casas, Francisco
2017-07-03
The removal of three emerging contaminants (ECs) (amitriptyline hydrochloride (AH), methyl salicylate (MS) and 2-phenoxyethanol (PE)) dissolved in several water matrices by means of their adsorption onto powdered activated carbon (PAC) and granular activated carbon (GAC) has been investigated. When dissolved in ultrapure water, adsorption of the ECs followed the trend of AH > MS > PE, with a positive effect of the adsorbent dose. According to the analysis of the adsorption isotherms and adsorption kinetics, PAC showed strongly higher adsorption efficiency in both capacity and velocity of the adsorption, in agreement with its higher mesoporosity. Equilibrium isotherm data were fitted by Langmuir and Freundlich models. Pseudo-second order kinetics modeled very successfully the adsorption process. Finally, the effect of the presence of dissolved organic matter (DOM) in the water matrices (ultrapure water, surface water and two effluents from wastewater treatment plants) on the adsorption of the selected ECs onto PAC was established, as well as its performance on the removal of water quality parameters. Results show a negative effect of the DOM content on the adsorption efficiency. Over 50% of organic matter was removed with high PAC doses, revealing that adsorption onto PAC is an effective technology to remove both micro-pollutants and DOM from water matrices.
Characterization and treatment of dissolved organic matter from oilfield produced waters.
Wang, Xiaojing; Goual, Lamia; Colberg, Patricia J S
2012-05-30
Dissolved organic matter (DOM) has been studied intensively in streams, lakes and oceans due to its role in the global carbon cycle and because it is a precursor of carcinogenic disinfection by-products in drinking water; however, relatively little research has been conducted on DOM in oilfield produced waters. In this study, recovery of DOM from two oilfield produced waters was relatively low (~34%), possibly due to the presence of high concentrations of volatile organic compounds (VOCs). A van Krevelen diagram of the extracted DOM suggested the presence of high concentrations of lipids, lignin, and proteins, but low concentrations of condensed hydrocarbons. Most of the compounds in the oilfield DOM contained sulfur in their structures. Fourier transform infrared (FTIR) spectra indicated the presence of methyl groups, amides, carboxylic acids, and aromatic compounds, which is in agreement with results of Fourier transform ion cyclotron resonance (FT-ICR) analysis. Qualitatively, DOM in oilfield produced waters is similar to that reported in oceans and freshwater, except that it contains much more sulfur and is less aromatic. Treatment studies conducted in a fluidized bed reactor suggested that volatilization of organics may be a more important mechanism of DOM removal than microbial degradation. Copyright © 2012 Elsevier B.V. All rights reserved.
Phungsai, Phanwatt; Kurisu, Futoshi; Kasuga, Ikuro; Furumai, Hiroaki
2018-03-20
Molecular changes in dissolved organic matter (DOM) from treatment processes at two drinking water treatment plants in Japan were investigated using unknown screening analysis by Orbitrap mass spectrometry. DOM formulas with carbon, hydrogen and oxygen (CHO-DOM) were the most abundant class in water samples, and over half of them were commonly found at both plants. Among the treatment processes, ozonation induced the most drastic changes to DOM. Mass peak intensities of less saturated CHO-DOM (positive (oxygen subtracted double bond equivalent per carbon (DBE-O)/C)) decreased by ozonation, while more saturated oxidation byproducts (negative (DBE-O)/C) increased and new oxidation byproducts (OBPs) were detected. By Kendrick mass analysis, ozone reactions preferred less saturated CHO-DOM in the same alkylation families and produced more saturated alkylation families of OBPs. Following ozonation, biological activated carbon filtration effectively removed <300 Da CHO-DOM, including OBPs. Following chlorination, over 50 chlorinated formulas of disinfection byproducts (DBPs) were found in chlorinated water samples where at least half were unknown. Putative precursors of these DBPs were determined based on electrophilic substitutions and addition reactions. Ozonation demonstrated better decomposition of addition reaction-type precursors than electrophilic substitution-type precursors; over half of both precursor types decreased during biological activated carbon filtration.
Diversity of bacterial communities and dissolved organic matter in a temperate estuary.
Osterholz, Helena; Kirchman, David L; Niggemann, Jutta; Dittmar, Thorsten
2018-06-14
Relationships between bacterial community and dissolved organic matter (DOM) include microbial uptake, transformation and secretion, all of which influence DOM composition. In this study, we explore diversity and similarity metrics of dissolved organic molecules (Fourier-transform ion cyclotron resonance mass spectrometry) and bacterial communities (tag-sequencing of 16S rRNA genes) along the salinity gradient of the Delaware Estuary (USA). We found that even though mixing, discharge and seasonal changes explained most of the variation in DOM and bacterial communities, there was still a relationship, albeit weak, between the composition of DOM and bacterial communities in the estuary. Overall, many DOM molecular formulas (MFs) and bacterial operational taxonomic units (OTUs) reoccurred over years and seasons while the frequency of MF-OTU correlations varied. Diversity based on MFs and OTUs was significantly correlated, decreasing towards the open ocean. However, while the diversity of bacterial OTUs dropped markedly with low salinity, MF diversity decreased strongly only at high salinities. We hypothesize that the different turnover times of DOM and bacteria lead to different abundance distributions of OTUs and MFs. A significant portion of the detected DOM is of a more refractory nature with lifetimes largely exceeding the mixing time of the estuary, while bacterial community turnover times in the Delaware Estuary are estimated at several days.
Chen, Wei; Ouyang, Zhen-Yu; Qian, Chen; Yu, Han-Qing
2018-02-01
The occurrence of microplastics (MPs) as emerging contaminants in the environment may cause changes in water or sediment characteristics, and further affect their biogeochemical cycles. Thus, insights into the interactions between dissolved organic matter (DOM) and MPs are essential for the assessment of environmental impacts of MPs in ecosystems. Integrating spectroscopic methods with chemometric analyses, this work explored the chemical and microstructural changes of DOM-MP complex to reveal the mechanism of DOM-MP interaction at a molecular level. MPs were found to interact with the aromatic structure of DOM via π-π conjugation, then be entrapped in the DOM polymers by the carboxyl groups and C=O bonds, constituting a highly conjugated co-polymer with increased electron density. This induced the fluorescence intensity increase in DOM. The interaction affinity of DOM-MP was highly dependent on the MP size and solution pH. This work offers a new insight into the impact of MP discharge on environment and may provide an analytical framework for evaluating MP hetero-aggregation and the roles of MPs in the transportation of other contaminants. Furthermore, the integrated methods used in this work exhibit potential applications in exploring the fragmentation processes of MPs and formation of secondary MPs under natural conditions. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Wong, J. C.; Williams, D.
2009-05-01
Detrital energy in temperate headwater streams is mainly derived from the annual input of leaf litter from the surrounding landscape. Presumably, its decomposition and other sources of autochthonous organic matter will change dissolved organic carbon (DOC) concentrations and dissolved organic matter (DOM) quality. To investigate this, DOM was leached from two allochthonous sources: white birch (Betula papyrifera) and white cedar (Thuja occidentalis); and one autochthonous source, streambed biofilm, for a period of 7 days on 3 separate occasions in fall 2007. As a second treatment, microorganisms from the water column were filtered out. Deciduous leaf litter was responsible for high, short-term increases to DOC concentrations whereas the amounts leached from conifer needles were relatively constant in each month. Using UV spectroscopy, changes to DOM characteristics like aromaticity, spectral slopes, and molecular weight were mainly determined by source and indicated a preferential use of the labile DOM pool by the microorganisms. Excitation-emission matrices (EEMs) collected using fluorescence spectroscopy suggested that cedar litter was an important source of protein-like fluorescence and that the nature of the fluorescing DOM components changed in the presence of microorganisms. This study demonstrates that simultaneous examination of DOC concentrations and DOM quality will allow a better understanding of the carbon dynamics that connect terrestrial with aquatic ecosystems.
Kamjunke, Norbert; Nimptsch, Jorge; Harir, Mourad; Herzsprung, Peter; Schmitt-Kopplin, Philippe; Neu, Thomas R.; Graeber, Daniel; Osorio, Sebastian; Valenzuela, Jose; Carlos Reyes, Juan; Woelfl, Stefan; Hertkorn, Norbert
2017-01-01
Aquacultures are of great economic importance worldwide but pollute pristine headwater streams, lakes, and estuaries. However, there are no in-depth studies of the consequences of aquacultures on dissolved organic matter (DOM) composition and structure. We performed a detailed molecular level characterization of aquaculture DOM quality and its bacterial degradation using four salmon aquacultures in Chile. Fluorescence measurements, ultrahigh-resolution mass spectrometry, and nuclear magnetic resonance spectroscopy of the DOM revealed specific and extensive molecular alterations caused by aquacultures. Aquacultures released large quantities of readily bioavailable metabolites (primarily carbohydrates and peptides/proteins, and lipids), causing the organic matter downstream of all the investigated aquacultures to deviate strongly from the highly processed, polydisperse and molecularly heterogeneous DOM found in pristine rivers. However, the upstream individual catchment DOM signatures remained distinguishable at the downstream sites. The benthic algal biovolume decreased and the bacterial biovolume and production increased downstream of the aquacultures, shifting stream ecosystems to a more heterotrophic state and thus impairing the ecosystem health. The bacterial DOM degradation rates explain the attenuation of aquaculture DOM within the subsequent stream reaches. This knowledge may aid the development of improved waste processing facilities and may help to define emission thresholds to protect sensitive stream ecosystems. PMID:28256613
An Extraction Method of an Informative DOM Node from a Web Page by Using Layout Information
NASA Astrophysics Data System (ADS)
Tsuruta, Masanobu; Masuyama, Shigeru
We propose an informative DOM node extraction method from a Web page for preprocessing of Web content mining. Our proposed method LM uses layout data of DOM nodes generated by a generic Web browser, and the learning set consists of hundreds of Web pages and the annotations of informative DOM nodes of those Web pages. Our method does not require large scale crawling of the whole Web site to which the target Web page belongs. We design LM so that it uses the information of the learning set more efficiently in comparison to the existing method that uses the same learning set. By experiments, we evaluate the methods obtained by combining one that consists of the method for extracting the informative DOM node both the proposed method and the existing methods, and the existing noise elimination methods: Heur removes advertisements and link-lists by some heuristics and CE removes the DOM nodes existing in the Web pages in the same Web site to which the target Web page belongs. Experimental results show that 1) LM outperforms other methods for extracting the informative DOM node, 2) the combination method (LM, {CE(10), Heur}) based on LM (precision: 0.755, recall: 0.826, F-measure: 0.746) outperforms other combination methods.
Mladenov, Natalie; Zheng, Yan; Simone, Bailey; Bilinski, Theresa M; McKnight, Diane M; Nemergut, Diana; Radloff, Kathleen A; Rahman, M Moshiur; Ahmed, Kazi Matin
2015-09-15
In some high arsenic (As) groundwater systems, correlations are observed between dissolved organic matter (DOM) and As concentrations, but in other systems, such relationships are absent. The role of labile DOM as the main driver of microbial reductive dissolution is not sufficient to explain the variation in DOM-As relationships. Other processes that may also influence As mobility include complexation of As by dissolved humic substances, and competitive sorption and electron shuttling reactions mediated by humics. To evaluate such humic DOM influences, we characterized the optical properties of filtered surface water (n = 10) and groundwater (n = 24) samples spanning an age gradient in Araihazar, Bangladesh. Further, we analyzed large volume fulvic acid (FA) isolates (n = 6) for optical properties, C and N content, and (13)C NMR spectroscopic distribution. Old groundwater (>30 years old) contained primarily sediment-derived DOM and had significantly higher (p < 0.001) dissolved As concentration than groundwater that was younger than 5 years old. Younger groundwater had DOM spectroscopic signatures similar to surface water DOM and characteristic of a sewage pollution influence. Associations between dissolved As, iron (Fe), and FA concentration and fluorescence properties of isolated FA in this field study suggest that aromatic, terrestrially derived FAs promote As-Fe-FA complexation reactions that may enhance As mobility.
2016-01-01
Iron that precipitates under aerobic conditions in natural aquatic systems scavenges dissolved organic matter (DOM) from solution. Subterranean estuaries (STEs) are of major importance for land–ocean biogeochemical fluxes. Their specific redox boundaries, coined the “iron curtain” due to the abundance of precipitated iron(III) (oxy)hydroxides, are hot spots for the removal and redissolution of iron, associated nutrients, and DOM. We used ultra-high-resolution electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry to molecularly characterize the iron-coagulating fractions of 32 groundwater and seawater DOM samples along a salinity gradient from a shallow STE on Spiekeroog Island, North Sea, Germany, and linked our findings to trace metal and nutrient concentrations. We found systematic iron coagulation of large (>450 Da), oxygen-rich, and highly aromatic DOM molecules of terrestrial origin. The extent of coagulation increased with growing terrestrial influence along the salinity gradient. Our study is the first to show that the iron curtain may be capable of retaining terrigenous DOM fractions in marine sediments. We hypothesize that the iron curtain serves as an inorganic modulator for the supply of DOM from groundwaters to the sea, and that the STE has the potential to act as a temporal storage or even sink for terrigenous aromatic DOM compounds. PMID:27976873
NASA Astrophysics Data System (ADS)
Kamjunke, Norbert; Nimptsch, Jorge; Harir, Mourad; Herzsprung, Peter; Schmitt-Kopplin, Philippe; Neu, Thomas R.; Graeber, Daniel; Osorio, Sebastian; Valenzuela, Jose; Carlos Reyes, Juan; Woelfl, Stefan; Hertkorn, Norbert
2017-03-01
Aquacultures are of great economic importance worldwide but pollute pristine headwater streams, lakes, and estuaries. However, there are no in-depth studies of the consequences of aquacultures on dissolved organic matter (DOM) composition and structure. We performed a detailed molecular level characterization of aquaculture DOM quality and its bacterial degradation using four salmon aquacultures in Chile. Fluorescence measurements, ultrahigh-resolution mass spectrometry, and nuclear magnetic resonance spectroscopy of the DOM revealed specific and extensive molecular alterations caused by aquacultures. Aquacultures released large quantities of readily bioavailable metabolites (primarily carbohydrates and peptides/proteins, and lipids), causing the organic matter downstream of all the investigated aquacultures to deviate strongly from the highly processed, polydisperse and molecularly heterogeneous DOM found in pristine rivers. However, the upstream individual catchment DOM signatures remained distinguishable at the downstream sites. The benthic algal biovolume decreased and the bacterial biovolume and production increased downstream of the aquacultures, shifting stream ecosystems to a more heterotrophic state and thus impairing the ecosystem health. The bacterial DOM degradation rates explain the attenuation of aquaculture DOM within the subsequent stream reaches. This knowledge may aid the development of improved waste processing facilities and may help to define emission thresholds to protect sensitive stream ecosystems.
McAdams, Brandon C; Aiken, George R; McKnight, Diane M; Arnold, William A; Chin, Yu-Ping
2018-01-16
We reassessed the molecular weight of dissolved organic matter (DOM) determined by high pressure size exclusion chromatography (HPSEC) using measurements made with different columns and various generations of polystyrenesulfonate (PSS) molecular weight standards. Molecular weight measurements made with a newer generation HPSEC column and PSS standards from more recent lots are roughly 200 to 400 Da lower than initial measurements made in the early 1990s. These updated numbers match DOM molecular weights measured by colligative methods and fall within a range of values calculated from hydroxyl radical kinetics. These changes suggest improved accuracy of HPSEC molecular weight measurements that we attribute to improved accuracy of PSS standards and changes in the column packing. We also isolated DOM from wetlands in the Prairie Pothole Region (PPR) using XAD-8, a cation exchange resin, and PPL, a styrene-divinylbenzene media, and observed little difference in molecular weight and specific UV absorbance at 280 nm (SUVA 280 ) between the two solid phase extraction resins, suggesting they capture similar DOM moieties. PPR DOM also showed lower SUVA 280 at similar weights compared to DOM isolates from a global range of environments, which we attribute to oxidized sulfur in PPR DOM that would increase molecular weight without affecting SUVA 280 .
The nature of colored dissolved organic matter in the southern Canada Basin and East Siberian Sea
NASA Astrophysics Data System (ADS)
Guéguen, C.; McLaughlin, F. A.; Carmack, E. C.; Itoh, M.; Narita, H.; Nishino, S.
2012-12-01
Distributions of colored dissolved organic matter (CDOM) in the upper 400 m of the southern Canada Basin and East Siberian Sea were determined using an in situ WETStar fluorometer and fluorescence spectroscopy during cruises in 2008 as part of the Canada/US Joint Ocean Ice Study and Japan's International Polar Year program. Despite the low CDOM range (0.009-0.069 r.u.) observed in the upper 400 m of the study area, our results show that CDOM can be quantified from in situ DOM fluorescence sensor measurements. Unlike DOC concentrations, which are known to decrease with increasing depth, a pronounced mid-depth CDOM maximum was associated with the Pacific-derived winter water throughout our study area. Using parallel factor analysis (PARAFAC) to resolve dominant fluorophore components in fluorescence excitation-emission matrices (EEM), we identified three humic-like and two proteinaceous components. The nature and origin of these five fluorophores were investigated based on their fluorescent characteristics as well as their vertical and geographical distributions. The lowest terrestrial humic-like signals in the surface waters were mostly due to photochemical processes, whereas the highest microbial/marine humic-like signal revealed interactions with sediment during the formation of Pacific-origin haloclines over the Arctic shelves. The humic-like fluorophores dominated DOM fluorescence in the Westernmost region in the East Siberian Sea whereas the contribution of protein-like fluorophores was predominant elsewhere. The significant difference in CDOM composition between East and West of the 180° meridian suggests the presence of a front that divides our study area into the Eastern Chukchi—Beaufort and East Siberian sides. This indicates a change in water circulation, and that more than one DOM source affects our study area. Unlike proteinaceous material, the humic-like compounds varied significantly in the halocline. Ten to 20 percent enrichment was observed in terrestrially-derived DOM in the two Pacific-derived haloclines relative to the Atlantic-derived lower halocline. The application of PARAFAC modeling on fluorescent DOM is shown to be an important tool to investigate the dynamics and transport of allochthonous DOM in the Arctic Ocean.
Linking of EEM spectra with FTICRMS data via van Krevelen diagrams and rank correlation
NASA Astrophysics Data System (ADS)
Herzsprung, Peter; von Tümpling, Wolf; Hertkorn, Norbert; Harir, Mourad; Bravidor, Jenny; Büttner, Olaf; Friese, Kurt; Schmitt-Kopplin, Philippe
2014-05-01
DOM plays an important role in both natural and engineered water systems. Due to its sensitivity and non-destruction of samples EEM is widespread used for comprehension of CDOM. EEM provides sensitive bulk optical parameters with low structural resolution concerning DOM quality even when spectra are modelled by PARAFAC or EEM is coupled to chromatography. Fourier transform ion cyclotron resonance mass spectrometry (FTICRMS) is a high-resolution analytical tool to determine the elemental compositions of thousands of DOM components directly out of mixtures. Lacking the ability for identification of distinct chemical substances (isomers), the elemental compositions can nevertheless be allocated to biogeochemical pools by means of van Krevelen diagrams. The spearman rank correlation was applied to link the EEM intensities (humic like fluorescence) with exact molecular formulas and their corresponding relative mass peak abundances. The initiative for this study to find out what is humic like fluorescence was the environmental problem of increasing levels of organic carbon in fresh waters as a great challenge for processing and commercial supply of drinking water. In the southern Saxony region, Germany, raw drinking water is mainly received from reservoirs situated in the ore mountains (Erzgebirge). Most of these reservoirs are affected by high concentrations of humic substances detected by the drinking water administration via measurement of the dissolved organic carbon (DOC) and the spectral absorption coefficient at 254 nm (SAC254). To get a better insight into the DOM composition, the seasonal variability of DOM quality was determined using EEM and FTICRMS and coupling these two methods in the catchment area of the reservoir Muldenberg. Thereby, humic-like fluorescence could be allocated to the pool of oxygen-rich and relatively unsaturated components with stoichiometries similar to those of tannic acids [1]. [1] Herzsprung, P., von Tümpling, W., Hertkorn, N., Harir, M., Büttner, O., Bravidor, J., Friese, K., Schmitt-Kopplin, P. Variations of DOM quality in inflows of a drinking water reservoir: Linking of van Krevelen diagrams with EEMF spectra by rank correlation. Environ. Sci. Technol. 46, 5511-5518 (2012).
NASA Astrophysics Data System (ADS)
Ladd, M.; Wullschleger, S. D.; Iversen, C. M.; Hettich, R.
2016-12-01
Reliably modeling biogeochemical processes (e.g. decomposition, plant-microbial competition for nutrients) across spatial or temporal scales requires elucidating the chemical composition of low molecular weight (LMW) dissolved soil organic matter (DOM). Our understanding is limited, however, by the wide-ranging physicochemical properties and high fluxes of these compounds, posing major challenges in detection, isolation, and quantification. Here, we developed and evaluated a sensitive, non-targeted approach to characterize LMW DOM in the Arctic, a unique system that is warming at a rate twice that of the global average and may have significant feedbacks to global C and N cycles. Soil cores were collected from a continuous permafrost, polygonal tundra landscape near Barrow, Alaska (71° 16' N) and sectioned into 5 cm increments. Water and salt extracts from each section were filtered and injected onto C18 reversed-phase or zwitterionic-type hydrophilic interaction chromatography (ZIC-pHILIC) columns for separation. LMW DOM profiles were obtained using high-resolution mass spectrometry (HRMS), and unique features, known and unknown, were characterized by LC retention time, accurate mass (m/z), and molecular fragmentation pattern. Coupling two orthogonal chromatographic separations with HRMS enabled the characterization of hundreds of analytes in a single measurement providing enhanced, high-throughput coverage of LMW DOM from soil extracts. The complexity and relative/absolute intensities of LMW DOM features (e.g. organic acids, amino sugars, peptides) varied across polygon type (high- or low-centered), extract condition, and with depth, providing an information-rich, molecular signal of LMW DOM availability across scales. Comprehensively profiling this complex mixture of small molecules of both biotic and abiotic origin provides a chemical signature of biological function, allowing for more reliable predictions of how discrete, molecular-scale processes may control landscape dynamics. In the Arctic, this platform can be leveraged to identify biogeochemical hotspots to gain insight into to how warming temperatures will impact microbial dynamics and CO2 and CH4 fluxes from these systems.
NASA Astrophysics Data System (ADS)
Ritson, J.; Bell, M.; Clark, J. M.; Graham, N.; Templeton, M.; Brazier, R.; Verhoef, A.; Freeman, C.
2013-12-01
Peatlands in the UK represent a large proportion of the soil carbon store, however there is concern that some systems may be switching from sinks to sources of carbon. The accumulation of organic material in peatlands results from the slow rates of decomposition typically occurring in these regions. Climate change may lead to faster decomposition which, if not matched by an equivalent increase in net primary productivity and litter fall, may tip the balance between source and sink. Recent trends have seen a greater flux of dissolved organic matter (DOM) from peatlands to surface waters and a change in DOM character, presenting challenges to water treatment, for example in terms of increased production of disinfectant by-products (DBPs). Peat systems border a large proportion of reservoirs in the UK so uncertainty regarding DOM quantity and quality is a concern for water utilities. This study considered five peatland vegetation types (Sphagnum spp., Calluna vulgaris, Molinea caerulea, peat soil and mixed litter) collected from the Exmoor National Park, UK where it is hypothesised that peat formation may be strongly affected by future changes to climate. A factorial experiment design to simulate climate was used, considering vegetation type, temperature and rainfall amount using a current baseline and predictions from the UKCP09 model. Gaseous fluxes of carbon were monitored over a two month period to quantify the effect on carbon mineralisation rates while 13C NMR analysis was employed to track which classes of compounds decayed preferentially. The DOM collected was characterised using UV and fluorescence techniques before being subject to standard drinking water treatment processes (coagulation/flocculation followed by chlorination). The effect of the experimental factors on DOM amenability to removal and propensity to form DBPs was then considered, with both trihalomethane (THM) and haloacetonitrile (HAN) DBP classes monitored. Initial results have shown a statistically significant (Mann-Whitney U) difference in THM formation (p<0.05) as well as the amount of DOM produced and specific UV absorption at 254nm (p<0.01) between vegetation classes.
Ezra Tsur, Elishai
2017-01-01
Databases are imperative for research in bioinformatics and computational biology. Current challenges in database design include data heterogeneity and context-dependent interconnections between data entities. These challenges drove the development of unified data interfaces and specialized databases. The curation of specialized databases is an ever-growing challenge due to the introduction of new data sources and the emergence of new relational connections between established datasets. Here, an open-source framework for the curation of specialized databases is proposed. The framework supports user-designed models of data encapsulation, objects persistency and structured interfaces to local and external data sources such as MalaCards, Biomodels and the National Centre for Biotechnology Information (NCBI) databases. The proposed framework was implemented using Java as the development environment, EclipseLink as the data persistency agent and Apache Derby as the database manager. Syntactic analysis was based on J3D, jsoup, Apache Commons and w3c.dom open libraries. Finally, a construction of a specialized database for aneurysms associated vascular diseases is demonstrated. This database contains 3-dimensional geometries of aneurysms, patient's clinical information, articles, biological models, related diseases and our recently published model of aneurysms' risk of rapture. Framework is available in: http://nbel-lab.com.
de Vera, Glen Andrew; Gernjak, Wolfgang; Radjenovic, Jelena
2017-05-01
Chlorine demand of a water sample depends on the characteristics of dissolved organic matter (DOM). It is an important parameter for water utilities used to assess oxidant and/or disinfectant consumption of source waters during treatment and distribution. In this study, model compounds namely resorcinol, tannic acid, vanillin, cysteine, tyrosine, and tryptophan were used to represent the reactive moieties of complex DOM mixtures. The reactivity of these compounds was evaluated in terms of Cl 2 demand and electron donating capacity (EDC). The EDC was determined by mediated electrochemical oxidation (MEO) which involves the use of 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) as an electron shuttle. The Cl 2 demand of readily oxidizable compounds (resorcinol, tannic acid, vanillin, and cysteine) was found to correlate well with EDC (R 2 = 0.98). The EDC values (mol e - /mol C) of the model compounds are as follows: 1.18 (cysteine) > 0.77 (resorcinol) > 0.59 (vanillin) > 0.52 (tannic acid) > 0.36 (tryptophan) > 0.19 (tyrosine). To determine the effect of pre-oxidation on EDC, ozone was added (0.1 mol O 3 /mol C) into each model compound solution. Ozonation caused a general decrease in EDC (10-40%), chlorine demand (10-30%), and UV absorbance (10-40%), except for tyrosine which showed both increased UV 275 and EDC. Before and after ozonation, 24 h disinfection byproduct (DBP) formation potential tests (Cl 2 residual = 1.5 mg/L) were conducted to evaluate the use of EDC for DBP formation prediction. The results indicate that there was no significant correlation between the EDC of the model compounds and the formation potentials of adsorbable organic chlorine, trichloromethane, and trichloroacetic acid. This suggests that while EDC correlates with Cl 2 demand, chlorine consumption may not directly translate to DBP formation because oxidation reactions may dominate over substitution reactions. Overall, this study provides useful insights on the reactions of ABTS + and HOCl with model DOM compounds, and highlights the potential application of MEO for rapid determination of Cl 2 demand of a water sample. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Asmala, E.; Autio, R.; Kaartokallio, H.; Pitkänen, L.; Stedmon, C. A.; Thomas, D. N.
2013-11-01
The microbial degradation of dissolved organic carbon and nitrogen (DOC, DON) was studied in three Finnish boreal estuaries with contrasting land use patterns (Kiiminkijoki - natural forest and peatland; Kyrönjoki - agricultural; Karjaanjoki - mixed/urban). Bioassays of 12-18 d long durations were used in 3 seasons at in situ temperatures. Besides the bulk parameters, a suite of dissolved organic matter (DOM) quality parameters were also investigated, including colored DOM (CDOM), fluorescent DOM and the molecular weight of DOM. Bioavailable DOC and DON pools varied significantly between the estuaries, from 7.9 to 10.6% and from 5.5 to 21.9%, respectively. DOM originating from the catchment dominated by natural forests and peatlands (Kiiminkijoki) had the lowest DOC and DON degradation rates, as well as the lowest proportions of biodegradable DOC and DON. A greater proportion of agricultural land in the catchment increased the bioavailability of DON, but not the bioavailability of DOC (Kyrönjoki). Additionally, DOM quality varied significantly between the estuaries, and DOM originating from the agricultural Kyrönjoki catchment sustained higher DOC and DON degradation rates and higher bacterial growth efficiency (BGE) compared to those of the natural forest and peat dominated Kiiminkijoki catchment. The quality of DOM, indicated by differences in CDOM, fluorescent DOM and molecular weight, varied between estuaries with differing land use and was concluded to be major driver of BGE of these systems and thereafter to the microbial CO2 fluxes from the estuaries. The differences in BGE resulted in a 5-fold difference in the calculated daily bacterial CO2 emissions between the study's estuaries due to bacterial activity, ranging from 40 kg C d-1 in the Karjaanjoki estuary to 200 kg C d-1 in the Kyrönjoki estuary. Lower DOC:DON ratios, smaller molecular weight and higher CDOM absorption spectral slope values of DOM resulted in higher proportion of the initial DOC and DON being transferred to microbial growth and therefore to the pelagic food web. The pristine, peatland and forest-dominated Kiiminkijoki catchment had the lowest BGE, and therefore proportionally highest CO2 fluxes.
NASA Astrophysics Data System (ADS)
Butturini, Andrea; Guarch, Alba; Battin, Tom
2017-04-01
Dissolved organic matter (DOM) concentration and properties in headwater streams are strongly shaped by hydrology. Besides the direct relationship with storms and high flows, seasonal variability of base flow also influences DOM variability. This study focuses on identifying the singularities and similarities in DOM - discharge relationships between an intermittent Mediterranean stream (Fuirosos) and a perennial Alpine stream (Oberer Seebach). Oberer Seebach had a higher discharge mean, but Fuirosos had a higher variability in flow and in magnitude of storm events. During three years we performed an intensive sampling that allows us to satisfactorily capture abrupt and extreme storms. We analysed dissolved organic carbon concentration (DOC) and optical properties of DOM and we calculated the specific ultraviolet absorbance (SUVA), the spectral slopes ratio (SR), the fluorescence index (FI), the biological index (BIX) and the humification index (HIX). DOM in Fuirosos was significantly more concentrated than in Oberer Seebach, and more terrigenous (lower FI), more degraded (lower BIX), more aromatic (higher SUVA) and more humificated (higher HIX). Most of the DOM properties showed a clear relationship with discharge and the sign of the global response was identical in both streams. However, discharge was a more robust predictor of DOM variability in Oberer Seebach than in Fuirosos. In fact, low flow and rewetting periods in Fuirosos introduced considerable dispersion in the relationship. During snowmelt in Oberer Seebach the sensitivity to discharge also decreased (DOC and BIX) or disappeared (SR, FI and HIX). The magnitude of the storm events (DQ) in Fuirosos significantly drove the changes in DOC, FI, BIX and SUVA. This suggests that the flushing/dilution patterns were essentially associated to the occurrence of storm episodes in Fuirosos. In contrast, in Oberer Seebach all DOM qualitative properties were unrelated to DQ and it significantly explained only the change in DOC. While the storms were behind the DOC oscillations, DOM quality change in Oberer Seebach was more coupled to basal flow conditions. Finally, the biogeochemical analysis of two hydrologically different headwaters motivates to speculate about the impact of the hydrological regime alteration forced by atmospheric drivers on DOM quantity and properties.
NASA Astrophysics Data System (ADS)
Oliver, A. A.; Tank, S. E.; Kellogg, C.
2015-12-01
The export of riverine dissolved organic matter (DOM) to the coastal ocean provides an important link between terrestrial and aquatic ecosystems. The coastal temperate rainforests of British Columbia contain extensive freshwater networks that export significant amounts of water and DOM to the ocean, representing significant cross-system hydrologic and biogeochemical linkages. To better understand the importance of these linkages and implications for ecosystem structure and function, we used an experimental approach to investigate the role of microbial and photodegradation transformations of DOM exported from small coastal catchments to the marine environment. At two time periods (August 2014, March 2015), stream water from the outlets of two coastal watersheds was filtered (<0.2 μm), and treated with microbial inoculums from across a salinity gradient (i.e., freshwater, estuarine, and marine). Treatments were incubated in the ocean under light and dark conditions for 8 days. At 0, 3 and 8 days, samples were analyzed for DOC, TDN, DIN, and DON. Changes in DOM composition were determined with optical characterization techniques such as absorbance (SUVA, S, Sr) and fluorescence (EEM). Microbial community response was measured using cell counts and DNA/RNA amplicon sequencing to determine changes in bacterial abundance and community composition. General patterns indicated that microbial communities from the high salinity treatment (i.e. most marine) were the most effective at utilizing freshwater DOM, especially under light conditions. In some treatments, DOM appeared as a potential source of inorganic nitrogen with corresponding shifts in microbial community composition. Incubations using inoculum from low and mid salinity levels demonstrated smaller changes, indicating that DOM exported from these streams may not be extensively utilized until exposed to higher salinity environments further from stream outlets. These results suggest a role for terrestrial sourced-DOM as a subsidy for microbial communities within the near shore marine environment, and emphasize that changes in DOM exports due to land development or climate change may have implications for coastal food web processes and biogeochemical cycling.
Environmental drivers of dissolved organic matter molecular composition in the Delaware Estuary
NASA Astrophysics Data System (ADS)
Osterholz, Helena; Kirchman, David L.; Niggemann, Jutta; Dittmar, Thorsten
2016-11-01
Estuaries as connectors of freshwater and marine aquatic systems are hotspots of biogeochemical element cycling. In one of the best studied temperate estuaries, the Delaware Estuary (USA), we investigated the variability of dissolved organic matter (DOM) over five sampling cruises along the salinity gradient in August and November of 3 consecutive years. Dissolved organic carbon (DOC) concentrations were more variable in the upper reaches of the estuary (245±49 µmol L-1) than at the mouth of the estuary (129±14 µmol L-1). Bulk DOC decreased conservatively along the transect in November but was non-conservative with increased DOC concentrations mid-estuary in August. Detailed analysis of the solid-phase extractable DOM pool via ultrahigh resolution mass spectrometry (Fourier-transform ion cyclotron resonance mass spectrometry, FT-ICR-MS) revealed compositional differences at the molecular level that were not reflected in changes in concentration. Besides the mixing of terrestrial and marine endmember signatures, river discharge levels and biological activity were found to impact DOM molecular composition. DOM composition changed less between August and November than along the salinity gradient. Relative contributions of presumed photolabile DOM compounds did not reveal non-conservative behavior indicative of photochemical processing; suggesting that on the timescales of estuarine mixing photochemical removal of molecules plays a minor role in the turbid Delaware Bay. Overall, a large portion of molecular formulae overlapped between sampling campaigns and persisted during estuarine passage. Extending the analysis to the structural level via the fragmentation of molecular masses in the FT-ICR-MS cell, we found that the relative abundance of isomers along the salinity gradient did not change, indicating a high structural similarity of aquatic DOM independent of the origin. These results point towards a recalcitrant character of the DOM supplied by the Delaware River. We demonstrate that in addition to bulk DOC quantification, detailed information on molecular composition is essential for constraining sources of DOM and to identify the processes that impact estuarine DOM, thereby controlling amount and composition of DOM eventually discharged to the ocean through estuaries.
NASA Astrophysics Data System (ADS)
Li, Xiangyu; Liu, Yuxi; Deng, Jiguang; Xie, Shaohua; Zhao, Xingtian; Zhang, Yang; Zhang, Kunfeng; Arandiyan, Hamidreza; Guo, Guangsheng; Dai, Hongxing
2017-05-01
Three-dimensionally ordered macroporous (3DOM) CoFe2O4, zMnOx/3DOM CoFe2O4 (z = 4.99-12.30 wt%), and yPd-Pt/6.70 wt% MnOx/3DOM CoFe2O4 (y = 0.44-1.81 wt%; Pd/Pt molar ratio = 2.1-2.2) have been prepared using the polymethyl methacrylate microspheres-templating, incipient wetness impregnation, and bubble-assisted polyvinyl alcohol-protected reduction strategies, respectively. All of the samples were characterized by means of various techniques. Catalytic performance of the samples was measured for methane combustion. It is shown that the as-prepared samples exhibited a high-quality 3DOM structure (103 ± 20 nm in pore size) and a surface area of 19-28 m2/g, and the noble metal or alloy nanoparticles (NPs) with a size of 2.2-3.0 nm were uniformly dispersed on the macropore wall surface of 3DOM CoFe2O4. The loading of MnOx on CoFe2O4 gave rise to a slight increase in activity, however, the dispersion of Pd-Pt NPs on 6.70MnOx/3DOM CoFe2O4 significantly enhanced the catalytic performance, with the 1.81Pd2.1Pt/6.70MnOx/3DOM CoFe2O4 sample showing the highest activity (T10% = 255 °C, T50% = 301 °C, and T90% = 372 °C at a space velocity of 20,000 mL/(g h)). We believe that the excellent catalytic activity of 1.81Pd2.1Pt/6.70MnOx/3DOM CoFe2O4 was related to its well-dispersed Pd-Pt alloy NPs, high adsorbed oxygen species concentration, good low-temperature reducibility, and strong interaction between MnOx or Pd-Pt NPs and 3DOM CoFe2O4.
Non-riverine pathways of terrigenous carbon to the ocean
NASA Astrophysics Data System (ADS)
Dittmar, T.
2007-12-01
The extent and nature of non-riverine fluxes of carbon from land to ocean are poorly understood. Tidal pumping from highly productive coastal environments, atmospheric deposition and submarine groundwater discharge can be significant transport mechanisms for carbon to the ocean. Evidence is mounting that tidally-induced porewater fluxes ("outwelling") of dissolved organic matter (DOM) from mangroves and salt marshes alone may be similar in magnitude as the global riverine flux of DOM. Tidal pumping of dissolved inorganic carbon (DIC) might exceed organic carbon fluxes by far, but the existing knowledge on DIC outwelling is too scarce for a first global estimate. Results from two case studies on the biogeochemistry of DOM outwelling are presented, from the mangroves in Northern Brazil and the salt marshes in the Northern Gulf of Mexico. Ongoing research in the Northern Gulf of Mexico indicates that outwelling and groundwater inputs probably exceed riverine DOM fluxes in this region. Similar observations were made in Northern Brazil. There, the fate of mangrove-derived DOM could be traced from its source in the mangrove sediments to the outer North Brazil shelf by using a combination of isotopic and molecular approaches. Reversed-phase liquid chromatography / mass spectrometry (LC/MS) provided a multifaceted array of information that mirrors the molecular complexity of DOM. Statistical analyses on these data revealed significant differences between mangrove and open-ocean DOM which successively disappeared by irradiating the samples with natural sunlight. Nuclear magnetic resonance analyses yielded concurrent results. Ultrahigh-resolution Fourier transform-ion cyclotron resonance mass spectrometry (FT-ICR MS) is the only technique capable of resolving and identifying individual elemental compositions in these complex mixtures. We applied this technique for characterizing mangrove-derived DOM and to assess the molecular changes that occur in the initial stages of outwelling. The different approaches concordantly show the presence of photodegraded mangrove DOM on the North Brazil shelf. During transport offshore, sunlight efficiently destroyed aromatic molecules, removing about one third of mangrove-derived DOM. The remainder was refractory and may thus be distributed over the oceans.
Henneberry, Y.K.; Kraus, T.E.C.; Fleck, J.A.; Krabbenhoft, D.P.; Bachand, P.M.; Horwath, W.R.
2011-01-01
The presence of inorganic mercury (IHg) and methylmercury (MeHg) in surface waters is a health concern worldwide. This study assessed the removal potential use of metal-based coagulants as a means to remove both dissolved IHg and MeHg from natural waters and provides information regarding the importance of Hg associations with the dissolved organic matter (DOM) fraction and metal hydroxides. Previous research indicated coagulants were not effective at removing Hg from solution; however these studies used high concentrations of Hg and did not reflect naturally occurring concentrations of Hg. In this study, water collected from an agricultural drain in the Sacramento-San Joaquin Delta was filtered to isolate the dissolved organic matter (DOM) fraction. The DOM was then treated with a range of coagulant doses to determine the efficacy of removing all forms of Hg from solution. Three industrial-grade coagulants were tested: ferric chloride, ferric sulfate, and polyaluminum chloride. Coagulation removed up to 85% of DOM from solution. In the absence of DOM, all three coagulants released IHg into solution, however in the presence of DOM the coagulants removed up to 97% of IHg and 80% of MeHg. Results suggest that the removal of Hg is mediated by DOM-coagulant interactions. There was a preferential association of IHg with the more aromatic, higher molecular weight fraction of DOM but no such relationship was found for MeHg. This study offers new fundamental insights regarding large-scale removal of Hg at environmentally relevant regarding large-scale removal of Hg at environmentally relevant concentrations.
NASA Astrophysics Data System (ADS)
Kim, T.; Kwon, E.; Kim, G.
2011-12-01
In order to determine the origin of dissolved organic matter (DOM) in the subterranean estuary (STE), the mixing zone of fresh terrestrial groundwater and recirculating seawater in a coastal permeable aquifer, we conducted water sampling from two STEs with different geological settings: (1) Jeju Island beaches (Hwasun and Samyang), which are composed of volcanic rocks and sandy sediments, and (2) Hampyeong beach, which is located in a large intertidal, sandy flat zone. The distributions of salinity, total hydrolysable amino acids (THAA), dissolved organic carbon (DOC), and colored DOM (CDOM) were measured for groundwater samples in these STEs. In the Hwasun STE, the humic-like peak decreases with increasing salinity, whereas the protein-like peak does not show a clear relationship with salinity. In contrast, in the Samyang STE, both humic-like peak and protein-like peak increase with increasing salinity. These contrasting results indicate that DOM in the Hwasun STE originates mainly from terrestrial inputs, while that in the Samyang STE originates mainly from biological and/or microbial activities. In the Hampyeong STE, we observed good correlations among the biodegradation index, alanine D/L ratios, THAA concentrations, DOC, and CDOM index (both humic-like and protein-like). Together with their geographical distribution patterns, these correlations indicate that DOM in the Hampyeong STE is mainly derived from marine sediments in the course of seawater recirculation. Our study shows that CDOM and amino acids are excellent tracers of DOM in the STE where DOM is derived from diverse sources.
NASA Astrophysics Data System (ADS)
Bellmore, Rebecca A.; Harrison, John A.; Needoba, Joseph A.; Brooks, Erin S.; Kent Keller, C.
2015-10-01
Agricultural practices have altered watershed-scale dissolved organic matter (DOM) dynamics, including in-stream concentration, biodegradability, and total catchment export. However, mechanisms responsible for these changes are not clear, and field-scale processes are rarely directly linked to the magnitude and quality of DOM that is transported to surface water. In a small (12 ha) agricultural catchment in eastern Washington State, we tested the hypothesis that hydrologic connectivity in a catchment is the dominant control over the concentration and quality of DOM exported to surface water via artificial subsurface drainage. Concentrations of dissolved organic carbon (DOC) and humic-like components of DOM decreased while the Fluorescence Index and Freshness Index increased with depth through the soil profile. In drain discharge, these characteristics were significantly correlated with drain flow across seasons and years, with drain DOM resembling deep sources during low-flow and shallow sources during high flow, suggesting that DOM from shallow sources bypasses removal processes when hydrologic connectivity in the catchment is greatest. Assuming changes in streamflow projected for the Palouse River (which contains the study catchment) under the A1B climate scenario (rapid growth, dependence on fossil fuel, and renewable energy sources) apply to the study catchment, we project greater interannual variability in annual DOC export in the future, with significant increases in the driest years. This study highlights the variability in DOM inputs from agricultural soil to surface water on daily to interannual time scales, pointing to the need for a more nuanced understanding of agricultural impacts on DOM dynamics in surface water.
USDA-ARS?s Scientific Manuscript database
Dissolved organic matter (DOM) in surface waters plays an important role in biogeochemical and ecological processes. This study used solid-state NMR techniques to explore the molecular signatures of riverine DOM in relation to its point and nonpoint sources. DOM samples were isolated from (1) two st...
Persson, Linn; Alsberg, Tomas; Ledin, Anna; Odham, Göran
2006-08-01
The aim of the present study was to search for qualitative changes in the landfill leachate DOM along a groundwater gradient. The study was focused on DOM characteristics of importance for its interaction with pollutants, such as molecular weight distribution and aromaticity. It was concluded that the leachate DOM underwent substantial qualitative changes along the investigated gradient at the Vejen landfill, Denmark. The molecular weight decreased, the polydispersity increased, and the aromaticity varied with the lowest values found in the middle of the gradient. The high aromaticity in the end of the gradient may explain the higher DOM binding capacity towards hydrophobic compounds seen earlier in these samples. The relative abundance of ions with mass to charge ratio (m/z) of 600-1200 seemed to be very stable along the gradient, indicating that the observed qualitative changes of the DOM is mostly attributed to changes in the m/z 100-600 range. The DOM seemed to become more similar to fulvic acids present in uncontaminated groundwater with respect to molecular weight and polydispersity along the gradient.
Dissolved organic matter in the Florida everglades: Implications for ecosystem restoration
Aiken, G.R.; Gilmour, C.C.; Krabbenhoft, D.P.; Orem, W.
2011-01-01
Dissolved organic matter (DOM) in the Florida Everglades controls a number of environmental processes important for ecosystem function including the absorption of light, mineral dissolution/precipitation, transport of hydrophobic compounds (e.g., pesticides), and the transport and reactivity of metals, such as mercury. Proposed attempts to return the Everglades to more natural flow conditions will result in changes to the present transport of DOM from the Everglades Agricultural Area and the northern conservation areas to Florida Bay. In part, the restoration plan calls for increasing water flow throughout the Everglades by removing some of the manmade barriers to flow in place today. The land- and water-use practices associated with the plan will likely result in changes in the quality, quantity, and reactivity of DOM throughout the greater Everglades ecosystem. The authors discuss the factors controlling DOM concentrations and chemistry, present distribution of DOM throughout the Everglades, the potential effects of DOM on key water-quality issues, and the potential utility of dissolved organic matter as an indicator of success of restoration efforts. Copyright ?? 2011 Taylor & Francis Group, LLC.
Candia-Luján, Ramón; De Paz Fernández, José Antonio; Costa Moreira, Osvaldo
2014-10-05
In recent years, antioxidant supplements have become popular to counter the effects of free radicals and muscle damage symptoms, including delayed onset muscle soreness (DOMS). To conduct a systematic review in different databases to determine the effects of antioxidant supplements on DOMS. We conducted a search in databases; Cochrane, Pubmed, Scopus and SportDiscus and Web of Science (WOS). The words and acronyms used were; Delayed onset muscle soreness, exercise induced muscle damage, DOMS, EIMD, antioxidant and oxidative stress. 54 articles were identified of which 48 were retreived, all in English, 17 related to vitamin C and E, supplements polyphenolic correspond to fourteen, eleven other antioxidant supplements and six to commercial supplements, all of them used to diminish the DOMS and other variables. Both vitamins and commercial supplements have low effectiveness in reducing DOMS, while polyphenols and other antioxidant supplements show moderate to good effectiveness in combating DOMS. However, most of the studies have effectiveness in reducing other symptoms of muscle damage besides helping in the post-exercise recovery. Copyright AULA MEDICA EDICIONES 2014. Published by AULA MEDICA. All rights reserved.
Molecular characterization of dissolved organic matter during the Arctic spring melt period
NASA Astrophysics Data System (ADS)
Gueguen, C.; Mangal, V.; Shi, Y. X.
2016-02-01
The application of high resolution electrospray ionization mass spectrometry has advanced our understanding of dissolved organic matter (DOM) at molecular level. The arctic spring melt period has been largely undersampled owing to logistical and safety issues, yet this period is extremely important to the overall flux of DOM and related contaminants including metals from high latitude rivers. In this study, we present high resolution molecular composition of 35 DOM samples collected in the Churchill River (Manitoba) during the 2015 spring melt period. As spring melt progresses, a significant change in the two most dominant carbon pools, protein and lignin, was observed. For example, the relative abundance of proteins detected in the river DOM samples increased from 19 to 44% during the spring flush, likely reflecting a change in DOM source. Similar patterns were found using fluorescence spectroscopy.
Automatic Command Sequence Generation
NASA Technical Reports Server (NTRS)
Fisher, Forest; Gladded, Roy; Khanampompan, Teerapat
2007-01-01
Automatic Sequence Generator (Autogen) Version 3.0 software automatically generates command sequences for the Mars Reconnaissance Orbiter (MRO) and several other JPL spacecraft operated by the multi-mission support team. Autogen uses standard JPL sequencing tools like APGEN, ASP, SEQGEN, and the DOM database to automate the generation of uplink command products, Spacecraft Command Message Format (SCMF) files, and the corresponding ground command products, DSN Keywords Files (DKF). Autogen supports all the major multi-mission mission phases including the cruise, aerobraking, mapping/science, and relay mission phases. Autogen is a Perl script, which functions within the mission operations UNIX environment. It consists of two parts: a set of model files and the autogen Perl script. Autogen encodes the behaviors of the system into a model and encodes algorithms for context sensitive customizations of the modeled behaviors. The model includes knowledge of different mission phases and how the resultant command products must differ for these phases. The executable software portion of Autogen, automates the setup and use of APGEN for constructing a spacecraft activity sequence file (SASF). The setup includes file retrieval through the DOM (Distributed Object Manager), an object database used to store project files. This step retrieves all the needed input files for generating the command products. Depending on the mission phase, Autogen also uses the ASP (Automated Sequence Processor) and SEQGEN to generate the command product sent to the spacecraft. Autogen also provides the means for customizing sequences through the use of configuration files. By automating the majority of the sequencing generation process, Autogen eliminates many sequence generation errors commonly introduced by manually constructing spacecraft command sequences. Through the layering of commands into the sequence by a series of scheduling algorithms, users are able to rapidly and reliably construct the desired uplink command products. With the aid of Autogen, sequences may be produced in a matter of hours instead of weeks, with a significant reduction in the number of people on the sequence team. As a result, the uplink product generation process is significantly streamlined and mission risk is significantly reduced. Autogen is used for operations of MRO, Mars Global Surveyor (MGS), Mars Exploration Rover (MER), Mars Odyssey, and will be used for operations of Phoenix. Autogen Version 3.0 is the operational version of Autogen including the MRO adaptation for the cruise mission phase, and was also used for development of the aerobraking and mapping mission phases for MRO.
Hohenauer, Erich; Clarys, Peter; Baeyens, Jean-Pierre; Clijsen, Ron
2017-01-01
Fast recovery after strenuous exercise is important in sports and is often studied via cryotherapy applications. Cryotherapy has a significant vasoconstrictive effect, which seems to be the leading factor in its effectiveness. The resulting enhanced recovery can be measured by using both objective and subjective parameters. Two commonly measured subjective characteristics of recovery are delayed-onset muscle soreness (DOMS) and ratings of perceived exertion (RPE). Two important objective recovery characteristics are countermovement jump (CMJ) performance and peak power output (PPO). Here, we provide a detailed protocol to induce muscular exhaustion of the frontal thighs with a self-paced, 3 x 30 countermovement jump protocol (30-s rest between each set). This randomized controlled trial protocol explains how to perform local cryotherapy cuff application (+ 8 °C for 20 min) and thermoneutral cuff application (+ 32 °C for 20 min) on both thighs as two possible post-exercise recovery modalities. Finally, we provide a non-invasive protocol to measure the effects of these two recovery modalities on subjective (i.e., DOMS of both frontal thighs and RPE) and objective recovery (i.e., CMJ and PPO) characteristics 24, 48, and 72 h post-application. The advantage of this method is that it provides a tool for researchers or coaches to induce muscular exhaustion, without using any expensive devices; to implement local cooling strategies; and to measure both subjective and objective recovery, without using invasive methods. Limitations of this protocol are that the 30 s rest period between sets is very short, and the cardiovascular demand is very high. Future studies may find the assessment of maximum voluntary contractions to be a more sensitive assessment of muscular exhaustion compared to CMJs. PMID:28654037
Characterising Event-Based DOM Inputs to an Urban Watershed
NASA Astrophysics Data System (ADS)
Croghan, D.; Bradley, C.; Hannah, D. M.; Van Loon, A.; Sadler, J. P.
2017-12-01
Dissolved Organic Matter (DOM) composition in urban streams is dominated by terrestrial inputs after rainfall events. Urban streams have particularly strong terrestrial-riverine connections due to direct input from terrestrial drainage systems. Event driven DOM inputs can have substantial adverse effects on water quality. Despite this, DOM from important catchment sources such as road drains and Combined Sewage Overflows (CSO's) remains poorly characterised within urban watersheds. We studied DOM sources within an urbanised, headwater watershed in Birmingham, UK. Samples from terrestrial sources (roads, roofs and a CSO), were collected manually after the onset of rainfall events of varying magnitude, and again within 24-hrs of the event ending. Terrestrial samples were analysed for fluorescence, absorbance and Dissolved Organic Carbon (DOC) concentration. Fluorescence and absorbance indices were calculated, and Parallel Factor Analysis (PARAFAC) was undertaken to aid sample characterization. Substantial differences in fluorescence, absorbance, and DOC were observed between source types. PARAFAC-derived components linked to organic pollutants were generally highest within road derived samples, whilst humic-like components tended to be highest within roof samples. Samples taken from the CSO generally contained low fluorescence, however this likely represents a dilution effect. Variation within source groups was particularly high, and local land use seemed to be the driving factor for road and roof drain DOM character and DOC quantity. Furthermore, high variation in fluorescence, absorbance and DOC was apparent between all sources depending on event type. Drier antecedent conditions in particular were linked to greater presence of terrestrially-derived components and higher DOC content. Our study indicates that high variations in DOM character occur between source types, and over small spatial scales. Road drains located on main roads appear to contain the poorest quality DOM of the sources studied due to the presence of hydrocarbons. In order to prevent storm-derived DOM degradation of water quality of urban streams, greater knowledge of links between these drainage sources, and their pathways to streams is required.
Jiang, Tao; Wang, Dingyong; Wei, Shiqiang; Yan, Jinlong; Liang, Jian; Chen, Xueshuang; Liu, Jiang; Wang, Qilei; Lu, Song; Gao, Jie; Li, Lulu; Guo, Nian; Zhao, Zheng
2018-04-26
Dissolved organic matter (DOM) is a crucial driver of various biogeochemical processes in aquatic systems. Thus, many lakes and streams have been investigated in the past several decades. However, fewer studies have sought to understand the changes in DOM characteristics in the waters of the Three Gorges Reservoir (TGR) areas, which are the largest artificial reservoir areas in the world. Thus, a field investigation of dissolved organic carbon (DOC) concentrations and of chromophoric dissolved organic matter (CDOM) properties was conducted from 2013 to 2015 to track the spatial-temporal variability of DOM properties in the TGR areas. The results showed that the alternations of wet and dry periods due to hydrological management have a substantial effect on the quantity and quality of aquatic DOM in TGR areas. Increases in DOC concentrations in the wet period show an apparent "dilution effect" that decreases CDOM compounds with relatively lower aromaticity (i.e., SUVA 254 ) and molecular weight (i.e., S R ). In contrast to the obvious temporal variations of DOM, significant spatial variability was not observed in this study. Additionally, DOM showed more terrigenous characteristics in the dry period but weak terrigenous characteristics in the wet period. Furthermore, the positive correlation between SUVA 254 and CDOM suggests that the aromatic component controls the CDOM dynamics in TGR areas. The first attempt to investigate the DOM dynamics in TGR areas since the Three Gorges Dam was conducted in 2012, and the unique patterns of spatial-temporal variations in DOM that are highlighted in this study might provide a new insight for understanding the role of DOM in the fates of contaminants and may help in the further management of flow loads and water quality in the TGR area. Copyright © 2018 Elsevier B.V. All rights reserved.
Biochemical Composition of Dissolved Organic Matter Released During Experimental Diatom Blooms
NASA Technical Reports Server (NTRS)
Mannino, Antonio; Harvey, H. Rodger
2002-01-01
An axenic culture of Skeletonema costatum was grown to late-log phase to examine the molecular weight distribution and the biochemical composition of high molecular weight dissolved organic matter released in the absence of actively growing bacteria. A second culture was grown in a 5 m(exp 3) mesocosm and placed in darkness for a period of 51 days to examine the impact of phytoplankton bloom dynamics and microbial decomposition on dissolved (DOM) and particulate organic matter (POM) composition. DOM was separated using tangential-flow ultrafiltration into three nominal size fractions: LDOM (less than 1 kDa DOM), HDOM (1-30 kDa) and VHDOM (30 kDa-0.2 micron) and characterized. Both axenic and mesocosm diatom blooms released 28-33% of net primary production as dissolved organic carbon (DOC). In the axenic culture, HDOM and LDOM each comprised about half of the diatom-released DOC with less than l% as VHDOM. Diatoms from both experiments released carbohydrate-rich high molecular weight DOM. Much of the axenic diatom-released high molecular weight DOC could be chemically characterized (61% of HDOM and 78% of VHDOM) with carbohydrates as the primary component (45% of HDOM and 55% of VHDOM). Substantial amounts of hydrolyzable amino acids (16% of HDOM and 22% of VHDOM) and small amounts of lipids (less than 1%) were also released. Proportions of recognizable biochemical components in DOM produced in the mesocosm bloom were lower compared to the axenic culture. The presence of bacterial fatty acids and peptidoglycan-derived D-amino acids within high molecular weight fractions from the mesocosm bloom revealed that bacteria contributed a variety of macromolecules to DOM during the growth and decay of the diatom bloom. Release of significant amounts of DOC by diatoms demonstrates that DOM excretion is an important component of phytoplankton primary production. Similarities in high molecular weight DOM composition in marine waters and diatom cultures highlight the importance of phytoplankton to DOM composition in the ocean.
Yu, Haitong; Liu, Dong; Duan, Yuanyuan; Wang, Xiaodong
2014-04-07
Opacified aerogels are particulate thermal insulating materials in which micrometric opacifier mineral grains are surrounded by silica aerogel nanoparticles. A geometric model was developed to characterize the spectral properties of such microsize grains surrounded by much smaller particles. The model represents the material's microstructure with the spherical opacifier's spectral properties calculated using the multi-sphere T-matrix (MSTM) algorithm. The results are validated by comparing the measured reflectance of an opacified aerogel slab against the value predicted using the discrete ordinate method (DOM) based on calculated optical properties. The results suggest that the large particles embedded in the nanoparticle matrices show different scattering and absorption properties from the single scattering condition and that the MSTM and DOM algorithms are both useful for calculating the spectral and radiative properties of this particulate system.
Fate and transport of mercury in soil systems : a numerical model in HP1 and sensitivity analysis
NASA Astrophysics Data System (ADS)
Leterme, Bertrand; Jacques, Diederik
2013-04-01
Mercury (Hg) poses threats for human health and the environment, notably due to its persistence and its ability to bioaccumulate in ecosystems. Anthropogenic activities are major contributors of mercury release to soils. Main sources of contamination include manufacturing (chlor-alkali plants, manometer spill), mine tailings from mercury, gold and silver mining industries, wood preservation. The objective of this study was to develop a reactive transport model for simulating mercury fate and transport in the unsaturated zone, and to gain insight in the fate and transport of Hg following anthropogenic soil contamination. The present work is done in the framework of the IMaHg project, which aims at providing recommendations to improve management of sites contaminated by mercury within the SNOWMAN funding framework. A model of mercury fate and transport in soil systems was developed using the reactive transport code HP1 (Jacques and Šimůnek, 2010). The geochemical database THERMODDEM (Blanc et al., 2012) is used, augmented with some speciation data from (Skyllberg, 2012). The main processes accounted for in the model are : Hg aqueous speciation (including complexation with dissolved organic matter (DOM) - humic and fulvic acids, and thiol groups), Hg sorption to solid organic matter (SOM), dissolution of solid phase Hg (e.g. cinnabar HgS(s)), dissolution of Hg non-aqueous liquid phase (NAPL), sunlight-driven Hg(II) reduction to Hg(0), Hg(0) diffusion in the gas phase and volatilization, DOM sorption to soil minerals. Colloid facilitated transport is implicitly accounted for by solute transport of Hg-DOM complexes. Because we focused on soil systems having a high Hg contamination, some processes showing relatively smaller Hg fluxes could be neglected such as vegetation uptake and atmospheric wet and dry deposition. NAPL migration and entrapment is not modelled, as pollution is assumed to be historical and only residual NAPL to be present. Mercury methylation and demethylation was not implemented, because it could be neglected in an oxidising environment. However, if the model is to be tested in more reducing conditions (e.g. shallow groundwater table), methyl- and dimethylmercury formation can be non negligible. Using 50 year time series of daily weather observations in Dessel (Belgium) and a typical sandy soil with deep groundwater (free drainage, oxic conditions), a sensitivity analysis was performed to assess the relative importance of processes and parameters within the model. We used the elementary effects method (Morris, 1991; Campolongo et al., 2007), which draws trajectories across the parameter space to derive information on the global sensitivity of the selected input parameters. The impact of different initial contamination phases (solid, NAPL, aqueous and combinations of these) was also tested. Simulation results are presented in terms of (i) Hg volatilized to the atmosphere; (ii) Hg leached out of the soil profile; (iii) Hg still present in the soil horizon originally polluted; and (iv) Hg still present in the soil profile but below the original contaminated horizon. Processes and parameters identified as critical based on the sensitivity analysis differ from one scenario to the other ; depending on pollution type (cinnabar, NAPL, aqueous Hg), on the indicator assessed and on time (after 5, 25 or 50 years). However, in general DOM in soil water was the most critical parameter. Other important parameters were those related to Hg sorption on SOM (thiols, and humic and fulvic acids), and to Hg complexation with DOM. Initial Hg concentration was also often identified as a sensitive parameter. Interactions between factors and non linear effects as measured by the elementary effect method were generally important, but also dependent on the type of contamination and on time. No model calibration was performed until now. The numerical tool could greatly benefit from partial model calibration and/or validation. Ideally, detailed speciation data on a contaminated sites would be required, together with a good characterization of the pollution source. References : Blanc, P., Lassin, A. and Piantone, P. (2012), THERMODDEM a database devoted to waste minerals, BRGM, Orléans, France. http://thermoddem.brgm.fr Campolongo, F., Cariboni, J. and Saltelli, A. (2007), An effective screening design for sensitivity analysis of large models, Environmental Modelling & Software 22(10): 1509-1518. Jacques, D. and Šimůnek, J. (2010), Notes on HP1 - a software package for simulating variably-saturated water flow, heat transport, solute transport and biogeochemistry in porous media, HP1 Version 2.2 SCK•CEN-BLG-1068, Waste & Disposal Department, SCK•CEN, Mol, Belgium: 113 p. Morris, M. D. (1991), Factorial Sampling Plans for Preliminary Computational Experiments, Technometrics 33(2): 161-174. Skyllberg, U. (2012), Chemical Speciation of Mercury in Soil and Sediment. Environmental Chemistry and Toxicology of Mercury, John Wiley & Sons, Inc.: 219-258.
McAdams, Brandon C.; Aiken, George R.; McKnight, Diane M.; Arnold, William A.; Chin, Yu-Ping
2018-01-01
We reassessed the molecular weight of dissolved organic matter (DOM) determined by high pressure size exclusion chromatography (HPSEC) using measurements made with different columns and various generations of polystyrenesulfonate (PSS) molecular weight standards. Molecular weight measurements made with a newer generation HPSEC column and PSS standards from more recent lots are roughly 200 to 400 Da lower than initial measurements made in the early 1990s. These updated numbers match DOM molecular weights measured by colligative methods and fall within a range of values calculated from hydroxyl radical kinetics. These changes suggest improved accuracy of HPSEC molecular weight measurements that we attribute to improved accuracy of PSS standards and changes in the column packing. We also isolated DOM from wetlands in the Prairie Pothole Region (PPR) using XAD-8, a cation exchange resin, and PPL, a styrene-divinylbenzene media, and observed little difference in molecular weight and specific UV absorbance at 280 nm (SUVA280) between the two solid phase extraction resins, suggesting they capture similar DOM moieties. PPR DOM also showed lower SUVA280 at similar weights compared to DOM isolates from a global range of environments, which we attribute to oxidized sulfur in PPR DOM that would increase molecular weight without affecting SUVA280.
Wei, Qunshan; Wang, Dongsheng; Wei, Qia; Qiao, Chunguang; Shi, Baoyou; Tang, Hongxiao
2008-06-01
Dissolved organic matter (DOM) and its potential to form disinfection by-products (DBPs) during drinking water treatment raise challenges to water quality control. Understanding both chemical and physical characteristics of DOM in source waters is key to better water treatment. In this study, the DOM from four typical source waters in China was fractionated by XAD resin adsorption (RA) and ultrafiltration (UF) techniques. The trihalomethane formation potential (THMFP) of all fractions in the DOM were investigated to reveal the major THM precursors. The fraction distributions of DOM could be related to their geographical origins in a certain extent. The dominant chemical fraction as THM precursors in the DOM from south waters (East-Lake reservoir in Shenzhen and Peal rivers in Guangzhou) was hydrophobic acid (HoA). The size fraction with molecular weight (MW) <1 kDa in both south waters had the highest THMFP. The results of cluster analysis showed that the parameters of fractions including DOC percentage (DOC%), UV254%, SUVA254 (specific UV254 absorbance) and THMFP were better for representing the differences of DOM from the studied waters than specific THMFP (STHMFP). The weak correlation between SUVA254 and STHMFP for either size or XAD fractions suggests that whether SUVA254 can be used as an indicator for the reactivity of THM formation is highly dependent on the nature of organic matter.
Chen, Xingxuan; Wang, Xiahui; Xue, Yiyun; Zhang, Tian-Ao; Li, Yuhao; Hu, Jiajun; Tsang, Yiu Fai; Zhang, Hongsheng; Gao, Min-Tian
2018-06-01
Rice straw can be used as carbon sources for lactic acid fermentation. However, only a small amount of lactic acid is produced even though Rhizopus oryzae can consume glucose in rice straw-derived hydrolysates. This study correlated the inhibitory effect of rice straw with rice straw-derived dissolved organic matter (DOM). Lactic acid fermentations with and without DOM were conducted to investigate the effect of DOM on lactic acid fermentation by R. oryzae. Fermentation using control medium with DOM showed a similar trend to fermentation with rice straw-derived hydrolysates, showing that DOM contained the major inhibitor of rice straw. DOM assay indicated that it mainly consisted of polyphenols and polysaccharides. The addition of polyphenols and polysaccharides derived from rice straw confirmed that lactic acid fermentation was promoted by polysaccharides and significantly inhibited by polyphenols. The removal of polyphenols also improved lactic acid production. However, the loss of polysaccharides during the removal of polyphenols resulted in low glucose consumption. This study is the first to investigate the effects of rice straw-derived DOM on lactic acid fermentation by R. oryzae. The results may provide a theoretical basis for identifying inhibitors and promoters associated with lactic acid fermentation and for establishing suitable pretreatment methods. Copyright © 2018 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
Hatchett, Andrew; Berry, Christopher; Oliva, Claudia; Wiley, Douglas; St. Hilaire, Jacob; LaRochelle, Alex
2016-01-01
This investigation sought to examine the effect that a chocolate milk solution (CMS) and a raw milk solution (RMS) had on lower extremity induced delayed onset of muscle soreness (DOMS). Twenty trained male participants completed a set of questionnaires, prior to completing a lower extremity DOMS protocol, to determine the level of discomfort and functional limitations. Once the DOMS protocol was completed, participants were randomly assigned to either the CM or RM group. Once assigned, participants ingested 240 mL of the respective solution and completed the same set of questionnaires immediately post, 24-, 48- and 72-h post DOMS protocol. Additionally, for 10 days post-ingestion participants were contacted to learn if any negative effects were experienced as a result of ingesting either solution. Both groups reported an increase in lower extremity discomfort at each data collection interval post-DOMS protocol (post, 24-, 48- and 72-h). Participants assigned to the RM group reported high discomfort post and a relative decline in discomfort from immediately post-DOMS protocol to 72-h post. The RMS group reported substantially less discomfort at 72-h when compared to the CMS group. Ingestion of a raw milk solution immediately post strength exercise can substantially reduce the level of self-reported discomfort associated with DOMS. PMID:29910267
Zhang, Tao; Wang, Xuchen
2017-12-15
Release and microbial degradation of dissolved organic matter (DOM) and chromophoric dissolved organic matter (CDOM) from the macroalgae Ulva prolifera were studied in laboratory incubation experiments. The release of DOM and CDOM from Ulva prolifera was a rapid process, and hydrolysis played an important role in the initial leaching of the organic compounds from the algae. Bacterial activity enhanced the release of DOM and CDOM during degradation of the algae and utilization of the released organic compounds. It is calculated that 43±2% of the C and 63±3% of the N from Ulva prolifera's biomass were released during the 20-day incubation, and 65±3% of the released C and 87±4% of the released N were utilized by bacteria. In comparison, only 18±1% of the algae's C and 17±1% of its N were released when bacterial activities were inhibited. The fluorescence characteristics of the CDOM indicate that protein-like DOM was the major organic component released from Ulva prolifera that was highly labile and biodegradable. Bacteria played an important role in regulating the chemical composition and fluorescence characteristics of the DOM. Our study suggests that the release of DOM from Ulva prolifera provides not only major sources of organic C and N, but also important food sources to microbial communities in coastal waters. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Zhang, Xiaowen; Hutchings, Jack A.; Bianchi, Thomas S.; Liu, Yina; Arellano, Ana R.; Schuur, Edward A. G.
2017-04-01
Temperature rise in the Arctic is causing deepening of active layers and resulting in the mobilization of deep permafrost dissolved organic matter (DOM). However, the mechanisms of DOM mobilization from Arctic soils, especially upper soil horizons which are drained most frequently through a year, are poorly understood. Here we conducted a short-term leaching experiment on surface and deep organic active layer soils, from the Yukon River basin, to examine the effects of DOM transport on bulk and molecular characteristics. Our data showed a net release of DOM from surface soils equal to an average of 5% of soil carbon. Conversely, deep soils percolated with surface leachates retained up to 27% of bulk DOM while releasing fluorescent components (up to 107%), indicating selective release of aromatic components (e.g., lignin and tannin), while retaining nonchromophoric components, as supported by spectrofluorometric and ultrahigh-resolution mass spectroscopic techniques. Our findings highlight the importance of the lateral flux of DOM on ecosystem carbon balance as well as processing of DOM transport through organic active layer soils en route to rivers and streams. This work also suggests the potential role of leachate export as an important mechanism of C losses from Arctic soils, in comparison with the more traditional pathway from soil to atmosphere in a warming Arctic.
Variation of organic matter quantity and quality in streams at Critical Zone Observatory watersheds
Matthew P. Miller; Elizabeth W. Boyer; Diane M. McKnight; Michael G. Brown; Rachel S. Gabor; Carolyn Hunsaker; Lidiia Iavorivska; Shreeram Inamdar; Dale W. Johnson; Louis A. Kaplan; Henry Lin; William H. McDowell; Julia N. Perdrial
2016-01-01
The quantity and chemical composition of dissolved organic matter (DOM) in surface waters influence ecosystem processes and anthropogenic use of freshwater. However, despite the importance of understanding spatial and temporal patterns in DOM, measures of DOM quality are not routinely included as part of large-scale ecosystem monitoring programs and variations in...
NASA Astrophysics Data System (ADS)
Asmala, E.; Autio, R.; Kaartokallio, H.; Pitkänen, L.; Stedmon, C. A.; Thomas, D. N.
2013-06-01
The microbial degradation of dissolved organic carbon and nitrogen (DOC, DON) was studied in three boreal estuaries with contrasting land use patterns (Kiiminkijoki - natural forest and peatland; Kyrönjoki - agricultural; Karjaanjoki - mixed/urban). Bioassays conducted for 12-18 days were used in 3 seasons at in situ temperatures. Besides the bulk parameters, a suite of dissolved organic matter (DOM) quality parameters were investigated, including colored DOM (CDOM), fluorescent DOM and the molecular weight of DOM. Bioavailable DOC and DON pools varied significantly between the estuaries, from 7.9% in Kiiminkijoki to 10.6% in Karjaanjoki and from 5.5% in Kiiminkijoki to 21.9% in Kyrönjoki, respectively. DOM originating from catchment dominated by natural forests and peatlands had the lowest DOC and DON degradation rates, as well as the lowest proportions of biodegradable DOC and DON. A greater proportion of agricultural land in the catchment increased the bioavailability of DON, but not the bioavailability of DOC. Also DOM quality varied significantly between the estuaries, and DOM originating from the agricultural Kyrönjoki catchment sustained higher DOC and DON degradation rates and higher bacterial growth efficiency (BGE) compared to those of the natural forest and peat dominated Kiiminkijoki catchment. The quality of DOM, indicated by differences in CDOM, fluorescent DOM and molecular weight, varied between estuaries with differing land use and was concluded to be major driver of BGE of these systems and thereafter to the microbial CO2 fluxes from the estuaries. The differences in BGE resulted in a 5-fold differences in the calculated daily bacterial CO2-emissions between the study estuaries due to bacterial activity, ranging from 40 kg C d-1 in Karjaanjoki estuary to 200 kg C d-1 in Kyrönjoki estuary. Two of the study systems (Karjaanjoki, mixed land use; Kyrönjoki, intensive agriculture) in which the DOM pool had lower DOC : DON ratio, smaller molecular weight and higher CDOM absorption spectral slope values resulted in higher proportion of the initial DOC and DON being transferred to microbial growth and therefore to the pelagic food web. The pristine, peatland and forest-dominated Kiiminkijoki catchment had the lowest BGE, and therefore proportionally highest CO2 fluxes. The slope coefficient S275-295 was a good proxy of molecular weight across estuaries and seasons, and also for different diagenetic stages of DOM during biological degradation.
NASA Astrophysics Data System (ADS)
Sleighter, R. L.; Hatcher, S. A.; Hatcher, P. G.
2006-12-01
The ultrahigh resolving power of FTICR-MS allows for the intense characterization of dissolved organic matter (DOM). DOM is the largest reactive component of the global carbon cycle, and an improved understanding of its composition is necessary to determine the transport and eventual fate of pollutants. The seasonal and spatial variations in DOM composition are investigated by taking surface water samples from five different sampling sites, four times a year. Water sampling begins at the Dismal Swamp in North Carolina, continues north up the Elizabeth River to the Chesapeake Bay, and concludes approximately ten miles off the coast in the Atlantic Ocean. DOM was extracted from the water samples using C18 extraction disks and were prepared in 50:50 methanol:water. Ammonium hydroxide was added prior to nanospray in order to solubilize the DOM as well as to increase the ionization efficiency. The samples were continuously infused into the Apollo II ion source with an Advion TriVersa NanoMate system of a Bruker 12 Tesla Apex QE FTICR-MS with resolving powers exceeding 400,000. All samples were analyzed in negative ion mode and were externally and internally calibrated prior to data analysis. Our DOM mass spectra consist of a multitude of peaks spanning the range of 200-850 m/z. Complexity is apparent from the detection of up to 20 peaks per nominal mass at nearly every mass throughout that range. A molecular formula calculator generated molecular formula matches from which van Krevelen plots were constructed for characterization purposes. A wide range of molecules were observed each containing oxygen, sulfur and nitrogen functional groups. We utilize the van Krevelen diagram to assist in clustering the molecules according to their functional group compositions. To test the hypothesis that formation of adducts to DOM serve to protect peptides from bacterial degradation, microcosm experiments were performed with a small isotopically enriched peptide, GGGR. This peptide was predicted to covalently bond to DOM via a Michael addition reaction or Schiff base formation. Following the incubation of GGGR with DOM, adduct formation was examined by FTICR-MS. Covalent binding of GGGR to DOM is a process that may reduce the bioavailability and degradation of proteins in the environment and could potentially lead to their preservation on longer time scales. FTICR-MS is clearly a powerful technique used to examine the complex composition of DOM and allow for advancements in the areas of aquatic and analytical chemistry.
Welikala, Dharshika; Hucker, Cameron; Hartland, Adam; Robinson, Brett H; Lehto, Niklas J
2018-05-01
The accumulation of Cd in soils worldwide has increased the demand for methods to reduce the metal's plant bioavailability. Organic matter rich soil amendments have been shown to be effective in achieving this. However, it is not known how long these amendments can retain the Cd, and whether dissolved organic matter (DOM) released from them can enhance the metal's mobility in the environment. In this study we sought to test the Cd binding capacity of various organic soil amendments, and evaluate differences in characteristics of the DOM released to see if they can explain the lability of the Cd-DOM complexes. We collected ten organic soil amendments from around New Zealand: five different composts, biosolids from two sources, two types of peat and spent coffee grounds. We characterised the amendments' elemental composition and their ability to bind the Cd. We then selected two composts and two peats for further tests, where we measured the sorption of Ni or Zn by the amendments. We analysed the quality of the extracted DOM from the four amendments using 3D Excitation Emission Matrix analysis, and tested the lability of the metal-DOM complexes using an adapted diffusive gradients in thin-films (DGT) method. We found that composts bound the most Cd and that the emergent Cd-DOM complexes were less labile than those from the peats. Ni-DOM complexes were the least labile. The aromaticity of the extracted DOM appears to be an important factor in determining the lability of Ni complexes, but less so for Zn and Cd. Copyright © 2018 Elsevier Ltd. All rights reserved.
Li, Yan; Harir, Mourad; Lucio, Marianna; Gonsior, Michael; Koch, Boris P; Schmitt-Kopplin, Philippe; Hertkorn, Norbert
2016-12-01
Deciphering the molecular codes of dissolved organic matter (DOM) improves our understanding of its role in the global element cycles and its active involvement in ecosystem services. This study demonstrates comprehensive characterization of DOM by an initial polarity-based stepwise solid phase extraction (SPE) with single methanol elution of the cartridges, but separate collection of equal aliquots of eluate. The reduction of molecular complexity in the individual DOM fractions attenuates intermolecular interactions and substantially increases the disposable resolution of any structure selective characterization. Suwannee River DOM (SR DOM) was used to collect five distinct SPE fractions with overall 91% DOC recovery. Optical spectroscopy (UV and fluorescence spectroscopy), high-field Fourier transform ion cyclotron mass spectrometry (FTICR MS) and nuclear magnetic resonance (NMR) spectroscopy showed analogous hierarchical clustering among the five eluates corroborating the robustness of this approach. Two abundant moderately hydrophobic fractions contained most of the SR DOM compounds, with substantial proportions of aliphatics, carboxylic-rich alicyclic molecules, carbohydrates and aromatics. A minor early eluting hydrophilic fraction was highly aliphatic and presented a large diversity of alicyclic carboxylic acids, whereas the two late eluting, minor hydrophobic fractions appeared as a largely defunctionalized mixture of aliphatic molecules. Comparative mass analysis showed that fractionation of SR DOM was governed by multiple molecular interactions depending on O/C ratio, molecular weight and aromaticity. The traditional optical indices SUVA 254 and fluorescence index (FI) indicated the relative aromaticity in agreement with FTICR mass and NMR spectra; the classical fluorescent peaks A and C were observed in all four latter eluates. This versatile approach can be easily expanded to preparative scale under field conditions, and transferred to different DOM sources and SPE conditions. Copyright © 2016 Elsevier Ltd. All rights reserved.
Biogeochemical Processes That Produce Dissolved Organic Matter From Wheat Straw
Wershaw, Robert L.; Rutherford, David W.; Leenheer, Jerry A.; Kennedy, Kay R.; Cox, Larry G.; Koci, Donald R.
2003-01-01
The chemical reactions that lead to the formation of dissolved organic matter (DOM) in natural waters are poorly understood. Studies on the formation of DOM generally are complicated because almost all DOM isolates have been derived from mixtures of plant species composed of a wide variety of different types of precursor compounds for DOM formation. This report describes a study of DOM derived mainly from bales of wheat straw that had been left in a field for several years. During this period of time, black water from the decomposing wheat straw accumulated in pools in the field. The nuclear magnetic resonance and infrared spectra of the black water DOM indicate that it is composed almost entirely of lignin and carbohydrate polymeric units. Analysis by high-performance size-exclusion chromatography with multi-angle laser-light scattering detection indicates that the number average molecular weight of the DOM is 124,000 daltons. The results presented in this report indicate that the black water DOM is composed of hemicellulose chains cross-linked to lignin oligomers. These types of structures have been shown to exist in the hemicellulose matrix of plant cell walls. The cross-linked lignin-hemicellulose complexes apparently were released from partially degraded wheat-straw cell walls with little alteration. In solution in the black water, these lignin-hemicellulose polymers fold into compact globular particles in which the nonpolar parts of the polymer form the interiors of the particles and the polar groups are on the exterior surfaces of the particles. The tightly folded, compact conformation of these particles probably renders them relatively resistant to microbial degradation. This should be especially the case for the aromatic lignin structures that will be buried in the interiors of the particles.
NASA Astrophysics Data System (ADS)
Zhao, Y.; Raymond, P.
2012-12-01
Salt marshes are highly productive continental margin ecosystems, due to abundant solar radiation, water, and nutrients provided by tidal water. The unique bi-directional water movement introduced by tidal effect has a major impact on the formation and productivity of salt marsh and the material exchange between salt marsh and adjacent estuary. As a major term in carbon, energy, and nutrient budget for aquatic ecosystem, dissolved organic matter (DOM) has broad impact on food webs, carbon cycle, and nutrient retention/release. The frequency and period of DOM measurement is greatly increased by the use of reagent-free, low-cost, and reliable measurement with fluorescent and UV sensors measuring the chromophoric fraction of total DOM. Although fluorescent sensors can only measure concentration, UV absorbance in a wide spectral range (200nm-380nm) could potentially provide information on DOM composition. With the help of accurate direct real time water flux measurement and lab analysis of lability, DON, and 3D excitation emission matrix spectroscopy (EEMs), a database of DOM quantity and quality exchanged between several comparative salt marshes and Plum Island Sound, MA could be established to study the dynamics of DOM behavior in the salt marsh-estuary system. Understanding DOM source and fate is very important for evaluating the role of salt marsh in the carbon cycle and food web in coastal and global scale because coastal carbon cycling represents up to 21% of the ocean's primary production (Jahnke 2008). In addition, the approaches outlined in this proposal have broad applicability to study DOM quantity and quality in the material exchange theme between systems.
Guo, Dong-Hui; Yi, Yue-Yuan; Zhao, Lei; Guo, Wei-Dong
2012-06-01
The metabolic processes of jellyfish can produce dissolved organic matter (DOM) which will influence the functioning of the aquatic ecosystems, yet the optical properties of DOM released by jellyfish are unknown. Here we report the absorption and fluorescence properties of DOM released by a medusa species Black fordia virginica during a 24 h incubation experiment. Compared with the control group, an obvious increase in the concentrations of dissolved organic carbon (DOC), absorption coefficient (a280) and total dissolved nitrogen (TDN) was observed in incubation group. This clearly demonstrated the release of DOM, chromophoric DOM (CDOM) and dissolved nutrients by B. virginica which feed on enough of Artemia sp. before the experiment. The increase in spectral slope ratio (SR) and decrease in humification index (HIX) indicated that the released DOM was less-humified and had relatively lower molecular weight. Parallel factor analysis (PARAFAC) decomposed the fluorescence matrices of DOM into three humic-like components (C1-C3) and one protein-like component (C4). The Fmax of two components (C2: < 250, 295/386 nm; C4: 275/334 nm) with the emission wavelength < 400 nm increased significantly during the metabolic process of B. virginica. However, the Fmax of the other two components with the emission wavelength > 400 nm showed little changes. Thus, we suggested a zooplankton index (ZIX) to trace and characterize the DOM excreted by metabolic activity of zooplankton, which is calculated as the ratio of the sum of Fmax of all fluorescence components with the emission wavelength < 400 nm to the sum of Fmax of the other components with the emission wavelength > 400 nm.
Diel fluctuations in natural organic matter quality in an oligotrophic cave system
NASA Astrophysics Data System (ADS)
Brown, T.; Engel, A. S.; Pfiffner, S. M.
2016-12-01
Transformations of natural organic matter (NOM) and effects of photochemical degradation on dissolved organic matter (DOM) quality in recharge can be readily studied in cave systems with hydrologic connections between the surface and subsurface. Specifically, diel controls on photodegradation, fresh NOM production, and microbial C cycling were examined from recharge to resurgence of an oligotrophic cave stream in Kentucky. We used NOM isolation and spectroscopic analysis to concentrate and characterize DOM, and lipid profiling to evaluate microbial community structure. A hydrophilic fraction of DOM was isolated from bulk waters in the field using diethylaminoethyl (DEAE) weak anion exchange column chromatography, and isolates were characterized with FTIR spectroscopy to identify differences in macromolecular structure between surface and subsurface (downstream) DOM. Lipids from colloidal NOM (retained on 0.2 µm filter) and stream sediments were extracted using a modified Bligh Dyer method, segregated into classes, and converted to fatty acid methyl esters (FAME) for quantification and identification by GC-MS. During a late summer, low flow, 24-hour sampling event, the quality of surface water DOM recharged at night was 40% richer in aliphatic esters, 30% richer in phenols and alkanes, and elevated in polysaccharides compared with DOM recharged during daylight. IR absorptivity in nocturnal DOM isolates was an order of magnitude lower in the cave stream, with recalcitrant DOM interpreted from bands of aliphatic esters, alkanes, and organo-silicates. Phospholipid fatty acid (PLFA) profiles indicated that the abundance of polyunsaturated PLFA associated with algae, fungi, and higher plants decreased along the flowpath. Cave microbes exhibited elevated trans:cis ratios relative to surface communities, and the ratio increased at night. This suggested that downstream microbial communities existed in a state of reduced activity without inputs of photosynthates at night.
Impact of dissolved organic matter on the photolysis of the ionizable antibiotic norfloxacin.
Liang, Chen; Zhao, Huimin; Deng, Minjie; Quan, Xie; Chen, Shuo; Wang, Hua
2015-01-01
Norfloxacin (NOR), an ionizable antibiotic frequently used in the aquaculture industry, has aroused public concern due to its persistence, bacterial resistance, and environmental ubiquity. Therefore, we investigated the photolysis of different species of NOR and the impact of a ubiquitous component of natural water - dissolved organic matter (DOM), which has a special photochemical activity and normally acts as a sensitizer or inhibiter in the photolysis of diverse organics; furthermore, scavenging experiments combined with electron paramagnetic resonance (EPR) were performed to evaluate the transformation of NOR in water. The results demonstated that NOR underwent direct photolysis and self-sensitized photolysis via hydroxyl radical (OH) and singlet oxygen ((1)O2) based on the scavenging experiments. In addition, DOM was found to influence the photolysis of different NOR species, and its impact was related to the concentration of DOM and type of NOR species. Photolysis of cationic NOR was photosensitized by DOM at low concentration, while zwitterionic and anionic NOR were photoinhibited by DOM, where quenching of OH predominated according to EPR experiments, accompanied by possible participation of excited triplet-state NOR and (1)O2. Photo-intermediate identification of different NOR species in solutions with/without DOM indicated that NOR underwent different photodegradation pathways including dechlorination, cleavage of the piperazine side chain and photooxidation, and DOM had little impact on the distribution but influenced the concentration evolution of photolysis intermediates. The results implied that for accurate ecological risk assessment of emerging ionizable pollutants, the impact of DOM on the environmental photochemical behavior of all dissociated species should not be ignored. Copyright © 2014. Published by Elsevier B.V.
Paquette, Max R; Peel, Shelby A; Schilling, Brian K; Melcher, Dan A; Bloomer, Richard J
2017-06-01
Runners often experience delayed onset muscle soreness (DOMS), especially of the knee extensors, following prolonged running. Sagittal knee joint biomechanics are altered in the presence of knee extensor DOMS but it is unclear how muscle soreness affects lower limb biomechanics in other planes of motion. The purpose of this study was to assess the effects of knee extensor DOMS on three-dimensional (3D) lower limb biomechanics during running. Thirty-three healthy men (25.8 ± 6.8 years; 84.1 ± 9.2 kg; 1.77 ± 0.07 m) completed an isolated eccentric knee extensor damaging protocol to elicit DOMS. Biomechanics of over-ground running at a set speed of 3.35 m s -1 ±5% were measured before eccentric exercise (baseline) and, 24 h and 48 h following exercise in the presence of knee extensor DOMS. Knee flexion ROM was reduced at 48 h (P = 0.01; d = 0.26), and peak knee extensor moment was reduced at 24 h (P = 0.001; d = 0.49) and 48 h (P < 0.001; d = 0.68) compared to baseline. Frontal and transverse plane biomechanics were unaffected by the presence of DOMS (P > 0.05). Peak positive ankle and knee joint powers and, peak negative knee joint power were all reduced from baseline to 24 h and 48 h (P < 0.05). These findings suggest that knee extensor DOMS greatly influences sagittal knee joint angular kinetics and, reduces sagittal power production at the ankle joint. However, knee extensor DOMS does not affect frontal and transverse plane lower limb joint biomechanics during running.
Production and transformation of dissolved neutral sugars and amino acids by bacteria in seawater
NASA Astrophysics Data System (ADS)
Jørgensen, L.; Lechtenfeld, O. J.; Benner, R.; Middelboe, M.; Stedmon, C. A.
2014-10-01
Dissolved organic matter (DOM) in the ocean consists of a heterogeneous mixture of molecules, most of which are of unknown origin. Neutral sugars and amino acids are among the few recognizable biomolecules in DOM, and the molecular composition of these biomolecules is shaped primarily by biological production and degradation processes. This study provides insight into the bioavailability of biomolecules as well as the chemical composition of DOM produced by bacteria. The molecular compositions of combined neutral sugars and amino acids were investigated in DOM produced by bacteria and in DOM remaining after 32 days of bacterial degradation. Results from bioassay incubations with natural seawater (sampled from water masses originating from the surface waters of the Arctic Ocean and the North Atlantic Ocean) and artificial seawater indicate that the molecular compositions following bacterial degradation are not strongly influenced by the initial substrate or bacterial community. The molecular composition of neutral sugars released by bacteria was characterized by a high glucose content (47 mol %) and heterogeneous contributions from other neutral sugars (3-14 mol %). DOM remaining after bacterial degradation was characterized by a high galactose content (33 mol %), followed by glucose (22 mol %) and the remaining neutral sugars (7-11 mol %). The ratio of D-amino acids to L-amino acids increased during the experiments as a response to bacterial degradation, and after 32 days, the D/L ratios of aspartic acid, glutamic acid, serine and alanine reached around 0.79, 0.32, 0.30 and 0.51 in all treatments, respectively. The striking similarity in neutral sugar and amino acid compositions between natural (representing marine semi-labile and refractory DOM) and artificial (representing bacterially produced DOM) seawater samples, suggests that microbes transform bioavailable neutral sugars and amino acids into a common, more persistent form.
Fang, Zhi; He, Chen; Li, Yongyong; Chung, Keng H; Xu, Chunming; Shi, Quan
2017-01-01
Although the progress of high resolution mass spectrometry in the past decade has enabled the molecular characterization of dissolved organic matter (DOM) in water as a whole, fractionation of DOM is necessary for a comprehensive characterization due to its super-complex nature. Here we proposed a method for the fractionation of DOM in a wastewater based on solubility and acidic-basic properties. Solid phase extraction (SPE) cartridges with reversed phase retention and ion-exchange adsorption capacities, namely MAX and MCX, were used in succession to fractionate a petroleum refinery wastewater into four fractions: hydrophobic acid (HOA), hydrophobic neutral (HON), hydrophobic base (HOB), and hydrophilic substance (HIS) fractions. According to the total organic carbon (TOC) analysis, 72.6% (in term of TOC) of DOM was extracted in hydrophobic fractions, in which HON was the most abundant. Hydrophobic extracts were characterized by negative and positive ion electrospray (ESI) Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS), respectively. Compounds with multiple oxygen atoms were predominant in the HOA, which were responded strongly in the negative ESI MS. Nitrogen containing compounds were the major detected species by positive ion ESI in all hydrophobic fractions. The molecular composition of the DOM were discussed based on the FT-ICR MS results. The fractionation provided salt free samples which enables the direct analysis of the fractions by ESI and a deep insight into the molecular composition of DOM in the wastewater. The method is potential for routine evaluation of DOM in industry wastewaters, as well as environmental water samples. Copyright © 2016. Published by Elsevier B.V.
Molecular Alteration of Marine Dissolved Organic Matter under Experimental Hydrothermal Conditions
NASA Astrophysics Data System (ADS)
Hawkes, J. A.; Hansen, C. T.; Goldhammer, T.; Bach, W.; Dittmar, T.
2016-02-01
Marine dissolved organic matter (DOM) is a large (660 Pg) pool of reduced carbon that is subject to thermal alteration in hydrothermal systems and sedimentary basins. In natural hydrothermal systems, DOM is almost completely removed, but the mechanism, kinetics and temperature dependence of this removal have not been studied to date. We investigated molecular-level changes to DOM that was solid-phase extracted (SPE-DOM) from the deep ocean of the North Pacific Ocean. This complex molecular mixture was experimentally exposed to temperatures between 100-380 °C over the course of two weeks in artificial seawater, and was then characterized on a molecular level via ultrahigh-resolution mass spectrometry (FTICRMS & Orbitrap). Almost 93% of SPE-DOM was removed by the treatment at 380 °C, and this removal was accompanied by a consistent pattern of SPE-DOM alteration across the temperatures studied, which can likely be extrapolated down to temperatures around 68 °C. Higher molecular weight and more oxygen rich compounds were preferentially degraded, suggesting that decarboxylation and dehydration of carboxylic acid and alcohol groups are the most rapid degradation mechanisms. Nitrogen containing compounds followed the same overall trends as those containing just C, H and O up to 300 °C. Above this temperature, the most highly degraded samples contained very little of the original character of marine DOM, instead being mainly composed of very low intensity N- and S- containing molecules with a high H:C ratio (>1.5). Our experiments were conducted without a sedimentary or mineral phase, and demonstrate that profound molecular alteration and almost complete removal of marine SPE-DOM requires nothing more than heating in a seawater matrix.
NASA Astrophysics Data System (ADS)
Parot, Jérémie; Parlanti, Edith; Guéguen, Céline
2015-04-01
Dissolved organic matter (DOM) is a key parameter in the fate, transport and mobility of inorganic and organic pollutants in natural waters. Excitation emission matrix (EEM) spectra coupled to parallel factor analysis (PARAFAC) provide insights on the main fluorescent DOM constituents. However, the molecular structures associated with PARAFAC DOM remain poorly understood. In this study, DOM from rivers, marshes and algal culture was characterized by EEM-PARAFAC and electrospray ionization Fourier transform mass spectrometry (ESI-FT-MS, Orbitrap Q Exactive). The high resolution of the Orbitrap (i.e. 140,000) allowed us to separate unique molecular species from the complex DOM mixtures. The majority of chemical species were found within the mass to charge ratio (m/z) 200 to 400. Weighted averages of neutral mass were 271.254, 236.480, 213.992Da for river, marsh and algal-derived DOM, respectively, congruent with previous studies. The assigned formula were dominated by CHO in humic-rich river waters whereas N- and S-containing compounds were predominant in marsh and algal samples. Marsh consisted of N and S-containing compounds, which were presumed to be linear alkylbenzene sulfonates. And the double bond equivalent (DBE) was higher in the marsh and in comparison was lower in the algal culture. Kendrick masses, used to identify homologous compounds differing only by a number of base units in high resolution mass spectra, and Van Krevelen diagrams, plot of molar ratio of hydrogen to carbon (H/C) versus oxygen to carbon (O/C), will be discussed in relation to PARAFAC components to further discriminate freshwater systems based on the origin and maturity of DOM. Together, these results showed that ESI-FT-MS has a great potential to distinguish freshwater DOM at the molecular level without any fractionation.
Batista, E D; Detmann, E; Valadares Filho, S C; Titgemeyer, E C; Valadares, R F D
2017-08-01
In ruminants, urea recycling is considered an evolutionary advantage. The amount of urea recycled mainly depends of the nitrogen (N) intake and the amount of organic matter (OM) digested in the rumen. Because recycled N contributes to meeting microbial N requirements, accurate estimates of urea recycling can improve the understanding of efficiency of N utilization and N losses to the environment. The objective of this study was to evaluate urea kinetics and microbial usage of recycled urea N in ruminants using a meta-analytical approach. Treatment mean values were compiled from 25 studies with ruminants (beef cattle, dairy cows and sheep) which were published from 2001 to 2016, totalling 107 treatment means. The data set was analyzed according to meta-analysis techniques using linear or non-linear mixed models, taking into account the random variations among experiments. Urea N synthesized in the liver (UER) and urea N recycled to the gut (GER) linearly increased (P<0.001) as N intake (g/BW0.75) increased, with increases corresponding to 71.5% and 35.2% of N intake, respectively. The UER was positively associated (P<0.05) with dietary CP concentration and the ratio of CP to digestible OM (CP:DOM). Maximum curvature analyses identified 17% dietary CP as the point where there was a prominent increase in hepatic synthesis of urea N, likely due to an excess of dietary N leading to greater ammonia absorption. The GER:UER decreased with increasing dietary CP concentration (P<0.05). At dietary CP⩾19%, GER:UER reached near minimal values. The fraction of UER eliminated as urinary urea N and the contribution of urea N to total urinary N were positively associated with dietary CP (P<0.05), both reaching values near the plateau when dietary CP was 17%. The fractions of GER excreted in the feces and utilized for anabolism decreased, whereas the fraction of GER returned to the ornithine cycle increased with dietary CP concentration (P<0.05). Recycled urea N assimilated by ruminal microbes (as a fraction of GER) decreased as dietary CP and CP:DOM increased (P<0.05). The efficiency of microbial assimilation of recycled urea N was near plateau values at 194 g CP/kg DOM. The models obtained in this study contribute to the knowledge on N utilization, and they could be used in feeding models to predict urea recycling and thus to improve formulation of diets to reduce N losses that contribute to air and water pollution.
Autio, Iida; Soinne, Helena; Helin, Janne; Asmala, Eero; Hoikkala, Laura
2016-04-01
We studied the effects of catchment characteristics (soil type and land use) on the concentration and quality of dissolved organic matter (DOM) in river water and on the bacterial degradation of terrestrial DOM. The share of organic soil was the strongest predictor of high concentrations of dissolved organic carbon, nitrogen, and phosphorus (DOC, DON, and DOP, respectively), and was linked to DOM quality. Soil type was more important than land use in determining the concentration and quality of riverine DOM. On average, 5-9 % of the DOC and 45 % of the DON were degraded by the bacterial communities within 2-3 months. Simultaneously, the proportion of humic-like compounds in the DOM pool increased. Bioavailable DON accounted for approximately one-third of the total bioavailable dissolved nitrogen, and thus, terrestrial DON can markedly contribute to the coastal plankton dynamics and support the heterotrophic food web.
Effects of watershed history on dissolved organic matter characteristics in headwater streams
Youhei Yamashita; Brian D. Kloeppel; Jennifer Knoepp; Gregory L. Zausen; Rudolf Jaffe'
2011-01-01
Dissolved organic matter (DOM) is recognized as a major component in the global carbon cycle and is an important driver in aquatic ecosystem function. Climate, land use, and forest cover changes all impact stream DOM and alter biogeochemical cycles in terrestrial environments. We determined the temporal variation in DOM quantity and quality in headwater streams at a...
Dissolved Organic Matter (DOM) Export from Watersheds to Coastal Oceans
NASA Astrophysics Data System (ADS)
Chen, R. F.; Gardner, G. B.; Peri, F.
2016-02-01
Dissolved organic matter (DOM) from terrestrial plants and soils is transported by surface waters and groundwaters to coastal ocean waters. Along the way, photochemical and biological degradation can remove DOM, and in situ processes such as phytoplankton leaching and sediment sources can add to the DOM in the river water. Wetlands, especially coastal wetlands can add significant amounts of DOM that is carried by rivers and is exported through estuaries to coastal systems. We will present observational data from a variety of coastal systems (San Francisco Bay, Boston Harbor, Chesapeake Bay, Hudson River, the Mississippi River, and a small salt marsh in the Gulf of Mexico). High resolution measurements of chromophoric dissolved organic matter (CDOM) can be correlated with dissolved organic carbon (DOC) so can be used to estimate DOC in specific systems and seasons. Gradients in CDOM/DOC combined with water fluxes can be used to estimate DOC fluxes from a variety of coastal watersheds to coastal systems. Influences of land use, system size, residence time, DOM quality, and photochemical and biological degradation will be discussed. The significance of coastal wetlands in the land-to-ocean export of DOC will be emphasized.
Changes of Photochemical Properties of Dissolved Organic Matter During a Hydrological Year
NASA Astrophysics Data System (ADS)
Porcal, P.; Dillon, P. J.
2009-05-01
The fate of dissolved organic matter (DOM) in lakes and streams is significantly affected by photochemical transformation of DOM. A series of laboratory photochemical experiments has been conducted to describe long term changes in photochemical properties of DOM. The stream samples used in this study originated from three different watersheds in Dorset area (Ontario, Canada), the first watershed has predominantly coniferous cove, the second one is dominated by maple and birch, and a large wetland dominates to the third one. The first order kinetic constant rate was used as a suitable characteristic of photochemical properties of DOM. The higher rates were observed in samples from watershed dominated by coniferous forest while the lower rates were determined in deciduous forest. Kinetic rates from all three watersheds showed sinusoidal pattern during the hydrological year. The rates increased steadily during autumn and winter and decreased during spring and summer. The highest values were observed during the spring melt events when the fresh DOM was flushed out from terrestrial sources. The minimum rate constants were in summer when the discharge was lower. The photochemical properties of DOM changes during the hydrological year and correspond to the seasonal cycles of terrestrial organic matter.
NASA Astrophysics Data System (ADS)
Wiegner, T. N.
2005-05-01
Dissolved organic matter (DOM) is metabolically important in streams. Its bioavailability is influenced by organic matter sources to streams and inorganic nutrient availability. As forest canopies and soils develop over time, organic matter inputs to streams should switch from algal to watershed sources. Across this succession gradient, nutrient limitation should also change. This study examines how chemical composition and bioavailability of DOM from tropical montane rainforest streams on Hawaii change across a geologic age gradient from 4 ky to 150 ky. Dissolved organic C (DOC) and N (DON) concentrations, chemical characteristics, and bioavailability varied with site age. With increasing stream age, DOC and DON concentrations, DOM aromaticity, and the C:N of the stream DOM increased. Changes in stream DOM chemistry and inorganic nutrient availability affected DOM bioavailability. Fifty percent of the DOC from the 4 ky site was bioavailable, where little to none was bioavailable from the older streams. Inorganic nutrient availability did not affect DOC bioavailability. In contrast, DON bioavailability was similar (12%) across sites and was affected by inorganic nutrient availability. This study demonstrates that the chemistry and metabolism of streams draining forests change with ecosystem age and development.
Sánchez-Marín, Paula; Santos-Echeandía, Juan; Nieto-Cid, Mar; Alvarez-Salgado, Xosé Antón; Beiras, Ricardo
2010-01-31
Water samples of contrasting origin, including natural seawater, two sediment elutriates and sewage-influenced seawater, were collected and obtained to examine the effect of the dissolved organic matter (DOM) present on metal bioavailability. The carbon content (DOC) and the optical properties (absorbance and fluorescence) of the coloured DOM fraction (CDOM) of these materials were determined. Cu and Pb complexation properties were measured by anodic stripping voltammetry (ASV) and the effect of DOM on Cu and Pb bioavailability was studied by means of the Paracentrotus lividus embryo-larval bioassay. Sediment elutriates and sewage-influenced water (1) were enriched 1.4-1.7 times in DOC; (2) absorbed and reemitted more light; and (3) presented higher Cu complexation capacities (L(Cu)) than the natural seawater used for their preparation. L(Cu) varied from 0.08 microM in natural seawater to 0.3 and 0.5 microM in sediment elutriates and sewage-influenced water, respectively. Differences in DOC, CDOM and Cu complexation capacities were reflected in Cu toxicity. DOM enriched samples presented a Cu EC(50) of 0.64 microM, significantly higher than the Cu EC(50) of natural and artificial seawater, which was 0.38 microM. The protecting effect of DOM on Cu toxicity greatly disappeared when the samples were irradiated with high intensity UV-light. Cu toxicity could be successfully predicted considering ASV-labile Cu concentrations in the samples. Pb complexation by DOM was only detected in the DOM-enriched samples and caused little effect on Pb EC(50). This effect was contrary for both elutriates: one elutriate reduced Pb toxicity in comparison with the control artificial seawater, while the other increased it. UV irradiation of the samples caused a marked increase in Pb toxicity, which correlated with the remaining DOC concentration. DOM parameters were related to Cu speciation and toxicity: good correlations were found between DOC and Cu EC(50), while L(Cu) correlated better with the fluorescence of marine humic substances. The present results stress the importance of characterizing not only the amount but also the quality of seawater DOM to better predict ecological effects from total metal concentration data. Copyright (c) 2009 Elsevier B.V. All rights reserved.
Rosario-Ortiz, Fernando L; Snyder, Shane A; Suffet, I H
2007-10-01
The characterization of dissolved organic matter (DOM) in drinking water sources is important as this material contributes to the formation of disinfection by-products (DBPs) and affects how water treatment unit operations are optimized. Drinking water utilities often draw water from sources impacted by multiple tributaries, with possible shifts in DOM concentrations and reactivity over time, depending on specific environmental conditions. In this study, results are presented on the characterization of DOM under varying ambient conditions from the four main tributaries of Lake Mead, a large reservoir in the southwest United States. The tributaries include the Las Vegas Wash (LVW), Muddy River (MR), Virgin River (VR) and the upper Colorado River (UCR). One additional sample was collected at the outflow of the reservoir (lower Colorado River (LCR)). The DOM was characterized by both bulk parameters (specific ultraviolet absorbance (SUVA)) and specific physicochemical properties, i.e. size, polarity and fluorescence. The analyses were performed emphasizing limited changes in its natural configuration by eliminating analytical preparation steps, excluding sample filtration (0.45 microm filter). Results indicate that each tributary had a different molecular weight distribution, as well as fluorescence properties, which helped in the identification of the relative source of DOM (allochthonous versus autochthonous). The largest apparent molecular weight distribution was observed for DOM samples collected at the MR site, which is fed mostly by groundwater seepage. The smallest apparent molecular weight was observed for DOM collected at the LCR site, suggesting that retention in the reservoir resulted in a decrease in molecular weight as a probable result of photo oxidation and microbial processes. Fluorescence analysis aided the differentiation of DOM by clearly identifying waters that were affected by microbial activity (LVW, UCR, and LCR), either by wastewater influence or by autochthonous processes, versus limited microbial influence (MR and VR). Polarity analysis revealed clear differences in the hydrophobic/hydrophilic nature between waters, including temporal differences within individual waters at a particular site. The DOM from the LVW and VR sites had higher hydrophobic character, as measured by retention onto non-polar sorbents. Additionally, the DOM collected at the LCR had the least hydrophobic character. This type of analysis would be beneficial to utilities who want to better understand and manage their source waters, especially in the evaluation of temporal variation within a watershed.
The molecular characteristics of pyrogenic organic materials and their aqueous leachates
NASA Astrophysics Data System (ADS)
Wozniak, A. S.; Hatcher, P.; Mitra, S.; Bostick, K. W.; Zimmerman, A. R.
2016-12-01
Pyrogenic organic matter (Py-OM), or black carbon, is known to impact soil chemistry, pollutant transport, regional and global carbon cycling, and climate. Py-OM is incorporated into soils via atmospheric deposition (e.g., from biomass, fossil fuel combustion) or direct applications by humans (e.g., biochars applied for agricultural production). Due to its presumed refractory and immobile nature, soil Py-OM is thought to be efficiently buried, sequestering atmospheric CO2. However, tracers of dissolved Py-OM (Py-DOM) have been detected in appreciable quantities in riverine, estuarine, and oceanic waters suggesting that Py-OM is more mobile in the environment than expected. The molecular characteristics of Py-OM are likely to be a controlling factor in the quantities and impacts of Py-DOM released to aqueous systems. Yet, little is known about the detailed molecular composition of these materials, let alone how those molecular characteristics vary with combustion conditions or are altered by environmental processes. Here, we examine oak and grass Py-OM (combusted over a range of temperatures), natural Py-OM (chars aged in the environment for variable lengths of time), and their Py-DOM leachates via nuclear magnetic resonance spectroscopy (NMR) and Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS). Multi-CP 13C NMR analyses of Py-OM materials and 1H NMR analyses of corresponding Py-DOM leachates reveal that Py-OM combustion temperature, environmental exposure, and molecular characteristics are reflected in Py-DOM quantities and characteristics. The relative amounts of aromatic C in Py-OM 1) decreases with environmental exposure, the relative oxygen-content in both Py-OM and Py-DOM, and the amount of Py-DOC released per g of Py-OC but 2) is positively correlated with combustion temperature and the relative contributions of acetate and aliphatic hydrogens (CH2) in Py-DOM. Preliminary FTICR-MS analyses show Py-DOM produced from oak at 400 °C to have lost carbohydrate-like compounds found in 250 °C Py-DOM and to contain an abundance of oxygenated aromatic compounds. Oak combusted at 650 °C produces Py-DOM characterized by high H/C, low O/C compounds. The results from this work will improve our understanding of Py-OM transport within and between terrestrial and aqueous systems.
Schwartz-Zimmermann, Heidi E; Hametner, Christian; Nagl, Veronika; Fiby, Iris; Macheiner, Lukas; Winkler, Janine; Dänicke, Sven; Clark, Erica; Pestka, James J; Berthiller, Franz
2017-12-01
The Fusarium mycotoxin deoxynivalenol (DON) is a frequent contaminant of cereal-based food and feed. Mammals metabolize DON by conjugation to glucuronic acid (GlcAc), the extent and regioselectivity of which is species-dependent. So far, only DON-3-glucuronide (DON-3-GlcAc) and DON-15-GlcAc have been unequivocally identified as mammalian DON glucuronides, and DON-7-GlcAc has been proposed as further DON metabolite. In the present work, qualitative HPLC-MS/MS analysis of urine samples of animals treated with DON (rats: 2 mg/kg bw, single bolus, gavage; mice: 1 mg/kg bw, single i.p. injection; pigs: 74 µg/kg bw, single bolus, gavage; cows: 5.2 mg DON/kg dry mass, oral for 13 weeks) revealed additional DON and deepoxy-DON (DOM) glucuronides. To elucidate their structures, DON and DOM were incubated with human (HLM) and rat liver microsomes (RLM). Besides the expected DON/DOM-3- and 15-GlcAc, minor amounts of four DON- and four DOM glucuronides were formed. Isolation and enzymatic hydrolysis of four of these compounds yielded iso-DON and iso-DOM, the identities of which were eventually confirmed by NMR. Incubation of iso-DON and iso-DOM with RLM and HLM yielded two main glucuronides for each parent compound, which were isolated and identified as iso-DON/DOM-3-GlcAc and iso-DON/DOM-8-GlcAc by NMR. Iso-DON-3-GlcAc, most likely misidentified as DON-7-GlcAc in the literature, proved to be a major DON metabolite in rats and a minor metabolite in pigs. In addition, iso-DON-8-GlcAc turned out to be one of the major DON metabolites in mice. DOM-3-GlcAc was the dominant DON metabolite in urine of cows and an important DON metabolite in rat urine. Iso-DOM-3-GlcAc was detected in urine of DON-treated rats and cows. Finally, DON-8,15-hemiketal-8-glucuronide, a previously described by-product of DON-3-GlcAc production by RLM, was identified in urine of DON-exposed mice and rats. The discovery of several novel DON-derived glucuronides in animal urine requires adaptation of the currently used methods for DON-biomarker analysis.
Wang, Ying; Zhao, Qinfu; Hu, Yanchen; Sun, Lizhang; Bai, Ling; Jiang, Tongying; Wang, Siling
2013-01-01
The goal of the present study was to compare the drug release properties and stability of the nanoporous silica with different pore architectures as a matrix for improved delivery of poorly soluble drugs. For this purpose, three dimensional ordered macroporous (3DOM) silica with 3D continuous and interconnected macropores of different sizes (200 nm and 500 nm) and classic mesoporous silica (ie, Mobil Composition of Matter [MCM]-41 and Santa Barbara Amorphous [SBA]-15) with well-ordered two dimensional (2D) cylindrical mesopores were successfully fabricated and then loaded with the model drug indomethacin (IMC) via the solvent deposition method. Scanning electron microscopy (SEM), N2 adsorption, differential scanning calorimetry (DSC), and X-ray diffraction (XRD) were applied to systematically characterize all IMC-loaded nanoporous silica formulations, evidencing the successful inclusion of IMC into nanopores, the reduced crystallinity, and finally accelerated dissolution of IMC. It was worth mentioning that, in comparison to 2D mesoporous silica, 3DOM silica displayed a more rapid release profile, which may be ascribed to the 3D interconnected pore networks and the highly accessible surface areas. The results obtained from the stability test indicated that the amorphous state of IMC entrapped in the 2D mesoporous silica (SBA-15 and MCM-41) has a better physical stability than in that of 3DOM silica. Moreover, the dissolution rate and stability of IMC loaded in 3DOM silica was closely related to the pore size of macroporous silica. The colorimetric 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and Cell Counting Kit (CCK)-8 assays in combination with direct morphology observations demonstrated the good biocompatibility of nanoporous silica, especially for 3DOM silica and SBA-15. The present work encourages further study of the drug release properties and stability of drug entrapped in different pore architecture of silica in order to realize their potential in oral drug delivery. PMID:24174875
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Xiaowen; Hutchings, Jack A.; Bianchi, Thomas S.
Temperature rise in the Arctic is causing deepening of active layers and resulting in the mobilization of deep permafrost dissolved organic matter (DOM). However, the mechanisms of DOM mobilization from Arctic soils, especially upper soil horizons which are drained most frequently through a year, are poorly understood. Here, we conducted a short-term leaching experiment on surface and deep organic active layer soils, from the Yukon River basin, to examine the effects of DOM transport on bulk and molecular characteristics. Our data showed a net release of DOM from surface soils equal to an average of 5% of soil carbon. Conversely,more » deep soils percolated with surface leachates retained up to 27% of bulk DOM-while releasing fluorescent components (up to 107%), indicating selective release of aromatic components (e.g. lignin, tannin), while retaining non-chromophoric components, as supported by spectrofluorometric and ultra high resolution mass spectroscopic techniques. Our findings highlight the importance of the lateral flux of DOM on ecosystem carbon balance as well as processing of DOM transport through organic active layer soils en route to rivers and streams. This work also suggests the potential role of leachate export as an important mechanism of C losses from Arctic soils, in comparison with the more traditional pathway from soil to atmosphere in a warming Arctic.« less
Huang, Shuang-bing; Wang, Yan-xin; Ma, Teng; Tong, Lei; Wang, Yan-yan; Liu, Chang-rong; Zhao, Long
2015-10-01
The sources of dissolved organic matter (DOM) in groundwater are important to groundwater chemistry and quality. This study examined similarities in the nature of DOM and investigated the link between groundwater DOM (GDOM) and sedimentary organic matter (SOM) from a lacustrine-alluvial aquifer at Jianghan Plain. Sediment, groundwater and surface water samples were employed for SOM extraction, optical and/or chemical characterization, and subsequent fluorescence excitation-emission matrix (EEM) and parallel factor analyses (PARAFAC). Spectroscopic properties of bulk DOM pools showed that indices indicative of GDOM (e.g., biological source properties, humification level, aromaticity and molecule mobility) varied within the ranges of those of two extracted end-members of SOM: humic-like materials and microbe-associated materials. The coexistence of PARAFAC compositions and the sustaining internal relationship between GDOM and extracted SOM indicate a similar source. The results from principal component analyses with selected spectroscopic indices showed that GDOM exhibited a transition trend regarding its nature: from refractory high-humification DOM to intermediate humification DOM and then to microbe-associated DOM, with decreasing molecular weight. Correlations of spectroscopic indices with physicochemical parameters of the groundwater suggested that GDOM was released from SOM and was modified by microbial diagenetic processes. The current study demonstrated the associations of GDOM with SOM from a spectroscopic viewpoint and provided new evidence supporting SOM as the source of GDOM. Copyright © 2015 Elsevier B.V. All rights reserved.
Harun, Sahana; Baker, Andy; Bradley, Chris; Pinay, Gilles
2016-01-01
Dissolved organic matter (DOM) was characterised in water samples sampled in the Lower Kinabatangan River Catchment, Sabah, Malaysia between October 2009 and May 2010. This study aims at: (i) distinguishing between the quality of DOM in waters draining palm oil plantations (OP), secondary forests (SF) and coastal swamps (CS) and, (ii) identifying the seasonal variability of DOM quantity and quality. Surface waters were sampled during fieldwork campaigns that spanned the wet and dry seasons. DOM was characterised optically by using the fluorescence Excitation Emission Matrix (EEM), the absorption coefficient at 340 nm and the spectral slope coefficient (S). Parallel Factor Analysis (PARAFAC) was undertaken to assess the DOM composition from EEM spectra and five terrestrial derived components were identified: (C1, C2, C3, C4 and C5). Components C1 and C4 contributed the most to DOM fluorescence in all study areas during both the wet and dry seasons. The results suggest that component C4 could be a significant (and common) PARAFAC signal found in similar catchments. Peak M (C2 and C3) was dominant in all samples collected during wet and dry seasons, which could be anthropogenic in origin given the active land use change in the study area. In conclusion, there were significant seasonal and spatial variations in DOM which demonstrated the effects of land use cover and precipitation amounts in the Kinabatangan catchment.
Dissolved organic matter reduces CuO nanoparticle toxicity to duckweed in simulated natural systems.
Rippner, Devin A; Green, Peter G; Young, Thomas M; Parikh, Sanjai J
2018-03-01
With increasing demand for recycled wastewater for irrigation purposes, there is a need to evaluate the potential for manufactured nanomaterials in waste water to impact crop production and agroecosystems. Copper oxide nanoparticles (CuO NPs) have previously been shown to negatively impact the growth of duckweed (Landoltia punctata) a model aquatic plant consumed by water fowl and widely found in agricultural runoff ditches in temperate climates. However, prior studies involving CuO NP toxicity to duckweed have focused on systems without the presence of dissolved organic matter (DOM). In the current study, duckweed growth inhibition was shown to be a function of aqueous Cu 2+ concentration. Growth inhibition was greatest from aqueous CuCl 2 and, for particles, increased with decreasing CuO particle size. The dissolution of CuO NPs in ½ Hoagland's solution was measured to increase with decreasing particle size and in the presence of Suwannee river humic and fulvic acids (HA; FA). However, the current results suggest that HA, and to a lesser extent, FA, decrease the toxicity of both CuO NPs and free ionized Cu to duckweed, likely by inhibiting Cu availability through Cu-DOM complex formation. Such results are consistent with changes to Cu speciation as predicted by speciation modeling software and suggest that DOM changes Cu speciation and therefore toxicity in natural systems. Copyright © 2017 Elsevier Ltd. All rights reserved.
Yang, Fen; Wang, Meng; Wang, Zunyao
2013-09-01
This work studies the sorption behaviors of phthalic acid esters (PAEs) on three soils by batch equilibration experiments and quantitative structure property relationship (QSPR) methodology. Firstly, the effects of soil type, dissolved organic matter and pH on the sorption of four PAEs (DMP, DEP, DAP, DBP) are investigated. The results indicate that the soil organic carbon content has a crucial influence on sorption progress. In addition, a negative correlation between pH values and the sorption capacities was found for these four PAEs. However, the effect of DOM on PAEs sorption may be more complicated. The sorption of four PAEs was promoted by low concentrations of DOM, while, in the case of high concentrations, the influence of DOM on the sorption was complicated. Then the organic carbon content normalized sorption coefficient (logKoc) values of 17 PAEs on three soils were measured, and the mean values ranged from 1.50 to 7.57. The logKoc values showed good correlation with the corresponding logKow values. Finally, two QSPR models were developed with 13 theoretical parameters to get reliable logKoc predictions. The leave-one-out cross validation (CV-LOO) indicated that the internal predictive power of the two models was satisfactory. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.