Sample records for object polarized emission

  1. Theoretical models for stellar X-ray polarization in compact objects

    NASA Technical Reports Server (NTRS)

    Meszaros, P.

    1991-01-01

    Degenerate stellar objects are expected to be strong sources of polarized X-ray emission. This is particularly true for strongly magnetized neutron stars, e.g. accretion or rotation powered pulsars, and gamma ray bursters. In these, linear polarization degrees well in excess of 30 percent are expected. Weaker magnetic field stellar sources, such as old neutron stars in low mass binary systems, white dwarfs and black holes are expected to have polarization degrees in the range 1-3 percent. A great interest attaches to the detection of polarization in these objects, since this would provide invaluable information concerning the geometry, radiation mechanism and magnetic field strength, necessary for testing and proving models of the structure and evolution of stars in their late stages. In this paper we review the theoretical models of the production of polarized radiation in compact stellar X-ray sources, and discuss the possibility of detecting these properties using currently planned detectors to be flown in space.

  2. THE SUBARCSECOND MID-INFRARED VIEW OF LOCAL ACTIVE GALACTIC NUCLEI. III. POLAR DUST EMISSION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Asmus, D.; Hönig, S. F.; Gandhi, P., E-mail: dasmus@eso.org

    2016-05-10

    Recent mid-infrared (MIR) interferometric observations have shown that in a few active galactic nuclei (AGNs) the bulk of the infrared emission originates from the polar region above the putative torus, where only a little dust should be present. Here, we investigate whether such strong polar dust emission is common in AGNs. Out of 149 Seyferts in the MIR atlas of local AGNs, 21 show extended MIR emission on single-dish images. In 18 objects, the extended MIR emission aligns with the position angle (PA) of the system axis, established by [O iii], radio, polarization, and maser-based PA measurements. The relative amountmore » of resolved MIR emission is at least 40% and scales with the [O iv] fluxes, implying a strong connection between the extended continuum and [O iv] emitters. These results together with the radio-quiet nature of the Seyferts support the scenario that the bulk of MIR emission is emitted by dust in the polar region and not by the torus, which would demand a new paradigm for the infrared emission structure in AGNs. The current low detection rate of polar dust in the AGNs of the MIR atlas is explained by the lack of sufficient high-quality MIR data and the requirements on the orientation, strength of narrow-line region, and distance of the AGNs. The James Webb Space Telescope will enable much deeper nuclear MIR studies with comparable angular resolution, allowing us to resolve the polar emission and surroundings in most of the nearby AGNs.« less

  3. Stimulated electromagnetic emission polarization under different polarizations of pump waves

    NASA Astrophysics Data System (ADS)

    Tereshchenko, E. D.; Yurik, R. Y.; Baddeley, L.

    2015-03-01

    The results of investigations into the stimulated electromagnetic emission (SEE) polarization under different modes of the pump wave polarization are presented. The present results were obtained in November 2012 during a heating campaign utilizing the SPEAR (Space Plasma Exploration by Active Radar) heating facility, transmitting in both O- and X-mode polarization, and a PGI (Polar Geophysical Institute) radio interferometer capable of recording the polarization of the received radiation. The polarization ellipse parameters of the SEE DM (downshifted maximum) components were determined under both O-mode and X-mode polarization of the pump waves. The polarization direction of the SEE DM component was preserved under different polarizations of the pump waves. Different polarizations of the pump waves have a different SEE generation efficiency. The intensity of the DM component is observed to be greater during O-mode pumping. In addition, the numbers of observed SEE features are also greater during O-mode pumping.

  4. On the polarization of the green emission of polyfluorenes

    NASA Astrophysics Data System (ADS)

    Yang, X. H.; Neher, D.; Spitz, C.; Zojer, E.; Brédas, J. L.; Güntner, R.; Scherf, U.

    2003-10-01

    An experimental and theoretical study of the anisotropic optical properties of polyfluorenes (PFs) bearing ketonic defects is presented. Polarized emission experiments performed on photooxidized aligned PF layers indicate that the transition dipole of the "green" CT π-π* transition of the keto-defect is oriented parallel to the chain direction. It is further observed that the polarization ratio of the green emission is slightly smaller than that of the blue emission component originating from undisturbed chains. Quantum mechanical calculations have been performed to support these observations. It is shown that the transition dipole moment of the CT π-π* transition of the defect is slightly misaligned with respect to the π-π* transition of the undisturbed PF chain, and that the angle between both depends on the chain conformation. For the most probably 5/2 helical conformation, this angle is, however, smaller than 5°. Further, polarized PL spectroscopy with polarized excitation has been performed to determine the extent of energy migration prior to emission from the keto-defect. For excitation at 380 nm, the polarization ratio of the green emission is essentially independent of the excitation polarization, indicating almost complete depolarization of the excitation before it is captured at a defect site. In contrast to this, energy migration after direct excitation of the keto-defect is inefficient or even absent.

  5. POLARIZATION OF MAGNETIC DIPOLE EMISSION AND SPINNING DUST EMISSION FROM MAGNETIC NANOPARTICLES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoang, Thiem; Lazarian, Alex

    2016-04-20

    Magnetic dipole emission (MDE) from interstellar magnetic nanoparticles is potentially an important Galactic foreground in the microwave frequencies, and its polarization level may pose great challenges for achieving reliable measurements of cosmic microwave background B-mode signal. To obtain realistic predictions for the polarization of MDE, we first compute the degree of alignment of big silicate grains incorporated with magnetic inclusions. We find that thermally rotating big grains with magnetic inclusions are weakly aligned and can achieve alignment saturation when the magnetic alignment rate becomes much faster than the rotational damping rate. We then compute the degree of alignment for free-flyingmore » magnetic nanoparticles, taking into account various interaction processes of grains with the ambient gas and radiation field, including neutral collisions, ion collisions, and infrared emission. We find that the rotational damping by infrared emission can significantly decrease the degree of alignment of small particles from the saturation level, whereas the excitation by ion collisions can enhance the alignment of ultrasmall particles. Using the computed degrees of alignment, we predict the polarization level of MDE from free-flying magnetic nanoparticles to be rather low. Such a polarization level is within the upper limits measured for anomalous microwave emission (AME), which indicates that MDE from free-flying iron particles may not be ruled out as a source of AME. We also quantify rotational emission from free-flying iron nanoparticles with permanent magnetic moments and find that its emissivity is about one order of magnitude lower than that from spinning polycyclic aromatic hydrocarbons.« less

  6. Polarization of Magnetic Dipole Emission and Spinning Dust Emission from Magnetic Nanoparticles

    NASA Astrophysics Data System (ADS)

    Hoang, Thiem; Lazarian, Alex

    2016-04-01

    Magnetic dipole emission (MDE) from interstellar magnetic nanoparticles is potentially an important Galactic foreground in the microwave frequencies, and its polarization level may pose great challenges for achieving reliable measurements of cosmic microwave background B-mode signal. To obtain realistic predictions for the polarization of MDE, we first compute the degree of alignment of big silicate grains incorporated with magnetic inclusions. We find that thermally rotating big grains with magnetic inclusions are weakly aligned and can achieve alignment saturation when the magnetic alignment rate becomes much faster than the rotational damping rate. We then compute the degree of alignment for free-flying magnetic nanoparticles, taking into account various interaction processes of grains with the ambient gas and radiation field, including neutral collisions, ion collisions, and infrared emission. We find that the rotational damping by infrared emission can significantly decrease the degree of alignment of small particles from the saturation level, whereas the excitation by ion collisions can enhance the alignment of ultrasmall particles. Using the computed degrees of alignment, we predict the polarization level of MDE from free-flying magnetic nanoparticles to be rather low. Such a polarization level is within the upper limits measured for anomalous microwave emission (AME), which indicates that MDE from free-flying iron particles may not be ruled out as a source of AME. We also quantify rotational emission from free-flying iron nanoparticles with permanent magnetic moments and find that its emissivity is about one order of magnitude lower than that from spinning polycyclic aromatic hydrocarbons.

  7. Statistical properties of the polarized emission of Planck Galactic cold clumps

    NASA Astrophysics Data System (ADS)

    Ristorcelli, Isabelle; Planck Collaboration

    2015-08-01

    The Galactic magnetic fields are considered as one of the key components regulating star formation, but their actual role on the dense cores formation and evolution remains today an open question.Dust polarized continuum emission is particularly well suited to probe the dense and cold medium and study the magnetic field structure. Such observations also provide tight constraints to better understand the efficiency of the dust alignment along the magnetic field lines, which in turn relate on our grasp to properly interpret the B-field properties.With the Planck all-sky survey of dust submillimeter emission in intensity and polarization, we can investigate the intermediate scales, between that of molecular cloud and of prestellar cores, and perform a statistical analysis on the polarization properties of cold clumps.Combined with the IRAS map at 100microns, the Planck survey has allowed to build the first all-sky catalogue of Galactic Cold Clumps (PGCC, Planck 2015 results XXVIII 2015). The corresponding 13188 sources cover a broad range in physical properties, and correspond to different evolutionary stages, from cold and starless clumps, nearby cores, to young protostellar objects still embedded in their cold surrounding cloud.I will present the main results of our polarization analysis obtained on different samples of sources from the PGCC catalogue, based on the 353GHz polarized emission measured with Planck. The statistical properties are derived from a stacking method, using optimized estimators for the polarization fraction and angle parameters. These properties are determined and compared according to the nature of the sources (starless or YSOs), their size or density range. Finally, I will present a comparison of our results with predictions from MHD simulations of clumps including radiative transfer and the dust radiative torque alignment mechanism.

  8. Polarized object detection in crabs: a two-channel system.

    PubMed

    Basnak, Melanie Ailín; Pérez-Schuster, Verónica; Hermitte, Gabriela; Berón de Astrada, Martín

    2018-05-25

    Many animal species take advantage of polarization vision for vital tasks such as orientation, communication and contrast enhancement. Previous studies have suggested that decapod crustaceans use a two-channel polarization system for contrast enhancement. Here, we characterize the polarization contrast sensitivity in a grapsid crab . We estimated the polarization contrast sensitivity of the animals by quantifying both their escape response and changes in heart rate when presented with polarized motion stimuli. The motion stimulus consisted of an expanding disk with an 82 deg polarization difference between the object and the background. More than 90% of animals responded by freezing or trying to avoid the polarized stimulus. In addition, we co-rotated the electric vector (e-vector) orientation of the light from the object and background by increments of 30 deg and found that the animals' escape response varied periodically with a 90 deg period. Maximum escape responses were obtained for object and background e-vectors near the vertical and horizontal orientations. Changes in cardiac response showed parallel results but also a minimum response when e-vectors of object and background were shifted by 45 deg with respect to the maxima. These results are consistent with an orthogonal receptor arrangement for the detection of polarized light, in which two channels are aligned with the vertical and horizontal orientations. It has been hypothesized that animals with object-based polarization vision rely on a two-channel detection system analogous to that of color processing in dichromats. Our results, obtained by systematically varying the e-vectors of object and background, provide strong empirical support for this theoretical model of polarized object detection. © 2018. Published by The Company of Biologists Ltd.

  9. Photo electron emission microscopy of polarity-patterned materials

    NASA Astrophysics Data System (ADS)

    Yang, W.-C.; Rodriguez, B. J.; Gruverman, A.; Nemanich, R. J.

    2005-04-01

    This study presents variable photon energy photo electron emission microscopy (PEEM) of polarity-patterned epitaxial GaN films, and ferroelectric LiNbO3 (LNO) single crystals and PbZrTiO3 (PZT) thin films. The photo electrons were excited with spontaneous emission from the tunable UV free electron laser (FEL) at Duke University. We report PEEM observation of polarity contrast and measurement of the photothreshold of each polar region of the materials. For a cleaned GaN film with laterally patterned Ga- and N-face polarities, we found a higher photoelectric yield from the N-face regions compared with the Ga-face regions. Through the photon energy dependent contrast in the PEEM images of the surfaces, we can deduce that the threshold of the N-face region is less than ~4.9 eV while that of the Ga-face regions is greater than 6.3 eV. In both LNO and PZT, bright emission was detected from the negatively poled domains, indicating that the emission threshold of the negative domain is lower than that of the positive domain. For LNO, the measured photothreshold was ~4.6 eV at the negative domain and ~6.2 eV at the positive domain, while for PZT, the threshold of the negative domain was less than 4.3 eV. Moreover, PEEM observation of the PZT surface at elevated temperatures displayed that the domain contrast disappeared near the Curie temperature of ~300 °C. The PEEM polarity contrast of the polar materials is discussed in terms of internal screening from free carriers and defects and the external screening due to adsorbed ions.

  10. Polarized Gamma-Ray Emission from the Galactic Black Hole Cygnus X-1

    NASA Technical Reports Server (NTRS)

    Laurent, P.; Rodriquez, J.; Wilms, J.; Bel, M. Cadolle; Pottschmidt, K.; Grinberg, V.

    2011-01-01

    Because of their inherently high flux allowing the detection of clear signals, black hole X-ray binaries are interesting candidates for polarization studies, even if no polarization signals have been observed from them before. Such measurements would provide further detailed insight into these sources' emission mechanisms. We measured the polarization of the gamma-ray emission from the black hole binary system Cygnus X-I with the INTEGRAL/IBIS telescope. Spectral modeling ofthe data reveals two emission mechanisms: The 250-400 keY data are consistent with emission dominated by Compton scattering on thermal electrons and are weakly polarized. The second spectral component seen in the 400keV-2MeV band is by contrast strongly polarized, revealing that the MeV emission is probably related to the jet first detected in the radio band.

  11. A 3D model of polarized dust emission in the Milky Way

    NASA Astrophysics Data System (ADS)

    Martínez-Solaeche, Ginés; Karakci, Ata; Delabrouille, Jacques

    2018-05-01

    We present a three-dimensional model of polarized galactic dust emission that takes into account the variation of the dust density, spectral index and temperature along the line of sight, and contains randomly generated small-scale polarization fluctuations. The model is constrained to match observed dust emission on large scales, and match on smaller scales extrapolations of observed intensity and polarization power spectra. This model can be used to investigate the impact of plausible complexity of the polarized dust foreground emission on the analysis and interpretation of future cosmic microwave background polarization observations.

  12. Advanced Diagnostics for the Study of Linearly Polarized Emission. II. Application to Diffuse Interstellar Radio Synchrotron Emission

    NASA Astrophysics Data System (ADS)

    Herron, C. A.; Burkhart, Blakesley; Gaensler, B. M.; Lewis, G. F.; McClure-Griffiths, N. M.; Bernardi, G.; Carretti, E.; Haverkorn, M.; Kesteven, M.; Poppi, S.; Staveley-Smith, L.

    2018-03-01

    Diagnostics of polarized emission provide us with valuable information on the Galactic magnetic field and the state of turbulence in the interstellar medium, which cannot be obtained from synchrotron intensity alone. In Paper I, we derived polarization diagnostics that are rotationally and translationally invariant in the Q–U plane, similar to the polarization gradient. In this paper, we apply these diagnostics to simulations of ideal magnetohydrodynamic turbulence that have a range of sonic and Alfvénic Mach numbers. We generate synthetic images of Stokes Q and U for these simulations for the cases where the turbulence is illuminated from behind by uniform polarized emission and where the polarized emission originates from within the turbulent volume. From these simulated images, we calculate the polarization diagnostics derived in Paper I for different lines of sight relative to the mean magnetic field and for a range of frequencies. For all of our simulations, we find that the polarization gradient is very similar to the generalized polarization gradient and that both trace spatial variations in the magnetoionic medium for the case where emission originates within the turbulent volume, provided that the medium is not supersonic. We propose a method for distinguishing the cases of emission coming from behind or within a turbulent, Faraday rotating medium and a method to partly map the rotation measure of the observed region. We also speculate on statistics of these diagnostics that may allow us to constrain the physical properties of an observed turbulent region.

  13. Optical polarization of high-energy BL Lacertae objects

    NASA Astrophysics Data System (ADS)

    Hovatta, T.; Lindfors, E.; Blinov, D.; Pavlidou, V.; Nilsson, K.; Kiehlmann, S.; Angelakis, E.; Fallah Ramazani, V.; Liodakis, I.; Myserlis, I.; Panopoulou, G. V.; Pursimo, T.

    2016-12-01

    Context. We investigate the optical polarization properties of high-energy BL Lac objects using data from the RoboPol blazar monitoring program and the Nordic Optical Telescope. Aims: We wish to understand if there are differences between the BL Lac objects that have been detected with the current-generation TeV instruments and those objects that have not yet been detected. Methods: We used a maximum-likelihood method to investigate the optical polarization fraction and its variability in these sources. In order to study the polarization position angle variability, we calculated the time derivative of the electric vector position angle (EVPA) change. We also studied the spread in the Stokes Q/I-U/I plane and rotations in the polarization plane. Results: The mean polarization fraction of the TeV-detected BL Lacs is 5%, while the non-TeV sources show a higher mean polarization fraction of 7%. This difference in polarization fraction disappears when the dilution by the unpolarized light of the host galaxy is accounted for. The TeV sources show somewhat lower fractional polarization variability amplitudes than the non-TeV sources. Also the fraction of sources with a smaller spread in the Q/I-U/I plane and a clumped distribution of points away from the origin, possibly indicating a preferred polarization angle, is larger in the TeV than in the non-TeV sources. These differences between TeV and non-TeV samples seem to arise from differences between intermediate and high spectral peaking sources instead of the TeV detection. When the EVPA variations are studied, the rate of EVPA change is similar in both samples. We detect significant EVPA rotations in both TeV and non-TeV sources, showing that rotations can occur in high spectral peaking BL Lac objects when the monitoring cadence is dense enough. Our simulations show that we cannot exclude a random walk origin for these rotations. Conclusions: These results indicate that there are no intrinsic differences in the

  14. Simultaneous modelling of X-ray emission and optical polarization of intermediate polars: the case of V405 Aur

    NASA Astrophysics Data System (ADS)

    J. Lima, I.; Vilega Rodrigues, C.; Medeiros Gomes Silva, K.; Luna, G.; D Amico, F.; Goulart Coelho, J.

    2017-10-01

    Intermediate polars are compact binaries in which mass transfer occurs from a low-mass star onto a magnetic white dwarf. A shock structure is formed in the magnetic accretion column nearby the white-dwarf surface. High-energy emission is produced in the post-shock region and the main physical process envolved is bremsstrahlung and line emission. Some systems show optical polarization, which may be also originated in the post-shock region. Our main goal is to study the magnetic structure of intermediate polars by simultaneously modelling optical polarimetry and X-ray data using the CYCLOPS code. This code was developed by our group to peform multi-wavelength fitting of the accretion column flux. It considers cyclotron and free-free emission from a 3D post-shock region, which is non-homogeneous in terms of density, temperature, and magnetic field. In this study, we present our modelling of the optical polarization and X-ray emission of V405 Aurigae, the intermediate polar that has the highest magnetic field. Previous studies of this system were not successful in proposing a geometry that explains both the optical and X-ray emissions.

  15. Linear Polarization Measurements of Chromospheric Emission Lines

    NASA Technical Reports Server (NTRS)

    Sheeley, N. R., Jr.; Keller, C. U.

    2003-01-01

    We have used the Zurich Imaging Stokes Polarimeter (ZIMPOL I) with the McMath-Pierce 1.5 m main telescope on Kitt Peak to obtain linear polarization measurements of the off-limb chromosphere with a sensitivity better than 1 x 10(exp -5). We found that the off-disk observations require a combination of good seeing (to show the emission lines) and a clean heliostat (to avoid contamination by scattered light from the Sun's disk). When these conditions were met, we obtained the following principal results: 1. Sometimes self-reversed emission lines of neutral and singly ionized metals showed linear polarization caused by the transverse Zeeman effect or by instrumental cross talk from the longitudinal Zeeman effect in chromospheric magnetic fields. Otherwise, these lines tended to depolarize the scattered continuum radiation by amounts that ranged up to 0.2%. 2. Lines previously known to show scattering polarization just inside the limb (such as the Na I lambda5889 D2 and the He I lambda5876 D3 lines) showed even more polarization above the Sun's limb, with values approaching 0.7%. 3. The O I triplet at lambda7772, lambda7774, and lambda7775 showed a range of polarizations. The lambda7775 line, whose maximum intrinsic polarizability, P(sub max), is less than 1%, revealed mainly Zeeman contributions from chromospheric magnetic fields. However, the more sensitive lambda7772 (P(sub max) = 19%) and lambda7774 (P(sub max) = 29%) lines had relatively strong scattering polarizations of approximately 0.3% in addition to their Zeeman polarizations. At times of good seeing, the polarization spectra resolve into fine structures that seem to be chromospheric spicules.

  16. Imaging, object detection, and change detection with a polarized multistatic GPR array

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beer, N. Reginald; Paglieroni, David W.

    A polarized detection system performs imaging, object detection, and change detection factoring in the orientation of an object relative to the orientation of transceivers. The polarized detection system may operate on one of several modes of operation based on whether the imaging, object detection, or change detection is performed separately for each transceiver orientation. In combined change mode, the polarized detection system performs imaging, object detection, and change detection separately for each transceiver orientation, and then combines changes across polarizations. In combined object mode, the polarized detection system performs imaging and object detection separately for each transceiver orientation, and thenmore » combines objects across polarizations and performs change detection on the result. In combined image mode, the polarized detection system performs imaging separately for each transceiver orientation, and then combines images across polarizations and performs object detection followed by change detection on the result.« less

  17. Imaging Polarized Dust Emission in Star Formation Regions with the OVRO MM Array

    NASA Technical Reports Server (NTRS)

    Akeson, Rachel; Carlstrom, John

    1996-01-01

    We present OVRO interferometric observations of linearly polarized emission from magnetically aligned dust grains which allow the magnetic field geometry in nearby star formation regions to be probed on scales ranging from 100 to 3000 AU. Current results include observations of the young stellar objects NGC1333/IRAS 4A, IRAS 16293-2422 and Orion IRc2-KL.

  18. Ten per cent polarized optical emission from GRB 090102.

    PubMed

    Steele, I A; Mundell, C G; Smith, R J; Kobayashi, S; Guidorzi, C

    2009-12-10

    The nature of the jets and the role of magnetic fields in gamma-ray bursts (GRBs) remains unclear. In a baryon-dominated jet only weak, tangled fields generated in situ through shocks would be present. In an alternative model, jets are threaded with large-scale magnetic fields that originate at the central engine and that accelerate and collimate the material. To distinguish between the models the degree of polarization in early-time emission must be measured; however, previous claims of gamma-ray polarization have been controversial. Here we report that the early optical emission from GRB 090102 was polarized at 10 +/- 1 per cent, indicating the presence of large-scale fields originating in the expanding fireball. If the degree of polarization and its position angle were variable on timescales shorter than our 60-second exposure, then the peak polarization may have been larger than ten per cent.

  19. Simulations of Galactic polarized synchrotron emission for Epoch of Reionization observations

    NASA Astrophysics Data System (ADS)

    Spinelli, M.; Bernardi, G.; Santos, M. G.

    2018-06-01

    The detection of the redshifted cosmological 21 cm line signal requires the removal of the Galactic and extragalactic foreground emission, which is orders of magnitude brighter anywhere in the sky. Foreground cleaning methods currently used are efficient in removing spectrally smooth components. However, they struggle in the presence of not spectrally smooth contamination that is, therefore, potentially the most dangerous one. An example of this is the polarized synchrotron emission, which is Faraday rotated by the interstellar medium and leaks into total intensity due to instrumental imperfections. In this work we present new full-sky simulations of this polarized synchrotron emission in the 50 - 200 MHz range, obtained from the observed properties of diffuse polarized emission at low frequencies. The simulated polarized maps are made publicly available, aiming to provide more realistic templates to simulate the effect of instrumental leakage and the effectiveness of foreground separation techniques.

  20. Polarization control of spontaneous emission for rapid quantum-state initialization

    NASA Astrophysics Data System (ADS)

    DiLoreto, C. S.; Rangan, C.

    2017-04-01

    We propose an efficient method to selectively enhance the spontaneous emission rate of a quantum system by changing the polarization of an incident control field, and exploiting the polarization dependence of the system's spontaneous emission rate. This differs from the usual Purcell enhancement of spontaneous emission rates as it can be selectively turned on and off. Using a three-level Λ system in a quantum dot placed in between two silver nanoparticles and a linearly polarized, monochromatic driving field, we present a protocol for rapid quantum state initialization, while maintaining long coherence times for control operations. This process increases the overall amount of time that a quantum system can be effectively utilized for quantum operations, and presents a key advance in quantum computing.

  1. Polarized radio emission from extensive air showers measured with LOFAR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schellart, P.; Buitink, S.; Corstanje, A.

    2014-10-01

    We present LOFAR measurements of radio emission from extensive air showers. We find that this emission is strongly polarized, with a median degree of polarization of nearly 99%, and that the angle between the polarization direction of the electric field and the Lorentz force acting on the particles, depends on the observer location in the shower plane. This can be understood as a superposition of the radially polarized charge-excess emission mechanism, first proposed by Askaryan and the geomagnetic emission mechanism proposed by Kahn and Lerche. We calculate the relative strengths of both contributions, as quantified by the charge-excess fraction, formore » 163 individual air showers. We find that the measured charge-excess fraction is higher for air showers arriving from closer to the zenith. Furthermore, the measured charge-excess fraction also increases with increasing observer distance from the air shower symmetry axis. The measured values range from (3.3± 1.0)% for very inclined air showers at 25 m to (20.3± 1.3)% for almost vertical showers at 225 m. Both dependencies are in qualitative agreement with theoretical predictions.« less

  2. Polarization-dependent enhanced photoluminescence and polarization-independent emission rate of quantum dots on gold elliptical nanodisc arrays.

    PubMed

    Zhu, Qiangzhong; Zheng, Shupei; Lin, Shijie; Liu, Tian-Ran; Jin, Chongjun

    2014-07-07

    We have fabricated gold (Au) elliptical nanodisc (ND) arrays via three-beam interference lithography and electron beam deposition of gold. The enhanced photoluminescence intensity and emission rate of quantum dots (QDs) near to the Au elliptical NDs have been studied by tuning the nearest distance between quantum dots and Au elliptical NDs. We found that the photoluminescence intensity is polarization-dependent with the degree of polarization being equal to that of the light extinction of the Au elliptical NDs, while the emission rate is polarization-independent. This is resulted from the plasmon-coupled emission via the coupling between the QD dipole and the plasmon nano-antenna. Our experiments fully confirm the evidence of the plasmophore concept proposed recently in the interaction of the QDs with metal nanoparticles.

  3. Low-frequency polarization measurements of the diffuse radio emission of the galaxy

    NASA Astrophysics Data System (ADS)

    Vinyaikin, E. N.; Paseka, A. M.

    2015-07-01

    Polarization measurements of diffuse Galactic radio emission at 151.5, 198, 217, 237, and 290 MHz have been carried out in the direction of the North Celestial Pole, North Galactic Pole, one region of the North Polar Spur, minimum radio brightness of the Northern sky ( l = 190°, b = 50°), and in the direction l = 147°, b = 9° in the so-called FAN region with enhanced polarization. The results obtained testify to the presence of low spatial frequencies in the angular distribution of the Stokes parameters Q and U of the diffuse Galactic synchrotron emission that are not detectable in interferometric observations. The spectra of the brightness temperature of the polarized component, rotation measures, and intrinsic polarization position angles of the radio emission in the studied regions are presented.

  4. The Subarcsecond Mid-infrared View of Local Active Galactic Nuclei. III. Polar Dust Emission

    NASA Astrophysics Data System (ADS)

    Asmus, D.; Hönig, S. F.; Gandhi, P.

    2016-05-01

    Recent mid-infrared (MIR) interferometric observations have shown that in a few active galactic nuclei (AGNs) the bulk of the infrared emission originates from the polar region above the putative torus, where only a little dust should be present. Here, we investigate whether such strong polar dust emission is common in AGNs. Out of 149 Seyferts in the MIR atlas of local AGNs, 21 show extended MIR emission on single-dish images. In 18 objects, the extended MIR emission aligns with the position angle (PA) of the system axis, established by [O III], radio, polarization, and maser-based PA measurements. The relative amount of resolved MIR emission is at least 40% and scales with the [O IV] fluxes, implying a strong connection between the extended continuum and [O IV] emitters. These results together with the radio-quiet nature of the Seyferts support the scenario that the bulk of MIR emission is emitted by dust in the polar region and not by the torus, which would demand a new paradigm for the infrared emission structure in AGNs. The current low detection rate of polar dust in the AGNs of the MIR atlas is explained by the lack of sufficient high-quality MIR data and the requirements on the orientation, strength of narrow-line region, and distance of the AGNs. The James Webb Space Telescope will enable much deeper nuclear MIR studies with comparable angular resolution, allowing us to resolve the polar emission and surroundings in most of the nearby AGNs. Based on European Southern Observatory (ESO) observing programmes 60.A-9242, 074.A-9016, 075.B-0182, 075.B-0621, 075.B-0631, 075.B-0727, 075.B-0791, 075.B-0844, 076.B-0194, 076.B-0468, 076.B-0599, 076.B-0621, 076.B-0656, 076.B-0696, 076.B-0743, 077.B-0060, 077.B-0135, 077.B-0137, 077.B-0728, 078.B-0020, 078.B-0173, 078.B-0255, 078.B-0303, 080.B-0240, 080.B-0860, 081.B-0182, 082.B-0299, 083.B-0239, 083.B-0452, 083.B-0536, 083.B-0592, 084.B-0366, 084.B-0606, 084.B-0974, 085.B-0251, 085.B-0639, 086.B-0242, 086.B-0257, 086

  5. Polarized x-ray emission from magnetized neutron stars: signature of strong-field vacuum polarization.

    PubMed

    Lai, Dong; Ho, Wynn C G

    2003-08-15

    In the atmospheric plasma of a strongly magnetized neutron star, vacuum polarization can induce a Mikheyev-Smirnov-Wolfenstein type resonance across which an x-ray photon may (depending on its energy) convert from one mode into the other, with significant changes in opacities and polarizations. We show that this vacuum resonance effect gives rise to a unique energy-dependent polarization signature in the surface emission from neutron stars. The detection of polarized x rays from neutron stars can provide a direct probe of strong-field quantum electrodynamics and constrain the neutron star magnetic field and geometry.

  6. Polarized X-Ray Emission from Magnetized Neutron Stars: Signature of Strong-Field Vacuum Polarization

    NASA Astrophysics Data System (ADS)

    Lai, Dong; Ho, Wynn C.

    2003-08-01

    In the atmospheric plasma of a strongly magnetized neutron star, vacuum polarization can induce a Mikheyev-Smirnov-Wolfenstein type resonance across which an x-ray photon may (depending on its energy) convert from one mode into the other, with significant changes in opacities and polarizations. We show that this vacuum resonance effect gives rise to a unique energy-dependent polarization signature in the surface emission from neutron stars. The detection of polarized x rays from neutron stars can provide a direct probe of strong-field quantum electrodynamics and constrain the neutron star magnetic field and geometry.

  7. Emission polarization control in semiconductor quantum dots coupled to a photonic crystal microcavity.

    PubMed

    Gallardo, E; Martínez, L J; Nowak, A K; van der Meulen, H P; Calleja, J M; Tejedor, C; Prieto, I; Granados, D; Taboada, A G; García, J M; Postigo, P A

    2010-06-07

    We study the optical emission of single semiconductor quantum dots weakly coupled to a photonic-crystal micro-cavity. The linearly polarized emission of a selected quantum dot changes continuously its polarization angle, from nearly perpendicular to the cavity mode polarization at large detuning, to parallel at zero detuning, and reversing sign for negative detuning. The linear polarization rotation is qualitatively interpreted in terms of the detuning dependent mixing of the quantum dot and cavity states. The present result is relevant to achieve continuous control of the linear polarization in single photon emitters.

  8. Non-sky polarization-based dehazing algorithm for non-specular objects using polarization difference and global scene feature.

    PubMed

    Qu, Yufu; Zou, Zhaofan

    2017-10-16

    Photographic images taken in foggy or hazy weather (hazy images) exhibit poor visibility and detail because of scattering and attenuation of light caused by suspended particles, and therefore, image dehazing has attracted considerable research attention. The current polarization-based dehazing algorithms strongly rely on the presence of a "sky area", and thus, the selection of model parameters is susceptible to external interference of high-brightness objects and strong light sources. In addition, the noise of the restored image is large. In order to solve these problems, we propose a polarization-based dehazing algorithm that does not rely on the sky area ("non-sky"). First, a linear polarizer is used to collect three polarized images. The maximum- and minimum-intensity images are then obtained by calculation, assuming the polarization of light emanating from objects is negligible in most scenarios involving non-specular objects. Subsequently, the polarization difference of the two images is used to determine a sky area and calculate the infinite atmospheric light value. Next, using the global features of the image, and based on the assumption that the airlight and object radiance are irrelevant, the degree of polarization of the airlight (DPA) is calculated by solving for the optimal solution of the correlation coefficient equation between airlight and object radiance; the optimal solution is obtained by setting the right-hand side of the equation to zero. Then, the hazy image is subjected to dehazing. Subsequently, a filtering denoising algorithm, which combines the polarization difference information and block-matching and 3D (BM3D) filtering, is designed to filter the image smoothly. Our experimental results show that the proposed polarization-based dehazing algorithm does not depend on whether the image includes a sky area and does not require complex models. Moreover, the dehazing image except specular object scenarios is superior to those obtained by Tarel

  9. Emission-angle and polarization-rotation effects in the lensed CMB

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lewis, Antony; Hall, Alex; Challinor, Anthony, E-mail: antony@cosmologist.info, E-mail: ahall@roe.ac.uk, E-mail: a.d.challinor@ast.cam.ac.uk

    Lensing of the CMB is an important effect, and is usually modelled by remapping the unlensed CMB fields by a lensing deflection. However the lensing deflections also change the photon path so that the emission angle is no longer orthogonal to the background last-scattering surface. We give the first calculation of the emission-angle corrections to the standard lensing approximation from dipole (Doppler) sources for temperature and quadrupole sources for temperature and polarization. We show that while the corrections are negligible for the temperature and E-mode polarization, additional large-scale B-modes are produced with a white spectrum that dominates those from post-Bornmore » field rotation (curl lensing). On large scales about one percent of the total lensing-induced B-mode amplitude is expected to be due to this effect. However, the photon emission angle does remain orthogonal to the perturbed last-scattering surface due to time delay, and half of the large-scale emission-angle B modes cancel with B modes from time delay to give a total contribution of about half a percent. While not important for planned observations, the signal could ultimately limit the ability of delensing to reveal low amplitudes of primordial gravitational waves. We also derive the rotation of polarization due to multiple deflections between emission and observation. The rotation angle is of quadratic order in the deflection angle, and hence negligibly small: polarization typically rotates by less than an arcsecond, orders of magnitude less than a small-scale image rotates due to post-Born field rotation (which is quadratic in the shear). The field-rotation B modes dominate the other effects on small scales.« less

  10. Polarization, spectral, and spatial emission characteristics of chiral semiconductor nanostructures

    NASA Astrophysics Data System (ADS)

    Maksimov, A. A.; Peshcherenko, A. B.; Filatov, E. V.; Tartakovskii, I. I.; Kulakovskii, V. D.; Tikhodeev, S. G.; Lobanov, S. V.; Schneider, C.; Höfling, S.

    2017-11-01

    A detailed study of the degree of circular polarization and the angular dependence of the emission spectra of an array of InAs quantum dots embedded in GaAs photonic nanostructures with chiral symmetry in the absence of an external magnetic field is carried out. A strong angular dependence of the spectra and the degree of circular polarization of radiation from quantum dots, as well as a significant effect of the lattice period of the photonic crystal on the radiation characteristics, is observed. The dispersion of photonic modes near the (±3, 0) and (±2, ±2) Bragg resonances is investigated in detail. The experimentally observed polarization, spectral, and angular characteristics of the quantum-dot emission are explained in the framework of a theory describing radiative processes in chiral photonic nanostructures.

  11. Polarization Multiplexing of Fluorescent Emission Using Multiresonant Plasmonic Antennas.

    PubMed

    De Leo, Eva; Cocina, Ario; Tiwari, Preksha; Poulikakos, Lisa V; Marqués-Gallego, Patricia; le Feber, Boris; Norris, David J; Prins, Ferry

    2017-12-26

    Combining the ability to localize electromagnetic fields at the nanoscale with a directional response, plasmonic antennas offer an effective strategy to shape the far-field pattern of coupled emitters. Here, we introduce a family of directional multiresonant antennas that allows for polarization-resolved spectral identification of fluorescent emission. The geometry consists of a central aperture surrounded by concentric polygonal corrugations. By varying the periodicity of each axis of the polygon individually, this structure can support multiple resonances that provide independent control over emission directionality for multiple wavelengths. Moreover, since each resonant wavelength is directly mapped to a specific polarization orientation, spectral information can be encoded in the polarization state of the out-scattered beam. To demonstrate the potential of such structures in enabling simplified detection schemes and additional functionalities in sensing and imaging applications, we use the central subwavelength aperture as a built-in nanocuvette and manipulate the fluorescent response of colloidal-quantum-dot emitters coupled to the multiresonant antenna.

  12. Polarization Multiplexing of Fluorescent Emission Using Multiresonant Plasmonic Antennas

    PubMed Central

    2017-01-01

    Combining the ability to localize electromagnetic fields at the nanoscale with a directional response, plasmonic antennas offer an effective strategy to shape the far-field pattern of coupled emitters. Here, we introduce a family of directional multiresonant antennas that allows for polarization-resolved spectral identification of fluorescent emission. The geometry consists of a central aperture surrounded by concentric polygonal corrugations. By varying the periodicity of each axis of the polygon individually, this structure can support multiple resonances that provide independent control over emission directionality for multiple wavelengths. Moreover, since each resonant wavelength is directly mapped to a specific polarization orientation, spectral information can be encoded in the polarization state of the out-scattered beam. To demonstrate the potential of such structures in enabling simplified detection schemes and additional functionalities in sensing and imaging applications, we use the central subwavelength aperture as a built-in nanocuvette and manipulate the fluorescent response of colloidal-quantum-dot emitters coupled to the multiresonant antenna. PMID:29161502

  13. The disturbing function for polar Centaurs and transneptunian objects

    NASA Astrophysics Data System (ADS)

    Namouni, F.; Morais, M. H. M.

    2017-10-01

    The classical disturbing function of the three-body problem is based on an expansion of the gravitational interaction in the vicinity of nearly coplanar orbits. Consequently, it is not suitable for the identification and study of resonances of the Centaurs and transneptunian objects on nearly polar orbits with the Solar system planets. Here, we provide a series expansion algorithm of the gravitational interaction in the vicinity of polar orbits and produce explicitly the disturbing function to fourth order in eccentricity and inclination cosine. The properties of the polar series differ significantly from those of the classical disturbing function: the polar series can model any resonance, as the expansion order is not related to the resonance order. The powers of eccentricity and inclination of the force amplitude of a p:q resonance do not depend on the value of the resonance order |p - q| but only on its parity. Thus, all even resonance order eccentricity amplitudes are ∝e2 and odd ones ∝e to lowest order in eccentricity e. With the new findings on the structure of the polar disturbing function and the possible resonant critical arguments, we illustrate the dynamics of the polar resonances 1:3, 3:1, 2:9 and 7:9 where transneptunian object 471325 could currently be locked.

  14. Transfer Printing Method to Obtain Polarized Light Emission in Organic Light-Emitting Device

    NASA Astrophysics Data System (ADS)

    Noh, Hee Yeon; Park, Chang-sub; Park, Ji-Sub; Kang, Shin-Won; Kim, Hak-Rin

    2012-06-01

    We demonstrate a transfer printing method to obtain polarized light emission in organic light-emitting devices (OLEDs). On a rubbed self-assembled monolayer (SAM), a spin-coated liquid crystalline light-emissive polymer is aligned along the rubbing direction because of the anisotropic interfacial intermolecular interaction. Owing to the low surface energy of the SAM surface, the light-emissive layer was easily transferred to a patterned poly(dimethylsiloxane) (PDMS) stamp surface without degrading the ordering. Finally, a polarized light-emissive OLED device was prepared by transferring the patterned light-emissive layer to the charge transport layer of the OLED structure.

  15. Photonic engineering of highly linearly polarized quantum dot emission at telecommunication wavelengths

    NASA Astrophysics Data System (ADS)

    Mrowiński, P.; Emmerling, M.; Schneider, C.; Reithmaier, J. P.; Misiewicz, J.; Höfling, S.; Sek, G.

    2018-04-01

    In this work, we discuss a method to control the polarization anisotropy of spontaneous emission from neutral excitons confined in quantum-dot-like nanostructures, namely single epitaxial InAs quantum dashes emitting at telecom wavelengths. The nanostructures are embedded inside lithographically defined, in-plane asymmetric photonic mesa structures, which generate polarization-dependent photonic confinement. First, we study the influence of the photonic confinement on the polarization anisotropy of the emission by photoluminescence spectroscopy, and we find evidence of different contributions to a degree of linear polarization (DOLP), i.e., from the quantum dash and the photonic mesa, in total giving rise to DOLP =0.85 . Then, we perform finite-difference time-domain simulations of photonic confinement, and we calculate the DOLP in a dipole approximation showing well-matched results for the established model. Furthermore, by using numerical calculations, we demonstrate several types of photonic confinements where highly linearly polarized emission with DOLP of about 0.9 is possible by controlling the position of a quantum emitter inside the photonic structure. Then, we elaborate on anisotropic quantum emitters allowing for exceeding DOLP =0.95 in an optimized case, and we discuss the ways towards efficient linearly polarized single photon source at telecom bands.

  16. Studies of Interactions Between Nano-Objects and Polarized Light

    NASA Astrophysics Data System (ADS)

    Xie, Dan

    Optical studies of nano-objects that have dimensions 10--1000 nm have become a flourishing field of research. This special dimension category, connecting the smaller (molecular) world and the larger (cellular) world, have enabled these nano-objects to be widely utilized as novel optical tools in many fields. In addition to the extensive applications of nano objects, increasing efforts are also being put to better understand their interactions with light at a fundamental level. The work presented in this dissertation is part of such efforts, in which I selected three types of nano-objects and studied their optical properties both in theory and experiment. Second-harmonic and sum-frequency generations are among the most well-known nonlinear optical processes. Dielectric nanocrystals that are SHG- and SFG-active are favored tools in bioimaging. For a nanocrystal, its SHG/SFG intensity depends on the geometry of the light-particle system, i.e., the relationship between the nanocrystal orientation and the laser polarization. Using BaTiO 3 nanocrystals as an example, I carried out an in-depth, theoretical investigation of such dependence. Particularly, I studied the possibility of selectively maximizing the contrast between light signals from two or more nanocrystals by manipulating laser polarization. I will present a discussion on how the capacity of this selective illumination depends on the relative orientation between the two nanocrystals and the polarization of the excitation field. The optical responses of non-spherical plasmonic particles, being dynamic and complex, are only partially understood. Gold nanorods (AuNRs) are one of the most popular members in this nanoparticle family. They can produce two-photon luminescence (TPL) and amplify molecular events occurring at their surface. Both phenomena are known to be associated with surface plasmon resonances (SPR) of AuNRs, but details of the mechanisms are yet to be understood and quantified. I constructed a two

  17. Detection of Polarized Infrared Emission by Polycyclic Aromatic Hydrocarbons in the MWC 1080 Nebula

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Han; Telesco, Charles M.; Pantin, Eric

    Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous in astrophysical environments, as revealed by their pronounced emission features at 3.3, 6.2, 7.7, 8.6, 11.3, and 12.7 μ m commonly ascribed to the C–H and C–C vibrational modes. Although these features have long been predicted to be polarized, previous searches for PAH polarization led to null or, at best, tentative detections. Here we report the definite detection of polarized PAH emission at 11.3 μ m in the nebula associated with the Herbig Be star MWC 1080. We measure a polarization degree of 1.9% ± 0.2%, which is unexpectedly high compared to models. Thismore » poses a challenge in the current understanding of the alignment of PAHs, which is required to polarize the PAH emission but thought to be substantially suppressed. PAH alignment with a magnetic field via a resonance paramagnetic relaxation process may account for such a high level of polarization.« less

  18. Detection of Polarized Infrared Emission by Polycyclic Aromatic Hydrocarbons in the MWC 1080 Nebula

    NASA Astrophysics Data System (ADS)

    Zhang, Han; Telesco, Charles M.; Hoang, Thiem; Li, Aigen; Pantin, Eric; Wright, Christopher M.; Li, Dan; Barnes, Peter

    2017-07-01

    Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous in astrophysical environments, as revealed by their pronounced emission features at 3.3, 6.2, 7.7, 8.6, 11.3, and 12.7 μm commonly ascribed to the C-H and C-C vibrational modes. Although these features have long been predicted to be polarized, previous searches for PAH polarization led to null or, at best, tentative detections. Here we report the definite detection of polarized PAH emission at 11.3 μm in the nebula associated with the Herbig Be star MWC 1080. We measure a polarization degree of 1.9% ± 0.2%, which is unexpectedly high compared to models. This poses a challenge in the current understanding of the alignment of PAHs, which is required to polarize the PAH emission but thought to be substantially suppressed. PAH alignment with a magnetic field via a resonance paramagnetic relaxation process may account for such a high level of polarization.

  19. Vacuum nonlinear electrodynamic polarization effects in hard emission of pulsars and magnetars

    NASA Astrophysics Data System (ADS)

    Denisov, V. I.; Sokolov, V. A.; Svertilov, S. I.

    2017-09-01

    The nonlinear electrodynamics influence of pulsar magnetic field on the electromagnetic pulse polarization is discussed from the point of observation interpretation. The calculations of pulsar magnetic field impact on the electromagnetic pulse polarization are made in such a way to make it easier to interpret these effects in space experiments. The law of hard emission pulse propagation in the pulsar magnetic field according to the vacuum (nonlinear electrodynamics is obtained. It has been shown, that due to the birefringence in the vacuum the front part of any hard emission pulse coming from a pulsar should be linearly polarized and the rest of pulse can have arbitrary polarization. The observational possibilities of vacuum birefringence are discussed. In this paper we give the estimations of detector parameters such as effective area, exposure time and necessity of polarization measurements with high accuracy. The combination of large area and extremely long exposure time gives the good opportunity to search the fine polarization effects like vacuum nonlinear electrodynamics birefringence.

  20. Circularly polarized vacuum field in three-dimensional chiral photonic crystals probed by quantum dot emission

    NASA Astrophysics Data System (ADS)

    Takahashi, S.; Ota, Y.; Tajiri, T.; Tatebayashi, J.; Iwamoto, S.; Arakawa, Y.

    2017-11-01

    The modification of a circularly polarized vacuum field in three-dimensional chiral photonic crystals was measured by spontaneous emission from quantum dots in the structures. Due to the circularly polarized eigenmodes along the helical axis in the GaAs-based mirror-asymmetric structures we studied, we observed highly circularly polarized emission from the quantum dots. Both spectroscopic and time-resolved measurements confirmed that the obtained circularly polarized light was influenced by a large difference in the photonic density of states between the orthogonal components of the circular polarization in the vacuum field.

  1. Design of polarized infrared athermal telephoto objective for penetrating the fog

    NASA Astrophysics Data System (ADS)

    Gao, Duorui; Fu, Qiang; Zhao, Zhao; Zhao, Bin; Zhong, Lijun; Zhan, Juntong

    2014-11-01

    Polarized infrared imaging technology is a new detection technique which own the ability of spying through the fog, highlighting the target and recognizing the forgeries, these characters make it a good advantage of increasing the work distance in the fog. Compared to the traditional infrared imaging method, polarized infrared imaging can identify the background and target easily, that is the most distinguishing feature of polarized infrared imaging technology. Owning to the large refractive index of the infrared material, temperature change will bring defocus seriously, athermal infrared objective is necessarily. On the other hand, athermal objective has large total length, and hard to be integrated for their huge volume. However telephoto objective has the character of small volume and short total length. The paper introduce a method of polarized and athermal infrared telephoto objective which can spy the fog. First assign the optical power of the fore group and the rear group on the basis of the principle of telephoto objective, the power of the fore group is positive and the rear group is negative; then distribute the optical power within each group to realize the ability of athermalization, finally computer-aided software is used to correct aberration. In order to prove the feasibility of the scheme, an athermal optical system was designed by virtue of ZEMAX software which works at 8~12 µm, the focal length of 150mm, F number is 2, and total length of the telephoto objective is 120mm. The environment temperature analysis shows that the optical system have stable imaging quality, MTF is close to diffraction limit. This telephoto objective is available for infrared polarized imaging.

  2. Polar and non-polar organic aerosols from large-scale agricultural-waste burning emissions in Northern India: Implications to organic mass-to-organic carbon ratio.

    PubMed

    Rajput, Prashant; Sarin, M M

    2014-05-01

    This study focuses on characteristics of organic aerosols (polar and non-polar) and total organic mass-to-organic carbon ratio (OM/OC) from post-harvest agricultural-waste (paddy- and wheat-residue) burning emissions in Northern India. Aerosol samples from an upwind location (Patiala: 30.2°N, 76.3°E) in the Indo-Gangetic Plain were analyzed for non-polar and polar fractions of organic carbon (OC1 and OC2) and their respective mass (OM1 and OM2). On average, polar organic aerosols (OM2) contribute nearly 85% of the total organic mass (OM) from the paddy- and wheat-residue burning emissions. The water-soluble-OC (WSOC) to OC2 ratio, within the analytical uncertainty, is close to 1 from both paddy- and wheat-residue burning emissions. However, temporal variability and relatively low WSOC/OC2 ratio (Av: 0.67±0.06) is attributed to high moisture content and poor combustion efficiency during paddy-residue burning, indicating significant contribution (∼30%) of aromatic carbon to OC2. The OM/OC ratio for non-polar (OM1/OC1∼1.2) and polar organic aerosols (OM2/OC2∼2.2), hitherto unknown for open agricultural-waste burning emissions, is documented in this study. The total OM/OC ratio is nearly identical, 1.9±0.2 and 1.8±0.2, from paddy- and wheat-residue burning emissions. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Vacuum nonlinear electrodynamic polarization effects in hard emission of pulsars and magnetars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Denisov, V.I.; Sokolov, V.A.; Svertilov, S.I., E-mail: vid.msu@yandex.ru, E-mail: sokolov.sev@inbox.ru, E-mail: sis@coronas.ru

    The nonlinear electrodynamics influence of pulsar magnetic field on the electromagnetic pulse polarization is discussed from the point of observation interpretation. The calculations of pulsar magnetic field impact on the electromagnetic pulse polarization are made in such a way to make it easier to interpret these effects in space experiments. The law of hard emission pulse propagation in the pulsar magnetic field according to the vacuum (nonlinear electrodynamics is obtained. It has been shown, that due to the birefringence in the vacuum the front part of any hard emission pulse coming from a pulsar should be linearly polarized and themore » rest of pulse can have arbitrary polarization. The observational possibilities of vacuum birefringence are discussed. In this paper we give the estimations of detector parameters such as effective area, exposure time and necessity of polarization measurements with high accuracy. The combination of large area and extremely long exposure time gives the good opportunity to search the fine polarization effects like vacuum nonlinear electrodynamics birefringence.« less

  4. Linearly polarized emission from an embedded quantum dot using nanowire morphology control.

    PubMed

    Foster, Andrew P; Bradley, John P; Gardner, Kirsty; Krysa, Andrey B; Royall, Ben; Skolnick, Maurice S; Wilson, Luke R

    2015-03-11

    GaAs nanowires with elongated cross sections are formed using a catalyst-free growth technique. This is achieved by patterning elongated nanoscale openings within a silicon dioxide growth mask on a (111)B GaAs substrate. It is observed that MOVPE-grown vertical nanowires with cross section elongated in the [21̅1̅] and [1̅12] directions remain faithful to the geometry of the openings. An InGaAs quantum dot with weak radial confinement is realized within each nanowire by briefly introducing indium into the reactor during nanowire growth. Photoluminescence emission from an embedded nanowire quantum dot is strongly linearly polarized (typically >90%) with the polarization direction coincident with the axis of elongation. Linearly polarized PL emission is a result of embedding the quantum dot in an anisotropic nanowire structure that supports a single strongly confined, linearly polarized optical mode. This research provides a route to the bottom-up growth of linearly polarized single photon sources of interest for quantum information applications.

  5. Angular distribution and polarization of atomic radiative emission in electric and magnetic fields

    NASA Astrophysics Data System (ADS)

    Jacobs, V. L.; Filuk, A. B.

    1999-09-01

    A density-matrix approach has been developed for the angular distribution and polarization of radiative emission during single-photon atomic transitions for a general set of steady-state excitation processes in an arbitrary arrangement of static (or quasistatic) electric and magnetic fields. Particular attention has been directed at spectroscopic observations in the intense fields of the high-power ion diodes on the Particle Beam Fusion Accelerator II (PBFA II) and SABRE devices at Sandia National Laboratories and at magnetic-field measurements in tokamak plasmas. The field-dependent atomic eigenstates are represented as expansions in a complete basis set of field-free bound and continuum eigenstates. Particular emphasis has been given to directed-electron collisional excitations, which may be produced by an anisotropic incident-electron velocity distribution. We have allowed for the possibility of the coherent excitation of the nearly degenerate field-dependent atomic substates, which can give rise to a complex spectral pattern of overlapping Stark-Zeeman components. Coherent excitations may be produced by a beam of electrons that are spin-polarized at an angle with respect to the propagation direction or by nonparallel electric and magnetic fields. Our main result is a general expression for the matrix elements of the photon-polarization density operator representing the total intensity, angular distribution, and polarization of the atomic radiative emission. For the observation of radiative emission in the direction of the magnetic field, the detection of linearly polarized emission, in addition to the usual circularly polarized radiation, can reveal the presence of a perpendicular electric field or a coherent excitation mechanism.

  6. Polarized Balmer line emission from supernova remnant shock waves efficiently accelerating cosmic rays

    NASA Astrophysics Data System (ADS)

    Shimoda, Jiro; Ohira, Yutaka; Yamazaki, Ryo; Laming, J. Martin; Katsuda, Satoru

    2018-01-01

    Linearly polarized Balmer line emissions from supernova remnant shocks are studied taking into account the energy loss of the shock owing to the production of non-thermal particles. The polarization degree depends on the downstream temperature and the velocity difference between upstream and downstream regions. The former is derived once the line width of the broad component of the H α emission is observed. Then, the observation of the polarization degree tells us the latter. At the same time, the estimated value of the velocity difference independently predicts adiabatic downstream temperature that is derived from Rankine Hugoniot relations for adiabatic shocks. If the actually observed downstream temperature is lower than the adiabatic temperature, there is a missing thermal energy which is consumed for particle acceleration. It is shown that a larger energy-loss rate leads to more highly polarized H α emission. Furthermore, we find that polarized intensity ratio of H β to H α also depends on the energy-loss rate and that it is independent of uncertain quantities such as electron temperature, the effect of Lyman line trapping and our line of sight.

  7. Linearly polarized light emission from quantum dots with plasmonic nanoantenna arrays.

    PubMed

    Ren, Mengxin; Chen, Mo; Wu, Wei; Zhang, Lihui; Liu, Junku; Pi, Biao; Zhang, Xinzheng; Li, Qunqing; Fan, Shoushan; Xu, Jingjun

    2015-05-13

    Polarizers provide convenience in generating polarized light, meanwhile their adoption raises problems of extra weight, cost, and energy loss. Aiming to realize polarizer-free polarized light sources, herein, we present a plasmonic approach to achieve direct generation of linearly polarized optical waves at the nanometer scale. Periodic slot nanoantenna arrays are fabricated, which are driven by the transition dipole moments of luminescent semiconductor quantum dots. By harnessing interactions between quantum dots and scattered fields from the nanoantennas, spontaneous emission with a high degree of linear polarization is achieved from such hybrid antenna system with polarization perpendicular to antenna slot. We also demonstrate that the polarization is engineerable in aspects of both spectrum and magnitude by tailoring plasmonic resonance of the antenna arrays. Our findings will establish a basis for the development of innovative polarized light-emitting devices, which are useful in optical displays, spectroscopic techniques, optical telecommunications, and so forth.

  8. Improved ultraviolet emission performance from polarization-engineered n-ZnO/p-GaN heterojunction diode

    NASA Astrophysics Data System (ADS)

    Jiang, Junyan; Zhang, Yuantao; Chi, Chen; Shi, Zhifeng; Yan, Long; Li, Pengchong; Zhang, Baolin; Du, Guotong

    2016-02-01

    O-polar ZnO films were grown on N-polar p-GaN/sapphire substrates by photo-assisted metal-organic chemical vapor deposition, and further heterojunction light-emitting diodes based O-polar n-ZnO/N-polar p-GaN were proposed and fabricated. It is experimentally demonstrated that the interface polarization of O-polar n-ZnO/N-polar p-GaN heterojunction can shift the location of the depletion region from the interface deep into the ZnO side. When a forward bias is applied to the proposed diode, a strong and high-purity ultraviolet emission located at 385 nm can be observed. Compared with conventional Zn-polar n-ZnO/Ga-polar p-GaN heterostructure diode, the ultraviolet emission intensity of the proposed heterojunction diode is greatly enhanced due to the presence of polarization-induced inversion layer at the ZnO side of the heterojunction interface. This work provides an innovative path for the design and development of ZnO-based ultraviolet diode.

  9. Angular distribution and polarization of atomic radiative emission in electric and magnetic fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jacobs, V.L.; Filuk, A.B.

    A density-matrix approach has been developed for the angular distribution and polarization of radiative emission during single-photon atomic transitions for a general set of steady-state excitation processes in an arbitrary arrangement of static (or quasistatic) electric and magnetic fields. Particular attention has been directed at spectroscopic observations in the intense fields of the high-power ion diodes on the Particle Beam Fusion Accelerator II (PBFA II) and SABRE devices at Sandia National Laboratories and at magnetic-field measurements in tokamak plasmas. The field-dependent atomic eigenstates are represented as expansions in a complete basis set of field-free bound and continuum eigenstates. Particular emphasismore » has been given to directed-electron collisional excitations, which may be produced by an anisotropic incident-electron velocity distribution. We have allowed for the possibility of the coherent excitation of the nearly degenerate field-dependent atomic substates, which can give rise to a complex spectral pattern of overlapping Stark-Zeeman components. Coherent excitations may be produced by a beam of electrons that are spin-polarized at an angle with respect to the propagation direction or by nonparallel electric and magnetic fields. Our main result is a general expression for the matrix elements of the photon-polarization density operator representing the total intensity, angular distribution, and polarization of the atomic radiative emission. For the observation of radiative emission in the direction of the magnetic field, the detection of linearly polarized emission, in addition to the usual circularly polarized radiation, can reveal the presence of a perpendicular electric field or a coherent excitation mechanism.« less

  10. Polarization Signatures of Kink Instabilities in the Blazar Emission Region from Relativistic Magnetohydrodynamic Simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Haocheng; Li, Hui; Guo, Fan

    Kink instabilities are likely to occur in the current-carrying magnetized plasma jets. Recent observations of the blazar radiation and polarization signatures suggest that the blazar emission region may be considerably magnetized. While the kink instability has been studied with first-principle magnetohydrodynamic (MHD) simulations, the corresponding time-dependent radiation and polarization signatures have not been investigated. Here, in this paper, we perform comprehensive polarization-dependent radiation modeling of the kink instability in the blazar emission region based on relativistic MHD (RMHD) simulations. We find that the kink instability may give rise to strong flares with polarization angle (PA) swings or weak flares withmore » polarization fluctuations, depending on the initial magnetic topology and magnetization. These findings are consistent with observations. In addition, compared with the shock model, the kink model generates polarization signatures that are in better agreement with the general polarization observations. Therefore, we suggest that kink instabilities may widely exist in the jet environment and provide an efficient way to convert the magnetic energy and produce multiwavelength flares and polarization variations.« less

  11. Polarization control of quantum dot emission by chiral photonic crystal slabs

    NASA Astrophysics Data System (ADS)

    Lobanov, Sergey V.; Weiss, Thomas; Gippius, Nikolay A.; Tikhodeev, Sergei G.; Kulakovskii, Vladimir D.; Konishi, Kuniaki; Kuwata-Gonokami, Makoto

    2015-04-01

    We investigate theoretically the polarization properties of the quantum dot's optical emission from chiral photonic crystal structures made of achiral materials in the absence of external magnetic field at room temperature. The mirror symmetry of the local electromagnetic field is broken in this system due to the decreased symmetry of the chiral modulated layer. As a result, the radiation of randomly polarized quantum dots normal to the structure becomes partially circularly polarized. The sign and degree of circular polarization are determined by the geometry of the chiral modulated structure and depend on the radiation frequency. A degree of circular polarization up to 99% can be achieved for randomly distributed quantum dots, and can be close to 100% for some single quantum dots.

  12. Polarization control of quantum dot emission by chiral photonic crystal slabs.

    PubMed

    Lobanov, Sergey V; Weiss, Thomas; Gippius, Nikolay A; Tikhodeev, Sergei G; Kulakovskii, Vladimir D; Konishi, Kuniaki; Kuwata-Gonokami, Makoto

    2015-04-01

    We investigate theoretically the polarization properties of the quantum dot's (QDs) optical emission from chiral photonic crystal structures made of achiral materials in the absence of external magnetic field at room temperature. The mirror symmetry of the local electromagnetic field is broken in this system due to the decreased symmetry of the chiral modulated layer. As a result, the radiation of randomly polarized QDs normal to the structure becomes partially circularly polarized. The sign and degree of circular polarization are determined by the geometry of the chiral modulated structure and depend on the radiation frequency. A degree of circular polarization up to 99% can be achieved for randomly distributed QDs, and can be close to 100% for some single QDs.

  13. Polarization Behavior Across Profile Modes For B0329+54: What Consistent Non-RVM Polarization Tells About the Emission Processes

    NASA Astrophysics Data System (ADS)

    Brinkman-Traverse, Casey; Rankin, Joanna M.; Mitra, Dipanjan

    2017-01-01

    In this paper, we analyze the quirky polarization behavior across different profile modes for the pulsar B0329+54. We have multi-frequency observations in both the normal and abnormal profile modes, and have identified a non-RVM polarization kink in the core component of the emission. Mitra et al initially identified this kink in the normal profile mode of the pulsar in 2007, and a mirror analysis has been done here for abnormal profile modes at three different frequencies. This kink is intensity dependent, showing up only in the abberated/retarded high intensity pulses, and is frequency independent. This parallel between profile modes shows that the same geometric phenomenon—a height dependent amplifier—is responsible for the non-RVM polarization behavior in each. The question then arises: what can be the source of the profile change, which does not change the polarization characteristics of the pulsar. This pulsar gives us a unique opportunity to study the process of pulsar emission by showing what cannot be responsible for switches in profile mode, and thus profile shape.

  14. VARIABLE AND POLARIZED RADIO EMISSION FROM THE T6 BROWN DWARF WISEP J112254.73+255021.5

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, P. K. G.; Berger, E.; Gizis, J. E., E-mail: pwilliams@cfa.harvard.edu

    2017-01-10

    Route and Wolszczan recently detected five radio bursts from the T6 dwarf WISEP J112254.73+255021.5 and used the timing of these events to propose that this object rotates with an ultra-short period of ∼17.3 minutes. We conducted follow-up observations with the Very Large Array and Gemini-North but found no evidence for this periodicity. We do, however, observe variable, highly circularly polarized radio emission. Assuming that the radio emission of this T dwarf is periodically variable on ∼hour timescales, like other radio-active ultracool dwarfs, we infer a likely period of 116 minutes. However, our observation lasted only 162 minutes and so more data are needed to test thismore » hypothesis. The handedness of the circular polarization switches twice and there is no evidence for any unpolarized emission component, the first time such a phenomenology has been observed in radio studies of very low-mass stars and brown dwarfs. We suggest that the object’s magnetic dipole axis may be highly misaligned relative to its rotation axis.« less

  15. Polarized radio emission from the edge-on spiral galaxies NGC 891 and NGC 4565

    NASA Technical Reports Server (NTRS)

    Sukumar, S.; Allen, R. J.

    1991-01-01

    Results are presented, at a resolution of 20 arcsec, of observations of the distribution of radio continuum intensity and linear polarization with the VLA in two nearby edge-on spiral galaxies, NGC 891 and NGC 4565, at 6 and 20 cm, respectively. A unified model is presented to account for the main features of the radio polarization in these two galaxies. The model geometry is determined from recent observations of face-on galaxies where the polarized emission is found to be strongest in the dark inter-arm and outer parts of the disks. A substantial Z-thickness is ascribed to this polarized emission. It is shown that the exceptionally strong wavelength dependence of this type of Faraday depolarization can result in edge-on galaxies becoming rapidly 'Faraday thick' at decimeter wavelengths, thereby obliterating the polarization from regions on the dark side of the disk. The degree of polarization observed in both galaxies increases strongly with increasing Z-distance from the plane.

  16. Using a sharp metal tip to control the polarization and direction of emission from a quantum dot.

    PubMed

    Ghimire, Anil; Shafran, Eyal; Gerton, Jordan M

    2014-09-24

    Optical antennas can be used to manipulate the direction and polarization of radiation from an emitter. Usually, these metallic nanostructures utilize localized plasmon resonances to generate highly directional and strongly polarized emission, which is determined predominantly by the antenna geometry alone, and is thus not easily tuned. Here we show experimentally that the emission polarization can be manipulated using a simple, nonresonant scanning probe consisting of the sharp metallic tip of an atomic force microscope; finite element simulations reveal that the emission simultaneously becomes highly directional. Together, the measurements and simulations demonstrate that interference between light emitted directly into the far field with that elastically scattered from the tip apex in the near field is responsible for this control over polarization and directionality. Due to the relatively weak emitter-tip coupling, the tip must be positioned very precisely near the emitter, but this weak coupling also leads to highly tunable emission properties with a similar degree of polarization and directionality compared to resonant antennas.

  17. Polarization Signatures of Kink Instabilities in the Blazar Emission Region from Relativistic Magnetohydrodynamic Simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Haocheng; Taylor, Greg; Li, Hui

    Kink instabilities are likely to occur in the current-carrying magnetized plasma jets. Recent observations of the blazar radiation and polarization signatures suggest that the blazar emission region may be considerably magnetized. While the kink instability has been studied with first-principle magnetohydrodynamic (MHD) simulations, the corresponding time-dependent radiation and polarization signatures have not been investigated. In this paper, we perform comprehensive polarization-dependent radiation modeling of the kink instability in the blazar emission region based on relativistic MHD (RMHD) simulations. We find that the kink instability may give rise to strong flares with polarization angle (PA) swings or weak flares with polarizationmore » fluctuations, depending on the initial magnetic topology and magnetization. These findings are consistent with observations. Compared with the shock model, the kink model generates polarization signatures that are in better agreement with the general polarization observations. Therefore, we suggest that kink instabilities may widely exist in the jet environment and provide an efficient way to convert the magnetic energy and produce multiwavelength flares and polarization variations.« less

  18. Enhanced linearly polarized lasing emission from nanoimprinted surface-emitting distributed feedback laser based on polymeric liquid crystals

    NASA Astrophysics Data System (ADS)

    Jeong, Soon Moon; Ha, Na Young; Chee, Mu Guen; Araoka, Fumito; Ishikawa, Ken; Takezoe, Hideo; Nishimura, Suzushi; Suzaki, Goro

    2008-12-01

    The authors have demonstrated the enhancement of linearly polarized lasing emission intensity using a structure made by a simple fabrication process. The enhanced lasing is achieved using a nanoimprinted distributed feedback structure together with spin-coated polymeric liquid crystals. The backward linearly TE-polarized lasing emission is transformed to left-handed circularly polarized light (L-CPL) by employing a dye-doped polymeric nematic liquid crystal (PNLC) film as a (-1/4)λ[=(3/4)λ] plate. The L-CPL is effectively reflected by a L-polymeric cholesteric liquid crystal film as a reflector and transformed back to TE-polarized light by the PNLC film; as a result one-directional emission intensity is enhanced.

  19. Exciton lifetime and emission polarization dispersion in strongly in-plane asymmetric nanostructures

    NASA Astrophysics Data System (ADS)

    Gawełczyk, M.; Syperek, M.; Maryński, A.; Mrowiński, P.; Dusanowski, Ł.; Gawarecki, K.; Misiewicz, J.; Somers, A.; Reithmaier, J. P.; Höfling, S.; Sek, G.

    2017-12-01

    We present a theoretical and experimental investigation of exciton recombination dynamics and the related polarization of emission in highly in-plane asymmetric nanostructures. Considering general asymmetry- and size-driven effects, we illustrate them with a detailed analysis of InAs/AlGaInAs/InP elongated quantum dots. These offer widely varied confinement characteristics tuned by size and geometry that are tailored during the growth process, which leads to emission in the application-relevant spectral range of 1.25-1.65 μ m . By exploring the interplay of the very shallow hole confining potential and widely varying structural asymmetry, we show that a transition from the strong through intermediate to even weak confinement regime is possible in nanostructures of this kind. This has a significant impact on exciton recombination dynamics and the polarization of emission, which are shown to depend not only on the details of the calculated excitonic states but also on excitation conditions in the photoluminescence experiments. We estimate the impact of the latter and propose a way to determine the intrinsic polarization-dependent exciton light-matter coupling based on kinetic characteristics.

  20. Intrinsic polarization changes and the H-alpha and CA II emission features in T-Tauri stars

    NASA Astrophysics Data System (ADS)

    Svatos, J.; Solc, M.

    1981-12-01

    On the basis of the correlation between polarization and emission features observed in certain T-Tauri stars, it is concluded that flaring effects associated with UV and/or X-ray irradiation and with increased magnetic field are responsible for the intrinsic polarization changes in T-Tauri stars. The correlation between emission Ca II lines and polarization degree both in Miras and T-Tau stars is thought to support the contention that the intrinsic polarization changes are due to the irradiation of silicate-like grains. In some T-Tau stars the increase in the magnetic field can be the principal agent causing the polarization increase due to the enhanced orientation of elongated grains.

  1. Polarized radiative transfer considering thermal emission in semitransparent media

    NASA Astrophysics Data System (ADS)

    Ben, Xun; Yi, Hong-Liang; Tan, He-Ping

    2014-09-01

    The characteristics of the polarization must be considered for a complete and correct description of radiation transfer in a scattering medium. Observing and identifying the polarizition characteristics of the thermal emission of a hot semitransparent medium have a major significance to analyze the optical responses of the medium for different temperatures. In this paper, a Monte Carlo method is developed for polarzied radiative transfer in a semitransparent medium. There are mainly two kinds of mechanisms leading to polarization of light: specular reflection on the Fresnel boundary and scattering by particles. The determination of scattering direction is the key to solve polarized radiative transfer problem using the Monte Carlo method. An optimized rejection method is used to calculate the scattering angles. In the model, the treatment of specular reflection is also considered, and in the process of tracing photons, the normalization must be applied to the Stokes vector when scattering, reflection, or transmission occurs. The vector radiative transfer matrix (VRTM) is defined and solved using Monte Carlo strategy, by which all four Stokes elements can be determined. Our results for Rayleigh scattering and Mie scattering are compared well with published data. The accuracy of the developed Monte Carlo method is shown to be good enough for the solution to vector radiative transfer. Polarization characteristics of thermal emission in a hot semitransparent medium is investigated, and results show that the U and V parameters of Stokes vector are equal to zero, an obvious peak always appear in the Q curve instead of the I curve, and refractive index has a completely different effect on I from Q.

  2. Time-resolved polarization imaging by pump-probe (stimulated emission) fluorescence microscopy.

    PubMed Central

    Buehler, C; Dong, C Y; So, P T; French, T; Gratton, E

    2000-01-01

    We report the application of pump-probe fluorescence microscopy in time-resolved polarization imaging. We derived the equations governing the pump-probe stimulated emission process and characterized the pump and probe laser power levels for signal saturation. Our emphasis is to use this novel methodology to image polarization properties of fluorophores across entire cells. As a feasibility study, we imaged a 15-microm orange latex sphere and found that there is depolarization that is possibly due to energy transfer among fluorescent molecules inside the sphere. We also imaged a mouse fibroblast labeled with CellTracker Orange CMTMR (5-(and-6)-(((4-chloromethyl)benzoyl)amino)tetramethyl-rhodamine). We observed that Orange CMTMR complexed with gluthathione rotates fast, indicating the relatively low fluid-phase viscosity of the cytoplasmic microenvironment as seen by Orange CMTMR. The measured rotational correlation time ranged from approximately 30 to approximately 150 ps. This work demonstrates the effectiveness of stimulated emission measurements in acquiring high-resolution, time-resolved polarization information across the entire cell. PMID:10866979

  3. Corrected formula for the polarization of second harmonic plasma emission

    NASA Technical Reports Server (NTRS)

    Melrose, D. B.; Dulk, G. A.; Gary, D. E.

    1980-01-01

    Corrections for the theory of polarization of second harmonic plasma emission are proposed. The nontransversality of the magnetoionic waves was not taken into account correctly and is here corrected. The corrected and uncorrected results are compared for two simple cases of parallel and isotropic distributions of Langmuir waves. It is found that whereas with the uncorrected formula plausible values of the coronal magnetic fields were obtained from the observed polarization of the second harmonic, the present results imply fields which are stronger by a factor of three to four.

  4. Scalable Direct Writing of Lanthanide-Doped KMnF3 Perovskite Nanowires into Aligned Arrays with Polarized Up-Conversion Emission.

    PubMed

    Shi, Shuo; Sun, Ling-Dong; Xue, Ying-Xian; Dong, Hao; Wu, Ke; Guo, Shi-Chen; Wu, Bo-Tao; Yan, Chun-Hua

    2018-05-09

    The use of one-dimensional nano- and microstructured semiconductor and lanthanide materials is attractive for polarized-light-emission studies. Up-conversion emission from single-nanorod or anisotropic nanoparticles with a degree of polarization has also been discussed. However, microscale arrays of nanoparticles, especially well-aligned one-dimensional nanostructures as well as their up-conversion polarization characterization, have not been investigated yet. Herein, we present a novel and facile paradigm for preparing highly aligned arrays of lanthanide-doped KMnF 3 (KMnF 3 :Ln) perovskite nanowires, which are good candidates for polarized up-conversion emission studies. These perovskite nanowires, with a width of 10 nm and length of a few micrometers, are formed through the oriented attachment of KMnF 3 :Ln nanocubes along the [001] direction. By the employment of KMnF 3 :Ln nanowire gel as nanoink, a direct-writing method is developed to obtain diverse types of aligned patterns from the nanoscale to the wafer scale. Up-conversion emissions from the highly aligned nanowire arrays are polarized along the array direction with a polarization degree up to 60%. Taking advantage of microscopic nanowire arrays, these polarized up-conversion emissions should offer potential applications in light or information transportation.

  5. Assessment of Anisotropic Semiconductor Nanorod and Nanoplatelet Heterostructures with Polarized Emission for Liquid Crystal Display Technology.

    PubMed

    Cunningham, Patrick D; Souza, João B; Fedin, Igor; She, Chunxing; Lee, Byeongdu; Talapin, Dmitri V

    2016-06-28

    Semiconductor nanorods can emit linear-polarized light at efficiencies over 80%. Polarization of light in these systems, confirmed through single-rod spectroscopy, can be explained on the basis of the anisotropy of the transition dipole moment and dielectric confinement effects. Here we report emission polarization in macroscopic semiconductor-polymer composite films containing CdSe/CdS nanorods and colloidal CdSe nanoplatelets. Anisotropic nanocrystals dispersed in polymer films of poly butyl-co-isobutyl methacrylate (PBiBMA) can be stretched mechanically in order to obtain unidirectionally aligned arrays. A high degree of alignment, corresponding to an orientation factor of 0.87, was achieved and large areas demonstrated polarized emission, with the contrast ratio I∥/I⊥ = 5.6, making these films viable candidates for use in liquid crystal display (LCD) devices. To some surprise, we observed significant optical anisotropy and emission polarization for 2D CdSe nanoplatelets with the electronic structure of quantum wells. The aligned nanorod arrays serve as optical funnels, absorbing unpolarized light and re-emitting light from deep-green to red with quantum efficiencies over 90% and high degree of linear polarization. Our results conclusively demonstrate the benefits of anisotropic nanostructures for LCD backlighting. The polymer films with aligned CdSe/CdS dot-in-rod and rod-in-rod nanostructures show more than 2-fold enhancement of brightness compared to the emitter layers with randomly oriented nanostructures. This effect can be explained as the combination of linearly polarized luminescence and directional emission from individual nanostructures.

  6. High-Energy Emission From the Polar Cap and Slot Gap

    NASA Technical Reports Server (NTRS)

    Harding, Alice K.

    2006-01-01

    Thirty-five years after the discovery of rotation-powered pulsars, we still do not understand the fundamentals of their pulsed emission at any wavelength. I will review the latest developments in understanding the high-energy emission of rotation-powered pulsars, with particular emphasis on the polar cap and slot gap models. Special and general relativistic effects play important roles in pulsar emission, from inertial frame-dragging near the stellar surface to aberration, time-of-flight and retardation of the magnetic field near the light cylinder. Understanding how these effects determine what we observe at different wavelengths is critical to unraveling the emission physics. I will discuss how the next generation of gamma-ray detectors, AGILE and GLAST, will test prediction of these models.

  7. Radio emission from RS CVn binaries. II - Polarization and spectral properties

    NASA Technical Reports Server (NTRS)

    Mutel, R. L.; Morris, D. H.; Doiron, D. J.; Lestrade, J. F.

    1987-01-01

    Multiepoch radio observations of circular polarization and spectral characteristics of several close, late-type stellar binaries are reported. The median luminosity of four well-studied systems ranged from 16.2 to 17.1 ergs/s/Hz. For individual systems, the fractional circular polarization decreases with increasing luminosity, particularly at frequencies above 5 GHz. Eclipsing binaries have significantly lower average circular polarization compared with noneclipsing systems. Helicity reversal is almost always observed between 1.4 and 4.9 GHz for systems with high orbital inclination. Comparison with ten years of previously published polarization observations for two RS CVn stellar systems show that the same helicity occurs at a given frequency for a given source, indicating a very stable, large-scale magnetic field geometry. These spectral and polarization characteristics strongly support a model of inhomogeneous gyrosynchrotron emission arising from electrons with power law energy spectra interacting with inhomogeneous magnetic fields.

  8. Broadband polarized emission from P(NDI2OD-T2) polymer.

    PubMed

    Ulrich, Steve; Sutch, Tabitha; Szulczewski, Greg; Schweizer, Matthias; Barbosa, Newton; Araujo, Paulo

    2018-05-18

    We investigate the P(NDI2OD-T2) photophysical properties via absorbance and fluorescence spectroscopy, in association with the experimental approach baptized Stokes Spectroscopy, which provides valuable material information through the acquisition and analysis of the fluorescence polarization degree. By changing solvents and using different samples such as solutions, thick, and thin films, it is possible to control the polarization degree spectrum associated to the fluorescence emitted by the polymer's isolated chains and aggregates. We show that the polarization degree could become a powerful tool to obtain information related to the samples morphology, which is connected to their microscopic structure. Moreover, the polarization degree spectra suggest that depolarization effects linked to energy and charge transfer mechanisms are likely taking place. Our findings indicate that P(NDI2OD-T2) polymers are excellent candidates for the advancement of organic technologies that rely on the emission and detection of polarized lights. © 2018 IOP Publishing Ltd.

  9. Broadband polarized emission from P(NDI2OD-T2) polymer

    NASA Astrophysics Data System (ADS)

    Ulrich, Steven V.; Sutch, Tabitha; Szulczewski, Greg; Schweizer, Matthias; Barbosa Neto, Newton M.; Araujo, Paulo T.

    2018-07-01

    We investigate the P(NDI2OD-T2) photophysical properties via absorbance and fluorescence spectroscopy, in association with the experimental approach baptized Stokes Spectroscopy, which provides valuable material information through the acquisition and analysis of the fluorescence polarization degree. By changing solvents and using different samples such as solutions, thick, and thin films, it is possible to control the polarization degree spectrum associated to the fluorescence emitted by the polymer’s isolated chains and aggregates. We show that the polarization degree could become a powerful tool to obtain information related to the samples morphology, which is connected to their microscopic structure. Moreover, the polarization degree spectra suggest that depolarization effects linked to energy and charge transfer mechanisms are likely taking place. Our findings indicate that P(NDI2OD-T2) polymers are excellent candidates for the advancement of organic technologies that rely on the emission and detection of polarized lights.

  10. Valence subband coupling effect on polarization of spontaneous emissions from Al-rich AlGaN/AlN quantum wells.

    PubMed

    Lu, Huimin; Yu, Tongjun; Yuan, Gangcheng; Jia, Chuanyu; Chen, Genxiang; Zhang, Guoyi

    2012-12-03

    The optical polarization properties of Al-rich AlGaN/AlN quantum wells (QWs) were investigated using the theoretical model based on the k·p method. Numerical results show that there is valence subband coupling which can influence the peak emission wavelength and emission intensity for TE and TM polarization components from Al-rich AlGaN/AlN QWs. Especially the valence subband coupling could be strong enough when CH1 is close to HH1 and LH1 subbands to modulate the critical Al content switching dominant emissions from TE to TM polarization. It is believed that the valence subband coupling may give important influence on polarization properties of spontaneous emissions and should be considered in designing high efficiency AlGaN-based ultraviolet (UV) LEDs.

  11. Statistical polarization in greenhouse gas emissions: Theory and evidence.

    PubMed

    Remuzgo, Lorena; Trueba, Carmen

    2017-11-01

    The current debate on climate change is over whether global warming can be limited in order to lessen its impacts. In this sense, evidence of a decrease in the statistical polarization in greenhouse gas (GHG) emissions could encourage countries to establish a stronger multilateral climate change agreement. Based on the interregional and intraregional components of the multivariate generalised entropy measures (Maasoumi, 1986), Gigliarano and Mosler (2009) proposed to study the statistical polarization concept from a multivariate view. In this paper, we apply this approach to study the evolution of such phenomenon in the global distribution of the main GHGs. The empirical analysis has been carried out for the time period 1990-2011, considering an endogenous grouping of countries (Aghevli and Mehran, 1981; Davies and Shorrocks, 1989). Most of the statistical polarization indices showed a slightly increasing pattern that was similar regardless of the number of groups considered. Finally, some policy implications are commented. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Experimental observation of polarized electroluminescence from edge-emission organic light emitting devices

    NASA Astrophysics Data System (ADS)

    Ran, G. Z.; Jiang, D. F.; Kan, Q.; Chen, H. D.

    2010-12-01

    We have observed a strongly polarized edge-emission from an organic light emitting device (OLED) with a silicon anode and a stacked Sm/Au (or Ag) cathode. For the OLED with a Sm/Au cathode, the transverse magnetic (TM) mode is stronger than the transverse electric (TE) mode by a factor of 2, while the polarization ratio of TM:TE is close to 300 for that with a Sm/Ag cathode. The polarization results from the scattering of surface plasmon polaritons at the device boundary. Such a silicon-based OLED is potentially an electrically excited SPP source in plasmonics.

  13. Polarization signatures of relativistic magnetohydrodynamic shocks in the blazar emission region. I. Force-free helical magnetic fields

    DOE PAGES

    Zhang, Haocheng; Deng, Wei; Li, Hui; ...

    2016-01-20

    The optical radiation and polarization signatures in blazars are known to be highly variable during flaring activities. It is frequently argued that shocks are the main driver of the flaring events. However, the spectral variability modelings generally lack detailed considerations of the self-consistent magnetic field evolution modeling; thus, so far the associated optical polarization signatures are poorly understood. We present the first simultaneous modeling of the optical radiation and polarization signatures based on 3D magnetohydrodynamic simulations of relativistic shocks in the blazar emission environment, with the simplest physical assumptions. By comparing the results with observations, we find that shocks inmore » a weakly magnetized environment will largely lead to significant changes in the optical polarization signatures, which are seldom seen in observations. Hence an emission region with relatively strong magnetization is preferred. In such an environment, slow shocks may produce minor flares with either erratic polarization fluctuations or considerable polarization variations, depending on the parameters; fast shocks can produce major flares with smooth polarization angle rotations. In addition, the magnetic fields in both cases are observed to actively revert to the original topology after the shocks. In addition, all these features are consistent with observations. Future observations of the radiation and polarization signatures will further constrain the flaring mechanism and the blazar emission environment.« less

  14. Interplay of dust alignment, grain growth, and magnetic fields in polarization: lessons from the emission-to-extinction ratio

    NASA Astrophysics Data System (ADS)

    Fanciullo, L.; Guillet, V.; Boulanger, F.; Jones, A. P.

    2017-06-01

    Context. Polarized extinction and emission from dust in the interstellar medium (ISM) are hard to interpret, as their dependence on dust optical properties, grain alignment, and magnetic field orientation is complex. This is particularly true in molecular clouds. The aforementioned phenomena are usually considered independently in polarization studies, while it is likely that they all contribute and their effects have yet to be disentangled. Aims: The data available today are not yet used to their full potential. The combination of emission and extinction, in particular, provides information not available from either of them alone. We combine data from the scientific literature on polarized dust extinction with Planck data on polarized emission, and we use them to constrain the possible variations in dust and environmental conditions inside molecular clouds, and especially translucent lines of sight, taking the magnetic field orientation into account. Methods: We focused on the dependence between λmax (the wavelength of maximum polarization in extinction) and other observables such as the extinction polarization, the emission polarization, and the ratio between the two. We set out to reproduce these correlations using Monte Carlo simulations in which we varied the relevant quantities in a dust model, which are grain alignment, size distribution, and magnetic field orientation, to mimic the diverse conditions that are expected inside molecular clouds. Results: None of the quantities we chose can explain the observational data on their own: the best results are obtained when all quantities vary significantly across and within clouds. However, some of the data, most notably the stars with a low ratio of polarization in emission to polarization in extinction, are not reproduced by our simulation. Conclusions: Our results suggest not only that dust evolution is necessary to explain polarization in molecular clouds, but that a simple change in size distribution is not

  15. Exciplex fluorescence emission from simple organic intramolecular constructs in non-polar and highly polar media as model systems for DNA-assembled exciplex detectors.

    PubMed

    Bichenkova, Elena V; Sardarian, Ali R; Wilton, Amanda N; Bonnet, Pascal; Bryce, Richard A; Douglas, Kenneth T

    2006-01-21

    Organic intramolecular exciplexes, N-(4-dimethylaminobenzyl)-N-(1-pyrenemethyl)amine (1) and N'-4-dimethylaminonaphthyl-N-(1-pyrenemethyl)amine (2), were used as model systems to reveal major factors affecting their exciplex fluorescence, and thus lay the basis for developing emissive target-assembled exciplexes for DNA-mounted systems in solution. These models with an aromatic pyrenyl hydrocarbon moiety as an electron acceptor appropriately connected to an aromatic dimethylamino electron donor component (N,N-dimethylaminophenyl or N,N-dimethylaminonaphthyl) showed strong intramolecular exciplex emission in both non-polar and highly polar solvents. The effect of dielectric constant on the maximum wavelength for exciplex emission was studied, and emission was observed for 1 and 2 over the full range of solvent from non-polar hydrocarbons up to N-methylformamide with a dielectric constant of 182. Quantum yields were determined for these intramolecular exciplexes in a range of solvents relative to that for Hoechst 33,258. Conformational analysis of 1 was performed both computationally and via qualitative 2D NMR using (1)H-NOESY experiments. The results obtained indicated the contribution of pre-folded conformation(s) to the ground state of 1 conducive to exciplex emission. This research provides the initial background for design of self-assembled, DNA-mounted exciplexes and underpins further development of exciplex-based hybridisation bioassays.

  16. Probing the radio emission from air showers with polarization measurements

    NASA Astrophysics Data System (ADS)

    Aab, A.; Abreu, P.; Aglietta, M.; Ahlers, M.; Ahn, E. J.; Albuquerque, I. F. M.; Allekotte, I.; Allen, J.; Allison, P.; Almela, A.; Alvarez Castillo, J.; Alvarez-Muñiz, J.; Alves Batista, R.; Ambrosio, M.; Aminaei, A.; Anchordoqui, L.; Andringa, S.; Antičić, T.; Aramo, C.; Arqueros, F.; Asorey, H.; Assis, P.; Aublin, J.; Ave, M.; Avenier, M.; Avila, G.; Badescu, A. M.; Barber, K. B.; Bardenet, R.; Bäuml, J.; Baus, C.; Beatty, J. J.; Becker, K. H.; Bellido, J. A.; BenZvi, S.; Berat, C.; Bertou, X.; Biermann, P. L.; Billoir, P.; Blanco, F.; Blanco, M.; Bleve, C.; Blümer, H.; Boháčová, M.; Boncioli, D.; Bonifazi, C.; Bonino, R.; Borodai, N.; Brack, J.; Brancus, I.; Brogueira, P.; Brown, W. C.; Buchholz, P.; Bueno, A.; Buscemi, M.; Caballero-Mora, K. S.; Caccianiga, B.; Caccianiga, L.; Candusso, M.; Caramete, L.; Caruso, R.; Castellina, A.; Cataldi, G.; Cazon, L.; Cester, R.; Cheng, S. H.; Chiavassa, A.; Chinellato, J. A.; Chudoba, J.; Cilmo, M.; Clay, R. W.; Cocciolo, G.; Colalillo, R.; Collica, L.; Coluccia, M. R.; Conceição, R.; Contreras, F.; Cooper, M. J.; Coutu, S.; Covault, C. E.; Criss, A.; Cronin, J.; Curutiu, A.; Dallier, R.; Daniel, B.; Dasso, S.; Daumiller, K.; Dawson, B. R.; de Almeida, R. M.; De Domenico, M.; de Jong, S. J.; De La Vega, G.; de Mello Junior, W. J. M.; de Mello Neto, J. R. T.; De Mitri, I.; de Souza, V.; de Vries, K. D.; del Peral, L.; Deligny, O.; Dembinski, H.; Dhital, N.; Di Giulio, C.; Di Matteo, A.; Diaz, J. C.; Díaz Castro, M. L.; Diep, P. N.; Diogo, F.; Dobrigkeit, C.; Docters, W.; D'Olivo, J. C.; Dong, P. N.; Dorofeev, A.; dos Anjos, J. C.; Dova, M. T.; Ebr, J.; Engel, R.; Erdmann, M.; Escobar, C. O.; Espadanal, J.; Etchegoyen, A.; Facal San Luis, P.; Falcke, H.; Fang, K.; Farrar, G.; Fauth, A. C.; Fazzini, N.; Ferguson, A. P.; Fick, B.; Figueira, J. M.; Filevich, A.; Filipčič, A.; Foerster, N.; Fox, B. D.; Fracchiolla, C. E.; Fraenkel, E. D.; Fratu, O.; Fröhlich, U.; Fuchs, B.; Gaior, R.; Gamarra, R. F.; Gambetta, S.; García, B.; Garcia Roca, S. T.; Garcia-Gamez, D.; Garcia-Pinto, D.; Garilli, G.; Gascon Bravo, A.; Gemmeke, H.; Ghia, P. L.; Giammarchi, M.; Giller, M.; Gitto, J.; Glaser, C.; Glass, H.; Gomez Albarracin, F.; Gómez Berisso, M.; Gómez Vitale, P. F.; Gonçalves, P.; Gonzalez, J. G.; Gookin, B.; Gorgi, A.; Gorham, P.; Gouffon, P.; Grebe, S.; Griffith, N.; Grillo, A. F.; Grubb, T. D.; Guardincerri, Y.; Guarino, F.; Guedes, G. P.; Hansen, P.; Harari, D.; Harrison, T. A.; Harton, J. L.; Haungs, A.; Hebbeker, T.; Heck, D.; Herve, A. E.; Hill, G. C.; Hojvat, C.; Hollon, N.; Holt, E.; Homola, P.; Hörandel, J. R.; Horvath, P.; Hrabovský, M.; Huber, D.; Huege, T.; Insolia, A.; Isar, P. G.; Jansen, S.; Jarne, C.; Josebachuili, M.; Kadija, K.; Kambeitz, O.; Kampert, K. H.; Karhan, P.; Kasper, P.; Katkov, I.; Kégl, B.; Keilhauer, B.; Keivani, A.; Kemp, E.; Kieckhafer, R. M.; Klages, H. O.; Kleifges, M.; Kleinfeller, J.; Knapp, J.; Krause, R.; Krohm, N.; Krömer, O.; Kruppke-Hansen, D.; Kuempel, D.; Kunka, N.; La Rosa, G.; LaHurd, D.; Latronico, L.; Lauer, R.; Lauscher, M.; Lautridou, P.; Le Coz, S.; Leão, M. S. A. B.; Lebrun, D.; Lebrun, P.; Leigui de Oliveira, M. A.; Letessier-Selvon, A.; Lhenry-Yvon, I.; Link, K.; López, R.; Lopez Agüera, A.; Louedec, K.; Lozano Bahilo, J.; Lu, L.; Lucero, A.; Ludwig, M.; Lyberis, H.; Maccarone, M. C.; Malacari, M.; Maldera, S.; Maller, J.; Mandat, D.; Mantsch, P.; Mariazzi, A. G.; Marin, V.; Mariş, I. C.; Marquez Falcon, H. R.; Marsella, G.; Martello, D.; Martin, L.; Martinez, H.; Martínez Bravo, O.; Martraire, D.; Masías Meza, J. J.; Mathes, H. J.; Matthews, J.; Matthews, J. A. J.; Matthiae, G.; Maurel, D.; Maurizio, D.; Mayotte, E.; Mazur, P. O.; Medina, C.; Medina-Tanco, G.; Melissas, M.; Melo, D.; Menichetti, E.; Menshikov, A.; Messina, S.; Meyhandan, R.; Mićanović, S.; Micheletti, M. I.; Middendorf, L.; Minaya, I. A.; Miramonti, L.; Mitrica, B.; Molina-Bueno, L.; Mollerach, S.; Monasor, M.; Monnier Ragaigne, D.; Montanet, F.; Morales, B.; Morello, C.; Moreno, J. C.; Mostafá, M.; Moura, C. A.; Muller, M. A.; Müller, G.; Münchmeyer, M.; Mussa, R.; Navarra, G.; Navarro, J. L.; Navas, S.; Necesal, P.; Nellen, L.; Nelles, A.; Neuser, J.; Nhung, P. T.; Niechciol, M.; Niemietz, L.; Niggemann, T.; Nitz, D.; Nosek, D.; Nožka, L.; Oehlschläger, J.; Olinto, A.; Oliveira, M.; Ortiz, M.; Pacheco, N.; Pakk Selmi-Dei, D.; Palatka, M.; Pallotta, J.; Palmieri, N.; Parente, G.; Parra, A.; Pastor, S.; Paul, T.; Pech, M.; PeÂķala, J.; Pelayo, R.; Pepe, I. M.; Perrone, L.; Pesce, R.; Petermann, E.; Petrera, S.; Petrolini, A.; Petrov, Y.; Piegaia, R.; Pierog, T.; Pieroni, P.; Pimenta, M.; Pirronello, V.; Platino, M.; Plum, M.; Pontz, M.; Porcelli, A.; Preda, T.; Privitera, P.; Prouza, M.; Quel, E. J.; Querchfeld, S.; Quinn, S.; Rautenberg, J.; Ravel, O.; Ravignani, D.; Revenu, B.; Ridky, J.; Riggi, S.; Risse, M.; Ristori, P.; Rivera, H.; Rizi, V.; Roberts, J.; Rodrigues de Carvalho, W.; Rodriguez Cabo, I.; Rodriguez Fernandez, G.; Rodriguez Martino, J.; Rodriguez Rojo, J.; Rodríguez-Frías, M. D.; Ros, G.; Rosado, J.; Rossler, T.; Roth, M.; Rouillé-d'Orfeuil, B.; Roulet, E.; Rovero, A. C.; Rühle, C.; Saffi, S. J.; Saftoiu, A.; Salamida, F.; Salazar, H.; Salesa Greus, F.; Salina, G.; Sánchez, F.; Sanchez-Lucas, P.; Santo, C. E.; Santos, E.; Santos, E. M.; Sarazin, F.; Sarkar, B.; Sarmento, R.; Sato, R.; Scharf, N.; Scherini, V.; Schieler, H.; Schiffer, P.; Schmidt, A.; Scholten, O.; Schoorlemmer, H.; Schovánek, P.; Schröder, F. G.; Schulz, A.; Schulz, J.; Sciutto, S. J.; Scuderi, M.; Segreto, A.; Settimo, M.; Shadkam, A.; Shellard, R. C.; Sidelnik, I.; Sigl, G.; Sima, O.; Śmiałkowski, A.; Šmída, R.; Snow, G. R.; Sommers, P.; Sorokin, J.; Spinka, H.; Squartini, R.; Srivastava, Y. N.; Stanič, S.; Stapleton, J.; Stasielak, J.; Stephan, M.; Straub, M.; Stutz, A.; Suarez, F.; Suomijärvi, T.; Supanitsky, A. D.; Šuša, T.; Sutherland, M. S.; Swain, J.; Szadkowski, Z.; Szuba, M.; Tapia, A.; Tartare, M.; Taşcǎu, O.; Thao, N. T.; Tiffenberg, J.; Timmermans, C.; Tkaczyk, W.; Todero Peixoto, C. J.; Toma, G.; Tomankova, L.; Tomé, B.; Tonachini, A.; Torralba Elipe, G.; Torres Machado, D.; Travnicek, P.; Tridapalli, D. B.; Trovato, E.; Tueros, M.; Ulrich, R.; Unger, M.; Valdés Galicia, J. F.; Valiño, I.; Valore, L.; van Aar, G.; van den Berg, A. M.; van Velzen, S.; van Vliet, A.; Varela, E.; Vargas Cárdenas, B.; Varner, G.; Vázquez, J. R.; Vázquez, R. A.; Veberič, D.; Verzi, V.; Vicha, J.; Videla, M.; Villaseñor, L.; Wahlberg, H.; Wahrlich, P.; Wainberg, O.; Walz, D.; Watson, A. A.; Weber, M.; Weidenhaupt, K.; Weindl, A.; Werner, F.; Westerhoff, S.; Whelan, B. J.; Widom, A.; Wieczorek, G.; Wiencke, L.; Wilczyńska, B.; Wilczyński, H.; Will, M.; Williams, C.; Winchen, T.; Wundheiler, B.; Wykes, S.; Yamamoto, T.; Yapici, T.; Younk, P.; Yuan, G.; Yushkov, A.; Zamorano, B.; Zas, E.; Zavrtanik, D.; Zavrtanik, M.; Zaw, I.; Zepeda, A.; Zhou, J.; Zhu, Y.; Zimbres Silva, M.; Ziolkowski, M.; Pierre Auger Collaboration

    2014-03-01

    The emission of radio waves from air showers has been attributed to the so-called geomagnetic emission process. At frequencies around 50 MHz this process leads to coherent radiation which can be observed with rather simple setups. The direction of the electric field induced by this emission process depends only on the local magnetic field vector and on the incoming direction of the air shower. We report on measurements of the electric field vector where, in addition to this geomagnetic component, another component has been observed that cannot be described by the geomagnetic emission process. The data provide strong evidence that the other electric field component is polarized radially with respect to the shower axis, in agreement with predictions made by Askaryan who described radio emission from particle showers due to a negative charge excess in the front of the shower. Our results are compared to calculations which include the radiation mechanism induced by this charge-excess process.

  17. Total and Linearly Polarized Synchrotron Emission from Overpressured Magnetized Relativistic Jets

    NASA Astrophysics Data System (ADS)

    Fuentes, Antonio; Gómez, José L.; Martí, José M.; Perucho, Manel

    2018-06-01

    We present relativistic magnetohydrodynamic (RMHD) simulations of stationary overpressured magnetized relativistic jets, which are characterized by their dominant type of energy: internal, kinetic, or magnetic. Each model is threaded by a helical magnetic field with a pitch angle of 45° and features a series of recollimation shocks produced by the initial pressure mismatch, whose strength and number varies as a function of the dominant type of energy. We perform a study of the polarization signatures from these models by integrating the radiative transfer equations for synchrotron radiation using as inputs the RMHD solutions. These simulations show a top-down emission asymmetry produced by the helical magnetic field and a progressive confinement of the emission into a jet spine as the magnetization increases and the internal energy of the non-thermal population is considered to be a constant fraction of the thermal one. Bright stationary components associated with the recollimation shocks appear, presenting a relative intensity modulated by the Doppler boosting ratio between the pre-shock and post-shock states. Small viewing angles show a roughly bimodal distribution in the polarization angle, due to the helical structure of the magnetic field, which is also responsible for the highly stratified degree of linear polarization across the jet width. In addition, small variations of the order of 26° are observed in the polarization angle of the stationary components, which can be used to identify recollimation shocks in astrophysical jets.

  18. Polarized and asymmetric emission of single colloidal nanoplatelets (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Feng, Fu; N'Guyen, Thu Loan; Nasilowski, Michel; Lethiec, Clotilde M.; Dubertret, Benoit; Coolen, Laurent; Maître, Agnès.

    2017-02-01

    Efficient coupling of nanoemitters to photonic or plasmonic structures requires the control of the orientation of the emitting dipoles. Nevertheless controlling the dipole orientation remains an experimental challenge. Many experiments rely on the realization of numerous samples, in order to be able to statistically get a well aligned dipole to realize an efficient coupling to a nanostructure. In order to avoid these statistical trials, the knowledge of the nature of the emitter and its orientation is crucial for a deterministical approach. We developed a method [1],[2] relying on the combination of polarimetric measurement and emission diagram which gives fine information both on the emitting dipolar transition involved and on the dipolar orientation We analyse by this method square and rectangle single colloidal CdSe/CdS nanoplatetelets. We demonstrate that their emission can be described by just by two orthogonal dipoles lying in the plane of the platelets. More surprisingly the emission of the square nanoplatelets is not polarised whereas the rectangle one is. We demonstrate that this polarized emission is due to the rectangular shape anisotropy by a dielectric effect. [1] C. Lethiec, et al, Three-dimensional orientation measurement of a single fluorescent nanoemitter by polarization analysis, Phys. Rev. X 4, 021037 (2014), [2] C. Lethiec et al, Polarimetry-based analysis of dipolar transitions of single colloidal CdSe/CdS dot-inrods, New Journal of Physics 16, 093014 (2014) [3] S. Ithurria et al, colloidal nanoplatelets with 2 dimensional electronic structure, Nature Materials 10, 936 (2011)

  19. Broadband enhancement of single photon emission and polarization dependent coupling in silicon nitride waveguides.

    PubMed

    Bisschop, Suzanne; Guille, Antoine; Van Thourhout, Dries; Hens, Zeger; Brainis, Edouard

    2015-06-01

    Single-photon (SP) sources are important for a number of optical quantum information processing applications. We study the possibility to integrate triggered solid-state SP emitters directly on a photonic chip. A major challenge consists in efficiently extracting their emission into a single guided mode. Using 3D finite-difference time-domain simulations, we investigate the SP emission from dipole-like nanometer-sized inclusions embedded into different silicon nitride (SiNx) photonic nanowire waveguide designs. We elucidate the effect of the geometry on the emission lifetime and the polarization of the emitted SP. The results show that highly efficient and polarized SP sources can be realized using suspended SiNx slot-waveguides. Combining this with the well-established CMOS-compatible processing technology, fully integrated and complex optical circuits for quantum optics experiments can be developed.

  20. Substrate dependence of TM-polarized light emission characteristics of BAlGaN/AlN quantum wells

    NASA Astrophysics Data System (ADS)

    Park, Seoung-Hwan; Ahn, Doyeol

    2018-06-01

    To study the substrate dependence of light emission characteristics of transverse-magnetic (TM)-polarized light emitted from BAlGaN/AlN quantum wells (QWs) grown on GaN and AlN substrates were investigated theoretically. It is found that the topmost valence subband for QW structures grown on AlN substrate, is heavy hole state (HH1) while that for QW structures grown on GaN substrate is crystal-field split off light hole state (CL1), irrespective of the boron content. Since TM-polarized light emission is associated with the light hole state, the TM-polarized emission peak of BAlGaN/AlN QW structures grown on GaN substrate is expected to be much larger than that of the QW structure grown on AlN substrate. Also, both QW structures show that the spontaneous emission peak of BAlGaN/AlN QW structures would be improved with the inclusion of the boron. However, it rapidly begins to decrease when the boron content exceeds a critical value.

  1. Polarized electroluminescence from edge-emission organic light emitting devices

    NASA Astrophysics Data System (ADS)

    Ran, G. Z.; Jiang, D. F.

    2011-01-01

    We report the experimental observation and measurement of the polarized electroluminescence from an edge-emission Si based- organic light emitting device (OLED) with a Sm/Au or Sm/Ag cathode. Light collected from the OLED edge comes from the scattering of the surface plasmon polaritons (SPPs) at the device boundary. This experiment shows that such Si-OLED can be an electrically excited SPP source on a silicon chip for optical interconnect based on SPPs.

  2. Power Spectrum Analysis of Polarized Emission from the Canadian Galactic Plane Survey

    NASA Astrophysics Data System (ADS)

    Stutz, R. A.; Rosolowsky, E. W.; Kothes, R.; Landecker, T. L.

    2014-05-01

    Angular power spectra are calculated and presented for the entirety of the Canadian Galactic Plane Survey polarization data set at 1.4 GHz covering an area of 1060 deg2. The data analyzed are a combination of data from the 100 m Effelsberg Telescope, the 26 m Telescope at the Dominion Radio Astrophysical Observatory, and the Synthesis Telescope at the Dominion Radio Astrophysical Observatory, allowing all scales to be sampled down to arcminute resolution. The resulting power spectra cover multipoles from l ≈ 60 to l ≈ 104 and display both a power-law component at low multipoles and a flattening at high multipoles from point sources. We fit the power spectrum with a model that accounts for these components and instrumental effects. The resulting power-law indices are found to have a mode of 2.3, similar to previous results. However, there are significant regional variations in the index, defying attempts to characterize the emission with a single value. The power-law index is found to increase away from the Galactic plane. A transition from small-scale to large-scale structure is evident at b = 9°, associated with the disk-halo transition in a 15° region around l = 108°. Localized variations in the index are found toward H II regions and supernova remnants, but the interpretation of these variations is inconclusive. The power in the polarized emission is anticorrelated with bright thermal emission (traced by Hα emission) indicating that the thermal emission depolarizes background synchrotron emission.

  3. Radio emission of energetic cosmic ray air showers: Polarization measurements with LOPES

    NASA Astrophysics Data System (ADS)

    Lopes Collaboration; Isar, P. G.; Apel, W. D.; Arteaga, J. C.; Asch, T.; Auffenberg, J.; Badea, F.; Bähren, L.; Bekk, K.; Bertaina, M.; Biermann, P. L.; Blümer, J.; Bozdog, H.; Brancus, I. M.; Brüggemann, M.; Buchholz, P.; Buitink, S.; Cantoni, E.; Chiavassa, A.; Cossavella, F.; Daumiller, K.; de Souza, V.; di Pierro, F.; Doll, P.; Engel, R.; Falcke, H.; Finger, M.; Fuhrmann, D.; Gemmeke, H.; Ghia, P. L.; Glasstetter, R.; Grupen, C.; Haungs, A.; Heck, D.; Hörandel, J. R.; Horneffer, A.; Huang, X.; Huege, T.; Kampert, K.-H.; Kang, D.; Kickelbick, D.; Kolotaev, Y.; Krömer, O.; Kuijpers, J.; Lafebre, S.; Łuczak, P.; Mathes, H. J.; Mayer, H. J.; Milke, J.; Mitrica, B.; Morello, C.; Navarra, G.; Nehls, S.; Nigl, A.; Oehlschläger, J.; Over, S.; Petcu, M.; Pierog, T.; Rautenberg, J.; Rebel, H.; Roth, M.; Saftoiu, A.; Schieler, H.; Schmidt, A.; Schröder, F.; Sima, O.; Singh, K.; Stümpert, M.; Toma, G.; Trinchero, G. C.; Ulrich, H.; Walkowiak, W.; Weindl, A.; Wochele, J.; Wommer, M.; Zabierowski, J.; Zensus, J. A.; LOPES Collaboration

    2009-06-01

    LOPES is a radio antenna array co-located with the Karlsruhe Shower Core and Array DEtector, KASCADE-Grande in Forschungszentrum Karlsruhe, Germany, which provides well-calibrated trigger information and air shower parameters for primary energies up to 10eV. By the end of 2006, the radio antennas were re-configured to perform polarization measurements of the radio signal of cosmic ray air showers, recording in the same time both, the East-West and North-South polarization directions of the radio emission. The main goal of these measurements is to reconstruct the polarization characteristics of the emitted signal. This will allow a detailed comparison with theoretical predictions. The current status of these measurements is reported here.

  4. Planck intermediate results. XIX. An overview of the polarized thermal emission from Galactic dust

    NASA Astrophysics Data System (ADS)

    Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Alina, D.; Alves, M. I. R.; Armitage-Caplan, C.; Arnaud, M.; Arzoumanian, D.; Ashdown, M.; Atrio-Barandela, F.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Battaner, E.; Benabed, K.; Benoit-Lévy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bock, J. J.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Boulanger, F.; Bracco, A.; Burigana, C.; Butler, R. C.; Cardoso, J.-F.; Catalano, A.; Chamballu, A.; Chary, R.-R.; Chiang, H. C.; Christensen, P. R.; Colombi, S.; Colombo, L. P. L.; Combet, C.; Couchot, F.; Coulais, A.; Crill, B. P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Gouveia Dal Pino, E. M.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Désert, F.-X.; Dickinson, C.; Diego, J. M.; Donzelli, S.; Doré, O.; Douspis, M.; Dunkley, J.; Dupac, X.; Efstathiou, G.; Enßlin, T. A.; Eriksen, H. K.; Falgarone, E.; Ferrière, K.; Finelli, F.; Forni, O.; Frailis, M.; Fraisse, A. A.; Franceschi, E.; Galeotta, S.; Ganga, K.; Ghosh, T.; Giard, M.; Giraud-Héraud, Y.; González-Nuevo, J.; Górski, K. M.; Gregorio, A.; Gruppuso, A.; Guillet, V.; Hansen, F. K.; Harrison, D. L.; Helou, G.; Hernández-Monteagudo, C.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hornstrup, A.; Huffenberger, K. M.; Jaffe, A. H.; Jaffe, T. R.; Jones, W. C.; Juvela, M.; Keihänen, E.; Keskitalo, R.; Kisner, T. S.; Kneissl, R.; Knoche, J.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lähteenmäki, A.; Lamarre, J.-M.; Lasenby, A.; Lawrence, C. R.; Leahy, J. P.; Leonardi, R.; Levrier, F.; Liguori, M.; Lilje, P. B.; Linden-Vørnle, M.; López-Caniego, M.; Lubin, P. M.; Macías-Pérez, J. F.; Maffei, B.; Magalhães, A. M.; Maino, D.; Mandolesi, N.; Maris, M.; Marshall, D. J.; Martin, P. G.; Martínez-González, E.; Masi, S.; Matarrese, S.; Mazzotta, P.; Melchiorri, A.; Mendes, L.; Mennella, A.; Migliaccio, M.; Miville-Deschênes, M.-A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Munshi, D.; Murphy, J. A.; Naselsky, P.; Nati, F.; Natoli, P.; Netterfield, C. B.; Noviello, F.; Novikov, D.; Novikov, I.; Oxborrow, C. A.; Pagano, L.; Pajot, F.; Paladini, R.; Paoletti, D.; Pasian, F.; Pearson, T. J.; Perdereau, O.; Perotto, L.; Perrotta, F.; Piacentini, F.; Piat, M.; Pietrobon, D.; Plaszczynski, S.; Poidevin, F.; Pointecouteau, E.; Polenta, G.; Popa, L.; Pratt, G. W.; Prunet, S.; Puget, J.-L.; Rachen, J. P.; Reach, W. T.; Rebolo, R.; Reinecke, M.; Remazeilles, M.; Renault, C.; Ricciardi, S.; Riller, T.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Roudier, G.; Rubiño-Martín, J. A.; Rusholme, B.; Sandri, M.; Savini, G.; Scott, D.; Spencer, L. D.; Stolyarov, V.; Stompor, R.; Sudiwala, R.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Umana, G.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Vielva, P.; Villa, F.; Wade, L. A.; Wandelt, B. D.; Zacchei, A.; Zonca, A.

    2015-04-01

    This paper presents an overview of the polarized sky as seen by Planck HFI at 353 GHz, which is the most sensitive Planck channel for dust polarization. We construct and analyse maps of dust polarization fraction and polarization angle at 1° resolution, taking into account noise bias and possible systematic effects. The sensitivity of the Planck HFI polarization measurements allows for the first time a mapping of Galactic dust polarized emission on large scales, including low column density regions. We find that the maximum observed dust polarization fraction is high (pmax = 19.8%), in particular in some regions of moderate hydrogen column density (NH < 2 × 1021 cm-2). The polarization fraction displays a large scatter at NH below a few 1021 cm-2. There is a general decrease in the dust polarization fraction with increasing column density above NH ≃ 1 × 1021 cm-2 and in particular a sharp drop above NH ≃ 1.5 × 1022 cm-2. We characterize the spatial structure of the polarization angle using the angle dispersion function. We find that the polarization angle is ordered over extended areas of several square degrees, separated by filamentary structures of high angle dispersion function. These appear as interfaces where the sky projection of the magnetic field changes abruptly without variations in the column density. The polarization fraction is found to be anti-correlated with the dispersion of polarization angles. These results suggest that, at the resolution of 1°, depolarization is due mainly to fluctuations in the magnetic field orientation along the line of sight, rather than to the loss of grain alignment in shielded regions. We also compare the polarization of thermal dust emission with that of synchrotron measured with Planck, low-frequency radio data, and Faraday rotation measurements toward extragalactic sources. These components bear resemblance along the Galactic plane and in some regions such as the Fan and North Polar Spur regions. The poor match

  5. Polarized quantum dot emission in electrohydrodynamic jet printed photonic crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    See, Gloria G.; Xu, Lu; Nuzzo, Ralph G.

    2015-08-03

    Tailored optical output, such as color purity and efficient optical intensity, are critical considerations for displays, particularly in mobile applications. To this end, we demonstrate a replica molded photonic crystal structure with embedded quantum dots. Electrohydrodynamic jet printing is used to control the position of the quantum dots within the device structure. This results in significantly less waste of the quantum dot material than application through drop-casting or spin coating. In addition, the targeted placement of the quantum dots minimizes any emission outside of the resonant enhancement field, which enables an 8× output enhancement and highly polarized emission from themore » photonic crystal structure.« less

  6. The Structure and Properties of 0.1 - 100 keV Electron Distributions Over Jupiter's Polar Aurora Region and their Contribution to Polar Aurora Emissions

    NASA Astrophysics Data System (ADS)

    Ebert, R. W.; Allegrini, F.; Bagenal, F.; Bolton, S. J.; Chae, K.; Connerney, J. E. P.; Clark, G. B.; Gladstone, R.; Hue, V.; Kurth, W. S.; Levin, S.; Louarn, P.; Mauk, B.; McComas, D. J.; Paranicas, C.; Saur, J.; Reno, C.; Szalay, J. R.; Thomsen, M. F.; Valek, P. W.; Weidner, S.; Wilson, R. J.

    2017-12-01

    In addition to the main emissions in the north and south, Jupiter's auroral emissions also include polar, satellite-related, and other features. Here we present observations from Juno's Jovian Auroral Distributions Experiment (JADE) of 0.1 - 100 keV electrons in Jupiter's polar aurora region during the spacecraft's northern and southern polar passes bounding PJ1 (27 August 2016), PJ3 (11 December 11 2016), PJ4 (2 February 2017), PJ5 (27 March 2017), PJ6 (19 May 2017), and PJ7 (11 July 2017). Specifically, we focus on the spatial structure, energy and pitch angle distributions, and energy flux and spectra of these electrons. The observations reveal regions containing magnetic field aligned beams of bi-directional electrons having broad energy distributions interspersed between beams of upward electrons with narrow, peaked energy distributions, regions void of these electrons, and regions dominated by penetrating radiation, with penetrating radiation being most common. The electrons show evidence of acceleration via parallel electric fields (inverted-V structures) and via stochastic processes (bi-directional distributions). The inverted-V structures identified to date were observed from 1.4 - 2.9 RJ and had spatial scales of 100s to 1000s of kilometers along Juno's trajectory. The upward energy flux of the electron distributions was typically greater than the downward energy flux and their contribution to producing Jupiter's polar aurora emissions will be discussed.

  7. Observations of two peculiar emission objects in the Large Magellanic Cloud

    NASA Technical Reports Server (NTRS)

    Kafatos, M.; Michalitsianos, A. G.; Allen, D. A.; Stencel, R. E.

    1983-01-01

    Ultraviolet and visual wavelength spectra were obtained of two peculiar emission objects, Henize S63 and Sanduleak's star in the Large Magellanic Cloud. Previously not observed in the near- or far-ultraviolet, both objects exhibit strong permitted and semiforbidden line emissions. Estimates based on the absolute continuum flux of the hot companion star in Hen S63 indicate that it rivals the luminosity of the carbon star primary. The emission-line profile structure in both objects does not suggest Wolf-Rayet type emission. Carbon in Sanduleak's star (LMC anonymous) is conspicuously absent, while N V, semiforbidden N IV, and semiforbidden N III dominate the UV emission-line spectrum. Nitrogen is overabundant with respect to carbon and oxygen in both objects. The large overabundance of nitrogen in Sanduleak's star suggests evidence for CNO processes material similar to that seen in Nu Car.

  8. Recovering a hidden polarization by ghost polarimetry.

    PubMed

    Janassek, Patrick; Blumenstein, Sébastien; Elsäßer, Wolfgang

    2018-02-15

    By exploiting polarization correlations of light from a broadband fiber-based amplified spontaneous emission source we succeed in reconstructing a hidden polarization in a ghost polarimetry experiment in close analogy to ghost imaging and ghost spectroscopy. Thereby, an original linear polarization state in the object arm of a Mach-Zehnder interferometer configuration which has been camouflaged by a subsequent depolarizer is recovered by correlating it with light from a reference beam. The variation of a linear polarizer placed inside the reference beam results in a Malus law type second-order intensity correlation with high contrast, thus measuring a ghost polarigram.

  9. The Discharging of Roving Objects in the Lunar Polar Regions

    NASA Technical Reports Server (NTRS)

    Jackson, T. L.; Farrell, W. M.; Killen, R. M.; Delory, G. T.; Halekas, J. S.; Stubbs, T. B.

    2012-01-01

    the gradient in pressure that would act in a collisional neutral gas. Human systems (roving astronauts or robotic systems created by humans) may be required to gain access to the crater floor to collect resources such as water and other cold-trapped material. However, these human systems are also exposed to the above-described harsh thermal and electrical environments in the region. Thus, the objective of this work is to determine the nature of charging and discharging for a roving object in the cold, plasma-starved lunar polar regions. To accomplish this objective, we first define the electrical charging environment within polar craters. We then describe the subsequent charging of a moving object near and within such craters. We apply a model of an astronaut moving in periodic steps/cadence over a surface regolith. In fact the astronaut can be considered an analog for any kind of moving human system. An astronaut stepping over the surface accumulates charge via contact electrification (tribocharging) v.lith the lunar regolith. We present a model of this tribo-charge build-up. Given the environmental plasma in the region, we determine herein the dissipation time for the astronaut to bleed off its excess charge into the surrounding plasma.

  10. Polarization of edge emission from III-nitride light emitting diodes of emission wavelength from 395 to 455 nm

    NASA Astrophysics Data System (ADS)

    Jia, Chuanyu; Yu, Tongjun; Mu, Sen; Pan, Yaobo; Yang, Zhijian; Chen, Zhizhong; Qin, Zhixin; Zhang, Guoyi

    2007-05-01

    Polarization-resolved edge-emitting electroluminescence of InGaN /GaN multiple quantum well (MQW) light emitting diodes (LEDs) from 395to455nm was measured. Polarization ratio decreased from 3.2 of near-ultraviolet LEDs (395nm) to 1.9 of blue LEDs (455nm). Based on TE mode dominant emissions in InGaN /GaN MQWs, compressive strain in well region favors TE mode, indium induced quantum-dot-like behavior leads to an increased TM component. As wavelength increased, indium enhanced quantum-dot-like behavior became obvious and E ‖C electroluminescence signal increased thus lower polarization ratio. Electroluminescence spectrum shifts confirmed that quantum dotlike behaviors rather than strain might be dominant in modifying luminescence mode of InGaN /GaN MQWs from near ultraviolet to blue.

  11. A quantum dot single-photon source with on-the-fly all-optical polarization control and timed emission.

    PubMed

    Heinze, Dirk; Breddermann, Dominik; Zrenner, Artur; Schumacher, Stefan

    2015-10-05

    Sources of single photons are key elements for applications in quantum information science. Among the different sources available, semiconductor quantum dots excel with their integrability in semiconductor on-chip solutions and the potential that photon emission can be triggered on demand. Usually, the photon is emitted from a single-exciton ground state. Polarization of the photon and time of emission are either probabilistic or pre-determined by electronic properties of the system. Here, we study the direct two-photon emission from the biexciton. The two-photon emission is enabled by a laser pulse driving the system into a virtual state inside the band gap. From this intermediate state, the single photon of interest is then spontaneously emitted. We show that emission through this higher-order transition provides a versatile approach to generate a single photon. Through the driving laser pulse, polarization state, frequency and emission time of the photon can be controlled on-the-fly.

  12. Polarization of the induced THz emission of donors in silicon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kovalevsky, K. A., E-mail: atan4@yandex.ru; Zhukavin, R. Kh.; Tsyplenkov, V. V.

    2016-12-15

    The polarization of the terahertz (4.9–6.4 THz) stimulated emission of Group-V (Sb, P, As, Bi) donors in single-crystal silicon under pumping (photoionization) by a CO{sub 2} laser (photon energy 117 meV), depending on the uniaxial compressive deformation of the crystal along the [100] axis, is experimentally investigated. The influence of the field direction of the pump wave on its efficiency is discussed.

  13. How Often Do Thermally Excited 630.0 nm Emissions Occur in the Polar Ionosphere?

    NASA Astrophysics Data System (ADS)

    Kwagala, Norah Kaggwa; Oksavik, Kjellmar; Lorentzen, Dag A.; Johnsen, Magnar G.

    2018-01-01

    This paper studies thermally excited emissions in the polar ionosphere derived from European Incoherent Scatter Svalbard radar measurements from the years 2000-2015. The peak occurrence is found around magnetic noon, where the radar observations show cusp-like characteristics. The ionospheric, interplanetary magnetic field and solar wind conditions favor dayside magnetic reconnection as the dominant driving process. The thermal emissions occur 10 times more frequently on the dayside than on the nightside, with an average intensity of 1-5 kR. For typical electron densities in the polar ionosphere (2 × 1011 m-3), we find the peak occurrence rate to occur for extreme electron temperatures (>3000 K), which is consistent with assumptions in literature. However, for extreme electron densities (>5 × 1011 m-3), we can now report on a completely new population of thermal emissions that may occur at much lower electron temperatures (˜2300 K). The empirical atmospheric model (NRLMSISE-00) suggests that the latter population is associated with enhanced neutral atomic oxygen densities.

  14. A Calibrated H-alpha Index to Monitor Emission Line Objects

    NASA Astrophysics Data System (ADS)

    Hintz, Eric G.; Joner, M. D.

    2013-06-01

    Over an 8 year period we have developed a calibrated H-alpha index, similar to the more traditional H-beta index, based on spectrophotometric observations (Joner & Hintz, 2013) from the DAO 1.2-m Telescope. While developing the calibration for this filter set we also obtained spectra of a number of emission line systems such as high mass x-ray binaries (HMXB), Be stars, and young stellar objects. From this work we find that the main sequence stars fill a very tight relation in the H-alpha/H-beta plane and that the emission line objects are easily detected. We will present the overall location of these emission line objects. We will also present the changes experiences by these objects over the course of the years of the project.

  15. A revised and updated catalog of quasi-stellar objects

    NASA Technical Reports Server (NTRS)

    Hewitt, A.; Burbidge, G.

    1993-01-01

    The paper contains a catalog of all known quasi-stellar objects (QSOs) with measured emission redshifts, and BL Lac objects, complete to 1992 December 31. The catalog contains 7315 objects, nearly all QSOs including about 90 BL Lac objects. The catalog and references contain extensive information on names, positions, magnitudes, colors, emission-line redshifts, absorption, variability, polarization, and X-ray, radio, and infrared data. A key in the form of subsidiary tables enables the reader to relate the name of a given object to its coordinate name, which is used throughout the compilation. Plots of the Hubble diagram, the apparent magnitude distribution, the emission redshift distribution, and the distribution of the QSOs on the sky are also given.

  16. Two-Photon Emission of a Hydrogenlike Atom with Photon Polarization and Electron Spin States Taken into Account

    NASA Astrophysics Data System (ADS)

    Skobelev, V. V.

    2017-02-01

    The process of two-photon emission ( Ze)* → ( Ze) + 2 γ of a hydrogenlike atom is considered with spin states of the electron and polarization of the photons taken into account, which had not been done before. A general expression for the probability of the process per unit time has been obtained for different polarization states of the photons with a formulation of hard and soft selection rules for the quantum numbers m and l. It is shown that by virtue of the established specifics of the properties of the two-photon emission process (absence of a Zeeman effect and dependence of the probability on the polarization states of the photons), it can in principle be identified against the background of single-photon emission ( Ze)* → ( Ze) + γ, despite the presence of additional small factors: 1) α = e 2/ ћc ≈ 1/137 of the perturbation theory in e, and 2) the square of the atomic expansion parameter ( Zα)2 in the expression for the probability.

  17. Designing optically pumped InGaN quantum wells with long wavelength emission for a phosphor-free device with polarized white-light emission

    NASA Astrophysics Data System (ADS)

    Kowsz, Stacy J.; Pynn, Christopher D.; Wu, Feng; Farrell, Robert M.; Speck, James S.; DenBaars, Steven P.; Nakamura, Shuji

    2016-02-01

    We report a semipolar III-nitride device in which an electrically injected blue light emitting diode optically pumps monolithic long wavelength emitting quantum wells (QWs) to create polarized white light. We have demonstrated an initial device with emission peaks at 440 nm and 560 nm from the electrically injected and optically pumped QWs, respectively. By tuning the ratio of blue to yellow, white light was measured with a polarization ratio of 0.40. High indium content InGaN is required for long wavelength emission but is difficult to achieve because it requires low growth temperatures and has a large lattice mismatch with GaN. This device design incorporates optically pumped QWs for long wavelength emission because they offer advantages over using electrically injected QWs. Optically pumped QWs do not have to be confined within a p-n junction, and carrier transport is not a concern. Thus, thick GaN barriers can be incorporated between multiple InGaN QWs to manage stress. Optically pumping long wavelength emitting QWs also eliminates high temperature steps that degrade high indium content InGaN but are required when growing p-GaN for an LED structure. Additionally, by eliminating electrical injection, the doping profile can instead be engineered to affect the emission wavelength. We discuss ongoing work focused on improving polarized white light emission by optimizing the optically pumped QWs. We consider the effects of growth conditions, including: trimethylindium (TMI) flow rate, InGaN growth rate, and growth temperature. We also examine the effects of epitaxial design, including: QW width, number of QWs, and doping.

  18. Modulating emission polarization of semiconductor quantum dots through surface plasmon of metal nanorod

    NASA Astrophysics Data System (ADS)

    Cheng, Mu-Tian; Liu, Shao-Ding; Wang, Qu-Quan

    2008-04-01

    We theoretically investigated the dynamics of exciton populations [ρyy(t ) and ρxx(t )] on two orthogonal polarization eigenstates (∣x⟩ and ∣y⟩) and the polarization ratio P(t )=[ρyy(t )-ρxx(t )]/[ρyy(t )+ρxx(t )] of an anisotropic InGaAs quantum dot modulated by the surface plasmon of an Au nanorod (NR). In the resonance of longitudinal surface plasmon of AuNR, the polarization ratio P(t ) increases from 0.22 to 0.99 during the excitation due to the efficient enhancement of Rabi frequency of the transition between the ∣y⟩ and vacuum states, and decreases from 0.02 to -0.92 after the excitation pulse due to the enhancement of decay rate of the ∣y⟩ state. This offers an approach to modulate the dynamic polarization ratio of radiative emissions.

  19. Electron emission perpendicular to the polarization direction in laser-assisted XUV atomic ionization

    NASA Astrophysics Data System (ADS)

    Gramajo, A. A.; Della Picca, R.; Arbó, D. G.

    2017-08-01

    We present a theoretical study of ionization of the hydrogen atom due to an XUV pulse in the presence of an infrared (IR) laser with both fields linearly polarized in the same direction. In particular, we study the energy distribution of photoelectrons emitted perpendicularly to the polarization direction. As we previously showed in Gramajo et al. [Phys. Rev. A 94, 053404 (2016), 10.1103/PhysRevA.94.053404] for parallel emission, by means of a very simple semiclassical model which considers electron trajectories born at different ionization times, the electron energy spectrum can be interpreted as the interplay of intra- and intercycle interferences. However, contrary to the case of parallel emission the intracycle interference pattern stems from the coherent superposition of four electron trajectories giving rise to (i) interference of electron trajectories born during the same half cycle (intra-half-cycle interference) and (ii) interference between electron trajectories born during the first half cycle with those born during the second half cycle (inter-half-cycle interference). The intercycle interference is responsible for the formation of the sidebands. We also show that the destructive inter-half-cycle interference for the absorption and emission of an even number of IR laser photons is responsible for the characteristic sidebands in the perpendicular direction separated by twice the IR photon energy. This contrasts with the emission along the polarization axis (all sideband orders are present) since intra-half-cycle interferences do not exist in that case. The intracycle interference pattern works as a modulation of the sidebands and, in the same way, it is modulated by the intra-half-cycle interference pattern. We analyze the dependence of the energy spectrum on the laser intensity and the time delay between the XUV pulse and the IR laser. Finally, we show that our semiclassical simulations are in very good agreement with quantum calculations within the

  20. Line Emission and X-ray Line Polarization of Multiply Ionized Mo Ions

    NASA Astrophysics Data System (ADS)

    Petkov, E. E.; Safronova, A. S.; Kantsyrev, V. L.; Shlyaptseva, V. V.; Stafford, A.; Safronova, U. I.; Shrestha, I. K.; Schultz, K. A.; Childers, R.; Cooper, M. C.; Beiersdorfer, P.; Hell, N.; Brown, G. V.

    2016-10-01

    We present a comprehensive experimental and theoretical study of the line emission from multiply ionized Mo ions produced by two different sets of experiments: at LLNL EBIT and the pulsed power generator Zebra at UNR. Mo line emission and polarization measurements were accomplished at EBIT for the first time. In particular, benchmarking experiments at the LLNL EBIT with Mo ions produced at electron beam energies from 2.75 keV up to 15 keV allowed us to break down these very complicated spectra into spectra with only few ionization stages and to select processes that influence them as well as to measure line polarization. The EBIT data were recorded using the EBIT Calorimeter Spectrometer and a crystal spectrometer with a Ge crystal. X-ray Mo spectra and pinhole images were collected from Z-pinch plasmas produced from various wire loads. Non-LTE modeling, high-precision relativistic atomic and polarization data were used to analyze L-shell Mo spectra. The influence of different plasma processes including electron beams on Mo line radiation is summarized. This work was supported by NNSA under DOE Grant DE-NA0002954. Experiments at the NTF/UNR were funded in part by DE-NA0002075. Work at LLNL was performed under the auspices of the U.S. DOE under contract DE-AC52-07NA27344.

  1. EMISSION-LINE OBJECTS PROJECTED UPON THE GALACTIC BULGE*

    PubMed Central

    Herbig, G. H.

    1969-01-01

    Low-dispersion slit spectrograms have been obtained of 34 faint objects that lie in the direction of the galactic bulge and have the Hα line in emission upon a detectable continuum. Eleven of these are certain or probable symbiotic stars. A rough comparison with R CrB stars in the same area suggests that these brightest symbiotics in the bulge have in the mean Mv ≈ -3 to -4, which suggest Population II red giants rather than conventional Population I M-type objects. The sample also contains a number of hot stars having H and [O II] or [O III] in emission, as well as four conventional Be stars, and six certain or possible planetary nebulae. Images PMID:16578699

  2. Emission-line objects projected upon the galactic bulge.

    PubMed

    Herbig, G H

    1969-08-01

    Low-dispersion slit spectrograms have been obtained of 34 faint objects that lie in the direction of the galactic bulge and have the Halpha line in emission upon a detectable continuum. Eleven of these are certain or probable symbiotic stars. A rough comparison with R CrB stars in the same area suggests that these brightest symbiotics in the bulge have in the mean M(v) approximately -3 to -4, which suggest Population II red giants rather than conventional Population I M-type objects. The sample also contains a number of hot stars having H and [O II] or [O III] in emission, as well as four conventional Be stars, and six certain or possible planetary nebulae.

  3. Metallic layer-by-layer photonic crystals for linearly-polarized thermal emission and thermophotovoltaic device including same

    DOEpatents

    Lee, Jae-Hwang; Ho, Kai-Ming; Constant, Kristen P.

    2016-07-26

    Metallic thermal emitters consisting of two layers of differently structured nickel gratings on a homogeneous nickel layer are fabricated by soft lithography and studied for polarized thermal radiation. A thermal emitter in combination with a sub-wavelength grating shows a high extinction ratio, with a maximum value close to 5, in a wide mid-infrared range from 3.2 to 7.8 .mu.m, as well as high emissivity up to 0.65 at a wavelength of 3.7 .mu.m. All measurements show good agreement with theoretical predictions. Numerical simulations reveal that a high electric field exists within the localized air space surrounded by the gratings and the intensified electric-field is only observed for the polarizations perpendicular to the top sub-wavelength grating. This result suggests how the emissivity of a metal can be selectively enhanced at a certain range of wavelengths for a given polarization.

  4. Calibration of H-alpha/H-beta Indexes for Emission Line Objects

    NASA Astrophysics Data System (ADS)

    Hintz, Eric G.; Joner, Michael D.

    2016-01-01

    In Joner and Hintz (2015) they report on a standard star system for calibration of H-alpha and H-beta observations. This work was based on data obtained with the Dominion Astrophysical Observatory 1.2-m telescope. As part of the data acquisition for that project, a large number of emission line objects were also observed. We will report on the preliminary results for the emission line data set. This will include a comparison of equivalent width measurements of each line with the matching index. We will also examine the relation between the absorption line objects previously published and the emission line objects, along with a discussion of the transition point. Object types included are Be stars, high mass x-ray binaries, one low mass x-ray binary, Herbig Ae/Be stars, pre-main sequence stars, T Tauri stars, young stellar objects, and one BY Draconis star. Some of these objects come from Cygnus OB-2, NGC 659, NGC 663, NGC 869 and NGC 884.

  5. Planck intermediate results. XXX. The angular power spectrum of polarized dust emission at intermediate and high Galactic latitudes

    NASA Astrophysics Data System (ADS)

    Planck Collaboration; Adam, R.; Ade, P. A. R.; Aghanim, N.; Arnaud, M.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Bartlett, J. G.; Bartolo, N.; Battaner, E.; Benabed, K.; Benoit-Lévy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bonaldi, A.; Bonavera, L.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Boulanger, F.; Bracco, A.; Bucher, M.; Burigana, C.; Butler, R. C.; Calabrese, E.; Cardoso, J.-F.; Catalano, A.; Challinor, A.; Chamballu, A.; Chary, R.-R.; Chiang, H. C.; Christensen, P. R.; Clements, D. L.; Colombi, S.; Colombo, L. P. L.; Combet, C.; Couchot, F.; Coulais, A.; Crill, B. P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Zotti, G.; Delabrouille, J.; Delouis, J.-M.; Désert, F.-X.; Dickinson, C.; Diego, J. M.; Dolag, K.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Ducout, A.; Dunkley, J.; Dupac, X.; Efstathiou, G.; Elsner, F.; Enßlin, T. A.; Eriksen, H. K.; Falgarone, E.; Finelli, F.; Forni, O.; Frailis, M.; Fraisse, A. A.; Franceschi, E.; Frejsel, A.; Galeotta, S.; Galli, S.; Ganga, K.; Ghosh, T.; Giard, M.; Giraud-Héraud, Y.; Gjerløw, E.; González-Nuevo, J.; Górski, K. M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Guillet, V.; Hansen, F. K.; Hanson, D.; Harrison, D. L.; Helou, G.; Henrot-Versillé, S.; Hernández-Monteagudo, C.; Herranz, D.; Hivon, E.; Hobson, M.; Holmes, W. A.; Huffenberger, K. M.; Hurier, G.; Jaffe, A. H.; Jaffe, T. R.; Jewell, J.; Jones, W. C.; Juvela, M.; Keihänen, E.; Keskitalo, R.; Kisner, T. S.; Kneissl, R.; Knoche, J.; Knox, L.; Krachmalnicoff, N.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lamarre, J.-M.; Lasenby, A.; Lattanzi, M.; Lawrence, C. R.; Leahy, J. P.; Leonardi, R.; Lesgourgues, J.; Levrier, F.; Liguori, M.; Lilje, P. B.; Linden-Vørnle, M.; López-Caniego, M.; Lubin, P. M.; Macías-Pérez, J. F.; Maffei, B.; Maino, D.; Mandolesi, N.; Mangilli, A.; Maris, M.; Martin, P. G.; Martínez-González, E.; Masi, S.; Matarrese, S.; Mazzotta, P.; Meinhold, P. R.; Melchiorri, A.; Mendes, L.; Mennella, A.; Migliaccio, M.; Mitra, S.; Miville-Deschênes, M.-A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Moss, A.; Munshi, D.; Murphy, J. A.; Naselsky, P.; Nati, F.; Natoli, P.; Netterfield, C. B.; Nørgaard-Nielsen, H. U.; Noviello, F.; Novikov, D.; Novikov, I.; Pagano, L.; Pajot, F.; Paladini, R.; Paoletti, D.; Partridge, B.; Pasian, F.; Patanchon, G.; Pearson, T. J.; Perdereau, O.; Perotto, L.; Perrotta, F.; Pettorino, V.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Ponthieu, N.; Popa, L.; Pratt, G. W.; Prunet, S.; Puget, J.-L.; Rachen, J. P.; Reach, W. T.; Rebolo, R.; Remazeilles, M.; Renault, C.; Renzi, A.; Ricciardi, S.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Rossetti, M.; Roudier, G.; Rouillé d'Orfeuil, B.; Rubiño-Martín, J. A.; Rusholme, B.; Sandri, M.; Santos, D.; Savelainen, M.; Savini, G.; Scott, D.; Soler, J. D.; Spencer, L. D.; Stolyarov, V.; Stompor, R.; Sudiwala, R.; Sunyaev, R.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Tuovinen, J.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Vibert, L.; Vielva, P.; Villa, F.; Wade, L. A.; Wandelt, B. D.; Watson, R.; Wehus, I. K.; White, M.; White, S. D. M.; Yvon, D.; Zacchei, A.; Zonca, A.

    2016-02-01

    The polarized thermal emission from diffuse Galactic dust is the main foreground present in measurements of the polarization of the cosmic microwave background (CMB) at frequencies above 100 GHz. In this paper we exploit the uniqueness of the Planck HFI polarization data from 100 to 353 GHz to measure the polarized dust angular power spectra CℓEE and CℓBB over the multipole range 40 <ℓ< 600 well away from the Galactic plane. These measurements will bring new insights into interstellar dust physics and allow a precise determination of the level of contamination for CMB polarization experiments. Despite the non-Gaussian and anisotropic nature of Galactic dust, we show that general statistical properties of the emission can be characterized accurately over large fractions of the sky using angular power spectra. The polarization power spectra of the dust are well described by power laws in multipole, Cℓ ∝ ℓα, with exponents αEE,BB = -2.42 ± 0.02. The amplitudes of the polarization power spectra vary with the average brightness in a way similar to the intensity power spectra. The frequency dependence of the dust polarization spectra is consistent with modified blackbody emission with βd = 1.59 and Td = 19.6 K down to the lowest Planck HFI frequencies. We find a systematic difference between the amplitudes of the Galactic B- and E-modes, CℓBB/CℓEE = 0.5. We verify that these general properties are preserved towards high Galactic latitudes with low dust column densities. We show that even in the faintest dust-emitting regions there are no "clean" windows in the sky where primordial CMB B-mode polarization measurements could be made without subtraction of foreground emission. Finally, we investigate the level of dust polarization in the specific field recently targeted by the BICEP2 experiment. Extrapolation of the Planck 353 GHz data to 150 GHz gives a dust power 𝒟ℓBB ≡ ℓ(ℓ+1)CℓBB/(2π) of 1.32 × 10-2 μKCMB2 over the multipole range

  6. The origin of the mid-infrared nuclear polarization of active galactic nuclei

    NASA Astrophysics Data System (ADS)

    Lopez-Rodriguez, E.; Alonso-Herrero, A.; Diaz-Santos, T.; Gonzalez-Martin, O.; Ichikawa, K.; Levenson, N. A.; Martinez-Paredes, M.; Nikutta, R.; Packham, C.; Perlman, E.; Almeida, C. Ramos; Rodriguez-Espinosa, J. M.; Telesco, C. M.

    2018-05-01

    We combine new (NGC 1275, NGC 4151, and NGC 5506) and previously published (Cygnus A, Mrk 231, and NGC 1068) sub-arcsecond resolution mid-infrared (MIR; 8-13 μm) imaging- and spectro-polarimetric observations of six Seyfert galaxies using CanariCam on the 10.4-m Gran Telescopio CANARIAS. These observations reveal a diverse set of physical processes responsible for the nuclear polarization, and permit characterization of the origin of the MIR nuclear polarimetric signature of active galactic nuclei (AGN). For all radio quiet objects, we found that the nuclear polarization is low (<1 per cent), and the degree of polarization is often a few per cent over extended regions of the host galaxy where we have sensitivity to detect such extended emission (i.e., NGC 1068 and NGC 4151). We suggest that the higher degree of polarization previously found in lower resolution data arises only on the larger-than-nuclear scales. Only the radio-loud Cygnus A exhibits significant nuclear polarization (˜11 per cent), attributable to synchrotron emission from the pc-scale jet close to the core. We present polarization models that suggest that the MIR nuclear polarization for highly obscured objects arises from a self-absorbed MIR polarized clumpy torus and/or dichroism from the host galaxy, while for unabsorbed cores, MIR polarization arises from dust scattering in the torus and/or surrounding nuclear dust.

  7. Polarized organic light-emitting device on a flexible giant birefringent optical reflecting polarizer substrate.

    PubMed

    Park, Byoungchoo; Park, Chan Hyuk; Kim, Mina; Han, Mi-Young

    2009-06-08

    We present the results of a study of highly linear polarized light emissions from an Organic Light-Emitting Device (OLED) that consisted of a flexible Giant Birefringent Optical (GBO) multilayer polymer reflecting polarizer substrate. Luminous Electroluminescent (EL) emissions over 4,500 cd/m(2) were produced from the polarized OLED with high peak efficiencies in excess of 6 cd/A and 2 lm/W at relatively low operating voltages. The direction of polarization for the emitted EL light corresponded to the passing (ordinary) axis of the GBO-reflecting polarizer. Furthermore, the estimated polarization ratio between the brightness of two linearly polarized EL emissions parallel and perpendicular to the passing axis could be as high as 25 when measured over the whole emitted luminance range.

  8. DETECTION OF POLARIZED QUASI-PERIODIC MICROSTRUCTURE EMISSION IN MILLISECOND PULSARS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De, Kishalay; Sharma, Prateek; Gupta, Yashwant, E-mail: kde@caltech.edu

    Microstructure emission, involving short timescale, often quasi-periodic, intensity fluctuations in subpulse emission, is well known in normal period pulsars. In this Letter, we present the first detections of quasi-periodic microstructure emission from millisecond pulsars (MSPs), from Giant Metrewave Radio Telescope observations of two MSPs at 325 and 610 MHz. Similar to the characteristics of microstructure observed in normal period pulsars, we find that these features are often highly polarized and exhibit quasi-periodic behavior on top of broader subpulse emission, with periods of the order of a few μ s. By measuring their widths and periodicities from single pulse intensity profilesmore » and their autocorrelation functions, we extend the microstructure timescale–rotation period relationship by more than an order of magnitude down to rotation periods ∼5 ms, and find it to be consistent with the relationship derived earlier for normal pulsars. The similarity of behavior is remarkable, given the significantly different physical properties of MSPs and normal period pulsars, and rules out several previous speculations about the possible different characteristics of microstructure in MSP radio emission. We discuss the possible reasons for the non-detection of these features in previous high time resolution MSP studies along with the physical implications of our results, both in terms of a geometric beam sweeping model and temporal modulation model for micropulse production.« less

  9. Planck intermediate results: XXX. The angular power spectrum of polarized dust emission at intermediate and high Galactic latitudes

    DOE PAGES

    Adam, R.; Ade, P. A. R.; Aghanim, N.; ...

    2016-02-09

    The polarized thermal emission from diffuse Galactic dust is the main foreground present in measurements of the polarization of the cosmic microwave background (CMB) at frequencies above 100 GHz. In this study we exploit the uniqueness of the Planck HFI polarization data from 100 to 353 GHz to measure the polarized dust angular power spectra C ℓ EE and C ℓ BB over the multipole range 40 ℓ ∝ ℓ α, with exponents α EE,BB = -2.42 ± 0.02. The amplitudes of the polarization power spectra vary with the average brightness in a way similar to the intensity power spectra.more » The frequency dependence of the dust polarization spectra is consistent with modified blackbody emission with β d = 1.59 and T d = 19.6 K down to the lowest Planck HFI frequencies. We find a systematic difference between the amplitudes of the Galactic B- and E-modes, C ℓ BB/C ℓ EE = 0.5. We verify that these general properties are preserved towards high Galactic latitudes with low dust column densities. We show that even in the faintest dust-emitting regions there are no “clean” windows in the sky where primordial CMB B-mode polarization measurements could be made without subtraction of foreground emission. Finally, we investigate the level of dust polarization in the specific field recently targeted by the BICEP2 experiment. Extrapolation of the Planck 353 GHz data to 150 GHz gives a dust power D ℓ BB ≡ ℓ(ℓ+1)C ℓ BB/(2π) of 1.32 × 10 -2 μK CMB 2 over the multipole range of the primordial recombination bump (40 -2 μK CMB 2 and there is an additional uncertainty (+0.28, -0.24) × 10 -2 μK CMB 2 from the extrapolation. Finally, this level is the same magnitude as reported by BICEP2 over this ℓ range, which highlights the need for assessment of the polarized dust signal even in the cleanest windows of the sky.« less

  10. Polarization of the prompt gamma-ray emission from the gamma-ray burst of 6 December 2002.

    PubMed

    Coburn, Wayne; Boggs, Steven E

    2003-05-22

    Observations of the afterglows of gamma-ray bursts (GRBs) have revealed that they lie at cosmological distances, and so correspond to the release of an enormous amount of energy. The nature of the central engine that powers these events and the prompt gamma-ray emission mechanism itself remain enigmatic because, once a relativistic fireball is created, the physics of the afterglow is insensitive to the nature of the progenitor. Here we report the discovery of linear polarization in the prompt gamma-ray emission from GRB021206, which indicates that it is synchrotron emission from relativistic electrons in a strong magnetic field. The polarization is at the theoretical maximum, which requires a uniform, large-scale magnetic field over the gamma-ray emission region. A large-scale magnetic field constrains possible progenitors to those either having or producing organized fields. We suggest that the large magnetic energy densities in the progenitor environment (comparable to the kinetic energy densities of the fireball), combined with the large-scale structure of the field, indicate that magnetic fields drive the GRB explosion.

  11. Magnetic Fields in Evolved Stars: Imaging the Polarized Emission of High-frequency SiO Masers

    NASA Astrophysics Data System (ADS)

    Vlemmings, W. H. T.; Humphreys, E. M. L.; Franco-Hernández, R.

    2011-02-01

    We present Submillimeter Array observations of high-frequency SiO masers around the supergiant VX Sgr and the semi-regular variable star W Hya. The J = 5-4, v = 128SiO and v = 029SiO masers of VX Sgr are shown to be highly linearly polarized with a polarization from ~5% to 60%. Assuming the continuum emission peaks at the stellar position, the masers are found within ~60 mas of the star, corresponding to ~100 AU at a distance of 1.57 kpc. The linear polarization vectors are consistent with a large-scale magnetic field, with position and inclination angles similar to that of the dipole magnetic field inferred in the H2O and OH maser regions at much larger distances from the star. We thus show for the first time that the magnetic field structure in a circumstellar envelope can remain stable from a few stellar radii out to ~1400 AU. This provides further evidence supporting the existence of large-scale and dynamically important magnetic fields around evolved stars. Due to a lack of parallactic angle coverage, the linear polarization of masers around W Hya could not be determined. For both stars, we observed the 28SiO and 29SiO isotopologues and find that they have a markedly different distributions and that they appear to avoid each other. Additionally, emission from the SO 55-44 line was imaged for both sources. Around W Hya, we find a clear offset between the red- and blueshifted SO emission. This indicates that W Hya is likely host to a slow bipolar outflow or a rotating disk-like structure.

  12. ULF Narrowband Emissions Analysis in the Terrestrial Polar Cusps

    NASA Astrophysics Data System (ADS)

    Grison, B.; Pisa, D.

    2013-05-01

    Polar cusps are known to be a key region for transfer of mass and momentum between the adjacent magnetosheath and the magnetosphere. The 4 spacecraft of the Cluster ESA mission crossed the polar cusps in their most distant part to the Earth in the early years of the mission (2000-2004) because of their highly eccentric orbit. The ULF wave activity in the cusp region has been linked with the magnetosheath plasma penetration since HEOS observations (D'Angelo et al., 1974). Wave and particle interaction play an important role in this colisionless plasma. The observed wave activity certainly results from both distant and local generation mechanisms. From Cluster case studies we propose to focus on one aspect for each of this place of generation. Concerning the distant generation, the possibility of a wave generation at the magnetopause itself is investigated. For this purpose we compare the propagation of the emissions on each side of the magnetopasue, i.e. in the cusp and in the magnetosheath. Concerning the local generation, the presence of locally generated waves above the local proton gyrofrequency that display a left hand polarization has been reported in Polar and Cluster studies (Le et al., 2001; Nykyri et al., 2003 ). The Doppler shift was not large enough to explain the observed frequency. We propose here to combine various techniques (k-filtering analysis, WHAMP simulations) to achieve a precise wave vector estimation and to explain these observations. References: D'Angelo, N., A. Bahnsen, and H. Rosenbauer (1974), Wave and particle measurements at the polar cusp, J. Geophys. Res., 79( 22), 3129-3134, doi:10.1029/JA079i022p03129. Le, G., X. Blanco-Cano, C. T. Russell, X.-W. Zhou, F. Mozer, K. J. Trattner, S. A. Fuselier, and B. J. Anderson (2001), Electromagnetic ion cyclotron waves in the high-altitude cusp: Polar observations, J. Geophys. Res., 106(A9), 19067-19079, doi:10.1029/2000JA900163. Nykyri, K., P. J. Cargill, E. A. Lucek, T. S. Horbury, A. Balogh

  13. Shocked molecular hydrogen emission from Herbig-Haro objects and their exciting stars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilking, B.A.; Schwartz, R.D.; Mundy, L.G.

    1990-01-01

    The results of an H2 emission-line survey of the 1-0 S(1) transition from 33 Herbig-Haro objects and suspected Herbig-Haro objects are presented. The survey focuses on Herbig-Haro objects that have been recently identified and/or lie at southern declinations. Data are also presented for the 2-1 S(3), 1-0 Q(1), and 1-0 Q(3) transitions of H2 for a subset of the sample. H2 emission has been detected toward 16 Herbig-Haro or nebulous objects; published optical spectra of 13 of these objects suggest that they are low-excitation nebulae associated with low-velocity shocks. H2 has also been detected toward the emission-line stars RU Lupmore » and LkH-alpha 234. Extended 1-0 S(1) emission has been mapped in the vicinity of gas outflows associated with the emission-line stars R CrA and LkH-alpha 234 and appears to delineate the blueshifted molecular gas in these bipolar outflows. A comparison of the data, in combination with the atomic line data from these HHs, is made with current C- and J-type shock models. 41 refs.« less

  14. Planck intermediate results. XX. Comparison of polarized thermal emission from Galactic dust with simulations of MHD turbulence

    NASA Astrophysics Data System (ADS)

    Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Alina, D.; Alves, M. I. R.; Aniano, G.; Armitage-Caplan, C.; Arnaud, M.; Arzoumanian, D.; Ashdown, M.; Atrio-Barandela, F.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Battaner, E.; Benabed, K.; Benoit-Lévy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Boulanger, F.; Bracco, A.; Burigana, C.; Cardoso, J.-F.; Catalano, A.; Chamballu, A.; Chiang, H. C.; Christensen, P. R.; Colombi, S.; Colombo, L. P. L.; Combet, C.; Couchot, F.; Coulais, A.; Crill, B. P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Dickinson, C.; Diego, J. M.; Donzelli, S.; Doré, O.; Douspis, M.; Dupac, X.; Efstathiou, G.; Enßlin, T. A.; Eriksen, H. K.; Falgarone, E.; Fanciullo, L.; Ferrière, K.; Finelli, F.; Forni, O.; Frailis, M.; Fraisse, A. A.; Franceschi, E.; Galeotta, S.; Ganga, K.; Ghosh, T.; Giard, M.; Giraud-Héraud, Y.; González-Nuevo, J.; Górski, K. M.; Gregorio, A.; Gruppuso, A.; Guillet, V.; Hansen, F. K.; Harrison, D. L.; Helou, G.; Hernández-Monteagudo, C.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hornstrup, A.; Huffenberger, K. M.; Jaffe, A. H.; Jaffe, T. R.; Jones, W. C.; Juvela, M.; Keihänen, E.; Keskitalo, R.; Kisner, T. S.; Kneissl, R.; Knoche, J.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lamarre, J.-M.; Lasenby, A.; Lawrence, C. R.; Leonardi, R.; Levrier, F.; Liguori, M.; Lilje, P. B.; Linden-Vørnle, M.; López-Caniego, M.; Lubin, P. M.; Macías-Pérez, J. F.; Maino, D.; Mandolesi, N.; Maris, M.; Marshall, D. J.; Martin, P. G.; Martínez-González, E.; Masi, S.; Matarrese, S.; Mazzotta, P.; Melchiorri, A.; Mendes, L.; Mennella, A.; Migliaccio, M.; Miville-Deschênes, M.-A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Munshi, D.; Murphy, J. A.; Naselsky, P.; Nati, F.; Natoli, P.; Netterfield, C. B.; Noviello, F.; Novikov, D.; Novikov, I.; Oxborrow, C. A.; Pagano, L.; Pajot, F.; Paoletti, D.; Pasian, F.; Pelkonen, V.-M.; Perdereau, O.; Perotto, L.; Perrotta, F.; Piacentini, F.; Piat, M.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Popa, L.; Pratt, G. W.; Prunet, S.; Puget, J.-L.; Rachen, J. P.; Reinecke, M.; Remazeilles, M.; Renault, C.; Ricciardi, S.; Riller, T.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Roudier, G.; Rusholme, B.; Sandri, M.; Scott, D.; Soler, J. D.; Spencer, L. D.; Stolyarov, V.; Stompor, R.; Sudiwala, R.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Umana, G.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Vielva, P.; Villa, F.; Wade, L. A.; Wandelt, B. D.; Zonca, A.

    2015-04-01

    Polarized emission observed by Planck HFI at 353 GHz towards a sample of nearby fields is presented, focusing on the statistics of polarization fractions p and angles ψ. The polarization fractions and column densities in these nearby fields are representative of the range of values obtained over the whole sky. We find that: (i) the largest polarization fractions are reached in the most diffuse fields; (ii) the maximum polarization fraction pmax decreases with column density NH in the more opaque fields with NH> 1021 cm-2; and (iii) the polarization fraction along a given line of sight is correlated with the local spatial coherence of the polarization angle. These observations are compared to polarized emission maps computed in simulations of anisotropic magnetohydrodynamical turbulence in which we assume a uniform intrinsic polarization fraction of the dust grains. We find that an estimate of this parameter may be recovered from the maximum polarization fraction pmax in diffuse regions where the magnetic field is ordered on large scales and perpendicular to the line of sight. This emphasizes the impact of anisotropies of the magnetic field on the emerging polarization signal. The decrease of the maximum polarization fraction with column density in nearby molecular clouds is well reproduced in the simulations, indicating that it is essentially due to the turbulent structure of the magnetic field: an accumulation of variously polarized structures along the line of sight leads to such an anti-correlation. In the simulations, polarization fractions are also found to anti-correlate with the angle dispersion function 𝒮. However, the dispersion of the polarization angle for a given polarization fraction is found to be larger in the simulations than in the observations, suggesting a shortcoming in the physical content of these numerical models. In summary, we find that the turbulent structure of the magnetic field is able to reproduce the main statistical

  15. Multiwavelength Polarization of Rotation-Powered Pulsars

    NASA Technical Reports Server (NTRS)

    Harding, Alice K.; Kalapotharakos, Constantinos

    2017-01-01

    Polarization measurements provide strong constraints on models for emission from rotation-powered pulsars. We present multiwavelength polarization predictions showing that measurements over a range of frequencies can be particularly important for constraining the emission location, radiation mechanisms, and system geometry. The results assume a generic model for emission from the outer magnetosphere and current sheet in which optical to hard X-ray emission is produced by synchrotron radiation (SR) from electron-positron pairs and gamma-ray emission is produced by curvature radiation (CR) or SR from accelerating primary electrons. The magnetic field structure of a force-free magnetosphere is assumed and the phase-resolved and phase-averaged polarization is calculated in the frame of an inertial observer. We find that large position angle (PA) swings and deep depolarization dips occur during the light-curve peaks in all energy bands. For synchrotron emission, the polarization characteristics are strongly dependent on photon emission radius with larger, nearly 180deg, PA swings for emission outside the light cylinder (LC)‚ as the line of sight crosses the current sheet. The phase-averaged polarization degree for SR is less that 10% and around 20% for emission starting inside and outside the LC, respectively, while the polarization degree for CR is much larger, up to 40%-60%. Observing a sharp increase in polarization degree and a change in PA at the transition between X-ray and gamma-ray spectral components would indicate that CR is the gamma-ray emission mechanism.

  16. Multiwavelength Polarization of Rotation-powered Pulsars

    NASA Astrophysics Data System (ADS)

    Harding, Alice K.; Kalapotharakos, Constantinos

    2017-05-01

    Polarization measurements provide strong constraints on models for emission from rotation-powered pulsars. We present multiwavelength polarization predictions showing that measurements over a range of frequencies can be particularly important for constraining the emission location, radiation mechanisms, and system geometry. The results assume a generic model for emission from the outer magnetosphere and current sheet in which optical to hard X-ray emission is produced by synchrotron radiation (SR) from electron-positron pairs and γ-ray emission is produced by curvature radiation (CR) or SR from accelerating primary electrons. The magnetic field structure of a force-free magnetosphere is assumed and the phase-resolved and phase-averaged polarization is calculated in the frame of an inertial observer. We find that large position angle (PA) swings and deep depolarization dips occur during the light-curve peaks in all energy bands. For synchrotron emission, the polarization characteristics are strongly dependent on photon emission radius with larger, nearly 180°, PA swings for emission outside the light cylinder (LC) as the line of sight crosses the current sheet. The phase-averaged polarization degree for SR is less that 10% and around 20% for emission starting inside and outside the LC, respectively, while the polarization degree for CR is much larger, up to 40%-60%. Observing a sharp increase in polarization degree and a change in PA at the transition between X-ray and γ-ray spectral components would indicate that CR is the γ-ray emission mechanism.

  17. Local surface plasmon enhanced polarization and internal quantum efficiency of deep ultraviolet emissions from AlGaN-based quantum wells.

    PubMed

    Zhang, Cai; Tang, Ning; Shang, Liangliang; Fu, Lei; Wang, Weiying; Xu, Fujun; Wang, Xinqiang; Ge, Weikun; Shen, Bo

    2017-05-24

    We report the enhancement of the polarization and internal quantum efficiency (IQE) of deep-UV LEDs by evaporating Al nanoparticles on the device surface to induce localized surface plasmons (LSPs). The deep-UV LEDs polarization is improved due to part of TM emission turns into TE emission through LSPs coupling. The significantly enhanced IQE is attributed to LSPs coupling, which suppress the participation of delocalized and dissociated excitons to non-radiative recombination process.

  18. Excited state electronic polarization and reappraisal of the n ← π∗ emission of acetone in water

    NASA Astrophysics Data System (ADS)

    Orozco-González, Yoelvis; Coutinho, Kaline; Canuto, Sylvio

    2010-10-01

    Electronic polarization of the acetone molecule in the excited n → π∗ state is considered and its influence on the solvent shift in the emission spectrum is analyzed. Using an iterative procedure the electronic polarizations of both the ground and the excited states are included and compared with previous results obtained with Car-Parrinello dynamics. Analysis of the emission transition obtained using CIS(D)/aug-cc-pVDZ on statistically uncorrelated solute-solvent structures, composed of acetone and twelve explicit water molecules embedded in the electrostatic field of remaining 263 water molecules, corroborates that the solvent effect is mild, calculated here between 80 and 380 cm -1.

  19. After-effects of TFT-LCD display polarity and display colour on the detection of low-contrast objects.

    PubMed

    Mayr, Susanne; Buchner, Axel

    2010-07-01

    Participants performed a word-non-word discrimination task within a car control display emulated on a thin film transistor liquid-crystal display (TFT-LCD). The task simulated an information read-out from a TFT-LCD-based instrument panel. Subsequently, participants performed a low-contrast object detection task that simulated the detection of objects during night-time driving. In experiment 1, words/non-words were presented black-on-white (positive polarity) or white-on-black (negative polarity). In experiments 2 and 3, display colour was additionally manipulated. A positive polarity advantage in the discrimination task was consistently observed. In contrast, positive displays interfered more than negative displays with subsequent detection. The detrimental after-effect of positive polarity displays was strong with white and blue, reduced with amber and absent with red displays. Subjective measures showed a preference for blue over red, but a slight advantage for amber over blue. Implications for TFT-LCD design are derived from the results. STATEMENT OF RELEVANCE: When using TFT-LCDs as car instrument panels, positive polarity red TFT-LCDs are very likely to lead to good instrument readability while at the same time minimising - relative to other colours - the negative effects of an illuminated display on low-contrast object detection during night-time driving.

  20. Multiwavelength Polarization of Rotation-powered Pulsars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harding, Alice K.; Kalapotharakos, Constantinos

    Polarization measurements provide strong constraints on models for emission from rotation-powered pulsars. We present multiwavelength polarization predictions showing that measurements over a range of frequencies can be particularly important for constraining the emission location, radiation mechanisms, and system geometry. The results assume a generic model for emission from the outer magnetosphere and current sheet in which optical to hard X-ray emission is produced by synchrotron radiation (SR) from electron–positron pairs and γ -ray emission is produced by curvature radiation (CR) or SR from accelerating primary electrons. The magnetic field structure of a force-free magnetosphere is assumed and the phase-resolved andmore » phase-averaged polarization is calculated in the frame of an inertial observer. We find that large position angle (PA) swings and deep depolarization dips occur during the light-curve peaks in all energy bands. For synchrotron emission, the polarization characteristics are strongly dependent on photon emission radius with larger, nearly 180°, PA swings for emission outside the light cylinder (LC) as the line of sight crosses the current sheet. The phase-averaged polarization degree for SR is less that 10% and around 20% for emission starting inside and outside the LC, respectively, while the polarization degree for CR is much larger, up to 40%–60%. Observing a sharp increase in polarization degree and a change in PA at the transition between X-ray and γ -ray spectral components would indicate that CR is the γ -ray emission mechanism.« less

  1. CO bandhead emission of massive young stellar objects: determining disc properties

    NASA Astrophysics Data System (ADS)

    Ilee, J. D.; Wheelwright, H. E.; Oudmaijer, R. D.; de Wit, W. J.; Maud, L. T.; Hoare, M. G.; Lumsden, S. L.; Moore, T. J. T.; Urquhart, J. S.; Mottram, J. C.

    2013-03-01

    Massive stars play an important role in many areas of astrophysics, but numerous details regarding their formation remain unclear. In this paper we present and analyse high-resolution (R ˜ 30 000) near-infrared 2.3 μm spectra of 20 massive young stellar objects (MYSOs) from the Red MSX Source (RMS) data base, in the largest such study of CO first overtone bandhead emission to date. We fit the emission under the assumption it originates from a circumstellar disc in Keplerian rotation. We explore three approaches to modelling the physical conditions within the disc - a disc heated mainly via irradiation from the central star, a disc heated mainly via viscosity, and a disc in which the temperature and density are described analytically. We find that the models described by heating mechanisms are inappropriate because they do not provide good fits to the CO emission spectra. We therefore restrict our analysis to the analytic model, and obtain good fits to all objects that possess sufficiently strong CO emission, suggesting circumstellar discs are the source of this emission. On average, the temperature and density structure of the discs correspond to geometrically thin discs, spread across a wide range of inclinations. Essentially all the discs are located within the dust sublimation radius, providing strong evidence that the CO emission originates close to the central protostar, on astronomical unit scales. In addition, we show that the objects in our sample appear no different to the general population of MYSOs in the RMS data base, based on their near- and mid-infrared colours. The combination of observations of a large sample of MYSOs with CO bandhead emission and our detailed modelling provide compelling evidence of the presence of small-scale gaseous discs around such objects, supporting the scenario in which massive stars form via disc accretion.

  2. Optimization of light polarization sensitivity in QWIP detectors

    NASA Astrophysics Data System (ADS)

    Berurier, Arnaud; Nedelcu, Alexandru

    2013-07-01

    The current development of QWIPs (Quantum Well Infrared Photodetectors) at III-V Lab led to the production of 20 μm pitch, mid-format and full TV-format LWIR starring arrays with excellent performances, uniformity and stability. At the present time III-V Lab, together with TOL (Thales Optronics Ltd.) and SOFRADIR (Société Française de Détecteurs Infrarouges), work on the demonstration of a 20 μm pitch, 640 × 512 LWIR focal plane array (FPA) which detects the incident IR light polarization. Manufactured objects present a strong linear polarization signature in thermal emission. It is of high interest to achieve a detector able to measure precisely the degree of linear polarization, in order to distinguish artificial and natural objects in the observed scene. In this paper, we present a theoretical investigation of the optical coupling in polarization sensitive pixels. The QWIP modeling is performed by the Finite Difference Time Domain (FDTD) method. The aim is to optimize the sensitivity to light polarization as well as the performance of the detector.

  3. On the spectrum and polarization of magnetar flare emission

    NASA Astrophysics Data System (ADS)

    Taverna, R.; Turolla, R.

    2017-08-01

    Bursts and flares are among the distinctive observational manifestations of magnetars, isolated neutron stars endowed with an ultrastrong magnetic field (B ≈ 1014-1015 G). It is believed that these events arise in a hot electron-positron plasma that remains trapped within the closed magnetic field lines. We developed a simple radiative transfer model to simulate magnetar flare emission in the case of a steady trapped fireball. After dividing the fireball surface in a number of plane-parallel slabs, the local spectral and polarization properties are obtained integrating the radiative transfer equations for the two normal modes. We assume that magnetic Thomson scattering is the dominant source of opacity, and neglect contributions from second-order radiative processes, although double-Compton scattering is accounted for in establishing local thermal equilibrium in the fireball atmospheric layers. The observed spectral and polarization properties as measured by a distant observer are obtained by summing the contributions from the patches that are visible for a given viewing geometry by means of a ray-tracing code. The spectra we obtained in the 1-100 keV energy range are thermal and can be described in terms of the superposition of two blackbodies. The blackbody temperature and the emitting area ratio are in broad agreement with the available observations. The predicted linear polarization degree is, in general, greater than 80 per cent over the entire energy range and should be easily detectable by new-generation X-ray polarimeters, such as IXPE, XIPE and eXTP.

  4. Suzaku Observations of Charge Exchange Emission from Solar System Objects

    NASA Technical Reports Server (NTRS)

    Ezoe, Y.; Fujimoto, R.; Yamasaki, N. Y.; Mitsuda, K.; Ohashi, T.; Ishikawa, K.; Oishi, S.; Miyoshi, Y; Terada, N.; Futaana, Y.; hide

    2012-01-01

    Recent results of charge exchange emission from solar system objects observed with the Japanese Suzaku satellite are reviewed. Suzaku is of great importance to investigate diffuse X-ray emission like the charge exchange from planetary exospheres and comets. The Suzaku studies of Earth's exosphere, Martian exosphere, Jupiter's aurorae, and comets are overviewed.

  5. Multi-objective optimisation of wastewater treatment plant control to reduce greenhouse gas emissions.

    PubMed

    Sweetapple, Christine; Fu, Guangtao; Butler, David

    2014-05-15

    This study investigates the potential of control strategy optimisation for the reduction of operational greenhouse gas emissions from wastewater treatment in a cost-effective manner, and demonstrates that significant improvements can be realised. A multi-objective evolutionary algorithm, NSGA-II, is used to derive sets of Pareto optimal operational and control parameter values for an activated sludge wastewater treatment plant, with objectives including minimisation of greenhouse gas emissions, operational costs and effluent pollutant concentrations, subject to legislative compliance. Different problem formulations are explored, to identify the most effective approach to emissions reduction, and the sets of optimal solutions enable identification of trade-offs between conflicting objectives. It is found that multi-objective optimisation can facilitate a significant reduction in greenhouse gas emissions without the need for plant redesign or modification of the control strategy layout, but there are trade-offs to consider: most importantly, if operational costs are not to be increased, reduction of greenhouse gas emissions is likely to incur an increase in effluent ammonia and total nitrogen concentrations. Design of control strategies for a high effluent quality and low costs alone is likely to result in an inadvertent increase in greenhouse gas emissions, so it is of key importance that effects on emissions are considered in control strategy development and optimisation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Measurement of ammonia emissions from temperate and sub-polar seabird colonies

    NASA Astrophysics Data System (ADS)

    Riddick, S. N.; Blackall, T. D.; Dragosits, U.; Daunt, F.; Newell, M.; Braban, C. F.; Tang, Y. S.; Schmale, J.; Hill, P. W.; Wanless, S.; Trathan, P.; Sutton, M. A.

    2016-06-01

    The chemical breakdown of marine derived reactive nitrogen transported to the land as seabird guano represents a significant source of ammonia (NH3) in areas far from other NH3 sources. Measurements made at tropical and temperate seabird colonies indicate substantial NH3 emissions, with emission rates larger than many anthropogenic point sources. However, several studies indicate that thermodynamic processes limit the amount of NH3 emitted from guano, suggesting that the percentage of guano volatilizing as NH3 may be considerably lower in colder climates. This study undertook high resolution temporal ammonia measurements in the field and coupled results with modelling to estimate NH3 emissions at a temperate puffin colony and two sub-polar penguin colonies (Signy Island, South Orkney Islands and Bird Island, South Georgia) during the breeding season. These emission rates are then compared with NH3 volatilization rates from other climates. Ammonia emissions were calculated using a Lagrangian atmospheric dispersion model, resulting in mean emissions of 5 μg m-2 s-1 at the Isle of May, 12 μg m-2 s-1 at Signy Island and 9 μg m-2 s-1 at Bird Island. The estimated percentage of total guano nitrogen volatilized was 5% on the Isle of May, 3% on Signy and 2% on Bird Island. These values are much smaller than the percentage of guano nitrogen volatilized in tropical contexts (31-65%). The study confirmed temperature, wind speed and water availability have a significant influence on the magnitude of NH3 emissions, which has implications for reactive nitrogen in both modern remote regions and pre-industrial atmospheric composition and ecosystem interactions.

  7. Relations between broad-band linear polarization and Ca II H and K emission in late-type dwarf stars

    NASA Technical Reports Server (NTRS)

    Huovelin, Juhani; Saar, Steven H.; Tuominen, Ilkka

    1988-01-01

    Broadband UBV linear polarization data acquired for a sample of late-type dwarfs are compared with contemporaneous measurements of Ca II H and K line core emission. A weighted average of the largest values of the polarization degree is shown to be the best parameter for chromospheric activity diagnosis. The average maximum polarization in the UV is found to increase from late-F to late-G stars. It is noted that polarization in the U band is considerably more sensitive to activity variations than that in the B or V bands. The results indicate that stellar magnetic fields and the resulting saturation in the Zeeman-sensitive absorption lines are the most probably source of linear polarization in late-type main-sequence stars.

  8. Radio constraints on the nature of BL Lacertae objects and their parent population

    NASA Technical Reports Server (NTRS)

    Kollgaard, R. I.; Wardle, J. F. C.; Roberts, D. H.; Gabuzda, D. C.

    1992-01-01

    5 GHz VLA observations of 17 BL Lac objects with bright radio cores at both high and low resolution are reported. Extended emission is detected around most objects. None of the sources observed at low resolution show evidence of giant halos on the scale of tens of arcmin. In general, the sources with the most luminous extended emission exhibit FR II characteristics in both morphology and polarization, and less luminous sources exhibit FR I characteristics. Thus, the parent population of the BL Lac objects contains both FR I and FR II radio sources. No BL Lac objects are found that clearly exhibit quasarlike polarization at milliarcsec resolution. This argues against the view that the more luminous BL Lac objects are simply an extension of the quasar/OVV population, or that most BL Lac objects are gravitationally microlensed images of distant quasars. Other properties are generally consistent with the view the BL Lac objects are normal radio galaxies whose jets make a small angle to the line of sight.

  9. Stratospheric cooling and polar ozone loss due to H2 emissions of a global hydrogen economy

    NASA Astrophysics Data System (ADS)

    Feck, T.; Grooß, J.-U.; Riese, M.; Vogel, B.

    2009-04-01

    "Green" hydrogen is seen as a major element of the future energy supply to reduce greenhouse gas emissions substantially. However, due to the possible interactions of hydrogen (H2) with other atmospheric constituents there is a need to analyse the implications of additional atmospheric H2 that could result from hydrogen leakage of a global hydrogen infrastructure. Emissions of molecular H2 can occur along the whole hydrogen process chain which increase the tropospheric H2 burden. Across the tropical tropopause H2 reaches the stratosphere where it is oxidised and forms water vapour (H2O). This causes increased IR-emissions into space and hence a cooling of the stratosphere. Both effects, the increase of stratospheric H2O and the cooling, enhances the potential of chlorine activation on liquid sulfate aerosol and polar stratospheric clouds (PSCs), which increase polar ozone destruction. Hence a global hydrogen economy could provoke polar ozone loss and could lead to a substantial delay of the current projected recovery of the stratospheric ozone layer. Our investigations show that even if 90% of the current global fossil primary energy input could be replaced by hydrogen and approximately 9.5% of the product gas would leak to the atmosphere, the ozone loss would be increased between 15 to 26 Dobson Units (DU) if the stratospheric CFC loading would retain unchanged. A consistency check of the used approximation methods with the Chemical Lagrangian Model of the Stratosphere (CLaMS) shows that this additional ozone loss can probably be treated as an upper limit. Towards more realistic future H2 leakage rate assumptions (< 3%) the additional ozone loss would be rather small (? 10 DU). However, in all cases the full damage would only occur if stratospheric CFC-levels would retain unchanged. Due to the CFC-prohibition as a result of the Montreal Protocol the forecasts suggest a decline of the stratospheric CFC loading about 50% until 2050. In this case our calculations

  10. Numerical study of the polarization effect of GPR systems on the detection of buried objects

    NASA Astrophysics Data System (ADS)

    Sagnard, Florence

    2017-04-01

    This work is in line with the studies carried out in our department over the last few years on object detection in civil engineering structures and soils. In parallel to building of the second version of the Sense-City test site where several pipeline networks will be buried [1], we are developing numerical models using the FIT and the FDTD approaches to study more precisely the contribution of the polarization diversity in the detection of conductive and dielectric buried objects using the GPR technique. The simulations developed are based on a ultra-wide band SFCW GPR system that have been designed and evaluated in our laboratory. A parametric study is proposed to evaluate the influence of the antenna configurations and the antenna geometry when considering the polarization diversity in the detection and characterization of canonical objects. [1] http://www.sense-city.univ-paris-est.fr/index.php

  11. Surface plasmon coupling for suppressing p-GaN absorption and TM-polarized emission in a deep-UV light-emitting diode.

    PubMed

    Kuo, Yang; Su, Chia-Ying; Hsieh, Chieh; Chang, Wen-Yen; Huang, Chu-An; Kiang, Yean-Woei; Yang, C C

    2015-09-15

    The radiated power enhancement (suppression) of an in- (out-of-) plane-oriented radiating dipole at a desired emission wavelength in the deep-ultraviolet (UV) range when it is coupled with a surface plasmon (SP) resonance mode induced on a nearby Al nanoparticle (NP) is demonstrated. Also, it is found that the enhanced radiated power propagates mainly in the direction from the Al NP toward the dipole. Such SP coupling behaviors can be used for suppressing the transverse-magnetic (TM)-polarized emission, enhancing the transverse-electric-polarized emission, and reducing the UV absorption of the p-GaN layer in an AlGaN-based deep-UV light-emitting diode by embedding a sphere-like Al NP in its p-AlGaN layer.

  12. Topical Review: Development of overgrown semi-polar GaN for high efficiency green/yellow emission

    NASA Astrophysics Data System (ADS)

    Wang, T.

    2016-09-01

    The most successful example of large lattice-mismatched epitaxial growth of semiconductors is the growth of III-nitrides on sapphire, leading to the award of the Nobel Prize in 2014 and great success in developing InGaN-based blue emitters. However, the majority of achievements in the field of III-nitride optoelectronics are mainly limited to polar GaN grown on c-plane (0001) sapphire. This polar orientation poses a number of fundamental issues, such as reduced quantum efficiency, efficiency droop, green and yellow gap in wavelength coverage, etc. To date, it is still a great challenge to develop longer wavelength devices such as green and yellow emitters. One clear way forward would be to grow III-nitride device structures along a semi-/non-polar direction, in particular, a semi-polar orientation, which potentially leads to both enhanced indium incorporation into GaN and reduced quantum confined Stark effects. This review presents recent progress on developing semi-polar GaN overgrowth technologies on sapphire or Si substrates, the two kinds of major substrates which are cost-effective and thus industry-compatible, and also demonstrates the latest achievements on electrically injected InGaN emitters with long emission wavelengths up to and including amber on overgrown semi-polar GaN. Finally, this review presents a summary and outlook on further developments for semi-polar GaN based optoelectronics.

  13. WAVE2 regulates meiotic spindle stability, peripheral positioning and polar body emission in mouse oocytes.

    PubMed

    Sun, Shao-Chen; Xu, Yong-Nan; Li, Ying-Hua; Lee, Seung-Eun; Jin, Yong-Xun; Cui, Xiang-Shun; Kim, Nam-Hyung

    2011-06-01

    During oocyte meiotic maturation, meiotic spindles form in the central cytoplasm and then migrate to the cortex to extrude a small polar body, forming a highly polarized cell through a process involving actin and actin-related molecules. The mechanisms underlying oocyte polarization are still unclear. The Arp2/3 complex regulates oocyte polarization but it is not known whether the WASP family of proteins, a known regulator of the Arp2/3 complex, is involved in this context. In the present study, the role of WASP family member WAVE2 in mouse oocyte asymmetric division was investigated. (1) WAVE2 mRNA and protein were detected during mouse oocyte meiosis. (2) siRNA-mediated and antibody-mediated disruption of WAVE2 resulted in the failure of chromosome congression, spindle formation, spindle positioning and polar body extrusion. (3) WAVE2 regulated actin-driven chromosome migration since chromosomes were arrested in the central cytoplasm by WAVE2 RNAi in the absence of microtubules. (4) Localization of γ-tubulin and MAPK was disrupted after RNAi, confirming the effect of WAVE2 on spindle formation. (5) Actin cap and cortical granule-free domain (CGFD) formation was also disrupted, further confirming the failure of oocyte polarization. Our data suggest that WAVE2 regulates oocyte polarization by regulating meiotic spindle, peripheral positioning, probably via an actin-mediated pathway, and is involved in polar body emission during mouse oocyte meiotic maturation.

  14. Cavity-assisted emission of polarization-entangled photons from biexcitons in quantum dots with fine-structure splitting.

    PubMed

    Schumacher, Stefan; Förstner, Jens; Zrenner, Artur; Florian, Matthias; Gies, Christopher; Gartner, Paul; Jahnke, Frank

    2012-02-27

    We study the quantum properties and statistics of photons emitted by a quantum-dot biexciton inside a cavity. In the biexciton-exciton cascade, fine-structure splitting between exciton levels degrades polarization-entanglement for the emitted pair of photons. However, here we show that the polarization-entanglement can be preserved in such a system through simultaneous emission of two degenerate photons into cavity modes tuned to half the biexciton energy. Based on detailed theoretical calculations for realistic quantum-dot and cavity parameters, we quantify the degree of achievable entanglement.

  15. Molecular line emission models of Herbig-Haro objects. I - H2 emission

    NASA Technical Reports Server (NTRS)

    Wolfire, Mark G.; Konigl, Arieh

    1991-01-01

    A comprehensive model for molecular hydrogen emssion in Herbig-Haro objects that are associated with the heads of radiative stellar jets is presented by using a simple representation of the jet head as a comprising a leading bow shock and a trailing jet shock, separated by a dense layer of cool shocked gas. Attention is given to collisional excitation in a nondissociative shock and formation pumping in the molecular reformation zone behind a dissociative shock, employing detailed shock and photodissociation-region emission models that incorporate most of the relevant atomic physics and chemistry. The conditions under which each of these excitation mechanisms may be expected to contribute to the observed emission are discussed, and a general diagnostic scheme for discriminating among them is constructed. Applying this scheme to the HH 1-2 system, strong evidence for excitation by the radiation field of a fast shock is found. It is inferred that FUV pumping contributes a significant fraction of the H2 line emission, and it is shown that this can occur only if the UV pump lines are not strongly self-shielded.

  16. Objective Characterization of Snow Microstructure for Microwave Emission Modeling

    NASA Technical Reports Server (NTRS)

    Durand, Michael; Kim, Edward J.; Molotch, Noah P.; Margulis, Steven A.; Courville, Zoe; Malzler, Christian

    2012-01-01

    Passive microwave (PM) measurements are sensitive to the presence and quantity of snow, a fact that has long been used to monitor snowcover from space. In order to estimate total snow water equivalent (SWE) within PM footprints (on the order of approx 100 sq km), it is prerequisite to understand snow microwave emission at the point scale and how microwave radiation integrates spatially; the former is the topic of this paper. Snow microstructure is one of the fundamental controls on the propagation of microwave radiation through snow. Our goal in this study is to evaluate the prospects for driving the Microwave Emission Model of Layered Snowpacks with objective measurements of snow specific surface area to reproduce measured brightness temperatures when forced with objective measurements of snow specific surface area (S). This eliminates the need to treat the grain size as a free-fit parameter.

  17. Emission and material gain spectra of polar compressive strained AlGaN quantum wells grown on virtual AlGaN substrates: Tuning emission wavelength and mixing TE and TM mode of light polarization

    NASA Astrophysics Data System (ADS)

    Gladysiewicz, Marta; Rudzinski, Mariusz; Hommel, Detlef; Kudrawiec, Robert

    2018-07-01

    It is shown that compressively strained polar AlxGa1‑xN/AlyGa1‑yN quantum wells (QWs) of various contents grown on virtual AlYGa1‑YN substrates (Y = 20, 40, 60, 80, and 100%) are able to cover the whole UV-A, -B, and -C spectral range but their contents and widths have to be carefully optimized if they are to be used as the active region of light emitting diodes and laser diodes. The emission wavelength from AlGaN multi QWs can be tuned by both the QW width and barrier thickness, but the range of QW width for which an efficient luminescence is expected is very small (2–4 nm) due to a very weak electron-hole overlap for wider QWs. The most effective method for wavelength tuning in this QW system is content engineering, i.e., lowering Al concentration in the QW region. The decrease of Al concentration in the QW shifts the emission peak to red, broadens this peak, weakens its intensity, and changes its polarization from transverse magnetic (TM) to TM mixed with transverse electric (TE). For laser diodes the optimal QW design is more rigorous concerning the QW width since this width should be below 3 nm. Moreover it is shown that the TE and TM mode of materials gain overlap and are strongly blueshifted in comparison to emission spectrum.

  18. Jupiter's Polar Haze

    NASA Astrophysics Data System (ADS)

    Carlson, B. E.

    1997-07-01

    The nature and distribution of stratospheric aerosols in the polar regions of Jupiter are investigated using a combination of ground-based, Hubble Space Telescope (HST), and Voyager IRIS measurements. Of particular interest are the connections between the enhanced UV absorption in the polar regions and the bright polar hoods evident in methane band images and the connections between the aerosol, the infrared "hot spot", and the auroras. Spatial maps of the hydrocarbon emissions constructed from the Voyager IRIS measurements reveal enhanced acetylene emission coincident with the region of enhanced methane emission but morphologically distinct from the region of enhanced ethane emission. This finding confirms the existence of altitude- dependent hydrocarbon chemistry. Ground-based and HST data reveal the presence of longitudinal structure in the latitudinal distribution of the aerosols (i.e., break-down in zonal symmetry) apparently associated with circulation anomalies induced by the polar hot spot. In addition, the HST data reveal a change in the aerosol properties (e.g., phase function) in the vicinity of the hot spot while ruling out changes in their height and/or optical depth distribution. The HST data also reveal differential UV absorption coincident with the aurora strengthening the connection between aerosol formation/hydrocarbon chemistry and the aurora. The spectral dependence of this absorption suggests enhancements of the higher order hydrocarbons (e.g., benzene). The mismatch in spatial resolution between infrared (Voyager IRIS/ground-based IRTF) and HST measurements coupled with the change in morphology of the hot spot as revealed by the structure of the methane/acetylene emission versus that of the ethane emission suggests the existence of more complex spatial structure and additional thermal emission anomalies associated with auroral processes unresolved by current infrared measurements

  19. Linearly polarized fiber amplifier

    DOEpatents

    Kliner, Dahv A.; Koplow, Jeffery P.

    2004-11-30

    Optically pumped rare-earth-doped polarizing fibers exhibit significantly higher gain for one linear polarization state than for the orthogonal state. Such a fiber can be used to construct a single-polarization fiber laser, amplifier, or amplified-spontaneous-emission (ASE) source without the need for additional optical components to obtain stable, linearly polarized operation.

  20. Polarization control of terahertz waves generated by circularly polarized few-cycle laser pulses

    NASA Astrophysics Data System (ADS)

    Song, Liwei; Bai, Ya; Xu, Rongjie; Li, Chuang; Liu, Peng; Li, Ruxin; Xu, Zhizhan

    2013-12-01

    We demonstrate the generation and control of elliptically polarized terahertz (THz) waves from air plasma produced by circularly polarized few-cycle laser pulses. Experimental and calculated results reveal that electric field asymmetry in rotating directions of the circularly polarized few-cycle laser pulses produces the enhanced broadband transient currents, and the phase difference of perpendicular laser field components is partially inherited in the generation process of THz emission. The ellipticity of the THz emission and its major axis direction are all-optically controlled by the duration and carrier-envelope phase of the laser pulses.

  1. Enhanced polarization of (11-22) semi-polar InGaN nanorod array structure

    NASA Astrophysics Data System (ADS)

    Athanasiou, M.; Smith, R. M.; Hou, Y.; Zhang, Y.; Gong, Y.; Wang, T.

    2015-10-01

    By means of a cost effective nanosphere lithography technique, an InGaN/GaN multiple quantum well structure grown on (11-22) semipolar GaN has been fabricated into two dimensional nanorod arrays which form a photonic crystal (PhC) structure. Such a PhC structure demonstrates not only significantly increased emission intensity, but also an enhanced polarization ratio of the emission. This is due to an effective inhibition of the emission in slab modes and then redistribution to the vertical direction, thus minimizing the light scattering processes that lead to randomizing of the optical polarization. The PhC structure is designed based on a standard finite-difference-time-domain simulation, and then optically confirmed by detailed time-resolved photoluminescence measurements. The results presented pave the way for the fabrication of semipolar InGaN/GaN based emitters with both high efficiency and highly polarized emission.

  2. The Polarization of Achernar

    NASA Astrophysics Data System (ADS)

    McDavid, D.

    2005-11-01

    Recent near-infrared measurements of the angular diameter of Achernar (the bright Be star alpha Eridani) with the ESO VLT interferometer have been interpreted as the detection of an extremely oblate photosphere, with a ratio of equatorial to polar radius of at least 1.56 ± 0.05 and a minor axis orientation of 39° ± 1° (from North to East). The optical linear polarization of this star during an emission phase in 1995 September was 0.12 ± 0.02% at position angle 37° ± 8° (in equatorial coordinates), which is the direction of the projection of the rotation axis on the plane of the sky according to the theory of polarization by electron scattering in an equatorially flattened circumstellar disk. These two independent determinations of the orientation of the rotation axis are therefore in agreement. The observational history of correlations between Hα emission and polarization as found in the literature is that of a typical Be star, with the exception of an interesting question raised by the contrast between Schröder's measurement of a small polarization perpendicular to the projected rotation axis in 1969--70 and Tinbergen's measurement of zero polarization in 1974.5, both at times when emission was reportedly absent.

  3. Polarized edge emission from GaN-based light-emitting diodes sandwiched by dielectric/metal hybrid reflectors

    NASA Astrophysics Data System (ADS)

    Yan, L. J.; Sheu, J. K.; Huang, F. W.; Lee, M. L.

    2010-12-01

    Edge-emitting c-plane GaN/sapphire-based light-emitting diodes (LEDs) sandwiched by two dielectric/metal hybrid reflectors on both sapphire and GaN surfaces were studied to determine their light emission polarization. The hybrid reflectors comprised dielectric multiple thin films and a metal layer. The metal layers of Au or Ag used in this study were designed to enhance the polarization ratio from S-polarization (transverse electric wave, TE) to P-polarization (transverse magnetic wave, TM). The two sets of optimized dielectric multi thin films served as matching layers for wide-angle incident light on both sapphire and GaN surfaces. To determine which reflector scheme would achieve a higher polarization ratio, simulations of the reflectance at the hybrid reflectors on sapphire (or GaN) interface were performed before the fabrication of experimental LEDs. Compared with conventional c-plane InGaN/GaN/sapphire LEDs without dielectric/metal hybrid reflectors, the experimental LEDs exhibited higher polarization ratio (ITE-max/ITM-max) with r=2.174 (˜3.37 dB) at a wavelength of 460 nm. In contrast, the original polarized light (without dielectric/metal hybrid reflectors) was partially contributed (r=1.398) by C-HH or C-LH (C band to the heavy-hole sub-band or C band to the crystal-field split-off sub-band) transitions along the a-plane or m-plane direction.

  4. Accretion Signatures on Massive Young Stellar Objects

    NASA Astrophysics Data System (ADS)

    Navarete, F.; Damineli, A.; Barbosa, C. L.; Blum, R. D.

    2015-01-01

    We present preliminary results from a survey of molecular H2 (2.12 μm) emission in massive young stellar objects (MYSO) candidates selected from the Red MSX Source survey. We observed 354 MYSO candidates through the H2 S(1) 1-0 transition (2.12 μm) and an adjacent continuum narrow-band filters using the Spartan/SOAR and WIRCam/CFHT cameras. The continuum-subtracted H2 maps were analyzed and extended H2 emission was found in 50% of the sample (178 sources), and 38% of them (66) have polar morphology, suggesting collimated outflows. The polar-like structures are more likely to be driven on radio-quiet sources, indicating that these structures occur during the pre-ultra compact H ii phase. We analyzed the continuum images and found that 54% (191) of the sample displayed extended continuum emission and only ~23% (80) were associated to stellar clusters. The extended continuum emission is correlated to the H2 emission and those sources within stellar clusters does display diffuse H2 emission, which may be due to fluorescent H2 emission. These results support the accretion scenario for massive star formation, since the merging of low-mass stars would not produce jet-like structures. Also, the correlation between jet-like structures and radio-quiet sources indicates that higher inflow rates are required to form massive stars in a typical timescale less than 105 years.

  5. Objective Measure of Nasal Air Emission Using Nasal Accelerometry

    ERIC Educational Resources Information Center

    Cler, Meredith J.; Lien, Yu-An, S.; Braden, Maia N.; Mittleman, Talia; Downing, Kerri; Stepp, Cara, E.

    2016-01-01

    Purpose: This article describes the development and initial validation of an objective measure of nasal air emission (NAE) using nasal accelerometry. Method: Nasal acceleration and nasal airflow signals were simultaneously recorded while an expert speech language pathologist modeled NAEs at a variety of severity levels. In addition, microphone and…

  6. Quantum mechanical modeling the emission pattern and polarization of nanoscale light emitting diodes.

    PubMed

    Wang, Rulin; Zhang, Yu; Bi, Fuzhen; Frauenheim, Thomas; Chen, GuanHua; Yam, ChiYung

    2016-07-21

    Understanding of the electroluminescence (EL) mechanism in optoelectronic devices is imperative for further optimization of their efficiency and effectiveness. Here, a quantum mechanical approach is formulated for modeling the EL processes in nanoscale light emitting diodes (LED). Based on non-equilibrium Green's function quantum transport equations, interactions with the electromagnetic vacuum environment are included to describe electrically driven light emission in the devices. The presented framework is illustrated by numerical simulations of a silicon nanowire LED device. EL spectra of the nanowire device under different bias voltages are obtained and, more importantly, the radiation pattern and polarization of optical emission can be determined using the current approach. This work is an important step forward towards atomistic quantum mechanical modeling of the electrically induced optical response in nanoscale systems.

  7. Enhanced harmonic emission from a polar molecule medium driven by few-cycle laser pulses.

    PubMed

    Zhang, Chaojin; Yao, Jinping; Ni, Jielei; Umran, Fadhil A

    2012-11-19

    We investigate theoretically the enhancement of the low-order harmonic emission from a polar molecular medium. The results show that, by using a control laser field, the intensity of the spectral signals near fourth-order harmonics will increase over 25 times as a result of the four-wave mixing process. Moreover, the enhancement effects depend strongly on the carrier-envelope phase of the initial laser fields, which cannot be found in a symmetric system.

  8. Reducing the biases in simulated polar climate by incorporating realistic surface spectral emissivity into the global climate model

    NASA Astrophysics Data System (ADS)

    Huang, X.; Chen, X.; Flanner, M.; Yang, P.; Feldman, D.; Kuo, C.

    2017-12-01

    Surface longwave emissivity can be less than unity and vary significantly with frequency. The emissivities of water, ice, and bare land all exhibit different spectral dependence, for both the far-IR and mid-IR bands. However, most climate models still assume blackbody surface in the longwave (LW) radiation scheme of their atmospheric modules. This study incorporates realistic surface spectral emissivity into the RRTMG_LW, the LW radiation scheme in CAM, which is the atmospheric component of the NCAR Community Earth System Model (CESM) version 1.1.1. Then we evaluate its impact on simulated climatology, especially for the polar regions. By ensuring the consistency of the broadband longwave flux across different modules of the CESM, the TOA energy balance in the simulation can be attained without additional tuning of the model. While the impact on global mean surface temperature is small, the surface temperature differences in Polar Regions are statistically significant. The mean surface temperature in Arctic in the modified CESM is 1.5K warmer than that in the standard CESM, reducing the cold bias that the standard CESM has with respect to observations. Accordingly the sea ice fraction in the modified CESM simulation is less than that in the standard CESM simulation by as much as 0.1, which significantly reduces the positive biases in the simulated sea ice coverage by the CESM. The largest sea-ice coverage difference happens in August and September, when new sea ice starts to form. The similar changes can be seen for the simulated Antarctic surface climate as well. In a nutshell, incorporating realistic surface spectral emissivity helps improving the fidelity of simulated surface energy budget in the polar region, which leads to a better simulation of the surface temperature and sea ice coverage.

  9. Magnetic Fields in Blazar Jets: Jet-Alignment of Radio and Optical Polarization over 20-30 Years

    NASA Astrophysics Data System (ADS)

    Wills, Beverley J.; Aller, M. F.; Caldwell, C.; Aller, H. D.

    2012-01-01

    Blazars are highly active nuclei of distant galaxies. They produce synchrotron-emitting relativistic jets on scales of less than a parsec to many Kpc. When viewed head-on, as opposed to in the plane of the sky, the jet motion appears superluminal, and the emission is Doppler boosted. Blazars show rapid radio and optical variability in flux density and polarization. There are two types of blazars that can have strong synchrotron continua: some quasars with strong broad emission lines, and BL Lac objects with weak or undetected broad lines. We have compiled optical linear polarization measurements of more than 100 blazars, including archival data from McDonald Observatory. While the optical data are somewhat sparsely sampled, The University of Michigan Radio Astronomical Observatory observed many blazars over 20-30 years, often well-sampled over days to weeks, enabling quasi-simultaneous comparison of optical and radio polarization position angles (EVPAs). We also collected data on jet direction -- position angles of the jet component nearest the radio core. The project is unique in examining the polarization and jet behavior over many years. BL Lac objects tend to have stable optically thin EVPA in the jet direction, meaning magnetic field is perpendicular to jet flow, often interpreted as the magnetic field compressed by shocks. In quasar-blazars optical and radio EVPA often changes between parallel or perpendicular to the jet direction, even in the same object. The underlying B field of the jet is is parallel to the flow, with approximately 90 degree changes resulting from shocks. For both BL Lac objects & quasars, the scatter in EVPA usually increases from low frequencies (4.8 GHz) through 14.5 GHz through optical. The wide optical-radio frequency range allows us to investigate optical depth effects and the spatial origin of radio and optical emission.

  10. Present-day and future global bottom-up ship emission inventories including polar routes.

    PubMed

    Paxian, Andreas; Eyring, Veronika; Beer, Winfried; Sausen, Robert; Wright, Claire

    2010-02-15

    We present a global bottom-up ship emission algorithm that calculates fuel consumption, emissions, and vessel traffic densities for present-day (2006) and two future scenarios (2050) considering the opening of Arctic polar routes due to projected sea ice decline. Ship movements and actual ship engine power per individual ship from Lloyd's Marine Intelligence Unit (LMIU) ship statistics for six months in 2006 and further mean engine data from literature serve as input. The developed SeaKLIM algorithm automatically finds the most probable shipping route for each combination of start and destination port of a certain ship movement by calculating the shortest path on a predefined model grid while considering land masses, sea ice, shipping canal sizes, and climatological mean wave heights. The resulting present-day ship activity agrees well with observations. The global fuel consumption of 221 Mt in 2006 lies in the range of previously published inventories when undercounting of ship numbers in the LMIU movement database (40,055 vessels) is considered. Extrapolated to 2007 and ship numbers per ship type of the recent International Maritime Organization (IMO) estimate (100,214 vessels), a fuel consumption of 349 Mt is calculated which is in good agreement with the IMO total of 333 Mt. The future scenarios show Arctic polar routes with regional fuel consumption on the Northeast and Northwest Passage increasing by factors of up to 9 and 13 until 2050, respectively.

  11. New observations and a photographic atlas of polar-ring galaxies

    NASA Technical Reports Server (NTRS)

    Whitmore, Bradley C.; Lucas, Ray A.; Mcelroy, Douglas B.; Steiman-Cameron, Thomas Y.; Sackett, Penny D.

    1990-01-01

    A photographic atlas of polar-ring galaxies and related objects is presented. The atlas includes kinematically confirmed polar-ring galaxies (category A), good candidates based on their morphological appearance (category B), possible candidates (category C), and possibly related objects (category D). New photometric and kinematic observations are reported for several galaxies in the catalog, including observations that show that UGC 7576 and UGC 9796 ( = II ZW 73) are S0 galaxies with polar rings. Roughly 0.5 percent of all nearby S0 galaxies appear to have polar rings. When corrected for various selection effects (e.g., nonoptimal viewing orientation, possible dimming, or limited lifetime of the ring) the percentage increases to about 5 percent of S0 galaxies which have, or have had a polar ring.

  12. On the spectrum and polarization of magnetar flare emission

    NASA Astrophysics Data System (ADS)

    Taverna, R.; Turolla, R.

    2017-12-01

    Bursts and flares are among the distinctive observational manifestations of magnetars, isolated neutron stars endowed with an ultra-strong magnetic field (B ≈ 1014-1015 G). It is believed that these events arise in a hot electron-positron plasma, injected in the magnetosphere, due to a magnetic field instability, which remains trapped within the closed magnetic field lines (the “trapped-fireball” model). We have developed a simple radiative transfer model to simulate magnetar flare emission in the case of a steady trapped fireball. We assume that magnetic Thomson scattering is the dominant source of opacity in the fireball medium, and neglect contributions from second-order radiative processes. The spectra we obtained in the 1-100 keV energy range are in broad agreement with those of available observations. The large degree of polarization (≳ 80%) predicted by our model should be easily measured by new-generation X-ray polarimeters, like IXPE, XIPE and eXTP, allowing one to confirm the model predictions.

  13. Polarization of cells and soft objects driven by mechanical interactions: consequences for migration and chemotaxis.

    PubMed

    Leoni, M; Sens, P

    2015-02-01

    We study a generic model for the polarization and motility of self-propelled soft objects, biological cells, or biomimetic systems, interacting with a viscous substrate. The active forces generated by the cell on the substrate are modeled by means of oscillating force multipoles at the cell-substrate interface. Symmetry breaking and cell polarization for a range of cell sizes naturally "emerge" from long range mechanical interactions between oscillating units, mediated both by the intracellular medium and the substrate. However, the harnessing of cell polarization for motility requires substrate-mediated interactions. Motility can be optimized by adapting the oscillation frequency to the relaxation time of the system or when the substrate and cell viscosities match. Cellular noise can destroy mechanical coordination between force-generating elements within the cell, resulting in sudden changes of polarization. The persistence of the cell's motion is found to depend on the cell size and the substrate viscosity. Within such a model, chemotactic guidance of cell motion is obtained by directionally modulating the persistence of motion, rather than by modulating the instantaneous cell velocity, in a way that resembles the run and tumble chemotaxis of bacteria.

  14. Changing Arctic Ecosystems: Updated forecast: Reducing carbon dioxide (CO2) emissions required to improve polar bear outlook

    USGS Publications Warehouse

    Oakley, Karen L.; Atwood, Todd C.; Mugel, Douglas N.; Rode, Karyn D.; Whalen, Mary E.

    2015-01-01

    The Arctic is warming faster than other regions of the world due to the loss of snow and ice, which increases the amount of solar energy absorbed by the region. The most visible consequence has been the rapid decline in sea ice over the last 3 decades-a decline projected to bring long ice-free summers if greenhouse gas (GHG) emissions are not significantly reduced. The polar bear (Ursus maritimus) depends on sea ice over the biologically productive continental shelves of the Arctic Ocean as a platform for hunting seals. In 2008, the U.S. Fish and Wildlife Service listed the polar bear as threatened under the Endangered Species Act (ESA) due to the threat posed by sea ice loss. The polar bear was the first species to be listed due to forecasted population declines from climate change.

  15. Accretion dynamics and polarized X-ray emission of magnetized neutron stars

    NASA Technical Reports Server (NTRS)

    Arons, Jonathan

    1991-01-01

    The basic ideas of accretion onto magnetized neutron stars are outlined. These are applied to a simple model of the structure of the plasma mound sitting at the magnetic poles of such a star, in which upward diffusion of photons is balanced by their downward advection. This steady flow model of the plasma's dynamical state is used to compute the emission of polarized X-raysfrom the optically thick, birefringent medium. The linear polarization of the continuum radiation emerging from the quasi-static mound is found to be as much as 40 percent at some rotation phases, but is insensitive to the geometry of the accretion flow. The role of the accretion shock, whose detailed polarimetric and spectral characteristics have yet to be calculated, is emphasized as the final determinant of the properties of the emerging X-rays. Some results describing the fully time dependent dynamics of the flow are also presented. In particular, steady flow onto a neutron star is shown to exhibit formation of 'photon bubbles', regions of greatly reduced plasma density filled with radiation which form and rise on millisecond time scale. The possible role of these complex structures in the flow for the formation of the emergent spectrum is briefly outlined.

  16. Field-aligned Currents Induced by Electrostatic Polarization at the Ionosphere: Application to the Poleward Boundary Intensification (PBI) of Auroral Emission

    NASA Astrophysics Data System (ADS)

    Ohtani, S.; Yoshikawa, A.

    2016-12-01

    Although the field-aligned currents (Birkeland currents) are generally considered to be driven by magnetospheric processes, it is possible that some field-aligned currents are locally induced in the ionosphere in the presence of sharp conductance gradient. In this presentation we shall discuss the poleward boundary intensification (PBI) of auroral emission as an example effect of such electrostatic polarization. The observations show that the PBIs are very often preceded by the fast polar cap convection approaching the nightside auroral oval. We propose that the ionospheric currents driven by the associated electric field diverges/converges at the poleward boundary of the auroral oval as the background ionospheric conductance changes sharply in space, and they close with field-aligned currents. The associated upward field-aligned current is accompanied by electron precipitation, which may cause auroral emission as observed as PBIs. We test this idea by modeling the ionosphere as a slab-shaped enhancement of conductance and the polar cap flow channel as a pair of upward and downward FACs. The results show that (i) a pair of upward and downward FACs is induced at the poleward boundary when the front of the polar cap flow channel approaches the auroral oval; (ii) the upward FAC extends westward much wider in longitude than the flow channel; (iii) the peak FAC density is significantly larger than the incident FAC; and (iv) the induced upward and downward FACs are distributed almost symmetrically in longitude, indicating that the Pedersen polarization dominates the Hall polarization. These results are consistent with some general characteristics of PBIs, which are rather difficult to explain if the PBIs are the ionospheric manefestation of distant reconnection as often suggested.

  17. A 77-118 GHz RESONANCE-FREE SEPTUM POLARIZER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Yen-Lin; Chiueh, Tzihong; Teng, Hsiao-Feng, E-mail: chiuehth@phys.ntu.edu.tw

    2014-03-01

    Measurements of polarized radiation often reveal specific physical properties of emission sources, such as the strengths and orientations of magnetic fields offered by synchrotron radiation and Zeeman line emission, and the electron density distribution caused by free-free emission. Polarization-capable, millimeter/sub-millimeter telescopes are normally equipped with either septum polarizers or ortho-mode transducers (OMT) to detect polarized radiation. Though the septum polarizer is limited to a significantly narrower bandwidth than the OMT, it possesses advantageous features unparalleled by the OMT when it comes to determining astronomical polarization measurements. We design an extremely wide-band circular waveguide septum polarizer, covering 42% bandwidth, from 77more » GHz to 118 GHz, without any undesired resonance, challenging the conventional bandwidth limit. Stokes parameters, constructed from the measured data between 77 GHz and 115 GHz, show that the leakage from I to Q and U is below ±2%, and the Q – U mutual leakage is below ±1%. Such a performance is comparable to other modern polarizers, but the bandwidth of this polarizer can be at least twice as wide. This extremely wide-band design removes the major weakness of the septum polarizer and opens up a new window for future astronomical polarization measurements.« less

  18. Ultraviolet continuum and H2 fluorescent emission in Herbig-Haro objects 43 and 47

    NASA Technical Reports Server (NTRS)

    Schwartz, R. D.

    1983-01-01

    IUE short wavelength spectra are presented for the low excitation Herbig-Haro objects HH 43 and HH 47. In the former, several emission lines in the Lyman band of H2 from an excited state are observed which are due to fluorescence from the H Ly-alpha line pumping a lower state (that is in turn excited by a low-velocity shock wave). No evidence of highly ionized gas emission is found in the UV spectra, and both objects exhibit a UV continuum which peaks in the vicinity of 1500 A and is probably caused by H two-photon emission enhanced by low velocity shock collisional excitation.

  19. Polarized curvature radiation in pulsar magnetosphere

    NASA Astrophysics Data System (ADS)

    Wang, P. F.; Wang, C.; Han, J. L.

    2014-07-01

    The propagation of polarized emission in pulsar magnetosphere is investigated in this paper. The polarized waves are generated through curvature radiation from the relativistic particles streaming along curved magnetic field lines and corotating with the pulsar magnetosphere. Within the 1/γ emission cone, the waves can be divided into two natural wave-mode components, the ordinary (O) mode and the extraordinary (X) mode, with comparable intensities. Both components propagate separately in magnetosphere, and are aligned within the cone by adiabatic walking. The refraction of O mode makes the two components separated and incoherent. The detectable emission at a given height and a given rotation phase consists of incoherent X-mode and O-mode components coming from discrete emission regions. For four particle-density models in the form of uniformity, cone, core and patches, we calculate the intensities for each mode numerically within the entire pulsar beam. If the corotation of relativistic particles with magnetosphere is not considered, the intensity distributions for the X-mode and O-mode components are quite similar within the pulsar beam, which causes serious depolarization. However, if the corotation of relativistic particles is considered, the intensity distributions of the two modes are very different, and the net polarization of outcoming emission should be significant. Our numerical results are compared with observations, and can naturally explain the orthogonal polarization modes of some pulsars. Strong linear polarizations of some parts of pulsar profile can be reproduced by curvature radiation and subsequent propagation effect.

  20. THE WISE LIGHT CURVES OF POLARS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harrison, Thomas E.; Campbell, Ryan K., E-mail: tharriso@nmsu.edu, E-mail: Ryan.Campbell@humboldt.edu

    2015-08-15

    We have extracted the WISE (Wide-field Infrared Survey Explorer) single-exposure data for a sample of 72 polars, which are highly magnetic cataclysmic variables (CVs). We combine these data with both published and unpublished optical and infrared data to explore the origins of the large amplitude variations seen in these systems. In nearly every case, we find evidence for cyclotron emission in the WISE bandpasses. We find that the derived magnetic field strengths for some polars are either too high, or cyclotron emission from lower field components, located spatially coincident to the main accreting poles, must be occurring. We have alsomore » estimated field strengths for a number of polars where no such values exist. In addition, contrary to expectations, we find that emission from the fundamental cyclotron harmonic (n = 1) appears to be nearly always present when the magnetic field is of the appropriate strength that it falls within a WISE bandpass. We find that the light curves for RBS 490, an ultrashort-period (46 minutes) CV, suggest that it is a polar. Modeling its spectrum indicates that its donor star is much hotter than expected. Nearly all of the detected polars show 11.5 μm (“W3 band”) excesses. The general lack of variability seen in the W3 bandpass light curves for higher-field polars demonstrates that these excesses are probably not due to cyclotron emission. There is circumstantial evidence that these excesses can be attributed to bremsstrahlung emission from their accretion streams. Reduction of the Spitzer 24 μm image of V1500 Cyg shows that it appears to be located at the center of a small nebula.« less

  1. A multi-objective programming model for assessment the GHG emissions in MSW management

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mavrotas, George, E-mail: mavrotas@chemeng.ntua.gr; Skoulaxinou, Sotiria; Gakis, Nikos

    2013-09-15

    Highlights: • The multi-objective multi-period optimization model. • The solution approach for the generation of the Pareto front with mathematical programming. • The very detailed description of the model (decision variables, parameters, equations). • The use of IPCC 2006 guidelines for landfill emissions (first order decay model) in the mathematical programming formulation. - Abstract: In this study a multi-objective mathematical programming model is developed for taking into account GHG emissions for Municipal Solid Waste (MSW) management. Mathematical programming models are often used for structure, design and operational optimization of various systems (energy, supply chain, processes, etc.). The last twenty yearsmore » they are used all the more often in Municipal Solid Waste (MSW) management in order to provide optimal solutions with the cost objective being the usual driver of the optimization. In our work we consider the GHG emissions as an additional criterion, aiming at a multi-objective approach. The Pareto front (Cost vs. GHG emissions) of the system is generated using an appropriate multi-objective method. This information is essential to the decision maker because he can explore the trade-offs in the Pareto curve and select his most preferred among the Pareto optimal solutions. In the present work a detailed multi-objective, multi-period mathematical programming model is developed in order to describe the waste management problem. Apart from the bi-objective approach, the major innovations of the model are (1) the detailed modeling considering 34 materials and 42 technologies, (2) the detailed calculation of the energy content of the various streams based on the detailed material balances, and (3) the incorporation of the IPCC guidelines for the CH{sub 4} generated in the landfills (first order decay model). The equations of the model are described in full detail. Finally, the whole approach is illustrated with a case study referring to the

  2. Magnetic Fields in Blazar Jets: Radio and Optical Polarization over 20-30 Years

    NASA Astrophysics Data System (ADS)

    Caldwell, Caroline; Wills, B.; Wills, D.; Aller, H.; Aller, M.

    2011-01-01

    Blazars are highly active nuclei of distant galaxies. They produce synchrotron-emitting relativistic jets on scales of less than a parsec to many Kpc. When viewed head-on, as opposed to in the plane of the sky, the jet motion appears superluminal, and the emission is Doppler boosted. Blazars show rapid radio and optical variability in flux density and polarization. There are two types of blazars that can have strong synchrotron continua: non-BL Lac blazars with strong broad emission lines (quasars), and BL Lac objects with only weak lines. We have compiled optical linear polarization measurements of 22 blazars, incorporating much archival data from McDonald Observatory. While the optical data are somewhat sparsely sampled, The University of Michigan Radio Astronomical Observatory observed many blazars over 20-30 years, often well-sampled over days to weeks. These data enabled us to compare optical and radio polarization position angles. We constructed histograms of the separation of polarization position angles of the optical and radio. We found that in BL Lac objects, the histogram has a significant peak at zero separation. Since the polarization position angle indicates the direction perpendicular to the magnetic field vector, finding similar polarization position angles indicates a similar magnetic field at the origin of the optical and radio synchrotron radiation. Non-BL Lac blazars show peaks at zero and 90 degree separation of position angle. The 90 degree separation may be caused by optical depth effects within the jet. Although there are a few sources that do not strongly display the characteristics summarized by the histograms, most sources produce optical and radio polarization position angles that nearly coincide or are separated by 90 degrees. Using VLBA and VLA radio maps, we interpret the results in terms of the position angle of the jet in the sky plane.

  3. Polarized micro-cavity organic light-emitting devices.

    PubMed

    Park, Byoungchoo; Kim, Mina; Park, Chan Hyuk

    2009-04-27

    We present the results of a study of light emissions from a polarized micro-cavity Organic Light-Emitting Device (OLED), which consisted of a flexible, anisotropic one-dimensional (1-D) photonic crystal (PC) film substrate. It is shown that luminous Electroluminescent (EL) emissions from the polarized micro-cavity OLED were produced at relatively low operating voltages. It was also found that the peak wavelengths of the emitted EL light corresponded to the two split eigen modes of the high-energy band edges of the anisotropic PC film, with a strong dependence on the polarization state of the emitting light. For polarization along the ordinary axis of the anisotropic PC film, the optical split micro-cavity modes occurred at the longer high-energy photonic band gap (PBG) edge, while for polarization along the extraordinary axis, the split micro-cavity modes occurred at the shorter high-energy PBG edge, with narrow bandwidths. We demonstrated that the polarization and emission mode of the micro-cavity OLED may be selected by choosing the appropriate optical axis of the anisotropic 1-D PC film.

  4. A Search for Water Maser Emission from Brown Dwarfs and Low-luminosity Young Stellar Objects

    NASA Astrophysics Data System (ADS)

    Gómez, José F.; Palau, Aina; Uscanga, Lucero; Manjarrez, Guillermo; Barrado, David

    2017-05-01

    We present a survey for water maser emission toward a sample of 44 low-luminosity young objects, comprising (proto-)brown dwarfs, first hydrostatic cores (FHCs), and other young stellar objects (YSOs) with bolometric luminosities lower than 0.4 L ⊙. Water maser emission is a good tracer of energetic processes, such as mass-loss and/or accretion, and is a useful tool to study these processes with very high angular resolution. This type of emission has been confirmed in objects with L bol ≳ 1 L ⊙. Objects with lower luminosities also undergo mass-loss and accretion, and thus, are prospective sites of maser emission. Our sensitive single-dish observations provided a single detection when pointing toward the FHC L1448 IRS 2E. However, follow-up interferometric observations showed water maser emission associated with the nearby YSO L1448 IRS 2 (a Class 0 protostar of L bol ≃ 3.6-5.3 L ⊙) and did not find any emission toward L1448 IRS 2E. The upper limits for water maser emission determined by our observations are one order of magnitude lower than expected from the correlation between water maser luminosities and bolometric luminosities found for YSOs. This suggests that this correlation does not hold at the lower end of the (sub)stellar mass spectrum. Possible reasons are that the slope of this correlation is steeper at L bol ≤ 1 L ⊙ or that there is an absolute luminosity threshold below which water maser emission cannot be produced. Alternatively, if the correlation still stands at low luminosity, the detection rates of masers would be significantly lower than the values obtained in higher-luminosity Class 0 protostars.

  5. A Search for Water Maser Emission from Brown Dwarfs and Low-luminosity Young Stellar Objects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gómez, José F.; Manjarrez, Guillermo; Palau, Aina

    We present a survey for water maser emission toward a sample of 44 low-luminosity young objects, comprising (proto-)brown dwarfs, first hydrostatic cores (FHCs), and other young stellar objects (YSOs) with bolometric luminosities lower than 0.4 L {sub ⊙}. Water maser emission is a good tracer of energetic processes, such as mass-loss and/or accretion, and is a useful tool to study these processes with very high angular resolution. This type of emission has been confirmed in objects with L {sub bol} ≳ 1 L {sub ⊙}. Objects with lower luminosities also undergo mass-loss and accretion, and thus, are prospective sites of maser emission.more » Our sensitive single-dish observations provided a single detection when pointing toward the FHC L1448 IRS 2E. However, follow-up interferometric observations showed water maser emission associated with the nearby YSO L1448 IRS 2 (a Class 0 protostar of L {sub bol} ≃ 3.6–5.3 L {sub ⊙}) and did not find any emission toward L1448 IRS 2E. The upper limits for water maser emission determined by our observations are one order of magnitude lower than expected from the correlation between water maser luminosities and bolometric luminosities found for YSOs. This suggests that this correlation does not hold at the lower end of the (sub)stellar mass spectrum. Possible reasons are that the slope of this correlation is steeper at L {sub bol} ≤ 1 L {sub ⊙} or that there is an absolute luminosity threshold below which water maser emission cannot be produced. Alternatively, if the correlation still stands at low luminosity, the detection rates of masers would be significantly lower than the values obtained in higher-luminosity Class 0 protostars.« less

  6. Constraining Line-of-sight Confusion in the Corona Using Linearly Polarized Observations of the Infrared FeXIII 1075nm and SiX 1430nm Emission Lines

    NASA Astrophysics Data System (ADS)

    Dima, G. I.; Kuhn, J. R.; Berdyugina, S.

    2017-12-01

    Measurements of the coronal magnetic field are difficult because of the intrinsically faint emission of coronal plasma and the large spurious background due to the bright solar disk. This work addresses the problem of resolving the confusion of the line-of-sight (LOS) integration through the optically-thin corona being observed. Work on developing new measuring techniques based on single-point inversions using the Hanle effect has already been described (Dima et al. 2016). It is important to develop a technique to assess when the LOS confusion makes comparing models and observations problematic. Using forward integration of synthetic emission through magnetohydrodynamic (MHD) models together with simultaneous linearly polarized observations of the FeXIII 1075nm and SiX 1430nm emission lines allows us to assess LOS confusion. Since the lines are both in the Hanle saturated regime their polarization angles are expected to be aligned as long as the gas is sampling the same magnetic field. If significant contributions to the emission is taking place from different regions along the LOS due to the additive nature of the polarized brightness the measured linear polarization between the two lines will be offset. The size of the resolution element is important for this determination since observing larger coronal regions will confuse the variation along the LOS with that in the plane-of-sky. We also present comparisons between synthetic linearly polarized emission through a global MHD model and observations of the same regions obtained using the 0.5m Scatter-free Observatory for Limb Active Regions and Coronae (SOLARC) telescope located on Haleakala, Maui. This work is being done in preparation for the type of observations that will become possible when the next generation 4m DKIST telescope comes online in 2020.

  7. Global Geospace Science/Polar Plasma Laboratory: POLAR

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The Global Geospace Science (GGS) Project is discussed as part of the International Solar-Terrestrial Physics (ISTP) Science Initiative. The objectives of Polar Plasma Laboratory (POLAR), one of the two spacecraft to be used by the Project to fill critical gaps in the scientific understanding of solar and plasma physics, are outlined. POLAR Laboratory is described, along with POLAR instrumentation, support subsystems, and orbits. Launch vehicle and injection into orbit are also addressed.

  8. Detection of anisotropy in the electron velocity distribution produced by electron cyclotron resonance heating using the polarization of helium atom emission lines

    NASA Astrophysics Data System (ADS)

    Teramoto, Tatsuya; Shikama, Taiichi; Ueda, Akira; Hasuo, Masahiro

    2018-05-01

    The anisotropy in the electron velocity distribution (EVD) was measured using the polarization of two helium atom emission lines, 21P-31D (668 nm) and 23P-33D (588 nm), in a helium electron cyclotron resonance (ECR) discharge plasma. A small polarization degree of less than 4% was measured by adopting a temporal modulation technique. It was found that the polarization originated locally from around the ECR layer and that the anisotropic component of the EVD produced by ECR heating had an average kinetic energy of approximately 40 eV.

  9. Measuring polarized emission in clusters in the CMB S4 era

    NASA Astrophysics Data System (ADS)

    Louis, Thibaut; Bunn, Emory F.; Wandelt, Benjamin; Silk, Joseph

    2017-12-01

    The next generation of CMB experiments (CMB Stage-4) will produce a Sunyaev-Zel'dovich (SZ) cluster catalog containing ˜105 objects, two orders of magnitudes more than currently available. In this paper, we discuss the detectability of the polarized signal generated by scattering of the CMB quadrupole on the cluster electron gas using this catalog. We discuss the possibility of using this signal to measure the relationship between cluster optical depth and mass. We find that the area of observation of S4 maximizes the signal-to-noise (S/N) on the polarized signal but that this S/N is extremely small for an individual cluster, of order 0.5% for a typical cluster in our catalog, the main source of noise being the residual primordial E-mode signal. However, we find that the signal could be detected using the full cluster catalog and that the significance of the result will increase linearly with the size of the CMB S4 telescope mirror.

  10. Simulations of polarization from accretion disks

    NASA Astrophysics Data System (ADS)

    Schultz, J.

    2000-12-01

    The Monte Carlo Method was used to estimate the level of polarization from axisymmetric accretion disks similar to those in low-mass X-ray binaries and some classes of cataclysmic variables. In low-mass X-ray binaries electron scattering is supposed to be the dominant opacity source in the inner disk, and most of the optical light is produced in the disk. Thompson scattering occuring in the disk corona produces linear polarization. Detailed theoretical models of accretion disks are numerous, but simple mathematical disk models were used, as the accuracy of polarization measurements does not allow distinction of the fine details of disk models. Stokes parameters were used for the radiative transfer. The simulations indicate that the vertical distribution of emissivity has the greatest effect on polarization, and variations of radial emissivity distribution have no detectable effect on polarization. Irregularities in the disk may reduce the degree of polarization. The polarization levels produced by simulations are detectable with modern instruments. Polarization measurements could be used to get rough constraints on the vertical emissivity distribution of an accretion disk, provided that a reasonably accurate disk model can be constructed from photometric or spectrosopic observations in optical and/or X-ray wavelengths. Mainly based on observations taken at the Observatoire de Haute-Provence, France, and on some observations obtained at the European Southern Observatory, Chile (ESO Prog. IDs: 57.C-0492, 59.C-0293, 61.C-0512).

  11. Molecular line emission models of Herbig-Haro objects. II - HCO(+) emission

    NASA Technical Reports Server (NTRS)

    Wolfire, Mark G.; Koenigl, Arieh

    1993-01-01

    We present time-dependent models of the chemistry and temperature of interstellar molecular gas clumps that are exposed to the radiation from propagating stellar-jet shocks. The X-ray, EUV, and FUV radiation from the shock initiates ion chemistry and also heats the gas in the clumps. Using representative parameters, we show that, on the shock transit time between the clumps, the abundances of the ionized molecular species that are produced in the clumps can exceed the values determined from steady state models by several orders of magnitude. Collisional excitation by the heated gas can lead to measurable line emission from several ionized species; as in previous investigations of X-ray-irradiated molecular gas, we find that electron impacts contribute significantly to this process. We apply these results to the interpretation of the HCO(+) line emission that has already been detected in several Herbig-Haro objects. We demonstrate that this picture provides a natural explanation of the fact that the line intensity typically peaks ahead of the associated shock, as well as of the reported low line-center velocities and narrow line widths. We tabulate several diagnostic line intensities of HCO(+) and other molecular species that may be used to infer the physical conditions in the emitting gas.

  12. Location of γ-ray Flare Emission in the Jet of the BL Lacertae Object OJ287 More than 14 pc from the Central Engine

    NASA Astrophysics Data System (ADS)

    Agudo, Iván; Jorstad, Svetlana G.; Marscher, Alan P.; Larionov, Valeri M.; Gómez, José L.; Lähteenmäki, Anne; Gurwell, Mark; Smith, Paul S.; Wiesemeyer, Helmut; Thum, Clemens; Heidt, Jochen; Blinov, Dmitriy A.; D'Arcangelo, Francesca D.; Hagen-Thorn, Vladimir A.; Morozova, Daria A.; Nieppola, Elina; Roca-Sogorb, Mar; Schmidt, Gary D.; Taylor, Brian; Tornikoski, Merja; Troitsky, Ivan S.

    2011-01-01

    We combine time-dependent multi-waveband flux and linear polarization observations with submilliarcsecond-scale polarimetric images at λ = 7 mm of the BL Lacertae type blazar OJ287 to locate the γ-ray emission in prominent flares in the jet of the source >14 pc from the central engine. We demonstrate a highly significant correlation between the strongest γ-ray and millimeter-wave flares through Monte Carlo simulations. The two reported γ-ray peaks occurred near the beginning of two major millimeter-wave outbursts, each of which is associated with a linear polarization maximum at millimeter wavelengths. Our very long baseline array observations indicate that the two millimeter-wave flares originated in the second of two features in the jet that are separated by >14 pc. The simultaneity of the peak of the higher-amplitude γ-ray flare and the maximum in polarization of the second jet feature implies that the γ-ray and millimeter-wave flares are cospatial and occur >14 pc from the central engine. We also associate two optical flares, accompanied by sharp polarization peaks, with the two γ-ray events. The multi-waveband behavior is most easily explained if the γ-rays arise from synchrotron self-Compton scattering of optical photons from the flares. We propose that flares are triggered by interaction of moving plasma blobs with a standing shock. The γ-ray and optical emission is quenched by inverse Compton losses as synchrotron photons from the newly shocked plasma cross the emission region. The millimeter-wave polarization is high at the onset of a flare, but decreases as the electrons emitting at these wavelengths penetrate less polarized regions.

  13. LOCATION OF {gamma}-RAY FLARE EMISSION IN THE JET OF THE BL LACERTAE OBJECT OJ287 MORE THAN 14 pc FROM THE CENTRAL ENGINE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agudo, Ivan; Jorstad, Svetlana G.; Marscher, Alan P.

    We combine time-dependent multi-waveband flux and linear polarization observations with submilliarcsecond-scale polarimetric images at {lambda} = 7 mm of the BL Lacertae type blazar OJ287 to locate the {gamma}-ray emission in prominent flares in the jet of the source >14 pc from the central engine. We demonstrate a highly significant correlation between the strongest {gamma}-ray and millimeter-wave flares through Monte Carlo simulations. The two reported {gamma}-ray peaks occurred near the beginning of two major millimeter-wave outbursts, each of which is associated with a linear polarization maximum at millimeter wavelengths. Our very long baseline array observations indicate that the two millimeter-wavemore » flares originated in the second of two features in the jet that are separated by >14 pc. The simultaneity of the peak of the higher-amplitude {gamma}-ray flare and the maximum in polarization of the second jet feature implies that the {gamma}-ray and millimeter-wave flares are cospatial and occur >14 pc from the central engine. We also associate two optical flares, accompanied by sharp polarization peaks, with the two {gamma}-ray events. The multi-waveband behavior is most easily explained if the {gamma}-rays arise from synchrotron self-Compton scattering of optical photons from the flares. We propose that flares are triggered by interaction of moving plasma blobs with a standing shock. The {gamma}-ray and optical emission is quenched by inverse Compton losses as synchrotron photons from the newly shocked plasma cross the emission region. The millimeter-wave polarization is high at the onset of a flare, but decreases as the electrons emitting at these wavelengths penetrate less polarized regions.« less

  14. Collaborative Emission Reduction Model Based on Multi-Objective Optimization for Greenhouse Gases and Air Pollutants.

    PubMed

    Meng, Qing-chun; Rong, Xiao-xia; Zhang, Yi-min; Wan, Xiao-le; Liu, Yuan-yuan; Wang, Yu-zhi

    2016-01-01

    CO2 emission influences not only global climate change but also international economic and political situations. Thus, reducing the emission of CO2, a major greenhouse gas, has become a major issue in China and around the world as regards preserving the environmental ecology. Energy consumption from coal, oil, and natural gas is primarily responsible for the production of greenhouse gases and air pollutants such as SO2 and NOX, which are the main air pollutants in China. In this study, a mathematical multi-objective optimization method was adopted to analyze the collaborative emission reduction of three kinds of gases on the basis of their common restraints in different ways of energy consumption to develop an economic, clean, and efficient scheme for energy distribution. The first part introduces the background research, the collaborative emission reduction for three kinds of gases, the multi-objective optimization, the main mathematical modeling, and the optimization method. The second part discusses the four mathematical tools utilized in this study, which include the Granger causality test to analyze the causality between air quality and pollutant emission, a function analysis to determine the quantitative relation between energy consumption and pollutant emission, a multi-objective optimization to set up the collaborative optimization model that considers energy consumption, and an optimality condition analysis for the multi-objective optimization model to design the optimal-pole algorithm and obtain an efficient collaborative reduction scheme. In the empirical analysis, the data of pollutant emission and final consumption of energies of Tianjin in 1996-2012 was employed to verify the effectiveness of the model and analyze the efficient solution and the corresponding dominant set. In the last part, several suggestions for collaborative reduction are recommended and the drawn conclusions are stated.

  15. Collaborative Emission Reduction Model Based on Multi-Objective Optimization for Greenhouse Gases and Air Pollutants

    PubMed Central

    Zhang, Yi-min; Wan, Xiao-le; Liu, Yuan-yuan; Wang, Yu-zhi

    2016-01-01

    CO2 emission influences not only global climate change but also international economic and political situations. Thus, reducing the emission of CO2, a major greenhouse gas, has become a major issue in China and around the world as regards preserving the environmental ecology. Energy consumption from coal, oil, and natural gas is primarily responsible for the production of greenhouse gases and air pollutants such as SO2 and NOX, which are the main air pollutants in China. In this study, a mathematical multi-objective optimization method was adopted to analyze the collaborative emission reduction of three kinds of gases on the basis of their common restraints in different ways of energy consumption to develop an economic, clean, and efficient scheme for energy distribution. The first part introduces the background research, the collaborative emission reduction for three kinds of gases, the multi-objective optimization, the main mathematical modeling, and the optimization method. The second part discusses the four mathematical tools utilized in this study, which include the Granger causality test to analyze the causality between air quality and pollutant emission, a function analysis to determine the quantitative relation between energy consumption and pollutant emission, a multi-objective optimization to set up the collaborative optimization model that considers energy consumption, and an optimality condition analysis for the multi-objective optimization model to design the optimal-pole algorithm and obtain an efficient collaborative reduction scheme. In the empirical analysis, the data of pollutant emission and final consumption of energies of Tianjin in 1996–2012 was employed to verify the effectiveness of the model and analyze the efficient solution and the corresponding dominant set. In the last part, several suggestions for collaborative reduction are recommended and the drawn conclusions are stated. PMID:27010658

  16. Spitzer Space Telescope Observations of Polars

    NASA Astrophysics Data System (ADS)

    Howell, S. B.; Brinkworth, C.; Chun, H.; Thomas, B.; Stefaniak, L.; Hoard, D. W.

    2005-12-01

    We have obtained the first Spitzer Space telescope observations of short orbital period polars. Using the Infrared Array Camera (IRAC), observations have been made in four broadband filters centered at 3.6, 4.5, 5.8, and 8.0 microns of the polars V347 Pav, GG Leo, RX J0154, and EF Eri. Spectral energy distributions have been produced for all four stars and in each case indicate excess emission in the longest wavebands. We examine our observations with respect to these binaries containing late M or brown dwarf type secondaries. We discuss the implications of the observed long wavelength emission excess in terms of the presence of dust and/or other possible emission mechanisms. The impact of this finding on the evolution of polars is also presented.

  17. The Venus Emissivity Mapper - Investigating the Atmospheric Structure and Dynamics of Venus' Polar Region

    NASA Astrophysics Data System (ADS)

    Widemann, T.; Marcq, E.; Tsang, C.; Mueller, N. T.; Kappel, D.; Helbert, J.; Dyar, M. D.; Smrekar, S. E.

    2017-12-01

    Venus' climate evolution is driven by the energy balance of its global cloud layers. Venus displays the best-known case of polar vortices evolving in a fast-rotating atmosphere. Polar vortices are pervasive in the Solar System and may also be present in atmosphere-bearing exoplanets. While much progress has been made since the early suggestion that the Venus clouds are H2O-H2SO4 liquid droplets (Young 1973), several cloud parameters are still poorly constrained, particularly in the lower cloud layer and optically thicker polar regions. The average particle size is constant over most of the planet but increases toward the poles. This indicates that cloud formation processes are different at latitudes greater than 60°, possibly as a result of the different dynamical regimes that exist in the polar vortices (Carlson et al. 1993, Wilson et al. 2008, Barstow et al. 2012). Few wind measurements exist in the polar region due to unfavorable viewing geometry of currently available observations. Cloud-tracking data indicate circumpolar circulation close to solid-body rotation. E-W winds decrease to zero velocity close to the pole. N-S circulation is marginal, with extremely variable morphology and complex vorticity patterns (Sanchez-Lavega et al. 2008, Luz et al. 2011, Garate-Lopez et al. 2013). The Venus Emissivity Mapper (VEM; Helbert et al., 2016) proposed for NASA's Venus Origins Explorer (VOX) and the ESA M5/EnVision orbiters has the capability to better constrain the microphysics (vertical, horizontal, time dependence of particle size distribution, or/and composition) of the lower cloud particles in three spectral bands at 1.195, 1.310 and 1.510 μm at a spatial resolution of 10 km. Circular polar orbit geometry would provide an unprecedented study of both polar regions within the same mission. In addition, VEM's pushbroom method will allow short timescale cloud dynamics to be assessed, as well as local wind speeds, using repeated imagery at 90 minute intervals

  18. The Venus Emissivity Mapper - Investigating the Atmospheric Structure and Dynamics of Venus’ Polar Region

    NASA Astrophysics Data System (ADS)

    Widemann, Thomas; Marcq, Emmanuel; Tsang, Constantine; Mueller, Nils; Kappel, David; Helbert, Joern; Dyar, Melinda; Smrekar, Suzanne

    2017-10-01

    Venus displays the best-known case of polar vortices evolving in a fast-rotating atmosphere. Polar vortices are pervasive in the Solar System and may also be present in atmosphere-bearing exoplanets. While much progress has been made since the early suggestion that the Venus clouds are H2O-H2SO4 liquid droplets (Young 1973), several cloud parameters are still poorly constrained, particularly in the lower cloud layer and optically thicker polar regions. The average particle size is constant over most of the planet but increases toward the poles. This indicates that cloud formation processes are different at latitudes greater than 60°, possibly as a result of the different dynamical regimes that exist in the polar vortices (Carlson et al. 1993, Wilson et al. 2008, Barstow et al. 2012).Few wind measurements exist in the polar region due to unfavorable viewing geometry of currently available observations. Cloud-tracking data indicate circumpolar circulation close to solid-body rotation. E-W winds decrease to zero velocity close to the pole. N-S circulation is marginal, with extremely variable morphology and complex vorticity patterns (Sanchez-Lavega et al. 2008, Luz et al. 2011, Garate-Lopez et al. 2013).The Venus Emissivity Mapper (VEM; Helbert et al., 2016) proposed for NASA’s Venus Origins Explorer (VOX) and the ESA M5/EnVision orbiters has the capability to better constrain the microphysics (vertical, horizontal, time dependence of particle size distribution, or/and composition) of the lower cloud particles in three spectral bands at 1.195, 1.310 and 1.510 μm at a spatial resolution of ~10 km. Circular polar orbit geometry would provide an unprecedented simultaneous study of both polar regions within the same mission. In addition, VEM’s pushbroom method will allow short timescale cloud dynamics to be assessed, as well as local wind speeds, using repeated imagery at 90 minute intervals. Tracking lower cloud motions as proxies for wind measurements at high

  19. Lunar polar ice deposits: scientific and utilization objectives of the Lunar Ice Discovery Mission proposal.

    PubMed

    Duke, Michael B

    2002-03-01

    The Clementine mission has revived interest in the possibility that ice exists in shadowed craters near the lunar poles. Theoretically, the problem is complex, with several possible sources of water (meteoroid, asteroid, comet impact), several possible loss mechanisms (impact vaporization, sputtering, photoionization), and burial by meteorite impact. Opinions of modelers have ranged from no ice to several times 10(16) g of ice in the cold traps. Clementine bistatic radar data have been interpreted in favor of the presence of ice, while Arecibo radar data do not confirm its presence. The Lunar Prospector mission, planned to be flown in the fall of 1997, could gather new evidence for the existence of ice. If ice is present, both scientific and utilitarian objectives would be addressed by a lunar polar rover, such as that proposed to the NASA Discovery program, but not selected. The lunar polar rover remains the best way to understand the distribution and characteristics of lunar polar ice. c2002 International Astronautical Federation. Published by Elsevier Science Ltd. All rights reserved.

  20. Polarization of Young Brown Dwarfs

    NASA Astrophysics Data System (ADS)

    Manjavacas, Elena; Miles-Páez, Paulo A.; Zapatero-Osorio, Maria Rosa; Goldman, Bertrand; Buenzli, Esther; Henning, Thomas; Pallé, Enric

    2016-08-01

    Linear polarization due to scattering processes can be used as a probe of the existence of atmospheric condensates in ultracool dwarfs. Models predict that the observed linear polarization increases with the degree of oblateness, which is inverse to the surface gravity.We aimed to measure optical linear polarization from a sample of six young brown dwarfs, with spectral types between M6 to L2, and cataloged previously as objects with low gravity using spectroscopy. These targets are believed to have dusty atmospheres as a consequence of their low gravity, therefore linearly polarized light is expected from these objects.Linear polarimetric data were collected in I and R-band using CAFOS at the 2.2m telescope in Calar Alto Observatory.We obtained results of linear polarization in the I-band compatible with non polarization for all the objects, and similar results for the polarization degree in the R-band for all objects with the exception of 2M0422. For this object we find a linear polarization degree of 0.81+-0.18%. 2M0422 is 10 deg to the south of the Taurus star-forming region, thus, we suspect that its polarization is caused by the dust in the cloud in which 2M0422 might be embedded.

  1. The thermal emission of Centaurs and trans-Neptunian objects at millimeter wavelengths from ALMA observations

    NASA Astrophysics Data System (ADS)

    Lellouch, E.; Moreno, R.; Müller, T.; Fornasier, S.; Santos-Sanz, P.; Moullet, A.; Gurwell, M.; Stansberry, J.; Leiva, R.; Sicardy, B.; Butler, B.; Boissier, J.

    2017-12-01

    The sensitivity of ALMA makes it possible to detect thermal mm/submm emission from small and/or distant solar system bodies at the sub-mJy level. While the measured fluxes are primarily sensitive to the objects' diameters, deriving precise sizes is somewhat hampered by the uncertain effective emissivity at these wavelengths. Following recent work presenting ALMA data for four trans-Neptunian objects (TNOs) with satellites, we report on ALMA 233 GHz (1.29 mm) flux measurements of four Centaurs (2002 GZ32, Bienor, Chiron, Chariklo) and two other TNOs (Huya and Makemake), sampling a range of sizes, albedos, and compositions. These thermal fluxes are combined with previously published fluxes in the mid/far infrared in order to derive their relative emissivity at radio (mm/submm) wavelengths, using the Near Earth Asteroid Standard Model (NEATM) and thermophysical models. We reassess earlier thermal measurements of these and other objects - including Pluto/Charon and Varuna - exploring, in particular, effects due to non-spherical shape and varying apparent pole orientation whenever information is available, and show that these effects can be key for reconciling previous diameter determinations and correctly estimating the spectral emissivities. We also evaluate the possible contribution to thermal fluxes of established (Chariklo) or claimed (Chiron) ring systems. For Chariklo, the rings do not impact the diameter determinations by more than 5%; for Chiron, invoking a ring system does not help in improving the consistency between the numerous past size measurements. As a general conclusion, all the objects, except Makemake, have radio emissivities significantly lower than unity. Although the emissivity values show diversity, we do not find any significant trend with physical parameters such as diameter, composition, beaming factor, albedo, or color, but we suggest that the emissivity could be correlated with grain size. The mean relative radio emissivity is found to be 0

  2. Magnetically regulated collapse in the B335 protostar? I. ALMA observations of the polarized dust emission

    NASA Astrophysics Data System (ADS)

    Maury, A. J.; Girart, J. M.; Zhang, Q.; Hennebelle, P.; Keto, E.; Rao, R.; Lai, S.-P.; Ohashi, N.; Galametz, M.

    2018-06-01

    The role of the magnetic field during protostellar collapse is poorly constrained from an observational point of view, although it could be significant if we believe state-of-the-art models of protostellar formation. We present polarimetric observations of the 233 GHz thermal dust continuum emission obtained with ALMA in the B335 Class 0 protostar. Linearly polarized dust emission arising from the circumstellar material in the envelope of B335 is detected at all scales probed by our observations (50 to 1000 au). The magnetic field structure producing the dust polarization has a very ordered topology in the inner envelope, with a transition from a large-scale poloidal magnetic field, in the outflow direction, to strongly pinched in the equatorial direction. This is probably due to magnetic field lines being dragged along the dominating infall direction since B335 does not exhibit prominent rotation. Our data and their qualitative comparison to a family of magnetized protostellar collapse models show that, during the magnetized collapse in B335, the magnetic field is maintaining a high level of organization from scales 1000 au to 50 au: this suggests the field is dynamically relevant and capable of influencing the typical outcome of protostellar collapse, such as regulating the disc size in B335.

  3. Three new BL Lacertae objects in the Palomar-Green survey

    NASA Technical Reports Server (NTRS)

    Fleming, Thomas A.; Green, Richard F.; Jannuzi, Buell T.; Liebert, James; Smith, Paul S.; Fink, Henner

    1993-01-01

    We have identified three BL Lacertae objects in the Palomar-Green Survey which were previously misclassified as DC white dwarfs, namely PG 1246+586, PG 1424+240, and PG 1437+398. Our reclassification is based on the detection of these objects as x-ray sources in the ROSAT all-sky survey and upon our subsequent detection of intrinsic linearly polarized and variable optical emission from these sources. As a result of the ROSAT survey, the number of identified BL Lac objects in the Palomar-Green catalog of UV excess objects has been doubled. Corrected optical positions are presented for PG 1246+586 and PG 1437+398.

  4. Polarization digital holographic microscopy using low-cost liquid crystal polarization rotators

    NASA Astrophysics Data System (ADS)

    Dovhaliuk, Rostyslav Yu

    2018-02-01

    Polarization imaging methods are actively used to study anisotropic objects. A number of methods and systems, such as imaging polarimeters, were proposed to measure the state of polarization of light that passed through the object. Digital holographic and interferometric approaches can be used to quantitatively measure both amplitude and phase of a wavefront. Using polarization modulation optics, the measurement capabilities of such interference-based systems can be extended to measure polarization-dependent parameters, such as phase retardation. Different kinds of polarization rotators can be used to alternate the polarization of a reference beam. Liquid crystals are used in a rapidly increasing number of different optoelectronic devices. Twisted nematic liquid crystals are widely used as amplitude modulators in electronic displays and light valves or shutter glass. Such devices are of particular interest for polarization imaging, as they can be used as polarization rotators, and due to large-scale manufacturing have relatively low cost. A simple Mach-Zehnder polarized holographic setup that uses modified shutter glass as a polarization rotator is demonstrated. The suggested approach is experimentally validated by measuring retardation of quarter-wave film.

  5. Changes in fluorescent emission of cationic fluorophores in the presence of n-alkanes and alcohols in different polarity solvents

    NASA Astrophysics Data System (ADS)

    Delgado-Camón, Arantzazu; Garriga, Rosa; Mateos, Elena; Cebolla, Vicente L.; Galbán, Javier; Membrado, Luis; Marcos, Susana de; Gálvez, Eva M.

    2011-01-01

    Berberine and coralyne experience either fluorescence enhancement or quenching when long hydrocarbon chain compounds (e.g., n-alkanes or alcohols) are added to their solutions, depending on solvent polarity. In polar solvents, as methanol or acetonitrile, the added compounds provide an apolar microenvironment that hinders alternative relaxation mechanisms, favouring fluorescence emission. However, alkane additions produce quenching in dichloromethane, which has been explained taking into account ion pairing between cationic fluorophore and counterion. The strong quenching measured after alcohol additions in dichloromethane suggests reversed micelle formation. Procedures and results described here may find practical applications in the development of analytical methods.

  6. Coronal Polarization of Pseudostreamers and the Solar Polar Field Reversal

    NASA Technical Reports Server (NTRS)

    Rachmeler, L. A.; Guennou, C.; Seaton, D. B.; Gibson, S. E.; Auchere, F.

    2016-01-01

    The reversal of the solar polar magnetic field is notoriously hard to pin down due to the extreme viewing angle of the pole. In Cycle 24, the southern polar field reversal can be pinpointed with high accuracy due to a large-scale pseudostreamer that formed over the pole and persisted for approximately a year. We tracked the size and shape of this structure with multiple observations and analysis techniques including PROBA2/SWAP EUV images, AIA EUV images, CoMP polarization data, and 3D tomographic reconstructions. We find that the heliospheric field reversed polarity in February 2014, whereas in the photosphere, the last vestiges of the previous polar field polarity remained until March 2015. We present here the evolution of the structure and describe its identification in the Fe XII 1074nm coronal emission line, sensitive to the Hanle effect in the corona.

  7. Combining Linear Polarization Measurements of both Forbidden/Permitted Coronal Emission Lines for measuring the Vector Magnetic Field in the Solar Corona

    NASA Astrophysics Data System (ADS)

    Dima, G. I.; Kuhn, J. R.; Mickey, D.

    2014-12-01

    Measuring the coronal vector magnetic field is still a major challenge in solar physics. This is due to the intrinsic weakness of the field (~4 G at a height of 0.1 Rsun above an active region) and the large thermal broadening of coronal emission lines. Current methods deduce either the direction of the magnetic field or the magnetic flux density. We propose using concurrent linear polarization measurements in the near IR of forbidden and permitted lines to calculate the coronal vector magnetic field. The effect of the magnetic field on the polarization properties of emitted light is encapsulated in the Hanle effect. In the unsaturated Hanle regime both the direction and strength of the magnetic field affect the linear polarization, while for saturated Hanle the polarization is insensitive to the strength of the field. Coronal forbidden lines are always in the saturated Hanle regime so the linear polarization holds no information on the strength of the field. By pairing measurements of both forbidden and permitted lines we would be able to obtain both the direction and strength of the field. The near-IR region of the spectrum offers the opportunity to study this problem from the ground. The FeXIII 1.075 um and SiX 1.431 um forbidden lines are strongly polarizable and are sufficiently bright over a large field of view (out to 1.5 Rsun). Measurements of both these lines can be paired up with the recently observed coronal HeI 1.083 um permitted line. The first data set used to test this technique was taken during the March 29, 2006 total solar eclipse and consisted of near-IR spectra covering the spectral region 0.9-1.8 um, with a field of view of 3 x 3 Rsun. The data revealed unexpectedly strong SiX emission compared to FeXIII. Using the HAO FORWARD suite of codes we produced simulated emission maps from a global HMD model for the day of the eclipse. Comparing the intensity variation of the measurements and the model we predict that SiX emission is more extended for

  8. Dominant transverse-electric polarized emission from 298 nm MBE-grown AlN-delta-GaN quantum well ultraviolet light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Liu, Cheng; Ooi, Yu Kee; Islam, S. M.; Xing, Huili Grace; Jena, Debdeep; Zhang, Jing

    2017-02-01

    III-nitride based ultraviolet (UV) light emitting diodes (LEDs) are of considerable interest in replacing gas lasers and mercury lamps for numerous applications. Specifically, AlGaN quantum well (QW) based LEDs have been developed extensively but the external quantum efficiencies of which remain less than 10% for wavelengths <300 nm due to high dislocation density, difficult p-type doping and most importantly, the physics and band structure from the three degeneration valence subbands. One solution to address this issue at deep UV wavelengths is by the use of the AlGaN-delta-GaN QW where the insertion of the delta-GaN layer can ensure the dominant conduction band (C) - heavyhole (HH) transition, leading to large transverse-electric (TE) optical output. Here, we proposed and investigated the physics and polarization-dependent optical characterizations of AlN-delta- GaN QW UV LED at 300 nm. The LED structure is grown by Molecular Beam Epitaxy (MBE) where the delta-GaN layer is 3-4 monolayer (QW-like) sandwiched by 2.5-nm AlN sub-QW layers. The physics analysis shows that the use of AlN-delta-GaN QW ensures a larger separation between the top HH subband and lower-energy bands, and strongly localizes the electron and HH wave functions toward the QW center and hence resulting in 30-time enhancement in TEpolarized spontaneous emission rate, compared to that of a conventional Al0.35Ga0.65N QW. The polarization-dependent electroluminescence measurements confirm our theoretical analysis; a dominant TE-polarized emission was obtained at 298 nm with a minimum transverse-magnetic (TM) polarized emission, indicating the feasibility of high-efficiency TEpolarized UV emitters based on our proposed QW structure.

  9. CO2 and N2O emissions in a soil chronosequence at a glacier retreat zone in Maritime Antarctica

    USDA-ARS?s Scientific Manuscript database

    Polar regions represents a large carbon (C) sequestration reservoir in the world. Studies of alterations in C cycle are extremely important to identify changes due to climate change, especially among polar environments. The objectives of this study were to examine (i) patterns of soil CO2-C emission...

  10. On the Location of the gamma-Ray Outburst Emission in the BL Lacertae Object AO 0235 + 164 Through Observations Across the Electromagnetic Spectrum

    NASA Technical Reports Server (NTRS)

    Agudo, Ivan; Marscher, Alan P.; Jorstad, Svetlana G.; Larionov, Valeri M.; Gomez, Jose L.; Laehteenmaeki, Anne; Smith, Paul S.; Nilsson, Kari; Readhead, Anthony C. S.; Aller, Margo F.; hide

    2011-01-01

    We present observations of a major outburst at centimeter, millimeter, optical, X-ray, and gamma-ray wavelengths of the BL Lacertae object AO 0235+164. We analyze the timing of multi-waveband variations in the flux and linear polarization, as well as changes in Very Long Baseline Array images at A = 7 mm with approx.0.15 milliarcsec resolution. The association of the events at different wavebands is confirmed at high statistical significance by probability arguments and Monte Carlo simulations. A series of sharp peaks in optical linear polarization, as well as a pronounced maximum in the 7 mm polarization of a superluminal jet knot, indicate rapid fluctuations in the degree of ordering of the magnetic field. These results lead us to conclude that the outburst occurred in the jet both in the quasi-stationary "core" and in the superluminal knot, both parsecs downstream of the supermassive black hole. We interpret the outburst as a consequence of the propagation of a disturbance, elongated along the line of sight by light-travel time delays, that passes through a standing recollimation shock in the core and propagates down the jet to create the superluminal knot. The multi-wavelength light curves vary together on long timescales (months/ years), but the correspondence is poorer on shorter timescales. This, as well as the variability of the polarization and the dual location of the outburst, agrees with the expectations of a multi-zone emission model in which turbulence plays a major role in modulating the synchrotron and inverse Compton fluxes.

  11. Ultraviolet observations of the Saturnian north aurora and polar haze distribution with the HST-FOC

    NASA Technical Reports Server (NTRS)

    Gerard, J. C.; Dols, V.; Grodent, D.; Waite, J. H.; Gladstone, G. R.; Prange, R.

    1995-01-01

    Near simultaneous observations of the Saturnian H2 north ultraviolet aurora and the polar haze were made at 153 nm and 210 nm respectively with the Faint Object Camera on board the Hubble Space Telescope. The auroral observations cover a complete rotation of the planet and, when co-added, reveal the presence of an auroral emission near 80 deg N with a peak brightness of about 150 kR of total H2 emission. The maximum optical depth of the polar haze layer is found to be located approximately 5 deg equatorward of the auroral emission zone. The haze particles are presumably formed by hydrocarbon aerosols initiated by H2+ auroral production. In this case, the observed haze optical depth requires an efficiency of aerosol formation of about 6 percent, indicating that auroral production of hydrocarbon aerosols is a viable source of high-latitude haze.

  12. Polarization-based material classification technique using passive millimeter-wave polarimetric imagery.

    PubMed

    Hu, Fei; Cheng, Yayun; Gui, Liangqi; Wu, Liang; Zhang, Xinyi; Peng, Xiaohui; Su, Jinlong

    2016-11-01

    The polarization properties of thermal millimeter-wave emission capture inherent information of objects, e.g., material composition, shape, and surface features. In this paper, a polarization-based material-classification technique using passive millimeter-wave polarimetric imagery is presented. Linear polarization ratio (LPR) is created to be a new feature discriminator that is sensitive to material type and to remove the reflected ambient radiation effect. The LPR characteristics of several common natural and artificial materials are investigated by theoretical and experimental analysis. Based on a priori information about LPR characteristics, the optimal range of incident angle and the classification criterion are discussed. Simulation and measurement results indicate that the presented classification technique is effective for distinguishing between metals and dielectrics. This technique suggests possible applications for outdoor metal target detection in open scenes.

  13. SiO maser polarization in evolved stars: magnetic field

    NASA Astrophysics Data System (ADS)

    Herpin, F.; Baudry, A.; Thum, C.; Morris, D.; Wiesemeyer, H.

    The maser theory still needs to be improved, in particular in terms of polarization. The study of the maser geometry inside the circumstellar envelopes can also be achieved through polarization studies (e.g., VLBI observations). But the most exciting point is the determination of the magnetic field that can be made from polarization measurements: this is definitively a new field of investigation for these evolved objects. The magnetic field probably plays an important role in the AGB star's life and can be a major factor (magnetic rotator theory) on the origin of the high mass loss rates observed in evolved objects. Measurement of the magnetic field is thus essential to study the mass loss mechanisms and also the Alfven waves. During its transition most quasi spherical AGB stars (i.e. envelopes) become complicated aspherical objects. This shaping is well explained by the Interacting Stellar Winds theory (Kwok works), but the ISW model fails to reproduce very complicated structures with jets and ansae. A new model (Magnetized Wind Blown Bubble theory) was thus developed by Blackman et al. (2001) and A. Franck: a weak toroidal magnetic field, embedded in the stellar wind, acts as a collimating agent (cf. Garcia-Segura 1997) and can produce such structures. Three molecules can show polarized maser emission in the circumstellar envelopes: - OH traces the envelope far from the central star (1000-10000 AU) - H2O at intermediate distances (a few 100 AU) - SiO in the inner circumstellar layers (5-10 AU) Measurement of the polarization rate of the maser radiation emitted by these molecules can give us the averaged value B// of the magnetic field along the line of sight (for a single dish observation). We present here the first complete study of the SiO maser polarization in a large sample of evolved stars (more than 100). The 4 Stokes parameters I, U, Q, V were simultaneously measured with the polarimeter on the IRAM-30m telescope. From the Stokes parameters values we

  14. Infrared polar brightenings on Jupiter. V - A thermal equilibrium model for the north polar hot spot

    NASA Technical Reports Server (NTRS)

    Halthore, Rangasayi; Burrows, Adam; Caldwell, John

    1988-01-01

    Voyager IRIS instrument records of the IR hydrocarbon emissions from Jupiter's north polar region are presently studied to determine the spatial and other characteristics of the north polar hot spot. Attention is given to a thermal equilibrium model that exploits the asymmetry found in 7.8-micron emission of stratospheric methane with respect to system III longitude in order to estimate stratospheric zonal wind velocity. This model accurately predicts the observed asymmetry in acetylene's 13.6-micron emission; this requires, however, enhanced acetylene abundance in the hot spot, as well as ethane depletion. Energetic charged particles are suggested to be the most probable cause of these effects.

  15. First detection of Mars atmospheric hydroxyl: CRISM Near-IR measurement versus LMD GCM simulation of OH Meinel band emission in the Mars polar winter atmosphere

    NASA Astrophysics Data System (ADS)

    Todd Clancy, R.; Sandor, Brad J.; García-Muñoz, Antonio; Lefèvre, Franck; Smith, Michael D.; Wolff, Michael J.; Montmessin, Franck; Murchie, Scott L.; Nair, Hari

    2013-09-01

    Visible and near-IR Meinel band emissions originate from excited OH in the terrestrial upper atmosphere (Meinel, I.A.B. [1950]. Astrophys. J. 111, 555. http://dx.doi.org/10.1086/145296), and have recently been detected in the Venus nightside upper mesosphere (Piccioni, G. et al. [2008]. Astron. Astrophys. 483, L29-L33. http://dx.doi.org/10.1051/0004-6361:200809761). Meinel band observations support key studies of transport and photochemistry in both of these atmospheres. In the case of Mars, OH regulates the basic stability of the CO2 atmosphere to photolytic decomposition (to CO and O2, e.g. Parkinson, T.D., Hunten, D.M. [1972]. J. Atmos. Sci. 29, 1380-1390. http://dx.doi.org/10.1175/1520-0469(1972)029<1380:SAAOOO>2.0.CO;2), and yet has never been measured. We present the first detection of Mars atmospheric OH, associated with CRISM near-IR spectral limb observations of polar night Meinel band emissions centered at 1.45 and 2.9 μm. Meinel band (1-0), (2-1), and (2-0) average limb intensities of 990 ± 280, 1060 ± 480, and 200 ± 100 kiloRayleighs (kR), respectively, are determined for 70-90 NS polar winter latitudes over altitudes of 40-56 km. Additional OH bands, such as (3-2), (3-1), and (4-2), present ⩽1σ measurements. Uncertainty in the (4-2) band emission rate contributes to increased uncertainty in the determination of the O2(1Δg) (0-0)/(0-1) band emission ratio A00/A01=47-12+26. An average profile retrieval for Mars OH polar nightglow indicates 45-55 km altitude levels for volume emission rates (VER) of 0.4 (2-0) to 2 (1-0, 2-1) × 104 photons/(cm3 s). Similar to polar night O2(1Δg) emission (e.g. Clancy, R.T. et al. [2012]. J. Geophys. Res. (Planets) 117, E00J10. http://dx.doi.org/10.1029/2011JE004018), Meinel OH band emission is supported by upper level, winter poleward transport of O and H in the deep Hadley solsticial circulations of Mars. The retrieved OH emission rates are compared to polar winter OH nightglow simulated by the LMD (Laboratoire

  16. Transmission of linearly polarized light in seawater: implications for polarization signaling.

    PubMed

    Shashar, Nadav; Sabbah, Shai; Cronin, Thomas W

    2004-09-01

    Partially linearly polarized light is abundant in the oceans. The natural light field is partially polarized throughout the photic range, and some objects and animals produce a polarization pattern of their own. Many polarization-sensitive marine animals take advantage of the polarization information, using it for tasks ranging from navigation and finding food to communication. In such tasks, the distance to which the polarization information propagates is of great importance. Using newly designed polarization sensors, we measured the changes in linear polarization underwater as a function of distance from a standard target. In the relatively clear waters surrounding coral reefs, partial (%) polarization decreased exponentially as a function of distance from the target, resulting in a 50% reduction of partial polarization at a distance of 1.25-3 m, depending on water quality. Based on these measurements, we predict that polarization sensitivity will be most useful for short-range (in the order of meters) visual tasks in water and less so for detecting objects, signals, or structures from far away. Navigation and body orientation based on the celestial polarization pattern are predicted to be limited to shallow waters as well, while navigation based on the solar position is possible through a deeper range.

  17. Three-dimensional polarization algebra for all polarization sensitive optical systems.

    PubMed

    Li, Yahong; Fu, Yuegang; Liu, Zhiying; Zhou, Jianhong; Bryanston-Cross, P J; Li, Yan; He, Wenjun

    2018-05-28

    Using three-dimensional (3D) coherency vector (9 × 1), we develop a new 3D polarization algebra to calculate the polarization properties of all polarization sensitive optical systems, especially when the incident optical field is partially polarized or un-polarized. The polarization properties of a high numerical aperture (NA) microscope objective (NA = 1.25 immersed in oil) are analyzed based on the proposed 3D polarization algebra. Correspondingly, the polarization simulation of this high NA optical system is performed by the commercial software VirtualLAB Fusion. By comparing the theoretical calculations with polarization simulations, a perfect matching relation is obtained, which demonstrates that this 3D polarization algebra is valid to quantify the 3D polarization properties for all polarization sensitive optical systems.

  18. Coronal emission-line polarization from the statistical equilibrium of magnetic sublevels. II. Fe XIV 5303 A

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    House, L.L.; Querfeld, C.W.; Rees, D.E.

    1982-04-15

    Coronal magnetic fields influence in the intensity and linear polarization of light scattered by coronal Fe XIV ions. To interpret polarization measurements of Fe XIV 5303 A coronal emission requires a detailed understanding of the dependence of the emitted Stokes vector on coronal magnetic field direction, electron density, and temperature and on height of origin. The required dependence is included in the solutions of statistical equilibrium for the ion which are solved explicitly for 34 magnetic sublevels in both the ground and four excited terms. The full solutions are reduced to equivalent simple analytic forms which clearly show the requiredmore » dependence on coronal conditions. The analytic forms of the reduced solutions are suitable for routine analysis of 5303 green line polarimetric data obtained at Pic du Midi and from the Solar Maximum Mission Coronagraph/Polarimeter.« less

  19. GRB 091208B: FIRST DETECTION OF THE OPTICAL POLARIZATION IN EARLY FORWARD SHOCK EMISSION OF A GAMMA-RAY BURST AFTERGLOW

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Uehara, T.; Chiyonobu, S.; Fukazawa, Y.

    We report that the optical polarization in the afterglow of GRB 091208B is measured at t = 149-706 s after the burst trigger, and the polarization degree is P = 10.4( {+-} 2.5%. The optical light curve at this time shows a power-law decay with index -0.75 {+-} 0.02, which is interpreted as the forward shock synchrotron emission, and thus this is the first detection of the early-time optical polarization in the forward shock (rather than that in the reverse shock reported by Steele et al.). This detection disfavors the afterglow model in which the magnetic fields in the emissionmore » region are random on the plasma skin depth scales, such as those amplified by the plasma instabilities, e.g., Weibel instability. We suggest that the fields are amplified by the magnetohydrodynamic instabilities, which would be tested by future observations of the temporal changes of the polarization degrees and angles for other bursts.« less

  20. Polarization mechanism in a ns laser-induced plasma spectroscopy of Al alloy

    NASA Astrophysics Data System (ADS)

    Aghababaei Nejad, Mahboobeh; Soltanolkotabi, Mahmood; Eslami Majd, Abdollah

    2018-01-01

    Polarization emission from aluminum alloy by ns laser-induced breakdown spectroscopy (LIBS) is carefully investigated in air using a non-gated CCD camera at integration time of 100 ms. First, the analysis reveals that the small polarization degree is the same for both continuum and discrete line emission spectra which also increases slowly with wavelength growth; second, laser fluence in the range of 347.81-550.10 J/cm2 has no significant changes in plasma polarization; and third, larger polarization in comparison with polarization introduced by preferential reflection of emission from the target surface (Fresnel reflectivity) is observed. The residual fluctuations of the anisotropic recombining plasma and the dynamic polarization of an ion's core are suggested as the possible main sources for observed polarized radiation in ns-LIBS.

  1. Polarization properties of bow shock sources close to the Galactic centre

    NASA Astrophysics Data System (ADS)

    Zajaček, M.; Karas, V.; Hosseini, E.; Eckart, A.; Shahzamanian, B.; Valencia-S., M.; Peissker, F.; Busch, G.; Britzen, S.; Zensus, J. A.

    2017-12-01

    Several bow shock sources were detected and resolved in the innermost parsec from the supermassive black hole in the Galactic centre. They show several distinct characteristics, including an excess towards mid-infrared wavelengths and a significant linear polarization as well as a characteristic prolonged bow-shock shape. These features give hints about the presence of a non-spherical dusty envelope generated by the bow shock. The Dusty S-cluster Object (also denoted as G2) shows similar characteristics and it is a candidate for the closest bow shock with a detected proper motion in the vicinity of Sgr A*, with the pericentre distance of only approx. 2000 Schwarzschild radii. However, in the continuum emission it is a point-like source and hence we use Monte Carlo radiative transfer modeling to reveal its possible three-dimensional structure. Alongside the spectral energy distribution, the detection of polarized continuum emission in the near-infrared Ks-band (2.2 micrometers) puts additional constraints on the geometry of the source.

  2. The Emissions Impacts of Varied Energy Storage Operational Objectives Across Regions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barrett, Emily L.; Thayer, Brandon L.; Studarus, Karen E.

    The emissions consequences of smart grid technologies can be significant but are not always intuitive. This is particularly true in the implementation of energy storage (ES) systems that are being increasingly adopted to integrate more intermittent renewable generation, to reduce peak demand, and to participate in energy markets. Both the location of the ES system within the grid and the way it is operated will dictate its resulting impacts. The Grid Project Impact Quantification tool can provide insight into some of the emissions implications of hypothetical ES systems for a variety of operational objectives in diverse locations within the Unitedmore » States.« less

  3. The 11.2 μm emission of PAHs in astrophysical objects

    NASA Astrophysics Data System (ADS)

    Candian, A.; Sarre, P. J.

    2015-04-01

    The 11.2-μm emission band belongs to the family of the `unidentified' infrared emission bands seen in many astronomical environments. In this work, we present a theoretical interpretation of the band characteristics and profile variation for a number of astrophysical sources in which the carriers are subject to a range of physical conditions. The results of Density Functional Theory calculations for the solo out-of-plane vibrational bending modes of large polycyclic aromatic hydrocarbon (PAH) molecules are used as input for a detailed emission model which includes the temperature and mass dependence of PAH band wavelength, and a PAH mass distribution that varies with object. Comparison of the model with astronomical spectra indicates that the 11.2-μm band asymmetry and profile variation can be explained principally in terms of the mass distribution of neutral PAHs with a small contribution from anharmonic effects.

  4. Method and apparatus for measuring surface movement of an object using a polarizing interfeometer

    DOEpatents

    Schultz, Thomas J.; Kotidis, Petros A.; Woodroffe, Jaime A.; Rostler, Peter S.

    1995-01-01

    A system for non-destructively measuring an object and controlling industrial processes in response to the measurement is disclosed in which an impulse laser generates a plurality of sound waves over timed increments in an object. A polarizing interferometer is used to measure surface movement of the object caused by the sound waves and sensed by phase shifts in the signal beam. A photon multiplier senses the phase shift and develops an electrical signal. A signal conditioning arrangement modifies the electrical signals to generate an average signal correlated to the sound waves which in turn is correlated to a physical or metallurgical property of the object, such as temperature, which property may then be used to control the process. External, random vibrations of the workpiece are utilized to develop discernible signals which can be sensed in the interferometer by only one photon multiplier. In addition the interferometer includes an arrangement for optimizing its sensitivity so that movement attributed to various waves can be detected in opaque objects. The interferometer also includes a mechanism for sensing objects with rough surfaces which produce speckle light patterns. Finally the interferometer per se, with the addition of a second photon multiplier is capable of accurately recording beam length distance differences with only one reading.

  5. Method and apparatus for measuring surface movement of an object using a polarizing interferometer

    DOEpatents

    Schultz, T.J.; Kotidis, P.A.; Woodroffe, J.A.; Rostler, P.S.

    1995-05-09

    A system for non-destructively measuring an object and controlling industrial processes in response to the measurement is disclosed in which an impulse laser generates a plurality of sound waves over timed increments in an object. A polarizing interferometer is used to measure surface movement of the object caused by the sound waves and sensed by phase shifts in the signal beam. A photon multiplier senses the phase shift and develops an electrical signal. A signal conditioning arrangement modifies the electrical signals to generate an average signal correlated to the sound waves which in turn is correlated to a physical or metallurgical property of the object, such as temperature, which property may then be used to control the process. External, random vibrations of the workpiece are utilized to develop discernible signals which can be sensed in the interferometer by only one photon multiplier. In addition the interferometer includes an arrangement for optimizing its sensitivity so that movement attributed to various waves can be detected in opaque objects. The interferometer also includes a mechanism for sensing objects with rough surfaces which produce speckle light patterns. Finally the interferometer per se, with the addition of a second photon multiplier is capable of accurately recording beam length distance differences with only one reading. 38 figs.

  6. Geometrical dart infrared polarization signatures

    NASA Astrophysics Data System (ADS)

    Lewis, Gareth D.; Jordan, David L.

    1996-06-01

    The 8 - 12 micrometer polarization signatures of diffuse and specular aluminum geometrical darts were analyzed outdoors using a polarization sensitive thermal imager. Results of the degree and plane of polarization are presented for different thermal imager gain bands and weather conditions during a two week period. The 0 degree, 45 degree, 90 degree and 135 degree polarizer orientations were thermally calibrated and the S1 and S2 Stokes parameters shown as radiometric temperature differences. The effect on the polarization signatures of range is considered for these targets at 100 m and 370 m. A comparison of the degree of polarization to changes in the emission/reflection balance and to variations in the dart's complex refractive index is made.

  7. Cross-Polar Aircraft Trajectory Optimization and Potential Climate Impact

    NASA Technical Reports Server (NTRS)

    Sridhar, Banavar; Chen, Neil; Ng, Hok

    2011-01-01

    Cross-Polar routes offer new opportunities for air travel markets. Transpolar flights reduce travel times, fuel burns, and associated environmental emissions by flying direct paths between many North American and Asian cities. This study evaluates the potential benefits of flying wind-optimal polar routes and assessed their potential impact on climate change. An optimization algorithm is developed for transpolar flights to generate wind-optimal trajectories that minimize climate impact of aircraft, in terms of global warming potentials (relative to warming by one kg of CO2) of several types of emissions, while avoiding regions of airspace that facilitate persistent contrail formation. Estimations of global warming potential are incorporated into the objective function of the optimization algorithm to assess the climate impact of aircraft emissions discharged at a given location and altitude. The regions of airspace with very low ambient temperature and areas favorable to persistent contrail formation are modeled as undesirable regions that aircraft should avoid and are formulated as soft state constraints. The fuel burn and climate impact of cross-polar air traffic flying various types of trajectory including flightplan, great circle, wind-optimal, and contrail-avoidance are computed for 15 origin-destination pairs between major international airports in the U.S. and Asia. Wind-optimal routes reduce average fuel burn of flight plan routes by 4.4% on December 4, 2010 and 8.0% on August 7, 2010, respectively. The tradeoff between persistent contrail formation and additional global warming potential of aircraft emissions is investigated with and without altitude optimization. Without altitude optimization, the reduction in contrail travel times is gradual with increase in total fuel consumption. When altitude is optimized, a one percent increase in additional global warming potential, a climate impact equivalent to that of 4070kg and 4220kg CO2 emission, reduces 135

  8. Polarized Light in Astronomy.

    ERIC Educational Resources Information Center

    King, D. J.

    1983-01-01

    The application of very sensitive electronic detecting devices during the last decade has revolutionized and revitalized the study of polarization in celestial objects. The nature of polarization, how polaroids work, interstellar polarization, dichroic filters, polarization by scattering, and modern polarimetry are among the topics discussed. (JN)

  9. Polarization of III-nitride blue and ultraviolet light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Shakya, J.; Knabe, K.; Kim, K. H.; Li, J.; Lin, J. Y.; Jiang, H. X.

    2005-02-01

    Polarization-resolved electroluminescence studies of III-nitride blue and ultraviolet (UV) light-emitting diodes (LEDs) were performed. The LEDs were fabricated on nitride materials grown by metalorganic chemical vapor deposition on sapphire substrates (0001). Transverse electric (TE) polarization dominates in the InGaN/GaN quantum-well (QW) blue LEDs (λ'=458nm), whereas transverse magnetic (TM) polarization is dominant in the AlInGaN QW UV LEDs (λ=333nm). For the case of edge emission in blue LEDs, a ratio (r=I⊥/I ‖) of about 1.8:1 was observed between the EL intensities with polarization E ⊥c (TE mode) and E ‖c (TM mode), which corresponds to a degree of polarization ˜0.29. The UV LEDs exhibit a ratio r of about 1:2.3, corresponding to a degree of polarization ˜0.4. This is due to the fact that the degree of polarization of the bandedge emission of the AlxInyGa1-x -yN active layer changes with Al concentration. The low emission efficiency of nitride UV LEDs is partly related to this polarization property. Possible consequences and ways to enhance UV emitter performances related to this unique polarization property are discussed.

  10. Polar Nature of Biomimetic Fluorapatite/Gelatin Composites: A Comparison of Bipolar Objects and the Polar State of Natural Tissue.

    PubMed

    Burgener, Matthias; Putzeys, Tristan; Gashti, Mazeyar Parvinzadeh; Busch, Susanne; Aboulfadl, Hanane; Wübbenhorst, Michael; Kniep, Rüdiger; Hulliger, Jürg

    2015-09-14

    The correspondence of the state of alignment of macromolecules in biomimetic materials and natural tissues is demonstrated by investigating a mechanism of electrical polarity formation: An in vitro grown biomimetic FAp/gelatin composite is investigated for its polar properties by second harmonic (SHGM) and scanning pyroelectric microscopy (SPEM). Hexagonal prismatic seed crystals formed in gelatin gels represent a monodomain polar state, due to aligned mineralized gelatin molecules. Later growth stages, showing dumbbell morphologies, develop into a bipolar state because of surface recognition by gelatin functionality: A reversal of the polar alignment of macromolecules, thus, takes place close to that basal plane of the seed. In natural hard tissues (teeth and bone investigated by SPEM) and the biomimetic FAp/gelatin composite, we find a surprising analogy in view of growth-induced states of polarity: The development of polarity in vivo and in vitro can be explained by a Markov-type mechanism of molecular recognition during the attachment of macromolecules.

  11. Observations of polar aurora on Jupiter

    NASA Technical Reports Server (NTRS)

    Lane, A. L.; Clarke, J. T.; Moos, H. W.; Atreya, S. K.

    1981-01-01

    North-south spatial maps of Jupiter were obtained with the SWP camera in IUE observations of 10 December 1978, 19 May 1979, and 7 June 1979. Bright auroral emissions were detected from the north and south polar regions at H Ly alpha (1216 A) and in the H2 Lyman bands (1250-1608 A) on 19 May 1979; yet no enhanced polar emission was detected on the other days. The relationship between the IUE observing geometry and the geometry of the Jovian magnetosphere is discussed.

  12. Limits on Optical Polarization during the Prompt Phase of GRB 140430A

    NASA Astrophysics Data System (ADS)

    Kopač, D.; Mundell, C. G.; Japelj, J.; Arnold, D. M.; Steele, I. A.; Guidorzi, C.; Dichiara, S.; Kobayashi, S.; Gomboc, A.; Harrison, R. M.; Lamb, G. P.; Melandri, A.; Smith, R. J.; Virgili, F. J.; Castro-Tirado, A. J.; Gorosabel, J.; Järvinen, A.; Sánchez-Ramírez, R.; Oates, S. R.; Jelínek, M.

    2015-11-01

    Gamma-ray burst GRB 140430A was detected by the Swift satellite and observed promptly with the imaging polarimeter RINGO3 mounted on the Liverpool Telescope, with observations beginning while the prompt γ-ray emission was still ongoing. In this paper, we present densely sampled (10-s temporal resolution) early optical light curves (LCs) in 3 optical bands and limits to the degree of optical polarization. We compare optical, X-ray, and gamma-ray properties and present an analysis of the optical emission during a period of high-energy flaring. The complex optical LC cannot be explained merely with a combination of forward and reverse shock emission from a standard external shock, implying additional contribution of emission from internal shock dissipation. We estimate an upper limit for time averaged optical polarization during the prompt phase to be as low as P < 12% (1σ). This suggests that the optical flares and early afterglow emission in this GRB are not highly polarized. Alternatively, time averaging could mask the presence of otherwise polarized components of distinct origin at different polarization position angles.

  13. The origin of radio pulsar polarization

    NASA Astrophysics Data System (ADS)

    Dyks, J.

    2017-12-01

    Polarization of radio pulsar profiles involves a number of poorly understood, intriguing phenomena, such as the existence of comparable amounts of orthogonal polarization modes (OPMs), strong distortions of polarization angle (PA) curves into shapes inconsistent with the rotating vector model (RVM), and the strong circular polarization V which can be maximum (instead of zero) at the OPM jumps. It is shown that the comparable OPMs and large V result from a coherent addition of phase-delayed waves in natural propagation modes, which are produced by a linearly polarized emitted signal. The coherent mode summation implies opposite polarization properties to those known from the incoherent case, in particular, the OPM jumps occur at peaks of V, whereas V changes sign at a maximum linear polarization fraction L/I. These features are indispensable to interpret various observed polarization effects. It is shown that statistical properties of emission and propagation can be efficiently parametrized in a simple model of coherent mode addition, which is successfully applied to complex polarization phenomena, such as the stepwise PA curve of PSR B1913+16 and the strong PA distortions within core components of pulsars B1933+16 and B1237+25. The inclusion of coherent mode addition opens the possibility for a number of new polarization effects, such as inversion of relative modal strength, twin minima in L/I coincident with peaks in V, 45° PA jumps in weakly polarized emission, and loop-shaped core PA distortions. The empirical treatment of the coherency of mode addition makes it possible to advance the understanding of pulsar polarization beyond the RVM model.

  14. Polarization characteristics of Whispering-Gallery-Mode fiber lasers based on evanescent-wave-coupled gain.

    PubMed

    Zhang, Yuan-Xian; Pu, Xiao-Yun; Feng, Li; Han, De-Yu; Ren, Yi-Tao

    2013-05-20

    The polarization characteristics of Whispering-Gallery-Mode (WGM) fiber lasers based on evanescent-wave-coupled gain are investigated. For the laser gain is excited by side-pumping scheme, it is found that the polarization property of lasing emission is simply dependent on the polarized states of the pump beams. The polarization property of lasing emission depends on the propagating situation of the pump beams in an optical fiber if the laser gain is excited by evanescent-wave pumping scheme, that is, if the pump beams within the fiber are meridional beams, the lasing emission is a transverse electric (TE) wave that forms a special radial polarization emission. However, if the pump beams within the fiber are skew beams, both transverse magnetic (TM) and TE waves exist simultaneously in lasing emission that forms a special axially and radially mixed polarization emission. Pumped by skew beams, the wave-number differences between TE and TM waves are also investigated quantitatively, the results demonstrate that the wave-number difference decreases with the increase of the fiber diameter and the refractive index (RI) of the cladding solution. The observed polarization characteristics have been well explained based on lasing radiation mechanism of WGM fiber laser of gain coupled by evanescent wave.

  15. Polarization due to dust scattering in the planetary nebula Cn1-1

    NASA Technical Reports Server (NTRS)

    Bhatt, Harish C.

    1989-01-01

    The peculiar emission-line object Cn1-1 (=HDE330036=PK330+4 degrees 1), classified both as a symbiotic star and as a planetary nebula, was detected by the Infrared Astronomical Satellite (IRAS) as a strong source of far-infrared dust in the system. Bhatt and Mallik (1986) discussed the nature of the dust in Cn1-1 and argued that the object is a Type I protoplanetary nebula in a binary system. The argument presented here is that the polarization is intrinsic to Cn1-1 and is due to scattering by large (compared to interstellar) dust grains in the protoplanetary nebula that are asymmetrically distributed around the central star. The large degree of polarization (approximately 3 percent for the Cn1-1 distance of approximately 450 pc) with a large lambda(sub max) is naturally explained if it is caused by scattering by large dust grains in the Cn1-1 nebula. Since the H(sub alpha) line is also polarized at the same level and position angle as the continuum, the dust must be asymmetrically distributed around the central star. The morphology of the protoplanetary nebula in Cn1-1 may be bipolar. Thus, the polarization observations support the suggestion that Cn1-1 is a bipolar Type I planetary nebula.

  16. Polarization swings reveal magnetic energy dissipation in blazars

    DOE PAGES

    Zhang, Haocheng; Chen, Xuhui; Böttcher, Markus; ...

    2015-05-01

    The polarization signatures of blazar emissions are known to be highly variable. In addition to small fluctuations of the polarization angle around a mean value, large (≳ 180°) polarization angle swings are observed. We suggest that such phenomena can be interpreted as arising from light-travel-time effects within an underlying axisymmetric emission region. We present the first simultaneous fitting of the multi-wavelength spectrum, variability, and time-dependent polarization features of a correlated optical and gamma-ray flaring event of the prominent blazar 3C279, which was accompanied by a drastic change in its polarization signatures. This unprecedented combination of spectral, variability, and polarization informationmore » in a coherent physical model allows us to place stringent constraints on the particle acceleration and magnetic-field topology in the relativistic jet of a blazar, strongly favoring a scenario in which magnetic energy dissipation is the primary driver of the flare event.« less

  17. Resonant Compton Upscattering Models of Magnetar Hard X-ray Emission and Polarization

    NASA Astrophysics Data System (ADS)

    Baring, Matthew G.; Wadiasingh, Zorawar; Gonthier, Peter L.; Kust Harding, Alice

    2017-08-01

    Non-thermal quiescent X-ray emission extending between 10 keV and around 150 keV has been seen in about 10 magnetars by RXTE, INTEGRAL, Suzaku and Fermi-GBM. For inner magnetospheric models of such hard X-ray signals, resonant Compton upscattering is anticipated to be the most efficient process for generating the continuum radiation. This is because the scattering becomes resonant at the cyclotron frequency, and the effective cross section exceeds the classical Thomson value by over two orders of magnitude. We present angle-dependent hard X-ray upscattering model spectra for uncooled monoenergetic relativistic electrons injected in inner regions of pulsar magnetospheres. These spectra are integrated over closed field lines and obtained for different observing perspectives. The spectral cut-off energies are critically dependent on the observer viewing angles and electron Lorentz factor. We find that electrons with energies less than around 15 MeV will emit most of their radiation below 250 keV, consistent with the observed turnovers in magnetar hard X-ray tails. Moreover, electrons of higher energy still emit most of the radiation below around 1 MeV, except for quasi-equatorial emission locales for select pulses phases. In such cases, attenuation mechanisms such as pair creation will be prolific, thereby making it difficult to observe signals extending into the Fermi-LAT band. Our spectral computations use new state-of-the-art, spin-dependent formalism for the QED Compton scattering cross section in strong magnetic fields. The emission exhibits strong polarization above around 30 keV that is anticipated to be dependent on pulse phase, thereby defining science agendas for future hard X-ray polarimeters.

  18. Cross-Polar Aircraft Trajectory Optimization and the Potential Climate Impact

    NASA Technical Reports Server (NTRS)

    Ng, Hok K.; Sridhar, Banavar; Grabbe, Shon; Chen, Neil

    2011-01-01

    Cross-Polar routes offer new opportunities for air travel markets. Transpolar flights reduce travel times, fuel burns, and associated environmental emissions by flying direct paths between many North American and Asian cities. This study evaluates the potential benefits of flying wind-optimal polar routes and assessed their potential impact on climate change. An optimization algorithm is developed for transpolar flights to generate wind-optimal trajectories that minimize climate impact of aircraft, in terms of global warming potentials (relative to warming by one kg of CO2) of several types of emissions, while avoiding regions of airspace that facilitate persistent contrail formation. Estimations of global warming potential are incorporated into the objective function of the optimization algorithm to assess the climate impact of aircraft emissions discharged at a given location and altitude. The regions of airspace with very low ambient temperature and areas favorable to persistent contrail formation are modeled as undesirable regions that aircraft should avoid and are formulated as soft state constraints. The fuel burn and climate impact of cross-polar air traffic flying various types of trajectory including flight plan, great circle, wind-optimal, and contrail-avoidance are computed for 15 origin-destination pairs between major international airports in the U.S. and Asia. Wind-optimal routes reduce average fuel burn of flight plan routes by 4.4% on December 4, 2010 and 8.0% on August 7, 2010, respectively. The tradeoff between persistent contrail formation and additional global warming potential of aircraft emissions is investigated with and without altitude optimization. Without altitude optimization, the reduction in contrail travel times is gradual with increase in total fuel consumption. When altitude is optimized, a one percent increase in additional global warming potential, a climate impact equivalent to that of 4070kg and 4220kg CO2 emission, reduces 135

  19. Elliptical quantum dots as on-demand single photons sources with deterministic polarization states

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Teng, Chu-Hsiang; Demory, Brandon; Ku, Pei-Cheng, E-mail: peicheng@umich.edu

    In quantum information, control of the single photon's polarization is essential. Here, we demonstrate single photon generation in a pre-programmed and deterministic polarization state, on a chip-scale platform, utilizing site-controlled elliptical quantum dots (QDs) synthesized by a top-down approach. The polarization from the QD emission is found to be linear with a high degree of linear polarization and parallel to the long axis of the ellipse. Single photon emission with orthogonal polarizations is achieved, and the dependence of the degree of linear polarization on the QD geometry is analyzed.

  20. Polarization effects in cutaneous autofluorescent spectra

    NASA Astrophysics Data System (ADS)

    Borisova, E.; Angelova, L.; Jeliazkova, Al.; Genova, Ts.; Pavlova, E.; Troyanova, P.; Avramov, L.

    2014-05-01

    Used polarized light for fluorescence excitation one could obtain response related to the anisotropy features of extracellular matrix. The fluorophore anisotropy is attenuated during lesions' growth and level of such decrease could be correlated with the stage of tumor development. Our preliminary investigations are based on in vivo point-by-point measurements of excitation-emission matrices (EEM) from healthy volunteers skin on different ages and from different anatomical places using linear polarizer and analyzer for excitation and emission light detected. Measurements were made using spectrofluorimeter FluoroLog 3 (HORIBA Jobin Yvon, France) with fiber-optic probe in steady-state regime using excitation in the region of 280-440 nm. Three different situations were evaluated and corresponding excitation-emission matrices were developed - with parallel and perpendicular positions for linear polarizer and analyzer, and without polarization of excitation and fluorescence light detected from a forearm skin surface. The fluorescence spectra obtained reveal differences in spectral intensity, related to general attenuation, due to filtering effects of used polarizer/analyzer couple. Significant spectral shape changes were observed for the complex autofluorescence signal detected, which correlated with collagen and protein cross-links fluorescence, that could be addressed to the tissue extracellular matrix and general condition of the skin investigated, due to morphological destruction during lesions' growth. A correlation between volunteers' age and the fluorescence spectra detected was observed during our measurements. Our next step is to increase developed initial database and to evaluate all sources of intrinsic fluorescent polarization effects and found if they are significantly altered from normal skin to cancerous state of the tissue, this way to develop a non-invasive diagnostic tool for dermatological practice.

  1. OMC-1 as Revealed by HST NICMOS Polarization Measurements

    NASA Astrophysics Data System (ADS)

    Simpson, J. P.; Burton, M. G.; Colgan, S. W. J.; Erickson, E. F.; Schultz, A. S. B.; Simpson, E.

    2004-12-01

    The Orion Molecular Cloud (OMC-1) harbors the nearest and most studied massive star-forming region. Signs of the formation of multiple stars in this optically obscured region include powerful CO outflows, H2O and SiO maser emission, remarkable H2 "bullets", "fingers", and "streamers", and X-rays from pre-main-sequence stars. Highly polarized clouds indicate that the illuminating sources lie in the directions of the Becklin-Neugebauer object (BN), and stars in the vicinity of IRc2, radio source I, NIR source n, and others. Here we present 2 μ m polarization measurements of positions north and south of BN made with NICMOS Camera 2 on the Hubble Space Telescope. Near-infrared starlight can be polarized by scattering from nearby dust grains and by dichroic absorption by non-spherical dust grains aligned by a magnetic field. Within the 19'' field of view of Camera 2, BN appears to be the illuminating source of most of the nebulosity to its north; however, the material to the south is illuminated either by a star near I (IRc4) or by source n (IRc2B). Source n also illuminates material 1'' - 2'' to its northeast and southwest, at the same position angles as the extended radio source at the same location. We discuss possible interpretations of the strong polarization of IRc7, which is not illuminated by source I. We also display several stars (NICMOS point sources) that are the source of their own polarization, which ranges up to 40% and occurs at distinctly different angles from the polarization of the immediately surrounding diffuse emission. This may be caused by dichroic absorption and scattering in edge-on circumstellar disks. At least two faint stars are variable. Support for proposal 9752 was provided by NASA through a grant from the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555.

  2. Emission and propagation of Saturn kilometric radiation: Magnetoionic modes, beaming pattern, and polarization state

    NASA Astrophysics Data System (ADS)

    Lamy, L.; Cecconi, B.; Zarka, P.; Canu, P.; Schippers, P.; Kurth, W. S.; Mutel, R. L.; Gurnett, D. A.; Menietti, D.; Louarn, P.

    2011-04-01

    The Cassini mission crossed the source region of the Saturn kilometric radiation (SKR) on 17 October 2008. On this occasion, the Radio and Plasma Wave Science (RPWS) experiment detected both local and distant radio sources, while plasma parameters were measured in situ by the magnetometer and the Cassini Plasma Spectrometer. A goniopolarimetric inversion was applied to RPWS three-antenna electric measurements to determine the wave vector k and the complete state of polarization of detected waves. We identify broadband extraordinary (X) mode as well as narrowband ordinary (O) mode SKR at low frequencies. Within the source region, SKR is emitted just above the X mode cutoff frequency in a hot plasma, with a typical electron-to-wave energy conversion efficiency of ˜1% (2% peak). The knowledge of the k vector is then used to derive the locus of SKR sources in the kronian magnetosphere, which shows X and O components emanating from the same regions. We also compute the associated beaming angle at the source θ‧ = (k, -B) either from (1) in situ measurements or a model of the magnetic field vector (for local to distant sources) or (2) polarization measurements (for local sources). Obtained results, similar for both modes, suggest quasi-perpendicular emission for local sources, whereas the beaming pattern of distant sources appears as a hollow cone with a frequency-dependent constant aperture angle: θ‧ = 75° ± 15° below 300 kHz, decreasing at higher frequencies to reach θ‧ (1000 kHz) = 50° ± 25°. Finally, we investigate quantitatively the SKR polarization state, observed to be strongly elliptical at the source, and quasi-purely circular for sources located beyond approximately two kronian radii. We show that conditions of weak mode coupling are achieved along the raypath, under which the magnetoionic theory satisfactorily describes the evolution of the observed polarization. These results are analyzed comparatively with the auroral kilometric radiation at

  3. Polarization Properties of Semiconductor Nanorod Heterostructures: From Single Particles to the Ensemble.

    PubMed

    Hadar, Ido; Hitin, Gal B; Sitt, Amit; Faust, Adam; Banin, Uri

    2013-02-07

    Semiconductor heterostructured seeded nanorods exhibit intense polarized emission, and the degree of polarization is determined by their morphology and dimensions. Combined optical and atomic force microscopy were utilized to directly correlate the emission polarization and the orientation of single seeded nanorods. For both the CdSe/CdS sphere-in-rod (S@R) and rod-in-rod (R@R), the emission was found to be polarized along the nanorod's main axis. Statistical analysis for hundreds of single nanorods shows higher degree of polarization, p, for R@R (p = 0.83), in comparison to S@R (p = 0.75). These results are in good agreement with the values inferred by ensemble photoselection anisotropy measurements in solution, establishing its validity for nanorod samples. On this basis, photoselection photoluminescence excitation anisotropy measurements were carried out providing unique information concerning the symmetry of higher excitonic transitions and allowing for a better distinction between the dielectric and the quantum-mechanical contributions to polarization in nanorods.

  4. An interpretation of the polarization of microwave bursts. [solar emission

    NASA Technical Reports Server (NTRS)

    Kundu, M. R.; Vlahos, L.

    1979-01-01

    High-spatial-resolution (a few seconds of arc) observations of microwave bursts have demonstrated that only the impulsive phase of the burst is polarized; one observes only one polarity in the burst source if it is weak (Alissandrakis and Kundu) and both polarities if it is intense (Enome et al.). These results are interpreted in terms of an asymmetrical bipolar field structure of the loop in which the energetic electrons responsible for the radiation are contained. The role of unequal field strengths at the feet of the loop on the number of electrons trapped and their pitch angle distribution are discussed in a specific model. Computations of the polarized intensity originating from each foot of the loop seem to be consistent with the observations at present available.

  5. Implementing a combined polar-geostationary algorithm for smoke emissions estimation in near real time

    NASA Astrophysics Data System (ADS)

    Hyer, E. J.; Schmidt, C. C.; Hoffman, J.; Giglio, L.; Peterson, D. A.

    2013-12-01

    Polar and geostationary satellites are used operationally for fire detection and smoke source estimation by many near-real-time operational users, including operational forecast centers around the globe. The input satellite radiance data are processed by data providers to produce Level-2 and Level -3 fire detection products, but processing these data into spatially and temporally consistent estimates of fire activity requires a substantial amount of additional processing. The most significant processing steps are correction for variable coverage of the satellite observations, and correction for conditions that affect the detection efficiency of the satellite sensors. We describe a system developed by the Naval Research Laboratory (NRL) that uses the full raster information from the entire constellation to diagnose detection opportunities, calculate corrections for factors such as angular dependence of detection efficiency, and generate global estimates of fire activity at spatial and temporal scales suitable for atmospheric modeling. By incorporating these improved fire observations, smoke emissions products, such as NRL's FLAMBE, are able to produce improved estimates of global emissions. This talk provides an overview of the system, demonstrates the achievable improvement over older methods, and describes challenges for near-real-time implementation.

  6. MASTER OT J132104.04+560957.8: A Polar with Absorption–Emission Line Reversals

    NASA Astrophysics Data System (ADS)

    Littlefield, Colin; Garnavich, Peter; Hoyt, Taylor J.; Kennedy, Mark

    2018-01-01

    We present time-resolved photometry and spectroscopy of the recently classified polar MASTER OT J132104.04+560957.8. The spectrum shows a smooth, nonthermal continuum at the time of maximum light, without any individually discernible cyclotron harmonics. Using homogenous cyclotron modeling, we interpret this as cyclotron radiation whose individual harmonics have blended together, and on this basis, we loosely constrain the magnetic-field strength to be less than ∼30 MG. In addition, for about one-tenth of the orbital period, the Balmer and He I emission lines transition into absorption features, with He II developing an absorption core. We use our observations of this phenomenon to test theoretical models of the accretion curtain and conclude that the H and He I lines are produced throughout the curtain, in contravention of theoretical predictions of separate H and He I line-forming regions. Moreover, a significant amount of He II emission originates within the accretion curtain, implying that the curtain is significantly hotter than expected from theory. Finally, we comment on the object’s long-term photometry, including evidence that it recently transitioned into a prolonged, exceptionally stable high state following a potentially decades-long low state.

  7. SUBMILLIMETER POLARIZATION OBSERVATION OF THE PROTOPLANETARY DISK AROUND HD 142527

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kataoka, Akimasa; Dullemond, Cornelis P.; Pohl, Adriana

    We present the polarization observations toward the circumstellar disk around HD 142527 by using Atacama Large Millimeter/submillimeter Array at the frequency of 343 GHz. The beam size is 0.″51 × 0.″44, which corresponds to the spatial resolution of ∼71 × 62 au. The polarized intensity displays a ring-like structure with a peak located on the east side with a polarization fraction of P = 3.26 ± 0.02%, which is different from the peak of the continuum emission from the northeast region. The polarized intensity is significantly weaker at the peak of the continuum where P = 0.220 ± 0.010%. Themore » polarization vectors are in the radial direction in the main ring of the polarized intensity, while there are two regions outside at the northwest and northeast areas where the vectors are in the azimuthal direction. If the polarization vectors represent the magnetic field morphology, the polarization vectors indicate the toroidal magnetic field configuration on the main ring and the poloidal fields outside. On the other hand, the flip of the polarization vectors is predicted by the self-scattering of thermal dust emission due to the change of the direction of thermal radiation flux. Therefore, we conclude that self-scattering of thermal dust emission plays a major role in producing polarization at millimeter wavelengths in this protoplanetary disk. Also, this puts a constraint on the maximum grain size to be approximately 150 μ m if we assume compact spherical dust grains.« less

  8. Polarized emission from CsPbX3 perovskite quantum dots

    NASA Astrophysics Data System (ADS)

    Wang, Dan; Wu, Dan; Dong, Di; Chen, Wei; Hao, Junjie; Qin, Jing; Xu, Bing; Wang, Kai; Sun, Xiaowei

    2016-06-01

    Compared to organic/inorganic hybrid perovskites, full inorganic perovskite quantum dots (QDs) exhibit higher stability. In this study, full inorganic CsPbX3 (X = Br, I and mixed halide systems Br/I) perovskite QDs have been synthesized and interestingly, these QDs showed highly polarized photoluminescence which is systematically studied for the first time. Furthermore, the polarization of CsPbI3 was as high as 0.36 in hexane and 0.40 as a film. The CsPbX3 perovskite QDs with high polarization properties indicate that they possess great potential for application in new generation displays with wide colour gamut and low power consumption.Compared to organic/inorganic hybrid perovskites, full inorganic perovskite quantum dots (QDs) exhibit higher stability. In this study, full inorganic CsPbX3 (X = Br, I and mixed halide systems Br/I) perovskite QDs have been synthesized and interestingly, these QDs showed highly polarized photoluminescence which is systematically studied for the first time. Furthermore, the polarization of CsPbI3 was as high as 0.36 in hexane and 0.40 as a film. The CsPbX3 perovskite QDs with high polarization properties indicate that they possess great potential for application in new generation displays with wide colour gamut and low power consumption. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr01915c

  9. Dual-Polarization Observations of Slowly Varying Solar Emissions from a Mobile X-Band Radar

    PubMed Central

    Gabella, Marco; Leuenberger, Andreas

    2017-01-01

    The radio noise that comes from the Sun has been reported in literature as a reference signal to check the quality of dual-polarization weather radar receivers for the S-band and C-band. In most cases, the focus was on relative calibration: horizontal and vertical polarizations were evaluated versus the reference signal mainly in terms of standard deviation of the difference. This means that the investigated radar receivers were able to reproduce the slowly varying component of the microwave signal emitted by the Sun. A novel method, aimed at the absolute calibration of dual-polarization receivers, has recently been presented and applied for the C-band. This method requires the antenna beam axis to be pointed towards the center of the Sun for less than a minute. Standard deviations of the difference as low as 0.1 dB have been found for the Swiss radars. As far as the absolute calibration is concerned, the average differences were of the order of −0.6 dB (after noise subtraction). The method has been implemented on a mobile, X-band radar, and this paper presents the successful results that were obtained during the 2016 field campaign in Payerne (Switzerland). Despite a relatively poor Sun-to-Noise ratio, the “small” (~0.4 dB) amplitude of the slowly varying emission was captured and reproduced; the standard deviation of the difference between the radar and the reference was ~0.2 dB. The absolute calibration of the vertical and horizontal receivers was satisfactory. After the noise subtraction and atmospheric correction a, the mean difference was close to 0 dB. PMID:28531164

  10. Dual-Polarization Observations of Slowly Varying Solar Emissions from a Mobile X-Band Radar.

    PubMed

    Gabella, Marco; Leuenberger, Andreas

    2017-05-22

    The radio noise that comes from the Sun has been reported in literature as a reference signal to check the quality of dual-polarization weather radar receivers for the S-band and C-band. In most cases, the focus was on relative calibration: horizontal and vertical polarizations were evaluated versus the reference signal mainly in terms of standard deviation of the difference. This means that the investigated radar receivers were able to reproduce the slowly varying component of the microwave signal emitted by the Sun. A novel method, aimed at the absolute calibration of dual-polarization receivers, has recently been presented and applied for the C-band. This method requires the antenna beam axis to be pointed towards the center of the Sun for less than a minute. Standard deviations of the difference as low as 0.1 dB have been found for the Swiss radars. As far as the absolute calibration is concerned, the average differences were of the order of -0.6 dB (after noise subtraction). The method has been implemented on a mobile, X-band radar, and this paper presents the successful results that were obtained during the 2016 field campaign in Payerne (Switzerland). Despite a relatively poor Sun-to-Noise ratio, the "small" (~0.4 dB) amplitude of the slowly varying emission was captured and reproduced; the standard deviation of the difference between the radar and the reference was ~0.2 dB. The absolute calibration of the vertical and horizontal receivers was satisfactory. After the noise subtraction and atmospheric correction a, the mean difference was close to 0 dB.

  11. Parallel Polarization State Generation

    NASA Astrophysics Data System (ADS)

    She, Alan; Capasso, Federico

    2016-05-01

    The control of polarization, an essential property of light, is of wide scientific and technological interest. The general problem of generating arbitrary time-varying states of polarization (SOP) has always been mathematically formulated by a series of linear transformations, i.e. a product of matrices, imposing a serial architecture. Here we show a parallel architecture described by a sum of matrices. The theory is experimentally demonstrated by modulating spatially-separated polarization components of a laser using a digital micromirror device that are subsequently beam combined. This method greatly expands the parameter space for engineering devices that control polarization. Consequently, performance characteristics, such as speed, stability, and spectral range, are entirely dictated by the technologies of optical intensity modulation, including absorption, reflection, emission, and scattering. This opens up important prospects for polarization state generation (PSG) with unique performance characteristics with applications in spectroscopic ellipsometry, spectropolarimetry, communications, imaging, and security.

  12. The first search for X-ray polarization in the Centaurus X-3 and Hercules X-1 pulsars

    NASA Technical Reports Server (NTRS)

    Silver, E. H.; Weisskopf, M. C.; Kestenbaum, H. L.; Long, K. S.; Novick, R.; Wolff, R. S.

    1979-01-01

    The first search for X-ray polarization in the Cen X-3 and Her X-1 pulsars was performed by the OSO 8 polarimeters in 1975 July and 1975 August, respectively. Three-sigma upper limits to the polarization in Cen X-3 of 13.5% and 19% at 2.6 keV and 5.2 keV, respectively, were obtained when the data were averaged over the pulse and binary periods. The upper limit for Her X-1 at 2.6 keV is 60%. A search for pulse-phase dependent X-ray polarization from both objects was also performed. At the 91% confidence level, emission from Cen X-3 exhibits evidence for X-ray polarization at 2.6 keV that varies with pulse phase. Upper limits to polarization are presented for the leading and trailing edges and peak of the Her X-1 pulse at 2.6 keV.

  13. ALMA Observations of Polarization from Dust Scattering in the IM Lup Protoplanetary Disk

    NASA Astrophysics Data System (ADS)

    Hull, Charles L. H.; Yang, Haifeng; Li, Zhi-Yun; Kataoka, Akimasa; Stephens, Ian W.; Andrews, Sean; Bai, Xuening; Cleeves, L. Ilsedore; Hughes, A. Meredith; Looney, Leslie; Pérez, Laura M.; Wilner, David

    2018-06-01

    We present 870 μm ALMA observations of polarized dust emission toward the Class II protoplanetary disk IM Lup. We find that the orientation of the polarized emission is along the minor axis of the disk, and that the value of the polarization fraction increases steadily toward the center of the disk, reaching a peak value of ∼1.1%. All of these characteristics are consistent with models of self-scattering of submillimeter-wave emission from an optically thin inclined disk. The distribution of the polarization position angles across the disk reveals that, while the average orientation is along the minor axis, the polarization orientations show a significant spread in angles; this can also be explained by models of pure scattering. We compare the polarization with that of the Class I/II source HL Tau. A comparison of cuts of the polarization fraction across the major and minor axes of both sources reveals that IM Lup has a substantially higher polarization fraction than HL Tau toward the center of the disk. This enhanced polarization fraction could be due a number of factors, including higher optical depth in HL Tau, or scattering by larger dust grains in the more evolved IM Lup disk. However, models yield similar maximum grain sizes for both HL Tau (72 μm) and IM Lup (61 μm, this work). This reveals continued tension between grain-size estimates from scattering models and from models of the dust emission spectrum, which find that the bulk of the (unpolarized) emission in disks is most likely due to millimeter-sized (or even centimeter-sized) grains.

  14. HST NICMOS Observations of the Polarization of NGC 1068

    NASA Technical Reports Server (NTRS)

    Simpson, Janet P.; Colgan, Sean W. J.; Erickson, Edwin F.; Hines, Dean C.; Schultz, A. S. B.; Trammell, Susan R.; DeVincenzi, D. (Technical Monitor)

    2002-01-01

    We have observed the polarized light at 2 microns in the center of NGC 1068 with HST (Hubble Space Telescope) NICMOS (Near Infrared Camera Multi Object Spectrometer) Camera 2. The nucleus is dominated by a bright, unresolved source, polarized at a level of 6.0 +/- 1.2% with a position angle of 122 degrees +/- 1.5 degrees. There are two polarized lobes extending tip to 8" northeast and southwest of the nucleus. The polarized flux in both lobes is quite clumpy, with the maximum polarization occurring in the southwest lobe at a level of 17% when smoothed to 0.23" resolution. The perpendiculars to the polarization vectors in these two lobes point back to the intense unresolved nuclear source to within one 0.076" Camera 2 pixel, thereby confirming that this source is the origin of the scattered light and therefore the probable AGN (Active Galactic Nuclei) central engine. Whereas the polarization of the nucleus is probably caused by dichroic absorption, the polarization in the lobes is almost certainly caused by scattering, with very little contribution from dichroic absorption. Features in the polarized lobes include a gap at a distance of about 1" from the nucleus toward the southwest lobe and a "knot" of emission about 5" northwest of the nucleus. Both features had been discussed by groundbased observers, but they are much better defined with the high spatial resolution of NICMOS. The northeast knot may be the side of a molecular cloud that is facing the nucleus, which cloud may be preventing the expansion of the northeast radio lobe at the head of the radio synchrotron-radiation-emitting jet. We also report the presence of two ghosts in the Camera 2 polarizers.

  15. Imaging Interplanetary CMEs at Radio Frequency From Solar Polar Orbit

    NASA Astrophysics Data System (ADS)

    Wu, Ji; Sun, Weiying; Zheng, Jianhua; Zhang, Cheng; Wang, Chi; Wang, C. B.; Wang, S.

    Coronal mass ejections (CMEs) are violent discharges of plasma and magnetic fields from the Sun's corona. They have come to be recognized as the major driver of physical conditions in the Sun-Earth system. Consequently, the detection of CMEs is important for un-derstanding and ultimately predicting space weather conditions. The Solar Polar Orbit Radio Telescope (SPORT) is a proposed mission to observe the propagation of interplanetary CMEs from solar polar orbit. The main payload (radio telescope) on board SPORT will be an in-terferometric imaging radiometer working at the meter wavelength band, which will follow the propagation of interplanetary CMEs from a distance of a few solar radii to near 1 AU from solar polar orbit. The SPORT spacecraft will also be equipped with a set of optical and in situ measurement instruments such as a EUV solar telescope, a solar wind plasma experiment, a solar wind ion composition instrument, an energetic particle detector, a wave detector, a mag-netometer and an interplanetary radio burst tracker. In this paper, we first describe the current shortage of interplanetary CME observations. Next, the scientific motivation and objectives of SPORT are introduced. We discuss the basic specifications of the main radio telescope of SPORT with reference to the radio emission mechanisms and the radio frequency band to be observed. Finally, we discuss the key technologies of the SPORT mission, including the con-ceptual design of the main telescope, the image retrieval algorithm and the solar polar orbit injection. Other payloads and their respective observation objectives are also briefly discussed. Key words: Interplanetary CMEs; Interferometric imaging; Solar polar orbit; Radiometer.

  16. Dust models compatible with Planck intensity and polarization data in translucent lines of sight

    NASA Astrophysics Data System (ADS)

    Guillet, V.; Fanciullo, L.; Verstraete, L.; Boulanger, F.; Jones, A. P.; Miville-Deschênes, M.-A.; Ysard, N.; Levrier, F.; Alves, M.

    2018-02-01

    Context. Current dust models are challenged by the dust properties inferred from the analysis of Planck observations in total and polarized emission. Aims: We propose new dust models compatible with polarized and unpolarized data in extinction and emission for translucent lines of sight (0.5 < AV < 2.5). Methods: We amended the DustEM tool to model polarized extinction and emission. We fit the spectral dependence of the mean extinction, polarized extinction, total and polarized spectral energy distributions (SEDs) with polycyclic aromatic hydrocarbons, astrosilicate and amorphous carbon (a-C) grains. The astrosilicate population is aligned along the magnetic field lines, while the a-C population may be aligned or not. Results: With their current optical properties, oblate astrosilicate grains are not emissive enough to reproduce the emission to extinction polarization ratio P353/pV derived with Planck data. Successful models are those using prolate astrosilicate grains with an elongation a/b = 3 and an inclusion of 20% porosity. The spectral dependence of the polarized SED is steeper in our models than in the data. Models perform slightly better when a-C grains are aligned. A small (6%) volume inclusion of a-C in the astrosilicate matrix removes the need for porosity and perfect grain alignment, and improves the fit to the polarized SED. Conclusions: Dust models based on astrosilicates can be reconciled with data by adapting the shape of grains and adding inclusions of porosity or a-C in the astrosilicate matrix.

  17. Diode-pumped simultaneous multi-wavelength linearly polarized Nd:YVO4 laser at 1062, 1064 and 1066 nm

    NASA Astrophysics Data System (ADS)

    Lin, Zhi; Wang, Yi; Xu, Bin; Xu, Huiying; Cai, Zhiping

    2016-01-01

    We report on a diode-end-pumped simultaneous multiple wavelength Nd:YVO4 laser. Dual-wavelength laser is achieved at a π-polarized 1064 nm emission line and a σ-polarized 1066 nm emission line with total maximum output power of 1.38 W. Moreover, tri-wavelength laser emission at the π-polarized 1064 nm emission line and σ-polarized 1062 and 1066 nm emission lines can also be obtained with total maximum output power of about 1.23 W, for the first time to our knowledge. The operation of such simultaneous dual- and tri-wavelength lasers is only realized by employing a simple glass etalon to modulate the intracavity losses for these potential lasing wavelengths inside of an intracavity polarizer, which therefore makes a very compact two-mirror linear cavity and simultaneous orthogonal lasing possible. Such orthogonal linearly polarized multi-wavelength laser sources could be especially promising in THz wave generation and in efficient nonlinear frequency conversion to visible lasers.

  18. An X-Ray Survey for Polar CAP Qpos in AM Herculis Systems

    NASA Astrophysics Data System (ADS)

    Wood, Kent

    Five AM Herculis binary systems show an optical QPO that is known to be associated with magentically channeled polar cap accretion. Hard X-ray QPOs are predicted by the time-depndent hydrodynamic models. We propose to search selected AM Her systems for polar cap X-ray QPOs using the XTE PCA. Because of its large collecting area, the PCA is the only instrument that can do this job. No other accreting objects provide comparable high-quality observational diagnostics on the accretion flow. The detailed understanding of flow geometry, shock heating, ion-electron energy exchange, accretion column structure, and emission and radiative transfer mechanisms that go to make up the picture of AM Her accretion needs to be tested against X-ray timing information.

  19. Coumarin/BODIPY Hybridisation for Ratiometric Sensing of Intracellular Polarity Oscillation.

    PubMed

    Bai, Yang; Shi, Xiangchao; Chen, Yuncong; Zhu, Chengcheng; Jiao, Yang; Han, Zhong; He, Weijiang; Guo, Zijian

    2018-05-23

    With different polarity responses, coumarin and 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene (BODIPY) were hybridised to construct polarity fluorescent sensors, CBDP and iso-CBDP, to overcome the disadvantages of solvatochromic sensors in ratiometric polarity sensing. Only CBDP displayed an emission ratio (I Cou /I BDP , coumarin to BODIPY emissions) that increased with an exponential dependence on medium relative permittivity over a wide polarity range (ϵ r <57.9). This sensing ability of CBDP was not affected by medium pH; viscosity; and most intracellular species, especially reactive oxygen, nitrogen, and sulfur species. Apart from local cytoplasmic polarity quantification through lambda imaging, CBDP enables real-time ratiometric imaging for intracellular polarity oscillation induced by oxidative stimulation. Ratiometric polarity flow cytometry was developed, for the first time, with CBDP, which demonstrated that a high concentration H 2 O 2 induced cytoplasmic polarity enhancement, whereas pre-incubation with N-acetyl-l-cysteine inhibited this effect. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Recovery of Large Angular Scale CMB Polarization for Instruments Employing Variable-Delay Polarization Modulators

    NASA Technical Reports Server (NTRS)

    Miller, N. J.; Chuss, D. T.; Marriage, T. A.; Wollack, E. J.; Appel, J. W.; Bennett, C. L.; Eimer, J.; Essinger-Hileman, T.; Fixsen, D. J.; Harrington, K.; hide

    2016-01-01

    Variable-delay Polarization Modulators (VPMs) are currently being implemented in experiments designed to measure the polarization of the cosmic microwave background on large angular scales because of their capability for providing rapid, front-end polarization modulation and control over systematic errors. Despite the advantages provided by the VPM, it is important to identify and mitigate any time-varying effects that leak into the synchronously modulated component of the signal. In this paper, the effect of emission from a 300 K VPM on the system performance is considered and addressed. Though instrument design can greatly reduce the influence of modulated VPM emission, some residual modulated signal is expected. VPM emission is treated in the presence of rotational misalignments and temperature variation. Simulations of time-ordered data are used to evaluate the effect of these residual errors on the power spectrum. The analysis and modeling in this paper guides experimentalists on the critical aspects of observations using VPMs as front-end modulators. By implementing the characterizations and controls as described, front-end VPM modulation can be very powerful for mitigating 1/ f noise in large angular scale polarimetric surveys. None of the systematic errors studied fundamentally limit the detection and characterization of B-modes on large scales for a tensor-to-scalar ratio of r= 0.01. Indeed, r less than 0.01 is achievable with commensurately improved characterizations and controls.

  1. PALOMA:A Magnetic CV between Polars and Intermediate Polars

    NASA Astrophysics Data System (ADS)

    Joshi, Arti; Pandey, J. C.

    Using observations made with XMM-Newton, we present temporal and spectral analysis of an intermediate polar-like object Paloma. We also interpreted Paloma as a key object for magnetic CV evolution with an orbital period right within the period gap.

  2. Electrically driven polarized single-photon emission from an InGaN quantum dot in a GaN nanowire.

    PubMed

    Deshpande, Saniya; Heo, Junseok; Das, Ayan; Bhattacharya, Pallab

    2013-01-01

    In a classical light source, such as a laser, the photon number follows a Poissonian distribution. For quantum information processing and metrology applications, a non-classical emitter of single photons is required. A single quantum dot is an ideal source of single photons and such single-photon sources in the visible spectral range have been demonstrated with III-nitride and II-VI-based single quantum dots. It has been suggested that short-wavelength blue single-photon emitters would be useful for free-space quantum cryptography, with the availability of high-speed single-photon detectors in this spectral region. Here we demonstrate blue single-photon emission with electrical injection from an In0.25Ga0.75N quantum dot in a single nanowire. The emitted single photons are linearly polarized along the c axis of the nanowire with a degree of linear polarization of ~70%.

  3. Extraordinary Activity in the BL Lac Object OJ 287

    NASA Astrophysics Data System (ADS)

    Hughes, P. A.; Aller, H. D.; Aller, M. F.

    We present the results of a wavelet transform analysis of data for the BL Lac object OJ 287 acquired as part of the UMRAO variability program. We find clear evidence for a persistent modulation of the total flux and polarization with period 1.66 years, and for another signal that dominates activity in the 1980s with period 1.12 years. It appears that the longer time scale periodicity is associated with an otherwise quiescent jet, and the shorter time scale activity is associated with the passage of a shock, or shocks. The periodic behavior in polarization exhibits excursions in U which correspond to a direction 45circ from the VLBI jet axis. This behavior suggests a small amplitude, cyclic variation in the flow direction in that part of the flow that dominates cm-wavelength emission.

  4. Active polarization descattering.

    PubMed

    Treibitz, Tali; Schechner, Yoav Y

    2009-03-01

    Vision in scattering media is important but challenging. Images suffer from poor visibility due to backscattering and attenuation. Most prior methods for scene recovery use active illumination scanners (structured and gated), which can be slow and cumbersome, while natural illumination is inapplicable to dark environments. The current paper addresses the need for a non-scanning recovery method, that uses active scene irradiance. We study the formation of images under widefield artificial illumination. Based on the formation model, the paper presents an approach for recovering the object signal. It also yields rough information about the 3D scene structure. The approach can work with compact, simple hardware, having active widefield, polychromatic polarized illumination. The camera is fitted with a polarization analyzer. Two frames of the scene are taken, with different states of the analyzer or polarizer. A recovery algorithm follows the acquisition. It allows both the backscatter and the object reflection to be partially polarized. It thus unifies and generalizes prior polarization-based methods, which had assumed exclusive polarization of either of these components. The approach is limited to an effective range, due to image noise and illumination falloff. Thus, the limits and noise sensitivity are analyzed. We demonstrate the approach in underwater field experiments.

  5. Spectroscopic Study of the Polar BS Tri

    NASA Astrophysics Data System (ADS)

    Borisov, N. V.; Gabdeev, M. M.; Shimansky, V. V.; Katysheva, N. A.; Shugarov, S. Yu.

    2015-11-01

    We have analyzed the spectra of the cataclysmic variable BS Tri taken in September 2011 and August 2012 with the 6-m BTA SAO RAS telescope. The object's spectra exhibit a flat continuum with superimposed strong hydrogen Balmer, neutral and ionized helium emission lines. Our analysis of the line profiles has shown that they consist of several components that are formed in the accretion structure and on the irradiated red dwarf surface. The measured radial velocities of one of the components of the line forming in a spot on the red dwarf surface have allowed the parameters of the system to be estimated: M 1 = 0.75 ± 0.02 M ⊙, M 2 = 0.16 ± 0.01 M ⊙, q = 0.21 ± 0.02, and R L2 = 0.18 ± 0.02 R ⊙. The Doppler maps constructed from the emission lines show no disk accretion, defining the system as a polar.

  6. Spectral and photometric studies of the polar USNO-A2.0 0825-18396733

    NASA Astrophysics Data System (ADS)

    Gabdeev, M. M.; Borisov, N. V.; Shimansky, V. V.; Spiridonova, O. I.

    2015-03-01

    Results of photometric and spectral studies of the new magnetic cataclysmic variable (polar) USNO-A2.0 0825-18396733 are presented. Photometric data in the B, V, and R c filters show that this object exhibits a red excess of R c - V = 1 m . A red continuum with superposed strong single-peaked Balmer emission lines and HeII λ4686 Å emission, weak lines of neutral helium, and lines of heavy elements are observed in the object's spectra. Doppler maps constructed using the hydrogen and ionized-helium lines indicate that these lines form near the inner Lagrangian point, and that their formation is associated with an accretion stream. The spectra and radial-velocity curves indicate the eclipse of the white dwarf in the system to be partial. Radial-velocity curves derived for emission lines are used to estimate the component masses. The mass of the white dwarf is estimated to be 0.71-0.78 M ⊙, and the mass of the red dwarf to be 0.18-0.20 M ⊙.

  7. Nondestructive inspection of explosive materials using linearly polarized two-colored photon beam

    NASA Astrophysics Data System (ADS)

    Toyokawa, H.; Hayakawa, T.; Shizuma, T.; Hajima, R.; Masuda, K.; Ohgaki, H.

    2011-10-01

    A nondestructive inspection method for screening explosive materials that are hidden in passenger vehicles, trucks, and cargo containers with radiation shielding was presented. The method was examined experimentally using linearly polarized two-colored photon beam. A sample object was irradiated with the photon beam, followed by an emission of gamma-rays in nuclear resonance fluorescence. The gamma-rays from oxygen and nitrogen emitted through nuclear resonance fluorescence were measured using high-purity germanium detectors. We were able to evaluate the element concentration ratio.

  8. Promoting Diversity Through Polar Interdisciplinary Coordinated Education (Polar ICE)

    NASA Astrophysics Data System (ADS)

    McDonnell, J. D.; Hotaling, L. A.; Garza, C.; Van Dyk, P. B.; Hunter-thomson, K. I.; Middendorf, J.; Daniel, A.; Matsumoto, G. I.; Schofield, O.

    2017-12-01

    Polar Interdisciplinary Coordinated Education (ICE) is an education and outreach program designed to provide public access to the Antarctic and Arctic regions through polar data and interactions with the scientists. The program provides multi-faceted science communication training for early career scientists that consist of a face-to face workshop and opportunities to apply these skills. The key components of the scientist training workshop include cultural competency training, deconstructing/decoding science for non-expert audiences, the art of telling science stories, and networking with members of the education and outreach community and reflecting on communication skills. Scientists partner with educators to provide professional development for K-12 educators and support for student research symposia. Polar ICE has initiated a Polar Literacy initiative that provides both a grounding in big ideas in polar science and science communication training designed to underscore the importance of the Polar Regions to the public while promoting interdisciplinary collaborations between scientists and educators. Our ultimate objective is to promote STEM identity through professional development of scientists and educators while developing career awareness of STEM pathways in Polar science.

  9. ALGORITHMS AND PROGRAMS FOR STRONG GRAVITATIONAL LENSING IN KERR SPACE-TIME INCLUDING POLARIZATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Bin; Maddumage, Prasad; Kantowski, Ronald

    2015-05-15

    Active galactic nuclei (AGNs) and quasars are important astrophysical objects to understand. Recently, microlensing observations have constrained the size of the quasar X-ray emission region to be of the order of 10 gravitational radii of the central supermassive black hole. For distances within a few gravitational radii, light paths are strongly bent by the strong gravity field of the central black hole. If the central black hole has nonzero angular momentum (spin), then a photon’s polarization plane will be rotated by the gravitational Faraday effect. The observed X-ray flux and polarization will then be influenced significantly by the strong gravitymore » field near the source. Consequently, linear gravitational lensing theory is inadequate for such extreme circumstances. We present simple algorithms computing the strong lensing effects of Kerr black holes, including the effects on polarization. Our algorithms are realized in a program “KERTAP” in two versions: MATLAB and Python. The key ingredients of KERTAP are a graphic user interface, a backward ray-tracing algorithm, a polarization propagator dealing with gravitational Faraday rotation, and algorithms computing observables such as flux magnification and polarization angles. Our algorithms can be easily realized in other programming languages such as FORTRAN, C, and C++. The MATLAB version of KERTAP is parallelized using the MATLAB Parallel Computing Toolbox and the Distributed Computing Server. The Python code was sped up using Cython and supports full implementation of MPI using the “mpi4py” package. As an example, we investigate the inclination angle dependence of the observed polarization and the strong lensing magnification of AGN X-ray emission. We conclude that it is possible to perform complex numerical-relativity related computations using interpreted languages such as MATLAB and Python.« less

  10. Algorithms and Programs for Strong Gravitational Lensing In Kerr Space-time Including Polarization

    NASA Astrophysics Data System (ADS)

    Chen, Bin; Kantowski, Ronald; Dai, Xinyu; Baron, Eddie; Maddumage, Prasad

    2015-05-01

    Active galactic nuclei (AGNs) and quasars are important astrophysical objects to understand. Recently, microlensing observations have constrained the size of the quasar X-ray emission region to be of the order of 10 gravitational radii of the central supermassive black hole. For distances within a few gravitational radii, light paths are strongly bent by the strong gravity field of the central black hole. If the central black hole has nonzero angular momentum (spin), then a photon’s polarization plane will be rotated by the gravitational Faraday effect. The observed X-ray flux and polarization will then be influenced significantly by the strong gravity field near the source. Consequently, linear gravitational lensing theory is inadequate for such extreme circumstances. We present simple algorithms computing the strong lensing effects of Kerr black holes, including the effects on polarization. Our algorithms are realized in a program “KERTAP” in two versions: MATLAB and Python. The key ingredients of KERTAP are a graphic user interface, a backward ray-tracing algorithm, a polarization propagator dealing with gravitational Faraday rotation, and algorithms computing observables such as flux magnification and polarization angles. Our algorithms can be easily realized in other programming languages such as FORTRAN, C, and C++. The MATLAB version of KERTAP is parallelized using the MATLAB Parallel Computing Toolbox and the Distributed Computing Server. The Python code was sped up using Cython and supports full implementation of MPI using the “mpi4py” package. As an example, we investigate the inclination angle dependence of the observed polarization and the strong lensing magnification of AGN X-ray emission. We conclude that it is possible to perform complex numerical-relativity related computations using interpreted languages such as MATLAB and Python.

  11. Interferometric Observation of the Highly Polarized SiO Maser Emission from the v = 1, J = 5-4 Transition Associated with VY Canis Majoris

    NASA Astrophysics Data System (ADS)

    Shinnaga, Hiroko; Moran, James M.; Young, Ken H.; Ho, Paul T. P.

    2004-11-01

    We used the Submillimeter Array to image the SiO maser emission in the v=1, J=5-4 transition associated with the peculiar red supergiant VY Canis Majoris. We identified seven maser components and measured their relative positions and linear polarization properties. Five of the maser components are coincident to within about 150 mas (~200 AU at the distance of 1.5 kpc); most of them may originate in the circumstellar envelope at a radius of about 50 mas from the star along with the SiO masers in the lowest rotational transitions. Our measurements show that two of the maser components may be offset from the inner stellar envelope (at the 3 σ level of significance) and may be part of a larger bipolar outflow associated with VY CMa identified by Shinnaga et al. The strongest maser feature at a velocity of 35.9 km s-1 has a 60% linear polarization, and its polarization direction is aligned with the bipolar axis. Such a high degree of polarization suggests that maser inversion is due to radiative pumping. Five of the other maser features have significant linear polarization.

  12. Vacuum polarization and Hawking radiation

    NASA Astrophysics Data System (ADS)

    Rahmati, Shohreh

    Quantum gravity is one of the interesting fields in contemporary physics which is still in progress. The purpose of quantum gravity is to present a quantum description for spacetime at 10-33cm or find the 'quanta' of gravitational interaction.. At present, the most viable theory to describe gravitational interaction is general relativity which is a classical theory. Semi-classical quantum gravity or quantum field theory in curved spacetime is an approximation to a full quantum theory of gravity. This approximation considers gravity as a classical field and matter fields are quantized. One interesting phenomena in semi-classical quantum gravity is Hawking radiation. Hawking radiation was derived by Stephen Hawking as a thermal emission of particles from the black hole horizon. In this thesis we obtain the spectrum of Hawking radiation using a new method. Vacuum is defined as the possible lowest energy state which is filled with pairs of virtual particle-antiparticle. Vacuum polarization is a consequence of pair creation in the presence of an external field such as an electromagnetic or gravitational field. Vacuum polarization in the vicinity of a black hole horizon can be interpreted as the cause of the emission from black holes known as Hawking radiation. In this thesis we try to obtain the Hawking spectrum using this approach. We re-examine vacuum polarization of a scalar field in a quasi-local volume that includes the horizon. We study the interaction of a scalar field with the background gravitational field of the black hole in the desired quasi-local region. The quasi-local volume is a hollow cylinder enclosed by two membranes, one inside the horizon and one outside the horizon. The net rate of particle emission can be obtained as the difference of the vacuum polarization from the outer boundary and inner boundary of the cylinder. Thus we found a new method to derive Hawking emission which is unitary and well defined in quantum field theory.

  13. Smart Sensing Methodology for Object Identification Using Circularly Polarized Luminescence from Coordination-Driven Self-Assembly.

    PubMed

    Imai, Yuki; Nakano, Yuka; Kawai, Tsuyoshi; Yuasa, Junpei

    2018-05-21

    This work demonstrates a potential use of circularly polarized luminescence for object identification methodology in a sensor application. Towards this aim, we have developed new luminescence probes using pyrene derivatives as sensor luminophores. The probes [(R,R)- and (S,S)-Im2Py] contain two chiral imidazole moieties at 1,6-positions through ethynyl spacers (the angle between the spacers is close to 180°). The probe molecules spontaneously self-assemble into chiral stacks (P or M helicity) upon coordination to metal ions with tetrahedral coordination preference (e.g., Zn2+). The chiral probes display neither circular dichroism (CD) nor circularly polarized luminescence (CPL) in the absence of metal ions. However, [(R,R)- and (S,S)-Im2Py] begins to exhibit intense chiroptical activity (CD and CPL) upon self-assembly with Zn2+ ions. The unique chiroptical properties of [(R,R)- and (S,S)-Im2Py] with chemical stimuli-responsibility are capable of demonstrating the new sensing methodology using the CPL signal as detection output, enabling us to discriminate between a signal from the target analyte and that from non-target species. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Yb-doped polarizing fiber

    NASA Astrophysics Data System (ADS)

    Gillooly, A.; Webb, A. S.; Favero, F. C.; Bouchan, T.; Cooper, L. J.; Read, D.; Hill, M.

    2017-02-01

    An ytterbium (Yb) doped polarizing fiber is demonstrated. The fiber offers the opportunity to build all-fiber lasers with single polarization output and without the need for free-space polarizing components. Traditional single polarization fiber lasers utilize polarization-maintaining (PM) gain fiber with a single polarization stimulation signal. Whilst this results in an approximation to a single polarization laser, the spontaneous emission from the unstimulated polarization state limits the polarization extinction ratio (PER). The PER is further limited as the stimulated signal is prone to crosstalk. Furthermore, controlling amplitude modulation of the stimulated signal is critical for maximizing the peak power of an optical pulse, particularly for high energy lasers. If light is allowed to leak in to the unstimulated axis it will travel at a different velocity to the stimulated axis and can cross-couple back into the signal axis, creating an interference effect which leads to amplitude modulation on the signal pulse. Single-polarization Yb-doped fiber ensures that light on the fast axis is constantly attenuated; ensuring that light on the unstimulated axis cannot propagate and thus cannot degrade the PER or create amplitude modulation. In this paper we report on, to the best of our knowledge, the first demonstration of a single polarization Yb-doped bowtie optical fiber manufactured using a combination of Modified Chemical Vapor Deposition (MCVD) and rare-earth solution doping technology. The fiber has a single-polarization window of 80nm at the operating wavelength of 1060nm and a PER of >18dB. The fabrication and characterization of the fiber is reported.

  15. RECOVERY OF LARGE ANGULAR SCALE CMB POLARIZATION FOR INSTRUMENTS EMPLOYING VARIABLE-DELAY POLARIZATION MODULATORS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, N. J.; Marriage, T. A.; Appel, J. W.

    2016-02-20

    Variable-delay Polarization Modulators (VPMs) are currently being implemented in experiments designed to measure the polarization of the cosmic microwave background on large angular scales because of their capability for providing rapid, front-end polarization modulation and control over systematic errors. Despite the advantages provided by the VPM, it is important to identify and mitigate any time-varying effects that leak into the synchronously modulated component of the signal. In this paper, the effect of emission from a 300 K VPM on the system performance is considered and addressed. Though instrument design can greatly reduce the influence of modulated VPM emission, some residualmore » modulated signal is expected. VPM emission is treated in the presence of rotational misalignments and temperature variation. Simulations of time-ordered data are used to evaluate the effect of these residual errors on the power spectrum. The analysis and modeling in this paper guides experimentalists on the critical aspects of observations using VPMs as front-end modulators. By implementing the characterizations and controls as described, front-end VPM modulation can be very powerful for mitigating 1/f noise in large angular scale polarimetric surveys. None of the systematic errors studied fundamentally limit the detection and characterization of B-modes on large scales for a tensor-to-scalar ratio of r = 0.01. Indeed, r < 0.01 is achievable with commensurately improved characterizations and controls.« less

  16. Time Resolved Spectroscopy of Eclipsing Polars

    NASA Technical Reports Server (NTRS)

    Barrett, Paul

    2005-01-01

    No changes have been made since the last annual progress report was submitted in conjunction with a unilateral NCX. Dr. Barrett was affected by an STScI Reduction in Force (RIF). He is now employed by the Johns Hopkins University and plans to continue his research there. No expenses have been charged to this grant, however the FUSE data for the eclipsing polar V1432 Aql has been received and processed using CALFWSE v3.0.6. The resulting summed spectrum has been used for a preliminary analysis of the interstellar absorption towards V1432 Aql. We find a hydrogen column density of less than 1.5e21 cm^-2. We have used this result in the paper "X-Ray Emission and Optical Polarization of V1432 Aquilae: An Asynchronous Polar" to fix the hydrogen column density in the soft (<0.5 keV) X-ray band when analyzing the XMM-Newton spectra of this polar. This has enabled us to find an accurate temperature for the blackbody component of 88+/-2 eV, which is significantly higher than that of other polars (20 - 40 eV). We hope to complete our analysis of the phase-resolved emission line spectra of V1432 Aql and to prepare the results for publication in a refereed journal. We hope to begin work on this star within the next few months.

  17. Polarization of the changing-look quasar J1011+5442

    NASA Astrophysics Data System (ADS)

    Hutsemékers, D.; Agís González, B.; Sluse, D.; Ramos Almeida, C.; Acosta Pulido, J.-A.

    2017-07-01

    If the disappearance of the broad emission lines observed in changing-look quasars were caused by the obscuration of the quasar core through moving dust clouds in the torus, high linear polarization typical of type 2 quasars would be expected. We measured the polarization of the changing-look quasar J1011+5442 in which the broad emission lines have disappeared between 2003 and 2015. We found a polarization degree compatible with null polarization. This measurement suggests that the observed change of look is not due to a change of obscuration hiding the continuum source and the broad line region, and that the quasar is seen close to the system axis. Our results thus support the idea that the vanishing of the broad emission lines in J1011+5442 is due to an intrinsic dimming of the ionizing continuum source that is most likely caused by a rapid decrease in the rate of accretion onto the supermassive black hole. Based on observations made with the William Herschel telescope operated on the island of La Palma by the Isaac Newton Group of Telescopes in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofísica de Canarias.

  18. Modern applications of terahertz emission spectroscopy

    NASA Astrophysics Data System (ADS)

    Harrel, Shayne Matthew

    Terahertz (THz) emission spectroscopy (TES) is newly developed experimental technique capable of measuring ultrafast dynamics in a variety of systems. Unlike pump-probe spectroscopies where the signals are obtained indirectly, the THz waveform emitted by the dynamical process serves as the signal field. Information about processes involving a time-dependent magnetization, polarization or current is obtained using TES. The detection scheme is polarization sensitive and allows the direction of the dynamical event to be recovered. The role of solvation on intramolecular charge transfer in DMANS (4-(dimethylamino)-4'-nitrostilbene) is studied using TES in three solvents: benzene, toluene, and 1,3-dichlorobenzene. These solvents have similar molecular structures but different polarities and dielectric constants. The charge transfer dynamics are found to depend on the solvent. A secondary feature in the THz emission appearing 4-6 Ps after the main pulse provides evidence that DMANS may undergo a twisted intramolecular charge transfer state (TICT) upon photoexcitation. The ultrafast magnetization dynamics of polycrystalline Ni and single Fe films ranging in thickness from 5 nm to 60 nm are reported using TES. For samples thicker than the visible optical skin depth, (˜10 nm for Ni and ˜27 nm for Fe), the emission is easily interpreted using Lenz's law. For films thinner than visible optical skin depth, the emission patterns are qualitatively different. These results suggest that there are two generation mechanisms at work: one that arises purely from bulk demagnetization in the thick sample limit and another that is the result of difference frequency generation enhanced by the magnetized surface. A comparative study of the magnetization dynamics of a 40 nm Ni and 40 Fe film shows that the magnetization recovers faster in Fe than in Ni. The dependence of optical rectification and shift currents in unbiased GaAs (111) is reported using TES. It is found that the dependence

  19. The growing population of dark objects that have high emissivity contrast

    NASA Astrophysics Data System (ADS)

    Sunshine, Jessica M.; Kelley, Michael S. P.; McAdam, Margaret M.

    2017-10-01

    At visible and near-infrared wavelengths dark asteroids, Trojan asteroids, and cometary nuclei are largely featureless and are thus characterized and compared primarily based on differences in their spectral slopes. In contrast, in the mid-infrared a series of telescopic observations (e.g., ISO, Spitzer, SOFIA) have revealed subtle but clear silicate emissions in the 9-11 µm region. For the most part, these features are very low in spectral contrast (~5%). However, Emery et al. (2006) showed that Spitzer spectra of Trojan asteroids can have much larger spectral contrast (~10-15%) akin to cometary comae and dust in planetary disks. Similar high-contrast silicate features were found by Kelley et al. (2017) in Spitzer spectra of bare cometary nuclei. Together these results suggest the presence of fine grained and likely highly porous surfaces (Emery et al., 2006; Vernazza et al., 2012). Here we report on archival spectroscopy with the Spitzer Space Telescope that shows two mainbelt asteroids 267 Tirza (D-type; 55 km diameter) and 1284 Lativa (T/L-type; 40 km diameter) also have strong 10 µm silicate emission features. Moreover, the shapes of their silicate features match those of the other Trojan D-types; the best agreement is with 1172 Aneas. If high porosity is responsible for the enhanced spectra contrast in these objects, that porosity must now be explained for objects over an extended range of heliocentric distances, sizes, and that likely have different accretionary and impact histories.

  20. Standoff Mid-Infrared Emissive Imaging Spectroscopy for Identification and Mapping of Materials in Polychrome Objects.

    PubMed

    Gabrieli, Francesca; Dooley, Kathryn A; Zeibel, Jason G; Howe, James D; Delaney, John K

    2018-06-18

    Microscale mid-infrared (mid-IR) imaging spectroscopy is used for the mapping of chemical functional groups. The extension to macroscale imaging requires that either the mid-IR radiation reflected off or that emitted by the object be greater than the radiation from the thermal background. Reflectance spectra can be obtained using an active IR source to increase the amount of radiation reflected off the object, but rapid heating of greater than 4 °C can occur, which is a problem for paintings. Rather than using an active source, by placing a highly reflective tube between the painting and camera and introducing a low temperature source, thermal radiation from the room can be reduced, allowing the IR radiation emitted by the painting to dominate. Thus, emissivity spectra of the object can be recovered. Using this technique, mid-IR emissivity image cubes of paintings were collected at high collection rates with a low-noise, line-scanning imaging spectrometer, which allowed pigments and paint binders to be identified and mapped. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. ipole: Semianalytic scheme for relativistic polarized radiative transport

    NASA Astrophysics Data System (ADS)

    Moscibrodzka, Monika; Gammie, Charles F.

    2018-04-01

    ipole is a ray-tracing code for covariant, polarized radiative transport particularly useful for modeling Event Horizon Telescope sources, though may also be used for other relativistic transport problems. The code extends the ibothros scheme for covariant, unpolarized transport using two representations of the polarized radiation field: in the coordinate frame, it parallel transports the coherency tensor, and in the frame of the plasma, it evolves the Stokes parameters under emission, absorption, and Faraday conversion. The transport step is as spacetime- and coordinate- independent as possible; the emission, absorption, and Faraday conversion step is implemented using an analytic solution to the polarized transport equation with constant coefficients. As a result, ipole is stable, efficient, and produces a physically reasonable solution even for a step with high optical depth and Faraday depth.

  2. Investigating polarized fluorescence emission of Napthalene Diimide polymer films via Stokes Spectroscopy

    NASA Astrophysics Data System (ADS)

    Ulrich, Steven; Sutch, Thabita; Schweizer, Matthias; Szulczewski, Greg; Barbosa Neto, Newton; Araujo, Paulo; Szulczewski's Group. Collaboration; Nanolab@UA Collaboration

    Structural studies of materials, especially polymers, has been an area of growing interest in the past decades. This is due to the wide variety of physical, optical and chemical properties which can be tuned to obtain desired outcomes. Such polymers include P(NDI2OD-T2) an organic n-type, donor-acceptor polymer. Techniques to measure the structure, chemical and optical properties of these materials include XRD, time resolved spectroscopy and other timely and expensive methods. This work seeks to implement Stokes parameter analysis to create a new spectroscopic method, which can be implemented at a fraction of the cost and with relative ease. This technique, when used to probe P(NDI2OD-T2), has been able to discern information about polymer aggregate formation, energy transfer and out of plane stacking on the basis of solvent choice and sample thickness. Additionally, this technique gives information regarding the polarized emission from excited sources, which could provide insight for increased device performance. College of Arts and Sciences and Center for Information Technology, University of Alabama. CNPq Brazil Grant number 401453/2014-6.

  3. ACCURATE POLARIZATION CALIBRATION AT 800 MHz WITH THE GREEN BANK TELESCOPE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liao, Yu-Wei; Chang, Tzu-Ching; Kuo, Cheng-Yu

    Polarization leakage of foreground synchrotron emission is a critical issue in H i intensity mapping experiments. While the sought-after H i emission is unpolarized, polarized foregrounds such as Galactic and extragalactic synchrotron radiation, if coupled with instrumental impurity, can mimic or overwhelm the H i signals. In this paper, we present the methodology for polarization calibration at 700–900 MHz, applied on data obtained from the Green Bank Telescope (GBT). We use astrophysical sources, both polarized and unpolarized sources including quasars and pulsars, as calibrators to characterize the polarization leakage and control systematic effects in our GBT H i intensity mapping project.more » The resulting fractional errors on polarization measurements on boresight are well controlled to within 0.6%–0.8% of their total intensity. The polarized beam patterns are measured by performing spider scans across both polarized quasars and pulsars. A dominant Stokes I to V leakage feature and secondary features of Stokes I to Q and I to U leakages in the 700–900 MHz frequency range are identified. These characterizations are important for separating foreground polarization leakage from the H i 21 cm signal.« less

  4. Intrinsic Polarization and Tunable Color of Electroluminescence from Organic Single Crystal-based Light-Emitting Devices

    PubMed Central

    Ding, Ran; Feng, Jing; Zhou, Wei; Zhang, Xu-Lin; Fang, Hong-Hua; Yang, Tong; Wang, Hai-Yu; Hotta, Shu; Sun, Hong-Bo

    2015-01-01

    A single crystal-based organic light-emitting device (OLED) with intrinsically polarized and color-tunable electroluminescence (EL) has been demonstrated without any subsequent treatment. The polarization ratio of 5:1 for the transversal-electric (TE) and transversal-magnetic (TM) polarization at the emission peak of 575 nm, and 4.7:1 for the TM to TE polarization at the emission peak of 635 nm, respectively, have been obtained. The emitting color is tunable between yellow, yellow-green and orange by changing the polarization angle. The polarized EL and the polarization-induced color tunability can be attributed to the anisotropic microcavity formed by the BP3T crystal with uniaxial alignment of the molecules. PMID:26207723

  5. Scientific Verification of Faraday Rotation Modulators: Detection of Diffuse Polarized Galactic Emission

    NASA Technical Reports Server (NTRS)

    Moyerman, S.; Bierman, E.; Ade, P. A. R.; Aiken, R.; Barkats, D.; Bischoff, C.; Bock, J. J.; Chiang, H. C.; Dowell, C. D.; Duband, L.; hide

    2012-01-01

    The design and performance of a wide bandwidth linear polarization-modulator based on the Faraday effect is described. Faraday Rotation Modulators (FRMs) are solid-state polarization switches that are capable of modulation up to approx 10 kHz. Six FRMs were utilized during the 2006 observing season in the Background Imaging of Cosmic Extragalactic Polarization (BICEP) experiment; three FRMs were used at each of BICEP fs 100 and 150 GHz frequency bands. The technology was verified through high signal-to-noise detection of Galactic polarization using two of the six FRMs during four observing runs in 2006. The features exhibit strong agreement with BICEP fs measurements of the Galaxy using non-FRM pixels and with the Galactic polarization models. This marks the first detection of high signal-to-noise mm-wave celestial polarization using fast, active optical modulation. The performance of the FRMs during periods when they were not modulated was also analyzed and compared to results from BICEP fs 43 pixels without FRMs.

  6. Fast polarization changes in mm microwave emission of weak multistructured solar bursts

    NASA Technical Reports Server (NTRS)

    Kaufmann, P.; Strauss, F. M.; Costa, J. E. R.; Dennis, B. R.

    1982-01-01

    Circular polarization of weak multistructured solar bursts was measured at mm microwaves with unprecedented sensitivity (0.03 sfu rms) and high time resolution (1ms). It was shown that sudden changes occur in the degree of polarization with time scales of 0.04 to 0.3 s. In most cases the degree of polarization attained maximum values before the maximum flux in both mm microwaves and hard X-rays with time scales of 0.04 to 1.0 s. The timing accuracy in determining the degree of polarization was 40 ms. Physical phenomena are discussed invoking one or a combination of various possible causes for the observed effects. The bursts at mm microwaves were weak compared to the contribution of the preexisting active regions, and therefore the changes in magnetoionic propagation conditions for emerging radiation plays an important role in the observed effects. Composite effects due to more than one polarizing mechanism or more than one polarized spots within the antenna beam are discussed.

  7. Structure and method for controlling the thermal emissivity of a radiating object

    DOEpatents

    DeSteese, John G.; Antoniak, Zenen I.; White, Michael; Peters, Timothy J.

    2004-03-30

    A structure and method for changing or controlling the thermal emissivity of the surface of an object in situ, and thus, changing or controlling the radiative heat transfer between the object and its environment in situ, is disclosed. Changing or controlling the degree of blackbody behavior of the object is accomplished by changing or controlling certain physical characteristics of a cavity structure on the surface of the object. The cavity structure, defining a plurality of cavities, may be formed by selectively removing material(s) from the surface, selectively adding a material(s) to the surface, or adding an engineered article(s) to the surface to form a new radiative surface. The physical characteristics of the cavity structure that are changed or controlled include cavity area aspect ratio, cavity longitudinal axis orientation, and combinations thereof. Controlling the cavity area aspect ratio may be by controlling the size of the cavity surface area, the size of the cavity aperture area, or a combination thereof. The cavity structure may contain a gas, liquid, or solid that further enhances radiative heat transfer control and/or improves other properties of the object while in service.

  8. Multiwaveband Polarimetric Observations of 15 Active Galactic Nuclei at High Frequencies: Correlated Polarization Behavior

    NASA Astrophysics Data System (ADS)

    Jorstad, Svetlana G.; Marscher, Alan P.; Stevens, Jason A.; Smith, Paul S.; Forster, James R.; Gear, Walter K.; Cawthorne, Timothy V.; Lister, Matthew L.; Stirling, Alastair M.; Gómez, José L.; Greaves, Jane S.; Robson, E. Ian

    2007-08-01

    We report on multifrequency linear polarization monitoring of 15 active galactic nuclei containing highly relativistic jets with apparent speeds from ~4c to >40c. The measurements were obtained at optical, 1 mm, and 3 mm wavelengths, and at 7 mm with the Very Long Baseline Array. The data show a wide range in degree of linear polarization among the sources, from <1% to >30%, and interday polarization variability in individual sources. The polarization properties suggest separation of the sample into three groups with low, intermediate, and high variability of polarization in the core at 7 mm (LVP, IVP, and HVP, respectively). The groups are partially associated with the common classification of active galactic nuclei as radio galaxies and quasars with low optical polarization (LVP), BL Lacertae objects (IVP), and highly optically polarized quasars (HVP). Our study investigates correlations between total flux, fractional polarization, and polarization position angle at the different wavelengths. We interpret the polarization properties of the sources in the sample through models in which weak shocks compress turbulent plasma in the jet. The differences in the orientation of sources with respect to the observer, jet kinematics, and abundance of thermal matter external to the jet near the core can account for the diversity in the polarization properties. The results provide strong evidence that the optical polarized emission originates in shocks, most likely situated between the 3 and 7 mm VLBI cores. They also support the idea that the 1 mm core lies at the edge of the transition zone between electromagnetically dominated and turbulent hydrodynamic sections of the jet.

  9. Uncertainties in forecasting the response of polar bears to global climate change

    USGS Publications Warehouse

    Douglas, David C.; Atwood, Todd C.; Butterworth, Andy

    2017-01-01

    Several sources of uncertainty affect how precisely the future status of polar bears (Ursus maritimus) can be forecasted. Foremost are unknowns about the future levels of global greenhouse gas emissions, which could range from an unabated increase to an aggressively mitigated reduction. Uncertainties also arise because different climate models project different amounts and rates of future warming (and sea ice loss)—even for the same emission scenario. There are also uncertainties about how global warming could affect the Arctic Ocean’s food web, so even if climate models project the presence of sea ice in the future, the availability of polar bear prey is not guaranteed. Under a worst-case emission scenario in which rates of greenhouse gas emissions continue to rise unabated to century’s end, the uncertainties about polar bear status center on a potential for extinction. If the species were to persist, it would likely be restricted to a high-latitude refugium in northern Canada and Greenland—assuming a food web also existed with enough accessible prey to fuel weight gains for surviving onshore during the most extreme years of summer ice melt. On the other hand, if emissions were to be aggressively mitigated at the levels proposed in the Paris Climate Agreement, healthy polar bear populations would probably continue to occupy all but the most southern areas of their contemporary summer range. While polar bears have survived previous warming phases—which indicate some resiliency to the loss of sea ice habitat—what is certain is that the present pace of warming is unprecedented and will increasingly expose polar bears to historically novel stressors.

  10. Fluorescence emission and polarization analyses for evaluating binding of ruthenium metalloglycoclusters to lectins and tetanus toxin C-fragment

    NASA Astrophysics Data System (ADS)

    Okada, Tomoko; Minoura, Norihiko

    2011-03-01

    We develop a fluorescent ruthenium metalloglycocluster for use as a powerful molecular probe in evaluating the binding between carbohydrates and lectins by fluorescence emission (FE) and fluorescence polarization (FP) analyses. Changes in the FE and FP of these metalloglycoclusters are measured following the addition of lectin [peanut agglutinin (PNA), Ricinus communis agglutinin 120, Concanavalin A (ConA), or wheat germ agglutinin] or tetanus toxin c-fragment (TCF). After the addition of PNA, the FE spectrum of [Ru(bpy-2Gal)3] shows a new emission peak and the FP value of [Ru(bpy-2Gal)3] increases. Similarly, the FE spectrum of [Ru(bpy-2Glc)3] shows a new emission peak and the FP value increases on addition of ConA. Because other combinations of metalloglycoclusters and lectins show little change, specific binding of galactose to PNA and that of glucose to ConA are confirmed by the FE and FP measurements. Resulting dissociation constants (Kd) prove that the metalloglycoclusters with highly clustered carbohydrates show higher affinity for the respective lectins than those with less clustered carbohydrates. Furthermore, specific binding of [Ru(bpy-2Gal)3] to TCF was confirmed by the FP measurement.

  11. Dynamical control of the emission of a square microlaser via symmetry classes

    NASA Astrophysics Data System (ADS)

    Bittner, S.; Loirette-Pelous, A.; Lafargue, C.; Gozhyk, I.; Ulysse, C.; Dietz, B.; Zyss, J.; Lebental, M.

    2018-04-01

    A major objective in photonics is to tailor the emission properties of microcavities which is usually achieved with specific cavity shapes. Yet the dynamical change of the emission properties during operation would often be advantageous. The implementation of such a method is still a challenging issue. We present an effective procedure for the dynamical control of the emission lobes which relies on the selection of a specific coherent superposition of degenerate modes belonging to different symmetry classes. It is generally applicable to systems exhibiting pairs of degenerate modes. We explored it experimentally and analytically with organic square microlasers, which emit narrow lobes parallel to their sidewalls. By means of the pump polarization, emission lobes are switched on and off selectively with an extinction ratio better than 1 /50 .

  12. Time delay in atomic photoionization with circularly polarized light

    NASA Astrophysics Data System (ADS)

    Ivanov, I. A.; Kheifets, A. S.

    2013-03-01

    We study time delay in atomic photoionization by circularly polarized light. By considering the Li atom in an excited 2p state, we demonstrate a strong time-delay asymmetry between the photoemission of the target electrons that are co- and counter-rotating with the electromagnetic field in the polarization plane. In addition, we observe the time-delay sensitivity to the polar angle of the photoelectron emission in the polarization plane. This modulation depends on the shape and duration of the electromagnetic pulse.

  13. A STUDY OF RADIO POLARIZATION IN PROTOSTELLAR JETS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cécere, Mariana; Velázquez, Pablo F.; De Colle, Fabio

    2016-01-10

    Synchrotron radiation is commonly observed in connection with shocks of different velocities, ranging from relativistic shocks associated with active galactic nuclei, gamma-ray bursts, or microquasars, to weakly or non-relativistic flows such as those observed in supernova remnants. Recent observations of synchrotron emission in protostellar jets are important not only because they extend the range over which the acceleration process works, but also because they allow us to determine the jet and/or interstellar magnetic field structure, thus giving insights into the jet ejection and collimation mechanisms. In this paper, we compute for the first time polarized (synchrotron) and non-polarized (thermal X-ray)more » synthetic emission maps from axisymmetrical simulations of magnetized protostellar jets. We consider models with different jet velocities and variability, as well as a toroidal or helical magnetic field. Our simulations show that variable, low-density jets with velocities of ∼1000 km s{sup −1} and ∼10 times lighter than the environment can produce internal knots with significant synchrotron emission and thermal X-rays in the shocked region of the leading bow shock moving in a dense medium. While models with a purely toroidal magnetic field show a very large degree of polarization, models with a helical magnetic field show lower values and a decrease of the degree of polarization, in agreement with observations of protostellar jets.« less

  14. New test of weak equivalence principle using polarized light from astrophysical events

    NASA Astrophysics Data System (ADS)

    Wu, Xue-Feng; Wei, Jun-Jie; Lan, Mi-Xiang; Gao, He; Dai, Zi-Gao; Mészáros, Peter

    2017-05-01

    Einstein's weak equivalence principle (WEP) states that any freely falling, uncharged test particle follows the same identical trajectory independent of its internal structure and composition. Since the polarization of a photon is considered to be part of its internal structure, we propose that polarized photons from astrophysical transients, such as gamma-ray bursts (GRBs) and fast radio bursts (FRBs), can be used to constrain the accuracy of the WEP through the Shapiro time delay effect. Assuming that the arrival time delays of photons with different polarizations are mainly attributed to the gravitational potential of the Laniakea supercluster of galaxies, we show that a strict upper limit on the differences of the parametrized post-Newtonian parameter γ value for the polarized optical emission of GRB 120308A is Δ γ <1.2 ×10-10 , for the polarized gamma-ray emission of GRB 100826A is Δ γ <1.2 ×10-10 , and for the polarized radio emission of FRB 150807 is Δ γ <2.2 ×10-16 . These are the first direct verifications of the WEP for multiband photons with different polarizations. In particular, the result from FRB 150807 provides the most stringent limit to date on a deviation from the WEP, improving by one order of magnitude the previous best result based on Crab pulsar photons with different energies.

  15. Polarization of stacking fault related luminescence in GaN nanorods

    NASA Astrophysics Data System (ADS)

    Pozina, G.; Forsberg, M.; Serban, E. A.; Hsiao, C.-L.; Junaid, M.; Birch, J.; Kaliteevski, M. A.

    2017-01-01

    Linear polarization properties of light emission are presented for GaN nanorods (NRs) grown along [0001] direction on Si(111) substrates by direct-current magnetron sputter epitaxy. The near band gap photoluminescence (PL) measured at low temperature for a single NR demonstrated an excitonic line at ˜3.48 eV and the stacking faults (SFs) related transition at ˜3.43 eV. The SF related emission is linear polarized in direction perpendicular to the NR growth axis in contrast to a non-polarized excitonic PL. The results are explained in the frame of the model describing basal plane SFs as polymorphic heterostructure of type II, where anisotropy of chemical bonds at the interfaces between zinc blende and wurtzite GaN subjected to in-built electric field is responsible for linear polarization parallel to the interface planes.

  16. Atmospheric Modeling of the Martian Polar Regions: CRISM EPF Coverage During the South Polar Spring Recession

    NASA Astrophysics Data System (ADS)

    Brown, A. J.; McGuire, P.; Wolff, M. J.

    2008-03-01

    We describe efforts to model dust and ice aerosols content and soils and icy surface reflectance in the Martian southern polar region during spring recession (Ls = 152-320) using CRISM emission phase function (EPF) observations.

  17. Polar Bears

    USGS Publications Warehouse

    Amstrup, Steven C.; Douglas, David C.; Reynolds, Patricia E.; Rhode, E.B.

    2002-01-01

    Polar bears (Ursus maritimus) are hunted throughout most of their range. In addition to hunting polar bears of the Beaufort Sea region are exposed to mineral and petroleum extraction and related human activities such as shipping road-building, and seismic testing (Stirling 1990).Little was known at the start of this project about how polar bears move about in their environment, and although it was understood that many bears travel across political borders, the boundaries of populations had not been delineated (Amstrup 1986, Amstrup et al. 1986, Amstrup and DeMaster 1988, Garner et al. 1994, Amstrup 1995, Amstrup et al. 1995, Amstrup 2000).As human populations increase and demands for polar bears and other arctic resources escalate, managers must know the sizes and distributions of the polar bear populations. Resource managers also need reliable estimates of breeding rates, reproductive intervals, litter sizes, and survival of young and adults.Our objectives for this research were 1) to determine the seasonal and annual movements of polar bears in the Beaufort Sea, 2) to define the boundaries of the population(s) using this region, 3) to determine the size and status of the Beaufort Sea polar bear population, and 4) to establish reproduction and survival rates (Amstrup 2000).

  18. The polarization and ultraviolet spectrum of Markarian 231

    NASA Technical Reports Server (NTRS)

    Smith, Paul S.; Schmidt, Gary D.; Allen, Richard G.; Angel, J. R. P.

    1995-01-01

    Ultraviolet spectropolarimetry acquired with the Hubble Space Telescope (HST) of the peculiar Seyfert galaxy Mrk 231 is combined with new high-quality ground-based measurements to provide the first, nearly complete, record of its linear polarization from 1575 to 7900 A. The accompanying ultraviolet spectrum portrays the heavily extinguished emission-line spectrum of the active nucleus plus the emergence of a blue continuum shortward of approximately 2400 A. In addition, absorption features due to He I lambda 3188, Mg I lambda 2853, Mg II lambda 2798, and especially several resonance multiplets of Fe II are identified with a well-known optical absorption system blueshifted approximately 4600 km/s with respect to emission lines. The continuum is attributed to approximately 10(exp 5) hot, young stars surrounding the nucleus. This component dilutes the polarized nuclear light, implying that the intrinsic polarization of the active galactic nucleus (AGN) spectrum approaches 20% at 2800 A. The rapid decline in degree of polarization toward longer wavelengths is best explained by the strongly frequency-dependent scattering cross section of dust grains coupled with modest starlight dilution. Peculiar S-shaped inflections in both the degree and position angle of polarization through H alpha and other major emission lines are interpreted as effects of scattering from two regions offset in velocity by several hundred km/s. A third source of (weakly) polarized flux is required to explain a nearly 40 deg rotation in position angle between 3200 and 1800 A. The displaced absorption features, polarimetry, and optical/infrared properties of Mrk 231 all point to its classification as a low-ionization, or Mg II broad absorption line quasar, in which most, if not all, lines of sight to the active nucleus are heavily obscured by dust and low-ionization gas clouds.

  19. Dynamic polarization vision in mantis shrimps

    PubMed Central

    Daly, Ilse M.; How, Martin J.; Partridge, Julian C.; Temple, Shelby E.; Marshall, N. Justin; Cronin, Thomas W.; Roberts, Nicholas W.

    2016-01-01

    Gaze stabilization is an almost ubiquitous animal behaviour, one that is required to see the world clearly and without blur. Stomatopods, however, only fix their eyes on scenes or objects of interest occasionally. Almost uniquely among animals they explore their visual environment with a series pitch, yaw and torsional (roll) rotations of their eyes, where each eye may also move largely independently of the other. In this work, we demonstrate that the torsional rotations are used to actively enhance their ability to see the polarization of light. Both Gonodactylus smithii and Odontodactylus scyllarus rotate their eyes to align particular photoreceptors relative to the angle of polarization of a linearly polarized visual stimulus, thereby maximizing the polarization contrast between an object of interest and its background. This is the first documented example of any animal displaying dynamic polarization vision, in which the polarization information is actively maximized through rotational eye movements. PMID:27401817

  20. The physics of polarization

    NASA Astrophysics Data System (ADS)

    Landi Degl'Innocenti, Egidio

    This course is intended to give a description of the basic physical concepts which underlie the study and the interpretation of polarization phenomena. Apart from a brief historical introduction (Sect. 1), the course is organized in three parts. A first part (Sects. 2 - 6) covers the most relevant facts about the polarization phenomena that are typically encountered in laboratory applications and in everyday life. In Sect. 2, the modern description of polarization in terms of the Stokes parameters is recalled, whereas Sect. 3 is devoted to introduce the basic tools of laboratory polarimetry, such as the Jones calculus and the Mueller matrices. The polarization phenomena which are met in the reflection and refraction of a beam of radiation at the separation surface between two dielectrics, or between a dielectric and a metal, are recalled in Sect. 4. Finally, Sect. 5 gives an introduction to the phenomena of dichroism and of anomalous dispersion and Sect. 6 summarizes the polarization phenomena that are commonly encountered in everyday life. The second part of this course (Sects. 7-14) deals with the description, within the formalism of classical physics, of the spectro-polarimetric properties of the radiation emitted by accelerated charges. Such properties are derived by taking as starting point the Liénard and Wiechert equations that are recalled and discussed in Sect. 7 both in the general case and in the non-relativistic approximation. The results are developed to find the percentage polarization, the radiation diagram, the cross-section and the spectral characteristics of the radiation emitted in different phenomena particularly relevant from the astrophysical point of view. The emission of a linear antenna is derived in Sect. 8. The other Sections are devoted to Thomson scattering (Sect. 9), Rayleigh scattering (Sect. 10), Mie scattering (Sect. 11), bremsstrahlung radiation (Sect. 12), cyclotron radiation (Sect. 13), and synchrotron radiation (Sect. 14

  1. AKARI Near-infrared Spectroscopy of the Extended Green Object G318.05+0.09: Detection of CO Fundamental Ro-vibrational Emission

    NASA Astrophysics Data System (ADS)

    Onaka, Takashi; Mori, Tamami; Sakon, Itsuki; Ardaseva, Aleksandra

    2016-10-01

    We present the results of near-infrared (2.5-5.4 μm) long-slit spectroscopy of the extended green object (EGO) G318.05+0.09 with AKARI. Two distinct sources are found in the slit. The brighter source has strong red continuum emission with H2O ice, CO2 ice, and CO gas and ice absorption features at 3.0, 4.25 μm, 4.67 μm, respectively, while the other greenish object shows peculiar emission that has double peaks at around 4.5 and 4.7 μm. The former source is located close to the ultra compact H II region IRAS 14498-5856 and is identified as an embedded massive young stellar object (YSO). The spectrum of the latter source can be interpreted by blueshifted (-3000 ˜ -6000 km s-1) optically thin emission of the fundamental ro-vibrational transitions (v=1{--}0) of CO molecules with temperatures of 12000-3700 K without noticeable H2 and H I emission. We discuss the nature of this source in terms of outflow associated with the young stellar object and supernova ejecta associated with a supernova remnant.

  2. Near-infrared polarization in the bipolar outflow OH 0739-14

    NASA Technical Reports Server (NTRS)

    Shure, Mark; Sellgren, K.; Jones, T. J.; Klebe, D.

    1995-01-01

    We present linear polarization observations of the bipolar outlfow source OH 0739-14 from 1.2 to 3.6 micrometers. The high levels of polarization (approximatly 47% in the bipolar lobes) and the angles of the vectors in the outflow lobes imply that the 1.2-3.6 micrometer polarization is due to single scattering by dust grains of light from the central source or from its immediate vicinity. Our polarization measurements, combined with phase-lag measurements of variability in the nebula by Kastner et al. (1992), tightly constrain the inclination angle i between the bipolar axis and the plane of the sky to be 35 deg less than or = i less than or = 37 deg. We observe the percentage polarization of the bipolar lobes to be constant with wavelength from 1.2 to 3.6 micrometers, which rules out any significant contribution by unpolarized emission, such as tiny grain emission, to the 3.6 micrometer emission. We propose to explain the K-L' color of the nebula as due to illumination by both the central star and by thermal emission from dust in a surrounding circumstellar shell with a dust temperature of 600-1000 K. Using this model, we find a relatively high minimum scattering optical depth at 3.75 micrometers of tau omega greater than 0.1. This is difficult to reconcile with Rayleigh scattering, which would then imply optically thick scattering at wavelengths of 1.2 and 1.65 micrometers, in constrast to the observations. We also find that the albedo of the grains at 3.75 micrometers and probably at 2.2 micrometers is higher than predicted for normal interstellar grains.

  3. Pearson-Readhead Survey Sources. II. The Long-Term Centimeter-Band Total Flux and Linear Polarization Properties of a Complete Radio Sample

    NASA Astrophysics Data System (ADS)

    Aller, M. F.; Aller, H. D.; Hughes, P. A.

    2003-03-01

    higher polarizations, ranging from 1% to 3%; this frequency dependence supports a scenario invoking Faraday depolarization by a circumnuclear torus. We have identified preferred orientations of the electric vector of the polarized emission (EVPA) at 14.5 and 4.8 GHz in roughly half of the objects and compared these with orientations of the flow direction indicated by VLBI morphology. When comparing the distributions of the orientation offsets for the BL Lac objects and the QSOs, we find differences in both range and mean value, in support of intrinsic class differences. In the shock-in-jet scenario, we attribute this to the allowed range of obliquities of shocks developing in the flow relative to the flow direction: in the BL Lac objects the shocks are nearly transverse to the flow direction, while in the QSOs they include a broader range of obliquities and can be at large angles to it. The fact that we find long-term stability in EVPA over many events implies that a dominant magnetic field orientation persists; in the core-dominated objects, with small contribution from the underlying quiescent jet, this plausibly suggests that the magnetic field has a long-term memory, with subsequent shock events exhibiting similar EVPA orientation, or, alternatively, the presence of a standing shock in the core. We have looked for systematic, monotonic changes in EVPA, which might be expected in the emission from a precessing jet, a model currently invoked for some AGNs; none were identified. Further, we carried out a Scargle periodogram analysis of the total flux density observations, but found no strong evidence for periodicity in any of the sample sources. The only well-established case in support of both jet precession and periodic variability remains the non-sample member OJ 287.

  4. Time-dependent inhomogeneous jet models for BL Lac objects

    NASA Technical Reports Server (NTRS)

    Marlowe, A. T.; Urry, C. M.; George, I. M.

    1992-01-01

    Relativistic beaming can explain many of the observed properties of BL Lac objects (e.g., rapid variability, high polarization, etc.). In particular, the broadband radio through X-ray spectra are well modeled by synchrotron-self Compton emission from an inhomogeneous relativistic jet. We have done a uniform analysis on several BL Lac objects using a simple but plausible inhomogeneous jet model. For all objects, we found that the assumed power-law distribution of the magnetic field and the electron density can be adjusted to match the observed BL Lac spectrum. While such models are typically unconstrained, consideration of spectral variability strongly restricts the allowed parameters, although to date the sampling has generally been too sparse to constrain the current models effectively. We investigate the time evolution of the inhomogeneous jet model for a simple perturbation propagating along the jet. The implications of this time evolution model and its relevance to observed data are discussed.

  5. Time-dependent inhomogeneous jet models for BL Lac objects

    NASA Astrophysics Data System (ADS)

    Marlowe, A. T.; Urry, C. M.; George, I. M.

    1992-05-01

    Relativistic beaming can explain many of the observed properties of BL Lac objects (e.g., rapid variability, high polarization, etc.). In particular, the broadband radio through X-ray spectra are well modeled by synchrotron-self Compton emission from an inhomogeneous relativistic jet. We have done a uniform analysis on several BL Lac objects using a simple but plausible inhomogeneous jet model. For all objects, we found that the assumed power-law distribution of the magnetic field and the electron density can be adjusted to match the observed BL Lac spectrum. While such models are typically unconstrained, consideration of spectral variability strongly restricts the allowed parameters, although to date the sampling has generally been too sparse to constrain the current models effectively. We investigate the time evolution of the inhomogeneous jet model for a simple perturbation propagating along the jet. The implications of this time evolution model and its relevance to observed data are discussed.

  6. Polarization characteristic of a room-temperature Co:MgF2 laser.

    PubMed

    Zhang, Zengming M; Cui, Yiben B; Li, Fuli L; Zhang, Guobin B; Pu, Qirong R; Xu, Gaojie J

    2002-02-20

    A study of the polarization characteristic of a Co:MgF2 laser with a 1320-nm YAG pumping laser at room temperature is reported. The thresholds, output energies, and efficiencies of the laser are given at the various polarization states. The more intensive emission is in the pi-polarization pump laser and sigma-polarization laser operation. Performances of the Co:MgF2 lasers are similar for the polarized and unpolarized laser pumping along the optical axis of the crystal.

  7. In-depth Analysis of Land Surface Emissivity using Microwave Polarization Difference Index to Improve Satellite QPE

    NASA Astrophysics Data System (ADS)

    Zheng, Y.; Kirstetter, P. E.; Hong, Y.; Wen, Y.; Turk, J.; Gourley, J. J.

    2015-12-01

    One of primary uncertainties in satellite overland quantitative precipitation estimates (QPE) from passive sensors such as radiometers is the impact on the brightness temperatures by the surface land emissivity. The complexity of surface land emissivity is linked to its temporal variations (diurnal and seasonal) and spatial variations (subsurface vertical profiles of soil moisture, vegetation structure and surface temperature) translating into sub-pixel heterogeneity within the satellite field of view (FOV). To better extract the useful signal from hydrometeors, surface land emissivity needs to be determined and filtered from the satellite-measured brightness temperatures. Based on the dielectric properties of surface land cover constitutes, Microwave Polarization Differential index (MPDI) is expected to carry the composite effect of surface land properties on land surface emissivity, with a higher MPDI indicating a lower emissivity. This study analyses the dependence of MPDI to soil moisture, vegetation and surface skin temperature over 9 different land surface types. Such analysis is performed using the normalized difference vegetation index (NDVI) from MODIS, the near surface air temperature from the RAP model and ante-precedent precipitation accumulation from the Multi-Radar Multi-Sensor as surrogates for the vegetation, surface skin temperature and shallow layer soil moisture, respectively. This paper provides 1) evaluations of brightness temperature-based MPDI from the TRMM and GPM Microwave Imagers in both raining and non-raining conditions to test the dependence of MPDI to precipitation; 2) comparisons of MPDI categorized into instantly before, during and immediately after selected precipitation events to examine the impact of modest-to-heavy precipitation on the spatial pattern of MPDI; 3) inspections of relationship between MPDI versus rain fraction and rain rate within the satellite sensors FOV to investigate the behaviors of MPDI in varying

  8. Exploring Cosmic X-ray Source Polarization

    NASA Technical Reports Server (NTRS)

    Swank, Jean Hebb; Jahodal, K.; Kallman, T. R.; Kaaret, P.

    2008-01-01

    Cosmic X-ray sources are expected to be polarized, either because of their asymmetry and the role of scattering in their emission or the role of magnetic fields. Polarization at other wavelengths has been useful. X-ray polarization will provide a new handle on black hole parameters, in particular the spin, on accretion flows and outflows, on neutron star spin orientations and emission mechanisms, on the quantum mechanical effects of super-strong magnetic fields of magnetars, and on the structure of supernovae shocks. The proposed Gravity and Extreme Magnetism SMEX (GEMS) will use high efficiency polarimeters behind thin foil mirrors. The statistical sensitivity and control of systematics will allow measurement of polarization fractions as small as 1% from many galactic and extragalactic sources. Targets which should be polarized at the level that GEMS can easily measure include stellar black holes, Seyfert galaxies and quasars, blazars, rotation-powered and accretion-powered pulsars, magnetars, shell supernova remnants and pulsar wind nebulae. The polarimeters are Time Projection Chambers that allow reconstruction of images of photoelectron tracks for 2-10 keV Xrays. They can be deep without sacrificing modulation. These polarimeters do not image the sky, but the telescope point spread function and detector collimation allow structure to be resolved at the 10 arcmin level. Rotation of the spacecraft is not needed for the signal measurement in the Time Projection Chambers, but provides for measurement and correction of systematic errors. It also allows a small Bragg reflection soft X-ray experiment to be included that can be used for isolated neutron stars and blazars.

  9. COLLISION-INDUCED MAGNETIC RECONNECTION AND A UNIFIED INTERPRETATION OF POLARIZATION PROPERTIES OF GRBs AND BLAZARS

    DOE PAGES

    Deng; Zhang; Zhang; ...

    2016-04-11

    The jet composition and energy dissipation mechanism of gamma-ray bursts (GRBs) and blazars are fundamental questions that remain not fully understood. One plausible model is to interpret the γ-ray emission of GRBs and optical emission of blazars as synchrotron radiation of electrons accelerated from the collision-induced magnetic dissipation regions in Poynting-flux-dominated jets. The polarization observation is an important and independent information to test this model. Based on our recent 3D relativistic MHD simulations of collision-induced magnetic dissipation of magnetically dominated blobs, here we perform calculations of the polarization properties of the emission in the dissipation region and apply the resultsmore » to model the polarization observational data of GRB prompt emission and blazar optical emission. In this article, we show that the same numerical model with different input parameters can reproduce well the observational data of both GRBs and blazars, especially the 90° polarization angle (PA) change in GRB 100826A and the 180° PA swing in blazar 3C279. This supports a unified model for GRB and blazar jets, suggesting that collision-induced magnetic reconnection is a common physical mechanism to power the relativistic jet emission from events with very different black hole masses.« less

  10. From Dark to Light to Fluorescence Resonance Energy Transfer (FRET): Polarity-Sensitive Aggregation-Induced Emission (AIE)-Active Tetraphenylethene-Fused BODIPY Dyes with a Very Large Pseudo-Stokes Shift.

    PubMed

    Şen, Esra; Meral, Kadem; Atılgan, Serdar

    2016-01-11

    The work presented herein is devoted to the fabrication of large Stokes shift dyes in both organic and aqueous media by combining dark resonance energy transfer (DRET) and fluorescence resonance energy transfer (FRET) in one donor-acceptor system. In this respect, a series of donor-acceptor architectures of 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene (BODIPY) dyes substituted by one, two, or three tetraphenylethene (TPE) luminogens were designed and synthesised. The photophysical properties of these three chromophore systems were studied to provide insight into the nature of donor-acceptor interactions in both THF and aqueous media. Because the generation of emissive TPE donor(s) is strongly polarity dependent, due to its aggregation-induced emission (AIE) feature, one might expect the formation of appreciable fluorescence emission intensity with a very large pseudo-Stokes shift in aqueous media when considering FRET process. Interestingly, similar results were also recorded in THF for the chromophore systems, although the TPE fragment(s) of the dyes are non-emissive. The explanation for this photophysical behaviour lies in the DRET. This is the first report on combining two energy-transfer processes, namely, FRET and DRET, in one polarity-sensitive donor-acceptor pair system. The accuracy of the dark-emissive donor property of the TPE luminogen is also presented for the first time as a new feature for AIE phenomena. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. IR spectral properties of dust and ice at the Mars south polar cap

    NASA Astrophysics Data System (ADS)

    Titus, T. N.; Kieffer, H. H.

    2001-11-01

    Removal of atmospheric dust effects is required to derive surface IR spectral emissivity. Commonly, the atmospheric-surface separation is based on radiative transfer (RT) spectral inversion methods using nadir-pointing observations. This methodology depends on a priori knowledge of the spectral shape of each atmospheric aerosol (e.g. dust or water ice) and a large thermal contrast between the surface and atmosphere. RT methods fail over the polar caps due to low thermal contrast between the atmosphere and the surface. We have used multi-angle Emission Phase Function (EPF) observations to estimate the opacity spectrum of dust over the springtime south polar cap and the underlying surface radiance, and thus, the surface emissivity. We include a few EPFs from Hellas Basin as a basis for comparisons between the spectral shape of polar and non-polar dust. Surface spectral emissivities over the seasonal cap are compared to CO2 models. Our results show that the spectral shape of the polar dust opacity is not constant, but is a two-parameter family that can be characterized by the 9 um and 20 um opacities. The 9 um opacity varies from 0.15 to 0.45 and characterizes the overall atmospheric conditions. The 9 um to 20 um opacity ratio varies from 2.0 to 5.1, suggesting changes in dust size distribution over the polar caps. Derived surface temperatures from the EPFs confirm that the slightly elevated temperatures (relative to CO2 frost temperature) observed in ``cryptic'' regions are a surface effect, not atmospheric. Comparison of broad-band reflectivity and surface emissivities to model spectra suggest the bright regions (e.g. perennial cap, Mountains of Mitchell) have higher albedos due to a thin surface layer of fine-grain CO2 (perhaps either frost or fractured ice) with an underlying layer of either coarse grain or slab CO2 ice.

  12. WhitebalPR: automatic white balance by polarized reflections

    NASA Astrophysics Data System (ADS)

    Fischer, Gregor; Kolbe, Karin; Sajjaa, Matthias

    2008-02-01

    This new color constancy method is based on the polarization degree of that light which is reflected at the surface of an object. The subtraction of at least two images taken under different polarization directions detects the polarization degree of the neutrally reflected portions and eliminates the remitted non-polarized colored portions. Two experiments have been designed to clarify the performance of the procedure, one to multicolored objects and another to objects of different surface characteristics. The results show that the mechanism of eliminating the remitted, non-polarized colored portions of light works very fine. Independent from its color, different color pigments seem to be suitable for measuring the color of the illumination. The intensity and also the polarization degree of the reflected light depend on the surface properties significantly. The results exhibit a high accuracy of measuring the color of the illumination for glossy and matt surfaces. Only strongly scattering surfaces account for a weak signal level of the difference image and a reduced accuracy. An embodiment is proposed to integrate the new method into digital cameras.

  13. The Primordial Inflation Polarization Explorer (PIPER)

    NASA Astrophysics Data System (ADS)

    Gandilo, Natalie; Ade, Peter; Benford, Dominic J.; Bennett, Charles L.; Chuss, David T.; Dotson, Jessie L.; Eimer, Joseph; Fixsen, Dale J.; Halpern, Mark; Hilton, Gene; Hinshaw, Gary F.; Irwin, Kent; Jhabvala, Christine; Kimball, Mark; Kogut, Alan J.; Lowe, Luke; McMahon, Jeff; Miller, Timothy; Mirel, Paul; Moseley, Samuel H.; Pawlyk, Samuel; Rodriguez, Samelys; Sharp, Elmer; Shirron, Peter; Staguhn, Johannes; Sullivan, Dan; Switzer, Eric; Taraschi, Peter; tucker, carole; Wollack, Edward

    2017-01-01

    We present an overview of PIPER, the Primordial Inflation Polarization Explorer. PIPER is a balloon-borne telescope designed to map the large scale polarization of the Cosmic Microwave Background as well as the polarized emission from galactic dust at 200, 270, 350, and 600 GHz, with 21, 15, 14, and 14 arcminutes of angular resolution respectively. PIPER uses twin telescopes with Variable-delay Polarization Modulators to simultaneously map Stokes I, Q, U and V. Cold optics and the lack of a warm window allow the instrument to achieve background limited sensitivity. Over the course of 8 conventional balloon flights from the Northern and Southern hemisphere, PIPER will map 85% of the sky, measuring the B-mode polarization spectrum from the reionization bump to l~300, and placing an upper limit on the tensor-to-scalar ratio of r<0.007. PIPER's first science flight will be in June 2017 from Palestine, Texas.

  14. Polarization-multiplexing ghost imaging

    NASA Astrophysics Data System (ADS)

    Dongfeng, Shi; Jiamin, Zhang; Jian, Huang; Yingjian, Wang; Kee, Yuan; Kaifa, Cao; Chenbo, Xie; Dong, Liu; Wenyue, Zhu

    2018-03-01

    A novel technique for polarization-multiplexing ghost imaging is proposed to simultaneously obtain multiple polarimetric information by a single detector. Here, polarization-division multiplexing speckles are employed for object illumination. The light reflected from the objects is detected by a single-pixel detector. An iterative reconstruction method is used to restore the fused image containing the different polarimetric information by using the weighted sum of the multiplexed speckles based on the correlation coefficients obtained from the detected intensities. Next, clear images of the different polarimetric information are recovered by demultiplexing the fused image. The results clearly demonstrate that the proposed method is effective.

  15. IPOLE - semi-analytic scheme for relativistic polarized radiative transport

    NASA Astrophysics Data System (ADS)

    Mościbrodzka, M.; Gammie, C. F.

    2018-03-01

    We describe IPOLE, a new public ray-tracing code for covariant, polarized radiative transport. The code extends the IBOTHROS scheme for covariant, unpolarized transport using two representations of the polarized radiation field: In the coordinate frame, it parallel transports the coherency tensor; in the frame of the plasma it evolves the Stokes parameters under emission, absorption, and Faraday conversion. The transport step is implemented to be as spacetime- and coordinate- independent as possible. The emission, absorption, and Faraday conversion step is implemented using an analytic solution to the polarized transport equation with constant coefficients. As a result, IPOLE is stable, efficient, and produces a physically reasonable solution even for a step with high optical depth and Faraday depth. We show that the code matches analytic results in flat space, and that it produces results that converge to those produced by Dexter's GRTRANS polarized transport code on a complicated model problem. We expect IPOLE will mainly find applications in modelling Event Horizon Telescope sources, but it may also be useful in other relativistic transport problems such as modelling for the IXPE mission.

  16. A Pan-Carina Young Stellar Object Catalog: Intermediate-mass Young Stellar Objects in the Carina Nebula Identified Via Mid-infrared Excess Emission

    NASA Astrophysics Data System (ADS)

    Povich, Matthew S.; Smith, Nathan; Majewski, Steven R.; Getman, Konstantin V.; Townsley, Leisa K.; Babler, Brian L.; Broos, Patrick S.; Indebetouw, Rémy; Meade, Marilyn R.; Robitaille, Thomas P.; Stassun, Keivan G.; Whitney, Barbara A.; Yonekura, Yoshinori; Fukui, Yasuo

    2011-05-01

    We present a catalog of 1439 young stellar objects (YSOs) spanning the 1.42 deg2 field surveyed by the Chandra Carina Complex Project (CCCP), which includes the major ionizing clusters and the most active sites of ongoing star formation within the Great Nebula in Carina. Candidate YSOs were identified via infrared (IR) excess emission from dusty circumstellar disks and envelopes, using data from the Spitzer Space Telescope (the Vela-Carina survey) and the Two-Micron All Sky Survey. We model the 1-24 μm IR spectral energy distributions of the YSOs to constrain physical properties. Our Pan-Carina YSO Catalog (PCYC) is dominated by intermediate-mass (2 M sun < m <~ 10 M sun) objects with disks, including Herbig Ae/Be stars and their less evolved progenitors. The PCYC provides a valuable complementary data set to the CCCP X-ray source catalogs, identifying 1029 YSOs in Carina with no X-ray detection. We also catalog 410 YSOs with X-ray counterparts, including 62 candidate protostars. Candidate protostars with X-ray detections tend to be more evolved than those without. In most cases, X-ray emission apparently originating from intermediate-mass, disk-dominated YSOs is consistent with the presence of low-mass companions, but we also find that X-ray emission correlates with cooler stellar photospheres and higher disk masses. We suggest that intermediate-mass YSOs produce X-rays during their early pre-main-sequence evolution, perhaps driven by magnetic dynamo activity during the convective atmosphere phase, but this emission dies off as the stars approach the main sequence. Extrapolating over the stellar initial mass function scaled to the PCYC population, we predict a total population of >2 × 104 YSOs and a present-day star formation rate (SFR) of >0.008 M sun yr-1. The global SFR in the Carina Nebula, averaged over the past ~5 Myr, has been approximately constant.

  17. Prism-coupled light emission from tunnel junctions

    NASA Technical Reports Server (NTRS)

    Ushioda, S.; Rutledge, J. E.; Pierce, R. M.

    1985-01-01

    Completely p-polarized light emission has been observed from smooth Al-AlO(x)-Au tunnel junctions placed on a prism coupler. The angle and polarization dependence demonstrate unambiguously that the emitted light is radiated by the fast-mode surface plasmon polariton. The emission spectra suggest that the dominant process for the excitation of the fast mode is through conversion of the slow mode to the fast mode mediated by residual roughness on the junction surface.

  18. Modeling optical and UV polarization of AGNs. IV. Polarization timing

    NASA Astrophysics Data System (ADS)

    Rojas Lobos, P. A.; Goosmann, R. W.; Marin, F.; Savić, D.

    2018-03-01

    Context. Optical observations cannot resolve the structure of active galactic nuclei (AGN), and a unified model for AGN was inferred mostly from indirect methods, such as spectroscopy and variability studies. Optical reverberation mapping allowed us to constrain the spatial dimension of the broad emission line region and thereby to measure the mass of supermassive black holes. Recently, reverberation was also applied to the polarized signal emerging from different AGN components. In principle, this should allow us to measure the spatial dimensions of the sub-parsec reprocessing media. Aim. We conduct numerical modeling of polarization reverberation and provide theoretical predictions for the polarization time lag induced by different AGN components. The model parameters are adjusted to the observational appearance of the Seyfert 1 galaxy NGC 4151. Methods: We modeled scattering-induced polarization and tested different geometries for the circumnuclear dust component. Our tests included the effects of clumpiness and different dust prescriptions. To further extend the model, we also explored the effects of additional ionized winds stretched along the polar direction, and of an equatorial scattering ring that is responsible for the polarization angle observed in pole-on AGN. The simulations were run using a time-dependent version of the STOKES code. Results: Our modeling confirms the previously found polarization characteristics as a function of the observer`s viewing angle. When the dust adopts a flared-disk geometry, the lags reveal a clear difference between type 1 and type 2 AGN. This distinction is less clear for a torus geometry where the time lag is more sensitive to the geometry and optical depth of the inner surface layers of the funnel. The presence of a scattering equatorial ring and ionized outflows increased the recorded polarization time lags, and the polar outflows smooths out dependence on viewing angle, especially for the higher optical depth of the

  19. An Instrument to Measure Polarized CMB Foregrounds at 10 and 15 GHz

    NASA Astrophysics Data System (ADS)

    O'Neill, Hugh

    New CMB experiments are being proposed and built with the goal of eventually resolving the B-mode polarization pattern imprinted in the CMB from a stochastic background of gravitional waves left over from an inflationary epoch in the very early universe. It has been widely acknowledged that the ability to resolve the B-mode polarization pattern in the CMB will require a more sophisticated understanding of the obscuring galactic foreground emission than what currently exists. Of the various galactic foregrounds, synchrotron radiation is identified as both the most polarized, and the most complicated in terms of spectral and spatial variability. The COsmic Foreground Explorer (COFE), described in this dissertation, is a NASA funded balloon borne mission to map polarized galactic foreground emission in two frequency bands, one centered at 10 GHz and the other at 15 GHz. These frequency bands make COFE particularly sensitive to polarized synchrotron radiation, and the separation between these two frequency bands facilitates the discrimination of the synchrotron component from the CMB and other foreground sourced such as free-free emission and spinning dust. COFE was successfully launched in September of 2011, and acquired data during a 22 hour flight. COFE is currently being reconfigured to acquire additional data from a high altitude, ground based observatory.

  20. ALMA Dust Polarization Observations of Two Young Edge-on Protostellar Disks

    NASA Astrophysics Data System (ADS)

    Lee, Chin-Fei; Li, Zhi-Yun; Ching, Tao-Chung; Lai, Shih-Ping; Yang, Haifeng

    2018-02-01

    Polarized emission is detected in two young nearly edge-on protostellar disks in 343 GHz continuum at ∼50 au (∼0.″12) resolution with Atacama Large Millimeter/submillimeter Array. One disk is in HH 212 (Class 0) and the other in the HH 111 (early Class I) protostellar system. The polarization fraction is ∼1%. The disk in HH 212 has a radius of ∼60 au. The emission is mainly detected from the nearside of the disk. The polarization orientations are almost perpendicular to the disk major axis, consistent with either self-scattering or emission by grains aligned with a poloidal field around the outer edge of the disk because of the optical depth effect and temperature gradient; the presence of a poloidal field would facilitate the launching of a disk wind, for which there is already tentative evidence in the same source. The disk of HH 111 VLA 1 has a larger radius of ∼220 au and is thus more resolved. The polarization orientations are almost perpendicular to the disk major axis in the nearside, but more along the major axis in the farside, forming roughly half of an elliptical pattern there. It appears that toroidal and poloidal magnetic field may explain the polarization on the near and far sides of the disk, respectively. However, it is also possible that the polarization is due to self-scattering. In addition, alignment of dust grains by radiation flux may play a role in the farside. Our observations reveal a diversity of disk polarization patterns that should be taken into account in future modeling efforts.

  1. ALMA’s Polarized View of 10 Protostars in the Perseus Molecular Cloud

    NASA Astrophysics Data System (ADS)

    Cox, Erin G.; Harris, Robert J.; Looney, Leslie W.; Li, Zhi-Yun; Yang, Haifeng; Tobin, John J.; Stephens, Ian

    2018-03-01

    We present 870 μm ALMA dust polarization observations of 10 young Class 0/I protostars in the Perseus Molecular Cloud. At ∼0.″35 (80 au) resolution, all of our sources show some degree of polarization, with most (9/10) showing significantly extended emission in the polarized continuum. Each source has incredibly intricate polarization signatures. In particular, all three disk-candidates have polarization vectors roughly along the minor axis, which is indicative of polarization produced by dust scattering. On ∼100 au scales, the polarization is at a relatively low level (≲1%) and is quite ordered. In sources with significant envelope emission, the envelope is typically polarized at a much higher (≳5%) level and has a far more disordered morphology. We compute the cumulative probability distributions for both the small (disk-scale) and large (envelope-scale) polarization percentage. We find that the two are intrinsically different, even after accounting for the different detection thresholds in the high/low surface brightness regions. We perform Kolmogorov–Smirnov and Anderson–Darling tests on the distributions of angle offsets of the polarization from the outflow axis. We find disk-candidate sources are different from the non-disk-candidate sources. We conclude that the polarization on the 100 au scale is consistent with the signature of dust scattering for disk-candidates and that the polarization on the envelope-scale in all sources may come from another mechanism, most likely magnetically aligned grains.

  2. Crop moisture estimation over the southern Great Plains with dual polarization 1.66 centimeter passive microwave data from Nimbus 7

    NASA Technical Reports Server (NTRS)

    Mcfarland, M. J.; Harder, P. H., II; Wilke, G. D.; Huebner, G. L., Jr.

    1984-01-01

    Moisture content of snow-free, unfrozen soil is inferred using passive microwave brightness temperatures from the scanning multichannel microwave radiometer (SMMR) on Nimbus-7. Investigation is restricted to the two polarizations of the 1.66 cm wavelength sensor. Passive microwave estimates of soil moisture are of two basic categories; those based upon soil emissivity and those based upon the polarization of soil emission. The two methods are compared and contrasted through the investigation of 54 potential functions of polarized brightness temperatures and, in some cases, ground-based temperature measurements. Of these indices, three are selected for the estimated emissivity, the difference between polarized brightness temperatures, and the normalized polarization difference. Each of these indices is about equally effective for monitoring soil moisture. Using an antecedent precipitation index (API) as ground control data, temporal and spatial analyses show that emissivity data consistently give slightly better soil moisture estimates than depolarization data. The difference, however, is not statistically significant. It is concluded that polarization data alone can provide estimates of soil moisture in areas where the emissivity cannot be inferred due to nonavailability of surface temperature data.

  3. Radio Emission from Algol. I. Coronal Geometry and Emission Mechanisms Determined from VLBA and Green Bank Interferometer Observations

    NASA Astrophysics Data System (ADS)

    Mutel, R. L.; Molnar, L. A.; Waltman, E. B.; Ghigo, F. D.

    1998-11-01

    We report dual circular polarization VLBA observations of Algol made at orbital phases 0.22-0.30 using a differential phase referencing technique. The flux density of Algol varied from 10 to 20 mJy during the observations. The radio maps show a double-lobed source separated by 1.6 mas (1.4 times the K star diameter). Although the total emission is only weakly circularly polarized, the individual lobes are strongly circularly polarized and of opposite helicity. Snapshot VLBI maps made at 3 hour intervals show variations in the flux density of both components, but no significant motions of the centroids. We also analyze Green Bank Interferometer (GBI) synoptic observations of right- and left-circularly polarized (RCP and LCP) flux densities of Algol at 2.3 and 8.3 GHz several times a day from early 1995 to mid-1997. The resulting data set, which consists of more than 2500 observations over 2 years, is by far the most comprehensive available for any stellar system. In addition, we analyzed GBI observations of the very similar (but noneclipsing) binary system HR 1099 over the same time period in order to compare the two systems. We summarize the GBI observations using several statistical descriptions. We find no phase dependence of either the radio luminosity or circular polarization for either system. The luminosity histograms for the two systems are remarkably similar. The distribution functions are not well represented by exponentials as previously suggested, but can be represented by power laws truncated at low luminosity. The cutoff occurs at 20-30 mJy and may represent emission from a slowly varying basal level that is always detected. We confirm several previous results, including the strong dependence of spectral index on luminosity, the decrease of fractional circular polarization with luminosity, and the dependence of fractional circular polarization on orbital inclination angle. We suggest that the radio emission at 8.3 GHz is x-mode gyrosynchrotron emission

  4. PolarHub: A Global Hub for Polar Data Discovery

    NASA Astrophysics Data System (ADS)

    Li, W.

    2014-12-01

    This paper reports the outcome of a NSF project in developing a large-scale web crawler PolarHub to discover automatically the distributed polar dataset in the format of OGC web services (OWS) in the cyberspace. PolarHub is a machine robot; its goal is to visit as many webpages as possible to find those containing information about polar OWS, extract this information and store it into the backend data repository. This is a very challenging task given huge data volume of webpages on the Web. Three unique features was introduced in PolarHub to make it distinctive from earlier crawler solutions: (1) a multi-task, multi-user, multi-thread support to the crawling tasks; (2) an extensive use of thread pool and Data Access Object (DAO) design patterns to separate persistent data storage and business logic to achieve high extendibility of the crawler tool; (3) a pattern-matching based customizable crawling algorithm to support discovery of multi-type geospatial web services; and (4) a universal and portable client-server communication mechanism combining a server-push and client pull strategies for enhanced asynchronous processing. A series of experiments were conducted to identify the impact of crawling parameters to the overall system performance. The geographical distribution pattern of all PolarHub identified services is also demonstrated. We expect this work to make a major contribution to the field of geospatial information retrieval and geospatial interoperability, to bridge the gap between data provider and data consumer, and to accelerate polar science by enhancing the accessibility and reusability of adequate polar data.

  5. Circular polarization in a non-magnetic resonant tunneling device.

    PubMed

    Dos Santos, Lara F; Gobato, Yara Galvão; Teodoro, Márcio D; Lopez-Richard, Victor; Marques, Gilmar E; Brasil, Maria Jsp; Orlita, Milan; Kunc, Jan; Maude, Duncan K; Henini, Mohamed; Airey, Robert J

    2011-01-25

    We have investigated the polarization-resolved photoluminescence (PL) in an asymmetric n-type GaAs/AlAs/GaAlAs resonant tunneling diode under magnetic field parallel to the tunnel current. The quantum well (QW) PL presents strong circular polarization (values up to -70% at 19 T). The optical emission from GaAs contact layers shows evidence of highly spin-polarized two-dimensional electron and hole gases which affects the spin polarization of carriers in the QW. However, the circular polarization degree in the QW also depends on various other parameters, including the g-factors of the different layers, the density of carriers along the structure, and the Zeeman and Rashba effects.

  6. Circular polarization in a non-magnetic resonant tunneling device

    PubMed Central

    2011-01-01

    We have investigated the polarization-resolved photoluminescence (PL) in an asymmetric n-type GaAs/AlAs/GaAlAs resonant tunneling diode under magnetic field parallel to the tunnel current. The quantum well (QW) PL presents strong circular polarization (values up to -70% at 19 T). The optical emission from GaAs contact layers shows evidence of highly spin-polarized two-dimensional electron and hole gases which affects the spin polarization of carriers in the QW. However, the circular polarization degree in the QW also depends on various other parameters, including the g-factors of the different layers, the density of carriers along the structure, and the Zeeman and Rashba effects. PMID:21711613

  7. Polarization of Rayleigh scattered Lyα in active galactic nuclei

    NASA Astrophysics Data System (ADS)

    Chang, Seok-Jun; Lee, Hee-Won; Yang, Yujin

    2017-02-01

    The unification scheme of active galactic nuclei invokes an optically thick molecular torus component hiding the broad emission line region. Assuming the presence of a thick neutral component in the molecular torus characterized by a H I column density >1022 cm-2, we propose that far-UV radiation around Lyα can be significantly polarized through Rayleigh scattering. Adopting a Monte Carlo technique, we compute polarization of Rayleigh scattered radiation near Lyα in a thick neutral region in the shape of a slab and a cylindrical shell. It is found that radiation near Lyα Rayleigh reflected from a very thick slab can be significantly polarized in a fairly large range of wavelength Δλ ˜ 50 Å exhibiting a flux profile similar to the incident one. Rayleigh transmitted radiation in a slab is characterized by the central dip with a complicated polarization behaviour. The optically thick part near Lyα centre is polarized in the direction perpendicular to the slab normal, which is in contrast to weakly polarized wing parts in the direction parallel to the slab normal. A similar polarization flip phenomenon is also found in the case of a tall cylindrical shell, in which the spatial diffusion along the vertical direction near the inner cylinder wall for core photons leads to a tendency of the electric field aligned to the direction perpendicular to the vertical axis. Observational implications are briefly discussed including spectropolarimetry of the quasar PG 1630+377 by Koratkar et al. in 1990 where Lyα is strongly polarized with no other emission lines polarized.

  8. Directional Statistics for Polarization Observations of Individual Pulses from Radio Pulsars

    NASA Astrophysics Data System (ADS)

    McKinnon, M. M.

    2010-10-01

    Radio polarimetry is a three-dimensional statistical problem. The three-dimensional aspect of the problem arises from the Stokes parameters Q, U, and V, which completely describe the polarization of electromagnetic radiation and conceptually define the orientation of a polarization vector in the Poincaré sphere. The statistical aspect of the problem arises from the random fluctuations in the source-intrinsic polarization and the instrumental noise. A simple model for the polarization of pulsar radio emission has been used to derive the three-dimensional statistics of radio polarimetry. The model is based upon the proposition that the observed polarization is due to the incoherent superposition of two, highly polarized, orthogonal modes. The directional statistics derived from the model follow the Bingham-Mardia and Fisher family of distributions. The model assumptions are supported by the qualitative agreement between the statistics derived from it and those measured with polarization observations of the individual pulses from pulsars. The orthogonal modes are thought to be the natural modes of radio wave propagation in the pulsar magnetosphere. The intensities of the modes become statistically independent when generalized Faraday rotation (GFR) in the magnetosphere causes the difference in their phases to be large. A stochastic version of GFR occurs when fluctuations in the phase difference are also large, and may be responsible for the more complicated polarization patterns observed in pulsar radio emission.

  9. Metasurface integrated high energy efficient and high linearly polarized InGaN/GaN light emitting diode.

    PubMed

    Wang, Miao; Xu, Fuyang; Lin, Yu; Cao, Bing; Chen, Linghua; Wang, Chinhua; Wang, Jianfeng; Xu, Ke

    2017-07-06

    We proposed and demonstrated an integrated high energy efficient and high linearly polarized InGaN/GaN green LED grown on (0001) oriented sapphire with combined metasurface polarizing converter and polarizer system. It is different from those conventional polarized light emissions generated with plasmonic metallic grating in which at least 50% high energy loss occurs inherently due to high reflection of the transverse electric (TE) component of an electric field. A reflecting metasurface, with a two dimensional elliptic metal cylinder array (EMCA) that functions as a half-wave plate, was integrated at the bottom of a LED such that the back-reflected TE component, that is otherwise lost by a dielectric/metal bi-layered wire grids (DMBiWG) polarizer on the top emitting surface of the LED, can be converted to desired transverse magnetic (TM) polarized emission after reflecting from the metasurface. This significantly enhances the polarized light emission efficiency. Experimental results show that extraction efficiency of the polarized emission can be increased by 40% on average in a wide angle of ±60° compared to that with the naked bottom of sapphire substrate, or 20% compared to reflecting Al film on the bottom of a sapphire substrate. An extinction ratio (ER) of average value 20 dB within an angle of ±60° can be simultaneously obtained directly from an InGaN/GaN LED. Our results show the possibility of simultaneously achieving a high degree of polarization and high polarization extraction efficiency at the integrated device level. This advances the field of GaN LED toward energy efficiency, multi-functional applications in illumination, display, medicine, and light manipulation.

  10. Maser Emission from Gravitational States on Isolated Neutron Stars

    NASA Astrophysics Data System (ADS)

    Tepliakov, Nikita V.; Vovk, Tatiana A.; Rukhlenko, Ivan D.; Rozhdestvensky, Yuri V.

    2018-04-01

    Despite years of research on neutron stars, the source of their radio emission is still under debate. Here we propose a new coherent mechanism of pulsar radio emission based on transitions between gravitational states of electrons confined above the pulsar atmosphere. Our mechanism assumes that the coherent radiation is generated upon the electric and magnetic dipole transitions of electrons falling onto the polar caps of the pulsar, and predicts that this radiation occurs at radio frequencies—in full agreement with the observed emission spectra. We show that while the linearly polarized electric dipole radiation propagates parallel to the neutron star surface and has a fan-shape angular spectrum, the magnetic dipole emission comes from the magnetic poles of the pulsar in the form of two narrow beams and is elliptically polarized due to the spin–orbit coupling of electrons confined by the magnetic field. By explaining the main observables of the pulsar radio emission, the proposed mechanism indicates that gravitational quantum confinement plays an essential role in the physics of neutron stars.

  11. Evidence for Intermediate Polars as the Origin of the Galactic Center Hard X-Ray Emission

    NASA Technical Reports Server (NTRS)

    Hailey, Charles J.; Mori, Kaya; Perez, Kerstin; Canipe, Alicia M.; Hong, Jaesub; Tomsick, John A.; Boggs, Steven E.; Christensen, Finn E.; Craig, William W.; Fornasini, Francesa; hide

    2016-01-01

    Recently, unresolved hard (20-40 keV) X-ray emission has been discovered within the central 10 pc of the Galaxy, possibly indicating a large population of intermediate polars (IPs). Chandra and XMM-Newton measurements in the surrounding approximately 50 pc imply a much lighter population of IPs with (M(sub WD)) approximately 0.5 solar mass. Here we use broadband NuSTAR observations of two IPs: TV Columbae, which has a fairly typical but widely varying reported mass of (M(sub WD)) approximately 0.5-1.0 solar mass, and IGR J17303-0601, with a heavy reported mass of (M(sub WD)) approximately 1.0-1.2 solar mass. We investigate how varying spectral models and observed energy ranges influences estimated white dwarf mass. Observations of the inner 10 pc can be accounted for by IPs with (M(sub WD) approximately 0.9 solar mass, consistent with that of the CV population in general and the X-ray observed field IPs in particular. The lower mass derived by Chandra and XMM-Newton appears to be an artifact of narrow energy-band fitting. To explain the (unresolved) central hard X-ray emission (CHXE) by IPs requires an X-ray (2-8 keV) luminosity function (XLF) extending down to at least 5 x 10(exp 31) per erg s. The CHXE XLF, if extended to the surrounding approximately 50 pc observed by Chandra and XMM-Newton, requires that at least approximately 20%-40% of the approximately 9000 point sources are IPs. If the XLF extends just a factor of a few lower in luminosity, then the vast majority of these sources are IPs. This is in contrast to recent observations of the Galactic ridge, where the bulk of the 2-8 keV emission is ascribed to non-magnetic CVs.

  12. Observations Of Polarized Dust Emission In Protostars: How To Reconstruct Magnetic Field Properties?

    NASA Astrophysics Data System (ADS)

    Maury, Anaëlle; Galametz, M.; Girart; Guillet; Hennebelle, P.; Houde; Rao; Valdivia, V.; Zhang, Q.

    2017-10-01

    I will present our ALMA Cycle 2 polarized dust continuum data towards the Class 0 protostar B335 where the absence of detected rotational motions in the inner envelope might suggest an efficient magnetic braking at work to inhibit the formation of a large disk. The Band 6 data we obtained shows an intriguing polarized vectors topology, which could either suggest (i) at least two different grain alignment mechanisms at work in B335 to produce the observed polarization pattern, or (ii) an interferometric bias leading to filtering of the polarized signal that is different from the filtering of Stokes I. I will discuss both options, proposing multi-wavelength and multi observatory (ALMA Band3 data in Cycle 5, NIKA2Pol camera on the IRAM-30m) strategies to lift the degeneracy when using polarization observations as a proxy of magnetic fields in dense astrophysical environments. This observational effort in the framework of the MagneticYSOs project, is also supported by our development of an end-to-end chain of ALMA synthetic observations of the polarization from non-ideal MHD simulations of protostellar collapse (see complementary contributions by V. Valdivia and M. Galametz).

  13. Transport of polar and non-polar volatile compounds in polystyrene foam and oriented strand board

    NASA Astrophysics Data System (ADS)

    Yuan, Huali; Little, John C.; Hodgson, Alfred T.

    Transport of hexanal and styrene in polystyrene foam (PSF) and oriented strand board (OSB) was characterized. A microbalance was used to measure sorption/desorption kinetics and equilibrium data. While styrene transport in PSF can be described by Fickian diffusion with a symmetrical and reversible sorption/desorption process, hexanal transport in both PSF and OSB exhibited significant hysteresis, with desorption being much slower than sorption. A porous media diffusion model that assumes instantaneous local equilibrium governed by a nonlinear Freundlich isotherm was found to explain the hysteresis in hexanal transport. A new nonlinear sorption and porous diffusion emissions model was, therefore, developed and partially validated using independent chamber data. The results were also compared to the more conventional linear Fickian-diffusion emissions model. While the linear emissions model predicts styrene emissions from PSF with reasonable accuracy, it substantially underestimates the rate of hexanal emissions from OSB. Although further research and more rigorous validation is needed, the new nonlinear emissions model holds promise for predicting emissions of polar VOCs such as hexanal from porous building materials.

  14. PRISM (Polarized Radiation Imaging and Spectroscopy Mission): an extended white paper

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    André, Philippe; Baccigalupi, Carlo; Bielewicz, Pawel

    2014-02-01

    PRISM (Polarized Radiation Imaging and Spectroscopy Mission) was proposed to ESA in May 2013 as a large-class mission for investigating within the framework of the ESA Cosmic Vision program a set of important scientific questions that require high resolution, high sensitivity, full-sky observations of the sky emission at wavelengths ranging from millimeter-wave to the far-infrared. PRISM's main objective is to explore the distant universe, probing cosmic history from very early times until now as well as the structures, distribution of matter, and velocity flows throughout our Hubble volume. PRISM will survey the full sky in a large number of frequencymore » bands in both intensity and polarization and will measure the absolute spectrum of sky emission more than three orders of magnitude better than COBE FIRAS. The data obtained will allow us to precisely measure the absolute sky brightness and polarization of all the components of the sky emission in the observed frequency range, separating the primordial and extragalactic components cleanly from the galactic and zodiacal light emissions. The aim of this Extended White Paper is to provide a more detailed overview of the highlights of the new science that will be made possible by PRISM, which include: (1) the ultimate galaxy cluster survey using the Sunyaev-Zeldovich (SZ) effect, detecting approximately 10{sup 6} clusters extending to large redshift, including a characterization of the gas temperature of the brightest ones (through the relativistic corrections to the classic SZ template) as well as a peculiar velocity survey using the kinetic SZ effect that comprises our entire Hubble volume; (2) a detailed characterization of the properties and evolution of dusty galaxies, where the most of the star formation in the universe took place, the faintest population of which constitute the diffuse CIB (Cosmic Infrared Background); (3) a characterization of the B modes from primordial gravity waves generated during

  15. X-Ray Polarization from High Mass X-Ray Binaries

    NASA Technical Reports Server (NTRS)

    Kallman, T.; Dorodnitsyn, A.; Blondin, J.

    2015-01-01

    X-ray astronomy allows study of objects which may be associated with compact objects, i.e. neutron stars or black holes, and also may contain strong magnetic fields. Such objects are categorically non-spherical, and likely non-circular when projected on the sky. Polarization allows study of such geometric effects, and X-ray polarimetry is likely to become feasible for a significant number of sources in the future. A class of potential targets for future X-ray polarization observations is the high mass X-ray binaries (HMXBs), which consist of a compact object in orbit with an early type star. In this paper we show that X-ray polarization from HMXBs has a distinct signature which depends on the source inclination and orbital phase. The presence of the X-ray source displaced from the star creates linear polarization even if the primary wind is spherically symmetric whenever the system is viewed away from conjunction. Direct X-rays dilute this polarization whenever the X-ray source is not eclipsed; at mid-eclipse the net polarization is expected to be small or zero if the wind is circularly symmetric around the line of centers. Resonance line scattering increases the scattering fraction, often by large factors, over the energy band spanned by resonance lines. Real winds are not expected to be spherically symmetric, or circularly symmetric around the line of centers, owing to the combined effects of the compact object gravity and ionization on the wind hydrodynamics. A sample calculation shows that this creates polarization fractions ranging up to tens of percent at mid-eclipse.

  16. Investigating dust trapping in transition disks with millimeter-wave polarization

    NASA Astrophysics Data System (ADS)

    Pohl, A.; Kataoka, A.; Pinilla, P.; Dullemond, C. P.; Henning, Th.; Birnstiel, T.

    2016-08-01

    Context. Spatially resolved polarized (sub-)mm emission has been observed for example in the protoplanetary disk around HL Tau. Magnetically aligned grains are commonly interpreted as the source of polarization. However, self-scattering by large dust grains with a high enough albedo is another polarization mechanism, which is becoming a compelling method independent of the spectral index to constrain the dust grain size in protoplanetary disks. Aims: We study the dust polarization at mm wavelengths in the dust trapping scenario proposed for transition disks, when a giant planet opens a gap in the disk. We investigate the characteristic polarization patterns and their dependence on disk inclination, dust size evolution, planet position, and observing wavelength. Methods: We combine two-dimensional hydrodynamical simulations of planet-disk interactions with self-consistent dust growth models. These size-dependent dust density distributions are used for follow-up three-dimensional radiative transfer calculations to predict the polarization degree at ALMA bands due to scattered thermal emission. Results: Dust self-scattering has been proven to be a viable mechanism for producing polarized mm-wave radiation. We find that the polarization pattern of a disk with a planetary gap after 1 Myr of dust evolution shows a distinctive three-ring structure. Two narrow inner rings are located at the planet gap edges. A third wider ring of polarization is situated in the outer disk beyond 100 au. For increasing observing wavelengths, all three rings change their position slightly, where the innermost and outermost rings move inward. This distance is detectable when comparing the results at ALMA bands 3, 6, and 7. Within the highest polarized intensity regions the polarization vectors are oriented in the azimuthal direction. For an inclined disk there is an interplay between polarization originating from a flux gradient and inclination-induced quadrupole polarization. For

  17. First Observation of the Submillimeter Polarization Spectrum in a Translucent Molecular Cloud

    NASA Astrophysics Data System (ADS)

    Ashton, Peter C.; Ade, Peter A. R.; Angilè, Francesco E.; Benton, Steven J.; Devlin, Mark J.; Dober, Bradley; Fissel, Laura M.; Fukui, Yasuo; Galitzki, Nicholas; Gandilo, Natalie N.; Klein, Jeffrey; Korotkov, Andrei L.; Li, Zhi-Yun; Martin, Peter G.; Matthews, Tristan G.; Moncelsi, Lorenzo; Nakamura, Fumitaka; Netterfield, Calvin B.; Novak, Giles; Pascale, Enzo; Poidevin, Frédérick; Santos, Fabio P.; Savini, Giorgio; Scott, Douglas; Shariff, Jamil A.; Soler, Juan D.; Thomas, Nicholas E.; Tucker, Carole E.; Tucker, Gregory S.; Ward-Thompson, Derek

    2018-04-01

    Polarized emission from aligned dust is a crucial tool for studies of magnetism in the ISM, but a troublesome contaminant for studies of cosmic microwave background polarization. In each case, an understanding of the significance of the polarization signal requires well-calibrated physical models of dust grains. Despite decades of progress in theory and observation, polarized dust models remain largely underconstrained. During its 2012 flight, the balloon-borne telescope BLASTPol obtained simultaneous broadband polarimetric maps of a translucent molecular cloud at 250, 350, and 500 μm. Combining these data with polarimetry from the Planck 850 μm band, we have produced a submillimeter polarization spectrum, the first for a cloud of this type. We find the polarization degree to be largely constant across the four bands. This result introduces a new observable with the potential to place strong empirical constraints on ISM dust polarization models in a previously inaccessible density regime. Compared to models by Draine & Fraisse, our result disfavors two of their models for which all polarization arises due only to aligned silicate grains. By creating simple models for polarized emission in a translucent cloud, we verify that extinction within the cloud should have only a small effect on the polarization spectrum shape, compared to the diffuse ISM. Thus, we expect the measured polarization spectrum to be a valid check on diffuse ISM dust models. The general flatness of the observed polarization spectrum suggests a challenge to models where temperature and alignment degree are strongly correlated across major dust components.

  18. Plasmon enhanced terahertz emission from single layer graphene.

    PubMed

    Bahk, Young-Mi; Ramakrishnan, Gopakumar; Choi, Jongho; Song, Hyelynn; Choi, Geunchang; Kim, Yong Hyup; Ahn, Kwang Jun; Kim, Dai-Sik; Planken, Paul C M

    2014-09-23

    We show that surface plasmons, excited with femtosecond laser pulses on continuous or discontinuous gold substrates, strongly enhance the generation and emission of ultrashort, broadband terahertz pulses from single layer graphene. Without surface plasmon excitation, for graphene on glass, 'nonresonant laser-pulse-induced photon drag currents' appear to be responsible for the relatively weak emission of both s- and p-polarized terahertz pulses. For graphene on a discontinuous layer of gold, only the emission of the p-polarized terahertz electric field is enhanced, whereas the s-polarized component remains largely unaffected, suggesting the presence of an additional terahertz generation mechanism. We argue that in the latter case, 'surface-plasmon-enhanced optical rectification', made possible by the lack of inversion symmetry at the graphene on gold surface, is responsible for the strongly enhanced emission. The enhancement occurs because the electric field of surface plasmons is localized and enhanced where the graphene is located: at the surface of the metal. We believe that our results point the way to small, thin, and more efficient terahertz photonic devices.

  19. Polarization imaging of imperfect m-plane GaN surfaces

    NASA Astrophysics Data System (ADS)

    Sakai, Yuji; Kawayama, Iwao; Nakanishi, Hidetoshi; Tonouchi, Masayoshi

    2017-04-01

    Surface polar states in m-plane GaN wafers were studied using a laser terahertz (THz) emission microscope (LTEM). Femtosecond laser illumination excites THz waves from the surface due to photocarrier acceleration by local spontaneous polarization and/or the surface built-in electric field. The m-plane, in general, has a large number of unfavorable defects and unintentional polarization inversion created during the regrowth process. The LTEM images can visualize surface domains with different polarizations, some of which are hard to visualize with photoluminescence mapping, i.e., non-radiative defect areas. The present study demonstrates that the LTEM provides rich information about the surface polar states of GaN, which is crucial to improve the performance of GaN-based optoelectronic and power devices.

  20. Optical Magnetometry for Detecting Underwater Objects

    DTIC Science & Technology

    2015-09-21

    underwater object. The two mechanisms responsible for the polarization rotation are the Surface Magneto-Optical Kerr Effect (SMOKE) and the Faraday effect...the underwater object itself ( Faraday effect). An analytical expression is obtained for the polarization-rotated field when the incident plane wave...Washington, DC 20375-5320 October 2014 – August 2015 NRL *University of Maryland, College Park, MD 20742-4111 Faraday SMOKE 67-4374-C4 1 Optical

  1. Towards Onboard Orbital Tracking of Seasonal Polar Volatiles on Mars

    NASA Technical Reports Server (NTRS)

    Wagstaff, Kiri L.; Castano, Rebecca; Chien, Steve; Ivanov, anton B.; Titus, Timothy N.

    2005-01-01

    Current conditions on Mars support both a residual polar cap, composed mainly of water ice, and a seasonal cap, composed of CO2, which appears and disappears each winter. Kieffer and Titus characterized the recession of the seasonal south polar cap using an arctangent curve fit based on data from the Thermal Emission Spectrometer on Mars Global Surveyor [1]. They also found significant interannual deviations, at the regional scale, in the recession rate [2]. Further observations will enable the refinement of our models of polar cap evolution in both hemispheres. We have developed the Bimodal Image Temperature (BIT) Histogram Analysis method for the automated detection and tracking of the seasonal polar ice caps on Mars. It is specifically tailored for possible use onboard a spacecraft. We have evaluated BIT on uncalibrated data collected by the Thermal Emission Imaging System (THEMIS) instrument [3] on the Mars Odyssey spacecraft. In this paper, we focus on the northern seasonal cap, but our approach is directly applicable to the future analysis of the southern seasonal ice cap as well.

  2. Long term monitoring of Gamma-Ray emission from the BL Lacertae object (1ES 2200+420)

    NASA Astrophysics Data System (ADS)

    Gunawardhana, Isuru; VERITAS Collaboration

    2016-03-01

    Blazars are a class of Active Galactic Nuclei (AGN) that have relativistic jets pointing along the observer line of sight. Blazars exhibit variable emission extending from radio to TeV energies. The variability timescale of the TeV flux is a key component of understanding the location of the very high energy emission zones. Deep observations of the quiescent state measurements are also required to disentangle the flaring state emission from quiescent state emission, a prerequisite for understanding the origin of blazar spectral variability. BL Lacertae (also known as 1ES 2200+420), as the namesake for all BL Lac objects, is a prime example of one such blazar. The VERITAS Observatory, an Imaging Atmospheric Cherenkov Telescope (IACT) array sensitive to gamma rays in the range from 85 GeV to 30 TeV, dedicates approximately 110 hours per year on deep observations of known gamma-ray blazars. In this talk, I will describe the TeV photon flux variability of BL Lacertae measured by VERITAS from 2013 to 2015.

  3. Polarized micro Raman spectroscopy of bilayer graphene

    NASA Astrophysics Data System (ADS)

    Moon, Hyerim; Yoon, Duhee; Son, Young-Woo; Cheong, Hyeonsik

    2009-03-01

    The frequency of Raman 2D band of the graphite depends on the excitation laser energy. This phenomenon is explained with double resonance Raman process. In polarized micro-Raman spectroscopy of single layer graphene, Raman G band (˜1586 cm-1) is isotropic, and 2D band (˜2686 cm-1) strongly depends on relative polarizations of the incident and scattered photons. This strong polarization dependence originates from inhomogeneous optical absorption and emission mediated by resonant electron-phonon interaction. In bi-layer graphene, Raman 2D band can be decomposed into four Lorenztian peaks which can be interpreted in terms of the four transition paths in the double resonance Raman process. We investigated the polarization dependence of each Lorenztian peak in the Raman 2D band of bi-layer graphene for different excitation laser energies. Strong polarization dependence of the Raman 2D band, similar to the case of single layer graphene, is observed. The excitation energy dependence of the polarized Raman scattering is analyzed in terms of the band structure of bi-layer graphene.

  4. PIPER and Polarized Galactic Foregrounds

    NASA Technical Reports Server (NTRS)

    Chuss, David

    2009-01-01

    In addition to probing inflationary cosmology, PIPER will measure the polarized dust emission from the Galaxy. PIPER will be capable of full (I,0,U,V) measurement over four frequency bands ' These measurements will provide insight into the physics of dust grains and a probe of the Galactic magnetic field on large and intermediate scales.

  5. Cathodoluminescence study of Mg activation in non-polar and semi-polar faces of undoped/Mg-doped GaN core-shell nanorods.

    PubMed

    Hortelano, V; Martínez, O; Cuscó, R; Artús, L; Jiménez, J

    2016-03-04

    Spectrally and spatially resolved cathodoluminescence (CL) measurements were carried out at 80 K on undoped/Mg-doped GaN core-shell nanorods grown by selective area growth metalorganic vapor phase epitaxy in order to investigate locally the optical activity of the Mg dopants. A study of the luminescence emission distribution over the different regions of the nanorods is presented. We have investigated the CL fingerprints of the Mg incorporation into the non-polar lateral prismatic facets and the semi-polar facets of the pyramidal tips. The amount of Mg incorporation/activation was varied by using several Mg/Ga flow ratios and post-growth annealing treatment. For lower Mg/Ga flow ratios, the annealed nanorods clearly display a donor-acceptor pair band emission peaking at 3.26-3.27 eV and up to 4 LO phonon replicas, which can be considered as a reliable indicator of effective p-type Mg doping in the nanorod shell. For higher Mg/Ga flow ratios, a substantial enhancement of the yellow luminescence emission as well as several emission subbands are observed, which suggests an increase of disorder and the presence of defects as a consequence of the excess Mg doping.

  6. Cathodoluminescence study of Mg activation in non-polar and semi-polar faces of undoped/Mg-doped GaN core-shell nanorods

    NASA Astrophysics Data System (ADS)

    Hortelano, V.; Martínez, O.; Cuscó, R.; Artús, L.; Jiménez, J.

    2016-03-01

    Spectrally and spatially resolved cathodoluminescence (CL) measurements were carried out at 80 K on undoped/Mg-doped GaN core-shell nanorods grown by selective area growth metalorganic vapor phase epitaxy in order to investigate locally the optical activity of the Mg dopants. A study of the luminescence emission distribution over the different regions of the nanorods is presented. We have investigated the CL fingerprints of the Mg incorporation into the non-polar lateral prismatic facets and the semi-polar facets of the pyramidal tips. The amount of Mg incorporation/activation was varied by using several Mg/Ga flow ratios and post-growth annealing treatment. For lower Mg/Ga flow ratios, the annealed nanorods clearly display a donor-acceptor pair band emission peaking at 3.26-3.27 eV and up to 4 LO phonon replicas, which can be considered as a reliable indicator of effective p-type Mg doping in the nanorod shell. For higher Mg/Ga flow ratios, a substantial enhancement of the yellow luminescence emission as well as several emission subbands are observed, which suggests an increase of disorder and the presence of defects as a consequence of the excess Mg doping.

  7. Simple apparatus for polarization sensing of analytes

    NASA Astrophysics Data System (ADS)

    Gryczynski, Zygmunt; Gryczynski, Ignacy; Lakowicz, Joseph R.

    2000-09-01

    We describe a simple device for fluorescence sensing based on an unexpansive light source, a dual photocell and a Watson bridge. The emission is detected from two fluorescent samples, one of which changes intensity in response to the analyte. The emission from these two samples is observed through two orthogonally oriented polarizers and an analyzer polarizer. The latter polarizer is rotated to yield equal intensities from both sides of the dual photocell, as determined by a zero voltage from the Watson bridge. Using this device, we are able to measure fluorescein concentration to an accuracy near 2% at 1 (mu) M fluorescein, and pH values accurate to +/- 0.02 pH units. We also use this approach with a UV hand lamp and a glucose-sensitive protein to measure glucose concentrations near 2 (mu) M to an accuracy of +/- 0.1 (mu) M. This approach requires only simple electronics, which can be battery powered. Additionally, the method is generic, and can be applied with any fluorescent sample that displays a change in intensity. One can imagine this approach being used to develop portable point-of-care clinical devices.

  8. Geomorphology of Triton's polar materials

    NASA Technical Reports Server (NTRS)

    Croft, Steven K.

    1993-01-01

    One of Triton's most debated puzzles is the nature, distribution, and transport of its atmospheric volatiles. The full potential of constraints provided by detailed observations of the morphology and distribution of the polar deposits has not been realized. The objective of this study is characterization of the morphology, distribution, stratigraphy, and geologic setting of Triton's polar materials.

  9. DIRECT OBSERVATION OF SOLAR CORONAL MAGNETIC FIELDS BY VECTOR TOMOGRAPHY OF THE CORONAL EMISSION LINE POLARIZATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kramar, M.; Lin, H.; Tomczyk, S., E-mail: kramar@cua.edu, E-mail: lin@ifa.hawaii.edu, E-mail: tomczyk@ucar.edu

    We present the first direct “observation” of the global-scale, 3D coronal magnetic fields of Carrington Rotation (CR) Cycle 2112 using vector tomographic inversion techniques. The vector tomographic inversion uses measurements of the Fe xiii 10747 Å Hanle effect polarization signals by the Coronal Multichannel Polarimeter (CoMP) and 3D coronal density and temperature derived from scalar tomographic inversion of Solar Terrestrial Relations Observatory (STEREO)/Extreme Ultraviolet Imager (EUVI) coronal emission lines (CELs) intensity images as inputs to derive a coronal magnetic field model that best reproduces the observed polarization signals. While independent verifications of the vector tomography results cannot be performed, wemore » compared the tomography inverted coronal magnetic fields with those constructed by magnetohydrodynamic (MHD) simulations based on observed photospheric magnetic fields of CR 2112 and 2113. We found that the MHD model for CR 2112 is qualitatively consistent with the tomography inverted result for most of the reconstruction domain except for several regions. Particularly, for one of the most noticeable regions, we found that the MHD simulation for CR 2113 predicted a model that more closely resembles the vector tomography inverted magnetic fields. In another case, our tomographic reconstruction predicted an open magnetic field at a region where a coronal hole can be seen directly from a STEREO-B/EUVI image. We discuss the utilities and limitations of the tomographic inversion technique, and present ideas for future developments.« less

  10. A Sublimation Model for the Martian Polar Swiss-Cheese Features. Observational and Modeling Studies of the South Polar Residual Cap

    NASA Technical Reports Server (NTRS)

    Byrne, Shane; Ingersoll, Andrew P.

    2002-01-01

    In their pioneering work Leighton and Murray argued that the Mars atmosphere, which is 95 percent CO2 today, is controlled by vapor equilibrium with a much larger polar reservoir of solid CO2. Here we argue that the polar reservoir is small and cannot function as a long-term buffer to the more massive atmosphere. Our work is based on modeling the circular depressions (Swiss-cheese features) in the south polar cap. We argue that a solid CO2 layer approximately 8 meters thick is being etched away to reveal water ice underneath. Preliminary results from the THEMIS (Thermal Emission Imaging System) instrument seem to confirm our model.

  11. Polarization of submillimetre lines from interstellar medium

    NASA Astrophysics Data System (ADS)

    Zhang, Heshou; Yan, Huirong

    2018-04-01

    Magnetic fields play important roles in many astrophysical processes. However, there is no universal diagnostic for the magnetic fields in the interstellar medium (ISM) and each magnetic tracer has its limitation. Any new detection method is thus valuable. Theoretical studies have shown that submillimetre fine-structure lines are polarized due to atomic alignment by ultraviolet photon-excitation, which opens up a new avenue to probe interstellar magnetic fields. We will, for the first time, perform synthetic observations on the simulated three-dimensional ISM to demonstrate the measurability of the polarization of submillimetre atomic lines. The maximum polarization for different absorption and emission lines expected from various sources, including star-forming regions are provided. Our results demonstrate that the polarization of submillimetre atomic lines is a powerful magnetic tracer and add great value to the observational studies of the submilimetre astronomy.

  12. Variable-delay Polarization Modulators (VPMs) for Far-infrared through Millimeter Astronomy

    NASA Technical Reports Server (NTRS)

    Chuss, David T.

    2008-01-01

    This viewgraph presentation reviews the use of Variable-delay Polarization Modulators (VPMs) for Far-infrared through Millimeter Astronomy. The two science goals are to use polarized emission from the partially-aligned dust that provides a probe of the role of magnetic fields in star formation and to use the polarization of the cosmic microwave background radiation CMB to test theories of the very early universe and provide a probe of fundamental physics.

  13. Some considerations for a method that simultaneously measures the temperature and emissivity of a metal in a high temperature furnace

    NASA Astrophysics Data System (ADS)

    Iuchi, Tohru; Furukawa, Tohru

    2004-12-01

    This article describes some considerations for designing a practical radiation thermometry system for a glossy metal moving through a high temperature furnace, such as a continuous annealing furnace. In order to accomplish this task, two problems must be solved. The emissivity compensation of an object must be calculated and the furnace's background radiation noise must be eliminated. The authors have proposed a method that uses the radiance's polarized directional properties to simultaneously measure the emissivity and temperature to solve the first problem and a technique using a pseudo-blackbody installed in the furnace to solve the second problem. During heating, there is a one-to-one correspondence between the emissivity and the ratio of p- and s-polarized radiances for metals. This characteristic has successfully led to the development of a method for simultaneously measuring the emissivity and temperature of metals regardless of a potential large change in emissivity. Introducing a pseudo-blackbody radiator into a furnace removes the background radiation noise. Moreover, the blackbody radiator supplies a constant reference radiance. This reference plays an important role in maintaining the principle of emissivity-compensated radiation thermometry inside the furnace. Experimental results have simultaneously measured the emissivity and temperature of stainless steel at 1300 K with errors of 12% and 0.96%, respectively. These values were attained even though the s-polarized emissivities change from 0.25 to 0.75 at a wavelength of 0.9 μm. These errors can be achieved by designing the apparatus to have a solid angle, the aperture of the pseudo-blackbody subtended by a measuring point of the specimen, of more than 0.02π steradians. The accuracy of this method is heavily dependent upon the specimen's surface roughness. The maximum surface roughness that allows for the successful utilization of this method is Ra=0.12 μm.

  14. Invariants of polarization transformations.

    PubMed

    Sadjadi, Firooz A

    2007-05-20

    The use of polarization-sensitive sensors is being explored in a variety of applications. Polarization diversity has been shown to improve the performance of the automatic target detection and recognition in a significant way. However, it also brings out the problems associated with processing and storing more data and the problem of polarization distortion during transmission. We present a technique for extracting attributes that are invariant under polarization transformations. The polarimetric signatures are represented in terms of the components of the Stokes vectors. Invariant algebra is then used to extract a set of signature-related attributes that are invariant under linear transformation of the Stokes vectors. Experimental results using polarimetric infrared signatures of a number of manmade and natural objects undergoing systematic linear transformations support the invariancy of these attributes.

  15. Modeling of Jovian Auroral Polar Ion and Proton Precipitation

    NASA Astrophysics Data System (ADS)

    Houston, S. J.; Ozak, N. O.; Cravens, T.; Schultz, D. R.; Mauk, B.; Haggerty, D. K.; Young, J. T.

    2017-12-01

    Auroral particle precipitation dominates the chemical and physical environment of the upper atmospheres and ionospheres of the outer planets. Precipitation of energetic electrons from the middle magnetosphere is responsible for the main auroral oval at Jupiter, but energetic electron, proton, and ion precipitation take place in the polar caps. At least some of the ion precipitation is associated with soft X-ray emission with about 1 GW of power. Theoretical modeling has demonstrated that the incident sulfur and oxygen ion energies must exceed about 0.5 MeV/nucleon (u) in order to produce the measured X-ray emission. In this work we present a model of the transport of magnetospheric oxygen ions as they precipitate into Jupiter's polar atmosphere. We have revised and updated the hybrid Monte Carlo model originally developed by Ozak et al., 2010 to model the Jovian X-ray aurora. We now simulate a wider range of incident oxygen ion energies (10 keV/u - 5 MeV/u) and update the collision cross-sections to model the ionization of the atmospheric neutrals. The polar cap location of the emission and magnetosphere-ionosphere coupling both indicate the associated field-aligned currents must originate near the magnetopause or perhaps the distant tail. Secondary electrons produced in the upper atmosphere by ion precipitation could be accelerated upward to relativistic energies due to the same field-aligned potentials responsible for the downward ion acceleration. To further explore this, we simulate the effect of the secondary electrons generated from the heavy ion precipitation. We use a two-stream transport model that computes the secondary electron fluxes, their escape from the atmosphere, and characterization of the H2 Lyman-Werner band emission, including a predicted observable spectrum with the associated color ratio. Our model predicts that escaping electrons have an energy range from 1 eV to 6 keV, H2 band emission rates produced are on the order of 75 kR for an input

  16. High-power laser diodes with high polarization purity

    NASA Astrophysics Data System (ADS)

    Rosenkrantz, Etai; Yanson, Dan; Peleg, Ophir; Blonder, Moshe; Rappaport, Noam; Klumel, Genady

    2017-02-01

    Fiber-coupled laser diode modules employ power scaling of single emitters for fiber laser pumping. To this end, techniques such as geometrical, spectral and polarization beam combining (PBC) are used. For PBC, linear polarization with high degree of purity is important, as any non-perfectly polarized light leads to losses and heating. Furthermore, PBC is typically performed in a collimated portion of the beams, which also cancels the angular dependence of the PBC element, e.g., beam-splitter. However, we discovered that single emitters have variable degrees of polarization, which depends both on the operating current and far-field divergence. We present data to show angle-resolved polarization measurements that correlate with the ignition of high-order modes in the slow-axis emission of the emitter. We demonstrate that the ultimate laser brightness includes not only the standard parameters such as power, emitting area and beam divergence, but also the degree of polarization (DoP), which is a strong function of the latter. Improved slow-axis divergence, therefore, contributes not only to high brightness but also high beam combining efficiency through polarization.

  17. Toward an Empirical Theory of Pulsar Emission. XII. Exploring the Physical Conditions in Millisecond Pulsar Emission Regions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rankin, Joanna M.; Mitra, Dipanjan; Archibald, Anne

    The five-component profile of the 2.7 ms pulsar J0337+1715 appears to exhibit the best example to date of a core/double-cone emission-beam structure in a millisecond pulsar (MSP). Moreover, three other MSPs, the binary pulsars B1913+16, B1953+29, and J1022+1001, seem to exhibit core/single-cone profiles. These configurations are remarkable and important because it has not been clear whether MSPs and slow pulsars exhibit similar emission-beam configurations, given that they have considerably smaller magnetospheric sizes and magnetic field strengths. MSPs thus provide an extreme context for studying pulsar radio emission. Particle currents along the magnetic polar flux tube connect processes just above themore » polar cap through the radio-emission region to the light-cylinder and the external environment. In slow pulsars, radio-emission heights are typically about 500 km around where the magnetic field is nearly dipolar, and estimates of the physical conditions there point to radiation below the plasma frequency and emission from charged solitons by the curvature process. We are able to estimate emission heights for the four MSPs and carry out a similar estimation of physical conditions in their much lower emission regions. We find strong evidence that MSPs also radiate by curvature emission from charged solitons.« less

  18. Emissivity properties of silicon wafers and their application to radiation thermometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iuchi, T.; Seo, T.

    We studied the spectral and directional emissivities of silicon wafers using an optical polarization technique. Based on the simulation and experimental results, we developed two different radiation thermometry methods for silicon wafers, the first based on a polarized emissivity-invariant condition, and the second based on the relationship between the ratio of the p-to s-polarized radiance and the polarized emissivity. These methods can be performed at temperatures above 600 °C and over a wide wavelength range (0.9∼5 μm), irrespective of dielectric film thickness and substrate resistivity due to the dopant concentrations. Temperature measurements were estimated to have expanded uncertainties (k=2) ofmore » less than 5 °C. A radiometer system with wavelengths above 4.5 μm was successfully developed because the system was not influenced by background noise caused by a high-intensity heating lamp.« less

  19. The Effect of Systematics on Polarized Spectral Indices

    NASA Astrophysics Data System (ADS)

    Wehus, I. K.; Fuskeland, U.; Eriksen, H. K.

    2013-02-01

    We study four particularly bright polarized compact objects (Tau A, Vir A, 3C 273, and For A) in the 7 year Wilkinson Microwave Anisotropy Probe (WMAP) sky maps, with the goal of understanding potential systematics involved in the estimation of foreground spectral indices. First, we estimate the spectral index, the polarization angle, the polarization fraction, and the apparent size and shape of these objects when smoothed to a nominal resolution of 1° FWHM. Second, we compute the spectral index as a function of polarization orientation, α. Because these objects are approximately point sources with constant polarization angle, this function should be constant in the absence of systematics. However, for the K and Ka band WMAP data we find strong index variations for all four sources. For Tau A, we find a spectral index of β = -2.59 ± 0.03 for α = 30°, and β = -2.03 ± 0.01 for α = 50°. On the other hand, the spectral index between the Ka and Q bands is found to be stable. A simple elliptical Gaussian toy model with parameters matching those observed in Tau A reproduces the observed signal, and shows that the spectral index is particularly sensitive to the detector polarization angle. Based on these findings, we first conclude that estimation of spectral indices with the WMAP K band polarization data at 1° scales is not robust. Second, we note that these issues may be of concern for ground-based and sub-orbital experiments that use the WMAP polarization measurements of Tau A for calibration of gain and polarization angles.

  20. Fluorescence emission and polarization analyses for evaluating binding of ruthenium metalloglycocluster to lectin and tetanus toxin c-fragment

    NASA Astrophysics Data System (ADS)

    Okada, Tomoko; Minoura, Norihiko

    2010-02-01

    We have developed a fluorescent ruthenium metalloglycocluster as a powerful molecular probe for evaluating a binding event between carbohydrates and lectins by fluorescence emission (FE) and fluorescence polarization (FP) analysis. The fluorescent ruthenium metalloglycoclusters, [Ru(bpy-2Gal)3] and [Ru(bpy-2Glc)3], possess clustered galactose and glucose surrounding the ruthenium center. Changes in FE and FP of these metalloglycoclusters were measured by adding each lectin (Peanut agglutinin (PNA), Ricinus communis agglutinin 120 (RCA), Concanavalin A (ConA), or Wheat germ agglutinin (WGA)) or tetanus toxin c-fragment (TCF). Following the addition of PNA, the FE spectrum of [Ru(bpy- 2Gal)3] showed new emission peak and the FP value of [Ru(bpy-2Gal)3] increased. Similarly, the FE spectrum of [Ru(bpy-2Glc)3] showed new emission peak and the FP value increased following the addition of ConA. Since other combinations of the metalloglycoclusters and lectin caused little change, specific bindings of galactose to PNA and glucose to ConA were proved by the FE and FP measurement. From nonlinear least-squares fitting, dissociation constants (Kd) of [Ru(bpy-2Gal)3] to PNA was 6.1 μM, while the Kd values of [Ru(bpy)2(bpy-2Gal)] to PNA was ca. 10-4 M. Therefore, the clustered carbohydrates were proved to increase affinity to lectins. Furthermore, the FP measurements proved specific binding of [Ru(bpy-2Gal)3] to TCF.

  1. Classification of materials for conducting spheroids based on the first order polarization tensor

    NASA Astrophysics Data System (ADS)

    Khairuddin, TK Ahmad; Mohamad Yunos, N.; Aziz, ZA; Ahmad, T.; Lionheart, WRB

    2017-09-01

    Polarization tensor is an old terminology in mathematics and physics with many recent industrial applications including medical imaging, nondestructive testing and metal detection. In these applications, it is theoretically formulated based on the mathematical modelling either in electrics, electromagnetics or both. Generally, polarization tensor represents the perturbation in the electric or electromagnetic fields due to the presence of conducting objects and hence, it also desribes the objects. Understanding the properties of the polarization tensor is necessary and important in order to apply it. Therefore, in this study, when the conducting object is a spheroid, we show that the polarization tensor is positive-definite if and only if the conductivity of the object is greater than one. In contrast, we also prove that the polarization tensor is negative-definite if and only if the conductivity of the object is between zero and one. These features categorize the conductivity of the spheroid based on in its polarization tensor and can then help to classify the material of the spheroid.

  2. Optical polarization properties of InAs/InP quantum dot and quantum rod nanowires.

    PubMed

    Anufriev, Roman; Barakat, Jean-Baptiste; Patriarche, Gilles; Letartre, Xavier; Bru-Chevallier, Catherine; Harmand, Jean-Christophe; Gendry, Michel; Chauvin, Nicolas

    2015-10-02

    The emission polarization of single InAs/InP quantum dot (QD) and quantum rod (QR) nanowires is investigated at room temperature. Whereas the emission of the QRs is mainly polarized parallel to the nanowire axis, the opposite behavior is observed for the QDs. These optical properties can be explained by a combination of dielectric effects related to the nanowire geometry and to the configuration of the valence band in the nanostructure. A theoretical model and finite difference in time domain calculations are presented to describe the impact of the nanowire and the surroundings on the optical properties of the emitter. Using this model, the intrinsic degree of linear polarization of the two types of emitters is extracted. The strong polarization anisotropies indicate a valence band mixing in the QRs but not in the QDs.

  3. Monolithic Superconducting Emitter of Tunable Circularly Polarized Terahertz Radiation

    NASA Astrophysics Data System (ADS)

    Elarabi, A.; Yoshioka, Y.; Tsujimoto, M.; Kakeya, I.

    2017-12-01

    We propose an approach to controlling the polarization of terahertz (THz) radiation from intrinsic Josephson-junction stacks in a single crystalline high-temperature superconductor Bi2Sr2CaCu2O8 . Monolithic control of the surface high-frequency current distributions in the truncated square mesa structure allows us to modulate the polarization of the emitted terahertz wave as a result of two orthogonal fundamental modes excited inside the mesa. Highly polarized circular terahertz waves with a degree of circular polarization of more than 99% can be generated using an electrically controlled method. The intuitive results obtained from the numerical simulation based on the conventional antenna theory are consistent with the observed emission characteristics.

  4. Polarization Measurements on SUMI's TVLS Gratings

    NASA Technical Reports Server (NTRS)

    Kobayashi, K.; West, E. A.; Davis, J. M.; Gary, G. A.

    2007-01-01

    We present measurements of toroidal variable-line-space (TVLS) gratings for the Solar Ultraviolet Magnetograph Investigation (SUMI), currently being developed at the National Space Science and Technology Center (NSSTC). SUMI is a spectro-polarimeter designed to measure magnetic fields in the solar chromosphere by observing two UV emission lines sensitive to magnetic fields, the CIY line at 155nm and the MgII line at 280nm. The instrument uses a pair of TVLS gratings, to observe both linear polarizations simultaneously. Efficiency measurements were done on bare aluminum gratings and aluminum/MgF2 coated gratings, at both linear polarizations.

  5. Polarization Measurements on SUMI's TVLS Gratings

    NASA Technical Reports Server (NTRS)

    Kobayashi, K.; West, E. A.; Davis, J. M.; Gary, G. A.

    2007-01-01

    We present measurements of toroidal variable-line-space (TVLS) gratings for the Solar Ultraviolet Magnetograph Investigation (SUMI), currently being developed an the National Space Science and Technology Center (NSSTC). SUMI zs a spectro-polarimeter designed no measure magnetic fields in the solar chromosphere by observing two UV emission lines sensitive to magnetic fields, the C-IV line at 155nm and the Mg-II line at 280nm. The instrument uses a pair of TVLS gratings, to observe both linear polarizations simultaneously. Efficiency measurements were done on bare aluminum gratings and MgF2 coated gratings, at both linear polarizations.

  6. A new catalogue of polar-ring galaxies selected from the Sloan Digital Sky Survey

    NASA Astrophysics Data System (ADS)

    Moiseev, Alexei V.; Smirnova, Ksenia I.; Smirnova, Aleksandrina A.; Reshetnikov, Vladimir P.

    2011-11-01

    Galaxies with polar rings (PRGs) are a unique class of extragalactic objects. Using these, we can investigate a wide range of problems, linked to the formation and evolution of galaxies, and we can study the properties of their dark haloes. The progress that has been made in the study of PRGs has been constrained by the small number of known objects of this type. The Polar Ring Catalogue (PRC) by Whitmore et al. and their photographic atlas of PRGs and related objects includes 157 galaxies. At present, there are only about two dozen kinematically confirmed galaxies in this PRG class, mostly from the PRC. We present a new catalogue of PRGs, supplementing the PRC and significantly increasing the number of known candidate PRGs. The catalogue is based on the results of the original Galaxy Zoo project. Within this project, volunteers performed visual classifications of nearly a million galaxies from the Sloan Digital Sky Survey (SDSS). Based on the preliminary classifications of the Galaxy Zoo, we viewed more than 40 000 images of the SDSS and selected 275 galaxies to include in our catalogue. Our SDSS-based Polar Ring Catalogue (SPRC) contains 70 galaxies that we have classified as 'the best candidates'. Among these, we expect to have a very high proportion of true PRGs, and 115 good PRG candidates. There are 53 galaxies classified as PRG-related objects (mostly galaxies with strongly warped discs, and mergers). In addition, we have identified 37 galaxies that have their presumed polar rings strongly inclined to the line of sight (seen almost face-on). The SPRC objects are, on average, fainter and are located further away than the galaxies from the PRC, although our catalogue does include dozens of new nearby candidate PRGs. The SPRC significantly increases the number of genuine PRG candidates. It might serve as a good basis for both a further detailed study of individual galaxies and a statistical analysis of PRGs as a separate class of objects. We have performed

  7. Attosecond polarization control in atomic RABBITT-like experiments assisted by a circularly polarized laser

    NASA Astrophysics Data System (ADS)

    Boll, D. I. R.; Fojón, O. A.

    2017-12-01

    We study theoretically the single ionization of noble gas atoms by the combined action of an attosecond pulse train with linear polarization and an assistant laser field with circular polarization. We employ a non-perturbative model that under certain approximations gives closed-form expressions for the angular distributions of photoelectrons. Interestingly, our model allow us to interpret these angular distributions as two-centre interferences where the orientation and the modulus of the separation vector between the virtual emitters is governed by the assistant laser field. Additionally, we show that such a configuration of light fields is similar to the polarization control technique, where both the attosecond pulse train and the assistant laser field have linear polarizations whose relative orientation may be controlled. Moreover, in order to compare our results with the available experimental data, we obtain analytical expressions for the cross sections integrated over the photoelectron emission angles. By means of these expressions, we define the ‘magic time’ as the delay for which the total cross sections for atomic targets exhibit the same functional form as the one of the monochromatic photoionization of diatomic molecular targets.

  8. Manipulating Smith-Purcell Emission with Babinet Metasurfaces

    NASA Astrophysics Data System (ADS)

    Wang, Zuojia; Yao, Kan; Chen, Min; Chen, Hongsheng; Liu, Yongmin

    2016-10-01

    Swift electrons moving closely parallel to a periodic grating produce far-field radiation of light, which is known as the Smith-Purcell effect. In this letter, we demonstrate that designer Babinet metasurfaces composed of C -aperture resonators offer a powerful control over the polarization state of the Smith-Purcell emission, which can hardly be achieved via traditional gratings. By coupling the intrinsically nonradiative energy bound at the source current sheet to the out-of-plane electric dipole and in-plane magnetic dipole of the C -aperture resonator, we are able to excite cross-polarized light thanks to the bianisotropic nature of the metasurface. The polarization direction of the emitted light is aligned with the orientation of the C -aperture resonator. Furthermore, the efficiency of the Smith-Purcell emission from Babinet metasurfaces is significantly increased by 84%, in comparison with the case of conventional gratings. These findings not only open up a new way to manipulate the electron-beam-induced emission in the near-field region but also promise compact, tunable, and efficient light sources and particle detectors.

  9. Manipulating Smith-Purcell Emission with Babinet Metasurfaces.

    PubMed

    Wang, Zuojia; Yao, Kan; Chen, Min; Chen, Hongsheng; Liu, Yongmin

    2016-10-07

    Swift electrons moving closely parallel to a periodic grating produce far-field radiation of light, which is known as the Smith-Purcell effect. In this letter, we demonstrate that designer Babinet metasurfaces composed of C-aperture resonators offer a powerful control over the polarization state of the Smith-Purcell emission, which can hardly be achieved via traditional gratings. By coupling the intrinsically nonradiative energy bound at the source current sheet to the out-of-plane electric dipole and in-plane magnetic dipole of the C-aperture resonator, we are able to excite cross-polarized light thanks to the bianisotropic nature of the metasurface. The polarization direction of the emitted light is aligned with the orientation of the C-aperture resonator. Furthermore, the efficiency of the Smith-Purcell emission from Babinet metasurfaces is significantly increased by 84%, in comparison with the case of conventional gratings. These findings not only open up a new way to manipulate the electron-beam-induced emission in the near-field region but also promise compact, tunable, and efficient light sources and particle detectors.

  10. Detection of radio continuum emission from Herbig-Haro objects 1 and 2 and from their central exciting source

    NASA Technical Reports Server (NTRS)

    Pravdo, S. H.; Rodriguez, L. F.; Curiel, S.; Canto, J.; Torrelles, J. M.; Becker, R. H.; Sellgren, K.

    1985-01-01

    The region in Orion containing HH 1 and HH 2 was observed with the VLA at 20, 6, and 2 cm on several occasions from 1981 to 1984. At lower resolution, four continuum sources were detected. Two of these sources coincide positionally with HH 1 and HH 2. At 6 cm and higher resolution, HH 1 is resolved into at least two components. The emission is probably bremsstrahlung originating in the same region where the visible line emission is produced. This is the first detection of radio continuum from classic Herbig-Haro objects. At a position closely centered between HH 1 and HH 2, an object that can be interpreted as the energy source of the system was detected. The central source spectrum is S(nu) of about nu to the alpha power, where alpha = 0.4 + or - 0.2, suggesting a stellar wind. Finally, the fourth radio continuum source coincides positionally with an H2O maser and is probably excited by an independent star. There is evidence of time variability in its radio flux. No emission was detected from the Cohen-Schwartz (1979) star at the 0.1 mJy level.

  11. Radiation and polarization signatures of the 3D multizone time-dependent hadronic blazar model

    DOE PAGES

    Zhang, Haocheng; Diltz, Chris; Bottcher, Markus

    2016-09-23

    We present a newly developed time-dependent three-dimensional multizone hadronic blazar emission model. By coupling a Fokker–Planck-based lepto-hadronic particle evolution code, 3DHad, with a polarization-dependent radiation transfer code, 3DPol, we are able to study the time-dependent radiation and polarization signatures of a hadronic blazar model for the first time. Our current code is limited to parameter regimes in which the hadronic γ-ray output is dominated by proton synchrotron emission, neglecting pion production. Our results demonstrate that the time-dependent flux and polarization signatures are generally dominated by the relation between the synchrotron cooling and the light-crossing timescale, which is largely independent ofmore » the exact model parameters. We find that unlike the low-energy polarization signatures, which can vary rapidly in time, the high-energy polarization signatures appear stable. Lastly, future high-energy polarimeters may be able to distinguish such signatures from the lower and more rapidly variable polarization signatures expected in leptonic models.« less

  12. How well do Reanalysis represent polar lows?

    NASA Astrophysics Data System (ADS)

    Zappa, G.; Shaffrey, L.; Hodges, K.

    2013-12-01

    Polar lows are intense maritime mesocyclones forming at high latitudes during polar air outbreaks. The associated high surface winds can be an important cause of coastal damage.They also seem to play a relevant role in the climate system by modulating the oceanic surface heat fluxes. This creates strong interest in understanding whether modern reanalysis datasets are able to represent polar lows, as well as how their representation may be sensitive to the model resolution. In this talk we investigate how ERA-Interim reanalysis represents the polar lows identified by the Norwegian meteorological services and listed in the STARS (Combination of Sea Surface Temperature and AltimeteR Synergy) dataset for the period 2002-2011. The sensitivity to resolution is explored by comparing ERA-Interim to the ECMWF operational analyses (2008-2011), which have three times higher horizontal resolution compared to ERA-Interim. We show that ERAI-Interim has excellent ability to capture the observed polar lows events with up to 90% of the observed events being found in the reanalysis. However, ERA-Interim tends to have polar lows of weaker dynamical intensity, in terms of both winds and vorticity, and with less spatial structure than in the ECMWF operational analyses (See Fig 1). Furthermore, we apply an objective feature tracking algorithm to the 3 hourly vorticity at 850 hPa with constraints on vorticity intensity and atmospheric static stability to objectively identify polar lows in the ERA-Interim reanalysis. We show that for the stronger polar lows the objective climatology shows good agreement with the STARS dataset over the 2002-2011 period. This allows us to extend the polar lows climatology over the whole ERA Interim period. Differences with another reanalysis product (NCEP-CFSR) will be also discussed. Fig 1: Composite of the tangential wind speed at 925 hPa for 34 polar lows observed in the Norwegian sea between 2008-2010 as represented by the ERA-Interim reanalysis (left

  13. Blinded by the light: on the relationship between CO first overtone emission and mass accretion rate in massive young stellar objects

    NASA Astrophysics Data System (ADS)

    Ilee, J. D.; Oudmaijer, R. D.; Wheelwright, H. E.; Pomohaci, R.

    2018-07-01

    To date, there is no explanation as to why disc-tracing CO first overtone (or `bandhead') emission is not a ubiquitous feature in low- to medium-resolution spectra of massive young stellar objects (MYSOs), but instead is only detected towards approximately 25 per cent of their spectra. In this paper, we investigate the hypothesis that only certain mass accretion rates result in detectable bandhead emission in the near-infrared spectra of MYSOs. Using an analytic disc model combined with an LTE model of the CO emission, we find that high accretion rates (≳10-4 M⊙ yr-1) result in large dust sublimation radii, a larger contribution to the K-band continuum from hot dust at the dust sublimation radius, and therefore correspondingly lower CO emission with respect to the continuum. On the other hand, low accretion rates (≲10-6 M⊙ yr-1) result in smaller dust sublimation radii, a correspondingly smaller emitting area of CO, and thus also lower CO emission with respect to the continuum. In general, moderate accretion rates produce the most prominent, and therefore detectable, CO first overtone emission. We compare our findings to a recent near-infrared spectroscopic survey of MYSOs, finding results consistent with our hypothesis. We conclude that the detection rate of CO bandhead emission in the spectra of MYSOs could be the result of MYSOs exhibiting a range of mass accretion rates, perhaps due to the variable accretion suggested by recent multi-epoch observations of these objects.

  14. Blinded by the light: on the relationship between CO first overtone emission and mass accretion rate in massive young stellar objects

    NASA Astrophysics Data System (ADS)

    Ilee, J. D.; Oudmaijer, R. D.; Wheelwright, H. E.; Pomohaci, R.

    2018-04-01

    To date, there is no explanation as to why disc-tracing CO first overtone (or `bandhead') emission is not a ubiquitous feature in low- to medium-resolution spectra of massive young stellar objects, but instead is only detected toward approximately 25 per cent of their spectra. In this paper, we investigate the hypothesis that only certain mass accretion rates result in detectable bandhead emission in the near infrared spectra of MYSOs. Using an analytic disc model combined with an LTE model of the CO emission, we find that high accretion rates (≳ 10-4 M⊙yr-1) result in large dust sublimation radii, a larger contribution to the K-band continuum from hot dust at the dust sublimation radius, and therefore correspondingly lower CO emission with respect to the continuum. On the other hand, low accretion rates (≲ 10-6 M⊙yr-1) result in smaller dust sublimation radii, a correspondingly smaller emitting area of CO, and thus also lower CO emission with respect to the continuum. In general, moderate accretion rates produce the most prominent, and therefore detectable, CO first overtone emission. We compare our findings to a recent near-infrared spectroscopic survey of MYSOs, finding results consistent with our hypothesis. We conclude that the detection rate of CO bandhead emission in the spectra of MYSOs could be the result of MYSOs exhibiting a range of mass accretion rates, perhaps due to the variable accretion suggested by recent multi-epoch observations of these objects.

  15. Accretion, winds and jets: High-energy emission from young stellar objects

    NASA Astrophysics Data System (ADS)

    Günther, Hans Moritz

    2009-03-01

    Stars form by gravitational collapse from giant molecular clouds. Due to the conservation of angular momentum this collapse does not happen radially, but the matter forms circumstellar disk first and is consequently accreted from the disk onto the star. This thesis deals with the high-energy emission from young stellar objects, which are on the one hand still actively accreting from their disk, and on the other hand are no longer deeply obscured by their natal cloud. Stars of spectral type B and A are called Herbig Ae/Be (HAeBe) stars in this stage, all stars of later spectral type are termed classical T Tauri stars (CTTS); strictly speaking both types are defined by spectroscopic signatures, which are equivalent to the evolutionary stage described above. In this thesis CTTS and HAeBes are studied through high-resolution X-ray and UV spectroscopy and through detailed physical simulations. Spectroscopic X-ray data is reduced and presented for two targets: The CTTS V4046 Sgr was observed with Chandra for 100 ks, using a high-resolution grating spectrometer. The lightcurve contains one flare and the He-like triplets of SiXIII, NeIX and OVII indicate high densities in the X-ray emitting regions. The second target is the HAeBe HD 163296, which was observed with XMM-Newton for 130 ks. The lightcurve shows only moderate variability, the elemental abundance follows a pattern, that is usual for active stars. The He-like triplet of OVII exhibits line ratios similar to coronal sources, indicating that neither a high density nor a strong UV-field is present in the region of the X-ray emission. Using these and similar observations, it can be concluded that at least three mechanisms contribute to the observed high-energy emission from CTTS: First, those stars have active coronae similar to main-sequence stars, second, the accreted material passes through a strong accretion shock at the stellar surface, which heats it to a few MK, and, third, some CTTS drive powerful outflows

  16. Circular polarization survey of intermediate polars I. Northern targets in the range 17 h < RA < 23 h

    NASA Astrophysics Data System (ADS)

    Butters, O. W.; Katajainen, S.; Norton, A. J.; Lehto, H. J.; Piirola, V.

    2009-03-01

    Context: The origin, evolution, and ultimate fate of magnetic cataclysmic variables are poorly understood. It is largely the nature of the magnetic fields in these systems that leads to this poor understanding. Fundamental properties, such as the field strength and the axis alignment, are unknown in a majority of these systems. Aims: We undertake to put all the previous circular polarization measurements into context and systematically survey intermediate polars for signs of circular polarization, hence to get an indication of their true magnetic field strengths and try to understand the evolution of magnetic cataclysmic variables. Methods: We used the TurPol instrument at the Nordic Optical Telescope to obtain simultaneous UBVRI photo-polarimetric observations of a set of intermediate polars, during the epoch 2006 July 31-August 2. Results: Of this set of eight systems two (1RXS J213344.1+510725 and 1RXS J173021.5-055933) were found to show significant levels of circular polarization, varying with spin phase. Five others (V2306 Cyg, AO Psc, DQ Her, FO Aqr, and V1223 Sgr) show some evidence for circular polarization and variation of this with spin phase, whilst AE Aqr shows little evidence for polarized emission. We also report the first simultaneous UBVRI photometry of the newly identified intermediate polar 1RXS J173021.5-055933. Conclusions: Circular polarization may be ubiquitous in intermediate polars, albeit at a low level of one or two percent or less. It is stronger at longer wavelengths in the visible spectrum. Our results lend further support to the possible link between the presence of soft X-ray components and the detectability of circular polarization in intermediate polars. Based on observations obtained at the Nordic Optical Telescope at the Roque de los Muchachos Observatory in La Palma.

  17. Data acquisition system and ground calibration of polarized gamma-ray observer (PoGOLite)

    NASA Astrophysics Data System (ADS)

    Takahashi, Hiromitsu; Chauvin, Maxime; Fukazawa, Yasushi; Jackson, Miranda; Kamae, Tuneyoshi; Kawano, Takafumi; Kiss, Mozsi; Kole, Merlin; Mikhalev, Victor; Mizuno, Tsunefumi; Moretti, Elena; Pearce, Mark; Rydström, Stefan

    2014-07-01

    The Polarized Gamma-ray Observer, PoGOLite, is a balloon experiment with the capability of detecting 10% polarization from a 200 mCrab celestial object between the energy-range 25-80 keV in one 6 hour flight. Polarization measurements in soft gamma-rays are expected to provide a powerful probe into high-energy emission mechanisms in/around neutron stars, black holes, supernova remnants, active-galactic nuclei etc. The "pathfinder" flight was performed in July 2013 for 14 days from Sweden to Russia. The polarization is measured using Compton scattering and photoelectric absorption in an array of 61 well-type phoswich detector cells (PDCs) for the pathfinder instrument. The PDCs are surrounded by 30 BGO crystals which form a side anti-coincidence shield (SAS) and passive polyethylene neutron shield. There is a neutron detector consisting of LiCaAlF6 (LiCAF) scintillator covered with BGOs to measure the background contribution of atmospheric neutrons. The data acquisition system treats 92 PMT signals from 61 PDCs + 30 SASs + 1 neutron detector, and it is developed based on SpaceWire spacecraft communication network. Most of the signal processing is done by digital circuits in Field Programmable Gate Arrays (FPGAs). This enables the reduction of the mass, the space and the power consumption. The performance was calibrated before the launch.

  18. Polarization Remote Sensing Physical Mechanism, Key Methods and Application

    NASA Astrophysics Data System (ADS)

    Yang, B.; Wu, T.; Chen, W.; Li, Y.; Knjazihhin, J.; Asundi, A.; Yan, L.

    2017-09-01

    China's long-term planning major projects "high-resolution earth observation system" has been invested nearly 100 billion and the satellites will reach 100 to 2020. As to 2/3 of China's area covered by mountains it has a higher demand for remote sensing. In addition to light intensity, frequency, phase, polarization is also the main physical characteristics of remote sensing electromagnetic waves. Polarization is an important component of the reflected information from the surface and the atmospheric information, and the polarization effect of the ground object reflection is the basis of the observation of polarization remote sensing. Therefore, the effect of eliminating the polarization effect is very important for remote sensing applications. The main innovations of this paper is as follows: (1) Remote sensing observation method. It is theoretically deduced and verified that the polarization can weaken the light in the strong light region, and then provide the polarization effective information. In turn, the polarization in the low light region can strengthen the weak light, the same can be obtained polarization effective information. (2) Polarization effect of vegetation. By analyzing the structure characteristics of vegetation, polarization information is obtained, then the vegetation structure information directly affects the absorption of biochemical components of leaves. (3) Atmospheric polarization neutral point observation method. It is proved to be effective to achieve the ground-gas separation, which can achieve the effect of eliminating the atmospheric polarization effect and enhancing the polarization effect of the object.

  19. The first linear polarization spectra of Wolf-Rayet stars in the ultraviolet - EZ Canis Majoris and Theta Muscae

    NASA Technical Reports Server (NTRS)

    Schulte-Ladbeck, R. E.; Nordsieck, K. H.; Code, A. D.; Anderson, C. M.; Babler, B. L.; Bjorkman, K. S.; Clayton, G. C.; Magalhaes, A. M.; Meade, M. R.; Shepherd, D.

    1992-01-01

    During the 1990 December Astro-1 Space Shuttle mission, spectropolarimetry was conducted in the wavelength region from 1400 to 3200 A of the Wolf-Rayet stars EZ CMa (WN5) and Theta Mus (WC6 + O9.5I) with the Wisconsin Ultraviolet Photo-Polarimeter Experiment. The UV polarization of EZ CMa displays features which correspond to emission lines. This indicates a large, about 0.8 percent, intrinsic UV-continuum polarization, and provides further evidence that the wind of EZ CMa is highly distorted. The polarization of Theta Mus does not change across emission lines, or the strong interstellar 2200 A feature. The polarization decreases smoothly to shorter wavelengths, at constant position angle. The combined UV-optical polarization spectrum of Theta Mus can be described well with interstellar polarization following a Serkowski law.

  20. Modeling radio circular polarization in the Crab nebula

    NASA Astrophysics Data System (ADS)

    Bucciantini, N.; Olmi, B.

    2018-03-01

    In this paper, we present, for the first time, simulated maps of the circularly polarized synchrotron emission from the Crab nebula, using multidimensional state of the art models for the magnetic field geometry. Synchrotron emission is the signature of non-thermal emitting particles, typical of many high-energy astrophysical sources, both Galactic and extragalactic ones. Its spectral and polarization properties allow us to infer key information on the particles distribution function and magnetic field geometry. In recent years, our understanding of pulsar wind nebulae has improved substantially thanks to a combination of observations and numerical models. A robust detection or non-detection of circular polarization will enable us to discriminate between an electron-proton plasma and a pair plasma, clarifying once for all the origin of the radio emitting particles, setting strong constraints on the pair production in pulsar magnetosphere, and the role of turbulence in the nebula. Previous attempts at measuring the circular polarization have only provided upper limits, but the lack of accurate estimates, based on reliable models, makes their interpretation ambiguous. We show here that those results are above the expected values, and that current polarimetric techniques are not robust enough for conclusive result, suggesting that improvements in construction and calibration of next generation radio facilities are necessary to achieve the desired sensitivity.

  1. Polarization of Gamma-Ray Bursts in the Dissipative Photosphere Model

    NASA Astrophysics Data System (ADS)

    Lundman, Christoffer; Vurm, Indrek; Beloborodov, Andrei M.

    2018-04-01

    The MeV spectral peak of gamma-ray bursts (GRBs) is best explained as photospheric emission from a dissipative relativistic jet. The observed non-blackbody spectrum shows that sub-photospheric dissipation involves both thermal plasma heating and injection of nonthermal particles, which quickly cool through inverse Compton scattering and emission of synchrotron radiation. Synchrotron photons emitted around and above the photosphere are predicted to dominate the low-energy part of the GRB spectrum, starting from roughly a decade in energy below the MeV peak. We show that this leads to a unique polarization signature: a rise in GRB polarization toward lower energies. We compute the polarization degree of GRB radiation as a function of photon energy for a generic jet model, and show the predictions for GRBs 990123, 090902B, and 110721A. The expected polarization is significant in the X-ray band, in particular for bursts similar to GRB 090902B. The model predicts that radiation in the MeV peak (and at higher energies) is unpolarized as long as the jet is approximately uniform on angular scales δθ ≳ Γ‑1 where Γ is the bulk Lorentz factor of the jet.

  2. A survey of extended H2 emission from massive YSOs

    NASA Astrophysics Data System (ADS)

    Navarete, F.; Damineli, A.; Barbosa, C. L.; Blum, R. D.

    2015-07-01

    We present the results from a survey, designed to investigate the accretion process of massive young stellar objects (MYSOs) through near-infrared narrow-band imaging using the H2 ν=1-0 S(1) transition filter. A sample of 353 MYSO candidates was selected from the Red MSX Source survey using photometric criteria at longer wavelengths (infrared and submillimetre) and chosen with positions throughout the Galactic plane. Our survey was carried out at the Southern Astrophysical Research Telescope Telescope in Chile and Canada-France-Hawaii Telescope in Hawaii covering both hemispheres. The data reveal that extended H2 emission is a good tracer of outflow activity, which is a signpost of accretion process on young massive stars. Almost half of the sample exhibit extended H2 emission and 74 sources (21 per cent) have polar morphology, suggesting collimated outflows. The polar-like structures are more likely to appear on radio-quiet sources, indicating these structures occur during the pre-UCH II phase. We also found an important fraction of sources associated with fluorescent H2 diffuse emission that could be due to a more evolved phase. The images also indicate only ˜23 per cent (80) of the sample is associated with extant (young) stellar clusters. These results support the scenario in which massive stars are formed by accretion discs, since the merging of low-mass stars would not produce outflow structures.

  3. Camouflaged target detection based on polarized spectral features

    NASA Astrophysics Data System (ADS)

    Tan, Jian; Zhang, Junping; Zou, Bin

    2016-05-01

    The polarized hyperspectral images (PHSI) include polarization, spectral, spatial and radiant features, which provide more information about objects and scenes than traditional intensity or spectrum ones. And polarization can suppress the background and highlight the object, leading to the high potential to improve camouflaged target detection. So polarized hyperspectral imaging technique has aroused extensive concern in the last few years. Nowadays, the detection methods are still not very mature, most of which are rooted in the detection of hyperspectral image. And before using these algorithms, Stokes vector is used to process the original four-dimensional polarized hyperspectral data firstly. However, when the data is large and complex, the amount of calculation and error will increase. In this paper, tensor is applied to reconstruct the original four-dimensional data into new three-dimensional data, then, the constraint energy minimization (CEM) is used to process the new data, which adds the polarization information to construct the polarized spectral filter operator and takes full advantages of spectral and polarized information. This way deals with the original data without extracting the Stokes vector, so as to reduce the computation and error greatly. The experimental results also show that the proposed method in this paper is more suitable for the target detection of the PHSI.

  4. POLARIZATION MEASUREMENTS OF HOT DUST STARS AND THE LOCAL INTERSTELLAR MEDIUM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marshall, J. P.; Cotton, D. V.; Bott, K.

    2016-07-10

    Debris discs are typically revealed through the presence of excess emission at infrared wavelengths. Most discs exhibit excess at mid- and far-infrared wavelengths, analogous to the solar system’s Asteroid and Edgeworth-Kuiper belts. Recently, stars with strong (∼1%) excess at near-infrared wavelengths were identified through interferometric measurements. Using the HIgh Precision Polarimetric Instrument, we examined a sub-sample of these hot dust stars (and appropriate controls) at parts-per-million sensitivity in SDSS g ′ (green) and r ′ (red) filters for evidence of scattered light. No detection of strongly polarized emission from the hot dust stars is seen. We, therefore, rule out scatteredmore » light from a normal debris disk as the origin of this emission. A wavelength-dependent contribution from multiple dust components for hot dust stars is inferred from the dispersion (the difference in polarization angle in red and green) of southern stars. Contributions of 17 ppm (green) and 30 ppm (red) are calculated, with strict 3- σ upper limits of 76 and 68 ppm, respectively. This suggests weak hot dust excesses consistent with thermal emission, although we cannot rule out contrived scenarios, e.g., dust in a spherical shell or face-on discs. We also report on the nature of the local interstellar medium (ISM), obtained as a byproduct of the control measurements. Highlights include the first measurements of the polarimetric color of the local ISM and the discovery of a southern sky region with a polarization per distance thrice the previous maximum. The data suggest that λ {sub max}, the wavelength of maximum polarization, is bluer than typical.« less

  5. Ship emissions measurement in the Arctic by plume intercepts of the Canadian Coast Guard icebreaker Amundsen from the Polar 6 aircraft platform

    NASA Astrophysics Data System (ADS)

    Aliabadi, Amir A.; Thomas, Jennie L.; Herber, Andreas B.; Staebler, Ralf M.; Leaitch, W. Richard; Schulz, Hannes; Law, Kathy S.; Marelle, Louis; Burkart, Julia; Willis, Megan D.; Bozem, Heiko; Hoor, Peter M.; Köllner, Franziska; Schneider, Johannes; Levasseur, Maurice; Abbatt, Jonathan P. D.

    2016-06-01

    Decreasing sea ice and increasing marine navigability in northern latitudes have changed Arctic ship traffic patterns in recent years and are predicted to increase annual ship traffic in the Arctic in the future. Development of effective regulations to manage environmental impacts of shipping requires an understanding of ship emissions and atmospheric processing in the Arctic environment. As part of the summer 2014 NETCARE (Network on Climate and Aerosols) campaign, the plume dispersion and gas and particle emission factors of effluents originating from the Canadian Coast Guard icebreaker Amundsen operating near Resolute Bay, NU, Canada, were investigated. The Amundsen burned distillate fuel with 1.5 wt % sulfur. Emissions were studied via plume intercepts using the Polar 6 aircraft measurements, an analytical plume dispersion model, and using the FLEXPART-WRF Lagrangian particle dispersion model. The first plume intercept by the research aircraft was carried out on 19 July 2014 during the operation of the Amundsen in the open water. The second and third plume intercepts were carried out on 20 and 21 July 2014 when the Amundsen had reached the ice edge and operated under ice-breaking conditions. Typical of Arctic marine navigation, the engine load was low compared to cruising conditions for all of the plume intercepts. The measured species included mixing ratios of CO2, NOx, CO, SO2, particle number concentration (CN), refractory black carbon (rBC), and cloud condensation nuclei (CCN). The results were compared to similar experimental studies in mid-latitudes. Plume expansion rates (γ) were calculated using the analytical model and found to be γ = 0.75 ± 0.81, 0.93 ± 0.37, and 1.19 ± 0.39 for plumes 1, 2, and 3, respectively. These rates were smaller than prior studies conducted at mid-latitudes, likely due to polar boundary layer dynamics, including reduced turbulent mixing compared to mid-latitudes. All emission factors were in agreement with prior

  6. Bio-inspired display of polarization information using selected visual cues

    NASA Astrophysics Data System (ADS)

    Yemelyanov, Konstantin M.; Lin, Shih-Schon; Luis, William Q.; Pugh, Edward N., Jr.; Engheta, Nader

    2003-12-01

    For imaging systems the polarization of electromagnetic waves carries much potentially useful information about such features of the world as the surface shape, material contents, local curvature of objects, as well as about the relative locations of the source, object and imaging system. The imaging system of the human eye however, is "polarization-blind", and cannot utilize the polarization of light without the aid of an artificial, polarization-sensitive instrument. Therefore, polarization information captured by a man-made polarimetric imaging system must be displayed to a human observer in the form of visual cues that are naturally processed by the human visual system, while essentially preserving the other important non-polarization information (such as spectral and intensity information) in an image. In other words, some forms of sensory substitution are needed for representing polarization "signals" without affecting other visual information such as color and brightness. We are investigating several bio-inspired representational methodologies for mapping polarization information into visual cues readily perceived by the human visual system, and determining which mappings are most suitable for specific applications such as object detection, navigation, sensing, scene classifications, and surface deformation. The visual cues and strategies we are exploring are the use of coherently moving dots superimposed on image to represent various range of polarization signals, overlaying textures with spatial and/or temporal signatures to segregate regions of image with differing polarization, modulating luminance and/or color contrast of scenes in terms of certain aspects of polarization values, and fusing polarization images into intensity-only images. In this talk, we will present samples of our findings in this area.

  7. Linearly polarized photoluminescence of InGaN quantum disks embedded in GaN nanorods.

    PubMed

    Park, Youngsin; Chan, Christopher C S; Nuttall, Luke; Puchtler, Tim J; Taylor, Robert A; Kim, Nammee; Jo, Yongcheol; Im, Hyunsik

    2018-05-25

    We have investigated the emission from InGaN/GaN quantum disks grown on the tip of GaN nanorods. The emission at 3.21 eV from the InGaN quantum disk doesn't show a Stark shift, and it is linearly polarized when excited perpendicular to the growth direction. The degree of linear polarization is about 39.3% due to the anisotropy of the nanostructures. In order to characterize a single nanostructure, the quantum disks were dispersed on a SiO 2 substrate patterned with a metal reference grid. By rotating the excitation polarization angle from parallel to perpendicular relative to the nanorods, the variation of overall PL for the 3.21 eV peak was recorded and it clearly showed the degree of linear polarization (DLP) of 51.5%.

  8. The Primordial Inflation Polarization ExploreR (PIPER)

    NASA Astrophysics Data System (ADS)

    Gandilo, Natalie; Ade, Peter; Benford, Dominic; Bennett, Charles; Chuss, David; Datta, Rahul; Dotson, Jessie; Essinger-Hileman, Thomas; Fixsen, Dale; Halpern, Mark; Hilton, Gene; Hinshaw, Gary; Irwin, Kent; Jhabvala, Christine; Kimball, Mark; Kogut, Al; Lowe, Luke; McMahon, Jeff; Miller, Timothy; Mirel, Paul; Moseley, Samuel Harvey; Pawlyk, Samuel; Rodriguez, Samelys; Sharp, Elmer; Shirron, Peter; Staguhn, Johannes G.; Sullivan, Dan; Switzer, Eric; Taraschi, Peter; Tucker, Carole; Walts, Alexander; Wollack, Edward

    2018-01-01

    The Primordial Inflation Polarization ExploreR (PIPER) is a balloon-borne telescope designed to map the large scale polarization of the Cosmic Microwave Background as well as the polarized emission from galactic dust at 200, 270, 350, and 600 GHz, with 21, 15, 14, and 14 arcminutes of angular resolution respectively. PIPER uses twin telescopes with Variable-delay Polarization Modulators to simultaneously map Stokes I, Q, U and V. Cold optics and the lack of a warm window allow the instrument to achieve background limited sensitivity, with mapping speed approximately 10 times faster than a similar instrument with a single ambient-temperature mirror. Over the course of 8 conventional balloon flights from the Northern and Southern hemisphere, PIPER will map 85% of the sky, measuring the B-mode polarization spectrum from the reionization bump to l~300, and placing an upper limit on the tensor-to-scalar ratio of r<0.007. An engineering flight is planned for October 2017 from Fort Sumner, New Mexico, and the first science flight is planned for June 2018 from Palestine, Texas.

  9. A method used to overcome polarization effects in semi-polar structures of nitride light-emitting diodes emitting green radiation

    NASA Astrophysics Data System (ADS)

    Morawiec, Seweryn; Sarzała, Robert P.; Nakwaski, Włodzimierz

    2013-11-01

    Polarization effects are studied within nitride light-emitting diodes (LEDs) manufactured on standard polar and semipolar substrates. A new theoretical approach, somewhat different than standard ones, is proposed to this end. It is well known that when regular polar GaN substrates are used, strong piezoelectric and spontaneous polarizations create built-in electric fields leading to the quantum-confined Stark effects (QCSEs). These effects may be completely avoided in nonpolar crystallographic orientations, but then there are problems with manufacturing InGaN layers of relatively high Indium contents necessary for the green emission. Hence, a procedure leading to partly overcoming these polarization problems in semi-polar LEDs emitting green radiation is proposed. The (11 22) crystallographic substrate orientation (inclination angle of 58∘ to c plane) seems to be the most promising because it is characterized by low Miller-Bravais indices leading to high-quality and high Indium content smooth growth planes. Besides, it makes possible an increased Indium incorporation efficiency and it is efficient in suppressing QCSE. The In0.3Ga0.7N/GaN QW LED grown on the semipolar (11 22) substrate has been found as currently the optimal LED structure emitting green radiation.

  10. Laser scanning confocal microscope with programmable amplitude, phase, and polarization of the illumination beam.

    PubMed

    Boruah, B R; Neil, M A A

    2009-01-01

    We describe the design and construction of a laser scanning confocal microscope with programmable beam forming optics. The amplitude, phase, and polarization of the laser beam used in the microscope can be controlled in real time with the help of a liquid crystal spatial light modulator, acting as a computer generated hologram, in conjunction with a polarizing beam splitter and two right angled prisms assembly. Two scan mirrors, comprising an on-axis fast moving scan mirror for line scanning and an off-axis slow moving scan mirror for frame scanning, configured in a way to minimize the movement of the scanned beam over the pupil plane of the microscope objective, form the XY scan unit. The confocal system, that incorporates the programmable beam forming unit and the scan unit, has been implemented to image in both reflected and fluorescence light from the specimen. Efficiency of the system to programmably generate custom defined vector beams has been demonstrated by generating a bottle structured focal volume, which in fact is the overlap of two cross polarized beams, that can simultaneously improve both the lateral and axial resolutions if used as the de-excitation beam in a stimulated emission depletion confocal microscope.

  11. Radio polarization and magnetic field structure in M 101

    NASA Astrophysics Data System (ADS)

    Berkhuijsen, E. M.; Urbanik, M.; Beck, R.; Han, J. L.

    2016-04-01

    We observed total and polarized radio continuum emission from the spiral galaxy M 101 at λλ 6.2 cm and 11.1 cm with the Effelsberg telescope. The angular resolutions are 2.´ 5 (=5.4 kpc) and 4.´ 4 (=9.5 kpc), respectively. We use these data to study various emission components in M 101 and properties of the magnetic field. Separation of thermal and non-thermal emission shows that the thermal emission is closely correlated with the spiral arms, while the non-thermal emission is more smoothly distributed indicating diffusion of cosmic ray electrons away from their places of origin. The radial distribution of both emissions has a break near R = 16 kpc (=7.´ 4), where it steepens to an exponential scale length of L ≃ 5 kpc, which is about 2.5 times smaller than at R< 16 kpc. The distribution of the polarized emission has a broad maximum near R = 12 kpc and beyond R = 16 kpc also decreases with L ≃ 5 kpc. It seems that near R = 16 kpc a major change in the structure of M 101 takes place, which also affects the distributions of the strength of the random and ordered magnetic field. Beyond R = 16 kpc the radial scale length of both fields is about 20 kpc, which implies that they decrease to about 0.3 μG at R = 70 kpc, which is the largest optical extent. The equipartition strength of the total field ranges from nearly 10 μG at R< 2 kpc to 4 μG at R = 22-24 kpc. As the random field dominates in M 101 (Bran/Bord ≃ 2.4), wavelength-independent polarization is the main polarization mechanism. We show that energetic events causing H I shells of mean diameter < 625 pc could partly be responsible for this. At radii < 24 kpc, the random magnetic field depends on the star formation rate/area, ΣSFR, with a power-law exponent of b = 0.28 ± 0.02. The ordered magnetic field is generally aligned with the spiral arms with pitch angles that are about 8° larger than those of H I filaments. Based on observations with the 100 m telescope of the MPIfR at Effelsberg

  12. An objective decision model of power grid environmental protection based on environmental influence index and energy-saving and emission-reducing index

    NASA Astrophysics Data System (ADS)

    Feng, Jun-shu; Jin, Yan-ming; Hao, Wei-hua

    2017-01-01

    Based on modelling the environmental influence index of power transmission and transformation project and energy-saving and emission-reducing index of source-grid-load of power system, this paper establishes an objective decision model of power grid environmental protection, with constraints of power grid environmental protection objectives being legal and economical, and considering both positive and negative influences of grid on the environmental in all-life grid cycle. This model can be used to guide the programming work of power grid environmental protection. A numerical simulation of Jiangsu province’s power grid environmental protection objective decision model has been operated, and the results shows that the maximum goal of energy-saving and emission-reducing benefits would be reached firstly as investment increasing, and then the minimum goal of environmental influence.

  13. Detection and recognition of targets by using signal polarization properties

    NASA Astrophysics Data System (ADS)

    Ponomaryov, Volodymyr I.; Peralta-Fabi, Ricardo; Popov, Anatoly V.; Babakov, Mikhail F.

    1999-08-01

    The quality of radar target recognition can be enhanced by exploiting its polarization signatures. A specialized X-band polarimetric radar was used for target recognition in experimental investigations. The following polarization characteristics connected to the object geometrical properties were investigated: the amplitudes of the polarization matrix elements; an anisotropy coefficient; depolarization coefficient; asymmetry coefficient; the energy of a backscattering signal; object shape factor. A large quantity of polarimetric radar data was measured and processed to form a database of different object and different weather conditions. The histograms of polarization signatures were approximated by a Nakagami distribution, then used for real- time target recognition. The Neyman-Pearson criterion was used for the target detection, and the criterion of the maximum of a posterior probability was used for recognition problem. Some results of experimental verification of pattern recognition and detection of objects with different electrophysical and geometrical characteristics urban in clutter are presented in this paper.

  14. SOHO/CDS Measurements of Coronal EUV Polarization above the Limb

    NASA Technical Reports Server (NTRS)

    Thomas, Roger J.; Oegerle, William R. (Technical Monitor)

    2002-01-01

    Attempts to measure polarization in coronal EUV emission above the solar limb have been made using the SOHO/CDS normal-incidence spectrometer which has a polarization sensitivity of about 50%, a property that causes variations in intensity response as a function of the spacecraft's roll angle for polarized light. Such observations were made on the disk and up to 0.22 solar radii above the solar limb in a number of EUV lines during two special roll-maneuvers of the SOHO spacecraft. Measurements of intensity gradients were made above a modestly active equatorial region in 1997 and above a relatively cool polar region in 2001. Observed emission lines include He I 584A, He II 304A, 0 IV 555+610A, 0 V 630A, Mg IX 368A, Mg X 610+625A, and Si XI 303A, formed at temperatures that evenly cover the range in logT from 4.1 to 6.2. Near the disk, measured intensities of all lines fall off exponentially at different rates that can be used to determine the density scale-heights of the emitting plasma, since this emission is dominated by collisional excitation with an Ne-squared dependence. Assuming hydrostatic equilibrium, the intensity gradient for each line can then be converted into a 'scale-height temperature', which is found to be closely related to the ionization temperature of each line over the wide range of lines and solar conditions observed. Beyond a certain distance, intensity gradients of the cooler lines switch over to a flatter exponential slope, suggesting that this radiation is dominated by resonance scattering which varies as Ne to the first power. Such radiation should also be linearly polarized in the plane containing the line-of-sight and the solar center, a signature that would strongly confirm this interpretation.

  15. The effect of vacuum birefringence on the polarization of X-ray binaries and pulsars

    NASA Technical Reports Server (NTRS)

    Novick, R.; Weisskopf, M. C.; Angel, J. R. P.; Sutherland, P. G.

    1977-01-01

    In a strong magnetic field the vacuum becomes birefringent. This effect is especially important for pulsars at X-ray wavelengths. Any polarized X-ray emission from the surface of a magnetic neutron star becomes depolarized as it propagates through the magnetic field. The soft X-ray emission from AM Her, believed to be a magnetic white dwarf, may show about one radian of phase retardation. In this case, circular polarization of the X-ray flux would be a characteristic signature of vacuum birefringence.

  16. Polarized emission from light-emitting electrochemical cells using uniaxially oriented polymer thin films of poly(9,9-dioctylfluorene-co-bithiophene)

    NASA Astrophysics Data System (ADS)

    Miyazaki, Masumi; Sakanoue, Tomo; Takenobu, Taishi

    2018-03-01

    Uniaxially oriented poly(9,9-dioctylfluorene-co-bithiophene) (F8T2) films were prepared on rubbed polyimide substrates and applied to emitting layers of light-emitting electrochemical cells (LECs). The layered structure of the uniaxially oriented F8T2 film and ionic liquid electrolytes enabled us to demonstrate LEC operations with high anisotropic characteristics both in emission and charge transport. Polarized electroluminescence (EL) from electrochemically induced p-n junctions in the uniaxially oriented F8T2 was obtained. The dichroic ratios of EL were the same as those of photoluminescence, suggesting that the doping process into the oriented F8T2 did not interrupt the polymer ordering. This indicates the usefulness of the layered structure of the polymer/electrolyte for the fabrication of LECs based on highly oriented polymer films. In addition, uniaxially oriented F8T2 was found to show reduced threshold energy in optically pumped amplified spontaneous emission. These demonstrations suggest the advantage of uniaxially oriented polymer-based LECs for potential application in future electrically pumped lasers.

  17. Polarization characteristics of an altazimuth sky scanner

    NASA Technical Reports Server (NTRS)

    Garrison, L. M.; Blaszczak, Z.; Green, A. E. S.

    1980-01-01

    A theoretical description of the polarization characteristics of an altazimuth sky scanner optical system based on Mueller-Stokes calculus is presented. This computer-driven optical system was designed to perform laboratory studies of skylight and of celestial objects during day or night, and has no space limitations; however, the two parallel 45 deg tilt mirrors introduce some intrinsic polarization. Therefore, proper data interpretation requires a theoretical understanding of the polarization features of the instrument and accurate experimental determination of the Mueller-Stokes matrix elements describing the polarizing and depolarizing action of the system.

  18. X-ray emission from high temperature plasmas

    NASA Technical Reports Server (NTRS)

    Harries, W. L.

    1975-01-01

    The bremsstrahlung X-rays from a plasma focus device were investigated with emphasis on the emission versus position, time, energy, and angle of emission. It is shown that low energy X-rays come from the plasma focus region, but that the higher energy components come from the anode. The emission is anisotropic, the low energy polar diagram resembling a cardioid, while the high energy emission is a lobe into the anode. The plasma parameters were considered indicating that even in the dense focus, the plasma is collisionless near the axis. By considering the radiation patterns of relativistic electrons a qualitative picture is obtained, which explains the measured polar diagrams, assuming the electrons that produce the X-rays have velocity vectors lying roughly in a cone between the point of focus and the anode. The average electron energy is about 3keV at the focus and about 10 keV on the anode surface. Results are consistent with the converging beam model of neutron production.

  19. Enhanced Polarized Emission from the One-parsec-scale Hotspot of 3C 84 as a Result of the Interaction with the Clumpy Ambient Medium

    NASA Astrophysics Data System (ADS)

    Nagai, H.; Fujita, Y.; Nakamura, M.; Orienti, M.; Kino, M.; Asada, K.; Giovannini, G.

    2017-11-01

    We present Very Long Baseline Array polarimetric observations of the innermost jet of 3C 84 (NGC 1275) at 43 GHz. A significant polarized emission is detected at the hotspot of the innermost restarted jet, which is located 1 pc south from the radio core. While the previous report presented a hotspot at the southern end of the western limb, the hotspot location has been moved to the southern end of the eastern limb. Faraday rotation is detected within an entire bandwidth of the 43 GHz band. The measured rotation measure (RM) is at most (6.3 ± 1.9) × 105 rad m-2 and might be slightly time variable on the timescale of a month by a factor of a few. Our measured RM and the RM previously reported by the CARMA and SMA observations cannot be consistently explained by the spherical accretion flow with a power-law profile. We propose that a clumpy/inhomogeneous ambient medium is responsible for the observed RM. Using an equipartition magnetic field, we derive the electron density of 2 × 104 cm-3. Such an electron density is consistent with the cloud of the narrow line emission region around the central engine. We also discuss the magnetic field configuration from the black hole scale to the parsec scale and the origin of low polarization.

  20. Testing the Axion-Conversion Hypothesis of 3.5 keV Emission with Polarization.

    PubMed

    Gong, Yan; Chen, Xuelei; Feng, Hua

    2017-02-10

    The recently measured 3.5 keV line in a number of galaxy clusters, the Andromeda galaxy (M31), and the Milky Way (MW) center can be well accounted for by a scenario in which dark matter decays to axionlike particles (ALPs) and subsequently convert to 3.5 keV photons in magnetic fields of galaxy clusters or galaxies. We propose to test this hypothesis by performing x-ray polarization measurements. Since ALPs can only couple to photons with a polarization orientation parallel to the magnetic field, we can confirm or reject this model by measuring the polarization of the 3.5 keV line and compare it to the orientation of the magnetic field. We discuss luminosity and polarization measurements for both a galaxy cluster and spiral galaxy, and provide a general relation between the polarization and galaxy inclination angle. This effect is marginally detectable with x-ray polarimetry detectors currently under development, such as the enhanced X-ray Timing and Polarization satellite, the Imaging X-ray Polarimetry Explorer and the X-ray Imaging Polarimetry Explorer. The sensitivity can be further improved in the future with detectors of a larger effective area or better energy resolutions.

  1. Detection of linear polarization from SNR Cassiopeia A at low radio frequencies

    NASA Astrophysics Data System (ADS)

    Raja, Wasim; Deshpande, A.

    We report detection of the weak but significant linear polarization from the Supernova Remnant Cas A at low radio frequencies (327 MHz) using the GMRT. The spectro-polarimetric data was analyzed using the new technique of Faraday Tomography (RM-synthesis). The problems of disentangling weak sky polarization from any residual instrumental polarization is discussed. A novel technique to establish association of the apparent polarization to the source, even in the presence of instrumental leakage is demonstrated. The anti-correlation of the polarized emission with soft X-ray counts seen at various Faraday-depths provides direct evidence of the co-existence of thermal and non-thermal plasmas within the source.

  2. The nature of pulsar radio emission

    NASA Astrophysics Data System (ADS)

    Dyks, J.; Rudak, B.; Demorest, P.

    2010-01-01

    High-quality averaged radio profiles of some pulsars exhibit double, highly symmetric features both in emission and in absorption. It is shown that both types of feature are produced by a split fan beam of extraordinary-mode curvature radiation that is emitted/absorbed by radially extended streams of magnetospheric plasma. With no emissivity in the plane of the stream, such a beam produces bifurcated emission components (BFCs) when our line of sight passes through the plane. An example of a double component created in this way is present in the averaged profile of the 5-ms pulsar J1012+5307. We show that the component can indeed be very well fitted by the textbook formula for the non-coherent beam of curvature radiation in the polarization state that is orthogonal to the plane of electron trajectory. The observed width of the BFC decreases with increasing frequency at a rate that confirms the curvature origin. Likewise, the double absorption features (double notches) are produced by the same beam of the extraordinary-mode curvature radiation, when it is eclipsed by thin plasma streams. The intrinsic property of curvature radiation to create bifurcated fan beams explains the double features in terms of a very natural geometry and implies the curvature origin of pulsar radio emission. Similarly, the `double conal' profiles of class D result from a cut through a wider stream with finite extent in magnetic azimuth. Therefore, their width reacts very slowly to changes of viewing geometry resulting from geodetic precession. The stream-cut interpretation implies a highly non-orthodox origin of both the famous S-swing of polarization angle and the low-frequency pulse broadening in D profiles. The azimuthal structure of polarization modes in the curvature radiation beam provides an explanation for the polarized `multiple imaging' and the edge depolarization of pulsar profiles.

  3. Polarizing Michelson Interferometer for Measuring Thermospheric Winds.

    NASA Astrophysics Data System (ADS)

    Bird, John C.

    The Polarizing Atmospheric Michelson Interferometer, PAMI, a new version of the Wide Angle Michelson Interferometer, is used to measure winds in the thermosphere. In the polarizing instrument, the optical path difference is changed simply by rotating a polarizing filter external to the interferometer. This allows a very simple scanning mechanism. PAMI's general behavior has been modeled in terms of Mueller matrices providing a framework for the analysis of partial polarization states within the Michelson Interferometer (MI). A field instrument based on the above concept was designed and built. PAMI is similar to other instruments such as WAMDII (Shepherd et al., 1985) that measure thermospheric winds and temperatures, retaining the benefits of high light throughput, while offering advantages including lower cost, simplicity, and portability. PAMI was constructed from readily available components wherever possible to facilitate replacement. The instrument is highly sensitive and thus is designed to be used for field measurements at locations far from city lights. Results are shown from the AIDA observation campaign in Puerto Rico (17^circ57 ^'0^{ ''}N, 66^ circ52^'42 ^{''}W) where coordinated observations were made by PAMI along with other optical and radio measurements during April and May 1989. Intensities of the green line layer at 95 km were compared to those observed by several other instruments. For example, MORTI (Mesopause Oxygen Rotational Temperature Imager), a co-located instrument which was looking at the 94 km 867.6 nm molecular oxygen emission. MORTI and PAMI emission rates were found to show the same trends. PAMI intensities were also compared to two green-line photometers. In these comparisons the trends in observed emission rates were the same for all three instruments. On the brightest night recorded during April, the zenith emission rate reached over 400 Rayleighs; emission enhancements were sometimes related to auroral events. During the

  4. The collective emission of electromagnetic waves from astrophysical jets - Luminosity gaps, BL Lacertae objects, and efficient energy transport

    NASA Technical Reports Server (NTRS)

    Baker, D. N.; Borovsky, Joseph E.; Benford, Gregory; Eilek, Jean A.

    1988-01-01

    A model of the inner portions of astrophysical jets is constructed in which a relativistic electron beam is injected from the central engine into the jet plasma. This beam drives electrostatic plasma wave turbulence, which leads to the collective emission of electromagnetic waves. The emitted waves are beamed in the direction of the jet axis, so that end-on viewing of the jet yields an extremely bright source (BL Lacertae object). The relativistic electron beam may also drive long-wavelength electromagnetic plasma instabilities (firehose and Kelvin-Helmholtz) that jumble the jet magnetic field lines. After a sufficient distance from the core source, these instabilities will cause the beamed emission to point in random directions and the jet emission can then be observed from any direction relative to the jet axis. This combination of effects may lead to the gap turn-on of astrophysical jets. The collective emission model leads to different estimates for energy transport and the interpretation of radio spectra than the conventional incoherent synchrotron theory.

  5. ARCADE 2 Observations of Galactic Radio Emission

    NASA Technical Reports Server (NTRS)

    Kogut, A.; Fixsen, D. J.; Levin, S. M.; Limon, M.; Lubin, P. M.; Mirel, P.; Seiffert, M.; Singal, J.; Villela, T.; Wollack, E.; hide

    2010-01-01

    We use absolutely calibrated data from the Absolute Radiometer for Cosmology, Astrophysics, and Diffuse Emission (ARCADE 2) flight in July 2006 to model Galactic emission at frequencies 3, 8, and 10 GHz. The spatial structure in the data is consistent with a superposition of free-free and synchrotron emission. Emission with spatial morphology traced by the Haslam 408 MHz survey has spectral index beta_synch = -2.5 +/- 0.1, with free-free emission contributing 0.10 +/- 0.01 of the total Galactic plane emission in the lowest ARCADE 2 band at 3.15 GHz. We estimate the total Galactic emission toward the polar caps using either a simple plane-parallel model with csc|b| dependence or a model of high-latitude radio emission traced by the COBE/FIRAS map of CII emission. Both methods are consistent with a single power-law over the frequency range 22 MHz to 10 GHz, with total Galactic emission towards the north polar cap T_Gal = 0.498 +/- 0.028 K and spectral index beta = -2.55 +/- 0.03 at reference frequency 0.31 GHz. The well calibrated ARCADE 2 maps provide a new test for spinning dust emission, based on the integrated intensity of emission from the Galactic plane instead of cross-correlations with the thermal dust spatial morphology. The Galactic plane intensity measured by ARCADE 2 is fainter than predicted by models without spinning dust, and is consistent with spinning dust contributing 0.4 +/- 0.1 of the Galactic plane emission at 23 GHz.

  6. Enhancement of optical polarization degree of AlGaN quantum wells by using staggered structure.

    PubMed

    Wang, Weiying; Lu, Huimin; Fu, Lei; He, Chenguang; Wang, Mingxing; Tang, Ning; Xu, Fujun; Yu, Tongjun; Ge, Weikun; Shen, Bo

    2016-08-08

    Staggered AlGaN quantum wells (QWs) are designed to enhance the transverse-electric (TE) polarized optical emission in deep ultraviolet (DUV) light- emitting diodes (LED). The optical polarization properties of the conventional and staggered AlGaN QWs are investigated by a theoretical model based on the k·p method as well as polarized photoluminescence (PL) measurements. Based on an analysis of the valence subbands and momentum matrix elements, it is found that AlGaN QWs with step-function-like Al content in QWs offers much stronger TE polarized emission in comparison to that from conventional AlGaN QWs. Experimental results show that the degree of the PL polarization at room temperature can be enhanced from 20.8% of conventional AlGaN QWs to 40.2% of staggered AlGaN QWs grown by MOCVD, which is in good agreement with the theoretical simulation. It suggests that polarization band engineering via staggered AlGaN QWs can be well applied in high efficiency AlGaN-based DUV LEDs.

  7. Further comments on the effects of vacuum birefringence on the polarization of X-rays emitted from magnetic neutron stars

    NASA Technical Reports Server (NTRS)

    Chanan, G. A.; Novick, R.; Silver, E. H.

    1979-01-01

    The birefringence of the vacuum in the presence of strong (of the order of 1 teragauss) magnetic fields will in general affect the polarization of X-rays propagating through these fields. Two of the four Stokes parameters will vary so rapidly with wavelength as to be 'washed out' and unobservable, but the remaining two parameters will be unaffected. These results show that one conclusion of an earlier work is incorrect: Polarized X-ray emission from the surface of a magnetic neutron star will not in general be completely depolarized by the effects of vacuum birefringence. In particular, this birefringence has no effect on the linear polarization of cyclotron emission from the poles of magnetic neutron stars, and a similar result holds for synchrotron emission. More general cases of the propagation of polarized X-rays in magnetic fields are also discussed.

  8. Electromagnetic scattering and emission by a fixed multi-particle object in local thermal equilibrium: General formalism.

    PubMed

    Mishchenko, Michael I

    2017-10-01

    The majority of previous studies of the interaction of individual particles and multi-particle groups with electromagnetic field have focused on either elastic scattering in the presence of an external field or self-emission of electromagnetic radiation. In this paper we apply semi-classical fluctuational electrodynamics to address the ubiquitous scenario wherein a fixed particle or a fixed multi-particle group is exposed to an external quasi-polychromatic electromagnetic field as well as thermally emits its own electromagnetic radiation. We summarize the main relevant axioms of fluctuational electrodynamics, formulate in maximally rigorous mathematical terms the general scattering-emission problem for a fixed object, and derive such fundamental corollaries as the scattering-emission volume integral equation, the Lippmann-Schwinger equation for the dyadic transition operator, the multi-particle scattering-emission equations, and the far-field limit. We show that in the framework of fluctuational electrodynamics, the computation of the self-emitted component of the total field is completely separated from that of the elastically scattered field. The same is true of the computation of the emitted and elastically scattered components of quadratic/bilinear forms in the total electromagnetic field. These results pave the way to the practical computation of relevant optical observables.

  9. Demonstration That Calibration of the Instrument Response to Polarizations Parallel and Perpendicular to the Object Space Projected Slit of an Imaging Spectrometer Enable Measurement of the Atmospheric Absorption Spectrum in Region of the Weak CO2 Band for the Case of Arbitrary Polarization: Implication for the Geocarb Mission

    NASA Astrophysics Data System (ADS)

    Kumer, J. B.; Rairden, R. L.; Polonsky, I. N.; O'Brien, D. M.

    2014-12-01

    The Tropospheric Infrared Mapping Spectrometer (TIMS) unit rebuilt to operate in a narrow spectral region, approximately 1603 to 1615 nm, of the weak CO2 band as described by Kumer et al. (2013, Proc. SPIE 8867, doi:10.1117/12.2022668) was used to conduct the demonstration. An integrating sphere (IS), linear polarizers and quarter wave plate were used to confirm that the instrument's spectral response to unpolarized light, to 45° linearly polarized light and to circular polarized light are identical. In all these cases the intensity components Ip = Is where Ip is the component parallel to the object space projected slit and Is is perpendicular to the slit. In the circular polarized case Ip = Is in the time averaged sense. The polarizer and IS were used to characterize the ratio Rθ of the instrument response to linearly polarized light at the angle θ relative to parallel from the slit, for increments of θ from 0 to 90°, to that of the unpolarized case. Spectra of diffusely reflected sunlight passed through the polarizer in increments of θ, and divided by the respective Rθ showed identical results, within the noise limit, for solar spectrum multiplied by the atmospheric transmission and convolved by the Instrument Line Shape (ILS). These measurements demonstrate that unknown polarization in the diffusely reflected sunlight on this small spectral range affect only the slow change across the narrow band in spectral response relative to that of unpolarized light and NOT the finely structured / high contrast spectral structure of the CO2 atmospheric absorption that is used to retrieve the atmospheric content of CO2. The latter is one of the geoCARB mission objectives (Kumer et al, 2013). The situation is similar for the other three narrow geoCARB bands; O2 A band 757.9 to 768.6 nm; strong CO2 band 2045.0 to 2085.0 nm; CH4 and CO region 2300.6 to 2345.6 nm. Polonsky et al have repeated the mission simulation study doi:10.5194/amt-7-959-2014 assuming no use of a geo

  10. Biological applications of confocal fluorescence polarization microscopy

    NASA Astrophysics Data System (ADS)

    Bigelow, Chad E.

    Fluorescence polarization microscopy is a powerful modality capable of sensing changes in the physical properties and local environment of fluorophores. In this thesis we present new applications for the technique in cancer diagnosis and treatment and explore the limits of the modality in scattering media. We describe modifications to our custom-built confocal fluorescence microscope that enable dual-color imaging, optical fiber-based confocal spectroscopy and fluorescence polarization imaging. Experiments are presented that indicate the performance of the instrument for all three modalities. The limits of confocal fluorescence polarization imaging in scattering media are explored and the microscope parameters necessary for accurate polarization images in this regime are determined. A Monte Carlo routine is developed to model the effect of scattering on images. Included in it are routines to track the polarization state of light using the Mueller-Stokes formalism and a model for fluorescence generation that includes sampling the excitation light polarization ellipse, Brownian motion of excited-state fluorophores in solution, and dipole fluorophore emission. Results from this model are compared to experiments performed on a fluorophore-embedded polymer rod in a turbid medium consisting of polystyrene microspheres in aqueous suspension. We demonstrate the utility of the fluorescence polarization imaging technique for removal of contaminating autofluorescence and for imaging photodynamic therapy drugs in cell monolayers. Images of cells expressing green fluorescent protein are extracted from contaminating fluorescein emission. The distribution of meta-tetrahydroxypheny1chlorin in an EMT6 cell monolayer is also presented. A new technique for imaging enzyme activity is presented that is based on observing changes in the anisotropy of fluorescently-labeled substrates. Proof-of-principle studies are performed in a model system consisting of fluorescently labeled bovine

  11. Underwater linear polarization: physical limitations to biological functions

    PubMed Central

    Shashar, Nadav; Johnsen, Sönke; Lerner, Amit; Sabbah, Shai; Chiao, Chuan-Chin; Mäthger, Lydia M.; Hanlon, Roger T.

    2011-01-01

    Polarization sensitivity is documented in a range of marine animals. The variety of tasks for which animals can use this sensitivity, and the range over which they do so, are confined by the visual systems of these animals and by the propagation of the polarization information in the aquatic environment. We examine the environmental physical constraints in an attempt to reveal the depth, range and other limitations to the use of polarization sensitivity by marine animals. In clear oceanic waters, navigation that is based on the polarization pattern of the sky appears to be limited to shallow waters, while solar-based navigation is possible down to 200–400 m. When combined with intensity difference, polarization sensitivity allows an increase in target detection range by 70–80% with an upper limit of 15 m for large-eyed animals. This distance will be significantly smaller for small animals, such as plankton, and in turbid waters. Polarization-contrast detection, which is relevant to object detection and communication, is strongly affected by water conditions and in clear waters its range limit may reach 15 m as well. We show that polarization sensitivity may also serve for target distance estimation, when examining point source bioluminescent objects in the photic mesopelagic depth range. PMID:21282168

  12. Parallel-quadrature phase-shifting digital holographic microscopy using polarization beam splitter

    PubMed Central

    Das, Bhargab; Yelleswarapu, Chandra S; Rao, DVGLN

    2012-01-01

    We present a digital holography microscopy technique based on parallel-quadrature phase-shifting method. Two π/2 phase-shifted holograms are recorded simultaneously using polarization phase-shifting principle, slightly off-axis recording geometry, and two identical CCD sensors. The parallel phase-shifting is realized by combining circularly polarized object beam with a 45° degree polarized reference beam through a polarizing beam splitter. DC term is eliminated by subtracting the two holograms from each other and the object information is reconstructed after selecting the frequency spectrum of the real image. Both amplitude and phase object reconstruction results are presented. Simultaneous recording eliminates phase errors caused by mechanical vibrations and air turbulences. The slightly off-axis recording geometry with phase-shifting allows a much larger dimension of the spatial filter for reconstruction of the object information. This leads to better reconstruction capability than traditional off-axis holography. PMID:23109732

  13. The PoGO+ view on Crab off-pulse hard X-ray polarization

    NASA Astrophysics Data System (ADS)

    Chauvin, M.; Florén, H.-G.; Friis, M.; Jackson, M.; Kamae, T.; Kataoka, J.; Kawano, T.; Kiss, M.; Mikhalev, V.; Mizuno, T.; Tajima, H.; Takahashi, H.; Uchida, N.; Pearce, M.

    2018-06-01

    The linear polarization fraction (PF) and angle of the hard X-ray emission from the Crab provide unique insight into high-energy radiation mechanisms, complementing the usual imaging, timing, and spectroscopic approaches. Results have recently been presented by two missions operating in partially overlapping energy bands, PoGO+ (18-160 keV) and AstroSat CZTI (100-380 keV). We previously reported PoGO+ results on the polarization parameters integrated across the light curve and for the entire nebula-dominated off-pulse region. We now introduce finer phase binning, in light of the AstroSat CZTI claim that the PF varies across the off-pulse region. Since both missions are operating in a regime where errors on the reconstructed polarization parameters are non-Gaussian, we adopt a Bayesian approach to compare results from each mission. We find no statistically significant variation in off-pulse polarization parameters, neither when considering the mission data separately nor when they are combined. This supports expectations from standard high-energy emission models.

  14. Reconstruction of spherically symmetric objects from slit-imaged emission: limitations due to finite slit width

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mueller, M.M.

    1979-11-01

    A simple method for reconstructing spherically symmetric objects from slit-imaged emission was recently described by Vest and Steel. Although this method is valid for infinitesimal slit widths and practically noise-free irradiance data, it is shown here that its validity does not extend to slits of practical width in the laser-fusion program. However, a method is given for reducing the Vest--Steel plots with practical apertures to obtain information on core diameter, shell diameter, and shell thickness.

  15. The Discovery of a High-Redshift Quasar without Emission Lines from Sloan Digital Sky Survey Commissioning Data.

    PubMed

    Fan; Strauss; Gunn; Lupton; Carilli; Rupen; Schmidt; Moustakas; Davis; Annis; Bahcall; Brinkmann; Brunner; Csabai; Doi; Fukugita; Heckman; Hennessy; Hindsley; Ivezic; Knapp; Lamb; Munn; Pauls; Pier; Rockosi; Schneider; Szalay; Tucker; York

    1999-12-01

    We report observations of a luminous unresolved object at redshift z=4.62, with a featureless optical spectrum redward of the Lyalpha forest region, discovered from Sloan Digital Sky Survey commissioning data. The redshift is determined by the onset of the Lyalpha forest at lambda approximately 6800 Å and a Lyman limit system at lambda=5120 Å. A strong Lyalpha absorption system with weak metal absorption lines at z=4.58 is also identified in the spectrum. The object has a continuum absolute magnitude of -26.6 at 1450 Å in the rest frame (h0=0.5, q0=0.5) and therefore cannot be an ordinary galaxy. It shows no radio emission (the 3 sigma upper limit of its flux at 6 cm is 60 µJy), indicating a radio-to-optical flux ratio at least as small as that of the radio-weakest BL Lacertae objects known. It is also not linearly polarized to a 3 sigma upper limit of 4% in the observed I band. Therefore, it is either the most distant BL Lac object known to date, with very weak radio emission, or a new type of unbeamed quasar, whose broad emission line region is very weak or absent.

  16. 3D model of auroral emissions for Europa

    NASA Astrophysics Data System (ADS)

    Cessateur, G.; Barthelemy, M.; Rubin, M.; Lilensten, J.; Maggiolo, R.; De Keyser, J.; Gunell, H.; Loreau, J.

    2017-12-01

    As archetype of icy satellites, Europa will be one of the primary targets of the ESA JUICE and NASA Europa Clipper missions. Through surface sputtering, Europa does possess a thin neutral gas atmosphere, mainly composed of O2 and H2O. Valuable information can therefore be retrieved from auroral and airglow measurements. We present here a 3D electron-excitation-transport-emission coupled model of oxygen line emissions produced through precipitating electrons. The density and temperature of the electrons are first derived from the multifluid MHD model from Rubin et al. (2015). Oxygen emission lines in the UV have first been modelled, such as those at 130.5 and 135.6 nm, and there is a nonhomogenous distribution of the emission. For 135.6 nm, the line emission can be significant and reach 700 Rayleigh close to the surface for a polar limb viewing angle. Visible emissions with the red-doublet (630-636.4 nm) and green (577.7 nm) oxygen lines are also considered with emission intensities reaching 7150 R and 200 R, respectively, for limb polar viewing. Using different cross section data, a sensitivity study has also been performed to assess the impact of the uncertainties on the auroral emissions.

  17. RESEARCH AREA -- MOBILE SOURCE EMISSIONS (EMISSIONS CHARACTERIZATION AND PREVENTION BRANCH, APPCD, NRMRL)

    EPA Science Inventory

    The objective of this program is to characterize mobile source emissions which are one of the largest sources of tropospheric ozone precursor emissions (CO, NOx, and volotile organic compounds) in the U.S. The research objective of the Emissions Characterization and Prevention Br...

  18. Identification of geostationary satellites using polarization data from unresolved images

    NASA Astrophysics Data System (ADS)

    Speicher, Andy

    In order to protect critical military and commercial space assets, the United States Space Surveillance Network must have the ability to positively identify and characterize all space objects. Unfortunately, positive identification and characterization of space objects is a manual and labor intensive process today since even large telescopes cannot provide resolved images of most space objects. Since resolved images of geosynchronous satellites are not technically feasible with current technology, another method of distinguishing space objects was explored that exploits the polarization signature from unresolved images. The objective of this study was to collect and analyze visible-spectrum polarization data from unresolved images of geosynchronous satellites taken over various solar phase angles. Different collection geometries were used to evaluate the polarization contribution of solar arrays, thermal control materials, antennas, and the satellite bus as the solar phase angle changed. Since materials on space objects age due to the space environment, it was postulated that their polarization signature may change enough to allow discrimination of identical satellites launched at different times. The instrumentation used in this experiment was a United States Air Force Academy (USAFA) Department of Physics system that consists of a 20-inch Ritchey-Chretien telescope and a dual focal plane optical train fed with a polarizing beam splitter. A rigorous calibration of the system was performed that included corrections for pixel bias, dark current, and response. Additionally, the two channel polarimeter was calibrated by experimentally determining the Mueller matrix for the system and relating image intensity at the two cameras to Stokes parameters S0 and S1. After the system calibration, polarization data was collected during three nights on eight geosynchronous satellites built by various manufacturers and launched several years apart. Three pairs of the eight

  19. Quantum dot spin-V(E)CSELs: polarization switching and periodic oscillations

    NASA Astrophysics Data System (ADS)

    Li, Nianqiang; Alexandropoulos, Dimitris; Susanto, Hadi; Henning, Ian; Adams, Michael

    2017-09-01

    Spin-polarized vertical (external) cavity surface-emitting lasers [Spin-V(E)CSELs] using quantum dot (QD) material for the active region, can display polarization switching between the right- and left-circularly polarized fields via control of the pump polarization. In particular, our previous experimental results have shown that the output polarization ellipticity of the spin-V(E)CSEL emission can exhibit either the same handedness as that of the pump polarization or the opposite, depending on the experimental operating conditions. In this contribution, we use a modified version of the spin-flip model in conjunction with combined time-independent stability analysis and direct time integration. With two representative sets of parameters our simulation results show good agreement with experimental observations. In addition periodic oscillations provide further insight into the dynamic properties of spin-V(E)CSELs.

  20. Juno-UVS and Chandra Observations of Jupiter's Polar Auroral Emissions

    NASA Astrophysics Data System (ADS)

    Gladstone, G. R.; Kammer, J. A.; Versteeg, M. H.; Greathouse, T. K.; Hue, V.; Gérard, J.-C.; Grodent, D.; Bonfond, B.; Jackman, C.; Branduardi-Raymont, G.; Kraft, R. P.; Dunn, W. R.; Bolton, S. J.; Connerney, J. E. P.; Levin, S. M.; Mauk, B. H.; Valek, P.; Adriani, A.; Kurth, W. S.; Orton, G. S.

    2017-09-01

    New results are presented comparing Jupiter's auroras at far-ultraviolet and x-ray wavelengths, using data acquired by Juno-UVS and Chandra. The highly variable polar auroras (which are located within the main auroral oval) track each other quite well in brightness at these two wavelengths.

  1. MAPPING THE POLARIZATION OF THE RADIO-LOUD Ly α NEBULA B3 J2330+3927

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    You, Chang; Zabludoff, Ann; Smith, Paul

    Ly α nebulae, or “Ly α blobs,” are extended (up to ∼100 kpc), bright (L{sub Lyα}  ≳ 10{sup 43} erg s{sup −1}) clouds of Ly α emitting gas that tend to lie in overdense regions at z  ∼ 2–5. The origin of the Ly α emission remains unknown, but recent theoretical work suggests that measuring the polarization might discriminate among powering mechanisms. Here we present the first narrowband imaging polarimetry of a radio-loud Ly α nebula, B3 J2330+3927, at z = 3.09, with an embedded active galactic nucleus (AGN). The AGN lies near the blob’s Ly α emission peak, and its radiomore » lobes align roughly with the blob’s major axis. With the SPOL polarimeter on the 6.5 m MMT telescope, we map the total (Ly α + continuum) polarization in a grid of circular apertures of a radius of 0.″6 (4.4 kpc), detecting a significant (>2 σ ) polarization fraction P {sub %} in nine apertures and achieving strong upper limits (as low as 2%) elsewhere. P{sub %} increases from <2% at ∼5 kpc from the blob center to 17% at ∼15–25 kpc. The detections are distributed asymmetrically, roughly along the nebula’s major axis. The polarization angles θ are mostly perpendicular to this axis. Comparing the Ly α flux to that of the continuum and conservatively assuming that the continuum is highly polarized (20%–100%) and aligned with the total polarization, we place lower limits on the polarization of the Ly α emission P{sub %,Lyα} ranging from no significant polarization at ∼5 kpc from the blob center to 3%–17% at 10–25 kpc. Like the total polarization, the Ly α polarization detections occur more often along the blob’s major axis.« less

  2. Development of high-polarization Fe/Ge neutron polarizing supermirror: Possibility of fine-tuning of scattering length density in ion beam sputtering

    NASA Astrophysics Data System (ADS)

    Maruyama, R.; Yamazaki, D.; Akutsu, K.; Hanashima, T.; Miyata, N.; Aoki, H.; Takeda, M.; Soyama, K.

    2018-04-01

    The multilayer structure of Fe/Si and Fe/Ge systems fabricated by ion beam sputtering (IBS) was investigated using X-ray and polarized neutron reflectivity measurements and scanning transmission electron microscopy with energy-dispersive X-ray analysis. The obtained result revealed that the incorporation of sputtering gas particles (Ar) in the Ge layer gives rise to a marked reduction in the neutron scattering length density (SLD) and contributes to the SLD contrast between the Fe and Ge layers almost vanishing for spin-down neutrons. Bundesmann et al. (2015) have shown that the implantation of primary Ar ions backscattered at the target is responsible for the incorporation of Ar particles and that the fraction increases with increasing ion incidence angle and increasing polar emission angle. This leads to a possibility of fine-tuning of the SLD for the IBS, which is required to realize a high polarization efficiency of a neutron polarizing supermirror. Fe/Ge polarizing supermirror with m = 5 fabricated under the same condition showed a spin-up reflectivity of 0.70 at the critical momentum transfer. The polarization was higher than 0.985 for the qz range where the correction for the polarization inefficiencies of the beamline works properly. The result of the polarized neutron reflectivity measurement suggests that the "magnetically-dead" layers formed at both sides of the Fe layer, together with the SLD contrast, play a critical role in determining the polarization performance of a polarizing supermirror.

  3. Far infrared polarization of the Kleinmann-Low Nebula in Orion

    NASA Technical Reports Server (NTRS)

    Gull, G. E.; Houck, J. R.; Mccarthy, J. F.; Forrest, W. J.; Harwit, M.

    1978-01-01

    Elongated dust grains aligned by local magnetic fields are though to absorb background radiation and produce linear and circular polarization which exhibit strong wavelength dependence in the near infrared. The NASA Kuiper observatory 91 cm infrared telescope was used to observe polarization characteristics of the Kleinmann-Low nebula in four far infrared wavelength bands in order to detect emission from these same oriented grains at longer wavelengths, and determine whether this radiation shows a direction of polarization perpendicular to that seen in the near infrared. The polarization, if any, that characterized the radiation in the three longest wavelength filter positions (28-48 micron, 44-72 micron, and 70-115 micron) is small. The noisiest measurements were obtained in the 16-33 micron filter position. Possible explanations for the low polarization observed at long wavelengths are explored.

  4. Polarization lidar for atmospheric monitoring

    NASA Astrophysics Data System (ADS)

    Liu, Qiaojun; Wu, Chengxuan; Yuk Sun Cheng, Andrew; Wang, Zhangjun; Meng, Xiangqian; Chen, Chao; Li, Xianxin; Liu, Xingtao; Zhang, Hao; Zong, Fangyi

    2018-04-01

    Aerosol plays an important role in global climate and weather changes. Polarization lidar captures parallel and perpendicular signals from atmosphere to research aerosols. The lidar system we used has three emission wavelengths and could obtain the atmospheric aerosol extinction coefficient, backscattering coefficient and depolarization ratio. In this paper, the design of the lidar is described. The methods of data acquisition and inversion are given. Some recent results are presented.

  5. Polarization measurements made on LFRA and OASIS emitter arrays

    NASA Astrophysics Data System (ADS)

    Geske, Jon; Sparkman, Kevin; Oleson, Jim; Laveigne, Joe; Sieglinger, Breck; Marlow, Steve; Lowry, Heard; Burns, James

    2008-04-01

    Polarization is increasingly being considered as a method of discrimination in passive sensing applications. In this paper the degree of polarization of the thermal emission from the emitter arrays of two new Santa Barbara Infrared (SBIR) micro-bolometer resistor array scene projectors was characterized at ambient temperature and at 77 K. The emitter arrays characterized were from the Large Format Resistive Array (LFRA) and the Optimized Arrays for Space-Background Infrared Simulation (OASIS) scene projectors. This paper reports the results of this testing.

  6. Directivity of the radio emission from the K1 dwarf star AB Doradus

    NASA Technical Reports Server (NTRS)

    Lim, Jeremy; White, Stephen M.; Nelson, Graam J.; Benz, Arnold O.

    1994-01-01

    We present measurements of the spectrum and polarization of the flaring radio emission from the K1 dwarf star AB Doradus, together with previously reported single frequency measurements (with no polarization information) on 3 other days. On all 4 days spanning a 6 month period, the emission was strong and, when folded with the stellar rotation period, showed similar time variations with two prominant peaks at phase 0.35 and 0.75. These peaks coincide in longitude with two large starspots identified from the stellar optical light curve and have half-powe widths as small as 0.1 rotations and no larger than 0.2 rotations. The modulated emission shows no measurable circular polarization, and its two peaks have different turnover frequencies.

  7. Design of triple-band polarization controlled terahertz metamaterial absorber

    NASA Astrophysics Data System (ADS)

    Wang, Ben-Xin; Xie, Qin; Dong, Guangxi; Huang, Wei-Qing

    2018-02-01

    A kind of triple-band polarization tunable terahertz absorber based on a metallic mirror and a metallic patch structure with two indentations spaced by an insulating medium layer is presented. Results prove that three near-perfect absorption peaks with average absorption coefficients of 98.25% are achieved when the polarization angle is equal to zero, and their absorptivities gradually decrease (and even disappear) by increasing the angle of polarization. When the polarization angle is increased to 90°, three new resonance modes with average absorption rates of 96.59% can be obtained. The field distributions are given to reveal the mechanisms of the triple-band absorption and the polarization tunable characteristics. Moreover, by introducing photosensitive silicon materials (its conductivity can be changed by the pump beam) in the indentations of the patch structure, the number of resonance peaks of the device can be actively tuned from triple-band to dual-band. The presented absorbers have potential applications, such as controlling thermal emissivity, and detection of polarization direction of the incident waves.

  8. The atomic structure of polar and non-polar InGaN quantum wells and the green gap problem.

    PubMed

    Humphreys, C J; Griffiths, J T; Tang, F; Oehler, F; Findlay, S D; Zheng, C; Etheridge, J; Martin, T L; Bagot, P A J; Moody, M P; Sutherland, D; Dawson, P; Schulz, S; Zhang, S; Fu, W Y; Zhu, T; Kappers, M J; Oliver, R A

    2017-05-01

    We have used high resolution transmission electron microscopy (HRTEM), aberration-corrected quantitative scanning transmission electron microscopy (Q-STEM), atom probe tomography (APT) and X-ray diffraction (XRD) to study the atomic structure of (0001) polar and (11-20) non-polar InGaN quantum wells (QWs). This paper provides an overview of the results. Polar (0001) InGaN in QWs is a random alloy, with In replacing Ga randomly. The InGaN QWs have atomic height interface steps, resulting in QW width fluctuations. The electrons are localised at the top QW interface by the built-in electric field and the well-width fluctuations, with a localisation energy of typically 20meV. The holes are localised near the bottom QW interface, by indium fluctuations in the random alloy, with a localisation energy of typically 60meV. On the other hand, the non-polar (11-20) InGaN QWs contain nanometre-scale indium-rich clusters which we suggest localise the carriers and produce longer wavelength (lower energy) emission than from random alloy non-polar InGaN QWs of the same average composition. The reason for the indium-rich clusters in non-polar (11-20) InGaN QWs is not yet clear, but may be connected to the lower QW growth temperature for the (11-20) InGaN QWs compared to the (0001) polar InGaN QWs. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  9. Polarized bow shocks reveal features of the winds and environments of massive stars

    NASA Astrophysics Data System (ADS)

    Shrestha, Manisha

    2018-01-01

    Massive stars strongly affect their surroundings through their energetic stellar winds and deaths as supernovae. The bow shock structures created by fast-moving massive stars contain important information about the winds and ultimate fates of these stars as well as their local interstellar medium (ISM). Since bow shocks are aspherical, the light scattered in the dense shock material becomes polarized. Analyzing this polarization reveals details of the bow shock geometry as well as the composition, velocity, density, and albedo of the scattering material. With these quantities, we can constrain the properties of the stellar wind and thus the evolutionary state of the star, as well as the dust composition of the local ISM.In my dissertation research, I use a Monte Carlo radiative transfer code that I optimized to simulate the polarization signatures produced by both resolved and unresolved stellar wind bow shocks (SWBS) illuminated by a central star and by shock emission. I derive bow shock shapes and densities from published analytical calculations and smooth particle hydrodynamic (SPH) models. In the case of the analytical SWBS and electron scattering, I find that higher optical depths produce higher polarization and position angle rotations at specific viewing angles compared to theoretical predictions for low optical depths. This is due to the geometrical properties of the bow shock combined with multiple scattering effects. For dust scattering, the polarization signature is strongly affected by wavelength, dust grain properties, and viewing angle. The behavior of the polarization as a function of wavelength in these cases can distinguish among different dust models for the local ISM. In the case of SPH density structures, I investigate how the polarization changes as a function of the evolutionary phase of the SWBS. My dissertation compares these simulations with polarization data from Betelgeuse and other massive stars with bow shocks. I discuss the

  10. Investigation on principle of polarization-difference imaging in turbid conditions

    NASA Astrophysics Data System (ADS)

    Ren, Wei; Guan, Jinge

    2018-04-01

    We investigate the principle of polarization-difference imaging (PDI) of objects in optically scattering environments. The work is performed by both Marius's law and Mueller-Stokes formalism, and is further demonstrated by simulation. The results show that the object image is obtained based on the difference in polarization direction between the scatter noise and the target signal, and imaging performance is closely related to the choice of polarization analyzer axis. In addition, this study illustrates the potential of Stoke vector for promoting application of PDI system in the real world scene.

  11. Exploring the Physical Conditions in Millisecond Pulsar Emission Regions

    NASA Astrophysics Data System (ADS)

    Rankin, Joanna M.

    2017-01-01

    The five-component profile of the 2.7-ms pulsar J0337+1715 appears to exhibit the best example to date of a core/double-cone emission-beam structure in a millisecond pulsar (MSP). Moreover, three other MSPs, the Binary Pulsar B1913+16, B1953+29 and J1022+1001, seem to exhibit core/single-cone profiles. These configurations are remarkable and important because it has not been clear whether MSPs and slow pulsars exhibit similar emission-beam configurations despite having radically different magnetospheric sizes and magnetic field strengths. MSPs thus provide an extreme context for studying pulsar radio emission. Particle currents along the magnetic polar fluxtube connect processes just above the polar cap through the radio-emission region to the light-cylinder and the external environment. In slow pulsars radio-emission heights are typically about 500 km where the magnetic field is nearly dipolar, and estimates of the physical conditions there point to radiation below the plasma frequency and emission from charged solitons by the curvature process. We are able to estimate emission heights for the four MSPs and carry out a similar estimation of physical conditions in their much lower emission regions. We find strong evidence that MSPs also radiate by curvature emission from charged solitons.

  12. Data Quality Objectives for Regulatory Requirements for Hazardous and Radioactive Air Emissions Sampling and Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MULKEY, C.H.

    1999-07-06

    This document describes the results of the data quality objective (DQO) process undertaken to define data needs for state and federal requirements associated with toxic, hazardous, and/or radiological air emissions under the jurisdiction of the River Protection Project (RPP). Hereafter, this document is referred to as the Air DQO. The primary drivers for characterization under this DQO are the regulatory requirements pursuant to Washington State regulations, that may require sampling and analysis. The federal regulations concerning air emissions are incorporated into the Washington State regulations. Data needs exist for nonradioactive and radioactive waste constituents and characteristics as identified through themore » DQO process described in this document. The purpose is to identify current data needs for complying with regulatory drivers for the measurement of air emissions from RPP facilities in support of air permitting. These drivers include best management practices; similar analyses may have more than one regulatory driver. This document should not be used for determining overall compliance with regulations because the regulations are in constant change, and this document may not reflect the latest regulatory requirements. Regulatory requirements are also expected to change as various permits are issued. Data needs require samples for both radionuclides and nonradionuclide analytes of air emissions from tanks and stored waste containers. The collection of data is to support environmental permitting and compliance, not for health and safety issues. This document does not address health or safety regulations or requirements (those of the Occupational Safety and Health Administration or the National Institute of Occupational Safety and Health) or continuous emission monitoring systems. This DQO is applicable to all equipment, facilities, and operations under the jurisdiction of RPP that emit or have the potential to emit regulated air pollutants.« less

  13. A Classroom Activity for Teaching Electric Polarization of Insulators and Conductors

    ERIC Educational Resources Information Center

    Deligkaris, Christos

    2018-01-01

    The phenomenon of electric polarization is crucial to student understanding of forces exerted between charged objects and insulators or conductors, the process of charging by induction, and the behavior of electroscopes near charged objects. In addition, polarization allows for microscopic-level models of everyday-life macroscopic-level phenomena.…

  14. Enhanced Polarized Emission from the One-parsec-scale Hotspot of 3C 84 as a Result of the Interaction with the Clumpy Ambient Medium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nagai, H.; Kino, M.; Fujita, Y.

    2017-11-01

    We present Very Long Baseline Array polarimetric observations of the innermost jet of 3C 84 (NGC 1275) at 43 GHz. A significant polarized emission is detected at the hotspot of the innermost restarted jet, which is located 1 pc south from the radio core. While the previous report presented a hotspot at the southern end of the western limb, the hotspot location has been moved to the southern end of the eastern limb. Faraday rotation is detected within an entire bandwidth of the 43 GHz band. The measured rotation measure (RM) is at most (6.3 ± 1.9) × 10{sup 5}more » rad m{sup −2} and might be slightly time variable on the timescale of a month by a factor of a few. Our measured RM and the RM previously reported by the CARMA and SMA observations cannot be consistently explained by the spherical accretion flow with a power-law profile. We propose that a clumpy/inhomogeneous ambient medium is responsible for the observed RM. Using an equipartition magnetic field, we derive the electron density of 2 × 10{sup 4} cm{sup −3}. Such an electron density is consistent with the cloud of the narrow line emission region around the central engine. We also discuss the magnetic field configuration from the black hole scale to the parsec scale and the origin of low polarization.« less

  15. Reflectance and fast polarization dynamics of GaN/Si nanowire ensemble.

    PubMed

    Korona, Krzysztof Piotr; Zytkiewicz, Zbigniew R; Sobanska, Marta; Sosada, Florentyna; Dróżdż, Piotr Andrzej; Klosek, Kamil; Tchutchulashvili, Giorgi

    2018-06-25

    Optical phenomena in high-quality GaN nanowires (NWs) ensemble grown on Si substrate have been studied by reflectance and time-resolved luminescence. Such NWs form a structure that acts as a virtual layer that specifically reflects and polarizes light and can be characterized by an effective refractive index. In fact we have found that the NW ensembles of high NW density (high filling fraction) behave rather like a layer of effective medium described by Maxwell Garnett approximation. Moreover, light extinction and strong depolarization are observed that we assign to scattering and interference of light inside the NW ensemble. The wavelength range of high extinction and depolarization correlates well with transverse localization wavelength estimated for such ensemble of NWs, so we suppose that these effects are due to Anderson localization of light. We also report results of time-resolved measurements of polarization of individual emission centers including free and bound excitons (D0XA, 3.47 eV), inversion domain boundaries (IDB, 3.45eV) and stacking faults (SF, 3.42 eV). The emission of the D0XA and SF lines is polarized perpendicular to GaN c-axis while the 3.45 eV line is polarized along the c-axis what supports hypothesis that this line is emitted from IDBs. Time-dependent depolarization of luminescence is observed during the first 0.1 ns after excitation and is interpreted as the result of interaction of the emission centers with hot particles existing during short time after excitation. . © 2018 IOP Publishing Ltd.

  16. [Research on Spectral Polarization Imaging System Based on Static Modulation].

    PubMed

    Zhao, Hai-bo; Li, Huan; Lin, Xu-ling; Wang, Zheng

    2015-04-01

    The main disadvantages of traditional spectral polarization imaging system are: complex structure, with moving parts, low throughput. A novel method of spectral polarization imaging system is discussed, which is based on static polarization intensity modulation combined with Savart polariscope interference imaging. The imaging system can obtain real-time information of spectral and four Stokes polarization messages. Compared with the conventional methods, the advantages of the imaging system are compactness, low mass and no moving parts, no electrical control, no slit and big throughput. The system structure and the basic theory are introduced. The experimental system is established in the laboratory. The experimental system consists of reimaging optics, polarization intensity module, interference imaging module, and CCD data collecting and processing module. The spectral range is visible and near-infrared (480-950 nm). The white board and the plane toy are imaged by using the experimental system. The ability of obtaining spectral polarization imaging information is verified. The calibration system of static polarization modulation is set up. The statistical error of polarization degree detection is less than 5%. The validity and feasibility of the basic principle is proved by the experimental result. The spectral polarization data captured by the system can be applied to object identification, object classification and remote sensing detection.

  17. Reflection of a polarized light cone

    NASA Astrophysics Data System (ADS)

    Brody, Jed; Weiss, Daniel; Berland, Keith

    2013-01-01

    We introduce a visually appealing experimental demonstration of Fresnel reflection. In this simple optical experiment, a polarized light beam travels through a high numerical-aperture microscope objective, reflects off a glass slide, and travels back through the same objective lens. The return beam is sampled with a polarizing beam splitter and produces a surprising geometric pattern on an observation screen. Understanding the origin of this pattern requires careful attention to geometry and an understanding of the Fresnel coefficients for S and P polarized light. We demonstrate that in addition to a relatively simple experimental implementation, the shape of the observed pattern can be computed both analytically and by using optical modeling software. The experience of working through complex mathematical computations and demonstrating their agreement with a surprising experimental observation makes this a highly educational experiment for undergraduate optics or advanced-lab courses. It also provides a straightforward yet non-trivial system for teaching students how to use optical modeling software.

  18. Polarization sensitive spectroscopic optical coherence tomography for multimodal imaging

    NASA Astrophysics Data System (ADS)

    Strąkowski, Marcin R.; Kraszewski, Maciej; Strąkowska, Paulina; Trojanowski, Michał

    2015-03-01

    Optical coherence tomography (OCT) is a non-invasive method for 3D and cross-sectional imaging of biological and non-biological objects. The OCT measurements are provided in non-contact and absolutely safe way for the tested sample. Nowadays, the OCT is widely applied in medical diagnosis especially in ophthalmology, as well as dermatology, oncology and many more. Despite of great progress in OCT measurements there are still a vast number of issues like tissue recognition or imaging contrast enhancement that have not been solved yet. Here we are going to present the polarization sensitive spectroscopic OCT system (PS-SOCT). The PS-SOCT combines the polarization sensitive analysis with time-frequency analysis. Unlike standard polarization sensitive OCT the PS-SOCT delivers spectral information about measured quantities e.g. tested object birefringence changes over the light spectra. This solution overcomes the limits of polarization sensitive analysis applied in standard PS-OCT. Based on spectral data obtained from PS-SOCT the exact value of birefringence can be calculated even for the objects that provide higher order of retardation. In this contribution the benefits of using the combination of time-frequency and polarization sensitive analysis are being expressed. Moreover, the PS-SOCT system features, as well as OCT measurement examples are presented.

  19. Oxygen Abundances in the Rings of Polar-Ring Galaxies

    NASA Astrophysics Data System (ADS)

    Radtke, I. R.; Eskridge, P. B.; Pogge, R. W.

    2003-05-01

    Polar ring galaxies (PRGs) are typically early-type (S0 or E) galaxies surrounded by rings of gas, dust, and stars orbiting nearly perpendicular to the principle plane of the host galaxy (Whitmore et al. 1990 AJ 100 1489). Given that PRGs have two separate, perpendicular axes of rotation, it is clear on dynamical grounds that PRGs are the products of merger events between two galaxies, but are observed in a state where two distinct kinematic and morphological structures are still apparent. As such, they present a unique opportunity to study merger events in systems where the debris is not confused with material from the host. Our understanding of the relative importance of polar ring systems in the overall process of galaxy evolution is confounded by our lack of knowledge regarding the typical lifetimes and evolutionary histories of polar rings. A crucial factor for understanding the formation and evolution of PRGs is information regarding the elemental abundances of the ring material. Polar rings are typically rich in {\\protectH 2} regions. Optical spectroscopy of these {\\protectH 2} regions can tell us their density, temperature, and oxygen abundance. Our earlier work (Eskridge & Pogge 1997 ApJ 486 259) revealed roughly Solar oxygen abundances for {\\protectH 2} regions in the polar ring of NGC 2685. We have extended this project, and now have spectra for six PRGs. Analysis of the data for II Zw 73 and UGC 7576 reveal the polar rings of these galaxies to have {\\protectH 2} region oxygen abundances in the range 0.3 to 0.6 Solar, substantially less than found for NGC 2685. Abundances in this range are much easier to explain with conventional models of chemical enrichment and polar ring formation. We shall present results for our full sample. Taken as a whole, this sample will provide a clear foundation for the typical chemical enrichment patterns in polar rings, and thus provide a clearer understanding of the formation and evolution of these curious objects. We

  20. Unlocking the Full Potential of Extragalactic Lyα through Its Polarization Properties

    NASA Astrophysics Data System (ADS)

    Eide, Marius B.; Gronke, Max; Dijkstra, Mark; Hayes, Matthew

    2018-04-01

    Lyα is a powerful astrophysical probe. Not only is it ubiquitous at high redshifts, it is also a resonant line, making Lyα photons scatter. This scattering process depends on the physical conditions of the gas through which Lyα propagates, and these conditions are imprinted on observables such as the Lyα spectrum and its surface brightness profile. In this work, we focus on a less-used observable capable of probing any scattering process: polarization. We implement the density matrix formalism of polarization into the Monte Carlo radiative transfer code tlac. This allows us to treat it as a quantum mechanical process where single photons develop and lose polarization from scatterings in arbitrary gas geometries. We explore static and expanding ellipsoids, biconical outflows, and clumpy multiphase media. We find that photons become increasingly polarized as they scatter and diffuse into the wings of the line profiles, making scattered Lyα polarized in general. The degree and orientation of Lyα polarization depends on the kinematics and distribution of the scattering H I gas. We find that it generally probes spatial or velocity space asymmetries and aligns itself tangentially to the emission source. We show that the mentioned observables, when studied separately, can leave similar signatures for different source models. We conclude by revealing how a joint analysis of the Lyα spectra, surface brightness profiles, and polarization can break these degeneracies and help us extract unique physical information on galaxies and their environments from their strongest, most prominent emission line.

  1. Characterization of Different Land Classes and Disaster Monitoring Using Microwave Land Emissivity for the Indian Subcontinent

    NASA Astrophysics Data System (ADS)

    Saha, Korak; Raju, Suresh; Antony, Tinu; Krishna Moorthy, K.

    Despite the ability of satellite borne microwave radiometers to measure the atmospheric pa-rameters, liquid water and the microphysical properties of clouds, they have serious limitations over the land owing its large and spatially heterogeneous emissivity compared to the relatively low and homogenous oceans. This calls for determination of the spatial maps of land-surface emissivity with accuracies better than ˜2%. In this study, the characterization of microwave emissivity of different land surface classes over the Indian region is carried out with the forth-coming Indo-French microwave satellite program Megha-Tropiques in focus. The land emissivity is retrieved using satellite microwave radiometer data from Special Sensor Microwave/Imager (SSM/I) and TRMM Microwave Imager (TMI) at 10, 19, 22, 37 and 85 GHz. After identify-ing the clear sky daily data, the microwave radiative transfer computation, is applied to the respective daily atmospheric profile for deducing the upwelling and downwelling atmospheric radiations. This, along with the skin temperature data, is used to retrieve land emission from satellites data. The emissivity maps of placecountry-regionIndia for three months representing winter (January) and post-monsoon (September-October) seasons of 2008 at V and H polar-izations of all the channels (except for 22 GHz) are generated. Though the land emissivity values in V-polarization vary between 0.5 and ˜1, some land surface classes such as the desert region, marshy land, fresh snow covered region and evergreen forest region, etc, show distinct emissivity characteristics. On this basis few typical classes having uniform physical properties over sufficient area are identified. Usually the Indian desert region is dry and shows low emis-sivity (˜0.88 in H-polarisation) and high polarization difference, V-H (˜0.1). Densely vegetated zones of tropical rain forests exhibit high emissivity values (˜0.95) and low polarization dif-ference (lt;0.01). The

  2. Polarization Science with the ngVLA: magnetic fields and dust properties in cores, disks and on larger scales

    NASA Astrophysics Data System (ADS)

    Matthews, Brenda; Hull, Chat

    2018-01-01

    Polarization capabilities of the ngVLA will enable exploration of a wide range of phenomena including: (1) magnetic fields in protostellar cores and protoplanetary disks via polarized emission from magnetically aligned dust grains and spectral lines, including in regions optically thick at ALMA wavelengths; (2) polarization from dust scattering in disks, (3) spectral-line polarization from the Zeeman and Goldreich-Kylafis effects, and (4) magnetic fields in protostellar jets and OB-star-forming cores via synchrotron emission.We will discuss each of these science drivers in turn, with a particular emphasis on why the ngVLA provides a unique means of probing dust properties in the midplane of protoplanetary disks and hence the building blocks of planets in the innermost regions of disks.

  3. Polarized fluorescence for skin cancer diagnostic with a multi-aperture camera

    NASA Astrophysics Data System (ADS)

    Kandimalla, Haripriya; Ramella-Roman, Jessica C.

    2008-02-01

    Polarized fluorescence has shown some promising results in assessment of skin cancer margins. Researchers have used tetracycline and cross polarization imaging for nonmelanoma skin cancer demarcation as well as investigating endogenous skin polarized fluorescence. In this paper we present a new instrument for polarized fluorescence imaging, able to calculate the full fluorescence Stokes vector in one snapshot. The core of our system is a multi-aperture camera constructed with a two by two lenslet array. Three of the lenses have polarizing elements in front of them, oriented at 0°, + 45°and 90° with respect to light source polarization. A flash lamp combined with a polarizer parallel to the source-camera-sample plane and a UV filter is used as an excitation source. A blue filter in front of the camera system is used to collect only the fluorescent emission of interest and filter out the incident light. In-vitro tests of endogenous and exogenous polarized fluorescence on collagen rich material like bovine tendon were performed and Stokes vector of polarized fluorescence calculated. The system has the advantage of eliminating moving artifacts with the collection of different polarization states and stoke vector in a single snap shot.

  4. Effect of solvent polarity on the spectroscopic properties of an alkynyl gold(i) gelator. The particular case of water.

    PubMed

    Gavara, Raquel; Lima, João Carlos; Rodríguez, Laura

    2016-05-11

    The spectroscopic properties of aggregates obtained from the hydrogelator [Au(4-pyridylethynyl)(PTA)] were studied in solvents of different polarities. Inspection of the absorption and emission spectra of diluted solutions showed that the singlet ground state of the monomeric species is sensitive to polarity and is stabilized in more polar solvents whereas the triplet excited state is rather insensitive to changes in polarity. The study of relatively concentrated solutions revealed the presence of new emission and excitation bands at 77 K that was attributed to the presence of different kinds of aggregates. Particularly interesting behaviour was revealed in water where aggregation is observed to be more efficient. For this, absorption, emission quantum yields and luminescence lifetimes of aqueous solutions at different concentrations were investigated in more detail. These data permitted one to correlate the increase of non-radiative and radiative rate constants of the low lying triplet emissive state with concentration, and therefore with the low limit concentration for aggregation, due to the shortening of the AuAu average distances in the aggregates and consequent enhancement of the spin-orbit coupling in the system.

  5. Polarization and studies of evolved star mass loss

    NASA Astrophysics Data System (ADS)

    Sargent, Benjamin; Srinivasan, Sundar; Riebel, David; Meixner, Margaret

    2012-05-01

    Polarization studies of astronomical dust have proven very useful in constraining its properties. Such studies are used to constrain the spatial arrangement, shape, composition, and optical properties of astronomical dust grains. Here we explore possible connections between astronomical polarization observations to our studies of mass loss from evolved stars. We are studying evolved star mass loss in the Large Magellanic Cloud (LMC) by using photometry from the Surveying the Agents of a Galaxy's Evolution (SAGE; PI: M. Meixner) Spitzer Space Telescope Legacy program. We use the radiative transfer program 2Dust to create our Grid of Red supergiant and Asymptotic giant branch ModelS (GRAMS), in order to model this mass loss. To model emission of polarized light from evolved stars, however, we appeal to other radiative transfer codes. We probe how polarization observations might be used to constrain the dust shell and dust grain properties of the samples of evolved stars we are studying.

  6. Suzaku Observation of Strong Fluorescent Iron Line Emission from the Young Stellar Object V1647 Ori during Its New X-ray Outburst

    NASA Technical Reports Server (NTRS)

    Hamaguchi, Kenji; Grosso, Nicolas; Kastner, Joel H.; Weintraub, David A.; Richmond, Michael

    2009-01-01

    The Suzaku X-ray satellite observed the young stellar object V1647 Ori on 2008 October 8 during the new mass accretion outburst reported in August 2008. During the 87 ksec observation with a net exposure of 40 ks, V1647 Ori showed a. high level of X-ray emission with a gradual decrease in flux by a factor of 5 and then displayed an abrupt flux increase by an order of magnitude. Such enhanced X-ray variability was also seen in XMM-Newton observations in 2004 and 2005 during the 2003-2005 outburst, but has rarely been observed for other young stellar objects. The spectrum clearly displays emission from Helium-like iron, which is a signature of hot plasma (kT approx.5 keV). It also shows a fluorescent iron Ka line with a remarkably large equivalent width of approx. 600 eV. Such a, large equivalent width indicates that a part of the incident X-ray emission that irradiates the circumstellar material and/or the stellar surface is hidden from our line of sight. XMM-Newton spectra during the 2003-2005 outburst did not show a strong fluorescent iron Ka line ; so that the structure of the circumstellar gas very close to the stellar core that absorbs and re-emits X-ray emission from the central object may have changed in between 2005 and 2008. This phenomenon may be related to changes in the infrared morphology of McNeil's nebula between 2004 and 2008.

  7. The development of the imaging polarimeter's polarizer on the basis of the polarizing film

    NASA Astrophysics Data System (ADS)

    Vidmachenko, A. P.; Ivanov, Yu. S.; Syniavskyi, I. I.

    2015-07-01

    Work has begun on the developing of the scientific equipment "Spectrometer polarimeter", which is planned as one of five devices that form part of the Russian-Ukrainian space experiment "Planetary Monitoring". The devices are designed to form images of celestial objects in the focal plane of a planetary telescope (PT-600) and to register spectral and polarimetric information on gas and aerosol composition of the atmospheres of planets and physics and chemical properties of the surface layers of atmosphereless astronomical bodies. A model of a polarizer based on the use of polarizing films has been designed. This model can be used in the spectrometer-polarimeter. The results of the investigation of the polarizer in the spectral range 420-850 nm are given.

  8. The International Polar Year in Portugal: A New National Polar Programme and a Major Education and Outreach project

    NASA Astrophysics Data System (ADS)

    Mendes-Victor, L.; Vieira, G.; Xavier, J.; Canario, A.

    2008-12-01

    Before the International Polar Year, in Portugal polar research was conducted by a very small group of scientists integrated in foreign projects or research institutions. Portugal was not member of the Scientific Committee for Antarctic Research (SCAR), the European Polar Board (EPB), neither a subscriber of the Antarctic Treaty. In 2004 Portuguese Polar researchers considered the IPY as an opportunity to change this situation and organized the national Committee for the IPY. The objectives were ambitious: to answer the aforementioned issues in defining and proposing a National Polar Programme. In late 2008, close to the end of the IPY, the objectives were attained, except the Antarctic Treaty signature that is, however, in an advanced stage, having been approved by consensus at the National Parliament in early 2007. Portugal joined SCAR in July 2006, the EPB in 2007 and a set of 5 Antarctic research projects forming the roots of the National Polar Programme (ProPolar) have been approved by the Foundation for Science and Technology (FCT-MCTES). Scientifically, the IPY can already be considered a major success in Portugal with an improvement in polar scientific research, in the number of scientists performing field work in the Antarctic, organizing polar science meetings and producing an expected increase in the number of polar science peer- reviewed papers. The Portuguese IPY scientific activities were accompanied by a major education and outreach project funded by the Agencia Ciência Viva (MCTES): LATITUDE60! Education for the Planet in the IPY. This project lead by the universities of Algarve, Lisbon and by the Portuguese Association of Geography Teachers is heavily interdisciplinary, programmed for all ages, from kindergarten to adults, and hoped to bring together scientists and society. LATITUDE60! was a major success and focussed on showing the importance of the polar regions for Earth's environment, emphasising on the implications of polar change for

  9. SOHO/CDS Measurements of Coronal EUV Polarization above the Limb

    NASA Technical Reports Server (NTRS)

    Thomas, Roger J.

    2002-01-01

    Attempts to measure polarization in coronal extreme ultraviolet (EUV) emission above the solar limb have been made using the SOHO/CDS normal-incidence spectrometer which has a polarization sensitivity of about 50%, a property that causes variations in intensity response as a function of the spacecraft's roll angle for polarized light. Such observations were made on the disk and up to 0.22 solar radii above the solar limb in a number of EUV lines during two special roll-maneuvers of the SOHO spacecraft. Measurements of intensity gradients were made above a modestly active equatorial region in 1997 and above a relatively cool polar region in 2001. Observed emission lines include He I 584 A, He II 304 A, O IV 555+610 A, O V 630 A, Mg IX 368 A, Mg X 610+625 A, and Si XI 303 A, formed at temperatures that evenly cover the range in log T from 4.1 to 6.2. Near the disk, measured intensities of all lines fall off exponentially at different rates that can be used to determine the density scale-heights of the emitting plasma, since this emission is dominated by collisional excitation with an Ne-squared dependence. Assuming hydrostatic equilibrium, the intensity gradient for each line can then be converted into a 'scale-height temperature', which is found to be closely related to the ionization temperature of each line over the wide range of lines and solar conditions observed. Thus the large-scale corona is remarkably uniform, even though clearly displaying a great deal of structure and non-uniformity on smaller spatial scales. Beyond a certain distance, intensity gradients of the cooler lines switch over to a flatter exponential slope, suggesting that this radiation is dominated by resonance scattering which varies as Ne to the first power. Such radiation should also be linearly polarized in the plane containing the line-of-sight and the solar center, a signature that would strongly confirm this interpretation.

  10. Optical polarimetry and photometry of X-ray selected BL Lacertae objects

    NASA Technical Reports Server (NTRS)

    Jannuzi, Buell T.; Smith, Paul S.; Elston, Richard

    1993-01-01

    We present the data from 3 years of monitoring the optical polarization and apparent brightness of 37 X-ray-selected BL Lacertae objects. The monitored objects include a complete sample drawn from the Einstein Extended Medium Sensitivity Survey. We confirm the BL Lac identifications for 15 of these 22 objects. We include descriptions of the objects and samples in our monitoring program and of the existing complete samples of BL Lac objects, highly polarized quasars, optically violent variable quasars, and blazars.

  11. Positron emission mammography (PEM): Effect of activity concentration, object size, and object contrast on phantom lesion detection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MacDonald, Lawrence R.; Wang, Carolyn L.; Eissa, Marna

    2012-10-15

    Purpose: To characterize the relationship between lesion detection sensitivity and injected activity as a function of lesion size and contrast on the PEM (positron emission mammography) Flex Solo II scanner using phantom experiments. Methods: Phantom lesions (spheres 4, 8, 12, 16, and 20 mm diameter) were randomly located in uniform background. Sphere activity concentrations were 3 to 21 times the background activity concentration (BGc). BGc was a surrogate for injected activity; BGc ranged from 0.44-4.1 kBq/mL, corresponding to 46-400 MBq injections. Seven radiologists read 108 images containing zero, one, or two spheres. Readers used a 5-point confidence scale to scoremore » the presence of spheres. Results: Sensitivity was 100% for lesions {>=}12 mm under all conditions except for one 12 mm sphere with the lowest contrast and lowest BGc (60% sensitivity). Sensitivity was 100% for 8 mm spheres when either contrast or BGc was high, and 100% for 4 mm spheres only when both contrast and BGc were highest. Sphere contrast recovery coefficients (CRC) were 49%, 34%, 26%, 14%, and 2.8% for the largest to smallest spheres. Cumulative specificity was 98%. Conclusions: Phantom lesion detection sensitivity depends more on sphere size and contrast than on BGc. Detection sensitivity remained {>=}90% for injected activities as low as 100 MBq, for lesions {>=}8 mm. Low CRC in 4 mm objects results in moderate detection sensitivity even for 400 MBq injected activity, making it impractical to optimize injected activity for such lesions. Low CRC indicates that when lesions <8 mm are observed on PEM images they are highly tracer avid with greater potential of clinical significance. High specificity (98%) suggests that image statistical noise does not lead to false positive findings. These results apply to the 85 mm thick object used to obtain them; lesion detectability should be better (worse) for thinner (thicker) objects based on the reduced (increased) influence of photon

  12. Temporally Varying Ethylene Emission on Jupiter

    NASA Technical Reports Server (NTRS)

    Romani, Paul N.; Jennings, Donald E.; Bjoraker, Gordon L.; Sada, Pedro V.; McCabe. Geprge; Boyle, Robert J.

    2008-01-01

    Ethylene (C2H4) emission has been measured in the poles and equator of Jupiter. The 949 cm(sup -1) spectra were recorded with a high resolution spectrometer at the McMath-Pierce telescope at Kitt Peak in October-November 1998 and at the Infrared Telescope Facility at Mauna Kea in June 2000. C2H4 is an important product of methane chemistry in the outer planets. Knowledge of its abundance can help discriminate among the various proposed sets of CH4 photolysis branching ratios at Ly-alpha, and determine the relative importance of the reaction pathways that produce C2H2 and C2H6. In the equatorial region the C2H4 emission is weak, and we were only able to detect it at high air-mass, near the limb. We derive a peak equatorial molar abundance of C2H4 of 4.5 x 10(exp -7) - 1.7 x 10(exp -6) near 2.2 x 10(exp -3) mbar, with a total column of 5.7 x 10(exp 14) - 2.2 x 10(exp 15) molecules cm(exp -2) above 10 mbar depending upon choice of thermal profile. We observed enhanced C2H4 emission from the poles in the regions where auroras are seen in X-ray, UV, and near infrared images. In 2000 we measured a short-term change in the distribution of polar C2H4 emission; the emission in the north IR auroral "hot spot" decreased by a factor of three over a two-day interval. This transient its contribution peak at 5-10 microbar suggests that the polar e is primarily a thermal effect coupled with vertical transport. Comparing our observations from Kitt Peak and Mauna Kea shows that the C2H4 emission of the northern non-"hot spot" auroral regions did not change over the three-year period while that in the southern polar regions decreased.

  13. Evaluating and ranking threats to the long-term persistence of polar bears

    USGS Publications Warehouse

    Atwood, Todd C.; Marcot, Bruce G.; Douglas, David C.; Amstrup, Steven C.; Rode, Karyn D.; Durner, George M.; Bromaghin, Jeffrey F.

    2015-01-01

    The polar bear (Ursus maritimus) was listed as a globally threatened species under the U.S. Endangered Species Act (ESA) in 2008, mostly due to the significant threat to their future population viability from rapidly declining Arctic sea ice. A core mandate of the ESA is the development of a recovery plan that identifies steps to maintain viable populations of a listed species. A substantive evaluation of the relative influence of putative threats to population persistence is helpful to recovery planning. Because management actions must often be taken in the face of substantial information gaps, a formalized evaluation hypothesizing potential stressors and their relationships with population persistence can improve identification of relevant conservation actions. To this end, we updated a Bayesian network model previously used to forecast the future status of polar bears worldwide. We used new information on actual and predicted sea ice loss and polar bear responses to evaluate the relative influence of plausible threats and their mitigation through management actions on the persistence of polar bears in four ecoregions. We found that polar bear outcomes worsened over time through the end of the century under both stabilized and unabated greenhouse gas (GHG) emission pathways. Under the unabated pathway (i.e., RCP 8.5), the time it took for polar bear populations in two of four ecoregions to reach a dominant probability of greatly decreased was hastened by about 25 years. Under the stabilized GHG emission pathway (i.e., RCP 4.5), where GHG emissions peak around the year 2040, the polar bear population in the Archipelago Ecoregion of High Arctic Canada never reached a dominant probability of greatly decreased, reinforcing earlier suggestions of this ecoregion’s potential to serve as a long-term refugium. The most influential drivers of adverse polar bear outcomes were declines to overall sea ice conditions and to the marine prey base. Improved sea ice conditions

  14. An Intense Polarized Radio Flare from AR Lac

    NASA Astrophysics Data System (ADS)

    Mutel, R. L.; Neff, J. E.; Bookbinder, J.; Pagano, I.

    1992-12-01

    We have detected an intense, highly circularly polarized radio flare from the close binary system AR Lacertae during a 4 day multi-wavelength observing campaign in 1991 December. The flare lasted more than 6 hours and was preceded by a strong CIV flare one day earlier. The peak circular polarization was 70%, 38%,and 39% RCP at 1.4, 4.9, and 8.4 GHz respectively, with ~ 15% LCP at 15 and 22 GHZ. The high degree of circular polarization over such a large time scale and frequency range is highly unusual compared with previously observed radio flares from RS CVn binaries. Given these unusual characteristics, it is difficult to interpret the radiation mechanism either as a result of gyrosynchrotron emission or a coherent process such as an electron cyclotron maser.

  15. X-Ray and TeV Gamma-Ray Emission from Parallel Electron-Positron or Electron-Proton Beams in BL Lacertae Objects

    NASA Astrophysics Data System (ADS)

    Krawczynski, H.

    2007-04-01

    In this paper we discuss models of the X-ray and TeV γ-ray emission from BL Lac objects based on parallel electron-positron or electron-proton beams that form close to the central black hole, due to the strong electric fields generated by the accretion disk and possibly also by the black hole itself. Fitting the energy spectrum of the BL Lac object Mrk 501, we obtain tight constraints on the beam properties. Launching a sufficiently energetic beam requires rather strong magnetic fields close to the black hole (~100-1000 G). However, the model fits imply that the magnetic field in the emission region is only ~0.02 G. Thus, the particles are accelerated close to the black hole and propagate a considerable distance before instabilities trigger the dissipation of energy through synchrotron and self-Compton emission. We discuss various approaches to generate enough power to drive the jet and, at the same time, to accelerate particles to ~20 TeV energies. Although the parallel beam model has its own problems, it explains some of the long-standing problems that plague models based on Fermi-type particle acceleration, such as the presence of a very high minimum Lorentz factor of accelerated particles. We conclude with a brief discussion of the implications of the model for the difference between the processes of jet formation in BL Lac-type objects and those in quasars.

  16. X-ray and TeV Gamma-Ray Emission from Parallel Electron-Positron or Electron-Proton Beams in BL Lac Objects

    NASA Astrophysics Data System (ADS)

    Krawczynski, Henric

    2007-04-01

    In this contribution we discuss models of the X-rays and TeV gamma-ray emission from BL Lac objects based on parallel electron-positron or electron-proton beams that form close to the central black hole owing to the strong electric fields generated by the accretion disk and possibly also by the black hole itself. Fitting the energy spectrum of the BL Lac object Mrk 501, we obtain tight constrains on the beam properties. Launching a sufficiently energetic beam requires rather strong magnetic fields close to the black hole 100-1000 G. However, the model fits imply that the magnetic field in the emission region is only 0.02 G. Thus, the particles are accelerated close to the black hole and propagate a considerable distance before instabilities trigger the dissipation of energy through synchrotron and self-Compton emission. We discuss various approaches to generate enough power to drive the jet and, at the same time, to accelerate particles to 20 TeV energies. Although the parallel beam model has its own problems, it explains some of the long-standing problems that plague models based on Fermi type particle acceleration, like the presence of a very high minimum Lorentz factor of accelerated particles. We conclude with a brief discussion of the implications of the model for the difference between the processes of jet formation in BL Lac type objects and in quasars.

  17. Circular-polarization-sensitive metamaterial based on triple-quantum-dot molecules.

    PubMed

    Kotetes, Panagiotis; Jin, Pei-Qing; Marthaler, Michael; Schön, Gerd

    2014-12-05

    We propose a new type of chiral metamaterial based on an ensemble of artificial molecules formed by three identical quantum dots in a triangular arrangement. A static magnetic field oriented perpendicular to the plane breaks mirror symmetry, rendering the molecules sensitive to the circular polarization of light. By varying the orientation and magnitude of the magnetic field one can control the polarization and frequency of the emission spectrum. We identify a threshold frequency Ω, above which we find strong birefringence. In addition, Kerr rotation and circular-polarized lasing action can be implemented. We investigate the single-molecule lasing properties for different energy-level arrangements and demonstrate the possibility of circular-polarization conversion. Finally, we analyze the effect of weak stray electric fields or deviations from the equilateral triangular geometry.

  18. Plasmon-mediated circularly polarized luminescence of GaAs in a scanning tunneling microscope

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mühlenberend, Svenja; Gruyters, Markus; Berndt, Richard, E-mail: berndt@physik.uni-kiel.de

    2015-12-14

    The electroluminescence from p-type GaAs(110) in a scanning tunneling microscope has been investigated at 6 K. Unexpectedly, high degrees of circular polarization have often been observed with ferromagnetic Ni tips and also with paramagnetic W and Ag tips. The data are interpreted in terms of two distinct excitation mechanisms. Electron injection generates intense luminescence with low polarization. Plasmon-mediated generation of electron-hole pairs leads to less intense emission, which, however, is highly polarized for many tips.

  19. L-Band H Polarized Microwave Emission During the Corn Growth Cycle

    NASA Technical Reports Server (NTRS)

    Joseph, A. T.; va der Velde, R.; O'Neill, P. E.; Kim, E.; Lang, R. H.; Gish, T.

    2012-01-01

    Hourly L-band (1.4 GHz) horizontally (H) polarized brightness temperatures (T(sub B))'s measured during five episodes (more than two days of continuous measurements) of the 2002 corn growth cycle are analyzed. These T(sub B)'s measurements were acquired as a part of a combined active/passive microwave field campaign, and were obtained at five incidence and three azimuth angles relative to the row direction. In support of this microwave data collection, intensive ground sampling took place once a week. Moreover, the interpretation of the hourly T(sub B)'s could also rely on the data obtained using the various automated instruments installed in the same field. In this paper, the soil moisture and temperature measured at fixed time intervals have been employed as input for the tau-omega model to reproduce the hourly T(sub B). Through the calibration of the vegetation and surface roughness parameterizations, the impact of the vegetation morphological changes on the microwave emission and the dependence of the soil surface roughness parameter, h(sub r), on soil moisture are investigated. This analysis demonstrates that the b parameter, appearing in the representation of the canopy opacity, has an angular dependence that varies throughout the growing period and also that the parameter hr increases as the soil dries in a portion of the dry-down cycle. The angular dependence of the b parameter imposes the largest uncertainty on T(sub B) simulations near senescence as the response of b to the incidence is also affected by the crop row orientation. On the other hand, the incorporation of a soil moisture dependent h(sub r) parameterization was responsible for the largest error reduction of T(sub B) simulations in the early growth cycle.

  20. Modelling Polar Self Assembly

    NASA Astrophysics Data System (ADS)

    Olvera de La Cruz, Monica; Sayar, Mehmet; Solis, Francisco J.; Stupp, Samuel I.

    2001-03-01

    Recent experimental studies in our group have shown that self assembled thin films of noncentrosymmetric supramolecular objects composed of triblock rodcoil molecules exhibit finite polar order. These aggregates have both long range dipolar and short range Ising-like interactions. We study the ground state of a simple model with these competing interactions. We find that the competition between Ising-like and dipolar forces yield a periodic domain structure, which can be controlled by adjusting the force constants and film thickness. When the surface forces are included in the potential, the system exhibits a finite macroscopic polar order.

  1. Gamma-Ray Pulsar Light Curves in Offset Polar Cap Geometry

    NASA Technical Reports Server (NTRS)

    Harding, Alice K.; DeCesar, Megan; Miller, M. Coleman

    2011-01-01

    Recent studies have shown that gamma-ray pulsar light curves are very sensitive to the geometry of the pulsar magnetic field. Pulsar magnetic field geometries, such as the retarded vacuum dipole and force-free magnetospheres, used to model high-energy light curves have distorted polar caps that are offset from the magnetic axis in the direction opposite to rotation. Since this effect is due to the sweepback of field lines near the light cylinder, offset polar caps are a generic property of pulsar magnetospheres and their effects should be included in gamma-ray pulsar light curve modeling. In slot gap models (having two-pole caustic geometry), the offset polar caps cause a strong azimuthal asymmetry of the particle acceleration around the magnetic axis. We have studied the effect of the offset polar caps in both retarded vacuum dipole and force-free geometry on the model high-energy pulse profile. We find that. corn pared to the profile:-; derived from :-;ymmetric caps, the flux in the pulse peaks, which are caustics formed along the trailing magnetic field lines. increases significantly relative to the off-peak emission. formed along leading field lines. The enhanced contrast produces greatly improved slot gap model fits to Fermi pulsar light curves like Vela, which show very little off-peak emIssIon.

  2. Observation of atomic oxygen O(1S) green-line emission in the summer polar upper mesosphere associated with high-energy (≥30 keV) electron precipitation during high-speed solar wind streams

    NASA Astrophysics Data System (ADS)

    Lee, Young-Sook; Kwak, Young-Sil; Kim, Kyung-Chan; Solheim, Brian; Lee, Regina; Lee, Jaejin

    2017-01-01

    The auroral green-line emission at 557.7 nm wavelength as arising from the atomic oxygen O(1S → 1D) transition typically peaks at an altitude of 100 km specifically in the nightside oval, induced by auroral electrons within an energy range of 100 eV-30 keV. Intense aurora is known as being suppressed by sunlight in summer daytime but usually occurs in low electrical background conductivity. However, in the present study in summer (July) sunlit condition, enhancements of O(1S) emission rates observed by using the Wind Imaging Interferometer/UARS were frequently observed at low altitudes below 90 km, where ice particles are created initially as subvisible and detected as polar mesosphere summer echoes, emerging to be an optical phenomenon of polar mesospheric clouds. The intense O(1S) emission occurring in summer exceeds those occurring in the daytime in other seasons both in occurrence and in intensity, frequently accompanied by occurrences of supersonic neutral velocity (300-1500 m s-1). In the mesosphere, ion motion is controlled by electric field and the momentum is transferred to neutrals. The intense O(1S) emission is well associated with high-energy electron precipitation as observed during an event of high-speed solar wind streams. Meanwhile, since the minimum occurrences of O(1S) emission and supersonic velocity are maintained even in the low precipitation flux, the mechanism responsible is not only related to high-energy electron precipitation but also presumably to the local conditions, including the composition of meteoric-charged ice particles and charge separation expected in extremely low temperatures (<150 K).

  3. Data Quality Objectives Supporting Radiological Air Emissions Monitoring for the Marine Sciences Laboratory, Sequim Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barnett, J. Matthew; Meier, Kirsten M.; Snyder, Sandra F.

    2012-12-27

    This document of Data Quality Objectives (DQOs) was prepared based on the U.S. Environmental Protection Agency (EPA) Guidance on Systematic Planning Using the Data Quality Objectives Process, EPA, QA/G4, 2/2006 (EPA 2006), as well as several other published DQOs. The intent of this report is to determine the necessary steps required to ensure that radioactive emissions to the air from the Marine Sciences Laboratory (MSL) headquartered at the Pacific Northwest National Laboratory’s Sequim Marine Research Operations (Sequim Site) on Washington State’s Olympic Peninsula are managed in accordance with regulatory requirements and best practices. The Sequim Site was transitioned in Octobermore » 2012 from private operation under Battelle Memorial Institute to an exclusive use contract with the U.S. Department of Energy, Office of Science, Pacific Northwest Site Office.« less

  4. Stokes-correlometry of polarization-inhomogeneous objects

    NASA Astrophysics Data System (ADS)

    Ushenko, O. G.; Dubolazov, A.; Bodnar, G. B.; Bachynskiy, V. T.; Vanchulyak, O.

    2018-01-01

    The paper consists of two parts. The first part presents short theoretical basics of the method of Stokes-correlometry description of optical anisotropy of biological tissues. It was provided experimentally measured coordinate distributions of modulus (MSV) and phase (PhSV) of complex Stokes vector of skeletal muscle tissue. It was defined the values and ranges of changes of statistic moments of the 1st-4th orders, which characterize the distributions of values of MSV and PhSV. The second part presents the data of statistic analysis of the distributions of modulus MSV and PhSV. It was defined the objective criteria of differentiation of samples with urinary incontinence.

  5. Polarization Signals of Common Spacecraft Materials

    NASA Technical Reports Server (NTRS)

    Gravseth, Ian; Culp, Robert D.; King, Nicole

    1996-01-01

    This is the final report documenting the results of the polarization testing of near-planar objects with various reflectance properties. The purpose of this investigation was to determine the portion of the reflected signal which is polarized for materials commonly used in space applications. Tests were conducted on several samples, with surface characteristics ranging from highly reflective to relatively dark. The measurements were obtained by suspending the test object in a beam of collimated light. The amount of light falling on the sample was controlled by a circular aperture placed in the light field. The polarized reflectance at various phase angles was then measured. A nonlinear least squares fitting program was used for analysis. For the specular test objects, the reflected signals were measured in one degree increments near the specular point. Otherwise, measurements were taken every five degrees in phase angle. Generally, the more diffuse surfaces had lower polarized reflectances than their more specular counterparts. The reflected signals for the more diffuse surfaces were spread over a larger phase angle range, while the signals from the more specular samples were reflected almost entirely within five degrees of angular deviation from the specular point. The method used to test all the surfaces is presented. The results of this study will be used to support the NASA Orbital Debris Optical Signature Tests. These tests are intended to help better understand the reflectance properties of materials often used in space applications. This data will then be used to improve the capabilities for identification and tracking of space debris.

  6. Cosmology with the cosmic microwave background temperature-polarization correlation

    NASA Astrophysics Data System (ADS)

    Couchot, F.; Henrot-Versillé, S.; Perdereau, O.; Plaszczynski, S.; Rouillé d'Orfeuil, B.; Spinelli, M.; Tristram, M.

    2017-06-01

    We demonstrate that the cosmic microwave background (CMB) temperature-polarization cross-correlation provides accurate and robust constraints on cosmological parameters. We compare them with the results from temperature or polarization and investigate the impact of foregrounds, cosmic variance, and instrumental noise. This analysis makes use of the Planck high-ℓ HiLLiPOP likelihood based on angular power spectra, which takes into account systematics from the instrument and foreground residuals directly modelled using Planck measurements. The temperature-polarization correlation (TE) spectrum is less contaminated by astrophysical emissions than the temperature power spectrum (TT), allowing constraints that are less sensitive to foreground uncertainties to be derived. For ΛCDM parameters, TE gives very competitive results compared to TT. For basic ΛCDM model extensions (such as AL, ∑mν, or Neff), it is still limited by the instrumental noise level in the polarization maps.

  7. North Polar Cap

    NASA Technical Reports Server (NTRS)

    2004-01-01

    [figure removed for brevity, see original site]

    This week we will be looking at five examples of laminar wind flow on the north polar cap. On Earth, gravity-driven south polar cap winds are termed 'catabatic' winds. Catabatic winds begin over the smooth expanse of the cap interior due to temperature differences between the atmosphere and the surface. Once begun, the winds sweep outward along the surface of the polar cap toward the sea. As the polar surface slopes down toward sealevel, the wind speeds increase. Catabatic wind speeds in the Antartic can reach several hundreds of miles per hour.

    In the images of the Martian north polar cap we can see these same type of winds. Notice the streamers of dust moving downslope over the darker trough sides, these streamers show the laminar flow regime coming off the cap. Within the trough we see turbulent clouds of dust, kicked up at the trough base as the winds slow down and enter a chaotic flow regime.

    The horizontal lines in these images are due to framelet overlap and lighting conditions over the bright polar cap.

    Image information: VIS instrument. Latitude 86.5, Longitude 64.5 East (295.5 West). 40 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation

  8. North Polar Cap

    NASA Technical Reports Server (NTRS)

    2004-01-01

    [figure removed for brevity, see original site]

    This week we will be looking at five examples of laminar wind flow on the north polar cap. On Earth, gravity-driven south polar cap winds are termed 'catabatic' winds. Catabatic winds begin over the smooth expanse of the cap interior due to temperature differences between the atmosphere and the surface. Once begun, the winds sweep outward along the surface of the polar cap toward the sea. As the polar surface slopes down toward sealevel, the wind speeds increase. Catabatic wind speeds in the Antartic can reach several hundreds of miles per hour.

    In the images of the Martian north polar cap we can see these same type of winds. Notice the streamers of dust moving downslope over the darker trough sides, these streamers show the laminar flow regime coming off the cap. Within the trough we see turbulent clouds of dust, kicked up at the trough base as the winds slow down and enter a chaotic flow regime.

    The horizontal lines in these images are due to framelet overlap and lighting conditions over the bright polar cap.

    Image information:VIS instrument. Latitude 86.5, longitude 57.4 East (302.6 West). 40 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is

  9. North Polar Cap

    NASA Technical Reports Server (NTRS)

    2004-01-01

    [figure removed for brevity, see original site]

    This week we will be looking at five examples of laminar wind flow on the north polar cap. On Earth, gravity-driven south polar cap winds are termed 'catabatic' winds. Catabatic winds begin over the smooth expanse of the cap interior due to temperature differences between the atmosphere and the surface. Once begun, the winds sweep outward along the surface of the polar cap toward the sea. As the polar surface slopes down toward sealevel, the wind speeds increase. Catabatic wind speeds in the Antartic can reach several hundreds of miles per hour.

    In the images of the Martian north polar cap we can see these same type of winds. Notice the streamers of dust moving downslope over the darker trough sides, these streamers show the laminar flow regime coming off the cap. Within the trough we see turbulent clouds of dust, kicked up at the trough base as the winds slow down and enter a chaotic flow regime.

    The horizontal lines in these images are due to framelet overlap and lighting conditions over the bright polar cap.

    Image information: VIS instrument. Latitude 84.3, Longitude 314.4 East (45.6 West). 40 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation

  10. North Polar Cap

    NASA Technical Reports Server (NTRS)

    2004-01-01

    [figure removed for brevity, see original site]

    This week we will be looking at five examples of laminar wind flow on the north polar cap. On Earth, gravity-driven south polar cap winds are termed 'catabatic' winds. Catabatic winds begin over the smooth expanse of the cap interior due to temperature differences between the atmosphere and the surface. Once begun, the winds sweep outward along the surface of the polar cap toward the sea. As the polar surface slopes down toward sealevel, the wind speeds increase. Catabatic wind speeds in the Antartic can reach several hundreds of miles per hour.

    In the images of the Martian north polar cap we can see these same type of winds. Notice the streamers of dust moving downslope over the darker trough sides, these streamers show the laminar flow regime coming off the cap. Within the trough we see turbulent clouds of dust, kicked up at the trough base as the winds slow down and enter a chaotic flow regime.

    The horizontal lines in these images are due to framelet overlap and lighting conditions over the bright polar cap.

    Image information: VIS instrument. Latitude 84.2, Longitude 57.4 East (302.6 West). 40 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation

  11. The multi-spectral line-polarization MSE system on Alcator C-Mod

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mumgaard, R. T., E-mail: mumgaard@psfc.mit.edu; Khoury, M.; Scott, S. D.

    A multi-spectral line-polarization motional Stark effect (MSE-MSLP) diagnostic has been developed for the Alcator C-Mod tokamak wherein the Stokes vector is measured in multiple wavelength bands simultaneously on the same sightline to enable better polarized background subtraction. A ten-sightline, four wavelength MSE-MSLP detector system was designed, constructed, and qualified. This system consists of a high-throughput polychromator for each sightline designed to provide large étendue and precise spectral filtering in a cost-effective manner. Each polychromator utilizes four narrow bandpass interference filters and four custom large diameter avalanche photodiode detectors. Two filters collect light to the red and blue of the MSEmore » emission spectrum while the remaining two filters collect the beam pi and sigma emission generated at the same viewing volume. The filter wavelengths are temperature tuned using custom ovens in an automated manner. All system functions are remote controllable and the system can be easily retrofitted to existing single-wavelength line-polarization MSE systems.« less

  12. The multi-spectral line-polarization MSE system on Alcator C-Mod

    DOE PAGES

    Mumgaard, R. T.; Scott, S. D.; Khoury, M.

    2016-08-17

    A multi-spectral line-polarization motional Stark effect (MSE-MSLP) diagnostic has been developed for the Alcator C-Mod tokamak wherein the Stokes vector is measured in multiple wavelength bands simultaneously on the same sightline to enable better polarized background subtraction. A ten-sightline, four wavelength MSE-MSLP detector system was designed, constructed, and qualified. This system consists of a high-throughput polychromator for each sightline designed to provide large étendue and precise spectral filtering in a cost-effective manner. Each polychromator utilizes four narrow bandpass interference filters and four custom large diameter avalanche photodiode detectors. Two filters collect light to the red and blue of the MSEmore » emission spectrum while the remaining two filters collect the beam pi and sigma emission generated at the same viewing volume. The filter wavelengths are temperature tuned using custom ovens in an automated manner. Furthermore, all system functions are remote controllable and the system can be easily retrofitted to existing single-wavelength line-polarization MSE systems.« less

  13. The spectral properties of (-)-epigallocatechin 3-O-gallate (EGCG) fluorescence in different solvents: dependence on solvent polarity.

    PubMed

    Snitsarev, Vladislav; Young, Michael N; Miller, Ross M S; Rotella, David P

    2013-01-01

    (-)-Epigallocatechin 3-O-gallate (EGCG) a molecule found in green tea and known for a plethora of bioactive properties is an inhibitor of heat shock protein 90 (HSP90), a protein of interest as a target for cancer and neuroprotection. Determination of the spectral properties of EGCG fluorescence in environments similar to those of binding sites found in proteins provides an important tool to directly study protein-EGCG interactions. The goal of this study is to examine the spectral properties of EGCG fluorescence in an aqueous buffer (AB) at pH=7.0, acetonitrile (AN) (a polar aprotic solvent), dimethylsulfoxide (DMSO) (a polar aprotic solvent), and ethanol (EtOH) (a polar protic solvent). We demonstrate that EGCG is a highly fluorescent molecule when excited at approximately 275 nm with emission maxima between 350 and 400 nm depending on solvent. Another smaller excitation peak was found when EGCG is excited at approximately 235 nm with maximum emission between 340 and 400 nm. We found that the fluorescence intensity (FI) of EGCG in AB at pH=7.0 is significantly quenched, and that it is about 85 times higher in an aprotic solvent DMSO. The Stokes shifts of EGCG fluorescence were determined by solvent polarity. In addition, while the emission maxima of EGCG fluorescence in AB, DMSO, and EtOH follow the Lippert-Mataga equation, its fluorescence in AN points to non-specific solvent effects on EGCG fluorescence. We conclude that significant solvent-dependent changes in both fluorescence intensity and fluorescence emission shifts can be effectively used to distinguish EGCG in aqueous solutions from EGCG in environments of different polarity, and, thus, can be used to study specific EGCG binding to protein binding sites where the environment is often different from aqueous in terms of polarity.

  14. Ultraviolet to optical diffuse sky emission as seen by the Hubble Space Telescope Faint Object Spectrograph

    NASA Astrophysics Data System (ADS)

    Kawara, Kimiaki; Matsuoka, Yoshiki; Sano, Kei; Brandt, Timothy D.; Sameshima, Hiroaki; Tsumura, Kohji; Oyabu, Shinki; Ienaka, Nobuyuki

    2017-04-01

    We present an analysis of the blank-sky spectra observed with the Faint Object Spectrograph on board the Hubble Space Telescope. We study the diffuse sky emission from ultraviolet to optical wavelengths, which is composed of zodiacal light (ZL), diffuse Galactic light (DGL), and residual emission. The observations were performed towards 54 fields distributed widely over the sky, with spectral coverage from 0.2 to 0.7 μm. In order to avoid contaminating light from earthshine, we use the data collected only in orbital nighttime. The observed intensity is decomposed into the ZL, DGL, and residual emission, in eight photometric bands spanning our spectral coverage. We found that the derived ZL reflectance spectrum is flat in the optical, which indicates major contribution of C-type asteroids to the interplanetary dust (IPD). In addition, the ZL reflectance spectrum has an absorption feature at ∼0.3 μm. The shape of the DGL spectrum is consistent with those found in earlier measurements and model predictions. While the residual emission contains a contribution from the extragalactic background light, we found that the spectral shape of the residual looks similar to the ZL spectrum. Moreover, its optical intensity is much higher than that measured from beyond the IPD cloud by Pioneer 10/11, and also than that of the integrated galaxy light. These findings may indicate the presence of an isotropic ZL component, which is missed in the conventional ZL models.

  15. A Classroom Activity for Teaching Electric Polarization of Insulators and Conductors

    NASA Astrophysics Data System (ADS)

    Deligkaris, Christos

    2018-04-01

    The phenomenon of electric polarization is crucial to student understanding of forces exerted between charged objects and insulators or conductors, the process of charging by induction, and the behavior of electroscopes near charged objects. In addition, polarization allows for microscopic-level models of everyday-life macroscopic-level phenomena. Textbooks may adequately discuss polarization, but there is little material in active learning labs and tutorials on this topic. Since polarization of materials is a microscopic phenomenon, instructors often use diagrams and figures on the classroom board to explain the process in a lecture setting. In this paper I will describe a classroom activity where the students play the role of electrons as an alternative option.

  16. Full Polarization Conical Dispersion and Zero-Refractive-Index in Two-Dimensional Photonic Hypercrystals

    PubMed Central

    Wang, Jia-Rong; Chen, Xiao-Dong; Zhao, Fu-Li; Dong, Jian-Wen

    2016-01-01

    Photonic conical dispersion has been found in either transverse magnetic or transverse electric polarization, and the predominant zero-refractive-index behavior in a two-dimensional photonic crystal is polarization-dependent. Here, we show that two-dimensional photonic hypercrystals can be designed that exhibit polarization independent conical dispersion at the Brillouin zone center, as two sets of triply-degenerate point for each polarization are accidentally at the same Dirac frequency. Such photonic hypercrystals consist of periodic dielectric cylinders embedded in elliptic metamaterials, and can be viewed as full-polarized near zero-refractive-index materials around Dirac frequency by using average eigen-field evaluation. Numerical simulations including directional emissions and invisibility cloak are employed to further demonstrate the double-zero-index characteristics for both polarizations in the photonic hypercrystals. PMID:26956377

  17. Derived Land Surface Emissivity From Suomi NPP CrIS

    NASA Technical Reports Server (NTRS)

    Zhou, Daniel K.; Larar, Allen M.; Liu, Xu

    2012-01-01

    Presented here is the land surface IR spectral emissivity retrieved from the Cross-track Infrared Sounder (CrIS) measurements. The CrIS is aboard the Suomi National Polar-orbiting Partnership (NPP) satellite launched on October 28, 2011. We describe the retrieval algorithm, demonstrate the surface emissivity retrieved with CrIS measurements, and inter-comparison with the Infrared Atmospheric Sounding Interferometer (IASI) emissivity. We also demonstrate that surface emissivity from satellite measurements can be used in assistance of monitoring global surface climate change, as a long-term measurement of IASI and CrIS will be provided by the series of EUMETSAT MetOp and US Joint Polar Satellite System (JPSS) satellites. Monthly mean surface properties are produced using last 5-year IASI measurements. A temporal variation indicates seasonal diversity and El Nino/La Nina effects not only shown on the water but also on the land. Surface spectral emissivity and skin temperature from current and future operational satellites can be utilized as a means of long-term monitoring of the Earth's environment. CrIS spectral emissivity are retrieved and compared with IASI. The difference is small and could be within expected retrieval error; however it is under investigation.

  18. A recent change in the optical and γ-ray polarization of the Crab nebula and pulsar

    NASA Astrophysics Data System (ADS)

    Moran, P.; Kyne, G.; Gouiffès, C.; Laurent, P.; Hallinan, G.; Redfern, R. M.; Shearer, A.

    2016-03-01

    We report on observations of the polarization of optical and γ-ray photons from the Crab nebula and pulsar system using the Galway Astronomical Stokes Polarimeter (GASP), the Hubble Space Telescope, Advanced Camera for Surveys and the International Gamma-Ray Astrophysics Laboratory satellite (INTEGRAL). These, when combined with other optical polarization observations, suggest that the polarized optical emission and γ-ray polarization changes in a similar manner. A change in the optical polarization angle has been observed by this work, from 109.5 ± 0.7° in 2005 to 85.3 ± 1.4° in 2012. On the other hand, the γ-ray polarization angle changed from 115 ± 11° in 2003-2007 to 80 ± 12° in 2012-2014. Strong flaring activities have been detected in the Crab nebula over the past few years by the high-energy γ-ray missions Agile and Fermi, and magnetic reconnection processes have been suggested to explain these observations. The change in the polarized optical and γ-ray emission of the Crab nebula/pulsar as observed, for the first time, by GASP and INTEGRAL may indicate that reconnection is possibly at work in the Crab nebula. We also report, for the first time, a non-zero measure of the optical circular polarization from the Crab pulsar+knot system.

  19. Will international emissions trading help achieve the objectives of the Paris Agreement?

    NASA Astrophysics Data System (ADS)

    Fujimori, Shinichiro; Kubota, Izumi; Dai, Hancheng; Takahashi, Kiyoshi; Hasegawa, Tomoko; Liu, Jing-Yu; Hijioka, Yasuaki; Masui, Toshihiko; Takimi, Maho

    2016-10-01

    Under the Paris Agreement, parties set and implement their own emissions targets as nationally determined contributions (NDCs) to tackle climate change. International carbon emissions trading is expected to reduce global mitigation costs. Here, we show the benefit of emissions trading under both NDCs and a more ambitious reduction scenario consistent with the 2 °C goal. The results show that the global welfare loss, which was measured based on estimated household consumption change in 2030, decreased by 75% (from 0.47% to 0.16%), as a consequence of achieving NDCs through emissions trading. Furthermore, achieving the 2 °C targets without emissions trading led to a global welfare loss of 1.4%-3.4%, depending on the burden-sharing scheme used, whereas emissions trading reduced the loss to around 1.5% (from 1.4% to 1.7%). These results indicate that emissions trading is a valuable option for the international system, enabling NDCs and more ambitious targets to be achieved in a cost-effective manner.

  20. Polarization Radiation with Turbulent Magnetic Fields from X-Ray Binaries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Jian-Fu; Xiang, Fu-Yuan; Lu, Ju-Fu, E-mail: jfzhang@xtu.edu.cn, E-mail: fyxiang@xtu.edu.cn, E-mail: lujf@xmu.edu.cn

    2017-02-10

    We study the properties of polarized radiation in turbulent magnetic fields from X-ray binary jets. These turbulent magnetic fields are composed of large- and small-scale configurations, which result in the polarized jitter radiation when the characteristic length of turbulence is less than the non-relativistic Larmor radius. On the contrary, the polarized synchrotron emission occurs, corresponding to a large-scale turbulent environment. We calculate the spectral energy distributions and the degree of polarization for a general microquasar. Numerical results show that turbulent magnetic field configurations can indeed provide a high degree of polarization, which does not mean that a uniform, large-scale magneticmore » field structure exists. The model is applied to investigate the properties of polarized radiation of the black-hole X-ray binary Cygnus X-1. Under the constraint of multiband observations of this source, our studies demonstrate that the model can explain the high polarization degree at the MeV tail and predict the highly polarized properties at the high-energy γ -ray region, and that the dominant small-scale turbulent magnetic field plays an important role for explaining the highly polarized observation at hard X-ray/soft γ -ray bands. This model can be tested by polarization observations of upcoming polarimeters at high-energy γ -ray bands.« less

  1. Electron emission from ferroelectrics - a review

    NASA Astrophysics Data System (ADS)

    Riege, H.

    1994-02-01

    The strong pulsed emission of electrons from the surface of ferroelectric (FE) materials was discovered at CERN in 1987. Since then many aspects and properties of the method of generation and propagation of electron beams from FE have been studied experimentally. The method is based on macroscopic charge separation and self-emission of electrons under the influence of their own space-charge fields. Hence, this type of emission is not limited by the Langmuir-Child law as are conventional emission methods. Charge separation and electron emission can be achieved by rapid switching of the spontaneous, ferroelectric polarization. Polarization switching may be induced by application of electrical-field or mechanical-pressure pulses, as well as by thermal heating or laser illumination of the ferroelectric emitter. At higher emission intensities plasma formation assists the FE emission and leads to a strong growth of emitted current amplitude, which is no longer limited by the FE material and the surface properties. The most attractive features of FE emission are robustness and ease of manipulation of the emitter cathodes which can be transported through atmospheric air and used without any problems in vacuum, low-pressure gas or plasma environments. Large-area arrangements of multiple emitters, switched in interleaved mode, can produce electron beams of any shape, current amplitude or time structure. The successful application of FE emission in accelerator technology has been demonstrated experimentally in several cases, e.g. for triggering high-power gas switches, for photocathodes in electron guns, and for electron-beam generators intended to generate, neutralize and enhance ion beams in ion sources and ion linacs. Other applications can be envisaged in microwave power generators and in the fields of electronics and vacuum microelectronics.

  2. Strong polarization-dependent terahertz modulation of aligned Ag nanowires on Si substrate.

    PubMed

    Lee, Gyuseok; Maeng, Inhee; Kang, Chul; Oh, Myoung-Kyu; Kee, Chul-Sik

    2018-05-14

    Optically tunable, strong polarization-dependent transmission of terahertz pulses through aligned Ag nanowires on a Si substrate is demonstrated. Terahertz pulses primarily pass through the Ag nanowires and the transmittance is weakly dependent on the angle between the direction of polarization of the terahertz pulse and the direction of nanowire alignment. However, the transmission of a terahertz pulse through optically excited materials strongly depends on the polarization direction. The extinction ratio increases as the power of the pumping laser increases. The enhanced polarization dependency is explained by the redistribution of photocarriers, which accelerates the sintering effect along the direction of alignment of the Ag nanowires. The photocarrier redistribution effect is examined by the enhancement of terahertz emission from the sample. Oblique metal nanowires on Si could be utilized for designing optically tunable terahertz polarization modulators.

  3. An alternative mechanism for production of emission features in some infrared objects

    NASA Technical Reports Server (NTRS)

    Apruzese, J. P.

    1975-01-01

    Two dust-envelope models of the M supergiant VX Sgr, which exhibits a prominent emission feature at 10 microns, are presented. The models indicate that, for certain envelope sizes, the presence of the observed emission feature does not necessarily indicate that the emitting grains possess a similar feature in their emissivity profile. The mechanism which may in some cases be producing the observed emission feature is discussed.

  4. On-sky tests of a polarization grating for visible astronomy

    NASA Astrophysics Data System (ADS)

    Millar-Blanchaer, Maxwell A.; Moon, Dae-Sik; Graham, James R.; Williams, Michael

    2016-08-01

    Polarization gratings (PGs) are a type of diffraction grating that take advantage of birefringent liquid crystal polymers to simultaneously act as a polarizing beam splitter and as a spectral dispersive element. Furthermore, PGs are capable of providing high diffraction efficiency (>90%) over a very broad wavelength range. These properties make PGs ideal for spectropolarimetry and/or high throughput, broad wavelength observations for a range of astronomical objects. Here we report on the design and on-sky testing of a prototype spectropolarimeter instrument that employs a PG optimized for operation from 500 nm to 900 nm. The prototype was mounted on a 16-inch telescope at the University of Toronto, where we carried out observations of the polarized twilight sky, a polarized standard star and two spectroscopic standard stars. Using these observations we demonstrate the PG's ability to measure linear polarization fraction and position angle, as well as recover spectra from astronomical objects.

  5. Adaptive polarization image fusion based on regional energy dynamic weighted average

    NASA Astrophysics Data System (ADS)

    Zhao, Yong-Qiang; Pan, Quan; Zhang, Hong-Cai

    2005-11-01

    According to the principle of polarization imaging and the relation between Stokes parameters and the degree of linear polarization, there are much redundant and complementary information in polarized images. Since man-made objects and natural objects can be easily distinguished in images of degree of linear polarization and images of Stokes parameters contain rich detailed information of the scene, the clutters in the images can be removed efficiently while the detailed information can be maintained by combining these images. An algorithm of adaptive polarization image fusion based on regional energy dynamic weighted average is proposed in this paper to combine these images. Through an experiment and simulations, most clutters are removed by this algorithm. The fusion method is used for different light conditions in simulation, and the influence of lighting conditions on the fusion results is analyzed.

  6. Carbon and oxygen X-ray line emission from the interstellar medium

    NASA Technical Reports Server (NTRS)

    Schnopper, H. W.; Delvaille, J. P.; Rocchia, R.; Blondel, C.; Cheron, C.; Christy, J. C.; Ducros, R.; Koch, L.; Rothenflug, R.

    1982-01-01

    A soft X-ray, 0.3-1.0 keV spectrum from a 1 sr region which includes a portion of the North Polar Spur, obtained by three rocketborne lithium-drifted silicon detectors, shows the C V, C VI, O VII and O VIII emission lines. The spectrum is well fitted by a two-component, modified Kato (1976) model, where the coronal emission is in collisional equilibrium, with interstellar medium and North Polar Spur temperatures of 1.1 and 3.8 million K, respectively.

  7. Inclined Pulsar Magnetospheres in General Relativity: Polar Caps for the Dipole, Quadrudipole, and Beyond

    NASA Astrophysics Data System (ADS)

    Gralla, Samuel E.; Lupsasca, Alexandru; Philippov, Alexander

    2017-12-01

    In the canonical model of a pulsar, rotational energy is transmitted through the surrounding plasma via two electrical circuits, each connecting to the star over a small region known as a “polar cap.” For a dipole-magnetized star, the polar caps coincide with the magnetic poles (hence the name), but in general, they can occur at any place and take any shape. In light of their crucial importance to most models of pulsar emission (from radio to X-ray to wind), we develop a general technique for determining polar cap properties. We consider a perfectly conducting star surrounded by a force-free magnetosphere and include the effects of general relativity. Using a combined numerical-analytical technique that leverages the rotation rate as a small parameter, we derive a general analytic formula for the polar cap shape and charge-current distribution as a function of the stellar mass, radius, rotation rate, moment of inertia, and magnetic field. We present results for dipole and quadrudipole fields (superposed dipole and quadrupole) inclined relative to the axis of rotation. The inclined dipole polar cap results are the first to include general relativity, and they confirm its essential role in the pulsar problem. The quadrudipole pulsar illustrates the phenomenon of thin annular polar caps. More generally, our method lays a foundation for detailed modeling of pulsar emission with realistic magnetic fields.

  8. 3D printed polarizing grids for IR-THz synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Ryu, Meguya; Linklater, Denver; Hart, William; Balčytis, Armandas; Skliutas, Edvinas; Malinauskas, Mangirdas; Appadoo, Dominique; Tan, Yaw-Ren Eugene; Ivanova, Elena P.; Morikawa, Junko; Juodkazis, Saulius

    2018-03-01

    Grid polarisers 3D-printed out of commercial acrilic resin were tested for the polariser function and showed spectral regions where the dichroic ratio {D}R> 1 and < 1 implying importance of molecular and/or stress induced anisotropy. Metal-coated 3D-printed THz optical elements can find a range of applications in intensity and polarization control of IR-THz beams. The used 3D printing method allows for fabrication of an arbitrary high aspect ratio grid polarisers. Polarization analysis of synchrotron THz radiation was carried out with a standard stretched polyethylene polariser and revealed that the linearly polarized (horizontal) component contributes up to 22% ± 5% to the circular polarized synchrotron emission extracted by a gold-coated mirror with a horizontal slit inserted near the bending magnet edge. Comparison with theoretical predictions shows a qualitative match with dominance of the edge radiation.

  9. Polar Cap Disturbances: Mesosphere and Thermosphere-Ionosphere Response to Solar-Terrestrial Interactions

    NASA Technical Reports Server (NTRS)

    Sivjee, G.; McEwen, D.; Walterscheid, R.

    2003-01-01

    The Polar Cap is the Upper-Atmosphere cum Mag-netosphere region which is enclosed by the poleward boundary of the Auroral Oval and is threaded by open geomagnetic tield lines. In this region, there is normally a steady precipition (Polar "drizzle") of low energy (w 300eV) electrons that excite optical emissions from the ionosphere. At times, enhanced ionization patches are formed near the Dayside Cusp regions that drift across the Polar Cap towards the Night Sector of the Auroral Oval. Discrete auroral arcs and auroras formed during Solar Magnetic Cloud (SMC)/Coronal Mass Ejection (CME) events are also observed in the Polar Cap. Spectrophotometric observations of all these Polar Cap phenomena provide a measure of the average energy as well a energy flux of the electrons precipitating in the Polar Cap region during these disturbances. Such measurements also point to modulations of the Polar Cap Mesosphere-Lower Thermosphere (MLT) air density and temperature by zonally symmetric tides whose Hough functions peak in the Polar region. MLT cooling during Stratospheric Warming events and their relation to Polar Vortex and associated Gravity wave activities are also observed at the Polar Cap sites.

  10. Polarized emission from CsPbBr3 nanowire embedded-electrospun PU fibers

    NASA Astrophysics Data System (ADS)

    Güner, Tuğrul; Topçu, Gökhan; Savacı, Umut; Genç, Aziz; Turan, Servet; Sari, Emre; Demir, Mustafa M.

    2018-04-01

    Interest in all-inorganic halide perovskites has been increasing dramatically due to their high quantum yield, band gap tunability, and ease of fabrication in compositional and geometric diversity. In this study, we synthesized several hundreds of nanometer long and ˜4 nm thick CsPbBr 3 nanowires (NWs). They were then integrated into electrospun polyurethane (PU) fibers to examine the polarization behavior of the composite fiber assembly. Aligned electrospun fibers containing CsPbBr 3 NWs showed a remarkable increase in the degree of polarization from 0.17-0.30. This combination of NWs and PU fibers provides a promising composite material for various applications such as optoelectronic devices and solar cells.

  11. Estimation of Biomass Burning Emissions by Fusing Fire Radiative Power Observed from Polar-orbiting and Geostationary Satellites across the Continental United States

    NASA Astrophysics Data System (ADS)

    Li, F.; Zhang, X.; Kondragunta, S.

    2016-12-01

    Trace gases and aerosols released from biomass burning significantly disturb the energy balance of the Earth and also degrade regional air quality. However, biomass burning emissions (BBE) have been poorly estimated using the traditional bottom-up approach because of the substantial uncertainties in the burned area and fuel loads. Recently, Fire Radiative Power (FRP) derived from satellite fire observations enables the estimation of BBE at multiple spatial scales in near real time. Nonetheless, it is very challenging to accurately produce reliable FRP diurnal cycles from either polar-orbiting satellites or geostationary satellites for the calculation of the temporally integrated FRP, Fire Radiative Energy (FRE). Here we reconstruct FRP diurnal cycles by fusing FRP observed from polar-orbiting and geostationary satellites and estimate BBE from 2011 to 2015 across the Continental United States. Specifically, FRP from the Geostationary Operational Environmental Satellite (GOES) is preprocessed and calibrated using the collocated and concurred observations from the Moderate Resolution Imaging Spectroradiometer (MODIS) over Landsat TM burn scars. The climatologically diurnal FRP curves are then calculated from the calibrated GOES FRP for the 25 Bailey's ecoregions. By fitting MODIS FRP and the calibrated GOES FRP to the climatological curves, FRP diurnal cycles are further reconstructed for individual days at a 0.25-degree grid. Both FRE estimated from FRP diurnal cycles and ecoregion specified FRE combustion rates are used to estimate hourly BBE. The estimated BBE is finally evaluated using QFED and GFED4.0 inventories and emissions modeled using Landsat TM 30m burn severities and 30m fuel loading from Fuel Characteristic Classification System. The results show that BBE estimates are greatly improved by using the reconstructed FRP diurnal cycles from high temporal (GOES) and high spatial resolution (MODIS) FRP observations.

  12. Polarization-dependent extraordinary optical transmission from upconversion nanoparticles.

    PubMed

    Wang, Peng Hui; Salcedo, Walter J; Pichaandi, Jothirmayanantham; van Veggel, Frank C J M; Brolo, Alexandre G

    2015-11-21

    Enhanced upconversion (UC) emission was experimentally demonstrated using gold double antenna nanoparticles coupled to nanoslits in gold films. The transmitted red emission from UC ytterbium and erbium co-doped sodium yttrium fluoride (NaYF4:Yb(3+)/Er(3+)) nanoparticles (UC NPs) at ∼665 nm (excited with a 980 nm diode laser) was enhanced relative to the green emission at ∼550 nm. The relatively enhanced UC NP emission could be tuned by the different polarization-dependent extraordinary optical transmission modes coupled to the gold nanostructures. Finite-difference time-domain calculations suggest that the preferential enhanced UC emission is related to a combination of different surface plasmon mode excitation coupling to cavity Fabry-Perot interactions. A maximum UC enhancement of 6-fold was measured for nanoslit arrays in the absence of the double antennas. In the presence of the double nanoantennas inside the nanoslits, the UC enhancement was between 2- and 4-fold, depending on the experimental conditions.

  13. Phase-resolved cyclotron spectroscopy of polars

    NASA Astrophysics Data System (ADS)

    Campbell, Ryan

    In this thesis we use phase-resolved cyclotron spectroscopy to study polars. Polars are a subset of cataclysmic variables where the primary WD is highly magnetic. In this case, the accretion flow is constrained along the magnetic field lines and eventually deposited on the WD, where the accreting material interacts with the atmosphere, forming a standing hydrodynamic shock at a location termed the accretion region, and emitting cyclotron radiation. Due to its field strength, cyclotron radiation from polars falls at either UV, optical or NIR wavelengths. While a substantial amount of optical cyclotron spectra have been published on polars, the NIR remains relatively unstudied. In this thesis, we present NIR spectroscopy for fifteen polars. Additionally, while a single cyclotron spectrum is needed to constrain the shock parameters, phase- resolved spectroscopy allows for a more in-depth analysis of the shock structure and the geometry of the accretion region. Of the fifteen polars observed, eight yielded spectra of adequate quality to be modeled in this manner: EF Eri, EQ Cet, AN UMa, VV Pup, AM Her, ST LMi, MR Ser, and MQ Dra. Initially, we used the industry standard "Constant Lambda (CL)" code to model each object. The code is fast, but produces only globally averaged values of the salient shock parameters: B - the magnetic field strength, kT - the plasma temperature, logL - the "size parameter" of the accretion column, and TH- the viewing angle between the observer and the magnetic field. For each object we present CL models for our NIR phase-resolved cyclotron spectra. Subsequently, we use a more advanced "Structured-Shock" code built by Fischer & Beuermann (2001)("F&B") to remodel three objects: EQ Cet, MQ Dra, and EF Eri. The F&B code allows for input of more physical parameters and most importantly does ray tracing through a simulated one-dimensional accretion column. To determine the outgoing spectrum, temperature and velocity profiles are needed to

  14. Multi-wavelength study of flaring activity in BL Lac object S5 0716+714 during the 2015 outburst

    DOE PAGES

    Chandra, Sunil; Zhang, Haocheng; Kushwaha, Pankaj; ...

    2015-08-17

    We present a detailed investigation of the flaring activity observed from a BL Lac object, S5 0716+714 , during its brightest ever optical state in the second half of 2015 January. Observed almost simultaneously in the optical, X-rays, and γ-rays, a significant change in the degree of optical polarization (PD) and a swing in the position angle (PA) of polarization were recorded. A TeV (VHE) detection was also reported by the MAGIC consortium during this flaring episode. Two prominent sub-flares, peaking about five days apart, were seen in almost all of the energy bands. The multi-wavelength light curves, spectral energymore » distribution, and polarization are modeled using the time-dependent code developed by Zhang et al. This model assumes a straight jet threaded by large-scale helical magnetic fields taking into account the light travel time effects, incorporating synchrotron flux and polarization in 3D geometry. Furthermore, the rapid variation in PD and rotation in PA are most likely due to reconnections happening in the emission region in the jet, as suggested by the change in the ratio of toroidal to poloidal components of the magnetic field during the quiescent and flaring states.« less

  15. Multi-wavelength study of flaring activity in BL Lac object S5 0716+714 during the 2015 outburst

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chandra, Sunil; Zhang, Haocheng; Kushwaha, Pankaj

    We present a detailed investigation of the flaring activity observed from a BL Lac object, S5 0716+714 , during its brightest ever optical state in the second half of 2015 January. Observed almost simultaneously in the optical, X-rays, and γ-rays, a significant change in the degree of optical polarization (PD) and a swing in the position angle (PA) of polarization were recorded. A TeV (VHE) detection was also reported by the MAGIC consortium during this flaring episode. Two prominent sub-flares, peaking about five days apart, were seen in almost all of the energy bands. The multi-wavelength light curves, spectral energymore » distribution, and polarization are modeled using the time-dependent code developed by Zhang et al. This model assumes a straight jet threaded by large-scale helical magnetic fields taking into account the light travel time effects, incorporating synchrotron flux and polarization in 3D geometry. Furthermore, the rapid variation in PD and rotation in PA are most likely due to reconnections happening in the emission region in the jet, as suggested by the change in the ratio of toroidal to poloidal components of the magnetic field during the quiescent and flaring states.« less

  16. MULTI-WAVELENGTH STUDY OF FLARING ACTIVITY IN BL Lac OBJECT S5 0716+714 DURING THE 2015 OUTBURST

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chandra, Sunil; Kushwaha, Pankaj; Singh, K. P.

    We present a detailed investigation of the flaring activity observed from a BL Lac object, S5 0716+714 , during its brightest ever optical state in the second half of 2015 January. Observed almost simultaneously in the optical, X-rays, and γ-rays, a significant change in the degree of optical polarization (PD) and a swing in the position angle (PA) of polarization were recorded. A TeV (VHE) detection was also reported by the MAGIC consortium during this flaring episode. Two prominent sub-flares, peaking about five days apart, were seen in almost all of the energy bands. The multi-wavelength light curves, spectral energymore » distribution, and polarization are modeled using the time-dependent code developed by Zhang et al. This model assumes a straight jet threaded by large-scale helical magnetic fields taking into account the light travel time effects, incorporating synchrotron flux and polarization in 3D geometry. The rapid variation in PD and rotation in PA are most likely due to reconnections happening in the emission region in the jet, as suggested by the change in the ratio of toroidal to poloidal components of the magnetic field during the quiescent and flaring states.« less

  17. ispace's Polar Ice Explorer: Commerically Exploring the Poles of the Moon

    NASA Astrophysics Data System (ADS)

    Calzada-Diaz, A.; Acierno, K.; Rasera, J. N.; Lamamy, J.-A.

    2018-04-01

    This work provides the background, rationales, and scientific objectives for the ispace Polar Ice Explorer Project, an ISRU exploratory mission that aims to provide data about the lunar polar environment.

  18. The State-of-Play of Anomalous Microwave Emission (AME) research

    NASA Astrophysics Data System (ADS)

    Dickinson, Clive; Ali-Haïmoud, Y.; Barr, A.; Battistelli, E. S.; Bell, A.; Bernstein, L.; Casassus, S.; Cleary, K.; Draine, B. T.; Génova-Santos, R.; Harper, S. E.; Hensley, B.; Hill-Valler, J.; Hoang, Thiem; Israel, F. P.; Jew, L.; Lazarian, A.; Leahy, J. P.; Leech, J.; López-Caraballo, C. H.; McDonald, I.; Murphy, E. J.; Onaka, T.; Paladini, R.; Peel, M. W.; Perrott, Y.; Poidevin, F.; Readhead, A. C. S.; Rubiño-Martín, J.-A.; Taylor, A. C.; Tibbs, C. T.; Todorović, M.; Vidal, Matias

    2018-02-01

    Anomalous Microwave Emission (AME) is a component of diffuse Galactic radiation observed at frequencies in the range ≈ 10-60 GHz. AME was first detected in 1996 and recognised as an additional component of emission in 1997. Since then, AME has been observed by a range of experiments and in a variety of environments. AME is spatially correlated with far-IR thermal dust emission but cannot be explained by synchrotron or free-free emission mechanisms, and is far in excess of the emission contributed by thermal dust emission with the power-law opacity consistent with the observed emission at sub-mm wavelengths. Polarization observations have shown that AME is very weakly polarized ( ≲ 1 %). The most natural explanation for AME is rotational emission from ultra-small dust grains ("spinning dust"), first postulated in 1957. Magnetic dipole radiation from thermal fluctuations in the magnetization of magnetic grain materials may also be contributing to the AME, particularly at higher frequencies ( ≳ 50 GHz). AME is also an important foreground for Cosmic Microwave Background analyses. This paper presents a review and the current state-of-play in AME research, which was discussed in an AME workshop held at ESTEC, The Netherlands, June 2016.

  19. Emission switching of 4,6-diphenylpyrimidones: solvent and solid state effects.

    PubMed

    Adjaye-Mensah, Edward; Gonzalez, Walter G; Bussé, David R; Captain, Burjor; Miksovska, Jaroslava; Wilson, James N

    2012-08-30

    The photophysics of 1-ethyl-4,6-bis(4-methoxyphenyl)-2(1H)-pyrimidone (1) and 1-ethyl-4,6-bis(4-(dimethylamino)phenyl)-2(1H)-pyrimidone (2) were investigated to determine the mechanisms of emission switching in response to protonation. UV-vis and steady state emission spectroscopy of the protonated and unprotonated forms across a range of solvents reveal the polarity dependence of the vertical excitation energies. Emission lifetimes and quantum yields show the solvent dependency of the excited states. Emission enhancements were observed in polyethylene glycol solutions and in the solid state (both thin film and single crystal), demonstrating the role of intramolecular rotation in thermal relaxation of the excited states. TD-DFT calculations provide insights into the excited state geometries and the role of intramolecular charge transfer. The collected data show that emission of diphenylpyrimidones can be modulated by four factors, including the identity of the electron-donating auxochrome, protonation state, solvent polarity, and viscosity.

  20. p-GaN/n-ZnO heterojunction nanowires: optoelectronic properties and the role of interface polarity.

    PubMed

    Schuster, Fabian; Laumer, Bernhard; Zamani, Reza R; Magén, Cesar; Morante, Joan Ramon; Arbiol, Jordi; Stutzmann, Martin

    2014-05-27

    In this work, simulations of the electronic band structure of a p-GaN/n-ZnO heterointerface are presented. In contrast to homojunctions, an additional energy barrier due to the type-II band alignment hinders the flow of majority charge carriers in this heterojunction. Spontaneous polarization and piezoelectricity are shown to additionally affect the band structure and the location of the recombination region. Proposed as potential UV-LEDs and laser diodes, p-GaN/n-ZnO heterojunction nanowires were fabricated by plasma-assisted molecular beam epitaxy (PAMBE). Atomic resolution annular bright field scanning transmission electron microscopy (STEM) studies reveal an abrupt and defect-free heterointerface with a polarity inversion from N-polar GaN to Zn-polar ZnO. Photoluminescence measurements show strong excitonic UV emission originating from the ZnO-side of the interface as well as stimulated emission in the case of optical pumping above a threshold of 55 kW/cm(2).

  1. Full-Stokes polarimetry with circularly polarized feeds. Sources with stable linear and circular polarization in the GHz regime

    NASA Astrophysics Data System (ADS)

    Myserlis, I.; Angelakis, E.; Kraus, A.; Liontas, C. A.; Marchili, N.; Aller, M. F.; Aller, H. D.; Karamanavis, V.; Fuhrmann, L.; Krichbaum, T. P.; Zensus, J. A.

    2018-01-01

    We present an analysis pipeline that enables the recovery of reliable information for all four Stokes parameters with high accuracy. Its novelty relies on the effective treatment of the instrumental effects even before the computation of the Stokes parameters, contrary to conventionally used methods such as that based on the Müller matrix. For instance, instrumental linear polarization is corrected across the whole telescope beam and significant Stokes Q and U can be recovered even when the recorded signals are severely corrupted by instrumental effects. The accuracy we reach in terms of polarization degree is of the order of 0.1-0.2%. The polarization angles are determined with an accuracy of almost 1°. The presented methodology was applied to recover the linear and circular polarization of around 150 active galactic nuclei, which were monitored between July 2010 and April 2016 with the Effelsberg 100-m telescope at 4.85 GHz and 8.35 GHz with a median cadence of 1.2 months. The polarized emission of the Moon was used to calibrate the polarization angle measurements. Our analysis showed a small system-induced rotation of about 1° at both observing frequencies. Over the examined period, five sources have significant and stable linear polarization; three sources remain constantly linearly unpolarized; and a total of 11 sources have stable circular polarization degree mc, four of them with non-zero mc. We also identify eight sources that maintain a stable polarization angle. All this is provided to the community for future polarization observations reference. We finally show that our analysis method is conceptually different from those traditionally used and performs better than the Müller matrix method. Although it has been developed for a system equipped with circularly polarized feeds, it can easily be generalized to systems with linearly polarized feeds as well. The data used to create Fig. C.1 are only available at the CDS via anonymous ftp to http

  2. Plasmon-shaped polarization gating for high-order-harmonic generation

    NASA Astrophysics Data System (ADS)

    Wang, Feng; He, Lixin; Chen, Jiawei; Wang, Baoning; Zhu, Xiaosong; Lan, Pengfei; Lu, Peixiang

    2017-12-01

    We present a plasmon-shaped polarization gating for high-order-harmonic generation by using a linearly polarized laser field to illuminate two orthogonal bow-tie nanostructures. The results show that when these two bow-tie nanostructures have nonidentical geometrical sizes, the transverse and longitudinal components of the incident laser field will experience different phase responses, thus leading to a time-dependent ellipticity of laser field. For the polarizing angle of incident laser field in the range from 45∘ to 60∘, the dominant harmonic emission is gated within the few optical cycles where the laser ellipticity is below 0.3. Then sub-50-as isolated attosecond pulses (IAPs) can be generated. Such a plasmon-shaped polarization gating is robust for IAP generation against the variations of the carrier-envelope phases of the laser pulse. Moreover, by changing the geometrical size of one of the bow-tie nanostructures, the electron dynamics can be effectively controlled and the more efficient supercontinuum as well as IAP can be generated.

  3. Gain and Polarization Properties of a Large Radio Telescope from Calculation and Measurement: The John A. Galt Telescope

    NASA Astrophysics Data System (ADS)

    Du, X.; Landecker, T. L.; Robishaw, T.; Gray, A. D.; Douglas, K. A.; Wolleben, M.

    2016-11-01

    Measurement of the brightness temperature of extended radio emission demands knowledge of the gain (or aperture efficiency) of the telescope and measurement of the polarized component of the emission requires correction for the conversion of unpolarized emission from sky and ground to apparently polarized signal. Radiation properties of the John A. Galt Telescope at the Dominion Radio Astrophysical Observatory were studied through analysis and measurement in order to provide absolute calibration of a survey of polarized emission from the entire northern sky from 1280 to 1750 MHz, and to understand the polarization performance of the telescope. Electromagnetic simulation packages CST and GRASP-10 were used to compute complete radiation patterns of the telescope in all Stokes parameters, and thereby to establish gain and aperture efficiency. Aperture efficiency was also evaluated using geometrical optics and ray tracing analysis and was measured based on the known flux density of Cyg A. Measured aperture efficiency varied smoothly with frequency between values of 0.49 and 0.54; GRASP-10 yielded values 6.5% higher but with closely similar variation with frequency. Overall error across the frequency band is 3%, but values at any two frequencies are relatively correct to ˜1%. Dominant influences on aperture efficiency are the illumination taper of the feed radiation pattern and the shadowing of the reflector from the feed by the feed-support struts. A model of emission from the ground was developed based on measurements and on empirical data obtained from remote sensing of the Earth from satellite-borne telescopes. This model was convolved with the computed antenna response to estimate conversion of ground emission into spurious polarized signal. The computed spurious signal is comparable to measured values, but is not accurate enough to be used to correct observations. A simpler model, in which the ground is considered as an unpolarized emitter with a brightness

  4. Polar Textures

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site] Context image for PIA03638 Polar Textures

    This image illustrates the variety of textures that appear in the south polar region during late summer.

    Image information: VIS instrument. Latitude 80.5S, Longitude 57.9E. 17 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  5. Analysis of the COS B data for evidence of linear polarization of VELA pulsar gamma rays

    NASA Astrophysics Data System (ADS)

    Mattox, John R.; Mayer-Hasselwander, Hans A.; Strong, Andy W.

    1990-11-01

    The COS B spark chamber telescope observations of the Vela pulsar were analyzed for gamma-ray polarization. No significant quadrupole moment is found in the azimuthal distribution of the electron-positron pair production planes. However, analysis of the sensitivity indicates that even 100-percent polarization would not be detected. Therefore, the null result does not constrain the polarization of the Vela pulsar gamma-ray emission. This result contradicts the report of Caraveo et al. (1988) of possible evidence for polarization of the Vela pulsar gamma rays.

  6. The polarization signature from the circumstellar disks of classical Be stars

    NASA Astrophysics Data System (ADS)

    Halonen, R. J.; Jones, C. E.

    2012-05-01

    The scattering of light in the nonspherical circumstellar envelopes of classical Be stars produces distinct polarimetric properties that can be used to investigate the physical nature of the scattering environment. Both the continuum and emission line polarization are potentially important diagnostic tools in the modeling of these systems. We combine the use of a new multiple scattering code with an established non-LTE radiative transfer code to study the characteristic wavelength-dependence of the intrinsic polarization of classical Be stars. We construct models using realistic chemical composition and self-consistent calculations of the thermal structure of the disk, and then determine the fraction of emergent polarized light. In particular, the aim of this theoretical research project is to investigate the effect of gas density and metallicity on the observed polarization properties of classical Be stars.

  7. Anchored LH2 complexes in 2D polarization imaging.

    PubMed

    Tubasum, Sumera; Sakai, Shunsuke; Dewa, Takehisa; Sundström, Villy; Scheblykin, Ivan G; Nango, Mamoru; Pullerits, Tõnu

    2013-09-26

    Protein is a soft material with inherently large structural disorder. Consequently, the bulk spectroscopies of photosynthetic pigment protein complexes provide averaged information where many details are lost. Here we report spectroscopy of single light-harvesting complexes where fluorescence excitation and detection polarizations are both independently rotated. Two samples of peripheral antenna (LH2) complexes from Rhodopseudomonas acidophila were studied. In one, the complexes were embedded in polyvinyl alcohol (PVA) film; in the other, they were anchored on the glass surface and covered by the PVA film. LH2 contains two rings of pigment molecules-B800 and B850. The B800 excitation polarization properties of the two samples were found to be very similar, indicating that orientation statistics of LH2s are the same in these two very different preparations. At the same time, we found a significant difference in B850 emission polarization statistics. We conclude that the B850 band of the anchored sample is substantially more disordered. We argue that both B800 excitation and B850 emission polarization properties can be explained by the tilt of the anchored LH2s due to the spin-casting of the PVA film on top of the complexes and related shear forces. Due to the tilt, the orientation statistics of two samples become similar. Anchoring is expected to orient the LH2s so that B850 is closer to the substrate. Consequently, the tilt-related strain leads to larger deformation and disorder in B850 than in B800.

  8. [Study of hyperspectral polarized reflectance of vegetation canopy at nadir viewing direction].

    PubMed

    Lŭ, Yun-Feng

    2013-04-01

    In the present study, corn canopy is the objective. Firstly the polarization of corn canopy was analyzed based on polarization reflection mechanism; then, the polarization of canopy was measured in different growth period at nadir before heading. The result proved the theoretical derivation that the light reflected from corn canopy is polarized, and found that in the total reflection the polarization light accounts for up to 10%. This shows that polarization measurement provides auxiliary information for remote sensing, but also illustrates that the use of the polarization information retrieval of atmospheric parameters should be considered when the surface polarization affects on it.

  9. Curtain eruptions from Enceladus' south-polar terrain.

    PubMed

    Spitale, Joseph N; Hurford, Terry A; Rhoden, Alyssa R; Berkson, Emily E; Platts, Symeon S

    2015-05-07

    Observations of the south pole of the Saturnian moon Enceladus revealed large rifts in the south-polar terrain, informally called 'tiger stripes', named Alexandria, Baghdad, Cairo and Damascus Sulci. These fractures have been shown to be the sources of the observed jets of water vapour and icy particles and to exhibit higher temperatures than the surrounding terrain. Subsequent observations have focused on obtaining close-up imaging of this region to better characterize these emissions. Recent work examined those newer data sets and used triangulation of discrete jets to produce maps of jetting activity at various times. Here we show that much of the eruptive activity can be explained by broad, curtain-like eruptions. Optical illusions in the curtain eruptions resulting from a combination of viewing direction and local fracture geometry produce image features that were probably misinterpreted previously as discrete jets. We present maps of the total emission along the fractures, rather than just the jet-like component, for five times during an approximately one-year period in 2009 and 2010. An accurate picture of the style, timing and spatial distribution of the south-polar eruptions is crucial to evaluating theories for the mechanism controlling the eruptions.

  10. Curtain eruptions from Enceladus' south-polar terrain

    NASA Astrophysics Data System (ADS)

    Spitale, Joseph N.; Hurford, Terry A.; Rhoden, Alyssa R.; Berkson, Emily E.; Platts, Symeon S.

    2015-05-01

    Observations of the south pole of the Saturnian moon Enceladus revealed large rifts in the south-polar terrain, informally called `tiger stripes', named Alexandria, Baghdad, Cairo and Damascus Sulci. These fractures have been shown to be the sources of the observed jets of water vapour and icy particles and to exhibit higher temperatures than the surrounding terrain. Subsequent observations have focused on obtaining close-up imaging of this region to better characterize these emissions. Recent work examined those newer data sets and used triangulation of discrete jets to produce maps of jetting activity at various times. Here we show that much of the eruptive activity can be explained by broad, curtain-like eruptions. Optical illusions in the curtain eruptions resulting from a combination of viewing direction and local fracture geometry produce image features that were probably misinterpreted previously as discrete jets. We present maps of the total emission along the fractures, rather than just the jet-like component, for five times during an approximately one-year period in 2009 and 2010. An accurate picture of the style, timing and spatial distribution of the south-polar eruptions is crucial to evaluating theories for the mechanism controlling the eruptions.

  11. Colloidal Synthesis of CH3 NH3 PbBr3 Nanoplatelets with Polarized Emission through Self-Organization.

    PubMed

    Liu, Lige; Huang, Sheng; Pan, Longfei; Shi, Li-Jie; Zou, Bingsuo; Deng, Luogen; Zhong, Haizheng

    2017-02-06

    We report a combined experimental and theoretical study of the synthesis of CH 3 NH 3 PbBr 3 nanoplatelets through self-organization. Shape transformation from spherical nanodots to square or rectangular nanoplatelets can be achieved by keeping the preformed colloidal nanocrystals at a high concentration (3.5 mg mL -1 ) for 3 days, or combining the synthesis of nanodots with self-organization. The average thickness of the resulting CH 3 NH 3 PbBr 3 nanoplatelets is similar to the size of the original nanoparticles, and we also noticed several nanoplatelets with circular or square holes, suggesting that the shape transformation experienced a self-organization process through dipole-dipole interactions along with a realignment of dipolar vectors. Additionally, the CH 3 NH 3 PbBr 3 nanoplatelets exhibit excellent polarized emissions for stretched CH 3 NH 3 PbBr 3 nanoplatelets embedded in a polymer composite film, showing advantageous photoluminescence properties for display backlights. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. In-Flight Performance of the Polarization Modulator in the CLASP Rocket Experiment

    NASA Technical Reports Server (NTRS)

    Ishikawa, S.; Shimizu, T.; Kano, R.; Bando, T.; Ishikawa, R.; Giono, G.; Beabout, D.; Beabout, B.; Nakayama, S.; Tajima, T.

    2016-01-01

    We developed a polarization modulation unit (PMU), a motor system to rotate a waveplate continuously. We applied this PMU for the Chromospheric Lyman-alpha SpectroPolarimeter (CLASP), a sounding rocket experiment to observe the linear polarization of the Lyman-alpha emission (121.6 nm vacuum ultraviolet) from the upper chromosphere and transition region of the Sun with a high polarization sensitivity of 0.1% for the first time and investigate the vector magnetic field. Rotation non-uniformity of the waveplate causes error in the polarization degree (i.e. scale error) and crosstalk between Stokes components. In the ground tests, we confirmed that PMU has superior rotation uniformity. CLASP was successfully launched on September 3, 2015, and PMU functioned well as designed. PMU achieved a good rotation uniformity during the flight and the high precision polarization measurement of CLASP was successfully achieved.

  13. Polarization Characteristics of Zebra Patterns in Type IV Solar Radio Bursts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaneda, K.; Misawa, H.; Tsuchiya, F.

    The polarization characteristics of zebra patterns (ZPs) in type IV solar bursts were studied. We analyzed 21 ZP events observed by the Assembly of Metric-band Aperture Telescope and Real-time Analysis System between 2010 and 2015 and identified the following characteristics: a degree of circular polarization (DCP) in the range of 0%–70%, a temporal delay of 0–70 ms between the two circularly polarized components (i.e., the right- and left-handed components), and dominant ordinary-mode emission in about 81% of the events. For most events, the relation between the dominant and delayed components could be interpreted in the framework of fundamental plasma emissionmore » and depolarization during propagation, though the values of DCP and delay were distributed across wide ranges. Furthermore, it was found that the DCP and delay were positively correlated (rank correlation coefficient R = 0.62). As a possible interpretation of this relationship, we considered a model based on depolarization due to reflections at sharp density boundaries assuming fundamental plasma emission. The model calculations of depolarization including multiple reflections and group delay during propagation in the inhomogeneous corona showed that the DCP and delay decreased as the number of reflections increased, which is consistent with the observational results. The dispersive polarization characteristics could be explained by the different numbers of reflections causing depolarization.« less

  14. Topographic Effects on the Surface Emissivity of a Mountainous Area Observed by a Spaceborne Microwave Radiometer

    PubMed Central

    Pulvirenti, Luca; Pierdicca, Nazzareno; Marzano, Frank S.

    2008-01-01

    A simulation study to understand the influence of topography on the surface emissivity observed by a satellite microwave radiometer is carried out. We analyze the effects due to changes in observation angle, including the rotation of the polarization plane. A mountainous area in the Alps (Northern Italy) is considered and the information on the relief extracted from a digital elevation model is exploited. The numerical simulation refers to a radiometric image, acquired by a conically-scanning radiometer similar to AMSR-E, i.e., flying at 705 km of altitude with an observation angle of 55°. To single out the impact on surface emissivity, scattering of the radiation due to the atmosphere or neighboring elevated surfaces is not considered. C and X bands, for which atmospheric effects are negligible, and Ka band are analyzed. The results indicate that the changes in the local observation angle tend to lower the apparent emissivity of a radiometric pixel with respect to the corresponding flat surface characteristics. The effect of the rotation of the polarization plane enlarges (vertical polarization), or attenuates (horizontal polarization) this decrease. By doing some simplifying assumptions for the radiometer antenna, the conclusion is that the microwave emissivity at vertical polarization is underestimated, whilst the opposite occurs for horizontal polarization, except for Ka band, for which both under- and overprediction may occur. A quantification of the differences with respect to a flat soil and an approximate evaluation of their impact on soil moisture retrieval are yielded. PMID:27879773

  15. Dependence of sea-surface microwave emissivity on friction velocity as derived from SMMR/SASS

    NASA Technical Reports Server (NTRS)

    Wentz, F. J.; Christensen, E. J.; Richardson, K. A.

    1981-01-01

    The sea-surface microwave emissivity is derived using SMMR brightness temperatures and SASS inferred friction velocities for three North Pacific Seasat passes. The results show the emissivity increasing linearly with friction velocity with no obvious break between the foam-free and foam regimes up to a friction velocity of about 70 cm/sec (15 m/sec wind speed). For horizontal polarization the sensitivity of emissivity to friction velocity greatly increases with frequency, while for vertical polarization the sensitivity is much less and is independent of frequency. This behavior is consistent with two-scale scattering theory. A limited amount of high friction velocity data above 70 cm/sec suggests an additional increase in emissivity due to whitecapping.

  16. Polarized Power Spectra from HERA-19 Commissioning Data: Instrument Stability

    NASA Astrophysics Data System (ADS)

    Fox Fortino, Austin; Chichura, Paul; Igarashi, Amy; Kohn, Saul; Aguirre, James; HERA Collaboration

    2018-01-01

    The Epoch of Reionization (EoR) is a key period in the universe’s history, containing the formation of the first galaxies and large scale structures. Foreground emission is the limiting factor in detecting the 21 cm emission from the Epoch of Reionization (EoR). The HERA-19 low frequency radio interferometer aims to reduce the obfuscation from the foreground emission with its dish shaped antennae. We generate polarized 2D (cylindrically averaged) power spectra from seven days of observation from the HERA-19 2016 observation season in each of the four Stokes parameters I, Q, U, and V. These power spectra serve as a potent diagnostic tool that allow us to understand the instrument stability by comparison between nominally redundant baselines, and between observations of nominally the same astrophysical sky on successive days. The power spectra are expected to vary among nominally redundant measurements due to ionosphere fluctuations and thermal changes in the electronics and instrument beam patterns, as well as other factors. In this work we investigate the stability over time of these polarized power spectra, and use them to quantify the variation due to these effects.

  17. Spacelab experiment: ALAE, Atmospheric Lyman-Alpha Emissions

    NASA Technical Reports Server (NTRS)

    1980-01-01

    A spectrophotometer associated with two absorption cells, one filled with hydrogen and the other with deuterium, is described for use in studying various sources of Lyman-alpha emission in the atmosphere, in the interplanetary medium, and possibly in the galactic medium. As the result of charge exchange, Lyman-alpha emission is possibly present in auroral zones, equatorial zones, and at the foot of the polar cusp, where the solar wind interacts directly with the neutral atmosphere. Some emission is also expected from the plasma guns on board Spacelab. The use of the absorption cell is also a test for determining if the presence of geocoronal and interplanetary emission will prevent future astronomical observations of Lyman-alpha emissions.

  18. Disparity of secondary electron emission in ferroelectric domains of YMnO{sub 3}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, Shaobo; Deng, S. Q.; Yuan, Wenjuan

    2015-07-20

    The applications of multiferroic materials require our understanding about the behaviors of domains with different polarization directions. Taking advantage of the scanning electron microscope, we investigate the polar surface of single crystal YMnO{sub 3} sample in secondary electron (SE) mode. By slowing down the scanning speed of electron beam, the negative surface potential of YMnO{sub 3} can be realized, and the domain contrast can be correspondingly changed. Under this experimental condition, with the help of a homemade Faraday cup, the difference of intrinsic SE emission coefficients of antiparallel domains is measured to be 0.12 and the downward polarization domains showmore » a larger SE emission ability. Our results indicate that the total SE emission of this material can be altered by changing the ratio of the antiparallel domains, which provide an avenue for device design with this kind of materials.« less

  19. On the use of Godhavn H-component as an indicator of the interplanetary sector polarity

    NASA Technical Reports Server (NTRS)

    Svalgaard, L.

    1974-01-01

    An objective method of inferring the polarity of the interplanetary magnetic field using the H-component at Godhavn is presented. The objectively inferred polarities are compared with a subjective index inferred earlier. It is concluded that no significant difference exists between the two methods. The inferred polarities derived from Godhavn H is biased by the (slp) sub q signature in the sense that during summer prolonged intervals of geomagnetic calm will result in inferred Away polarity regardless of the actual sector polarity. This bias does not significantly alter the large scale structure of the inferred sector structure.

  20. Triggered emissions close to the proton gyrofrequency seen by Cluster

    NASA Astrophysics Data System (ADS)

    Grison, Benjamin; Pickett, Jolene; Omura, Yoshiharu; Santolik, Ondrej; Decreau, Pierrette; Masson, Arnaud; Engebretson, Mark; Cornilleau-Wehrlin, Nicole; Robert, Patrick; Dandouras, Iannis

    Electromagnetic ion cyclotron (EMIC) triggered emissions have been recently observed onboard the Cluster spacecraft close to the plasmapause in the equatorial region of the magnetosphere. These waves appear as "risers": electromagnetic structures that have a positive frequency drift with time, i.e., the EMIC analogue of rising frequency whistler mode triggered emissions and chorus waves. In our first results concerning the emission process based on a single event, these risers have the following properties: they propagate away from the direction of the magnetic equator, they have elliptical left-handed polarization corresponding to the transverse Alfven mode, and frequency drifts of about 30 mHz/s. These risers are not common in the Cluster data set. Nevertheless a few other events were found with similar properties. Another interesting preliminary result is the existence of risers with a polarization opposite that of the EMIC triggered emissions and which correspond to the fast magnetosonic mode.