Quantum origins of objectivity
NASA Astrophysics Data System (ADS)
Horodecki, R.; Korbicz, J. K.; Horodecki, P.
2015-03-01
In spite of all of its successes, quantum mechanics leaves us with a central problem: How does nature create a bridge from fragile quanta to the objective world of everyday experience? Here we find that a basic structure within quantum mechanics that leads to the perceived objectivity is a so-called spectrum broadcast structure. We uncover this based on minimal assumptions, without referring to any dynamical details or a concrete model. More specifically, working formally within the decoherence theory setting with multiple environments (called quantum Darwinism), we show how a crucial for quantum mechanics notion of nondisturbance due to Bohr [N. Bohr, Phys. Rev. 48, 696 (1935), 10.1103/PhysRev.48.696] and a natural definition of objectivity lead to a canonical structure of a quantum system-environment state, reflecting objective information records about the system stored in the environment.
Quantum acoustics with superconducting qubits
NASA Astrophysics Data System (ADS)
Chu, Yiwen
2017-04-01
The ability to engineer and manipulate different types of quantum mechanical objects allows us to take advantage of their unique properties and create useful hybrid technologies. Thus far, complex quantum states and exquisite quantum control have been demonstrated in systems ranging from trapped ions to superconducting resonators. Recently, there have been many efforts to extend these demonstrations to the motion of complex, macroscopic objects. These mechanical objects have important applications as quantum memories or transducers for measuring and connecting different types of quantum systems. In particular, there have been a few experiments that couple motion to nonlinear quantum objects such as superconducting qubits. This opens up the possibility of creating, storing, and manipulating non-Gaussian quantum states in mechanical degrees of freedom. However, before sophisticated quantum control of mechanical motion can be achieved, we must realize systems with long coherence times while maintaining a sufficient interaction strength. These systems should be implemented in a simple and robust manner that allows for increasing complexity and scalability in the future. In this talk, I will describe our recent experiments demonstrating a high frequency bulk acoustic wave resonator that is strongly coupled to a superconducting qubit using piezoelectric transduction. In contrast to previous experiments with qubit-mechanical systems, our device requires only simple fabrication methods, extends coherence times to many microseconds, and provides controllable access to a multitude of phonon modes. We use this system to demonstrate basic quantum operations on the coupled qubit-phonon system. Straightforward improvements to the current device will allow for advanced protocols analogous to what has been shown in optical and microwave resonators, resulting in a novel resource for implementing hybrid quantum technologies.
Multi-objective optimization in quantum parameter estimation
NASA Astrophysics Data System (ADS)
Gong, BeiLi; Cui, Wei
2018-04-01
We investigate quantum parameter estimation based on linear and Kerr-type nonlinear controls in an open quantum system, and consider the dissipation rate as an unknown parameter. We show that while the precision of parameter estimation is improved, it usually introduces a significant deformation to the system state. Moreover, we propose a multi-objective model to optimize the two conflicting objectives: (1) maximizing the Fisher information, improving the parameter estimation precision, and (2) minimizing the deformation of the system state, which maintains its fidelity. Finally, simulations of a simplified ɛ-constrained model demonstrate the feasibility of the Hamiltonian control in improving the precision of the quantum parameter estimation.
Complementarity of information and the emergence of the classical world
NASA Astrophysics Data System (ADS)
Zwolak, Michael; Zurek, Wojciech
2013-03-01
We prove an anti-symmetry property relating accessible information about a system through some auxiliary system F and the quantum discord with respect to a complementary system F'. In Quantum Darwinism, where fragments of the environment relay information to observers - this relation allows us to understand some fundamental properties regarding correlations between a quantum system and its environment. First, it relies on a natural separation of accessible information and quantum information about a system. Under decoherence, this separation shows that accessible information is maximized for the quasi-classical pointer observable. Other observables are accessible only via correlations with the pointer observable. Second, It shows that objective information becomes accessible to many observers only when quantum information is relegated to correlations with the global environment, and, therefore, locally inaccessible. The resulting complementarity explains why, in a quantum Universe, we perceive objective classical reality, and supports Bohr's intuition that quantum phenomena acquire classical reality only when communicated.
NASA Astrophysics Data System (ADS)
Zwolak, Michael; Zurek, Wojciech H.
2017-03-01
The objective, classical world emerges from the underlying quantum substrate via the proliferation of redundant copies of selected information into the environment, which acts as a communication channel, transmitting that information to observers. These copies are independently accessible, allowing many observers to reach consensus about the state of a quantum system via its imprints in the environment. Quantum Darwinism recognizes that the redundancy of information is thus central to the emergence of objective reality in the quantum world. However, in addition to the "quantum system of interest," there are many other systems "of no interest" in the Universe that can imprint information on the common environment. There is therefore a danger that the information of interest will be diluted with irrelevant bits, suppressing the redundancy responsible for objectivity. We show that mixing of the relevant (the "wheat") and irrelevant (the "chaff") bits of information makes little quantitative difference to the redundancy of the information of interest. Thus, we demonstrate that it does not matter whether one separates the wheat (relevant information) from the (irrelevant) chaff: The large redundancy of the relevant information survives dilution, providing evidence of the objective, effectively classical world.
Objective Properties from Subjective Quantum States: Environment as a Witness
NASA Astrophysics Data System (ADS)
Ollivier, Harold; Poulin, David; Zurek, Wojciech H.
2004-11-01
We study the emergence of objective properties in open quantum systems. In our analysis, the environment is promoted from a passive role of a reservoir selectively destroying quantum coherence to an active role of amplifier selectively proliferating information about the system. We show that only preferred pointer states of the system can leave a redundant and therefore easily detectable imprint on the environment. Observers who—as is almost always the case—discover the state of the system indirectly (by probing a fraction of its environment) will find out only about the corresponding pointer observable. Many observers can act in this fashion independently and without perturbing the system. They will agree about its state. In this operational sense, preferred pointer states exist objectively.
NASA Astrophysics Data System (ADS)
Giorgi, Gian Luca; Galve, Fernando; Zambrini, Roberta
2015-08-01
Quantum Darwinism explains the emergence of a classical description of objects in terms of the creation of many redundant registers in an environment containing their classical information. This amplification phenomenon, where only classical information reaches the macroscopic observer and through which different observers can agree on the objective existence of such object, has been revived lately for several types of situations, successfully explaining classicality. We explore quantum Darwinism in the setting of an environment made of two level systems which are initially prepared in the ground state of the XX model, which exhibits different phases; we find that the different phases have different abilities to redundantly acquire classical information about the system, the "ferromagnetic phase" being the only one able to complete quantum Darwinism. At the same time we relate this ability to how non-Markovian the system dynamics is, based on the interpretation that non-Markovian dynamics is associated with backflow of information from environment to system, thus spoiling the information transfer needed for Darwinism. Finally, we explore mixing of bath registers by allowing a small interaction among them, finding that this spoils the stored information as previously found in the literature.
Quantum Darwinism in an Everyday Environment: Huge Redundancy in Scattered Photons
NASA Astrophysics Data System (ADS)
Riedel, C. Jess; Zurek, Wojciech H.
2010-07-01
We study quantum Darwinism—the redundant recording of information about the preferred states of a decohering system by its environment—for an object illuminated by a blackbody. In the cases of point-source and isotropic illumination, we calculate the quantum mutual information between the object and its photon environment. We demonstrate that this realistic model exhibits fast and extensive proliferation of information about the object into the environment and results in redundancies orders of magnitude larger than the exactly soluble models considered to date.
Quantum Darwinism in an everyday environment: huge redundancy in scattered photons.
Riedel, C Jess; Zurek, Wojciech H
2010-07-09
We study quantum Darwinism--the redundant recording of information about the preferred states of a decohering system by its environment--for an object illuminated by a blackbody. In the cases of point-source and isotropic illumination, we calculate the quantum mutual information between the object and its photon environment. We demonstrate that this realistic model exhibits fast and extensive proliferation of information about the object into the environment and results in redundancies orders of magnitude larger than the exactly soluble models considered to date.
Hybrid quantum systems with trapped charged particles
NASA Astrophysics Data System (ADS)
Kotler, Shlomi; Simmonds, Raymond W.; Leibfried, Dietrich; Wineland, David J.
2017-02-01
Trapped charged particles have been at the forefront of quantum information processing (QIP) for a few decades now, with deterministic two-qubit logic gates reaching record fidelities of 99.9 % and single-qubit operations of much higher fidelity. In a hybrid system involving trapped charges, quantum degrees of freedom of macroscopic objects such as bulk acoustic resonators, superconducting circuits, or nanomechanical membranes, couple to the trapped charges and ideally inherit the coherent properties of the charges. The hybrid system therefore implements a "quantum transducer," where the quantum reality (i.e., superpositions and entanglement) of small objects is extended to include the larger object. Although a hybrid quantum system with trapped charges could be valuable both for fundamental research and for QIP applications, no such system exists today. Here we study theoretically the possibilities of coupling the quantum-mechanical motion of a trapped charged particle (e.g., an ion or electron) to the quantum degrees of freedom of superconducting devices, nanomechanical resonators, and quartz bulk acoustic wave resonators. For each case, we estimate the coupling rate between the charged particle and its macroscopic counterpart and compare it to the decoherence rate, i.e., the rate at which quantum superposition decays. A hybrid system can only be considered quantum if the coupling rate significantly exceeds all decoherence rates. Our approach is to examine specific examples by using parameters that are experimentally attainable in the foreseeable future. We conclude that hybrid quantum systems involving a single atomic ion are unfavorable compared with the use of a single electron because the coupling rates between the ion and its counterpart are slower than the expected decoherence rates. A system based on trapped electrons, on the other hand, might have coupling rates that significantly exceed decoherence rates. Moreover, it might have appealing properties such as fast entangling gates, long coherence, and flexible topology that is fully electronic in nature. Realizing such a system, however, is technologically challenging because it requires accommodating both a trapping technology and superconducting circuitry in a compatible manner. We review some of the challenges involved, such as the required trap parameters, electron sources, electrical circuitry, and cooling schemes in order to promote further investigations towards the realization of such a hybrid system.
Heat control in opto-mechanical system using quantum non-classicality
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharma, Sushamana, E-mail: sushmana.sharma@jietjodhpur.ac.in; Senwar, Subash, E-mail: subashsenwar30@gmail.com
2016-05-06
Cooling of matter to the quantum ground state is a primary directive of quantum control. In other words, to extract entropy from a quantum system, efficient indirect quantum measurements may be implemented. The main objective is the cooling of the oscillator either to its motional ground state or to non-classical states, such as low-number Fock states, squeezed states or entangled states. It is shown that the use of quantum control procedure is better choice for even experimental realizations because it leads to a squeezed steady state with less than one phonon on average. The steady state of system corresponds tomore » cooling of the system.« less
Redundant information from thermal illumination: quantum Darwinism in scattered photons
NASA Astrophysics Data System (ADS)
Jess Riedel, C.; Zurek, Wojciech H.
2011-07-01
We study quantum Darwinism, the redundant recording of information about the preferred states of a decohering system by its environment, for an object illuminated by a blackbody. We calculate the quantum mutual information between the object and its photon environment for blackbodies that cover an arbitrary section of the sky. In particular, we demonstrate that more extended sources have a reduced ability to create redundant information about the system, in agreement with previous evidence that initial mixedness of an environment slows—but does not stop—the production of records. We also show that the qualitative results are robust for more general initial states of the system.
NASA Astrophysics Data System (ADS)
Malik, Mehul
Over the past three decades, quantum mechanics has allowed the development of technologies that provide unconditionally secure communication. In parallel, the quantum nature of the transverse electromagnetic field has spawned the field of quantum imaging that encompasses technologies such as quantum lithography, quantum ghost imaging, and high-dimensional quantum key distribution (QKD). The emergence of such quantum technologies also highlights the need for the development of accurate and efficient methods of measuring and characterizing the elusive quantum state itself. In this thesis, I present new technologies that use the quantum properties of light for security. The first of these is a technique that extends the principles behind QKD to the field of imaging and optical ranging. By applying the polarization-based BB84 protocol to individual photons in an active imaging system, we obtained images that were secure against any intercept-resend jamming attacks. The second technology presented in this thesis is based on an extension of quantum ghost imaging, a technique that uses position-momentum entangled photons to create an image of an object without directly gaining any spatial information from it. We used a holographic filtering technique to build a quantum ghost image identification system that uses a few pairs of photons to identify an object from a set of known objects. The third technology addressed in this thesis is a high-dimensional QKD system that uses orbital-angular-momentum (OAM) modes of light for encoding. Moving to a high-dimensional state space in QKD allows one to impress more information on each photon, as well as introduce higher levels of security. I discuss the development of two OAM-QKD protocols based on the BB84 and Ekert protocols of QKD. In addition, I present a study characterizing the effects of turbulence on a communication system using OAM modes for encoding. The fourth and final technology presented in this thesis is a relatively new technique called direct measurement that uses sequential weak and strong measurements to characterize a quantum state. I use this technique to characterize the quantum state of a photon with a dimensionality of d = 27, and visualize its rotation in the natural basis of OAM.
Quantum acoustics with superconducting qubits
NASA Astrophysics Data System (ADS)
Chu, Yiwen; Kharel, Prashanta; Renninger, William H.; Burkhart, Luke D.; Frunzio, Luigi; Rakich, Peter T.; Schoelkopf, Robert J.
2017-10-01
Mechanical objects have important practical applications in the fields of quantum information and metrology as quantum memories or transducers for measuring and connecting different types of quantum systems. The field of electromechanics is in pursuit of a robust and highly coherent device that couples motion to nonlinear quantum objects such as superconducting qubits. Here, we experimentally demonstrate a high-frequency bulk acoustic wave resonator that is strongly coupled to a superconducting qubit using piezoelectric transduction with a cooperativity of 260. We measure qubit and mechanical coherence times on the order of 10 microseconds. Our device requires only simple fabrication methods and provides controllable access to a multitude of phonon modes. We demonstrate quantum control and measurement on gigahertz phonons at the single-quantum level.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Castelletto, S.; Degiovanni, I.P.; Rastello, M.L.
2003-02-01
Quantum-cryptography key distribution (QCKD) experiments have been recently reported using polarization-entangled photons. However, in any practical realization, quantum systems suffer from either unwanted or induced interactions with the environment and the quantum measurement system, showing up as quantum and, ultimately, statistical noise. In this paper, we investigate how an ideal polarization entanglement in spontaneous parametric down-conversion (SPDC) suffers quantum noise in its practical implementation as a secure quantum system, yielding errors in the transmitted bit sequence. Since all SPDC-based QCKD schemes rely on the measurement of coincidence to assert the bit transmission between the two parties, we bundle up themore » overall quantum and statistical noise in an exhaustive model to calculate the accidental coincidences. This model predicts the quantum-bit error rate and the sifted key and allows comparisons between different security criteria of the hitherto proposed QCKD protocols, resulting in an objective assessment of performances and advantages of different systems.« less
Solving quantum optimal control problems using Clebsch variables and Lin constraints
NASA Astrophysics Data System (ADS)
Delgado-Téllez, M.; Ibort, A.; Rodríguez de la Peña, T.
2018-01-01
Clebsch variables (and Lin constraints) are applied to the study of a class of optimal control problems for affine-controlled quantum systems. The optimal control problem will be modelled with controls defined on an auxiliary space where the dynamical group of the system acts freely. The reciprocity between both theories: the classical theory defined by the objective functional and the quantum system, is established by using a suitable version of Lagrange’s multipliers theorem and a geometrical interpretation of the constraints of the system as defining a subspace of horizontal curves in an associated bundle. It is shown how the solutions of the variational problem defined by the objective functional determine solutions of the quantum problem. Then a new way of obtaining explicit solutions for a family of optimal control problems for affine-controlled quantum systems (finite or infinite dimensional) is obtained. One of its main advantages, is the the use of Clebsch variables allows to compute such solutions from solutions of invariant problems that can often be computed explicitly. This procedure can be presented as an algorithm that can be applied to a large class of systems. Finally, some simple examples, spin control, a simple quantum Hamiltonian with an ‘Elroy beanie’ type classical model and a controlled one-dimensional quantum harmonic oscillator, illustrating the main features of the theory, will be discussed.
Counterfactual Measurements and the Quantum Zeno Effect
NASA Astrophysics Data System (ADS)
Russo, Onofrio; Jiang, Liang
2014-03-01
The apparent paradoxical paradigm of an interaction free measurement (counterfactual measurement) of the presence of a classical or quantum object without any scattering or absorption of photons is considered in light of the quantum Zeno effect. From one perspective, the counterfactual measurement in principle is consistent with minimizing the interaction between the object and the photon. However, the quantum Zeno effect mandates that repeated interactions with photons (although weakly coupled) are required and necessary to inhibit the coherent evolution of the state of the system. We consider and appraise these seemingly conflicting concepts.
Fermionic entanglement via quantum walks in quantum dots
NASA Astrophysics Data System (ADS)
Melnikov, Alexey A.; Fedichkin, Leonid E.
2018-02-01
Quantum walks are fundamentally different from random walks due to the quantum superposition property of quantum objects. Quantum walk process was found to be very useful for quantum information and quantum computation applications. In this paper we demonstrate how to use quantum walks as a tool to generate high-dimensional two-particle fermionic entanglement. The generated entanglement can survive longer in the presence of depolorazing noise due to the periodicity of quantum walk dynamics. The possibility to create two distinguishable qudits in a system of tunnel-coupled semiconductor quantum dots is discussed.
NASA Astrophysics Data System (ADS)
Hansson, Johan; Francois, Stephane
The search for a theory of quantum gravity is the most fundamental problem in all of theoretical physics, but there are as yet no experimental results at all to guide this endeavor. What seems to be needed is a pragmatic way to test if gravitation really occurs between quantum objects or not. In this paper, we suggest such a potential way out of this deadlock, utilizing macroscopic quantum systems; superfluid helium, gaseous Bose-Einstein condensates and “macroscopic” molecules. It turns out that true quantum gravity effects — here defined as observable gravitational interactions between truly quantum objects — could and should be seen (if they occur in nature) using existing technology. A falsification of the low-energy limit in the accessible weak-field regime would also falsify the full theory of quantum gravity, making it enter the realm of testable, potentially falsifiable theories, i.e. becoming real physics after almost a century of pure theorizing. If weak-field gravity between quantum objects is shown to be absent (in the regime where the approximation should apply), we know that gravity then is a strictly classical phenomenon absent at the quantum level.
Quantum thermodynamics of general quantum processes.
Binder, Felix; Vinjanampathy, Sai; Modi, Kavan; Goold, John
2015-03-01
Accurately describing work extraction from a quantum system is a central objective for the extension of thermodynamics to individual quantum systems. The concepts of work and heat are surprisingly subtle when generalizations are made to arbitrary quantum states. We formulate an operational thermodynamics suitable for application to an open quantum system undergoing quantum evolution under a general quantum process by which we mean a completely positive and trace-preserving map. We derive an operational first law of thermodynamics for such processes and show consistency with the second law. We show that heat, from the first law, is positive when the input state of the map majorizes the output state. Moreover, the change in entropy is also positive for the same majorization condition. This makes a strong connection between the two operational laws of thermodynamics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hayashi, A.; Hashimoto, T.; Horibe, M.
The quantum color coding scheme proposed by Korff and Kempe [e-print quant-ph/0405086] is easily extended so that the color coding quantum system is allowed to be entangled with an extra auxiliary quantum system. It is shown that in the extended scheme we need only {approx}2{radical}(N) quantum colors to order N objects in large N limit, whereas {approx}N/e quantum colors are required in the original nonextended version. The maximum success probability has asymptotics expressed by the Tracy-Widom distribution of the largest eigenvalue of a random Gaussian unitary ensemble (GUE) matrix.
A System-Level Throughput Model for Quantum Key Distribution
2015-09-17
object. In quantum entanglement , the physical properties of particle pairs or groups of particles are correlated – the quantum state of each particle...One-Time Pad Algorithm ............................................................................. 8 Figure 2. Photon Polarization [19...64 Poisson distribution for multi- photon probability (29
Measuring entanglement entropy in a quantum many-body system.
Islam, Rajibul; Ma, Ruichao; Preiss, Philipp M; Tai, M Eric; Lukin, Alexander; Rispoli, Matthew; Greiner, Markus
2015-12-03
Entanglement is one of the most intriguing features of quantum mechanics. It describes non-local correlations between quantum objects, and is at the heart of quantum information sciences. Entanglement is now being studied in diverse fields ranging from condensed matter to quantum gravity. However, measuring entanglement remains a challenge. This is especially so in systems of interacting delocalized particles, for which a direct experimental measurement of spatial entanglement has been elusive. Here, we measure entanglement in such a system of itinerant particles using quantum interference of many-body twins. Making use of our single-site-resolved control of ultracold bosonic atoms in optical lattices, we prepare two identical copies of a many-body state and interfere them. This enables us to directly measure quantum purity, Rényi entanglement entropy, and mutual information. These experiments pave the way for using entanglement to characterize quantum phases and dynamics of strongly correlated many-body systems.
PsiQuaSP-A library for efficient computation of symmetric open quantum systems.
Gegg, Michael; Richter, Marten
2017-11-24
In a recent publication we showed that permutation symmetry reduces the numerical complexity of Lindblad quantum master equations for identical multi-level systems from exponential to polynomial scaling. This is important for open system dynamics including realistic system bath interactions and dephasing in, for instance, the Dicke model, multi-Λ system setups etc. Here we present an object-oriented C++ library that allows to setup and solve arbitrary quantum optical Lindblad master equations, especially those that are permutationally symmetric in the multi-level systems. PsiQuaSP (Permutation symmetry for identical Quantum Systems Package) uses the PETSc package for sparse linear algebra methods and differential equations as basis. The aim of PsiQuaSP is to provide flexible, storage efficient and scalable code while being as user friendly as possible. It is easily applied to many quantum optical or quantum information systems with more than one multi-level system. We first review the basics of the permutation symmetry for multi-level systems in quantum master equations. The application of PsiQuaSP to quantum dynamical problems is illustrated with several typical, simple examples of open quantum optical systems.
Generic emergence of classical features in quantum Darwinism.
Brandão, Fernando G S L; Piani, Marco; Horodecki, Paweł
2015-08-12
Quantum Darwinism posits that only specific information about a quantum system that is redundantly proliferated to many parts of its environment becomes accessible and objective, leading to the emergence of classical reality. However, it is not clear under what conditions this mechanism holds true. Here we prove that the emergence of classical features along the lines of quantum Darwinism is a general feature of any quantum dynamics: observers who acquire information indirectly through the environment have effective access at most to classical information about one and the same measurement of the quantum system. Our analysis does not rely on a strict conceptual splitting between a system-of-interest and its environment, and allows one to interpret any system as part of the environment of any other system. Finally, our approach leads to a full operational characterization of quantum discord in terms of local redistribution of correlations.
Generic emergence of classical features in quantum Darwinism
NASA Astrophysics Data System (ADS)
Brandão, Fernando G. S. L.; Piani, Marco; Horodecki, Paweł
2015-08-01
Quantum Darwinism posits that only specific information about a quantum system that is redundantly proliferated to many parts of its environment becomes accessible and objective, leading to the emergence of classical reality. However, it is not clear under what conditions this mechanism holds true. Here we prove that the emergence of classical features along the lines of quantum Darwinism is a general feature of any quantum dynamics: observers who acquire information indirectly through the environment have effective access at most to classical information about one and the same measurement of the quantum system. Our analysis does not rely on a strict conceptual splitting between a system-of-interest and its environment, and allows one to interpret any system as part of the environment of any other system. Finally, our approach leads to a full operational characterization of quantum discord in terms of local redistribution of correlations.
Complementarity of quantum discord and classically accessible information
Zwolak, Michael P.; Zurek, Wojciech H.
2013-05-20
The sum of the Holevo quantity (that bounds the capacity of quantum channels to transmit classical information about an observable) and the quantum discord (a measure of the quantumness of correlations of that observable) yields an observable-independent total given by the quantum mutual information. This split naturally delineates information about quantum systems accessible to observers – information that is redundantly transmitted by the environment – while showing that it is maximized for the quasi-classical pointer observable. Other observables are accessible only via correlations with the pointer observable. In addition, we prove an anti-symmetry property relating accessible information and discord. Itmore » shows that information becomes objective – accessible to many observers – only as quantum information is relegated to correlations with the global environment, and, therefore, locally inaccessible. Lastly, the resulting complementarity explains why, in a quantum Universe, we perceive objective classical reality while flagrantly quantum superpositions are out of reach.« less
Efficient Quantum Pseudorandomness.
Brandão, Fernando G S L; Harrow, Aram W; Horodecki, Michał
2016-04-29
Randomness is both a useful way to model natural systems and a useful tool for engineered systems, e.g., in computation, communication, and control. Fully random transformations require exponential time for either classical or quantum systems, but in many cases pseudorandom operations can emulate certain properties of truly random ones. Indeed, in the classical realm there is by now a well-developed theory regarding such pseudorandom operations. However, the construction of such objects turns out to be much harder in the quantum case. Here, we show that random quantum unitary time evolutions ("circuits") are a powerful source of quantum pseudorandomness. This gives for the first time a polynomial-time construction of quantum unitary designs, which can replace fully random operations in most applications, and shows that generic quantum dynamics cannot be distinguished from truly random processes. We discuss applications of our result to quantum information science, cryptography, and understanding the self-equilibration of closed quantum dynamics.
Determinism, independence, and objectivity are incompatible.
Ionicioiu, Radu; Mann, Robert B; Terno, Daniel R
2015-02-13
Hidden-variable models aim to reproduce the results of quantum theory and to satisfy our classical intuition. Their refutation is usually based on deriving predictions that are different from those of quantum mechanics. Here instead we study the mutual compatibility of apparently reasonable classical assumptions. We analyze a version of the delayed-choice experiment which ostensibly combines determinism, independence of hidden variables on the conducted experiments, and wave-particle objectivity (the assertion that quantum systems are, at any moment, either particles or waves, but not both). These three ideas are incompatible with any theory, not only with quantum mechanics.
NASA Astrophysics Data System (ADS)
Ollivier, Harold; Poulin, David; Zurek, Wojciech H.
2005-10-01
We study the role of the information deposited in the environment of an open quantum system in the course of the decoherence process. Redundant spreading of information—the fact that some observables of the system can be independently read off from many distinct fragments of the environment—is investigated as the key to effective objectivity, the essential ingredient of classical reality. This focus on the environment as a communication channel through which observers learn about physical systems underscores the importance of quantum Darwinism—selective proliferation of information about “the fittest states” chosen by the dynamics of decoherence at the expense of their superpositions—as redundancy imposes the existence of preferred observables. We demonstrate that the only observables that can leave multiple imprints in the environment are the familiar pointer observables singled out by environment-induced superselection (einselection) for their predictability. Many independent observers monitoring the environment will therefore agree on properties of the system as they can only learn about preferred observables. In this operational sense, the selective spreading of information leads to appearance of an objective classical reality from within the quantum substrate.
Non-Markovianity hinders Quantum Darwinism.
Galve, Fernando; Zambrini, Roberta; Maniscalco, Sabrina
2016-01-20
We investigate Quantum Darwinism and the emergence of a classical world from the quantum one in connection with the spectral properties of the environment. We use a microscopic model of quantum environment in which, by changing a simple system parameter, we can modify the information back flow from environment into the system, and therefore its non-Markovian character. We show that the presence of memory effects hinders the emergence of classical objective reality, linking these two apparently unrelated concepts via a unique dynamical feature related to decoherence factors.
Non-Markovianity hinders Quantum Darwinism
NASA Astrophysics Data System (ADS)
Galve, Fernando; Zambrini, Roberta; Maniscalco, Sabrina
2016-01-01
We investigate Quantum Darwinism and the emergence of a classical world from the quantum one in connection with the spectral properties of the environment. We use a microscopic model of quantum environment in which, by changing a simple system parameter, we can modify the information back flow from environment into the system, and therefore its non-Markovian character. We show that the presence of memory effects hinders the emergence of classical objective reality, linking these two apparently unrelated concepts via a unique dynamical feature related to decoherence factors.
Non-Markovianity hinders Quantum Darwinism
Galve, Fernando; Zambrini, Roberta; Maniscalco, Sabrina
2016-01-01
We investigate Quantum Darwinism and the emergence of a classical world from the quantum one in connection with the spectral properties of the environment. We use a microscopic model of quantum environment in which, by changing a simple system parameter, we can modify the information back flow from environment into the system, and therefore its non-Markovian character. We show that the presence of memory effects hinders the emergence of classical objective reality, linking these two apparently unrelated concepts via a unique dynamical feature related to decoherence factors. PMID:26786857
Decision theory and information propagation in quantum physics
NASA Astrophysics Data System (ADS)
Forrester, Alan
In recent papers, Zurek [(2005). Probabilities from entanglement, Born's rule p k =| ψ k | 2 from entanglement. Physical Review A, 71, 052105] has objected to the decision-theoretic approach of Deutsch [(1999) Quantum theory of probability and decisions. Proceedings of the Royal Society of London A, 455, 3129-3137] and Wallace [(2003). Everettian rationality: defending Deutsch's approach to probability in the Everett interpretation. Studies in History and Philosophy of Modern Physics, 34, 415-438] to deriving the Born rule for quantum probabilities on the grounds that it courts circularity. Deutsch and Wallace assume that the many worlds theory is true and that decoherence gives rise to a preferred basis. However, decoherence arguments use the reduced density matrix, which relies upon the partial trace and hence upon the Born rule for its validity. Using the Heisenberg picture and quantum Darwinism-the notion that classical information is quantum information that can proliferate in the environment pioneered in Ollivier et al. [(2004). Objective properties from subjective quantum states: Environment as a witness. Physical Review Letters, 93, 220401 and (2005). Environment as a witness: Selective proliferation of information and emergence of objectivity in a quantum universe. Physical Review A, 72, 042113]-I show that measurement interactions between two systems only create correlations between a specific set of commuting observables of system 1 and a specific set of commuting observables of system 2. This argument picks out a unique basis in which information flows in the correlations between those sets of commuting observables. I then derive the Born rule for both pure and mixed states and answer some other criticisms of the decision theoretic approach to quantum probability.
Pathways toward understanding Macroscopic Quantum Phenomena
NASA Astrophysics Data System (ADS)
Hu, B. L.; Subaşi, Y.
2013-06-01
Macroscopic quantum phenomena refer to quantum features in objects of 'large' sizes, systems with many components or degrees of freedom, organized in some ways where they can be identified as macroscopic objects. This emerging field is ushered in by several categories of definitive experiments in superconductivity, electromechanical systems, Bose-Einstein condensates and others. Yet this new field which is rich in open issues at the foundation of quantum and statistical physics remains little explored theoretically (with the important exception of the work of A J Leggett [1], while touched upon or implied by several groups of authors represented in this conference. Our attitude differs in that we believe in the full validity of quantum mechanics stretching from the testable micro to meso scales, with no need for the introduction of new laws of physics.) This talk summarizes our thoughts in attempting a systematic investigation into some key foundational issues of quantum macroscopic phenomena, with the goal of ultimately revealing or building a viable theoretical framework. Three major themes discussed in three intended essays are the large N expansion [2], the correlation hierarchy [3] and quantum entanglement [4]. We give a sketch of the first two themes and then discuss several key issues in the consideration of macro and quantum, namely, a) recognition that there exist many levels of structure in a composite body and only by judicious choice of an appropriate set of collective variables can one give the best description of the dynamics of a specific level of structure. Capturing the quantum features of a macroscopic object is greatly facilitated by the existence and functioning of these collective variables; b) quantum entanglement, an exclusively quantum feature [5], is known to persist to high temperatures [6] and large scales [7] under certain conditions, and may actually decrease with increased connectivity in a quantum network [8]. We use entanglement as a measure of quantumness here and pick out these somewhat counter-intuitive examples to show that there are blind spots worthy of our attention and issues which we need to analyze closer. Our purpose is to try to remove the stigma that quantum only pertains to micro, in order to make way for deeper probes into the conditions whereby quantum features of macroscopic systems manifest.
Quantum Anosov flows: A new family of examples
NASA Astrophysics Data System (ADS)
Peter, Ingo J.; Emch, Gérard G.
1998-09-01
A quantum version is presented for the Anosov system defined by the time evolution implemented by the geodesic coflow on the cotangent bundle of any compact quotient manifold obtained from the Poincaré half-plane. While the canonical Weyl algebra does not close under time evolution, the symplectic structure of these classical systems can be exploited to produce objects akin to the CCR algebras encountered in quantum field theory. This construction allows one to lift both the geodesic and the horocyclic flows to a Weyl algebra describing the quantum dynamics corresponding to the systems under consideration. The Anosov relations as proposed in Ref. Reference 1 are found to be valid for these models. A quantum version of the classical ergodicity of these systems is discussed in the last section.
Experimental verification of multidimensional quantum steering
NASA Astrophysics Data System (ADS)
Li, Che-Ming; Lo, Hsin-Pin; Chen, Liang-Yu; Yabushita, Atsushi
2018-03-01
Quantum steering enables one party to communicate with another remote party even if the sender is untrusted. Such characteristics of quantum systems not only provide direct applications to quantum information science, but are also conceptually important for distinguishing between quantum and classical resources. While concrete illustrations of steering have been shown in several experiments, quantum steering has not been certified for higher dimensional systems. Here, we introduce a simple method to experimentally certify two different kinds of quantum steering: Einstein-Podolsky-Rosen (EPR) steering and single-system (SS) steering (i.e., temporal steering), for dimensionality (d) up to d = 16. The former reveals the steerability among bipartite systems, whereas the latter manifests itself in single quantum objects. We use multidimensional steering witnesses to verify EPR steering of polarization-entangled pairs and SS steering of single photons. The ratios between the measured witnesses and the maximum values achieved by classical mimicries are observed to increase with d for both EPR and SS steering. The designed scenario offers a new method to study further the genuine multipartite steering of large dimensionality and potential uses in quantum information processing.
Deterministically Entangling Two Remote Atomic Ensembles via Light-Atom Mixed Entanglement Swapping
Liu, Yanhong; Yan, Zhihui; Jia, Xiaojun; Xie, Changde
2016-01-01
Entanglement of two distant macroscopic objects is a key element for implementing large-scale quantum networks consisting of quantum channels and quantum nodes. Entanglement swapping can entangle two spatially separated quantum systems without direct interaction. Here we propose a scheme of deterministically entangling two remote atomic ensembles via continuous-variable entanglement swapping between two independent quantum systems involving light and atoms. Each of two stationary atomic ensembles placed at two remote nodes in a quantum network is prepared to a mixed entangled state of light and atoms respectively. Then, the entanglement swapping is unconditionally implemented between the two prepared quantum systems by means of the balanced homodyne detection of light and the feedback of the measured results. Finally, the established entanglement between two macroscopic atomic ensembles is verified by the inseparability criterion of correlation variances between two anti-Stokes optical beams respectively coming from the two atomic ensembles. PMID:27165122
Relativistic Quantum Transport in Graphene Systems
2015-07-09
which is desirable in the development of nanoscale devices such as graphene-based resonant- tunneling diodes . Details of this work can be found in • L... tunneling , etc. The AFOSR support helped create a new field of interdisciplinary research: Relativistic Quantum Chaos, which studies the relativistic quantum...Objectives 2 2 List of Publications 2 3 Accomplishments and New Findings 3 3.1 Solutions of Dirac equation, relativistic quantum tunneling and
Pareto-front shape in multiobservable quantum control
NASA Astrophysics Data System (ADS)
Sun, Qiuyang; Wu, Re-Bing; Rabitz, Herschel
2017-03-01
Many scenarios in the sciences and engineering require simultaneous optimization of multiple objective functions, which are usually conflicting or competing. In such problems the Pareto front, where none of the individual objectives can be further improved without degrading some others, shows the tradeoff relations between the competing objectives. This paper analyzes the Pareto-front shape for the problem of quantum multiobservable control, i.e., optimizing the expectation values of multiple observables in the same quantum system. Analytic and numerical results demonstrate that with two commuting observables the Pareto front is a convex polygon consisting of flat segments only, while with noncommuting observables the Pareto front includes convexly curved segments. We also assess the capability of a weighted-sum method to continuously capture the points along the Pareto front. Illustrative examples with realistic physical conditions are presented, including NMR control experiments on a 1H-13C two-spin system with two commuting or noncommuting observables.
Composition in the Quantum World
NASA Astrophysics Data System (ADS)
Hall, Edward Jonathan
This thesis presents a problem for the foundations of quantum mechanics. It arises from the way that theory describes the composition of larger systems in terms of smaller ones, and renders untenable a wide range of interpretations of quantum mechanics. That quantum mechanics is difficult to interpret is old news, given the well-known Measurement Problem. But the problem I raise is quite different, and in important respects more fundamental. In brief: The physical world exhibits mereological structure: physical objects have parts, which in turn have parts, and so on. A natural way to try to represent this structure is by means of a particle theory, according to which the physical world consists entirely enduring physical objects which themselves have no proper parts, but aggregates of which are, or compose, all physical objects. Elementary, non-relativistic quantum mechanics can be cast in this mold--at least, according to the usual expositions of that theory. But herein lies the problem: the standard attempt to give a systematic particle interpretation to elementary quantum mechanics results in nonsense, thanks to the well-established principle of Permutation Invariance, which constrains the quantum -mechanical description of systems containing identical particles. Specifically, it follows from the most minimal principles of a particle interpretation (much weaker than those needed to generate the Measurement Problem), together with Permutation Invariance, that systems identical in composition must have the same physical state. In other words, systems which merely have the same numbers of the same types of particles are therefore, at all times, perfect physical duplicates. This conclusion is absurd: e.g., it is quite plausible that some of those particles which compose my body make up a system identical in composition to some pepperoni pizza. Yet no part of me is a qualitative physical duplicate of any pepperoni pizza. Perhaps "you are what you eat" --but not in this sense! In what follows I develop the principles needed to explore this problem, contrast it with the Measurement Problem, and consider, finally, how it should influence our judgments of the relative merits of the many extant interpretations of quantum mechanics.
Einstein-Podolsky-Rosen-entangled motion of two massive objects
NASA Astrophysics Data System (ADS)
Schnabel, Roman
2015-07-01
In 1935, Einstein, Podolsky, and Rosen (EPR) considered two particles in an entangled state of motion to illustrate why they questioned the completeness of quantum theory. In past decades, microscopic systems with entanglement in various degrees of freedom have successfully been generated, representing compelling evidence to support the completeness of quantum theory. Today, the generation of an EPR-entangled state of motion of two massive objects of up to the kilogram scale seems feasible with state-of-the-art technology. Recently, the generation and verification of EPR-entangled mirror motion in interferometric gravitational wave detectors was proposed, with the aim of testing quantum theory in the regime of macroscopic objects, and to make available nonclassical probe systems for future tests of modified quantum theories that include (nonrelativistic) gravity. The work presented here builds on these earlier results and proposes a specific Michelson interferometer that includes two high-quality laser mirrors of about 0.1 kg mass each. The mirrors are individually suspended as pendula and located close to each other, and cooled to about 4 K. The physical concepts for the generation of the EPR-entangled center-of-mass motion of these two mirrors are described. Apart from a test of quantum mechanics in the macroscopic world, the setup is envisioned to test predictions of yet-to-be-elaborated modified quantum theories that include gravitational effects.
Objective past of a quantum universe: Redundant records of consistent histories
NASA Astrophysics Data System (ADS)
Riedel, C. Jess; Zurek, Wojciech H.; Zwolak, Michael
2016-03-01
Motivated by the advances of quantum Darwinism and recognizing the role played by redundancy in identifying the small subset of quantum states with resilience characteristic of objective classical reality, we explore the implications of redundant records for consistent histories. The consistent histories formalism is a tool for describing sequences of events taking place in an evolving closed quantum system. A set of histories is consistent when one can reason about them using Boolean logic, i.e., when probabilities of sequences of events that define histories are additive. However, the vast majority of the sets of histories that are merely consistent are flagrantly nonclassical in other respects. This embarras de richesses (known as the set selection problem) suggests that one must go beyond consistency to identify how the classical past arises in our quantum universe. The key intuition we follow is that the records of events that define the familiar objective past are inscribed in many distinct systems, e.g., subsystems of the environment, and are accessible locally in space and time to observers. We identify histories that are not just consistent but redundantly consistent using the partial-trace condition introduced by Finkelstein as a bridge between histories and decoherence. The existence of redundant records is a sufficient condition for redundant consistency. It selects, from the multitude of the alternative sets of consistent histories, a small subset endowed with redundant records characteristic of the objective classical past. The information about an objective history of the past is then simultaneously within reach of many, who can independently reconstruct it and arrive at compatible conclusions in the present.
NASA Astrophysics Data System (ADS)
Blume-Kohout, Robin; Zurek, Wojciech H.
2006-06-01
We lay a comprehensive foundation for the study of redundant information storage in decoherence processes. Redundancy has been proposed as a prerequisite for objectivity, the defining property of classical objects. We consider two ensembles of states for a model universe consisting of one system and many environments: the first consisting of arbitrary states, and the second consisting of “singly branching” states consistent with a simple decoherence model. Typical states from the random ensemble do not store information about the system redundantly, but information stored in branching states has a redundancy proportional to the environment’s size. We compute the specific redundancy for a wide range of model universes, and fit the results to a simple first-principles theory. Our results show that the presence of redundancy divides information about the system into three parts: classical (redundant); purely quantum; and the borderline, undifferentiated or “nonredundant,” information.
Quantum illumination with Gaussian states.
Tan, Si-Hui; Erkmen, Baris I; Giovannetti, Vittorio; Guha, Saikat; Lloyd, Seth; Maccone, Lorenzo; Pirandola, Stefano; Shapiro, Jeffrey H
2008-12-19
An optical transmitter irradiates a target region containing a bright thermal-noise bath in which a low-reflectivity object might be embedded. The light received from this region is used to decide whether the object is present or absent. The performance achieved using a coherent-state transmitter is compared with that of a quantum-illumination transmitter, i.e., one that employs the signal beam obtained from spontaneous parametric down-conversion. By making the optimum joint measurement on the light received from the target region together with the retained spontaneous parametric down-conversion idler beam, the quantum-illumination system realizes a 6 dB advantage in the error-probability exponent over the optimum reception coherent-state system. This advantage accrues despite there being no entanglement between the light collected from the target region and the retained idler beam.
42 CFR 37.42 - Chest radiograph specifications-digital radiography systems.
Code of Federal Regulations, 2014 CFR
2014-10-01
... resolution, modulation transfer function (MTF), image signal-to-noise and detective quantum efficiency must... Information Object Definitions, sections: Computed Radiography Image Information Object Definition; Digital X...
Zurek, Wojciech Hubert
2018-07-13
The emergence of the classical world from the quantum substrate of our Universe is a long-standing conundrum. In this paper, I describe three insights into the transition from quantum to classical that are based on the recognition of the role of the environment. I begin with the derivation of preferred sets of states that help to define what exists-our everyday classical reality. They emerge as a result of the breaking of the unitary symmetry of the Hilbert space which happens when the unitarity of quantum evolutions encounters nonlinearities inherent in the process of amplification-of replicating information. This derivation is accomplished without the usual tools of decoherence, and accounts for the appearance of quantum jumps and the emergence of preferred pointer states consistent with those obtained via environment-induced superselection, or einselection The pointer states obtained in this way determine what can happen-define events-without appealing to Born's Rule for probabilities. Therefore, p k =| ψ k | 2 can now be deduced from the entanglement-assisted invariance, or envariance -a symmetry of entangled quantum states. With probabilities at hand, one also gains new insights into the foundations of quantum statistical physics. Moreover, one can now analyse the information flows responsible for decoherence. These information flows explain how the perception of objective classical reality arises from the quantum substrate: the effective amplification that they represent accounts for the objective existence of the einselected states of macroscopic quantum systems through the redundancy of pointer state records in their environment-through quantum Darwinism This article is part of a discussion meeting issue 'Foundations of quantum mechanics and their impact on contemporary society'. © 2018 The Author(s).
SU-F-BRD-13: Quantum Annealing Applied to IMRT Beamlet Intensity Optimization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nazareth, D; Spaans, J
Purpose: We report on the first application of quantum annealing (QA) to the process of beamlet intensity optimization for IMRT. QA is a new technology, which employs novel hardware and software techniques to address various discrete optimization problems in many fields. Methods: We apply the D-Wave Inc. proprietary hardware, which natively exploits quantum mechanical effects for improved optimization. The new QA algorithm, running on this hardware, is most similar to simulated annealing, but relies on natural processes to directly minimize the free energy of a system. A simple quantum system is slowly evolved into a classical system, representing the objectivemore » function. To apply QA to IMRT-type optimization, two prostate cases were considered. A reduced number of beamlets were employed, due to the current QA hardware limitation of ∼500 binary variables. The beamlet dose matrices were computed using CERR, and an objective function was defined based on typical clinical constraints, including dose-volume objectives. The objective function was discretized, and the QA method was compared to two standard optimization Methods: simulated annealing and Tabu search, run on a conventional computing cluster. Results: Based on several runs, the average final objective function value achieved by the QA was 16.9 for the first patient, compared with 10.0 for Tabu and 6.7 for the SA. For the second patient, the values were 70.7 for the QA, 120.0 for Tabu, and 22.9 for the SA. The QA algorithm required 27–38% of the time required by the other two methods. Conclusion: In terms of objective function value, the QA performance was similar to Tabu but less effective than the SA. However, its speed was 3–4 times faster than the other two methods. This initial experiment suggests that QA-based heuristics may offer significant speedup over conventional clinical optimization methods, as quantum annealing hardware scales to larger sizes.« less
NASA Astrophysics Data System (ADS)
Radtke, T.; Fritzsche, S.
2008-11-01
Entanglement is known today as a key resource in many protocols from quantum computation and quantum information theory. However, despite the successful demonstration of several protocols, such as teleportation or quantum key distribution, there are still many open questions of how entanglement affects the efficiency of quantum algorithms or how it can be protected against noisy environments. The investigation of these and related questions often requires a search or optimization over the set of quantum states and, hence, a parametrization of them and various other objects. To facilitate this kind of studies in quantum information theory, here we present an extension of the FEYNMAN program that was developed during recent years as a toolbox for the simulation and analysis of quantum registers. In particular, we implement parameterizations of hermitian and unitary matrices (of arbitrary order), pure and mixed quantum states as well as separable states. In addition to being a prerequisite for the study of many optimization problems, these parameterizations also provide the necessary basis for heuristic studies which make use of random states, unitary matrices and other objects. Program summaryProgram title: FEYNMAN Catalogue identifier: ADWE_v4_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADWE_v4_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 24 231 No. of bytes in distributed program, including test data, etc.: 1 416 085 Distribution format: tar.gz Programming language: Maple 11 Computer: Any computer with Maple software installed Operating system: Any system that supports Maple; program has been tested under Microsoft Windows XP, Linux Classification: 4.15 Does the new version supersede the previous version?: Yes Nature of problem: During the last decades, quantum information science has contributed to our understanding of quantum mechanics and has provided also new and efficient protocols, based on the use of entangled quantum states. To determine the behavior and entanglement of n-qubit quantum registers, symbolic and numerical simulations need to be applied in order to analyze how these quantum information protocols work and which role the entanglement plays hereby. Solution method: Using the computer algebra system Maple, we have developed a set of procedures that support the definition, manipulation and analysis of n-qubit quantum registers. These procedures also help to deal with (unitary) logic gates and (nonunitary) quantum operations that act upon the quantum registers. With the parameterization of various frequently-applied objects, that are implemented in the present version, the program now facilitates a wider range of symbolic and numerical studies. All commands can be used interactively in order to simulate and analyze the evolution of n-qubit quantum systems, both in ideal and noisy quantum circuits. Reasons for new version: In the first version of the FEYNMAN program [1], we implemented the data structures and tools that are necessary to create, manipulate and to analyze the state of quantum registers. Later [2,3], support was added to deal with quantum operations (noisy channels) as an ingredient which is essential for studying the effects of decoherence. With the present extension, we add a number of parametrizations of objects frequently utilized in decoherence and entanglement studies, such that as hermitian and unitary matrices, probability distributions, or various kinds of quantum states. This extension therefore provides the basis, for example, for the optimization of a given function over the set of pure states or the simple generation of random objects. Running time: Most commands that act upon quantum registers with five or less qubits take ⩽10 seconds of processor time on a Pentium 4 processor with ⩾2GHz or newer, and about 5-20 MB of working memory (in addition to the memory for the Maple environment). Especially when working with symbolic expressions, however, the requirements on CPU time and memory critically depend on the size of the quantum registers, owing to the exponential growth of the dimension of the associated Hilbert space. For example, complex (symbolic) noise models, i.e. with several symbolic Kraus operators, result for multi-qubit systems often in very large expressions that dramatically slow down the evaluation of e.g. distance measures or the final-state entropy, etc. In these cases, Maple's assume facility sometimes helps to reduce the complexity of the symbolic expressions, but more often only a numerical evaluation is possible eventually. Since the complexity of the various commands of the FEYNMAN program and the possible usage scenarios can be very different, no general scaling law for CPU time or the memory requirements can be given. References: [1] T. Radtke, S. Fritzsche, Comput. Phys. Comm. 173 (2005) 91. [2] T. Radtke, S. Fritzsche, Comput. Phys. Comm. 175 (2006) 145. [3] T. Radtke, S. Fritzsche, Comput. Phys. Comm. 176 (2007) 617.
Objective past of a quantum universe: Redundant records of consistent histories
Reidel, C. Jess; Zurek, Wojciech H.; Zwolak, Michael
2016-03-21
Motivated by the advances of quantum Darwinism and recognizing the role played by redundancy in identifying the small subset of quantum states with resilience characteristic of objective classical reality, we explore the implications of redundant records for consistent histories. The consistent histories formalism is a tool for describing sequences of events taking place in an evolving closed quantum system. A set of histories is consistent when one can reason about them using Boolean logic, i.e., when probabilities of sequences of events that define histories are additive. However, the vast majority of the sets of histories that are merely consistent aremore » flagrantly nonclassical in other respects. This embarras de richesses (known as the set selection problem) suggests that one must go beyond consistency to identify how the classical past arises in our quantum universe. The key intuition we follow is that the records of events that define the familiar objective past are inscribed in many distinct systems, e.g., subsystems of the environment, and are accessible locally in space and time to observers. We identify histories that are not just consistent but redundantly consistent using the partial-trace condition introduced by Finkelstein as a bridge between histories and decoherence. The existence of redundant records is a sufficient condition for redundant consistency. It selects, from the multitude of the alternative sets of consistent histories, a small subset endowed with redundant records characteristic of the objective classical past. Furthermore, the information about an objective history of the past is then simultaneously within reach of many, who can independently reconstruct it and arrive at compatible conclusions in the present.« less
Objective past of a quantum universe: Redundant records of consistent histories
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reidel, C. Jess; Zurek, Wojciech H.; Zwolak, Michael
Motivated by the advances of quantum Darwinism and recognizing the role played by redundancy in identifying the small subset of quantum states with resilience characteristic of objective classical reality, we explore the implications of redundant records for consistent histories. The consistent histories formalism is a tool for describing sequences of events taking place in an evolving closed quantum system. A set of histories is consistent when one can reason about them using Boolean logic, i.e., when probabilities of sequences of events that define histories are additive. However, the vast majority of the sets of histories that are merely consistent aremore » flagrantly nonclassical in other respects. This embarras de richesses (known as the set selection problem) suggests that one must go beyond consistency to identify how the classical past arises in our quantum universe. The key intuition we follow is that the records of events that define the familiar objective past are inscribed in many distinct systems, e.g., subsystems of the environment, and are accessible locally in space and time to observers. We identify histories that are not just consistent but redundantly consistent using the partial-trace condition introduced by Finkelstein as a bridge between histories and decoherence. The existence of redundant records is a sufficient condition for redundant consistency. It selects, from the multitude of the alternative sets of consistent histories, a small subset endowed with redundant records characteristic of the objective classical past. Furthermore, the information about an objective history of the past is then simultaneously within reach of many, who can independently reconstruct it and arrive at compatible conclusions in the present.« less
Stabilized entanglement of massive mechanical oscillators.
Ockeloen-Korppi, C F; Damskägg, E; Pirkkalainen, J-M; Asjad, M; Clerk, A A; Massel, F; Woolley, M J; Sillanpää, M A
2018-04-01
Quantum entanglement is a phenomenon whereby systems cannot be described independently of each other, even though they may be separated by an arbitrarily large distance 1 . Entanglement has a solid theoretical and experimental foundation and is the key resource behind many emerging quantum technologies, including quantum computation, cryptography and metrology. Entanglement has been demonstrated for microscopic-scale systems, such as those involving photons 2-5 , ions 6 and electron spins 7 , and more recently in microwave and electromechanical devices 8-10 . For macroscopic-scale objects 8-14 , however, it is very vulnerable to environmental disturbances, and the creation and verification of entanglement of the centre-of-mass motion of macroscopic-scale objects remains an outstanding goal. Here we report such an experimental demonstration, with the moving bodies being two massive micromechanical oscillators, each composed of about 10 12 atoms, coupled to a microwave-frequency electromagnetic cavity that is used to create and stabilize the entanglement of their centre-of-mass motion 15-17 . We infer the existence of entanglement in the steady state by combining measurements of correlated mechanical fluctuations with an analysis of the microwaves emitted from the cavity. Our work qualitatively extends the range of entangled physical systems and has implications for quantum information processing, precision measurements and tests of the limits of quantum mechanics.
Quantum Gravitational Force Between Polarizable Objects.
Ford, L H; Hertzberg, Mark P; Karouby, J
2016-04-15
Since general relativity is a consistent low energy effective field theory, it is possible to compute quantum corrections to classical forces. Here we compute a quantum correction to the gravitational potential between a pair of polarizable objects. We study two distant bodies and compute a quantum force from their induced quadrupole moments due to two-graviton exchange. The effect is in close analogy to the Casimir-Polder and London-van der Waals forces between a pair of atoms from their induced dipole moments due to two photon exchange. The new effect is computed from the shift in vacuum energy of metric fluctuations due to the polarizability of the objects. We compute the potential energy at arbitrary distances compared to the wavelengths in the system, including the far and near regimes. In the far distance, or retarded, regime, the potential energy takes on a particularly simple form: V(r)=-3987ℏcG^{2}α_{1S}α_{2S}/(4πr^{11}), where α_{1S}, α_{2S} are the static gravitational quadrupole polarizabilities of each object. We provide estimates of this effect.
Quantum Darwinism in an Everyday Environment: Huge Redundancy in Scattered Photons
NASA Astrophysics Data System (ADS)
Riedel, Charles; Zurek, Wojciech
2011-03-01
We study quantum Darwinism---the redundant recording of information about the preferred states of a decohering system by its environment---for an object illuminated by a blackbody. In the cases of point-source, small disk, and isotropic illumination, we calculate the quantum mutual information between the object and its photon environment. We demonstrate that this realistic model exhibits fast and extensive proliferation of information about the object into the environment and results in redundancies orders of magnitude larger than the exactly soluble models considered to date. We also demonstrate a reduced ability to create records as initial environmental mixedness increases, in agreement with previous studies. This research is supported by the U.S. Department of Energy through the LANL/LDRD program and, in part, by the Foundational Questions Institute (FQXi).
Non-classical light generated by quantum-noise-driven cavity optomechanics.
Brooks, Daniel W C; Botter, Thierry; Schreppler, Sydney; Purdy, Thomas P; Brahms, Nathan; Stamper-Kurn, Dan M
2012-08-23
Optomechanical systems, in which light drives and is affected by the motion of a massive object, will comprise a new framework for nonlinear quantum optics, with applications ranging from the storage and transduction of quantum information to enhanced detection sensitivity in gravitational wave detectors. However, quantum optical effects in optomechanical systems have remained obscure, because their detection requires the object’s motion to be dominated by vacuum fluctuations in the optical radiation pressure; so far, direct observations have been stymied by technical and thermal noise. Here we report an implementation of cavity optomechanics using ultracold atoms in which the collective atomic motion is dominantly driven by quantum fluctuations in radiation pressure. The back-action of this motion onto the cavity light field produces ponderomotive squeezing. We detect this quantum phenomenon by measuring sub-shot-noise optical squeezing. Furthermore, the system acts as a low-power, high-gain, nonlinear parametric amplifier for optical fluctuations, demonstrating a gain of 20 dB with a pump corresponding to an average of only seven intracavity photons. These findings may pave the way for low-power quantum optical devices, surpassing quantum limits on position and force sensing, and the control and measurement of motion in quantum gases.
Frequency-encoded photonic qubits for scalable quantum information processing
Lukens, Joseph M.; Lougovski, Pavel
2016-12-21
Among the objectives for large-scale quantum computation is the quantum interconnect: a device that uses photons to interface qubits that otherwise could not interact. However, the current approaches require photons indistinguishable in frequency—a major challenge for systems experiencing different local environments or of different physical compositions altogether. Here, we develop an entirely new platform that actually exploits such frequency mismatch for processing quantum information. Labeled “spectral linear optical quantum computation” (spectral LOQC), our protocol offers favorable linear scaling of optical resources and enjoys an unprecedented degree of parallelism, as an arbitrary Ν-qubit quantum gate may be performed in parallel onmore » multiple Ν-qubit sets in the same linear optical device. Here, not only does spectral LOQC offer new potential for optical interconnects, but it also brings the ubiquitous technology of high-speed fiber optics to bear on photonic quantum information, making wavelength-configurable and robust optical quantum systems within reach.« less
Frequency-encoded photonic qubits for scalable quantum information processing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lukens, Joseph M.; Lougovski, Pavel
Among the objectives for large-scale quantum computation is the quantum interconnect: a device that uses photons to interface qubits that otherwise could not interact. However, the current approaches require photons indistinguishable in frequency—a major challenge for systems experiencing different local environments or of different physical compositions altogether. Here, we develop an entirely new platform that actually exploits such frequency mismatch for processing quantum information. Labeled “spectral linear optical quantum computation” (spectral LOQC), our protocol offers favorable linear scaling of optical resources and enjoys an unprecedented degree of parallelism, as an arbitrary Ν-qubit quantum gate may be performed in parallel onmore » multiple Ν-qubit sets in the same linear optical device. Here, not only does spectral LOQC offer new potential for optical interconnects, but it also brings the ubiquitous technology of high-speed fiber optics to bear on photonic quantum information, making wavelength-configurable and robust optical quantum systems within reach.« less
Quantum mechanics and reality: An interpretation of Everett's theory
NASA Astrophysics Data System (ADS)
Lehner, Christoph Albert
The central part of Everett's formulation of quantum mechanics is a quantum mechanical model of memory and of observation as the recording of information in a memory. To use this model as an answer to the measurement problem, Everett has to assume that a conscious observer can be in a superposition of such memory states and be unaware of it. This assumption has puzzled generations of readers. The fundamental aim of this dissertation is to find a set of simpler assumptions which are sufficient to show that Everett's model is empirically adequate. I argue that Everett's model needs three assumptions to account for the process of observation: an assumption of decoherence of observers as quantum mechanical systems; an assumption of supervenience of mental states (qualities) over quantum mechanical properties; and an assumption about the interpretation of quantum mechanical states in general: quantum mechanical states describe ensembles of states of affairs coexisting in the same system. I argue that the only plausible understanding of such ensembles is as ensembles of possibilities, and that all standard no-collapse interpretations agree in this reading of quantum mechanical states. Their differences can be understood as different theories about what marks the real state within this ensemble, and Everett's theory as the claim that no additional 'mark of reality' is necessary. Using the three assumptions, I argue that introspection cannot determine the objective quantum mechanical state of an observer. Rather, the introspective qualities of a quantum mechanical state can be represented by a (classical) statistical ensemble of subjective states. An analysis of these subjective states and their dynamics leads to the conclusion that they suffice to give empirically correct predictions. The argument for the empirical adequacy of the subjective state entails that knowledge of the objective quantum mechanical state is impossible in principle. Empirical reality for a conscious observer is not described by the objective state, but by a Everettian relative state conditional on the subjective state, and no theoretical 'mark of reality' is necessary for this concept of reality. I compare the resulting concept of reality to Kant's distinction between empirical and transcendental reality.
Truth Values of Quantum Phenomena
NASA Astrophysics Data System (ADS)
Bolotin, Arkady
2018-04-01
In the paper, the idea of describing not-yet-verified properties of quantum objects with logical many-valuedness is scrutinized. As it is argued, to promote such an idea, the following two foundational problems of many-valued quantum logic must be decided: the problem of choosing a proper system of many-valued logic and the problem of the emergence of bivalence from logical many-valuedness. Difficulties accompanying solutions of these problems are discussed.
Redundant imprinting of information in non-ideal environments: Quantum Darwinism via a noisy channel
NASA Astrophysics Data System (ADS)
Zwolak, Michael; Quan, Haitao; Zurek, Wojciech
2011-03-01
Quantum Darwinism provides an information-theoretic framework for the emergence of the classical world from the quantum substrate. It recognizes that we - the observers - acquire our information about the ``systems of interest'' indirectly from their imprints on the environment. Objectivity, a key property of the classical world, arises via the proliferation of redundant information into the environment where many observers can then intercept it and independently determine the state of the system. While causing a system to decohere, environments that remain nearly invariant under the Hamiltonian dynamics, such as very mixed states, have a diminished ability to transmit information about the system, yet can still acquire redundant information about the system [1,2]. Our results show that Quantum Darwinism is robust with respect to non-ideal initial states of the environment. This research is supported by the U.S. Department of Energy through the LANL/LDRD Program.
Quantum inertia stops superposition: Scan Quantum Mechanics
NASA Astrophysics Data System (ADS)
Gato-Rivera, Beatriz
2017-08-01
Scan Quantum Mechanics is a novel interpretation of some aspects of quantum mechanics in which the superposition of states is only an approximate effective concept. Quantum systems scan all possible states in the superposition and switch randomly and very rapidly among them. A crucial property that we postulate is quantum inertia, that increases whenever a constituent is added, or the system is perturbed with all kinds of interactions. Once the quantum inertia Iq reaches a critical value Icr for an observable, the switching among its different eigenvalues stops and the corresponding superposition comes to an end, leaving behind a system with a well defined value of that observable. Consequently, increasing the mass, temperature, gravitational strength, etc. of a quantum system increases its quantum inertia until the superposition of states disappears for all the observables and the system transmutes into a classical one. Moreover, the process could be reversible. Entanglement can only occur between quantum systems because an exact synchronization between the switchings of the systems involved must be established in the first place and classical systems do not have any switchings to start with. Future experiments might determine the critical inertia Icr corresponding to different observables, which translates into a critical mass Mcr for fixed environmental conditions as well as critical temperatures, critical electric and magnetic fields, etc. In addition, this proposal implies a new radiation mechanism from astrophysical objects with strong gravitational fields, giving rise to non-thermal synchrotron emission, that could contribute to neutron star formation. Superconductivity, superfluidity, Bose-Einstein condensates, and any other physical phenomena at very low temperatures must be reanalyzed in the light of this interpretation, as well as mesoscopic systems in general.
Gravitational Casimir-Polder effect
NASA Astrophysics Data System (ADS)
Hu, Jiawei; Yu, Hongwei
2017-04-01
The interaction due to quantum gravitational vacuum fluctuations between a gravitationally polarizable object modelled as a two-level system and a gravitational boundary is investigated. This quantum gravitational interaction is found to be position-dependent, which induces a force in close analogy to the Casimir-Polder force in the electromagnetic case. For a Dirichlet boundary, the quantum gravitational potential for the polarizable object in its ground-state is shown to behave like z-5 in the near zone, and z-6 in the far zone, where z is the distance to the boundary. For a concrete example, where a Bose-Einstein condensate is taken as a gravitationally polarizable object, the relative correction to the radius of the BEC caused by fluctuating quantum gravitational waves in vacuum is found to be of order 10-21. Although the correction is far too small to observe in comparison with its electromagnetic counterpart, it is nevertheless of the order of the gravitational strain caused by a recently detected black hole merger on the arms of the LIGO.
Quantum solitonic wave-packet of a meso-scopic system in singularity free gravity
NASA Astrophysics Data System (ADS)
Buoninfante, Luca; Lambiase, Gaetano; Mazumdar, Anupam
2018-06-01
In this paper we will discuss how to localise a quantum wave-packet due to self-gravitating meso-scopic object by taking into account gravitational self-interaction in the Schrödinger equation beyond General Relativity. In particular, we will study soliton-like solutions in infinite derivative ghost free theories of gravity, which resolves the gravitational 1 / r singularity in the potential. We will show a unique feature that the quantum spread of such a gravitational system is larger than that of the Newtonian gravity, therefore enabling us a window of opportunity to test classical and quantum properties of such theories of gravity in the near future at a table-top experiment.
Repeatability of measurements: Non-Hermitian observables and quantum Coriolis force
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gardas, Bartłomiej; Deffner, Sebastian; Saxena, Avadh
A noncommuting measurement transfers, via the apparatus, information encoded in a system's state to the external “observer.” Classical measurements determine properties of physical objects. In the quantum realm, the very same notion restricts the recording process to orthogonal states as only those are distinguishable by measurements. Thus, even a possibility to describe physical reality by means of non-Hermitian operators should volens nolens be excluded as their eigenstates are not orthogonal. We show that non-Hermitian operators with real spectra can be treated within the standard framework of quantum mechanics. Further, we propose a quantum canonical transformation that maps Hermitian systems ontomore » non-Hermitian ones. Similar to classical inertial forces this map is accompanied by an energetic cost, pinning the system on the unitary path.« less
Repeatability of measurements: Non-Hermitian observables and quantum Coriolis force
Gardas, Bartłomiej; Deffner, Sebastian; Saxena, Avadh
2016-08-26
A noncommuting measurement transfers, via the apparatus, information encoded in a system's state to the external “observer.” Classical measurements determine properties of physical objects. In the quantum realm, the very same notion restricts the recording process to orthogonal states as only those are distinguishable by measurements. Thus, even a possibility to describe physical reality by means of non-Hermitian operators should volens nolens be excluded as their eigenstates are not orthogonal. We show that non-Hermitian operators with real spectra can be treated within the standard framework of quantum mechanics. Further, we propose a quantum canonical transformation that maps Hermitian systems ontomore » non-Hermitian ones. Similar to classical inertial forces this map is accompanied by an energetic cost, pinning the system on the unitary path.« less
Real lasers and other deformed objects
NASA Technical Reports Server (NTRS)
Solomon, Allan I.
1995-01-01
In this talk we re-examine three important properties of quantum laser systems: (1) photon counting statistics; (2) squeezing; and (3) signal-to-quantum noise ratio. None of these phenomena depends on the choice of hamiltonian; indeed, we analyze them initially without restriction to any specific form of the commutation relations.
Continuous quantum measurement and the quantum to classical transition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhattacharya, Tanmoy; Habib, Salman; Jacobs, Kurt
2003-04-01
While ultimately they are described by quantum mechanics, macroscopic mechanical systems are nevertheless observed to follow the trajectories predicted by classical mechanics. Hence, in the regime defining macroscopic physics, the trajectories of the correct classical motion must emerge from quantum mechanics, a process referred to as the quantum to classical transition. Extending previous work [Bhattacharya, Habib, and Jacobs, Phys. Rev. Lett. 85, 4852 (2000)], here we elucidate this transition in some detail, showing that once the measurement processes that affect all macroscopic systems are taken into account, quantum mechanics indeed predicts the emergence of classical motion. We derive inequalities thatmore » describe the parameter regime in which classical motion is obtained, and provide numerical examples. We also demonstrate two further important properties of the classical limit: first, that multiple observers all agree on the motion of an object, and second, that classical statistical inference may be used to correctly track the classical motion.« less
Microwave quantum illumination.
Barzanjeh, Shabir; Guha, Saikat; Weedbrook, Christian; Vitali, David; Shapiro, Jeffrey H; Pirandola, Stefano
2015-02-27
Quantum illumination is a quantum-optical sensing technique in which an entangled source is exploited to improve the detection of a low-reflectivity object that is immersed in a bright thermal background. Here, we describe and analyze a system for applying this technique at microwave frequencies, a more appropriate spectral region for target detection than the optical, due to the naturally occurring bright thermal background in the microwave regime. We use an electro-optomechanical converter to entangle microwave signal and optical idler fields, with the former being sent to probe the target region and the latter being retained at the source. The microwave radiation collected from the target region is then phase conjugated and upconverted into an optical field that is combined with the retained idler in a joint-detection quantum measurement. The error probability of this microwave quantum-illumination system, or quantum radar, is shown to be superior to that of any classical microwave radar of equal transmitted energy.
High-Dimensional Quantum Information Processing with Linear Optics
NASA Astrophysics Data System (ADS)
Fitzpatrick, Casey A.
Quantum information processing (QIP) is an interdisciplinary field concerned with the development of computers and information processing systems that utilize quantum mechanical properties of nature to carry out their function. QIP systems have become vastly more practical since the turn of the century. Today, QIP applications span imaging, cryptographic security, computation, and simulation (quantum systems that mimic other quantum systems). Many important strategies improve quantum versions of classical information system hardware, such as single photon detectors and quantum repeaters. Another more abstract strategy engineers high-dimensional quantum state spaces, so that each successful event carries more information than traditional two-level systems allow. Photonic states in particular bring the added advantages of weak environmental coupling and data transmission near the speed of light, allowing for simpler control and lower system design complexity. In this dissertation, numerous novel, scalable designs for practical high-dimensional linear-optical QIP systems are presented. First, a correlated photon imaging scheme using orbital angular momentum (OAM) states to detect rotational symmetries in objects using measurements, as well as building images out of those interactions is reported. Then, a statistical detection method using chains of OAM superpositions distributed according to the Fibonacci sequence is established and expanded upon. It is shown that the approach gives rise to schemes for sorting, detecting, and generating the recursively defined high-dimensional states on which some quantum cryptographic protocols depend. Finally, an ongoing study based on a generalization of the standard optical multiport for applications in quantum computation and simulation is reported upon. The architecture allows photons to reverse momentum inside the device. This in turn enables realistic implementation of controllable linear-optical scattering vertices for carrying out quantum walks on arbitrary graph structures, a powerful tool for any quantum computer. It is shown that the novel architecture provides new, efficient capabilities for the optical quantum simulation of Hamiltonians and topologically protected states. Further, these simulations use exponentially fewer resources than feedforward techniques, scale linearly to higher-dimensional systems, and use only linear optics, thus offering a concrete experimentally achievable implementation of graphical models of discrete-time quantum systems.
Remote quantum entanglement between two micromechanical oscillators.
Riedinger, Ralf; Wallucks, Andreas; Marinković, Igor; Löschnauer, Clemens; Aspelmeyer, Markus; Hong, Sungkun; Gröblacher, Simon
2018-04-01
Entanglement, an essential feature of quantum theory that allows for inseparable quantum correlations to be shared between distant parties, is a crucial resource for quantum networks 1 . Of particular importance is the ability to distribute entanglement between remote objects that can also serve as quantum memories. This has been previously realized using systems such as warm 2,3 and cold atomic vapours 4,5 , individual atoms 6 and ions 7,8 , and defects in solid-state systems 9-11 . Practical communication applications require a combination of several advantageous features, such as a particular operating wavelength, high bandwidth and long memory lifetimes. Here we introduce a purely micromachined solid-state platform in the form of chip-based optomechanical resonators made of nanostructured silicon beams. We create and demonstrate entanglement between two micromechanical oscillators across two chips that are separated by 20 centimetres . The entangled quantum state is distributed by an optical field at a designed wavelength near 1,550 nanometres. Therefore, our system can be directly incorporated in a realistic fibre-optic quantum network operating in the conventional optical telecommunication band. Our results are an important step towards the development of large-area quantum networks based on silicon photonics.
Emergence Processes up to Consciousness Using the Multiplicity Principle and Quantum Physics
NASA Astrophysics Data System (ADS)
Ehresmann, Andrée C.; Vanbremeersch, Jean-Paul
2002-09-01
Evolution is marked by the emergence of new objects and interactions. Pursuing our preceding work on Memory Evolutive Systems (MES; cf. our Internet site), we propose a general mathematical model for this process, based on Category Theory. Its main characteristics is the Multiplicity Principle (MP) which asserts the existence of complex objects with several possible configurations. The MP entails the emergence of non-reducible more and more complex objects (emergentist reductionism). From the laws of Quantum Physics, it follows that the MP is valid for the category of particles and atoms, hence, by complexification, for any natural autonomous anticipatory complex system, such as biological systems up to neural systems, or social systems. Applying the model to the MES of neurons, we describe the emergence of higher and higher cognitive processes and of a semantic memory. Consciousness is characterized by the development of a permanent `personal' memory, the archetypal core, which allows the formation of extended landscapes with an integration of the temporal dimensions.
Faithful conversion of propagating quantum information to mechanical motion
NASA Astrophysics Data System (ADS)
Reed, A. P.; Mayer, K. H.; Teufel, J. D.; Burkhart, L. D.; Pfaff, W.; Reagor, M.; Sletten, L.; Ma, X.; Schoelkopf, R. J.; Knill, E.; Lehnert, K. W.
2017-12-01
The motion of micrometre-sized mechanical resonators can now be controlled and measured at the fundamental limits imposed by quantum mechanics. These resonators have been prepared in their motional ground state or in squeezed states, measured with quantum-limited precision, and even entangled with microwave fields. Such advances make it possible to process quantum information using the motion of a macroscopic object. In particular, recent experiments have combined mechanical resonators with superconducting quantum circuits to frequency-convert, store and amplify propagating microwave fields. But these systems have not been used to manipulate states that encode quantum bits (qubits), which are required for quantum communication and modular quantum computation. Here we demonstrate the conversion of propagating qubits encoded as superpositions of zero and one photons to the motion of a micromechanical resonator with a fidelity in excess of the classical bound. This ability is necessary for mechanical resonators to convert quantum information between the microwave and optical domains or to act as storage elements in a modular quantum information processor. Additionally, these results are an important step towards testing speculative notions that quantum theory may not be valid for sufficiently massive systems.
A cellular automaton for the signed particle formulation of quantum mechanics
NASA Astrophysics Data System (ADS)
Sellier, J. M.; Kapanova, K. G.; Dimov, I.
2017-02-01
Recently, a new formulation of quantum mechanics, based on the concept of signed particles, has been suggested. In this paper, we introduce a cellular automaton which mimics the dynamics of quantum objects in the phase-space in a time-dependent fashion. This is twofold: it provides a simplified and accessible language to non-physicists who wants to simulate quantum mechanical systems, at the same time it enables a different way to explore the laws of Physics. Moreover, it opens the way towards hybrid simulations of quantum systems by combining full quantum models with cellular automata when the former fail. In order to show the validity of the suggested cellular automaton and its combination with the signed particle formalism, several numerical experiments are performed, showing very promising results. Being this article a preliminary study on quantum simulations in phase-space by means of cellular automata, some conclusions are drawn about the encouraging results obtained so far and the possible future developments.
Quantum many-body theory for electron spin decoherence in nanoscale nuclear spin baths.
Yang, Wen; Ma, Wen-Long; Liu, Ren-Bao
2017-01-01
Decoherence of electron spins in nanoscale systems is important to quantum technologies such as quantum information processing and magnetometry. It is also an ideal model problem for studying the crossover between quantum and classical phenomena. At low temperatures or in light-element materials where the spin-orbit coupling is weak, the phonon scattering in nanostructures is less important and the fluctuations of nuclear spins become the dominant decoherence mechanism for electron spins. Since the 1950s, semi-classical noise theories have been developed for understanding electron spin decoherence. In spin-based solid-state quantum technologies, the relevant systems are in the nanometer scale and nuclear spin baths are quantum objects which require a quantum description. Recently, quantum pictures have been established to understand the decoherence and quantum many-body theories have been developed to quantitatively describe this phenomenon. Anomalous quantum effects have been predicted and some have been experimentally confirmed. A systematically truncated cluster-correlation expansion theory has been developed to account for the many-body correlations in nanoscale nuclear spin baths that are built up during electron spin decoherence. The theory has successfully predicted and explained a number of experimental results in a wide range of physical systems. In this review, we will cover this recent progress. The limitations of the present quantum many-body theories and possible directions for future development will also be discussed.
Sparse aperture 3D passive image sensing and recognition
NASA Astrophysics Data System (ADS)
Daneshpanah, Mehdi
The way we perceive, capture, store, communicate and visualize the world has greatly changed in the past century Novel three dimensional (3D) imaging and display systems are being pursued both in academic and industrial settings. In many cases, these systems have revolutionized traditional approaches and/or enabled new technologies in other disciplines including medical imaging and diagnostics, industrial metrology, entertainment, robotics as well as defense and security. In this dissertation, we focus on novel aspects of sparse aperture multi-view imaging systems and their application in quantum-limited object recognition in two separate parts. In the first part, two concepts are proposed. First a solution is presented that involves a generalized framework for 3D imaging using randomly distributed sparse apertures. Second, a method is suggested to extract the profile of objects in the scene through statistical properties of the reconstructed light field. In both cases, experimental results are presented that demonstrate the feasibility of the techniques. In the second part, the application of 3D imaging systems in sensing and recognition of objects is addressed. In particular, we focus on the scenario in which only 10s of photons reach the sensor from the object of interest, as opposed to hundreds of billions of photons in normal imaging conditions. At this level, the quantum limited behavior of light will dominate and traditional object recognition practices may fail. We suggest a likelihood based object recognition framework that incorporates the physics of sensing at quantum-limited conditions. Sensor dark noise has been modeled and taken into account. This framework is applied to 3D sensing of thermal objects using visible spectrum detectors. Thermal objects as cold as 250K are shown to provide enough signature photons to be sensed and recognized within background and dark noise with mature, visible band, image forming optics and detector arrays. The results suggest that one might not need to venture into exotic and expensive detector arrays and associated optics for sensing room-temperature thermal objects in complete darkness.
DDC Systems for Searching for Near-Earth Asteroids
NASA Technical Reports Server (NTRS)
Harris, A.
1994-01-01
Large format CCD systems are superior to photographic systems in terms of quantum efficiency and that they yield digital output directly, which can be computer analyzed to detect moving objects and to obtain astrometric measurements.
QuTiP: An open-source Python framework for the dynamics of open quantum systems
NASA Astrophysics Data System (ADS)
Johansson, J. R.; Nation, P. D.; Nori, Franco
2012-08-01
We present an object-oriented open-source framework for solving the dynamics of open quantum systems written in Python. Arbitrary Hamiltonians, including time-dependent systems, may be built up from operators and states defined by a quantum object class, and then passed on to a choice of master equation or Monte Carlo solvers. We give an overview of the basic structure for the framework before detailing the numerical simulation of open system dynamics. Several examples are given to illustrate the build up to a complete calculation. Finally, we measure the performance of our library against that of current implementations. The framework described here is particularly well suited to the fields of quantum optics, superconducting circuit devices, nanomechanics, and trapped ions, while also being ideal for use in classroom instruction. Catalogue identifier: AEMB_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEMB_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GNU General Public License, version 3 No. of lines in distributed program, including test data, etc.: 16 482 No. of bytes in distributed program, including test data, etc.: 213 438 Distribution format: tar.gz Programming language: Python Computer: i386, x86-64 Operating system: Linux, Mac OSX, Windows RAM: 2+ Gigabytes Classification: 7 External routines: NumPy (http://numpy.scipy.org/), SciPy (http://www.scipy.org/), Matplotlib (http://matplotlib.sourceforge.net/) Nature of problem: Dynamics of open quantum systems. Solution method: Numerical solutions to Lindblad master equation or Monte Carlo wave function method. Restrictions: Problems must meet the criteria for using the master equation in Lindblad form. Running time: A few seconds up to several tens of minutes, depending on size of underlying Hilbert space.
Rigutti, Lorenzo; Blum, Ivan; Shinde, Deodatta; Hernández-Maldonado, David; Lefebvre, Williams; Houard, Jonathan; Vurpillot, François; Vella, Angela; Tchernycheva, Maria; Durand, Christophe; Eymery, Joël; Deconihout, Bernard
2014-01-08
A single nanoscale object containing a set of InGaN/GaN nonpolar multiple-quantum wells has been analyzed by microphotoluminescence spectroscopy (μPL), high-resolution scanning transmission electron microscopy (HR-STEM) and atom probe tomography (APT). The correlated measurements constitute a rich and coherent set of data supporting the interpretation that the observed μPL narrow emission lines, polarized perpendicularly to the crystal c-axis and with energies in the interval 2.9-3.3 eV, are related to exciton states localized in potential minima induced by the irregular 3D In distribution within the quantum well (QW) planes. This novel method opens up interesting perspectives, as it will be possible to apply it on a wide class of quantum confining emitters and nano-objects.
Quantum memory operations in a flux qubit - spin ensemble hybrid system
NASA Astrophysics Data System (ADS)
Saito, S.; Zhu, X.; Amsuss, R.; Matsuzaki, Y.; Kakuyanagi, K.; Shimo-Oka, T.; Mizuochi, N.; Nemoto, K.; Munro, W. J.; Semba, K.
2014-03-01
Superconducting quantum bits (qubits) are one of the most promising candidates for a future large-scale quantum processor. However for larger scale realizations the currently reported coherence times of these macroscopic objects (superconducting qubits) has not yet reached those of microscopic systems (electron spins, nuclear spins, etc). In this context, a superconductor-spin ensemble hybrid system has attracted considerable attention. The spin ensemble could operate as a quantum memory for superconducting qubits. We have experimentally demonstrated quantum memory operations in a superconductor-diamond hybrid system. An excited state and a superposition state prepared in the flux qubit can be transferred to, stored in and retrieved from the NV spin ensemble in diamond. From these experiments, we have found the coherence time of the spin ensemble is limited by the inhomogeneous broadening of the electron spin (4.4 MHz) and by the hyperfine coupling to nitrogen nuclear spins (2.3 MHz). In the future, spin echo techniques could eliminate these effects and elongate the coherence time. Our results are a significant first step in utilizing the spin ensemble as long-lived quantum memory for superconducting flux qubits. This work was supported by the FIRST program and NICT.
pyCTQW: A continuous-time quantum walk simulator on distributed memory computers
NASA Astrophysics Data System (ADS)
Izaac, Josh A.; Wang, Jingbo B.
2015-01-01
In the general field of quantum information and computation, quantum walks are playing an increasingly important role in constructing physical models and quantum algorithms. We have recently developed a distributed memory software package pyCTQW, with an object-oriented Python interface, that allows efficient simulation of large multi-particle CTQW (continuous-time quantum walk)-based systems. In this paper, we present an introduction to the Python and Fortran interfaces of pyCTQW, discuss various numerical methods of calculating the matrix exponential, and demonstrate the performance behavior of pyCTQW on a distributed memory cluster. In particular, the Chebyshev and Krylov-subspace methods for calculating the quantum walk propagation are provided, as well as methods for visualization and data analysis.
A Simple Example of ``Quantum Darwinism'': Redundant Information Storage in Many-Spin Environments
NASA Astrophysics Data System (ADS)
Blume-Kohout, Robin; Zurek, Wojciech H.
2005-11-01
As quantum information science approaches the goal of constructing quantum computers, understanding loss of information through decoherence becomes increasingly important. The information about a system that can be obtained from its environment can facilitate quantum control and error correction. Moreover, observers gain most of their information indirectly, by monitoring (primarily photon) environments of the "objects of interest." Exactly how this information is inscribed in the environment is essential for the emergence of "the classical" from the quantum substrate. In this paper, we examine how many-qubit (or many-spin) environments can store information about a single system. The information lost to the environment can be stored redundantly, or it can be encoded in entangled modes of the environment. We go on to show that randomly chosen states of the environment almost always encode the information so that an observer must capture a majority of the environment to deduce the system's state. Conversely, in the states produced by a typical decoherence process, information about a particular observable of the system is stored redundantly. This selective proliferation of "the fittest information" (known as Quantum Darwinism) plays a key role in choosing the preferred, effectively classical observables of macroscopic systems. The developing appreciation that the environment functions not just as a garbage dump, but as a communication channel, is extending our understanding of the environment's role in the quantum-classical transition beyond the traditional paradigm of decoherence.
Cold atoms as a coolant for levitated optomechanical systems
NASA Astrophysics Data System (ADS)
Ranjit, Gambhir; Montoya, Cris; Geraci, Andrew A.
2015-01-01
Optically trapped dielectric objects are well suited for reaching the quantum regime of their center-of-mass motion in an ultrahigh-vacuum environment. We show that ground-state cooling of an optically trapped nanosphere is achievable when starting at room temperature, by sympathetic cooling of a cold-atomic gas optically coupled to the nanoparticle. Unlike cavity cooling in the resolved-sideband limit, this system requires only a modest cavity finesse and it allows the cooling to be turned off, permitting subsequent observation of strongly coupled dynamics between the atoms and sphere. Nanospheres cooled to their quantum ground state could have applications in quantum information science or in precision sensing.
Toward quantum superposition of living organisms
NASA Astrophysics Data System (ADS)
Romero-Isart, Oriol; Juan, Mathieu L.; Quidant, Romain; Cirac, J. Ignacio
2010-03-01
The most striking feature of quantum mechanics is the existence of superposition states, where an object appears to be in different situations at the same time. The existence of such states has been previously tested with small objects, such as atoms, ions, electrons and photons (Zoller et al 2005 Eur. Phys. J. D 36 203-28), and even with molecules (Arndt et al 1999 Nature 401 680-2). More recently, it has been shown that it is possible to create superpositions of collections of photons (Deléglise et al 2008 Nature 455 510-14), atoms (Hammerer et al 2008 arXiv:0807.3358) or Cooper pairs (Friedman et al 2000 Nature 406 43-6). Very recent progress in optomechanical systems may soon allow us to create superpositions of even larger objects, such as micro-sized mirrors or cantilevers (Marshall et al 2003 Phys. Rev. Lett. 91 130401; Kippenberg and Vahala 2008 Science 321 1172-6 Marquardt and Girvin 2009 Physics 2 40; Favero and Karrai 2009 Nature Photon. 3 201-5), and thus to test quantum mechanical phenomena at larger scales. Here we propose a method to cool down and create quantum superpositions of the motion of sub-wavelength, arbitrarily shaped dielectric objects trapped inside a high-finesse cavity at a very low pressure. Our method is ideally suited for the smallest living organisms, such as viruses, which survive under low-vacuum pressures (Rothschild and Mancinelli 2001 Nature 406 1092-101) and optically behave as dielectric objects (Ashkin and Dziedzic 1987 Science 235 1517-20). This opens up the possibility of testing the quantum nature of living organisms by creating quantum superposition states in very much the same spirit as the original Schrödinger's cat 'gedanken' paradigm (Schrödinger 1935 Naturwissenschaften 23 807-12, 823-8, 844-9). We anticipate that our paper will be a starting point for experimentally addressing fundamental questions, such as the role of life and consciousness in quantum mechanics.
Quantum synchronization in an optomechanical system based on Lyapunov control.
Li, Wenlin; Li, Chong; Song, Heshan
2016-06-01
We extend the concepts of quantum complete synchronization and phase synchronization, which were proposed in A. Mari et al., Phys. Rev. Lett. 111, 103605 (2013)PRLTAO0031-900710.1103/PhysRevLett.111.103605, to more widespread quantum generalized synchronization. Generalized synchronization can be considered a necessary condition or a more flexible derivative of complete synchronization, and its criterion and synchronization measure are proposed and analyzed in this paper. As examples, we consider two typical generalized synchronizations in a designed optomechanical system. Unlike the effort to construct a special coupling synchronization system, we purposefully design extra control fields based on Lyapunov control theory. We find that the Lyapunov function can adapt to more flexible control objectives, which is more suitable for generalized synchronization control, and the control fields can be achieved simply with a time-variant voltage. Finally, the existence of quantum entanglement in different generalized synchronizations is also discussed.
Coherent control of diamond defects for quantum information science and quantum sensing
NASA Astrophysics Data System (ADS)
Maurer, Peter
Quantum mechanics, arguably one of the greatest achievements of modern physics, has not only fundamentally changed our understanding of nature but is also taking an ever increasing role in engineering. Today, the control of quantum systems has already had a far-reaching impact on time and frequency metrology. By gaining further control over a large variety of different quantum systems, many potential applications are emerging. Those applications range from the development of quantum sensors and new quantum metrological approaches to the realization of quantum information processors and quantum networks. Unfortunately most quantum systems are very fragile objects that require tremendous experimental effort to avoid dephasing. Being able to control the interaction between a quantum system with its local environment embodies therefore an important aspect for application and hence is at the focus of this thesis. Nitrogen Vacancy (NV) color centers in diamond have recently attracted attention as a room temperature solid state spin system that expresses long coherence times. The electronic spin associated with NV centers can be efficiently manipulated, initialized and readout using microwave and optical techniques. Inspired by these extraordinary properties, much effort has been dedicated to use NV centers as a building block for scalable room temperature quantum information processing and quantum communication as well as a quantum sensing. In the first part of this thesis we demonstrate that by decoupling the spin from the local environment the coherence time of a NV quantum register can be extended by three order of magnitudes. Employing a novel dissipative mechanism in combination with dynamical decoupling, memory times exceeding one second are observed. The second part shows that, based on quantum control, NV centers in nano-diamonds provide a nanoscale temperature sensor with unprecedented accuracy enabling local temperature measurements in living biological cells. This opens the door for the engineering of nano-scaled chemical reactions to the study of temperature dependent biological processes. Finally, a novel technique is introduced that facilitates optical spin detection with nanoscale resolution based on an optical far-field technique; by combining this with a 'quantum Zeno' like effect coherent manipulation of nominally identical spins at a nanoscale is achieved.
NASA Astrophysics Data System (ADS)
Mazzucchi, Gabriel; Kozlowski, Wojciech; Caballero-Benitez, Santiago F.; Elliott, Thomas J.; Mekhov, Igor B.
2016-02-01
Trapping ultracold atoms in optical lattices enabled numerous breakthroughs uniting several disciplines. Coupling these systems to quantized light leads to a plethora of new phenomena and has opened up a new field of study. Here we introduce an unusual additional source of competition in a many-body strongly correlated system: We prove that quantum backaction of global measurement is able to efficiently compete with intrinsic short-range dynamics of an atomic system. The competition becomes possible due to the ability to change the spatial profile of a global measurement at a microscopic scale comparable to the lattice period without the need of single site addressing. In coherence with a general physical concept, where new competitions typically lead to new phenomena, we demonstrate nontrivial dynamical effects such as large-scale multimode oscillations, long-range entanglement, and correlated tunneling, as well as selective suppression and enhancement of dynamical processes beyond the projective limit of the quantum Zeno effect. We demonstrate both the breakup and protection of strongly interacting fermion pairs by measurement. Such a quantum optical approach introduces into many-body physics novel processes, objects, and methods of quantum engineering, including the design of many-body entangled environments for open systems.
Objectivity in Quantum Measurement
NASA Astrophysics Data System (ADS)
Li, Sheng-Wen; Cai, C. Y.; Liu, X. F.; Sun, C. P.
2018-06-01
The objectivity is a basic requirement for the measurements in the classical world, namely, different observers must reach a consensus on their measurement results, so that they believe that the object exists "objectively" since whoever measures it obtains the same result. We find that this simple requirement of objectivity indeed imposes an important constraint upon quantum measurements, i.e., if two or more observers could reach a consensus on their quantum measurement results, their measurement basis must be orthogonal vector sets. This naturally explains why quantum measurements are based on orthogonal vector basis, which is proposed as one of the axioms in textbooks of quantum mechanics. The role of the macroscopicality of the observers in an objective measurement is discussed, which supports the belief that macroscopicality is a characteristic of classicality.
Objectivity in Quantum Measurement
NASA Astrophysics Data System (ADS)
Li, Sheng-Wen; Cai, C. Y.; Liu, X. F.; Sun, C. P.
2018-05-01
The objectivity is a basic requirement for the measurements in the classical world, namely, different observers must reach a consensus on their measurement results, so that they believe that the object exists "objectively" since whoever measures it obtains the same result. We find that this simple requirement of objectivity indeed imposes an important constraint upon quantum measurements, i.e., if two or more observers could reach a consensus on their quantum measurement results, their measurement basis must be orthogonal vector sets. This naturally explains why quantum measurements are based on orthogonal vector basis, which is proposed as one of the axioms in textbooks of quantum mechanics. The role of the macroscopicality of the observers in an objective measurement is discussed, which supports the belief that macroscopicality is a characteristic of classicality.
Quantum teleportation between remote atomic-ensemble quantum memories.
Bao, Xiao-Hui; Xu, Xiao-Fan; Li, Che-Ming; Yuan, Zhen-Sheng; Lu, Chao-Yang; Pan, Jian-Wei
2012-12-11
Quantum teleportation and quantum memory are two crucial elements for large-scale quantum networks. With the help of prior distributed entanglement as a "quantum channel," quantum teleportation provides an intriguing means to faithfully transfer quantum states among distant locations without actual transmission of the physical carriers [Bennett CH, et al. (1993) Phys Rev Lett 70(13):1895-1899]. Quantum memory enables controlled storage and retrieval of fast-flying photonic quantum bits with stationary matter systems, which is essential to achieve the scalability required for large-scale quantum networks. Combining these two capabilities, here we realize quantum teleportation between two remote atomic-ensemble quantum memory nodes, each composed of ∼10(8) rubidium atoms and connected by a 150-m optical fiber. The spin wave state of one atomic ensemble is mapped to a propagating photon and subjected to Bell state measurements with another single photon that is entangled with the spin wave state of the other ensemble. Two-photon detection events herald the success of teleportation with an average fidelity of 88(7)%. Besides its fundamental interest as a teleportation between two remote macroscopic objects, our technique may be useful for quantum information transfer between different nodes in quantum networks and distributed quantum computing.
Consciousness, the brain, and spacetime geometry.
Hameroff, S
2001-04-01
What is consciousness? Conventional approaches see it as an emergent property of complex interactions among individual neurons; however these approaches fail to address enigmatic features of consciousness. Accordingly, some philosophers have contended that "qualia," or an experiential medium from which consciousness is derived, exists as a fundamental component of reality. Whitehead, for example, described the universe as being composed of "occasions of experience." To examine this possibility scientifically, the very nature of physical reality must be re-examined. We must come to terms with the physics of spacetime--as described by Einstein's general theory of relativity, and its relation to the fundamental theory of matter--as described by quantum theory. Roger Penrose has proposed a new physics of objective reduction: "OR," which appeals to a form of quantum gravity to provide a useful description of fundamental processes at the quantum/classical borderline. Within the OR scheme, we consider that consciousness occurs if an appropriately organized system is able to develop and maintain quantum coherent superposition until a specific "objective" criterion (a threshold related to quantum gravity) is reached; the coherent system then self-reduces (objective reduction: OR). We contend that this type of objective self-collapse introduces non-computability, an essential feature of consciousness which distinguishes our minds from classical computers. Each OR is taken as an instantaneous event--the climax of a self-organizing process in fundamental spacetime--and a candidate for a conscious Whitehead "occasion of experience." How could an OR process occur in the brain, be coupled to neural activities, and account for other features of consciousness? We nominate a quantum computational OR process with the requisite characteristics to be occurring in cytoskeletal micro-tubules within the brain's neurons. In this model, quantum-superposed states develop in microtubule subunit proteins ("tubulins") within certain brain neurons, remain coherent, and recruit more superposed tubulins until a mass-time-energy threshold (related to quantum gravity) is reached. At that point, self-collapse, or objective reduction (OR), abruptly occurs. We equate the pre-reduction, coherent superposition ("quantum computing") phase with pre-conscious processes, and each instantaneous (and non-computable) OR, or self-collapse, with a discrete conscious event. Sequences of OR events give rise to a "stream" of consciousness. Microtubule-associated proteins can "tune" the quantum oscillations of the coherent superposed states; the OR is thus self-organized, or "orchestrated" ("Orch OR"). Each Orch OR event selects (non-computably) microtubule subunit states which regulate synaptic/neural functions using classical signaling. The quantum gravity threshold for self-collapse is relevant to consciousness, according to our arguments, because macroscopic superposed quantum states each have their own spacetime geometries. These geometries are also superposed, and in some way "separated," but when sufficiently separated, the superposition of spacetime geometries becomes significantly unstable and reduces to a single universe state. Quantum gravity determines the limits of the instability; we contend that the actual choice of state made by Nature is non-computable. Thus each Orch OR event is a self-selection of spacetime geometry, coupled to the brain through microtubules and other biomolecules. If conscious experience is intimately connected with the very physics underlying spacetime structure, then Orch OR in microtubules indeed provides us with a completely new and uniquely promising perspective on the difficult problems of consciousness.
Quantum correction to classical gravitational interaction between two polarizable objects
NASA Astrophysics Data System (ADS)
Wu, Puxun; Hu, Jiawei; Yu, Hongwei
2016-12-01
When gravity is quantized, there inevitably exist quantum gravitational vacuum fluctuations which induce quadrupole moments in gravitationally polarizable objects and produce a quantum correction to the classical Newtonian interaction between them. Here, based upon linearized quantum gravity and the leading-order perturbation theory, we study, from a quantum field-theoretic prospect, this quantum correction between a pair of gravitationally polarizable objects treated as two-level harmonic oscillators. We find that the interaction potential behaves like r-11 in the retarded regime and r-10 in the near regime. Our result agrees with what were recently obtained in different approaches. Our study seems to indicate that linearized quantum gravity is robust in dealing with quantum gravitational effects at low energies.
NASA Astrophysics Data System (ADS)
Goldhaber, Alfred; Requist, Ryan
2003-07-01
As a consequence of the Aharonov-Bohm effect, there is a quantum-induced attraction between a charged particle and a rigid, impenetrable hoop made from an arbitrarily thin tube containing a superconductor quantum of magnetic flux. This is remarkable because in classical physics there is no force between the two objects, and quantum-mechanical effects (associated with uncertainty-principle energy) generally are repulsive rather than attractive. For an incident spinless charged particle in a P wave (in a configuration with total angular momentum zero) we verify a resonance just above threshold using the Kohn variational principle in its S-matrix form. Even if optimistic choices of parameters describing a model system with these properties were feasible, the temperature required to observe the resonance would be far lower than has yet been attained in the laboratory.
Cooling and manipulation of nanoparticles in high vacuum
NASA Astrophysics Data System (ADS)
Millen, J.; Kuhn, S.; Patolsky, F.; Kosloff, A.; Arndt, M.
2016-09-01
Optomechanical systems, where the mechanical motion of objects is measured and controlled using light, have a huge range of applications, from the metre-scale mirrors of LIGO which detect gravitational waves, to micron scale superconducting systems that can transduce quantum signals. A fascinating addition to this field are free or levitated optomechanical systems, where the oscillator is not physically tethered. We study a variety of nanoparticles which are launched through vacuum (10-8 mbar) and interact with an optical cavity. The centre of mass motion of a nanoparticle can be cooled by the optical cavity field. It is predicted that the quantum ground state of motion can be reached, leaving the particle free to evolve after release from the light field, thus preparing nanoscale matter for quantum interference experiments.
Hearing the shape of the Ising model with a programmable superconducting-flux annealer.
Vinci, Walter; Markström, Klas; Boixo, Sergio; Roy, Aidan; Spedalieri, Federico M; Warburton, Paul A; Severini, Simone
2014-07-16
Two objects can be distinguished if they have different measurable properties. Thus, distinguishability depends on the Physics of the objects. In considering graphs, we revisit the Ising model as a framework to define physically meaningful spectral invariants. In this context, we introduce a family of refinements of the classical spectrum and consider the quantum partition function. We demonstrate that the energy spectrum of the quantum Ising Hamiltonian is a stronger invariant than the classical one without refinements. For the purpose of implementing the related physical systems, we perform experiments on a programmable annealer with superconducting flux technology. Departing from the paradigm of adiabatic computation, we take advantage of a noisy evolution of the device to generate statistics of low energy states. The graphs considered in the experiments have the same classical partition functions, but different quantum spectra. The data obtained from the annealer distinguish non-isomorphic graphs via information contained in the classical refinements of the functions but not via the differences in the quantum spectra.
A new way of visualising quantum fields
NASA Astrophysics Data System (ADS)
Linde, Helmut
2018-05-01
Quantum field theory (QFT) is the basis of some of the most fundamental theories in modern physics, but it is not an easy subject to learn. In the present article we intend to pave the way from quantum mechanics to QFT for students at early graduate or advanced undergraduate level. More specifically, we propose a new way of visualising the wave function Ψ of a linear chain of interacting quantum harmonic oscillators, which can be seen as a model for a simple one-dimensional bosonic quantum field. The main idea is to draw randomly chosen classical states of the chain superimposed upon each other and use a grey scale to represent the value of Ψ at the corresponding coordinates of the quantised system. Our goal is to establish a better intuitive understanding of the mathematical objects underlying quantum field theories and solid state physics.
What is quantum in quantum randomness?
Grangier, P; Auffèves, A
2018-07-13
It is often said that quantum and classical randomness are of different nature, the former being ontological and the latter epistemological. However, so far the question of 'What is quantum in quantum randomness?', i.e. what is the impact of quantization and discreteness on the nature of randomness, remains to be answered. In a first part, we make explicit the differences between quantum and classical randomness within a recently proposed ontology for quantum mechanics based on contextual objectivity. In this view, quantum randomness is the result of contextuality and quantization. We show that this approach strongly impacts the purposes of quantum theory as well as its areas of application. In particular, it challenges current programmes inspired by classical reductionism, aiming at the emergence of the classical world from a large number of quantum systems. In a second part, we analyse quantum physics and thermodynamics as theories of randomness, unveiling their mutual influences. We finally consider new technological applications of quantum randomness that have opened up in the emerging field of quantum thermodynamics.This article is part of a discussion meeting issue 'Foundations of quantum mechanics and their impact on contemporary society'. © 2018 The Author(s).
Dynamics of streaming instability with quantum correction
NASA Astrophysics Data System (ADS)
Goutam, H. P.; Karmakar, P. K.
2017-05-01
A modified quantum hydrodynamic model (m-QHD) is herein proposed on the basis of the Thomas-Fermi (TF) theory of many fermionic quantum systems to investigate the dynamics of electrostatic streaming instability modes in a complex (dusty) quantum plasma system. The newly formulated m-QHD, as an amelioration over the existing usual QHD, employs a dimensionality-dependent Bohmian quantum correction prefactor, γ = [(D-2)/3D], in the electron quantum dynamics, where D symbolizing the problem dimensionality under consideration. The normal mode analysis of the coupled structure equations reveals the excitation of two distinct streaming modes associated with the flowing ions (against electrons and dust) and the flowing dust particulates (against the electrons and ions). It is mainly shown that the γ-factor introduces a new source of stability and dispersive effects to the ion-streaming instability solely; but not to the dust counterparts. A non-trivial application of our investigation in electrostatic beam-plasma (flow-driven) coupled dynamics leading to the development of self-sustained intense electric current, and hence, of strong magnetic field in compact astrophysical objects (in dwarf-family stars) is summarily indicated.
A signed particle formulation of non-relativistic quantum mechanics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sellier, Jean Michel, E-mail: jeanmichel.sellier@parallel.bas.bg
2015-09-15
A formulation of non-relativistic quantum mechanics in terms of Newtonian particles is presented in the shape of a set of three postulates. In this new theory, quantum systems are described by ensembles of signed particles which behave as field-less classical objects which carry a negative or positive sign and interact with an external potential by means of creation and annihilation events only. This approach is shown to be a generalization of the signed particle Wigner Monte Carlo method which reconstructs the time-dependent Wigner quasi-distribution function of a system and, therefore, the corresponding Schrödinger time-dependent wave-function. Its classical limit is discussedmore » and a physical interpretation, based on experimental evidences coming from quantum tomography, is suggested. Moreover, in order to show the advantages brought by this novel formulation, a straightforward extension to relativistic effects is discussed. To conclude, quantum tunnelling numerical experiments are performed to show the validity of the suggested approach.« less
Measuring the internal temperature of a levitated nanoparticle in high vacuum
NASA Astrophysics Data System (ADS)
Hebestreit, Erik; Reimann, René; Frimmer, Martin; Novotny, Lukas
2018-04-01
The interaction of an object with its surrounding bath can lead to a coupling between the object's internal degrees of freedom and its center-of-mass motion. This coupling is especially important for nanomechanical oscillators, which are among the most promising systems for preparing macroscopic objects in quantum mechanical states. Here we exploit this coupling to derive the internal temperature of a levitated nanoparticle from measurements of its center-of-mass dynamics. For a laser-trapped silica particle in high vacuum, we find an internal temperature of 1000 (60 )K . The measurement and control of the internal temperature of nanomechanical oscillators is of fundamental importance because black-body emission sets limits to the coherence of macroscopic quantum states.
“Counterfactual” quantum protocols
NASA Astrophysics Data System (ADS)
Vaidman, L.
2016-05-01
The counterfactuality of recently proposed protocols is analyzed. A definition of “counterfactuality” is offered and it is argued that an interaction-free measurement (IFM) of the presence of an opaque object can be named “counterfactual”, while proposed “counterfactual” measurements of the absence of such objects are not counterfactual. The quantum key distribution protocols which rely only on measurements of the presence of the object are counterfactual, but quantum direct communication protocols are not. Therefore, the name “counterfactual” is not appropriate for recent “counterfactual” protocols which transfer quantum states by quantum direct communication.
Topology-preserving quantum deformation with non-numerical parameter
NASA Astrophysics Data System (ADS)
Aukhadiev, Marat; Grigoryan, Suren; Lipacheva, Ekaterina
2013-11-01
We introduce a class of compact quantum semigroups, that we call semigroup deformations of compact Abelian qroups. These objects arise from reduced semigroup -algebras, the generalization of the Toeplitz algebra. We study quantum subgroups, quantum projective spaces and quantum quotient groups for such objects, and show that the group is contained as a compact quantum subgroup in the deformation of itself. The connection with the weak Hopf algebra notion is described. We give a grading on the -algebra of the compact quantum semigroups constructed.
Quantum teleportation of multiple degrees of freedom of a single photon
NASA Astrophysics Data System (ADS)
Wang, Xi-Lin; Cai, Xin-Dong; Su, Zu-En; Chen, Ming-Cheng; Wu, Dian; Li, Li; Liu, Nai-Le; Lu, Chao-Yang; Pan, Jian-Wei
2015-02-01
Quantum teleportation provides a `disembodied' way to transfer quantum states from one object to another at a distant location, assisted by previously shared entangled states and a classical communication channel. As well as being of fundamental interest, teleportation has been recognized as an important element in long-distance quantum communication, distributed quantum networks and measurement-based quantum computation. There have been numerous demonstrations of teleportation in different physical systems such as photons, atoms, ions, electrons and superconducting circuits. All the previous experiments were limited to the teleportation of one degree of freedom only. However, a single quantum particle can naturally possess various degrees of freedom--internal and external--and with coherent coupling among them. A fundamental open challenge is to teleport multiple degrees of freedom simultaneously, which is necessary to describe a quantum particle fully and, therefore, to teleport it intact. Here we demonstrate quantum teleportation of the composite quantum states of a single photon encoded in both spin and orbital angular momentum. We use photon pairs entangled in both degrees of freedom (that is, hyper-entangled) as the quantum channel for teleportation, and develop a method to project and discriminate hyper-entangled Bell states by exploiting probabilistic quantum non-demolition measurement, which can be extended to more degrees of freedom. We verify the teleportation for both spin-orbit product states and hybrid entangled states, and achieve a teleportation fidelity ranging from 0.57 to 0.68, above the classical limit. Our work is a step towards the teleportation of more complex quantum systems, and demonstrates an increase in our technical control of scalable quantum technologies.
Quantum teleportation of multiple degrees of freedom of a single photon.
Wang, Xi-Lin; Cai, Xin-Dong; Su, Zu-En; Chen, Ming-Cheng; Wu, Dian; Li, Li; Liu, Nai-Le; Lu, Chao-Yang; Pan, Jian-Wei
2015-02-26
Quantum teleportation provides a 'disembodied' way to transfer quantum states from one object to another at a distant location, assisted by previously shared entangled states and a classical communication channel. As well as being of fundamental interest, teleportation has been recognized as an important element in long-distance quantum communication, distributed quantum networks and measurement-based quantum computation. There have been numerous demonstrations of teleportation in different physical systems such as photons, atoms, ions, electrons and superconducting circuits. All the previous experiments were limited to the teleportation of one degree of freedom only. However, a single quantum particle can naturally possess various degrees of freedom--internal and external--and with coherent coupling among them. A fundamental open challenge is to teleport multiple degrees of freedom simultaneously, which is necessary to describe a quantum particle fully and, therefore, to teleport it intact. Here we demonstrate quantum teleportation of the composite quantum states of a single photon encoded in both spin and orbital angular momentum. We use photon pairs entangled in both degrees of freedom (that is, hyper-entangled) as the quantum channel for teleportation, and develop a method to project and discriminate hyper-entangled Bell states by exploiting probabilistic quantum non-demolition measurement, which can be extended to more degrees of freedom. We verify the teleportation for both spin-orbit product states and hybrid entangled states, and achieve a teleportation fidelity ranging from 0.57 to 0.68, above the classical limit. Our work is a step towards the teleportation of more complex quantum systems, and demonstrates an increase in our technical control of scalable quantum technologies.
ERIC Educational Resources Information Center
Héraud, Jean-Loup; Lautesse, Philippe; Ferlin, Fabrice; Chabot, Hugues
2017-01-01
Our work extends a previous study of epistemological presuppositions in teaching quantum physics in upper scientific secondary school in France. Here, the problematic reference of quantum theory's concepts is treated at the ontological level (the counterintuitive nature of quantum objects). We consider the approach of using narratives describing…
Quantum Darwinism in hazy environments
NASA Astrophysics Data System (ADS)
Zwolak, Michael; Quan, H. T.; Zurek, Wojciech
2010-03-01
Quantum Darwinism provides an information-theoretic framework for the emergence of the classical world from the quantum substrate. It recognizes that we - the observers - acquire our information about the ``systems of interest'' indirectly from their imprints on the environment. Objectivity, a key property of the classical world, arises via the proliferation of redundant information into the environment where many observers can then intercept it and independently determine the state of the system. After a general introduction to this framework, we demonstrate how non-ideal initial states of the environment (e.g., mixed states) affect its ability to act as a communication channel for information about the system. The environment's capacity for transmitting information is directly related to its ability to increase its entropy. Therefore, environments that remain nearly invariant under the Hamiltonian dynamics, such as very mixed states, have a diminished ability to transmit information. However, despite this, the environment almost always redundantly transmits information about the system.
Quantum teleportation between remote atomic-ensemble quantum memories
Bao, Xiao-Hui; Xu, Xiao-Fan; Li, Che-Ming; Yuan, Zhen-Sheng; Lu, Chao-Yang; Pan, Jian-Wei
2012-01-01
Quantum teleportation and quantum memory are two crucial elements for large-scale quantum networks. With the help of prior distributed entanglement as a “quantum channel,” quantum teleportation provides an intriguing means to faithfully transfer quantum states among distant locations without actual transmission of the physical carriers [Bennett CH, et al. (1993) Phys Rev Lett 70(13):1895–1899]. Quantum memory enables controlled storage and retrieval of fast-flying photonic quantum bits with stationary matter systems, which is essential to achieve the scalability required for large-scale quantum networks. Combining these two capabilities, here we realize quantum teleportation between two remote atomic-ensemble quantum memory nodes, each composed of ∼108 rubidium atoms and connected by a 150-m optical fiber. The spin wave state of one atomic ensemble is mapped to a propagating photon and subjected to Bell state measurements with another single photon that is entangled with the spin wave state of the other ensemble. Two-photon detection events herald the success of teleportation with an average fidelity of 88(7)%. Besides its fundamental interest as a teleportation between two remote macroscopic objects, our technique may be useful for quantum information transfer between different nodes in quantum networks and distributed quantum computing. PMID:23144222
Magnetic-field-mediated coupling and control in hybrid atomic-nanomechanical systems
NASA Astrophysics Data System (ADS)
Tretiakov, A.; LeBlanc, L. J.
2016-10-01
Magnetically coupled hybrid quantum systems enable robust quantum state control through Landau-Zener transitions. Here, we show that an ultracold atomic sample magnetically coupled to a nanomechanical resonator can be used to cool the resonator's mechanical motion, to measure the mechanical temperature, and to enable entanglement of more than one of these mesoscopic objects. We calculate the expected coupling for both permanent-magnet and current-conducting nanostring resonators and describe how this hybridization is attainable using recently developed fabrication techniques, including SiN nanostrings and atom chips.
Observing quantum vacuum lensing in a neutron star binary system.
Dupays, Arnaud; Robilliard, Cécile; Rizzo, Carlo; Bignami, Giovanni F
2005-04-29
In this Letter we study the propagation of light in the neighborhood of magnetized neutron stars. Because of the optical properties of quantum vacuum in the presence of a magnetic field, the light emitted by background astronomical objects is deviated, giving rise to a phenomenon of the same kind as the gravitational one. We give a quantitative estimation of this effect, and we discuss the possibility of its observation. We show that this effect could be detected by monitoring the evolution of the recently discovered double neutron star system J0737-3039.
Black holes as parts of entangled systems
NASA Astrophysics Data System (ADS)
Basini, G.; Capozziello, S.; Longo, G.
A possible link between EPR-type quantum phenomena and astrophysical objects like black holes, under a new general definition of entanglement, is established. A new approach, involving backward time evolution and topology changes, is presented bringing to a definition of the system black hole-worm hole-white hole as an entangled system.
Quantum back-action-evading measurement of motion in a negative mass reference frame
NASA Astrophysics Data System (ADS)
Møller, Christoffer B.; Thomas, Rodrigo A.; Vasilakis, Georgios; Zeuthen, Emil; Tsaturyan, Yeghishe; Balabas, Mikhail; Jensen, Kasper; Schliesser, Albert; Hammerer, Klemens; Polzik, Eugene S.
2017-07-01
Quantum mechanics dictates that a continuous measurement of the position of an object imposes a random quantum back-action (QBA) perturbation on its momentum. This randomness translates with time into position uncertainty, thus leading to the well known uncertainty on the measurement of motion. As a consequence of this randomness, and in accordance with the Heisenberg uncertainty principle, the QBA puts a limitation—the so-called standard quantum limit—on the precision of sensing of position, velocity and acceleration. Here we show that QBA on a macroscopic mechanical oscillator can be evaded if the measurement of motion is conducted in the reference frame of an atomic spin oscillator. The collective quantum measurement on this hybrid system of two distant and disparate oscillators is performed with light. The mechanical oscillator is a vibrational ‘drum’ mode of a millimetre-sized dielectric membrane, and the spin oscillator is an atomic ensemble in a magnetic field. The spin oriented along the field corresponds to an energetically inverted spin population and realizes a negative-effective-mass oscillator, while the opposite orientation corresponds to an oscillator with positive effective mass. The QBA is suppressed by -1.8 decibels in the negative-mass setting and enhanced by 2.4 decibels in the positive-mass case. This hybrid quantum system paves the way to entanglement generation and distant quantum communication between mechanical and spin systems and to sensing of force, motion and gravity beyond the standard quantum limit.
Quantum back-action-evading measurement of motion in a negative mass reference frame.
Møller, Christoffer B; Thomas, Rodrigo A; Vasilakis, Georgios; Zeuthen, Emil; Tsaturyan, Yeghishe; Balabas, Mikhail; Jensen, Kasper; Schliesser, Albert; Hammerer, Klemens; Polzik, Eugene S
2017-07-12
Quantum mechanics dictates that a continuous measurement of the position of an object imposes a random quantum back-action (QBA) perturbation on its momentum. This randomness translates with time into position uncertainty, thus leading to the well known uncertainty on the measurement of motion. As a consequence of this randomness, and in accordance with the Heisenberg uncertainty principle, the QBA puts a limitation-the so-called standard quantum limit-on the precision of sensing of position, velocity and acceleration. Here we show that QBA on a macroscopic mechanical oscillator can be evaded if the measurement of motion is conducted in the reference frame of an atomic spin oscillator. The collective quantum measurement on this hybrid system of two distant and disparate oscillators is performed with light. The mechanical oscillator is a vibrational 'drum' mode of a millimetre-sized dielectric membrane, and the spin oscillator is an atomic ensemble in a magnetic field. The spin oriented along the field corresponds to an energetically inverted spin population and realizes a negative-effective-mass oscillator, while the opposite orientation corresponds to an oscillator with positive effective mass. The QBA is suppressed by -1.8 decibels in the negative-mass setting and enhanced by 2.4 decibels in the positive-mass case. This hybrid quantum system paves the way to entanglement generation and distant quantum communication between mechanical and spin systems and to sensing of force, motion and gravity beyond the standard quantum limit.
Quantum annealing with all-to-all connected nonlinear oscillators
Puri, Shruti; Andersen, Christian Kraglund; Grimsmo, Arne L.; Blais, Alexandre
2017-01-01
Quantum annealing aims at solving combinatorial optimization problems mapped to Ising interactions between quantum spins. Here, with the objective of developing a noise-resilient annealer, we propose a paradigm for quantum annealing with a scalable network of two-photon-driven Kerr-nonlinear resonators. Each resonator encodes an Ising spin in a robust degenerate subspace formed by two coherent states of opposite phases. A fully connected optimization problem is mapped to local fields driving the resonators, which are connected with only local four-body interactions. We describe an adiabatic annealing protocol in this system and analyse its performance in the presence of photon loss. Numerical simulations indicate substantial resilience to this noise channel, leading to a high success probability for quantum annealing. Finally, we propose a realistic circuit QED implementation of this promising platform for implementing a large-scale quantum Ising machine. PMID:28593952
Microwave Imaging Using a Tunable Reflectarray Antenna and Superradiance in Open Quantum Systems
NASA Astrophysics Data System (ADS)
Tayebi, Amin
Theory, experiment, and computation are the three paradigms for scientific discoveries. This dissertation includes work in all three areas. The first part is dedicated to the practical design and development of a microwave imaging system, a problem mostly experimental and computational in nature. The second part discusses theoretical foundations of possible future advances in quantum signal transmission. In part one, a new active microwave imaging system is proposed. At the heart of this novel system lies an electronically reconfigurable beam-scanning reflectarray antenna. The high tuning capability of the reflectarray provides a broad steering range of +/- 60 degrees in two distinct frequency bands: S and F bands. The array, combined with an external source, dynamically steers the incoming beam across this range in order to generate multi-angle projection data for target detection. The collected data is then used for image reconstruction by means of time reversal signal processing technique. Our design significantly reduces cost and operational complexities compared to traditional imaging systems. In conventional systems, the region of interest is enclosed by a costly array of transceiver antennas which additionally requires a complicated switching circuitry. The inclusion of the beam scanning array and the utilization of a single source, eliminates the need for multiple antennas and the involved circuitry. In addition, unlike conventional setups, this system is not constrained by the dimensions of the object under test. Therefore the inspection of large objects, such as extended laminate structures, composite airplane wings and wind turbine blades becomes possible. Experimental results of detection of various dielectric targets as well as detecting anomalies within them, such as defects and metallic impurities, using the imaging prototype are presented. The second part includes the theoretical consideration of three different problems: quantum transport through two different nanostructures, a solid state device suitable for quantum computing and spherical plasmonic nanoantennas and waveguides. These three physically different systems are all investigated within a single quantum theory; the effective non-Hermitian Hamiltonian framework. The non-Hermitian Hamiltonian approach is a convenient mathematical formalism for the description of open quantum systems. This method based on the Feshbach projection formalism provides an alternative to popular methods such as the Feynman diagrammatic techniques and the master equation approach that are commonly used for studying open quantum systems. It is formally exact but very flexible and can be adjusted to many specific situations. One bright phenomenon emerging in the situation with a sufficiently strong continuum coupling in the case when the number of open channels is relatively small compared to the number of involved intrinsic states is the so-called superradiance. Being an analog of superradiance in quantum optics, this term stands for the formation in the system of a collective superposition of the intrinsic states coherently coupled to the same decay channel. The footprint of superradiance in each system is investigated in detail. In the quantum transport problem, signal transmission is greatly enhanced at the transition to superradiance. In the proposed solid state based charge qubit, the superradiant states effectively protect the remaining internal states from decaying into the continuum and hence increase the lifetime of the device. Finally, the superradiance phenomenon provides us a tool to manipulate light at the nanoscale. It is responsible for the existence of modes with distinct radiation properties in a system of coupled plasmonic nanoantennas: superradiant states with enhanced and dark modes with extremely damped radiation. Furthermore, similar to the quantum case, energy transport through a plasmonic waveguide is greatly enhanced.
Quantum entanglement of angular momentum states with quantum numbers up to 10,010
Fickler, Robert; Campbell, Geoff; Buchler, Ben; Lam, Ping Koy; Zeilinger, Anton
2016-01-01
Photons with a twisted phase front carry a quantized amount of orbital angular momentum (OAM) and have become important in various fields of optics, such as quantum and classical information science or optical tweezers. Because no upper limit on the OAM content per photon is known, they are also interesting systems to experimentally challenge quantum mechanical prediction for high quantum numbers. Here, we take advantage of a recently developed technique to imprint unprecedented high values of OAM, namely spiral phase mirrors, to generate photons with more than 10,000 quanta of OAM. Moreover, we demonstrate quantum entanglement between these large OAM quanta of one photon and the polarization of its partner photon. To our knowledge, this corresponds to entanglement with the largest quantum number that has been demonstrated in an experiment. The results may also open novel ways to couple single photons to massive objects, enhance angular resolution, and highlight OAM as a promising way to increase the information capacity of a single photon. PMID:27856742
Quantum entanglement of angular momentum states with quantum numbers up to 10,010
NASA Astrophysics Data System (ADS)
Fickler, Robert; Campbell, Geoff; Buchler, Ben; Lam, Ping Koy; Zeilinger, Anton
2016-11-01
Photons with a twisted phase front carry a quantized amount of orbital angular momentum (OAM) and have become important in various fields of optics, such as quantum and classical information science or optical tweezers. Because no upper limit on the OAM content per photon is known, they are also interesting systems to experimentally challenge quantum mechanical prediction for high quantum numbers. Here, we take advantage of a recently developed technique to imprint unprecedented high values of OAM, namely spiral phase mirrors, to generate photons with more than 10,000 quanta of OAM. Moreover, we demonstrate quantum entanglement between these large OAM quanta of one photon and the polarization of its partner photon. To our knowledge, this corresponds to entanglement with the largest quantum number that has been demonstrated in an experiment. The results may also open novel ways to couple single photons to massive objects, enhance angular resolution, and highlight OAM as a promising way to increase the information capacity of a single photon.
Quantum entanglement of angular momentum states with quantum numbers up to 10,010.
Fickler, Robert; Campbell, Geoff; Buchler, Ben; Lam, Ping Koy; Zeilinger, Anton
2016-11-29
Photons with a twisted phase front carry a quantized amount of orbital angular momentum (OAM) and have become important in various fields of optics, such as quantum and classical information science or optical tweezers. Because no upper limit on the OAM content per photon is known, they are also interesting systems to experimentally challenge quantum mechanical prediction for high quantum numbers. Here, we take advantage of a recently developed technique to imprint unprecedented high values of OAM, namely spiral phase mirrors, to generate photons with more than 10,000 quanta of OAM. Moreover, we demonstrate quantum entanglement between these large OAM quanta of one photon and the polarization of its partner photon. To our knowledge, this corresponds to entanglement with the largest quantum number that has been demonstrated in an experiment. The results may also open novel ways to couple single photons to massive objects, enhance angular resolution, and highlight OAM as a promising way to increase the information capacity of a single photon.
Deploying a quantum annealing processor to detect tree cover in aerial imagery of California
Basu, Saikat; Ganguly, Sangram; Michaelis, Andrew; Mukhopadhyay, Supratik; Nemani, Ramakrishna R.
2017-01-01
Quantum annealing is an experimental and potentially breakthrough computational technology for handling hard optimization problems, including problems of computer vision. We present a case study in training a production-scale classifier of tree cover in remote sensing imagery, using early-generation quantum annealing hardware built by D-wave Systems, Inc. Beginning within a known boosting framework, we train decision stumps on texture features and vegetation indices extracted from four-band, one-meter-resolution aerial imagery from the state of California. We then impose a regulated quadratic training objective to select an optimal voting subset from among these stumps. The votes of the subset define the classifier. For optimization, the logical variables in the objective function map to quantum bits in the hardware device, while quadratic couplings encode as the strength of physical interactions between the quantum bits. Hardware design limits the number of couplings between these basic physical entities to five or six. To account for this limitation in mapping large problems to the hardware architecture, we propose a truncation and rescaling of the training objective through a trainable metaparameter. The boosting process on our basic 108- and 508-variable problems, thus constituted, returns classifiers that incorporate a diverse range of color- and texture-based metrics and discriminate tree cover with accuracies as high as 92% in validation and 90% on a test scene encompassing the open space preserves and dense suburban build of Mill Valley, CA. PMID:28241028
42 CFR 37.42 - Chest radiograph specifications-digital radiography systems.
Code of Federal Regulations, 2013 CFR
2013-10-01
... signal-to-noise and detective quantum efficiency must be evaluated and judged acceptable by a qualified...): (A) DICOM Standard PS 3.3-2011, Annex A—Composite Information Object Definitions, sections: Computed...
Augmenting Phase Space Quantization to Introduce Additional Physical Effects
NASA Astrophysics Data System (ADS)
Robbins, Matthew P. G.
Quantum mechanics can be done using classical phase space functions and a star product. The state of the system is described by a quasi-probability distribution. A classical system can be quantized in phase space in different ways with different quasi-probability distributions and star products. A transition differential operator relates different phase space quantizations. The objective of this thesis is to introduce additional physical effects into the process of quantization by using the transition operator. As prototypical examples, we first look at the coarse-graining of the Wigner function and the damped simple harmonic oscillator. By generalizing the transition operator and star product to also be functions of the position and momentum, we show that additional physical features beyond damping and coarse-graining can be introduced into a quantum system, including the generalized uncertainty principle of quantum gravity phenomenology, driving forces, and decoherence.
Dealing with indistinguishable particles and their entanglement.
Compagno, Giuseppe; Castellini, Alessia; Lo Franco, Rosario
2018-07-13
Here, we discuss a particle-based approach to deal with systems of many identical quantum objects (particles) that never employs labels to mark them. We show that it avoids both methodological problems and drawbacks in the study of quantum correlations associated with the standard quantum mechanical treatment of identical particles. The core of this approach is represented by the multiparticle probability amplitude, whose structure in terms of single-particle amplitudes we derive here by first principles. To characterize entanglement among the identical particles, this new method uses the same notions, such as partial trace, adopted for non-identical ones. We highlight the connection between our approach and second quantization. We also define spin-exchanged multipartite states which contain a generalization of W states to identical particles. We prove that particle spatial overlap plays a role in the distributed entanglement within multipartite systems and is responsible for the appearance of non-local quantum correlations.This article is part of a discussion meeting issue 'Foundations of quantum mechanics and their impact on contemporary society'. © 2018 The Author(s).
Favazza, Christopher P; Fetterly, Kenneth A; Hangiandreou, Nicholas J; Leng, Shuai; Schueler, Beth A
2015-01-01
Evaluation of flat-panel angiography equipment through conventional image quality metrics is limited by the scope of standard spatial-domain image quality metric(s), such as contrast-to-noise ratio and spatial resolution, or by restricted access to appropriate data to calculate Fourier domain measurements, such as modulation transfer function, noise power spectrum, and detective quantum efficiency. Observer models have been shown capable of overcoming these limitations and are able to comprehensively evaluate medical-imaging systems. We present a spatial domain-based channelized Hotelling observer model to calculate the detectability index (DI) of our different sized disks and compare the performance of different imaging conditions and angiography systems. When appropriate, changes in DIs were compared to expectations based on the classical Rose model of signal detection to assess linearity of the model with quantum signal-to-noise ratio (SNR) theory. For these experiments, the estimated uncertainty of the DIs was less than 3%, allowing for precise comparison of imaging systems or conditions. For most experimental variables, DI changes were linear with expectations based on quantum SNR theory. DIs calculated for the smallest objects demonstrated nonlinearity with quantum SNR theory due to system blur. Two angiography systems with different detector element sizes were shown to perform similarly across the majority of the detection tasks.
Characteristic operator functions for quantum input-plant-output models and coherent control
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gough, John E.
We introduce the characteristic operator as the generalization of the usual concept of a transfer function of linear input-plant-output systems to arbitrary quantum nonlinear Markovian input-output models. This is intended as a tool in the characterization of quantum feedback control systems that fits in with the general theory of networks. The definition exploits the linearity of noise differentials in both the plant Heisenberg equations of motion and the differential form of the input-output relations. Mathematically, the characteristic operator is a matrix of dimension equal to the number of outputs times the number of inputs (which must coincide), but with entriesmore » that are operators of the plant system. In this sense, the characteristic operator retains details of the effective plant dynamical structure and is an essentially quantum object. We illustrate the relevance to model reduction and simplification definition by showing that the convergence of the characteristic operator in adiabatic elimination limit models requires the same conditions and assumptions appearing in the work on limit quantum stochastic differential theorems of Bouten and Silberfarb [Commun. Math. Phys. 283, 491-505 (2008)]. This approach also shows in a natural way that the limit coefficients of the quantum stochastic differential equations in adiabatic elimination problems arise algebraically as Schur complements and amounts to a model reduction where the fast degrees of freedom are decoupled from the slow ones and eliminated.« less
Generalized Gibbs state with modified Redfield solution: Exact agreement up to second order
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thingna, Juzar; Wang, Jian-Sheng; Haenggi, Peter
A novel scheme for the steady state solution of the standard Redfield quantum master equation is developed which yields agreement with the exact result for the corresponding reduced density matrix up to second order in the system-bath coupling strength. We achieve this objective by use of an analytic continuation of the off-diagonal matrix elements of the Redfield solution towards its diagonal limit. Notably, our scheme does not require the provision of yet higher order relaxation tensors. Testing this modified method for a heat bath consisting of a collection of harmonic oscillators we assess that the system relaxes towards its correctmore » coupling-dependent, generalized quantum Gibbs state in second order. We numerically compare our formulation for a damped quantum harmonic system with the nonequilibrium Green's function formalism: we find good agreement at low temperatures for coupling strengths that are even larger than expected from the very regime of validity of the second-order Redfield quantum master equation. Yet another advantage of our method is that it markedly reduces the numerical complexity of the problem; thus, allowing to study efficiently large-sized system Hilbert spaces.« less
Real-time, continuous-wave terahertz imaging using a microbolometer focal-plane array
NASA Technical Reports Server (NTRS)
Hu, Qing (Inventor); Min Lee, Alan W. (Inventor)
2010-01-01
The present invention generally provides a terahertz (THz) imaging system that includes a source for generating radiation (e.g., a quantum cascade laser) having one or more frequencies in a range of about 0.1 THz to about 10 THz, and a two-dimensional detector array comprising a plurality of radiation detecting elements that are capable of detecting radiation in that frequency range. An optical system directs radiation from the source to an object to be imaged. The detector array detects at least a portion of the radiation transmitted through the object (or reflected by the object) so as to form a THz image of that object.
Towards Quantum Simulation with Circular Rydberg Atoms
NASA Astrophysics Data System (ADS)
Nguyen, T. L.; Raimond, J. M.; Sayrin, C.; Cortiñas, R.; Cantat-Moltrecht, T.; Assemat, F.; Dotsenko, I.; Gleyzes, S.; Haroche, S.; Roux, G.; Jolicoeur, Th.; Brune, M.
2018-01-01
The main objective of quantum simulation is an in-depth understanding of many-body physics, which is important for fundamental issues (quantum phase transitions, transport, …) and for the development of innovative materials. Analytic approaches to many-body systems are limited, and the huge size of their Hilbert space makes numerical simulations on classical computers intractable. A quantum simulator avoids these limitations by transcribing the system of interest into another, with the same dynamics but with interaction parameters under control and with experimental access to all relevant observables. Quantum simulation of spin systems is being explored with trapped ions, neutral atoms, and superconducting devices. We propose here a new paradigm for quantum simulation of spin-1 /2 arrays, providing unprecedented flexibility and allowing one to explore domains beyond the reach of other platforms. It is based on laser-trapped circular Rydberg atoms. Their long intrinsic lifetimes, combined with the inhibition of their microwave spontaneous emission and their low sensitivity to collisions and photoionization, make trapping lifetimes in the minute range realistic with state-of-the-art techniques. Ultracold defect-free circular atom chains can be prepared by a variant of the evaporative cooling method. This method also leads to the detection of arbitrary spin observables with single-site resolution. The proposed simulator realizes an X X Z spin-1 /2 Hamiltonian with nearest-neighbor couplings ranging from a few to tens of kilohertz. All the model parameters can be dynamically tuned at will, making a large range of simulations accessible. The system evolution can be followed over times in the range of seconds, long enough to be relevant for ground-state adiabatic preparation and for the study of thermalization, disorder, or Floquet time crystals. The proposed platform already presents unrivaled features for quantum simulation of regular spin chains. We discuss extensions towards more general quantum simulations of interacting spin systems with full control on individual interactions.
Topical review: spins and mechanics in diamond
NASA Astrophysics Data System (ADS)
Lee, Donghun; Lee, Kenneth W.; Cady, Jeffrey V.; Ovartchaiyapong, Preeti; Bleszynski Jayich, Ania C.
2017-03-01
There has been rapidly growing interest in hybrid quantum devices involving a solid-state spin and a macroscopic mechanical oscillator. Such hybrid devices create exciting opportunities to mediate interactions between disparate quantum bits (qubits) and to explore the quantum regime of macroscopic mechanical objects. In particular, a system consisting of the nitrogen-vacancy defect center (NV center) in diamond coupled to a high-quality-factor mechanical oscillator is an appealing candidate for such a hybrid quantum device, as it utilizes the highly coherent and versatile spin properties of the defect center. In this paper, we will review recent experimental progress on diamond-based hybrid quantum devices in which the spin and orbital dynamics of single defects are driven by the motion of a mechanical oscillator. In addition, we discuss prospective applications for this device, including long-range, phonon-mediated spin-spin interactions, and phonon cooling in the quantum regime. We conclude the review by evaluating the experimental limitations of current devices and identifying alternative device architectures that may reach the strong coupling regime.
NASA Astrophysics Data System (ADS)
Fuchs, Christopher A.; Schack, Rüdiger
2013-10-01
In the quantum-Bayesian interpretation of quantum theory (or QBism), the Born rule cannot be interpreted as a rule for setting measurement-outcome probabilities from an objective quantum state. But if not, what is the role of the rule? In this paper, the argument is given that it should be seen as an empirical addition to Bayesian reasoning itself. Particularly, it is shown how to view the Born rule as a normative rule in addition to usual Dutch-book coherence. It is a rule that takes into account how one should assign probabilities to the consequences of various intended measurements on a physical system, but explicitly in terms of prior probabilities for and conditional probabilities consequent upon the imagined outcomes of a special counterfactual reference measurement. This interpretation is exemplified by representing quantum states in terms of probabilities for the outcomes of a fixed, fiducial symmetric informationally complete measurement. The extent to which the general form of the new normative rule implies the full state-space structure of quantum mechanics is explored.
Topics in Complexity: From Physical to Life Science Systems
NASA Astrophysics Data System (ADS)
Charry, Pedro David Manrique
Complexity seeks to unwrap the mechanisms responsible for collective phenomena across the physical, biological, chemical, economic and social sciences. This thesis investigates real-world complex dynamical systems ranging from the quantum/natural domain to the social domain. The following novel understandings are developed concerning these systems' out-of-equilibrium and nonlinear behavior. Standard quantum techniques show divergent outcomes when a quantum system comprising more than one subunit is far from thermodynamic equilibrium. Abnormal photon inter-arrival times help fulfill the metabolic needs of a terrestrial photosynthetic bacterium. Spatial correlations within incident light can act as a driving mechanism for an organism's adaptation toward more ordered structures. The group dynamics of non-identical objects, whose assembly rules depend on mutual heterogeneity, yield rich transition dynamics between isolation and cohesion, with the cohesion regime reproducing a particular universal pattern commonly found in many real-world systems. Analyses of covert networks reveal collective gender superiority in the connectivity that provides benefits for system robustness and survival. Nodal migration in a network generates complex contagion profiles that lie beyond traditional approaches and yet resemble many modern-day outbreaks.
Quantization of Non-Lagrangian Systems
NASA Astrophysics Data System (ADS)
Kochan, Denis
A novel method for quantization of non-Lagrangian (open) systems is proposed. It is argued that the essential object, which provides both classical and quantum evolution, is a certain canonical two-form defined in extended velocity space. In this setting classical dynamics is recovered from the stringy-type variational principle, which employs umbilical surfaces instead of histories of the system. Quantization is then accomplished in accordance with the introduced variational principle. The path integral for the transition probability amplitude (propagator) is rearranged to a surface functional integral. In the standard case of closed (Lagrangian) systems the presented method reduces to the standard Feynman's approach. The inverse problem of the calculus of variation, the problem of quantization ambiguity and the quantum mechanics in the presence of friction are analyzed in detail.
Quantum potentiality revisited.
Jaeger, Gregg
2017-11-13
Heisenberg offered an interpretation of the quantum state which made use of a quantitative version of an earlier notion, [Formula: see text], of Aristotle by both referring to it using its Latin name, potentia , and identifying its qualitative aspect with [Formula: see text] The relationship between this use and Aristotle's notion was not made by Heisenberg in full detail, beyond noting their common character: that of signifying the system's objective capacity to be found later to possess a property in actuality. For such actualization, Heisenberg required measurement to have taken place, an interaction with external systems that disrupts the otherwise independent, natural evolution of the quantum system. The notion of state actualization was later taken up by others, including Shimony, in the search for a law-like measurement process. Yet, the relation of quantum potentiality to Aristotle's original notion has been viewed as mainly terminological, even by those who used it thus. Here, I reconsider the relation of Heisenberg's notion to Aristotle's and show that it can be explicated in greater specificity than Heisenberg did. This is accomplished through the careful consideration of the role of potentia in physical causation and explanation, and done in order to provide a fuller understanding of this aspect of Heisenberg's approach to quantum mechanics. Most importantly, it is pointed out that Heisenberg's requirement of an external intervention during measurement that disrupts the otherwise independent, natural evolution of the quantum system is in accord with Aristotle's characterization of spontaneous causation. Thus, the need for a teleological understanding of the actualization of potentia, an often assumed requirement that has left this fundamental notion neglected, is seen to be spurious.This article is part of the themed issue 'Second quantum revolution: foundational questions'. © 2017 The Author(s).
Sideband cooling of micromechanical motion to the quantum ground state.
Teufel, J D; Donner, T; Li, Dale; Harlow, J W; Allman, M S; Cicak, K; Sirois, A J; Whittaker, J D; Lehnert, K W; Simmonds, R W
2011-07-06
The advent of laser cooling techniques revolutionized the study of many atomic-scale systems, fuelling progress towards quantum computing with trapped ions and generating new states of matter with Bose-Einstein condensates. Analogous cooling techniques can provide a general and flexible method of preparing macroscopic objects in their motional ground state. Cavity optomechanical or electromechanical systems achieve sideband cooling through the strong interaction between light and motion. However, entering the quantum regime--in which a system has less than a single quantum of motion--has been difficult because sideband cooling has not sufficiently overwhelmed the coupling of low-frequency mechanical systems to their hot environments. Here we demonstrate sideband cooling of an approximately 10-MHz micromechanical oscillator to the quantum ground state. This achievement required a large electromechanical interaction, which was obtained by embedding a micromechanical membrane into a superconducting microwave resonant circuit. To verify the cooling of the membrane motion to a phonon occupation of 0.34 ± 0.05 phonons, we perform a near-Heisenberg-limited position measurement within (5.1 ± 0.4)h/2π, where h is Planck's constant. Furthermore, our device exhibits strong coupling, allowing coherent exchange of microwave photons and mechanical phonons. Simultaneously achieving strong coupling, ground state preparation and efficient measurement sets the stage for rapid advances in the control and detection of non-classical states of motion, possibly even testing quantum theory itself in the unexplored region of larger size and mass. Because mechanical oscillators can couple to light of any frequency, they could also serve as a unique intermediary for transferring quantum information between microwave and optical domains.
NASA Technical Reports Server (NTRS)
Braginsky, V. B.; Vorontsov, Y. I.; Thorne, K. S.
1979-01-01
Future gravitational wave antennas will be approximately 100 kilogram cylinders, whose end-to-end vibrations must be measured so accurately (10 to the -19th power centimeters) that they behave quantum mechanically. Moreover, the vibration amplitude must be measured over and over again without perturbing it (quantum nondemolition measurement). This contrasts with quantum chemistry, quantum optics, or atomic, nuclear, and elementary particle physics where measurements are usually made on an ensemble of identical objects, and care is not given to whether any single object is perturbed or destroyed by the measurement. Electronic techniques required for quantum nondemolition measurements are described as well as the theory underlying them.
Otto engine beyond its standard quantum limit.
Leggio, Bruno; Antezza, Mauro
2016-02-01
We propose a quantum Otto cycle based on the properties of a two-level system in a realistic out-of-thermal-equilibrium electromagnetic field acting as its sole reservoir. This steady configuration is produced without the need of active control over the state of the environment, which is a noncoherent thermal radiation, sustained only by external heat supplied to macroscopic objects. Remarkably, even for nonideal finite-time transformations, it largely over-performs the standard ideal Otto cycle and asymptotically achieves unit efficiency at finite power.
Benefits of Objective Collapse Models for Cosmology and Quantum Gravity
NASA Astrophysics Data System (ADS)
Okon, Elias; Sudarsky, Daniel
2014-02-01
We display a number of advantages of objective collapse theories for the resolution of long-standing problems in cosmology and quantum gravity. In particular, we examine applications of objective reduction models to three important issues: the origin of the seeds of cosmic structure, the problem of time in quantum gravity and the information loss paradox; we show how reduction models contain the necessary tools to provide solutions for these issues. We wrap up with an adventurous proposal, which relates the spontaneous collapse events of objective collapse models to microscopic virtual black holes.
Quantum non-objectivity from performativity of quantum phenomena
NASA Astrophysics Data System (ADS)
Khrennikov, Andrei; Schumann, Andrew
2014-12-01
We analyze the logical foundations of quantum mechanics (QM) by stressing non-objectivity of quantum observables, which is a consequence of the absence of logical atoms in QM. We argue that the matter of quantum non-objectivity is that, on the one hand, the formalism of QM constructed as a mathematical theory is self-consistent, but, on the other hand, quantum phenomena as results of experimenters’ performances are not self-consistent. This self-inconsistency is an effect of the language of QM differing greatly from the language of human performances. The former is the language of a mathematical theory that uses some Aristotelian and Russellian assumptions (e.g., the assumption that there are logical atoms). The latter language consists of performative propositions that are self-inconsistent only from the viewpoint of conventional mathematical theory, but they satisfy another logic that is non-Aristotelian. Hence, the representation of quantum reality in linguistic terms may be different: the difference between a mathematical theory and a logic of performative propositions. To solve quantum self-inconsistency, we apply the formalism of non-classical self-referent logics.
Dynamic Data Driven Applications Systems (DDDAS)
2012-05-03
response) – Earthquakes, hurricanes, tornados, wildfires, floods, landslides, tsunamis, … • Critical Infrastructure systems – Electric-powergrid...Multiphase Flow Weather and Climate Structural Mechanics Seismic Processing Aerodynamics Geophysical Fluids Quantum Chemistry Actinide Chemistry...Alloys • Approach and Objectives: Consider porous SMAs: similar macroscopic behavior but mass /weight is less, and thus attractive for
Quantum mechanics of excitation transport in photosynthetic complexes: a key issues review.
Levi, Federico; Mostarda, Stefano; Rao, Francesco; Mintert, Florian
2015-07-01
For a long time microscopic physical descriptions of biological processes have been based on quantum mechanical concepts and tools, and routinely employed by chemical physicists and quantum chemists. However, the last ten years have witnessed new developments on these studies from a different perspective, rooted in the framework of quantum information theory. The process that more, than others, has been subject of intense research is the transfer of excitation energy in photosynthetic light-harvesting complexes, a consequence of the unexpected experimental discovery of oscillating signals in such highly noisy systems. The fundamental interdisciplinary nature of this research makes it extremely fascinating, but can also constitute an obstacle to its advance. Here in this review our objective is to provide an essential summary of the progress made in the theoretical description of excitation energy dynamics in photosynthetic systems from a quantum mechanical perspective, with the goal of unifying the language employed by the different communities. This is initially realized through a stepwise presentation of the fundamental building blocks used to model excitation transfer, including protein dynamics and the theory of open quantum system. Afterwards, we shall review how these models have evolved as a consequence of experimental discoveries; this will lead us to present the numerical techniques that have been introduced to quantitatively describe photo-absorbed energy dynamics. Finally, we shall discuss which mechanisms have been proposed to explain the unusual coherent nature of excitation transport and what insights have been gathered so far on the potential functional role of such quantum features.
Detecting relay attacks on RFID communication systems using quantum bits
NASA Astrophysics Data System (ADS)
Jannati, Hoda; Ardeshir-Larijani, Ebrahim
2016-11-01
RFID systems became widespread in variety of applications because of their simplicity in manufacturing and usability. In the province of critical infrastructure protection, RFID systems are usually employed to identify and track people, objects and vehicles that enter restricted areas. The most important vulnerability which is prevalent among all protocols employed in RFID systems is against relay attacks. Until now, to protect RFID systems against this kind of attack, the only approach is the utilization of distance-bounding protocols which are not applicable over low-cost devices such as RFID passive tags. This work presents a novel technique using emerging quantum technologies to detect relay attacks on RFID systems. Recently, it is demonstrated that quantum key distribution (QKD) can be implemented in a client-server scheme where client only requires an on-chip polarization rotator that may be integrated into a handheld device. Now we present our technique for a tag-reader scenario which needs similar resources as the mentioned QKD scheme. We argue that our technique requires less resources and provides lower probability of false alarm for the system, compared with distance-bounding protocols, and may pave the way to enhance the security of current RFID systems.
Oscillatory wake potential with exchange-correlation in plasmas
NASA Astrophysics Data System (ADS)
Khan, Arroj A.; Zeba, I.; Jamil, M.; Asif, M.
2017-12-01
The oscillatory wake potential of a moving test charge is studied in quantum dusty plasmas. The plasma system consisting of electrons, ions and negatively charged dust species is embedded in an ambient magnetic field. The modified equation of dispersion is derived using a Quantum Hydrodynamic Model for magnetized plasmas. The quantum effects are inculcated through Fermi degenerate pressure, the tunneling effect and exchange-correlation effects. The study of oscillatory wake is important to know the existence of silence zones in space and astrophysical objects as well as for crystal formation. The graphical description of the potential depicts the significance of the exchange and correlation effects arising through spin and other variables on the wake potential.
Favazza, Christopher P.; Fetterly, Kenneth A.; Hangiandreou, Nicholas J.; Leng, Shuai; Schueler, Beth A.
2015-01-01
Abstract. Evaluation of flat-panel angiography equipment through conventional image quality metrics is limited by the scope of standard spatial-domain image quality metric(s), such as contrast-to-noise ratio and spatial resolution, or by restricted access to appropriate data to calculate Fourier domain measurements, such as modulation transfer function, noise power spectrum, and detective quantum efficiency. Observer models have been shown capable of overcoming these limitations and are able to comprehensively evaluate medical-imaging systems. We present a spatial domain-based channelized Hotelling observer model to calculate the detectability index (DI) of our different sized disks and compare the performance of different imaging conditions and angiography systems. When appropriate, changes in DIs were compared to expectations based on the classical Rose model of signal detection to assess linearity of the model with quantum signal-to-noise ratio (SNR) theory. For these experiments, the estimated uncertainty of the DIs was less than 3%, allowing for precise comparison of imaging systems or conditions. For most experimental variables, DI changes were linear with expectations based on quantum SNR theory. DIs calculated for the smallest objects demonstrated nonlinearity with quantum SNR theory due to system blur. Two angiography systems with different detector element sizes were shown to perform similarly across the majority of the detection tasks. PMID:26158086
Quantum Computer Games: Quantum Minesweeper
ERIC Educational Resources Information Center
Gordon, Michal; Gordon, Goren
2010-01-01
The computer game of quantum minesweeper is introduced as a quantum extension of the well-known classical minesweeper. Its main objective is to teach the unique concepts of quantum mechanics in a fun way. Quantum minesweeper demonstrates the effects of superposition, entanglement and their non-local characteristics. While in the classical…
Non-Newtonian Aspects of Artificial Intelligence
NASA Astrophysics Data System (ADS)
Zak, Michail
2016-05-01
The challenge of this work is to connect physics with the concept of intelligence. By intelligence we understand a capability to move from disorder to order without external resources, i.e., in violation of the second law of thermodynamics. The objective is to find such a mathematical object described by ODE that possesses such a capability. The proposed approach is based upon modification of the Madelung version of the Schrodinger equation by replacing the force following from quantum potential with non-conservative forces that link to the concept of information. A mathematical formalism suggests that a hypothetical intelligent particle, besides the capability to move against the second law of thermodynamics, acquires such properties like self-image, self-awareness, self-supervision, etc. that are typical for Livings. However since this particle being a quantum-classical hybrid acquires non-Newtonian and non-quantum properties, it does not belong to the physics matter as we know it: the modern physics should be complemented with the concept of the information force that represents a bridge to intelligent particle. As a follow-up of the proposed concept, the following question is addressed: can artificial intelligence (AI) system composed only of physical components compete with a human? The answer is proven to be negative if the AI system is based only on simulations, and positive if digital devices are included. It has been demonstrated that there exists such a quantum neural net that performs simulations combined with digital punctuations. The universality of this quantum-classical hybrid is in capability to violate the second law of thermodynamics by moving from disorder to order without external resources. This advanced capability is illustrated by examples. In conclusion, a mathematical machinery of the perception that is the fundamental part of a cognition process as well as intelligence is introduced and discussed.
Information Graph Flow: A Geometric Approximation of Quantum and Statistical Systems
NASA Astrophysics Data System (ADS)
Vanchurin, Vitaly
2018-05-01
Given a quantum (or statistical) system with a very large number of degrees of freedom and a preferred tensor product factorization of the Hilbert space (or of a space of distributions) we describe how it can be approximated with a very low-dimensional field theory with geometric degrees of freedom. The geometric approximation procedure consists of three steps. The first step is to construct weighted graphs (we call information graphs) with vertices representing subsystems (e.g., qubits or random variables) and edges representing mutual information (or the flow of information) between subsystems. The second step is to deform the adjacency matrices of the information graphs to that of a (locally) low-dimensional lattice using the graph flow equations introduced in the paper. (Note that the graph flow produces very sparse adjacency matrices and thus might also be used, for example, in machine learning or network science where the task of graph sparsification is of a central importance.) The third step is to define an emergent metric and to derive an effective description of the metric and possibly other degrees of freedom. To illustrate the procedure we analyze (numerically and analytically) two information graph flows with geometric attractors (towards locally one- and two-dimensional lattices) and metric perturbations obeying a geometric flow equation. Our analysis also suggests a possible approach to (a non-perturbative) quantum gravity in which the geometry (a secondary object) emerges directly from a quantum state (a primary object) due to the flow of the information graphs.
Information Graph Flow: A Geometric Approximation of Quantum and Statistical Systems
NASA Astrophysics Data System (ADS)
Vanchurin, Vitaly
2018-06-01
Given a quantum (or statistical) system with a very large number of degrees of freedom and a preferred tensor product factorization of the Hilbert space (or of a space of distributions) we describe how it can be approximated with a very low-dimensional field theory with geometric degrees of freedom. The geometric approximation procedure consists of three steps. The first step is to construct weighted graphs (we call information graphs) with vertices representing subsystems (e.g., qubits or random variables) and edges representing mutual information (or the flow of information) between subsystems. The second step is to deform the adjacency matrices of the information graphs to that of a (locally) low-dimensional lattice using the graph flow equations introduced in the paper. (Note that the graph flow produces very sparse adjacency matrices and thus might also be used, for example, in machine learning or network science where the task of graph sparsification is of a central importance.) The third step is to define an emergent metric and to derive an effective description of the metric and possibly other degrees of freedom. To illustrate the procedure we analyze (numerically and analytically) two information graph flows with geometric attractors (towards locally one- and two-dimensional lattices) and metric perturbations obeying a geometric flow equation. Our analysis also suggests a possible approach to (a non-perturbative) quantum gravity in which the geometry (a secondary object) emerges directly from a quantum state (a primary object) due to the flow of the information graphs.
Number-theoretic nature of communication in quantum spin systems.
Godsil, Chris; Kirkland, Stephen; Severini, Simone; Smith, Jamie
2012-08-03
The last decade has witnessed substantial interest in protocols for transferring information on networks of quantum mechanical objects. A variety of control methods and network topologies have been proposed, on the basis that transfer with perfect fidelity-i.e., deterministic and without information loss-is impossible through unmodulated spin chains with more than a few particles. Solving the original problem formulated by Bose [Phys. Rev. Lett. 91, 207901 (2003)], we determine the exact number of qubits in unmodulated chains (with an XY Hamiltonian) that permit transfer with a fidelity arbitrarily close to 1, a phenomenon called pretty good state transfer. We prove that this happens if and only if the number of nodes is n = p - 1, 2p - 1, where p is a prime, or n = 2(m) - 1. The result highlights the potential of quantum spin system dynamics for reinterpreting questions about the arithmetic structure of integers and, in this case, primality.
Nonperturbative interpretation of the Bloch vector's path beyond the rotating-wave approximation
NASA Astrophysics Data System (ADS)
Benenti, Giuliano; Siccardi, Stefano; Strini, Giuliano
2013-09-01
The Bloch vector's path of a two-level system exposed to a monochromatic field exhibits, in the regime of strong coupling, complex corkscrew trajectories. By considering the infinitesimal evolution of the two-level system when the field is treated as a classical object, we show that the Bloch vector's rotation speed oscillates between zero and twice the rotation speed predicted by the rotating wave approximation. Cusps appear when the rotation speed vanishes. We prove analytically that in correspondence to cusps the curvature of the Bloch vector's path diverges. On the other hand, numerical data show that the curvature is very large even for a quantum field in the deep quantum regime with mean number of photons n¯≲1. We finally compute numerically the typical error size in a quantum gate when the terms beyond rotating wave approximation are neglected.
PREFACE: International Conference on Quantum Optics and Quantum Information (icQoQi) 2013
NASA Astrophysics Data System (ADS)
2014-11-01
Quantum Information can be understood as being naturally derived from a new understanding of information theory when quantum systems become information carriers and quantum effects become non negligible. Experiments and the realization of various interesting phenomena in quantum information within the established field of quantum optics have been reported, which has provided a very convenient framework for the former. Together, quantum optics and quantum information are among the most exciting areas of interdisciplinary research in modern day science which cover a broad spectrum of topics, from the foundations of quantum mechanics and quantum information science to the introduction of new types of quantum technologies and metrology. The International Conference on Quantum Optics and Quantum Information (icQoQi) 2013 was organized by the Faculty of Science, International Islamic University Malaysia with the objective of bringing together leading academic scientists, researchers and scholars in the domain of interest from around the world to share their experiences and research results about all aspects of quantum optics and quantum information. While the event was organized on a somewhat modest scale, it was in fact a rather fruitful meeting for established researchers and students as well, especially for the local scene where the field is relatively new. We would therefore, like to thank the organizing committee, our advisors and all parties for having made this event successful and last but not least would extend our sincerest gratitude to IOP for publishing these selected papers from icQoQi2013 in Journal of Physics: Conference Series.
Optimized pulses for the control of uncertain qubits
Grace, Matthew D.; Dominy, Jason M.; Witzel, Wayne M.; ...
2012-05-18
The construction of high-fidelity control fields that are robust to control, system, and/or surrounding environment uncertainties is a crucial objective for quantum information processing. Using the two-state Landau-Zener model for illustrative simulations of a controlled qubit, we generate optimal controls for π/2 and π pulses and investigate their inherent robustness to uncertainty in the magnitude of the drift Hamiltonian. Next, we construct a quantum-control protocol to improve system-drift robustness by combining environment-decoupling pulse criteria and optimal control theory for unitary operations. By perturbatively expanding the unitary time-evolution operator for an open quantum system, previous analysis of environment-decoupling control pulses hasmore » calculated explicit control-field criteria to suppress environment-induced errors up to (but not including) third order from π/2 and π pulses. We systematically integrate this criteria with optimal control theory, incorporating an estimate of the uncertain parameter to produce improvements in gate fidelity and robustness, demonstrated via a numerical example based on double quantum dot qubits. For the qubit model used in this work, postfacto analysis of the resulting controls suggests that realistic control-field fluctuations and noise may contribute just as significantly to gate errors as system and environment fluctuations.« less
Redundant imprinting of information in nonideal environments: Objective reality via a noisy channel
NASA Astrophysics Data System (ADS)
Zwolak, Michael; Quan, H. T.; Zurek, Wojciech H.
2010-06-01
Quantum Darwinism provides an information-theoretic framework for the emergence of the objective, classical world from the quantum substrate. The key to this emergence is the proliferation of redundant information throughout the environment where observers can then intercept it. We study this process for a purely decohering interaction when the environment, E, is in a nonideal (e.g., mixed) initial state. In the case of good decoherence, that is, after the pointer states have been unambiguously selected, the mutual information between the system, S, and an environment fragment, F, is given solely by F’s entropy increase. This demonstrates that the environment’s capacity for recording the state of S is directly related to its ability to increase its entropy. Environments that remain nearly invariant under the interaction with S, either because they have a large initial entropy or a misaligned initial state, therefore have a diminished ability to acquire information. To elucidate the concept of good decoherence, we show that, when decoherence is not complete, the deviation of the mutual information from F’s entropy change is quantified by the quantum discord, i.e., the excess mutual information between S and F is information regarding the initial coherence between pointer states of S. In addition to illustrating these results with a single-qubit system interacting with a multiqubit environment, we find scaling relations for the redundancy of information acquired by the environment that display a universal behavior independent of the initial state of S. Our results demonstrate that Quantum Darwinism is robust with respect to nonideal initial states of the environment: the environment almost always acquires redundant information about the system but its rate of acquisition can be reduced.
NASA Astrophysics Data System (ADS)
Pauri, Massimo
2011-11-01
A critical re-examination of the history of the concepts of space (including spacetime of general relativity and relativistic quantum field theory) reveals a basic ontological elusiveness of spatial extension, while, at the same time, highlighting the fact that its epistemic primacy seems to be unavoidably imposed on us (as stated by A.Einstein "giving up the extensional continuum … is like to breathe in airless space"). On the other hand, Planck's discovery of the atomization of action leads to the fundamental recognition of an ontology of non-spatial, abstract entities (Quine) for the quantum level of reality (QT), as distinguished from the necessarily spatio-temporal, experimental revelations ( measurements). The elementary quantum act (measured by Planck's constant) has neither duration nor extension, and any genuinely quantum process literally does not belong in the Raum and time of our experience. As Heisenberg stresses: "Während also die klassische Physik ein objectives Geschehen in Raum and Zeit zum Gegenstand hat, für dessen Existenz seine Beobachtung völlig irrelevant war, behandelt die Quantentheorie Vorgänge, die sozusagen nur in den Momenten der Beobachtung als raumzeitliche Phänomene aufleuchten, und über die in der zwischenzeit anschaulische physikalische Aussagen sinloss sind". An admittedly speculative, hazardous conjecture is then advanced concerning the relation of such quantum ontology with the role of the pre-phenomenal continuum (Husserl) in the perception of macroscopically distinguishable objects in the Raum and time of our experience. Although rather venturesome, it brings together important philosophical issues. Coherently with recent general results in works on the foundations of QT, it is assumed that the linearity of quantum dynamical evolution does not apply to the central nervous system of living beings at a certain level of the evolutionary ramification and at the pre-conscious stage of subjectivity. Accordingly, corresponding to the onset of a non-linear dynamic evolution, a `primary spatial' reduction is `continually' taking place, thereby constituting the neural precondition for the experience of distinguishable macroscopic objects in the continuous spatial extension. While preventing the theoretically possible quantum superpositions of macroscopic objects from being perceivable by living beings, the `primary reduction' has no effect on the standard processes concerning quantum level entities involved in laboratory man-made experiments. In this connection, an experimental check which might falsify the conjecture is briefly discussed. The approach suggested here, if sound, leads to a naturalization of that part of Kant's Transcendental Aesthetics than can survive the Euclidean catastrophe. According to such naturalized transcendentalism, "space can well be transcendental without the axioms being so", in agreement with a well-known statement by Boltzman. Finally, as far as QT is concerned, the conjecture entails that a scheme for quantum measurement of the von Neumann type cannot even `leave the ground', vindicating Bohr's viewpoint. A quantum theory of measurement, in a proper sense, turns out to be unnecessary and in fact impossible.
NASA Astrophysics Data System (ADS)
Ge, Wenchao; Bhattacharya, M.
2016-10-01
Nonclassical states of macroscopic objects are promising for ultrasensitive metrology as well as testing quantum mechanics. In this work, we investigate dissipative mechanical quantum state engineering in an optically levitated nanodiamond. First, we study single-mode mechanical squeezed states by magnetically coupling the mechanical motion to a dressed three-level system provided by a nitrogen-vacancy center in the nanoparticle. Quantum coherence between the dressed levels is created via microwave fields to induce a two-phonon transition, which results in mechanical squeezing. Remarkably, we find that in ultrahigh vacuum quantum squeezing is achievable at room temperature with feedback cooling. For moderate vacuum, quantum squeezing is possible with cryogenic temperature. Second, we present a setup for two mechanical modes coupled to the dressed three levels, which results in two-mode squeezing analogous to the mechanism of the single-mode case. In contrast to previous works, our study provides a deterministic method for engineering macroscopic squeezed states without the requirement for a cavity.
2017-01-01
Integrated single-photon sources with high photon-extraction efficiency are key building blocks for applications in the field of quantum communications. We report on a bright single-photon source realized by on-chip integration of a deterministic quantum dot microlens with a 3D-printed multilens micro-objective. The device concept benefits from a sophisticated combination of in situ 3D electron-beam lithography to realize the quantum dot microlens and 3D femtosecond direct laser writing for creation of the micro-objective. In this way, we obtain a high-quality quantum device with broadband photon-extraction efficiency of (40 ± 4)% and high suppression of multiphoton emission events with g(2)(τ = 0) < 0.02. Our results highlight the opportunities that arise from tailoring the optical properties of quantum emitters using integrated optics with high potential for the further development of plug-and-play fiber-coupled single-photon sources. PMID:28670600
Equivalence principle for quantum systems: dephasing and phase shift of free-falling particles
NASA Astrophysics Data System (ADS)
Anastopoulos, C.; Hu, B. L.
2018-02-01
We ask the question of how the (weak) equivalence principle established in classical gravitational physics should be reformulated and interpreted for massive quantum objects that may also have internal degrees of freedom (dof). This inquiry is necessary because even elementary concepts like a classical trajectory are not well defined in quantum physics—trajectories originating from quantum histories become viable entities only under stringent decoherence conditions. From this investigation we posit two logically and operationally distinct statements of the equivalence principle for quantum systems. Version A: the probability distribution of position for a free-falling particle is the same as the probability distribution of a free particle, modulo a mass-independent shift of its mean. Version B: any two particles with the same velocity wave-function behave identically in free fall, irrespective of their masses. Both statements apply to all quantum states, including those without a classical correspondence, and also for composite particles with quantum internal dof. We also investigate the consequences of the interaction between internal and external dof induced by free fall. For a class of initial states, we find dephasing occurs for the translational dof, namely, the suppression of the off-diagonal terms of the density matrix, in the position basis. We also find a gravitational phase shift in the reduced density matrix of the internal dof that does not depend on the particle’s mass. For classical states, the phase shift has a natural classical interpretation in terms of gravitational red-shift and special relativistic time-dilation.
Masaoka, Kenichiro; Nishida, Yukihiro; Sugawara, Masayuki
2014-08-11
The wide-gamut system colorimetry has been standardized for ultra-high definition television (UHDTV). The chromaticities of the primaries are designed to lie on the spectral locus to cover major standard system colorimetries and real object colors. Although monochromatic light sources are required for a display to perfectly fulfill the system colorimetry, highly saturated emission colors using recent quantum dot technology may effectively achieve the wide gamut. This paper presents simulation results on the chromaticities of highly saturated non-monochromatic light sources and gamut coverage of real object colors to be considered in designing wide-gamut displays with color filters for the UHDTV.
Quantum imaging with undetected photons.
Lemos, Gabriela Barreto; Borish, Victoria; Cole, Garrett D; Ramelow, Sven; Lapkiewicz, Radek; Zeilinger, Anton
2014-08-28
Information is central to quantum mechanics. In particular, quantum interference occurs only if there exists no information to distinguish between the superposed states. The mere possibility of obtaining information that could distinguish between overlapping states inhibits quantum interference. Here we introduce and experimentally demonstrate a quantum imaging concept based on induced coherence without induced emission. Our experiment uses two separate down-conversion nonlinear crystals (numbered NL1 and NL2), each illuminated by the same pump laser, creating one pair of photons (denoted idler and signal). If the photon pair is created in NL1, one photon (the idler) passes through the object to be imaged and is overlapped with the idler amplitude created in NL2, its source thus being undefined. Interference of the signal amplitudes coming from the two crystals then reveals the image of the object. The photons that pass through the imaged object (idler photons from NL1) are never detected, while we obtain images exclusively with the signal photons (from NL1 and NL2), which do not interact with the object. Our experiment is fundamentally different from previous quantum imaging techniques, such as interaction-free imaging or ghost imaging, because now the photons used to illuminate the object do not have to be detected at all and no coincidence detection is necessary. This enables the probe wavelength to be chosen in a range for which suitable detectors are not available. To illustrate this, we show images of objects that are either opaque or invisible to the detected photons. Our experiment is a prototype in quantum information--knowledge can be extracted by, and about, a photon that is never detected.
Quantum Mechanical Earth: Where Orbitals Become Orbits
ERIC Educational Resources Information Center
Keeports, David
2012-01-01
Macroscopic objects, although quantum mechanical by nature, conform to Newtonian mechanics under normal observation. According to the quantum mechanical correspondence principle, quantum behavior is indistinguishable from classical behavior in the limit of very large quantum numbers. The purpose of this paper is to provide an example of the…
An Early Quantum Computing Proposal
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Stephen Russell; Alexander, Francis Joseph; Barros, Kipton Marcos
The D-Wave 2X is the third generation of quantum processing created by D-Wave. NASA (with Google and USRA) and Lockheed Martin (with USC), both own D-Wave systems. Los Alamos National Laboratory (LANL) purchased a D-Wave 2X in November 2015. The D-Wave 2X processor contains (nominally) 1152 quantum bits (or qubits) and is designed to specifically perform quantum annealing, which is a well-known method for finding a global minimum of an optimization problem. This methodology is based on direct execution of a quantum evolution in experimental quantum hardware. While this can be a powerful method for solving particular kinds of problems,more » it also means that the D-Wave 2X processor is not a general computing processor and cannot be programmed to perform a wide variety of tasks. It is a highly specialized processor, well beyond what NNSA currently thinks of as an “advanced architecture.”A D-Wave is best described as a quantum optimizer. That is, it uses quantum superposition to find the lowest energy state of a system by repeated doses of power and settling stages. The D-Wave produces multiple solutions to any suitably formulated problem, one of which is the lowest energy state solution (global minimum). Mapping problems onto the D-Wave requires defining an objective function to be minimized and then encoding that function in the Hamiltonian of the D-Wave system. The quantum annealing method is then used to find the lowest energy configuration of the Hamiltonian using the current D-Wave Two, two-level, quantum processor. This is not always an easy thing to do, and the D-Wave Two has significant limitations that restrict problem sizes that can be run and algorithmic choices that can be made. Furthermore, as more people are exploring this technology, it has become clear that it is very difficult to come up with general approaches to optimization that can both utilize the D-Wave and that can do better than highly developed algorithms on conventional computers for specific applications. These are all fundamental challenges that must be overcome for the D-Wave, or similar, quantum computing technology to be broadly applicable.« less
NASA Technical Reports Server (NTRS)
Vestergaard Hau, Lene (Inventor)
2012-01-01
Methods, systems and apparatus for generating atomic traps, and for storing, controlling and transferring information between first and second spatially separated phase-coherent objects, or using a single phase-coherent object. For plural objects, both phase-coherent objects have a macroscopic occupation of a particular quantum state by identical bosons or identical BCS-paired fermions. The information may be optical information, and the phase-coherent object(s) may be Bose-Einstein condensates, superfluids, or superconductors. The information is stored in the first phase-coherent object at a first storage time and recovered from the second phase-coherent object, or the same first phase-coherent object, at a second revival time. In one example, an integrated silicon wafer-based optical buffer includes an electrolytic atom source to provide the phase-coherent object(s), a nanoscale atomic trap for the phase-coherent object(s), and semiconductor-based optical sources to cool the phase-coherent object(s) and provide coupling fields for storage and transfer of optical information.
Quantum mechanics of black holes.
Witten, Edward
2012-08-03
The popular conception of black holes reflects the behavior of the massive black holes found by astronomers and described by classical general relativity. These objects swallow up whatever comes near and emit nothing. Physicists who have tried to understand the behavior of black holes from a quantum mechanical point of view, however, have arrived at quite a different picture. The difference is analogous to the difference between thermodynamics and statistical mechanics. The thermodynamic description is a good approximation for a macroscopic system, but statistical mechanics describes what one will see if one looks more closely.
Optomechanical detection of weak microwave signals with the assistance of a plasmonic wave
NASA Astrophysics Data System (ADS)
Nejad, A. Asghari; Askari, H. R.; Baghshahi, H. R.
2018-05-01
Entanglement between optical fields and microwave signals can be used as a quantum optical sensing technique to detect received microwave signals from a low-reflecting object which is encompassed by a bright thermal environment. Here, we introduce and analyze an optomechanical system for detecting weak reflected microwave signals from an object of low reflectivity. In our system, coupling and consequently entanglement between microwave and optical photons are achieved by means of a plasmonic wave. The main problem that can be moderated in the field of quantum optical sensing of weak microwave signals is suppressing the destructive effect of high temperatures on the entanglement between microwave signals and optical photons. For this purpose, we will show that our system can perform at high temperatures as well as low ones. It will be shown that the presence of the plasmonic wave can reduce the destructive effect of the thermal noises on the entanglement between microwave and optical photons. Also, we will show that the optomechanical interaction is vital to create an appropriate entanglement between microwave and optical photons.
On the problem of time in quantum mechanics
NASA Astrophysics Data System (ADS)
Bauer, M.
2017-05-01
The problem of time in quantum mechanics (QM) concerns the fact that in the Schrödinger equation time is a parameter, not an operator. Pauli's objection to a time-energy uncertainty relation analogue to the position-momentum one, conjectured by Heisenberg early on, seemed to exclude the existence of such an operator. However Dirac's formulation of an electron's relativistic QM does allow the introduction of a dynamical time operator that is self-adjoint. Consequently, it can be considered as the generator of a unitary transformation of the system, as well as an additional system observable subject to uncertainty. In the present paper these aspects are examined within the standard framework of relativistic QM.
Cooper pair splitter realized in a two-quantum-dot Y-junction.
Hofstetter, L; Csonka, S; Nygård, J; Schönenberger, C
2009-10-15
Non-locality is a fundamental property of quantum mechanics that manifests itself as correlations between spatially separated parts of a quantum system. A fundamental route for the exploration of such phenomena is the generation of Einstein-Podolsky-Rosen (EPR) pairs of quantum-entangled objects for the test of so-called Bell inequalities. Whereas such experimental tests of non-locality have been successfully conducted with pairwise entangled photons, it has not yet been possible to realize an electronic analogue of it in the solid state, where spin-1/2 mobile electrons are the natural quantum objects. The difficulty stems from the fact that electrons are immersed in a macroscopic ground state-the Fermi sea-which prevents the straightforward generation and splitting of entangled pairs of electrons on demand. A superconductor, however, could act as a source of EPR pairs of electrons, because its ground-state is composed of Cooper pairs in a spin-singlet state. These Cooper pairs can be extracted from a superconductor by tunnelling, but, to obtain an efficient EPR source of entangled electrons, the splitting of the Cooper pairs into separate electrons has to be enforced. This can be achieved by having the electrons 'repel' each other by Coulomb interaction. Controlled Cooper pair splitting can thereby be realized by coupling of the superconductor to two normal metal drain contacts by means of individually tunable quantum dots. Here we demonstrate the first experimental realization of such a tunable Cooper pair splitter, which shows a surprisingly high efficiency. Our findings open a route towards a first test of the EPR paradox and Bell inequalities in the solid state.
Amplification, Decoherence, and the Acquisition of Information by Spin Environments
Zwolak, Michael; Riedel, C. Jess; Zurek, Wojciech H.
2016-01-01
Quantum Darwinism recognizes the role of the environment as a communication channel: Decoherence can selectively amplify information about the pointer states of a system of interest (preventing access to complementary information about their superpositions) and can make records of this information accessible to many observers. This redundancy explains the emergence of objective, classical reality in our quantum Universe. Here, we demonstrate that the amplification of information in realistic spin environments can be quantified by the quantum Chernoff information, which characterizes the distinguishability of partial records in individual environment subsystems. We show that, except for a set of initial states of measure zero, the environment always acquires redundant information. Moreover, the Chernoff information captures the rich behavior of amplification in both finite and infinite spin environments, from quadratic growth of the redundancy to oscillatory behavior. These results will considerably simplify experimental testing of quantum Darwinism, e.g., using nitrogen vacancies in diamond. PMID:27193389
Amplification, Decoherence, and the Acquisition of Information by Spin Environments
NASA Astrophysics Data System (ADS)
Zwolak, Michael; Riedel, C. Jess; Zurek, Wojciech H.
2016-05-01
Quantum Darwinism recognizes the role of the environment as a communication channel: Decoherence can selectively amplify information about the pointer states of a system of interest (preventing access to complementary information about their superpositions) and can make records of this information accessible to many observers. This redundancy explains the emergence of objective, classical reality in our quantum Universe. Here, we demonstrate that the amplification of information in realistic spin environments can be quantified by the quantum Chernoff information, which characterizes the distinguishability of partial records in individual environment subsystems. We show that, except for a set of initial states of measure zero, the environment always acquires redundant information. Moreover, the Chernoff information captures the rich behavior of amplification in both finite and infinite spin environments, from quadratic growth of the redundancy to oscillatory behavior. These results will considerably simplify experimental testing of quantum Darwinism, e.g., using nitrogen vacancies in diamond.
Towards a Quantum Interface between Diamond Spin Qubits and Phonons in an Optical Trap
NASA Astrophysics Data System (ADS)
Ji, Peng; Momeen, M. Ummal; Hsu, Jen-Feng; D'Urso, Brian; Dutt, Gurudev
2014-05-01
We introduce a method to optically levitate a pre-selected nanodiamond crystal in air or vacuum. The nanodiamond containing nitrogen-vacancy (NV) centers is suspended on a monolayer of graphene transferred onto a patterned substrate. Laser light is focused onto the sample, using a home-built confocal microscope with a high numerical aperture (NA = 0.9) objective, simultaneously burning the graphene and creating a 3D optical trap that captures the falling nano-diamond at the beam waist. The trapped diamond is an ultra-high-Q mechanical oscillator, allowing us to engineer strong linear and quadratic coupling between the spin of the NV center and the phonon mode. The system could result in an ideal quantum interface between a spin qubit and vibrational phonon mode, potentially enabling applications in quantum information processing and sensing the development of quantum information storage and processing.
NASA Astrophysics Data System (ADS)
Krause, Décio; Arenhart, Jonas R. B.
2014-12-01
In this paper we argue that physical theories, including quantum mechanics, refer to some kind of `objects', even if only implicitly. We raise questions about the logico-mathematical apparatuses commonly employed in such theories, bringing to light some metaphysical presuppositions underlying such apparatuses. We point out to some incongruities in the discourse holding that quantum objects would be entities of some `new kind' while still adhering to the logico-mathematical framework we use to deal with classical objects. The use of such apparatus would hinder us from being in complete agreement with the ontological novelties the theories of quanta seem to advance. Thus, we join those who try to investigate a `logic of quantum mechanics', but from a different point of view: looking for a formal foundation for a supposed new ontology. As a consequence of this move, we can revisit Einstein's ideas on physical reality and propose that, by considering a new kind of object traditionally termed `non-individuals', it is possible to sustain that they still obey some of Einstein's conditions for `physical realities', so that it will be possible to talk of a `principle of separability' in a sense which is not in complete disagreement with quantum mechanics. So, Einstein's departure from quantum mechanics might be softened at least concerning a form of his realism, which sees separated physical objects as distinct `physical realities'.
Emerging interpretations of quantum mechanics and recent progress in quantum measurement
NASA Astrophysics Data System (ADS)
Clarke, M. L.
2014-01-01
The focus of this paper is to provide a brief discussion on the quantum measurement process, by reviewing select examples highlighting recent progress towards its understanding. The areas explored include an outline of the measurement problem, the standard interpretation of quantum mechanics, quantum to classical transition, types of measurement (including weak and projective measurements) and newly emerging interpretations of quantum mechanics (decoherence theory, objective reality, quantum Darwinism and quantum Bayesianism).
Quantum potentiality revisited
NASA Astrophysics Data System (ADS)
Jaeger, Gregg
2017-10-01
Heisenberg offered an interpretation of the quantum state which made use of a quantitative version of an earlier notion,
Theory of activated transport in bilayer quantum Hall systems.
Roostaei, B; Mullen, K J; Fertig, H A; Simon, S H
2008-07-25
We analyze the transport properties of bilayer quantum Hall systems at total filling factor nu=1 in drag geometries as a function of interlayer bias, in the limit where the disorder is sufficiently strong to unbind meron-antimeron pairs, the charged topological defects of the system. We compute the typical energy barrier for these objects to cross incompressible regions within the disordered system using a Hartree-Fock approach, and show how this leads to multiple activation energies when the system is biased. We then demonstrate using a bosonic Chern-Simons theory that in drag geometries current in a single layer directly leads to forces on only two of the four types of merons, inducing dissipation only in the drive layer. Dissipation in the drag layer results from interactions among the merons, resulting in very different temperature dependences for the drag and drive layers, in qualitative agreement with experiment.
EDITORIAL: CAMOP: Quantum Non-Stationary Systems CAMOP: Quantum Non-Stationary Systems
NASA Astrophysics Data System (ADS)
Dodonov, Victor V.; Man'ko, Margarita A.
2010-09-01
Although time-dependent quantum systems have been studied since the very beginning of quantum mechanics, they continue to attract the attention of many researchers, and almost every decade new important discoveries or new fields of application are made. Among the impressive results or by-products of these studies, one should note the discovery of the path integral method in the 1940s, coherent and squeezed states in the 1960-70s, quantum tunneling in Josephson contacts and SQUIDs in the 1960s, the theory of time-dependent quantum invariants in the 1960-70s, different forms of quantum master equations in the 1960-70s, the Zeno effect in the 1970s, the concept of geometric phase in the 1980s, decoherence of macroscopic superpositions in the 1980s, quantum non-demolition measurements in the 1980s, dynamics of particles in quantum traps and cavity QED in the 1980-90s, and time-dependent processes in mesoscopic quantum devices in the 1990s. All these topics continue to be the subject of many publications. Now we are witnessing a new wave of interest in quantum non-stationary systems in different areas, from cosmology (the very first moments of the Universe) and quantum field theory (particle pair creation in ultra-strong fields) to elementary particle physics (neutrino oscillations). A rapid increase in the number of theoretical and experimental works on time-dependent phenomena is also observed in quantum optics, quantum information theory and condensed matter physics. Time-dependent tunneling and time-dependent transport in nano-structures are examples of such phenomena. Another emerging direction of study, stimulated by impressive progress in experimental techniques, is related to attempts to observe the quantum behavior of macroscopic objects, such as mirrors interacting with quantum fields in nano-resonators. Quantum effects manifest themselves in the dynamics of nano-electromechanical systems; they are dominant in the quite new and very promising field of circuit QED. Another rapidly growing research field (although its origin can be traced to the beginning of the 1980s) is the quantum control of evolution at the microscopic level. These examples show that quantum non-stationary systems continue to be a living and very interesting part of quantum physics, uniting researchers from many different areas. Thus it is no mere chance that several special scientific meetings devoted to these topics have been organized recently. One was the international seminar 'Time-Dependent Phenomena in Quantum Mechanics' organized by Manfred Kleber and Tobias Kramer in 2007 at Blaubeuren, Germany. The proceedings of that event were published in 2008 as volume 99 of Journal of Physics: Conference Series. Another recent meeting was the International Workshop on Quantum Non-Stationary Systems, held on 19-23 October 2009 at the International Center for Condensed Matter Physics (ICCMP) in Brasilia, Brazil. It was organized and directed by Victor Dodonov (Institute of Physics, University of Brasilia, Brazil), Vladimir Man'ko (P N Lebedev Physical Institute, Moscow, Russia) and Salomon Mizrahi (Physics Department, Federal University of Sao Carlos, Brazil). This event was accompanied by a satellite workshop 'Quantum Dynamics in Optics and Matter', organized by Salomon Mizrahi and Victor Dodonov on 25-26 October 2009 at the Physics Department of the Federal University of Sao Carlos, Brazil. These two workshops, supported by the Brazilian federal agencies CAPES and CNPq and the local agencies FAP-DF and FAPESP, were attended by more than 120 participants from 16 countries. Almost 50 invited talks and 20 poster presentations covered a wide area of research in quantum mechanics, quantum optics and quantum information. This special issue of CAMOP/Physica Scripta contains contributions presented by some invited speakers and participants of the workshop in Brasilia. Although they do not cover all of the wide spectrum of problems related to quantum non-stationary systems, they nonetheless show some general trends. However, readers should remember that these comments represent the personal points of view of their authors. About a third of the comments are devoted to the evolution of quantum systems in the presence of dissipation or other sources of decoherence. This area, started by Landau in 1927, still contains many extremely interesting and unsolved problems. Here they are discussed in view of such different applications as the dynamics of quantum entanglement, cavity QED, optomechanics and the dynamical Casimir effect. Another group of comments deals with different (e.g. geometrical, tomographic, PT-symmetric) approaches to the dynamics of quantum systems, which have been developed in the past two decades. In particular, the problem of transition from quantum to classical description is considered and the inequalities generalizing the standard uncertainty relations are discussed in this connection. Three comments are devoted to the applications of nonclassical states, analytic representations and the algebraic techniques for resolving problems in quantum information and quantum statistical physics. The other contributions are related to different aspects of the dynamics of concrete physical systems, such as the wave-packet approach to the description of transport phenomena in mesoscopic systems, tunneling phenomena in low-dimensional semiconductor structures and resonance states of two-electron quantum dots. We thank all the authors and referees for their efforts in preparing this special issue. We hope that the comments in this collection will be useful for interested readers.
Rhorix: An interface between quantum chemical topology and the 3D graphics program blender
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mills, Matthew J. L.; Sale, Kenneth L.; Simmons, Blake A.
Journal of Computational Chemistry Published by Wiley Periodicals, Inc. Chemical research is assisted by the creation of visual representations that map concepts (such as atoms and bonds) to 3D objects. These concepts are rooted in chemical theory that predates routine solution of the Schrödinger equation for systems of interesting size. The method of Quantum Chemical Topology (QCT) provides an alternative, parameter-free means to understand chemical phenomena directly from quantum mechanical principles. Representation of the topological elements of QCT has lagged behind the best tools available. Here, we describe a general abstraction (and corresponding file format) that permits the definition ofmore » mappings between topological objects and their 3D representations. Possible mappings are discussed and a canonical example is suggested, which has been implemented as a Python “Add-On” named Rhorix for the state-of-the-art 3D modeling program Blender. This allows chemists to use modern drawing tools and artists to access QCT data in a familiar context. Finally, a number of examples are discussed..« less
Rhorix: An interface between quantum chemical topology and the 3D graphics program blender
Sale, Kenneth L.; Simmons, Blake A.; Popelier, Paul L. A.
2017-01-01
Chemical research is assisted by the creation of visual representations that map concepts (such as atoms and bonds) to 3D objects. These concepts are rooted in chemical theory that predates routine solution of the Schrödinger equation for systems of interesting size. The method of Quantum Chemical Topology (QCT) provides an alternative, parameter‐free means to understand chemical phenomena directly from quantum mechanical principles. Representation of the topological elements of QCT has lagged behind the best tools available. Here, we describe a general abstraction (and corresponding file format) that permits the definition of mappings between topological objects and their 3D representations. Possible mappings are discussed and a canonical example is suggested, which has been implemented as a Python “Add‐On” named Rhorix for the state‐of‐the‐art 3D modeling program Blender. This allows chemists to use modern drawing tools and artists to access QCT data in a familiar context. A number of examples are discussed. © 2017 The Authors. Journal of Computational Chemistry Published by Wiley Periodicals, Inc. PMID:28857244
Rhorix: An interface between quantum chemical topology and the 3D graphics program blender
Mills, Matthew J. L.; Sale, Kenneth L.; Simmons, Blake A.; ...
2017-08-31
Journal of Computational Chemistry Published by Wiley Periodicals, Inc. Chemical research is assisted by the creation of visual representations that map concepts (such as atoms and bonds) to 3D objects. These concepts are rooted in chemical theory that predates routine solution of the Schrödinger equation for systems of interesting size. The method of Quantum Chemical Topology (QCT) provides an alternative, parameter-free means to understand chemical phenomena directly from quantum mechanical principles. Representation of the topological elements of QCT has lagged behind the best tools available. Here, we describe a general abstraction (and corresponding file format) that permits the definition ofmore » mappings between topological objects and their 3D representations. Possible mappings are discussed and a canonical example is suggested, which has been implemented as a Python “Add-On” named Rhorix for the state-of-the-art 3D modeling program Blender. This allows chemists to use modern drawing tools and artists to access QCT data in a familiar context. Finally, a number of examples are discussed..« less
Kafatos, Menas C; Kato, Goro C
2017-12-01
Questions about the nature of reality, whether Consciousness is the fundamental reality in the universe, and what is Consciousness itself, have no answer in systems that assume an external reality independent of Consciousness. Ultimately, the ontological foundation of such systems is the absolute division of subject and object. We advocate instead what we consider to be an approach that is in agreement with the foundation of quantum reality, which is based on Rāmānuja's version of Vedanta philosophy and non-dual Kashmir Śaivism. Quantum mechanics opened the door to consciousness, but it cannot account for consciousness. However, the quantum measurement problem implies that we cannot remove subjective experience from the practice of science. It is then appropriate to seek mathematical formalisms for the workings of consciousness that don't rely on specific interpretations of quantum mechanics. Temporal topos provides such a framework. In the theory of temporal topos, which we outline here, the difference between a subject and an object involves the direction of a morphism in a category. We also note that in the dual category, the direction of the morphism is in the opposite direction compared with the original direction of the original category. The resulting formalism provides powerful ways to address consciousness and qualia, beyond attempts to account for consciousness through physical theories. We also discuss the implications of the mathematics presented here for the convergence of science and non-dualist philosophies, as an emerging science of Consciousness, that may bring out the underlying unity of physics, life and mind. Copyright © 2017. Published by Elsevier Ltd.
Compact mode-locked diode laser system for high precision frequency comparisons in microgravity
NASA Astrophysics Data System (ADS)
Christopher, H.; Kovalchuk, E. V.; Wicht, A.; Erbert, G.; Tränkle, G.; Peters, A.
2017-11-01
Nowadays cold atom-based quantum sensors such as atom interferometers start leaving optical labs to put e.g. fundamental physics under test in space. One of such intriguing applications is the test of the Weak Equivalence Principle, the Universality of Free Fall (UFF), using different quantum objects such as rubidium (Rb) and potassium (K) ultra-cold quantum gases. The corresponding atom interferometers are implemented with light pulses from narrow linewidth lasers emitting near 767 nm (K) and 780 nm (Rb). To determine any relative acceleration of the K and Rb quantum ensembles during free fall, the frequency difference between the K and Rb lasers has to be measured very accurately by means of an optical frequency comb. Micro-gravity applications not only require good electro-optical characteristics but are also stringent in their demand for compactness, robustness and efficiency. For frequency comparison experiments the rather complex fiber laser-based frequency comb system may be replaced by one semiconductor laser chip and some passive components. Here we present an important step towards this direction, i.e. we report on the development of a compact mode-locked diode laser system designed to generate a highly stable frequency comb in the wavelength range of 780 nm.
NASA Astrophysics Data System (ADS)
Chen, Peng-Fei; Sun, Wen-Yang; Ming, Fei; Huang, Ai-Jun; Wang, Dong; Ye, Liu
2018-01-01
Quantum objects are susceptible to noise from their surrounding environments, interaction with which inevitably gives rise to quantum decoherence or dissipation effects. In this work, we examine how different types of local noise under an open system affect entropic uncertainty relations for two incompatible measurements. Explicitly, we observe the dynamics of the entropic uncertainty in the presence of quantum memory under two canonical categories of noisy environments: unital (phase flip) and nonunital (amplitude damping). Our study shows that the measurement uncertainty exhibits a non-monotonic dynamical behavior—that is, the amount of the uncertainty will first inflate, and subsequently decrease, with the growth of decoherence strengths in the two channels. In contrast, the uncertainty decreases monotonically with the growth of the purity of the initial state shared in prior. In order to reduce the measurement uncertainty in noisy environments, we put forward a remarkably effective strategy to steer the magnitude of uncertainty by means of a local non-unitary operation (i.e. weak measurement) on the qubit of interest. It turns out that this non-unitary operation can greatly reduce the entropic uncertainty, upon tuning the operation strength. Our investigations might thereby offer an insight into the dynamics and steering of entropic uncertainty in open systems.
A quantum dynamics study of the benzopyran ring opening guided by laser pulses
NASA Astrophysics Data System (ADS)
Saab, Mohamad; Doriol, Loïc Joubert; Lasorne, Benjamin; Guérin, Stéphane; Gatti, Fabien
2014-10-01
The ring-opening photoisomerization of benzopyran, which occurs via a photochemical route involving a conical intersection, has been studied with quantum dynamics calculations using the multi-configuration time-dependent Hartree method (MCTDH). We introduce a mechanistic strategy to control the conversion of benzopyran to merocyanine with laser pulses. We use a six-dimensional model developed in a previous work for the potential energy surfaces (PES) based on an extension of the vibronic-coupling Hamiltonian model (diabatization method by ansatz), which depends on the most active degrees of freedom. The main objective of these quantum dynamics simulations is to provide a set of strategies that could help experimentalists to control the photoreactivity vs. photostability ratio (selectivity). In this work we present: (i) a pump-dump technique used to control the photostability, (ii) a two-step strategy to enhance the reactivity of the system: first, a pure vibrational excitation in the electronic ground state that prepares the system and, second, an ultraviolet excitation that brings the system to the first adiabatic electronic state; (iii) finally the effect of a non-resonant pulse (Stark effect) on the dynamics.
NASA Astrophysics Data System (ADS)
Zaman, D. M. S.; Amina, M.; Dip, P. R.; Mamun, A. A.
2017-11-01
The basic properties of planar and non-planar (spherical and cylindrical) nucleus-acoustic (NA) shock structures (SSs) in a strongly coupled self-gravitating degenerate quantum plasma system (containing strongly coupled non-relativistically degenerate heavy nuclear species, weakly coupled non-relativistically degenerate light nuclear species, and inertialess non-/ultra-relativistically degenerate electrons) have been investigated. The generalized quantum hydrodynamic model and the reductive perturbation method have been used to derive the modified Burgers equation. It is shown that the strong correlation among heavy nuclear species acts as the source of dissipation and is responsible for the formation of the NA SSs with positive (negative) electrostatic (self-gravitational) potential. It is also observed that the effects of non-/ultra-relativistically degenerate electron pressure, dynamics of non-relativistically degenerate light nuclear species, spherical geometry, etc., significantly modify the basic features of the NA SSs. The applications of our results in astrophysical compact objects like white dwarfs and neutron stars are briefly discussed.
Exploring the complexity of quantum control optimization trajectories.
Nanduri, Arun; Shir, Ofer M; Donovan, Ashley; Ho, Tak-San; Rabitz, Herschel
2015-01-07
The control of quantum system dynamics is generally performed by seeking a suitable applied field. The physical objective as a functional of the field forms the quantum control landscape, whose topology, under certain conditions, has been shown to contain no critical point suboptimal traps, thereby enabling effective searches for fields that give the global maximum of the objective. This paper addresses the structure of the landscape as a complement to topological critical point features. Recent work showed that landscape structure is highly favorable for optimization of state-to-state transition probabilities, in that gradient-based control trajectories to the global maximum value are nearly straight paths. The landscape structure is codified in the metric R ≥ 1.0, defined as the ratio of the length of the control trajectory to the Euclidean distance between the initial and optimal controls. A value of R = 1 would indicate an exactly straight trajectory to the optimal observable value. This paper extends the state-to-state transition probability results to the quantum ensemble and unitary transformation control landscapes. Again, nearly straight trajectories predominate, and we demonstrate that R can take values approaching 1.0 with high precision. However, the interplay of optimization trajectories with critical saddle submanifolds is found to influence landscape structure. A fundamental relationship necessary for perfectly straight gradient-based control trajectories is derived, wherein the gradient on the quantum control landscape must be an eigenfunction of the Hessian. This relation is an indicator of landscape structure and may provide a means to identify physical conditions when control trajectories can achieve perfect linearity. The collective favorable landscape topology and structure provide a foundation to understand why optimal quantum control can be readily achieved.
Non-locality: A defence of widespread beliefs
NASA Astrophysics Data System (ADS)
Laudisa, Federico
It has been argued, on the basis of an equivalence between the existence of a joint probability distribution for incompatible observables and the satisfaction of the Bell inequalities, that these inequalities are irrelevant to the issue of (non)-locality; and that this issue arises only if we adhere to a notion of objectivity in the description of physical systems that is not justified in quantum mechanics. These arguments are discussed in the orthodox and in the unsharp approach to quantum mechanics, and found defective: the Bell inequalities turn out to be relevant both in the orthodox and in the unsharp approach.
NASA Astrophysics Data System (ADS)
Friedberg, R.; Hohenberg, P. C.
2014-09-01
Formulations of quantum mechanics (QM) can be characterized as realistic, operationalist, or a combination of the two. In this paper a realistic theory is defined as describing a closed system entirely by means of entities and concepts pertaining to the system. An operationalist theory, on the other hand, requires in addition entities external to the system. A realistic formulation comprises an ontology, the set of (mathematical) entities that describe the system, and assertions, the set of correct statements (predictions) the theory makes about the objects in the ontology. Classical mechanics is the prime example of a realistic physical theory. A straightforward generalization of classical mechanics to QM is hampered by the inconsistency of quantum properties with classical logic, a circumstance that was noted many years ago by Birkhoff and von Neumann. The present realistic formulation of the histories approach originally introduced by Griffiths, which we call ‘compatible quantum theory (CQT)’, consists of a ‘microscopic’ part (MIQM), which applies to a closed quantum system of any size, and a ‘macroscopic’ part (MAQM), which requires the participation of a large (ideally, an infinite) system. The first (MIQM) can be fully formulated based solely on the assumption of a Hilbert space ontology and the noncontextuality of probability values, relying in an essential way on Gleason's theorem and on an application to dynamics due in large part to Nistico. Thus, the present formulation, in contrast to earlier ones, derives the Born probability formulas and the consistency (decoherence) conditions for frameworks. The microscopic theory does not, however, possess a unique corpus of assertions, but rather a multiplicity of contextual truths (‘c-truths’), each one associated with a different framework. This circumstance leads us to consider the microscopic theory to be physically indeterminate and therefore incomplete, though logically coherent. The completion of the theory requires a macroscopic mechanism for selecting a physical framework, which is part of the macroscopic theory (MAQM). The selection of a physical framework involves the breaking of the microscopic ‘framework symmetry’, which can proceed either phenomenologically as in the standard quantum measurement theory, or more fundamentally by considering the quantum system under study to be a subsystem of a macroscopic quantum system. The decoherent histories formulation of Gell-Mann and Hartle, as well as that of Omnès, are theories of this fundamental type, where the physical framework is selected by a coarse-graining procedure in which the physical phenomenon of decoherence plays an essential role. Various well-known interpretations of QM are described from the perspective of CQT. Detailed definitions and proofs are presented in the appendices.
Model for quantum effects in stellar collapse
NASA Astrophysics Data System (ADS)
Arderucio-Costa, Bruno; Unruh, William G.
2018-01-01
We present a simple model for stellar collapse and evaluate the quantum mechanical stress-energy tensor to argue that quantum effects do not play an important role for the collapse of astrophysical objects.
Simulation of n-qubit quantum systems. V. Quantum measurements
NASA Astrophysics Data System (ADS)
Radtke, T.; Fritzsche, S.
2010-02-01
The FEYNMAN program has been developed during the last years to support case studies on the dynamics and entanglement of n-qubit quantum registers. Apart from basic transformations and (gate) operations, it currently supports a good number of separability criteria and entanglement measures, quantum channels as well as the parametrizations of various frequently applied objects in quantum information theory, such as (pure and mixed) quantum states, hermitian and unitary matrices or classical probability distributions. With the present update of the FEYNMAN program, we provide a simple access to (the simulation of) quantum measurements. This includes not only the widely-applied projective measurements upon the eigenspaces of some given operator but also single-qubit measurements in various pre- and user-defined bases as well as the support for two-qubit Bell measurements. In addition, we help perform generalized and POVM measurements. Knowing the importance of measurements for many quantum information protocols, e.g., one-way computing, we hope that this update makes the FEYNMAN code an attractive and versatile tool for both, research and education. New version program summaryProgram title: FEYNMAN Catalogue identifier: ADWE_v5_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADWE_v5_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 27 210 No. of bytes in distributed program, including test data, etc.: 1 960 471 Distribution format: tar.gz Programming language: Maple 12 Computer: Any computer with Maple software installed Operating system: Any system that supports Maple; the program has been tested under Microsoft Windows XP and Linux Classification: 4.15 Catalogue identifier of previous version: ADWE_v4_0 Journal reference of previous version: Comput. Phys. Commun. 179 (2008) 647 Does the new version supersede the previous version?: Yes Nature of problem: During the last decade, the field of quantum information science has largely contributed to our understanding of quantum mechanics, and has provided also new and efficient protocols that are used on quantum entanglement. To further analyze the amount and transfer of entanglement in n-qubit quantum protocols, symbolic and numerical simulations need to be handled efficiently. Solution method: Using the computer algebra system Maple, we developed a set of procedures in order to support the definition, manipulation and analysis of n-qubit quantum registers. These procedures also help to deal with (unitary) logic gates and (nonunitary) quantum operations and measurements that act upon the quantum registers. All commands are organized in a hierarchical order and can be used interactively in order to simulate and analyze the evolution of n-qubit quantum systems, both in ideal and noisy quantum circuits. Reasons for new version: Until the present, the FEYNMAN program supported the basic data structures and operations of n-qubit quantum registers [1], a good number of separability and entanglement measures [2], quantum operations (noisy channels) [3] as well as the parametrizations of various frequently applied objects, such as (pure and mixed) quantum states, hermitian and unitary matrices or classical probability distributions [4]. With the current extension, we here add all necessary features to simulate quantum measurements, including the projective measurements in various single-qubit and the two-qubit Bell basis, and POVM measurements. Together with the previously implemented functionality, this greatly enhances the possibilities of analyzing quantum information protocols in which measurements play a central role, e.g., one-way computation. Running time: Most commands require ⩽10 seconds of processor time on a Pentium 4 processor with ⩾2 GHz RAM or newer, if they work with quantum registers with five or less qubits. Moreover, about 5-20 MB of working memory is typically needed (in addition to the memory for the Maple environment itself). However, especially when working with symbolic expressions, the requirements on the CPU time and memory critically depend on the size of the quantum registers owing to the exponential growth of the dimension of the associated Hilbert space. For example, complex (symbolic) noise models, i.e. with several Kraus operators, may result in very large expressions that dramatically slow down the evaluation of e.g. distance measures or the final-state entropy, etc. In these cases, Maple's assume facility sometimes helps to reduce the complexity of the symbolic expressions, but more often than not only a numerical evaluation is feasible. Since the various commands can be applied to quite different scenarios, no general scaling rule can be given for the CPU time or the request of memory. References:[1] T. Radtke, S. Fritzsche, Comput. Phys. Commun. 173 (2005) 91.[2] T. Radtke, S. Fritzsche, Comput. Phys. Commun. 175 (2006) 145.[3] T. Radtke, S. Fritzsche, Comput. Phys. Commun. 176 (2007) 617.[4] T. Radtke, S. Fritzsche, Comput. Phys. Commun. 179 (2008) 647.
Objectivity in a Noisy Photonic Environment through Quantum State Information Broadcasting
NASA Astrophysics Data System (ADS)
Korbicz, J. K.; Horodecki, P.; Horodecki, R.
2014-03-01
Recently, the emergence of classical objectivity as a property of a quantum state has been explicitly derived for a small object embedded in a photonic environment in terms of a spectrum broadcast form—a specific classically correlated state, redundantly encoding information about the preferred states of the object in the environment. However, the environment was in a pure state and the fundamental problem was how generic and robust is the conclusion. Here, we prove that despite the initial environmental noise, the emergence of the broadcast structure still holds, leading to the perceived objectivity of the state of the object. We also show how this leads to a quantum Darwinism-type condition, reflecting the classicality of proliferated information in terms of a limit behavior of the mutual information. Quite surprisingly, we find "singular points" of the decoherence, which can be used to faithfully broadcast a specific classical message through the noisy environment.
Quantum correlations from a room-temperature optomechanical cavity
NASA Astrophysics Data System (ADS)
Purdy, T. P.; Grutter, K. E.; Srinivasan, K.; Taylor, J. M.
2017-06-01
The act of position measurement alters the motion of an object being measured. This quantum measurement backaction is typically much smaller than the thermal motion of a room-temperature object and thus difficult to observe. By shining laser light through a nanomechanical beam, we measure the beam’s thermally driven vibrations and perturb its motion with optical force fluctuations at a level dictated by the Heisenberg measurement-disturbance uncertainty relation. We demonstrate a cross-correlation technique to distinguish optically driven motion from thermally driven motion, observing this quantum backaction signature up to room temperature. We use the scale of the quantum correlations, which is determined by fundamental constants, to gauge the size of thermal motion, demonstrating a path toward absolute thermometry with quantum mechanically calibrated ticks.
Understanding Quantum Numbers in General Chemistry Textbooks
ERIC Educational Resources Information Center
Niaz, Mansoor; Fernandez, Ramon
2008-01-01
Quantum numbers and electron configurations form an important part of the general chemistry curriculum and textbooks. The objectives of this study are: (1) Elaboration of a framework based on the following aspects: (a) Origin of the quantum hypothesis, (b) Alternative interpretations of quantum mechanics, (c) Differentiation between an orbital and…
Quantum Computer Games: Schrodinger Cat and Hounds
ERIC Educational Resources Information Center
Gordon, Michal; Gordon, Goren
2012-01-01
The quantum computer game "Schrodinger cat and hounds" is the quantum extension of the well-known classical game fox and hounds. Its main objective is to teach the unique concepts of quantum mechanics in a fun way. "Schrodinger cat and hounds" demonstrates the effects of superposition, destructive and constructive interference, measurements and…
Introscopy in nano- and mesoscopic physics: Single electronics and quantum ballistics
NASA Astrophysics Data System (ADS)
Tkachenko, V. A.; Tkachenko, O. A.; Kvon, Z. D.; Latyshev, A. V.; Aseev, A. L.
2016-09-01
A method is presented to be used in a computational experiment aimed at studying the internal structure of nano- and mesoscopic objects, i.e., conducting subsystems and quantum phenomena in solid submicron objects, which demonstrate an individual behavior of low-temperature resistance.
On electromagnetic and quantum invisibility
NASA Astrophysics Data System (ADS)
Mundru, Pattabhiraju Chowdary
The principle objective of this dissertation is to investigate the fundamental properties of electromagnetic wave interactions with artificially fabricated materials i.e., metamaterials for application in advanced stealth technology called electromagnetic cloaking. The main goal is to theoretically design a metamaterial shell around an object that completely eliminates the dipolar and higher order multipolar scattering, thus making the object invisible. In this context, we developed a quasi-effective medium theory that determines the optical properties of multi-layered-composites beyond the quasi-static limit. The proposed theory exactly reproduces the far-field scattering/extinction cross sections through an iterative process in which mode-dependent quasi-effective impedances of the composite system are introduced. In the large wavelength limit, our theory is consistent with Maxwell-Garnett formalism. Possible applications in determining the hybridization particle resonances of multi-shell structures and electromagnetic cloaking are identified. This dissertation proposes a multi-shell generic cloaking system. A transparency condition independent of the object's optical and geometrical properties is proposed in the quasi-static regime of operation. The suppression of dipolar scattering is demonstrated in both cylindrically and spherically symmetric systems. A realistic tunable low-loss shell design is proposed based on the composite metal-dielectric shell. The effects due to dissipation and dispersion on the overall scattering cross-section are thoroughly evaluated. It is shown that a strong reduction of scattering by a factor of up to 103 can be achieved across the entire optical spectrum. Full wave numerical simulations for complex shaped particle are performed to validate the analytical theory. The proposed design does not require optical magnetism and is generic in the sense that it is independent of the object's material and geometrical properties. A generic quantum cloak analogous to the optical cloak is also proposed. The transparency conditions required for the shells to cloak an object impinged by a low energy beam of particles are derived. A realistic cloaking system with semiconductor material shells is studied.
NASA Astrophysics Data System (ADS)
Berghofer, Philipp
2018-05-01
Ontic structural realism refers to the novel, exciting, and widely discussed basic idea that the structure of physical reality is genuinely relational. In its radical form, the doctrine claims that there are, in fact, no objects but only structure, i.e., relations. More moderate approaches state that objects have only relational but no intrinsic properties. In its most moderate and most tenable form, ontic structural realism assumes that at the most fundamental level of physical reality there are only relational properties. This means that the most fundamental objects only possess relational but no non-reducible intrinsic properties. The present paper will argue that our currently best physics refutes even this most moderate form of ontic structural realism. More precisely, I will claim that 1) according to quantum field theory, the most fundamental objects of matter are quantum fields and not particles, and show that 2) according to the Standard Model, quantum fields have intrinsic non-relational properties.
NASA Astrophysics Data System (ADS)
Aspelmeyer, Markus; Schwab, Keith
2008-09-01
The last five years have witnessed an amazing development in the field of nano- and micromechanics. What was widely considered fantasy ten years ago is about to become an experimental reality: the quantum regime of mechanical systems is within reach of current experiments. Two factors (among many) have contributed significantly to this situation. As part of the widespread effort into nanoscience and nanofabrication, it is now possible to produce high-quality nanomechanical and micromechanical resonators, spanning length scales of millimetres to nanometres, and frequencies from kilohertz to gigahertz. Researchers coupled these mechanical elements to high-sensitivity actuation and readout systems such as single-electron transistors, quantum dots, atomic point contacts, SQUID loops, high-finesse optical or microwave-cavities etc. Some of these ultra-sensitive readout schemes are in principle capable of detection at the quantum limit and a large part of the experimental effort is at present devoted to achieving this. On the other hand, the fact that the groups working in the field come from various different physics backgrounds—the authors of this editorial are a representative sample—has been a constant source of inspiration for helpful theoretical and experimental tools that have been adapted from other fields to the mechanical realm. To name just one example: ideas from quantum optics have led to the recent demonstration (both in theory and experiment) that coupling a mechanical resonator to a high-finesse optical cavity can be fully analogous to the well-known sideband-resolved laser cooling of ions and hence is capable in principle of cooling a mechanical mode into its quantum ground state. There is no doubt that such interdisciplinarity has been a crucial element for the development of the field. It is interesting to note that a very similar sociological phenomenon occurred earlier in the quantum information community, an area which is deeply enriched by the diverse backgrounds and approaches of the researchers. As diverse as the approaches are the manifold of goals and perspectives for operating mechanical systems close to or within the quantum regime. Already now, nanomechanical sensors achieve single-molecule mass detection and magnetic resonance force detection from single-electron spins although they are operated far from quantum. Quantum-limited mechanical devices promise a new technology with hitherto unachieved performance for high-resolution sensing. This is also of high relevance for macroscopic mechanical resonators used in gravitational wave detectors. Furthermore, the increasing capability to couple mechanical modes to individual quantum systems raises the interesting question of whether mechanics can serve as a quantum bus in hybrid implementations of quantum information processing. Finally, the possibility of generating quantum superposition states that involve displacements of a massive macroscopic object (such as the center of mass of a mechanical beam) provides a completely new parameter regime for testing quantum theory over the amazing range from nanomechanical objects of several picograms up to gram-scale mirrors used in gravitational wave interferometers. We are looking forward to these fascinating developments! This Focus Issue is intended to highlight the present status of the field and to provide both introduction and motivation for students and researchers who want to get familiar with this exciting area or even want to join it. It also complements the conference activities of our community during the last year, where a series of dedicated invited sessions at several international conferences (APS March Meeting 2008, CLEO/QELS 2008, OSA Frontiers in Optics 2008, PQE 2008/2009 etc) culminated in the first Gordon Conference on 'Mechanical Systems at the Quantum Limit'. Given the fast development of the field it was not surprising to see that during the collection of the following contributions new progress was reported almost on a monthly basis and new groups entered the field. We intend to keep submission to this Focus Issue open for some time and invite everyone to share their latest results with us. And finally, a note to our fellow colleagues: keep up the good work! We would like to call the next Focus Issue 'Mechanical Systems IN the Quantum Regime'. Focus on Mechanical Systems at the Quantum Limit Contents Parametric coupling between macroscopic quantum resonators L Tian, M S Allman and R W Simmonds Quantum noise in a nanomechanical Duffing resonator E Babourina-Brooks, A Doherty and G J Milburn Creating and verifying a quantum superposition in a micro-optomechanical system Dustin Kleckner, Igor Pikovski, Evan Jeffrey, Luuk Ament, Eric Eliel, Jeroen van den Brink and Dirk Bouwmeester Ground-state cooling of a nanomechanical resonator via a Cooper-pair box qubit Konstanze Jaehne, Klemens Hammerer and Margareta Wallquist Dissipation in circuit quantum electrodynamics: lasing and cooling of a low-frequency oscillator Julian Hauss, Arkady Fedorov, Stephan André, Valentina Brosco, Carsten Hutter, Robin Kothari, Sunil Yeshwanth, Alexander Shnirman and Gerd Schön Route to ponderomotive entanglement of light via optically trapped mirrors Christopher Wipf, Thomas Corbitt, Yanbei Chen and Nergis Mavalvala Nanomechanical-resonator-assisted induced transparency in a Cooper-pair box system Xiao-Zhong Yuan, Hsi-Sheng Goan, Chien-Hung Lin, Ka-Di Zhu and Yi-Wen Jiang High-sensitivity monitoring of micromechanical vibration using optical whispering gallery mode resonators A Schliesser, G Anetsberger, R Rivière, O Arcizet and T J Kippenberg Optomechanical to mechanical entanglement transformation Giovanni Vacanti, Mauro Paternostro, G Massimo Palma and Vlatko Vedral The optomechanical instability in the quantum regime Max Ludwig, Björn Kubala and Florian Marquardt Quantum limits of photothermal and radiation pressure cooling of a movable mirror M Pinard and A Dantan Mechanical feedback in the high-frequency limit R El Boubsi, O Usmani and Ya M Blanter Back-action evasion and squeezing of a mechanical resonator using a cavity detector A A Clerk, F Marquardt and K Jacobs Simultaneous cooling and entanglement of mechanical modes of a micromirror in an optical cavity Claudiu Genes, David Vitali and Paolo Tombesi Dispersive optomechanics: a membrane inside a cavity A M Jayich, J C Sankey, B M Zwickl, C Yang, J D Thompson, S M Girvin, A A Clerk, F Marquardt and J G E Harris Cavity-assisted backaction cooling of mechanical resonators I Wilson-Rae, N Nooshi, J Dobrindt, T J Kippenberg and W Zwerger Cavity cooling of a nanomechanical resonator by light scattering I Favero and K Karrai Probing the quantum coherence of a nanomechanical resonator using a superconducting qubit: II. Implementation M P Blencowe and A D Armour Probing the quantum coherence of a nanomechanical resonator using a superconducting qubit: I. Echo scheme A D Armour and M P Blencowe Nanoelectromechanics of suspended carbon nanotubes A K Hüttel, M Poot, B Witkamp and H S J van der Zant Prospects for cooling nanomechanical motion by coupling to a superconducting microwave resonator J D Teufel, C A Regal and K W Lehnert
Hoffman, Donald D.; Prakash, Chetan
2014-01-01
Current models of visual perception typically assume that human vision estimates true properties of physical objects, properties that exist even if unperceived. However, recent studies of perceptual evolution, using evolutionary games and genetic algorithms, reveal that natural selection often drives true perceptions to extinction when they compete with perceptions tuned to fitness rather than truth: Perception guides adaptive behavior; it does not estimate a preexisting physical truth. Moreover, shifting from evolutionary biology to quantum physics, there is reason to disbelieve in preexisting physical truths: Certain interpretations of quantum theory deny that dynamical properties of physical objects have definite values when unobserved. In some of these interpretations the observer is fundamental, and wave functions are compendia of subjective probabilities, not preexisting elements of physical reality. These two considerations, from evolutionary biology and quantum physics, suggest that current models of object perception require fundamental reformulation. Here we begin such a reformulation, starting with a formal model of consciousness that we call a “conscious agent.” We develop the dynamics of interacting conscious agents, and study how the perception of objects and space-time can emerge from such dynamics. We show that one particular object, the quantum free particle, has a wave function that is identical in form to the harmonic functions that characterize the asymptotic dynamics of conscious agents; particles are vibrations not of strings but of interacting conscious agents. This allows us to reinterpret physical properties such as position, momentum, and energy as properties of interacting conscious agents, rather than as preexisting physical truths. We sketch how this approach might extend to the perception of relativistic quantum objects, and to classical objects of macroscopic scale. PMID:24987382
Quantum correlations in multipartite quantum systems
NASA Astrophysics Data System (ADS)
Jafarizadeh, M. A.; Heshmati, A.; Karimi, N.; Yahyavi, M.
2018-03-01
Quantum entanglement is the most famous type of quantum correlation between elements of a quantum system that has a basic role in quantum communication protocols like quantum cryptography, teleportation and Bell inequality detection. However, it has already been shown that various applications in quantum information theory do not require entanglement. Quantum discord as a new kind of quantum correlations beyond entanglement, is the most popular candidate for general quantum correlations. In this paper, first we find the entanglement witness in a particular multipartite quantum system which consists of a N-partite system in 2 n -dimensional space. Then we give an exact analytical formula for the quantum discord of this system. At the end of the paper, we investigate the additivity relation of the quantum correlation and show that this relation is satisfied for a N-partite system with 2 n -dimensional space.
Genuine quantum correlations in quantum many-body systems: a review of recent progress
NASA Astrophysics Data System (ADS)
De Chiara, Gabriele; Sanpera, Anna
2018-07-01
Quantum information theory has considerably helped in the understanding of quantum many-body systems. The role of quantum correlations and in particular, bipartite entanglement, has become crucial to characterise, classify and simulate quantum many body systems. Furthermore, the scaling of entanglement has inspired modifications to numerical techniques for the simulation of many-body systems leading to the, now established, area of tensor networks. However, the notions and methods brought by quantum information do not end with bipartite entanglement. There are other forms of correlations embedded in the ground, excited and thermal states of quantum many-body systems that also need to be explored and might be utilised as potential resources for quantum technologies. The aim of this work is to review the most recent developments regarding correlations in quantum many-body systems focussing on multipartite entanglement, quantum nonlocality, quantum discord, mutual information but also other non classical measures of correlations based on quantum coherence. Moreover, we also discuss applications of quantum metrology in quantum many-body systems.
NASA Astrophysics Data System (ADS)
White, Theodore C.
Quantum mechanics makes many predictions, such as superposition, projective measurement, and entanglement, which defy classical intuition. For many years it remained unclear if these predictions were real physical phenomena, or the result of an incomplete understanding of hidden classical variables. For quantum entanglement, the Bell inequality provided the first experimental bound on such hidden variable theories by considering correlated measurements between spatially separated photons. Following a similar logic, the Leggett-Garg inequality provides an experimental test of projective measurement by correlating sequential measurements of the same object. More recently, these inequalities have become important benchmarks for the "quantumness'' of novel systems, measurement techniques, or methods of generating entanglement. In this work we describe a continuous and controlled exchange of extracted state information and two-qubit entanglement collapse, demonstrated using the hybrid Bell-Leggett-Garg inequality. This effect is quantified by correlating weak measurement results with subsequent projective readout to collect all the statistics of a Bell inequality experiment in a single quantum circuit. This result was made possible by technological advances in superconducting quantum processors which allow precise control and measurement in multi-qubit systems. Additionally we discuss the central role of superconducting Josephson parametric amplifiers, which are a requirement for high fidelity single shot qubit readout. We demonstrate the ability to measure average Bell state information with minimal entanglement collapse, by violating this hybrid Bell-Leggett-Garg inequality at the weakest measurement strengths. This result indicates that it is possible to learn about the dynamics of large entangled systems without significantly affecting their evolution.
Genuine quantum correlations in quantum many-body systems: a review of recent progress.
De Chiara, Gabriele; Sanpera, Anna
2018-04-19
Quantum information theory has considerably helped in the understanding of quantum many-body systems. The role of quantum correlations and in particular, bipartite entanglement, has become crucial to characterise, classify and simulate quantum many body systems. Furthermore, the scaling of entanglement has inspired modifications to numerical techniques for the simulation of many-body systems leading to the, now established, area of tensor networks. However, the notions and methods brought by quantum information do not end with bipartite entanglement. There are other forms of correlations embedded in the ground, excited and thermal states of quantum many-body systems that also need to be explored and might be utilised as potential resources for quantum technologies. The aim of this work is to review the most recent developments regarding correlations in quantum many-body systems focussing on multipartite entanglement, quantum nonlocality, quantum discord, mutual information but also other non classical measures of correlations based on quantum coherence. Moreover, we also discuss applications of quantum metrology in quantum many-body systems. © 2018 IOP Publishing Ltd.
Hybrid plasmonic nanodevices: Switching mechanism for the nonlinear emission
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bragas, Andrea V.; Singh, Mahi R.
2014-03-31
Control of the light emission at the nanoscale is of central interest in nanophotonics due to the many applications in very different fields, ranging from quantum information to biophysics. Resonant excitation of surface plasmon polaritons in metal nanoparticles create nanostructured and enhanced light fields around those structures, which produce their strong interaction in a hybrid nanodevice with other plasmonic or non-plasmonic objects. This interaction may in turn also modulate the far field with important consequences in the applications. We show in this paper that the nonlinear emission from semiconductor quantum dots is strongly affected by the close presence of metalmore » nanoparticles, which are resonantly excited. Using a pulsed laser, optical second harmonic is generated in the quantum dot, and it is highly enhanced when the laser is tuned around the nanoparticle plasmon resonance. Even more interesting is the demonstration of a switching mechanism, controlled by an external continuous-wave field, which can enhance or extinguish the SH signal, even when the pulsed laser is always on. Experimental observations are in excellent agreement with the theoretical calculations, based on the dipole-dipole near-field coupling of the objects forming the hybrid system.« less
McKemmish, Laura K; Reimers, Jeffrey R; McKenzie, Ross H; Mark, Alan E; Hush, Noel S
2009-08-01
Penrose and Hameroff have argued that the conventional models of a brain function based on neural networks alone cannot account for human consciousness, claiming that quantum-computation elements are also required. Specifically, in their Orchestrated Objective Reduction (Orch OR) model [R. Penrose and S. R. Hameroff, J. Conscious. Stud. 2, 99 (1995)], it is postulated that microtubules act as quantum processing units, with individual tubulin dimers forming the computational elements. This model requires that the tubulin is able to switch between alternative conformational states in a coherent manner, and that this process be rapid on the physiological time scale. Here, the biological feasibility of the Orch OR proposal is examined in light of recent experimental studies on microtubule assembly and dynamics. It is shown that the tubulins do not possess essential properties required for the Orch OR proposal, as originally proposed, to hold. Further, we consider also recent progress in the understanding of the long-lived coherent motions in biological systems, a feature critical to Orch OR, and show that no reformation of the proposal based on known physical paradigms could lead to quantum computing within microtubules. Hence, the Orch OR model is not a feasible explanation of the origin of consciousness.
Quantum interference experiments with large molecules
NASA Astrophysics Data System (ADS)
Nairz, Olaf; Arndt, Markus; Zeilinger, Anton
2003-04-01
Wave-particle duality is frequently the first topic students encounter in elementary quantum physics. Although this phenomenon has been demonstrated with photons, electrons, neutrons, and atoms, the dual quantum character of the famous double-slit experiment can be best explained with the largest and most classical objects, which are currently the fullerene molecules. The soccer-ball-shaped carbon cages C60 are large, massive, and appealing objects for which it is clear that they must behave like particles under ordinary circumstances. We present the results of a multislit diffraction experiment with such objects to demonstrate their wave nature. The experiment serves as the basis for a discussion of several quantum concepts such as coherence, randomness, complementarity, and wave-particle duality. In particular, the effect of longitudinal (spectral) coherence can be demonstrated by a direct comparison of interferograms obtained with a thermal beam and a velocity selected beam in close analogy to the usual two-slit experiments using light.
Identical Quantum Particles and Weak Discernibility
NASA Astrophysics Data System (ADS)
Dieks, Dennis; Versteegh, Marijn A. M.
2008-10-01
Saunders has recently claimed that “identical quantum particles” with an anti-symmetric state (fermions) are weakly discernible objects, just like irreflexively related ordinary objects in situations with perfect symmetry (Black’s spheres, for example). Weakly discernible objects have all their qualitative properties in common but nevertheless differ from each other by virtue of (a generalized version of) Leibniz’s principle, since they stand in relations an entity cannot have to itself. This notion of weak discernibility has been criticized as question begging, but we defend and accept it for classical cases likes Black’s spheres. We argue, however, that the quantum mechanical case is different. Here the application of the notion of weak discernibility indeed is question begging and in conflict with standard interpretational ideas. We conclude that the introduction of the conceptual resource of weak discernibility does not change the interpretational status quo in quantum mechanics.
Are quantum-mechanical-like models possible, or necessary, outside quantum physics?
NASA Astrophysics Data System (ADS)
Plotnitsky, Arkady
2014-12-01
This article examines some experimental conditions that invite and possibly require recourse to quantum-mechanical-like mathematical models (QMLMs), models based on the key mathematical features of quantum mechanics, in scientific fields outside physics, such as biology, cognitive psychology, or economics. In particular, I consider whether the following two correlative features of quantum phenomena that were decisive for establishing the mathematical formalism of quantum mechanics play similarly important roles in QMLMs elsewhere. The first is the individuality and discreteness of quantum phenomena, and the second is the irreducibly probabilistic nature of our predictions concerning them, coupled to the particular character of the probabilities involved, as different from the character of probabilities found in classical physics. I also argue that these features could be interpreted in terms of a particular form of epistemology that suspends and even precludes a causal and, in the first place, realist description of quantum objects and processes. This epistemology limits the descriptive capacity of quantum theory to the description, classical in nature, of the observed quantum phenomena manifested in measuring instruments. Quantum mechanics itself only provides descriptions, probabilistic in nature, concerning numerical data pertaining to such phenomena, without offering a physical description of quantum objects and processes. While QMLMs share their use of the quantum-mechanical or analogous mathematical formalism, they may differ by the roles, if any, the two features in question play in them and by different ways of interpreting the phenomena they considered and this formalism itself. This article will address those differences as well.
Non-singular cloaks allow mimesis
NASA Astrophysics Data System (ADS)
Diatta, André; Guenneau, Sébastien
2011-02-01
We design non-singular cloaks enabling objects to scatter waves like objects with smaller size and very different shapes. We consider the Schrödinger equation, which is valid, for example, in the contexts of geometrical and quantum optics. More precisely, we introduce a generalized non-singular transformation for star domains, and numerically demonstrate that an object of nearly any given shape surrounded by a given cloak scatters waves in exactly the same way as a smaller object of another shape. When a source is located inside the cloak, it scatters waves as if it were located some distance away from a small object. Moreover, the invisibility region actually hosts almost trapped eigenstates. Mimetism is numerically shown to break down for the quantified energies associated with confined modes. If we further allow for non-isomorphic transformations, our approach leads to the design of quantum super-scatterers: a small size object surrounded by a quantum cloak described by a negative anisotropic heterogeneous effective mass and a negative spatially varying potential scatters matter waves like a larger nano-object of different shape. Potential applications might be, for instance, in quantum dots probing. The results in this paper, as well as the corresponding derived constitutive tensors, are valid for cloaks with any arbitrary star-shaped boundary cross sections, although for numerical simulations we use examples with piecewise linear or elliptic boundaries.
Open Systems with Error Bounds: Spin-Boson Model with Spectral Density Variations.
Mascherpa, F; Smirne, A; Huelga, S F; Plenio, M B
2017-03-10
In the study of open quantum systems, one of the most common ways to describe environmental effects on the reduced dynamics is through the spectral density. However, in many models this object cannot be computed from first principles and needs to be inferred on phenomenological grounds or fitted to experimental data. Consequently, some uncertainty regarding its form and parameters is unavoidable; this in turn calls into question the accuracy of any theoretical predictions based on a given spectral density. Here, we focus on the spin-boson model as a prototypical open quantum system, find two error bounds on predicted expectation values in terms of the spectral density variation considered, and state a sufficient condition for the strongest one to apply. We further demonstrate an application of our result, by bounding the error brought about by the approximations involved in the hierarchical equations of motion resolution method for spin-boson dynamics.
Duality quantum algorithm efficiently simulates open quantum systems
Wei, Shi-Jie; Ruan, Dong; Long, Gui-Lu
2016-01-01
Because of inevitable coupling with the environment, nearly all practical quantum systems are open system, where the evolution is not necessarily unitary. In this paper, we propose a duality quantum algorithm for simulating Hamiltonian evolution of an open quantum system. In contrast to unitary evolution in a usual quantum computer, the evolution operator in a duality quantum computer is a linear combination of unitary operators. In this duality quantum algorithm, the time evolution of the open quantum system is realized by using Kraus operators which is naturally implemented in duality quantum computer. This duality quantum algorithm has two distinct advantages compared to existing quantum simulation algorithms with unitary evolution operations. Firstly, the query complexity of the algorithm is O(d3) in contrast to O(d4) in existing unitary simulation algorithm, where d is the dimension of the open quantum system. Secondly, By using a truncated Taylor series of the evolution operators, this duality quantum algorithm provides an exponential improvement in precision compared with previous unitary simulation algorithm. PMID:27464855
Quantum teleportation and information splitting via four-qubit cluster state and a Bell state
NASA Astrophysics Data System (ADS)
Ramírez, Marlon David González; Falaye, Babatunde James; Sun, Guo-Hua; Cruz-Irisson, M.; Dong, Shi-Hai
2017-10-01
Quantum teleportation provides a "bodiless" way of transmitting the quantum state from one object to another, at a distant location, using a classical communication channel and a previously shared entangled state. In this paper, we present a tripartite scheme for probabilistic teleportation of an arbitrary single qubit state, without losing the information of the state being teleported, via a fourqubit cluster state of the form | ϕ>1234 = α|0000>+ β|1010>+ γ|0101>- η|1111>, as the quantum channel, where the nonzero real numbers α, β, γ, and η satisfy the relation j αj2 + | β|2 + | γ|2 + | η|2 = 1. With the introduction of an auxiliary qubit with state |0>, using a suitable unitary transformation and a positive-operator valued measure (POVM), the receiver can recreate the state of the original qubit. An important advantage of the teleportation scheme demonstrated here is that, if the teleportation fails, it can be repeated without teleporting copies of the unknown quantum state, if the concerned parties share another pair of entangled qubit. We also present a protocol for quantum information splitting of an arbitrary two-particle system via the aforementioned cluster state and a Bell-state as the quantum channel. Problems related to security attacks were examined for both the cases and it was found that this protocol is secure. This protocol is highly efficient and easy to implement.
Quantum cryptography using coherent states: Randomized encryption and key generation
NASA Astrophysics Data System (ADS)
Corndorf, Eric
With the advent of the global optical-telecommunications infrastructure, an increasing number of individuals, companies, and agencies communicate information with one another over public networks or physically-insecure private networks. While the majority of the traffic flowing through these networks requires little or no assurance of secrecy, the same cannot be said for certain communications between banks, between government agencies, within the military, and between corporations. In these arenas, the need to specify some level of secrecy in communications is a high priority. While the current approaches to securing sensitive information (namely the public-key-cryptography infrastructure and deterministic private-key ciphers like AES and 3DES) seem to be cryptographically strong based on empirical evidence, there exist no mathematical proofs of secrecy for any widely deployed cryptosystem. As an example, the ubiquitous public-key cryptosystems infer all of their secrecy from the assumption that factoring of the product of two large primes is necessarily time consuming---something which has not, and perhaps cannot, be proven. Since the 1980s, the possibility of using quantum-mechanical features of light as a physical mechanism for satisfying particular cryptographic objectives has been explored. This research has been fueled by the hopes that cryptosystems based on quantum systems may provide provable levels of secrecy which are at least as valid as quantum mechanics itself. Unfortunately, the most widely considered quantum-cryptographic protocols (BB84 and the Ekert protocol) have serious implementation problems. Specifically, they require quantum-mechanical states which are not readily available, and they rely on unproven relations between intrusion-level detection and the information available to an attacker. As a result, the secrecy level provided by these experimental implementations is entirely unspecified. In an effort to provably satisfy the cryptographic objectives of key generation and direct data-encryption, a new quantum cryptographic principle is demonstrated wherein keyed coherent-state signal sets are employed. Taking advantage of the fundamental and irreducible quantum-measurement noise of coherent states, these schemes do not require the users to measure the influence of an attacker. Experimental key-generation and data encryption schemes based on these techniques, which are compatible with today's WDM fiber-optic telecommunications infrastructure, are implemented and analyzed.
Topos quantum theory on quantization-induced sheaves
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nakayama, Kunji, E-mail: nakayama@law.ryukoku.ac.jp
2014-10-15
In this paper, we construct a sheaf-based topos quantum theory. It is well known that a topos quantum theory can be constructed on the topos of presheaves on the category of commutative von Neumann algebras of bounded operators on a Hilbert space. Also, it is already known that quantization naturally induces a Lawvere-Tierney topology on the presheaf topos. We show that a topos quantum theory akin to the presheaf-based one can be constructed on sheaves defined by the quantization-induced Lawvere-Tierney topology. That is, starting from the spectral sheaf as a state space of a given quantum system, we construct sheaf-basedmore » expressions of physical propositions and truth objects, and thereby give a method of truth-value assignment to the propositions. Furthermore, we clarify the relationship to the presheaf-based quantum theory. We give translation rules between the sheaf-based ingredients and the corresponding presheaf-based ones. The translation rules have “coarse-graining” effects on the spaces of the presheaf-based ingredients; a lot of different proposition presheaves, truth presheaves, and presheaf-based truth-values are translated to a proposition sheaf, a truth sheaf, and a sheaf-based truth-value, respectively. We examine the extent of the coarse-graining made by translation.« less
Quantum detectors of vector potential and their modeling
NASA Astrophysics Data System (ADS)
Gulian, Armen; Melkonyan, Gurgen; Gulian, Ellen
Proportionality of current to vector potential is a feature not allowed in classical physics, but is one of the pillars in quantum theory. For superconductors, in particular, it allows us to describe the Meissner effect. Since the phase of the quantum wave function couples with the vector-potential, the related expressions are gauge-invariant. Is it possible to measure this gauge-invariant quantity locally? The answer is definitely ``yes'', as soon as the current is involved. Indeed, the electric current generates a magnetic field which can be measured straightforwardly. However, one can consider situations like the Aharonov-Bohm effect where the classical magnetic field is locally absent in the area occupied by the quantum object (i.e., superconductor in our case). Despite the local absence of the magnetic field, current is, nevertheless, building up. From what source is it acquiring its energy? Locally, only a vector potential is present. Is the current formation a result of a truly non-local quantum action, or does the local action of the vector potential have experimental consequences on the quantum system, which then can be considered as a detector of the vector potential? We discuss possible experimental schemes on the level of COMSOL modeling. This research is supported in part by the ONR Grant N000141612269.
Stabilization of the Rayleigh-Taylor instability in quantum magnetized plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, L. F.; Ye, W. H.; He, X. T.
2012-07-15
In this research, stabilization of the Rayleigh-Taylor instability (RTI) due to density gradients, magnetic fields, and quantum effects, in an ideal incompressible plasma, is studied analytically and numerically. A second-order ordinary differential equation (ODE) for the RTI including quantum corrections, with a continuous density profile, in a uniform external magnetic field, is obtained. Analytic expressions of the linear growth rate of the RTI, considering modifications of density gradients, magnetic fields, and quantum effects, are presented. Numerical approaches are performed to solve the second-order ODE. The analytical model proposed here agrees with the numerical calculation. It is found that the densitymore » gradients, the magnetic fields, and the quantum effects, respectively, have a stabilizing effect on the RTI (reduce the linear growth of the RTI). The RTI can be completely quenched by the magnetic field stabilization and/or the quantum effect stabilization in proper circumstances leading to a cutoff wavelength. The quantum effect stabilization plays a central role in systems with large Atwood number and small normalized density gradient scale length. The presence of external transverse magnetic fields beside the quantum effects will bring about more stability on the RTI. The stabilization of the linear growth of the RTI, for parameters closely related to inertial confinement fusion and white dwarfs, is discussed. Results could potentially be valuable for the RTI treatment to analyze the mixing in supernovas and other RTI-driven objects.« less
Understanding quantum work in a quantum many-body system.
Wang, Qian; Quan, H T
2017-03-01
Based on previous studies in a single-particle system in both the integrable [Jarzynski, Quan, and Rahav, Phys. Rev. X 5, 031038 (2015)2160-330810.1103/PhysRevX.5.031038] and the chaotic systems [Zhu, Gong, Wu, and Quan, Phys. Rev. E 93, 062108 (2016)1539-375510.1103/PhysRevE.93.062108], we study the the correspondence principle between quantum and classical work distributions in a quantum many-body system. Even though the interaction and the indistinguishability of identical particles increase the complexity of the system, we find that for a quantum many-body system the quantum work distribution still converges to its classical counterpart in the semiclassical limit. Our results imply that there exists a correspondence principle between quantum and classical work distributions in an interacting quantum many-body system, especially in the large particle number limit, and further justify the definition of quantum work via two-point energy measurements in quantum many-body systems.
Quantum interference in multi-branched molecules: The exact transfer matrix solutions.
Jiang, Yu
2017-12-07
We present a transfer matrix formalism for studying quantum interference in a single molecule electronic system with internal branched structures. Based on the Schrödinger equation with the Bethe ansatz and employing Kirchhoff's rule for quantum wires, we derive a general closed-form expression for the transmission and reflection amplitudes of a two-port quantum network. We show that the transport through a molecule with complex internal structures can be reduced to that of a single two-port scattering unit, which contains all the information of the original composite molecule. Our method allows for the calculation of the transmission coefficient for various types of individual molecular modules giving rise to different resonant transport behaviors such as the Breit-Wigner, Fano, and Mach-Zehnder resonances. As an illustration, we first re-derive the transmittance of the Aharonov-Bohm ring, and then we apply our formulation to N identical parity-time (PT)-symmetric potentials, connected in series as well as in parallel. It is shown that the spectral singularities and PT-symmetric transitions of single scattering cells may be observed in coupled systems. Such transitions may occur at the same or distinct values of the critical parameters, depending on the connection modes under which the scattering objects are coupled.
Cavity Optomechanics at Millikelvin Temperatures
NASA Astrophysics Data System (ADS)
Meenehan, Sean Michael
The field of cavity optomechanics, which concerns the coupling of a mechanical object's motion to the electromagnetic field of a high finesse cavity, allows for exquisitely sensitive measurements of mechanical motion, from large-scale gravitational wave detection to microscale accelerometers. Moreover, it provides a potential means to control and engineer the state of a macroscopic mechanical object at the quantum level, provided one can realize sufficiently strong interaction strengths relative to the ambient thermal noise. Recent experiments utilizing the optomechanical interaction to cool mechanical resonators to their motional quantum ground state allow for a variety of quantum engineering applications, including preparation of non-classical mechanical states and coherent optical to microwave conversion. Optomechanical crystals (OMCs), in which bandgaps for both optical and mechanical waves can be introduced through patterning of a material, provide one particularly attractive means for realizing strong interactions between high-frequency mechanical resonators and near-infrared light. Beyond the usual paradigm of cavity optomechanics involving isolated single mechanical elements, OMCs can also be fashioned into planar circuits for photons and phonons, and arrays of optomechanical elements can be interconnected via optical and acoustic waveguides. Such coupled OMC arrays have been proposed as a way to realize quantum optomechanical memories, nanomechanical circuits for continuous variable quantum information processing and phononic quantum networks, and as a platform for engineering and studying quantum many-body physics of optomechanical meta-materials. However, while ground state occupancies (that is, average phonon occupancies less than one) have been achieved in OMC cavities utilizing laser cooling techniques, parasitic absorption and the concomitant degradation of the mechanical quality factor fundamentally limit this approach. On the other hand, the high mechanical frequency of these systems allows for the possibility of using a dilution refrigerator to simultaneously achieve low thermal occupancy and long mechanical coherence time by passively cooling the device to the millikelvin regime. This thesis describes efforts to realize the measurement of OMC cavities inside a dilution refrigerator, including the development of fridge-compatible optical coupling schemes and the characterization of the heating dynamics of the mechanical resonator at sub-kelvin temperatures. We will begin by summarizing the theoretical framework used to describe cavity optomechanical systems, as well as a handful of the quantum applications envisioned for such devices. Then, we will present background on the design of the nanobeam OMC cavities used for this work, along with details of the design and characterization of tapered fiber couplers for optical coupling inside the fridge. Finally, we will present measurements of the devices at fridge base temperatures of Tf = 10 mK, using both heterodyne spectroscopy and time-resolved sideband photon counting, as well as detailed analysis of the prospects for future quantum applications based on the observed optically-induced heating.
Emergent kink statistics at finite temperature
Lopez-Ruiz, Miguel Angel; Yepez-Martinez, Tochtli; Szczepaniak, Adam; ...
2017-07-25
In this paper we use 1D quantum mechanical systems with Higgs-like interaction potential to study the emergence of topological objects at finite temperature. Two different model systems are studied, the standard double-well potential model and a newly introduced discrete kink model. Using Monte-Carlo simulations as well as analytic methods, we demonstrate how kinks become abundant at low temperatures. These results may shed useful insights on how topological phenomena may occur in QCD.
Interacting lattice systems with quantum dissipation: A quantum Monte Carlo study
NASA Astrophysics Data System (ADS)
Yan, Zheng; Pollet, Lode; Lou, Jie; Wang, Xiaoqun; Chen, Yan; Cai, Zi
2018-01-01
Quantum dissipation arises when a large system can be split in a quantum system and an environment to which the energy of the former flows. Understanding the effect of dissipation on quantum many-body systems is of particular importance due to its potential relationship with quantum information. We propose a conceptually simple approach to introduce dissipation into interacting quantum systems in a thermodynamical context, in which every site of a one-dimensional (1D) lattice is coupled off-diagonally to its own bath. The interplay between quantum dissipation and interactions gives rise to counterintuitive interpretations such as a compressible zero-temperature state with spontaneous discrete symmetry breaking and a thermal phase transition in a 1D dissipative quantum many-body system as revealed by quantum Monte Carlo path-integral simulations.
Redundant Information and the Quantum-Classical Transition
ERIC Educational Resources Information Center
Riedel, Charles Jess
2012-01-01
A state selected at random from the Hilbert space of a many-body system is overwhelmingly likely to exhibit highly non-classical correlations. For these typical states, half of the environment must be measured by an observer to determine the state of a given subsystem. The objectivity of classical reality--the fact that multiple observers can each…
Physical explanation of the periodic table.
Ostrovsky, V N
2003-05-01
The Periodic Table of the elements, the most important generalization in chemistry, is often considered as a representative special case in the study of the relation between chemistry and physics. Its quantum interpretation was initiated, but not completed, by Niels Bohr. In this paper, post-Bohr conceptual developments are discussed from historical and epistemological points of view. The difference between high-precision numerical calculations for individual atoms and the theory of the periodic system as a whole is emphasized. Periodic laws met in Nature are not restricted to the chemical Periodic Table. A comparative study of these laws makes it possible to single out essential features that define the particular pattern of periodicity. It is shown that the periodic system of neutral ground state atoms now has a firm nonempirical quantum-theoretical basis. Alternative approaches, based on group theory and other mathematical schemes, are briefly discussed. It is argued that, while quantum theory is capable of fully accurate calculations for relatively simple atoms or molecular objects, the complexity of polyatomic molecules and chemical reactions guarantees the flourishing of chemistry as a separate scientific discipline.
Heralded entanglement between solid-state qubits separated by three metres.
Bernien, H; Hensen, B; Pfaff, W; Koolstra, G; Blok, M S; Robledo, L; Taminiau, T H; Markham, M; Twitchen, D J; Childress, L; Hanson, R
2013-05-02
Quantum entanglement between spatially separated objects is one of the most intriguing phenomena in physics. The outcomes of independent measurements on entangled objects show correlations that cannot be explained by classical physics. As well as being of fundamental interest, entanglement is a unique resource for quantum information processing and communication. Entangled quantum bits (qubits) can be used to share private information or implement quantum logical gates. Such capabilities are particularly useful when the entangled qubits are spatially separated, providing the opportunity to create highly connected quantum networks or extend quantum cryptography to long distances. Here we report entanglement of two electron spin qubits in diamond with a spatial separation of three metres. We establish this entanglement using a robust protocol based on creation of spin-photon entanglement at each location and a subsequent joint measurement of the photons. Detection of the photons heralds the projection of the spin qubits onto an entangled state. We verify the resulting non-local quantum correlations by performing single-shot readout on the qubits in different bases. The long-distance entanglement reported here can be combined with recently achieved initialization, readout and entanglement operations on local long-lived nuclear spin registers, paving the way for deterministic long-distance teleportation, quantum repeaters and extended quantum networks.
Quantum Detection and Invisibility in Coherent Nanostructures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fransson, J.
2010-04-28
We address quantum invisibility in the context of electronics in nanoscale quantum structures. In analogy with metamaterials, we use the freedom of design that quantum corrals provide and show that quantum mechanical objects can be hidden inside the corral, with respect to inelastic electron scattering spectroscopy in combination with scanning tunneling microscopy, and we propose a design strategy. A simple illustration of the invisibility is given in terms of an elliptic quantum corral containing a molecule, with a local vibrational mode, at one of the foci. Our work has implications to quantum information technology and presents new tools for nonlocalmore » quantum detection and distinguishing between different molecules.« less
Universal blind quantum computation for hybrid system
NASA Astrophysics Data System (ADS)
Huang, He-Liang; Bao, Wan-Su; Li, Tan; Li, Feng-Guang; Fu, Xiang-Qun; Zhang, Shuo; Zhang, Hai-Long; Wang, Xiang
2017-08-01
As progress on the development of building quantum computer continues to advance, first-generation practical quantum computers will be available for ordinary users in the cloud style similar to IBM's Quantum Experience nowadays. Clients can remotely access the quantum servers using some simple devices. In such a situation, it is of prime importance to keep the security of the client's information. Blind quantum computation protocols enable a client with limited quantum technology to delegate her quantum computation to a quantum server without leaking any privacy. To date, blind quantum computation has been considered only for an individual quantum system. However, practical universal quantum computer is likely to be a hybrid system. Here, we take the first step to construct a framework of blind quantum computation for the hybrid system, which provides a more feasible way for scalable blind quantum computation.
Time-ordered product expansions for computational stochastic system biology.
Mjolsness, Eric
2013-06-01
The time-ordered product framework of quantum field theory can also be used to understand salient phenomena in stochastic biochemical networks. It is used here to derive Gillespie's stochastic simulation algorithm (SSA) for chemical reaction networks; consequently, the SSA can be interpreted in terms of Feynman diagrams. It is also used here to derive other, more general simulation and parameter-learning algorithms including simulation algorithms for networks of stochastic reaction-like processes operating on parameterized objects, and also hybrid stochastic reaction/differential equation models in which systems of ordinary differential equations evolve the parameters of objects that can also undergo stochastic reactions. Thus, the time-ordered product expansion can be used systematically to derive simulation and parameter-fitting algorithms for stochastic systems.
Interference effects in a cavity for optical amplification
NASA Astrophysics Data System (ADS)
Cardimona, D. A.; Alsing, P. M.
2009-08-01
In space situational awareness scenarios, the objects needed to be characterized and identified are usually quite far away and quite dim. Thus, optical detectors need to be able to sense these very dim optical signals. Quantum interference in a three-level system can lead to amplification of optical signals. If we put a three-level system into a cavity tuned to the frequency of an incoming optical signal, we anticipate the amplification possibilities should be increased proportional to the quality factor of the cavity. Our vision is to utilize quantum dots in photonic crystal cavities, but as a stepping stone we first investigate a simple three-level system in a free-space optical cavity. We investigate quantum interference and classical interference effects when a three-level system interacts with both a cavity field mode and an external driving field mode. We find that under certain circumstances the cavity field evolves to be equal in magnitude to, but 180° out-of-phase with the external pump field when the pump field frequency equals the cavity frequency. At this point the resonance fluorescence from the atom in the cavity goes to zero due to a purely classical interference effect between the two out-of-phase fields. This is quite different from the quantum interference that occurs under the right circumstances, when the state populations are coherently driven into a linear combination that is decoupled from any applied field - and population is trapped in the excited states, thus allowing for a population inversion and an amplification of incoming optical signals.
A quantum extended Kalman filter
NASA Astrophysics Data System (ADS)
Emzir, Muhammad F.; Woolley, Matthew J.; Petersen, Ian R.
2017-06-01
In quantum physics, a stochastic master equation (SME) estimates the state (density operator) of a quantum system in the Schrödinger picture based on a record of measurements made on the system. In the Heisenberg picture, the SME is a quantum filter. For a linear quantum system subject to linear measurements and Gaussian noise, the dynamics may be described by quantum stochastic differential equations (QSDEs), also known as quantum Langevin equations, and the quantum filter reduces to a so-called quantum Kalman filter. In this article, we introduce a quantum extended Kalman filter (quantum EKF), which applies a commutative approximation and a time-varying linearization to systems of nonlinear QSDEs. We will show that there are conditions under which a filter similar to a classical EKF can be implemented for quantum systems. The boundedness of estimation errors and the filtering problem with ‘state-dependent’ covariances for process and measurement noises are also discussed. We demonstrate the effectiveness of the quantum EKF by applying it to systems that involve multiple modes, nonlinear Hamiltonians, and simultaneous jump-diffusive measurements.
NASA Astrophysics Data System (ADS)
Héraud, Jean-Loup; Lautesse, Philippe; Ferlin, Fabrice; Chabot, Hugues
2017-05-01
Our work extends a previous study of epistemological presuppositions in teaching quantum physics in upper scientific secondary school in France. Here, the problematic reference of quantum theory's concepts is treated at the ontological level (the counterintuitive nature of quantum objects). We consider the approach of using narratives describing possible alternative worlds to address the issue. These possible worlds are based on the counterfactual logic developed in the work of D. Lewis. We will show that the narratives written by G. Gamow describe such possible worlds. Some parts of these narratives are found in textbooks in France. These worlds are governed by laws similar to but importantly different from those in our real world. They allow us to materialize properties inaccessible to everyday experience. In this sense, these fiction stories make ontological propositions concerning the nature and structure of the fundamental elements of our physical universe.
Quantum correlations from a room-temperature optomechanical cavity.
Purdy, T P; Grutter, K E; Srinivasan, K; Taylor, J M
2017-06-23
The act of position measurement alters the motion of an object being measured. This quantum measurement backaction is typically much smaller than the thermal motion of a room-temperature object and thus difficult to observe. By shining laser light through a nanomechanical beam, we measure the beam's thermally driven vibrations and perturb its motion with optical force fluctuations at a level dictated by the Heisenberg measurement-disturbance uncertainty relation. We demonstrate a cross-correlation technique to distinguish optically driven motion from thermally driven motion, observing this quantum backaction signature up to room temperature. We use the scale of the quantum correlations, which is determined by fundamental constants, to gauge the size of thermal motion, demonstrating a path toward absolute thermometry with quantum mechanically calibrated ticks. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
Is wave-particle objectivity compatible with determinism and locality?
Ionicioiu, Radu; Jennewein, Thomas; Mann, Robert B; Terno, Daniel R
2014-09-26
Wave-particle duality, superposition and entanglement are among the most counterintuitive features of quantum theory. Their clash with our classical expectations motivated hidden-variable (HV) theories. With the emergence of quantum technologies, we can test experimentally the predictions of quantum theory versus HV theories and put strong restrictions on their key assumptions. Here, we study an entanglement-assisted version of the quantum delayed-choice experiment and show that the extension of HV to the controlling devices only exacerbates the contradiction. We compare HV theories that satisfy the conditions of objectivity (a property of photons being either particles or waves, but not both), determinism and local independence of hidden variables with quantum mechanics. Any two of the above conditions are compatible with it. The conflict becomes manifest when all three conditions are imposed and persists for any non-zero value of entanglement. We propose an experiment to test our conclusions.
Is wave–particle objectivity compatible with determinism and locality?
Ionicioiu, Radu; Jennewein, Thomas; Mann, Robert B.; Terno, Daniel R.
2014-01-01
Wave–particle duality, superposition and entanglement are among the most counterintuitive features of quantum theory. Their clash with our classical expectations motivated hidden-variable (HV) theories. With the emergence of quantum technologies, we can test experimentally the predictions of quantum theory versus HV theories and put strong restrictions on their key assumptions. Here, we study an entanglement-assisted version of the quantum delayed-choice experiment and show that the extension of HV to the controlling devices only exacerbates the contradiction. We compare HV theories that satisfy the conditions of objectivity (a property of photons being either particles or waves, but not both), determinism and local independence of hidden variables with quantum mechanics. Any two of the above conditions are compatible with it. The conflict becomes manifest when all three conditions are imposed and persists for any non-zero value of entanglement. We propose an experiment to test our conclusions. PMID:25256419
Colloquium: Non-Markovian dynamics in open quantum systems
NASA Astrophysics Data System (ADS)
Breuer, Heinz-Peter; Laine, Elsi-Mari; Piilo, Jyrki; Vacchini, Bassano
2016-04-01
The dynamical behavior of open quantum systems plays a key role in many applications of quantum mechanics, examples ranging from fundamental problems, such as the environment-induced decay of quantum coherence and relaxation in many-body systems, to applications in condensed matter theory, quantum transport, quantum chemistry, and quantum information. In close analogy to a classical Markovian stochastic process, the interaction of an open quantum system with a noisy environment is often modeled phenomenologically by means of a dynamical semigroup with a corresponding time-independent generator in Lindblad form, which describes a memoryless dynamics of the open system typically leading to an irreversible loss of characteristic quantum features. However, in many applications open systems exhibit pronounced memory effects and a revival of genuine quantum properties such as quantum coherence, correlations, and entanglement. Here recent theoretical results on the rich non-Markovian quantum dynamics of open systems are discussed, paying particular attention to the rigorous mathematical definition, to the physical interpretation and classification, as well as to the quantification of quantum memory effects. The general theory is illustrated by a series of physical examples. The analysis reveals that memory effects of the open system dynamics reflect characteristic features of the environment which opens a new perspective for applications, namely, to exploit a small open system as a quantum probe signifying nontrivial features of the environment it is interacting with. This Colloquium further explores the various physical sources of non-Markovian quantum dynamics, such as structured environmental spectral densities, nonlocal correlations between environmental degrees of freedom, and correlations in the initial system-environment state, in addition to developing schemes for their local detection. Recent experiments addressing the detection, quantification, and control of non-Markovian quantum dynamics are also briefly discussed.
Superconducting Quantum Interferometers for Nondestructive Evaluation
Kostyurina, E. A.; Kalashnikov, K. V.; Maslennikov, Yu. V.; Koshelets, V. P.
2017-01-01
We review stationary and mobile systems that are used for the nondestructive evaluation of room temperature objects and are based on superconducting quantum interference devices (SQUIDs). The systems are optimized for samples whose dimensions are between 10 micrometers and several meters. Stray magnetic fields from small samples (10 µm–10 cm) are studied using a SQUID microscope equipped with a magnetic flux antenna, which is fed through the walls of liquid nitrogen cryostat and a hole in the SQUID’s pick-up loop and returned sidewards from the SQUID back to the sample. The SQUID microscope does not disturb the magnetization of the sample during image recording due to the decoupling of the magnetic flux antenna from the modulation and feedback coil. For larger samples, we use a hand-held mobile liquid nitrogen minicryostat with a first order planar gradiometric SQUID sensor. Low-Tc DC SQUID systems that are designed for NDE measurements of bio-objects are able to operate with sufficient resolution in a magnetically unshielded environment. High-Tc DC SQUID magnetometers that are operated in a magnetic shield demonstrate a magnetic field resolution of ~4 fT/√Hz at 77 K. This sensitivity is improved to ~2 fT/√Hz at 77 K by using a soft magnetic flux antenna. PMID:29210980
Metaphysical Underdetermination and Logical Determination: the Case of Quantum Mechanics
NASA Astrophysics Data System (ADS)
Arenhart, Jonas R. B.
2014-03-01
The `underdetermination of metaphysics by the physics' is the thesis that our best scientific theories do not uniquely determine their ontologies. Non-relativistic quantum mechanics is famously thought to exemplify this kind of underdetermination: it may be seen as compatible with both an ontology of individual objects and with an ontology of non-individual objects. A possible way out of the dilema thus created consists in adopting some version of Ontic Structural Realism (OSR), a view according to which the metaphysically relevant aspect of the theory is its structure, not the nature of the objects dealt with. According to OSR, particular objects may be dispensed with (eliminated or re-conceptualized) in favor of the structure of the theory. In this paper we shall argue that the underdetermination of metaphysics by the physics is a consequence of a too strict naturalism in ontology. As a result, when a mitigated ontological naturalism is taken into account, underdetermination does not appear to have such dark consequences for object-oriented ontologies in quantum mechanics.
Quantum coherence and correlations in quantum system
Xi, Zhengjun; Li, Yongming; Fan, Heng
2015-01-01
Criteria of measure quantifying quantum coherence, a unique property of quantum system, are proposed recently. In this paper, we first give an uncertainty-like expression relating the coherence and the entropy of quantum system. This finding allows us to discuss the relations between the entanglement and the coherence. Further, we discuss in detail the relations among the coherence, the discord and the deficit in the bipartite quantum system. We show that, the one-way quantum deficit is equal to the sum between quantum discord and the relative entropy of coherence of measured subsystem. PMID:26094795
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pan, Yu, E-mail: yu.pan@anu.edu.au, E-mail: zibo.miao@anu.edu.au; Miao, Zibo, E-mail: yu.pan@anu.edu.au, E-mail: zibo.miao@anu.edu.au; Amini, Hadis, E-mail: nhamini@stanford.edu
Quantum Markovian systems, modeled as unitary dilations in the quantum stochastic calculus of Hudson and Parthasarathy, have become standard in current quantum technological applications. This paper investigates the stability theory of such systems. Lyapunov-type conditions in the Heisenberg picture are derived in order to stabilize the evolution of system operators as well as the underlying dynamics of the quantum states. In particular, using the quantum Markov semigroup associated with this quantum stochastic differential equation, we derive sufficient conditions for the existence and stability of a unique and faithful invariant quantum state. Furthermore, this paper proves the quantum invariance principle, whichmore » extends the LaSalle invariance principle to quantum systems in the Heisenberg picture. These results are formulated in terms of algebraic constraints suitable for engineering quantum systems that are used in coherent feedback networks.« less
"Above the Slough of Despond": Weylean invariantism and quantum physics
NASA Astrophysics Data System (ADS)
Toader, Iulian D.
2018-02-01
The pursuit of scientific objectivity turned physical theories into systems of symbols or, as Weyl also put it sometimes, into symbolic constructions. What characterizes such constructions, at least in part, is a certain type of Begriffsbildung, according to which scientific concepts are freely created by the mind, i.e., implicitly defined via fundamental theoretical postulates (Toader, 2013). This idea, inspired by Hilbert, together with an approach to understanding influenced by Husserl, led Weyl to a form of skepticism about science, according to which if objectivity could be attained, understanding would thereby be sacrificed; and if understanding were to be pursued, this would render objectivity unattainable (Toader, 2011).
An E-payment system based on quantum group signature
NASA Astrophysics Data System (ADS)
Xiaojun, Wen
2010-12-01
Security and anonymity are essential to E-payment systems. However, existing E-payment systems will easily be broken into soon with the emergence of quantum computers. In this paper, we propose an E-payment system based on quantum group signature. In contrast to classical E-payment systems, our quantum E-payment system can protect not only the users' anonymity but also the inner structure of customer groups. Because of adopting the two techniques of quantum key distribution, a one-time pad and quantum group signature, unconditional security of our E-payment system is guaranteed.
A scalable quantum computer with ions in an array of microtraps
Cirac; Zoller
2000-04-06
Quantum computers require the storage of quantum information in a set of two-level systems (called qubits), the processing of this information using quantum gates and a means of final readout. So far, only a few systems have been identified as potentially viable quantum computer models--accurate quantum control of the coherent evolution is required in order to realize gate operations, while at the same time decoherence must be avoided. Examples include quantum optical systems (such as those utilizing trapped ions or neutral atoms, cavity quantum electrodynamics and nuclear magnetic resonance) and solid state systems (using nuclear spins, quantum dots and Josephson junctions). The most advanced candidates are the quantum optical and nuclear magnetic resonance systems, and we expect that they will allow quantum computing with about ten qubits within the next few years. This is still far from the numbers required for useful applications: for example, the factorization of a 200-digit number requires about 3,500 qubits, rising to 100,000 if error correction is implemented. Scalability of proposed quantum computer architectures to many qubits is thus of central importance. Here we propose a model for an ion trap quantum computer that combines scalability (a feature usually associated with solid state proposals) with the advantages of quantum optical systems (in particular, quantum control and long decoherence times).
Communication: X-ray coherent diffractive imaging by immersion in nanodroplets
Tanyag, Rico Mayro P.; Bernando, Charles; Jones, Curtis F.; ...
2015-10-14
Lensless x-ray microscopy requires the recovery of the phase of the radiation scattered from a specimen. Here, we demonstrate a de novo phase retrieval technique by encapsulating an object in a superfluid helium nanodroplet, which provides both a physical support and an approximate scattering phase for the iterative image reconstruction. The technique is robust, fast-converging, and yields the complex density of the immersed object. As a result, images of xenon clusters embedded in superfluid helium droplets reveal transient configurations of quantum vortices in this fragile system.
Parallel Photonic Quantum Computation Assisted by Quantum Dots in One-Side Optical Microcavities
Luo, Ming-Xing; Wang, Xiaojun
2014-01-01
Universal quantum logic gates are important elements for a quantum computer. In contrast to previous constructions on one degree of freedom (DOF) of quantum systems, we investigate the possibility of parallel quantum computations dependent on two DOFs of photon systems. We construct deterministic hyper-controlled-not (hyper-CNOT) gates operating on the spatial-mode and the polarization DOFs of two-photon or one-photon systems by exploring the giant optical circular birefringence induced by quantum-dot spins in one-sided optical microcavities. These hyper-CNOT gates show that the quantum states of two DOFs can be viewed as independent qubits without requiring auxiliary DOFs in theory. This result can reduce the quantum resources by half for quantum applications with large qubit systems, such as the quantum Shor algorithm. PMID:25030424
Parallel photonic quantum computation assisted by quantum dots in one-side optical microcavities.
Luo, Ming-Xing; Wang, Xiaojun
2014-07-17
Universal quantum logic gates are important elements for a quantum computer. In contrast to previous constructions on one degree of freedom (DOF) of quantum systems, we investigate the possibility of parallel quantum computations dependent on two DOFs of photon systems. We construct deterministic hyper-controlled-not (hyper-CNOT) gates operating on the spatial-mode and the polarization DOFs of two-photon or one-photon systems by exploring the giant optical circular birefringence induced by quantum-dot spins in one-sided optical microcavities. These hyper-CNOT gates show that the quantum states of two DOFs can be viewed as independent qubits without requiring auxiliary DOFs in theory. This result can reduce the quantum resources by half for quantum applications with large qubit systems, such as the quantum Shor algorithm.
NASA Astrophysics Data System (ADS)
Goyal, Ketan; Kawai, Ryoichi
As nanotechnology advances, understanding of the thermodynamic properties of small systems becomes increasingly important. Such systems are found throughout physics, biology, and chemistry manifesting striking properties that are a direct result of their small dimensions where fluctuations become predominant. The standard theory of thermodynamics for macroscopic systems is powerless for such ever fluctuating systems. Furthermore, as small systems are inherently quantum mechanical, influence of quantum effects such as discreteness and quantum entanglement on their thermodynamic properties is of great interest. In particular, the quantum fluctuations due to quantum uncertainty principles may play a significant role. In this talk, we investigate thermodynamic properties of an autonomous quantum heat engine, resembling a quantum version of the Feynman Ratchet, in non-equilibrium condition based on the theory of open quantum systems. The heat engine consists of multiple subsystems individually contacted to different thermal environments.
Phonon counting and intensity interferometry of a nanomechanical resonator
NASA Astrophysics Data System (ADS)
Cohen, Justin D.; Meenehan, Seán M.; Maccabe, Gregory S.; Gröblacher, Simon; Safavi-Naeini, Amir H.; Marsili, Francesco; Shaw, Matthew D.; Painter, Oskar
2015-04-01
In optics, the ability to measure individual quanta of light (photons) enables a great many applications, ranging from dynamic imaging within living organisms to secure quantum communication. Pioneering photon counting experiments, such as the intensity interferometry performed by Hanbury Brown and Twiss to measure the angular width of visible stars, have played a critical role in our understanding of the full quantum nature of light. As with matter at the atomic scale, the laws of quantum mechanics also govern the properties of macroscopic mechanical objects, providing fundamental quantum limits to the sensitivity of mechanical sensors and transducers. Current research in cavity optomechanics seeks to use light to explore the quantum properties of mechanical systems ranging in size from kilogram-mass mirrors to nanoscale membranes, as well as to develop technologies for precision sensing and quantum information processing. Here we use an optical probe and single-photon detection to study the acoustic emission and absorption processes in a silicon nanomechanical resonator, and perform a measurement similar to that used by Hanbury Brown and Twiss to measure correlations in the emitted phonons as the resonator undergoes a parametric instability formally equivalent to that of a laser. Owing to the cavity-enhanced coupling of light with mechanical motion, this effective phonon counting technique has a noise equivalent phonon sensitivity of 0.89 +/- 0.05. With straightforward improvements to this method, a variety of quantum state engineering tasks using mesoscopic mechanical resonators would be enabled, including the generation and heralding of single-phonon Fock states and the quantum entanglement of remote mechanical elements.
Searching for quantum optimal controls under severe constraints
Riviello, Gregory; Tibbetts, Katharine Moore; Brif, Constantin; ...
2015-04-06
The success of quantum optimal control for both experimental and theoretical objectives is connected to the topology of the corresponding control landscapes, which are free from local traps if three conditions are met: (1) the quantum system is controllable, (2) the Jacobian of the map from the control field to the evolution operator is of full rank, and (3) there are no constraints on the control field. This paper investigates how the violation of assumption (3) affects gradient searches for globally optimal control fields. The satisfaction of assumptions (1) and (2) ensures that the control landscape lacks fundamental traps, butmore » certain control constraints can still prevent successful optimization of the objective. Using optimal control simulations, we show that the most severe field constraints are those that limit essential control resources, such as the number of control variables, the control duration, and the field strength. Proper management of these resources is an issue of great practical importance for optimization in the laboratory. For each resource, we show that constraints exceeding quantifiable limits can introduce artificial traps to the control landscape and prevent gradient searches from reaching a globally optimal solution. These results demonstrate that careful choice of relevant control parameters helps to eliminate artificial traps and facilitate successful optimization.« less
Classical synchronization indicates persistent entanglement in isolated quantum systems
Witthaut, Dirk; Wimberger, Sandro; Burioni, Raffaella; Timme, Marc
2017-01-01
Synchronization and entanglement constitute fundamental collective phenomena in multi-unit classical and quantum systems, respectively, both equally implying coordinated system states. Here, we present a direct link for a class of isolated quantum many-body systems, demonstrating that synchronization emerges as an intrinsic system feature. Intriguingly, quantum coherence and entanglement arise persistently through the same transition as synchronization. This direct link between classical and quantum cooperative phenomena may further our understanding of strongly correlated quantum systems and can be readily observed in state-of-the-art experiments, for example, with ultracold atoms. PMID:28401881
Classical synchronization indicates persistent entanglement in isolated quantum systems.
Witthaut, Dirk; Wimberger, Sandro; Burioni, Raffaella; Timme, Marc
2017-04-12
Synchronization and entanglement constitute fundamental collective phenomena in multi-unit classical and quantum systems, respectively, both equally implying coordinated system states. Here, we present a direct link for a class of isolated quantum many-body systems, demonstrating that synchronization emerges as an intrinsic system feature. Intriguingly, quantum coherence and entanglement arise persistently through the same transition as synchronization. This direct link between classical and quantum cooperative phenomena may further our understanding of strongly correlated quantum systems and can be readily observed in state-of-the-art experiments, for example, with ultracold atoms.
Quantum teleportation between light and matter.
Sherson, Jacob F; Krauter, Hanna; Olsson, Rasmus K; Julsgaard, Brian; Hammerer, Klemens; Cirac, Ignacio; Polzik, Eugene S
2006-10-05
Quantum teleportation is an important ingredient in distributed quantum networks, and can also serve as an elementary operation in quantum computers. Teleportation was first demonstrated as a transfer of a quantum state of light onto another light beam; later developments used optical relays and demonstrated entanglement swapping for continuous variables. The teleportation of a quantum state between two single material particles (trapped ions) has now also been achieved. Here we demonstrate teleportation between objects of a different nature--light and matter, which respectively represent 'flying' and 'stationary' media. A quantum state encoded in a light pulse is teleported onto a macroscopic object (an atomic ensemble containing 10 caesium atoms). Deterministic teleportation is achieved for sets of coherent states with mean photon number (n) up to a few hundred. The fidelities are 0.58 +/- 0.02 for n = 20 and 0.60 +/- 0.02 for n = 5--higher than any classical state transfer can possibly achieve. Besides being of fundamental interest, teleportation using a macroscopic atomic ensemble is relevant for the practical implementation of a quantum repeater. An important factor for the implementation of quantum networks is the teleportation distance between transmitter and receiver; this is 0.5 metres in the present experiment. As our experiment uses propagating light to achieve the entanglement of light and atoms required for teleportation, the present approach should be scalable to longer distances.
Noise management to achieve superiority in quantum information systems
NASA Astrophysics Data System (ADS)
Nemoto, Kae; Devitt, Simon; Munro, William J.
2017-06-01
Quantum information systems are expected to exhibit superiority compared with their classical counterparts. This superiority arises from the quantum coherences present in these quantum systems, which are obviously absent in classical ones. To exploit such quantum coherences, it is essential to control the phase information in the quantum state. The phase is analogue in nature, rather than binary. This makes quantum information technology fundamentally different from our classical digital information technology. In this paper, we analyse error sources and illustrate how these errors must be managed for the system to achieve the required fidelity and a quantum superiority. This article is part of the themed issue 'Quantum technology for the 21st century'.
Noise management to achieve superiority in quantum information systems.
Nemoto, Kae; Devitt, Simon; Munro, William J
2017-08-06
Quantum information systems are expected to exhibit superiority compared with their classical counterparts. This superiority arises from the quantum coherences present in these quantum systems, which are obviously absent in classical ones. To exploit such quantum coherences, it is essential to control the phase information in the quantum state. The phase is analogue in nature, rather than binary. This makes quantum information technology fundamentally different from our classical digital information technology. In this paper, we analyse error sources and illustrate how these errors must be managed for the system to achieve the required fidelity and a quantum superiority.This article is part of the themed issue 'Quantum technology for the 21st century'. © 2017 The Author(s).
Physics at the FQMT'11 conference
NASA Astrophysics Data System (ADS)
Špička, V.; Nieuwenhuizen, Th M.; Keefe, P. D.
2012-11-01
This paper deals with the recent state of the art of the following topics presented at the FQMT'11 conference: foundations of quantum physics, quantum measurement; nonequilibrium quantum statistical physics; quantum thermodynamics; quantum measurement, entanglement and coherence; dissipation, dephasing, noise, and decoherence; quantum optics; macroscopic quantum behavior; e.g. cold atoms; Bose-Einstein condensates; physics of quantum computing and quantum information; mesoscopic, nano-electro-mechanical systems and nano-optical systems; spin systems and their dynamics; biological systems and molecular motors; and cosmology, gravitation and astrophysics. The lectures and discussions at the FQMT'11 conference, as well as the contributions to the related topical issue, reveal important themes for future development. The recent literature is included.
Coherent inflation for large quantum superpositions of levitated microspheres
NASA Astrophysics Data System (ADS)
Romero-Isart, Oriol
2017-12-01
We show that coherent inflation (CI), namely quantum dynamics generated by inverted conservative potentials acting on the center of mass of a massive object, is an enabling tool to prepare large spatial quantum superpositions in a double-slit experiment. Combined with cryogenic, extreme high vacuum, and low-vibration environments, we argue that it is experimentally feasible to exploit CI to prepare the center of mass of a micrometer-sized object in a spatial quantum superposition comparable to its size. In such a hitherto unexplored parameter regime gravitationally-induced decoherence could be unambiguously falsified. We present a protocol to implement CI in a double-slit experiment by letting a levitated microsphere traverse a static potential landscape. Such a protocol could be experimentally implemented with an all-magnetic scheme using superconducting microspheres.
An impurity-induced gap system as a quantum data bus for quantum state transfer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Bing, E-mail: chenbingphys@gmail.com; Li, Yong; Song, Z.
2014-09-15
We introduce a tight-binding chain with a single impurity to act as a quantum data bus for perfect quantum state transfer. Our proposal is based on the weak coupling limit of the two outermost quantum dots to the data bus, which is a gapped system induced by the impurity. By connecting two quantum dots to two sites of the data bus, the system can accomplish a high-fidelity and long-distance quantum state transfer. Numerical simulations for finite system show that the numerical and analytical results of the effective coupling strength agree well with each other. Moreover, we study the robustness ofmore » this quantum communication protocol in the presence of disorder in the couplings between the nearest-neighbor quantum dots. We find that the gap of the system plays an important role in robust quantum state transfer.« less
Transient chaos - a resolution of breakdown of quantum-classical correspondence in optomechanics.
Wang, Guanglei; Lai, Ying-Cheng; Grebogi, Celso
2016-10-17
Recently, the phenomenon of quantum-classical correspondence breakdown was uncovered in optomechanics, where in the classical regime the system exhibits chaos but in the corresponding quantum regime the motion is regular - there appears to be no signature of classical chaos whatsoever in the corresponding quantum system, generating a paradox. We find that transient chaos, besides being a physically meaningful phenomenon by itself, provides a resolution. Using the method of quantum state diffusion to simulate the system dynamics subject to continuous homodyne detection, we uncover transient chaos associated with quantum trajectories. The transient behavior is consistent with chaos in the classical limit, while the long term evolution of the quantum system is regular. Transient chaos thus serves as a bridge for the quantum-classical transition (QCT). Strikingly, as the system transitions from the quantum to the classical regime, the average chaotic transient lifetime increases dramatically (faster than the Ehrenfest time characterizing the QCT for isolated quantum systems). We develop a physical theory to explain the scaling law.
Transient chaos - a resolution of breakdown of quantum-classical correspondence in optomechanics
Wang, Guanglei; Lai, Ying-Cheng; Grebogi, Celso
2016-01-01
Recently, the phenomenon of quantum-classical correspondence breakdown was uncovered in optomechanics, where in the classical regime the system exhibits chaos but in the corresponding quantum regime the motion is regular - there appears to be no signature of classical chaos whatsoever in the corresponding quantum system, generating a paradox. We find that transient chaos, besides being a physically meaningful phenomenon by itself, provides a resolution. Using the method of quantum state diffusion to simulate the system dynamics subject to continuous homodyne detection, we uncover transient chaos associated with quantum trajectories. The transient behavior is consistent with chaos in the classical limit, while the long term evolution of the quantum system is regular. Transient chaos thus serves as a bridge for the quantum-classical transition (QCT). Strikingly, as the system transitions from the quantum to the classical regime, the average chaotic transient lifetime increases dramatically (faster than the Ehrenfest time characterizing the QCT for isolated quantum systems). We develop a physical theory to explain the scaling law. PMID:27748418
Uncertainty relation for non-Hamiltonian quantum systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tarasov, Vasily E.
2013-01-15
General forms of uncertainty relations for quantum observables of non-Hamiltonian quantum systems are considered. Special cases of uncertainty relations are discussed. The uncertainty relations for non-Hamiltonian quantum systems are considered in the Schroedinger-Robertson form since it allows us to take into account Lie-Jordan algebra of quantum observables. In uncertainty relations, the time dependence of quantum observables and the properties of this dependence are discussed. We take into account that a time evolution of observables of a non-Hamiltonian quantum system is not an endomorphism with respect to Lie, Jordan, and associative multiplications.
2016-06-03
Ultracold Atoms 5:10 Zelevinsky Ye Inouye High-precision spectroscopy with two-body quantum systems Low entropy quantum gas of polar molecules New limit...12th US-Japan Seminar: Many Body Quantum Systems from Quantum Gases to Metrology and Information Processing Support was provided for The 12th US...Japan Seminar on many body quantum systems which was held in Madison, Wisconsin from September 20 to 24, 2015 at the Monona Terrace Convention Center
Some foundational aspects of quantum computers and quantum robots.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Benioff, P.; Physics
1998-01-01
This paper addresses foundational issues related to quantum computing. The need for a universally valid theory such as quantum mechanics to describe to some extent its own validation is noted. This includes quantum mechanical descriptions of systems that do theoretical calculations (i.e. quantum computers) and systems that perform experiments. Quantum robots interacting with an environment are a small first step in this direction. Quantum robots are described here as mobile quantum systems with on-board quantum computers that interact with environments. Included are discussions on the carrying out of tasks and the division of tasks into computation and action phases. Specificmore » models based on quantum Turing machines are described. Differences and similarities between quantum robots plus environments and quantum computers are discussed.« less
Classical command of quantum systems.
Reichardt, Ben W; Unger, Falk; Vazirani, Umesh
2013-04-25
Quantum computation and cryptography both involve scenarios in which a user interacts with an imperfectly modelled or 'untrusted' system. It is therefore of fundamental and practical interest to devise tests that reveal whether the system is behaving as instructed. In 1969, Clauser, Horne, Shimony and Holt proposed an experimental test that can be passed by a quantum-mechanical system but not by a system restricted to classical physics. Here we extend this test to enable the characterization of a large quantum system. We describe a scheme that can be used to determine the initial state and to classically command the system to evolve according to desired dynamics. The bipartite system is treated as two black boxes, with no assumptions about their inner workings except that they obey quantum physics. The scheme works even if the system is explicitly designed to undermine it; any misbehaviour is detected. Among its applications, our scheme makes it possible to test whether a claimed quantum computer is truly quantum. It also advances towards a goal of quantum cryptography: namely, the use of 'untrusted' devices to establish a shared random key, with security based on the validity of quantum physics.
NASA Astrophysics Data System (ADS)
Mamun, A. A.
2017-10-01
The existence of self-gravito-acoustic (SGA) shock structures (SSs) associated with negative self-gravitational potential in a self-gravitating, strongly coupled, multi-component, degenerate quantum plasma (SGSCMCDQP) system is predicted for the first time. The modified Burgers (MB) equation, which is valid for both planar and non-planar (spherical) geometries, is derived analytically, and solved numerically. It is shown that the longitudinal viscous force acting on inertial plasma species of the plasma system is the source of dissipation and is responsible for the formation of these SGA SSs in the plasma system. The time evolution of these SGA SSs is also shown for different values (viz., 0.5, 1, and 2) of Γ, where Γ is the ratio of the nonlinear coefficient to the dissipative coefficient in the MB equation. The SGSCMCDQP model and the numerical analysis of the MB equation presented here are so general that they can be applied in any type of SGSCMCDQP systems like astrophysical compact objects having planar or non-planar (spherical) shape.
Towards photonic quantum simulation of ground states of frustrated Heisenberg spin systems
Ma, Xiao-song; Dakić, Borivoje; Kropatschek, Sebastian; Naylor, William; Chan, Yang-hao; Gong, Zhe-xuan; Duan, Lu-ming; Zeilinger, Anton; Walther, Philip
2014-01-01
Photonic quantum simulators are promising candidates for providing insight into other small- to medium-sized quantum systems. Recent experiments have shown that photonic quantum systems have the advantage to exploit quantum interference for the quantum simulation of the ground state of Heisenberg spin systems. Here we experimentally characterize this quantum interference at a tuneable beam splitter and further investigate the measurement-induced interactions of a simulated four-spin system by comparing the entanglement dynamics using pairwise concurrence. We also study theoretically a four-site square lattice with next-nearest neighbor interactions and a six-site checkerboard lattice, which might be in reach of current technology. PMID:24394808
A quantum–quantum Metropolis algorithm
Yung, Man-Hong; Aspuru-Guzik, Alán
2012-01-01
The classical Metropolis sampling method is a cornerstone of many statistical modeling applications that range from physics, chemistry, and biology to economics. This method is particularly suitable for sampling the thermal distributions of classical systems. The challenge of extending this method to the simulation of arbitrary quantum systems is that, in general, eigenstates of quantum Hamiltonians cannot be obtained efficiently with a classical computer. However, this challenge can be overcome by quantum computers. Here, we present a quantum algorithm which fully generalizes the classical Metropolis algorithm to the quantum domain. The meaning of quantum generalization is twofold: The proposed algorithm is not only applicable to both classical and quantum systems, but also offers a quantum speedup relative to the classical counterpart. Furthermore, unlike the classical method of quantum Monte Carlo, this quantum algorithm does not suffer from the negative-sign problem associated with fermionic systems. Applications of this algorithm include the study of low-temperature properties of quantum systems, such as the Hubbard model, and preparing the thermal states of sizable molecules to simulate, for example, chemical reactions at an arbitrary temperature. PMID:22215584
Quantum Information Biology: From Theory of Open Quantum Systems to Adaptive Dynamics
NASA Astrophysics Data System (ADS)
Asano, Masanari; Basieva, Irina; Khrennikov, Andrei; Ohya, Masanori; Tanaka, Yoshiharu; Yamato, Ichiro
This chapter reviews quantum(-like) information biology (QIB). Here biology is treated widely as even covering cognition and its derivatives: psychology and decision making, sociology, and behavioral economics and finances. QIB provides an integrative description of information processing by bio-systems at all scales of life: from proteins and cells to cognition, ecological and social systems. Mathematically QIB is based on the theory of adaptive quantum systems (which covers also open quantum systems). Ideologically QIB is based on the quantum-like (QL) paradigm: complex bio-systems process information in accordance with the laws of quantum information and probability. This paradigm is supported by plenty of statistical bio-data collected at all bio-scales. QIB re ects the two fundamental principles: a) adaptivity; and, b) openness (bio-systems are fundamentally open). In addition, quantum adaptive dynamics provides the most generally possible mathematical representation of these principles.
Quantum biology of the retina.
Sia, Paul Ikgan; Luiten, André N; Stace, Thomas M; Wood, John Pm; Casson, Robert J
2014-08-01
The emerging field of quantum biology has led to a greater understanding of biological processes at the microscopic level. There is recent evidence to suggest that non-trivial quantum features such as entanglement, tunnelling and coherence have evolved in living systems. These quantum features are particularly evident in supersensitive light-harvesting systems such as in photosynthesis and photoreceptors. A biomimetic strategy utilizing biological quantum phenomena might allow new advances in the field of quantum engineering, particularly in quantum information systems. In addition, a better understanding of quantum biological features may lead to novel medical diagnostic and therapeutic developments. In the present review, we discuss the role of quantum physics in biological systems with an emphasis on the retina. © 2014 Royal Australian and New Zealand College of Ophthalmologists.
Ground-to-satellite quantum teleportation.
Ren, Ji-Gang; Xu, Ping; Yong, Hai-Lin; Zhang, Liang; Liao, Sheng-Kai; Yin, Juan; Liu, Wei-Yue; Cai, Wen-Qi; Yang, Meng; Li, Li; Yang, Kui-Xing; Han, Xuan; Yao, Yong-Qiang; Li, Ji; Wu, Hai-Yan; Wan, Song; Liu, Lei; Liu, Ding-Quan; Kuang, Yao-Wu; He, Zhi-Ping; Shang, Peng; Guo, Cheng; Zheng, Ru-Hua; Tian, Kai; Zhu, Zhen-Cai; Liu, Nai-Le; Lu, Chao-Yang; Shu, Rong; Chen, Yu-Ao; Peng, Cheng-Zhi; Wang, Jian-Yu; Pan, Jian-Wei
2017-09-07
An arbitrary unknown quantum state cannot be measured precisely or replicated perfectly. However, quantum teleportation enables unknown quantum states to be transferred reliably from one object to another over long distances, without physical travelling of the object itself. Long-distance teleportation is a fundamental element of protocols such as large-scale quantum networks and distributed quantum computation. But the distances over which transmission was achieved in previous teleportation experiments, which used optical fibres and terrestrial free-space channels, were limited to about 100 kilometres, owing to the photon loss of these channels. To realize a global-scale 'quantum internet' the range of quantum teleportation needs to be greatly extended. A promising way of doing so involves using satellite platforms and space-based links, which can connect two remote points on Earth with greatly reduced channel loss because most of the propagation path of the photons is in empty space. Here we report quantum teleportation of independent single-photon qubits from a ground observatory to a low-Earth-orbit satellite, through an uplink channel, over distances of up to 1,400 kilometres. To optimize the efficiency of the link and to counter the atmospheric turbulence in the uplink, we use a compact ultra-bright source of entangled photons, a narrow beam divergence and high-bandwidth and high-accuracy acquiring, pointing and tracking. We demonstrate successful quantum teleportation of six input states in mutually unbiased bases with an average fidelity of 0.80 ± 0.01, well above the optimal state-estimation fidelity on a single copy of a qubit (the classical limit). Our demonstration of a ground-to-satellite uplink for reliable and ultra-long-distance quantum teleportation is an essential step towards a global-scale quantum internet.
Ground-to-satellite quantum teleportation
NASA Astrophysics Data System (ADS)
Ren, Ji-Gang; Xu, Ping; Yong, Hai-Lin; Zhang, Liang; Liao, Sheng-Kai; Yin, Juan; Liu, Wei-Yue; Cai, Wen-Qi; Yang, Meng; Li, Li; Yang, Kui-Xing; Han, Xuan; Yao, Yong-Qiang; Li, Ji; Wu, Hai-Yan; Wan, Song; Liu, Lei; Liu, Ding-Quan; Kuang, Yao-Wu; He, Zhi-Ping; Shang, Peng; Guo, Cheng; Zheng, Ru-Hua; Tian, Kai; Zhu, Zhen-Cai; Liu, Nai-Le; Lu, Chao-Yang; Shu, Rong; Chen, Yu-Ao; Peng, Cheng-Zhi; Wang, Jian-Yu; Pan, Jian-Wei
2017-09-01
An arbitrary unknown quantum state cannot be measured precisely or replicated perfectly. However, quantum teleportation enables unknown quantum states to be transferred reliably from one object to another over long distances, without physical travelling of the object itself. Long-distance teleportation is a fundamental element of protocols such as large-scale quantum networks and distributed quantum computation. But the distances over which transmission was achieved in previous teleportation experiments, which used optical fibres and terrestrial free-space channels, were limited to about 100 kilometres, owing to the photon loss of these channels. To realize a global-scale ‘quantum internet’ the range of quantum teleportation needs to be greatly extended. A promising way of doing so involves using satellite platforms and space-based links, which can connect two remote points on Earth with greatly reduced channel loss because most of the propagation path of the photons is in empty space. Here we report quantum teleportation of independent single-photon qubits from a ground observatory to a low-Earth-orbit satellite, through an uplink channel, over distances of up to 1,400 kilometres. To optimize the efficiency of the link and to counter the atmospheric turbulence in the uplink, we use a compact ultra-bright source of entangled photons, a narrow beam divergence and high-bandwidth and high-accuracy acquiring, pointing and tracking. We demonstrate successful quantum teleportation of six input states in mutually unbiased bases with an average fidelity of 0.80 ± 0.01, well above the optimal state-estimation fidelity on a single copy of a qubit (the classical limit). Our demonstration of a ground-to-satellite uplink for reliable and ultra-long-distance quantum teleportation is an essential step towards a global-scale quantum internet.
On the physical realizability of quantum stochastic walks
NASA Astrophysics Data System (ADS)
Taketani, Bruno; Govia, Luke; Schuhmacher, Peter; Wilhelm, Frank
Quantum walks are a promising framework that can be used to both understand and implement quantum information processing tasks. The recently developed quantum stochastic walk combines the concepts of a quantum walk and a classical random walk through open system evolution of a quantum system, and have been shown to have applications in as far reaching fields as artificial intelligence. However, nature puts significant constraints on the kind of open system evolutions that can be realized in a physical experiment. In this work, we discuss the restrictions on the allowed open system evolution, and the physical assumptions underpinning them. We then introduce a way to circumvent some of these restrictions, and simulate a more general quantum stochastic walk on a quantum computer, using a technique we call quantum trajectories on a quantum computer. We finally describe a circuit QED approach to implement discrete time quantum stochastic walks.
Quantum computer games: quantum minesweeper
NASA Astrophysics Data System (ADS)
Gordon, Michal; Gordon, Goren
2010-07-01
The computer game of quantum minesweeper is introduced as a quantum extension of the well-known classical minesweeper. Its main objective is to teach the unique concepts of quantum mechanics in a fun way. Quantum minesweeper demonstrates the effects of superposition, entanglement and their non-local characteristics. While in the classical minesweeper the goal of the game is to discover all the mines laid out on a board without triggering them, in the quantum version there are several classical boards in superposition. The goal is to know the exact quantum state, i.e. the precise layout of all the mines in all the superposed classical boards. The player can perform three types of measurement: a classical measurement that probabilistically collapses the superposition; a quantum interaction-free measurement that can detect a mine without triggering it; and an entanglement measurement that provides non-local information. The application of the concepts taught by quantum minesweeper to one-way quantum computing are also presented.
The rise and fall of redundancy in decoherence and quantum Darwinism
NASA Astrophysics Data System (ADS)
Jess Riedel, C.; Zurek, Wojciech H.; Zwolak, Michael
2012-08-01
A state selected at random from the Hilbert space of a many-body system is overwhelmingly likely to exhibit highly non-classical correlations. For these typical states, half of the environment must be measured by an observer to determine the state of a given subsystem. The objectivity of classical reality—the fact that multiple observers can agree on the state of a subsystem after measuring just a small fraction of its environment—implies that the correlations found in nature between macroscopic systems and their environments are exceptional. Building on previous studies of quantum Darwinism showing that highly redundant branching states are produced ubiquitously during pure decoherence, we examine the conditions needed for the creation of branching states and study their demise through many-body interactions. We show that even constrained dynamics can suppress redundancy to the values typical of random states on relaxation timescales, and prove that these results hold exactly in the thermodynamic limit.
The many facets of the (non-relativistic) Nuclear Equation of State
NASA Astrophysics Data System (ADS)
Giuliani, G.; Zheng, H.; Bonasera, A.
2014-05-01
A nucleus is a quantum many body system made of strongly interacting Fermions, protons and neutrons (nucleons). This produces a rich Nuclear Equation of State whose knowledge is crucial to our understanding of the composition and evolution of celestial objects. The nuclear equation of state displays many different features; first neutrons and protons might be treated as identical particles or nucleons, but when the differences between protons and neutrons are spelled out, we can have completely different scenarios, just by changing slightly their interactions. At zero temperature and for neutron rich matter, a quantum liquid-gas phase transition at low densities or a quark-gluon plasma at high densities might occur. Furthermore, the large binding energy of the α particle, a Boson, might also open the possibility of studying a system made of a mixture of Bosons and Fermions, which adds to the open problems of the nuclear equation of state.
Dissipation induced asymmetric steering of distant atomic ensembles
NASA Astrophysics Data System (ADS)
Cheng, Guangling; Tan, Huatang; Chen, Aixi
2018-04-01
The asymmetric steering effects of separated atomic ensembles denoted by the effective bosonic modes have been explored by the means of quantum reservoir engineering in the setting of the cascaded cavities, in each of which an atomic ensemble is involved. It is shown that the steady-state asymmetric steering of the mesoscopic objects is unconditionally achieved via the dissipation of the cavities, by which the nonlocal interaction occurs between two atomic ensembles, and the direction of steering could be easily controlled through variation of certain tunable system parameters. One advantage of the present scheme is that it could be rather robust against parameter fluctuations, and does not require the accurate control of evolution time and the original state of the system. Furthermore, the double-channel Raman transitions between the long-lived atomic ground states are used and the atomic ensembles act as the quantum network nodes, which makes our scheme insensitive to the collective spontaneous emission of atoms.
Optomechanics in a Levitated Droplet of Superfluid Helium
NASA Astrophysics Data System (ADS)
Brown, Charles; Harris, Glen; Harris, Jack
2017-04-01
A critical issue common to all optomechanical systems is dissipative coupling to the environment, which limits the system's quantum coherence. Superfluid helium's extremely low optical and mechanical dissipation, as well as its high thermal conductivity and its ability cool itself via evaporation, makes the mostly uncharted territory of superfluid optomechanics an exciting avenue for exploring quantum effects in macroscopic objects. I will describe ongoing work that aims to exploit the unique properties of superfluid helium by constructing an optomechanical system consisting of a magnetically levitated droplet of superfluid helium., The optical whispering gallery modes (WGMs) of the droplet, as well as the mechanical oscillations of its surface, should offer exceptionally low dissipation, and should couple to each other via the usual optomechanical interactions. I will present recent progress towards this goal, and also discuss the background for this work, which includes prior demonstrations of magnetic levitation of superfluid helium, high finesse WGMs in liquid drops, and the self-cooling of helium drops in vacuum.
Quantum teleportation from light beams to vibrational states of a macroscopic diamond
Hou, P.-Y.; Huang, Y.-Y.; Yuan, X.-X.; Chang, X.-Y.; Zu, C.; He, L.; Duan, L.-M.
2016-01-01
With the recent development of optomechanics, the vibration in solids, involving collective motion of trillions of atoms, gradually enters into the realm of quantum control. Here, building on the recent remarkable progress in optical control of motional states of diamonds, we report an experimental demonstration of quantum teleportation from light beams to vibrational states of a macroscopic diamond under ambient conditions. Through quantum process tomography, we demonstrate average teleportation fidelity (90.6±1.0)%, clearly exceeding the classical limit of 2/3. The experiment pushes the target of quantum teleportation to the biggest object so far, with interesting implications for optomechanical quantum control and quantum information science. PMID:27240553
Thermalization and prethermalization in isolated quantum systems: a theoretical overview
NASA Astrophysics Data System (ADS)
Mori, Takashi; Ikeda, Tatsuhiko N.; Kaminishi, Eriko; Ueda, Masahito
2018-06-01
The approach to thermal equilibrium, or thermalization, in isolated quantum systems is among the most fundamental problems in statistical physics. Recent theoretical studies have revealed that thermalization in isolated quantum systems has several remarkable features, which emerge from quantum entanglement and are quite distinct from those in classical systems. Experimentally, well isolated and highly controllable ultracold quantum gases offer an ideal testbed to study the nonequilibrium dynamics in isolated quantum systems, promoting intensive recent theoretical endeavors on this fundamental subject. Besides thermalization, many isolated quantum systems show intriguing behavior in relaxation processes, especially prethermalization. Prethermalization occurs when there is a clear separation of relevant time scales and has several different physical origins depending on individual systems. In this review, we overview theoretical approaches to the problems of thermalization and prethermalization.
Observable measure of quantum coherence in finite dimensional systems.
Girolami, Davide
2014-10-24
Quantum coherence is the key resource for quantum technology, with applications in quantum optics, information processing, metrology, and cryptography. Yet, there is no universally efficient method for quantifying coherence either in theoretical or in experimental practice. I introduce a framework for measuring quantum coherence in finite dimensional systems. I define a theoretical measure which satisfies the reliability criteria established in the context of quantum resource theories. Then, I present an experimental scheme implementable with current technology which evaluates the quantum coherence of an unknown state of a d-dimensional system by performing two programmable measurements on an ancillary qubit, in place of the O(d2) direct measurements required by full state reconstruction. The result yields a benchmark for monitoring quantum effects in complex systems, e.g., certifying nonclassicality in quantum protocols and probing the quantum behavior of biological complexes.
High efficiency coherent optical memory with warm rubidium vapour
Hosseini, M.; Sparkes, B.M.; Campbell, G.; Lam, P.K.; Buchler, B.C.
2011-01-01
By harnessing aspects of quantum mechanics, communication and information processing could be radically transformed. Promising forms of quantum information technology include optical quantum cryptographic systems and computing using photons for quantum logic operations. As with current information processing systems, some form of memory will be required. Quantum repeaters, which are required for long distance quantum key distribution, require quantum optical memory as do deterministic logic gates for optical quantum computing. Here, we present results from a coherent optical memory based on warm rubidium vapour and show 87% efficient recall of light pulses, the highest efficiency measured to date for any coherent optical memory suitable for quantum information applications. We also show storage and recall of up to 20 pulses from our system. These results show that simple warm atomic vapour systems have clear potential as a platform for quantum memory. PMID:21285952
High efficiency coherent optical memory with warm rubidium vapour.
Hosseini, M; Sparkes, B M; Campbell, G; Lam, P K; Buchler, B C
2011-02-01
By harnessing aspects of quantum mechanics, communication and information processing could be radically transformed. Promising forms of quantum information technology include optical quantum cryptographic systems and computing using photons for quantum logic operations. As with current information processing systems, some form of memory will be required. Quantum repeaters, which are required for long distance quantum key distribution, require quantum optical memory as do deterministic logic gates for optical quantum computing. Here, we present results from a coherent optical memory based on warm rubidium vapour and show 87% efficient recall of light pulses, the highest efficiency measured to date for any coherent optical memory suitable for quantum information applications. We also show storage and recall of up to 20 pulses from our system. These results show that simple warm atomic vapour systems have clear potential as a platform for quantum memory.
NASA Astrophysics Data System (ADS)
Qin, Meng; Li, Yan-Biao; Wu, Fang-Ping
2014-07-01
Quantifying and understanding quantum correlations may give a direct reply for many issues regarding the interesting behaviors of quantum system. To explore the quantum correlations in quantum teleportation, we have used a two-qubit Heisenberg XYZ system with spin-orbit interaction as a quantum channel to teleport an unknown state. By using different measures and standard teleportation protocols, we have derived the analytical expressions for quantum discord, entanglement of formation, purity, and maximal teleportation fidelity of the system. We compare their different characteristics and analyze the relationships between these quantities.
NASA Tech Briefs, January 2003
NASA Technical Reports Server (NTRS)
2003-01-01
Topics covered include: Optoelectronic Tool Adds Scale Marks to Photographic Images; Compact Interconnection Networks Based on Quantum Dots; Laterally Coupled Quantum-Dot Distributed-Feedback Lasers; Bit-Serial Adder Based on Quantum Dots; Stabilized Fiber-Optic Distribution of Reference Frequency; Delay/Doppler-Mapping GPS-Reflection Remote-Sensing System; Ladar System Identifies Obstacles Partly Hidden by Grass; Survivable Failure Data Recorders for Spacecraft; Fiber-Optic Ammonia Sensors; Silicon Membrane Mirrors with Electrostatic Shape Actuators; Nanoscale Hot-Wire Probes for Boundary-Layer Flows; Theodolite with CCD Camera for Safe Measurement of Laser-Beam Pointing; Efficient Coupling of Lasers to Telescopes with Obscuration; Aligning Three Off-Axis Mirrors with Help of a DOE; Calibrating Laser Gas Measurements by Use of Natural CO2; Laser Ranging Simulation Program; Micro-Ball-Lens Optical Switch Driven by SMA Actuator; Evaluation of Charge Storage and Decay in Spacecraft Insulators; Alkaline Capacitors Based on Nitride Nanoparticles; Low-EC-Content Electrolytes for Low-Temperature Li-Ion Cells; Software for a GPS-Reflection Remote-Sensing System; Software for Building Models of 3D Objects via the Internet; "Virtual Cockpit Window" for a Windowless Aerospacecraft; CLARAty Functional-Layer Software; Java Library for Input and Output of Image Data and Metadata; Software for Estimating Costs of Testing Rocket Engines; Energy-Absorbing, Lightweight Wheels; Viscoelastic Vibration Dampers for Turbomachine Blades; Soft Landing of Spacecraft on Energy-Absorbing Self-Deployable Cushions; Pneumatically Actuated Miniature Peristaltic Vacuum Pumps; Miniature Gas-Turbine Power Generator; Pressure-Sensor Assembly Technique; Wafer-Level Membrane-Transfer Process for Fabricating MEMS; A Reactive-Ion Etch for Patterning Piezoelectric Thin Film; Wavelet-Based Real-Time Diagnosis of Complex Systems; Quantum Search in Hilbert Space; Analytic Method for Computing Instrument Pointing Jitter; and Semiselective Optoelectronic Sensors for Monitoring Microbes.
Identification of open quantum systems from observable time traces
Zhang, Jun; Sarovar, Mohan
2015-05-27
Estimating the parameters that dictate the dynamics of a quantum system is an important task for quantum information processing and quantum metrology, as well as fundamental physics. In our paper we develop a method for parameter estimation for Markovian open quantum systems using a temporal record of measurements on the system. Furthermore, the method is based on system realization theory and is a generalization of our previous work on identification of Hamiltonian parameters.
Quantum Accelerators for High-performance Computing Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Humble, Travis S.; Britt, Keith A.; Mohiyaddin, Fahd A.
We define some of the programming and system-level challenges facing the application of quantum processing to high-performance computing. Alongside barriers to physical integration, prominent differences in the execution of quantum and conventional programs challenges the intersection of these computational models. Following a brief overview of the state of the art, we discuss recent advances in programming and execution models for hybrid quantum-classical computing. We discuss a novel quantum-accelerator framework that uses specialized kernels to offload select workloads while integrating with existing computing infrastructure. We elaborate on the role of the host operating system to manage these unique accelerator resources, themore » prospects for deploying quantum modules, and the requirements placed on the language hierarchy connecting these different system components. We draw on recent advances in the modeling and simulation of quantum computing systems with the development of architectures for hybrid high-performance computing systems and the realization of software stacks for controlling quantum devices. Finally, we present simulation results that describe the expected system-level behavior of high-performance computing systems composed from compute nodes with quantum processing units. We describe performance for these hybrid systems in terms of time-to-solution, accuracy, and energy consumption, and we use simple application examples to estimate the performance advantage of quantum acceleration.« less
Experimental comparison of two quantum computing architectures.
Linke, Norbert M; Maslov, Dmitri; Roetteler, Martin; Debnath, Shantanu; Figgatt, Caroline; Landsman, Kevin A; Wright, Kenneth; Monroe, Christopher
2017-03-28
We run a selection of algorithms on two state-of-the-art 5-qubit quantum computers that are based on different technology platforms. One is a publicly accessible superconducting transmon device (www. ibm.com/ibm-q) with limited connectivity, and the other is a fully connected trapped-ion system. Even though the two systems have different native quantum interactions, both can be programed in a way that is blind to the underlying hardware, thus allowing a comparison of identical quantum algorithms between different physical systems. We show that quantum algorithms and circuits that use more connectivity clearly benefit from a better-connected system of qubits. Although the quantum systems here are not yet large enough to eclipse classical computers, this experiment exposes critical factors of scaling quantum computers, such as qubit connectivity and gate expressivity. In addition, the results suggest that codesigning particular quantum applications with the hardware itself will be paramount in successfully using quantum computers in the future.
Tomograms for open quantum systems: In(finite) dimensional optical and spin systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thapliyal, Kishore, E-mail: tkishore36@yahoo.com; Banerjee, Subhashish, E-mail: subhashish@iitj.ac.in; Pathak, Anirban, E-mail: anirban.pathak@gmail.com
Tomograms are obtained as probability distributions and are used to reconstruct a quantum state from experimentally measured values. We study the evolution of tomograms for different quantum systems, both finite and infinite dimensional. In realistic experimental conditions, quantum states are exposed to the ambient environment and hence subject to effects like decoherence and dissipation, which are dealt with here, consistently, using the formalism of open quantum systems. This is extremely relevant from the perspective of experimental implementation and issues related to state reconstruction in quantum computation and communication. These considerations are also expected to affect the quasiprobability distribution obtained frommore » experimentally generated tomograms and nonclassicality observed from them. -- Highlights: •Tomograms are constructed for open quantum systems. •Finite and infinite dimensional quantum systems are studied. •Finite dimensional systems (phase states, single & two qubit spin states) are studied. •A dissipative harmonic oscillator is considered as an infinite dimensional system. •Both pure dephasing as well as dissipation effects are studied.« less
MURI Center for Photonic Quantum Information Systems
2009-10-16
conversion; solid- state quantum gates based on quantum dots in semiconductors and on NV centers in diamond; quantum memories using optical storage...of our high-speed quantum cryptography systems, and also by continuing to work on quantum information encoding into transverse spatial modes. 14...make use of cavity QED effects for quantum information processing, the quantum dot needs to be addressed coherently . We have probed the QD-cavity
Semiclassical evaluation of quantum fidelity
NASA Astrophysics Data System (ADS)
Vanicek, Jiri
2004-03-01
We present a numerically feasible semiclassical method to evaluate quantum fidelity (Loschmidt echo) in a classically chaotic system. It was thought that such evaluation would be intractable, but instead we show that a uniform semiclassical expression not only is tractable but it gives remarkably accurate numerical results for the standard map in both the Fermi-golden-rule and Lyapunov regimes. Because it allows a Monte-Carlo evaluation, this uniform expression is accurate at times where there are 10^70 semiclassical contributions. Remarkably, the method also explicitly contains the ``building blocks'' of analytical theories of recent literature, and thus permits a direct test of approximations made by other authors in these regimes, rather than an a posteriori comparison with numerical results. We explain in more detail the extended validity of the classical perturbation approximation and thus provide a ``defense" of the linear response theory from the famous Van Kampen objection. We point out the potential use of our uniform expression in other areas because it gives a most direct link between the quantum Feynman propagator based on the path integral and the semiclassical Van Vleck propagator based on the sum over classical trajectories. Finally, we test the applicability of our method in integrable and mixed systems.
Measuring complete quantum states with a single observable
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peng Xinhua; Suter, Dieter; Du Jiangfeng
2007-10-15
Experimental determination of an unknown quantum state usually requires several incompatible measurements. However, it is also possible to determine the full quantum state from a single, repeated measurement. For this purpose, the quantum system whose state is to be determined is first coupled to a second quantum system (the 'assistant') in such a way that part of the information in the quantum state is transferred to the assistant. The actual measurement is then performed on the enlarged system including the original system and the assistant. We discuss in detail the requirements of this procedure and experimentally implement it on amore » simple quantum system consisting of nuclear spins.« less
Reconstructing the ideal results of a perturbed analog quantum simulator
NASA Astrophysics Data System (ADS)
Schwenk, Iris; Reiner, Jan-Michael; Zanker, Sebastian; Tian, Lin; Leppäkangas, Juha; Marthaler, Michael
2018-04-01
Well-controlled quantum systems can potentially be used as quantum simulators. However, a quantum simulator is inevitably perturbed by coupling to additional degrees of freedom. This constitutes a major roadblock to useful quantum simulations. So far there are only limited means to understand the effect of perturbation on the results of quantum simulation. Here we present a method which, in certain circumstances, allows for the reconstruction of the ideal result from measurements on a perturbed quantum simulator. We consider extracting the value of the correlator 〈Ôi(t ) Ôj(0 ) 〉 from the simulated system, where Ôi are the operators which couple the system to its environment. The ideal correlator can be straightforwardly reconstructed by using statistical knowledge of the environment, if any n -time correlator of operators Ôi of the ideal system can be written as products of two-time correlators. We give an approach to verify the validity of this assumption experimentally by additional measurements on the perturbed quantum simulator. The proposed method can allow for reliable quantum simulations with systems subjected to environmental noise without adding an overhead to the quantum system.
Non-Markovian full counting statistics in quantum dot molecules
Xue, Hai-Bin; Jiao, Hu-Jun; Liang, Jiu-Qing; Liu, Wu-Ming
2015-01-01
Full counting statistics of electron transport is a powerful diagnostic tool for probing the nature of quantum transport beyond what is obtainable from the average current or conductance measurement alone. In particular, the non-Markovian dynamics of quantum dot molecule plays an important role in the nonequilibrium electron tunneling processes. It is thus necessary to understand the non-Markovian full counting statistics in a quantum dot molecule. Here we study the non-Markovian full counting statistics in two typical quantum dot molecules, namely, serially coupled and side-coupled double quantum dots with high quantum coherence in a certain parameter regime. We demonstrate that the non-Markovian effect manifests itself through the quantum coherence of the quantum dot molecule system, and has a significant impact on the full counting statistics in the high quantum-coherent quantum dot molecule system, which depends on the coupling of the quantum dot molecule system with the source and drain electrodes. The results indicated that the influence of the non-Markovian effect on the full counting statistics of electron transport, which should be considered in a high quantum-coherent quantum dot molecule system, can provide a better understanding of electron transport through quantum dot molecules. PMID:25752245
Revisiting the Quantum Brain Hypothesis: Toward Quantum (Neuro)biology?
Jedlicka, Peter
2017-01-01
The nervous system is a non-linear dynamical complex system with many feedback loops. A conventional wisdom is that in the brain the quantum fluctuations are self-averaging and thus functionally negligible. However, this intuition might be misleading in the case of non-linear complex systems. Because of an extreme sensitivity to initial conditions, in complex systems the microscopic fluctuations may be amplified and thereby affect the system's behavior. In this way quantum dynamics might influence neuronal computations. Accumulating evidence in non-neuronal systems indicates that biological evolution is able to exploit quantum stochasticity. The recent rise of quantum biology as an emerging field at the border between quantum physics and the life sciences suggests that quantum events could play a non-trivial role also in neuronal cells. Direct experimental evidence for this is still missing but future research should address the possibility that quantum events contribute to an extremely high complexity, variability and computational power of neuronal dynamics.
Interaction-free measurement as quantum channel discrimination
NASA Astrophysics Data System (ADS)
Zhou, You; Yung, Man-Hong
2017-12-01
Interaction-free measurement is a quantum process where, in the ideal situation, an object can be detected as if no interaction took place with the probing photon. Here we show that the problem of interaction-free measurement can be regarded as a problem of quantum-channel discrimination. In particular, we look for the optimal photonic states that can minimize the detection error and the photon loss in detecting the presence or absence of the object, which is taken to be semitransparent, and the number of the interrogation cycle is assumed to be finite. Furthermore, we also investigated the possibility of minimizing the detection error through the use of entangled photons, which is essentially a setting of quantum illumination. However, our results indicate that entanglement does not exhibit a clear advantage; the same performance can be achieved with unentangled photonic states.
Towards quantum superposition of a levitated nanodiamond with a NV center
NASA Astrophysics Data System (ADS)
Li, Tongcang
2015-05-01
Creating large Schrödinger's cat states with massive objects is one of the most challenging goals in quantum mechanics. We have previously achieved an important step of this goal by cooling the center-of-mass motion of a levitated microsphere from room temperature to millikelvin temperatures with feedback cooling. To generate spatial quantum superposition states with an optical cavity, however, requires a very strong quadratic coupling that is difficult to achieve. We proposed to optically trap a nanodiamond with a nitrogen-vacancy (NV) center in vacuum, and generate large spatial superposition states using the NV spin-optomechanical coupling in a strong magnetic gradient field. The large spatial superposition states can be used to study objective collapse theories of quantum mechanics. We have optically trapped nanodiamonds in air and are working towards this goal.
H-theorem and Maxwell demon in quantum physics
NASA Astrophysics Data System (ADS)
Kirsanov, N. S.; Lebedev, A. V.; Sadovskyy, I. A.; Suslov, M. V.; Vinokur, V. M.; Blatter, G.; Lesovik, G. B.
2018-02-01
The Second Law of Thermodynamics states that temporal evolution of an isolated system occurs with non-diminishing entropy. In quantum realm, this holds for energy-isolated systems the evolution of which is described by the so-called unital quantum channel. The entropy of a system evolving in a non-unital quantum channel can, in principle, decrease. We formulate a general criterion of unitality for the evolution of a quantum system, enabling a simple and rigorous approach for finding and identifying the processes accompanied by decreasing entropy in energy-isolated systems. We discuss two examples illustrating our findings, the quantum Maxwell demon and heating-cooling process within a two-qubit system.
Higher-order spin and charge dynamics in a quantum dot-lead hybrid system.
Otsuka, Tomohiro; Nakajima, Takashi; Delbecq, Matthieu R; Amaha, Shinichi; Yoneda, Jun; Takeda, Kenta; Allison, Giles; Stano, Peter; Noiri, Akito; Ito, Takumi; Loss, Daniel; Ludwig, Arne; Wieck, Andreas D; Tarucha, Seigo
2017-09-22
Understanding the dynamics of open quantum systems is important and challenging in basic physics and applications for quantum devices and quantum computing. Semiconductor quantum dots offer a good platform to explore the physics of open quantum systems because we can tune parameters including the coupling to the environment or leads. Here, we apply the fast single-shot measurement techniques from spin qubit experiments to explore the spin and charge dynamics due to tunnel coupling to a lead in a quantum dot-lead hybrid system. We experimentally observe both spin and charge time evolution via first- and second-order tunneling processes, and reveal the dynamics of the spin-flip through the intermediate state. These results enable and stimulate the exploration of spin dynamics in dot-lead hybrid systems, and may offer useful resources for spin manipulation and simulation of open quantum systems.
Verifiable fault tolerance in measurement-based quantum computation
NASA Astrophysics Data System (ADS)
Fujii, Keisuke; Hayashi, Masahito
2017-09-01
Quantum systems, in general, cannot be simulated efficiently by a classical computer, and hence are useful for solving certain mathematical problems and simulating quantum many-body systems. This also implies, unfortunately, that verification of the output of the quantum systems is not so trivial, since predicting the output is exponentially hard. As another problem, the quantum system is very delicate for noise and thus needs an error correction. Here, we propose a framework for verification of the output of fault-tolerant quantum computation in a measurement-based model. In contrast to existing analyses on fault tolerance, we do not assume any noise model on the resource state, but an arbitrary resource state is tested by using only single-qubit measurements to verify whether or not the output of measurement-based quantum computation on it is correct. Verifiability is equipped by a constant time repetition of the original measurement-based quantum computation in appropriate measurement bases. Since full characterization of quantum noise is exponentially hard for large-scale quantum computing systems, our framework provides an efficient way to practically verify the experimental quantum error correction.
Polygamy of entanglement in multipartite quantum systems
NASA Astrophysics Data System (ADS)
Kim, Jeong San
2009-08-01
We show that bipartite entanglement distribution (or entanglement of assistance) in multipartite quantum systems is by nature polygamous. We first provide an analytical upper bound for the concurrence of assistance in bipartite quantum systems and derive a polygamy inequality of multipartite entanglement in arbitrary-dimensional quantum systems.
The Constructive Role of Decisions: Implications from a quantum Approach
2016-12-01
objectives. The first was to explore the nature of constructive influences in decision making . The second concerned understanding decision making in...Prisoner’s Dilemma. **First objective; constructive judgments. This is the idea that sometimes making a decision can alter the underlying relevant mental...the performance of the agent. 15. SUBJECT TERMS EOARD, Quantum Probability, Human Modeling, Human Decision Making 16. SECURITY CLASSIFICATION OF
Quantum state engineering in hybrid open quantum systems
NASA Astrophysics Data System (ADS)
Joshi, Chaitanya; Larson, Jonas; Spiller, Timothy P.
2016-04-01
We investigate a possibility to generate nonclassical states in light-matter coupled noisy quantum systems, namely, the anisotropic Rabi and Dicke models. In these hybrid quantum systems, a competing influence of coherent internal dynamics and environment-induced dissipation drives the system into nonequilibrium steady states (NESSs). Explicitly, for the anisotropic Rabi model, the steady state is given by an incoherent mixture of two states of opposite parities, but as each parity state displays light-matter entanglement, we also find that the full state is entangled. Furthermore, as a natural extension of the anisotropic Rabi model to an infinite spin subsystem, we next explored the NESS of the anisotropic Dicke model. The NESS of this linearized Dicke model is also an inseparable state of light and matter. With an aim to enrich the dynamics beyond the sustainable entanglement found for the NESS of these hybrid quantum systems, we also propose to combine an all-optical feedback strategy for quantum state protection and for establishing quantum control in these systems. Our present work further elucidates the relevance of such hybrid open quantum systems for potential applications in quantum architectures.
Origins and optimization of entanglement in plasmonically coupled quantum dots
Otten, Matthew; Larson, Jeffrey; Min, Misun; ...
2016-08-11
In this paper, a system of two or more quantum dots interacting with a dissipative plasmonic nanostructure is investigated in detail by using a cavity quantum electrodynamics approach with a model Hamiltonian. We focus on determining and understanding system configurations that generate multiple bipartite quantum entanglements between the occupation states of the quantum dots. These configurations include allowing for the quantum dots to be asymmetrically coupled to the plasmonic system. Analytical solution of a simplified limit for an arbitrary number of quantum dots and numerical simulations and optimization for the two- and three-dot cases are used to develop guidelines formore » maximizing the bipartite entanglements. For any number of quantum dots, we show that through simple starting states and parameter guidelines, one quantum dot can be made to share a strong amount of bipartite entanglement with all other quantum dots in the system, while entangling all other pairs to a lesser degree.« less
Achieving the Heisenberg limit in quantum metrology using quantum error correction.
Zhou, Sisi; Zhang, Mengzhen; Preskill, John; Jiang, Liang
2018-01-08
Quantum metrology has many important applications in science and technology, ranging from frequency spectroscopy to gravitational wave detection. Quantum mechanics imposes a fundamental limit on measurement precision, called the Heisenberg limit, which can be achieved for noiseless quantum systems, but is not achievable in general for systems subject to noise. Here we study how measurement precision can be enhanced through quantum error correction, a general method for protecting a quantum system from the damaging effects of noise. We find a necessary and sufficient condition for achieving the Heisenberg limit using quantum probes subject to Markovian noise, assuming that noiseless ancilla systems are available, and that fast, accurate quantum processing can be performed. When the sufficient condition is satisfied, a quantum error-correcting code can be constructed that suppresses the noise without obscuring the signal; the optimal code, achieving the best possible precision, can be found by solving a semidefinite program.
NASA Astrophysics Data System (ADS)
Bednar, Earl; Drager, Steven L.
2007-04-01
Quantum information processing's objective is to utilize revolutionary computing capability based on harnessing the paradigm shift offered by quantum computing to solve classically hard and computationally challenging problems. Some of our computationally challenging problems of interest include: the capability for rapid image processing, rapid optimization of logistics, protecting information, secure distributed simulation, and massively parallel computation. Currently, one important problem with quantum information processing is that the implementation of quantum computers is difficult to realize due to poor scalability and great presence of errors. Therefore, we have supported the development of Quantum eXpress and QuIDD Pro, two quantum computer simulators running on classical computers for the development and testing of new quantum algorithms and processes. This paper examines the different methods used by these two quantum computing simulators. It reviews both simulators, highlighting each simulators background, interface, and special features. It also demonstrates the implementation of current quantum algorithms on each simulator. It concludes with summary comments on both simulators.
Quantum Computation Based on Photons with Three Degrees of Freedom
Luo, Ming-Xing; Li, Hui-Ran; Lai, Hong; Wang, Xiaojun
2016-01-01
Quantum systems are important resources for quantum computer. Different from previous encoding forms using quantum systems with one degree of freedom (DoF) or two DoFs, we investigate the possibility of photon systems encoding with three DoFs consisting of the polarization DoF and two spatial DoFs. By exploring the optical circular birefringence induced by an NV center in a diamond embedded in the photonic crystal cavity, we propose several hybrid controlled-NOT (hybrid CNOT) gates operating on the two-photon or one-photon system. These hybrid CNOT gates show that three DoFs may be encoded as independent qubits without auxiliary DoFs. Our result provides a useful way to reduce quantum simulation resources by exploring complex quantum systems for quantum applications requiring large qubit systems. PMID:27174302
Quantum Computation Based on Photons with Three Degrees of Freedom.
Luo, Ming-Xing; Li, Hui-Ran; Lai, Hong; Wang, Xiaojun
2016-05-13
Quantum systems are important resources for quantum computer. Different from previous encoding forms using quantum systems with one degree of freedom (DoF) or two DoFs, we investigate the possibility of photon systems encoding with three DoFs consisting of the polarization DoF and two spatial DoFs. By exploring the optical circular birefringence induced by an NV center in a diamond embedded in the photonic crystal cavity, we propose several hybrid controlled-NOT (hybrid CNOT) gates operating on the two-photon or one-photon system. These hybrid CNOT gates show that three DoFs may be encoded as independent qubits without auxiliary DoFs. Our result provides a useful way to reduce quantum simulation resources by exploring complex quantum systems for quantum applications requiring large qubit systems.
A quantitative witness for Greenberger-Horne-Zeilinger entanglement.
Eltschka, Christopher; Siewert, Jens
2012-01-01
Along with the vast progress in experimental quantum technologies there is an increasing demand for the quantification of entanglement between three or more quantum systems. Theory still does not provide adequate tools for this purpose. The objective is, besides the quest for exact results, to develop operational methods that allow for efficient entanglement quantification. Here we put forward an analytical approach that serves both these goals. We provide a simple procedure to quantify Greenberger-Horne-Zeilinger-type multipartite entanglement in arbitrary three-qubit states. For two qubits this method is equivalent to Wootters' seminal result for the concurrence. It establishes a close link between entanglement quantification and entanglement detection by witnesses, and can be generalised both to higher dimensions and to more than three parties.
A quantitative witness for Greenberger-Horne-Zeilinger entanglement
Eltschka, Christopher; Siewert, Jens
2012-01-01
Along with the vast progress in experimental quantum technologies there is an increasing demand for the quantification of entanglement between three or more quantum systems. Theory still does not provide adequate tools for this purpose. The objective is, besides the quest for exact results, to develop operational methods that allow for efficient entanglement quantification. Here we put forward an analytical approach that serves both these goals. We provide a simple procedure to quantify Greenberger-Horne-Zeilinger–type multipartite entanglement in arbitrary three-qubit states. For two qubits this method is equivalent to Wootters' seminal result for the concurrence. It establishes a close link between entanglement quantification and entanglement detection by witnesses, and can be generalised both to higher dimensions and to more than three parties. PMID:23267431
Experimental test of single-system steering and application to quantum communication
NASA Astrophysics Data System (ADS)
Liu, Zhao-Di; Sun, Yong-Nan; Cheng, Ze-Di; Xu, Xiao-Ye; Zhou, Zong-Quan; Chen, Geng; Li, Chuan-Feng; Guo, Guang-Can
2017-02-01
Einstein-Podolsky-Rosen (EPR) steering describes the ability to steer remotely quantum states of an entangled pair by measuring locally one of its particles. Here we report on an experimental demonstration of single-system steering. The application to quantum communication is also investigated. Single-system steering refers to steering of a single d -dimensional quantum system that can be used in a unifying picture to certify the reliability of tasks employed in both quantum communication and quantum computation. In our experiment, high-dimensional quantum states are implemented by encoding polarization and orbital angular momentum of photons with dimensionality of up to 12.
Dissipation Assisted Quantum Memory with Coupled Spin Systems
NASA Astrophysics Data System (ADS)
Jiang, Liang; Verstraete, Frank; Cirac, Ignacio; Lukin, Mikhail
2009-05-01
Dissipative dynamics often destroys quantum coherences. However, one can use dissipation to suppress decoherence. A well-known example is the so-called quantum Zeno effect, in which one can freeze the evolution using dissipative processes (e.g., frequently projecting the system to its initial state). Similarly, the undesired decoherence of quantum bits can also be suppressed using controlled dissipation. We propose and analyze the use of this generalization of quantum Zeno effect for protecting the quantum information encoded in the coupled spin systems. This new approach may potentially enhance the performance of quantum memories, in systems such as nitrogen-vacancy color-centers in diamond.
Continuous variable quantum optical simulation for time evolution of quantum harmonic oscillators
Deng, Xiaowei; Hao, Shuhong; Guo, Hong; Xie, Changde; Su, Xiaolong
2016-01-01
Quantum simulation enables one to mimic the evolution of other quantum systems using a controllable quantum system. Quantum harmonic oscillator (QHO) is one of the most important model systems in quantum physics. To observe the transient dynamics of a QHO with high oscillation frequency directly is difficult. We experimentally simulate the transient behaviors of QHO in an open system during time evolution with an optical mode and a logical operation system of continuous variable quantum computation. The time evolution of an atomic ensemble in the collective spontaneous emission is analytically simulated by mapping the atomic ensemble onto a QHO. The measured fidelity, which is used for quantifying the quality of the simulation, is higher than its classical limit. The presented simulation scheme provides a new tool for studying the dynamic behaviors of QHO. PMID:26961962
Roadmap on quantum optical systems
NASA Astrophysics Data System (ADS)
Dumke, Rainer; Lu, Zehuang; Close, John; Robins, Nick; Weis, Antoine; Mukherjee, Manas; Birkl, Gerhard; Hufnagel, Christoph; Amico, Luigi; Boshier, Malcolm G.; Dieckmann, Kai; Li, Wenhui; Killian, Thomas C.
2016-09-01
This roadmap bundles fast developing topics in experimental optical quantum sciences, addressing current challenges as well as potential advances in future research. We have focused on three main areas: quantum assisted high precision measurements, quantum information/simulation, and quantum gases. Quantum assisted high precision measurements are discussed in the first three sections, which review optical clocks, atom interferometry, and optical magnetometry. These fields are already successfully utilized in various applied areas. We will discuss approaches to extend this impact even further. In the quantum information/simulation section, we start with the traditionally successful employed systems based on neutral atoms and ions. In addition the marvelous demonstrations of systems suitable for quantum information is not progressing, unsolved challenges remain and will be discussed. We will also review, as an alternative approach, the utilization of hybrid quantum systems based on superconducting quantum devices and ultracold atoms. Novel developments in atomtronics promise unique access in exploring solid-state systems with ultracold gases and are investigated in depth. The sections discussing the continuously fast-developing quantum gases include a review on dipolar heteronuclear diatomic gases, Rydberg gases, and ultracold plasma. Overall, we have accomplished a roadmap of selected areas undergoing rapid progress in quantum optics, highlighting current advances and future challenges. These exciting developments and vast advances will shape the field of quantum optics in the future.
Harnessing Disordered-Ensemble Quantum Dynamics for Machine Learning
NASA Astrophysics Data System (ADS)
Fujii, Keisuke; Nakajima, Kohei
2017-08-01
The quantum computer has an amazing potential of fast information processing. However, the realization of a digital quantum computer is still a challenging problem requiring highly accurate controls and key application strategies. Here we propose a platform, quantum reservoir computing, to solve these issues successfully by exploiting the natural quantum dynamics of ensemble systems, which are ubiquitous in laboratories nowadays, for machine learning. This framework enables ensemble quantum systems to universally emulate nonlinear dynamical systems including classical chaos. A number of numerical experiments show that quantum systems consisting of 5-7 qubits possess computational capabilities comparable to conventional recurrent neural networks of 100-500 nodes. This discovery opens up a paradigm for information processing with artificial intelligence powered by quantum physics.
Daemonic ergotropy: enhanced work extraction from quantum correlations
NASA Astrophysics Data System (ADS)
Francica, Gianluca; Goold, John; Plastina, Francesco; Paternostro, Mauro
2017-03-01
We investigate how the presence of quantum correlations can influence work extraction in closed quantum systems, establishing a new link between the field of quantum non-equilibrium thermodynamics and the one of quantum information theory. We consider a bipartite quantum system and we show that it is possible to optimize the process of work extraction, thanks to the correlations between the two parts of the system, by using an appropriate feedback protocol based on the concept of ergotropy. We prove that the maximum gain in the extracted work is related to the existence of quantum correlations between the two parts, quantified by either quantum discord or, for pure states, entanglement. We then illustrate our general findings on a simple physical situation consisting of a qubit system.
Entangled states in quantum mechanics
NASA Astrophysics Data System (ADS)
Ruža, Jānis
2010-01-01
In some circles of quantum physicists, a view is maintained that the nonseparability of quantum systems-i.e., the entanglement-is a characteristic feature of quantum mechanics. According to this view, the entanglement plays a crucial role in the solution of quantum measurement problem, the origin of the “classicality” from the quantum physics, the explanation of the EPR paradox by a nonlocal character of the quantum world. Besides, the entanglement is regarded as a cornerstone of such modern disciplines as quantum computation, quantum cryptography, quantum information, etc. At the same time, entangled states are well known and widely used in various physics areas. In particular, this notion is widely used in nuclear, atomic, molecular, solid state physics, in scattering and decay theories as well as in other disciplines, where one has to deal with many-body quantum systems. One of the methods, how to construct the basis states of a composite many-body quantum system, is the so-called genealogical decomposition method. Genealogical decomposition allows one to construct recurrently by particle number the basis states of a composite quantum system from the basis states of its forming subsystems. These coupled states have a structure typical for entangled states. If a composite system is stable, the internal structure of its forming basis states does not manifest itself in measurements. However, if a composite system is unstable and decays onto its forming subsystems, then the measurables are the quantum numbers, associated with these subsystems. In such a case, the entangled state has a dynamical origin, determined by the Hamiltonian of the corresponding decay process. Possible correlations between the quantum numbers of resulting subsystems are determined by the symmetries-conservation laws of corresponding dynamical variables, and not by the quantum entanglement feature.
Quantum-classical correspondence in the vicinity of periodic orbits
NASA Astrophysics Data System (ADS)
Kumari, Meenu; Ghose, Shohini
2018-05-01
Quantum-classical correspondence in chaotic systems is a long-standing problem. We describe a method to quantify Bohr's correspondence principle and calculate the size of quantum numbers for which we can expect to observe quantum-classical correspondence near periodic orbits of Floquet systems. Our method shows how the stability of classical periodic orbits affects quantum dynamics. We demonstrate our method by analyzing quantum-classical correspondence in the quantum kicked top (QKT), which exhibits both regular and chaotic behavior. We use our correspondence conditions to identify signatures of classical bifurcations even in a deep quantum regime. Our method can be used to explain the breakdown of quantum-classical correspondence in chaotic systems.
Deng, Bei; Zhang, R. Q.; Shi, X. Q.
2014-01-01
The negatively charged nitrogen-vacancy (N-V−) color center in diamond is an important solid-state single photon source for applications to quantum communication and distributed quantum computation. Its full usefulness relies on sufficient radiative emission of the optical photons which requires realizable control to enhance emission into the zero-phonon line (ZPL) but until now is still a challenge. Detailed understanding of the associated excitation process would be of essential importance for such objective. Here we report a theoretical work that probes the spin-conserving optical excitation of the N-V− center. Using density-functional-theory (DFT) calculations, we find that the ZPL and the phonon-side band (PSB) depend sensitively on the axial strain of the system. Besides, we find a relatively small PSB appearing at about 100 GPa in the emission spectrum at low temperatures, which provides a means to enhance the coherent emission of the N-V− center in quantum optical networks. PMID:24888367
Applications of rigged Hilbert spaces in quantum mechanics and signal processing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Celeghini, E., E-mail: celeghini@fi.infn.it; Departamento de Física Teórica, Atómica y Óptica and IMUVA, Universidad de Valladolid, Paseo Belén 7, 47011 Valladolid; Gadella, M., E-mail: manuelgadella1@gmail.com
Simultaneous use of discrete and continuous bases in quantum systems is not possible in the context of Hilbert spaces, but only in the more general structure of rigged Hilbert spaces (RHS). In addition, the relevant operators in RHS (but not in Hilbert space) are a realization of elements of a Lie enveloping algebra and support representations of semigroups. We explicitly construct here basis dependent RHS of the line and half-line and relate them to the universal enveloping algebras of the Weyl-Heisenberg algebra and su(1, 1), respectively. The complete sub-structure of both RHS and of the operators acting on them ismore » obtained from their algebraic structures or from the related fractional Fourier transforms. This allows us to describe both quantum and signal processing states and their dynamics. Two relevant improvements are introduced: (i) new kinds of filters related to restrictions to subspaces and/or the elimination of high frequency fluctuations and (ii) an operatorial structure that, starting from fix objects, describes their time evolution.« less
Quantum Control of Open Systems and Dense Atomic Ensembles
NASA Astrophysics Data System (ADS)
DiLoreto, Christopher
Controlling the dynamics of open quantum systems; i.e. quantum systems that decohere because of interactions with the environment, is an active area of research with many applications in quantum optics and quantum computation. My thesis expands the scope of this inquiry by seeking to control open systems in proximity to an additional system. The latter could be a classical system such as metal nanoparticles, or a quantum system such as a cluster of similar atoms. By modelling the interactions between the systems, we are able to expand the accessible state space of the quantum system in question. For a single, three-level quantum system, I examine isolated systems that have only normal spontaneous emission. I then show that intensity-intensity correlation spectra, which depend directly on the density matrix of the system, can be used detect whether transitions share a common energy level. This detection is possible due to the presence of quantum interference effects between two transitions if they are connected. This effect allows one to asses energy level structure diagrams in complex atoms/molecules. By placing an open quantum system near a nanoparticle dimer, I show that the spontaneous emission rate of the system can be changed "on demand" by changing the polarization of an incident, driving field. In a three-level, Lambda system, this allows a qubit to both retain high qubit fidelity when it is operating, and to be rapidly initialized to a pure state once it is rendered unusable by decoherence. This type of behaviour is not possible in a single open quantum system; therefore adding a classical system nearby extends the overall control space of the quantum system. An open quantum system near identical neighbours in a dense ensemble is another example of how the accessible state space can be expanded. I show that a dense ensemble of atoms rapidly becomes disordered with states that are not directly excited by an incident field becoming significantly populated. This effect motivates the need for using multi-directional basis sets in theoretical analysis of dense quantum systems. My results demonstrate the shortcomings of short-pulse techniques used in many recent studies. Based on my numerical studies, I hypothesize that the dense ensemble can be modelled by an effective single quantum system that has a decoherence rate that changes over time. My effective single particle model provides a way in which computational time can be reduced, and also a model in which the underlying physical processes involved in the system's evolution are much easier to understand. I then use this model to provide an elegant theoretical explanation for an unusual experimental result called "transverse optical magnetism''. My effective single particle model's predictions match very well with experimental data.
Quantum decoherence of phonons in Bose-Einstein condensates
NASA Astrophysics Data System (ADS)
Howl, Richard; Sabín, Carlos; Hackermüller, Lucia; Fuentes, Ivette
2018-01-01
We apply modern techniques from quantum optics and quantum information science to Bose-Einstein condensates (BECs) in order to study, for the first time, the quantum decoherence of phonons of isolated BECs. In the last few years, major advances in the manipulation and control of phonons have highlighted their potential as carriers of quantum information in quantum technologies, particularly in quantum processing and quantum communication. Although most of these studies have focused on trapped ion and crystalline systems, another promising system that has remained relatively unexplored is BECs. The potential benefits in using this system have been emphasized recently with proposals of relativistic quantum devices that exploit quantum states of phonons in BECs to achieve, in principle, superior performance over standard non-relativistic devices. Quantum decoherence is often the limiting factor in the practical realization of quantum technologies, but here we show that quantum decoherence of phonons is not expected to heavily constrain the performance of these proposed relativistic quantum devices.
Exotic quantum order in low-dimensional systems
NASA Astrophysics Data System (ADS)
Girvin, S. M.
1998-08-01
Strongly correlated quantum systems in low dimensions often exhibit novel quantum ordering. This ordering is sometimes hidden and can be revealed only by examining new "dual" types of correlations. Such ordering leads to novel collection modes and fractional quantum numbers. Examples will be presented from quantum spin chains and the quantum Hall effect.
Multiple-state quantum Otto engine, 1D box system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Latifah, E., E-mail: enylatifah@um.ac.id; Purwanto, A.
2014-03-24
Quantum heat engines produce work using quantum matter as their working substance. We studied adiabatic and isochoric processes and defined the general force according to quantum system. The processes and general force are used to evaluate a quantum Otto engine based on multiple-state of one dimensional box system and calculate the efficiency. As a result, the efficiency depends on the ratio of initial and final width of system under adiabatic processes.
Signatures of bifurcation on quantum correlations: Case of the quantum kicked top
NASA Astrophysics Data System (ADS)
Bhosale, Udaysinh T.; Santhanam, M. S.
2017-01-01
Quantum correlations reflect the quantumness of a system and are useful resources for quantum information and computational processes. Measures of quantum correlations do not have a classical analog and yet are influenced by classical dynamics. In this work, by modeling the quantum kicked top as a multiqubit system, the effect of classical bifurcations on measures of quantum correlations such as the quantum discord, geometric discord, and Meyer and Wallach Q measure is studied. The quantum correlation measures change rapidly in the vicinity of a classical bifurcation point. If the classical system is largely chaotic, time averages of the correlation measures are in good agreement with the values obtained by considering the appropriate random matrix ensembles. The quantum correlations scale with the total spin of the system, representing its semiclassical limit. In the vicinity of trivial fixed points of the kicked top, the scaling function decays as a power law. In the chaotic limit, for large total spin, quantum correlations saturate to a constant, which we obtain analytically, based on random matrix theory, for the Q measure. We also suggest that it can have experimental consequences.
Quantum thermodynamic cycles and quantum heat engines. II.
Quan, H T
2009-04-01
We study the quantum-mechanical generalization of force or pressure, and then we extend the classical thermodynamic isobaric process to quantum-mechanical systems. Based on these efforts, we are able to study the quantum version of thermodynamic cycles that consist of quantum isobaric processes, such as the quantum Brayton cycle and quantum Diesel cycle. We also consider the implementation of the quantum Brayton cycle and quantum Diesel cycle with some model systems, such as single particle in a one-dimensional box and single-mode radiation field in a cavity. These studies lay the microscopic (quantum-mechanical) foundation for Szilard-Zurek single-molecule engine.
Quantum Tic-Tac-Toe as Metaphor for Quantum Physics
NASA Astrophysics Data System (ADS)
Goff, Allan; Lehmann, Dale; Siegel, Joel
2004-02-01
Quantum Tic-Tac-Toe is presented as an abstract quantum system derived from the rules of Classical Tic-Tac-Toe. Abstract quantum systems can be constructed from classical systems by the addition of three types of rules; rules of Superposition, rules of Entanglement, and rules of Collapse. This is formally done for Quantum Tic-Tac-Toe. As a part of this construction it is shown that abstract quantum systems can be viewed as an ensemble of classical systems. That is, the state of a quantum game implies a set of simultaneous classical games. The number and evolution of the ensemble of classical games is driven by the superposition, entanglement, and collapse rules. Various aspects and play situations provide excellent metaphors for standard features of quantum mechanics. Several of the more significant metaphors are discussed, including a measurement mechanism, the correspondence principle, Everett's Many Worlds Hypothesis, an ascertainity principle, and spooky action at a distance. Abstract quantum systems also show the consistency of backwards-in-time causality, and the influence on the present of both pasts and futures that never happened. The strongest logical argument against faster-than-light (FTL) phenomena is that since FTL implies backwards-in-time causality, temporal paradox is an unavoidable consequence of FTL; hence FTL is impossible. Since abstract quantum systems support backwards-in-time causality but avoid temporal paradox through pruning of the classical ensemble, it may be that quantum based FTL schemes are possible allowing backwards-in-time causality, but prohibiting temporal paradox.
The Quantum Human Computer (QHC) Hypothesis
ERIC Educational Resources Information Center
Salmani-Nodoushan, Mohammad Ali
2008-01-01
This article attempts to suggest the existence of a human computer called Quantum Human Computer (QHC) on the basis of an analogy between human beings and computers. To date, there are two types of computers: Binary and Quantum. The former operates on the basis of binary logic where an object is said to exist in either of the two states of 1 and…
NASA Astrophysics Data System (ADS)
Chatzidakis, Georgios D.; Yannopapas, Vassilios
2018-05-01
We present a new technique for the study of hybrid collections of quantum emitters (atoms, molecules, quantum dots) with nanoparticles. The technique is based on a multiple-scattering polaritonic-operator formalism in conjunction with an electromagnetic coupled dipole method. Apart from collections of quantum emitters and nanoparticles, the method can equally treat the interaction of a collection of quantum emitters with a single nano-object of arbitrary shape in which case the nano-object is treated as a finite three-dimensional lattice of point scatterers. We have applied our method to the case of linear array (chain) of dimers of quantum emitters and metallic nanoparticles wherein the corresponding (geometrical and physical) parameters of the dimers are chosen so as the interaction between the emitter and the nanoparticle lies in the strong-coupling regime in order to enable the formation of plexciton states in the dimer. In particular, for a linear chain of dimers, we show that the corresponding light spectra reveal a multitude of plexciton modes resulting from the hybridization of the plexciton resonances of each individual dimer in a manner similar to the tight-binding description of electrons in solids.
Multi-million atom electronic structure calculations for quantum dots
NASA Astrophysics Data System (ADS)
Usman, Muhammad
Quantum dots grown by self-assembly process are typically constructed by 50,000 to 5,000,000 structural atoms which confine a small, countable number of extra electrons or holes in a space that is comparable in size to the electron wavelength. Under such conditions quantum dots can be interpreted as artificial atoms with the potential to be custom tailored to new functionality. In the past decade or so, these nanostructures have attracted significant experimental and theoretical attention in the field of nanoscience. The new and tunable optical and electrical properties of these artificial atoms have been proposed in a variety of different fields, for example in communication and computing systems, medical and quantum computing applications. Predictive and quantitative modeling and simulation of these structures can help to narrow down the vast design space to a range that is experimentally affordable and move this part of nanoscience to nano-Technology. Modeling of such quantum dots pose a formidable challenge to theoretical physicists because: (1) Strain originating from the lattice mismatch of the materials penetrates deep inside the buffer surrounding the quantum dots and require large scale (multi-million atom) simulations to correctly capture its effect on the electronic structure, (2) The interface roughness, the alloy randomness, and the atomistic granularity require the calculation of electronic structure at the atomistic scale. Most of the current or past theoretical calculations are based on continuum approach such as effective mass approximation or k.p modeling capturing either no or one of the above mentioned effects, thus missing some of the essential physics. The Objectives of this thesis are: (1) to model and simulate the experimental quantum dot topologies at the atomistic scale; (2) to theoretically explore the essential physics i.e. long range strain, linear and quadratic piezoelectricity, interband optical transition strengths, quantum confined stark shift, coherent coupling of electronic states in a quantum dot molecule etc.; (3) to assess the potential use of the quantum dots in real device implementation and to provide physical insight to the experimentalists. Full three dimensional strain and electronic structure simulations of quantum dot structures containing multi-million atoms are done using NEMO 3-D. Both single and vertically stacked quantum dot structures are analyzed in detail. The results show that the strain and the piezoelectricity significantly impact the electronic structure of these devices. This work shows that the InAs quantum dots when placed in the InGaAs quantum well red shifts the emission wavelength. Such InAs/GaAs-based optical devices can be used for optical-fiber based communication systems at longer wavelengths (1.3um -- 1.5um). Our atomistic simulations of InAs/InGaAs/GaAs quantum dots quantitatively match with the experiment and give the critical insight of the physics involved in these structures. A single quantum dot molecule is studied for coherent quantum coupling of electronic states under the influence of static electric field applied in the growth direction. Such nanostructures can be used in the implementation of quantum information technologies. A close quantitative match with the experimental optical measurements allowed us to get a physical insight into the complex physics of quantum tunnel couplings of electronic states as the device operation switches between atomic and molecular regimes. Another important aspect is to design the quantum dots for a desired isotropic polarization of the optical emissions. Both single and coupled quantum dots are studied for TE/TM ratio engineering. The atomistic study provides a detailed physical analysis of these computationally expensive large nanostructures and serves as a guide for the experimentalists for the design of the polarization independent devices for the optical communication systems.
Optimal protocols for slowly driven quantum systems.
Zulkowski, Patrick R; DeWeese, Michael R
2015-09-01
The design of efficient quantum information processing will rely on optimal nonequilibrium transitions of driven quantum systems. Building on a recently developed geometric framework for computing optimal protocols for classical systems driven in finite time, we construct a general framework for optimizing the average information entropy for driven quantum systems. Geodesics on the parameter manifold endowed with a positive semidefinite metric correspond to protocols that minimize the average information entropy production in finite time. We use this framework to explicitly compute the optimal entropy production for a simple two-state quantum system coupled to a heat bath of bosonic oscillators, which has applications to quantum annealing.
Hybrid plasmonic systems: from optical transparencies to strong coupling and entanglement
NASA Astrophysics Data System (ADS)
Gray, Stephen K.
2018-02-01
Classical electrodynamics and quantum mechanical models of quantum dots and molecules interacting with plasmonic systems are discussed. Calculations show that just one quantum dot interacting with a plasmonic system can lead to interesting optical effects, including optical transparencies and more general Fano resonance features that can be tailored with ultrafast laser pulses. Such effects can occur in the limit of moderate coupling between quantum dot and plasmonic system. The approach to the strong coupling regime is also discussed. In cases with two or more quantum dots within a plasmonic system, the possibility of quantum entanglement mediated through the dissipative plasmonic structure arises.
NASA Astrophysics Data System (ADS)
Srivastava, D. P.; Sahni, V.; Satsangi, P. S.
2014-08-01
Graph-theoretic quantum system modelling (GTQSM) is facilitated by considering the fundamental unit of quantum computation and information, viz. a quantum bit or qubit as a basic building block. Unit directional vectors "ket 0" and "ket 1" constitute two distinct fundamental quantum across variable orthonormal basis vectors, for the Hilbert space, specifying the direction of propagation of information, or computation data, while complementary fundamental quantum through, or flow rate, variables specify probability parameters, or amplitudes, as surrogates for scalar quantum information measure (von Neumann entropy). This paper applies GTQSM in continuum of protein heterodimer tubulin molecules of self-assembling polymers, viz. microtubules in the brain as a holistic system of interacting components representing hierarchical clustered quantum Hopfield network, hQHN, of networks. The quantum input/output ports of the constituent elemental interaction components, or processes, of tunnelling interactions and Coulombic bidirectional interactions are in cascade and parallel interconnections with each other, while the classical output ports of all elemental components are interconnected in parallel to accumulate micro-energy functions generated in the system as Hamiltonian, or Lyapunov, energy function. The paper presents an insight, otherwise difficult to gain, for the complex system of systems represented by clustered quantum Hopfield network, hQHN, through the application of GTQSM construct.
Quantifying matrix product state
NASA Astrophysics Data System (ADS)
Bhatia, Amandeep Singh; Kumar, Ajay
2018-03-01
Motivated by the concept of quantum finite-state machines, we have investigated their relation with matrix product state of quantum spin systems. Matrix product states play a crucial role in the context of quantum information processing and are considered as a valuable asset for quantum information and communication purpose. It is an effective way to represent states of entangled systems. In this paper, we have designed quantum finite-state machines of one-dimensional matrix product state representations for quantum spin systems.
NASA Astrophysics Data System (ADS)
Roch, Nicolas
2015-03-01
Measurement can be harnessed to probabilistically generate entanglement in the absence of local interactions, for example between spatially separated quantum objects. Continuous weak measurement allows us to observe the dynamics associated with this process. In particular, we perform joint dispersive readout of two superconducting transmon qubits separated by one meter of coaxial cable. We track the evolution of a joint quantum state under the influence of measurement, both as an ensemble and as a set of individual quantum trajectories. Analyzing the statistics of such quantum trajectories can shed new light on the underlying entangling mechanism.
Quantum Phase Transitions in Conventional Matrix Product Systems
NASA Astrophysics Data System (ADS)
Zhu, Jing-Min; Huang, Fei; Chang, Yan
2017-02-01
For matrix product states(MPSs) of one-dimensional spin-1/2 chains, we investigate a new kind of conventional quantum phase transition(QPT). We find that the system has two different ferromagnetic phases; on the line of the two ferromagnetic phases coexisting equally, the system in the thermodynamic limit is in an isolated mediate-coupling state described by a paramagnetic state and is in the same state as the renormalization group fixed point state, the expectation values of the physical quantities are discontinuous, and any two spin blocks of the system have the same geometry quantum discord(GQD) within the range of open interval (0,0.25) and the same classical correlation(CC) within the range of open interval (0,0.75) compared to any phase having no any kind of correlation. We not only realize the control of QPTs but also realize the control of quantum correlation of quantum many-body systems on the critical line by adjusting the environment parameters, which may have potential application in quantum information fields and is helpful to comprehensively and deeply understand the quantum correlation, and the organization and structure of quantum correlation especially for long-range quantum correlation of quantum many-body systems.
Controlled Photon Switch Assisted by Coupled Quantum Dots
Luo, Ming-Xing; Ma, Song-Ya; Chen, Xiu-Bo; Wang, Xiaojun
2015-01-01
Quantum switch is a primitive element in quantum network communication. In contrast to previous switch schemes on one degree of freedom (DOF) of quantum systems, we consider controlled switches of photon system with two DOFs. These controlled photon switches are constructed by exploring the optical selection rules derived from the quantum-dot spins in one-sided optical microcavities. Several double controlled-NOT gate on different joint systems are greatly simplified with an auxiliary DOF of the controlling photon. The photon switches show that two DOFs of photons can be independently transmitted in quantum networks. This result reduces the quantum resources for quantum network communication. PMID:26095049
Characterizing and quantifying frustration in quantum many-body systems.
Giampaolo, S M; Gualdi, G; Monras, A; Illuminati, F
2011-12-23
We present a general scheme for the study of frustration in quantum systems. We introduce a universal measure of frustration for arbitrary quantum systems and we relate it to a class of entanglement monotones via an exact inequality. If all the (pure) ground states of a given Hamiltonian saturate the inequality, then the system is said to be inequality saturating. We introduce sufficient conditions for a quantum spin system to be inequality saturating and confirm them with extensive numerical tests. These conditions provide a generalization to the quantum domain of the Toulouse criteria for classical frustration-free systems. The models satisfying these conditions can be reasonably identified as geometrically unfrustrated and subject to frustration of purely quantum origin. Our results therefore establish a unified framework for studying the intertwining of geometric and quantum contributions to frustration.
Kimber, James A; Kazarian, Sergei G
2017-10-01
Spectroscopic imaging of biomaterials and biological systems has received increased interest within the last decade because of its potential to aid in the detection of disease using biomaterials/biopsy samples and to probe the states of live cells in a label-free manner. The factors behind this increased attention include the availability of improved infrared microscopes and systems that do not require the use of a synchrotron as a light source, as well as the decreasing costs of these systems. This article highlights the current technical challenges and future directions of mid-infrared spectroscopic imaging within this field. Specifically, these are improvements in spatial resolution and spectral quality through the use of novel added lenses and computational algorithms, as well as quantum cascade laser imaging systems, which offer advantages over traditional Fourier transform infrared systems with respect to the speed of acquisition and field of view. Overcoming these challenges will push forward spectroscopic imaging as a viable tool for disease diagnostics and medical research. Graphical abstract Absorbance images of a biopsy obtained using an FTIR imaging microscope with and without an added lens, and also using a QCL microscope with high-NA objective.
Experimental recovery of quantum correlations in absence of system-environment back-action
Xu, Jin-Shi; Sun, Kai; Li, Chuan-Feng; Xu, Xiao-Ye; Guo, Guang-Can; Andersson, Erika; Lo Franco, Rosario; Compagno, Giuseppe
2013-01-01
Revivals of quantum correlations in composite open quantum systems are a useful dynamical feature against detrimental effects of the environment. Their occurrence is attributed to flows of quantum information back and forth from systems to quantum environments. However, revivals also show up in models where the environment is classical, thus unable to store quantum correlations, and forbids system-environment back-action. This phenomenon opens basic issues about its interpretation involving the role of classical environments, memory effects, collective effects and system-environment correlations. Moreover, an experimental realization of back-action-free quantum revivals has applicative relevance as it leads to recover quantum resources without resorting to more demanding structured environments and correction procedures. Here we introduce a simple two-qubit model suitable to address these issues. We then report an all-optical experiment which simulates the model and permits us to recover and control, against decoherence, quantum correlations without back-action. We finally give an interpretation of the phenomenon by establishing the roles of the involved parties. PMID:24287554
Revisiting the Quantum Brain Hypothesis: Toward Quantum (Neuro)biology?
Jedlicka, Peter
2017-01-01
The nervous system is a non-linear dynamical complex system with many feedback loops. A conventional wisdom is that in the brain the quantum fluctuations are self-averaging and thus functionally negligible. However, this intuition might be misleading in the case of non-linear complex systems. Because of an extreme sensitivity to initial conditions, in complex systems the microscopic fluctuations may be amplified and thereby affect the system’s behavior. In this way quantum dynamics might influence neuronal computations. Accumulating evidence in non-neuronal systems indicates that biological evolution is able to exploit quantum stochasticity. The recent rise of quantum biology as an emerging field at the border between quantum physics and the life sciences suggests that quantum events could play a non-trivial role also in neuronal cells. Direct experimental evidence for this is still missing but future research should address the possibility that quantum events contribute to an extremely high complexity, variability and computational power of neuronal dynamics. PMID:29163041
NASA Astrophysics Data System (ADS)
Asano, Masanari; Basieva, Irina; Khrennikov, Andrei; Ohya, Masanori; Tanaka, Yoshiharu; Yamato, Ichiro
2015-10-01
We discuss foundational issues of quantum information biology (QIB)—one of the most successful applications of the quantum formalism outside of physics. QIB provides a multi-scale model of information processing in bio-systems: from proteins and cells to cognitive and social systems. This theory has to be sharply distinguished from "traditional quantum biophysics". The latter is about quantum bio-physical processes, e.g., in cells or brains. QIB models the dynamics of information states of bio-systems. We argue that the information interpretation of quantum mechanics (its various forms were elaborated by Zeilinger and Brukner, Fuchs and Mermin, and D' Ariano) is the most natural interpretation of QIB. Biologically QIB is based on two principles: (a) adaptivity; (b) openness (bio-systems are fundamentally open). These principles are mathematically represented in the framework of a novel formalism— quantum adaptive dynamics which, in particular, contains the standard theory of open quantum systems.
Experimental comparison of two quantum computing architectures
Linke, Norbert M.; Maslov, Dmitri; Roetteler, Martin; Debnath, Shantanu; Figgatt, Caroline; Landsman, Kevin A.; Wright, Kenneth; Monroe, Christopher
2017-01-01
We run a selection of algorithms on two state-of-the-art 5-qubit quantum computers that are based on different technology platforms. One is a publicly accessible superconducting transmon device (www.research.ibm.com/ibm-q) with limited connectivity, and the other is a fully connected trapped-ion system. Even though the two systems have different native quantum interactions, both can be programed in a way that is blind to the underlying hardware, thus allowing a comparison of identical quantum algorithms between different physical systems. We show that quantum algorithms and circuits that use more connectivity clearly benefit from a better-connected system of qubits. Although the quantum systems here are not yet large enough to eclipse classical computers, this experiment exposes critical factors of scaling quantum computers, such as qubit connectivity and gate expressivity. In addition, the results suggest that codesigning particular quantum applications with the hardware itself will be paramount in successfully using quantum computers in the future. PMID:28325879
Experimental recovery of quantum correlations in absence of system-environment back-action.
Xu, Jin-Shi; Sun, Kai; Li, Chuan-Feng; Xu, Xiao-Ye; Guo, Guang-Can; Andersson, Erika; Lo Franco, Rosario; Compagno, Giuseppe
2013-01-01
Revivals of quantum correlations in composite open quantum systems are a useful dynamical feature against detrimental effects of the environment. Their occurrence is attributed to flows of quantum information back and forth from systems to quantum environments. However, revivals also show up in models where the environment is classical, thus unable to store quantum correlations, and forbids system-environment back-action. This phenomenon opens basic issues about its interpretation involving the role of classical environments, memory effects, collective effects and system-environment correlations. Moreover, an experimental realization of back-action-free quantum revivals has applicative relevance as it leads to recover quantum resources without resorting to more demanding structured environments and correction procedures. Here we introduce a simple two-qubit model suitable to address these issues. We then report an all-optical experiment which simulates the model and permits us to recover and control, against decoherence, quantum correlations without back-action. We finally give an interpretation of the phenomenon by establishing the roles of the involved parties.
High-Dimensional Single-Photon Quantum Gates: Concepts and Experiments.
Babazadeh, Amin; Erhard, Manuel; Wang, Feiran; Malik, Mehul; Nouroozi, Rahman; Krenn, Mario; Zeilinger, Anton
2017-11-03
Transformations on quantum states form a basic building block of every quantum information system. From photonic polarization to two-level atoms, complete sets of quantum gates for a variety of qubit systems are well known. For multilevel quantum systems beyond qubits, the situation is more challenging. The orbital angular momentum modes of photons comprise one such high-dimensional system for which generation and measurement techniques are well studied. However, arbitrary transformations for such quantum states are not known. Here we experimentally demonstrate a four-dimensional generalization of the Pauli X gate and all of its integer powers on single photons carrying orbital angular momentum. Together with the well-known Z gate, this forms the first complete set of high-dimensional quantum gates implemented experimentally. The concept of the X gate is based on independent access to quantum states with different parities and can thus be generalized to other photonic degrees of freedom and potentially also to other quantum systems.
Quantum technologies with hybrid systems
Kurizki, Gershon; Bertet, Patrice; Kubo, Yuimaru; Mølmer, Klaus; Petrosyan, David; Rabl, Peter; Schmiedmayer, Jörg
2015-01-01
An extensively pursued current direction of research in physics aims at the development of practical technologies that exploit the effects of quantum mechanics. As part of this ongoing effort, devices for quantum information processing, secure communication, and high-precision sensing are being implemented with diverse systems, ranging from photons, atoms, and spins to mesoscopic superconducting and nanomechanical structures. Their physical properties make some of these systems better suited than others for specific tasks; thus, photons are well suited for transmitting quantum information, weakly interacting spins can serve as long-lived quantum memories, and superconducting elements can rapidly process information encoded in their quantum states. A central goal of the envisaged quantum technologies is to develop devices that can simultaneously perform several of these tasks, namely, reliably store, process, and transmit quantum information. Hybrid quantum systems composed of different physical components with complementary functionalities may provide precisely such multitasking capabilities. This article reviews some of the driving theoretical ideas and first experimental realizations of hybrid quantum systems and the opportunities and challenges they present and offers a glance at the near- and long-term perspectives of this fascinating and rapidly expanding field. PMID:25737558
Quantum technologies with hybrid systems.
Kurizki, Gershon; Bertet, Patrice; Kubo, Yuimaru; Mølmer, Klaus; Petrosyan, David; Rabl, Peter; Schmiedmayer, Jörg
2015-03-31
An extensively pursued current direction of research in physics aims at the development of practical technologies that exploit the effects of quantum mechanics. As part of this ongoing effort, devices for quantum information processing, secure communication, and high-precision sensing are being implemented with diverse systems, ranging from photons, atoms, and spins to mesoscopic superconducting and nanomechanical structures. Their physical properties make some of these systems better suited than others for specific tasks; thus, photons are well suited for transmitting quantum information, weakly interacting spins can serve as long-lived quantum memories, and superconducting elements can rapidly process information encoded in their quantum states. A central goal of the envisaged quantum technologies is to develop devices that can simultaneously perform several of these tasks, namely, reliably store, process, and transmit quantum information. Hybrid quantum systems composed of different physical components with complementary functionalities may provide precisely such multitasking capabilities. This article reviews some of the driving theoretical ideas and first experimental realizations of hybrid quantum systems and the opportunities and challenges they present and offers a glance at the near- and long-term perspectives of this fascinating and rapidly expanding field.
Quantum technologies with hybrid systems
NASA Astrophysics Data System (ADS)
Kurizki, Gershon; Bertet, Patrice; Kubo, Yuimaru; Mølmer, Klaus; Petrosyan, David; Rabl, Peter; Schmiedmayer, Jörg
2015-03-01
An extensively pursued current direction of research in physics aims at the development of practical technologies that exploit the effects of quantum mechanics. As part of this ongoing effort, devices for quantum information processing, secure communication, and high-precision sensing are being implemented with diverse systems, ranging from photons, atoms, and spins to mesoscopic superconducting and nanomechanical structures. Their physical properties make some of these systems better suited than others for specific tasks; thus, photons are well suited for transmitting quantum information, weakly interacting spins can serve as long-lived quantum memories, and superconducting elements can rapidly process information encoded in their quantum states. A central goal of the envisaged quantum technologies is to develop devices that can simultaneously perform several of these tasks, namely, reliably store, process, and transmit quantum information. Hybrid quantum systems composed of different physical components with complementary functionalities may provide precisely such multitasking capabilities. This article reviews some of the driving theoretical ideas and first experimental realizations of hybrid quantum systems and the opportunities and challenges they present and offers a glance at the near- and long-term perspectives of this fascinating and rapidly expanding field.
Supercritical entanglement in local systems: Counterexample to the area law for quantum matter.
Movassagh, Ramis; Shor, Peter W
2016-11-22
Quantum entanglement is the most surprising feature of quantum mechanics. Entanglement is simultaneously responsible for the difficulty of simulating quantum matter on a classical computer and the exponential speedups afforded by quantum computers. Ground states of quantum many-body systems typically satisfy an "area law": The amount of entanglement between a subsystem and the rest of the system is proportional to the area of the boundary. A system that obeys an area law has less entanglement and can be simulated more efficiently than a generic quantum state whose entanglement could be proportional to the total system's size. Moreover, an area law provides useful information about the low-energy physics of the system. It is widely believed that for physically reasonable quantum systems, the area law cannot be violated by more than a logarithmic factor in the system's size. We introduce a class of exactly solvable one-dimensional physical models which we can prove have exponentially more entanglement than suggested by the area law, and violate the area law by a square-root factor. This work suggests that simple quantum matter is richer and can provide much more quantum resources (i.e., entanglement) than expected. In addition to using recent advances in quantum information and condensed matter theory, we have drawn upon various branches of mathematics such as combinatorics of random walks, Brownian excursions, and fractional matching theory. We hope that the techniques developed herein may be useful for other problems in physics as well.
Integrability and nonintegrability of quantum systems. II. Dynamics in quantum phase space
NASA Astrophysics Data System (ADS)
Zhang, Wei-Min; Feng, Da Hsuan; Yuan, Jian-Min
1990-12-01
Based on the concepts of integrability and nonintegrability of a quantum system presented in a previous paper [Zhang, Feng, Yuan, and Wang, Phys. Rev. A 40, 438 (1989)], a realization of the dynamics in the quantum phase space is now presented. For a quantum system with dynamical group scrG and in one of its unitary irreducible-representation carrier spaces gerhΛ, the quantum phase space is a 2MΛ-dimensional topological space, where MΛ is the quantum-dynamical degrees of freedom. This quantum phase space is isomorphic to a coset space scrG/scrH via the unitary exponential mapping of the elementary excitation operator subspace of scrg (algebra of scrG), where scrH (⊂scrG) is the maximal stability subgroup of a fixed state in gerhΛ. The phase-space representation of the system is realized on scrG/scrH, and its classical analogy can be obtained naturally. It is also shown that there is consistency between quantum and classical integrability. Finally, a general algorithm for seeking the manifestation of ``quantum chaos'' via the classical analogy is provided. Illustrations of this formulation in several important quantum systems are presented.
Optical Pulse Interactions in Nonlinear Excited State Materials
2008-07-14
described below. 2.5 Overview of Semiconductor Quantum Dot A quantum dot (QD) is a quasi -zero-dimensional object where the carrier movement is...a particle of mass M (e.g., an electron) having a potential energy can be described by a wavefunction that satisfies the following Schrödinger...dot (QD) is a quasi -zero-dimensional object where the carrier movement is restricted in three dimensions. The bulk crystalline structure of the
NASA Astrophysics Data System (ADS)
Murashita, Yûto; Gong, Zongping; Ashida, Yuto; Ueda, Masahito
2017-10-01
The thermodynamics of quantum coherence has attracted growing attention recently, where the thermodynamic advantage of quantum superposition is characterized in terms of quantum thermodynamics. We investigate the thermodynamic effects of quantum coherent driving in the context of the fluctuation theorem. We adopt a quantum-trajectory approach to investigate open quantum systems under feedback control. In these systems, the measurement backaction in the forward process plays a key role, and therefore the corresponding time-reversed quantum measurement and postselection must be considered in the backward process, in sharp contrast to the classical case. The state reduction associated with quantum measurement, in general, creates a zero-probability region in the space of quantum trajectories of the forward process, which causes singularly strong irreversibility with divergent entropy production (i.e., absolute irreversibility) and hence makes the ordinary fluctuation theorem break down. In the classical case, the error-free measurement ordinarily leads to absolute irreversibility, because the measurement restricts classical paths to the region compatible with the measurement outcome. In contrast, in open quantum systems, absolute irreversibility is suppressed even in the presence of the projective measurement due to those quantum rare events that go through the classically forbidden region with the aid of quantum coherent driving. This suppression of absolute irreversibility exemplifies the thermodynamic advantage of quantum coherent driving. Absolute irreversibility is shown to emerge in the absence of coherent driving after the measurement, especially in systems under time-delayed feedback control. We show that absolute irreversibility is mitigated by increasing the duration of quantum coherent driving or decreasing the delay time of feedback control.
Li, Ying
2016-09-16
Fault-tolerant quantum computing in systems composed of both Majorana fermions and topologically unprotected quantum systems, e.g., superconducting circuits or quantum dots, is studied in this Letter. Errors caused by topologically unprotected quantum systems need to be corrected with error-correction schemes, for instance, the surface code. We find that the error-correction performance of such a hybrid topological quantum computer is not superior to a normal quantum computer unless the topological charge of Majorana fermions is insusceptible to noise. If errors changing the topological charge are rare, the fault-tolerance threshold is much higher than the threshold of a normal quantum computer and a surface-code logical qubit could be encoded in only tens of topological qubits instead of about 1,000 normal qubits.
Magnetic polyoxometalates: from molecular magnetism to molecular spintronics and quantum computing.
Clemente-Juan, Juan M; Coronado, Eugenio; Gaita-Ariño, Alejandro
2012-11-21
In this review we discuss the relevance of polyoxometalate (POM) chemistry to provide model objects in molecular magnetism. We present several potential applications in nanomagnetism, in particular, in molecular spintronics and quantum computing.
Quantum-noise randomized data encryption for wavelength-division-multiplexed fiber-optic networks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Corndorf, Eric; Liang Chuang; Kanter, Gregory S.
2005-06-15
We demonstrate high-rate randomized data-encryption through optical fibers using the inherent quantum-measurement noise of coherent states of light. Specifically, we demonstrate 650 Mbit/s data encryption through a 10 Gbit/s data-bearing, in-line amplified 200-km-long line. In our protocol, legitimate users (who share a short secret key) communicate using an M-ry signal set while an attacker (who does not share the secret key) is forced to contend with the fundamental and irreducible quantum-measurement noise of coherent states. Implementations of our protocol using both polarization-encoded signal sets as well as polarization-insensitive phase-keyed signal sets are experimentally and theoretically evaluated. Different from the performancemore » criteria for the cryptographic objective of key generation (quantum key-generation), one possible set of performance criteria for the cryptographic objective of data encryption is established and carefully considered.« less
Quantum chemistry simulation on quantum computers: theories and experiments.
Lu, Dawei; Xu, Boruo; Xu, Nanyang; Li, Zhaokai; Chen, Hongwei; Peng, Xinhua; Xu, Ruixue; Du, Jiangfeng
2012-07-14
It has been claimed that quantum computers can mimic quantum systems efficiently in the polynomial scale. Traditionally, those simulations are carried out numerically on classical computers, which are inevitably confronted with the exponential growth of required resources, with the increasing size of quantum systems. Quantum computers avoid this problem, and thus provide a possible solution for large quantum systems. In this paper, we first discuss the ideas of quantum simulation, the background of quantum simulators, their categories, and the development in both theories and experiments. We then present a brief introduction to quantum chemistry evaluated via classical computers followed by typical procedures of quantum simulation towards quantum chemistry. Reviewed are not only theoretical proposals but also proof-of-principle experimental implementations, via a small quantum computer, which include the evaluation of the static molecular eigenenergy and the simulation of chemical reaction dynamics. Although the experimental development is still behind the theory, we give prospects and suggestions for future experiments. We anticipate that in the near future quantum simulation will become a powerful tool for quantum chemistry over classical computations.
NASA Astrophysics Data System (ADS)
Glick, Aaron; Carr, Lincoln; Calarco, Tommaso; Montangero, Simone
2014-03-01
In order to investigate the emergence of complexity in quantum systems, we present a quantum game of life, inspired by Conway's classic game of life. Through Matrix Product State (MPS) calculations, we simulate the evolution of quantum systems, dictated by a Hamiltonian that defines the rules of our quantum game. We analyze the system through a number of measures which elicit the emergence of complexity in terms of spatial organization, system dynamics, and non-local mutual information within the network. Funded by NSF
NASA Astrophysics Data System (ADS)
Huang, Yuanyuan; Hou, Panyu; Yuan, Xinxing; Chang, Xiuying; Zu, Chong; He, Li; Duan, Luming; CenterQuantum Information, IIIS, Tsinghua University, Beijing 100084, PR China Team; Department of Physics, University of Michigan, Ann Arbor, Michigan 48109, USA Team
2016-05-01
Quantum teleportation is of great importance to various quantum technologies, and has been realized between light beams, trapped atoms, superconducting qubits, and defect spins in solids. Here we report an experimental demonstration of quantum teleportation from light beams to vibrational states of a macroscopic diamond under ambient conditions. In our experiment, the ultrafast laser technology provides the key tool for fast processing and detection of quantum states within its short life time in macroscopic objects consisting of many strongly interacting atoms that are coupled to the environment, and finally we demonstrate an average teleportation fidelity (90 . 6 +/- 1 . 0) % , clearly exceeding the classical limit of 2/3. Quantum control of the optomechanical coupling may provide efficient ways for realization of transduction of quantum signals, processing of quantum information, and sensing of small mechanical vibrations. Center for Quantum Information, IIIS, Tsinghua University, Beijing 100084, PR China.
Geometric diffusion of quantum trajectories
Yang, Fan; Liu, Ren-Bao
2015-01-01
A quantum object can acquire a geometric phase (such as Berry phases and Aharonov–Bohm phases) when evolving along a path in a parameter space with non-trivial gauge structures. Inherent to quantum evolutions of wavepackets, quantum diffusion occurs along quantum trajectories. Here we show that quantum diffusion can also be geometric as characterized by the imaginary part of a geometric phase. The geometric quantum diffusion results from interference between different instantaneous eigenstate pathways which have different geometric phases during the adiabatic evolution. As a specific example, we study the quantum trajectories of optically excited electron-hole pairs in time-reversal symmetric insulators, driven by an elliptically polarized terahertz field. The imaginary geometric phase manifests itself as elliptical polarization in the terahertz sideband generation. The geometric quantum diffusion adds a new dimension to geometric phases and may have applications in many fields of physics, e.g., transport in topological insulators and novel electro-optical effects. PMID:26178745
Evidence for a Quantum-to-Classical Transition in a Pair of Coupled Quantum Rotors
NASA Astrophysics Data System (ADS)
Gadway, Bryce; Reeves, Jeremy; Krinner, Ludwig; Schneble, Dominik
2013-05-01
The understanding of how classical dynamics can emerge in closed quantum systems is a problem of fundamental importance. Remarkably, while classical behavior usually arises from coupling to thermal fluctuations or random spectral noise, it may also be an innate property of certain isolated, periodically driven quantum systems. Here, we experimentally realize the simplest such system, consisting of two coupled, kicked quantum rotors, by subjecting a coherent atomic matter wave to two periodically pulsed, incommensurate optical lattices. Momentum transport in this system is found to be radically different from that in a single kicked rotor, with a breakdown of dynamical localization and the emergence of classical diffusion. Our observation, which confirms a long-standing prediction for many-dimensional quantum-chaotic systems, sheds new light on the quantum-classical correspondence.
Physics at the FMQT’08 conference
NASA Astrophysics Data System (ADS)
Špička, V.; Nieuwenhuizen, Th. M.; Keefe, P. D.
2010-01-01
This paper summarizes the recent state of the art of the following topics presented at the FQMT’08 conference: Foundations of quantum physics, Quantum measurement; Quantum noise, decoherence and dephasing; Cold atoms and Bose-Einstein condensation; Physics of quantum computing and information; Nonequilibrium quantum statistical mechanics; Quantum, mesoscopic and partly classical thermodynamics; Mesoscopic, nano-electro-mechanical systems and optomechanical systems; Spins systems and their dynamics, Brownian motion and molecular motors; Physics of biological systems, and Relevant experiments from the nanoscale to the macroscale. To all these subjects an introduction is given and the recent literature is overviewed. The paper contains some 680 references in total.
Thermodynamics of Weakly Measured Quantum Systems.
Alonso, Jose Joaquin; Lutz, Eric; Romito, Alessandro
2016-02-26
We consider continuously monitored quantum systems and introduce definitions of work and heat along individual quantum trajectories that are valid for coherent superposition of energy eigenstates. We use these quantities to extend the first and second laws of stochastic thermodynamics to the quantum domain. We illustrate our results with the case of a weakly measured driven two-level system and show how to distinguish between quantum work and heat contributions. We finally employ quantum feedback control to suppress detector backaction and determine the work statistics.
A Quantum Proxy Weak Blind Signature Scheme Based on Controlled Quantum Teleportation
NASA Astrophysics Data System (ADS)
Cao, Hai-Jing; Yu, Yao-Feng; Song, Qin; Gao, Lan-Xiang
2015-04-01
Proxy blind signature is applied to the electronic paying system, electronic voting system, mobile agent system, security of internet, etc. A quantum proxy weak blind signature scheme is proposed in this paper. It is based on controlled quantum teleportation. Five-qubit entangled state functions as quantum channel. The scheme uses the physical characteristics of quantum mechanics to implement message blinding, so it could guarantee not only the unconditional security of the scheme but also the anonymity of the messages owner.
When Newton's cooling law doesn't hold
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tarnow, E.
1994-01-01
What is the fastest way to cool something If the object is macroscopic it is to lower the surrounding temperature as much as possible and let Newton's cooling law take effect. If we enter the microscopic world where quantum mechanics rules, this procedure may no longer be the best. This is shown in a simple example where we calculate the optimum cooling rate for an asymmetric two-state system.
Diagnostic System for Decomposition Studies of Energetic Materials
2017-10-03
transition states and reaction pathways are sought. The overall objective for these combined experimental studies and quantum mechanics investigations...peak-to-peak 1 min: 50,000:1 ( 8.6×10-6 AU noise) peak-to-peak Interferometer UltraScan linear air bearing scanner with True -Alignment Aperture... True 24 bit dynamic range for all scan velocities, dual channel data acquisition Validation Internal validation unit, 6 positions, certified
A Third-Party E-payment Protocol Based on Quantum Multi-proxy Blind Signature
NASA Astrophysics Data System (ADS)
Niu, Xu-Feng; Zhang, Jian-Zhong; Xie, Shu-Cui; Chen, Bu-Qing
2018-05-01
A third-party E-payment protocol is presented in this paper. It is based on quantum multi-proxy blind signature. Adopting the techniques of quantum key distribution, one-time pad and quantum multi-proxy blind signature, our third-party E-payment system could protect user's anonymity as the traditional E-payment systems do, and also have unconditional security which the classical E-payment systems can not provide. Furthermore, compared with the existing quantum E-payment systems, the proposed system could support the E-payment which using the third-party platforms.
One-way unlocalizable quantum discord
NASA Astrophysics Data System (ADS)
Xi, Zhengjun; Fan, Heng; Li, Yongming
2012-05-01
In this paper, we present the concept of the one-way unlocalizable quantum discord and investigate its properties. We provide a polygamy inequality for it in a tripartite pure quantum system of arbitrary dimension. Several tradeoff relations between the one-way unlocalizable quantum discord and other correlations are given. If the von Neumann measurement is made on a part of the system, we give two expressions of the one-way unlocalizable quantum discord in terms of partial distillable entanglement and quantum disturbance. Finally, we also provide a lower bound for bipartite shareability of quantum correlation beyond entanglement in a tripartite system.
Hughes, Richard John; Thrasher, James Thomas; Nordholt, Jane Elizabeth
2016-11-29
Innovations for quantum key management harness quantum communications to form a cryptography system within a public key infrastructure framework. In example implementations, the quantum key management innovations combine quantum key distribution and a quantum identification protocol with a Merkle signature scheme (using Winternitz one-time digital signatures or other one-time digital signatures, and Merkle hash trees) to constitute a cryptography system. More generally, the quantum key management innovations combine quantum key distribution and a quantum identification protocol with a hash-based signature scheme. This provides a secure way to identify, authenticate, verify, and exchange secret cryptographic keys. Features of the quantum key management innovations further include secure enrollment of users with a registration authority, as well as credential checking and revocation with a certificate authority, where the registration authority and/or certificate authority can be part of the same system as a trusted authority for quantum key distribution.
Haack-Sørensen, Mandana; Follin, Bjarke; Juhl, Morten; Brorsen, Sonja K; Søndergaard, Rebekka H; Kastrup, Jens; Ekblond, Annette
2016-11-16
Adipose derived stromal cells (ASCs) are a rich and convenient source of cells for clinical regenerative therapeutic approaches. However, applications of ASCs often require cell expansion to reach the needed dose. In this study, cultivation of ASCs from stromal vascular fraction (SVF) over two passages in the automated and functionally closed Quantum Cell Expansion System (Quantum system) is compared with traditional manual cultivation. Stromal vascular fraction was isolated from abdominal fat, suspended in α-MEM supplemented with 10% Fetal Bovine Serum and seeded into either T75 flasks or a Quantum system that had been coated with cryoprecipitate. The cultivation of ASCs from SVF was performed in 3 ways: flask to flask; flask to Quantum system; and Quantum system to Quantum system. In all cases, quality controls were conducted for sterility, mycoplasmas, and endotoxins, in addition to the assessment of cell counts, viability, immunophenotype, and differentiation potential. The viability of ASCs passage 0 (P0) and P1 was above 96%, regardless of cultivation in flasks or Quantum system. Expression of surface markers and differentiation potential was consistent with ISCT/IFATS standards for the ASC phenotype. Sterility, mycoplasma, and endotoxin tests were consistently negative. An average of 8.0 × 10 7 SVF cells loaded into a Quantum system yielded 8.96 × 10 7 ASCs P0, while 4.5 × 10 6 SVF cells seeded per T75 flask yielded an average of 2.37 × 10 6 ASCs-less than the number of SVF cells seeded. ASCs P1 expanded in the Quantum system demonstrated a population doubling (PD) around 2.2 regardless of whether P0 was previously cultured in flasks or Quantum, while ASCs P1 in flasks only reached a PD of 1.0. Manufacturing of ASCs in a Quantum system enhances ASC expansion rate and yield significantly relative to manual processing in T-flasks, while maintaining the purity and quality essential to safe and robust cell production. Notably, the use of the Quantum system entails significantly reduced working hours and thereby costs.
Low temperature scanning tunneling microscopy of metallic and organic nanostructures
NASA Astrophysics Data System (ADS)
Fölsch, Stefan
2006-03-01
Low temperature scanning tunneling microscopy (LT-STM) is capable of both characterizing and manipulating atomic-scale structures at surfaces. It thus provides a powerful experimental tool to gain fundamental insight into how electronic properties evolve when controlling size, geometry, and composition of nanometric model systems at the level of single atoms and molecules. The experiments discussed in this talk employ a Cu(111) surface onto which perfect nanostructures are assembled from native adatoms and organic molecules. Using single Cu adatoms as building blocks, we obtain zero-, one-, and two-dimensional quantum objects (corresponding to the discrete adatom, monatomic adatom chains, and compact adatom assemblies) with intriguing electronic properties. Depending on the structure shape and the number of incorporated atoms we observe the formation of characteristic quantum levels which merge into the sp-derived Shockley surface state in the limit of extended 2D islands; this state exists on many surfaces, such as Cu(111). Our results reveal the natural linkage between this traditional surface property, the quantum confinement in compact adatom structures, and the quasi-atomic state associated with the single adatom. In a second step, we study the interaction of pentacene (C22H14) with Cu adatom chains serving as model quantum wires. We find that STM-based manipulation is capable of connecting single molecules to the chain ends in a defined way, and that the molecule-chain interaction shifts the chain-localized quantum states to higher binding energies. The present system provides an instructive model case to study single organic molecules interacting with metallic nanostructures. The microscopic nature of such composite structures is of importance for any future molecular-based device realization since it determines the contact conductance between the molecular unit and its metal ''contact pad''.
NASA Astrophysics Data System (ADS)
van Wyk, Pieter; Tajima, Hiroyuki; Inotani, Daisuke; Ohnishi, Akira; Ohashi, Yoji
2018-01-01
We propose a theoretical idea to use an ultracold Fermi gas as a quantum simulator for the study of the low-density region of a neutron-star interior. Our idea is different from the standard quantum simulator that heads for perfect replication of another system, such as the Hubbard model discussed in high-Tc cuprates. Instead, we use the similarity between two systems and theoretically make up for the difference between them. That is, (1) we first show that the strong-coupling theory developed by Nozières and Schmitt-Rink (NSR) can quantitatively explain the recent experiment on the equation of state (EoS) in a 6Li superfluid Fermi gas in the BCS (Bardeen-Cooper-Schrieffer) unitary limit far below the superfluid phase-transition temperature Tc. This region is considered to be very similar to the low-density region (crust regime) of a neutron star (where a nearly unitary s -wave neutron superfluid is expected). (2) We then theoretically compensate the difference that, while the effective range reff is negligibly small in a superfluid 6Li Fermi gas, it cannot be ignored (reff=2.7 fm) in a neutron star, by extending the NSR theory to include effects of reff. The calculated EoS when reff=2.7 fm is shown to agree well with the previous neutron-star EoS in the low-density region predicted in nuclear physics. Our idea indicates that an ultracold atomic gas may more flexibly be used as a quantum simulator for the study of other complicated quantum many-body systems, when we use not only the experimental high tunability, but also the recent theoretical development in this field. Since it is difficult to directly observe a neutron-star interior, our idea would provide a useful approach to the exploration for this mysterious astronomical object.
Dynamical quantum phase transitions in discrete time crystals
NASA Astrophysics Data System (ADS)
Kosior, Arkadiusz; Sacha, Krzysztof
2018-05-01
Discrete time crystals are related to nonequilibrium dynamics of periodically driven quantum many-body systems where the discrete time-translation symmetry of the Hamiltonian is spontaneously broken into another discrete symmetry. Recently, the concept of phase transitions has been extended to nonequilibrium dynamics of time-independent systems induced by a quantum quench, i.e., a sudden change of some parameter of the Hamiltonian. There, the return probability of a system to the ground state reveals singularities in time which are dubbed dynamical quantum phase transitions. We show that the quantum quench in a discrete time crystal leads to dynamical quantum phase transitions where the return probability of a periodically driven system to a Floquet eigenstate before the quench reveals singularities in time. It indicates that dynamical quantum phase transitions are not restricted to time-independent systems and can be also observed in systems that are periodically driven. We discuss how the phenomenon can be observed in ultracold atomic gases.
Quantum Speed Limits across the Quantum-to-Classical Transition
NASA Astrophysics Data System (ADS)
Shanahan, B.; Chenu, A.; Margolus, N.; del Campo, A.
2018-02-01
Quantum speed limits set an upper bound to the rate at which a quantum system can evolve. Adopting a phase-space approach, we explore quantum speed limits across the quantum-to-classical transition and identify equivalent bounds in the classical world. As a result, and contrary to common belief, we show that speed limits exist for both quantum and classical systems. As in the quantum domain, classical speed limits are set by a given norm of the generator of time evolution.
New phenomena in non-equilibrium quantum physics
NASA Astrophysics Data System (ADS)
Kitagawa, Takuya
From its beginning in the early 20th century, quantum theory has become progressively more important especially due to its contributions to the development of technologies. Quantum mechanics is crucial for current technology such as semiconductors, and also holds promise for future technologies such as superconductors and quantum computing. Despite of the success of quantum theory, its applications have been mostly limited to equilibrium or static systems due to 1. lack of experimental controllability of non-equilibrium quantum systems 2. lack of theoretical frameworks to understand non-equilibrium dynamics. Consequently, physicists have not yet discovered too many interesting phenomena in non-equilibrium quantum systems from both theoretical and experimental point of view and thus, non-equilibrium quantum physics did not attract too much attentions. The situation has recently changed due to the rapid development of experimental techniques in condensed matter as well as cold atom systems, which now enables a better control of non-equilibrium quantum systems. Motivated by this experimental progress, we constructed theoretical frameworks to study three different non-equilibrium regimes of transient dynamics, steady states and periodically drives. These frameworks provide new perspectives for dynamical quantum process, and help to discover new phenomena in these systems. In this thesis, we describe these frameworks through explicit examples and demonstrate their versatility. Some of these theoretical proposals have been realized in experiments, confirming the applicability of the theories to realistic experimental situations. These studies have led to not only the improved fundamental understanding of non-equilibrium processes in quantum systems, but also suggested entirely different venues for developing quantum technologies.
Simulating chemistry using quantum computers.
Kassal, Ivan; Whitfield, James D; Perdomo-Ortiz, Alejandro; Yung, Man-Hong; Aspuru-Guzik, Alán
2011-01-01
The difficulty of simulating quantum systems, well known to quantum chemists, prompted the idea of quantum computation. One can avoid the steep scaling associated with the exact simulation of increasingly large quantum systems on conventional computers, by mapping the quantum system to another, more controllable one. In this review, we discuss to what extent the ideas in quantum computation, now a well-established field, have been applied to chemical problems. We describe algorithms that achieve significant advantages for the electronic-structure problem, the simulation of chemical dynamics, protein folding, and other tasks. Although theory is still ahead of experiment, we outline recent advances that have led to the first chemical calculations on small quantum information processors.
Capacity on wireless quantum cellular communication system
NASA Astrophysics Data System (ADS)
Zhou, Xiang-Zhen; Yu, Xu-Tao; Zhang, Zai-Chen
2018-03-01
Quantum technology is making excellent prospects in future communication networks. Entanglement generation and purification are two major components in quantum networks. Combining these two techniques with classical cellular mobile communication, we proposed a novel wireless quantum cellular(WQC) communication system which is possible to realize commercial mobile quantum communication. In this paper, the architecture and network topology of WQC communication system are discussed, the mathematical model of WQC system is extracted and the serving capacity, indicating the ability to serve customers, is defined and calculated under certain circumstances.
Observing single quantum trajectories of a superconducting quantum bit
NASA Astrophysics Data System (ADS)
Murch, K. W.; Weber, S. J.; Macklin, C.; Siddiqi, I.
2013-10-01
The length of time that a quantum system can exist in a superposition state is determined by how strongly it interacts with its environment. This interaction entangles the quantum state with the inherent fluctuations of the environment. If these fluctuations are not measured, the environment can be viewed as a source of noise, causing random evolution of the quantum system from an initially pure state into a statistical mixture--a process known as decoherence. However, by accurately measuring the environment in real time, the quantum system can be maintained in a pure state and its time evolution described by a `quantum trajectory' determined by the measurement outcome. Here we use weak measurements to monitor a microwave cavity containing a superconducting quantum bit (qubit), and track the individual quantum trajectories of the system. In this set-up, the environment is dominated by the fluctuations of a single electromagnetic mode of the cavity. Using a near-quantum-limited parametric amplifier, we selectively measure either the phase or the amplitude of the cavity field, and thereby confine trajectories to either the equator or a meridian of the Bloch sphere. We perform quantum state tomography at discrete times along the trajectory to verify that we have faithfully tracked the state of the quantum system as it diffuses on the surface of the Bloch sphere. Our results demonstrate that decoherence can be mitigated by environmental monitoring, and validate the foundation of quantum feedback approaches based on Bayesian statistics. Moreover, our experiments suggest a new means of implementing `quantum steering'--the harnessing of action at a distance to manipulate quantum states through measurement.
Observing single quantum trajectories of a superconducting quantum bit.
Murch, K W; Weber, S J; Macklin, C; Siddiqi, I
2013-10-10
The length of time that a quantum system can exist in a superposition state is determined by how strongly it interacts with its environment. This interaction entangles the quantum state with the inherent fluctuations of the environment. If these fluctuations are not measured, the environment can be viewed as a source of noise, causing random evolution of the quantum system from an initially pure state into a statistical mixture--a process known as decoherence. However, by accurately measuring the environment in real time, the quantum system can be maintained in a pure state and its time evolution described by a 'quantum trajectory' determined by the measurement outcome. Here we use weak measurements to monitor a microwave cavity containing a superconducting quantum bit (qubit), and track the individual quantum trajectories of the system. In this set-up, the environment is dominated by the fluctuations of a single electromagnetic mode of the cavity. Using a near-quantum-limited parametric amplifier, we selectively measure either the phase or the amplitude of the cavity field, and thereby confine trajectories to either the equator or a meridian of the Bloch sphere. We perform quantum state tomography at discrete times along the trajectory to verify that we have faithfully tracked the state of the quantum system as it diffuses on the surface of the Bloch sphere. Our results demonstrate that decoherence can be mitigated by environmental monitoring, and validate the foundation of quantum feedback approaches based on Bayesian statistics. Moreover, our experiments suggest a new means of implementing 'quantum steering'--the harnessing of action at a distance to manipulate quantum states through measurement.
A rational explanation of wave-particle duality of light
NASA Astrophysics Data System (ADS)
Rashkovskiy, S. A.
2013-10-01
The wave-particle duality is a fundamental property of the nature. At the same time, it is one of the greatest mysteries of modern physics. This gave rise to a whole direction in quantum physics - the interpretation of quantum mechanics. The Wiener experiments demonstrating the wave-particle duality of light are discussed. It is shown that almost all interpretations of quantum mechanics allow explaining the double-slit experiments, but are powerless to explain the Wiener experiments. The reason of the paradox, associated with the wave-particle duality is analyzed. The quantum theory consists of two independent parts: (i) the dynamic equations describing the behavior of a quantum object (for example, the Schrodinger or Maxwell equations), and (ii) the Born's rule, the relation between the wave function and the probability of finding the particle at a given point. It is shown that precisely the Born's rule results in paradox in explaining the wave-particle duality. In order to eliminate this paradox, we propose a new rational interpretation of the wave-particle duality and associated new rule, connecting the corpuscular and wave properties of quantum objects. It is shown that this new rational interpretation of the wave-particle duality allows using the classic images of particle and wave in explaining the quantum mechanical and optical phenomena, does not result in paradox in explaining the doubleslit experiments and Wiener experiments, and does not contradict to the modern quantum mechanical concepts. It is shown that the Born's rule follows immediately from proposed new rules as an approximation.
Trading coherence and entropy by a quantum Maxwell demon
NASA Astrophysics Data System (ADS)
Lebedev, A. V.; Oehri, D.; Lesovik, G. B.; Blatter, G.
2016-11-01
The second law of thermodynamics states that the entropy of a closed system is nondecreasing. Discussing the second law in the quantum world poses different challenges and provides different opportunities, involving fundamental quantum-information-theoretic questions and interesting quantum-engineered devices. In quantum mechanics, systems with an evolution described by a so-called unital quantum channel evolve with a nondecreasing entropy. Here, we seek the opposite, a system described by a nonunital and, furthermore, energy-conserving channel that describes a system whose entropy decreases with time. We propose a setup involving a mesoscopic four-lead scatterer augmented by a microenvironment in the form of a spin that realizes this goal. Within this nonunital and energy-conserving quantum channel, the microenvironment acts with two noncommuting operations on the system in an autonomous way. We find that the process corresponds to a partial exchange or swap between the system and environment quantum states, with the system's entropy decreasing if the environment's state is more pure. This entropy-decreasing process is naturally expressed through the action of a quantum Maxwell demon and we propose a quantum-thermodynamic engine with four qubits that extracts work from a single heat reservoir when provided with a reservoir of pure qubits. The special feature of this engine, which derives from the energy conservation in the nonunital quantum channel, is its separation into two cycles, a working cycle and an entropy cycle, allowing us to run this engine with no local waste heat.
Noninvasive Quantum Measurement of Arbitrary Operator Order by Engineered Non-Markovian Detectors
NASA Astrophysics Data System (ADS)
Bülte, Johannes; Bednorz, Adam; Bruder, Christoph; Belzig, Wolfgang
2018-04-01
The development of solid-state quantum technologies requires the understanding of quantum measurements in interacting, nonisolated quantum systems. In general, a permanent coupling of detectors to a quantum system leads to memory effects that have to be taken into account in interpreting the measurement results. We analyze a generic setup of two detectors coupled to a quantum system and derive a compact formula in the weak-measurement limit that interpolates between an instantaneous (text-book type) and almost continuous—detector dynamics-dependent—measurement. A quantum memory effect that we term "system-mediated detector-detector interaction" is crucial to observe noncommuting observables simultaneously. Finally, we propose a mesoscopic double-dot detector setup in which the memory effect is tunable and that can be used to explore the transition to non-Markovian quantum measurements experimentally.
Decoherence and dissipation for a quantum system coupled to a local environment
NASA Technical Reports Server (NTRS)
Gallis, Michael R.
1994-01-01
Decoherence and dissipation in quantum systems has been studied extensively in the context of Quantum Brownian Motion. Effective decoherence in coarse grained quantum systems has been a central issue in recent efforts by Zurek and by Hartle and Gell-Mann to address the Quantum Measurement Problem. Although these models can yield very general classical phenomenology, they are incapable of reproducing relevant characteristics expected of a local environment on a quantum system, such as the characteristic dependence of decoherence on environment spatial correlations. I discuss the characteristics of Quantum Brownian Motion in a local environment by examining aspects of first principle calculations and by the construction of phenomenological models. Effective quantum Langevin equations and master equations are presented in a variety of representations. Comparisons are made with standard results such as the Caldeira-Leggett master equation.
Quantum robots plus environments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Benioff, P.
1998-07-23
A quantum robot is a mobile quantum system, including an on board quantum computer and needed ancillary systems, that interacts with an environment of quantum systems. Quantum robots carry out tasks whose goals include making specified changes in the state of the environment or carrying out measurements on the environment. The environments considered so far, oracles, data bases, and quantum registers, are seen to be special cases of environments considered here. It is also seen that a quantum robot should include a quantum computer and cannot be simply a multistate head. A model of quantum robots and their interactions ismore » discussed in which each task, as a sequence of alternating computation and action phases,is described by a unitary single time step operator T {approx} T{sub a} + T{sub c} (discrete space and time are assumed). The overall system dynamics is described as a sum over paths of completed computation (T{sub c}) and action (T{sub a}) phases. A simple example of a task, measuring the distance between the quantum robot and a particle on a 1D lattice with quantum phase path dispersion present, is analyzed. A decision diagram for the task is presented and analyzed.« less
Quantum-like behavior without quantum physics I : Kinematics of neural-like systems.
Selesnick, S A; Rawling, J P; Piccinini, Gualtiero
2017-09-01
Recently there has been much interest in the possible quantum-like behavior of the human brain in such functions as cognition, the mental lexicon, memory, etc., producing a vast literature. These studies are both empirical and theoretical, the tenets of the theory in question being mainly, and apparently inevitably, those of quantum physics itself, for lack of other arenas in which quantum-like properties are presumed to obtain. However, attempts to explain this behavior on the basis of actual quantum physics going on at the atomic or molecular level within some element of brain or neuronal anatomy (other than the ordinary quantum physics that underlies everything), do not seem to survive much scrutiny. Moreover, it has been found empirically that the usual physics-like Hilbert space model seems not to apply in detail to human cognition in the large. In this paper we lay the groundwork for a theory that might explain the provenance of quantum-like behavior in complex systems whose internal structure is essentially hidden or inaccessible. The approach is via the logic obeyed by these systems which is similar to, but not identical with, the logic obeyed by actual quantum systems. The results reveal certain effects in such systems which, though quantum-like, are not identical to the kinds of quantum effects found in physics. These effects increase with the size of the system.
NASA Astrophysics Data System (ADS)
Slaoui, A.; Daoud, M.; Laamara, R. Ahl
2018-07-01
We employ the concepts of local quantum uncertainty and geometric quantum discord based on the trace norm to investigate the environmental effects on quantum correlations of two bipartite quantum systems. The first one concerns a two-qubit system coupled with two independent bosonic reservoirs. We show that the trace discord exhibits frozen phenomenon contrarily to local quantum uncertainty. The second scenario deals with a two-level system, initially prepared in a separable state, interacting with a quantized electromagnetic radiation. Our results show that there exists an exchange of quantum correlations between the two-level system and its surrounding which is responsible for the revival phenomenon of non-classical correlations.
Quantum information processing between different atomic ions
NASA Astrophysics Data System (ADS)
Zhang, Xiang; Zheng, Bo; Zhang, Junhua; Um, Mark; An, Shuoming; Zhao, Tianji; Duan, Luming; Kim, Kihwan
2012-06-01
There is increasing interest in utilizing and combining the advantages of different quantum systems. Here, we discuss the experimental generation of entanglement between the quantum states of different atomic ions through the Coulomb interaction at the same linear radio-frequency trap. This scheme would be extended to implement the teleportation of quantum information from one kind of atom to the other. Moreover, the hybrid system of trapped ions is expected to play an essential role in the realization of a large quantum system, where a quantum state of one species is used for quantum operation and that of the other is for the cooling and stabilization of the whole ion chain. Finally, we will report the experimental progress on building the hybrid trapped ion system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
De Roeck, W., E-mail: wojciech.deroeck@fys.kuleuven.be, E-mail: christian.maes@fys.kuleuven.be, E-mail: netocny@fzu.cz, E-mail: marius.schutz@fys.kuleuven.be; Maes, C., E-mail: wojciech.deroeck@fys.kuleuven.be, E-mail: christian.maes@fys.kuleuven.be, E-mail: netocny@fzu.cz, E-mail: marius.schutz@fys.kuleuven.be; Schütz, M., E-mail: wojciech.deroeck@fys.kuleuven.be, E-mail: christian.maes@fys.kuleuven.be, E-mail: netocny@fzu.cz, E-mail: marius.schutz@fys.kuleuven.be
2015-02-15
We study the projection on classical spins starting from quantum equilibria. We show Gibbsianness or quasi-locality of the resulting classical spin system for a class of gapped quantum systems at low temperatures including quantum ground states. A consequence of Gibbsianness is the validity of a large deviation principle in the quantum system which is known and here recovered in regimes of high temperature or for thermal states in one dimension. On the other hand, we give an example of a quantum ground state with strong nonlocality in the classical restriction, giving rise to what we call measurement induced entanglement andmore » still satisfying a large deviation principle.« less
Polarization control of spontaneous emission for rapid quantum-state initialization
NASA Astrophysics Data System (ADS)
DiLoreto, C. S.; Rangan, C.
2017-04-01
We propose an efficient method to selectively enhance the spontaneous emission rate of a quantum system by changing the polarization of an incident control field, and exploiting the polarization dependence of the system's spontaneous emission rate. This differs from the usual Purcell enhancement of spontaneous emission rates as it can be selectively turned on and off. Using a three-level Λ system in a quantum dot placed in between two silver nanoparticles and a linearly polarized, monochromatic driving field, we present a protocol for rapid quantum state initialization, while maintaining long coherence times for control operations. This process increases the overall amount of time that a quantum system can be effectively utilized for quantum operations, and presents a key advance in quantum computing.
Single atom emission in an optical resonator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Childs, J.J.; An, K.; Dasari, R.R.
A single atom coupled to a single mode of a radiation field is a fundamental system for studying the interaction of radiation with matter. The study of such systems has come to be called cavity quantum electrodynamics (QED). Atoms coupled to a single mode of a resonator have been studied experimentally and theoretically in several interesting regimes since this basic system was first considered theoretically by Janes and Cummings. The objective of the present chapter is to provide a theoretical framework and present a unifying picture of the various phenomena which can occur in such a system. 35 refs., 11more » figs.« less
Loop-gap microwave resonator for hybrid quantum systems
NASA Astrophysics Data System (ADS)
Ball, Jason R.; Yamashiro, Yu; Sumiya, Hitoshi; Onoda, Shinobu; Ohshima, Takeshi; Isoya, Junichi; Konstantinov, Denis; Kubo, Yuimaru
2018-05-01
We designed a loop-gap microwave resonator for applications of spin-based hybrid quantum systems and tested it with impurity spins in diamond. Strong coupling with ensembles of nitrogen-vacancy (NV) centers and substitutional nitrogen (P1) centers was observed. These results show that loop-gap resonators are viable in the prospect of spin-based hybrid quantum systems, especially for an ensemble quantum memory or a quantum transducer.
Linear Quantum Systems: Non-Classical States and Robust Stability
2016-06-29
quantum linear systems subject to non-classical quantum fields. The major outcomes of this project are (i) derivation of quantum filtering equations for...derivation of quantum filtering equations for systems non-classical input states including single photon states, (ii) determination of how linear...history going back some 50 years, to the birth of modern control theory with Kalman’s foundational work on filtering and LQG optimal control
Simultaneous deterministic control of distant qubits in two semiconductor quantum dots.
Gamouras, A; Mathew, R; Freisem, S; Deppe, D G; Hall, K C
2013-10-09
In optimal quantum control (OQC), a target quantum state of matter is achieved by tailoring the phase and amplitude of the control Hamiltonian through femtosecond pulse-shaping techniques and powerful adaptive feedback algorithms. Motivated by recent applications of OQC in quantum information science as an approach to optimizing quantum gates in atomic and molecular systems, here we report the experimental implementation of OQC in a solid-state system consisting of distinguishable semiconductor quantum dots. We demonstrate simultaneous high-fidelity π and 2π single qubit gates in two different quantum dots using a single engineered infrared femtosecond pulse. These experiments enhance the scalability of semiconductor-based quantum hardware and lay the foundation for applications of pulse shaping to optimize quantum gates in other solid-state systems.
NASA Astrophysics Data System (ADS)
Strekalov, Dmitry Vladimirovich
1997-10-01
The subject of this dissertation is the study of the two- photon entanglement. This phenomenon has been paid a great deal of attention since 1935, when A. Einstein, B. Podolsky and N. Rosen asked their famous question, 'Can quantum-mechanical description of physical reality be considered complete?' An entangled system behavior is inconsistent with many classical concepts. Therefore, the understanding of two-photon entanglement is important for the foundations of quantum theory. A two-photon entangled sate represents a two-photon, or a biphoton, rather than two photons. The concept of biphoton as a single nonlocal quantum object is fundamentally different from the concept of a photon pair, as has been experimentally demonstrated in the present dissertation. Two-photon entanglement gives rise to unusual 'ghost' interference and diffraction, nonlocal geometrical phase, and other quantum phenomena originally studied in the present dissertation. The variety of available results calls for bringing them into a general system which we call Biphoton Optics. This is the main goal of this dissertation. Biphoton optics operate with two-photon wave packets, or with an equivalent concept of advanced wave. We show that in the framework of the advanced wave concept two-photon phenomena can be effectively described in terms of classical optics. Therefore the biphoton optics has the same structure as the classical optics. It includes two- photon geometrical optics, dispersion and frequency beating, polarization effects, interference, diffraction, and geometrical phase. All these two-photon effects are represented by experiments included in this dissertation. Our approach does not make two-photon quantum effects 'classical', however. It should be understood that the advanced wave model operates with counter-propagation in time which does not correspond to any real physical process. Therefore it is just a model, but it is clearly a great advantage to have such a model that is both simple and powerful, in terms of its ability to describe the known results and accurately predict the new ones. Therefore an important step is made in understanding and describing of the quantum phenomena of two-photon entanglement.
Gallium nitride-based micro-opto-electro-mechanical systems
NASA Astrophysics Data System (ADS)
Stonas, Andreas Robert
Gallium Nitride and its associated alloys InGaN and AlGaN have many material properties that are highly desirable for micro-electro-mechanical systems (MEMS), and more specifically micro-opto-electro-mechanical systems (MOEMS). The group III-nitrides are tough, stiff, optically transparent, direct bandgap, chemically inert, highly piezoelectric, and capable of functioning at high temperatures. There is currently no other semiconductor system that possesses all of these properties. Taken together, these attributes make the nitrides prime candidates not only for creating new versions of existing device structures, but also for creating entirely unique devices which combine these properties in novel ways. Unfortunately, their chemical resiliency also makes the group III-nitrides extraordinarily difficult to shape into devices. In particular, until this research, no undercut etch technology existed that could controllably separate a selected part of a MEMS device from its sapphire or silicon carbide substrate. This has effectively prevented GaN-based MEMS from being developed. This dissertation describes how this fabrication obstacle was overcome by a novel etching geometry (bandgap-selective backside-illuminated photoelectochemical (BS-BIPEC) etching) and its resulting morphologies. Several gallium-nitride based MEMS devices were created, actuated, and modelled, including cantilevers and membranes. We describe in particular our pursuit of one of the many novel device elements that is possible only in this material system: a transducer that uses an externally applied strain to dynamically change the optical transition energy of a quantum well. While the device objective of a dynamically tunable quantum well was not achieved, we have demonstrated sufficient progress to believe that such a device will be possible soon. We have observed a shift (5.5meV) of quantum well transition energies in released structures, and we have created structures that can apply large biaxial stresses, which are required to produce significantly larger tuning (up to several hundred meV) in quantum well-based devices.
Avoiding irreversible dynamics in quantum systems
NASA Astrophysics Data System (ADS)
Karasik, Raisa Iosifovna
2009-10-01
Devices that exploit laws of quantum physics offer revolutionary advances in computation and communication. However, building such devices presents an enormous challenge, since it would require technologies that go far beyond current capabilities. One of the main obstacles to building a quantum computer and devices needed for quantum communication is decoherence or noise that originates from the interaction between a quantum system and its environment, and which leads to the destruction of the fragile quantum information. Encoding into decoherence-free subspaces (DFS) provides an important strategy for combating decoherence effects in quantum systems and constitutes the focus of my dissertation. The theory of DFS relies on the existence of certain symmetries in the decoherence process, which allow some states of a quantum system to be completely decoupled from the environment and thus to experience no decoherence. In this thesis I describe various approaches to DFS that are developed in the current literature. Although the general idea behind various approaches to DFS is the same, I show that different mathematical definitions of DFS actually have different physical meaning. I provide a rigorous definition of DFS for every approach, explaining its physical meaning and relation to other definitions. I also examine the theory of DFS for Markovian systems. These are systems for which the environment has no memory, i.e., any change in the environment affects the quantum system instantaneously. Examples of such systems include many systems in quantum optics that have been proposed for implementation of a quantum computer, such as atomic and molecular gases, trapped ions, and quantum dots. Here I develop a rigorous theory that provides necessary and sufficient conditions for the existence of DFS. This theory allows us to identify a special new class of DFS that was not known before. Under particular circumstances, dynamics of a quantum system can connive together with the interactions between the system and its environment in a special way to reduce decoherence. This property is used to discover new DFS that rely on rather counterintuitive phenomenon, which I call an "incoherent generation of coherences." I also provide examples of physical systems that support such states. These DFS can be used to suppress & coherence, but may not be sufficient for performing full quantum computation. I also explore the possibility of physically generating the DFS that are useful for quantum computation. For quantum computation we need to preserve at least two quantum states to encode the quantum analogue of classical bits. Here I aim to generate DFS in a system composed from a large collection of atoms or molecules and I need to determine how one should position atoms or molecules in 3D space so that the overall system possesses a DFS with at least two states (i.e., non-trivial DFS). I show that for many Markovian systems, non-trivial DFS can exist only when particles are located in exactly the same position in space. This, of course, is not possible in the real world. For these systems, I also show that states in DFS are states with infinite lifetime. However, for all practical applications we just need long-lived states. Thus in reality, we do just need to bring quantum particles close together to generate an imperfect DFS, i.e. a collection of long-lived states. This can be achieved, for example, for atoms within a single molecule.
Exploring the boundaries of quantum mechanics: advances in satellite quantum communications.
Agnesi, Costantino; Vedovato, Francesco; Schiavon, Matteo; Dequal, Daniele; Calderaro, Luca; Tomasin, Marco; Marangon, Davide G; Stanco, Andrea; Luceri, Vincenza; Bianco, Giuseppe; Vallone, Giuseppe; Villoresi, Paolo
2018-07-13
Recent interest in quantum communications has stimulated great technological progress in satellite quantum technologies. These advances have rendered the aforesaid technologies mature enough to support the realization of experiments that test the foundations of quantum theory at unprecedented scales and in the unexplored space environment. Such experiments, in fact, could explore the boundaries of quantum theory and may provide new insights to investigate phenomena where gravity affects quantum objects. Here, we review recent results in satellite quantum communications and discuss possible phenomena that could be observable with current technologies. Furthermore, stressing the fact that space represents an incredible resource to realize new experiments aimed at highlighting some physical effects, we challenge the community to propose new experiments that unveil the interplay between quantum mechanics and gravity that could be realizable in the near future.This article is part of a discussion meeting issue 'Foundations of quantum mechanics and their impact on contemporary society'. © 2018 The Author(s).
Editorial . Quantum fluctuations and coherence in optical and atomic structures
NASA Astrophysics Data System (ADS)
Eschner, Jürgen; Gatti, Alessandra; Maître, Agnès; Morigi, Giovanna
2003-03-01
From simple interference fringes, over molecular wave packets, to nonlinear optical patterns - the fundamental interaction between light and matter leads to the formation of structures in many areas of atomic and optical physics. Sophisticated technology in experimental quantum optics, as well as modern computational tools available to theorists, have led to spectacular achievements in the investigation of quantum structures. This special issue is dedicated to recent developments in this area. It presents a selection of examples where quantum dynamics, fluctuations, and coherence generate structures in time or in space or where such structures are observed experimentally. The examples range from coherence phenomena in condensed matter, over atoms in optical structures, entanglement in light and matter, to quantum patterns in nonlinear optics and quantum imaging. The combination of such seemingly diverse subjects formed the basis of a successful European TMR network, "Quantum Structures" (visit http://cnqo.phys.strath.ac.uk/~gianluca/QSTRUCT/). This special issue partly re.ects the results and collaborations of the network, going however well beyond its scope by including contributions from a global community and from many related topics which were not addressed directly in the network. The aim of this issue is to present side by side these di.erent topics, all of which are loosely summarized under quantum structures, to highlight their common aspects, their di.erences, and the progress which resulted from the mutual exchange of results, methods, and knowledge. To guide the reader, we have organized the articles into subsections which follow a rough division into structures in material systems and structures in optical .elds. Nevertheless, in the following introduction we point out connections between the contributions which go beyond these usual criteria, thus highlighting the truly interdisciplinary nature of quantum structures. Much of the progress in atom optics has been generated by the application of concepts from wave optics to matter waves. An example is the contribution by Franke-Arnold et al. The authors investigate the coherence properties of two trapped cold atoms using concepts developed in wave optics. Nevertheless, novel features appear in this system due to the quantum statistics - as atoms may be bosons or fermions - and due to interactions. Matter waves find a spectacular manifestation in Bose-Einstein condensates (BECs) of cold dilute atomic gases. Several concepts of wave optics, like the laser, have been discussed in relation to BECs, and the .eld of atom optics with BECs is rapidly developing. The similarity between the theoretical description of a weakly interacting BEC with that of a non-linear optical system has motivated a series of experiments that led to the observation of, e.g., solitons, vortices and vortex crystallization in matter waves. In this context, the paper by Josopait et al. describes the dynamics of a Bose-Einstein condensate containing a vortex. The vortex stability is discussed as a function of the interparticle interaction, which can be tuned using Feshbach resonances, and the dynamics of the BEC reflected by an atomic mirror is investigated. Non-linear optics merges with atomic physics also in a relatively new research area which aims at quantum non-linear optics with cold atomic gases. Labeyrie et al. use a dense, laser-cooled atomic gas as a non-linear medium for light propagation, and discuss the conditions for observing optical patterns in the transmitted beam. Pattern formation in non-linear optical media is one of the numerous forms of self-organization that these systems display, including also turbulence and optical solitons. With respects to other physical systems, where these phenomena are commonly observed, optical systems are however special: at optical frequencies thermal .uctuations are negligible and do not hide the presence of quantum .uctuations, even at room temperature. Remarkably, the interplay between non-linearity and quantum noise leads to novel phenomena, including optical patterns driven by quantum noise, quantum images, non-classical spatio-temporal correlations, and spatial quantum entanglement. Quantum images are an example of spatial structures dominated by quantum noise, where the structure is absent at a classical level and only proper correlation functions of quantum fluctuations reveal the presence of a regular spatial order. Hoyuelos et al. describe an example of such an image, which is formed in the cross section of the light emitted by an optical parametric oscillator, close to but below the threshold for a square pattern formation. The optical parametric oscillator is also studied in the paper by Rabbiosi et al. which describes the onset of a spatial structure consisting of arrays of localized peaks (cavity solitons) in the transverse cross section of the signal beam. This represents an example of a "disorder to order" transition mediated by quantum noise, where the ordered arrays of solitons are selected among the many possible stable states, only thanks to the presence of quantum noise. As the study of the dynamics of quantum .uctuations in spatially extended systems is a nontraditional subject in quantum optics, alternative techniques of theoretical analysis are needed. The paper by Zambrini et al. proposes an approach based on the use of phase-space representations, in particular of the Q-function with its associated nonlinear Langevin equations. This method provides a full description of the transition from a quantum image to a classical structure through a modulation instability. The Q-representation is also used in a different physical system, the dynamics of the electrons in a driven Helium atom, in the paper by Schlagheck and Buchleitner. Here the authors investigate the quantum manifestations of order and disorder in the motion of the electrons, identifying correspondences between features of the classical phase space and the quantum dynamics. In optical patterns the structure and stability are critically determined by the type of non-linearity of the medium where light propagates, and by the cavity geometry. In atom optics, spatial atomic patterns can be created by light potentials, in particular by arrangements of suitably polarized laser beams which form an optical lattice. The atoms experience mechanical forces arising from the gradient of the light potential. Depending on the tuning of the lasers with respect to the driven atomic transition, these light forces can have a strong or negligible dissipative component, leading to incoherent or coherent motional dynamics. Atomic motion in optical lattices is experimentally investigated in the contributions by Carminati et al. and Jersblad et al. The first article investigates motion-induced resonances in a three-dimensional optical lattice which are observed through pumpprobe laser spectroscopy. The latter contribution studies the effect of the lattice geometry on the atomic steady-state by measuring velocity distributions. The creation of more complex light structures is the subject of the paper by Ellmann et al., where the realization of a double optical lattice is discussed. Such lattices may open up the possibility of coherent manipulation of the atoms in the individual potential wells. An alternative way to structure atoms spatially is discussed by Grabowski and Pfau: here, a regular arrangement of magnetic and magneto-optical traps for ultracold atoms above a surface is described and experimentally observed, where the lattice con.guration is determined by the direction of currents in wire segments beneath the surface. In a different physical systems, semiconductor quantum dots, Jacak et al. study the coupling of arti.cial atoms with the collective excitations of the bulk material in which they are embedded, and investigate coherent and incoherent effects due to this interaction. The presence of correlations at the quantum level leads naturally to the issue of entanglement. This is an exclusive feature of the quantum world, which represents a valuable resource for quantum information processing and for high-precision measurements. The de.nition and criteria for measuring entanglement have been traditionally formulated within the Hilbert-space formalism (the quantum state formalism). However, quantum structures are intrinsically multi-mode systems, for which the Hilbert-space approach is often unpractical and cumbersome. More appealing are the "classical looking" phase space descriptions, where it is hence of great importance to reformulate concepts such as entanglement or Bell inequalities. The paper by Santos addresses the general problem of characterizing the entanglement properties of an electromagnetic field in the language of Q-representation. Entanglement involving the spatial modes of the electromagnetic field carrying orbital angular momentum provides new degrees of freedom and could play an important role in the field of quantum information, since such non-classical states enable the possibility of multichannel communications. The paper by Barbosa discusses quantum states of twin photons produced by parametric down-conversion and entangled in polarization and orbital angular momentum. The issue of entanglement is intrinsically connected to decoherence, and to the transition from the quantum to the classical world. In particular, massive systems are characterized by strong interactions with the environment, and at room temperature they usually exhibit classical behaviour. In this context, the paper by Karlsson discusses the decay of quantum correlations of protons and positive muons in condensed matter, a system characterized by strong coupling to the environment, and proposes experiments where such quantum correlations could be measured. Mancini et al. investigate macroscopic manifestations of quantum features, presenting a proposal for entangling the macroscopic oscillation modes of two cavity mirrors by coupling them to an optical cavity mode. This kind of continuous-variable quantum entanglement may find applications in highprecision measurements, like in atomic force microscopy or gravity wave detection. The question of entanglement for high-precision measurements is also addressed by the paper of Yurtsever et al. which discusses entanglement between matter waves, and proposes the use of entangled atom pairs for a highly sensitive quantum gravity gradiometer. Besides their fundamental interest as a manifestation of quantum .uctuations, spatial quantum correlations in optical beams find their most natural and promising applications in the field of image processing and, more in general, of parallel processing of information. This has opened a new chapter of quantum optics that has been given the name "quantum imaging". In this context, one of the .rst achievements have been the so-called entangled two-photon imaging experiments. This is a technique that exploits the quantum entanglement of a two-photon state to retrieve information about a remote object. In the typical set-up, one photon out of a pair produced by spontaneous parametric down-conversion is used to probe an object, while the other provides a reference. The image of the object emerges in the coincidence counting rate registered as a function of the second photon position. The paper by Shih offers an extensive review of fundamental aspects linked to the entangled two-photon imaging phenomena. It illustrates how quantum imaging techniques may improve classical spatial resolution and presents some of their potential applications for lithography and other microsystem fabrication technologies. A different view on the problem is offered by the paper of Tan et al., which reformulates the two-photon quantum imaging theory from the point of view of retrodictive quantum theory. Since long, quantum noise has been known to represent a limit in high-precision optical measurements. In this context, the contribution by Eschner discusses a single trapped atom probing an optical field and shows that the quantum noise in the atomic motion poses the ultimate limit to the achievable resolution. Recently, it was recognized that quantum noise affects also our ability to resolve an optical image or to detect a small displacement of an optical beam. Properly synthesized multi-mode quantum states are able to circumvent the quantum noise limit and to improve our resolution capabilities in measuring beam displacements. The paper by Barnett et al. shows the similarities between longitudinal phase shifts and transverse beam displacements measurements. Like in interferometry, the sensitivity in the transverse displacement measurement is ultimately limited by the quantum nature of light and can be improved by the use of specific non classical states. The problem of realizing a multi-mode squeezed state is addressed by the paper of Petsas et al. It discusses a realistic implementation of parametric down-conversion in a confocal cavity, able to produce a significant amount of squeezing in small portions of the signal beam cross section. Quantum imaging with macroscopic light beams is a rather new subject of investigation, which represents a non-trivial challenge from the point of view of experimental implementations. One of the main problems is posed by detectors, which should be able to resolve the spatial features of the detected beam with a sensitivity in the photon number measurement beyond the shot noise level. The calibrated CCD camera developed by Jiang et al. makes it possible to get rid of electronic noise or spatial inhomogeneities, a.ecting most of the spatially resolved detectors, and allows the retrieval of spatial shot noise in its full dynamic range. We hope that this special issue helps stimulating further collaborations and fruitful scientific exchange between and beyond the presented fields. We would like to thank the authors for their contributions and the referees for their time and their thoroughness. Our sincerest thanks go to Solange Guéhot in the EPJ D editorial office for very efficiently taking care of all administrative matters. Jürgen Eschner, Institut für Experimentalphysik, Universität Innsbruck, Technikerstr. 25, 6020 Innsbruck, Austria Alessandra Gatti, Istituto Nazionale per la Fisica della Materia, Unitá di Como, Via Valleggio 11, 22100 Como, Italy Agnàs Maītre, Laboratoire Kastler-Brossel, Université Pierre et Marie Curie, 4 place Jussieu, 75252 Paris Cedex 05, France Giovanna Morigi, Abteilung Quantenphysik, Universitát Ulm, Albert-Einstein Allee 11, 89069 Ulm, Germany
NASA Astrophysics Data System (ADS)
Kelly, Kathleen
Materials that take advantage of the exceptional properties of nano-meter sized aggregates of atoms are poised to play an important role in future technologies. Prime examples for such nano-materials that have an extremely large surface to volume ratio and thus are physically determined by surface related effects are quantum dots (qdots) and carbon nanotubes (CNTs). The production of such manmade nano-objects has by now become routine and even commercialized. However, the controlled assembly of individual nano-sized building blocks into larger structures of higher geometric and functional complexity has proven to be much more challenging. Yet, this is exactly what is required for many applications that have transformative potential for new technologies. If the tedious procedure to sequentially position individual nano-objects is to be forgone, the assembly of such objects into larger structures needs to be implicitly encoded and many ways to bestow such self-assembly abilities onto nano objects are being developed. Yet, as overall size and complexity of such self-assembled structures increases, kinetic and geometric frustration begin to prevent the system to achieve the desired configuration. In nature, this problem is solved by relying on guided or forced variants of the self-assembly approach. To translate such concepts into the realm of man-made nano-technology, ways to dynamically manipulate nano-materials need to be devised. Thus, in the first part of this work, I provide a proof of concept that supported lipid bilayers (SLBs) that exhibit free lateral diffusion of their constituents can be utilized as a two-dimensional platform for active nano-material manipulation. We used streptavidin coated quantum dots (Q-dots) as a model nano-building-block. Q-dots are 0-dimensional nanomaterials engineered to be fluorescent based solely on their diameter making visualization convenient. Biotinylated lipids were used to tether Q-dots to a SLB and we observed that the 2-dimensional fluidity of the bilayer was translated to the quantum dots as they freely diffused. The quantum dots were visualized using wide-field fluorescent microscopy and single particle tracking techniques were employed to analyze their dynamic behavior. Next, an electric field was applied to the system to induce electroosmotic flow (EOF) which creates a bulk flow of the buffer solution. The quantum dots were again tracked and ballistic motion was observed in the particle tracks due to the electroosmosis in the system. This proved that SLBs could be used as a two-dimensional fluid platform for nanomaterials and electroosmosis can be used to manipulate the motion of the Q-dots once they are tethered to the membrane. Next, we set out to employ the same technique to carbon nanotubes (CNTs), which are known for their highly versatile mechanical and electrical properties. However, carbon nanotubes are extremely hydrophobic and tend to aggregate in aqueous solutions which negatively impacts the viability of tethering the CNTs to the bilayer, fluorescently staining and then imaging them. First, we had to solubilize the CNTs such that they were monodisperse and characterize the CNT-detergent solutions. We were able to create monodisperse solutions of CNTs such that the detergent levels were low enough that the integrity of the bilayer was intact. We were also able to fluorescently label the CNTs in order to visualize them, and tether them to a SLB using a peptide sequence. Future directions of this project would include employing EOF to mobilize the CNTs and use a more sophisticated single particle tracking software to track individual CNTs and analyze their motion.
Quantum voting and violation of Arrow's impossibility theorem
NASA Astrophysics Data System (ADS)
Bao, Ning; Yunger Halpern, Nicole
2017-06-01
We propose a quantum voting system in the spirit of quantum games such as the quantum prisoner's dilemma. Our scheme enables a constitution to violate a quantum analog of Arrow's impossibility theorem. Arrow's theorem is a claim proved deductively in economics: Every (classical) constitution endowed with three innocuous-seeming properties is a dictatorship. We construct quantum analogs of constitutions, of the properties, and of Arrow's theorem. A quantum version of majority rule, we show, violates this quantum Arrow conjecture. Our voting system allows for tactical-voting strategies reliant on entanglement, interference, and superpositions. This contribution to quantum game theory helps elucidate how quantum phenomena can be harnessed for strategic advantage.
Exponential energy growth due to slow parameter oscillations in quantum mechanical systems.
Turaev, Dmitry
2016-05-01
It is shown that a periodic emergence and destruction of an additional quantum number leads to an exponential growth of energy of a quantum mechanical system subjected to a slow periodic variation of parameters. The main example is given by systems (e.g., quantum billiards and quantum graphs) with periodically divided configuration space. In special cases, the process can also lead to a long period of cooling that precedes the acceleration, and to the desertion of the states with a particular value of the quantum number.
Thermal Quantum Correlations in Photosynthetic Light-Harvesting Complexes
NASA Astrophysics Data System (ADS)
Mahdian, M.; Kouhestani, H.
2015-08-01
Photosynthesis is one of the ancient biological processes, playing crucial role converting solar energy to cellular usable currency. Environmental factors and external perturbations has forced nature to choose systems with the highest efficiency and performance. Recent theoretical and experimental studies have proved the presence of quantum properties in biological systems. Energy transfer systems like Fenna-Matthews-Olson (FMO) complex shows quantum entanglement between sites of Bacteriophylla molecules in protein environment and presence of decoherence. Complex biological systems implement more truthful mechanisms beside chemical-quantum correlations to assure system's efficiency. In this study we investigate thermal quantum correlations in FMO protein of the photosynthetic apparatus of green sulfur bacteria by quantum discord measure. The results confirmed existence of remarkable quantum correlations of of BChla pigments in room temperature. This results approve involvement of quantum correlation mechanisms for information storage and retention in living organisms that could be useful for further evolutionary studies. Inspired idea of this study is potentially interesting to practice by the same procedure in genetic data transfer mechanisms.
Aharonov-Bohm effect in the tunnelling of a quantum rotor in a linear Paul trap.
Noguchi, Atsushi; Shikano, Yutaka; Toyoda, Kenji; Urabe, Shinji
2014-05-13
Quantum tunnelling is a common fundamental quantum mechanical phenomenon that originates from the wave-like characteristics of quantum particles. Although the quantum tunnelling effect was first observed 85 years ago, some questions regarding the dynamics of quantum tunnelling remain unresolved. Here we realize a quantum tunnelling system using two-dimensional ionic structures in a linear Paul trap. We demonstrate that the charged particles in this quantum tunnelling system are coupled to the vector potential of a magnetic field throughout the entire process, even during quantum tunnelling, as indicated by the manifestation of the Aharonov-Bohm effect in this system. The tunnelling rate of the structures periodically depends on the strength of the magnetic field, whose period is the same as the magnetic flux quantum φ0 through the rotor [(0.99 ± 0.07) × φ0].
Operating Quantum States in Single Magnetic Molecules: Implementation of Grover's Quantum Algorithm.
Godfrin, C; Ferhat, A; Ballou, R; Klyatskaya, S; Ruben, M; Wernsdorfer, W; Balestro, F
2017-11-03
Quantum algorithms use the principles of quantum mechanics, such as, for example, quantum superposition, in order to solve particular problems outperforming standard computation. They are developed for cryptography, searching, optimization, simulation, and solving large systems of linear equations. Here, we implement Grover's quantum algorithm, proposed to find an element in an unsorted list, using a single nuclear 3/2 spin carried by a Tb ion sitting in a single molecular magnet transistor. The coherent manipulation of this multilevel quantum system (qudit) is achieved by means of electric fields only. Grover's search algorithm is implemented by constructing a quantum database via a multilevel Hadamard gate. The Grover sequence then allows us to select each state. The presented method is of universal character and can be implemented in any multilevel quantum system with nonequal spaced energy levels, opening the way to novel quantum search algorithms.
Versatile microwave-driven trapped ion spin system for quantum information processing
Piltz, Christian; Sriarunothai, Theeraphot; Ivanov, Svetoslav S.; Wölk, Sabine; Wunderlich, Christof
2016-01-01
Using trapped atomic ions, we demonstrate a tailored and versatile effective spin system suitable for quantum simulations and universal quantum computation. By simply applying microwave pulses, selected spins can be decoupled from the remaining system and, thus, can serve as a quantum memory, while simultaneously, other coupled spins perform conditional quantum dynamics. Also, microwave pulses can change the sign of spin-spin couplings, as well as their effective strength, even during the course of a quantum algorithm. Taking advantage of the simultaneous long-range coupling between three spins, a coherent quantum Fourier transform—an essential building block for many quantum algorithms—is efficiently realized. This approach, which is based on microwave-driven trapped ions and is complementary to laser-based methods, opens a new route to overcoming technical and physical challenges in the quest for a quantum simulator and a quantum computer. PMID:27419233
Operating Quantum States in Single Magnetic Molecules: Implementation of Grover's Quantum Algorithm
NASA Astrophysics Data System (ADS)
Godfrin, C.; Ferhat, A.; Ballou, R.; Klyatskaya, S.; Ruben, M.; Wernsdorfer, W.; Balestro, F.
2017-11-01
Quantum algorithms use the principles of quantum mechanics, such as, for example, quantum superposition, in order to solve particular problems outperforming standard computation. They are developed for cryptography, searching, optimization, simulation, and solving large systems of linear equations. Here, we implement Grover's quantum algorithm, proposed to find an element in an unsorted list, using a single nuclear 3 /2 spin carried by a Tb ion sitting in a single molecular magnet transistor. The coherent manipulation of this multilevel quantum system (qudit) is achieved by means of electric fields only. Grover's search algorithm is implemented by constructing a quantum database via a multilevel Hadamard gate. The Grover sequence then allows us to select each state. The presented method is of universal character and can be implemented in any multilevel quantum system with nonequal spaced energy levels, opening the way to novel quantum search algorithms.
Novel systems and methods for quantum communication, quantum computation, and quantum simulation
NASA Astrophysics Data System (ADS)
Gorshkov, Alexey Vyacheslavovich
Precise control over quantum systems can enable the realization of fascinating applications such as powerful computers, secure communication devices, and simulators that can elucidate the physics of complex condensed matter systems. However, the fragility of quantum effects makes it very difficult to harness the power of quantum mechanics. In this thesis, we present novel systems and tools for gaining fundamental insights into the complex quantum world and for bringing practical applications of quantum mechanics closer to reality. We first optimize and show equivalence between a wide range of techniques for storage of photons in atomic ensembles. We describe experiments demonstrating the potential of our optimization algorithms for quantum communication and computation applications. Next, we combine the technique of photon storage with strong atom-atom interactions to propose a robust protocol for implementing the two-qubit photonic phase gate, which is an important ingredient in many quantum computation and communication tasks. In contrast to photon storage, many quantum computation and simulation applications require individual addressing of closely-spaced atoms, ions, quantum dots, or solid state defects. To meet this requirement, we propose a method for coherent optical far-field manipulation of quantum systems with a resolution that is not limited by the wavelength of radiation. While alkali atoms are currently the system of choice for photon storage and many other applications, we develop new methods for quantum information processing and quantum simulation with ultracold alkaline-earth atoms in optical lattices. We show how multiple qubits can be encoded in individual alkaline-earth atoms and harnessed for quantum computing and precision measurements applications. We also demonstrate that alkaline-earth atoms can be used to simulate highly symmetric systems exhibiting spin-orbital interactions and capable of providing valuable insights into strongly correlated physics of transition metal oxides, heavy fermion materials, and spin liquid phases. While ultracold atoms typically exhibit only short-range interactions, numerous exotic phenomena and practical applications require long-range interactions, which can be achieved with ultracold polar molecules. We demonstrate the possibility to engineer a repulsive interaction between polar molecules, which allows for the suppression of inelastic collisions, efficient evaporative cooling, and the creation of novel phases of polar molecules.
Quantum entanglement in photoactive prebiotic systems.
Tamulis, Arvydas; Grigalavicius, Mantas
2014-06-01
This paper contains the review of quantum entanglement investigations in living systems, and in the quantum mechanically modelled photoactive prebiotic kernel systems. We define our modelled self-assembled supramolecular photoactive centres, composed of one or more sensitizer molecules, precursors of fatty acids and a number of water molecules, as a photoactive prebiotic kernel systems. We propose that life first emerged in the form of such minimal photoactive prebiotic kernel systems and later in the process of evolution these photoactive prebiotic kernel systems would have produced fatty acids and covered themselves with fatty acid envelopes to become the minimal cells of the Fatty Acid World. Specifically, we model self-assembling of photoactive prebiotic systems with observed quantum entanglement phenomena. We address the idea that quantum entanglement was important in the first stages of origins of life and evolution of the biospheres because simultaneously excite two prebiotic kernels in the system by appearance of two additional quantum entangled excited states, leading to faster growth and self-replication of minimal living cells. The quantum mechanically modelled possibility of synthesizing artificial self-reproducing quantum entangled prebiotic kernel systems and minimal cells also impacts the possibility of the most probable path of emergence of protocells on the Earth or elsewhere. We also examine the quantum entangled logic gates discovered in the modelled systems composed of two prebiotic kernels. Such logic gates may have application in the destruction of cancer cells or becoming building blocks of new forms of artificial cells including magnetically active ones.
Quantum speed limits in open system dynamics.
del Campo, A; Egusquiza, I L; Plenio, M B; Huelga, S F
2013-02-01
Bounds to the speed of evolution of a quantum system are of fundamental interest in quantum metrology, quantum chemical dynamics, and quantum computation. We derive a time-energy uncertainty relation for open quantum systems undergoing a general, completely positive, and trace preserving evolution which provides a bound to the quantum speed limit. When the evolution is of the Lindblad form, the bound is analogous to the Mandelstam-Tamm relation which applies in the unitary case, with the role of the Hamiltonian being played by the adjoint of the generator of the dynamical semigroup. The utility of the new bound is exemplified in different scenarios, ranging from the estimation of the passage time to the determination of precision limits for quantum metrology in the presence of dephasing noise.
Investigation of possible observable e ects in a proposed theory of physics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Freidan, Daniel
2015-03-31
The work supported by this grant produced rigorous mathematical results on what is possible in quantum field theory. Quantum field theory is the well-established mathematical language for fundamental particle physics, for critical phenomena in condensed matter physics, and for Physical Mathematics (the numerous branches of Mathematics that have benefitted from ideas, constructions, and conjectures imported from Theoretical Physics). Proving rigorous constraints on what is possible in quantum field theories thus guides the field, puts actual constraints on what is physically possible in physical or mathematical systems described by quantum field theories, and saves the community the effort of trying tomore » do what is proved impossible. Results were obtained in two dimensional qft (describing, e.g., quantum circuits) and in higher dimensional qft. Rigorous bounds were derived on basic quantities in 2d conformal field theories, i.e., in 2d critical phenomena. Conformal field theories are the basic objects in quantum field theory, the scale invariant theories describing renormalization group fixed points from which all qfts flow. The first known lower bounds on the 2d boundary entropy were found. This is the entropy- information content- in junctions in critical quantum circuits. For dimensions d > 2, a no-go theorem was proved on the possibilities of Cauchy fields, which are the analogs of the holomorphic fields in d = 2 dimensions, which have had enormously useful applications in Physics and Mathematics over the last four decades. This closed o the possibility of finding analogously rich theories in dimensions above 2. The work of two postdoctoral research fellows was partially supported by this grant. Both have gone on to tenure track positions.« less
Efficient tomography of a quantum many-body system
NASA Astrophysics Data System (ADS)
Lanyon, B. P.; Maier, C.; Holzäpfel, M.; Baumgratz, T.; Hempel, C.; Jurcevic, P.; Dhand, I.; Buyskikh, A. S.; Daley, A. J.; Cramer, M.; Plenio, M. B.; Blatt, R.; Roos, C. F.
2017-12-01
Quantum state tomography is the standard technique for estimating the quantum state of small systems. But its application to larger systems soon becomes impractical as the required resources scale exponentially with the size. Therefore, considerable effort is dedicated to the development of new characterization tools for quantum many-body states. Here we demonstrate matrix product state tomography, which is theoretically proven to allow for the efficient and accurate estimation of a broad class of quantum states. We use this technique to reconstruct the dynamical state of a trapped-ion quantum simulator comprising up to 14 entangled and individually controlled spins: a size far beyond the practical limits of quantum state tomography. Our results reveal the dynamical growth of entanglement and describe its complexity as correlations spread out during a quench: a necessary condition for future demonstrations of better-than-classical performance. Matrix product state tomography should therefore find widespread use in the study of large quantum many-body systems and the benchmarking and verification of quantum simulators and computers.
Nano-scale measurement of biomolecules by optical microscopy and semiconductor nanoparticles
Ichimura, Taro; Jin, Takashi; Fujita, Hideaki; Higuchi, Hideo; Watanabe, Tomonobu M.
2014-01-01
Over the past decade, great developments in optical microscopy have made this technology increasingly compatible with biological studies. Fluorescence microscopy has especially contributed to investigating the dynamic behaviors of live specimens and can now resolve objects with nanometer precision and resolution due to super-resolution imaging. Additionally, single particle tracking provides information on the dynamics of individual proteins at the nanometer scale both in vitro and in cells. Complementing advances in microscopy technologies has been the development of fluorescent probes. The quantum dot, a semi-conductor fluorescent nanoparticle, is particularly suitable for single particle tracking and super-resolution imaging. This article overviews the principles of single particle tracking and super resolution along with describing their application to the nanometer measurement/observation of biological systems when combined with quantum dot technologies. PMID:25120488
Quantum propagation and confinement in 1D systems using the transfer-matrix method
NASA Astrophysics Data System (ADS)
Pujol, Olivier; Carles, Robert; Pérez, José-Philippe
2014-05-01
The aim of this article is to provide some Matlab scripts to the teaching community in quantum physics. The scripts are based on the transfer-matrix formalism and offer a very efficient and versatile tool to solve problems of a physical object (electron, proton, neutron, etc) with one-dimensional (1D) stationary potential energy. Resonant tunnelling through a multiple-barrier or confinement in wells of various shapes is particularly analysed. The results are quantitatively discussed with semiconductor heterostructures, harmonic and anharmonic molecular vibrations, or neutrons in a gravity field. Scripts and other examples (hydrogen-like ions and transmission by a smooth variation of potential energy) are available freely at http://www-loa.univ-lille1.fr/˜pujol in three languages: English, French and Spanish.
JOURNAL SCOPE GUIDELINES: Paper classification scheme
NASA Astrophysics Data System (ADS)
2005-06-01
This scheme is used to clarify the journal's scope and enable authors and readers to more easily locate the appropriate section for their work. For each of the sections listed in the scope statement we suggest some more detailed subject areas which help define that subject area. These lists are by no means exhaustive and are intended only as a guide to the type of papers we envisage appearing in each section. We acknowledge that no classification scheme can be perfect and that there are some papers which might be placed in more than one section. We are happy to provide further advice on paper classification to authors upon request (please email jphysa@iop.org). 1. Statistical physics numerical and computational methods statistical mechanics, phase transitions and critical phenomena quantum condensed matter theory Bose-Einstein condensation strongly correlated electron systems exactly solvable models in statistical mechanics lattice models, random walks and combinatorics field-theoretical models in statistical mechanics disordered systems, spin glasses and neural networks nonequilibrium systems network theory 2. Chaotic and complex systems nonlinear dynamics and classical chaos fractals and multifractals quantum chaos classical and quantum transport cellular automata granular systems and self-organization pattern formation biophysical models 3. Mathematical physics combinatorics algebraic structures and number theory matrix theory classical and quantum groups, symmetry and representation theory Lie algebras, special functions and orthogonal polynomials ordinary and partial differential equations difference and functional equations integrable systems soliton theory functional analysis and operator theory inverse problems geometry, differential geometry and topology numerical approximation and analysis geometric integration computational methods 4. Quantum mechanics and quantum information theory coherent states eigenvalue problems supersymmetric quantum mechanics scattering theory relativistic quantum mechanics semiclassical approximations foundations of quantum mechanics and measurement theory entanglement and quantum nonlocality geometric phases and quantum tomography quantum tunnelling decoherence and open systems quantum cryptography, communication and computation theoretical quantum optics 5. Classical and quantum field theory quantum field theory gauge and conformal field theory quantum electrodynamics and quantum chromodynamics Casimir effect integrable field theory random matrix theory applications in field theory string theory and its developments classical field theory and electromagnetism metamaterials 6. Fluid and plasma theory turbulence fundamental plasma physics kinetic theory magnetohydrodynamics and multifluid descriptions strongly coupled plasmas one-component plasmas non-neutral plasmas astrophysical and dusty plasmas
Amplification, Redundancy, and Quantum Chernoff Information
NASA Astrophysics Data System (ADS)
Zwolak, Michael; Riedel, C. Jess; Zurek, Wojciech H.
2014-04-01
Amplification was regarded, since the early days of quantum theory, as a mysterious ingredient that endows quantum microstates with macroscopic consequences, key to the "collapse of the wave packet," and a way to avoid embarrassing problems exemplified by Schrödinger's cat. Such a bridge between the quantum microworld and the classical world of our experience was postulated ad hoc in the Copenhagen interpretation. Quantum Darwinism views amplification as replication, in many copies, of the information about quantum states. We show that such amplification is a natural consequence of a broad class of models of decoherence, including the photon environment we use to obtain most of our information. This leads to objective reality via the presence of robust and widely accessible records of selected quantum states. The resulting redundancy (the number of copies deposited in the environment) follows from the quantum Chernoff information that quantifies the information transmitted by a typical elementary subsystem of the environment.
Secondary quantum macrpscopic effects in weak superconductivity
NASA Astrophysics Data System (ADS)
Larkin, A. I.; Likharev, K. K.; Ovchinnikov, Yu. N.
1984-11-01
In several experiments carried out since 1980, a typical quantum behavior of small-size Josephson junctions as macroscopic objects has been registered. Those experiments have stimulated a rapid development of the related theory, particularly of the effect of damping (viscosity) upon these quantum effects including fluctuations, tunneling and interference. As a result of this development, some even more interesting phenomena have been predicted just recently. In this paper, a brief review of this new field is presented, with a special emphasis on the results essential for the quantum physisc in general.
Individuation in Quantum Mechanics and Space-Time
NASA Astrophysics Data System (ADS)
Jaeger, Gregg
2010-10-01
Two physical approaches—as distinct, under the classification of Mittelstaedt, from formal approaches—to the problem of individuation of quantum objects are considered, one formulated in spatiotemporal terms and one in quantum mechanical terms. The spatiotemporal approach itself has two forms: one attributed to Einstein and based on the ontology of space-time points, and the other proposed by Howard and based on intersections of world lines. The quantum mechanical approach is also provided here in two forms, one based on interference and another based on a new Quantum Principle of Individuation (QPI). It is argued that the space-time approach to individuation fails and that the quantum approach offers several advantages over it, including consistency with Leibniz’s Principle of Identity of Indiscernibles.
Quantum energy teleportation in a quantum Hall system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yusa, Go; Izumida, Wataru; Hotta, Masahiro
2011-09-15
We propose an experimental method for a quantum protocol termed quantum energy teleportation (QET), which allows energy transportation to a remote location without physical carriers. Using a quantum Hall system as a realistic model, we discuss the physical significance of QET and estimate the order of energy gain using reasonable experimental parameters.
Building an adiabatic quantum computer simulation in the classroom
NASA Astrophysics Data System (ADS)
Rodríguez-Laguna, Javier; Santalla, Silvia N.
2018-05-01
We present a didactic introduction to adiabatic quantum computation (AQC) via the explicit construction of a classical simulator of quantum computers. This constitutes a suitable route to introduce several important concepts for advanced undergraduates in physics: quantum many-body systems, quantum phase transitions, disordered systems, spin-glasses, and computational complexity theory.
Black hole based quantum computing in labs and in the sky
NASA Astrophysics Data System (ADS)
Dvali, Gia; Panchenko, Mischa
2016-08-01
Analyzing some well established facts, we give a model-independent parameterization of black hole quantum computing in terms of a set of macro and micro quantities and their relations. These include the relations between the extraordinarily-small energy gap of black hole qubits and important time-scales of information-processing, such as, scrambling time and Page's time. We then show, confirming and extending previous results, that other systems of nature with identical quantum informatics features are attractive Bose-Einstein systems at the critical point of quantum phase transition. Here we establish a complete isomorphy between the quantum computational properties of these two systems. In particular, we show that the quantum hair of a critical condensate is strikingly similar to the quantum hair of a black hole. Irrespectively whether one takes the similarity between the two systems as a remarkable coincidence or as a sign of a deeper underlying connection, the following is evident. Black holes are not unique in their way of quantum information processing and we can manufacture black hole based quantum computers in labs by taking advantage of quantum criticality.
Superpersistent Currents in Dirac Fermion Systems
2017-03-06
development of quantum mechanics,, but also to quantum information processing and computing . Exploiting various physical systems to realize two-level...Here, using the QSD method, we calculated the dynamical trajectories of the system in the quantum regime. Our computations extending to the long time...currents in 2D Dirac material systems and pertinent phenomena in the emerging field of relativistic quantum nonlinear dynamics and chaos. Systematic
Adiabatic Quantum Search in Open Systems.
Wild, Dominik S; Gopalakrishnan, Sarang; Knap, Michael; Yao, Norman Y; Lukin, Mikhail D
2016-10-07
Adiabatic quantum algorithms represent a promising approach to universal quantum computation. In isolated systems, a key limitation to such algorithms is the presence of avoided level crossings, where gaps become extremely small. In open quantum systems, the fundamental robustness of adiabatic algorithms remains unresolved. Here, we study the dynamics near an avoided level crossing associated with the adiabatic quantum search algorithm, when the system is coupled to a generic environment. At zero temperature, we find that the algorithm remains scalable provided the noise spectral density of the environment decays sufficiently fast at low frequencies. By contrast, higher order scattering processes render the algorithm inefficient at any finite temperature regardless of the spectral density, implying that no quantum speedup can be achieved. Extensions and implications for other adiabatic quantum algorithms will be discussed.
Huang, Yu; Guo, Feng; Li, Yongling; Liu, Yufeng
2015-01-01
Parameter estimation for fractional-order chaotic systems is an important issue in fractional-order chaotic control and synchronization and could be essentially formulated as a multidimensional optimization problem. A novel algorithm called quantum parallel particle swarm optimization (QPPSO) is proposed to solve the parameter estimation for fractional-order chaotic systems. The parallel characteristic of quantum computing is used in QPPSO. This characteristic increases the calculation of each generation exponentially. The behavior of particles in quantum space is restrained by the quantum evolution equation, which consists of the current rotation angle, individual optimal quantum rotation angle, and global optimal quantum rotation angle. Numerical simulation based on several typical fractional-order systems and comparisons with some typical existing algorithms show the effectiveness and efficiency of the proposed algorithm. PMID:25603158
Physical realizability of continuous-time quantum stochastic walks
NASA Astrophysics Data System (ADS)
Taketani, Bruno G.; Govia, Luke C. G.; Wilhelm, Frank K.
2018-05-01
Quantum walks are a promising methodology that can be used to both understand and implement quantum information processing tasks. The quantum stochastic walk is a recently developed framework that combines the concept of a quantum walk with that of a classical random walk, through open system evolution of a quantum system. Quantum stochastic walks have been shown to have applications in as far reaching fields as artificial intelligence. However, there are significant constraints on the kind of open system evolutions that can be realized in a physical experiment. In this work, we discuss the restrictions on the allowed open system evolution and the physical assumptions underpinning them. We show that general direct implementations would require the complete solution of the underlying unitary dynamics and sophisticated reservoir engineering, thus weakening the benefits of experimental implementation.
Software Systems for High-performance Quantum Computing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Humble, Travis S; Britt, Keith A
Quantum computing promises new opportunities for solving hard computational problems, but harnessing this novelty requires breakthrough concepts in the design, operation, and application of computing systems. We define some of the challenges facing the development of quantum computing systems as well as software-based approaches that can be used to overcome these challenges. Following a brief overview of the state of the art, we present models for the quantum programming and execution models, the development of architectures for hybrid high-performance computing systems, and the realization of software stacks for quantum networking. This leads to a discussion of the role that conventionalmore » computing plays in the quantum paradigm and how some of the current challenges for exascale computing overlap with those facing quantum computing.« less
Hybrid quantum systems: Outsourcing superconducting qubits
NASA Astrophysics Data System (ADS)
Cleland, Andrew
Superconducting qubits offer excellent prospects for manipulating quantum information, with good qubit lifetimes, high fidelity single- and two-qubit gates, and straightforward scalability (admittedly with multi-dimensional interconnect challenges). One interesting route for experimental development is the exploration of hybrid systems, i.e. coupling superconducting qubits to other systems. I will report on our group's efforts to develop approaches that will allow interfacing superconducting qubits in a quantum-coherent fashion to spin defects in solids, to optomechanical devices, and to resonant nanomechanical structures. The longer term goals of these efforts include transferring quantum states between different qubit systems; generating and receiving ``flying'' acoustic phonon-based as well as optical photon-based qubits; and ultimately developing systems that can be used for quantum memory, quantum computation and quantum communication, the last in both the microwave and fiber telecommunications bands. Work is supported by Grants from AFOSR, ARO, DOE and NSF.
On a New Theory of the System of Reference
NASA Astrophysics Data System (ADS)
Kalanov, Temur Z.
2003-04-01
A new theory of the system of reference is suggested. It represents the new point of view which has arisen from the critical analysis of the foundations of physics (in particular, the theory of relativity and quantum mechanics), mathematics, cosmology and philosophy. The main idea following from the analysis is that the correct concept of system of reference represents a key to comprehension of many basic logic errors which are in modern physics. The starting point of the theory is represented by the philosophical (dialectical materialistic) principles, in particular, the gnosiological principle. (The gnosiological principle is briefly formulated as follows. The purpose of a science is to know the laws of the Nature. The law is a form of scientific knowledge of the essence and the phenomenon. The essence is the internal basis of the phenomenon, and the phenomenon is the manifestation of the essence. Human practice is a basis of knowledge and a criterion of truth). These principles lead to the following statements. (1) The reality is the dialectical unity of the opposites: the objective reality and the non-objective (subjective) reality. (2) The system mankind + means of knowledge belongs to the subjective reality and is called system of reference. In this wide sense, the system of reference is the universal informational gnostic basis (i.e. the system consisting of natural objects and processes, of constructed devices and instruments, of sum of human knowledge and skills) created and used by mankind for the purpose of knowledge of the world. (3) The opposites are bounds of each other. Hence, the principle of objectivity of the physical laws is formulated as follows: the objective physical laws must not contain mentions of system of reference (in particular, references to procedure of measurement or of calculation). (4) The main informational property of the unitary system set of researches physical objects + system of reference is that the system of reference determines (measures, calculates) the parameters of the subsystem set of researched physical objects (for example, the coordinates x_M, y_M, zM of the object M); the parameters characterize the system of reference (for example, the system of coordinates). (5) The main gnostic property of the unitary system set of researches physical objects + system of reference is that the system of reference defines (formulates) the physical laws (i.e. creates the theories); the physical laws characterize the system of reference. (6) The parameters which take on values independently of existence of the researched physical objects characterize the system of reference. For example, the clock C, a part of the system of reference S, determines (but it does not measure!) the time t_C; the time tC characterizes the clock C. If all clocks have been synchronized, the universal time tS characterizes the system of reference S. (7) Researched physical object M and a clock are mutually independent objects. Hence, the coordinates x_M, y_M, zM and the time tS are mutually independent parameters. (8) The informational one-to-one correspondence between motion of object M and physical clock-process in clock is established (is defined) by man. For example, it has a form: dx_M/dtS ≡ v_x_M. Consequences: (a) information about the world is an ordered information because the system of reference S is an ordered and universal system. This information is an objective one if it does not depend on a system of reference; (b) mathematical operations on physical quantities with the coordinates and with the time are allowed by the laws of logic because the set of researches physical objects + system of reference is a unitary system; (c) the principle of existence and of transformation of coordinates: there are no coordinates and no transformation of coordinates in general, and there exist the coordinates x_M, y_M, zM and transformation of the coordinates x_M, y_M, zM of the object M only; (d) the special and general theories of relativity are an erroneous theories because their foundations, firstly, do not satisfy the principle of objectivity of the physical laws, secondly, they contradict the principle of transformation of coordinates and, thirdly, they assume mutual dependence between the researched physical object and a clock (i.e. between coordinates and time); (e) quantum mechanics does not satisfy the principle of objectivity of the physical laws.
Determinism Beneath Composite Quantum Systems
NASA Astrophysics Data System (ADS)
Blasone, Massimo; Vitiello, Giuseppe; Jizba, Petr; Scardigli, Fabio
This paper aims at the development of 't Hooft's quantization proposal to describe composite quantum mechanical systems. In particular, we show how 't Hooft's method can be utilized to obtain from two classical Bateman oscillators a composite quantum system corresponding to a quantum isotonic oscillator. For a suitable range of parameters, the composite system can be also interpreted as a particle in an effective magnetic field interacting through a spin-orbital interaction term. In the limit of a large separation from the interaction region we can identify the irreducible subsystems with two independent quantum oscillators.
Quantum computation for solving linear systems
NASA Astrophysics Data System (ADS)
Cao, Yudong
Quantum computation is a subject born out of the combination between physics and computer science. It studies how the laws of quantum mechanics can be exploited to perform computations much more efficiently than current computers (termed classical computers as oppose to quantum computers). The thesis starts by introducing ideas from quantum physics and theoretical computer science and based on these ideas, introducing the basic concepts in quantum computing. These introductory discussions are intended for non-specialists to obtain the essential knowledge needed for understanding the new results presented in the subsequent chapters. After introducing the basics of quantum computing, we focus on the recently proposed quantum algorithm for linear systems. The new results include i) special instances of quantum circuits that can be implemented using current experimental resources; ii) detailed quantum algorithms that are suitable for a broader class of linear systems. We show that for some particular problems the quantum algorithm is able to achieve exponential speedup over their classical counterparts.
Quantum games with a multi-slit electron diffraction set-up
NASA Astrophysics Data System (ADS)
Iqbal, A.
2003-05-01
A set-up is proposed to play a quantum version of the famous bimatrix game of Prisoners' Dilemma. Multi-slit electron diffraction with each player's pure strategy consisting of opening one of the two slits at his/her disposal are essential features of the set-up. Instead of entanglement the association of waves with travelling material objects is suggested as another resource to play quantum games.
Hybrid Methods in Quantum Information
NASA Astrophysics Data System (ADS)
Marshall, Kevin
Today, the potential power of quantum information processing comes as no surprise to physicist or science-fiction writer alike. However, the grand promises of this field remain unrealized, despite significant strides forward, due to the inherent difficulties of manipulating quantum systems. Simply put, it turns out that it is incredibly difficult to interact, in a controllable way, with the quantum realm when we seem to live our day to day lives in a classical world. In an effort to solve this challenge, people are exploring a variety of different physical platforms, each with their strengths and weaknesses, in hopes of developing new experimental methods that one day might allow us to control a quantum system. One path forward rests in combining different quantum systems in novel ways to exploit the benefits of different systems while circumventing their respective weaknesses. In particular, quantum systems come in two different flavours: either discrete-variable systems or continuous-variable ones. The field of hybrid quantum information seeks to combine these systems, in clever ways, to help overcome the challenges blocking the path between what is theoretically possible and what is achievable in a laboratory. In this thesis we explore four topics in the context of hybrid methods in quantum information, in an effort to contribute to the resolution of existing challenges and to stimulate new avenues of research. First, we explore the manipulation of a continuous-variable quantum system consisting of phonons in a linear chain of trapped ions where we use the discretized internal levels to mediate interactions. Using our proposed interaction we are able to implement, for example, the acoustic equivalent of a beam splitter with modest experimental resources. Next we propose an experimentally feasible implementation of the cubic phase gate, a primitive non-Gaussian gate required for universal continuous-variable quantum computation, based off sequential photon subtraction. We then discuss the notion of embedding a finite dimensional state into a continuous-variable system, and propose a method of performing quantum computations on encrypted continuous-variable states. This protocol allows for a client, of limited quantum ability, to outsource a computation while hiding their information. Next, we discuss the possibility of performing universal quantum computation on discrete-variable logical states encoded in mixed continuous-variable quantum states. Finally, we present an account of open problems related to our results, and possible future avenues of research.
Supercritical entanglement in local systems: Counterexample to the area law for quantum matter
Movassagh, Ramis; Shor, Peter W.
2016-01-01
Quantum entanglement is the most surprising feature of quantum mechanics. Entanglement is simultaneously responsible for the difficulty of simulating quantum matter on a classical computer and the exponential speedups afforded by quantum computers. Ground states of quantum many-body systems typically satisfy an “area law”: The amount of entanglement between a subsystem and the rest of the system is proportional to the area of the boundary. A system that obeys an area law has less entanglement and can be simulated more efficiently than a generic quantum state whose entanglement could be proportional to the total system’s size. Moreover, an area law provides useful information about the low-energy physics of the system. It is widely believed that for physically reasonable quantum systems, the area law cannot be violated by more than a logarithmic factor in the system’s size. We introduce a class of exactly solvable one-dimensional physical models which we can prove have exponentially more entanglement than suggested by the area law, and violate the area law by a square-root factor. This work suggests that simple quantum matter is richer and can provide much more quantum resources (i.e., entanglement) than expected. In addition to using recent advances in quantum information and condensed matter theory, we have drawn upon various branches of mathematics such as combinatorics of random walks, Brownian excursions, and fractional matching theory. We hope that the techniques developed herein may be useful for other problems in physics as well. PMID:27821725
Entanglement of spin waves among four quantum memories.
Choi, K S; Goban, A; Papp, S B; van Enk, S J; Kimble, H J
2010-11-18
Quantum networks are composed of quantum nodes that interact coherently through quantum channels, and open a broad frontier of scientific opportunities. For example, a quantum network can serve as a 'web' for connecting quantum processors for computation and communication, or as a 'simulator' allowing investigations of quantum critical phenomena arising from interactions among the nodes mediated by the channels. The physical realization of quantum networks generically requires dynamical systems capable of generating and storing entangled states among multiple quantum memories, and efficiently transferring stored entanglement into quantum channels for distribution across the network. Although such capabilities have been demonstrated for diverse bipartite systems, entangled states have not been achieved for interconnects capable of 'mapping' multipartite entanglement stored in quantum memories to quantum channels. Here we demonstrate measurement-induced entanglement stored in four atomic memories; user-controlled, coherent transfer of the atomic entanglement to four photonic channels; and characterization of the full quadripartite entanglement using quantum uncertainty relations. Our work therefore constitutes an advance in the distribution of multipartite entanglement across quantum networks. We also show that our entanglement verification method is suitable for studying the entanglement order of condensed-matter systems in thermal equilibrium.
Quasiparticle engineering and entanglement propagation in a quantum many-body system.
Jurcevic, P; Lanyon, B P; Hauke, P; Hempel, C; Zoller, P; Blatt, R; Roos, C F
2014-07-10
The key to explaining and controlling a range of quantum phenomena is to study how information propagates around many-body systems. Quantum dynamics can be described by particle-like carriers of information that emerge in the collective behaviour of the underlying system, the so-called quasiparticles. These elementary excitations are predicted to distribute quantum information in a fashion determined by the system's interactions. Here we report quasiparticle dynamics observed in a quantum many-body system of trapped atomic ions. First, we observe the entanglement distributed by quasiparticles as they trace out light-cone-like wavefronts. Second, using the ability to tune the interaction range in our system, we observe information propagation in an experimental regime where the effective-light-cone picture does not apply. Our results will enable experimental studies of a range of quantum phenomena, including transport, thermalization, localization and entanglement growth, and represent a first step towards a new quantum-optic regime of engineered quasiparticles with tunable nonlinear interactions.
Optimal Correlations in Many-Body Quantum Systems
NASA Astrophysics Data System (ADS)
Amico, L.; Rossini, D.; Hamma, A.; Korepin, V. E.
2012-06-01
Information and correlations in a quantum system are closely related through the process of measurement. We explore such relation in a many-body quantum setting, effectively bridging between quantum metrology and condensed matter physics. To this aim we adopt the information-theory view of correlations and study the amount of correlations after certain classes of positive-operator-valued measurements are locally performed. As many-body systems, we consider a one-dimensional array of interacting two-level systems (a spin chain) at zero temperature, where quantum effects are most pronounced. We demonstrate how the optimal strategy to extract the correlations depends on the quantum phase through a subtle interplay between local interactions and coherence.
NASA Astrophysics Data System (ADS)
Li, Ying; Holloway, Gregory W.; Benjamin, Simon C.; Briggs, G. Andrew D.; Baugh, Jonathan; Mol, Jan A.
2017-08-01
Memristive systems are generalizations of memristors, which are resistors with memory. In this paper, we present a quantum description of quantum dot memristive systems. Using this model we propose and experimentally demonstrate a simple and practical scheme for realizing memristive systems with quantum dots. The approach harnesses a phenomenon that is commonly seen as a bane of nanoelectronics, i.e., switching of a trapped charge in the vicinity of the device. We show that quantum dot memristive systems have hysteresis current-voltage characteristics and quantum jump-induced stochastic behavior. While our experiment requires low temperatures, the same setup could, in principle, be realized with a suitable single-molecule transistor and operated at or near room temperature.
Measurement and quantum indeterminateness
NASA Astrophysics Data System (ADS)
Healey, Richard
1993-08-01
Albert and Loewer[1] have recently clarified their earlier objection to the interactive interpretation presented in Healey[2]. They now charge that this interpretation fails to solve a problem of which the measurement problem is but a special case. The general problem is to reconcile quantum mechanics with the prima facie determinateness of such dynamical properties as the positions of macroscopic objects. In response I defend both the preeminent significance of determinate measurement outcomes and the claim that the models of Healey[3] go a long way toward securing their determinateness.
Speakable and Unspeakable in Quantum Mechanics
NASA Astrophysics Data System (ADS)
Bell, J. S.; Aspect, Introduction by Alain
2004-06-01
List of papers on quantum philosophy by J. S. Bell; Preface; Acknowledgements; Introduction by Alain Aspect; 1. On the problem of hidden variables in quantum mechanics; 2. On the Einstein-Rosen-Podolsky paradox; 3. The moral aspects of quantum mechanics; 4. Introduction to the hidden-variable question; 5. Subject and object; 6. On wave packet reduction in the Coleman-Hepp model; 7. The theory of local beables; 8. Locality in quantum mechanics: reply to critics; 9. How to teach special relativity; 10. Einstein-Podolsky-Rosen experiments; 11. The measurement theory of Everett and de Broglie's pilot wave; 12. Free variables and local causality; 13. Atomic-cascade photons and quantum-mechanical nonlocality; 14. de Broglie-Bohm delayed choice double-slit experiments and density matrix; 15. Quantum mechanics for cosmologists; 16. Bertlmann's socks and the nature of reality; 17. On the impossible pilot wave; 18. Speakable and unspeakable in quantum mechanics; 19. Beables for quantum field theory; 20. Six possible worlds of quantum mechanics; 21. EPR correlations and EPR distributions; 22. Are there quantum jumps?; 23. Against 'measurement'; 24. La Nouvelle cuisine.
2012-03-01
EMPIRICAL ANALYSIS OF OPTICAL ATTENUATOR PERFORMANCE IN QUANTUM KEY DISTRIBUTION SYSTEMS USING A...DISTRIBUTION IS UNLIMITED AFIT/GCS/ENG/12-01 EMPIRICAL ANALYSIS OF OPTICAL ATTENUATOR PERFORMANCE IN QUANTUM KEY DISTRIBUTION SYSTEMS USING ...challenging as the complexity of actual implementation specifics are considered. Two components common to most quantum key distribution
Integrability and correspondence of classical and quantum non-linear three-mode systems
NASA Astrophysics Data System (ADS)
Odzijewicz, A.; Wawreniuk, E.
2018-04-01
The relationship between classical and quantum three one-mode systems interacting in a non-linear way is described. We investigate the integrability of these systems by using the reduction procedure. The reduced coherent states for the quantum system are constructed. We find the explicit formulas for the reproducing measure for these states. Examples of some applications of the obtained results in non-linear quantum optics are presented.
NASA Astrophysics Data System (ADS)
Bub, Jeffrey; Fuchs, Christopher A.
The great debate between Einstein and Bohr on the interpretation of quantum mechanics culminated with the Einstein-Podolsky-Rosen (EPR) paper in 1935, "Can quantum-mechanical description of physical reality be considered complete?" (Einstein, Podolsky, & Rosen, 1935, and Bohr's reply, 1935). EPR showed that composite quantum systems, consisting of widely separated subsystems, could exist in certain quantum states that they thought spelled trouble for the Copenhagen interpretation. Specifically, they argued that for such states, the correlations between the outcomes of measurements on the subsystems were incompatible with the assumption that the quantum state was a complete description of the system. They concluded that quantum mechanics was an incomplete theory-that the quantum state could not be the whole story about a system.
Work Measurement as a Generalized Quantum Measurement
NASA Astrophysics Data System (ADS)
Roncaglia, Augusto J.; Cerisola, Federico; Paz, Juan Pablo
2014-12-01
We present a new method to measure the work w performed on a driven quantum system and to sample its probability distribution P (w ). The method is based on a simple fact that remained unnoticed until now: Work on a quantum system can be measured by performing a generalized quantum measurement at a single time. Such measurement, which technically speaking is denoted as a positive operator valued measure reduces to an ordinary projective measurement on an enlarged system. This observation not only demystifies work measurement but also suggests a new quantum algorithm to efficiently sample the distribution P (w ). This can be used, in combination with fluctuation theorems, to estimate free energies of quantum states on a quantum computer.
Fano Effect and Quantum Entanglement in Hybrid Semiconductor Quantum Dot-Metal Nanoparticle System.
He, Yong; Zhu, Ka-Di
2017-06-20
In this paper, we review the investigation for the light-matter interaction between surface plasmon field in metal nanoparticle (MNP) and the excitons in semiconductor quantum dots (SQDs) in hybrid SQD-MNP system under the full quantum description. The exciton-plasmon interaction gives rise to the modified decay rate and the exciton energy shift which are related to the exciton energy by using a quantum transformation method. We illustrate the responses of the hybrid SQD-MNP system to external field, and reveal Fano effect shown in the absorption spectrum. We demonstrate quantum entanglement between two SQD mediated by surface plasmon field. In the absence of a laser field, concurrence of quantum entanglement will disappear after a few ns. If the laser field is present, the steady states appear, so that quantum entanglement produced will reach a steady-state entanglement. Because one of all optical pathways to induce Fano effect refers to the generation of quantum entangled states, It is shown that the concurrence of quantum entanglement can be obtained by observation for Fano effect. In a hybrid system including two MNP and a SQD, because the two Fano quantum interference processes share a segment of all optical pathways, there is correlation between the Fano effects of the two MNP. The investigations for the light-matter interaction in hybrid SQD-MNP system can pave the way for the development of the optical processing devices and quantum information based on the exciton-plasmon interaction.
Fano Effect and Quantum Entanglement in Hybrid Semiconductor Quantum Dot-Metal Nanoparticle System
He, Yong; Zhu, Ka-Di
2017-01-01
In this paper, we review the investigation for the light-matter interaction between surface plasmon field in metal nanoparticle (MNP) and the excitons in semiconductor quantum dots (SQDs) in hybrid SQD-MNP system under the full quantum description. The exciton-plasmon interaction gives rise to the modified decay rate and the exciton energy shift which are related to the exciton energy by using a quantum transformation method. We illustrate the responses of the hybrid SQD-MNP system to external field, and reveal Fano effect shown in the absorption spectrum. We demonstrate quantum entanglement between two SQD mediated by surface plasmon field. In the absence of a laser field, concurrence of quantum entanglement will disappear after a few ns. If the laser field is present, the steady states appear, so that quantum entanglement produced will reach a steady-state entanglement. Because one of all optical pathways to induce Fano effect refers to the generation of quantum entangled states, It is shown that the concurrence of quantum entanglement can be obtained by observation for Fano effect. In a hybrid system including two MNP and a SQD, because the two Fano quantum interference processes share a segment of all optical pathways, there is correlation between the Fano effects of the two MNP. The investigations for the light-matter interaction in hybrid SQD-MNP system can pave the way for the development of the optical processing devices and quantum information based on the exciton-plasmon interaction. PMID:28632165
Standardization of quantum key distribution and the ETSI standardization initiative ISG-QKD
NASA Astrophysics Data System (ADS)
Länger, Thomas; Lenhart, Gaby
2009-05-01
In recent years, quantum key distribution (QKD) has been the object of intensive research activities and of rapid progress, and it is now developing into a competitive industry with commercial products. Once QKD systems are transferred from the controlled environment of physical laboratories into a real-world environment for practical use, a number of practical security, compatibility and connectivity issues need to be resolved. In particular, comprehensive security evaluation and watertight security proofs need to be addressed to increase trust in QKD. System interoperability with existing infrastructures and applications as well as conformance with specific user requirements have to be assured. Finding common solutions to these problems involving all actors can provide an advantage for the commercialization of QKD as well as for further technological development. The ETSI industry specification group for QKD (ISG-QKD) offers a forum for creating such universally accepted standards and will promote significant leverage effects on coordination, cooperation and convergence in research, technical development and business application of QKD.
NASA Astrophysics Data System (ADS)
Delgado, Francisco
2017-12-01
Quantum information processing should be generated through control of quantum evolution for physical systems being used as resources, such as superconducting circuits, spinspin couplings in ions and artificial anyons in electronic gases. They have a quantum dynamics which should be translated into more natural languages for quantum information processing. On this terrain, this language should let to establish manipulation operations on the associated quantum information states as classical information processing does. This work shows how a kind of processing operations can be settled and implemented for quantum states design and quantum processing for systems fulfilling a SU(2) reduction in their dynamics.
NASA Astrophysics Data System (ADS)
Zurek, Wojciech Hubert
2009-03-01
Quantum Darwinism describes the proliferation, in the environment, of multiple records of selected states of a quantum system. It explains how the quantum fragility of a state of a single quantum system can lead to the classical robustness of states in their correlated multitude; shows how effective `wave-packet collapse' arises as a result of the proliferation throughout the environment of imprints of the state of the system; and provides a framework for the derivation of Born's rule, which relates the probabilities of detecting states to their amplitudes. Taken together, these three advances mark considerable progress towards settling the quantum measurement problem.
A real-time spectrum acquisition system design based on quantum dots-quantum well detector
NASA Astrophysics Data System (ADS)
Zhang, S. H.; Guo, F. M.
2016-01-01
In this paper, we studied the structure characteristics of quantum dots-quantum well photodetector with response wavelength range from 400 nm to 1000 nm. It has the characteristics of high sensitivity, low dark current and the high conductance gain. According to the properties of the quantum dots-quantum well photodetectors, we designed a new type of capacitive transimpedence amplifier (CTIA) readout circuit structure with the advantages of adjustable gain, wide bandwidth and high driving ability. We have implemented the chip packaging between CTIA-CDS structure readout circuit and quantum dots detector and tested the readout response characteristics. According to the timing signals requirements of our readout circuit, we designed a real-time spectral data acquisition system based on FPGA and ARM. Parallel processing mode of programmable devices makes the system has high sensitivity and high transmission rate. In addition, we realized blind pixel compensation and smoothing filter algorithm processing to the real time spectrum data by using C++. Through the fluorescence spectrum measurement of carbon quantum dots and the signal acquisition system and computer software system to realize the collection of the spectrum signal processing and analysis, we verified the excellent characteristics of detector. It meets the design requirements of quantum dot spectrum acquisition system with the characteristics of short integration time, real-time and portability.
Redundant Information and the Quantum-Classical Transition
NASA Astrophysics Data System (ADS)
Riedel, Charles Jess
A state selected at random from the Hilbert space of a many-body system is overwhelmingly likely to exhibit highly non-classical correlations. For these typical states, half of the environment must be measured by an observer to determine the state of a given subsystem. The objectivity of classical reality—the fact that multiple observers can each agree on the state of a subsystem after measuring just a small fraction of its environment—implies that the correlations found in nature between macroscopic systems and their environments are very exceptional. This is understood through the redundant recording of information about the preferred states of a decohering system by its environment, a phenomenon known as quantum Darwinism. To see this in action in the real world, we first consider the ubiquitous case of blackbody illumination. We show that it exhibits fast and extensive proliferation of information about an object into the environment, yielding redundancies orders of magnitude larger than the exactly soluble models considered previously. Turning to a universe of qubits, we examine the conditions needed for the creation of branching states and study their demise through many-body interactions. We show that even constrained dynamics can suppress redundancies to the values typical of random states on relaxation timescales, and prove that these results hold exactly in the thermodynamic limit. Finally, we connect these ideas to the consistent histories framework. Building on the criterion of partial-trace consistency, we introduce a sensible notion of mutual information between a fragment of the universe and a history itself.
Linear Optics Simulation of Quantum Non-Markovian Dynamics
Chiuri, Andrea; Greganti, Chiara; Mazzola, Laura; Paternostro, Mauro; Mataloni, Paolo
2012-01-01
The simulation of open quantum dynamics has recently allowed the direct investigation of the features of system-environment interaction and of their consequences on the evolution of a quantum system. Such interaction threatens the quantum properties of the system, spoiling them and causing the phenomenon of decoherence. Sometimes however a coherent exchange of information takes place between system and environment, memory effects arise and the dynamics of the system becomes non-Markovian. Here we report the experimental realisation of a non-Markovian process where system and environment are coupled through a simulated transverse Ising model. By engineering the evolution in a photonic quantum simulator, we demonstrate the role played by system-environment correlations in the emergence of memory effects. PMID:23236588
NASA Astrophysics Data System (ADS)
Ji, Yinghua; Ju-Ju, Hu; Jian-Hua, Huang; Qiang, Ke
Due to the influence of decoherence, the quantum state probably evolves from the initial pure state to the mixed state, resulting in loss of fidelity, coherence and purity, which is deteriorating for quantum information transmission. Thus, in quantum engineering, quantum control should not only realize the transfer and track of quantum states through manipulation of the external electromagnetic field but also enhance the robustness against decoherence. In this paper, we aim to design a control law to steer the system into the sliding mode domain and maintain it in that domain when bounded uncertainties exist in the system Hamiltonian. We first define the required control performance by fidelity, degree of coherence and purity in terms of the uncertainty of the Hamiltonian in Markovian open quantum system. By characterizing the required robustness using a sliding mode domain, a sampled-data design method is introduced for decoherence control in the quantum system. Furthermore, utilizing the sampled data, a control scheme has been designed on the basis of sliding mode control, and the choice of sampling operator and driving of quantum state during the sampling by the Lyapunov control method are discussed.
Out-of-time-ordered measurements as a probe of quantum dynamics
NASA Astrophysics Data System (ADS)
Bordia, Pranjal; Alet, Fabien; Hosur, Pavan
2018-03-01
Probing the out-of-equilibrium dynamics of quantum matter has gained renewed interest owing to immense experimental progress in artificial quantum systems. Dynamical quantum measures such as the growth of entanglement entropy and out-of-time-ordered correlators (OTOCs) have been shown to provide great insight by exposing subtle quantum features invisible to traditional measures such as mass transport. However, measuring them in experiments requires either identical copies of the system, an ancilla qubit coupled to the whole system, or many measurements on a single copy, thereby making scalability extremely complex and hence, severely limiting their potential. Here, we introduce an alternative quantity, the out-of-time-ordered measurement (OTOM), which involves measuring a single observable on a single copy of the system, while retaining the distinctive features of the OTOCs. We show, theoretically, that OTOMs are closely related to OTOCs in a doubled system with the same quantum statistical properties as the original system. Using exact diagonalization, we numerically simulate classical mass transport, as well as quantum dynamics through computations of the OTOC, the OTOM, and the entanglement entropy in quantum spin chain models in various interesting regimes (including chaotic and many-body localized systems). Our results demonstrate that an OTOM can successfully reveal subtle aspects of quantum dynamics hidden to classical measures and, crucially, provide experimental access to them.
NASA Astrophysics Data System (ADS)
Grifoni, Milena; Paladino, Elisabetta
2008-11-01
Quantum dissipation has been the object of study within the physics and chemistry communities for many years. Despite this, the field is in constant evolution, largely due to the fact that novel systems where the understanding of dissipation and dephasing processes is of crucial importance have become experimentally accessible in recent years. Among the ongoing research themes, we mention the defeat of decoherence in solid state-based quantum bits (qubits) (e.g. superconducting qubits or quantum dot based qubits), or dissipation due to non-equilibrium Fermi reservoirs, as is the case for quantum transport through meso- and nanoscale structures. A close inspection of dissipation in such systems reveals that one has to deal with 'unconventional' environments, where common assumptions of, for example, linearity of the bath and/or equilibrium reservoir have to be abandoned. Even for linear baths at equilibrium it might occur that the bath presents some internal structure, due, for example, to the presence of localized bath modes. A large part of this focus issue is devoted to topics related to the rapidly developing fields of quantum computation and information with solid state nanodevices. In these implementations, single and two-qubit gates as well as quantum information transmission takes place in the presence of broadband noise that is typically non-Markovian and nonlinear. On both the experimental and theory side, understanding and defeating such noise sources has become a crucial step towards the implementation of efficient nanodevices. On a more fundamental level, electron and spin transport through quantum dot nanostructures may suffer from 'unconventional' dissipation mechanisms such as the simultaneous presence of spin relaxation and fermionic dissipation, or may represent themselves out of equilibrium baths for nearby mesoscopic systems. Finally, although not expected from the outset, the present collection of articles has revealed that different 'unconventional' questions were still open on the standard harmonic oscillator and spin baths. This includes both fundamental issues, such as the possibility of estimating the specific heat for a free particle in the presence of dissipation, and the development of methods suitable to dealing with long range correlations at zero temperature and with quantum chaotic environments. We believe that the present focus issue on Quantum Dissipation in Unconventional Environments, although certainly not exhaustive, provides an important open-access resource that presents the latest state of the art of research in this field along its different lines. Focus on Quantum Dissipation in Unconventional Environments Contents Dephasing by electron-electron interactions in a ballistic Mach-Zehnder interferometer Clemens Neuenhahn and Florian Marquardt Quantum frustration of dissipation by a spin bath D D Bhaktavatsala Rao, Heiner Kohler and Fernando Sols A random matrix theory of decoherence T Gorin, C Pineda, H Kohler and T H Seligman Dissipative dynamics of a biased qubit coupled to a harmonic oscillator: analytical results beyond the rotating wave approximation Johannes Hausinger and Milena Grifoni Dissipative dynamics of a two-level system resonantly coupled to a harmonic mode Frederico Brito and Amir O Caldeira Spin correlations in spin blockade Rafael Sánchez, Sigmund Kohler and Gloria Platero Landau-Zener tunnelling in dissipative circuit QED David Zueco, Peter Hänggi and Sigmund Kohler Quantum oscillations in the spin-boson model: reduced visibility from non-Markovian effects and initial entanglement F K Wilhelm Dynamics of dissipative coupled spins: decoherence, relaxation and effects of a spin-boson bath P Nägele, G Campagnano and U Weiss Spin chain model for correlated quantum channels Davide Rossini, Vittorio Giovannetti and Simone Montangero Finite quantum dissipation: the challenge of obtaining specific heat Peter Hänggi, Gert-Ludwig Ingold and Peter Talkner Dynamics of large anisotropic spin in a sub-ohmic dissipative environment close to a quantum-phase transition Frithjof B Anders Effects of low-frequency noise cross-correlations in coupled superconducting qubits A D'Arrigo, A Mastellone, E Paladino and G Falci From coherent motion to localization: dynamics of the spin-boson model at zero temperature Haobin Wang and Michael Thoss Phonon distributions of a single-bath mode coupled to a quantum dot F Cavaliere, G Piovano, E Paladino and M Sassetti
Layered Architectures for Quantum Computers and Quantum Repeaters
NASA Astrophysics Data System (ADS)
Jones, Nathan C.
This chapter examines how to organize quantum computers and repeaters using a systematic framework known as layered architecture, where machine control is organized in layers associated with specialized tasks. The framework is flexible and could be used for analysis and comparison of quantum information systems. To demonstrate the design principles in practice, we develop architectures for quantum computers and quantum repeaters based on optically controlled quantum dots, showing how a myriad of technologies must operate synchronously to achieve fault-tolerance. Optical control makes information processing in this system very fast, scalable to large problem sizes, and extendable to quantum communication.
Scalable quantum computation scheme based on quantum-actuated nuclear-spin decoherence-free qubits
NASA Astrophysics Data System (ADS)
Dong, Lihong; Rong, Xing; Geng, Jianpei; Shi, Fazhan; Li, Zhaokai; Duan, Changkui; Du, Jiangfeng
2017-11-01
We propose a novel theoretical scheme of quantum computation. Nuclear spin pairs are utilized to encode decoherence-free (DF) qubits. A nitrogen-vacancy center serves as a quantum actuator to initialize, readout, and quantum control the DF qubits. The realization of CNOT gates between two DF qubits are also presented. Numerical simulations show high fidelities of all these processes. Additionally, we discuss the potential of scalability. Our scheme reduces the challenge of classical interfaces from controlling and observing complex quantum systems down to a simple quantum actuator. It also provides a novel way to handle complex quantum systems.
Geometric manipulation of trapped ions for quantum computation.
Duan, L M; Cirac, J I; Zoller, P
2001-06-01
We propose an experimentally feasible scheme to achieve quantum computation based solely on geometric manipulations of a quantum system. The desired geometric operations are obtained by driving the quantum system to undergo appropriate adiabatic cyclic evolutions. Our implementation of the all-geometric quantum computation is based on laser manipulation of a set of trapped ions. An all-geometric approach, apart from its fundamental interest, offers a possible method for robust quantum computation.
Increasing complexity with quantum physics.
Anders, Janet; Wiesner, Karoline
2011-09-01
We argue that complex systems science and the rules of quantum physics are intricately related. We discuss a range of quantum phenomena, such as cryptography, computation and quantum phases, and the rules responsible for their complexity. We identify correlations as a central concept connecting quantum information and complex systems science. We present two examples for the power of correlations: using quantum resources to simulate the correlations of a stochastic process and to implement a classically impossible computational task.
Transport electron through a quantum wire by side-attached asymmetric quantum-dot rings
NASA Astrophysics Data System (ADS)
Rostami, A.; Zabihi, S.; Rasooli S., H.; Seyyedi, S. K.
2011-12-01
The electronic conductance at zero temperature through a quantum wire with side-attached asymmetric quantum ring (as a scatter system) is theoretically studied using the non-interacting Anderson tunneling Hamiltonian method. We show that the asymmetric configuration of QD- scatter system strongly impresses the amplitude and spectrum of quantum wire nanostructure transmission characteristics. It is shown that whenever the balanced number of quantum dots in two rings is substituted by unbalanced scheme, the number of forbidden mini-bands in quantum wire conductance increases and QW-nanostructure electronic conductance contains rich spectral properties due to appearance of the new anti-resonance and resonance points in spectrum. Considering the suitable gap between nano-rings can strengthen the amplitude of new resonant peaks in the QW conductance spectrum. The proposed asymmetric quantum ring scatter system idea in this paper opens a new insight on designing quantum wire nano structure for given electronic conductance.
Quantum Theory of Jaynes' Principle, Bayes' Theorem, and Information
NASA Astrophysics Data System (ADS)
Haken, Hermann
2014-12-01
After a reminder of Jaynes' maximum entropy principle and of my quantum theoretical extension, I consider two coupled quantum systems A,B and formulate a quantum version of Bayes' theorem. The application of Feynman's disentangling theorem allows me to calculate the conditional density matrix ρ (A|B) , if system A is an oscillator (or a set of them), linearly coupled to an arbitrary quantum system B. Expectation values can simply be calculated by means of the normalization factor of ρ (A|B) that is derived.
Study of a monogamous entanglement measure for three-qubit quantum systems
NASA Astrophysics Data System (ADS)
Li, Qiting; Cui, Jianlian; Wang, Shuhao; Long, Gui-Lu
2016-06-01
The entanglement quantification and classification of multipartite quantum states is an important research area in quantum information. In this paper, in terms of the reduced density matrices corresponding to all possible partitions of the entire system, a bounded entanglement measure is constructed for arbitrary-dimensional multipartite quantum states. In particular, for three-qubit quantum systems, we prove that our entanglement measure satisfies the relation of monogamy. Furthermore, we present a necessary condition for characterizing maximally entangled states using our entanglement measure.
High-dimensional quantum cloning and applications to quantum hacking
Bouchard, Frédéric; Fickler, Robert; Boyd, Robert W.; Karimi, Ebrahim
2017-01-01
Attempts at cloning a quantum system result in the introduction of imperfections in the state of the copies. This is a consequence of the no-cloning theorem, which is a fundamental law of quantum physics and the backbone of security for quantum communications. Although perfect copies are prohibited, a quantum state may be copied with maximal accuracy via various optimal cloning schemes. Optimal quantum cloning, which lies at the border of the physical limit imposed by the no-signaling theorem and the Heisenberg uncertainty principle, has been experimentally realized for low-dimensional photonic states. However, an increase in the dimensionality of quantum systems is greatly beneficial to quantum computation and communication protocols. Nonetheless, no experimental demonstration of optimal cloning machines has hitherto been shown for high-dimensional quantum systems. We perform optimal cloning of high-dimensional photonic states by means of the symmetrization method. We show the universality of our technique by conducting cloning of numerous arbitrary input states and fully characterize our cloning machine by performing quantum state tomography on cloned photons. In addition, a cloning attack on a Bennett and Brassard (BB84) quantum key distribution protocol is experimentally demonstrated to reveal the robustness of high-dimensional states in quantum cryptography. PMID:28168219
High-dimensional quantum cloning and applications to quantum hacking.
Bouchard, Frédéric; Fickler, Robert; Boyd, Robert W; Karimi, Ebrahim
2017-02-01
Attempts at cloning a quantum system result in the introduction of imperfections in the state of the copies. This is a consequence of the no-cloning theorem, which is a fundamental law of quantum physics and the backbone of security for quantum communications. Although perfect copies are prohibited, a quantum state may be copied with maximal accuracy via various optimal cloning schemes. Optimal quantum cloning, which lies at the border of the physical limit imposed by the no-signaling theorem and the Heisenberg uncertainty principle, has been experimentally realized for low-dimensional photonic states. However, an increase in the dimensionality of quantum systems is greatly beneficial to quantum computation and communication protocols. Nonetheless, no experimental demonstration of optimal cloning machines has hitherto been shown for high-dimensional quantum systems. We perform optimal cloning of high-dimensional photonic states by means of the symmetrization method. We show the universality of our technique by conducting cloning of numerous arbitrary input states and fully characterize our cloning machine by performing quantum state tomography on cloned photons. In addition, a cloning attack on a Bennett and Brassard (BB84) quantum key distribution protocol is experimentally demonstrated to reveal the robustness of high-dimensional states in quantum cryptography.
Development and Characterization of a High-Energy Neutron Time-of-Flight Imaging System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Madden, Amanda Christine; Schirato, Richard C.; Swift, Alicia L.
We present that Los Alamos National Laboratory has developed a prototype of a high-energy neutron time-of-flight imaging system for the non-destructive evaluation of dense, massive, and/or high atomic number objects. High-energy neutrons provide the penetrating power, and thus the high dynamic range necessary to image internal features and defects of such objects. The addition of the time gating capability allows for scatter rejection when paired with a pulsed monoenergetic beam, or neutron energy selection when paired with a pulsed broad-spectrum neutron source. The Time Gating to Reject Scatter and Select Energy (TiGReSSE) system was tested at the Los Alamos Neutronmore » Science Center’s (LANSCE) Weapons Nuclear Research (WNR) facility, a spallation neutron source, to provide proof of concept measurements and to characterize the instrument response. This paper will show results of several objects imaged during this run cycle. In addition, results from system performance metrics such as the Modulation Transfer Function and the Detective Quantum Efficiency measured as a function of neutron energy, characterize the current system performance and inform the next generation of neutron imaging instrument.« less
Development and Characterization of a High-Energy Neutron Time-of-Flight Imaging System
Madden, Amanda Christine; Schirato, Richard C.; Swift, Alicia L.; ...
2017-02-09
We present that Los Alamos National Laboratory has developed a prototype of a high-energy neutron time-of-flight imaging system for the non-destructive evaluation of dense, massive, and/or high atomic number objects. High-energy neutrons provide the penetrating power, and thus the high dynamic range necessary to image internal features and defects of such objects. The addition of the time gating capability allows for scatter rejection when paired with a pulsed monoenergetic beam, or neutron energy selection when paired with a pulsed broad-spectrum neutron source. The Time Gating to Reject Scatter and Select Energy (TiGReSSE) system was tested at the Los Alamos Neutronmore » Science Center’s (LANSCE) Weapons Nuclear Research (WNR) facility, a spallation neutron source, to provide proof of concept measurements and to characterize the instrument response. This paper will show results of several objects imaged during this run cycle. In addition, results from system performance metrics such as the Modulation Transfer Function and the Detective Quantum Efficiency measured as a function of neutron energy, characterize the current system performance and inform the next generation of neutron imaging instrument.« less
Activation of zero-error classical capacity in low-dimensional quantum systems
NASA Astrophysics Data System (ADS)
Park, Jeonghoon; Heo, Jun
2018-06-01
Channel capacities of quantum channels can be nonadditive even if one of two quantum channels has no channel capacity. We call this phenomenon activation of the channel capacity. In this paper, we show that when we use a quantum channel on a qubit system, only a noiseless qubit channel can generate the activation of the zero-error classical capacity. In particular, we show that the zero-error classical capacity of two quantum channels on qubit systems cannot be activated. Furthermore, we present a class of examples showing the activation of the zero-error classical capacity in low-dimensional systems.
Approximation method for a spherical bound system in the quantum plasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mehramiz, A.; Sobhanian, S.; Mahmoodi, J.
2010-08-15
A system of quantum hydrodynamic equations has been used for investigating the dielectric tensor and dispersion equation of a semiconductor as a quantum magnetized plasma. Dispersion relations and their modifications due to quantum effects are derived for both longitudinal and transverse waves. The number of states and energy levels are analytically estimated for a spherical bound system embedded in a semiconductor quantum plasma. The results show that longitudinal waves decay rapidly and do not interact with the spherical bound system. The energy shifts caused by the spin-orbit interaction and the Zeeman effect are calculated.
Quantum Theory, Active Information and the Mind-Matter Problem
NASA Astrophysics Data System (ADS)
Pylkkänen, Paavo
Bohm and Hiley suggest that a certain new type of active information plays a key objective role in quantum processes. This chapter discusses the implications of this suggestion to our understanding of the relation between the mental and the physical aspects of reality.
NASA Astrophysics Data System (ADS)
Xiao, Jing-Lin
2016-11-01
We study the ground state energy and the mean number of LO phonons of the strong-coupling polaron in a RbCl quantum pseudodot (QPD) with hydrogen-like impurity at the center. The variations of the ground state energy and the mean number of LO phonons with the temperature and the strength of the Coulombic impurity potential are obtained by employing the variational method of Pekar type and the quantum statistical theory (VMPTQST). Our numerical results have displayed that [InlineMediaObject not available: see fulltext.] the absolute value of the ground state energy increases (decreases) when the temperature increases at lower (higher) temperature regime, [InlineMediaObject not available: see fulltext.] the mean number of the LO phonons increases with increasing temperature, [InlineMediaObject not available: see fulltext.] the absolute value of ground state energy and the mean number of LO phonons are increasing functions of the strength of the Coulombic impurity potential.
Thermal baths as quantum resources: more friends than foes?
NASA Astrophysics Data System (ADS)
Kurizki, Gershon; Shahmoon, Ephraim; Zwick, Analia
2015-12-01
In this article we argue that thermal reservoirs (baths) are potentially useful resources in processes involving atoms interacting with quantized electromagnetic fields and their applications to quantum technologies. One may try to suppress the bath effects by means of dynamical control, but such control does not always yield the desired results. We wish instead to take advantage of bath effects, that do not obliterate ‘quantumness’ in the system-bath compound. To this end, three possible approaches have been pursued by us. (i) Control of a quantum system faster than the correlation time of the bath to which it couples: such control allows us to reveal quasi-reversible/coherent dynamical phenomena of quantum open systems, manifest by the quantum Zeno or anti-Zeno effects (QZE or AZE, respectively). Dynamical control methods based on the QZE are aimed not only at protecting the quantumness of the system, but also diagnosing the bath spectra or transferring quantum information via noisy media. By contrast, AZE-based control is useful for fast cooling of thermalized quantum systems. (ii) Engineering the coupling of quantum systems to selected bath modes: this approach, based on field-atom coupling control in cavities, waveguides and photonic band structures, allows one to drastically enhance the strength and range of atom-atom coupling through the mediation of the selected bath modes. More dramatically, it allows us to achieve bath-induced entanglement that may appear paradoxical if one takes the conventional view that coupling to baths destroys quantumness. (iii) Engineering baths with appropriate non-flat spectra: this approach is a prerequisite for the construction of the simplest and most efficient quantum heat machines (engines and refrigerators). We may thus conclude that often thermal baths are ‘more friends than foes’ in quantum technologies.
Storing quantum information in spins and high-sensitivity ESR
NASA Astrophysics Data System (ADS)
Morton, John J. L.; Bertet, Patrice
2018-02-01
Quantum information, encoded within the states of quantum systems, represents a novel and rich form of information which has inspired new types of computers and communications systems. Many diverse electron spin systems have been studied with a view to storing quantum information, including molecular radicals, point defects and impurities in inorganic systems, and quantum dots in semiconductor devices. In these systems, spin coherence times can exceed seconds, single spins can be addressed through electrical and optical methods, and new spin systems with advantageous properties continue to be identified. Spin ensembles strongly coupled to microwave resonators can, in principle, be used to store the coherent states of single microwave photons, enabling so-called microwave quantum memories. We discuss key requirements in realising such memories, including considerations for superconducting resonators whose frequency can be tuned onto resonance with the spins. Finally, progress towards microwave quantum memories and other developments in the field of superconducting quantum devices are being used to push the limits of sensitivity of inductively-detected electron spin resonance. The state-of-the-art currently stands at around 65 spins per √{ Hz } , with prospects to scale down to even fewer spins.
Quantum error correction in crossbar architectures
NASA Astrophysics Data System (ADS)
Helsen, Jonas; Steudtner, Mark; Veldhorst, Menno; Wehner, Stephanie
2018-07-01
A central challenge for the scaling of quantum computing systems is the need to control all qubits in the system without a large overhead. A solution for this problem in classical computing comes in the form of so-called crossbar architectures. Recently we made a proposal for a large-scale quantum processor (Li et al arXiv:1711.03807 (2017)) to be implemented in silicon quantum dots. This system features a crossbar control architecture which limits parallel single-qubit control, but allows the scheme to overcome control scaling issues that form a major hurdle to large-scale quantum computing systems. In this work, we develop a language that makes it possible to easily map quantum circuits to crossbar systems, taking into account their architecture and control limitations. Using this language we show how to map well known quantum error correction codes such as the planar surface and color codes in this limited control setting with only a small overhead in time. We analyze the logical error behavior of this surface code mapping for estimated experimental parameters of the crossbar system and conclude that logical error suppression to a level useful for real quantum computation is feasible.
Storing quantum information in spins and high-sensitivity ESR.
Morton, John J L; Bertet, Patrice
2018-02-01
Quantum information, encoded within the states of quantum systems, represents a novel and rich form of information which has inspired new types of computers and communications systems. Many diverse electron spin systems have been studied with a view to storing quantum information, including molecular radicals, point defects and impurities in inorganic systems, and quantum dots in semiconductor devices. In these systems, spin coherence times can exceed seconds, single spins can be addressed through electrical and optical methods, and new spin systems with advantageous properties continue to be identified. Spin ensembles strongly coupled to microwave resonators can, in principle, be used to store the coherent states of single microwave photons, enabling so-called microwave quantum memories. We discuss key requirements in realising such memories, including considerations for superconducting resonators whose frequency can be tuned onto resonance with the spins. Finally, progress towards microwave quantum memories and other developments in the field of superconducting quantum devices are being used to push the limits of sensitivity of inductively-detected electron spin resonance. The state-of-the-art currently stands at around 65 spins per Hz, with prospects to scale down to even fewer spins. Copyright © 2017. Published by Elsevier Inc.
NASA Astrophysics Data System (ADS)
Ronde, Christian De
In classical physics, probabilistic or statistical knowledge has been always related to ignorance or inaccurate subjective knowledge about an actual state of affairs. This idea has been extended to quantum mechanics through a completely incoherent interpretation of the Fermi-Dirac and Bose-Einstein statistics in terms of "strange" quantum particles. This interpretation, naturalized through a widespread "way of speaking" in the physics community, contradicts Born's physical account of Ψ as a "probability wave" which provides statistical information about outcomes that, in fact, cannot be interpreted in terms of `ignorance about an actual state of affairs'. In the present paper we discuss how the metaphysics of actuality has played an essential role in limiting the possibilities of understating things differently. We propose instead a metaphysical scheme in terms of immanent powers with definite potentia which allows us to consider quantum probability in a new light, namely, as providing objective knowledge about a potential state of affairs.
2014-09-18
and full/scale experimental verifications towards ground/ satellite quantum key distribution0 Oat Qhotonics 4235>9+7,=5;9!អ \\58^ Zin K. Dao Z. Miu T...Conceptual Modeling of a Quantum Key Distribution Simulation Framework Using the Discrete Event System Specification DISSERTATION Jeffrey D. Morris... QUANTUM KEY DISTRIBUTION SIMULATION FRAMEWORK USING THE DISCRETE EVENT SYSTEM SPECIFICATION DISSERTATION Presented to the Faculty Department of Systems
Photon-Electron Interactions in Dirac Quantum Materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Xiaodong
The objective of this proposal was to explore the fundamental light-matter interactions in a new class of Dirac quantum materials, atomically thin transition metal dichalcogenides (TMDs). Monolayer TMDs are newly discovered two-dimensional semiconductors with direct bandgap. Due to their hexagonal lattice structure, the band edge localizes at corner of Brillouin zone, i.e. “Dirac valleys”. This gives the corresponding electron states a “valley index” (or pseudospin) in addition to the real spin. Remarkably, the valley pseudospins have circularly polarized optical selection rules, providing the first solid state system for dynamic control of the valley degree of freedom. During this award, wemore » have developed a suite of advanced nano-optical spectroscopy tools in the investigation and manipulation of charge, spin, and valley degrees of freedom in monolayer semiconductors. Emerging physical phenomena, such as quantum coherence between valley pseudospins, have been demonstrated for the first time in solids. In addition to monolayers, we have developed a framework in engineering, formulating, and understanding valley pseudospin physics in 2D heterostructures formed by different monolayer semiconductors. We demonstrated long-lived valley-polarized interlayer excitons with valley-dependent many-body interaction effects. These works push the research frontier in understanding the light-matter interactions in atomically-thin quantum materials for protentional transformative energy technologies.« less
Coherent Optical Control of Electronic Excitations in Wide-Band-Gap Semiconductor Structures
2015-05-01
ABSTRACT The main objective of this research is to study coherent quantum effects, such as Rabi oscillations in optical spectra of wide- band-gap...field corresponds to the rotation of the B vector about the pseudo field vector, Ω, with components determined by the effective Rabi frequency ( )e...to examine coherent quantum effects, such as Rabi oscillations and quantum entanglement in optical spectra of wide-band-gap materials, and to
Entanglement-induced quantum radiation
NASA Astrophysics Data System (ADS)
Iso, Satoshi; Tatsukawa, Rumi; Ueda, Kazushige; Yamamoto, Kazuhiro
2017-08-01
Quantum entanglement of the Minkowski vacuum state between left and right Rindler wedges generates thermal behavior in the right Rindler wedge, which is known as the Unruh effect. In this paper, we show that there is another consequence of this entanglement, namely entanglement-induced quantum radiation emanating from a uniformly accelerated object. We clarify why it is in agreement with our intuition that incoming and outgoing energy fluxes should cancel each other out in a thermalized state.
Geometry of Quantum Computation with Qudits
Luo, Ming-Xing; Chen, Xiu-Bo; Yang, Yi-Xian; Wang, Xiaojun
2014-01-01
The circuit complexity of quantum qubit system evolution as a primitive problem in quantum computation has been discussed widely. We investigate this problem in terms of qudit system. Using the Riemannian geometry the optimal quantum circuits are equivalent to the geodetic evolutions in specially curved parametrization of SU(dn). And the quantum circuit complexity is explicitly dependent of controllable approximation error bound. PMID:24509710
Non-Markovian Complexity in the Quantum-to-Classical Transition
Xiong, Heng-Na; Lo, Ping-Yuan; Zhang, Wei-Min; Feng, Da Hsuan; Nori, Franco
2015-01-01
The quantum-to-classical transition is due to environment-induced decoherence, and it depicts how classical dynamics emerges from quantum systems. Previously, the quantum-to-classical transition has mainly been described with memory-less (Markovian) quantum processes. Here we study the complexity of the quantum-to-classical transition through general non-Markovian memory processes. That is, the influence of various reservoirs results in a given initial quantum state evolving into one of the following four scenarios: thermal state, thermal-like state, quantum steady state, or oscillating quantum nonstationary state. In the latter two scenarios, the system maintains partial or full quantum coherence due to the strong non-Markovian memory effect, so that in these cases, the quantum-to-classical transition never occurs. This unexpected new feature provides a new avenue for the development of future quantum technologies because the remaining quantum oscillations in steady states are decoherence-free. PMID:26303002
NASA Astrophysics Data System (ADS)
Liang, Lin-Mei; Sun, Shi-Hai; Jiang, Mu-Sheng; Li, Chun-Yan
2014-10-01
In general, quantum key distribution (QKD) has been proved unconditionally secure for perfect devices due to quantum uncertainty principle, quantum noncloning theorem and quantum nondividing principle which means that a quantum cannot be divided further. However, the practical optical and electrical devices used in the system are imperfect, which can be exploited by the eavesdropper to partially or totally spy the secret key between the legitimate parties. In this article, we first briefly review the recent work on quantum hacking on some experimental QKD systems with respect to imperfect devices carried out internationally, then we will present our recent hacking works in details, including passive faraday mirror attack, partially random phase attack, wavelength-selected photon-number-splitting attack, frequency shift attack, and single-photon-detector attack. Those quantum attack reminds people to improve the security existed in practical QKD systems due to imperfect devices by simply adding countermeasure or adopting a totally different protocol such as measurement-device independent protocol to avoid quantum hacking on the imperfection of measurement devices [Lo, et al., Phys. Rev. Lett., 2012, 108: 130503].
NASA Astrophysics Data System (ADS)
Laforest, Martin
Quantum information processing has been the subject of countless discoveries since the early 1990's. It is believed to be the way of the future for computation: using quantum systems permits one to perform computation exponentially faster than on a regular classical computer. Unfortunately, quantum systems that not isolated do not behave well. They tend to lose their quantum nature due to the presence of the environment. If key information is known about the noise present in the system, methods such as quantum error correction have been developed in order to reduce the errors introduced by the environment during a given quantum computation. In order to harness the quantum world and implement the theoretical ideas of quantum information processing and quantum error correction, it is imperative to understand and quantify the noise present in the quantum processor and benchmark the quality of the control over the qubits. Usual techniques to estimate the noise or the control are based on quantum process tomography (QPT), which, unfortunately, demands an exponential amount of resources. This thesis presents work towards the characterization of noisy processes in an efficient manner. The protocols are developed from a purely abstract setting with no system-dependent variables. To circumvent the exponential nature of quantum process tomography, three different efficient protocols are proposed and experimentally verified. The first protocol uses the idea of quantum error correction to extract relevant parameters about a given noise model, namely the correlation between the dephasing of two qubits. Following that is a protocol using randomization and symmetrization to extract the probability that a given number of qubits are simultaneously corrupted in a quantum memory, regardless of the specifics of the error and which qubits are affected. Finally, a last protocol, still using randomization ideas, is developed to estimate the average fidelity per computational gates for single and multi qubit systems. Even though liquid state NMR is argued to be unsuitable for scalable quantum information processing, it remains the best test-bed system to experimentally implement, verify and develop protocols aimed at increasing the control over general quantum information processors. For this reason, all the protocols described in this thesis have been implemented in liquid state NMR, which then led to further development of control and analysis techniques.
NASA Astrophysics Data System (ADS)
Jordan, Andrew Noble
2002-09-01
In this dissertation, we study the quantum mechanics of classically chaotic dynamical systems. We begin by considering the decoherence effects a quantum chaotic system has on a simple quantum few state system. Typical time evolution of a quantum system whose classical limit is chaotic generates structures in phase space whose size is much smaller than Planck's constant. A naive application of Heisenberg's uncertainty principle indicates that these structures are not physically relevant. However, if we take the quantum chaotic system in question to be an environment which interacts with a simple two state quantum system (qubit), we show that these small phase-space structures cause the qubit to generically lose quantum coherence if and only if the environment has many degrees of freedom, such as a dilute gas. This implies that many-body environments may be crucial for the phenomenon of quantum decoherence. Next, we turn to an analysis of statistical properties of time correlation functions and matrix elements of quantum chaotic systems. A semiclassical evaluation of matrix elements of an operator indicates that the dominant contribution will be related to a classical time correlation function over the energy surface. For a highly chaotic class of dynamics, these correlation functions may be decomposed into sums of Ruelle resonances, which control exponential decay to the ergodic distribution. The theory is illustrated both numerically and theoretically on the Baker map. For this system, we are able to isolate individual Ruelle modes. We further consider dynamical systems whose approach to ergodicity is given by a power law rather than an exponential in time. We propose a billiard with diffusive boundary conditions, whose classical solution may be calculated analytically. We go on to compare the exact solution with an approximation scheme, as well calculate asympotic corrections. Quantum spectral statistics are calculated assuming the validity of the Again, Altshuler and Andreev ansatz. We find singular behavior of the two point spectral correlator in the limit of small spacing. Finally, we analyse the effect that slow decay to ergodicity has on the structure of the quantum propagator, as well as wavefunction localization. We introduce a statistical quantum description of systems that are composed of both an orderly region and a random region. By averaging over the random region only, we find that measures of localization in momentum space semiclassically diverge with the dimension of the Hilbert space. We illustrate this numerically with quantum maps and suggest various other systems where this behavior should be important.
NASA Astrophysics Data System (ADS)
Zhou, Nanrun; Chen, Weiwei; Yan, Xinyu; Wang, Yunqian
2018-06-01
In order to obtain higher encryption efficiency, a bit-level quantum color image encryption scheme by exploiting quantum cross-exchange operation and a 5D hyper-chaotic system is designed. Additionally, to enhance the scrambling effect, the quantum channel swapping operation is employed to swap the gray values of corresponding pixels. The proposed color image encryption algorithm has larger key space and higher security since the 5D hyper-chaotic system has more complex dynamic behavior, better randomness and unpredictability than those based on low-dimensional hyper-chaotic systems. Simulations and theoretical analyses demonstrate that the presented bit-level quantum color image encryption scheme outperforms its classical counterparts in efficiency and security.
Fetterly, Kenneth A; Favazza, Christopher P
2016-08-07
Channelized Hotelling model observer (CHO) methods were developed to assess performance of an x-ray angiography system. The analytical methods included correction for known bias error due to finite sampling. Detectability indices ([Formula: see text]) corresponding to disk-shaped objects with diameters in the range 0.5-4 mm were calculated. Application of the CHO for variable detector target dose (DTD) in the range 6-240 nGy frame(-1) resulted in [Formula: see text] estimates which were as much as 2.9× greater than expected of a quantum limited system. Over-estimation of [Formula: see text] was presumed to be a result of bias error due to temporally variable non-stationary noise. Statistical theory which allows for independent contributions of 'signal' from a test object (o) and temporally variable non-stationary noise (ns) was developed. The theory demonstrates that the biased [Formula: see text] is the sum of the detectability indices associated with the test object [Formula: see text] and non-stationary noise ([Formula: see text]). Given the nature of the imaging system and the experimental methods, [Formula: see text] cannot be directly determined independent of [Formula: see text]. However, methods to estimate [Formula: see text] independent of [Formula: see text] were developed. In accordance with the theory, [Formula: see text] was subtracted from experimental estimates of [Formula: see text], providing an unbiased estimate of [Formula: see text]. Estimates of [Formula: see text] exhibited trends consistent with expectations of an angiography system that is quantum limited for high DTD and compromised by detector electronic readout noise for low DTD conditions. Results suggest that these methods provide [Formula: see text] estimates which are accurate and precise for [Formula: see text]. Further, results demonstrated that the source of bias was detector electronic readout noise. In summary, this work presents theory and methods to test for the presence of bias in Hotelling model observers due to temporally variable non-stationary noise and correct this bias when the temporally variable non-stationary noise is independent and additive with respect to the test object signal.
Stochastic geometry in disordered systems, applications to quantum Hall transitions
NASA Astrophysics Data System (ADS)
Gruzberg, Ilya
2012-02-01
A spectacular success in the study of random fractal clusters and their boundaries in statistical mechanics systems at or near criticality using Schramm-Loewner Evolutions (SLE) naturally calls for extensions in various directions. Can this success be repeated for disordered and/or non-equilibrium systems? Naively, when one thinks about disordered systems and their average correlation functions one of the very basic assumptions of SLE, the so called domain Markov property, is lost. Also, in some lattice models of Anderson transitions (the network models) there are no natural clusters to consider. Nevertheless, in this talk I will argue that one can apply the so called conformal restriction, a notion of stochastic conformal geometry closely related to SLE, to study the integer quantum Hall transition and its variants. I will focus on the Chalker-Coddington network model and will demonstrate that its average transport properties can be mapped to a classical problem where the basic objects are geometric shapes (loosely speaking, the current paths) that obey an important restriction property. At the transition point this allows to use the theory of conformal restriction to derive exact expressions for point contact conductances in the presence of various non-trivial boundary conditions.
Testing Quantum Gravity Induced Nonlocality via Optomechanical Quantum Oscillators.
Belenchia, Alessio; Benincasa, Dionigi M T; Liberati, Stefano; Marin, Francesco; Marino, Francesco; Ortolan, Antonello
2016-04-22
Several quantum gravity scenarios lead to physics below the Planck scale characterized by nonlocal, Lorentz invariant equations of motion. We show that such nonlocal effective field theories lead to a modified Schrödinger evolution in the nonrelativistic limit. In particular, the nonlocal evolution of optomechanical quantum oscillators is characterized by a spontaneous periodic squeezing that cannot be generated by environmental effects. We discuss constraints on the nonlocality obtained by past experiments, and show how future experiments (already under construction) will either see such effects or otherwise cast severe bounds on the nonlocality scale (well beyond the current limits set by the Large Hadron Collider). This paves the way for table top, high precision experiments on massive quantum objects as a promising new avenue for testing some quantum gravity phenomenology.
The open quantum Brownian motions
NASA Astrophysics Data System (ADS)
Bauer, Michel; Bernard, Denis; Tilloy, Antoine
2014-09-01
Using quantum parallelism on random walks as the original seed, we introduce new quantum stochastic processes, the open quantum Brownian motions. They describe the behaviors of quantum walkers—with internal degrees of freedom which serve as random gyroscopes—interacting with a series of probes which serve as quantum coins. These processes may also be viewed as the scaling limit of open quantum random walks and we develop this approach along three different lines: the quantum trajectory, the quantum dynamical map and the quantum stochastic differential equation. We also present a study of the simplest case, with a two level system as an internal gyroscope, illustrating the interplay between the ballistic and diffusive behaviors at work in these processes. Notation H_z : orbital (walker) Hilbert space, {C}^{{Z}} in the discrete, L^2({R}) in the continuum H_c : internal spin (or gyroscope) Hilbert space H_sys=H_z\\otimesH_c : system Hilbert space H_p : probe (or quantum coin) Hilbert space, H_p={C}^2 \\rho^tot_t : density matrix for the total system (walker + internal spin + quantum coins) \\bar \\rho_t : reduced density matrix on H_sys : \\bar\\rho_t=\\int dxdy\\, \\bar\\rho_t(x,y)\\otimes | x \\rangle _z\\langle y | \\hat \\rho_t : system density matrix in a quantum trajectory: \\hat\\rho_t=\\int dxdy\\, \\hat\\rho_t(x,y)\\otimes | x \\rangle _z\\langle y | . If diagonal and localized in position: \\hat \\rho_t=\\rho_t\\otimes| X_t \\rangle _z\\langle X_t | ρt: internal density matrix in a simple quantum trajectory Xt: walker position in a simple quantum trajectory Bt: normalized Brownian motion ξt, \\xi_t^\\dagger : quantum noises
Wigner's quantum phase-space current in weakly-anharmonic weakly-excited two-state systems
NASA Astrophysics Data System (ADS)
Kakofengitis, Dimitris; Steuernagel, Ole
2017-09-01
There are no phase-space trajectories for anharmonic quantum systems, but Wigner's phase-space representation of quantum mechanics features Wigner current J . This current reveals fine details of quantum dynamics —finer than is ordinarily thought accessible according to quantum folklore invoking Heisenberg's uncertainty principle. Here, we focus on the simplest, most intuitive, and analytically accessible aspects of J. We investigate features of J for bound states of time-reversible, weakly-anharmonic one-dimensional quantum-mechanical systems which are weakly-excited. We establish that weakly-anharmonic potentials can be grouped into three distinct classes: hard, soft, and odd potentials. We stress connections between each other and the harmonic case. We show that their Wigner current fieldline patterns can be characterised by J's discrete stagnation points, how these arise and how a quantum system's dynamics is constrained by the stagnation points' topological charge conservation. We additionally show that quantum dynamics in phase space, in the case of vanishing Planck constant ℏ or vanishing anharmonicity, does not pointwise converge to classical dynamics.
Analysis of quantum error-correcting codes: Symplectic lattice codes and toric codes
NASA Astrophysics Data System (ADS)
Harrington, James William
Quantum information theory is concerned with identifying how quantum mechanical resources (such as entangled quantum states) can be utilized for a number of information processing tasks, including data storage, computation, communication, and cryptography. Efficient quantum algorithms and protocols have been developed for performing some tasks (e.g. , factoring large numbers, securely communicating over a public channel, and simulating quantum mechanical systems) that appear to be very difficult with just classical resources. In addition to identifying the separation between classical and quantum computational power, much of the theoretical focus in this field over the last decade has been concerned with finding novel ways of encoding quantum information that are robust against errors, which is an important step toward building practical quantum information processing devices. In this thesis I present some results on the quantum error-correcting properties of oscillator codes (also described as symplectic lattice codes) and toric codes. Any harmonic oscillator system (such as a mode of light) can be encoded with quantum information via symplectic lattice codes that are robust against shifts in the system's continuous quantum variables. I show the existence of lattice codes whose achievable rates match the one-shot coherent information over the Gaussian quantum channel. Also, I construct a family of symplectic self-dual lattices and search for optimal encodings of quantum information distributed between several oscillators. Toric codes provide encodings of quantum information into two-dimensional spin lattices that are robust against local clusters of errors and which require only local quantum operations for error correction. Numerical simulations of this system under various error models provide a calculation of the accuracy threshold for quantum memory using toric codes, which can be related to phase transitions in certain condensed matter models. I also present a local classical processing scheme for correcting errors on toric codes, which demonstrates that quantum information can be maintained in two dimensions by purely local (quantum and classical) resources.
Quantum Monte Carlo tunneling from quantum chemistry to quantum annealing
NASA Astrophysics Data System (ADS)
Mazzola, Guglielmo; Smelyanskiy, Vadim N.; Troyer, Matthias
2017-10-01
Quantum tunneling is ubiquitous across different fields, from quantum chemical reactions and magnetic materials to quantum simulators and quantum computers. While simulating the real-time quantum dynamics of tunneling is infeasible for high-dimensional systems, quantum tunneling also shows up in quantum Monte Carlo (QMC) simulations, which aim to simulate quantum statistics with resources growing only polynomially with the system size. Here we extend the recent results obtained for quantum spin models [Phys. Rev. Lett. 117, 180402 (2016), 10.1103/PhysRevLett.117.180402], and we study continuous-variable models for proton transfer reactions. We demonstrate that QMC simulations efficiently recover the scaling of ground-state tunneling rates due to the existence of an instanton path, which always connects the reactant state with the product. We discuss the implications of our results in the context of quantum chemical reactions and quantum annealing, where quantum tunneling is expected to be a valuable resource for solving combinatorial optimization problems.
Quantum Darwinism in Quantum Brownian Motion
NASA Astrophysics Data System (ADS)
Blume-Kohout, Robin; Zurek, Wojciech H.
2008-12-01
Quantum Darwinism—the redundant encoding of information about a decohering system in its environment—was proposed to reconcile the quantum nature of our Universe with apparent classicality. We report the first study of the dynamics of quantum Darwinism in a realistic model of decoherence, quantum Brownian motion. Prepared in a highly squeezed state—a macroscopic superposition—the system leaves records whose redundancy increases rapidly with initial delocalization. Redundancy appears rapidly (on the decoherence time scale) and persists for a long time.
Quantum Darwinism in quantum Brownian motion.
Blume-Kohout, Robin; Zurek, Wojciech H
2008-12-12
Quantum Darwinism--the redundant encoding of information about a decohering system in its environment--was proposed to reconcile the quantum nature of our Universe with apparent classicality. We report the first study of the dynamics of quantum Darwinism in a realistic model of decoherence, quantum Brownian motion. Prepared in a highly squeezed state--a macroscopic superposition--the system leaves records whose redundancy increases rapidly with initial delocalization. Redundancy appears rapidly (on the decoherence time scale) and persists for a long time.
Time-Dependent Density Functional Theory for Open Systems and Its Applications.
Chen, Shuguang; Kwok, YanHo; Chen, GuanHua
2018-02-20
Photovoltaic devices, electrochemical cells, catalysis processes, light emitting diodes, scanning tunneling microscopes, molecular electronics, and related devices have one thing in common: open quantum systems where energy and matter are not conserved. Traditionally quantum chemistry is confined to isolated and closed systems, while quantum dissipation theory studies open quantum systems. The key quantity in quantum dissipation theory is the reduced system density matrix. As the reduced system density matrix is an O(M! × M!) matrix, where M is the number of the particles of the system of interest, quantum dissipation theory can only be employed to simulate systems of a few particles or degrees of freedom. It is thus important to combine quantum chemistry and quantum dissipation theory so that realistic open quantum systems can be simulated from first-principles. We have developed a first-principles method to simulate the dynamics of open electronic systems, the time-dependent density functional theory for open systems (TDDFT-OS). Instead of the reduced system density matrix, the key quantity is the reduced single-electron density matrix, which is an N × N matrix where N is the number of the atomic bases of the system of interest. As the dimension of the key quantity is drastically reduced, the TDDFT-OS can thus be used to simulate the dynamics of realistic open electronic systems and efficient numerical algorithms have been developed. As an application, we apply the method to study how quantum interference develops in a molecular transistor in time domain. We include electron-phonon interaction in our simulation and show that quantum interference in the given system is robust against nuclear vibration not only in the steady state but also in the transient dynamics. As another application, by combining TDDFT-OS with Ehrenfest dynamics, we study current-induced dissociation of water molecules under scanning tunneling microscopy and follow its time dependent dynamics. Given the rapid development in ultrafast experiments with atomic resolution in recent years, time dependent simulation of open electronic systems will be useful to gain insight and understanding of such experiments. This Account will mainly focus on the practical aspects of the TDDFT-OS method, describing the numerical implementation and demonstrating the method with applications.
Designing quantum information processing via structural physical approximation.
Bae, Joonwoo
2017-10-01
In quantum information processing it may be possible to have efficient computation and secure communication beyond the limitations of classical systems. In a fundamental point of view, however, evolution of quantum systems by the laws of quantum mechanics is more restrictive than classical systems, identified to a specific form of dynamics, that is, unitary transformations and, consequently, positive and completely positive maps to subsystems. This also characterizes classes of disallowed transformations on quantum systems, among which positive but not completely maps are of particular interest as they characterize entangled states, a general resource in quantum information processing. Structural physical approximation offers a systematic way of approximating those non-physical maps, positive but not completely positive maps, with quantum channels. Since it has been proposed as a method of detecting entangled states, it has stimulated fundamental problems on classifications of positive maps and the structure of Hermitian operators and quantum states, as well as on quantum measurement such as quantum design in quantum information theory. It has developed efficient and feasible methods of directly detecting entangled states in practice, for which proof-of-principle experimental demonstrations have also been performed with photonic qubit states. Here, we present a comprehensive review on quantum information processing with structural physical approximations and the related progress. The review mainly focuses on properties of structural physical approximations and their applications toward practical information applications.
Designing quantum information processing via structural physical approximation
NASA Astrophysics Data System (ADS)
Bae, Joonwoo
2017-10-01
In quantum information processing it may be possible to have efficient computation and secure communication beyond the limitations of classical systems. In a fundamental point of view, however, evolution of quantum systems by the laws of quantum mechanics is more restrictive than classical systems, identified to a specific form of dynamics, that is, unitary transformations and, consequently, positive and completely positive maps to subsystems. This also characterizes classes of disallowed transformations on quantum systems, among which positive but not completely maps are of particular interest as they characterize entangled states, a general resource in quantum information processing. Structural physical approximation offers a systematic way of approximating those non-physical maps, positive but not completely positive maps, with quantum channels. Since it has been proposed as a method of detecting entangled states, it has stimulated fundamental problems on classifications of positive maps and the structure of Hermitian operators and quantum states, as well as on quantum measurement such as quantum design in quantum information theory. It has developed efficient and feasible methods of directly detecting entangled states in practice, for which proof-of-principle experimental demonstrations have also been performed with photonic qubit states. Here, we present a comprehensive review on quantum information processing with structural physical approximations and the related progress. The review mainly focuses on properties of structural physical approximations and their applications toward practical information applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bunakov, V. E., E-mail: bunakov@VB13190.spb.edu
A critical analysis of the present-day concept of chaos in quantum systems as nothing but a “quantum signature” of chaos in classical mechanics is given. In contrast to the existing semi-intuitive guesses, a definition of classical and quantum chaos is proposed on the basis of the Liouville–Arnold theorem: a quantum chaotic system featuring N degrees of freedom should have M < N independent first integrals of motion (good quantum numbers) specified by the symmetry of the Hamiltonian of the system. Quantitative measures of quantum chaos that, in the classical limit, go over to the Lyapunov exponent and the classical stabilitymore » parameter are proposed. The proposed criteria of quantum chaos are applied to solving standard problems of modern dynamical chaos theory.« less
Strong polygamy of quantum correlations in multi-party quantum systems
NASA Astrophysics Data System (ADS)
Kim, Jeong San
2014-10-01
We propose a new type of polygamy inequality for multi-party quantum entanglement. We first consider the possible amount of bipartite entanglement distributed between a fixed party and any subset of the rest parties in a multi-party quantum system. By using the summation of these distributed entanglements, we provide an upper bound of the distributed entanglement between a party and the rest in multi-party quantum systems. We then show that this upper bound also plays as a lower bound of the usual polygamy inequality, therefore the strong polygamy of multi-party quantum entanglement. For the case of multi-party pure states, we further show that the strong polygamy of entanglement implies the strong polygamy of quantum discord.
Quantum critical dynamics of the boson system in the Ginzburg-Landau model
NASA Astrophysics Data System (ADS)
Vasin, M. G.
2014-12-01
The quantum critical dynamics of the quantum phase transitions is considered. In the framework of the unified theory, based on the Keldysh technique, we consider the crossover from the classical to the quantum description of the boson many-body system dynamics close to the second order quantum phase transition. It is shown that in this case the upper critical space dimension of this model is dc+=2, therefore the quantum critical dynamics approach is useful in case of d<2. In the one-dimension system the phase coherence time does diverge at the quantum critical point, gc, and has the form of τ∝-ln∣g-gc∣/∣g-gc∣, the correlation radius diverges as rc∝∣g-gc∣(ν=0.6).
Hybrid quantum-classical modeling of quantum dot devices
NASA Astrophysics Data System (ADS)
Kantner, Markus; Mittnenzweig, Markus; Koprucki, Thomas
2017-11-01
The design of electrically driven quantum dot devices for quantum optical applications asks for modeling approaches combining classical device physics with quantum mechanics. We connect the well-established fields of semiclassical semiconductor transport theory and the theory of open quantum systems to meet this requirement. By coupling the van Roosbroeck system with a quantum master equation in Lindblad form, we introduce a new hybrid quantum-classical modeling approach, which provides a comprehensive description of quantum dot devices on multiple scales: it enables the calculation of quantum optical figures of merit and the spatially resolved simulation of the current flow in realistic semiconductor device geometries in a unified way. We construct the interface between both theories in such a way, that the resulting hybrid system obeys the fundamental axioms of (non)equilibrium thermodynamics. We show that our approach guarantees the conservation of charge, consistency with the thermodynamic equilibrium and the second law of thermodynamics. The feasibility of the approach is demonstrated by numerical simulations of an electrically driven single-photon source based on a single quantum dot in the stationary and transient operation regime.
Entropic cohering power in quantum operations
NASA Astrophysics Data System (ADS)
Xi, Zhengjun; Hu, Ming-Liang; Li, Yongming; Fan, Heng
2018-02-01
Coherence is a basic feature of quantum systems and a common necessary condition for quantum correlations. It is also an important physical resource in quantum information processing. In this paper, using relative entropy, we consider a more general definition of the cohering power of quantum operations. First, we calculate the cohering power of unitary quantum operations and show that the amount of distributed coherence caused by non-unitary quantum operations cannot exceed the quantum-incoherent relative entropy between system of interest and its environment. We then find that the difference between the distributed coherence and the cohering power is larger than the quantum-incoherent relative entropy. As an application, we consider the distributed coherence caused by purification.
Nonlinear quantum Langevin equations for bosonic modes in solid-state systems
NASA Astrophysics Data System (ADS)
Manninen, Juuso; Agasti, Souvik; Massel, Francesco
2017-12-01
Based on the experimental evidence that impurities contribute to the dissipation properties of solid-state open quantum systems, we provide here a description in terms of nonlinear quantum Langevin equations of the role played by two-level systems in the dynamics of a bosonic degree of freedom. Our starting point is represented by the description of the system-environment coupling in terms of coupling to two separate reservoirs, modeling the interaction with external bosonic modes and two-level systems, respectively. Furthermore, we show how this model represents a specific example of a class of open quantum systems that can be described by nonlinear quantum Langevin equations. Our analysis offers a potential explanation of the parametric effects recently observed in circuit-QED cavity optomechanics experiments.
Cooperating or fighting with control noise in the optimal manipulation of quantum dynamics
NASA Astrophysics Data System (ADS)
Shuang, Feng; Rabitz, Herschel
2004-11-01
This paper investigates the impact of control field noise on the optimal manipulation of quantum dynamics. Simulations are performed on several multilevel quantum systems with the goal of population transfer in the presence of significant control noise. The noise enters as run-to-run variations in the control amplitude and phase with the observation being an ensemble average over many runs as is commonly done in the laboratory. A genetic algorithm with an improved elitism operator is used to find the optimal field that either fights against or cooperates with control field noise. When seeking a high control yield it is possible to find fields that successfully fight with the noise while attaining good quality stable results. When seeking modest control yields, fields can be found which are optimally shaped to cooperate with the noise and thereby drive the dynamics more efficiently. In general, noise reduces the coherence of the dynamics, but the results indicate that population transfer objectives can be met by appropriately either fighting or cooperating with noise, even when it is intense.
Cooperating or fighting with control noise in the optimal manipulation of quantum dynamics.
Shuang, Feng; Rabitz, Herschel
2004-11-15
This paper investigates the impact of control field noise on the optimal manipulation of quantum dynamics. Simulations are performed on several multilevel quantum systems with the goal of population transfer in the presence of significant control noise. The noise enters as run-to-run variations in the control amplitude and phase with the observation being an ensemble average over many runs as is commonly done in the laboratory. A genetic algorithm with an improved elitism operator is used to find the optimal field that either fights against or cooperates with control field noise. When seeking a high control yield it is possible to find fields that successfully fight with the noise while attaining good quality stable results. When seeking modest control yields, fields can be found which are optimally shaped to cooperate with the noise and thereby drive the dynamics more efficiently. In general, noise reduces the coherence of the dynamics, but the results indicate that population transfer objectives can be met by appropriately either fighting or cooperating with noise, even when it is intense.
NASA Astrophysics Data System (ADS)
Päs, Heinrich
2017-08-01
A minimal approach to the measurement problem and the quantum-to-classical transition assumes a universally valid quantum formalism, i.e. unitary time evolution governed by a Schrödinger-type equation. As had been pointed out long ago, in this view the measurement process can be described by decoherence which results in a ”Many-Worlds” or ”Many-Minds” scenario according to Everett and Zeh. A silent assumption for decoherence to proceed is however, that there exists incomplete information about the environment our object system gets entangled with in the measurement process. This paper addresses the question where this information is traced out and - by adopting recent approaches to model consciousness in neuroscience - argues that a rigorous interpretation results in a perspectival notion of the quantum-to-classical transition. The information that is or is not available in the consciousness of the observer is crucial for the definition of the environment (i.e. the unknown degrees of freedom in the remainder of the Universe). As such the Many-Worlds-Interpretation, while being difficult or impossible to probe in physics, may become testable in psychology.
Millikelvin cooling of an optically trapped microsphere in vacuum
NASA Astrophysics Data System (ADS)
Li, Tongcang; Kheifets, Simon; Raizen, Mark G.
2011-07-01
Cooling of micromechanical resonators towards the quantum mechanical ground state in their centre-of-mass motion has advanced rapidly in recent years. This work is an important step towards the creation of `Schrödinger cats', quantum superpositions of macroscopic observables, and the study of their destruction by decoherence. Here we report optical trapping of glass microspheres in vacuum with high oscillation frequencies, and cooling of the centre-of-mass motion from room temperature to a minimum temperature of about 1.5mK. This new system eliminates the physical contact inherent to clamped cantilevers, and can allow ground-state cooling from room temperature. More importantly, the optical trap can be switched off, allowing a microsphere to undergo free-fall in vacuum after cooling. This is ideal for studying the gravitational state reduction, a manifestation of the apparent conflict between general relativity and quantum mechanics. A cooled optically trapped object in vacuum can also be used to search for non-Newtonian gravity forces at small scales, measure the impact of a single air molecule and even produce Schrödinger cats of living organisms.
Luo, Ming-Xing; Li, Hui-Ran; Lai, Hong
2016-01-01
Most of previous quantum computations only take use of one degree of freedom (DoF) of photons. An experimental system may possess various DoFs simultaneously. In this paper, with the weak cross-Kerr nonlinearity, we investigate the parallel quantum computation dependent on photonic systems with two DoFs. We construct nearly deterministic controlled-not (CNOT) gates operating on the polarization spatial DoFs of the two-photon or one-photon system. These CNOT gates show that two photonic DoFs can be encoded as independent qubits without auxiliary DoF in theory. Only the coherent states are required. Thus one half of quantum simulation resources may be saved in quantum applications if more complicated circuits are involved. Hence, one may trade off the implementation complexity and simulation resources by using different photonic systems. These CNOT gates are also used to complete various applications including the quantum teleportation and quantum superdense coding. PMID:27424767
Entanglement in Quantum-Classical Hybrid
NASA Technical Reports Server (NTRS)
Zak, Michail
2011-01-01
It is noted that the phenomenon of entanglement is not a prerogative of quantum systems, but also occurs in other, non-classical systems such as quantum-classical hybrids, and covers the concept of entanglement as a special type of global constraint imposed upon a broad class of dynamical systems. Application of hybrid systems for physics of life, as well as for quantum-inspired computing, has been outlined. In representing the Schroedinger equation in the Madelung form, there is feedback from the Liouville equation to the Hamilton-Jacobi equation in the form of the quantum potential. Preserving the same topology, the innovators replaced the quantum potential with other types of feedback, and investigated the property of these hybrid systems. A function of probability density has been introduced. Non-locality associated with a global geometrical constraint that leads to an entanglement effect was demonstrated. Despite such a quantum like characteristic, the hybrid can be of classical scale and all the measurements can be performed classically. This new emergence of entanglement sheds light on the concept of non-locality in physics.
Luo, Ming-Xing; Li, Hui-Ran; Lai, Hong
2016-07-18
Most of previous quantum computations only take use of one degree of freedom (DoF) of photons. An experimental system may possess various DoFs simultaneously. In this paper, with the weak cross-Kerr nonlinearity, we investigate the parallel quantum computation dependent on photonic systems with two DoFs. We construct nearly deterministic controlled-not (CNOT) gates operating on the polarization spatial DoFs of the two-photon or one-photon system. These CNOT gates show that two photonic DoFs can be encoded as independent qubits without auxiliary DoF in theory. Only the coherent states are required. Thus one half of quantum simulation resources may be saved in quantum applications if more complicated circuits are involved. Hence, one may trade off the implementation complexity and simulation resources by using different photonic systems. These CNOT gates are also used to complete various applications including the quantum teleportation and quantum superdense coding.
Spin–cavity interactions between a quantum dot molecule and a photonic crystal cavity
Vora, Patrick M.; Bracker, Allan S.; Carter, Samuel G.; Sweeney, Timothy M.; Kim, Mijin; Kim, Chul Soo; Yang, Lily; Brereton, Peter G.; Economou, Sophia E.; Gammon, Daniel
2015-01-01
The integration of InAs/GaAs quantum dots into nanophotonic cavities has led to impressive demonstrations of cavity quantum electrodynamics. However, these demonstrations are primarily based on two-level excitonic systems. Efforts to couple long-lived quantum dot electron spin states with a cavity are only now succeeding. Here we report a two-spin–cavity system, achieved by embedding an InAs quantum dot molecule within a photonic crystal cavity. With this system we obtain a spin singlet–triplet Λ-system where the ground-state spin splitting exceeds the cavity linewidth by an order of magnitude. This allows us to observe cavity-stimulated Raman emission that is highly spin-selective. Moreover, we demonstrate the first cases of cavity-enhanced optical nonlinearities in a solid-state Λ-system. This provides an all-optical, local method to control the spin exchange splitting. Incorporation of a highly engineerable quantum dot molecule into the photonic crystal architecture advances prospects for a quantum network. PMID:26184654
Minimal evolution time and quantum speed limit of non-Markovian open systems
Meng, Xiangyi; Wu, Chengjun; Guo, Hong
2015-01-01
We derive a sharp bound as the quantum speed limit (QSL) for the minimal evolution time of quantum open systems in the non-Markovian strong-coupling regime with initial mixed states by considering the effects of both renormalized Hamiltonian and dissipator. For a non-Markovian quantum open system, the possible evolution time between two arbitrary states is not unique, among the set of which we find that the minimal one and its QSL can decrease more steeply by adjusting the coupling strength of the dissipator, which thus provides potential improvements of efficiency in many quantum physics and quantum information areas. PMID:26565062
NASA Astrophysics Data System (ADS)
López-Ruiz, F. F.; Guerrero, J.; Aldaya, V.; Cossío, F.
2012-08-01
Using a quantum version of the Arnold transformation of classical mechanics, all quantum dynamical systems whose classical equations of motion are non-homogeneous linear second-order ordinary differential equations (LSODE), including systems with friction linear in velocity such as the damped harmonic oscillator, can be related to the quantum free-particle dynamical system. This implies that symmetries and simple computations in the free particle can be exported to the LSODE-system. The quantum Arnold transformation is given explicitly for the damped harmonic oscillator, and an algebraic connection between the Caldirola-Kanai model for the damped harmonic oscillator and the Bateman system will be sketched out.
Quasibound states in a triple Gaussian potential
NASA Astrophysics Data System (ADS)
Reichl, L. E.; Porter, Max D.
2018-04-01
We derive the transmission probabilities and delay times, and identify quasibound state structures in an open quantum system consisting of three Gaussian potential energy peaks, a system whose classical scattering dynamics we show to be chaotic. Such open quantum systems can serve as models for nanoscale quantum devices and their wave dynamics are similar to electromagnetic wave dynamics in optical microcavities. We use a quantum web to determine energy regimes for which the system exhibits the quantum manifestations of chaos, and we show that the classical scattering dynamics contains a significant amount of chaos. We also derive an exact expression for the non-Hermitian Hamiltonian whose eigenvalues give quasibound state energies and lifetimes of the system.