Sample records for object recognition ability

  1. Experience moderates overlap between object and face recognition, suggesting a common ability

    PubMed Central

    Gauthier, Isabel; McGugin, Rankin W.; Richler, Jennifer J.; Herzmann, Grit; Speegle, Magen; Van Gulick, Ana E.

    2014-01-01

    Some research finds that face recognition is largely independent from the recognition of other objects; a specialized and innate ability to recognize faces could therefore have little or nothing to do with our ability to recognize objects. We propose a new framework in which recognition performance for any category is the product of domain-general ability and category-specific experience. In Experiment 1, we show that the overlap between face and object recognition depends on experience with objects. In 256 subjects we measured face recognition, object recognition for eight categories, and self-reported experience with these categories. Experience predicted neither face recognition nor object recognition but moderated their relationship: Face recognition performance is increasingly similar to object recognition performance with increasing object experience. If a subject has a lot of experience with objects and is found to perform poorly, they also prove to have a low ability with faces. In a follow-up survey, we explored the dimensions of experience with objects that may have contributed to self-reported experience in Experiment 1. Different dimensions of experience appear to be more salient for different categories, with general self-reports of expertise reflecting judgments of verbal knowledge about a category more than judgments of visual performance. The complexity of experience and current limitations in its measurement support the importance of aggregating across multiple categories. Our findings imply that both face and object recognition are supported by a common, domain-general ability expressed through experience with a category and best measured when accounting for experience. PMID:24993021

  2. Experience moderates overlap between object and face recognition, suggesting a common ability.

    PubMed

    Gauthier, Isabel; McGugin, Rankin W; Richler, Jennifer J; Herzmann, Grit; Speegle, Magen; Van Gulick, Ana E

    2014-07-03

    Some research finds that face recognition is largely independent from the recognition of other objects; a specialized and innate ability to recognize faces could therefore have little or nothing to do with our ability to recognize objects. We propose a new framework in which recognition performance for any category is the product of domain-general ability and category-specific experience. In Experiment 1, we show that the overlap between face and object recognition depends on experience with objects. In 256 subjects we measured face recognition, object recognition for eight categories, and self-reported experience with these categories. Experience predicted neither face recognition nor object recognition but moderated their relationship: Face recognition performance is increasingly similar to object recognition performance with increasing object experience. If a subject has a lot of experience with objects and is found to perform poorly, they also prove to have a low ability with faces. In a follow-up survey, we explored the dimensions of experience with objects that may have contributed to self-reported experience in Experiment 1. Different dimensions of experience appear to be more salient for different categories, with general self-reports of expertise reflecting judgments of verbal knowledge about a category more than judgments of visual performance. The complexity of experience and current limitations in its measurement support the importance of aggregating across multiple categories. Our findings imply that both face and object recognition are supported by a common, domain-general ability expressed through experience with a category and best measured when accounting for experience. © 2014 ARVO.

  3. Genetic specificity of face recognition.

    PubMed

    Shakeshaft, Nicholas G; Plomin, Robert

    2015-10-13

    Specific cognitive abilities in diverse domains are typically found to be highly heritable and substantially correlated with general cognitive ability (g), both phenotypically and genetically. Recent twin studies have found the ability to memorize and recognize faces to be an exception, being similarly heritable but phenotypically substantially uncorrelated both with g and with general object recognition. However, the genetic relationships between face recognition and other abilities (the extent to which they share a common genetic etiology) cannot be determined from phenotypic associations. In this, to our knowledge, first study of the genetic associations between face recognition and other domains, 2,000 18- and 19-year-old United Kingdom twins completed tests assessing their face recognition, object recognition, and general cognitive abilities. Results confirmed the substantial heritability of face recognition (61%), and multivariate genetic analyses found that most of this genetic influence is unique and not shared with other cognitive abilities.

  4. Genetic specificity of face recognition

    PubMed Central

    Shakeshaft, Nicholas G.; Plomin, Robert

    2015-01-01

    Specific cognitive abilities in diverse domains are typically found to be highly heritable and substantially correlated with general cognitive ability (g), both phenotypically and genetically. Recent twin studies have found the ability to memorize and recognize faces to be an exception, being similarly heritable but phenotypically substantially uncorrelated both with g and with general object recognition. However, the genetic relationships between face recognition and other abilities (the extent to which they share a common genetic etiology) cannot be determined from phenotypic associations. In this, to our knowledge, first study of the genetic associations between face recognition and other domains, 2,000 18- and 19-year-old United Kingdom twins completed tests assessing their face recognition, object recognition, and general cognitive abilities. Results confirmed the substantial heritability of face recognition (61%), and multivariate genetic analyses found that most of this genetic influence is unique and not shared with other cognitive abilities. PMID:26417086

  5. Development of visuo-haptic transfer for object recognition in typical preschool and school-aged children.

    PubMed

    Purpura, Giulia; Cioni, Giovanni; Tinelli, Francesca

    2018-07-01

    Object recognition is a long and complex adaptive process and its full maturation requires combination of many different sensory experiences as well as cognitive abilities to manipulate previous experiences in order to develop new percepts and subsequently to learn from the environment. It is well recognized that the transfer of visual and haptic information facilitates object recognition in adults, but less is known about development of this ability. In this study, we explored the developmental course of object recognition capacity in children using unimodal visual information, unimodal haptic information, and visuo-haptic information transfer in children from 4 years to 10 years and 11 months of age. Participants were tested through a clinical protocol, involving visual exploration of black-and-white photographs of common objects, haptic exploration of real objects, and visuo-haptic transfer of these two types of information. Results show an age-dependent development of object recognition abilities for visual, haptic, and visuo-haptic modalities. A significant effect of time on development of unimodal and crossmodal recognition skills was found. Moreover, our data suggest that multisensory processes for common object recognition are active at 4 years of age. They facilitate recognition of common objects, and, although not fully mature, are significant in adaptive behavior from the first years of age. The study of typical development of visuo-haptic processes in childhood is a starting point for future studies regarding object recognition in impaired populations.

  6. Exploring the association between visual perception abilities and reading of musical notation.

    PubMed

    Lee, Horng-Yih

    2012-06-01

    In the reading of music, the acquisition of pitch information depends primarily upon the spatial position of notes as well as upon an individual's spatial processing ability. This study investigated the relationship between the ability to read single notes and visual-spatial ability. Participants with high and low single-note reading abilities were differentiated based upon differences in musical notation-reading abilities and their spatial processing; object recognition abilities were then assessed. It was found that the group with lower note-reading abilities made more errors than did the group with a higher note-reading abilities in the mental rotation task. In contrast, there was no apparent significant difference between the two groups in the object recognition task. These results suggest that note-reading may be related to visual spatial processing abilities, and not to an individual's ability with object recognition.

  7. A reciprocal model of face recognition and autistic traits: evidence from an individual differences perspective.

    PubMed

    Halliday, Drew W R; MacDonald, Stuart W S; Scherf, K Suzanne; Sherf, Suzanne K; Tanaka, James W

    2014-01-01

    Although not a core symptom of the disorder, individuals with autism often exhibit selective impairments in their face processing abilities. Importantly, the reciprocal connection between autistic traits and face perception has rarely been examined within the typically developing population. In this study, university participants from the social sciences, physical sciences, and humanities completed a battery of measures that assessed face, object and emotion recognition abilities, general perceptual-cognitive style, and sub-clinical autistic traits (the Autism Quotient (AQ)). We employed separate hierarchical multiple regression analyses to evaluate which factors could predict face recognition scores and AQ scores. Gender, object recognition performance, and AQ scores predicted face recognition behaviour. Specifically, males, individuals with more autistic traits, and those with lower object recognition scores performed more poorly on the face recognition test. Conversely, university major, gender and face recognition performance reliably predicted AQ scores. Science majors, males, and individuals with poor face recognition skills showed more autistic-like traits. These results suggest that the broader autism phenotype is associated with lower face recognition abilities, even among typically developing individuals.

  8. A Reciprocal Model of Face Recognition and Autistic Traits: Evidence from an Individual Differences Perspective

    PubMed Central

    Halliday, Drew W. R.; MacDonald, Stuart W. S.; Sherf, Suzanne K.; Tanaka, James W.

    2014-01-01

    Although not a core symptom of the disorder, individuals with autism often exhibit selective impairments in their face processing abilities. Importantly, the reciprocal connection between autistic traits and face perception has rarely been examined within the typically developing population. In this study, university participants from the social sciences, physical sciences, and humanities completed a battery of measures that assessed face, object and emotion recognition abilities, general perceptual-cognitive style, and sub-clinical autistic traits (the Autism Quotient (AQ)). We employed separate hierarchical multiple regression analyses to evaluate which factors could predict face recognition scores and AQ scores. Gender, object recognition performance, and AQ scores predicted face recognition behaviour. Specifically, males, individuals with more autistic traits, and those with lower object recognition scores performed more poorly on the face recognition test. Conversely, university major, gender and face recognition performance reliably predicted AQ scores. Science majors, males, and individuals with poor face recognition skills showed more autistic-like traits. These results suggest that the broader autism phenotype is associated with lower face recognition abilities, even among typically developing individuals. PMID:24853862

  9. Trajectory Recognition as the Basis for Object Individuation: A Functional Model of Object File Instantiation and Object-Token Encoding

    PubMed Central

    Fields, Chris

    2011-01-01

    The perception of persisting visual objects is mediated by transient intermediate representations, object files, that are instantiated in response to some, but not all, visual trajectories. The standard object file concept does not, however, provide a mechanism sufficient to account for all experimental data on visual object persistence, object tracking, and the ability to perceive spatially disconnected stimuli as continuously existing objects. Based on relevant anatomical, functional, and developmental data, a functional model is constructed that bases visual object individuation on the recognition of temporal sequences of apparent center-of-mass positions that are specifically identified as trajectories by dedicated “trajectory recognition networks” downstream of the medial–temporal motion-detection area. This model is shown to account for a wide range of data, and to generate a variety of testable predictions. Individual differences in the recognition, abstraction, and encoding of trajectory information are expected to generate distinct object persistence judgments and object recognition abilities. Dominance of trajectory information over feature information in stored object tokens during early infancy, in particular, is expected to disrupt the ability to re-identify human and other individuals across perceptual episodes, and lead to developmental outcomes with characteristics of autism spectrum disorders. PMID:21716599

  10. Emotion Recognition Abilities and Empathy of Victims of Bullying

    ERIC Educational Resources Information Center

    Woods, Sarah; Wolke, Dieter; Nowicki, Stephen; Hall, Lynne

    2009-01-01

    Objectives: Bullying is a form of systematic abuse by peers with often serious consequences for victims. Few studies have considered the role of emotion recognition abilities and empathic behaviour for different bullying roles. This study investigated physical and relational bullying involvement in relation to basic emotion recognition abilities,…

  11. The development of newborn object recognition in fast and slow visual worlds

    PubMed Central

    Wood, Justin N.; Wood, Samantha M. W.

    2016-01-01

    Object recognition is central to perception and cognition. Yet relatively little is known about the environmental factors that cause invariant object recognition to emerge in the newborn brain. Is this ability a hardwired property of vision? Or does the development of invariant object recognition require experience with a particular kind of visual environment? Here, we used a high-throughput controlled-rearing method to examine whether newborn chicks (Gallus gallus) require visual experience with slowly changing objects to develop invariant object recognition abilities. When newborn chicks were raised with a slowly rotating virtual object, the chicks built invariant object representations that generalized across novel viewpoints and rotation speeds. In contrast, when newborn chicks were raised with a virtual object that rotated more quickly, the chicks built viewpoint-specific object representations that failed to generalize to novel viewpoints and rotation speeds. Moreover, there was a direct relationship between the speed of the object and the amount of invariance in the chick's object representation. Thus, visual experience with slowly changing objects plays a critical role in the development of invariant object recognition. These results indicate that invariant object recognition is not a hardwired property of vision, but is learned rapidly when newborns encounter a slowly changing visual world. PMID:27097925

  12. Super-recognition in development: A case study of an adolescent with extraordinary face recognition skills.

    PubMed

    Bennetts, Rachel J; Mole, Joseph; Bate, Sarah

    2017-09-01

    Face recognition abilities vary widely. While face recognition deficits have been reported in children, it is unclear whether superior face recognition skills can be encountered during development. This paper presents O.B., a 14-year-old female with extraordinary face recognition skills: a "super-recognizer" (SR). O.B. demonstrated exceptional face-processing skills across multiple tasks, with a level of performance that is comparable to adult SRs. Her superior abilities appear to be specific to face identity: She showed an exaggerated face inversion effect and her superior abilities did not extend to object processing or non-identity aspects of face recognition. Finally, an eye-movement task demonstrated that O.B. spent more time than controls examining the nose - a pattern previously reported in adult SRs. O.B. is therefore particularly skilled at extracting and using identity-specific facial cues, indicating that face and object recognition are dissociable during development, and that super recognition can be detected in adolescence.

  13. Individual differences in cortical face selectivity predict behavioral performance in face recognition

    PubMed Central

    Huang, Lijie; Song, Yiying; Li, Jingguang; Zhen, Zonglei; Yang, Zetian; Liu, Jia

    2014-01-01

    In functional magnetic resonance imaging studies, object selectivity is defined as a higher neural response to an object category than other object categories. Importantly, object selectivity is widely considered as a neural signature of a functionally-specialized area in processing its preferred object category in the human brain. However, the behavioral significance of the object selectivity remains unclear. In the present study, we used the individual differences approach to correlate participants' face selectivity in the face-selective regions with their behavioral performance in face recognition measured outside the scanner in a large sample of healthy adults. Face selectivity was defined as the z score of activation with the contrast of faces vs. non-face objects, and the face recognition ability was indexed as the normalized residual of the accuracy in recognizing previously-learned faces after regressing out that for non-face objects in an old/new memory task. We found that the participants with higher face selectivity in the fusiform face area (FFA) and the occipital face area (OFA), but not in the posterior part of the superior temporal sulcus (pSTS), possessed higher face recognition ability. Importantly, the association of face selectivity in the FFA and face recognition ability cannot be accounted for by FFA response to objects or behavioral performance in object recognition, suggesting that the association is domain-specific. Finally, the association is reliable, confirmed by the replication from another independent participant group. In sum, our finding provides empirical evidence on the validity of using object selectivity as a neural signature in defining object-selective regions in the human brain. PMID:25071513

  14. Parts and Relations in Young Children's Shape-Based Object Recognition

    ERIC Educational Resources Information Center

    Augustine, Elaine; Smith, Linda B.; Jones, Susan S.

    2011-01-01

    The ability to recognize common objects from sparse information about geometric shape emerges during the same period in which children learn object names and object categories. Hummel and Biederman's (1992) theory of object recognition proposes that the geometric shapes of objects have two components--geometric volumes representing major object…

  15. View-invariant object recognition ability develops after discrimination, not mere exposure, at several viewing angles.

    PubMed

    Yamashita, Wakayo; Wang, Gang; Tanaka, Keiji

    2010-01-01

    One usually fails to recognize an unfamiliar object across changes in viewing angle when it has to be discriminated from similar distractor objects. Previous work has demonstrated that after long-term experience in discriminating among a set of objects seen from the same viewing angle, immediate recognition of the objects across 30-60 degrees changes in viewing angle becomes possible. The capability for view-invariant object recognition should develop during the within-viewing-angle discrimination, which includes two kinds of experience: seeing individual views and discriminating among the objects. The aim of the present study was to determine the relative contribution of each factor to the development of view-invariant object recognition capability. Monkeys were first extensively trained in a task that required view-invariant object recognition (Object task) with several sets of objects. The animals were then exposed to a new set of objects over 26 days in one of two preparatory tasks: one in which each object view was seen individually, and a second that required discrimination among the objects at each of four viewing angles. After the preparatory period, we measured the monkeys' ability to recognize the objects across changes in viewing angle, by introducing the object set to the Object task. Results indicated significant view-invariant recognition after the second but not first preparatory task. These results suggest that discrimination of objects from distractors at each of several viewing angles is required for the development of view-invariant recognition of the objects when the distractors are similar to the objects.

  16. Dopamine D1 receptor activation leads to object recognition memory in a coral reef fish.

    PubMed

    Hamilton, Trevor J; Tresguerres, Martin; Kline, David I

    2017-07-01

    Object recognition memory is the ability to identify previously seen objects and is an adaptive mechanism that increases survival for many species throughout the animal kingdom. Previously believed to be possessed by only the highest order mammals, it is now becoming clear that fish are also capable of this type of memory formation. Similar to the mammalian hippocampus, the dorsolateral pallium regulates distinct memory processes and is modulated by neurotransmitters such as dopamine. Caribbean bicolour damselfish ( Stegastes partitus ) live in complex environments dominated by coral reef structures and thus likely possess many types of complex memory abilities including object recognition. This study used a novel object recognition test in which fish were first presented two identical objects, then after a retention interval of 10 min with no objects, the fish were presented with a novel object and one of the objects they had previously encountered in the first trial. We demonstrate that the dopamine D 1 -receptor agonist (SKF 38393) induces the formation of object recognition memories in these fish. Thus, our results suggest that dopamine-receptor mediated enhancement of spatial memory formation in fish represents an evolutionarily conserved mechanism in vertebrates. © 2017 The Author(s).

  17. An observational study of implicit motor imagery using laterality recognition of the hand after stroke.

    PubMed

    Amesz, Sarah; Tessari, Alessia; Ottoboni, Giovanni; Marsden, Jon

    2016-01-01

    To explore the relationship between laterality recognition after stroke and impairments in attention, 3D object rotation and functional ability. Observational cross-sectional study. Acute care teaching hospital. Thirty-two acute and sub-acute people with stroke and 36 healthy, age-matched controls. Laterality recognition, attention and mental rotation of objects. Within the stroke group, the relationship between laterality recognition and functional ability, neglect, hemianopia and dyspraxia were further explored. People with stroke were significantly less accurate (69% vs 80%) and showed delayed reaction times (3.0 vs 1.9 seconds) when determining the laterality of a pictured hand. Deficits either in accuracy or reaction times were seen in 53% of people with stroke. The accuracy of laterality recognition was associated with reduced functional ability (R(2) = 0.21), less accurate mental rotation of objects (R(2) = 0.20) and dyspraxia (p = 0.03). Implicit motor imagery is affected in a significant number of patients after stroke with these deficits related to lesions to the motor networks as well as other deficits seen after stroke. This research provides new insights into how laterality recognition is related to a number of other deficits after stroke, including the mental rotation of 3D objects, attention and dyspraxia. Further research is required to determine if treatment programmes can improve deficits in laterality recognition and impact functional outcomes after stroke.

  18. Self-Recognition in Autistic Children.

    ERIC Educational Resources Information Center

    Dawson, Geraldine; McKissick, Fawn Celeste

    1984-01-01

    Fifteen autistic children (four to six years old) were assessed for visual self-recognition ability, as well as for object permanence and gestural imitation. It was found that 13 of 15 autistic children showed evidence of self-recognition. Consistent relationships were suggested between self-cognition and object permanence but not between…

  19. Bimodal benefits on objective and subjective outcomes for adult cochlear implant users.

    PubMed

    Heo, Ji-Hye; Lee, Jae-Hee; Lee, Won-Sang

    2013-09-01

    Given that only a few studies have focused on the bimodal benefits on objective and subjective outcomes and emphasized the importance of individual data, the present study aimed to measure the bimodal benefits on the objective and subjective outcomes for adults with cochlear implant. Fourteen listeners with bimodal devices were tested on the localization and recognition abilities using environmental sounds, 1-talker, and 2-talker speech materials. The localization ability was measured through an 8-loudspeaker array. For the recognition measures, listeners were asked to repeat the sentences or say the environmental sounds the listeners heard. As a subjective questionnaire, three domains of Korean-version of Speech, Spatial, Qualities of Hearing scale (K-SSQ) were used to explore any relationships between objective and subjective outcomes. Based on the group-mean data, the bimodal hearing enhanced both localization and recognition regardless of test material. However, the inter- and intra-subject variability appeared to be large across test materials for both localization and recognition abilities. Correlation analyses revealed that the relationships were not always consistent between the objective outcomes and the subjective self-reports with bimodal devices. Overall, this study supports significant bimodal advantages on localization and recognition measures, yet the large individual variability in bimodal benefits should be considered carefully for the clinical assessment as well as counseling. The discrepant relations between objective and subjective results suggest that the bimodal benefits in traditional localization or recognition measures might not necessarily correspond to the self-reported subjective advantages in everyday listening environments.

  20. Developmental prosopagnosia and super-recognition: no special role for surface reflectance processing

    PubMed Central

    Russell, Richard; Chatterjee, Garga; Nakayama, Ken

    2011-01-01

    Face recognition by normal subjects depends in roughly equal proportions on shape and surface reflectance cues, while object recognition depends predominantly on shape cues. It is possible that developmental prosopagnosics are deficient not in their ability to recognize faces per se, but rather in their ability to use reflectance cues. Similarly, super-recognizers’ exceptional ability with face recognition may be a result of superior surface reflectance perception and memory. We tested this possibility by administering tests of face perception and face recognition in which only shape or reflectance cues are available to developmental prosopagnosics, super-recognizers, and control subjects. Face recognition ability and the relative use of shape and pigmentation were unrelated in all the tests. Subjects who were better at using shape or reflectance cues were also better at using the other type of cue. These results do not support the proposal that variation in surface reflectance perception ability is the underlying cause of variation in face recognition ability. Instead, these findings support the idea that face recognition ability is related to neural circuits using representations that integrate shape and pigmentation information. PMID:22192636

  1. The Vanderbilt Expertise Test Reveals Domain-General and Domain-Specific Sex Effects in Object Recognition

    PubMed Central

    McGugin, Rankin W.; Richler, Jennifer J.; Herzmann, Grit; Speegle, Magen; Gauthier, Isabel

    2012-01-01

    Individual differences in face recognition are often contrasted with differences in object recognition using a single object category. Likewise, individual differences in perceptual expertise for a given object domain have typically been measured relative to only a single category baseline. In Experiment 1, we present a new test of object recognition, the Vanderbilt Expertise Test (VET), which is comparable in methods to the Cambridge Face Memory Task (CFMT) but uses eight different object categories. Principal component analysis reveals that the underlying structure of the VET can be largely explained by two independent factors, which demonstrate good reliability and capture interesting sex differences inherent in the VET structure. In Experiment 2, we show how the VET can be used to separate domain-specific from domain-general contributions to a standard measure of perceptual expertise. While domain-specific contributions are found for car matching for both men and women and for plane matching in men, women in this sample appear to use more domain-general strategies to match planes. In Experiment 3, we use the VET to demonstrate that holistic processing of faces predicts face recognition independently of general object recognition ability, which has a sex-specific contribution to face recognition. Overall, the results suggest that the VET is a reliable and valid measure of object recognition abilities and can measure both domain-general skills and domain-specific expertise, which were both found to depend on the sex of observers. PMID:22877929

  2. Bimodal Benefits on Objective and Subjective Outcomes for Adult Cochlear Implant Users

    PubMed Central

    Heo, Ji-Hye; Lee, Won-Sang

    2013-01-01

    Background and Objectives Given that only a few studies have focused on the bimodal benefits on objective and subjective outcomes and emphasized the importance of individual data, the present study aimed to measure the bimodal benefits on the objective and subjective outcomes for adults with cochlear implant. Subjects and Methods Fourteen listeners with bimodal devices were tested on the localization and recognition abilities using environmental sounds, 1-talker, and 2-talker speech materials. The localization ability was measured through an 8-loudspeaker array. For the recognition measures, listeners were asked to repeat the sentences or say the environmental sounds the listeners heard. As a subjective questionnaire, three domains of Korean-version of Speech, Spatial, Qualities of Hearing scale (K-SSQ) were used to explore any relationships between objective and subjective outcomes. Results Based on the group-mean data, the bimodal hearing enhanced both localization and recognition regardless of test material. However, the inter- and intra-subject variability appeared to be large across test materials for both localization and recognition abilities. Correlation analyses revealed that the relationships were not always consistent between the objective outcomes and the subjective self-reports with bimodal devices. Conclusions Overall, this study supports significant bimodal advantages on localization and recognition measures, yet the large individual variability in bimodal benefits should be considered carefully for the clinical assessment as well as counseling. The discrepant relations between objective and subjective results suggest that the bimodal benefits in traditional localization or recognition measures might not necessarily correspond to the self-reported subjective advantages in everyday listening environments. PMID:24653909

  3. Reversibility of object recognition but not spatial memory impairment following binge-like alcohol exposure in rats

    PubMed Central

    Cippitelli, Andrea; Zook, Michelle; Bell, Lauren; Damadzic, Ruslan; Eskay, Robert L.; Schwandt, Melanie; Heilig, Markus

    2010-01-01

    Excessive alcohol use leads to neurodegeneration in several brain structures including the hippocampal dentate gyrus and the entorhinal cortex. Cognitive deficits that result are among the most insidious and debilitating consequences of alcoholism. The object exploration task (OET) provides a sensitive measurement of spatial memory impairment induced by hippocampal and cortical damage. In this study, we examine whether the observed neurotoxicity produced by a 4-day binge ethanol treatment results in long-term memory impairment by observing the time course of reactions to spatial change (object configuration) and non-spatial change (object recognition). Wistar rats were assessed for their abilities to detect spatial configuration in the OET at 1 week and 10 weeks following the ethanol treatment, in which ethanol groups received 9–15 g/kg/day and achieved blood alcohol levels over 300 mg/dl. At 1 week, results indicated that the binge alcohol treatment produced impairment in both spatial memory and non-spatial object recognition performance. Unlike the controls, ethanol treated rats did not increase the duration or number of contacts with the displaced object in the spatial memory task, nor did they increase the duration of contacts with the novel object in the object recognition task. After 10 weeks, spatial memory remained impaired in the ethanol treated rats but object recognition ability was recovered. Our data suggest that episodes of binge-like alcohol exposure result in long-term and possibly permanent impairments in memory for the configuration of objects during exploration, whereas the ability to detect non-spatial changes is only temporarily affected. PMID:20849966

  4. The relationship between face recognition ability and socioemotional functioning throughout adulthood.

    PubMed

    Turano, Maria Teresa; Viggiano, Maria Pia

    2017-11-01

    The relationship between face recognition ability and socioemotional functioning has been widely explored. However, how aging modulates this association regarding both objective performance and subjective-perception is still neglected. Participants, aged between 18 and 81 years, performed a face memory test and completed subjective face recognition and socioemotional questionnaires. General and social anxiety, and neuroticism traits account for the individual variation in face recognition abilities during adulthood. Aging modulates these relationships because as they age, individuals that present a higher level of these traits also show low-level face recognition ability. Intriguingly, the association between depression and face recognition abilities is evident with increasing age. Overall, the present results emphasize the importance of embedding face metacognition measurement into the context of these studies and suggest that aging is an important factor to be considered, which seems to contribute to the relationship between socioemotional and face-cognitive functioning.

  5. Developmental prosopagnosia and super-recognition: no special role for surface reflectance processing.

    PubMed

    Russell, Richard; Chatterjee, Garga; Nakayama, Ken

    2012-01-01

    Face recognition by normal subjects depends in roughly equal proportions on shape and surface reflectance cues, while object recognition depends predominantly on shape cues. It is possible that developmental prosopagnosics are deficient not in their ability to recognize faces per se, but rather in their ability to use reflectance cues. Similarly, super-recognizers' exceptional ability with face recognition may be a result of superior surface reflectance perception and memory. We tested this possibility by administering tests of face perception and face recognition in which only shape or reflectance cues are available to developmental prosopagnosics, super-recognizers, and control subjects. Face recognition ability and the relative use of shape and pigmentation were unrelated in all the tests. Subjects who were better at using shape or reflectance cues were also better at using the other type of cue. These results do not support the proposal that variation in surface reflectance perception ability is the underlying cause of variation in face recognition ability. Instead, these findings support the idea that face recognition ability is related to neural circuits using representations that integrate shape and pigmentation information. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. Tactile agnosia. Underlying impairment and implications for normal tactile object recognition.

    PubMed

    Reed, C L; Caselli, R J; Farah, M J

    1996-06-01

    In a series of experimental investigations of a subject with a unilateral impairment of tactile object recognition without impaired tactile sensation, several issues were addressed. First, is tactile agnosia secondary to a general impairment of spatial cognition? On tests of spatial ability, including those directed at the same spatial integration process assumed to be taxed by tactile object recognition, the subject performed well, implying a more specific impairment of high level, modality specific tactile perception. Secondly, within the realm of high level tactile perception, is there a distinction between the ability to derive shape ('what') and spatial ('where') information? Our testing showed an impairment confined to shape perception. Thirdly, what aspects of shape perception are impaired in tactile agnosia? Our results indicate that despite accurate encoding of metric length and normal manual exploration strategies, the ability tactually to perceive objects with the impaired hand, deteriorated as the complexity of shape increased. In addition, asymmetrical performance was not found for other body surfaces (e.g. her feet). Our results suggest that tactile shape perception can be disrupted independent of general spatial ability, tactile spatial ability, manual shape exploration, or even the precise perception of metric length in the tactile modality.

  7. Affect Recognition in Adults with Attention-Deficit/Hyperactivity Disorder

    PubMed Central

    Miller, Meghan; Hanford, Russell B.; Fassbender, Catherine; Duke, Marshall; Schweitzer, Julie B.

    2014-01-01

    Objective This study compared affect recognition abilities between adults with and without Attention-Deficit/Hyperactivity Disorder (ADHD). Method The sample included 51 participants (34 men, 17 women) divided into 3 groups: ADHD-Combined Type (ADHD-C; n = 17), ADHD-Predominantly Inattentive Type (ADHD-I; n = 16), and controls (n = 18). The mean age was 34 years. Affect recognition abilities were assessed by the Diagnostic Analysis of Nonverbal Accuracy (DANVA). Results Analyses of Variance showed that the ADHD-I group made more fearful emotion errors relative to the control group. Inattentive symptoms were positively correlated while hyperactive-impulsive symptoms were negatively correlated with affect recognition errors. Conclusion These results suggest that affect recognition abilities may be impaired in adults with ADHD and that affect recognition abilities are more adversely affected by inattentive than hyperactive-impulsive symptoms. PMID:20555036

  8. The impact of beliefs about face recognition ability on memory retrieval processes in young and older adults.

    PubMed

    Humphries, Joyce E; Flowe, Heather D; Hall, Louise C; Williams, Louise C; Ryder, Hannah L

    2016-01-01

    This study examined whether beliefs about face recognition ability differentially influence memory retrieval in older compared to young adults. Participants evaluated their ability to recognise faces and were also given information about their ability to perceive and recognise faces. The information was ostensibly based on an objective measure of their ability, but in actuality, participants had been randomly assigned the information they received (high ability, low ability or no information control). Following this information, face recognition accuracy for a set of previously studied faces was measured using a remember-know memory paradigm. Older adults rated their ability to recognise faces as poorer compared to young adults. Additionally, negative information about face recognition ability improved only older adults' ability to recognise a previously seen face. Older adults were also found to engage in more familiarity than item-specific processing than young adults, but information about their face recognition ability did not affect face processing style. The role that older adults' memory beliefs have in the meta-cognitive strategies they employ is discussed.

  9. Reversibility of object recognition but not spatial memory impairment following binge-like alcohol exposure in rats.

    PubMed

    Cippitelli, Andrea; Zook, Michelle; Bell, Lauren; Damadzic, Ruslan; Eskay, Robert L; Schwandt, Melanie; Heilig, Markus

    2010-11-01

    Excessive alcohol use leads to neurodegeneration in several brain structures including the hippocampal dentate gyrus and the entorhinal cortex. Cognitive deficits that result are among the most insidious and debilitating consequences of alcoholism. The object exploration task (OET) provides a sensitive measurement of spatial memory impairment induced by hippocampal and cortical damage. In this study, we examine whether the observed neurotoxicity produced by a 4-day binge ethanol treatment results in long-term memory impairment by observing the time course of reactions to spatial change (object configuration) and non-spatial change (object recognition). Wistar rats were assessed for their abilities to detect spatial configuration in the OET at 1 week and 10 weeks following the ethanol treatment, in which ethanol groups received 9-15 g/kg/day and achieved blood alcohol levels over 300 mg/dl. At 1 week, results indicated that the binge alcohol treatment produced impairment in both spatial memory and non-spatial object recognition performance. Unlike the controls, ethanol treated rats did not increase the duration or number of contacts with the displaced object in the spatial memory task, nor did they increase the duration of contacts with the novel object in the object recognition task. After 10 weeks, spatial memory remained impaired in the ethanol treated rats but object recognition ability was recovered. Our data suggest that episodes of binge-like alcohol exposure result in long-term and possibly permanent impairments in memory for the configuration of objects during exploration, whereas the ability to detect non-spatial changes is only temporarily affected. Copyright © 2010 Elsevier Inc. All rights reserved.

  10. Long-lasting effects of prenatal dietary choline availability on object recognition memory ability in adult rats.

    PubMed

    Moreno, Hayarelis C; de Brugada, Isabel; Carias, Diamela; Gallo, Milagros

    2013-11-01

    Choline is an essential nutrient required for early development. Previous studies have shown that prenatal choline availability influences adult memory abilities depending on the medial temporal lobe integrity. The relevance of prenatal choline availability on object recognition memory was assessed in adult Wistar rats. Three groups of pregnant Wistar rats were fed from E12 to E18 with choline-deficient (0 g/kg choline chloride), standard (1.1 g/kg choline chloride), or choline-supplemented (5 g/kg choline chloride) diets. The offspring was cross-fostered to rat dams fed a standard diet during pregnancy and tested at the age of 3 months in an object recognition memory task applying retention tests 24 and 48 hours after acquisition. Although no significant differences have been found in the performance of the three groups during the first retention test, the supplemented group exhibited improved memory compared with both the standard and the deficient group in the second retention test, 48 hours after acquisition. In addition, at the second retention test the deficient group did not differ from chance. Taken together, the results support the notion of a long-lasting beneficial effect of prenatal choline supplementation on object recognition memory which is evident when the rats reach adulthood. The results are discussed in terms of their relevance for improving the understanding of the cholinergic involvement in object recognition memory and the implications of the importance of maternal diet for lifelong cognitive abilities.

  11. Behavioral model of visual perception and recognition

    NASA Astrophysics Data System (ADS)

    Rybak, Ilya A.; Golovan, Alexander V.; Gusakova, Valentina I.

    1993-09-01

    In the processes of visual perception and recognition human eyes actively select essential information by way of successive fixations at the most informative points of the image. A behavioral program defining a scanpath of the image is formed at the stage of learning (object memorizing) and consists of sequential motor actions, which are shifts of attention from one to another point of fixation, and sensory signals expected to arrive in response to each shift of attention. In the modern view of the problem, invariant object recognition is provided by the following: (1) separated processing of `what' (object features) and `where' (spatial features) information at high levels of the visual system; (2) mechanisms of visual attention using `where' information; (3) representation of `what' information in an object-based frame of reference (OFR). However, most recent models of vision based on OFR have demonstrated the ability of invariant recognition of only simple objects like letters or binary objects without background, i.e. objects to which a frame of reference is easily attached. In contrast, we use not OFR, but a feature-based frame of reference (FFR), connected with the basic feature (edge) at the fixation point. This has provided for our model, the ability for invariant representation of complex objects in gray-level images, but demands realization of behavioral aspects of vision described above. The developed model contains a neural network subsystem of low-level vision which extracts a set of primary features (edges) in each fixation, and high- level subsystem consisting of `what' (Sensory Memory) and `where' (Motor Memory) modules. The resolution of primary features extraction decreases with distances from the point of fixation. FFR provides both the invariant representation of object features in Sensor Memory and shifts of attention in Motor Memory. Object recognition consists in successive recall (from Motor Memory) and execution of shifts of attention and successive verification of the expected sets of features (stored in Sensory Memory). The model shows the ability of recognition of complex objects (such as faces) in gray-level images invariant with respect to shift, rotation, and scale.

  12. Object, spatial and social recognition testing in a single test paradigm.

    PubMed

    Lian, Bin; Gao, Jun; Sui, Nan; Feng, Tingyong; Li, Ming

    2018-07-01

    Animals have the ability to process information about an object or a conspecific's physical features and location, and alter its behavior when such information is updated. In the laboratory, the object, spatial and social recognition are often studied in separate tasks, making them unsuitable to study the potential dissociations and interactions among various types of recognition memories. The present study introduced a single paradigm to detect the object and spatial recognition, and social recognition of a familiar and novel conspecific. Specifically, male and female Sprague-Dawley adult (>75 days old) or preadolescent (25-28 days old) rats were tested with two objects and one social partner in an open-field arena for four 10-min sessions with a 20-min inter-session interval. After the first sample session, a new object replaced one of the sampled objects in the second session, and the location of one of the old objects was changed in the third session. Finally, a new social partner was introduced in the fourth session and replaced the familiar one. Exploration time with each stimulus was recorded and measures for the three recognitions were calculated based on the discrimination ratio. Overall results show that adult and preadolescent male and female rats spent more time exploring the social partner than the objects, showing a clear preference for social stimulus over nonsocial one. They also did not differ in their abilities to discriminate a new object, a new location and a new social partner from a familiar one, and to recognize a familiar conspecific. Acute administration of MK-801 (a NMDA receptor antagonist, 0.025 and 0.10 mg/kg, i.p.) after the sample session dose-dependently reduced the total time spent on exploring the social partner and objects in the adult rats, and had a significantly larger effect in the females than in the males. MK-801 also dose-dependently increased motor activity. However, it did not alter the object, spatial and social recognitions. These findings indicate that the new triple recognition paradigm is capable of recording the object, spatial location and social recognition together and revealing potential sex and age differences. This paradigm is also useful for the study of object and social exploration concurrently and can be used to evaluate cognition-altering drugs in various stages of recognition memories. Copyright © 2018. Published by Elsevier Inc.

  13. It Takes Two–Skilled Recognition of Objects Engages Lateral Areas in Both Hemispheres

    PubMed Central

    Bilalić, Merim; Kiesel, Andrea; Pohl, Carsten; Erb, Michael; Grodd, Wolfgang

    2011-01-01

    Our object recognition abilities, a direct product of our experience with objects, are fine-tuned to perfection. Left temporal and lateral areas along the dorsal, action related stream, as well as left infero-temporal areas along the ventral, object related stream are engaged in object recognition. Here we show that expertise modulates the activity of dorsal areas in the recognition of man-made objects with clearly specified functions. Expert chess players were faster than chess novices in identifying chess objects and their functional relations. Experts' advantage was domain-specific as there were no differences between groups in a control task featuring geometrical shapes. The pattern of eye movements supported the notion that experts' extensive knowledge about domain objects and their functions enabled superior recognition even when experts were not directly fixating the objects of interest. Functional magnetic resonance imaging (fMRI) related exclusively the areas along the dorsal stream to chess specific object recognition. Besides the commonly involved left temporal and parietal lateral brain areas, we found that only in experts homologous areas on the right hemisphere were also engaged in chess specific object recognition. Based on these results, we discuss whether skilled object recognition does not only involve a more efficient version of the processes found in non-skilled recognition, but also qualitatively different cognitive processes which engage additional brain areas. PMID:21283683

  14. Recognition of Frequency Modulated Whistle-Like Sounds by a Bottlenose Dolphin (Tursiops truncatus) and Humans with Transformations in Amplitude, Duration and Frequency.

    PubMed

    Branstetter, Brian K; DeLong, Caroline M; Dziedzic, Brandon; Black, Amy; Bakhtiari, Kimberly

    2016-01-01

    Bottlenose dolphins (Tursiops truncatus) use the frequency contour of whistles produced by conspecifics for individual recognition. Here we tested a bottlenose dolphin's (Tursiops truncatus) ability to recognize frequency modulated whistle-like sounds using a three alternative matching-to-sample paradigm. The dolphin was first trained to select a specific object (object A) in response to a specific sound (sound A) for a total of three object-sound associations. The sounds were then transformed by amplitude, duration, or frequency transposition while still preserving the frequency contour of each sound. For comparison purposes, 30 human participants completed an identical task with the same sounds, objects, and training procedure. The dolphin's ability to correctly match objects to sounds was robust to changes in amplitude with only a minor decrement in performance for short durations. The dolphin failed to recognize sounds that were frequency transposed by plus or minus ½ octaves. Human participants demonstrated robust recognition with all acoustic transformations. The results indicate that this dolphin's acoustic recognition of whistle-like sounds was constrained by absolute pitch. Unlike human speech, which varies considerably in average frequency, signature whistles are relatively stable in frequency, which may have selected for a whistle recognition system invariant to frequency transposition.

  15. Recognition of Frequency Modulated Whistle-Like Sounds by a Bottlenose Dolphin (Tursiops truncatus) and Humans with Transformations in Amplitude, Duration and Frequency

    PubMed Central

    Branstetter, Brian K.; DeLong, Caroline M.; Dziedzic, Brandon; Black, Amy; Bakhtiari, Kimberly

    2016-01-01

    Bottlenose dolphins (Tursiops truncatus) use the frequency contour of whistles produced by conspecifics for individual recognition. Here we tested a bottlenose dolphin’s (Tursiops truncatus) ability to recognize frequency modulated whistle-like sounds using a three alternative matching-to-sample paradigm. The dolphin was first trained to select a specific object (object A) in response to a specific sound (sound A) for a total of three object-sound associations. The sounds were then transformed by amplitude, duration, or frequency transposition while still preserving the frequency contour of each sound. For comparison purposes, 30 human participants completed an identical task with the same sounds, objects, and training procedure. The dolphin’s ability to correctly match objects to sounds was robust to changes in amplitude with only a minor decrement in performance for short durations. The dolphin failed to recognize sounds that were frequency transposed by plus or minus ½ octaves. Human participants demonstrated robust recognition with all acoustic transformations. The results indicate that this dolphin’s acoustic recognition of whistle-like sounds was constrained by absolute pitch. Unlike human speech, which varies considerably in average frequency, signature whistles are relatively stable in frequency, which may have selected for a whistle recognition system invariant to frequency transposition. PMID:26863519

  16. Fragility of haptic memory in human full-term newborns.

    PubMed

    Lejeune, Fleur; Borradori Tolsa, Cristina; Gentaz, Edouard; Barisnikov, Koviljka

    2018-05-31

    Numerous studies have established that newborns can memorize tactile information about the specific features of an object with their hands and detect differences with another object. However, the robustness of haptic memory abilities has already been examined in preterm newborns and in full-term infants, but not yet in full-term newborns. This research is aimed to better understand the robustness of haptic memory abilities at birth by examining the effects of a change in the objects' temperature and haptic interference. Sixty-eight full-term newborns (mean postnatal age: 2.5 days) were included. The two experiments were conducted in three phases: habituation (repeated presentation of the same object, a prism or cylinder in the newborn's hand), discrimination (presentation of a novel object), and recognition (presentation of the familiar object). In Experiment 1, the change in the objects' temperature was controlled during the three phases. Results reveal that newborns can memorize specific features that differentiate prism and cylinder shapes by touch, and discriminate between them, but surprisingly they did not show evidence of recognizing them after interference. As no significant effect of the temperature condition was observed in habituation, discrimination and recognition abilities, these findings suggest that discrimination abilities in newborns may be determined by the detection of shape differences. Overall, it seems that the ontogenesis of haptic recognition memory is not linear. The developmental schedule is likely crucial for haptic development between 34 and 40 GW. Copyright © 2018 Elsevier Inc. All rights reserved.

  17. Developmental Changes in Visual Object Recognition between 18 and 24 Months of Age

    ERIC Educational Resources Information Center

    Pereira, Alfredo F.; Smith, Linda B.

    2009-01-01

    Two experiments examined developmental changes in children's visual recognition of common objects during the period of 18 to 24 months. Experiment 1 examined children's ability to recognize common category instances that presented three different kinds of information: (1) richly detailed and prototypical instances that presented both local and…

  18. The relationship between change detection and recognition of centrally attended objects in motion pictures.

    PubMed

    Angelone, Bonnie L; Levin, Daniel T; Simons, Daniel J

    2003-01-01

    Observers typically detect changes to central objects more readily than changes to marginal objects, but they sometimes miss changes to central, attended objects as well. However, even if observers do not report such changes, they may be able to recognize the changed object. In three experiments we explored change detection and recognition memory for several types of changes to central objects in motion pictures. Observers who failed to detect a change still performed at above chance levels on a recognition task in almost all conditions. In addition, observers who detected the change were no more accurate in their recognition than those who did not detect the change. Despite large differences in the detectability of changes across conditions, those observers who missed the change did not vary in their ability to recognize the changing object.

  19. The role of color information on object recognition: a review and meta-analysis.

    PubMed

    Bramão, Inês; Reis, Alexandra; Petersson, Karl Magnus; Faísca, Luís

    2011-09-01

    In this study, we systematically review the scientific literature on the effect of color on object recognition. Thirty-five independent experiments, comprising 1535 participants, were included in a meta-analysis. We found a moderate effect of color on object recognition (d=0.28). Specific effects of moderator variables were analyzed and we found that color diagnosticity is the factor with the greatest moderator effect on the influence of color in object recognition; studies using color diagnostic objects showed a significant color effect (d=0.43), whereas a marginal color effect was found in studies that used non-color diagnostic objects (d=0.18). The present study did not permit the drawing of specific conclusions about the moderator effect of the object recognition task; while the meta-analytic review showed that color information improves object recognition mainly in studies using naming tasks (d=0.36), the literature review revealed a large body of evidence showing positive effects of color information on object recognition in studies using a large variety of visual recognition tasks. We also found that color is important for the ability to recognize artifacts and natural objects, to recognize objects presented as types (line-drawings) or as tokens (photographs), and to recognize objects that are presented without surface details, such as texture or shadow. Taken together, the results of the meta-analysis strongly support the contention that color plays a role in object recognition. This suggests that the role of color should be taken into account in models of visual object recognition. Copyright © 2011 Elsevier B.V. All rights reserved.

  20. The Last Meter: Blind Visual Guidance to a Target.

    PubMed

    Manduchi, Roberto; Coughlan, James M

    2014-01-01

    Smartphone apps can use object recognition software to provide information to blind or low vision users about objects in the visual environment. A crucial challenge for these users is aiming the camera properly to take a well-framed picture of the desired target object. We investigate the effects of two fundamental constraints of object recognition - frame rate and camera field of view - on a blind person's ability to use an object recognition smartphone app. The app was used by 18 blind participants to find visual targets beyond arm's reach and approach them to within 30 cm. While we expected that a faster frame rate or wider camera field of view should always improve search performance, our experimental results show that in many cases increasing the field of view does not help, and may even hurt, performance. These results have important implications for the design of object recognition systems for blind users.

  1. A Temporally Distinct Role for Group I and Group II Metabotropic Glutamate Receptors in Object Recognition Memory

    ERIC Educational Resources Information Center

    Brown, Malcolm Watson; Warburton, Elizabeth Clea; Barker, Gareth Robert Isaac; Bashir, Zafar Iqbal

    2006-01-01

    Recognition memory, involving the ability to discriminate between a novel and familiar object, depends on the integrity of the perirhinal cortex (PRH). Glutamate, the main excitatory neurotransmitter in the cortex, is essential for many types of memory processes. Of the subtypes of glutamate receptor, metabotropic receptors (mGluRs) have received…

  2. The Development of Adaptive Decision Making: Recognition-Based Inference in Children and Adolescents

    ERIC Educational Resources Information Center

    Horn, Sebastian S.; Ruggeri, Azzurra; Pachur, Thorsten

    2016-01-01

    Judgments about objects in the world are often based on probabilistic information (or cues). A frugal judgment strategy that utilizes memory (i.e., the ability to discriminate between known and unknown objects) as a cue for inference is the recognition heuristic (RH). The usefulness of the RH depends on the structure of the environment,…

  3. Novel object recognition ability in female mice following exposure to nanoparticle-rich diesel exhaust

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Win-Shwe, Tin-Tin, E-mail: tin.tin.win.shwe@nies.go.jp; Fujimaki, Hidekazu; Fujitani, Yuji

    2012-08-01

    Recently, our laboratory reported that exposure to nanoparticle-rich diesel exhaust (NRDE) for 3 months impaired hippocampus-dependent spatial learning ability and up-regulated the expressions of memory function-related genes in the hippocampus of female mice. However, whether NRDE affects the hippocampus-dependent non-spatial learning ability and the mechanism of NRDE-induced neurotoxicity was unknown. Female BALB/c mice were exposed to clean air, middle-dose NRDE (M-NRDE, 47 μg/m{sup 3}), high-dose NRDE (H-NRDE, 129 μg/m{sup 3}), or filtered H-NRDE (F-DE) for 3 months. We then investigated the effect of NRDE exposure on non-spatial learning ability and the expression of genes related to glutamate neurotransmission using amore » novel object recognition test and a real-time RT-PCR analysis, respectively. We also examined microglia marker Iba1 immunoreactivity in the hippocampus using immunohistochemical analyses. Mice exposed to H-NRDE or F-DE could not discriminate between familiar and novel objects. The control and M-NRDE-exposed groups showed a significantly increased discrimination index, compared to the H-NRDE-exposed group. Although no significant changes in the expression levels of the NMDA receptor subunits were observed, the expression of glutamate transporter EAAT4 was decreased and that of glutamic acid decarboxylase GAD65 was increased in the hippocampus of H-NRDE-exposed mice, compared with the expression levels in control mice. We also found that microglia activation was prominent in the hippocampal area of the H-NRDE-exposed mice, compared with the other groups. These results indicated that exposure to NRDE for 3 months impaired the novel object recognition ability. The present study suggests that genes related to glutamate metabolism may be involved in the NRDE-induced neurotoxicity observed in the present mouse model. -- Highlights: ► The effects of nanoparticle-induced neurotoxicity remain unclear. ► We investigated the effect of exposure to nanoparticles on learning behavior. ► We found that exposure to nanoparticles impaired novel object recognition ability.« less

  4. Mechanisms of object recognition: what we have learned from pigeons

    PubMed Central

    Soto, Fabian A.; Wasserman, Edward A.

    2014-01-01

    Behavioral studies of object recognition in pigeons have been conducted for 50 years, yielding a large body of data. Recent work has been directed toward synthesizing this evidence and understanding the visual, associative, and cognitive mechanisms that are involved. The outcome is that pigeons are likely to be the non-primate species for which the computational mechanisms of object recognition are best understood. Here, we review this research and suggest that a core set of mechanisms for object recognition might be present in all vertebrates, including pigeons and people, making pigeons an excellent candidate model to study the neural mechanisms of object recognition. Behavioral and computational evidence suggests that error-driven learning participates in object category learning by pigeons and people, and recent neuroscientific research suggests that the basal ganglia, which are homologous in these species, may implement error-driven learning of stimulus-response associations. Furthermore, learning of abstract category representations can be observed in pigeons and other vertebrates. Finally, there is evidence that feedforward visual processing, a central mechanism in models of object recognition in the primate ventral stream, plays a role in object recognition by pigeons. We also highlight differences between pigeons and people in object recognition abilities, and propose candidate adaptive specializations which may explain them, such as holistic face processing and rule-based category learning in primates. From a modern comparative perspective, such specializations are to be expected regardless of the model species under study. The fact that we have a good idea of which aspects of object recognition differ in people and pigeons should be seen as an advantage over other animal models. From this perspective, we suggest that there is much to learn about human object recognition from studying the “simple” brains of pigeons. PMID:25352784

  5. Optimization of Visual Information Presentation for Visual Prosthesis.

    PubMed

    Guo, Fei; Yang, Yuan; Gao, Yong

    2018-01-01

    Visual prosthesis applying electrical stimulation to restore visual function for the blind has promising prospects. However, due to the low resolution, limited visual field, and the low dynamic range of the visual perception, huge loss of information occurred when presenting daily scenes. The ability of object recognition in real-life scenarios is severely restricted for prosthetic users. To overcome the limitations, optimizing the visual information in the simulated prosthetic vision has been the focus of research. This paper proposes two image processing strategies based on a salient object detection technique. The two processing strategies enable the prosthetic implants to focus on the object of interest and suppress the background clutter. Psychophysical experiments show that techniques such as foreground zooming with background clutter removal and foreground edge detection with background reduction have positive impacts on the task of object recognition in simulated prosthetic vision. By using edge detection and zooming technique, the two processing strategies significantly improve the recognition accuracy of objects. We can conclude that the visual prosthesis using our proposed strategy can assist the blind to improve their ability to recognize objects. The results will provide effective solutions for the further development of visual prosthesis.

  6. Optimization of Visual Information Presentation for Visual Prosthesis

    PubMed Central

    Gao, Yong

    2018-01-01

    Visual prosthesis applying electrical stimulation to restore visual function for the blind has promising prospects. However, due to the low resolution, limited visual field, and the low dynamic range of the visual perception, huge loss of information occurred when presenting daily scenes. The ability of object recognition in real-life scenarios is severely restricted for prosthetic users. To overcome the limitations, optimizing the visual information in the simulated prosthetic vision has been the focus of research. This paper proposes two image processing strategies based on a salient object detection technique. The two processing strategies enable the prosthetic implants to focus on the object of interest and suppress the background clutter. Psychophysical experiments show that techniques such as foreground zooming with background clutter removal and foreground edge detection with background reduction have positive impacts on the task of object recognition in simulated prosthetic vision. By using edge detection and zooming technique, the two processing strategies significantly improve the recognition accuracy of objects. We can conclude that the visual prosthesis using our proposed strategy can assist the blind to improve their ability to recognize objects. The results will provide effective solutions for the further development of visual prosthesis. PMID:29731769

  7. Recognition and use of line drawings by children with severe intellectual disabilities: the effects of color and outline shape.

    PubMed

    Stephenson, Jennifer

    2009-03-01

    Communication symbols for students with severe intellectual disabilities often take the form of computer-generated line drawings. This study investigated the effects of the match between color and shape of line drawings and the objects they represented on drawing recognition and use. The match or non-match between color and shape of the objects and drawings did not have an effect on participants' ability to match drawings to objects, or to use drawings to make choices.

  8. Are Face and Object Recognition Independent? A Neurocomputational Modeling Exploration.

    PubMed

    Wang, Panqu; Gauthier, Isabel; Cottrell, Garrison

    2016-04-01

    Are face and object recognition abilities independent? Although it is commonly believed that they are, Gauthier et al. [Gauthier, I., McGugin, R. W., Richler, J. J., Herzmann, G., Speegle, M., & VanGulick, A. E. Experience moderates overlap between object and face recognition, suggesting a common ability. Journal of Vision, 14, 7, 2014] recently showed that these abilities become more correlated as experience with nonface categories increases. They argued that there is a single underlying visual ability, v, that is expressed in performance with both face and nonface categories as experience grows. Using the Cambridge Face Memory Test and the Vanderbilt Expertise Test, they showed that the shared variance between Cambridge Face Memory Test and Vanderbilt Expertise Test performance increases monotonically as experience increases. Here, we address why a shared resource across different visual domains does not lead to competition and to an inverse correlation in abilities? We explain this conundrum using our neurocomputational model of face and object processing ["The Model", TM, Cottrell, G. W., & Hsiao, J. H. Neurocomputational models of face processing. In A. J. Calder, G. Rhodes, M. Johnson, & J. Haxby (Eds.), The Oxford handbook of face perception. Oxford, UK: Oxford University Press, 2011]. We model the domain general ability v as the available computational resources (number of hidden units) in the mapping from input to label and experience as the frequency of individual exemplars in an object category appearing during network training. Our results show that, as in the behavioral data, the correlation between subordinate level face and object recognition accuracy increases as experience grows. We suggest that different domains do not compete for resources because the relevant features are shared between faces and objects. The essential power of experience is to generate a "spreading transform" for faces (separating them in representational space) that generalizes to objects that must be individuated. Interestingly, when the task of the network is basic level categorization, no increase in the correlation between domains is observed. Hence, our model predicts that it is the type of experience that matters and that the source of the correlation is in the fusiform face area, rather than in cortical areas that subserve basic level categorization. This result is consistent with our previous modeling elucidating why the FFA is recruited for novel domains of expertise [Tong, M. H., Joyce, C. A., & Cottrell, G. W. Why is the fusiform face area recruited for novel categories of expertise? A neurocomputational investigation. Brain Research, 1202, 14-24, 2008].

  9. Aging and solid shape recognition: Vision and haptics.

    PubMed

    Norman, J Farley; Cheeseman, Jacob R; Adkins, Olivia C; Cox, Andrea G; Rogers, Connor E; Dowell, Catherine J; Baxter, Michael W; Norman, Hideko F; Reyes, Cecia M

    2015-10-01

    The ability of 114 younger and older adults to recognize naturally-shaped objects was evaluated in three experiments. The participants viewed or haptically explored six randomly-chosen bell peppers (Capsicum annuum) in a study session and were later required to judge whether each of twelve bell peppers was "old" (previously presented during the study session) or "new" (not presented during the study session). When recognition memory was tested immediately after study, the younger adults' (Experiment 1) performance for vision and haptics was identical when the individual study objects were presented once. Vision became superior to haptics, however, when the individual study objects were presented multiple times. When 10- and 20-min delays (Experiment 2) were inserted in between study and test sessions, no significant differences occurred between vision and haptics: recognition performance in both modalities was comparable. When the recognition performance of older adults was evaluated (Experiment 3), a negative effect of age was found for visual shape recognition (younger adults' overall recognition performance was 60% higher). There was no age effect, however, for haptic shape recognition. The results of the present experiments indicate that the visual recognition of natural object shape is different from haptic recognition in multiple ways: visual shape recognition can be superior to that of haptics and is affected by aging, while haptic shape recognition is less accurate and unaffected by aging. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Correlations of recognition memory performance with expression and methylation of brain-derived neurotrophic factor in rats.

    PubMed

    Muñoz, Pablo C; Aspé, Mauricio A; Contreras, Luis S; Palacios, Adrián G

    2010-01-01

    Object recognition memory allows discrimination between novel and familiar objects. This kind of memory consists of two components: recollection, which depends on the hippocampus, and familiarity, which depends on the perirhinal cortex (Pcx). The importance of brain-derived neurotrophic factor (BDNF) for recognition memory has already been recognized. Recent evidence suggests that DNA methylation regulates the expression of BDNF and memory. Behavioral and molecular approaches were used to understand the potential contribution of DNA methylation to recognition memory. To that end, rats were tested for their ability to distinguish novel from familiar objects by using a spontaneous object recognition task. Furthermore, the level of DNA methylation was estimated after trials with a methyl-sensitive PCR. We found a significant correlation between performance on the novel object task and the expression of BDNF, negatively in hippocampal slices and positively in perirhinal cortical slices. By contrast, methylation of DNA in CpG island 1 in the promoter of exon 1 in BDNF only correlated in hippocampal slices, but not in the Pxc cortical slices from trained animals. These results suggest that DNA methylation may be involved in the regulation of the BDNF gene during recognition memory, at least in the hippocampus.

  11. Feedforward object-vision models only tolerate small image variations compared to human

    PubMed Central

    Ghodrati, Masoud; Farzmahdi, Amirhossein; Rajaei, Karim; Ebrahimpour, Reza; Khaligh-Razavi, Seyed-Mahdi

    2014-01-01

    Invariant object recognition is a remarkable ability of primates' visual system that its underlying mechanism has constantly been under intense investigations. Computational modeling is a valuable tool toward understanding the processes involved in invariant object recognition. Although recent computational models have shown outstanding performances on challenging image databases, they fail to perform well in image categorization under more complex image variations. Studies have shown that making sparse representation of objects by extracting more informative visual features through a feedforward sweep can lead to higher recognition performances. Here, however, we show that when the complexity of image variations is high, even this approach results in poor performance compared to humans. To assess the performance of models and humans in invariant object recognition tasks, we built a parametrically controlled image database consisting of several object categories varied in different dimensions and levels, rendered from 3D planes. Comparing the performance of several object recognition models with human observers shows that only in low-level image variations the models perform similar to humans in categorization tasks. Furthermore, the results of our behavioral experiments demonstrate that, even under difficult experimental conditions (i.e., briefly presented masked stimuli with complex image variations), human observers performed outstandingly well, suggesting that the models are still far from resembling humans in invariant object recognition. Taken together, we suggest that learning sparse informative visual features, although desirable, is not a complete solution for future progresses in object-vision modeling. We show that this approach is not of significant help in solving the computational crux of object recognition (i.e., invariant object recognition) when the identity-preserving image variations become more complex. PMID:25100986

  12. Development of novel tasks for studying view-invariant object recognition in rodents: Sensitivity to scopolamine.

    PubMed

    Mitchnick, Krista A; Wideman, Cassidy E; Huff, Andrew E; Palmer, Daniel; McNaughton, Bruce L; Winters, Boyer D

    2018-05-15

    The capacity to recognize objects from different view-points or angles, referred to as view-invariance, is an essential process that humans engage in daily. Currently, the ability to investigate the neurobiological underpinnings of this phenomenon is limited, as few ethologically valid view-invariant object recognition tasks exist for rodents. Here, we report two complementary, novel view-invariant object recognition tasks in which rodents physically interact with three-dimensional objects. Prior to experimentation, rats and mice were given extensive experience with a set of 'pre-exposure' objects. In a variant of the spontaneous object recognition task, novelty preference for pre-exposed or new objects was assessed at various angles of rotation (45°, 90° or 180°); unlike control rodents, for whom the objects were novel, rats and mice tested with pre-exposed objects did not discriminate between rotated and un-rotated objects in the choice phase, indicating substantial view-invariant object recognition. Secondly, using automated operant touchscreen chambers, rats were tested on pre-exposed or novel objects in a pairwise discrimination task, where the rewarded stimulus (S+) was rotated (180°) once rats had reached acquisition criterion; rats tested with pre-exposed objects re-acquired the pairwise discrimination following S+ rotation more effectively than those tested with new objects. Systemic scopolamine impaired performance on both tasks, suggesting involvement of acetylcholine at muscarinic receptors in view-invariant object processing. These tasks present novel means of studying the behavioral and neural bases of view-invariant object recognition in rodents. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. An Evaluation of Imitation Recognition Abilities in Typically Developing Children and Young Children with Autism Spectrum Disorder.

    PubMed

    Berger, Natalie I; Ingersoll, Brooke

    2015-08-01

    Previous work has indicated that both typically developing children and children with Autism Spectrum Disorder (ASD) display a range of imitation recognition behaviors in response to a contingent adult imitator. However, it is unknown how the two groups perform comparatively on this construct. In this study, imitation recognition behaviors for children with ASD and typically developing children were observed during periods of contingent imitation imbedded in a naturalistic imitation task. Results from this study indicate that children with ASD are impaired in their ability to recognize being imitated relative to typically developing peers as demonstrated both by behaviors representing basic social attention and more mature imitation recognition. Display of imitation recognition behaviors was independent of length of contingent imitation period in typically developing children, but rate of engagement in imitation recognition behaviors was positively correlated with length of contingent imitation period in children with ASD. Exploratory findings also suggest a link between the ability to demonstrate recognition of being imitated and ASD symptom severity, language, and object imitation for young children with ASD. © 2015 International Society for Autism Research, Wiley Periodicals, Inc.

  14. Learned Non-Rigid Object Motion is a View-Invariant Cue to Recognizing Novel Objects

    PubMed Central

    Chuang, Lewis L.; Vuong, Quoc C.; Bülthoff, Heinrich H.

    2012-01-01

    There is evidence that observers use learned object motion to recognize objects. For instance, studies have shown that reversing the learned direction in which a rigid object rotated in depth impaired recognition accuracy. This motion reversal can be achieved by playing animation sequences of moving objects in reverse frame order. In the current study, we used this sequence-reversal manipulation to investigate whether observers encode the motion of dynamic objects in visual memory, and whether such dynamic representations are encoded in a way that is dependent on the viewing conditions. Participants first learned dynamic novel objects, presented as animation sequences. Following learning, they were then tested on their ability to recognize these learned objects when their animation sequence was shown in the same sequence order as during learning or in the reverse sequence order. In Experiment 1, we found that non-rigid motion contributed to recognition performance; that is, sequence-reversal decreased sensitivity across different tasks. In subsequent experiments, we tested the recognition of non-rigidly deforming (Experiment 2) and rigidly rotating (Experiment 3) objects across novel viewpoints. Recognition performance was affected by viewpoint changes for both experiments. Learned non-rigid motion continued to contribute to recognition performance and this benefit was the same across all viewpoint changes. By comparison, learned rigid motion did not contribute to recognition performance. These results suggest that non-rigid motion provides a source of information for recognizing dynamic objects, which is not affected by changes to viewpoint. PMID:22661939

  15. A rodent model for the study of invariant visual object recognition

    PubMed Central

    Zoccolan, Davide; Oertelt, Nadja; DiCarlo, James J.; Cox, David D.

    2009-01-01

    The human visual system is able to recognize objects despite tremendous variation in their appearance on the retina resulting from variation in view, size, lighting, etc. This ability—known as “invariant” object recognition—is central to visual perception, yet its computational underpinnings are poorly understood. Traditionally, nonhuman primates have been the animal model-of-choice for investigating the neuronal substrates of invariant recognition, because their visual systems closely mirror our own. Meanwhile, simpler and more accessible animal models such as rodents have been largely overlooked as possible models of higher-level visual functions, because their brains are often assumed to lack advanced visual processing machinery. As a result, little is known about rodents' ability to process complex visual stimuli in the face of real-world image variation. In the present work, we show that rats possess more advanced visual abilities than previously appreciated. Specifically, we trained pigmented rats to perform a visual task that required them to recognize objects despite substantial variation in their appearance, due to changes in size, view, and lighting. Critically, rats were able to spontaneously generalize to previously unseen transformations of learned objects. These results provide the first systematic evidence for invariant object recognition in rats and argue for an increased focus on rodents as models for studying high-level visual processing. PMID:19429704

  16. [Recognition of facial expression of emotions in Parkinson's disease: a theoretical review].

    PubMed

    Alonso-Recio, L; Serrano-Rodriguez, J M; Carvajal-Molina, F; Loeches-Alonso, A; Martin-Plasencia, P

    2012-04-16

    Emotional facial expression is a basic guide during social interaction and, therefore, alterations in their expression or recognition are important limitations for communication. To examine facial expression recognition abilities and their possible impairment in Parkinson's disease. First, we review the studies on this topic which have not found entirely similar results. Second, we analyze the factors that may explain these discrepancies and, in particular, as third objective, we consider the relationship between emotional recognition problems and cognitive impairment associated with the disease. Finally, we propose alternatives strategies for the development of studies that could clarify the state of these abilities in Parkinson's disease. Most studies suggest deficits in facial expression recognition, especially in those with negative emotional content. However, it is possible that these alterations are related to those that also appear in the course of the disease in other perceptual and executive processes. To advance in this issue, we consider necessary to design emotional recognition studies implicating differentially the executive or visuospatial processes, and/or contrasting cognitive abilities with facial expressions and non emotional stimuli. The precision of the status of these abilities, as well as increase our knowledge of the functional consequences of the characteristic brain damage in the disease, may indicate if we should pay special attention in their rehabilitation inside the programs implemented.

  17. Changes in Visual Object Recognition Precede the Shape Bias in Early Noun Learning

    PubMed Central

    Yee, Meagan; Jones, Susan S.; Smith, Linda B.

    2012-01-01

    Two of the most formidable skills that characterize human beings are language and our prowess in visual object recognition. They may also be developmentally intertwined. Two experiments, a large sample cross-sectional study and a smaller sample 6-month longitudinal study of 18- to 24-month-olds, tested a hypothesized developmental link between changes in visual object representation and noun learning. Previous findings in visual object recognition indicate that children’s ability to recognize common basic level categories from sparse structural shape representations of object shape emerges between the ages of 18 and 24 months, is related to noun vocabulary size, and is lacking in children with language delay. Other research shows in artificial noun learning tasks that during this same developmental period, young children systematically generalize object names by shape, that this shape bias predicts future noun learning, and is lacking in children with language delay. The two experiments examine the developmental relation between visual object recognition and the shape bias for the first time. The results show that developmental changes in visual object recognition systematically precede the emergence of the shape bias. The results suggest a developmental pathway in which early changes in visual object recognition that are themselves linked to category learning enable the discovery of higher-order regularities in category structure and thus the shape bias in novel noun learning tasks. The proposed developmental pathway has implications for understanding the role of specific experience in the development of both visual object recognition and the shape bias in early noun learning. PMID:23227015

  18. The Dark Side of Context: Context Reinstatement Can Distort Memory.

    PubMed

    Doss, Manoj K; Picart, Jamila K; Gallo, David A

    2018-04-01

    It is widely assumed that context reinstatement benefits memory, but our experiments revealed that context reinstatement can systematically distort memory. Participants viewed pictures of objects superimposed over scenes, and we later tested their ability to differentiate these old objects from similar new objects. Context reinstatement was manipulated by presenting objects on the reinstated or switched scene at test. Not only did context reinstatement increase correct recognition of old objects, but it also consistently increased incorrect recognition of similar objects as old ones. This false recognition effect was robust, as it was found in several experiments, occurred after both immediate and delayed testing, and persisted with high confidence even after participants were warned to avoid the distorting effects of context. To explain this memory illusion, we propose that context reinstatement increases the likelihood of confusing conceptual and perceptual information, potentially in medial temporal brain regions that integrate this information.

  19. Young Children's Self-Generated Object Views and Object Recognition

    ERIC Educational Resources Information Center

    James, Karin H.; Jones, Susan S.; Smith, Linda B.; Swain, Shelley N.

    2014-01-01

    Two important and related developments in children between 18 and 24 months of age are the rapid expansion of object name vocabularies and the emergence of an ability to recognize objects from sparse representations of their geometric shapes. In the same period, children also begin to show a preference for planar views (i.e., views of objects held…

  20. Affect Recognition in Adults with ADHD

    ERIC Educational Resources Information Center

    Miller, Meghan; Hanford, Russell B.; Fassbender, Catherine; Duke, Marshall; Schweitzer, Julie B.

    2011-01-01

    Objective: This study compared affect recognition abilities between adults with and without ADHD. Method: The sample consisted of 51 participants (34 men, 17 women) divided into 3 groups: ADHD-combined type (ADHD-C; n = 17), ADHD-predominantly inattentive type (ADHD-I; n = 16), and controls (n = 18). The mean age was 34 years. Affect recognition…

  1. Brief Report: Face-Specific Recognition Deficits in Young Children with Autism Spectrum Disorders

    ERIC Educational Resources Information Center

    Bradshaw, Jessica; Shic, Frederick; Chawarska, Katarzyna

    2011-01-01

    This study used eyetracking to investigate the ability of young children with autism spectrum disorders (ASD) to recognize social (faces) and nonsocial (simple objects and complex block patterns) stimuli using the visual paired comparison (VPC) paradigm. Typically developing (TD) children showed evidence for recognition of faces and simple…

  2. Track Everything: Limiting Prior Knowledge in Online Multi-Object Recognition.

    PubMed

    Wong, Sebastien C; Stamatescu, Victor; Gatt, Adam; Kearney, David; Lee, Ivan; McDonnell, Mark D

    2017-10-01

    This paper addresses the problem of online tracking and classification of multiple objects in an image sequence. Our proposed solution is to first track all objects in the scene without relying on object-specific prior knowledge, which in other systems can take the form of hand-crafted features or user-based track initialization. We then classify the tracked objects with a fast-learning image classifier, that is based on a shallow convolutional neural network architecture and demonstrate that object recognition improves when this is combined with object state information from the tracking algorithm. We argue that by transferring the use of prior knowledge from the detection and tracking stages to the classification stage, we can design a robust, general purpose object recognition system with the ability to detect and track a variety of object types. We describe our biologically inspired implementation, which adaptively learns the shape and motion of tracked objects, and apply it to the Neovision2 Tower benchmark data set, which contains multiple object types. An experimental evaluation demonstrates that our approach is competitive with the state-of-the-art video object recognition systems that do make use of object-specific prior knowledge in detection and tracking, while providing additional practical advantages by virtue of its generality.

  3. Ventromedial prefrontal cortex is obligatory for consolidation and reconsolidation of object recognition memory.

    PubMed

    Akirav, Irit; Maroun, Mouna

    2006-12-01

    Once consolidated, a long-term memory item could regain susceptibility to consolidation blockers, that is, reconsolidate, upon its reactivation. Both consolidation and reconsolidation require protein synthesis, but it is not yet known how similar these processes are in terms of molecular, cellular, and neural circuit mechanisms. Whereas most previous studies focused on aversive conditioning in the amygdala and the hippocampus, here we examine the role of the ventromedial prefrontal cortex (vmPFC) in consolidation and reconsolidation of object recognition memory. Object recognition memory is the ability to discriminate the familiarity of previously encountered objects. We found that microinfusion of the protein synthesis inhibitor anisomycin or the N-methyl-D-aspartate (NMDA) receptor antagonist D,L-2-amino-5-phosphonovaleric acid (APV) into the vmPFC, immediately after training, resulted in impairment of long-term (24 h) but not short-term (3 h) recognition memory. Similarly, microinfusion of anisomycin or APV into the vmPFC immediately after reactivation of the long-term memory impaired recognition memory 24 h, but not 3 h, post-reactivation. These results indicate that both protein synthesis and NMDA receptors are required for consolidation and reconsolidation of recognition memory in the vmPFC.

  4. Three-dimensional object recognition based on planar images

    NASA Astrophysics Data System (ADS)

    Mital, Dinesh P.; Teoh, Eam-Khwang; Au, K. C.; Chng, E. K.

    1993-01-01

    This paper presents the development and realization of a robotic vision system for the recognition of 3-dimensional (3-D) objects. The system can recognize a single object from among a group of known regular convex polyhedron objects that is constrained to lie on a calibrated flat platform. The approach adopted comprises a series of image processing operations on a single 2-dimensional (2-D) intensity image to derive an image line drawing. Subsequently, a feature matching technique is employed to determine 2-D spatial correspondences of the image line drawing with the model in the database. Besides its identification ability, the system can also provide important position and orientation information of the recognized object. The system was implemented on an IBM-PC AT machine executing at 8 MHz without the 80287 Maths Co-processor. In our overall performance evaluation based on a 600 recognition cycles test, the system demonstrated an accuracy of above 80% with recognition time well within 10 seconds. The recognition time is, however, indirectly dependent on the number of models in the database. The reliability of the system is also affected by illumination conditions which must be clinically controlled as in any industrial robotic vision system.

  5. Imitative Learning from a Third-Party Interaction: Relations with Self-Recognition and Perspective Taking

    ERIC Educational Resources Information Center

    Herold, Katherine H.; Akhtar, Nameera

    2008-01-01

    Young children's ability to learn something new from a third-party interaction may be related to the ability to imagine themselves in the third-party interaction. This imaginative ability presupposes an understanding of self-other equivalence, which is manifested in an objective understanding of the self and an understanding of others' subjective…

  6. Infants' Recognition of Objects Using Canonical Color

    ERIC Educational Resources Information Center

    Kimura, Atsushi; Wada, Yuji; Yang, Jiale; Otsuka, Yumiko; Dan, Ippeita; Masuda, Tomohiro; Kanazawa, So; Yamaguchi, Masami K.

    2010-01-01

    We explored infants' ability to recognize the canonical colors of daily objects, including two color-specific objects (human face and fruit) and a non-color-specific object (flower), by using a preferential looking technique. A total of 58 infants between 5 and 8 months of age were tested with a stimulus composed of two color pictures of an object…

  7. Cognitive contributions to theory of mind ability in children with a traumatic head injury.

    PubMed

    Levy, Naomi Kahana; Milgram, Noach

    2016-01-01

    The objective of the current study is to examine the contribution of intellectual abilities, executive functions (EF), and facial emotion recognition to difficulties in Theory of Mind (ToM) abilities in children with a traumatic head injury. Israeli children with a traumatic head injury were compared with their non-injured counterparts. Each group included 18 children (12 males) ages 7-13. Measurements included reading the mind in the eyes, facial emotion recognition, reasoning the other's characteristics based on motive and outcome, Raven's Coloured Progressive Matrices, similarities and digit span (Wechsler Intelligence Scale for Children - Revised 95 subscales), verbal fluency, and the Behaviour Rating Inventory of Executive Functions. Non-injured children performed significantly better on ToM, abstract reasoning, and EF measures compared with children with a traumatic head injury. However, differences in ToM abilities between the groups were no longer significant after controlling for abstract reasoning, working memory, verbal fluency, or facial emotion recognition. Impaired ToM recognition and reasoning abilities after a head injury may result from other cognitive impairments. In children with mild and moderate head injury, poorer performance on ToM tasks may reflect poorer abstract reasoning, a general tendency to concretize stimuli, working memory and verbal fluency deficits, and difficulties in facial emotion recognition, rather than deficits in the ability to understand the other's thoughts and emotions. ToM impairments may be secondary to a range of cognitive deficits in determining social outcomes in this population.

  8. Object recognition of real targets using modelled SAR images

    NASA Astrophysics Data System (ADS)

    Zherdev, D. A.

    2017-12-01

    In this work the problem of recognition is studied using SAR images. The algorithm of recognition is based on the computation of conjugation indices with vectors of class. The support subspaces for each class are constructed by exception of the most and the less correlated vectors in a class. In the study we examine the ability of a significant feature vector size reduce that leads to recognition time decrease. The images of targets form the feature vectors that are transformed using pre-trained convolutional neural network (CNN).

  9. Research on autonomous identification of airport targets based on Gabor filtering and Radon transform

    NASA Astrophysics Data System (ADS)

    Yi, Juan; Du, Qingyu; Zhang, Hong jiang; Zhang, Yao lei

    2017-11-01

    Target recognition is a leading key technology in intelligent image processing and application development at present, with the enhancement of computer processing ability, autonomous target recognition algorithm, gradually improve intelligence, and showed good adaptability. Taking the airport target as the research object, analysis the airport layout characteristics, construction of knowledge model, Gabor filter and Radon transform based on the target recognition algorithm of independent design, image processing and feature extraction of the airport, the algorithm was verified, and achieved better recognition results.

  10. Combining heterogenous features for 3D hand-held object recognition

    NASA Astrophysics Data System (ADS)

    Lv, Xiong; Wang, Shuang; Li, Xiangyang; Jiang, Shuqiang

    2014-10-01

    Object recognition has wide applications in the area of human-machine interaction and multimedia retrieval. However, due to the problem of visual polysemous and concept polymorphism, it is still a great challenge to obtain reliable recognition result for the 2D images. Recently, with the emergence and easy availability of RGB-D equipment such as Kinect, this challenge could be relieved because the depth channel could bring more information. A very special and important case of object recognition is hand-held object recognition, as hand is a straight and natural way for both human-human interaction and human-machine interaction. In this paper, we study the problem of 3D object recognition by combining heterogenous features with different modalities and extraction techniques. For hand-craft feature, although it reserves the low-level information such as shape and color, it has shown weakness in representing hiconvolutionalgh-level semantic information compared with the automatic learned feature, especially deep feature. Deep feature has shown its great advantages in large scale dataset recognition but is not always robust to rotation or scale variance compared with hand-craft feature. In this paper, we propose a method to combine hand-craft point cloud features and deep learned features in RGB and depth channle. First, hand-held object segmentation is implemented by using depth cues and human skeleton information. Second, we combine the extracted hetegerogenous 3D features in different stages using linear concatenation and multiple kernel learning (MKL). Then a training model is used to recognize 3D handheld objects. Experimental results validate the effectiveness and gerneralization ability of the proposed method.

  11. Using Prosopagnosia to Test and Modify Visual Recognition Theory.

    PubMed

    O'Brien, Alexander M

    2018-02-01

    Biederman's contemporary theory of basic visual object recognition (Recognition-by-Components) is based on structural descriptions of objects and presumes 36 visual primitives (geons) people can discriminate, but there has been no empirical test of the actual use of these 36 geons to visually distinguish objects. In this study, we tested for the actual use of these geons in basic visual discrimination by comparing object discrimination performance patterns (when distinguishing varied stimuli) of an acquired prosopagnosia patient (LB) and healthy control participants. LB's prosopagnosia left her heavily reliant on structural descriptions or categorical object differences in visual discrimination tasks versus the control participants' additional ability to use face recognition or coordinate systems (Coordinate Relations Hypothesis). Thus, when LB performed comparably to control participants with a given stimulus, her restricted reliance on basic or categorical discriminations meant that the stimuli must be distinguishable on the basis of a geon feature. By varying stimuli in eight separate experiments and presenting all 36 geons, we discerned that LB coded only 12 (vs. 36) distinct visual primitives (geons), apparently reflective of human visual systems generally.

  12. Semantic memory in object use.

    PubMed

    Silveri, Maria Caterina; Ciccarelli, Nicoletta

    2009-10-01

    We studied five patients with semantic memory disorders, four with semantic dementia and one with herpes simplex virus encephalitis, to investigate the involvement of semantic conceptual knowledge in object use. Comparisons between patients who had semantic deficits of different severity, as well as the follow-up, showed that the ability to use objects was largely preserved when the deficit was mild but progressively decayed as the deficit became more severe. Naming was generally more impaired than object use. Production tasks (pantomime execution and actual object use) and comprehension tasks (pantomime recognition and action recognition) as well as functional knowledge about objects were impaired when the semantic deficit was severe. Semantic and unrelated errors were produced during object use, but actions were always fluent and patients performed normally on a novel tools task in which the semantic demand was minimal. Patients with severe semantic deficits scored borderline on ideational apraxia tasks. Our data indicate that functional semantic knowledge is crucial for using objects in a conventional way and suggest that non-semantic factors, mainly non-declarative components of memory, might compensate to some extent for semantic disorders and guarantee some residual ability to use very common objects independently of semantic knowledge.

  13. Dynorphins regulate the strength of social memory.

    PubMed

    Bilkei-Gorzo, A; Mauer, D; Michel, K; Zimmer, A

    2014-02-01

    Emotionally arousing events like encounter with an unfamiliar con-species produce strong and vivid memories, whereby the hippocampus and amygdala play a crucial role. It is less understood, however, which neurotransmitter systems regulate the strength of social memories, which have a strong emotional component. It was shown previously that dynorphin signalling is involved in the formation and extinction of fear memories, therefore we asked if it influences social memories as well. Mice with a genetic deletion of the prodynorphin gene Pdyn (Pdyn(-/-)) showed a superior partner recognition ability, whereas their performance in the object recognition test was identical as in wild-type mice. Pharmacological blockade of kappa opioid receptors (KORs) led to an enhanced social memory in wild-type animals, whereas activation of KORs reduced the recognition ability of Pdyn(-/-) mice. Partner recognition test situation induced higher elevation in dynorphin A levels in the central and basolateral amygdala as well as in the hippocampus, and also higher dynorphin B levels in the hippocampus than the object recognition test situation. Our result suggests that dynorphin system activity is increased in emotionally arousing situation and it decreases the formation of social memories. Thus, dynorphin signalling is involved in the formation of social memories by diminishing the emotional component of the experience. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Improving speech-in-noise recognition for children with hearing loss: Potential effects of language abilities, binaural summation, and head shadow

    PubMed Central

    Nittrouer, Susan; Caldwell-Tarr, Amanda; Tarr, Eric; Lowenstein, Joanna H.; Rice, Caitlin; Moberly, Aaron C.

    2014-01-01

    Objective: This study examined speech recognition in noise for children with hearing loss, compared it to recognition for children with normal hearing, and examined mechanisms that might explain variance in children’s abilities to recognize speech in noise. Design: Word recognition was measured in two levels of noise, both when the speech and noise were co-located in front and when the noise came separately from one side. Four mechanisms were examined as factors possibly explaining variance: vocabulary knowledge, sensitivity to phonological structure, binaural summation, and head shadow. Study sample: Participants were 113 eight-year-old children. Forty-eight had normal hearing (NH) and 65 had hearing loss: 18 with hearing aids (HAs), 19 with one cochlear implant (CI), and 28 with two CIs. Results: Phonological sensitivity explained a significant amount of between-groups variance in speech-in-noise recognition. Little evidence of binaural summation was found. Head shadow was similar in magnitude for children with NH and with CIs, regardless of whether they wore one or two CIs. Children with HAs showed reduced head shadow effects. Conclusion: These outcomes suggest that in order to improve speech-in-noise recognition for children with hearing loss, intervention needs to be comprehensive, focusing on both language abilities and auditory mechanisms. PMID:23834373

  15. Individual differences in online spoken word recognition: Implications for SLI

    PubMed Central

    McMurray, Bob; Samelson, Vicki M.; Lee, Sung Hee; Tomblin, J. Bruce

    2012-01-01

    Thirty years of research has uncovered the broad principles that characterize spoken word processing across listeners. However, there have been few systematic investigations of individual differences. Such an investigation could help refine models of word recognition by indicating which processing parameters are likely to vary, and could also have important implications for work on language impairment. The present study begins to fill this gap by relating individual differences in overall language ability to variation in online word recognition processes. Using the visual world paradigm, we evaluated online spoken word recognition in adolescents who varied in both basic language abilities and non-verbal cognitive abilities. Eye movements to target, cohort and rhyme objects were monitored during spoken word recognition, as an index of lexical activation. Adolescents with poor language skills showed fewer looks to the target and more fixations to the cohort and rhyme competitors. These results were compared to a number of variants of the TRACE model (McClelland & Elman, 1986) that were constructed to test a range of theoretical approaches to language impairment: impairments at sensory and phonological levels; vocabulary size, and generalized slowing. None were strongly supported, and variation in lexical decay offered the best fit. Thus, basic word recognition processes like lexical decay may offer a new way to characterize processing differences in language impairment. PMID:19836014

  16. Selective verbal recognition memory impairments are associated with atrophy of the language network in non-semantic variants of primary progressive aphasia.

    PubMed

    Nilakantan, Aneesha S; Voss, Joel L; Weintraub, Sandra; Mesulam, M-Marsel; Rogalski, Emily J

    2017-06-01

    Primary progressive aphasia (PPA) is clinically defined by an initial loss of language function and preservation of other cognitive abilities, including episodic memory. While PPA primarily affects the left-lateralized perisylvian language network, some clinical neuropsychological tests suggest concurrent initial memory loss. The goal of this study was to test recognition memory of objects and words in the visual and auditory modality to separate language-processing impairments from retentive memory in PPA. Individuals with non-semantic PPA had longer reaction times and higher false alarms for auditory word stimuli compared to visual object stimuli. Moreover, false alarms for auditory word recognition memory were related to cortical thickness within the left inferior frontal gyrus and left temporal pole, while false alarms for visual object recognition memory was related to cortical thickness within the right-temporal pole. This pattern of results suggests that specific vulnerability in processing verbal stimuli can hinder episodic memory in PPA, and provides evidence for differential contributions of the left and right temporal poles in word and object recognition memory. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Accurate Memory for Object Location by Individuals with Intellectual Disability: Absolute Spatial Tagging Instead of Configural Processing?

    ERIC Educational Resources Information Center

    Giuliani, Fabienne; Favrod, Jerome; Grasset, Francois; Schenk, Francoise

    2011-01-01

    Using head-mounted eye tracker material, we assessed spatial recognition abilities (e.g., reaction to object permutation, removal or replacement with a new object) in participants with intellectual disabilities. The "Intellectual Disabilities (ID)" group (n = 40) obtained a score totalling a 93.7% success rate, whereas the "Normal Control" group…

  18. How does the brain solve visual object recognition?

    PubMed Central

    Zoccolan, Davide; Rust, Nicole C.

    2012-01-01

    Mounting evidence suggests that “core object recognition,” the ability to rapidly recognize objects despite substantial appearance variation, is solved in the brain via a cascade of reflexive, largely feedforward computations that culminate in a powerful neuronal representation in the inferior temporal cortex. However, the algorithm that produces this solution remains little-understood. Here we review evidence ranging from individual neurons, to neuronal populations, to behavior, to computational models. We propose that understanding this algorithm will require using neuronal and psychophysical data to sift through many computational models, each based on building blocks of small, canonical sub-networks with a common functional goal. PMID:22325196

  19. Word-to-picture recognition is a function of motor components mappings at the stage of retrieval.

    PubMed

    Brouillet, Denis; Brouillet, Thibaut; Milhau, Audrey; Heurley, Loïc; Vagnot, Caroline; Brunel, Lionel

    2016-10-01

    Embodied approaches of cognition argue that retrieval involves the re-enactment of both sensory and motor components of the desired remembering. In this study, we investigated the effect of motor action performed to produce the response in a recognition task when this action is compatible with the affordance of the objects that have to be recognised. In our experiment, participants were first asked to learn a list of words referring to graspable objects, and then told to make recognition judgements on pictures. The pictures represented objects where the graspable part was either pointing to the same or to the opposite side of the "Yes" response key. Results show a robust effect of compatibility between objects affordance and response hand. Moreover, this compatibility improves participants' ability of discrimination, suggesting that motor components are relevant cue for memory judgement at the stage of retrieval in a recognition task. More broadly, our data highlight that memory judgements are a function of motor components mappings at the stage of retrieval. © 2015 International Union of Psychological Science.

  20. Neural Encoding of Relative Position

    ERIC Educational Resources Information Center

    Hayworth, Kenneth J.; Lescroart, Mark D.; Biederman, Irving

    2011-01-01

    Late ventral visual areas generally consist of cells having a significant degree of translation invariance. Such a "bag of features" representation is useful for the recognition of individual objects; however, it seems unable to explain our ability to parse a scene into multiple objects and to understand their spatial relationships. We…

  1. [Influence of object material and inter-trial interval on novel object recognition test in mice].

    PubMed

    Li, Sheng-jian; Huang, Zhu-yan; Ye, Yi-lu; Yu, Yue-ping; Zhang, Wei-ping; Wei, Er-qing; Zhang, Qi

    2014-05-01

    To investigate the efficacy of novel object recognition (NOR) test in assessment of learning and memory ability in ICR mice in different experimental conditions. One hundred and thirty male ICR mice were randomly divided into 10 groups: 4 groups for different inter-trial intervals (ITI: 10 min, 90 min, 4 h, 24 h), 4 groups for different object materials (wood-wood, plastic-plastic, plastic-wood, wood-plastic) and 2 groups for repeated test (measured once a day or every 3 days, totally three times in each group). The locomotor tracks in the open field were recorded. The amount of time spent exploring the novel and familiar objects, the discrimination ratio (DR) and the discrimination index (DI) were analyzed. Compared with familiar object, DR and DI of novel object were both increased at ITI of 10 min and 90 min (P<0.01). Exploring time, DR and DI were greatly influenced by different object materials. DR and DI remained stable by using identical object material. NOR test could be done repeatedly in the same batch of mice. NOR test can be used to assess the learning and memory ability in mice at shorter ITI and with identical material. It can be done repeatedly.

  2. Associative (prosop)agnosia without (apparent) perceptual deficits: a case-study.

    PubMed

    Anaki, David; Kaufman, Yakir; Freedman, Morris; Moscovitch, Morris

    2007-04-09

    In associative agnosia early perceptual processing of faces or objects are considered to be intact, while the ability to access stored semantic information about the individual face or object is impaired. Recent claims, however, have asserted that associative agnosia is also characterized by deficits at the perceptual level, which are too subtle to be detected by current neuropsychological tests. Thus, the impaired identification of famous faces or common objects in associative agnosia stems from difficulties in extracting the minute perceptual details required to identify a face or an object. In the present study, we report the case of a patient DBO with a left occipital infarct, who shows impaired object and famous face recognition. Despite his disability, he exhibits a face inversion effect, and is able to select a famous face from among non-famous distractors. In addition, his performance is normal in an immediate and delayed recognition memory for faces, whose external features were deleted. His deficits in face recognition are apparent only when he is required to name a famous face, or select two faces from among a triad of famous figures based on their semantic relationships (a task which does not require access to names). The nature of his deficits in object perception and recognition are similar to his impairments in the face domain. This pattern of behavior supports the notion that apperceptive and associative agnosia reflect distinct and dissociated deficits, which result from damage to different stages of the face and object recognition process.

  3. Novel word acquisition in aphasia: Facing the word-referent ambiguity of natural language learning contexts.

    PubMed

    Peñaloza, Claudia; Mirman, Daniel; Tuomiranta, Leena; Benetello, Annalisa; Heikius, Ida-Maria; Järvinen, Sonja; Majos, Maria C; Cardona, Pedro; Juncadella, Montserrat; Laine, Matti; Martin, Nadine; Rodríguez-Fornells, Antoni

    2016-06-01

    Recent research suggests that some people with aphasia preserve some ability to learn novel words and to retain them in the long-term. However, this novel word learning ability has been studied only in the context of single word-picture pairings. We examined the ability of people with chronic aphasia to learn novel words using a paradigm that presents new word forms together with a limited set of different possible visual referents and requires the identification of the correct word-object associations on the basis of online feedback. We also studied the relationship between word learning ability and aphasia severity, word processing abilities, and verbal short-term memory (STM). We further examined the influence of gross lesion location on new word learning. The word learning task was first validated with a group of forty-five young adults. Fourteen participants with chronic aphasia were administered the task and underwent tests of immediate and long-term recognition memory at 1 week. Their performance was compared to that of a group of fourteen matched controls using growth curve analysis. The learning curve and recognition performance of the aphasia group was significantly below the matched control group, although above-chance recognition performance and case-by-case analyses indicated that some participants with aphasia had learned the correct word-referent mappings. Verbal STM but not word processing abilities predicted word learning ability after controlling for aphasia severity. Importantly, participants with lesions in the left frontal cortex performed significantly worse than participants with lesions that spared the left frontal region both during word learning and on the recognition tests. Our findings indicate that some people with aphasia can preserve the ability to learn a small novel lexicon in an ambiguous word-referent context. This learning and recognition memory ability was associated with verbal STM capacity, aphasia severity and the integrity of the left inferior frontal region. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Novel word acquisition in aphasia: Facing the word-referent ambiguity of natural language learning contexts

    PubMed Central

    Peñaloza, Claudia; Mirman, Daniel; Tuomiranta, Leena; Benetello, Annalisa; Heikius, Ida-Maria; Järvinen, Sonja; Majos, Maria C.; Cardona, Pedro; Juncadella, Montserrat; Laine, Matti; Martin, Nadine; Rodríguez-Fornells, Antoni

    2017-01-01

    Recent research suggests that some people with aphasia preserve some ability to learn novel words and to retain them in the long-term. However, this novel word learning ability has been studied only in the context of single word-picture pairings. We examined the ability of people with chronic aphasia to learn novel words using a paradigm that presents new word forms together with a limited set of different possible visual referents and requires the identification of the correct word-object associations on the basis of online feedback. We also studied the relationship between word learning ability and aphasia severity, word processing abilities, and verbal short-term memory (STM). We further examined the influence of gross lesion location on new word learning. The word learning task was first validated with a group of forty-five young adults. Fourteen participants with chronic aphasia were administered the task and underwent tests of immediate and long-term recognition memory at 1 week. Their performance was compared to that of a group of fourteen matched controls using growth curve analysis. The learning curve and recognition performance of the aphasia group was significantly below the matched control group, although above-chance recognition performance and case-by-case analyses indicated that some participants with aphasia had learned the correct word-referent mappings. Verbal STM but not word processing abilities predicted word learning ability after controlling for aphasia severity. Importantly, participants with lesions in the left frontal cortex performed significantly worse than participants with lesions that spared the left frontal region both during word learning and on the recognition tests. Our findings indicate that some people with aphasia can preserve the ability to learn a small novel lexicon in an ambiguous word-referent context. This learning and recognition memory ability was associated with verbal STM capacity, aphasia severity and the integrity of the left inferior frontal region. PMID:27085892

  5. Spatiotemporal information during unsupervised learning enhances viewpoint invariant object recognition

    PubMed Central

    Tian, Moqian; Grill-Spector, Kalanit

    2015-01-01

    Recognizing objects is difficult because it requires both linking views of an object that can be different and distinguishing objects with similar appearance. Interestingly, people can learn to recognize objects across views in an unsupervised way, without feedback, just from the natural viewing statistics. However, there is intense debate regarding what information during unsupervised learning is used to link among object views. Specifically, researchers argue whether temporal proximity, motion, or spatiotemporal continuity among object views during unsupervised learning is beneficial. Here, we untangled the role of each of these factors in unsupervised learning of novel three-dimensional (3-D) objects. We found that after unsupervised training with 24 object views spanning a 180° view space, participants showed significant improvement in their ability to recognize 3-D objects across rotation. Surprisingly, there was no advantage to unsupervised learning with spatiotemporal continuity or motion information than training with temporal proximity. However, we discovered that when participants were trained with just a third of the views spanning the same view space, unsupervised learning via spatiotemporal continuity yielded significantly better recognition performance on novel views than learning via temporal proximity. These results suggest that while it is possible to obtain view-invariant recognition just from observing many views of an object presented in temporal proximity, spatiotemporal information enhances performance by producing representations with broader view tuning than learning via temporal association. Our findings have important implications for theories of object recognition and for the development of computational algorithms that learn from examples. PMID:26024454

  6. Aging and the Haptic Perception of Material Properties.

    PubMed

    Norman, J Farley; Adkins, Olivia C; Hoyng, Stevie C; Dowell, Catherine J; Pedersen, Lauren E; Gilliam, Ashley N

    2016-12-01

    The ability of 26 younger (mean age was 22.5 years) and older adults (mean age was 72.6 years) to haptically perceive material properties was evaluated. The participants manually explored (for 5 seconds) 42 surfaces twice and placed each of these 84 experimental stimuli into one of seven categories: paper, plastic, metal, wood, stone, fabric, and fur/leather. In general, the participants were best able to identify fur/leather and wood materials; in contrast, recognition performance was worst for stone and paper. Despite similar overall patterns of performance for younger and older participants, the younger adults' recognition accuracies were 26.5% higher. The participants' tactile acuities (assessed by tactile grating orientation discrimination) affected their ability to identify surface material. In particular, the Pearson r correlation coefficient relating the participants' grating orientation thresholds and their material identification performance was -0.8: The higher the participants' thresholds, the lower the material recognition ability. While older adults are able to effectively perceive the solid shape of environmental objects using the sense of touch, their ability to perceive surface materials is significantly compromised.

  7. New technique for real-time distortion-invariant multiobject recognition and classification

    NASA Astrophysics Data System (ADS)

    Hong, Rutong; Li, Xiaoshun; Hong, En; Wang, Zuyi; Wei, Hongan

    2001-04-01

    A real-time hybrid distortion-invariant OPR system was established to make 3D multiobject distortion-invariant automatic pattern recognition. Wavelet transform technique was used to make digital preprocessing of the input scene, to depress the noisy background and enhance the recognized object. A three-layer backpropagation artificial neural network was used in correlation signal post-processing to perform multiobject distortion-invariant recognition and classification. The C-80 and NOA real-time processing ability and the multithread programming technology were used to perform high speed parallel multitask processing and speed up the post processing rate to ROIs. The reference filter library was constructed for the distortion version of 3D object model images based on the distortion parameter tolerance measuring as rotation, azimuth and scale. The real-time optical correlation recognition testing of this OPR system demonstrates that using the preprocessing, post- processing, the nonlinear algorithm os optimum filtering, RFL construction technique and the multithread programming technology, a high possibility of recognition and recognition rate ere obtained for the real-time multiobject distortion-invariant OPR system. The recognition reliability and rate was improved greatly. These techniques are very useful to automatic target recognition.

  8. Attention and L2 Learners' Segmentation of Complex Sentences

    ERIC Educational Resources Information Center

    Hagiwara, Akiko

    2010-01-01

    The main objective of the current study is to investigate L2 Japanese learners' ability to segment complex sentences from aural input. Elementary- and early intermediate-level L2 learners in general have not developed the ability to use syntactic cues to interpret the meaning of sentences they hear. In the case of Japanese, recognition of…

  9. A study of perceptual analysis in a high-level autistic subject with exceptional graphic abilities.

    PubMed

    Mottron, L; Belleville, S

    1993-11-01

    We report here the case study of a patient (E.C.) with an Asperger syndrome, or autism with quasinormal intelligence, who shows an outstanding ability for three-dimensional drawing of inanimate objects (savant syndrome). An assessment of the subsystems proposed in recent models of object recognition evidenced intact perceptual analysis and identification. The initial (or primal sketch), viewer-centered (or 2-1/2-D), or object-centered (3-D) representations and the recognition and name levels were functional. In contrast, E.C.'s pattern of performance in three different types of tasks converge to suggest an anomaly in the hierarchical organization of the local and global parts of a figure: a local interference effect in incongruent hierarchical visual stimuli, a deficit in relating local parts to global form information in impossible figures, and an absence of feature-grouping in graphic recall. The results are discussed in relation to normal visual perception and to current accounts of the savant syndrome in autism.

  10. The Dynamic Multisensory Engram: Neural Circuitry Underlying Crossmodal Object Recognition in Rats Changes with the Nature of Object Experience.

    PubMed

    Jacklin, Derek L; Cloke, Jacob M; Potvin, Alphonse; Garrett, Inara; Winters, Boyer D

    2016-01-27

    Rats, humans, and monkeys demonstrate robust crossmodal object recognition (CMOR), identifying objects across sensory modalities. We have shown that rats' performance of a spontaneous tactile-to-visual CMOR task requires functional integration of perirhinal (PRh) and posterior parietal (PPC) cortices, which seemingly provide visual and tactile object feature processing, respectively. However, research with primates has suggested that PRh is sufficient for multisensory object representation. We tested this hypothesis in rats using a modification of the CMOR task in which multimodal preexposure to the to-be-remembered objects significantly facilitates performance. In the original CMOR task, with no preexposure, reversible lesions of PRh or PPC produced patterns of impairment consistent with modality-specific contributions. Conversely, in the CMOR task with preexposure, PPC lesions had no effect, whereas PRh involvement was robust, proving necessary for phases of the task that did not require PRh activity when rats did not have preexposure; this pattern was supported by results from c-fos imaging. We suggest that multimodal preexposure alters the circuitry responsible for object recognition, in this case obviating the need for PPC contributions and expanding PRh involvement, consistent with the polymodal nature of PRh connections and results from primates indicating a key role for PRh in multisensory object representation. These findings have significant implications for our understanding of multisensory information processing, suggesting that the nature of an individual's past experience with an object strongly determines the brain circuitry involved in representing that object's multisensory features in memory. The ability to integrate information from multiple sensory modalities is crucial to the survival of organisms living in complex environments. Appropriate responses to behaviorally relevant objects are informed by integration of multisensory object features. We used crossmodal object recognition tasks in rats to study the neurobiological basis of multisensory object representation. When rats had no prior exposure to the to-be-remembered objects, the spontaneous ability to recognize objects across sensory modalities relied on functional interaction between multiple cortical regions. However, prior multisensory exploration of the task-relevant objects remapped cortical contributions, negating the involvement of one region and significantly expanding the role of another. This finding emphasizes the dynamic nature of cortical representation of objects in relation to past experience. Copyright © 2016 the authors 0270-6474/16/361273-17$15.00/0.

  11. Newborn chickens generate invariant object representations at the onset of visual object experience

    PubMed Central

    Wood, Justin N.

    2013-01-01

    To recognize objects quickly and accurately, mature visual systems build invariant object representations that generalize across a range of novel viewing conditions (e.g., changes in viewpoint). To date, however, the origins of this core cognitive ability have not yet been established. To examine how invariant object recognition develops in a newborn visual system, I raised chickens from birth for 2 weeks within controlled-rearing chambers. These chambers provided complete control over all visual object experiences. In the first week of life, subjects’ visual object experience was limited to a single virtual object rotating through a 60° viewpoint range. In the second week of life, I examined whether subjects could recognize that virtual object from novel viewpoints. Newborn chickens were able to generate viewpoint-invariant representations that supported object recognition across large, novel, and complex changes in the object’s appearance. Thus, newborn visual systems can begin building invariant object representations at the onset of visual object experience. These abstract representations can be generated from sparse data, in this case from a visual world containing a single virtual object seen from a limited range of viewpoints. This study shows that powerful, robust, and invariant object recognition machinery is an inherent feature of the newborn brain. PMID:23918372

  12. The subjective experience of object recognition: comparing metacognition for object detection and object categorization.

    PubMed

    Meuwese, Julia D I; van Loon, Anouk M; Lamme, Victor A F; Fahrenfort, Johannes J

    2014-05-01

    Perceptual decisions seem to be made automatically and almost instantly. Constructing a unitary subjective conscious experience takes more time. For example, when trying to avoid a collision with a car on a foggy road you brake or steer away in a reflex, before realizing you were in a near accident. This subjective aspect of object recognition has been given little attention. We used metacognition (assessed with confidence ratings) to measure subjective experience during object detection and object categorization for degraded and masked objects, while objective performance was matched. Metacognition was equal for degraded and masked objects, but categorization led to higher metacognition than did detection. This effect turned out to be driven by a difference in metacognition for correct rejection trials, which seemed to be caused by an asymmetry of the distractor stimulus: It does not contain object-related information in the detection task, whereas it does contain such information in the categorization task. Strikingly, this asymmetry selectively impacted metacognitive ability when objective performance was matched. This finding reveals a fundamental difference in how humans reflect versus act on information: When matching the amount of information required to perform two tasks at some objective level of accuracy (acting), metacognitive ability (reflecting) is still better in tasks that rely on positive evidence (categorization) than in tasks that rely more strongly on an absence of evidence (detection).

  13. Describing, using 'recognition cones'. [parallel-series model with English-like computer program

    NASA Technical Reports Server (NTRS)

    Uhr, L.

    1973-01-01

    A parallel-serial 'recognition cone' model is examined, taking into account the model's ability to describe scenes of objects. An actual program is presented in an English-like language. The concept of a 'description' is discussed together with possible types of descriptive information. Questions regarding the level and the variety of detail are considered along with approaches for improving the serial representations of parallel systems.

  14. Impact of Social Cognition on Alcohol Dependence Treatment Outcome: Poorer Facial Emotion Recognition Predicts Relapse/Dropout.

    PubMed

    Rupp, Claudia I; Derntl, Birgit; Osthaus, Friederike; Kemmler, Georg; Fleischhacker, W Wolfgang

    2017-12-01

    Despite growing evidence for neurobehavioral deficits in social cognition in alcohol use disorder (AUD), the clinical relevance remains unclear, and little is known about its impact on treatment outcome. This study prospectively investigated the impact of neurocognitive social abilities at treatment onset on treatment completion. Fifty-nine alcohol-dependent patients were assessed with measures of social cognition including 3 core components of empathy via paradigms measuring: (i) emotion recognition (the ability to recognize emotions via facial expression), (ii) emotional perspective taking, and (iii) affective responsiveness at the beginning of inpatient treatment for alcohol dependence. Subjective measures were also obtained, including estimates of task performance and a self-report measure of empathic abilities (Interpersonal Reactivity Index). According to treatment outcomes, patients were divided into a patient group with a regular treatment course (e.g., with planned discharge and without relapse during treatment) or an irregular treatment course (e.g., relapse and/or premature and unplanned termination of treatment, "dropout"). Compared with patients completing treatment in a regular fashion, patients with relapse and/or dropout of treatment had significantly poorer facial emotion recognition ability at treatment onset. Additional logistic regression analyses confirmed these results and identified poor emotion recognition performance as a significant predictor for relapse/dropout. Self-report (subjective) measures did not correspond with neurobehavioral social cognition measures, respectively objective task performance. Analyses of individual subtypes of facial emotions revealed poorer recognition particularly of disgust, anger, and no (neutral faces) emotion in patients with relapse/dropout. Social cognition in AUD is clinically relevant. Less successful treatment outcome was associated with poorer facial emotion recognition ability at the beginning of treatment. Impaired facial emotion recognition represents a neurocognitive risk factor that should be taken into account in alcohol dependence treatment. Treatments targeting the improvement of these social cognition deficits in AUD may offer a promising future approach. Copyright © 2017 by the Research Society on Alcoholism.

  15. Hippocampal Infusion of Zeta Inhibitory Peptide Impairs Recent, but Not Remote, Recognition Memory in Rats

    PubMed Central

    Hales, Jena B.; Ocampo, Amber C.; Broadbent, Nicola J.; Clark, Robert E.

    2015-01-01

    Spatial memory in rodents can be erased following the infusion of zeta inhibitory peptide (ZIP) into the dorsal hippocampus via indwelling guide cannulas. It is believed that ZIP impairs spatial memory by reversing established late-phase long-term potentiation (LTP). However, it is unclear whether other forms of hippocampus-dependent memory, such as recognition memory, are also supported by hippocampal LTP. In the current study, we tested recognition memory in rats following hippocampal ZIP infusion. In order to combat the limited targeting of infusions via cannula, we implemented a stereotaxic approach for infusing ZIP throughout the dorsal, intermediate, and ventral hippocampus. Rats infused with ZIP 3–7 days after training on the novel object recognition task exhibited impaired object recognition memory compared to control rats (those infused with aCSF). In contrast, rats infused with ZIP 1 month after training performed similar to control rats. The ability to form new memories after ZIP infusions remained intact. We suggest that enhanced recognition memory for recent events is supported by hippocampal LTP, which can be reversed by hippocampal ZIP infusion. PMID:26380123

  16. Effects of Iris Surface Curvature on Iris Recognition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thompson, Joseph T; Flynn, Patrick J; Bowyer, Kevin W

    To focus on objects at various distances, the lens of the eye must change shape to adjust its refractive power. This change in lens shape causes a change in the shape of the iris surface which can be measured by examining the curvature of the iris. This work isolates the variable of iris curvature in the recognition process and shows that differences in iris curvature degrade matching ability. To our knowledge, no other work has examined the effects of varying iris curvature on matching ability. To examine this degradation, we conduct a matching experiment across pairs of images with varyingmore » degrees of iris curvature differences. The results show a statistically signi cant degradation in matching ability. Finally, the real world impact of these ndings is discussed« less

  17. a Two-Step Classification Approach to Distinguishing Similar Objects in Mobile LIDAR Point Clouds

    NASA Astrophysics Data System (ADS)

    He, H.; Khoshelham, K.; Fraser, C.

    2017-09-01

    Nowadays, lidar is widely used in cultural heritage documentation, urban modeling, and driverless car technology for its fast and accurate 3D scanning ability. However, full exploitation of the potential of point cloud data for efficient and automatic object recognition remains elusive. Recently, feature-based methods have become very popular in object recognition on account of their good performance in capturing object details. Compared with global features describing the whole shape of the object, local features recording the fractional details are more discriminative and are applicable for object classes with considerable similarity. In this paper, we propose a two-step classification approach based on point feature histograms and the bag-of-features method for automatic recognition of similar objects in mobile lidar point clouds. Lamp post, street light and traffic sign are grouped as one category in the first-step classification for their inter similarity compared with tree and vehicle. A finer classification of the lamp post, street light and traffic sign based on the result of the first-step classification is implemented in the second step. The proposed two-step classification approach is shown to yield a considerable improvement over the conventional one-step classification approach.

  18. Speech recognition and parent-ratings from auditory development questionnaires in children who are hard of hearing

    PubMed Central

    McCreery, Ryan W.; Walker, Elizabeth A.; Spratford, Meredith; Oleson, Jacob; Bentler, Ruth; Holte, Lenore; Roush, Patricia

    2015-01-01

    Objectives Progress has been made in recent years in the provision of amplification and early intervention for children who are hard of hearing. However, children who use hearing aids (HA) may have inconsistent access to their auditory environment due to limitations in speech audibility through their HAs or limited HA use. The effects of variability in children’s auditory experience on parent-report auditory skills questionnaires and on speech recognition in quiet and in noise were examined for a large group of children who were followed as part of the Outcomes of Children with Hearing Loss study. Design Parent ratings on auditory development questionnaires and children’s speech recognition were assessed for 306 children who are hard of hearing. Children ranged in age from 12 months to 9 years of age. Three questionnaires involving parent ratings of auditory skill development and behavior were used, including the LittlEARS Auditory Questionnaire, Parents Evaluation of Oral/Aural Performance in Children Rating Scale, and an adaptation of the Speech, Spatial and Qualities of Hearing scale. Speech recognition in quiet was assessed using the Open and Closed set task, Early Speech Perception Test, Lexical Neighborhood Test, and Phonetically-balanced Kindergarten word lists. Speech recognition in noise was assessed using the Computer-Assisted Speech Perception Assessment. Children who are hard of hearing were compared to peers with normal hearing matched for age, maternal educational level and nonverbal intelligence. The effects of aided audibility, HA use and language ability on parent responses to auditory development questionnaires and on children’s speech recognition were also examined. Results Children who are hard of hearing had poorer performance than peers with normal hearing on parent ratings of auditory skills and had poorer speech recognition. Significant individual variability among children who are hard of hearing was observed. Children with greater aided audibility through their HAs, more hours of HA use and better language abilities generally had higher parent ratings of auditory skills and better speech recognition abilities in quiet and in noise than peers with less audibility, more limited HA use or poorer language abilities. In addition to the auditory and language factors that were predictive for speech recognition in quiet, phonological working memory was also a positive predictor for word recognition abilities in noise. Conclusions Children who are hard of hearing continue to experience delays in auditory skill development and speech recognition abilities compared to peers with normal hearing. However, significant improvements in these domains have occurred in comparison to similar data reported prior to the adoption of universal newborn hearing screening and early intervention programs for children who are hard of hearing. Increasing the audibility of speech has a direct positive effect on auditory skill development and speech recognition abilities, and may also enhance these skills by improving language abilities in children who are hard of hearing. Greater number of hours of HA use also had a significant positive impact on parent ratings of auditory skills and children’s speech recognition. PMID:26731160

  19. Automation of the novel object recognition task for use in adolescent rats

    PubMed Central

    Silvers, Janelle M.; Harrod, Steven B.; Mactutus, Charles F.; Booze, Rosemarie M.

    2010-01-01

    The novel object recognition task is gaining popularity for its ability to test a complex behavior which relies on the integrity of memory and attention systems without placing undue stress upon the animal. While the task places few requirements upon the animal, it traditionally requires the experimenter to observe the test phase directly and record behavior. This approach can severely limit the number of subjects which can be tested in a reasonable period of time, as training and testing occur on the same day and span several hours. The current study was designed to test the feasibility of automation of this task for adolescent rats using standard activity chambers, with the goals of increased objectivity, flexibility, and throughput of subjects. PMID:17719091

  20. Exploring the Link Between Cognitive Abilities and Speech Recognition in the Elderly Under Different Listening Conditions

    PubMed Central

    Nuesse, Theresa; Steenken, Rike; Neher, Tobias; Holube, Inga

    2018-01-01

    Elderly listeners are known to differ considerably in their ability to understand speech in noise. Several studies have addressed the underlying factors that contribute to these differences. These factors include audibility, and age-related changes in supra-threshold auditory processing abilities, and it has been suggested that differences in cognitive abilities may also be important. The objective of this study was to investigate associations between performance in cognitive tasks and speech recognition under different listening conditions in older adults with either age appropriate hearing or hearing-impairment. To that end, speech recognition threshold (SRT) measurements were performed under several masking conditions that varied along the perceptual dimensions of dip listening, spatial separation, and informational masking. In addition, a neuropsychological test battery was administered, which included measures of verbal working and short-term memory, executive functioning, selective and divided attention, and lexical and semantic abilities. Age-matched groups of older adults with either age-appropriate hearing (ENH, n = 20) or aided hearing impairment (EHI, n = 21) participated. In repeated linear regression analyses, composite scores of cognitive test outcomes (evaluated using PCA) were included to predict SRTs. These associations were different for the two groups. When hearing thresholds were controlled for, composed cognitive factors were significantly associated with the SRTs for the ENH listeners. Whereas better lexical and semantic abilities were associated with lower (better) SRTs in this group, there was a negative association between attentional abilities and speech recognition in the presence of spatially separated speech-like maskers. For the EHI group, the pure-tone thresholds (averaged across 0.5, 1, 2, and 4 kHz) were significantly associated with the SRTs, despite the fact that all signals were amplified and therefore in principle audible. PMID:29867654

  1. Behavioral methods for the study of the Ras-ERK pathway in memory formation and consolidation: passive avoidance and novel object recognition tests.

    PubMed

    d'Isa, Raffaele; Brambilla, Riccardo; Fasano, Stefania

    2014-01-01

    Memory is a high-level brain function that enables organisms to adapt their behavioral responses to the environment, hence increasing their probability of survival. The Ras-ERK pathway is a key molecular intracellular signalling cascade for memory consolidation. In this chapter we will describe two main one-trial behavioral tests commonly used in the field of memory research in order to assess the role of Ras-ERK signalling in long-term memory: passive avoidance and object recognition. Passive avoidance (PA) is a fear-motivated instrumental learning task, designed by Jarvik and Essman in 1960, in which animals learn to refrain from emitting a behavioral response that has previously been associated with a punishment. We will describe here the detailed protocol and show some examples of how PA can reveal impairments or enhancements in memory consolidation following loss or gain of function genetic manipulations of the Ras-ERK pathway. The phenotypes of global mutants as Ras-GRF1 KO, GENA53, and ERK1 KO mice, as well as of conditional region-specific mutants (striatal K-CREB mice), will be illustrated as examples. Novel object recognition (NOR), developed by Ennaceur and Delacour in 1988, is instead a more recent and highly ecological test, which relies on the natural tendency of rodents to spontaneously approach and explore novel objects, representing hence a useful non-stressful tool for the study of memory in animals without the employment of punishments or starvation/water restriction regimens. Careful indications will be given on how to select the positions for the novel object, in order to counterbalance for individual side preferences among mice during the training. Finally, the methods for calculating two learning indexes will be described. In addition to the classical discrimination index (DI) that measures the ability of an animal to discriminate between two different objects which are presented at the same time, we will describe the formula of a new index that we present here for the first time, the recognition index (RI), which quantifies the ability of an animal to recognize a same object at different time points and that, by taking into account the basal individual preferences displayed during the training, can give a more accurate measure of an animal's actual recognition memory.

  2. Object recognition with hierarchical discriminant saliency networks.

    PubMed

    Han, Sunhyoung; Vasconcelos, Nuno

    2014-01-01

    The benefits of integrating attention and object recognition are investigated. While attention is frequently modeled as a pre-processor for recognition, we investigate the hypothesis that attention is an intrinsic component of recognition and vice-versa. This hypothesis is tested with a recognition model, the hierarchical discriminant saliency network (HDSN), whose layers are top-down saliency detectors, tuned for a visual class according to the principles of discriminant saliency. As a model of neural computation, the HDSN has two possible implementations. In a biologically plausible implementation, all layers comply with the standard neurophysiological model of visual cortex, with sub-layers of simple and complex units that implement a combination of filtering, divisive normalization, pooling, and non-linearities. In a convolutional neural network implementation, all layers are convolutional and implement a combination of filtering, rectification, and pooling. The rectification is performed with a parametric extension of the now popular rectified linear units (ReLUs), whose parameters can be tuned for the detection of target object classes. This enables a number of functional enhancements over neural network models that lack a connection to saliency, including optimal feature denoising mechanisms for recognition, modulation of saliency responses by the discriminant power of the underlying features, and the ability to detect both feature presence and absence. In either implementation, each layer has a precise statistical interpretation, and all parameters are tuned by statistical learning. Each saliency detection layer learns more discriminant saliency templates than its predecessors and higher layers have larger pooling fields. This enables the HDSN to simultaneously achieve high selectivity to target object classes and invariance. The performance of the network in saliency and object recognition tasks is compared to those of models from the biological and computer vision literatures. This demonstrates benefits for all the functional enhancements of the HDSN, the class tuning inherent to discriminant saliency, and saliency layers based on templates of increasing target selectivity and invariance. Altogether, these experiments suggest that there are non-trivial benefits in integrating attention and recognition.

  3. Invariant visual object recognition and shape processing in rats

    PubMed Central

    Zoccolan, Davide

    2015-01-01

    Invariant visual object recognition is the ability to recognize visual objects despite the vastly different images that each object can project onto the retina during natural vision, depending on its position and size within the visual field, its orientation relative to the viewer, etc. Achieving invariant recognition represents such a formidable computational challenge that is often assumed to be a unique hallmark of primate vision. Historically, this has limited the invasive investigation of its neuronal underpinnings to monkey studies, in spite of the narrow range of experimental approaches that these animal models allow. Meanwhile, rodents have been largely neglected as models of object vision, because of the widespread belief that they are incapable of advanced visual processing. However, the powerful array of experimental tools that have been developed to dissect neuronal circuits in rodents has made these species very attractive to vision scientists too, promoting a new tide of studies that have started to systematically explore visual functions in rats and mice. Rats, in particular, have been the subjects of several behavioral studies, aimed at assessing how advanced object recognition and shape processing is in this species. Here, I review these recent investigations, as well as earlier studies of rat pattern vision, to provide an historical overview and a critical summary of the status of the knowledge about rat object vision. The picture emerging from this survey is very encouraging with regard to the possibility of using rats as complementary models to monkeys in the study of higher-level vision. PMID:25561421

  4. Compact hybrid optoelectrical unit for image processing and recognition

    NASA Astrophysics Data System (ADS)

    Cheng, Gang; Jin, Guofan; Wu, Minxian; Liu, Haisong; He, Qingsheng; Yuan, ShiFu

    1998-07-01

    In this paper a compact opto-electric unit (CHOEU) for digital image processing and recognition is proposed. The central part of CHOEU is an incoherent optical correlator, which is realized with a SHARP QA-1200 8.4 inch active matrix TFT liquid crystal display panel which is used as two real-time spatial light modulators for both the input image and reference template. CHOEU can do two main processing works. One is digital filtering; the other is object matching. Using CHOEU an edge-detection operator is realized to extract the edges from the input images. Then the reprocessed images are sent into the object recognition unit for identifying the important targets. A novel template- matching method is proposed for gray-tome image recognition. A positive and negative cycle-encoding method is introduced to realize the absolute difference measurement pixel- matching on a correlator structure simply. The system has god fault-tolerance ability for rotation distortion, Gaussian noise disturbance or information losing. The experiments are given at the end of this paper.

  5. Human detection in sensitive security areas through recognition of omega shapes using MACH filters

    NASA Astrophysics Data System (ADS)

    Rehman, Saad; Riaz, Farhan; Hassan, Ali; Liaquat, Muwahida; Young, Rupert

    2015-03-01

    Human detection has gained considerable importance in aggravated security scenarios over recent times. An effective security application relies strongly on detailed information regarding the scene under consideration. A larger accumulation of humans than the number of personal authorized to visit a security controlled area must be effectively detected, amicably alarmed and immediately monitored. A framework involving a novel combination of some existing techniques allows an immediate detection of an undesirable crowd in a region under observation. Frame differencing provides a clear visibility of moving objects while highlighting those objects in each frame acquired by a real time camera. Training of a correlation pattern recognition based filter on desired shapes such as elliptical representations of human faces (variants of an Omega Shape) yields correct detections. The inherent ability of correlation pattern recognition filters caters for angular rotations in the target object and renders decision regarding the existence of the number of persons exceeding an allowed figure in the monitored area.

  6. Spoken Word Recognition in Toddlers Who Use Cochlear Implants

    PubMed Central

    Grieco-Calub, Tina M.; Saffran, Jenny R.; Litovsky, Ruth Y.

    2010-01-01

    Purpose The purpose of this study was to assess the time course of spoken word recognition in 2-year-old children who use cochlear implants (CIs) in quiet and in the presence of speech competitors. Method Children who use CIs and age-matched peers with normal acoustic hearing listened to familiar auditory labels, in quiet or in the presence of speech competitors, while their eye movements to target objects were digitally recorded. Word recognition performance was quantified by measuring each child’s reaction time (i.e., the latency between the spoken auditory label and the first look at the target object) and accuracy (i.e., the amount of time that children looked at target objects within 367 ms to 2,000 ms after the label onset). Results Children with CIs were less accurate and took longer to fixate target objects than did age-matched children without hearing loss. Both groups of children showed reduced performance in the presence of the speech competitors, although many children continued to recognize labels at above-chance levels. Conclusion The results suggest that the unique auditory experience of young CI users slows the time course of spoken word recognition abilities. In addition, real-world listening environments may slow language processing in young language learners, regardless of their hearing status. PMID:19951921

  7. Agnosic vision is like peripheral vision, which is limited by crowding.

    PubMed

    Strappini, Francesca; Pelli, Denis G; Di Pace, Enrico; Martelli, Marialuisa

    2017-04-01

    Visual agnosia is a neuropsychological impairment of visual object recognition despite near-normal acuity and visual fields. A century of research has provided only a rudimentary account of the functional damage underlying this deficit. We find that the object-recognition ability of agnosic patients viewing an object directly is like that of normally-sighted observers viewing it indirectly, with peripheral vision. Thus, agnosic vision is like peripheral vision. We obtained 14 visual-object-recognition tests that are commonly used for diagnosis of visual agnosia. Our "standard" normal observer took these tests at various eccentricities in his periphery. Analyzing the published data of 32 apperceptive agnosia patients and a group of 14 posterior cortical atrophy (PCA) patients on these tests, we find that each patient's pattern of object recognition deficits is well characterized by one number, the equivalent eccentricity at which our standard observer's peripheral vision is like the central vision of the agnosic patient. In other words, each agnosic patient's equivalent eccentricity is conserved across tests. Across patients, equivalent eccentricity ranges from 4 to 40 deg, which rates severity of the visual deficit. In normal peripheral vision, the required size to perceive a simple image (e.g., an isolated letter) is limited by acuity, and that for a complex image (e.g., a face or a word) is limited by crowding. In crowding, adjacent simple objects appear unrecognizably jumbled unless their spacing exceeds the crowding distance, which grows linearly with eccentricity. Besides conservation of equivalent eccentricity across object-recognition tests, we also find conservation, from eccentricity to agnosia, of the relative susceptibility of recognition of ten visual tests. These findings show that agnosic vision is like eccentric vision. Whence crowding? Peripheral vision, strabismic amblyopia, and possibly apperceptive agnosia are all limited by crowding, making it urgent to know what drives crowding. Acuity does not (Song et al., 2014), but neural density might: neurons per deg 2 in the crowding-relevant cortical area. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Experience improves feature extraction in Drosophila.

    PubMed

    Peng, Yueqing; Xi, Wang; Zhang, Wei; Zhang, Ke; Guo, Aike

    2007-05-09

    Previous exposure to a pattern in the visual scene can enhance subsequent recognition of that pattern in many species from honeybees to humans. However, whether previous experience with a visual feature of an object, such as color or shape, can also facilitate later recognition of that particular feature from multiple visual features is largely unknown. Visual feature extraction is the ability to select the key component from multiple visual features. Using a visual flight simulator, we designed a novel protocol for visual feature extraction to investigate the effects of previous experience on visual reinforcement learning in Drosophila. We found that, after conditioning with a visual feature of objects among combinatorial shape-color features, wild-type flies exhibited poor ability to extract the correct visual feature. However, the ability for visual feature extraction was greatly enhanced in flies trained previously with that visual feature alone. Moreover, we demonstrated that flies might possess the ability to extract the abstract category of "shape" but not a particular shape. Finally, this experience-dependent feature extraction is absent in flies with defective MBs, one of the central brain structures in Drosophila. Our results indicate that previous experience can enhance visual feature extraction in Drosophila and that MBs are required for this experience-dependent visual cognition.

  9. Relation between speech-in-noise threshold, hearing loss and cognition from 40-69 years of age.

    PubMed

    Moore, David R; Edmondson-Jones, Mark; Dawes, Piers; Fortnum, Heather; McCormack, Abby; Pierzycki, Robert H; Munro, Kevin J

    2014-01-01

    Healthy hearing depends on sensitive ears and adequate brain processing. Essential aspects of both hearing and cognition decline with advancing age, but it is largely unknown how one influences the other. The current standard measure of hearing, the pure-tone audiogram is not very cognitively demanding and does not predict well the most important yet challenging use of hearing, listening to speech in noisy environments. We analysed data from UK Biobank that asked 40-69 year olds about their hearing, and assessed their ability on tests of speech-in-noise hearing and cognition. About half a million volunteers were recruited through NHS registers. Respondents completed 'whole-body' testing in purpose-designed, community-based test centres across the UK. Objective hearing (spoken digit recognition in noise) and cognitive (reasoning, memory, processing speed) data were analysed using logistic and multiple regression methods. Speech hearing in noise declined exponentially with age for both sexes from about 50 years, differing from previous audiogram data that showed a more linear decline from <40 years for men, and consistently less hearing loss for women. The decline in speech-in-noise hearing was especially dramatic among those with lower cognitive scores. Decreasing cognitive ability and increasing age were both independently associated with decreasing ability to hear speech-in-noise (0.70 and 0.89 dB, respectively) among the population studied. Men subjectively reported up to 60% higher rates of difficulty hearing than women. Workplace noise history associated with difficulty in both subjective hearing and objective speech hearing in noise. Leisure noise history was associated with subjective, but not with objective difficulty hearing. Older people have declining cognitive processing ability associated with reduced ability to hear speech in noise, measured by recognition of recorded spoken digits. Subjective reports of hearing difficulty generally show a higher prevalence than objective measures, suggesting that current objective methods could be extended further.

  10. Relation between Speech-in-Noise Threshold, Hearing Loss and Cognition from 40–69 Years of Age

    PubMed Central

    Moore, David R.; Edmondson-Jones, Mark; Dawes, Piers; Fortnum, Heather; McCormack, Abby; Pierzycki, Robert H.; Munro, Kevin J.

    2014-01-01

    Background Healthy hearing depends on sensitive ears and adequate brain processing. Essential aspects of both hearing and cognition decline with advancing age, but it is largely unknown how one influences the other. The current standard measure of hearing, the pure-tone audiogram is not very cognitively demanding and does not predict well the most important yet challenging use of hearing, listening to speech in noisy environments. We analysed data from UK Biobank that asked 40–69 year olds about their hearing, and assessed their ability on tests of speech-in-noise hearing and cognition. Methods and Findings About half a million volunteers were recruited through NHS registers. Respondents completed ‘whole-body’ testing in purpose-designed, community-based test centres across the UK. Objective hearing (spoken digit recognition in noise) and cognitive (reasoning, memory, processing speed) data were analysed using logistic and multiple regression methods. Speech hearing in noise declined exponentially with age for both sexes from about 50 years, differing from previous audiogram data that showed a more linear decline from <40 years for men, and consistently less hearing loss for women. The decline in speech-in-noise hearing was especially dramatic among those with lower cognitive scores. Decreasing cognitive ability and increasing age were both independently associated with decreasing ability to hear speech-in-noise (0.70 and 0.89 dB, respectively) among the population studied. Men subjectively reported up to 60% higher rates of difficulty hearing than women. Workplace noise history associated with difficulty in both subjective hearing and objective speech hearing in noise. Leisure noise history was associated with subjective, but not with objective difficulty hearing. Conclusions Older people have declining cognitive processing ability associated with reduced ability to hear speech in noise, measured by recognition of recorded spoken digits. Subjective reports of hearing difficulty generally show a higher prevalence than objective measures, suggesting that current objective methods could be extended further. PMID:25229622

  11. Detecting Superior Face Recognition Skills in a Large Sample of Young British Adults

    PubMed Central

    Bobak, Anna K.; Pampoulov, Philip; Bate, Sarah

    2016-01-01

    The Cambridge Face Memory Test Long Form (CFMT+) and Cambridge Face Perception Test (CFPT) are typically used to assess the face processing ability of individuals who believe they have superior face recognition skills. Previous large-scale studies have presented norms for the CFPT but not the CFMT+. However, previous research has also highlighted the necessity for establishing country-specific norms for these tests, indicating that norming data is required for both tests using young British adults. The current study addressed this issue in 254 British participants. In addition to providing the first norm for performance on the CFMT+ in any large sample, we also report the first UK specific cut-off for superior face recognition on the CFPT. Further analyses identified a small advantage for females on both tests, and only small associations between objective face recognition skills and self-report measures. A secondary aim of the study was to examine the relationship between trait or social anxiety and face processing ability, and no associations were noted. The implications of these findings for the classification of super-recognizers are discussed. PMID:27713706

  12. Prevalence of face recognition deficits in middle childhood.

    PubMed

    Bennetts, Rachel J; Murray, Ebony; Boyce, Tian; Bate, Sarah

    2017-02-01

    Approximately 2-2.5% of the adult population is believed to show severe difficulties with face recognition, in the absence of any neurological injury-a condition known as developmental prosopagnosia (DP). However, to date no research has attempted to estimate the prevalence of face recognition deficits in children, possibly because there are very few child-friendly, well-validated tests of face recognition. In the current study, we examined face and object recognition in a group of primary school children (aged 5-11 years), to establish whether our tests were suitable for children and to provide an estimate of face recognition difficulties in children. In Experiment 1 (n = 184), children completed a pre-existing test of child face memory, the Cambridge Face Memory Test-Kids (CFMT-K), and a bicycle test with the same format. In Experiment 2 (n = 413), children completed three-alternative forced-choice matching tasks with faces and bicycles. All tests showed good psychometric properties. The face and bicycle tests were well matched for difficulty and showed a similar developmental trajectory. Neither the memory nor the matching tests were suitable to detect impairments in the youngest groups of children, but both tests appear suitable to screen for face recognition problems in middle childhood. In the current sample, 1.2-5.2% of children showed difficulties with face recognition; 1.2-4% showed face-specific difficulties-that is, poor face recognition with typical object recognition abilities. This is somewhat higher than previous adult estimates: It is possible that face matching tests overestimate the prevalence of face recognition difficulties in children; alternatively, some children may "outgrow" face recognition difficulties.

  13. Biased figure-ground assignment affects conscious object recognition in spatial neglect.

    PubMed

    Eramudugolla, Ranmalee; Driver, Jon; Mattingley, Jason B

    2010-09-01

    Unilateral spatial neglect is a disorder of attention and spatial representation, in which early visual processes such as figure-ground segmentation have been assumed to be largely intact. There is evidence, however, that the spatial attention bias underlying neglect can bias the segmentation of a figural region from its background. Relatively few studies have explicitly examined the effect of spatial neglect on processing the figures that result from such scene segmentation. Here, we show that a neglect patient's bias in figure-ground segmentation directly influences his conscious recognition of these figures. By varying the relative salience of figural and background regions in static, two-dimensional displays, we show that competition between elements in such displays can modulate a neglect patient's ability to recognise parsed figures in a scene. The findings provide insight into the interaction between scene segmentation, explicit object recognition, and attention.

  14. Emergence of transformation-tolerant representations of visual objects in rat lateral extrastriate cortex

    PubMed Central

    Tafazoli, Sina; Safaai, Houman; De Franceschi, Gioia; Rosselli, Federica Bianca; Vanzella, Walter; Riggi, Margherita; Buffolo, Federica; Panzeri, Stefano; Zoccolan, Davide

    2017-01-01

    Rodents are emerging as increasingly popular models of visual functions. Yet, evidence that rodent visual cortex is capable of advanced visual processing, such as object recognition, is limited. Here we investigate how neurons located along the progression of extrastriate areas that, in the rat brain, run laterally to primary visual cortex, encode object information. We found a progressive functional specialization of neural responses along these areas, with: (1) a sharp reduction of the amount of low-level, energy-related visual information encoded by neuronal firing; and (2) a substantial increase in the ability of both single neurons and neuronal populations to support discrimination of visual objects under identity-preserving transformations (e.g., position and size changes). These findings strongly argue for the existence of a rat object-processing pathway, and point to the rodents as promising models to dissect the neuronal circuitry underlying transformation-tolerant recognition of visual objects. DOI: http://dx.doi.org/10.7554/eLife.22794.001 PMID:28395730

  15. Advanced Age Dissociates Dual Functions of the Perirhinal Cortex

    PubMed Central

    Burke, Sara N.; Maurer, Andrew P.; Nematollahi, Saman; Uprety, Ajay; Wallace, Jenelle L.

    2014-01-01

    The perirhinal cortex (PRC) is proposed to both represent high-order sensory information and maintain those representations across delays. These cognitive processes are required for recognition memory, which declines during normal aging. Whether or not advanced age affects the ability of PRC principal cells to support these dual roles, however, is not known. The current experiment recorded PRC neurons as young and aged rats traversed a track. When objects were placed on the track, a subset of the neurons became active at discrete locations adjacent to objects. Importantly, the aged rats had a lower proportion of neurons that were activated by objects. Once PRC activity patterns in the presence of objects were established, however, both age groups maintained these representations across delays up to 2 h. These data support the hypothesis that age-associated deficits in stimulus recognition arise from impairments in high-order stimulus representation rather than difficulty in sustaining stable activity patterns over time. PMID:24403147

  16. Advanced age dissociates dual functions of the perirhinal cortex.

    PubMed

    Burke, Sara N; Maurer, Andrew P; Nematollahi, Saman; Uprety, Ajay; Wallace, Jenelle L; Barnes, Carol A

    2014-01-08

    The perirhinal cortex (PRC) is proposed to both represent high-order sensory information and maintain those representations across delays. These cognitive processes are required for recognition memory, which declines during normal aging. Whether or not advanced age affects the ability of PRC principal cells to support these dual roles, however, is not known. The current experiment recorded PRC neurons as young and aged rats traversed a track. When objects were placed on the track, a subset of the neurons became active at discrete locations adjacent to objects. Importantly, the aged rats had a lower proportion of neurons that were activated by objects. Once PRC activity patterns in the presence of objects were established, however, both age groups maintained these representations across delays up to 2 h. These data support the hypothesis that age-associated deficits in stimulus recognition arise from impairments in high-order stimulus representation rather than difficulty in sustaining stable activity patterns over time.

  17. Advances in the behavioural testing and network imaging of rodent recognition memory

    PubMed Central

    Kinnavane, Lisa; Albasser, Mathieu M.; Aggleton, John P.

    2015-01-01

    Research into object recognition memory has been galvanised by the introduction of spontaneous preference tests for rodents. The standard task, however, contains a number of inherent shortcomings that reduce its power. Particular issues include the problem that individual trials are time consuming, so limiting the total number of trials in any condition. In addition, the spontaneous nature of the behaviour and the variability between test objects add unwanted noise. To combat these issues, the ‘bow-tie maze’ was introduced. Although still based on the spontaneous preference of novel over familiar stimuli, the ability to give multiple trials within a session without handling the rodents, as well as using the same objects as both novel and familiar samples on different trials, overcomes key limitations in the standard task. Giving multiple trials within a single session also creates new opportunities for functional imaging of object recognition memory. A series of studies are described that examine the expression of the immediate-early gene, c-fos. Object recognition memory is associated with increases in perirhinal cortex and area Te2 c-fos activity. When rats explore novel objects the pathway from the perirhinal cortex to lateral entorhinal cortex, and then to the dentate gyrus and CA3, is engaged. In contrast, when familiar objects are explored the pathway from the perirhinal cortex to lateral entorhinal cortex, and then to CA1, takes precedence. The switch to the perforant pathway (novel stimuli) from the temporoammonic pathway (familiar stimuli) may assist the enhanced associative learning promoted by novel stimuli. PMID:25106740

  18. Functional architecture of visual emotion recognition ability: A latent variable approach.

    PubMed

    Lewis, Gary J; Lefevre, Carmen E; Young, Andrew W

    2016-05-01

    Emotion recognition has been a focus of considerable attention for several decades. However, despite this interest, the underlying structure of individual differences in emotion recognition ability has been largely overlooked and thus is poorly understood. For example, limited knowledge exists concerning whether recognition ability for one emotion (e.g., disgust) generalizes to other emotions (e.g., anger, fear). Furthermore, it is unclear whether emotion recognition ability generalizes across modalities, such that those who are good at recognizing emotions from the face, for example, are also good at identifying emotions from nonfacial cues (such as cues conveyed via the body). The primary goal of the current set of studies was to address these questions through establishing the structure of individual differences in visual emotion recognition ability. In three independent samples (Study 1: n = 640; Study 2: n = 389; Study 3: n = 303), we observed that the ability to recognize visually presented emotions is based on different sources of variation: a supramodal emotion-general factor, supramodal emotion-specific factors, and face- and within-modality emotion-specific factors. In addition, we found evidence that general intelligence and alexithymia were associated with supramodal emotion recognition ability. Autism-like traits, empathic concern, and alexithymia were independently associated with face-specific emotion recognition ability. These results (a) provide a platform for further individual differences research on emotion recognition ability, (b) indicate that differentiating levels within the architecture of emotion recognition ability is of high importance, and (c) show that the capacity to understand expressions of emotion in others is linked to broader affective and cognitive processes. (c) 2016 APA, all rights reserved).

  19. Super-recognizers: People with extraordinary face recognition ability

    PubMed Central

    Russell, Richard; Duchaine, Brad; Nakayama, Ken

    2014-01-01

    We tested four people who claimed to have significantly better than ordinary face recognition ability. Exceptional ability was confirmed in each case. On two very different tests of face recognition, all four experimental subjects performed beyond the range of control subject performance. They also scored significantly better than average on a perceptual discrimination test with faces. This effect was larger with upright than inverted faces, and the four subjects showed a larger ‘inversion effect’ than control subjects, who in turn showed a larger inversion effect than developmental prosopagnosics. This indicates an association between face recognition ability and the magnitude of the inversion effect. Overall, these ‘super-recognizers’ are about as good at face recognition and perception as developmental prosopagnosics are bad. Our findings demonstrate the existence of people with exceptionally good face recognition ability, and show that the range of face recognition and face perception ability is wider than previously acknowledged. PMID:19293090

  20. Super-recognizers: people with extraordinary face recognition ability.

    PubMed

    Russell, Richard; Duchaine, Brad; Nakayama, Ken

    2009-04-01

    We tested 4 people who claimed to have significantly better than ordinary face recognition ability. Exceptional ability was confirmed in each case. On two very different tests of face recognition, all 4 experimental subjects performed beyond the range of control subject performance. They also scored significantly better than average on a perceptual discrimination test with faces. This effect was larger with upright than with inverted faces, and the 4 subjects showed a larger "inversion effect" than did control subjects, who in turn showed a larger inversion effect than did developmental prosopagnosics. This result indicates an association between face recognition ability and the magnitude of the inversion effect. Overall, these "super-recognizers" are about as good at face recognition and perception as developmental prosopagnosics are bad. Our findings demonstrate the existence of people with exceptionally good face recognition ability and show that the range of face recognition and face perception ability is wider than has been previously acknowledged.

  1. The posterior parietal cortex in recognition memory: a neuropsychological study.

    PubMed

    Haramati, Sharon; Soroker, Nachum; Dudai, Yadin; Levy, Daniel A

    2008-01-01

    Several recent functional neuroimaging studies have reported robust bilateral activation (L>R) in lateral posterior parietal cortex and precuneus during recognition memory retrieval tasks. It has not yet been determined what cognitive processes are represented by those activations. In order to examine whether parietal lobe-based processes are necessary for basic episodic recognition abilities, we tested a group of 17 first-incident CVA patients whose cortical damage included (but was not limited to) extensive unilateral posterior parietal lesions. These patients performed a series of tasks that yielded parietal activations in previous fMRI studies: yes/no recognition judgments on visual words and on colored object pictures and identifiable environmental sounds. We found that patients with left hemisphere lesions were not impaired compared to controls in any of the tasks. Patients with right hemisphere lesions were not significantly impaired in memory for visual words, but were impaired in recognition of object pictures and sounds. Two lesion--behavior analyses--area-based correlations and voxel-based lesion symptom mapping (VLSM)---indicate that these impairments resulted from extra-parietal damage, specifically to frontal and lateral temporal areas. These findings suggest that extensive parietal damage does not impair recognition performance. We suggest that parietal activations recorded during recognition memory tasks might reflect peri-retrieval processes, such as the storage of retrieved memoranda in a working memory buffer for further cognitive processing.

  2. Recognition of aspect-dependent three-dimensional objects by an echolocating Atlantic bottlenose dolphin.

    PubMed

    Helweg, D A; Roitblat, H L; Nachtigall, P E; Hautus, M J

    1996-01-01

    We examined the ability of a bottlenose dolphin (Tursiops truncatus) to recognize aspect-dependent objects using echolocation. An aspect-dependent object such as a cube produces acoustically different echoes at different angles relative to the echolocation signal. The dolphin recognized the objects even though the objects were free to rotate and sway. A linear discriminant analysis and nearest centroid classifier could classify the objects using average amplitude, center frequency, and bandwidth of object echoes. The results show that dolphins can use varying acoustic properties to recognize constant objects and suggest that aspect-independent representations may be formed by combining information gleaned from multiple echoes.

  3. Recurrent Convolutional Neural Networks: A Better Model of Biological Object Recognition.

    PubMed

    Spoerer, Courtney J; McClure, Patrick; Kriegeskorte, Nikolaus

    2017-01-01

    Feedforward neural networks provide the dominant model of how the brain performs visual object recognition. However, these networks lack the lateral and feedback connections, and the resulting recurrent neuronal dynamics, of the ventral visual pathway in the human and non-human primate brain. Here we investigate recurrent convolutional neural networks with bottom-up (B), lateral (L), and top-down (T) connections. Combining these types of connections yields four architectures (B, BT, BL, and BLT), which we systematically test and compare. We hypothesized that recurrent dynamics might improve recognition performance in the challenging scenario of partial occlusion. We introduce two novel occluded object recognition tasks to test the efficacy of the models, digit clutter (where multiple target digits occlude one another) and digit debris (where target digits are occluded by digit fragments). We find that recurrent neural networks outperform feedforward control models (approximately matched in parametric complexity) at recognizing objects, both in the absence of occlusion and in all occlusion conditions. Recurrent networks were also found to be more robust to the inclusion of additive Gaussian noise. Recurrent neural networks are better in two respects: (1) they are more neurobiologically realistic than their feedforward counterparts; (2) they are better in terms of their ability to recognize objects, especially under challenging conditions. This work shows that computer vision can benefit from using recurrent convolutional architectures and suggests that the ubiquitous recurrent connections in biological brains are essential for task performance.

  4. Cognitive enhancing of pineapple extract and juice in scopolamine-induced amnesia in mice

    PubMed Central

    Momtazi-borojeni, Amir Abbas; Sadeghi-Aliabadi, Hojjat; Rabbani, Mohammed; Ghannadi, Alireza; Abdollahi, Elham

    2017-01-01

    The objective of the present study was to evaluate the cognitive enhancing of pineapple juice and ethanolic extract in scopolamine-induced cognitive deficit mice. The ethanolic extract of pineapple (Ananas comosus (L.) Merr.) was prepared by maceration method and its juice was obtained by a homogenizer. Object recognition task was used to evaluate the mice memory. Exploration time in the first and second trial was recorded. The differences in exploration time between a familiar and a novel object in the second trial were taken as a memory index. Animals were randomly assigned into 15 groups of 6 each including: control group (normal saline + vehicle), positive control group (scopolamine + rivastigmine), seven experimental groups (received scopolamine alone or scopolamine + ethanolic extract of pineapple in different doses), six other experimental groups were treated by ethanolic extract or juice of pineapple in different doses. Scopolamine (100 μL, 1 mg/kg, i.p.) and pineapple juice or extract (50, 75 and 100 mg/kg, i.p.) were administered 40 and 30 min before starting the second trial in the experimental groups. Object discrimination was impaired after scopolamine administration. Results showed that juice and ethanolic extract of pineapple significantly restored object recognition ability in mice treated with scopolamine. These finding suggested that pineapple had a protective role against scopolamine-induced amnesia, indicating its ability in management of cognitive disorders. PMID:28626484

  5. Intelligent fault recognition strategy based on adaptive optimized multiple centers

    NASA Astrophysics Data System (ADS)

    Zheng, Bo; Li, Yan-Feng; Huang, Hong-Zhong

    2018-06-01

    For the recognition principle based optimized single center, one important issue is that the data with nonlinear separatrix cannot be recognized accurately. In order to solve this problem, a novel recognition strategy based on adaptive optimized multiple centers is proposed in this paper. This strategy recognizes the data sets with nonlinear separatrix by the multiple centers. Meanwhile, the priority levels are introduced into the multi-objective optimization, including recognition accuracy, the quantity of optimized centers, and distance relationship. According to the characteristics of various data, the priority levels are adjusted to ensure the quantity of optimized centers adaptively and to keep the original accuracy. The proposed method is compared with other methods, including support vector machine (SVM), neural network, and Bayesian classifier. The results demonstrate that the proposed strategy has the same or even better recognition ability on different distribution characteristics of data.

  6. Face recognition in newly hatched chicks at the onset of vision.

    PubMed

    Wood, Samantha M W; Wood, Justin N

    2015-04-01

    How does face recognition emerge in the newborn brain? To address this question, we used an automated controlled-rearing method with a newborn animal model: the domestic chick (Gallus gallus). This automated method allowed us to examine chicks' face recognition abilities at the onset of both face experience and object experience. In the first week of life, newly hatched chicks were raised in controlled-rearing chambers that contained no objects other than a single virtual human face. In the second week of life, we used an automated forced-choice testing procedure to examine whether chicks could distinguish that familiar face from a variety of unfamiliar faces. Chicks successfully distinguished the familiar face from most of the unfamiliar faces-for example, chicks were sensitive to changes in the face's age, gender, and orientation (upright vs. inverted). Thus, chicks can build an accurate representation of the first face they see in their life. These results show that the initial state of face recognition is surprisingly powerful: Newborn visual systems can begin encoding and recognizing faces at the onset of vision. (c) 2015 APA, all rights reserved).

  7. Using computerized games to teach face recognition skills to children with autism spectrum disorder: the Let's Face It! program.

    PubMed

    Tanaka, James W; Wolf, Julie M; Klaiman, Cheryl; Koenig, Kathleen; Cockburn, Jeffrey; Herlihy, Lauren; Brown, Carla; Stahl, Sherin; Kaiser, Martha D; Schultz, Robert T

    2010-08-01

    An emerging body of evidence indicates that relative to typically developing children, children with autism are selectively impaired in their ability to recognize facial identity. A critical question is whether face recognition skills can be enhanced through a direct training intervention. In a randomized clinical trial, children diagnosed with autism spectrum disorder were pre-screened with a battery of subtests (the Let's Face It! Skills battery) examining face and object processing abilities. Participants who were significantly impaired in their face processing abilities were assigned to either a treatment or a waitlist group. Children in the treatment group (N = 42) received 20 hours of face training with the Let's Face It! (LFI!) computer-based intervention. The LFI! program is comprised of seven interactive computer games that target the specific face impairments associated with autism, including the recognition of identity across image changes in expression, viewpoint and features, analytic and holistic face processing strategies and attention to information in the eye region. Time 1 and Time 2 performance for the treatment and waitlist groups was assessed with the Let's Face It! Skills battery. The main finding was that relative to the control group (N = 37), children in the face training group demonstrated reliable improvements in their analytic recognition of mouth features and holistic recognition of a face based on its eyes features. These results indicate that a relatively short-term intervention program can produce measurable improvements in the face recognition skills of children with autism. As a treatment for face processing deficits, the Let's Face It! program has advantages of being cost-free, adaptable to the specific learning needs of the individual child and suitable for home and school applications.

  8. An Investigation of Emotion Recognition and Theory of Mind in People with Chronic Heart Failure

    PubMed Central

    Habota, Tina; McLennan, Skye N.; Cameron, Jan; Ski, Chantal F.; Thompson, David R.; Rendell, Peter G.

    2015-01-01

    Objectives Cognitive deficits are common in patients with chronic heart failure (CHF), but no study has investigated whether these deficits extend to social cognition. The present study provided the first empirical assessment of emotion recognition and theory of mind (ToM) in patients with CHF. In addition, it assessed whether each of these social cognitive constructs was associated with more general cognitive impairment. Methods A group comparison design was used, with 31 CHF patients compared to 38 demographically matched controls. The Ekman Faces test was used to assess emotion recognition, and the Mind in the Eyes test to measure ToM. Measures assessing global cognition, executive functions, and verbal memory were also administered. Results There were no differences between groups on emotion recognition or ToM. The CHF group’s performance was poorer on some executive measures, but memory was relatively preserved. In the CHF group, both emotion recognition performance and ToM ability correlated moderately with global cognition (r = .38, p = .034; r = .49, p = .005, respectively), but not with executive function or verbal memory. Conclusion CHF patients with lower cognitive ability were more likely to have difficulty recognizing emotions and inferring the mental states of others. Clinical implications of these findings are discussed. PMID:26529409

  9. Incrementally learning objects by touch: online discriminative and generative models for tactile-based recognition.

    PubMed

    Soh, Harold; Demiris, Yiannis

    2014-01-01

    Human beings not only possess the remarkable ability to distinguish objects through tactile feedback but are further able to improve upon recognition competence through experience. In this work, we explore tactile-based object recognition with learners capable of incremental learning. Using the sparse online infinite Echo-State Gaussian process (OIESGP), we propose and compare two novel discriminative and generative tactile learners that produce probability distributions over objects during object grasping/palpation. To enable iterative improvement, our online methods incorporate training samples as they become available. We also describe incremental unsupervised learning mechanisms, based on novelty scores and extreme value theory, when teacher labels are not available. We present experimental results for both supervised and unsupervised learning tasks using the iCub humanoid, with tactile sensors on its five-fingered anthropomorphic hand, and 10 different object classes. Our classifiers perform comparably to state-of-the-art methods (C4.5 and SVM classifiers) and findings indicate that tactile signals are highly relevant for making accurate object classifications. We also show that accurate "early" classifications are possible using only 20-30 percent of the grasp sequence. For unsupervised learning, our methods generate high quality clusterings relative to the widely-used sequential k-means and self-organising map (SOM), and we present analyses into the differences between the approaches.

  10. Facial Expression Influences Face Identity Recognition During the Attentional Blink

    PubMed Central

    2014-01-01

    Emotional stimuli (e.g., negative facial expressions) enjoy prioritized memory access when task relevant, consistent with their ability to capture attention. Whether emotional expression also impacts on memory access when task-irrelevant is important for arbitrating between feature-based and object-based attentional capture. Here, the authors address this question in 3 experiments using an attentional blink task with face photographs as first and second target (T1, T2). They demonstrate reduced neutral T2 identity recognition after angry or happy T1 expression, compared to neutral T1, and this supports attentional capture by a task-irrelevant feature. Crucially, after neutral T1, T2 identity recognition was enhanced and not suppressed when T2 was angry—suggesting that attentional capture by this task-irrelevant feature may be object-based and not feature-based. As an unexpected finding, both angry and happy facial expressions suppress memory access for competing objects, but only angry facial expression enjoyed privileged memory access. This could imply that these 2 processes are relatively independent from one another. PMID:25286076

  11. Facial expression influences face identity recognition during the attentional blink.

    PubMed

    Bach, Dominik R; Schmidt-Daffy, Martin; Dolan, Raymond J

    2014-12-01

    Emotional stimuli (e.g., negative facial expressions) enjoy prioritized memory access when task relevant, consistent with their ability to capture attention. Whether emotional expression also impacts on memory access when task-irrelevant is important for arbitrating between feature-based and object-based attentional capture. Here, the authors address this question in 3 experiments using an attentional blink task with face photographs as first and second target (T1, T2). They demonstrate reduced neutral T2 identity recognition after angry or happy T1 expression, compared to neutral T1, and this supports attentional capture by a task-irrelevant feature. Crucially, after neutral T1, T2 identity recognition was enhanced and not suppressed when T2 was angry-suggesting that attentional capture by this task-irrelevant feature may be object-based and not feature-based. As an unexpected finding, both angry and happy facial expressions suppress memory access for competing objects, but only angry facial expression enjoyed privileged memory access. This could imply that these 2 processes are relatively independent from one another.

  12. Exploiting core knowledge for visual object recognition.

    PubMed

    Schurgin, Mark W; Flombaum, Jonathan I

    2017-03-01

    Humans recognize thousands of objects, and with relative tolerance to variable retinal inputs. The acquisition of this ability is not fully understood, and it remains an area in which artificial systems have yet to surpass people. We sought to investigate the memory process that supports object recognition. Specifically, we investigated the association of inputs that co-occur over short periods of time. We tested the hypothesis that human perception exploits expectations about object kinematics to limit the scope of association to inputs that are likely to have the same token as a source. In several experiments we exposed participants to images of objects, and we then tested recognition sensitivity. Using motion, we manipulated whether successive encounters with an image took place through kinematics that implied the same or a different token as the source of those encounters. Images were injected with noise, or shown at varying orientations, and we included 2 manipulations of motion kinematics. Across all experiments, memory performance was better for images that had been previously encountered with kinematics that implied a single token. A model-based analysis similarly showed greater memory strength when images were shown via kinematics that implied a single token. These results suggest that constraints from physics are built into the mechanisms that support memory about objects. Such constraints-often characterized as 'Core Knowledge'-are known to support perception and cognition broadly, even in young infants. But they have never been considered as a mechanism for memory with respect to recognition. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  13. Computational Intelligence Techniques for Tactile Sensing Systems

    PubMed Central

    Gastaldo, Paolo; Pinna, Luigi; Seminara, Lucia; Valle, Maurizio; Zunino, Rodolfo

    2014-01-01

    Tactile sensing helps robots interact with humans and objects effectively in real environments. Piezoelectric polymer sensors provide the functional building blocks of the robotic electronic skin, mainly thanks to their flexibility and suitability for detecting dynamic contact events and for recognizing the touch modality. The paper focuses on the ability of tactile sensing systems to support the challenging recognition of certain qualities/modalities of touch. The research applies novel computational intelligence techniques and a tensor-based approach for the classification of touch modalities; its main results consist in providing a procedure to enhance system generalization ability and architecture for multi-class recognition applications. An experimental campaign involving 70 participants using three different modalities in touching the upper surface of the sensor array was conducted, and confirmed the validity of the approach. PMID:24949646

  14. Computational intelligence techniques for tactile sensing systems.

    PubMed

    Gastaldo, Paolo; Pinna, Luigi; Seminara, Lucia; Valle, Maurizio; Zunino, Rodolfo

    2014-06-19

    Tactile sensing helps robots interact with humans and objects effectively in real environments. Piezoelectric polymer sensors provide the functional building blocks of the robotic electronic skin, mainly thanks to their flexibility and suitability for detecting dynamic contact events and for recognizing the touch modality. The paper focuses on the ability of tactile sensing systems to support the challenging recognition of certain qualities/modalities of touch. The research applies novel computational intelligence techniques and a tensor-based approach for the classification of touch modalities; its main results consist in providing a procedure to enhance system generalization ability and architecture for multi-class recognition applications. An experimental campaign involving 70 participants using three different modalities in touching the upper surface of the sensor array was conducted, and confirmed the validity of the approach.

  15. Emotion recognition deficits as predictors of transition in individuals at clinical high risk for schizophrenia: a neurodevelopmental perspective.

    PubMed

    Corcoran, C M; Keilp, J G; Kayser, J; Klim, C; Butler, P D; Bruder, G E; Gur, R C; Javitt, D C

    2015-10-01

    Schizophrenia is characterized by profound and disabling deficits in the ability to recognize emotion in facial expression and tone of voice. Although these deficits are well documented in established schizophrenia using recently validated tasks, their predictive utility in at-risk populations has not been formally evaluated. The Penn Emotion Recognition and Discrimination tasks, and recently developed measures of auditory emotion recognition, were administered to 49 clinical high-risk subjects prospectively followed for 2 years for schizophrenia outcome, and 31 healthy controls, and a developmental cohort of 43 individuals aged 7-26 years. Deficit in emotion recognition in at-risk subjects was compared with deficit in established schizophrenia, and with normal neurocognitive growth curves from childhood to early adulthood. Deficits in emotion recognition significantly distinguished at-risk patients who transitioned to schizophrenia. By contrast, more general neurocognitive measures, such as attention vigilance or processing speed, were non-predictive. The best classification model for schizophrenia onset included both face emotion processing and negative symptoms, with accuracy of 96%, and area under the receiver-operating characteristic curve of 0.99. In a parallel developmental study, emotion recognition abilities were found to reach maturity prior to traditional age of risk for schizophrenia, suggesting they may serve as objective markers of early developmental insult. Profound deficits in emotion recognition exist in at-risk patients prior to schizophrenia onset. They may serve as an index of early developmental insult, and represent an effective target for early identification and remediation. Future studies investigating emotion recognition deficits at both mechanistic and predictive levels are strongly encouraged.

  16. Social enrichment improves social recognition memory in male rats.

    PubMed

    Toyoshima, Michimasa; Yamada, Kazuo; Sugita, Manami; Ichitani, Yukio

    2018-05-01

    The social environment is thought to have a strong impact on cognitive functions. In the present study, we investigated whether social enrichment could affect rats' memory ability using the "Different Objects Task (DOT)," in which the levels of memory load could be modulated by changing the number of objects to be remembered. In addition, we applied the DOT to a social discrimination task using unfamiliar conspecific juveniles instead of objects. Animals were housed in one of the three different housing conditions after weaning [postnatal day (PND) 21]: social-separated (1 per cage), standard (3 per cage), or social-enriched (10 per cage) conditions. The object and social recognition tasks were conducted on PND 60. In the sample phase, the rats were allowed to explore a field in which 3, 4, or 5 different, unfamiliar stimuli (conspecific juveniles through a mesh or objects) were presented. In the test phase conducted after a 5-min delay, social-separated rats were able to discriminate the novel conspecific from the familiar ones only under the condition in which three different conspecifics were presented; social-enriched rats managed to recognize the novel conspecific even under the condition of five different conspecifics. On the other hand, in the object recognition task, both social-separated and social-enriched rats were able to discriminate the novel object from the familiar ones under the condition of five different objects. These results suggest that social enrichment can enhance social, but not object, memory span.

  17. Limited evidence of individual differences in holistic processing in different versions of the part-whole paradigm.

    PubMed

    Sunday, Mackenzie A; Richler, Jennifer J; Gauthier, Isabel

    2017-07-01

    The part-whole paradigm was one of the first measures of holistic processing and it has been used to address several topics in face recognition, including its development, other-race effects, and more recently, whether holistic processing is correlated with face recognition ability. However the task was not designed to measure individual differences and it has produced measurements with low reliability. We created a new holistic processing test designed to measure individual differences based on the part-whole paradigm, the Vanderbilt Part Whole Test (VPWT). Measurements in the part and whole conditions were reliable, but, surprisingly, there was no evidence for reliable individual differences in the part-whole index (how well a person can take advantage of a face part presented within a whole face context compared to the part presented without a whole face) because part and whole conditions were strongly correlated. The same result was obtained in a version of the original part-whole task that was modified to increase its reliability. Controlling for object recognition ability, we found that variance in the whole condition does not predict any additional variance in face recognition over what is already predicted by performance in the part condition.

  18. Age- and gender-related variations of emotion recognition in pseudowords and faces.

    PubMed

    Demenescu, Liliana R; Mathiak, Krystyna A; Mathiak, Klaus

    2014-01-01

    BACKGROUND/STUDY CONTEXT: The ability to interpret emotionally salient stimuli is an important skill for successful social functioning at any age. The objective of the present study was to disentangle age and gender effects on emotion recognition ability in voices and faces. Three age groups of participants (young, age range: 18-35 years; middle-aged, age range: 36-55 years; and older, age range: 56-75 years) identified basic emotions presented in voices and faces in a forced-choice paradigm. Five emotions (angry, fearful, sad, disgusted, and happy) and a nonemotional category (neutral) were shown as encoded in color photographs of facial expressions and pseudowords spoken in affective prosody. Overall, older participants had a lower accuracy rate in categorizing emotions than young and middle-aged participants. Females performed better than males in recognizing emotions from voices, and this gender difference emerged in middle-aged and older participants. The performance of emotion recognition in faces was significantly correlated with the performance in voices. The current study provides further evidence for a general age and gender effect on emotion recognition; the advantage of females seems to be age- and stimulus modality-dependent.

  19. Event-related potentials during word mapping to object shape predict toddlers' vocabulary size

    PubMed Central

    Borgström, Kristina; Torkildsen, Janne von Koss; Lindgren, Magnus

    2015-01-01

    What role does attention to different object properties play in early vocabulary development? This longitudinal study using event-related potentials in combination with behavioral measures investigated 20- and 24-month-olds' (n = 38; n = 34; overlapping n = 24) ability to use object shape and object part information in word-object mapping. The N400 component was used to measure semantic priming by images containing shape or detail information. At 20 months, the N400 to words primed by object shape varied in topography and amplitude depending on vocabulary size, and these differences predicted productive vocabulary size at 24 months. At 24 months, when most of the children had vocabularies of several hundred words, the relation between vocabulary size and the N400 effect in a shape context was weaker. Detached object parts did not function as word primes regardless of age or vocabulary size, although the part-objects were identified behaviorally. The behavioral measure, however, also showed relatively poor recognition of the part-objects compared to the shape-objects. These three findings provide new support for the link between shape recognition and early vocabulary development. PMID:25762957

  20. Working Memory Impairment in People with Williams Syndrome: Effects of Delay, Task and Stimuli

    ERIC Educational Resources Information Center

    O'Hearn, Kirsten; Courtney, Susan; Street, Whitney; Landau, Barbara

    2009-01-01

    Williams syndrome (WS) is a neurodevelopmental disorder associated with impaired visuospatial representations subserved by the dorsal stream and relatively strong object recognition abilities subserved by the ventral stream. There is conflicting evidence on whether this uneven pattern in WS extends to working memory (WM). The present studies…

  1. [Association between intelligence development and facial expression recognition ability in children with autism spectrum disorder].

    PubMed

    Pan, Ning; Wu, Gui-Hua; Zhang, Ling; Zhao, Ya-Fen; Guan, Han; Xu, Cai-Juan; Jing, Jin; Jin, Yu

    2017-03-01

    To investigate the features of intelligence development, facial expression recognition ability, and the association between them in children with autism spectrum disorder (ASD). A total of 27 ASD children aged 6-16 years (ASD group, full intelligence quotient >70) and age- and gender-matched normally developed children (control group) were enrolled. Wechsler Intelligence Scale for Children Fourth Edition and Chinese Static Facial Expression Photos were used for intelligence evaluation and facial expression recognition test. Compared with the control group, the ASD group had significantly lower scores of full intelligence quotient, verbal comprehension index, perceptual reasoning index (PRI), processing speed index(PSI), and working memory index (WMI) (P<0.05). The ASD group also had a significantly lower overall accuracy rate of facial expression recognition and significantly lower accuracy rates of the recognition of happy, angry, sad, and frightened expressions than the control group (P<0.05). In the ASD group, the overall accuracy rate of facial expression recognition and the accuracy rates of the recognition of happy and frightened expressions were positively correlated with PRI (r=0.415, 0.455, and 0.393 respectively; P<0.05). The accuracy rate of the recognition of angry expression was positively correlated with WMI (r=0.397; P<0.05). ASD children have delayed intelligence development compared with normally developed children and impaired expression recognition ability. Perceptual reasoning and working memory abilities are positively correlated with expression recognition ability, which suggests that insufficient perceptual reasoning and working memory abilities may be important factors affecting facial expression recognition ability in ASD children.

  2. Age-related impairments in active learning and strategic visual exploration.

    PubMed

    Brandstatt, Kelly L; Voss, Joel L

    2014-01-01

    Old age could impair memory by disrupting learning strategies used by younger individuals. We tested this possibility by manipulating the ability to use visual-exploration strategies during learning. Subjects controlled visual exploration during active learning, thus permitting the use of strategies, whereas strategies were limited during passive learning via predetermined exploration patterns. Performance on tests of object recognition and object-location recall was matched for younger and older subjects for objects studied passively, when learning strategies were restricted. Active learning improved object recognition similarly for younger and older subjects. However, active learning improved object-location recall for younger subjects, but not older subjects. Exploration patterns were used to identify a learning strategy involving repeat viewing. Older subjects used this strategy less frequently and it provided less memory benefit compared to younger subjects. In previous experiments, we linked hippocampal-prefrontal co-activation to improvements in object-location recall from active learning and to the exploration strategy. Collectively, these findings suggest that age-related memory problems result partly from impaired strategies during learning, potentially due to reduced hippocampal-prefrontal co-engagement.

  3. Younger and Older Adults Weigh Multiple Cues in a Similar Manner to Generate Judgments of Learning

    PubMed Central

    Hines, Jarrod C.; Hertzog, Christopher; Touron, Dayna R.

    2015-01-01

    One's memory for past test performance (MPT) is a key piece of information individuals use when deciding how to restudy material. We used a multi-trial recognition memory task to examine adult age differences in the influence of MPT (measured by actual Trial 1 memory accuracy and subjective confidence judgments, CJs) along with Trial 1 judgments of learning (JOLs), objective and participant-estimated recognition fluencies, and Trial 2 study time on Trial 2 JOLs. We found evidence of simultaneous and independent influences of multiple objective and subjective (i.e., metacognitive) cues on Trial 2 JOLs, and these relationships were highly similar for younger and older adults. Individual differences in Trial 1 recognition accuracy and CJs on Trial 2 JOLs indicate that individuals may vary in the degree to which they rely on each MPT cue when assessing subsequent memory confidence. Aging appears to spare the ability to access multiple cues when making JOLs. PMID:25827630

  4. Color constancy in 3D-2D face recognition

    NASA Astrophysics Data System (ADS)

    Meyer, Manuel; Riess, Christian; Angelopoulou, Elli; Evangelopoulos, Georgios; Kakadiaris, Ioannis A.

    2013-05-01

    Face is one of the most popular biometric modalities. However, up to now, color is rarely actively used in face recognition. Yet, it is well-known that when a person recognizes a face, color cues can become as important as shape, especially when combined with the ability of people to identify the color of objects independent of illuminant color variations. In this paper, we examine the feasibility and effect of explicitly embedding illuminant color information in face recognition systems. We empirically examine the theoretical maximum gain of including known illuminant color to a 3D-2D face recognition system. We also investigate the impact of using computational color constancy methods for estimating the illuminant color, which is then incorporated into the face recognition framework. Our experiments show that under close-to-ideal illumination estimates, one can improve face recognition rates by 16%. When the illuminant color is algorithmically estimated, the improvement is approximately 5%. These results suggest that color constancy has a positive impact on face recognition, but the accuracy of the illuminant color estimate has a considerable effect on its benefits.

  5. Visual Agnosia for Line Drawings and Silhouettes without Apparent Impairment of Real-Object Recognition: A Case Report

    PubMed Central

    Hiraoka, Kotaro; Suzuki, Kyoko; Hirayama, Kazumi; Mori, Etsuro

    2009-01-01

    We report on a patient with visual agnosia for line drawings and silhouette pictures following cerebral infarction in the region of the right posterior cerebral artery. The patient retained the ability to recognize real objects and their photographs, and could precisely copy line drawings of objects that she could not name. This case report highlights the importance of clinicians and researchers paying special attention to avoid overlooking agnosia in such cases. The factors that lead to problems in the identification of stimuli other than real objects in agnosic cases are discussed. PMID:19996516

  6. Visual agnosia for line drawings and silhouettes without apparent impairment of real-object recognition: a case report.

    PubMed

    Hiraoka, Kotaro; Suzuki, Kyoko; Hirayama, Kazumi; Mori, Etsuro

    2009-01-01

    We report on a patient with visual agnosia for line drawings and silhouette pictures following cerebral infarction in the region of the right posterior cerebral artery. The patient retained the ability to recognize real objects and their photographs, and could precisely copy line drawings of objects that she could not name. This case report highlights the importance of clinicians and researchers paying special attention to avoid overlooking agnosia in such cases. The factors that lead to problems in the identification of stimuli other than real objects in agnosic cases are discussed.

  7. The Cambridge Car Memory Test: a task matched in format to the Cambridge Face Memory Test, with norms, reliability, sex differences, dissociations from face memory, and expertise effects.

    PubMed

    Dennett, Hugh W; McKone, Elinor; Tavashmi, Raka; Hall, Ashleigh; Pidcock, Madeleine; Edwards, Mark; Duchaine, Bradley

    2012-06-01

    Many research questions require a within-class object recognition task matched for general cognitive requirements with a face recognition task. If the object task also has high internal reliability, it can improve accuracy and power in group analyses (e.g., mean inversion effects for faces vs. objects), individual-difference studies (e.g., correlations between certain perceptual abilities and face/object recognition), and case studies in neuropsychology (e.g., whether a prosopagnosic shows a face-specific or object-general deficit). Here, we present such a task. Our Cambridge Car Memory Test (CCMT) was matched in format to the established Cambridge Face Memory Test, requiring recognition of exemplars across view and lighting change. We tested 153 young adults (93 female). Results showed high reliability (Cronbach's alpha = .84) and a range of scores suitable both for normal-range individual-difference studies and, potentially, for diagnosis of impairment. The mean for males was much higher than the mean for females. We demonstrate independence between face memory and car memory (dissociation based on sex, plus a modest correlation between the two), including where participants have high relative expertise with cars. We also show that expertise with real car makes and models of the era used in the test significantly predicts CCMT performance. Surprisingly, however, regression analyses imply that there is an effect of sex per se on the CCMT that is not attributable to a stereotypical male advantage in car expertise.

  8. The impact of privacy protection filters on gender recognition

    NASA Astrophysics Data System (ADS)

    Ruchaud, Natacha; Antipov, Grigory; Korshunov, Pavel; Dugelay, Jean-Luc; Ebrahimi, Touradj; Berrani, Sid-Ahmed

    2015-09-01

    Deep learning-based algorithms have become increasingly efficient in recognition and detection tasks, especially when they are trained on large-scale datasets. Such recent success has led to a speculation that deep learning methods are comparable to or even outperform human visual system in its ability to detect and recognize objects and their features. In this paper, we focus on the specific task of gender recognition in images when they have been processed by privacy protection filters (e.g., blurring, masking, and pixelization) applied at different strengths. Assuming a privacy protection scenario, we compare the performance of state of the art deep learning algorithms with a subjective evaluation obtained via crowdsourcing to understand how privacy protection filters affect both machine and human vision.

  9. Modified-hybrid optical neural network filter for multiple object recognition within cluttered scenes

    NASA Astrophysics Data System (ADS)

    Kypraios, Ioannis; Young, Rupert C. D.; Chatwin, Chris R.

    2009-08-01

    Motivated by the non-linear interpolation and generalization abilities of the hybrid optical neural network filter between the reference and non-reference images of the true-class object we designed the modifiedhybrid optical neural network filter. We applied an optical mask to the hybrid optical neural network's filter input. The mask was built with the constant weight connections of a randomly chosen image included in the training set. The resulted design of the modified-hybrid optical neural network filter is optimized for performing best in cluttered scenes of the true-class object. Due to the shift invariance properties inherited by its correlator unit the filter can accommodate multiple objects of the same class to be detected within an input cluttered image. Additionally, the architecture of the neural network unit of the general hybrid optical neural network filter allows the recognition of multiple objects of different classes within the input cluttered image by modifying the output layer of the unit. We test the modified-hybrid optical neural network filter for multiple objects of the same and of different classes' recognition within cluttered input images and video sequences of cluttered scenes. The filter is shown to exhibit with a single pass over the input data simultaneously out-of-plane rotation, shift invariance and good clutter tolerance. It is able to successfully detect and classify correctly the true-class objects within background clutter for which there has been no previous training.

  10. Face recognition ability matures late: evidence from individual differences in young adults.

    PubMed

    Susilo, Tirta; Germine, Laura; Duchaine, Bradley

    2013-10-01

    Does face recognition ability mature early in childhood (early maturation hypothesis) or does it continue to develop well into adulthood (late maturation hypothesis)? This fundamental issue in face recognition is typically addressed by comparing child and adult participants. However, the interpretation of such studies is complicated by children's inferior test-taking abilities and general cognitive functions. Here we examined the developmental trajectory of face recognition ability in an individual differences study of 18-33 year-olds (n = 2,032), an age interval in which participants are competent test takers with comparable general cognitive functions. We found a positive association between age and face recognition, controlling for nonface visual recognition, verbal memory, sex, and own-race bias. Our study supports the late maturation hypothesis in face recognition, and illustrates how individual differences investigations of young adults can address theoretical issues concerning the development of perceptual and cognitive abilities. PsycINFO Database Record (c) 2013 APA, all rights reserved.

  11. An improved architecture for video rate image transformations

    NASA Technical Reports Server (NTRS)

    Fisher, Timothy E.; Juday, Richard D.

    1989-01-01

    Geometric image transformations are of interest to pattern recognition algorithms for their use in simplifying some aspects of the pattern recognition process. Examples include reducing sensitivity to rotation, scale, and perspective of the object being recognized. The NASA Programmable Remapper can perform a wide variety of geometric transforms at full video rate. An architecture is proposed that extends its abilities and alleviates many of the first version's shortcomings. The need for the improvements are discussed in the context of the initial Programmable Remapper and the benefits and limitations it has delivered. The implementation and capabilities of the proposed architecture are discussed.

  12. "It's Always the Judge's Fault": Attention, Emotion Recognition, and Expertise in Rhythmic Gymnastics Assessment.

    PubMed

    van Bokhorst, Lindsey G; Knapová, Lenka; Majoranc, Kim; Szebeni, Zea K; Táborský, Adam; Tomić, Dragana; Cañadas, Elena

    2016-01-01

    In many sports, such as figure skating or gymnastics, the outcome of a performance does not rely exclusively on objective measurements, but on more subjective cues. Judges need high attentional capacities to process visual information and overcome fatigue. Also their emotion recognition abilities might have an effect in detecting errors and making a more accurate assessment. Moreover, the scoring given by judges could be also influenced by their level of expertise. This study aims to assess how rhythmic gymnastics judges' emotion recognition and attentional abilities influence accuracy of performance assessment. Data will be collected from rhythmic gymnastics judges and coaches at different international levels. This study will employ an online questionnaire consisting on an emotion recognition test and attentional test. Participants' task is to watch a set of videotaped rhythmic gymnastics performances and evaluate them on the artistic and execution components of performance. Their scoring will be compared with the official scores given at the competition the video was taken from to measure the accuracy of the participants' evaluations. The proposed research represents an interdisciplinary approach that integrates cognitive and sport psychology within experimental and applied contexts. The current study advances the theoretical understanding of how emotional and attentional aspects affect the evaluation of sport performance. The results will provide valuable evidence on the direction and strength of the relationship between the above-mentioned factors and the accuracy of sport performance evaluation. Importantly, practical implications might be drawn from this study. Intervention programs directed at improving the accuracy of judges could be created based on the understanding of how emotion recognition and attentional abilities are related to the accuracy of performance assessment.

  13. “It’s Always the Judge’s Fault”: Attention, Emotion Recognition, and Expertise in Rhythmic Gymnastics Assessment

    PubMed Central

    van Bokhorst, Lindsey G.; Knapová, Lenka; Majoranc, Kim; Szebeni, Zea K.; Táborský, Adam; Tomić, Dragana; Cañadas, Elena

    2016-01-01

    In many sports, such as figure skating or gymnastics, the outcome of a performance does not rely exclusively on objective measurements, but on more subjective cues. Judges need high attentional capacities to process visual information and overcome fatigue. Also their emotion recognition abilities might have an effect in detecting errors and making a more accurate assessment. Moreover, the scoring given by judges could be also influenced by their level of expertise. This study aims to assess how rhythmic gymnastics judges’ emotion recognition and attentional abilities influence accuracy of performance assessment. Data will be collected from rhythmic gymnastics judges and coaches at different international levels. This study will employ an online questionnaire consisting on an emotion recognition test and attentional test. Participants’ task is to watch a set of videotaped rhythmic gymnastics performances and evaluate them on the artistic and execution components of performance. Their scoring will be compared with the official scores given at the competition the video was taken from to measure the accuracy of the participants’ evaluations. The proposed research represents an interdisciplinary approach that integrates cognitive and sport psychology within experimental and applied contexts. The current study advances the theoretical understanding of how emotional and attentional aspects affect the evaluation of sport performance. The results will provide valuable evidence on the direction and strength of the relationship between the above-mentioned factors and the accuracy of sport performance evaluation. Importantly, practical implications might be drawn from this study. Intervention programs directed at improving the accuracy of judges could be created based on the understanding of how emotion recognition and attentional abilities are related to the accuracy of performance assessment. PMID:27458406

  14. Estradiol and luteinizing hormone regulate recognition memory following subchronic phencyclidine: Evidence for hippocampal GABA action.

    PubMed

    Riordan, Alexander J; Schaler, Ari W; Fried, Jenny; Paine, Tracie A; Thornton, Janice E

    2018-05-01

    The cognitive symptoms of schizophrenia are poorly understood and difficult to treat. Estrogens may mitigate these symptoms via unknown mechanisms. To examine these mechanisms, we tested whether increasing estradiol (E) or decreasing luteinizing hormone (LH) could mitigate short-term episodic memory loss in a phencyclidine (PCP) model of schizophrenia. We then assessed whether changes in cortical or hippocampal GABA may underlie these effects. Female rats were ovariectomized and injected subchronically with PCP. To modulate E and LH, animals received estradiol capsules or Antide injections. Short-term episodic memory was assessed using the novel object recognition task (NORT). Brain expression of GAD67 was analyzed via western blot, and parvalbumin-containing cells were counted using immunohistochemistry. Some rats received hippocampal infusions of a GABA A agonist, GABA A antagonist, or GAD inhibitor before behavioral testing. We found that PCP reduced hippocampal GAD67 and abolished recognition memory. Antide restored hippocampal GAD67 and rescued recognition memory in PCP-treated animals. Estradiol prevented PCP's amnesic effect in NORT but failed to restore hippocampal GAD67. PCP did not cause significant differences in number of parvalbumin-expressing cells or cortical expression of GAD67. Hippocampal infusions of a GABA A agonist restored recognition memory in PCP-treated rats. Blocking hippocampal GAD or GABA A receptors in ovx animals reproduced recognition memory loss similar to PCP and inhibited estradiol's protection of recognition memory in PCP-treated animals. In summary, decreasing LH or increasing E can lessen short-term episodic memory loss, as measured by novel object recognition, in a PCP model of schizophrenia. Alterations in hippocampal GABA may contribute to both PCP's effects on recognition memory and the hormones' ability to prevent or reverse them. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Chronic cannabidiol treatment improves social and object recognition in double transgenic APPswe/PS1∆E9 mice.

    PubMed

    Cheng, David; Low, Jac Kee; Logge, Warren; Garner, Brett; Karl, Tim

    2014-08-01

    Patients suffering from Alzheimer's disease (AD) exhibit a decline in cognitive abilities including an inability to recognise familiar faces. Hallmark pathological changes in AD include the aggregation of amyloid-β (Aβ), tau protein hyperphosphorylation as well as pronounced neurodegeneration, neuroinflammation, neurotoxicity and oxidative damage. The non-psychoactive phytocannabinoid cannabidiol (CBD) exerts neuroprotective, anti-oxidant and anti-inflammatory effects and promotes neurogenesis. CBD also reverses Aβ-induced spatial memory deficits in rodents. Thus we determined the therapeutic-like effects of chronic CBD treatment (20 mg/kg, daily intraperitoneal injections for 3 weeks) on the APPswe/PS1∆E9 (APPxPS1) transgenic mouse model for AD in a number of cognitive tests, including the social preference test, the novel object recognition task and the fear conditioning paradigm. We also analysed the impact of CBD on anxiety behaviours in the elevated plus maze. Vehicle-treated APPxPS1 mice demonstrated impairments in social recognition and novel object recognition compared to wild type-like mice. Chronic CBD treatment reversed these cognitive deficits in APPxPS1 mice without affecting anxiety-related behaviours. This is the first study to investigate the effect of chronic CBD treatment on cognition in an AD transgenic mouse model. Our findings suggest that CBD may have therapeutic potential for specific cognitive impairments associated with AD.

  16. The effect of forced choice on facial emotion recognition: a comparison to open verbal classification of emotion labels

    PubMed Central

    Limbrecht-Ecklundt, Kerstin; Scheck, Andreas; Jerg-Bretzke, Lucia; Walter, Steffen; Hoffmann, Holger; Traue, Harald C.

    2013-01-01

    Objective: This article includes the examination of potential methodological problems of the application of a forced choice response format in facial emotion recognition. Methodology: 33 subjects were presented with validated facial stimuli. The task was to make a decision about which emotion was shown. In addition, the subjective certainty concerning the decision was recorded. Results: The detection rates are 68% for fear, 81% for sadness, 85% for anger, 87% for surprise, 88% for disgust, and 94% for happiness, and are thus well above the random probability. Conclusion: This study refutes the concern that the use of forced choice formats may not adequately reflect actual recognition performance. The use of standardized tests to examine emotion recognition ability leads to valid results and can be used in different contexts. For example, the images presented here appear suitable for diagnosing deficits in emotion recognition in the context of psychological disorders and for mapping treatment progress. PMID:23798981

  17. Invariant recognition drives neural representations of action sequences

    PubMed Central

    Poggio, Tomaso

    2017-01-01

    Recognizing the actions of others from visual stimuli is a crucial aspect of human perception that allows individuals to respond to social cues. Humans are able to discriminate between similar actions despite transformations, like changes in viewpoint or actor, that substantially alter the visual appearance of a scene. This ability to generalize across complex transformations is a hallmark of human visual intelligence. Advances in understanding action recognition at the neural level have not always translated into precise accounts of the computational principles underlying what representations of action sequences are constructed by human visual cortex. Here we test the hypothesis that invariant action discrimination might fill this gap. Recently, the study of artificial systems for static object perception has produced models, Convolutional Neural Networks (CNNs), that achieve human level performance in complex discriminative tasks. Within this class, architectures that better support invariant object recognition also produce image representations that better match those implied by human and primate neural data. However, whether these models produce representations of action sequences that support recognition across complex transformations and closely follow neural representations of actions remains unknown. Here we show that spatiotemporal CNNs accurately categorize video stimuli into action classes, and that deliberate model modifications that improve performance on an invariant action recognition task lead to data representations that better match human neural recordings. Our results support our hypothesis that performance on invariant discrimination dictates the neural representations of actions computed in the brain. These results broaden the scope of the invariant recognition framework for understanding visual intelligence from perception of inanimate objects and faces in static images to the study of human perception of action sequences. PMID:29253864

  18. Gnostic rings: usefulness in sensibility evaluation and sensory reeducation.

    PubMed

    Brunelli, G; Battiston, B; Dellon, A L

    1992-01-01

    The benefit of additional clinical tools for quantifying patients' ability to recognize objects is clear, as well as its correlation with the moving two-point discrimination test. The recognition of letters is such a tool. The authors describe gnostic rings, an additional technique, that is useful for clinical sensibility testing, as well as for sensory reeducation.

  19. Can Children with Autistic Spectrum Disorders Extract Emotions out of Contextual Cues?

    ERIC Educational Resources Information Center

    Da Fonseca, David; Santos, Andreia; Bastard-Rosset, Delphine; Rondan, Cecilie; Poinso, Francois; Deruelle, Christine

    2009-01-01

    The aim of the present study was to determine whether children with autism spectrum disorders (ASD) are able to recognize facial expressions of emotion and objects missing on the basis of contextual cues. While most of these studies focused on facial emotion recognition, here we examined the ability to extract emotional information on the basis…

  20. 17β-Estradiol and Agonism of G-protein-Coupled Estrogen Receptor Enhance Hippocampal Memory via Different Cell-Signaling Mechanisms

    PubMed Central

    Kim, Jaekyoon; Szinte, Julia S.; Boulware, Marissa I.

    2016-01-01

    The ability of 17β-estradiol (E2) to enhance hippocampal object recognition and spatial memory depends on rapid activation of extracellular signal-regulated kinase (ERK) in the dorsal hippocampus (DH). Although this activation can be mediated by the intracellular estrogen receptors ERα and ERβ, little is known about the role that the membrane estrogen receptor GPER plays in regulating ERK or E2-mediated memory formation. In this study, post-training DH infusion of the GPER agonist G-1 enhanced object recognition and spatial memory in ovariectomized female mice, whereas the GPER antagonist G-15 impaired memory, suggesting that GPER activation, like E2, promotes hippocampal memory formation. However, unlike E2, G-1 did not increase ERK phosphorylation, but instead significantly increased phosphorylation of c-Jun N-terminal kinase (JNK) in the DH. Moreover, DH infusion of the JNK inhibitor SP600125 prevented G-1 from enhancing object recognition and spatial memory, but the ERK inhibitor U0126 did not. These data suggest that GPER enhances memory via different cell-signaling mechanisms than E2. This conclusion was supported by data showing that the ability of E2 to facilitate memory and activate ERK signaling was not blocked by G-15 or SP600125, which demonstrates that the memory-enhancing effects of E2 are not dependent on JNK or GPER activation in the DH. Together, these data indicate that GPER regulates memory independently from ERα and ERβ by activating JNK signaling, rather than ERK signaling. Thus, the findings suggest that GPER in the DH may not function as an estrogen receptor to regulate object recognition and spatial memory. SIGNIFICANCE STATEMENT Although 17β-estradiol has long been known to regulate memory function, the molecular mechanisms underlying estrogenic memory modulation remain largely unknown. Here, we examined whether the putative membrane estrogen receptor GPER acts like the classical estrogen receptors, ERα and ERβ, to facilitate hippocampal memory in female mice. Although GPER activation did enhance object recognition and spatial memory, it did so by activating different cell-signaling mechanisms from ERα, ERβ, or 17β-estradiol. These data indicate that 17β-estradiol and GPER independently regulate hippocampal memory, and suggest that hippocampal GPER may not function as an estrogen receptor in the dorsal hippocampus. These findings are significant because they provide novel insights about the molecular mechanisms through which 17β-estradiol modulates hippocampal memory. PMID:26985039

  1. 17β-Estradiol and Agonism of G-protein-Coupled Estrogen Receptor Enhance Hippocampal Memory via Different Cell-Signaling Mechanisms.

    PubMed

    Kim, Jaekyoon; Szinte, Julia S; Boulware, Marissa I; Frick, Karyn M

    2016-03-16

    The ability of 17β-estradiol (E2) to enhance hippocampal object recognition and spatial memory depends on rapid activation of extracellular signal-regulated kinase (ERK) in the dorsal hippocampus (DH). Although this activation can be mediated by the intracellular estrogen receptors ERα and ERβ, little is known about the role that the membrane estrogen receptor GPER plays in regulating ERK or E2-mediated memory formation. In this study, post-training DH infusion of the GPER agonist G-1 enhanced object recognition and spatial memory in ovariectomized female mice, whereas the GPER antagonist G-15 impaired memory, suggesting that GPER activation, like E2, promotes hippocampal memory formation. However, unlike E2, G-1 did not increase ERK phosphorylation, but instead significantly increased phosphorylation of c-Jun N-terminal kinase (JNK) in the DH. Moreover, DH infusion of the JNK inhibitor SP600125 prevented G-1 from enhancing object recognition and spatial memory, but the ERK inhibitor U0126 did not. These data suggest that GPER enhances memory via different cell-signaling mechanisms than E2. This conclusion was supported by data showing that the ability of E2 to facilitate memory and activate ERK signaling was not blocked by G-15 or SP600125, which demonstrates that the memory-enhancing effects of E2 are not dependent on JNK or GPER activation in the DH. Together, these data indicate that GPER regulates memory independently from ERα and ERβ by activating JNK signaling, rather than ERK signaling. Thus, the findings suggest that GPER in the DH may not function as an estrogen receptor to regulate object recognition and spatial memory. Although 17β-estradiol has long been known to regulate memory function, the molecular mechanisms underlying estrogenic memory modulation remain largely unknown. Here, we examined whether the putative membrane estrogen receptor GPER acts like the classical estrogen receptors, ERα and ERβ, to facilitate hippocampal memory in female mice. Although GPER activation did enhance object recognition and spatial memory, it did so by activating different cell-signaling mechanisms from ERα, ERβ, or 17β-estradiol. These data indicate that 17β-estradiol and GPER independently regulate hippocampal memory, and suggest that hippocampal GPER may not function as an estrogen receptor in the dorsal hippocampus. These findings are significant because they provide novel insights about the molecular mechanisms through which 17β-estradiol modulates hippocampal memory. Copyright © 2016 the authors 0270-6474/16/363309-13$15.00/0.

  2. Masked Speech Recognition and Reading Ability in School-Age Children: Is There a Relationship?

    ERIC Educational Resources Information Center

    Miller, Gabrielle; Lewis, Barbara; Benchek, Penelope; Buss, Emily; Calandruccio, Lauren

    2018-01-01

    Purpose: The relationship between reading (decoding) skills, phonological processing abilities, and masked speech recognition in typically developing children was explored. This experiment was designed to evaluate the relationship between phonological processing and decoding abilities and 2 aspects of masked speech recognition in typically…

  3. Object Recognition Using Range Images.

    DTIC Science & Technology

    1985-12-01

    and Reflectance Data to Find Planar Suface Regions," IEEE Transactions on Pattern Reco1iio n and Machine Intelligence , PAMI-l: 259-271 (July 1979...large number of data points. The dashed curve in the second through fourth qua- drants was drawn so as to parallel the curve in the first quadrant. One...find too much data . This lack of data has to do with the discri- mination ability of SDFs for objects of which the SDF’s are not composed. Thus for

  4. Global ensemble texture representations are critical to rapid scene perception.

    PubMed

    Brady, Timothy F; Shafer-Skelton, Anna; Alvarez, George A

    2017-06-01

    Traditionally, recognizing the objects within a scene has been treated as a prerequisite to recognizing the scene itself. However, research now suggests that the ability to rapidly recognize visual scenes could be supported by global properties of the scene itself rather than the objects within the scene. Here, we argue for a particular instantiation of this view: That scenes are recognized by treating them as a global texture and processing the pattern of orientations and spatial frequencies across different areas of the scene without recognizing any objects. To test this model, we asked whether there is a link between how proficient individuals are at rapid scene perception and how proficiently they represent simple spatial patterns of orientation information (global ensemble texture). We find a significant and selective correlation between these tasks, suggesting a link between scene perception and spatial ensemble tasks but not nonspatial summary statistics In a second and third experiment, we additionally show that global ensemble texture information is not only associated with scene recognition, but that preserving only global ensemble texture information from scenes is sufficient to support rapid scene perception; however, preserving the same information is not sufficient for object recognition. Thus, global ensemble texture alone is sufficient to allow activation of scene representations but not object representations. Together, these results provide evidence for a view of scene recognition based on global ensemble texture rather than a view based purely on objects or on nonspatially localized global properties. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  5. Face memory and face recognition in children and adolescents with attention deficit hyperactivity disorder: A systematic review.

    PubMed

    Romani, Maria; Vigliante, Miriam; Faedda, Noemi; Rossetti, Serena; Pezzuti, Lina; Guidetti, Vincenzo; Cardona, Francesco

    2018-06-01

    This review focuses on facial recognition abilities in children and adolescents with attention deficit hyperactivity disorder (ADHD). A systematic review, using PRISMA guidelines, was conducted to identify original articles published prior to May 2017 pertaining to memory, face recognition, affect recognition, facial expression recognition and recall of faces in children and adolescents with ADHD. The qualitative synthesis based on different studies shows a particular focus of the research on facial affect recognition without paying similar attention to the structural encoding of facial recognition. In this review, we further investigate facial recognition abilities in children and adolescents with ADHD, providing synthesis of the results observed in the literature, while detecting face recognition tasks used on face processing abilities in ADHD and identifying aspects not yet explored. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Effects of sex and gonadectomy on social investigation and social recognition in mice.

    PubMed

    Karlsson, Sara A; Haziri, Kaltrina; Hansson, Evelyn; Kettunen, Petronella; Westberg, Lars

    2015-11-25

    An individual's ability to recognise and pay attention to others is crucial in order to behave appropriately in various social situations. Studies in humans have shown a sex bias in sociability as well as social memory, indicating that females have better face memory and gaze more at the eyes of others, but information about the factors that underpin these differences is sparse. Our aim was therefore to investigate if sociability and social recognition differ between female and male mice, and if so, to what extent gonadal hormones may be involved. Intact and gonadectomised male and female mice were assessed for sociability and social recognition using the three-chambered sociability paradigm, as well as the social discrimination test. Furthermore, we conducted a novel object recognition test, a locomotor activity test and an odour habituation/dishabituation test. The present study showed that the ability to recognise other individuals is intact in males with and without gonads, as well as in intact females, whereas it is hampered in gonadectomised females. Additionally, intact male mice displayed more persistent investigatory behaviour compared to the other groups, although the intact females showed elevated basal locomotor activity. In addition, all groups had intact object memory and habituated to odours. Our results suggest that intact male mice investigate conspecifics more than females do, and these differences seem to depend upon circulating hormones released from the testis. As these results seem to contrast what is known from human studies, they should be taken into consideration when using the three-chambered apparatus, and similar paradigms as animal models of social deficits in e.g. autism. Other behavioural tests, and animal models, may be more suitable for translational studies between patients and experimental animals.

  7. Fast neutron irradiation deteriorates hippocampus-related memory ability in adult mice.

    PubMed

    Yang, Miyoung; Kim, Hwanseong; Kim, Juhwan; Kim, Sung-Ho; Kim, Jong-Choon; Bae, Chun-Sik; Kim, Joong-Sun; Shin, Taekyun; Moon, Changjong

    2012-03-01

    Object recognition memory and contextual fear conditioning task performance in adult C57BL/6 mice exposed to cranial fast neutron irradiation (0.8 Gy) were examined to evaluate hippocampus-related behavioral dysfunction following acute exposure to relatively low doses of fast neutrons. In addition, hippocampal neurogenesis changes in adult murine brain after cranial irradiation were analyzed using the neurogenesis immunohistochemical markers Ki-67 and doublecortin (DCX). In the object recognition memory test and contextual fear conditioning, mice trained 1 and 7 days after irradiation displayed significant memory deficits compared to the sham-irradiated controls. The number of Ki-67- and DCX-positive cells decreased significantly 24 h post-irradiation. These results indicate that acute exposure of the adult mouse brain to a relatively low dose of fast neutrons interrupts hippocampal functions, including learning and memory, possibly by inhibiting neurogenesis.

  8. Food Marketing towards Children: Brand Logo Recognition, Food-Related Behavior and BMI among 3–13-Year-Olds in a South Indian Town

    PubMed Central

    Ueda, Peter; Tong, Leilei; Viedma, Cristobal; Chandy, Sujith J.; Marrone, Gaetano; Simon, Anna; Stålsby Lundborg, Cecilia

    2012-01-01

    Objectives To assess exposure to marketing of unhealthy food products and its relation to food related behavior and BMI in children aged 3–13, from different socioeconomic backgrounds in a south Indian town. Methods Child-parent pairs (n = 306) were recruited at pediatric clinics. Exposure to food marketing was assessed by a digital logo recognition test. Children matched 18 logos of unhealthy food (high in fat/sugar/salt) featured in promotion material from the food industry to pictures of corresponding products. Children's nutritional knowledge, food preferences, purchase requests, eating behavior and socioeconomic characteristics were assessed by a digital game and parental questionnaires. Anthropometric measurements were recorded. Results Recognition rates for the brand logos ranged from 30% to 80%. Logo recognition ability increased with age (p<0.001) and socioeconomic level (p<0.001 comparing children in the highest and lowest of three socioeconomic groups). Adjusted for gender, age and socioeconomic group, logo recognition was associated with higher BMI (p = 0.022) and nutritional knowledge (p<0.001) but not to unhealthy food preferences or purchase requests. Conclusions Children from higher socioeconomic groups in the region had higher brand logo recognition ability and are possibly exposed to more food marketing. The study did not lend support to a link between exposure to marketing and poor eating behavior, distorted nutritional knowledge or increased purchase requests. The correlation between logo recognition and BMI warrants further investigation on food marketing towards children and its potential role in the increasing burden of non-communicable diseases in this part of India. PMID:23082137

  9. Age- and sex-related disturbance in a battery of sensorimotor and cognitive tasks in Kunming mice.

    PubMed

    Chen, Gui-Hai; Wang, Yue-Ju; Zhang, Li-Qun; Zhou, Jiang-Ning

    2004-12-15

    A battery of tasks, i.e. beam walking, open field, tightrope, radial six-arm water maze (RAWM), novel-object recognition and olfactory discrimination, was used to determine whether there was age- and sex-related memory deterioration in Kunming (KM) mice, and whether these tasks are independent or correlated with each other. Two age groups of KM mice were used: a younger group (7-8 months old, 12 males and 11 females) and an older group (17-18 months old, 12 males and 12 females). The results showed that the spatial learning ability and memory in the RAWM were lower in older female KM mice relative to younger female mice and older male mice. Consistent with this, in the novel-object recognition task, a non-spatial cognitive task, older female mice but not older male mice had impairment of short-term memory. In olfactory discrimination, another non-spatial task, the older mice retained this ability. Interestingly, female mice performed better than males, especially in the younger group. The older females exhibited sensorimotor impairment in the tightrope task and low locomotor activity in the open-field task. Moreover, older mice spent a longer time in the peripheral squares of the open-field than younger ones. The non-spatial cognitive performance in the novel-object recognition and olfactory discrimination tasks was related to performance in the open-field, whereas the spatial cognitive performance in the RAWM was not related to performance in any of the three sensorimotor tasks. These results suggest that disturbance of spatial learning and memory, as well as selective impairment of non-spatial learning and memory, existed in older female KM mice.

  10. Learning object-to-class kernels for scene classification.

    PubMed

    Zhang, Lei; Zhen, Xiantong; Shao, Ling

    2014-08-01

    High-level image representations have drawn increasing attention in visual recognition, e.g., scene classification, since the invention of the object bank. The object bank represents an image as a response map of a large number of pretrained object detectors and has achieved superior performance for visual recognition. In this paper, based on the object bank representation, we propose the object-to-class (O2C) distances to model scene images. In particular, four variants of O2C distances are presented, and with the O2C distances, we can represent the images using the object bank by lower-dimensional but more discriminative spaces, called distance spaces, which are spanned by the O2C distances. Due to the explicit computation of O2C distances based on the object bank, the obtained representations can possess more semantic meanings. To combine the discriminant ability of the O2C distances to all scene classes, we further propose to kernalize the distance representation for the final classification. We have conducted extensive experiments on four benchmark data sets, UIUC-Sports, Scene-15, MIT Indoor, and Caltech-101, which demonstrate that the proposed approaches can significantly improve the original object bank approach and achieve the state-of-the-art performance.

  11. The progesterone-induced enhancement of object recognition memory consolidation involves activation of the extracellular signal-regulated kinase (ERK) and mammalian target of rapamycin (mTOR) pathways in the dorsal hippocampus

    PubMed Central

    Orr, Patrick T.; Rubin, Amanda J.; Fan, Lu; Kent, Brianne A.; Frick, Karyn M.

    2012-01-01

    Although much recent work has elucidated the biochemical mechanisms underlying the modulation of memory by 17β-estradiol, little is known about the signaling events through which progesterone (P) regulates memory. We recently demonstrated that immediate post-training infusion of P into the dorsal hippocampus enhances object recognition memory consolidation in young ovariectomized female mice (Orr et al., 2009). The goal of the present study was to identify the biochemical alterations that might underlie this mnemonic enhancement. We hypothesized that the P-induced enhancement of object recognition would be dependent on activation of the ERK and mTOR pathways. In young ovariectomized mice, we found that bilateral dorsal hippocampal infusion of P significantly increased levels of phospho-p42 ERK and the mTOR substrate S6K in the dorsal hippocampus 5 minutes after infusion. Phospho-p42 ERK levels were downregulated 15 minutes after infusion and returned to baseline 30 minutes after infusion, suggesting a biphasic effect of P on ERK activation. Dorsal hippocampal ERK and mTOR activation were necessary for P to facilitate memory consolidation, as suggested by the fact that inhibitors of both pathways infused into the dorsal hippocampus immediately after training blocked the P-induced enhancement of object recognition. Collectively, these data provide the first demonstration that the ability of P to enhance memory consolidation depends on the rapid activation of cell signaling and protein synthesis pathways in the dorsal hippocampus. PMID:22265866

  12. Target recognition for ladar range image using slice image

    NASA Astrophysics Data System (ADS)

    Xia, Wenze; Han, Shaokun; Wang, Liang

    2015-12-01

    A shape descriptor and a complete shape-based recognition system using slice images as geometric feature descriptor for ladar range images are introduced. A slice image is a two-dimensional image generated by three-dimensional Hough transform and the corresponding mathematical transformation. The system consists of two processes, the model library construction and recognition. In the model library construction process, a series of range images are obtained after the model object is sampled at preset attitude angles. Then, all the range images are converted into slice images. The number of slice images is reduced by clustering analysis and finding a representation to reduce the size of the model library. In the recognition process, the slice image of the scene is compared with the slice image in the model library. The recognition results depend on the comparison. Simulated ladar range images are used to analyze the recognition and misjudgment rates, and comparison between the slice image representation method and moment invariants representation method is performed. The experimental results show that whether in conditions without noise or with ladar noise, the system has a high recognition rate and low misjudgment rate. The comparison experiment demonstrates that the slice image has better representation ability than moment invariants.

  13. A new selective developmental deficit: Impaired object recognition with normal face recognition.

    PubMed

    Germine, Laura; Cashdollar, Nathan; Düzel, Emrah; Duchaine, Bradley

    2011-05-01

    Studies of developmental deficits in face recognition, or developmental prosopagnosia, have shown that individuals who have not suffered brain damage can show face recognition impairments coupled with normal object recognition (Duchaine and Nakayama, 2005; Duchaine et al., 2006; Nunn et al., 2001). However, no developmental cases with the opposite dissociation - normal face recognition with impaired object recognition - have been reported. The existence of a case of non-face developmental visual agnosia would indicate that the development of normal face recognition mechanisms does not rely on the development of normal object recognition mechanisms. To see whether a developmental variant of non-face visual object agnosia exists, we conducted a series of web-based object and face recognition tests to screen for individuals showing object recognition memory impairments but not face recognition impairments. Through this screening process, we identified AW, an otherwise normal 19-year-old female, who was then tested in the lab on face and object recognition tests. AW's performance was impaired in within-class visual recognition memory across six different visual categories (guns, horses, scenes, tools, doors, and cars). In contrast, she scored normally on seven tests of face recognition, tests of memory for two other object categories (houses and glasses), and tests of recall memory for visual shapes. Testing confirmed that her impairment was not related to a general deficit in lower-level perception, object perception, basic-level recognition, or memory. AW's results provide the first neuropsychological evidence that recognition memory for non-face visual object categories can be selectively impaired in individuals without brain damage or other memory impairment. These results indicate that the development of recognition memory for faces does not depend on intact object recognition memory and provide further evidence for category-specific dissociations in visual recognition. Copyright © 2010 Elsevier Srl. All rights reserved.

  14. Stochastic resonance investigation of object detection in images

    NASA Astrophysics Data System (ADS)

    Repperger, Daniel W.; Pinkus, Alan R.; Skipper, Julie A.; Schrider, Christina D.

    2007-02-01

    Object detection in images was conducted using a nonlinear means of improving signal to noise ratio termed "stochastic resonance" (SR). In a recent United States patent application, it was shown that arbitrarily large signal to noise ratio gains could be realized when a signal detection problem is cast within the context of a SR filter. Signal-to-noise ratio measures were investigated. For a binary object recognition task (friendly versus hostile), the method was implemented by perturbing the recognition algorithm and subsequently thresholding via a computer simulation. To fairly test the efficacy of the proposed algorithm, a unique database of images has been constructed by modifying two sample library objects by adjusting their brightness, contrast and relative size via commercial software to gradually compromise their saliency to identification. The key to the use of the SR method is to produce a small perturbation in the identification algorithm and then to threshold the results, thus improving the overall system's ability to discern objects. A background discussion of the SR method is presented. A standard test is proposed in which object identification algorithms could be fairly compared against each other with respect to their relative performance.

  15. Differential modulatory effects of cocaine on marmoset monkey recognition memory.

    PubMed

    Melamed, Jonathan L; de Jesus, Fernando M; Aquino, Jéssica; Vannuchi, Clarissa R S; Duarte, Renata B M; Maior, Rafael S; Tomaz, Carlos; Barros, Marilia

    2017-01-01

    Acute and repeated exposure to cocaine alters the cognitive performance of humans and animals. How each administration schedule affects the same memory task has yet to be properly established in nonhuman primates. Therefore, we assessed the performance of marmoset monkeys in a spontaneous object-location (SOL) recognition memory task after acute and repeated exposure to cocaine (COC; 5mg/kg, ip). Two identical neutral stimuli were explored on the 10-min sample trial, after which preferential exploration of the displaced vs the stationary object was analyzed on the 10-min test trial. For the acute treatment, cocaine was given immediately after the sample presentation, and spatial recognition was then tested after a 24-h interval. For the repeated exposure schedule, daily cocaine injections were given on 7 consecutive days. After a 7-day drug-free period, the SOL task was carried out with a 10-min intertrial interval. When given acutely postsample, COC improved the marmosets' recognition memory, whereas it had a detrimental effect after the repeated exposure. Thus, depending on the administration schedule, COC exerted opposing effects on the marmosets' ability to recognize spatial changes. This agrees with recent studies in rodents and the recognition impairment seen in human addicts. Further studies related to the effects of cocaine's acute×prior drug history on the same cognitive domain are warranted. © 2017 Elsevier B.V. All rights reserved.

  16. Further evidence that amygdala and hippocampus contribute equally to recognition memory.

    PubMed

    Saunders, R C; Murray, E A; Mishkin, M

    1984-01-01

    The medial temporal neuropathology found in an amnesic neurosurgical patient [17] was simulated in monkeys in an attempt to determine whether the patient's mnemonic disorder, which had been ascribed to bilateral hippocampal destruction, may have also been due in part to unilateral amygdaloid removal. For this purpose, monkeys were prepared with bilateral hippocampectomy combined with unilateral amygdalectomy, and (as a control) bilateral amygdalectomy combined with unilateral hippocampectomy. The animals were trained both before and after surgery on a one-trial visual recognition task requiring memory of single objects for 10 sec each and then given a postoperative performance test in which their one-trial recognition ability was taxed with longer delays (up to 2 min) and longer lists (up to 10 objects). The two groups, which did not differ reliably at any stage, obtained average scores on the performance test 75 and 80%, respectively. Comparison with the results of an earlier experiment [8] indicates that this performance level lies approximately midway between that of monkeys with amygdaloid or hippocampal removals alone (91%) and that of monkeys with combined amygdalo-hippocampal removals (60%). The results point to a direct quantitative relationship between degree of recognition impairment and amount of conjoint damage to the amygdala and hippocampus irrespective of the specific structure involved. Evidence from neurosurgical cases tested in visual recognition [21] indicates that the same conclusion may apply to man.

  17. Detecting individual memories through the neural decoding of memory states and past experience.

    PubMed

    Rissman, Jesse; Greely, Henry T; Wagner, Anthony D

    2010-05-25

    A wealth of neuroscientific evidence indicates that our brains respond differently to previously encountered than to novel stimuli. There has been an upswell of interest in the prospect that functional MRI (fMRI), when coupled with multivariate data analysis techniques, might allow the presence or absence of individual memories to be detected from brain activity patterns. This could have profound implications for forensic investigations and legal proceedings, and thus the merits and limitations of such an approach are in critical need of empirical evaluation. We conducted two experiments to investigate whether neural signatures of recognition memory can be reliably decoded from fMRI data. In Exp. 1, participants were scanned while making explicit recognition judgments for studied and novel faces. Multivoxel pattern analysis (MVPA) revealed a robust ability to classify whether a given face was subjectively experienced as old or new, as well as whether recognition was accompanied by recollection, strong familiarity, or weak familiarity. Moreover, a participant's subjective mnemonic experiences could be reliably decoded even when the classifier was trained on the brain data from other individuals. In contrast, the ability to classify a face's objective old/new status, when holding subjective status constant, was severely limited. This important boundary condition was further evidenced in Exp. 2, which demonstrated that mnemonic decoding is poor when memory is indirectly (implicitly) probed. Thus, although subjective memory states can be decoded quite accurately under controlled experimental conditions, fMRI has uncertain utility for objectively detecting an individual's past experiences.

  18. It's All in Your Head: Why Is the Body Inversion Effect Abolished for Headless Bodies?

    ERIC Educational Resources Information Center

    Yovel, Galit; Pelc, Tatiana; Lubetzky, Ida

    2010-01-01

    It has been recently argued that human bodies are processed by a specialized processing mechanism. Central evidence was that body inversion reduces recognition abilities (body inversion effect; BIE) as much as it does for faces, but more than for other objects. Here we showed that the BIE is markedly reduced for headless bodies and examined the…

  19. Capturing specific abilities as a window into human individuality: the example of face recognition.

    PubMed

    Wilmer, Jeremy B; Germine, Laura; Chabris, Christopher F; Chatterjee, Garga; Gerbasi, Margaret; Nakayama, Ken

    2012-01-01

    Proper characterization of each individual's unique pattern of strengths and weaknesses requires good measures of diverse abilities. Here, we advocate combining our growing understanding of neural and cognitive mechanisms with modern psychometric methods in a renewed effort to capture human individuality through a consideration of specific abilities. We articulate five criteria for the isolation and measurement of specific abilities, then apply these criteria to face recognition. We cleanly dissociate face recognition from more general visual and verbal recognition. This dissociation stretches across ability as well as disability, suggesting that specific developmental face recognition deficits are a special case of a broader specificity that spans the entire spectrum of human face recognition performance. Item-by-item results from 1,471 web-tested participants, included as supplementary information, fuel item analyses, validation, norming, and item response theory (IRT) analyses of our three tests: (a) the widely used Cambridge Face Memory Test (CFMT); (b) an Abstract Art Memory Test (AAMT), and (c) a Verbal Paired-Associates Memory Test (VPMT). The availability of this data set provides a solid foundation for interpreting future scores on these tests. We argue that the allied fields of experimental psychology, cognitive neuroscience, and vision science could fuel the discovery of additional specific abilities to add to face recognition, thereby providing new perspectives on human individuality.

  20. Multispectral image analysis for object recognition and classification

    NASA Astrophysics Data System (ADS)

    Viau, C. R.; Payeur, P.; Cretu, A.-M.

    2016-05-01

    Computer and machine vision applications are used in numerous fields to analyze static and dynamic imagery in order to assist or automate decision-making processes. Advancements in sensor technologies now make it possible to capture and visualize imagery at various wavelengths (or bands) of the electromagnetic spectrum. Multispectral imaging has countless applications in various fields including (but not limited to) security, defense, space, medical, manufacturing and archeology. The development of advanced algorithms to process and extract salient information from the imagery is a critical component of the overall system performance. The fundamental objective of this research project was to investigate the benefits of combining imagery from the visual and thermal bands of the electromagnetic spectrum to improve the recognition rates and accuracy of commonly found objects in an office setting. A multispectral dataset (visual and thermal) was captured and features from the visual and thermal images were extracted and used to train support vector machine (SVM) classifiers. The SVM's class prediction ability was evaluated separately on the visual, thermal and multispectral testing datasets.

  1. Face recognition: a model specific ability.

    PubMed

    Wilmer, Jeremy B; Germine, Laura T; Nakayama, Ken

    2014-01-01

    In our everyday lives, we view it as a matter of course that different people are good at different things. It can be surprising, in this context, to learn that most of what is known about cognitive ability variation across individuals concerns the broadest of all cognitive abilities; an ability referred to as general intelligence, general mental ability, or just g. In contrast, our knowledge of specific abilities, those that correlate little with g, is severely constrained. Here, we draw upon our experience investigating an exceptionally specific ability, face recognition, to make the case that many specific abilities could easily have been missed. In making this case, we derive key insights from earlier false starts in the measurement of face recognition's variation across individuals, and we highlight the convergence of factors that enabled the recent discovery that this variation is specific. We propose that the case of face recognition ability illustrates a set of tools and perspectives that could accelerate fruitful work on specific cognitive abilities. By revealing relatively independent dimensions of human ability, such work would enhance our capacity to understand the uniqueness of individual minds.

  2. Emotion Recognition Deficits in Schizophrenia-Spectrum Disorders and Psychotic Bipolar Disorder: Findings from the Bipolar-Schizophrenia Network on Intermediate Phenotypes (B-SNIP) Study

    PubMed Central

    Ruocco, Anthony C.; Reilly, James L.; Rubin, Leah H.; Daros, Alex R.; Gershon, Elliot S.; Tamminga, Carol A.; Pearlson, Godfrey D.; Hill, S. Kristian; Keshavan, Matcheri S.; Gur, Ruben C.; Sweeney, John A.

    2014-01-01

    Background Difficulty recognizing facial emotions is an important social-cognitive deficit associated with psychotic disorders. It also may reflect a familial risk for psychosis in schizophrenia-spectrum disorders and bipolar disorder. Objective The objectives of this study from the Bipolar-Schizophrenia Network on Intermediate Phenotypes (B-SNIP) consortium were to: 1) compare emotion recognition deficits in schizophrenia, schizoaffective disorder and bipolar disorder with psychosis, 2) determine the familiality of emotion recognition deficits across these disorders, and 3) evaluate emotion recognition deficits in nonpsychotic relatives with and without elevated Cluster A and Cluster B personality disorder traits. Method Participants included probands with schizophrenia (n=297), schizoaffective disorder (depressed type, n=61; bipolar type, n=69), bipolar disorder with psychosis (n=248), their first-degree relatives (n=332, n=69, n=154, and n=286, respectively) and healthy controls (n=380). All participants completed the Penn Emotion Recognition Test, a standardized measure of facial emotion recognition assessing four basic emotions (happiness, sadness, anger and fear) and neutral expressions (no emotion). Results Compared to controls, emotion recognition deficits among probands increased progressively from bipolar disorder to schizoaffective disorder to schizophrenia. Proband and relative groups showed similar deficits perceiving angry and neutral faces, whereas deficits on fearful, happy and sad faces were primarily isolated to schizophrenia probands. Even non-psychotic relatives without elevated Cluster A or Cluster B personality disorder traits showed deficits on neutral and angry faces. Emotion recognition ability was moderately familial only in schizophrenia families. Conclusions Emotion recognition deficits are prominent but somewhat different across psychotic disorders. These deficits are reflected to a lesser extent in relatives, particularly on angry and neutral faces. Deficits were evident in non-psychotic relatives even without elevated personality disorder traits. Deficits in facial emotion recognition may reflect an important social-cognitive deficit in patients with psychotic disorders. PMID:25052782

  3. Impaired recognition of happy facial expressions in bipolar disorder.

    PubMed

    Lawlor-Savage, Linette; Sponheim, Scott R; Goghari, Vina M

    2014-08-01

    The ability to accurately judge facial expressions is important in social interactions. Individuals with bipolar disorder have been found to be impaired in emotion recognition; however, the specifics of the impairment are unclear. This study investigated whether facial emotion recognition difficulties in bipolar disorder reflect general cognitive, or emotion-specific, impairments. Impairment in the recognition of particular emotions and the role of processing speed in facial emotion recognition were also investigated. Clinically stable bipolar patients (n = 17) and healthy controls (n = 50) judged five facial expressions in two presentation types, time-limited and self-paced. An age recognition condition was used as an experimental control. Bipolar patients' overall facial recognition ability was unimpaired. However, patients' specific ability to judge happy expressions under time constraints was impaired. Findings suggest a deficit in happy emotion recognition impacted by processing speed. Given the limited sample size, further investigation with a larger patient sample is warranted.

  4. Effects of the duration of expressions on the recognition of microexpressions*

    PubMed Central

    Shen, Xun-bing; Wu, Qi; Fu, Xiao-lan

    2012-01-01

    Objective: The purpose of this study was to investigate the effects of the duration of expressions on the recognition of microexpressions, which are closely related to deception. Methods: In two experiments, participants were briefly (from 20 to 300 ms) shown one of six basic expressions and then were asked to identify the expression. Results: The results showed that the participants’ performance in recognition of microexpressions increased with the duration of the expressions, reaching a turning point at 200 ms before levelling off. The results also indicated that practice could improve the participants’ performance. Conclusions: The results of this study suggest that the proper upper limit of the duration of microexpressions might be around 1/5 of a second and confirmed that the ability to recognize microexpressions can be enhanced with practice. PMID:22374615

  5. Capturing specific abilities as a window into human individuality: The example of face recognition

    PubMed Central

    Wilmer, Jeremy B.; Germine, Laura; Chabris, Christopher F.; Chatterjee, Garga; Gerbasi, Margaret; Nakayama, Ken

    2013-01-01

    Proper characterization of each individual's unique pattern of strengths and weaknesses requires good measures of diverse abilities. Here, we advocate combining our growing understanding of neural and cognitive mechanisms with modern psychometric methods in a renewed effort to capture human individuality through a consideration of specific abilities. We articulate five criteria for the isolation and measurement of specific abilities, then apply these criteria to face recognition. We cleanly dissociate face recognition from more general visual and verbal recognition. This dissociation stretches across ability as well as disability, suggesting that specific developmental face recognition deficits are a special case of a broader specificity that spans the entire spectrum of human face recognition performance. Item-by-item results from 1,471 web-tested participants, included as supplementary information, fuel item analyses, validation, norming, and item response theory (IRT) analyses of our three tests: (a) the widely used Cambridge Face Memory Test (CFMT); (b) an Abstract Art Memory Test (AAMT), and (c) a Verbal Paired-Associates Memory Test (VPMT). The availability of this data set provides a solid foundation for interpreting future scores on these tests. We argue that the allied fields of experimental psychology, cognitive neuroscience, and vision science could fuel the discovery of additional specific abilities to add to face recognition, thereby providing new perspectives on human individuality. PMID:23428079

  6. Perceptual expertise and top-down expectation of musical notation engages the primary visual cortex.

    PubMed

    Wong, Yetta Kwailing; Peng, Cynthia; Fratus, Kristyn N; Woodman, Geoffrey F; Gauthier, Isabel

    2014-08-01

    Most theories of visual processing propose that object recognition is achieved in higher visual cortex. However, we show that category selectivity for musical notation can be observed in the first ERP component called the C1 (measured 40-60 msec after stimulus onset) with music-reading expertise. Moreover, the C1 note selectivity was observed only when the stimulus category was blocked but not when the stimulus category was randomized. Under blocking, the C1 activity for notes predicted individual music-reading ability, and behavioral judgments of musical stimuli reflected music-reading skill. Our results challenge current theories of object recognition, indicating that the primary visual cortex can be selective for musical notation within the initial feedforward sweep of activity with perceptual expertise and with a testing context that is consistent with the expertise training, such as blocking the stimulus category for music reading.

  7. Do people have insight into their face recognition abilities?

    PubMed

    Palermo, Romina; Rossion, Bruno; Rhodes, Gillian; Laguesse, Renaud; Tez, Tolga; Hall, Bronwyn; Albonico, Andrea; Malaspina, Manuela; Daini, Roberta; Irons, Jessica; Al-Janabi, Shahd; Taylor, Libby C; Rivolta, Davide; McKone, Elinor

    2017-02-01

    Diagnosis of developmental or congenital prosopagnosia (CP) involves self-report of everyday face recognition difficulties, which are corroborated with poor performance on behavioural tests. This approach requires accurate self-evaluation. We examine the extent to which typical adults have insight into their face recognition abilities across four experiments involving nearly 300 participants. The experiments used five tests of face recognition ability: two that tap into the ability to learn and recognize previously unfamiliar faces [the Cambridge Face Memory Test, CFMT; Duchaine, B., & Nakayama, K. (2006). The Cambridge Face Memory Test: Results for neurologically intact individuals and an investigation of its validity using inverted face stimuli and prosopagnosic participants. Neuropsychologia, 44(4), 576-585. doi:10.1016/j.neuropsychologia.2005.07.001; and a newly devised test based on the CFMT but where the study phases involve watching short movies rather than viewing static faces-the CFMT-Films] and three that tap face matching [Benton Facial Recognition Test, BFRT; Benton, A., Sivan, A., Hamsher, K., Varney, N., & Spreen, O. (1983). Contribution to neuropsychological assessment. New York: Oxford University Press; and two recently devised sequential face matching tests]. Self-reported ability was measured with the 15-item Kennerknecht et al. questionnaire [Kennerknecht, I., Ho, N. Y., & Wong, V. C. (2008). Prevalence of hereditary prosopagnosia (HPA) in Hong Kong Chinese population. American Journal of Medical Genetics Part A, 146A(22), 2863-2870. doi:10.1002/ajmg.a.32552]; two single-item questions assessing face recognition ability; and a new 77-item meta-cognition questionnaire. Overall, we find that adults with typical face recognition abilities have only modest insight into their ability to recognize faces on behavioural tests. In a fifth experiment, we assess self-reported face recognition ability in people with CP and find that some people who expect to perform poorly on behavioural tests of face recognition do indeed perform poorly. However, it is not yet clear whether individuals within this group of poor performers have greater levels of insight (i.e., into their degree of impairment) than those with more typical levels of performance.

  8. Age, gender, and puberty influence the development of facial emotion recognition.

    PubMed

    Lawrence, Kate; Campbell, Ruth; Skuse, David

    2015-01-01

    Our ability to differentiate between simple facial expressions of emotion develops between infancy and early adulthood, yet few studies have explored the developmental trajectory of emotion recognition using a single methodology across a wide age-range. We investigated the development of emotion recognition abilities through childhood and adolescence, testing the hypothesis that children's ability to recognize simple emotions is modulated by chronological age, pubertal stage and gender. In order to establish norms, we assessed 478 children aged 6-16 years, using the Ekman-Friesen Pictures of Facial Affect. We then modeled these cross-sectional data in terms of competence in accurate recognition of the six emotions studied, when the positive correlation between emotion recognition and IQ was controlled. Significant linear trends were seen in children's ability to recognize facial expressions of happiness, surprise, fear, and disgust; there was improvement with increasing age. In contrast, for sad and angry expressions there is little or no change in accuracy over the age range 6-16 years; near-adult levels of competence are established by middle-childhood. In a sampled subset, pubertal status influenced the ability to recognize facial expressions of disgust and anger; there was an increase in competence from mid to late puberty, which occurred independently of age. A small female advantage was found in the recognition of some facial expressions. The normative data provided in this study will aid clinicians and researchers in assessing the emotion recognition abilities of children and will facilitate the identification of abnormalities in a skill that is often impaired in neurodevelopmental disorders. If emotion recognition abilities are a good model with which to understand adolescent development, then these results could have implications for the education, mental health provision and legal treatment of teenagers.

  9. Age, gender, and puberty influence the development of facial emotion recognition

    PubMed Central

    Lawrence, Kate; Campbell, Ruth; Skuse, David

    2015-01-01

    Our ability to differentiate between simple facial expressions of emotion develops between infancy and early adulthood, yet few studies have explored the developmental trajectory of emotion recognition using a single methodology across a wide age-range. We investigated the development of emotion recognition abilities through childhood and adolescence, testing the hypothesis that children’s ability to recognize simple emotions is modulated by chronological age, pubertal stage and gender. In order to establish norms, we assessed 478 children aged 6–16 years, using the Ekman-Friesen Pictures of Facial Affect. We then modeled these cross-sectional data in terms of competence in accurate recognition of the six emotions studied, when the positive correlation between emotion recognition and IQ was controlled. Significant linear trends were seen in children’s ability to recognize facial expressions of happiness, surprise, fear, and disgust; there was improvement with increasing age. In contrast, for sad and angry expressions there is little or no change in accuracy over the age range 6–16 years; near-adult levels of competence are established by middle-childhood. In a sampled subset, pubertal status influenced the ability to recognize facial expressions of disgust and anger; there was an increase in competence from mid to late puberty, which occurred independently of age. A small female advantage was found in the recognition of some facial expressions. The normative data provided in this study will aid clinicians and researchers in assessing the emotion recognition abilities of children and will facilitate the identification of abnormalities in a skill that is often impaired in neurodevelopmental disorders. If emotion recognition abilities are a good model with which to understand adolescent development, then these results could have implications for the education, mental health provision and legal treatment of teenagers. PMID:26136697

  10. Urinary bladder: normal appearance and mimics of malignancy at CT urography

    PubMed Central

    Sadow, Cheryl A.; Anik Sahni, V.; Silverman, Stuart G.

    2011-01-01

    Abstract The objective of this review article is to learn how to recognize anatomic variants and benign entities that mimic bladder cancer at computed tomography (CT) urography. Building on recent data that suggest that CT urography can be used to diagnose bladder cancer, recognition of anatomic variants and benign entities will help improve radiologists’ ability to diagnose bladder cancer. PMID:21771710

  11. Age-Related Differences in Recognition Memory for Items and Associations: Contribution of Individual Differences in Working Memory and Metamemory

    PubMed Central

    Bender, Andrew R.; Raz, Naftali

    2012-01-01

    Ability to form new associations between unrelated items is particularly sensitive to aging, but the reasons for such differential vulnerability are unclear. In this study, we examined the role of objective and subjective factors (working memory and beliefs about memory strategies) on differential relations of age with recognition of items and associations. Healthy adults (N = 100, age 21 to 79) studied word pairs, completed item and association recognition tests, and rated the effectiveness of shallow (e.g., repetition) and deep (e.g., imagery or sentence generation) encoding strategies. Advanced age was associated with reduced working memory (WM) capacity and poorer associative recognition. In addition, reduced WM capacity, beliefs in the utility of ineffective encoding strategies, and lack of endorsement of effective ones were independently associated with impaired associative memory. Thus, maladaptive beliefs about memory in conjunction with reduced cognitive resources account in part for differences in associative memory commonly attributed to aging. PMID:22251381

  12. A novel rotational invariants target recognition method for rotating motion blurred images

    NASA Astrophysics Data System (ADS)

    Lan, Jinhui; Gong, Meiling; Dong, Mingwei; Zeng, Yiliang; Zhang, Yuzhen

    2017-11-01

    The imaging of the image sensor is blurred due to the rotational motion of the carrier and reducing the target recognition rate greatly. Although the traditional mode that restores the image first and then identifies the target can improve the recognition rate, it takes a long time to recognize. In order to solve this problem, a rotating fuzzy invariants extracted model was constructed that recognizes target directly. The model includes three metric layers. The object description capability of metric algorithms that contain gray value statistical algorithm, improved round projection transformation algorithm and rotation-convolution moment invariants in the three metric layers ranges from low to high, and the metric layer with the lowest description ability among them is as the input which can eliminate non pixel points of target region from degenerate image gradually. Experimental results show that the proposed model can improve the correct target recognition rate of blurred image and optimum allocation between the computational complexity and function of region.

  13. Production of anti-amoxicillin ScFv antibody and simulation studying its molecular recognition mechanism for penicillins.

    PubMed

    Liu, Jing; Zhang, Hui C; Duan, Chang F; Dong, Jun; Zhao, Guo X; Wang, Jian P; Li, Nan; Liu, Jin Z; Li, Yu W

    2016-11-01

    The molecular recognition mechanism of an antibody for its hapten is very interesting. The objective of this research was to study the intermolecular interactions of an anti-amoxicillin antibody with penicillin drugs. The single chain variable fragment (ScFv) antibody was generated from a hybridoma cell strain excreting the monoclonal antibody for amoxicillin. The recombinant ScFv antibody showed similar recognition ability for penicillins to its parental monoclonal antibody: simultaneous recognizing 11 penicillins with cross-reactivities of 18-107%. The three-dimensional structure of the ScFv antibody was simulated by using homology modeling, and its intermolecular interactions with 11 penicillins were studied by using molecular docking. Results showed that three CDRs are involved in antibody recognition; CDR L3 Arg 100, CDR H3 Tyr226, and CDR H3 Arg 228 were the key contact amino acid residues; hydrogen bonding was the main antibody-drug intermolecular force; and the core structure of penicillin drugs was the main antibody binding position. These results could explain the recognition mechanism of anti-amoxicillin antibody for amoxicillin and its analogs. This is the first study reporting the production of ScFv antibody for penicillins and stimulation studying its recognition mechanism.

  14. Electrolytic lesions of dorsal CA3 impair episodic-like memory in rats.

    PubMed

    Li, Jay-Shake; Chao, Yuen-Shin

    2008-02-01

    Episodic memory is the ability to recollect one's past experiences occurring in an unique spatial and temporal context. In non-human animals, it is expressed in the ability to combine "what", "where" and "when" factors to form an integrated memory system. During the search for its neural substrates, the hippocampus has attracted a lot of attentions. Yet, it is not yet possible to induce a pure episodic-like memory deficit in animal studies without being confounded by impairments in the spatial cognition. Here, we present a lesion study evidencing direct links between the hippocampus CA3 region and the episodic-like memory in rats. In a spontaneous object exploration task, lesioned rats showed no interaction between the temporal and spatial elements in their memory associated with the objects. In separate tests carried out subsequently, the same animals still expressed abilities to process spatial, temporal, and object recognition memory. In conclusions, our results support the idea that the hippocampus CA3 has a particular status in the neural mechanism of the episodic-like memory system. It is responsible for combining information from different modules of cognitive processes.

  15. How a Hat May Affect 3-Month-Olds' Recognition of a Face: An Eye-Tracking Study

    PubMed Central

    Bulf, Hermann; Valenza, Eloisa; Turati, Chiara

    2013-01-01

    Recent studies have shown that infants’ face recognition rests on a robust face representation that is resilient to a variety of facial transformations such as rotations in depth, motion, occlusion or deprivation of inner/outer features. Here, we investigated whether 3-month-old infants’ ability to represent the invariant aspects of a face is affected by the presence of an external add-on element, i.e. a hat. Using a visual habituation task, three experiments were carried out in which face recognition was investigated by manipulating the presence/absence of a hat during face encoding (i.e. habituation phase) and face recognition (i.e. test phase). An eye-tracker system was used to record the time infants spent looking at face-relevant information compared to the hat. The results showed that infants’ face recognition was not affected by the presence of the external element when the type of the hat did not vary between the habituation and test phases, and when both the novel and the familiar face wore the same hat during the test phase (Experiment 1). Infants’ ability to recognize the invariant aspects of a face was preserved also when the hat was absent in the habituation phase and the same hat was shown only during the test phase (Experiment 2). Conversely, when the novel face identity competed with a novel hat, the hat triggered the infants’ attention, interfering with the recognition process and preventing the infants’ preference for the novel face during the test phase (Experiment 3). Findings from the current study shed light on how faces and objects are processed when they are simultaneously presented in the same visual scene, contributing to an understanding of how infants respond to the multiple and composite information available in their surrounding environment. PMID:24349378

  16. How a hat may affect 3-month-olds' recognition of a face: an eye-tracking study.

    PubMed

    Bulf, Hermann; Valenza, Eloisa; Turati, Chiara

    2013-01-01

    Recent studies have shown that infants' face recognition rests on a robust face representation that is resilient to a variety of facial transformations such as rotations in depth, motion, occlusion or deprivation of inner/outer features. Here, we investigated whether 3-month-old infants' ability to represent the invariant aspects of a face is affected by the presence of an external add-on element, i.e. a hat. Using a visual habituation task, three experiments were carried out in which face recognition was investigated by manipulating the presence/absence of a hat during face encoding (i.e. habituation phase) and face recognition (i.e. test phase). An eye-tracker system was used to record the time infants spent looking at face-relevant information compared to the hat. The results showed that infants' face recognition was not affected by the presence of the external element when the type of the hat did not vary between the habituation and test phases, and when both the novel and the familiar face wore the same hat during the test phase (Experiment 1). Infants' ability to recognize the invariant aspects of a face was preserved also when the hat was absent in the habituation phase and the same hat was shown only during the test phase (Experiment 2). Conversely, when the novel face identity competed with a novel hat, the hat triggered the infants' attention, interfering with the recognition process and preventing the infants' preference for the novel face during the test phase (Experiment 3). Findings from the current study shed light on how faces and objects are processed when they are simultaneously presented in the same visual scene, contributing to an understanding of how infants respond to the multiple and composite information available in their surrounding environment.

  17. Functional dissociation between action and perception of object shape in developmental visual object agnosia.

    PubMed

    Freud, Erez; Ganel, Tzvi; Avidan, Galia; Gilaie-Dotan, Sharon

    2016-03-01

    According to the two visual systems model, the cortical visual system is segregated into a ventral pathway mediating object recognition, and a dorsal pathway mediating visuomotor control. In the present study we examined whether the visual control of action could develop normally even when visual perceptual abilities are compromised from early childhood onward. Using his fingers, LG, an individual with a rare developmental visual object agnosia, manually estimated (perceptual condition) the width of blocks that varied in width and length (but not in overall size), or simply picked them up across their width (grasping condition). LG's perceptual sensitivity to target width was profoundly impaired in the manual estimation task compared to matched controls. In contrast, the sensitivity to object shape during grasping, as measured by maximum grip aperture (MGA), the time to reach the MGA, the reaction time and the total movement time were all normal in LG. Further analysis, however, revealed that LG's sensitivity to object shape during grasping emerged at a later time stage during the movement compared to controls. Taken together, these results demonstrate a dissociation between action and perception of object shape, and also point to a distinction between different stages of the grasping movement, namely planning versus online control. Moreover, the present study implies that visuomotor abilities can develop normally even when perceptual abilities developed in a profoundly impaired fashion. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Standard object recognition memory and "what" and "where" components: Improvement by post-training epinephrine in highly habituated rats.

    PubMed

    Jurado-Berbel, Patricia; Costa-Miserachs, David; Torras-Garcia, Meritxell; Coll-Andreu, Margalida; Portell-Cortés, Isabel

    2010-02-11

    The present work examined whether post-training systemic epinephrine (EPI) is able to modulate short-term (3h) and long-term (24 h and 48 h) memory of standard object recognition, as well as long-term (24 h) memory of separate "what" (object identity) and "where" (object location) components of object recognition. Although object recognition training is associated to low arousal levels, all the animals received habituation to the training box in order to further reduce emotional arousal. Post-training EPI improved long-term (24 h and 48 h), but not short-term (3 h), memory in the standard object recognition task, as well as 24 h memory for both object identity and object location. These data indicate that post-training epinephrine: (1) facilitates long-term memory for standard object recognition; (2) exerts separate facilitatory effects on "what" (object identity) and "where" (object location) components of object recognition; and (3) is capable of improving memory for a low arousing task even in highly habituated rats.

  19. Role of slow oscillatory activity and slow wave sleep in consolidation of episodic-like memory in rats.

    PubMed

    Oyanedel, Carlos N; Binder, Sonja; Kelemen, Eduard; Petersen, Kimberley; Born, Jan; Inostroza, Marion

    2014-12-15

    Our previous experiments showed that sleep in rats enhances consolidation of hippocampus dependent episodic-like memory, i.e. the ability to remember an event bound into specific spatio-temporal context. Here we tested the hypothesis that this enhancing effect of sleep is linked to the occurrence of slow oscillatory and spindle activity during slow wave sleep (SWS). Rats were tested on an episodic-like memory task and on three additional tasks covering separately the where (object place recognition), when (temporal memory), and what (novel object recognition) components of episodic memory. In each task, the sample phase (encoding) was followed by an 80-min retention interval that covered either a period of regular morning sleep or sleep deprivation. Memory during retrieval was tested using preferential exploration of novelty vs. familiarity. Consistent with previous findings, the rats which had slept during the retention interval showed significantly stronger episodic-like memory and spatial memory, and a trend of improved temporal memory (although not significant). Object recognition memory was similarly retained across sleep and sleep deprivation retention intervals. Recall of episodic-like memory was associated with increased slow oscillatory activity (0.85-2.0Hz) during SWS in the retention interval. Spatial memory was associated with increased proportions of SWS. Against our hypothesis, a relationship between spindle activity and episodic-like memory performance was not detected, but spindle activity was associated with object recognition memory. The results provide support for the role of SWS and slow oscillatory activity in consolidating hippocampus-dependent memory, the role of spindles in this process needs to be further examined. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.

  20. Ventral-stream-like shape representation: from pixel intensity values to trainable object-selective COSFIRE models

    PubMed Central

    Azzopardi, George; Petkov, Nicolai

    2014-01-01

    The remarkable abilities of the primate visual system have inspired the construction of computational models of some visual neurons. We propose a trainable hierarchical object recognition model, which we call S-COSFIRE (S stands for Shape and COSFIRE stands for Combination Of Shifted FIlter REsponses) and use it to localize and recognize objects of interests embedded in complex scenes. It is inspired by the visual processing in the ventral stream (V1/V2 → V4 → TEO). Recognition and localization of objects embedded in complex scenes is important for many computer vision applications. Most existing methods require prior segmentation of the objects from the background which on its turn requires recognition. An S-COSFIRE filter is automatically configured to be selective for an arrangement of contour-based features that belong to a prototype shape specified by an example. The configuration comprises selecting relevant vertex detectors and determining certain blur and shift parameters. The response is computed as the weighted geometric mean of the blurred and shifted responses of the selected vertex detectors. S-COSFIRE filters share similar properties with some neurons in inferotemporal cortex, which provided inspiration for this work. We demonstrate the effectiveness of S-COSFIRE filters in two applications: letter and keyword spotting in handwritten manuscripts and object spotting in complex scenes for the computer vision system of a domestic robot. S-COSFIRE filters are effective to recognize and localize (deformable) objects in images of complex scenes without requiring prior segmentation. They are versatile trainable shape detectors, conceptually simple and easy to implement. The presented hierarchical shape representation contributes to a better understanding of the brain and to more robust computer vision algorithms. PMID:25126068

  1. [Comparative studies of face recognition].

    PubMed

    Kawai, Nobuyuki

    2012-07-01

    Every human being is proficient in face recognition. However, the reason for and the manner in which humans have attained such an ability remain unknown. These questions can be best answered-through comparative studies of face recognition in non-human animals. Studies in both primates and non-primates show that not only primates, but also non-primates possess the ability to extract information from their conspecifics and from human experimenters. Neural specialization for face recognition is shared with mammals in distant taxa, suggesting that face recognition evolved earlier than the emergence of mammals. A recent study indicated that a social insect, the golden paper wasp, can distinguish their conspecific faces, whereas a closely related species, which has a less complex social lifestyle with just one queen ruling a nest of underlings, did not show strong face recognition for their conspecifics. Social complexity and the need to differentiate between one another likely led humans to evolve their face recognition abilities.

  2. Generalization between canonical and non-canonical views in object recognition

    PubMed Central

    Ghose, Tandra; Liu, Zili

    2013-01-01

    Viewpoint generalization in object recognition is the process that allows recognition of a given 3D object from many different viewpoints despite variations in its 2D projections. We used the canonical view effects as a foundation to empirically test the validity of a major theory in object recognition, the view-approximation model (Poggio & Edelman, 1990). This model predicts that generalization should be better when an object is first seen from a non-canonical view and then a canonical view than when seen in the reversed order. We also manipulated object similarity to study the degree to which this view generalization was constrained by shape details and task instructions (object vs. image recognition). Old-new recognition performance for basic and subordinate level objects was measured in separate blocks. We found that for object recognition, view generalization between canonical and non-canonical views was comparable for basic level objects. For subordinate level objects, recognition performance was more accurate from non-canonical to canonical views than the other way around. When the task was changed from object recognition to image recognition, the pattern of the results reversed. Interestingly, participants responded “old” to “new” images of “old” objects with a substantially higher rate than to “new” objects, despite instructions to the contrary, thereby indicating involuntary view generalization. Our empirical findings are incompatible with the prediction of the view-approximation theory, and argue against the hypothesis that views are stored independently. PMID:23283692

  3. The influence of camouflage, obstruction, familiarity and spatial ability on target identification from an unmanned ground vehicle.

    PubMed

    Fincannon, Thomas; Keebler, Joseph R; Jentsch, Florian; Curtis, Michael

    2013-01-01

    The purpose of this study was to examine the effects of environmental and cognitive factors on the identification of targets from an unmanned ground vehicle (UGV). This was accomplished by manipulating obstruction, camouflage and familiarity of objects in the environment, while also measuring spatial ability. The effects of these variables on target identification were studied by measuring performance of participants that observed pre-recorded video from a 1:35 scaled military operations in urban terrain facility. Analyses indicated that a combination of camouflage and obstruction caused the most detrimental effects on performance, and that there were differences in the recognition of familiar and unfamiliar targets. Further analysis indicated that these detrimental effects could only be overcome with a combination of target familiarity and spatial ability. The findings highlight the degree to which environmental factors hinder performance and the need for a multidimensional approach for improving performance under these conditions. Areas in need of future research are also discussed. Cognitive theory is applied to the problem of perception from UGVs. Results from an experimental study indicate that a combination of camouflage and obstruction caused the most detrimental effects on performance, with differences in the recognition of both familiar and unfamiliar targets. Familiarity and spatial ability interacted to predict the performance.

  4. Enhanced learning of natural visual sequences in newborn chicks.

    PubMed

    Wood, Justin N; Prasad, Aditya; Goldman, Jason G; Wood, Samantha M W

    2016-07-01

    To what extent are newborn brains designed to operate over natural visual input? To address this question, we used a high-throughput controlled-rearing method to examine whether newborn chicks (Gallus gallus) show enhanced learning of natural visual sequences at the onset of vision. We took the same set of images and grouped them into either natural sequences (i.e., sequences showing different viewpoints of the same real-world object) or unnatural sequences (i.e., sequences showing different images of different real-world objects). When raised in virtual worlds containing natural sequences, newborn chicks developed the ability to recognize familiar images of objects. Conversely, when raised in virtual worlds containing unnatural sequences, newborn chicks' object recognition abilities were severely impaired. In fact, the majority of the chicks raised with the unnatural sequences failed to recognize familiar images of objects despite acquiring over 100 h of visual experience with those images. Thus, newborn chicks show enhanced learning of natural visual sequences at the onset of vision. These results indicate that newborn brains are designed to operate over natural visual input.

  5. The relationship between emotion recognition ability and social skills in young children with autism.

    PubMed

    Williams, Beth T; Gray, Kylie M

    2013-11-01

    This study assessed the relationship between emotion recognition ability and social skills in 42 young children with autistic disorder aged 4-7 years. The analyses revealed that accuracy in recognition of sadness, but not happiness, anger or fear, was associated with higher ratings on the Vineland-II Socialization domain, above and beyond the influence of chronological age, cognitive ability and autism symptom severity. These findings extend previous research with adolescents and adults with autism spectrum disorders, suggesting that sadness recognition is also associated with social skills in children with autism.

  6. Use of the recognition heuristic depends on the domain's recognition validity, not on the recognition validity of selected sets of objects.

    PubMed

    Pohl, Rüdiger F; Michalkiewicz, Martha; Erdfelder, Edgar; Hilbig, Benjamin E

    2017-07-01

    According to the recognition-heuristic theory, decision makers solve paired comparisons in which one object is recognized and the other not by recognition alone, inferring that recognized objects have higher criterion values than unrecognized ones. However, success-and thus usefulness-of this heuristic depends on the validity of recognition as a cue, and adaptive decision making, in turn, requires that decision makers are sensitive to it. To this end, decision makers could base their evaluation of the recognition validity either on the selected set of objects (the set's recognition validity), or on the underlying domain from which the objects were drawn (the domain's recognition validity). In two experiments, we manipulated the recognition validity both in the selected set of objects and between domains from which the sets were drawn. The results clearly show that use of the recognition heuristic depends on the domain's recognition validity, not on the set's recognition validity. In other words, participants treat all sets as roughly representative of the underlying domain and adjust their decision strategy adaptively (only) with respect to the more general environment rather than the specific items they are faced with.

  7. Influences on Facial Emotion Recognition in Deaf Children

    ERIC Educational Resources Information Center

    Sidera, Francesc; Amadó, Anna; Martínez, Laura

    2017-01-01

    This exploratory research is aimed at studying facial emotion recognition abilities in deaf children and how they relate to linguistic skills and the characteristics of deafness. A total of 166 participants (75 deaf) aged 3-8 years were administered the following tasks: facial emotion recognition, naming vocabulary and cognitive ability. The…

  8. Eye movements during object recognition in visual agnosia.

    PubMed

    Charles Leek, E; Patterson, Candy; Paul, Matthew A; Rafal, Robert; Cristino, Filipe

    2012-07-01

    This paper reports the first ever detailed study about eye movement patterns during single object recognition in visual agnosia. Eye movements were recorded in a patient with an integrative agnosic deficit during two recognition tasks: common object naming and novel object recognition memory. The patient showed normal directional biases in saccades and fixation dwell times in both tasks and was as likely as controls to fixate within object bounding contour regardless of recognition accuracy. In contrast, following initial saccades of similar amplitude to controls, the patient showed a bias for short saccades. In object naming, but not in recognition memory, the similarity of the spatial distributions of patient and control fixations was modulated by recognition accuracy. The study provides new evidence about how eye movements can be used to elucidate the functional impairments underlying object recognition deficits. We argue that the results reflect a breakdown in normal functional processes involved in the integration of shape information across object structure during the visual perception of shape. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Tactile agnosia. Casuistic evidence and theoretical remarks on modality-specific meaning representations and sensorimotor integration.

    PubMed

    Platz, T

    1996-10-01

    Somaesthetic, motor and cognitive functions were studied in a man with impaired tactile object-recognition (TOR) in his left hand due to a right parietal convexity meningeoma which had been surgically removed. Primary motor and somatosensory functions were not impaired, and discriminative abilities for various tactile aspects and cognitive skills were preserved. Nevertheless, the patient could often not appreciate the object's nature or significance when it was placed in his left hand and was unable to name or to describe or demonstrate the use of these objects. Therefore, he can be regarded as an example of associative tactile agnosia. The view is taken and elaborated that defective modality-specific meaning representations account for associative tactile agnosia. These meaning representations are conceptualized as learned unimodal feature-entity relationships which are thought to be defective in tactile agnosia. In line with this hypothesis, tactile feature analysis and cross-modal matching of features were largely preserved in the investigated patient, while combining features to form entities was defective in the tactile domain. The alternative hypothesis of agnosia as deficit of cross-modal association of features was not supported. The presumed distributed functional network responsible for TOR is thought to involve perception of features, object recognition and related tactile motor behaviour interactively. A deficit leading primarily to impaired combining features to form entities can therefore be expected to result in additional minor impairment of related perceptual-motor processes. Unilaterality of the gnostic deficit can be explained by a lateralized organization of the functional network responsible for tactile recognition of objects.

  10. Techniques for generation of control and guidance signals derived from optical fields, part 2

    NASA Technical Reports Server (NTRS)

    Hemami, H.; Mcghee, R. B.; Gardner, S. R.

    1971-01-01

    The development is reported of a high resolution technique for the detection and identification of landmarks from spacecraft optical fields. By making use of nonlinear regression analysis, a method is presented whereby a sequence of synthetic images produced by a digital computer can be automatically adjusted to provide a least squares approximation to a real image. The convergence of the method is demonstrated by means of a computer simulation for both elliptical and rectangular patterns. Statistical simulation studies with elliptical and rectangular patterns show that the computational techniques developed are able to at least match human pattern recognition capabilities, even in the presence of large amounts of noise. Unlike most pattern recognition techniques, this ability is unaffected by arbitrary pattern rotation, translation, and scale change. Further development of the basic approach may eventually allow a spacecraft or robot vehicle to be provided with an ability to very accurately determine its spatial relationship to arbitrary known objects within its optical field of view.

  11. The role of perceptual load in object recognition.

    PubMed

    Lavie, Nilli; Lin, Zhicheng; Zokaei, Nahid; Thoma, Volker

    2009-10-01

    Predictions from perceptual load theory (Lavie, 1995, 2005) regarding object recognition across the same or different viewpoints were tested. Results showed that high perceptual load reduces distracter recognition levels despite always presenting distracter objects from the same view. They also showed that the levels of distracter recognition were unaffected by a change in the distracter object view under conditions of low perceptual load. These results were found both with repetition priming measures of distracter recognition and with performance on a surprise recognition memory test. The results support load theory proposals that distracter recognition critically depends on the level of perceptual load. The implications for the role of attention in object recognition theories are discussed. PsycINFO Database Record (c) 2009 APA, all rights reserved.

  12. Analysis and Recognition of Curve Type as The Basis of Object Recognition in Image

    NASA Astrophysics Data System (ADS)

    Nugraha, Nurma; Madenda, Sarifuddin; Indarti, Dina; Dewi Agushinta, R.; Ernastuti

    2016-06-01

    An object in an image when analyzed further will show the characteristics that distinguish one object with another object in an image. Characteristics that are used in object recognition in an image can be a color, shape, pattern, texture and spatial information that can be used to represent objects in the digital image. The method has recently been developed for image feature extraction on objects that share characteristics curve analysis (simple curve) and use the search feature of chain code object. This study will develop an algorithm analysis and the recognition of the type of curve as the basis for object recognition in images, with proposing addition of complex curve characteristics with maximum four branches that will be used for the process of object recognition in images. Definition of complex curve is the curve that has a point of intersection. By using some of the image of the edge detection, the algorithm was able to do the analysis and recognition of complex curve shape well.

  13. Emotion recognition and social adjustment in school-aged girls and boys.

    PubMed

    Leppänen, J M; Hietanen, J K

    2001-12-01

    The present study investigated emotion recognition accuracy and its relation to social adjustment in 7-10 year-old children. The ability to recognize basic emotions from facial and vocal expressions was measured and compared to peer popularity and to teacher-rated social competence. The results showed that emotion recognition was related to these measures of social adjustment, but the gender of a child and emotion category affected this relationship. Emotion recognition accuracy was significantly related to social adjustment for the girls, but not for the boys. For the girls, especially the recognition of surprise was related to social adjustment. Together, these results suggest that the ability to recognize others' emotional states from nonverbal cues is an important socio-cognitive ability for school-aged girls.

  14. Object recognition and pose estimation of planar objects from range data

    NASA Technical Reports Server (NTRS)

    Pendleton, Thomas W.; Chien, Chiun Hong; Littlefield, Mark L.; Magee, Michael

    1994-01-01

    The Extravehicular Activity Helper/Retriever (EVAHR) is a robotic device currently under development at the NASA Johnson Space Center that is designed to fetch objects or to assist in retrieving an astronaut who may have become inadvertently de-tethered. The EVAHR will be required to exhibit a high degree of intelligent autonomous operation and will base much of its reasoning upon information obtained from one or more three-dimensional sensors that it will carry and control. At the highest level of visual cognition and reasoning, the EVAHR will be required to detect objects, recognize them, and estimate their spatial orientation and location. The recognition phase and estimation of spatial pose will depend on the ability of the vision system to reliably extract geometric features of the objects such as whether the surface topologies observed are planar or curved and the spatial relationships between the component surfaces. In order to achieve these tasks, three-dimensional sensing of the operational environment and objects in the environment will therefore be essential. One of the sensors being considered to provide image data for object recognition and pose estimation is a phase-shift laser scanner. The characteristics of the data provided by this scanner have been studied and algorithms have been developed for segmenting range images into planar surfaces, extracting basic features such as surface area, and recognizing the object based on the characteristics of extracted features. Also, an approach has been developed for estimating the spatial orientation and location of the recognized object based on orientations of extracted planes and their intersection points. This paper presents some of the algorithms that have been developed for the purpose of recognizing and estimating the pose of objects as viewed by the laser scanner, and characterizes the desirability and utility of these algorithms within the context of the scanner itself, considering data quality and noise.

  15. Recognition of facial expressions of emotion by adults with intellectual disability: Is there evidence for the emotion specificity hypothesis?

    PubMed

    Scotland, Jennifer L; McKenzie, Karen; Cossar, Jill; Murray, Aja; Michie, Amanda

    2016-01-01

    This study aimed to evaluate the emotion recognition abilities of adults (n=23) with an intellectual disability (ID) compared with a control group of children (n=23) without ID matched for estimated cognitive ability. The study examined the impact of: task paradigm, stimulus type and preferred processing style (global/local) on accuracy. We found that, after controlling for estimated cognitive ability, the control group performed significantly better than the individuals with ID. This provides some support for the emotion specificity hypothesis. Having a more local processing style did not significantly mediate the relation between having ID and emotion recognition, but did significantly predict emotion recognition ability after controlling for group. This suggests that processing style is related to emotion recognition independently of having ID. The availability of contextual information improved emotion recognition for people with ID when compared with line drawing stimuli, and identifying a target emotion from a choice of two was relatively easier for individuals with ID, compared with the other task paradigms. The results of the study are considered in the context of current theories of emotion recognition deficits in individuals with ID. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Clinical evaluation of music perception, appraisal and experience in cochlear implant users

    PubMed Central

    Drennan, Ward. R.; Oleson, Jacob J.; Gfeller, Kate; Crosson, Jillian; Driscoll, Virginia D.; Won, Jong Ho; Anderson, Elizabeth S.; Rubinstein, Jay T.

    2014-01-01

    Objectives The objectives were to evaluate the relationships among music perception, appraisal, and experience in cochlear implant users in multiple clinical settings and to examine the viability of two assessments designed for clinical use. Design Background questionnaires (IMBQ) were administered by audiologists in 14 clinics in the United States and Canada. The CAMP included tests of pitch-direction discrimination, and melody and timbre recognition. The IMBQ queried users on prior musical involvement, music listening habits pre and post implant, and music appraisals. Study sample One-hundred forty-five users of Advanced Bionics and Cochlear Ltd cochlear implants. Results Performance on pitch direction discrimination, melody recognition, and timbre recognition tests were consistent with previous studies with smaller cohorts, as well as with more extensive protocols conducted in other centers. Relationships between perceptual accuracy and music enjoyment were weak, suggesting that perception and appraisal are relatively independent for CI users. Conclusions Perceptual abilities as measured by the CAMP had little to no relationship with music appraisals and little relationship with musical experience. The CAMP and IMBQ are feasible for routine clinical use, providing results consistent with previous thorough laboratory-based investigations. PMID:25177899

  17. Under what conditions is recognition spared relative to recall after selective hippocampal damage in humans?

    PubMed

    Holdstock, J S; Mayes, A R; Roberts, N; Cezayirli, E; Isaac, C L; O'Reilly, R C; Norman, K A

    2002-01-01

    The claim that recognition memory is spared relative to recall after focal hippocampal damage has been disputed in the literature. We examined this claim by investigating object and object-location recall and recognition memory in a patient, YR, who has adult-onset selective hippocampal damage. Our aim was to identify the conditions under which recognition was spared relative to recall in this patient. She showed unimpaired forced-choice object recognition but clearly impaired recall, even when her control subjects found the object recognition task to be numerically harder than the object recall task. However, on two other recognition tests, YR's performance was not relatively spared. First, she was clearly impaired at an equivalently difficult yes/no object recognition task, but only when targets and foils were very similar. Second, YR was clearly impaired at forced-choice recognition of object-location associations. This impairment was also unrelated to difficulty because this task was no more difficult than the forced-choice object recognition task for control subjects. The clear impairment of yes/no, but not of forced-choice, object recognition after focal hippocampal damage, when targets and foils are very similar, is predicted by the neural network-based Complementary Learning Systems model of recognition. This model postulates that recognition is mediated by hippocampally dependent recollection and cortically dependent familiarity; thus hippocampal damage should not impair item familiarity. The model postulates that familiarity is ineffective when very similar targets and foils are shown one at a time and subjects have to identify which items are old (yes/no recognition). In contrast, familiarity is effective in discriminating which of similar targets and foils, seen together, is old (forced-choice recognition). Independent evidence from the remember/know procedure also indicates that YR's familiarity is normal. The Complementary Learning Systems model can also accommodate the clear impairment of forced-choice object-location recognition memory if it incorporates the view that the most complete convergence of spatial and object information, represented in different cortical regions, occurs in the hippocampus.

  18. Higher-Order Neural Networks Applied to 2D and 3D Object Recognition

    NASA Technical Reports Server (NTRS)

    Spirkovska, Lilly; Reid, Max B.

    1994-01-01

    A Higher-Order Neural Network (HONN) can be designed to be invariant to geometric transformations such as scale, translation, and in-plane rotation. Invariances are built directly into the architecture of a HONN and do not need to be learned. Thus, for 2D object recognition, the network needs to be trained on just one view of each object class, not numerous scaled, translated, and rotated views. Because the 2D object recognition task is a component of the 3D object recognition task, built-in 2D invariance also decreases the size of the training set required for 3D object recognition. We present results for 2D object recognition both in simulation and within a robotic vision experiment and for 3D object recognition in simulation. We also compare our method to other approaches and show that HONNs have distinct advantages for position, scale, and rotation-invariant object recognition. The major drawback of HONNs is that the size of the input field is limited due to the memory required for the large number of interconnections in a fully connected network. We present partial connectivity strategies and a coarse-coding technique for overcoming this limitation and increasing the input field to that required by practical object recognition problems.

  19. Quantifying the effect of colorization enhancement on mammogram images

    NASA Astrophysics Data System (ADS)

    Wojnicki, Paul J.; Uyeda, Elizabeth; Micheli-Tzanakou, Evangelia

    2002-04-01

    Current methods of radiological displays provide only grayscale images of mammograms. The limitation of the image space to grayscale provides only luminance differences and textures as cues for object recognition within the image. However, color can be an important and significant cue in the detection of shapes and objects. Increasing detection ability allows the radiologist to interpret the images in more detail, improving object recognition and diagnostic accuracy. Color detection experiments using our stimulus system, have demonstrated that an observer can only detect an average of 140 levels of grayscale. An optimally colorized image can allow a user to distinguish 250 - 1000 different levels, hence increasing potential image feature detection by 2-7 times. By implementing a colorization map, which follows the luminance map of the original grayscale images, the luminance profile is preserved and color is isolated as the enhancement mechanism. The effect of this enhancement mechanism on the shape, frequency composition and statistical characteristics of the Visual Evoked Potential (VEP) are analyzed and presented. Thus, the effectiveness of the image colorization is measured quantitatively using the Visual Evoked Potential (VEP).

  20. Zif268/Egr1 gain of function facilitates hippocampal synaptic plasticity and long-term spatial recognition memory.

    PubMed

    Penke, Zsuzsa; Morice, Elise; Veyrac, Alexandra; Gros, Alexandra; Chagneau, Carine; LeBlanc, Pascale; Samson, Nathalie; Baumgärtel, Karsten; Mansuy, Isabelle M; Davis, Sabrina; Laroche, Serge

    2014-01-05

    It is well established that Zif268/Egr1, a member of the Egr family of transcription factors, is critical for the consolidation of several forms of memory; however, it is as yet uncertain whether increasing expression of Zif268 in neurons can facilitate memory formation. Here, we used an inducible transgenic mouse model to specifically induce Zif268 overexpression in forebrain neurons and examined the effect on recognition memory and hippocampal synaptic transmission and plasticity. We found that Zif268 overexpression during the establishment of memory for objects did not change the ability to form a long-term memory of objects, but enhanced the capacity to form a long-term memory of the spatial location of objects. This enhancement was paralleled by increased long-term potentiation in the dentate gyrus of the hippocampus and by increased activity-dependent expression of Zif268 and selected Zif268 target genes. These results provide novel evidence that transcriptional mechanisms engaging Zif268 contribute to determining the strength of newly encoded memories.

  1. A multimodal approach to emotion recognition ability in autism spectrum disorders.

    PubMed

    Jones, Catherine R G; Pickles, Andrew; Falcaro, Milena; Marsden, Anita J S; Happé, Francesca; Scott, Sophie K; Sauter, Disa; Tregay, Jenifer; Phillips, Rebecca J; Baird, Gillian; Simonoff, Emily; Charman, Tony

    2011-03-01

    Autism spectrum disorders (ASD) are characterised by social and communication difficulties in day-to-day life, including problems in recognising emotions. However, experimental investigations of emotion recognition ability in ASD have been equivocal, hampered by small sample sizes, narrow IQ range and over-focus on the visual modality. We tested 99 adolescents (mean age 15;6 years, mean IQ 85) with an ASD and 57 adolescents without an ASD (mean age 15;6 years, mean IQ 88) on a facial emotion recognition task and two vocal emotion recognition tasks (one verbal; one non-verbal). Recognition of happiness, sadness, fear, anger, surprise and disgust were tested. Using structural equation modelling, we conceptualised emotion recognition ability as a multimodal construct, measured by the three tasks. We examined how the mean levels of recognition of the six emotions differed by group (ASD vs. non-ASD) and IQ (≥ 80 vs. < 80). We found no evidence of a fundamental emotion recognition deficit in the ASD group and analysis of error patterns suggested that the ASD group were vulnerable to the same pattern of confusions between emotions as the non-ASD group. However, recognition ability was significantly impaired in the ASD group for surprise. IQ had a strong and significant effect on performance for the recognition of all six emotions, with higher IQ adolescents outperforming lower IQ adolescents. The findings do not suggest a fundamental difficulty with the recognition of basic emotions in adolescents with ASD. © 2010 The Authors. Journal of Child Psychology and Psychiatry © 2010 Association for Child and Adolescent Mental Health.

  2. Method and System for Object Recognition Search

    NASA Technical Reports Server (NTRS)

    Duong, Tuan A. (Inventor); Duong, Vu A. (Inventor); Stubberud, Allen R. (Inventor)

    2012-01-01

    A method for object recognition using shape and color features of the object to be recognized. An adaptive architecture is used to recognize and adapt the shape and color features for moving objects to enable object recognition.

  3. Object memory effects on figure assignment: conscious object recognition is not necessary or sufficient.

    PubMed

    Peterson, M A; de Gelder, B; Rapcsak, S Z; Gerhardstein, P C; Bachoud-Lévi, A

    2000-01-01

    In three experiments we investigated whether conscious object recognition is necessary or sufficient for effects of object memories on figure assignment. In experiment 1, we examined a brain-damaged participant, AD, whose conscious object recognition is severely impaired. AD's responses about figure assignment do reveal effects from memories of object structure, indicating that conscious object recognition is not necessary for these effects, and identifying the figure-ground test employed here as a new implicit test of access to memories of object structure. In experiments 2 and 3, we tested a second brain-damaged participant, WG, for whom conscious object recognition was relatively spared. Nevertheless, effects from memories of object structure on figure assignment were not evident in WG's responses about figure assignment in experiment 2, indicating that conscious object recognition is not sufficient for effects of object memories on figure assignment. WG's performance sheds light on AD's performance, and has implications for the theoretical understanding of object memory effects on figure assignment.

  4. Fast neuromimetic object recognition using FPGA outperforms GPU implementations.

    PubMed

    Orchard, Garrick; Martin, Jacob G; Vogelstein, R Jacob; Etienne-Cummings, Ralph

    2013-08-01

    Recognition of objects in still images has traditionally been regarded as a difficult computational problem. Although modern automated methods for visual object recognition have achieved steadily increasing recognition accuracy, even the most advanced computational vision approaches are unable to obtain performance equal to that of humans. This has led to the creation of many biologically inspired models of visual object recognition, among them the hierarchical model and X (HMAX) model. HMAX is traditionally known to achieve high accuracy in visual object recognition tasks at the expense of significant computational complexity. Increasing complexity, in turn, increases computation time, reducing the number of images that can be processed per unit time. In this paper we describe how the computationally intensive and biologically inspired HMAX model for visual object recognition can be modified for implementation on a commercial field-programmable aate Array, specifically the Xilinx Virtex 6 ML605 evaluation board with XC6VLX240T FPGA. We show that with minor modifications to the traditional HMAX model we can perform recognition on images of size 128 × 128 pixels at a rate of 190 images per second with a less than 1% loss in recognition accuracy in both binary and multiclass visual object recognition tasks.

  5. Attempting to "Increase Intake from the Input": Attention and Word Learning in Children with Autism.

    PubMed

    Tenenbaum, Elena J; Amso, Dima; Righi, Giulia; Sheinkopf, Stephen J

    2017-06-01

    Previous work has demonstrated that social attention is related to early language abilities. We explored whether we can facilitate word learning among children with autism by directing attention to areas of the scene that have been demonstrated as relevant for successful word learning. We tracked eye movements to faces and objects while children watched videos of a woman teaching them new words. Test trials measured participants' recognition of these novel word-object pairings. Results indicate that for children with autism and typically developing children, pointing to the speaker's mouth while labeling a novel object impaired performance, likely because it distracted participants from the target object. In contrast, for children with autism, holding the object close to the speaker's mouth improved performance.

  6. Visual skills in airport-security screening.

    PubMed

    McCarley, Jason S; Kramer, Arthur F; Wickens, Christopher D; Vidoni, Eric D; Boot, Walter R

    2004-05-01

    An experiment examined visual performance in a simulated luggage-screening task. Observers participated in five sessions of a task requiring them to search for knives hidden in x-ray images of cluttered bags. Sensitivity and response times improved reliably as a result of practice. Eye movement data revealed that sensitivity increases were produced entirely by changes in observers' ability to recognize target objects, and not by changes in the effectiveness of visual scanning. Moreover, recognition skills were in part stimulus-specific, such that performance was degraded by the introduction of unfamiliar target objects. Implications for screener training are discussed.

  7. Facial Emotion Recognition Impairments are Associated with Brain Volume Abnormalities in Individuals with HIV

    PubMed Central

    Clark, Uraina S.; Walker, Keenan A.; Cohen, Ronald A.; Devlin, Kathryn N.; Folkers, Anna M.; Pina, Mathew M.; Tashima, Karen T.

    2015-01-01

    Impaired facial emotion recognition abilities in HIV+ patients are well documented, but little is known about the neural etiology of these difficulties. We examined the relation of facial emotion recognition abilities to regional brain volumes in 44 HIV-positive (HIV+) and 44 HIV-negative control (HC) adults. Volumes of structures implicated in HIV− associated neuropathology and emotion recognition were measured on MRI using an automated segmentation tool. Relative to HC, HIV+ patients demonstrated emotion recognition impairments for fearful expressions, reduced anterior cingulate cortex (ACC) volumes, and increased amygdala volumes. In the HIV+ group, fear recognition impairments correlated significantly with ACC, but not amygdala volumes. ACC reductions were also associated with lower nadir CD4 levels (i.e., greater HIV-disease severity). These findings extend our understanding of the neurobiological substrates underlying an essential social function, facial emotion recognition, in HIV+ individuals and implicate HIV-related ACC atrophy in the impairment of these abilities. PMID:25744868

  8. A cultural side effect: learning to read interferes with identity processing of familiar objects

    PubMed Central

    Kolinsky, Régine; Fernandes, Tânia

    2014-01-01

    Based on the neuronal recycling hypothesis (Dehaene and Cohen, 2007), we examined whether reading acquisition has a cost for the recognition of non-linguistic visual materials. More specifically, we checked whether the ability to discriminate between mirror images, which develops through literacy acquisition, interferes with object identity judgments, and whether interference strength varies as a function of the nature of the non-linguistic material. To these aims we presented illiterate, late literate (who learned to read at adult age), and early literate adults with an orientation-independent, identity-based same-different comparison task in which they had to respond “same” to both physically identical and mirrored or plane-rotated images of pictures of familiar objects (Experiment 1) or of geometric shapes (Experiment 2). Interference from irrelevant orientation variations was stronger with plane rotations than with mirror images, and stronger with geometric shapes than with objects. Illiterates were the only participants almost immune to mirror variations, but only for familiar objects. Thus, the process of unlearning mirror-image generalization, necessary to acquire literacy in the Latin alphabet, has a cost for a basic function of the visual ventral object recognition stream, i.e., identification of familiar objects. This demonstrates that neural recycling is not just an adaptation to multi-use but a process of at least partial exaptation. PMID:25400605

  9. Effects of Diesel Engine Exhaust Origin Secondary Organic Aerosols on Novel Object Recognition Ability and Maternal Behavior in BALB/C Mice

    PubMed Central

    Win-Shwe, Tin-Tin; Fujitani, Yuji; Kyi-Tha-Thu, Chaw; Furuyama, Akiko; Michikawa, Takehiro; Tsukahara, Shinji; Nitta, Hiroshi; Hirano, Seishiro

    2014-01-01

    Epidemiological studies have reported an increased risk of cardiopulmonary and lung cancer mortality associated with increasing exposure to air pollution. Ambient particulate matter consists of primary particles emitted directly from diesel engine vehicles and secondary organic aerosols (SOAs) are formed by oxidative reaction of the ultrafine particle components of diesel exhaust (DE) in the atmosphere. However, little is known about the relationship between exposure to SOA and central nervous system functions. Recently, we have reported that an acute single intranasal instillation of SOA may induce inflammatory response in lung, but not in brain of adult mice. To clarify the whole body exposure effects of SOA on central nervous system functions, we first created inhalation chambers for diesel exhaust origin secondary organic aerosols (DE-SOAs) produced by oxidation of diesel exhaust particles caused by adding ozone. Male BALB/c mice were exposed to clean air (control), DE and DE-SOA in inhalation chambers for one or three months (5 h/day, 5 days/week) and were examined for memory function using a novel object recognition test and for memory function-related gene expressions in the hippocampus by real-time RT-PCR. Moreover, female mice exposed to DE-SOA for one month were mated and maternal behaviors and the related gene expressions in the hypothalamus examined. Novel object recognition ability and N-methyl-d-aspartate (NMDA) receptor expression in the hippocampus were affected in male mice exposed to DE-SOA. Furthermore, a tendency to decrease maternal performance and significantly decreased expression levels of estrogen receptor (ER)-α, and oxytocin receptor were found in DE-SOA exposed dams compared with the control. This is the first study of this type and our results suggest that the constituents of DE-SOA may be associated with memory function and maternal performance based on the impaired gene expressions in the hippocampus and hypothalamus, respectively. PMID:25361045

  10. Visual-spatial abilities relate to mathematics achievement in children with heavy prenatal alcohol exposure

    PubMed Central

    Crocker, N.; Riley, E.P.; Mattson, S.N.

    2014-01-01

    Objective The current study examined the relationship between mathematics and attention, working memory, and visual memory in children with heavy prenatal alcohol exposure and controls. Method Fifty-six children (29 AE, 27 CON) were administered measures of global mathematics achievement (WRAT-3 Arithmetic & WISC-III Written Arithmetic), attention, (WISC-III Digit Span forward and Spatial Span forward), working memory (WISC-III Digit Span backward and Spatial Span backward), and visual memory (CANTAB Spatial Recognition Memory and Pattern Recognition Memory). The contribution of cognitive domains to mathematics achievement was analyzed using linear regression techniques. Attention, working memory and visual memory data were entered together on step 1 followed by group on step 2, and the interaction terms on step 3. Results Model 1 accounted for a significant amount of variance in both mathematics achievement measures, however, model fit improved with the addition of group on step 2. Significant predictors of mathematics achievement were Spatial Span forward and backward and Spatial Recognition Memory. Conclusions These findings suggest that deficits in spatial processing may be related to math impairments seen in FASD. In addition, prenatal alcohol exposure was associated with deficits in mathematics achievement, above and beyond the contribution of general cognitive abilities. PMID:25000323

  11. Prediction of the thermal imaging minimum resolvable (circle) temperature difference with neural network application.

    PubMed

    Fang, Yi-Chin; Wu, Bo-Wen

    2008-12-01

    Thermal imaging is an important technology in both national defense and the private sector. An advantage of thermal imaging is its ability to be deployed while fully engaged in duties, not limited by weather or the brightness of indoor or outdoor conditions. However, in an outdoor environment, many factors, including atmospheric decay, target shape, great distance, fog, temperature out of range and diffraction limits can lead to bad image formation, which directly affects the accuracy of object recognition. The visual characteristics of the human eye mean that it has a much better capacity for picture recognition under normal conditions than artificial intelligence does. However, conditions of interference significantly reduce this capacity for picture recognition for instance, fatigue impairs human eyesight. Hence, psychological and physiological factors can affect the result when the human eye is adopted to measure MRTD (minimum resolvable temperature difference) and MRCTD (minimum resolvable circle temperature difference). This study explores thermal imaging recognition, and presents a method for effectively choosing the characteristic values and processing the images fully. Neural network technology is successfully applied to recognize thermal imaging and predict MRTD and MRCTD (Appendix A), exceeding thermal imaging recognition under fatigue and the limits of the human eye.

  12. Viewpoint dependence in the recognition of non-elongated familiar objects: testing the effects of symmetry, front-back axis, and familiarity.

    PubMed

    Niimi, Ryosuke; Yokosawa, Kazuhiko

    2009-01-01

    Visual recognition of three-dimensional (3-D) objects is relatively impaired for some particular views, called accidental views. For most familiar objects, the front and top views are considered to be accidental views. Previous studies have shown that foreshortening of the axes of elongation of objects in these views impairs recognition, but the influence of other possible factors is largely unknown. Using familiar objects without a salient axis of elongation, we found that a foreshortened symmetry plane of the object and low familiarity of the viewpoint accounted for the relatively worse recognition for front views and top views, independently of the effect of a foreshortened axis of elongation. We found no evidence that foreshortened front-back axes impaired recognition in front views. These results suggest that the viewpoint dependence of familiar object recognition is not a unitary phenomenon. The possible role of symmetry (either 2-D or 3-D) in familiar object recognition is also discussed.

  13. Individual differences in language and working memory affect children's speech recognition in noise.

    PubMed

    McCreery, Ryan W; Spratford, Meredith; Kirby, Benjamin; Brennan, Marc

    2017-05-01

    We examined how cognitive and linguistic skills affect speech recognition in noise for children with normal hearing. Children with better working memory and language abilities were expected to have better speech recognition in noise than peers with poorer skills in these domains. As part of a prospective, cross-sectional study, children with normal hearing completed speech recognition in noise for three types of stimuli: (1) monosyllabic words, (2) syntactically correct but semantically anomalous sentences and (3) semantically and syntactically anomalous word sequences. Measures of vocabulary, syntax and working memory were used to predict individual differences in speech recognition in noise. Ninety-six children with normal hearing, who were between 5 and 12 years of age. Higher working memory was associated with better speech recognition in noise for all three stimulus types. Higher vocabulary abilities were associated with better recognition in noise for sentences and word sequences, but not for words. Working memory and language both influence children's speech recognition in noise, but the relationships vary across types of stimuli. These findings suggest that clinical assessment of speech recognition is likely to reflect underlying cognitive and linguistic abilities, in addition to a child's auditory skills, consistent with the Ease of Language Understanding model.

  14. What puts the how in where? Tool use and the divided visual streams hypothesis.

    PubMed

    Frey, Scott H

    2007-04-01

    An influential theory suggests that the dorsal (occipito-parietal) visual stream computes representations of objects for purposes of guiding actions (determining 'how') independently of ventral (occipito-temporal) stream processes supporting object recognition and semantic processing (determining 'what'). Yet, the ability of the dorsal stream alone to account for one of the most common forms of human action, tool use, is limited. While experience-dependent modifications to existing dorsal stream representations may explain simple tool use behaviors (e.g., using sticks to extend reach) found among a variety of species, skillful use of manipulable artifacts (e.g., cups, hammers, pencils) requires in addition access to semantic representations of objects' functions and uses. Functional neuroimaging suggests that this latter information is represented in a left-lateralized network of temporal, frontal and parietal areas. I submit that the well-established dominance of the human left hemisphere in the representation of familiar skills stems from the ability for this acquired knowledge to influence the organization of actions within the dorsal pathway.

  15. The Relationship between Emotion Recognition Ability and Social Skills in Young Children with Autism

    ERIC Educational Resources Information Center

    Williams, Beth T.; Gray, Kylie M.

    2013-01-01

    This study assessed the relationship between emotion recognition ability and social skills in 42 young children with autistic disorder aged 4-7 years. The analyses revealed that accuracy in recognition of sadness, but not happiness, anger or fear, was associated with higher ratings on the Vineland-II Socialization domain, above and beyond the…

  16. Visual Information-Processing in the Perception of Features and Objects

    DTIC Science & Technology

    1989-01-05

    or nodes in a semantic memory network, whereas recall and recognition depend on separate episodic memory traces. In our experiment, we used the same...problem for the account in terms of the separation of episodic from semantic memory , since no pre- existing representations of our line patterns were... semantic memory : amnesic patients were thought to have lost the ability to lay down (or retrieve) episodic traces of autobiographical events, but had

  17. Altered object exploration but not temporal order memory retrieval in an object recognition test following treatment of rats with the group II metabotropic glutamate receptor agonist LY379268.

    PubMed

    Lins, Brittney R; Ballendine, Stephanie A; Howland, John G

    2014-02-07

    Temporal order memory refers to the ability to distinguish past experiences in the order that they occurred. Temporal order memory for objects is often tested in rodents using spontaneous object recognition paradigms. The circuitry mediating memory in these tests is distributed and involves ionotropic glutamate receptors in the perirhinal cortex and medial prefrontal cortex. It is unknown what role, if any, metabotropic glutamate receptors have in temporal order memory for objects. The present experiment examined the role of metabotropic glutamate receptors in temporal memory retrieval using the group II metabotropic glutamate receptor selective agonist LY379268. Rats were trained on a temporal memory test with three phases: two sample phases (60 min between them) in which rats explored two novel objects and a test phase (60 min after the second sample phase) which included a copy of each object previously encountered. Under these conditions, we confirmed that rats showed a significant exploratory preference for the object presented during the first sample phase. In a second experiment, we found that LY379268 (0.3, 1.0, or 3.0mg/kg; i.p.; 30 min before the test phase) had no effect on temporal memory retrieval but dose-dependently reduced time spent exploring the objects. Our results show that enhancing mGluR2 activity under conditions when TM is intact does not influence memory retrieval. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  18. Speech Recognition and Parent Ratings From Auditory Development Questionnaires in Children Who Are Hard of Hearing.

    PubMed

    McCreery, Ryan W; Walker, Elizabeth A; Spratford, Meredith; Oleson, Jacob; Bentler, Ruth; Holte, Lenore; Roush, Patricia

    2015-01-01

    Progress has been made in recent years in the provision of amplification and early intervention for children who are hard of hearing. However, children who use hearing aids (HAs) may have inconsistent access to their auditory environment due to limitations in speech audibility through their HAs or limited HA use. The effects of variability in children's auditory experience on parent-reported auditory skills questionnaires and on speech recognition in quiet and in noise were examined for a large group of children who were followed as part of the Outcomes of Children with Hearing Loss study. Parent ratings on auditory development questionnaires and children's speech recognition were assessed for 306 children who are hard of hearing. Children ranged in age from 12 months to 9 years. Three questionnaires involving parent ratings of auditory skill development and behavior were used, including the LittlEARS Auditory Questionnaire, Parents Evaluation of Oral/Aural Performance in Children rating scale, and an adaptation of the Speech, Spatial, and Qualities of Hearing scale. Speech recognition in quiet was assessed using the Open- and Closed-Set Test, Early Speech Perception test, Lexical Neighborhood Test, and Phonetically Balanced Kindergarten word lists. Speech recognition in noise was assessed using the Computer-Assisted Speech Perception Assessment. Children who are hard of hearing were compared with peers with normal hearing matched for age, maternal educational level, and nonverbal intelligence. The effects of aided audibility, HA use, and language ability on parent responses to auditory development questionnaires and on children's speech recognition were also examined. Children who are hard of hearing had poorer performance than peers with normal hearing on parent ratings of auditory skills and had poorer speech recognition. Significant individual variability among children who are hard of hearing was observed. Children with greater aided audibility through their HAs, more hours of HA use, and better language abilities generally had higher parent ratings of auditory skills and better speech-recognition abilities in quiet and in noise than peers with less audibility, more limited HA use, or poorer language abilities. In addition to the auditory and language factors that were predictive for speech recognition in quiet, phonological working memory was also a positive predictor for word recognition abilities in noise. Children who are hard of hearing continue to experience delays in auditory skill development and speech-recognition abilities compared with peers with normal hearing. However, significant improvements in these domains have occurred in comparison to similar data reported before the adoption of universal newborn hearing screening and early intervention programs for children who are hard of hearing. Increasing the audibility of speech has a direct positive effect on auditory skill development and speech-recognition abilities and also may enhance these skills by improving language abilities in children who are hard of hearing. Greater number of hours of HA use also had a significant positive impact on parent ratings of auditory skills and children's speech recognition.

  19. Automatic anatomy recognition via multiobject oriented active shape models.

    PubMed

    Chen, Xinjian; Udupa, Jayaram K; Alavi, Abass; Torigian, Drew A

    2010-12-01

    This paper studies the feasibility of developing an automatic anatomy recognition (AAR) system in clinical radiology and demonstrates its operation on clinical 2D images. The anatomy recognition method described here consists of two main components: (a) multiobject generalization of OASM and (b) object recognition strategies. The OASM algorithm is generalized to multiple objects by including a model for each object and assigning a cost structure specific to each object in the spirit of live wire. The delineation of multiobject boundaries is done in MOASM via a three level dynamic programming algorithm, wherein the first level is at pixel level which aims to find optimal oriented boundary segments between successive landmarks, the second level is at landmark level which aims to find optimal location for the landmarks, and the third level is at the object level which aims to find optimal arrangement of object boundaries over all objects. The object recognition strategy attempts to find that pose vector (consisting of translation, rotation, and scale component) for the multiobject model that yields the smallest total boundary cost for all objects. The delineation and recognition accuracies were evaluated separately utilizing routine clinical chest CT, abdominal CT, and foot MRI data sets. The delineation accuracy was evaluated in terms of true and false positive volume fractions (TPVF and FPVF). The recognition accuracy was assessed (1) in terms of the size of the space of the pose vectors for the model assembly that yielded high delineation accuracy, (2) as a function of the number of objects and objects' distribution and size in the model, (3) in terms of the interdependence between delineation and recognition, and (4) in terms of the closeness of the optimum recognition result to the global optimum. When multiple objects are included in the model, the delineation accuracy in terms of TPVF can be improved to 97%-98% with a low FPVF of 0.1%-0.2%. Typically, a recognition accuracy of > or = 90% yielded a TPVF > or = 95% and FPVF < or = 0.5%. Over the three data sets and over all tested objects, in 97% of the cases, the optimal solutions found by the proposed method constituted the true global optimum. The experimental results showed the feasibility and efficacy of the proposed automatic anatomy recognition system. Increasing the number of objects in the model can significantly improve both recognition and delineation accuracy. More spread out arrangement of objects in the model can lead to improved recognition and delineation accuracy. Including larger objects in the model also improved recognition and delineation. The proposed method almost always finds globally optimum solutions.

  20. Direct discriminant locality preserving projection with Hammerstein polynomial expansion.

    PubMed

    Chen, Xi; Zhang, Jiashu; Li, Defang

    2012-12-01

    Discriminant locality preserving projection (DLPP) is a linear approach that encodes discriminant information into the objective of locality preserving projection and improves its classification ability. To enhance the nonlinear description ability of DLPP, we can optimize the objective function of DLPP in reproducing kernel Hilbert space to form a kernel-based discriminant locality preserving projection (KDLPP). However, KDLPP suffers the following problems: 1) larger computational burden; 2) no explicit mapping functions in KDLPP, which results in more computational burden when projecting a new sample into the low-dimensional subspace; and 3) KDLPP cannot obtain optimal discriminant vectors, which exceedingly optimize the objective of DLPP. To overcome the weaknesses of KDLPP, in this paper, a direct discriminant locality preserving projection with Hammerstein polynomial expansion (HPDDLPP) is proposed. The proposed HPDDLPP directly implements the objective of DLPP in high-dimensional second-order Hammerstein polynomial space without matrix inverse, which extracts the optimal discriminant vectors for DLPP without larger computational burden. Compared with some other related classical methods, experimental results for face and palmprint recognition problems indicate the effectiveness of the proposed HPDDLPP.

  1. Application of Visual Attention in Seismic Attribute Analysis

    NASA Astrophysics Data System (ADS)

    He, M.; Gu, H.; Wang, F.

    2016-12-01

    It has been proved that seismic attributes can be used to predict reservoir. The joint of multi-attribute and geological statistics, data mining, artificial intelligence, further promote the development of the seismic attribute analysis. However, the existing methods tend to have multiple solutions and insufficient generalization ability, which is mainly due to the complex relationship between seismic data and geological information, and undoubtedly own partly to the methods applied. Visual attention is a mechanism model of the human visual system which can concentrate on a few significant visual objects rapidly, even in a mixed scene. Actually, the model qualify good ability of target detection and recognition. In our study, the targets to be predicted are treated as visual objects, and an object representation based on well data is made in the attribute dimensions. Then in the same attribute space, the representation is served as a criterion to search the potential targets outside the wells. This method need not predict properties by building up a complicated relation between attributes and reservoir properties, but with reference to the standard determined before. So it has pretty good generalization ability, and the problem of multiple solutions can be weakened by defining the threshold of similarity.

  2. DORSAL HIPPOCAMPAL PROGESTERONE INFUSIONS ENHANCE OBJECT RECOGNITION IN YOUNG FEMALE MICE

    PubMed Central

    Orr, Patrick T.; Lewis, Michael C.; Frick, Karyn M.

    2009-01-01

    The effects of progesterone on memory are not nearly as well studied as the effects of estrogens. Although progesterone can reportedly enhance spatial and/or object recognition in female rodents when given immediately after training, previous studies have injected progesterone systemically, and therefore, the brain regions mediating this enhancement are not clear. As such, this study was designed to determine the role of the dorsal hippocampus in mediating the beneficial effect of progesterone on object recognition. Young ovariectomized C57BL/6 mice were trained in a hippocampal-dependent object recognition task utilizing two identical objects, and then immediately or 2 hrs afterwards, received bilateral dorsal hippocampal infusions of vehicle or 0.01, 0.1, or 1.0 μg/μl water-soluble progesterone. Forty-eight hours later, object recognition memory was tested using a previously explored object and a novel object. Relative to the vehicle group, memory for the familiar object was enhanced in all groups receiving immediate infusions of progesterone. Progesterone infusion delayed 2 hrs after training did not affect object recognition. These data suggest that the dorsal hippocampus may play a critical role in progesterone-induced enhancement of object recognition. PMID:19477194

  3. Facial emotion recognition, face scan paths, and face perception in children with neurofibromatosis type 1.

    PubMed

    Lewis, Amelia K; Porter, Melanie A; Williams, Tracey A; Bzishvili, Samantha; North, Kathryn N; Payne, Jonathan M

    2017-05-01

    This study aimed to investigate face scan paths and face perception abilities in children with Neurofibromatosis Type 1 (NF1) and how these might relate to emotion recognition abilities in this population. The authors investigated facial emotion recognition, face scan paths, and face perception in 29 children with NF1 compared to 29 chronological age-matched typically developing controls. Correlations between facial emotion recognition, face scan paths, and face perception in children with NF1 were examined. Children with NF1 displayed significantly poorer recognition of fearful expressions compared to controls, as well as a nonsignificant trend toward poorer recognition of anger. Although there was no significant difference between groups in time spent viewing individual core facial features (eyes, nose, mouth, and nonfeature regions), children with NF1 spent significantly less time than controls viewing the face as a whole. Children with NF1 also displayed significantly poorer face perception abilities than typically developing controls. Facial emotion recognition deficits were not significantly associated with aberrant face scan paths or face perception abilities in the NF1 group. These results suggest that impairments in the perception, identification, and interpretation of information from faces are important aspects of the social-cognitive phenotype of NF1. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  4. Interactive object recognition assistance: an approach to recognition starting from target objects

    NASA Astrophysics Data System (ADS)

    Geisler, Juergen; Littfass, Michael

    1999-07-01

    Recognition of target objects in remotely sensed imagery required detailed knowledge about the target object domain as well as about mapping properties of the sensing system. The art of object recognition is to combine both worlds appropriately and to provide models of target appearance with respect to sensor characteristics. Common approaches to support interactive object recognition are either driven from the sensor point of view and address the problem of displaying images in a manner adequate to the sensing system. Or they focus on target objects and provide exhaustive encyclopedic information about this domain. Our paper discusses an approach to assist interactive object recognition based on knowledge about target objects and taking into account the significance of object features with respect to characteristics of the sensed imagery, e.g. spatial and spectral resolution. An `interactive recognition assistant' takes the image analyst through the interpretation process by indicating step-by-step the respectively most significant features of objects in an actual set of candidates. The significance of object features is expressed by pregenerated trees of significance, and by the dynamic computation of decision relevance for every feature at each step of the recognition process. In the context of this approach we discuss the question of modeling and storing the multisensorial/multispectral appearances of target objects and object classes as well as the problem of an adequate dynamic human-machine-interface that takes into account various mental models of human image interpretation.

  5. Normative Data on Audiovisual Speech Integration Using Sentence Recognition and Capacity Measures

    PubMed Central

    Altieri, Nicholas; Hudock, Daniel

    2016-01-01

    Objective The ability to use visual speech cues and integrate them with auditory information is important, especially in noisy environments and for hearing-impaired (HI) listeners. Providing data on measures of integration skills that encompass accuracy and processing speed will benefit researchers and clinicians. Design The study consisted of two experiments: First, accuracy scores were obtained using CUNY sentences, and capacity measures that assessed reaction-time distributions were obtained from a monosyllabic word recognition task. Study Sample We report data on two measures of integration obtained from a sample comprised of 86 young and middle-age adult listeners: Results To summarize our results, capacity showed a positive correlation with accuracy measures of audiovisual benefit obtained from sentence recognition. More relevant, factor analysis indicated that a single-factor model captured audiovisual speech integration better than models containing more factors. Capacity exhibited strong loadings on the factor, while the accuracy-based measures from sentence recognition exhibited weaker loadings. Conclusions Results suggest that a listener’s integration skills may be assessed optimally using a measure that incorporates both processing speed and accuracy. PMID:26853446

  6. Vision-based obstacle recognition system for automated lawn mower robot development

    NASA Astrophysics Data System (ADS)

    Mohd Zin, Zalhan; Ibrahim, Ratnawati

    2011-06-01

    Digital image processing techniques (DIP) have been widely used in various types of application recently. Classification and recognition of a specific object using vision system require some challenging tasks in the field of image processing and artificial intelligence. The ability and efficiency of vision system to capture and process the images is very important for any intelligent system such as autonomous robot. This paper gives attention to the development of a vision system that could contribute to the development of an automated vision based lawn mower robot. The works involve on the implementation of DIP techniques to detect and recognize three different types of obstacles that usually exist on a football field. The focus was given on the study on different types and sizes of obstacles, the development of vision based obstacle recognition system and the evaluation of the system's performance. Image processing techniques such as image filtering, segmentation, enhancement and edge detection have been applied in the system. The results have shown that the developed system is able to detect and recognize various types of obstacles on a football field with recognition rate of more 80%.

  7. Infant Visual Attention and Object Recognition

    PubMed Central

    Reynolds, Greg D.

    2015-01-01

    This paper explores the role visual attention plays in the recognition of objects in infancy. Research and theory on the development of infant attention and recognition memory are reviewed in three major sections. The first section reviews some of the major findings and theory emerging from a rich tradition of behavioral research utilizing preferential looking tasks to examine visual attention and recognition memory in infancy. The second section examines research utilizing neural measures of attention and object recognition in infancy as well as research on brain-behavior relations in the early development of attention and recognition memory. The third section addresses potential areas of the brain involved in infant object recognition and visual attention. An integrated synthesis of some of the existing models of the development of visual attention is presented which may account for the observed changes in behavioral and neural measures of visual attention and object recognition that occur across infancy. PMID:25596333

  8. Separability of Abstract-Category and Specific-Exemplar Visual Object Subsystems: Evidence from fMRI Pattern Analysis

    PubMed Central

    McMenamin, Brenton W.; Deason, Rebecca G.; Steele, Vaughn R.; Koutstaal, Wilma; Marsolek, Chad J.

    2014-01-01

    Previous research indicates that dissociable neural subsystems underlie abstract-category (AC) recognition and priming of objects (e.g., cat, piano) and specific-exemplar (SE) recognition and priming of objects (e.g., a calico cat, a different calico cat, a grand piano, etc.). However, the degree of separability between these subsystems is not known, despite the importance of this issue for assessing relevant theories. Visual object representations are widely distributed in visual cortex, thus a multivariate pattern analysis (MVPA) approach to analyzing functional magnetic resonance imaging (fMRI) data may be critical for assessing the separability of different kinds of visual object processing. Here we examined the neural representations of visual object categories and visual object exemplars using multi-voxel pattern analyses of brain activity elicited in visual object processing areas during a repetition-priming task. In the encoding phase, participants viewed visual objects and the printed names of other objects. In the subsequent test phase, participants identified objects that were either same-exemplar primed, different-exemplar primed, word-primed, or unprimed. In visual object processing areas, classifiers were trained to distinguish same-exemplar primed objects from word-primed objects. Then, the abilities of these classifiers to discriminate different-exemplar primed objects and word-primed objects (reflecting AC priming) and to discriminate same-exemplar primed objects and different-exemplar primed objects (reflecting SE priming) was assessed. Results indicated that (a) repetition priming in occipital-temporal regions is organized asymmetrically, such that AC priming is more prevalent in the left hemisphere and SE priming is more prevalent in the right hemisphere, and (b) AC and SE subsystems are weakly modular, not strongly modular or unified. PMID:25528436

  9. Separability of abstract-category and specific-exemplar visual object subsystems: evidence from fMRI pattern analysis.

    PubMed

    McMenamin, Brenton W; Deason, Rebecca G; Steele, Vaughn R; Koutstaal, Wilma; Marsolek, Chad J

    2015-02-01

    Previous research indicates that dissociable neural subsystems underlie abstract-category (AC) recognition and priming of objects (e.g., cat, piano) and specific-exemplar (SE) recognition and priming of objects (e.g., a calico cat, a different calico cat, a grand piano, etc.). However, the degree of separability between these subsystems is not known, despite the importance of this issue for assessing relevant theories. Visual object representations are widely distributed in visual cortex, thus a multivariate pattern analysis (MVPA) approach to analyzing functional magnetic resonance imaging (fMRI) data may be critical for assessing the separability of different kinds of visual object processing. Here we examined the neural representations of visual object categories and visual object exemplars using multi-voxel pattern analyses of brain activity elicited in visual object processing areas during a repetition-priming task. In the encoding phase, participants viewed visual objects and the printed names of other objects. In the subsequent test phase, participants identified objects that were either same-exemplar primed, different-exemplar primed, word-primed, or unprimed. In visual object processing areas, classifiers were trained to distinguish same-exemplar primed objects from word-primed objects. Then, the abilities of these classifiers to discriminate different-exemplar primed objects and word-primed objects (reflecting AC priming) and to discriminate same-exemplar primed objects and different-exemplar primed objects (reflecting SE priming) was assessed. Results indicated that (a) repetition priming in occipital-temporal regions is organized asymmetrically, such that AC priming is more prevalent in the left hemisphere and SE priming is more prevalent in the right hemisphere, and (b) AC and SE subsystems are weakly modular, not strongly modular or unified. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Recognition-induced forgetting is not due to category-based set size.

    PubMed

    Maxcey, Ashleigh M

    2016-01-01

    What are the consequences of accessing a visual long-term memory representation? Previous work has shown that accessing a long-term memory representation via retrieval improves memory for the targeted item and hurts memory for related items, a phenomenon called retrieval-induced forgetting. Recently we found a similar forgetting phenomenon with recognition of visual objects. Recognition-induced forgetting occurs when practice recognizing an object during a two-alternative forced-choice task, from a group of objects learned at the same time, leads to worse memory for objects from that group that were not practiced. An alternative explanation of this effect is that category-based set size is inducing forgetting, not recognition practice as claimed by some researchers. This alternative explanation is possible because during recognition practice subjects make old-new judgments in a two-alternative forced-choice task, and are thus exposed to more objects from practiced categories, potentially inducing forgetting due to set-size. Herein I pitted the category-based set size hypothesis against the recognition-induced forgetting hypothesis. To this end, I parametrically manipulated the amount of practice objects received in the recognition-induced forgetting paradigm. If forgetting is due to category-based set size, then the magnitude of forgetting of related objects will increase as the number of practice trials increases. If forgetting is recognition induced, the set size of exemplars from any given category should not be predictive of memory for practiced objects. Consistent with this latter hypothesis, additional practice systematically improved memory for practiced objects, but did not systematically affect forgetting of related objects. These results firmly establish that recognition practice induces forgetting of related memories. Future directions and important real-world applications of using recognition to access our visual memories of previously encountered objects are discussed.

  11. How is This Child Feeling? Preschool-Aged Children's Ability to Recognize Emotion in Faces and Body Poses

    ERIC Educational Resources Information Center

    Parker, Alison E.; Mathis, Erin T.; Kupersmidt, Janis B.

    2013-01-01

    Research Findings: The study examined children's recognition of emotion from faces and body poses, as well as gender differences in these recognition abilities. Preschool-aged children ("N" = 55) and their parents and teachers participated in the study. Preschool-aged children completed a web-based measure of emotion recognition skills…

  12. Biologically Inspired Model for Visual Cognition Achieving Unsupervised Episodic and Semantic Feature Learning.

    PubMed

    Qiao, Hong; Li, Yinlin; Li, Fengfu; Xi, Xuanyang; Wu, Wei

    2016-10-01

    Recently, many biologically inspired visual computational models have been proposed. The design of these models follows the related biological mechanisms and structures, and these models provide new solutions for visual recognition tasks. In this paper, based on the recent biological evidence, we propose a framework to mimic the active and dynamic learning and recognition process of the primate visual cortex. From principle point of view, the main contributions are that the framework can achieve unsupervised learning of episodic features (including key components and their spatial relations) and semantic features (semantic descriptions of the key components), which support higher level cognition of an object. From performance point of view, the advantages of the framework are as follows: 1) learning episodic features without supervision-for a class of objects without a prior knowledge, the key components, their spatial relations and cover regions can be learned automatically through a deep neural network (DNN); 2) learning semantic features based on episodic features-within the cover regions of the key components, the semantic geometrical values of these components can be computed based on contour detection; 3) forming the general knowledge of a class of objects-the general knowledge of a class of objects can be formed, mainly including the key components, their spatial relations and average semantic values, which is a concise description of the class; and 4) achieving higher level cognition and dynamic updating-for a test image, the model can achieve classification and subclass semantic descriptions. And the test samples with high confidence are selected to dynamically update the whole model. Experiments are conducted on face images, and a good performance is achieved in each layer of the DNN and the semantic description learning process. Furthermore, the model can be generalized to recognition tasks of other objects with learning ability.

  13. Multivariate fMRI and Eye Tracking Reveal Differential Effects of Visual Interference on Recognition Memory Judgments for Objects and Scenes.

    PubMed

    O'Neil, Edward B; Watson, Hilary C; Dhillon, Sonya; Lobaugh, Nancy J; Lee, Andy C H

    2015-09-01

    Recent work has demonstrated that the perirhinal cortex (PRC) supports conjunctive object representations that aid object recognition memory following visual object interference. It is unclear, however, how these representations interact with other brain regions implicated in mnemonic retrieval and how congruent and incongruent interference influences the processing of targets and foils during object recognition. To address this, multivariate partial least squares was applied to fMRI data acquired during an interference match-to-sample task, in which participants made object or scene recognition judgments after object or scene interference. This revealed a pattern of activity sensitive to object recognition following congruent (i.e., object) interference that included PRC, prefrontal, and parietal regions. Moreover, functional connectivity analysis revealed a common pattern of PRC connectivity across interference and recognition conditions. Examination of eye movements during the same task in a separate study revealed that participants gazed more at targets than foils during correct object recognition decisions, regardless of interference congruency. By contrast, participants viewed foils more than targets for incorrect object memory judgments, but only after congruent interference. Our findings suggest that congruent interference makes object foils appear familiar and that a network of regions, including PRC, is recruited to overcome the effects of interference.

  14. Fusiform gyrus face selectivity relates to individual differences in facial recognition ability.

    PubMed

    Furl, Nicholas; Garrido, Lúcia; Dolan, Raymond J; Driver, Jon; Duchaine, Bradley

    2011-07-01

    Regions of the occipital and temporal lobes, including a region in the fusiform gyrus (FG), have been proposed to constitute a "core" visual representation system for faces, in part because they show face selectivity and face repetition suppression. But recent fMRI studies of developmental prosopagnosics (DPs) raise questions about whether these measures relate to face processing skills. Although DPs manifest deficient face processing, most studies to date have not shown unequivocal reductions of functional responses in the proposed core regions. We scanned 15 DPs and 15 non-DP control participants with fMRI while employing factor analysis to derive behavioral components related to face identification or other processes. Repetition suppression specific to facial identities in FG or to expression in FG and STS did not show compelling relationships with face identification ability. However, we identified robust relationships between face selectivity and face identification ability in FG across our sample for several convergent measures, including voxel-wise statistical parametric mapping, peak face selectivity in individually defined "fusiform face areas" (FFAs), and anatomical extents (cluster sizes) of those FFAs. None of these measures showed associations with behavioral expression or object recognition ability. As a group, DPs had reduced face-selective responses in bilateral FFA when compared with non-DPs. Individual DPs were also more likely than non-DPs to lack expected face-selective activity in core regions. These findings associate individual differences in face processing ability with selectivity in core face processing regions. This confirms that face selectivity can provide a valid marker for neural mechanisms that contribute to face identification ability.

  15. Sex-specific effects of Cacna1c haploinsufficiency on object recognition, spatial memory, and reversal learning capabilities in rats.

    PubMed

    Braun, Moria D; Kisko, Theresa M; Vecchia, Débora Dalla; Andreatini, Roberto; Schwarting, Rainer K W; Wöhr, Markus

    2018-05-23

    The CACNA1C gene is strongly implicated in the etiology of multiple major neuropsychiatric disorders, such as bipolar disorder, major depression, and schizophrenia, with cognitive deficits being a common feature. It is unclear, however, by which mechanisms CACNA1C variants advance the risk of developing neuropsychiatric disorders. This study set out to investigate cognitive functioning in a newly developed genetic Cacna1c rat model. Specifically, spatial and reversal learning, as well as object recognition memory were assessed in heterozygous Cacna1c +/- rats and compared to wildtype Cacna1c +/+ littermate controls in both sexes. Our results show that both Cacna1c +/+ and Cacna1c +/- animals were able to learn the rewarded arm configuration of a radial maze over the course of seven days. Both groups also showed reversal learning patterns indicative of intact abilities. In females, genotype differences were evident in the initial spatial learning phase, with Cacna1c +/- females showing hypo-activity and fewer mixed errors. In males, a difference was found during probe trials for both learning phases, with Cacna1c +/- rats displaying better distinction between previously baited and non-baited arms; and regarding cognitive flexibility in favor of the Cacna1c +/+ animals. All experimental groups proved to be sensitive to reward magnitude and fully able to distinguish between novel and familiar objects in the novel object recognition task. Taken together, these results indicate that Cacna1c haploinsufficiency has a minor, but positive impact on (spatial) memory functions in rats. Copyright © 2018 Elsevier Inc. All rights reserved.

  16. Realism and Perspectivism: a Reevaluation of Rival Theories of Spatial Vision.

    NASA Astrophysics Data System (ADS)

    Thro, E. Broydrick

    1990-01-01

    My study reevaluates two theories of human space perception, a trigonometric surveying theory I call perspectivism and a "scene recognition" theory I call realism. Realists believe that retinal image geometry can supply no unambiguous information about an object's size and distance--and that, as a result, viewers can locate objects in space only by making discretionary interpretations based on familiar experience of object types. Perspectivists, in contrast, think viewers can disambiguate object sizes/distances on the basis of retinal image information alone. More specifically, they believe the eye responds to perspective image geometry with an automatic trigonometric calculation that not only fixes the directions and shapes, but also roughly fixes the sizes and distances of scene elements in space. Today this surveyor theory has been largely superceded by the realist approach, because most vision scientists believe retinal image geometry is ambiguous about the scale of space. However, I show that there is a considerable body of neglected evidence, both past and present, tending to call this scale ambiguity claim into question. I maintain that this evidence against scale ambiguity could hardly be more important, if one considers its subversive implications for the scene recognition theory that is not only today's reigning approach to spatial vision, but also the foundation for computer scientists' efforts to create space-perceiving robots. If viewers were deemed to be capable of automatic surveying calculations, the discretionary scene recognition theory would lose its main justification. Clearly, it would be difficult for realists to maintain that we viewers rely on scene recognition for space perception in spite of our ability to survey. And in reality, as I show, the surveyor theory does a much better job of describing the everyday space we viewers actually see--a space featuring stable, unambiguous relationships among scene elements, and a single horizon and vanishing point for (meter-scale) receding objects. In addition, I argue, the surveyor theory raises fewer philosophical difficulties, because it is more in harmony with our everyday concepts of material objects, human agency and the self.

  17. The Role of Perceptual Load in Object Recognition

    ERIC Educational Resources Information Center

    Lavie, Nilli; Lin, Zhicheng; Zokaei, Nahid; Thoma, Volker

    2009-01-01

    Predictions from perceptual load theory (Lavie, 1995, 2005) regarding object recognition across the same or different viewpoints were tested. Results showed that high perceptual load reduces distracter recognition levels despite always presenting distracter objects from the same view. They also showed that the levels of distracter recognition were…

  18. Opposing effects of AMPA and 5-HT1A receptor blockade on passive avoidance and object recognition performance: correlation with AMPA receptor subunit expression in rat hippocampus.

    PubMed

    Schiapparelli, L; Simón, A M; Del Río, J; Frechilla, D

    2006-06-01

    It has been suggested that antagonists at serotonin 5-HT1A receptors may exert a procognitive effect by facilitating glutamatergic neurotransmission. Here we further explored this issue by looking for the ability of a 5-HT1A antagonist to prevent the learning deficit induced by AMPA receptor blockade in two behavioural procedures in rats, and for concomitant molecular changes presumably involved in memory formation in the hippocampus. Pretraining administration of the competitive AMPA receptor antagonist, NBQX, produced a dose-related retention impairment in a passive avoidance task 24h later, and also impaired retention in a novel object recognition test when an intertrial interval of 3h was selected. Pretreatment with the selective 5-HT1A receptor antagonist, WAY-100635, prevented the learning deficit induced by NBQX in the two behavioural procedures. In biochemical studies performed on rat hippocampus after the retention tests, we found that learning increased the membrane levels of AMPA receptor GluR1 and GluR2/3 subunits, as well as the phosphorylated forms of GluR1, effects that were abolished by NBQX administration before the training session. Pretreatment with WAY-100635 counteracted the NBQX effects and restored the initial learning-specific increase in Ca2+/calmodulin-dependent protein kinase II (CaMKII) function and the later increase in GluR2/3 and phosphorylated GluR1 surface expression. Moreover, administration of WAY-100635 before object recognition training improved recognition memory 24h later and potentiated the learning-associated increase in AMPA receptor subunits. The results support the proposed utility of 5-HT1A antagonists in the treatment of cognitive disorders.

  19. Object Recognition and Localization: The Role of Tactile Sensors

    PubMed Central

    Aggarwal, Achint; Kirchner, Frank

    2014-01-01

    Tactile sensors, because of their intrinsic insensitivity to lighting conditions and water turbidity, provide promising opportunities for augmenting the capabilities of vision sensors in applications involving object recognition and localization. This paper presents two approaches for haptic object recognition and localization for ground and underwater environments. The first approach called Batch Ransac and Iterative Closest Point augmented Particle Filter (BRICPPF) is based on an innovative combination of particle filters, Iterative-Closest-Point algorithm, and a feature-based Random Sampling and Consensus (RANSAC) algorithm for database matching. It can handle a large database of 3D-objects of complex shapes and performs a complete six-degree-of-freedom localization of static objects. The algorithms are validated by experimentation in ground and underwater environments using real hardware. To our knowledge this is the first instance of haptic object recognition and localization in underwater environments. The second approach is biologically inspired, and provides a close integration between exploration and recognition. An edge following exploration strategy is developed that receives feedback from the current state of recognition. A recognition by parts approach is developed which uses the BRICPPF for object sub-part recognition. Object exploration is either directed to explore a part until it is successfully recognized, or is directed towards new parts to endorse the current recognition belief. This approach is validated by simulation experiments. PMID:24553087

  20. Cross-Modal Correspondences Enhance Performance on a Colour-to-Sound Sensory Substitution Device.

    PubMed

    Hamilton-Fletcher, Giles; Wright, Thomas D; Ward, Jamie

    Visual sensory substitution devices (SSDs) can represent visual characteristics through distinct patterns of sound, allowing a visually impaired user access to visual information. Previous SSDs have avoided colour and when they do encode colour, have assigned sounds to colour in a largely unprincipled way. This study introduces a new tablet-based SSD termed the ‘Creole’ (so called because it combines tactile scanning with image sonification) and a new algorithm for converting colour to sound that is based on established cross-modal correspondences (intuitive mappings between different sensory dimensions). To test the utility of correspondences, we examined the colour–sound associative memory and object recognition abilities of sighted users who had their device either coded in line with or opposite to sound–colour correspondences. Improved colour memory and reduced colour-errors were made by users who had the correspondence-based mappings. Interestingly, the colour–sound mappings that provided the highest improvements during the associative memory task also saw the greatest gains for recognising realistic objects that also featured these colours, indicating a transfer of abilities from memory to recognition. These users were also marginally better at matching sounds to images varying in luminance, even though luminance was coded identically across the different versions of the device. These findings are discussed with relevance for both colour and correspondences for sensory substitution use.

  1. Pure associative tactile agnosia for the left hand: clinical and anatomo-functional correlations.

    PubMed

    Veronelli, Laura; Ginex, Valeria; Dinacci, Daria; Cappa, Stefano F; Corbo, Massimo

    2014-09-01

    Associative tactile agnosia (TA) is defined as the inability to associate information about object sensory properties derived through tactile modality with previously acquired knowledge about object identity. The impairment is often described after a lesion involving the parietal cortex (Caselli, 1997; Platz, 1996). We report the case of SA, a right-handed 61-year-old man affected by first ever right hemispheric hemorrhagic stroke. The neurological examination was normal, excluding major somaesthetic and motor impairment; a brain magnetic resonance imaging (MRI) confirmed the presence of a right subacute hemorrhagic lesion limited to the post-central and supra-marginal gyri. A comprehensive neuropsychological evaluation detected a selective inability to name objects when handled with the left hand in the absence of other cognitive deficits. A series of experiments were conducted in order to assess each stage of tactile recognition processing using the same stimulus sets: materials, 3D geometrical shapes, real objects and letters. SA and seven matched controls underwent the same experimental tasks during four sessions in consecutive days. Tactile discrimination, recognition, pantomime, drawing after haptic exploration out of vision and tactile-visual matching abilities were assessed. In addition, we looked for the presence of a supra-modal impairment of spatial perception and of specific difficulties in programming exploratory movements during recognition. Tactile discrimination was intact for all the stimuli tested. In contrast, SA was able neither to recognize nor to pantomime real objects manipulated with the left hand out of vision, while he identified them with the right hand without hesitations. Tactile-visual matching was intact. Furthermore, SA was able to grossly reproduce the global shape in drawings but failed to extract details of objects after left-hand manipulation, and he could not identify objects after looking at his own drawings. This case confirms the existence of selective associative TA as a left hand-specific deficit in recognizing objects. This deficit is not related to spatial perception or to the programming of exploratory movements. The cross-modal transfer of information via visual perception permits the activation of a partially degraded image, which alone does not allow the proper recognition of the initial tactile stimulus. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. The development of adaptive decision making: Recognition-based inference in children and adolescents.

    PubMed

    Horn, Sebastian S; Ruggeri, Azzurra; Pachur, Thorsten

    2016-09-01

    Judgments about objects in the world are often based on probabilistic information (or cues). A frugal judgment strategy that utilizes memory (i.e., the ability to discriminate between known and unknown objects) as a cue for inference is the recognition heuristic (RH). The usefulness of the RH depends on the structure of the environment, particularly the predictive power (validity) of recognition. Little is known about developmental differences in use of the RH. In this study, the authors examined (a) to what extent children and adolescents recruit the RH when making judgments, and (b) around what age adaptive use of the RH emerges. Primary schoolchildren (M = 9 years), younger adolescents (M = 12 years), and older adolescents (M = 17 years) made comparative judgments in task environments with either high or low recognition validity. Reliance on the RH was measured with a hierarchical multinomial model. Results indicated that primary schoolchildren already made systematic use of the RH. However, only older adolescents adaptively adjusted their strategy use between environments and were better able to discriminate between situations in which the RH led to correct versus incorrect inferences. These findings suggest that the use of simple heuristics does not progress unidirectionally across development but strongly depends on the task environment, in line with the perspective of ecological rationality. Moreover, adaptive heuristic inference seems to require experience and a developed base of domain knowledge. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  3. Cross-modal working memory binding and word recognition skills: how specific is the link?

    PubMed

    Wang, Shinmin; Allen, Richard J

    2018-04-01

    Recent research has suggested that the creation of temporary bound representations of information from different sources within working memory uniquely relates to word recognition abilities in school-age children. However, it is unclear to what extent this link is attributable specifically to the binding ability for cross-modal information. This study examined the performance of Grade 3 (8-9 years old) children on binding tasks requiring either temporary association formation of two visual items (i.e., within-modal binding) or pairs of visually presented abstract shapes and auditorily presented nonwords (i.e., cross-modal binding). Children's word recognition skills were related to performance on the cross-modal binding task but not on the within-modal binding task. Further regression models showed that cross-modal binding memory was a significant predictor of word recognition when memory for its constituent elements, general abilities, and crucially, within-modal binding memory were taken into account. These findings may suggest a specific link between the ability to bind information across modalities within working memory and word recognition skills.

  4. Dissociable roles of internal feelings and face recognition ability in facial expression decoding.

    PubMed

    Zhang, Lin; Song, Yiying; Liu, Ling; Liu, Jia

    2016-05-15

    The problem of emotion recognition has been tackled by researchers in both affective computing and cognitive neuroscience. While affective computing relies on analyzing visual features from facial expressions, it has been proposed that humans recognize emotions by internally simulating the emotional states conveyed by others' expressions, in addition to perceptual analysis of facial features. Here we investigated whether and how our internal feelings contributed to the ability to decode facial expressions. In two independent large samples of participants, we observed that individuals who generally experienced richer internal feelings exhibited a higher ability to decode facial expressions, and the contribution of internal feelings was independent of face recognition ability. Further, using voxel-based morphometry, we found that the gray matter volume (GMV) of bilateral superior temporal sulcus (STS) and the right inferior parietal lobule was associated with facial expression decoding through the mediating effect of internal feelings, while the GMV of bilateral STS, precuneus, and the right central opercular cortex contributed to facial expression decoding through the mediating effect of face recognition ability. In addition, the clusters in bilateral STS involved in the two components were neighboring yet separate. Our results may provide clues about the mechanism by which internal feelings, in addition to face recognition ability, serve as an important instrument for humans in facial expression decoding. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Social cognition in schizophrenia and healthy aging: differences and similarities.

    PubMed

    Silver, Henry; Bilker, Warren B

    2014-12-01

    Social cognition is impaired in schizophrenia but it is not clear whether this is specific for the illness and whether emotion perception is selectively affected. To study this we examined the perception of emotional and non-emotional clues in facial expressions, a key social cognitive skill, in schizophrenia patients and old healthy individuals using young healthy individuals as reference. Tests of object recognition, visual orientation, psychomotor speed, and working memory were included to allow multivariate analysis taking into account other cognitive functions Schizophrenia patients showed impairments in recognition of identity and emotional facial clues compared to young and old healthy groups. Severity was similar to that for object recognition and visuospatial processing. Older and younger healthy groups did not differ from each other on these tests. Schizophrenia patients and old healthy individuals were similarly impaired in the ability to automatically learn new faces during the testing procedure (measured by the CSTFAC index) compared to young healthy individuals. Social cognition is distinctly impaired in schizophrenia compared to healthy aging. Further study is needed to identify the mechanisms of automatic social cognitive learning impairment in schizophrenia patients and healthy aging individuals and determine whether similar neural systems are affected. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Infant visual attention and object recognition.

    PubMed

    Reynolds, Greg D

    2015-05-15

    This paper explores the role visual attention plays in the recognition of objects in infancy. Research and theory on the development of infant attention and recognition memory are reviewed in three major sections. The first section reviews some of the major findings and theory emerging from a rich tradition of behavioral research utilizing preferential looking tasks to examine visual attention and recognition memory in infancy. The second section examines research utilizing neural measures of attention and object recognition in infancy as well as research on brain-behavior relations in the early development of attention and recognition memory. The third section addresses potential areas of the brain involved in infant object recognition and visual attention. An integrated synthesis of some of the existing models of the development of visual attention is presented which may account for the observed changes in behavioral and neural measures of visual attention and object recognition that occur across infancy. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Distinct roles of basal forebrain cholinergic neurons in spatial and object recognition memory.

    PubMed

    Okada, Kana; Nishizawa, Kayo; Kobayashi, Tomoko; Sakata, Shogo; Kobayashi, Kazuto

    2015-08-06

    Recognition memory requires processing of various types of information such as objects and locations. Impairment in recognition memory is a prominent feature of amnesia and a symptom of Alzheimer's disease (AD). Basal forebrain cholinergic neurons contain two major groups, one localized in the medial septum (MS)/vertical diagonal band of Broca (vDB), and the other in the nucleus basalis magnocellularis (NBM). The roles of these cell groups in recognition memory have been debated, and it remains unclear how they contribute to it. We use a genetic cell targeting technique to selectively eliminate cholinergic cell groups and then test spatial and object recognition memory through different behavioural tasks. Eliminating MS/vDB neurons impairs spatial but not object recognition memory in the reference and working memory tasks, whereas NBM elimination undermines only object recognition memory in the working memory task. These impairments are restored by treatment with acetylcholinesterase inhibitors, anti-dementia drugs for AD. Our results highlight that MS/vDB and NBM cholinergic neurons are not only implicated in recognition memory but also have essential roles in different types of recognition memory.

  8. Appearance-based face recognition and light-fields.

    PubMed

    Gross, Ralph; Matthews, Iain; Baker, Simon

    2004-04-01

    Arguably the most important decision to be made when developing an object recognition algorithm is selecting the scene measurements or features on which to base the algorithm. In appearance-based object recognition, the features are chosen to be the pixel intensity values in an image of the object. These pixel intensities correspond directly to the radiance of light emitted from the object along certain rays in space. The set of all such radiance values over all possible rays is known as the plenoptic function or light-field. In this paper, we develop a theory of appearance-based object recognition from light-fields. This theory leads directly to an algorithm for face recognition across pose that uses as many images of the face as are available, from one upwards. All of the pixels, whichever image they come from, are treated equally and used to estimate the (eigen) light-field of the object. The eigen light-field is then used as the set of features on which to base recognition, analogously to how the pixel intensities are used in appearance-based face and object recognition.

  9. Visual discrimination predicts naming and semantic association accuracy in Alzheimer disease.

    PubMed

    Harnish, Stacy M; Neils-Strunjas, Jean; Eliassen, James; Reilly, Jamie; Meinzer, Marcus; Clark, John Greer; Joseph, Jane

    2010-12-01

    Language impairment is a common symptom of Alzheimer disease (AD), and is thought to be related to semantic processing. This study examines the contribution of another process, namely visual perception, on measures of confrontation naming and semantic association abilities in persons with probable AD. Twenty individuals with probable mild-moderate Alzheimer disease and 20 age-matched controls completed a battery of neuropsychologic measures assessing visual perception, naming, and semantic association ability. Visual discrimination tasks that varied in the degree to which they likely accessed stored structural representations were used to gauge whether structural processing deficits could account for deficits in naming and in semantic association in AD. Visual discrimination abilities of nameable objects in AD strongly predicted performance on both picture naming and semantic association ability, but lacked the same predictive value for controls. Although impaired, performance on visual discrimination tests of abstract shapes and novel faces showed no significant relationship with picture naming and semantic association. These results provide additional evidence to support that structural processing deficits exist in AD, and may contribute to object recognition and naming deficits. Our findings suggest that there is a common deficit in discrimination of pictures using nameable objects, picture naming, and semantic association of pictures in AD. Disturbances in structural processing of pictured items may be associated with lexical-semantic impairment in AD, owing to degraded internal storage of structural knowledge.

  10. Orientation congruency effects for familiar objects: coordinate transformations in object recognition.

    PubMed

    Graf, M; Kaping, D; Bülthoff, H H

    2005-03-01

    How do observers recognize objects after spatial transformations? Recent neurocomputational models have proposed that object recognition is based on coordinate transformations that align memory and stimulus representations. If the recognition of a misoriented object is achieved by adjusting a coordinate system (or reference frame), then recognition should be facilitated when the object is preceded by a different object in the same orientation. In the two experiments reported here, two objects were presented in brief masked displays that were in close temporal contiguity; the objects were in either congruent or incongruent picture-plane orientations. Results showed that naming accuracy was higher for congruent than for incongruent orientations. The congruency effect was independent of superordinate category membership (Experiment 1) and was found for objects with different main axes of elongation (Experiment 2). The results indicate congruency effects for common familiar objects even when they have dissimilar shapes. These findings are compatible with models in which object recognition is achieved by an adjustment of a perceptual coordinate system.

  11. Three-Dimensional Object Recognition and Registration for Robotic Grasping Systems Using a Modified Viewpoint Feature Histogram

    PubMed Central

    Chen, Chin-Sheng; Chen, Po-Chun; Hsu, Chih-Ming

    2016-01-01

    This paper presents a novel 3D feature descriptor for object recognition and to identify poses when there are six-degrees-of-freedom for mobile manipulation and grasping applications. Firstly, a Microsoft Kinect sensor is used to capture 3D point cloud data. A viewpoint feature histogram (VFH) descriptor for the 3D point cloud data then encodes the geometry and viewpoint, so an object can be simultaneously recognized and registered in a stable pose and the information is stored in a database. The VFH is robust to a large degree of surface noise and missing depth information so it is reliable for stereo data. However, the pose estimation for an object fails when the object is placed symmetrically to the viewpoint. To overcome this problem, this study proposes a modified viewpoint feature histogram (MVFH) descriptor that consists of two parts: a surface shape component that comprises an extended fast point feature histogram and an extended viewpoint direction component. The MVFH descriptor characterizes an object’s pose and enhances the system’s ability to identify objects with mirrored poses. Finally, the refined pose is further estimated using an iterative closest point when the object has been recognized and the pose roughly estimated by the MVFH descriptor and it has been registered on a database. The estimation results demonstrate that the MVFH feature descriptor allows more accurate pose estimation. The experiments also show that the proposed method can be applied in vision-guided robotic grasping systems. PMID:27886080

  12. Examining the Relationships among Item Recognition, Source Recognition, and Recall from an Individual Differences Perspective

    ERIC Educational Resources Information Center

    Unsworth, Nash; Brewer, Gene A.

    2009-01-01

    The authors of the current study examined the relationships among item-recognition, source-recognition, free recall, and other memory and cognitive ability tasks via an individual differences analysis. Two independent sources of variance contributed to item-recognition and source-recognition performance, and these two constructs related…

  13. DNA-polymer micelles as nanoparticles with recognition ability.

    PubMed

    Talom, Renée Mayap; Fuks, Gad; Kaps, Leonard; Oberdisse, Julian; Cerclier, Christel; Gaillard, Cédric; Mingotaud, Christophe; Gauffre, Fabienne

    2011-11-25

    The Watson-Crick binding of DNA single strands is a powerful tool for the assembly of nanostructures. Our objective is to develop polymer nanoparticles equipped with DNA strands for surface-patterning applications, taking advantage of the DNA technology, in particular, recognition and reversibility. A hybrid DNA copolymer is synthesized through the conjugation of a ssDNA (22-mer) with a poly(ethylene oxide)-poly(caprolactone) diblock copolymer (PEO-b-PCl). It is shown that, in water, the PEO-b-PCl-ssDNA(22) polymer forms micelles with a PCl hydrophobic core and a hydrophilic corona made of PEO and DNA. The micelles are thoroughly characterized using electron microscopy (TEM and cryoTEM) and small-angle neutron scattering. The binding of these DNA micelles to a surface through DNA recognition is monitored using a quartz crystal microbalance and imaged by atomic force microscopy. The micelles can be released from the surface by a competitive displacement event. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Two Pathways to Stimulus Encoding in Category Learning?

    PubMed Central

    Davis, Tyler; Love, Bradley C.; Maddox, W. Todd

    2008-01-01

    Category learning theorists tacitly assume that stimuli are encoded by a single pathway. Motivated by theories of object recognition, we evaluate a dual-pathway account of stimulus encoding. The part-based pathway establishes mappings between sensory input and symbols that encode discrete stimulus features, whereas the image-based pathway applies holistic templates to sensory input. Our experiments use rule-plus-exception structures in which one exception item in each category violates a salient regularity and must be distinguished from other items. In Experiment 1, we find that discrete representations are crucial for recognition of exceptions following brief training. Experiments 2 and 3 involve multi-session training regimens designed to encourage either part or image-based encoding. We find that both pathways are able to support exception encoding, but have unique characteristics. We speculate that one advantage of the part-based pathway is the ability to generalize across domains, whereas the image-based pathway provides faster and more effortless recognition. PMID:19460948

  15. Robust Behavior Recognition in Intelligent Surveillance Environments.

    PubMed

    Batchuluun, Ganbayar; Kim, Yeong Gon; Kim, Jong Hyun; Hong, Hyung Gil; Park, Kang Ryoung

    2016-06-30

    Intelligent surveillance systems have been studied by many researchers. These systems should be operated in both daytime and nighttime, but objects are invisible in images captured by visible light camera during the night. Therefore, near infrared (NIR) cameras, thermal cameras (based on medium-wavelength infrared (MWIR), and long-wavelength infrared (LWIR) light) have been considered for usage during the nighttime as an alternative. Due to the usage during both daytime and nighttime, and the limitation of requiring an additional NIR illuminator (which should illuminate a wide area over a great distance) for NIR cameras during the nighttime, a dual system of visible light and thermal cameras is used in our research, and we propose a new behavior recognition in intelligent surveillance environments. Twelve datasets were compiled by collecting data in various environments, and they were used to obtain experimental results. The recognition accuracy of our method was found to be 97.6%, thereby confirming the ability of our method to outperform previous methods.

  16. Physical Feature Encoding and Word Recognition Abilities Are Altered in Children with Intractable Epilepsy: Preliminary Neuromagnetic Evidence

    PubMed Central

    Pardos, Maria; Korostenskaja, Milena; Xiang, Jing; Fujiwara, Hisako; Lee, Ki H.; Horn, Paul S.; Byars, Anna; Vannest, Jennifer; Wang, Yingying; Hemasilpin, Nat; Rose, Douglas F.

    2015-01-01

    Objective evaluation of language function is critical for children with intractable epilepsy under consideration for epilepsy surgery. The purpose of this preliminary study was to evaluate word recognition in children with intractable epilepsy by using magnetoencephalography (MEG). Ten children with intractable epilepsy (M/F 6/4, mean ± SD 13.4 ± 2.2 years) were matched on age and sex to healthy controls. Common nouns were presented simultaneously from visual and auditory sensory inputs in “match” and “mismatch” conditions. Neuromagnetic responses M1, M2, M3, M4, and M5 with latencies of ~100 ms, ~150 ms, ~250 ms, ~350 ms, and ~450 ms, respectively, elicited during the “match” condition were identified. Compared to healthy children, epilepsy patients had both significantly delayed latency of the M1 and reduced amplitudes of M3 and M5 responses. These results provide neurophysiologic evidence of altered word recognition in children with intractable epilepsy. PMID:26146459

  17. Measuring the Speed of Newborn Object Recognition in Controlled Visual Worlds

    ERIC Educational Resources Information Center

    Wood, Justin N.; Wood, Samantha M. W.

    2017-01-01

    How long does it take for a newborn to recognize an object? Adults can recognize objects rapidly, but measuring object recognition speed in newborns has not previously been possible. Here we introduce an automated controlled-rearing method for measuring the speed of newborn object recognition in controlled visual worlds. We raised newborn chicks…

  18. Deletion of the GluA1 AMPA receptor subunit impairs recency-dependent object recognition memory

    PubMed Central

    Sanderson, David J.; Hindley, Emma; Smeaton, Emily; Denny, Nick; Taylor, Amy; Barkus, Chris; Sprengel, Rolf; Seeburg, Peter H.; Bannerman, David M.

    2011-01-01

    Deletion of the GluA1 AMPA receptor subunit impairs short-term spatial recognition memory. It has been suggested that short-term recognition depends upon memory caused by the recent presentation of a stimulus that is independent of contextual–retrieval processes. The aim of the present set of experiments was to test whether the role of GluA1 extends to nonspatial recognition memory. Wild-type and GluA1 knockout mice were tested on the standard object recognition task and a context-independent recognition task that required recency-dependent memory. In a first set of experiments it was found that GluA1 deletion failed to impair performance on either of the object recognition or recency-dependent tasks. However, GluA1 knockout mice displayed increased levels of exploration of the objects in both the sample and test phases compared to controls. In contrast, when the time that GluA1 knockout mice spent exploring the objects was yoked to control mice during the sample phase, it was found that GluA1 deletion now impaired performance on both the object recognition and the recency-dependent tasks. GluA1 deletion failed to impair performance on a context-dependent recognition task regardless of whether object exposure in knockout mice was yoked to controls or not. These results demonstrate that GluA1 is necessary for nonspatial as well as spatial recognition memory and plays an important role in recency-dependent memory processes. PMID:21378100

  19. Psychometric properties of the NEPSY-II affect recognition subtest in a preschool sample: a Rasch modeling approach.

    PubMed

    Yao, Shih-Ying; Bull, Rebecca; Khng, Kiat Hui; Rahim, Anisa

    2018-01-01

    Understanding a child's ability to decode emotion expressions is important to allow early interventions for potential difficulties in social and emotional functioning. This study applied the Rasch model to investigate the psychometric properties of the NEPSY-II Affect Recognition subtest, a U.S. normed measure for 3-16 year olds which assesses the ability to recognize facial expressions of emotion. Data were collected from 1222 children attending preschools in Singapore. We first performed the Rasch analysis with the raw item data, and examined the technical qualities and difficulty pattern of the studied items. We subsequently investigated the relation of the estimated affect recognition ability from the Rasch analysis to a teacher-reported measure of a child's behaviors, emotions, and relationships. Potential gender differences were also examined. The Rasch model fits our data well. Also, the NEPSY-II Affect Recognition subtest was found to have reasonable technical qualities, expected item difficulty pattern, and desired association with the external measure of children's behaviors, emotions, and relationships for both boys and girls. Overall, findings from this study suggest that the NEPSY-II Affect Recognition subtest is a promising measure of young children's affect recognition ability. Suggestions for future test improvement and research were discussed.

  20. Animacy and real-world size shape object representations in the human medial temporal lobes.

    PubMed

    Blumenthal, Anna; Stojanoski, Bobby; Martin, Chris B; Cusack, Rhodri; Köhler, Stefan

    2018-06-26

    Identifying what an object is, and whether an object has been encountered before, is a crucial aspect of human behavior. Despite this importance, we do not yet have a complete understanding of the neural basis of these abilities. Investigations into the neural organization of human object representations have revealed category specific organization in the ventral visual stream in perceptual tasks. Interestingly, these categories fall within broader domains of organization, with reported distinctions between animate, inanimate large, and inanimate small objects. While there is some evidence for category specific effects in the medial temporal lobe (MTL), in particular in perirhinal and parahippocampal cortex, it is currently unclear whether domain level organization is also present across these structures. To this end, we used fMRI with a continuous recognition memory task. Stimuli were images of objects from several different categories, which were either animate or inanimate, or large or small within the inanimate domain. We employed representational similarity analysis (RSA) to test the hypothesis that object-evoked responses in MTL structures during recognition-memory judgments also show evidence for domain-level organization along both dimensions. Our data support this hypothesis. Specifically, object representations were shaped by either animacy, real-world size, or both, in perirhinal and parahippocampal cortex, and the hippocampus. While sensitivity to these dimensions differed across structures when probed individually, hinting at interesting links to functional differentiation, similarities in organization across MTL structures were more prominent overall. These results argue for continuity in the organization of object representations in the ventral visual stream and the MTL. © 2018 Wiley Periodicals, Inc.

  1. Recognizing familiar objects by hand and foot: Haptic shape perception generalizes to inputs from unusual locations and untrained body parts.

    PubMed

    Lawson, Rebecca

    2014-02-01

    The limits of generalization of our 3-D shape recognition system to identifying objects by touch was investigated by testing exploration at unusual locations and using untrained effectors. In Experiments 1 and 2, people found identification by hand of real objects, plastic 3-D models of objects, and raised line drawings placed in front of themselves no easier than when exploration was behind their back. Experiment 3 compared one-handed, two-handed, one-footed, and two-footed haptic object recognition of familiar objects. Recognition by foot was slower (7 vs. 13 s) and much less accurate (9 % vs. 47 % errors) than recognition by either one or both hands. Nevertheless, item difficulty was similar across hand and foot exploration, and there was a strong correlation between an individual's hand and foot performance. Furthermore, foot recognition was better with the largest 20 of the 80 items (32 % errors), suggesting that physical limitations hampered exploration by foot. Thus, object recognition by hand generalized efficiently across the spatial location of stimuli, while object recognition by foot seemed surprisingly good given that no prior training was provided. Active touch (haptics) thus efficiently extracts 3-D shape information and accesses stored representations of familiar objects from novel modes of input.

  2. Dopamine D1 receptor stimulation modulates the formation and retrieval of novel object recognition memory: Role of the prelimbic cortex

    PubMed Central

    Pezze, Marie A.; Marshall, Hayley J.; Fone, Kevin C.F.; Cassaday, Helen J.

    2015-01-01

    Previous studies have shown that dopamine D1 receptor antagonists impair novel object recognition memory but the effects of dopamine D1 receptor stimulation remain to be determined. This study investigated the effects of the selective dopamine D1 receptor agonist SKF81297 on acquisition and retrieval in the novel object recognition task in male Wistar rats. SKF81297 (0.4 and 0.8 mg/kg s.c.) given 15 min before the sampling phase impaired novel object recognition evaluated 10 min or 24 h later. The same treatments also reduced novel object recognition memory tested 24 h after the sampling phase and when given 15 min before the choice session. These data indicate that D1 receptor stimulation modulates both the encoding and retrieval of object recognition memory. Microinfusion of SKF81297 (0.025 or 0.05 μg/side) into the prelimbic sub-region of the medial prefrontal cortex (mPFC) in this case 10 min before the sampling phase also impaired novel object recognition memory, suggesting that the mPFC is one important site mediating the effects of D1 receptor stimulation on visual recognition memory. PMID:26277743

  3. Degraded Impairment of Emotion Recognition in Parkinson's Disease Extends from Negative to Positive Emotions.

    PubMed

    Lin, Chia-Yao; Tien, Yi-Min; Huang, Jong-Tsun; Tsai, Chon-Haw; Hsu, Li-Chuan

    2016-01-01

    Because of dopaminergic neurodegeneration, patients with Parkinson's disease (PD) show impairment in the recognition of negative facial expressions. In the present study, we aimed to determine whether PD patients with more advanced motor problems would show a much greater deficit in recognition of emotional facial expressions than a control group and whether impairment of emotion recognition would extend to positive emotions. Twenty-nine PD patients and 29 age-matched healthy controls were recruited. Participants were asked to discriminate emotions in Experiment  1 and identify gender in Experiment  2. In Experiment  1, PD patients demonstrated a recognition deficit for negative (sadness and anger) and positive faces. Further analysis showed that only PD patients with high motor dysfunction performed poorly in recognition of happy faces. In Experiment  2, PD patients showed an intact ability for gender identification, and the results eliminated possible abilities in the functions measured in Experiment  2 as alternative explanations for the results of Experiment  1. We concluded that patients' ability to recognize emotions deteriorated as the disease progressed. Recognition of negative emotions was impaired first, and then the impairment extended to positive emotions.

  4. Degraded Impairment of Emotion Recognition in Parkinson's Disease Extends from Negative to Positive Emotions

    PubMed Central

    Tien, Yi-Min; Huang, Jong-Tsun

    2016-01-01

    Because of dopaminergic neurodegeneration, patients with Parkinson's disease (PD) show impairment in the recognition of negative facial expressions. In the present study, we aimed to determine whether PD patients with more advanced motor problems would show a much greater deficit in recognition of emotional facial expressions than a control group and whether impairment of emotion recognition would extend to positive emotions. Twenty-nine PD patients and 29 age-matched healthy controls were recruited. Participants were asked to discriminate emotions in Experiment  1 and identify gender in Experiment  2. In Experiment  1, PD patients demonstrated a recognition deficit for negative (sadness and anger) and positive faces. Further analysis showed that only PD patients with high motor dysfunction performed poorly in recognition of happy faces. In Experiment  2, PD patients showed an intact ability for gender identification, and the results eliminated possible abilities in the functions measured in Experiment  2 as alternative explanations for the results of Experiment  1. We concluded that patients' ability to recognize emotions deteriorated as the disease progressed. Recognition of negative emotions was impaired first, and then the impairment extended to positive emotions. PMID:27555668

  5. Chiral recognition ability of an (S)-naproxen- imprinted monolith by capillary electrochromatography.

    PubMed

    Xu, Yan-Li; Liu, Zhao-Sheng; Wang, He-Fang; Yan, Chao; Gao, Ru-Yu

    2005-02-01

    The racemic naproxen was selectively recognized by capillary electrochromatography (CEC) on an (S)-naproxen-imprinted monolith, which was prepared by an in situ thermal-initiated polymerization. The recognition selectivity of a selected monolith strictly relied on the CEC conditions involved. The factors that influence the imprinting selectivity as well as the electroosmotic flow (EOF), including the applied voltage, organic solvent, salt concentration and pH value of the buffer, column temperature, and surfactant modifiers were systematically studied. Once the column was prepared, the experiment results showed that the successful chiral recognition was dependent on CEC variables. For example: the recognition could be observed in acetonitrile and ethanol electrolytes, while methanol and dimethyl sulfoxide (DMSO) electrolytes had no chiral recognition ability. The buffer with pH values of 2.6 or 3.0 at a higher salt concentration had chiral recognition ability. Column temperatures of 25-35 degrees C were optimal. Three surfactants, sodium dodecyl sulfate (SDS), cetyltrimethylammonium bromide (CTAB), and polyoxyethylene sorbitan monolaurate (Tween 20), can improve the recognition. Baseline resolution was obtained under optimized conditions and the column efficiency of the later eluent (S)-naproxen was 90 000 plates/m.

  6. Cognitive object recognition system (CORS)

    NASA Astrophysics Data System (ADS)

    Raju, Chaitanya; Varadarajan, Karthik Mahesh; Krishnamurthi, Niyant; Xu, Shuli; Biederman, Irving; Kelley, Troy

    2010-04-01

    We have developed a framework, Cognitive Object Recognition System (CORS), inspired by current neurocomputational models and psychophysical research in which multiple recognition algorithms (shape based geometric primitives, 'geons,' and non-geometric feature-based algorithms) are integrated to provide a comprehensive solution to object recognition and landmarking. Objects are defined as a combination of geons, corresponding to their simple parts, and the relations among the parts. However, those objects that are not easily decomposable into geons, such as bushes and trees, are recognized by CORS using "feature-based" algorithms. The unique interaction between these algorithms is a novel approach that combines the effectiveness of both algorithms and takes us closer to a generalized approach to object recognition. CORS allows recognition of objects through a larger range of poses using geometric primitives and performs well under heavy occlusion - about 35% of object surface is sufficient. Furthermore, geon composition of an object allows image understanding and reasoning even with novel objects. With reliable landmarking capability, the system improves vision-based robot navigation in GPS-denied environments. Feasibility of the CORS system was demonstrated with real stereo images captured from a Pioneer robot. The system can currently identify doors, door handles, staircases, trashcans and other relevant landmarks in the indoor environment.

  7. Covert face recognition in congenital prosopagnosia: a group study.

    PubMed

    Rivolta, Davide; Palermo, Romina; Schmalzl, Laura; Coltheart, Max

    2012-03-01

    Even though people with congenital prosopagnosia (CP) never develop a normal ability to "overtly" recognize faces, some individuals show indices of "covert" (or implicit) face recognition. The aim of this study was to demonstrate covert face recognition in CP when participants could not overtly recognize the faces. Eleven people with CP completed three tasks assessing their overt face recognition ability, and three tasks assessing their "covert" face recognition: a Forced choice familiarity task, a Forced choice cued task, and a Priming task. Evidence of covert recognition was observed with the Forced choice familiarity task, but not the Priming task. In addition, we propose that the Forced choice cued task does not measure covert processing as such, but instead "provoked-overt" recognition. Our study clearly shows that people with CP demonstrate covert recognition for faces that they cannot overtly recognize, and that behavioural tasks vary in their sensitivity to detect covert recognition in CP. Copyright © 2011 Elsevier Srl. All rights reserved.

  8. Shape and Color Features for Object Recognition Search

    NASA Technical Reports Server (NTRS)

    Duong, Tuan A.; Duong, Vu A.; Stubberud, Allen R.

    2012-01-01

    A bio-inspired shape feature of an object of interest emulates the integration of the saccadic eye movement and horizontal layer in vertebrate retina for object recognition search where a single object can be used one at a time. The optimal computational model for shape-extraction-based principal component analysis (PCA) was also developed to reduce processing time and enable the real-time adaptive system capability. A color feature of the object is employed as color segmentation to empower the shape feature recognition to solve the object recognition in the heterogeneous environment where a single technique - shape or color - may expose its difficulties. To enable the effective system, an adaptive architecture and autonomous mechanism were developed to recognize and adapt the shape and color feature of the moving object. The bio-inspired object recognition based on bio-inspired shape and color can be effective to recognize a person of interest in the heterogeneous environment where the single technique exposed its difficulties to perform effective recognition. Moreover, this work also demonstrates the mechanism and architecture of the autonomous adaptive system to enable the realistic system for the practical use in the future.

  9. Recognition-induced forgetting of faces in visual long-term memory.

    PubMed

    Rugo, Kelsi F; Tamler, Kendall N; Woodman, Geoffrey F; Maxcey, Ashleigh M

    2017-10-01

    Despite more than a century of evidence that long-term memory for pictures and words are different, much of what we know about memory comes from studies using words. Recent research examining visual long-term memory has demonstrated that recognizing an object induces the forgetting of objects from the same category. This recognition-induced forgetting has been shown with a variety of everyday objects. However, unlike everyday objects, faces are objects of expertise. As a result, faces may be immune to recognition-induced forgetting. However, despite excellent memory for such stimuli, we found that faces were susceptible to recognition-induced forgetting. Our findings have implications for how models of human memory account for recognition-induced forgetting as well as represent objects of expertise and consequences for eyewitness testimony and the justice system.

  10. Disocclusion: a variational approach using level lines.

    PubMed

    Masnou, Simon

    2002-01-01

    Object recognition, robot vision, image and film restoration may require the ability to perform disocclusion. We call disocclusion the recovery of occluded areas in a digital image by interpolation from their vicinity. It is shown in this paper how disocclusion can be performed by means of the level-lines structure, which offers a reliable, complete and contrast-invariant representation of images. Level-lines based disocclusion yields a solution that may have strong discontinuities. The proposed method is compatible with Kanizsa's amodal completion theory.

  11. Validating emotional attention regulation as a component of emotional intelligence: A Stroop approach to individual differences in tuning in to and out of nonverbal cues.

    PubMed

    Elfenbein, Hillary Anger; Jang, Daisung; Sharma, Sudeep; Sanchez-Burks, Jeffrey

    2017-03-01

    Emotional intelligence (EI) has captivated researchers and the public alike, but it has been challenging to establish its components as objective abilities. Self-report scales lack divergent validity from personality traits, and few ability tests have objectively correct answers. We adapt the Stroop task to introduce a new facet of EI called emotional attention regulation (EAR), which involves focusing emotion-related attention for the sake of information processing rather than for the sake of regulating one's own internal state. EAR includes 2 distinct components. First, tuning in to nonverbal cues involves identifying nonverbal cues while ignoring alternate content, that is, emotion recognition under conditions of distraction by competing stimuli. Second, tuning out of nonverbal cues involves ignoring nonverbal cues while identifying alternate content, that is, the ability to interrupt emotion recognition when needed to focus attention elsewhere. An auditory test of valence included positive and negative words spoken in positive and negative vocal tones. A visual test of approach-avoidance included green- and red-colored facial expressions depicting happiness and anger. The error rates for incongruent trials met the key criteria for establishing the validity of an EI test, in that the measure demonstrated test-retest reliability, convergent validity with other EI measures, divergent validity from factors such as general processing speed and mostly personality, and predictive validity in this case for well-being. By demonstrating that facets of EI can be validly theorized and empirically assessed, results also speak to the validity of EI more generally. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  12. Robust Pedestrian Tracking and Recognition from FLIR Video: A Unified Approach via Sparse Coding

    PubMed Central

    Li, Xin; Guo, Rui; Chen, Chao

    2014-01-01

    Sparse coding is an emerging method that has been successfully applied to both robust object tracking and recognition in the vision literature. In this paper, we propose to explore a sparse coding-based approach toward joint object tracking-and-recognition and explore its potential in the analysis of forward-looking infrared (FLIR) video to support nighttime machine vision systems. A key technical contribution of this work is to unify existing sparse coding-based approaches toward tracking and recognition under the same framework, so that they can benefit from each other in a closed-loop. On the one hand, tracking the same object through temporal frames allows us to achieve improved recognition performance through dynamical updating of template/dictionary and combining multiple recognition results; on the other hand, the recognition of individual objects facilitates the tracking of multiple objects (i.e., walking pedestrians), especially in the presence of occlusion within a crowded environment. We report experimental results on both the CASIAPedestrian Database and our own collected FLIR video database to demonstrate the effectiveness of the proposed joint tracking-and-recognition approach. PMID:24961216

  13. Object recognition of ladar with support vector machine

    NASA Astrophysics Data System (ADS)

    Sun, Jian-Feng; Li, Qi; Wang, Qi

    2005-01-01

    Intensity, range and Doppler images can be obtained by using laser radar. Laser radar can detect much more object information than other detecting sensor, such as passive infrared imaging and synthetic aperture radar (SAR), so it is well suited as the sensor of object recognition. Traditional method of laser radar object recognition is extracting target features, which can be influenced by noise. In this paper, a laser radar recognition method-Support Vector Machine is introduced. Support Vector Machine (SVM) is a new hotspot of recognition research after neural network. It has well performance on digital written and face recognition. Two series experiments about SVM designed for preprocessing and non-preprocessing samples are performed by real laser radar images, and the experiments results are compared.

  14. Salience of the lambs: a test of the saliency map hypothesis with pictures of emotive objects.

    PubMed

    Humphrey, Katherine; Underwood, Geoffrey; Lambert, Tony

    2012-01-25

    Humans have an ability to rapidly detect emotive stimuli. However, many emotional objects in a scene are also highly visually salient, which raises the question of how dependent the effects of emotionality are on visual saliency and whether the presence of an emotional object changes the power of a more visually salient object in attracting attention. Participants were shown a set of positive, negative, and neutral pictures and completed recall and recognition memory tests. Eye movement data revealed that visual saliency does influence eye movements, but the effect is reliably reduced when an emotional object is present. Pictures containing negative objects were recognized more accurately and recalled in greater detail, and participants fixated more on negative objects than positive or neutral ones. Initial fixations were more likely to be on emotional objects than more visually salient neutral ones, suggesting that the processing of emotional features occurs at a very early stage of perception.

  15. Object location and object recognition memory impairments, motivation deficits and depression in a model of Gulf War illness.

    PubMed

    Hattiangady, Bharathi; Mishra, Vikas; Kodali, Maheedhar; Shuai, Bing; Rao, Xiolan; Shetty, Ashok K

    2014-01-01

    Memory and mood deficits are the enduring brain-related symptoms in Gulf War illness (GWI). Both animal model and epidemiological investigations have indicated that these impairments in a majority of GW veterans are linked to exposures to chemicals such as pyridostigmine bromide (PB, an antinerve gas drug), permethrin (PM, an insecticide) and DEET (a mosquito repellant) encountered during the Persian Gulf War-1. Our previous study in a rat model has shown that combined exposures to low doses of GWI-related (GWIR) chemicals PB, PM, and DEET with or without 5-min of restraint stress (a mild stress paradigm) causes hippocampus-dependent spatial memory dysfunction in a water maze test (WMT) and increased depressive-like behavior in a forced swim test (FST). In this study, using a larger cohort of rats exposed to GWIR-chemicals and stress, we investigated whether the memory deficiency identified earlier in a WMT is reproducible with an alternative and stress free hippocampus-dependent memory test such as the object location test (OLT). We also ascertained the possible co-existence of hippocampus-independent memory dysfunction using a novel object recognition test (NORT), and alterations in mood function with additional tests for motivation and depression. Our results provide new evidence that exposure to low doses of GWIR-chemicals and mild stress for 4 weeks causes deficits in hippocampus-dependent object location memory and perirhinal cortex-dependent novel object recognition memory. An open field test performed prior to other behavioral analyses revealed that memory impairments were not associated with increased anxiety or deficits in general motor ability. However, behavioral tests for mood function such as a voluntary physical exercise paradigm and a novelty suppressed feeding test (NSFT) demonstrated decreased motivation levels and depression. Thus, exposure to GWIR-chemicals and stress causes both hippocampus-dependent and hippocampus-independent memory impairments as well as mood dysfunction in a rat model.

  16. Individual differences in adaptive coding of face identity are linked to individual differences in face recognition ability.

    PubMed

    Rhodes, Gillian; Jeffery, Linda; Taylor, Libby; Hayward, William G; Ewing, Louise

    2014-06-01

    Despite their similarity as visual patterns, we can discriminate and recognize many thousands of faces. This expertise has been linked to 2 coding mechanisms: holistic integration of information across the face and adaptive coding of face identity using norms tuned by experience. Recently, individual differences in face recognition ability have been discovered and linked to differences in holistic coding. Here we show that they are also linked to individual differences in adaptive coding of face identity, measured using face identity aftereffects. Identity aftereffects correlated significantly with several measures of face-selective recognition ability. They also correlated marginally with own-race face recognition ability, suggesting a role for adaptive coding in the well-known other-race effect. More generally, these results highlight the important functional role of adaptive face-coding mechanisms in face expertise, taking us beyond the traditional focus on holistic coding mechanisms. PsycINFO Database Record (c) 2014 APA, all rights reserved.

  17. Robust relationship between reading span and speech recognition in noise

    PubMed Central

    Souza, Pamela; Arehart, Kathryn

    2015-01-01

    Objective Working memory refers to a cognitive system that manages information processing and temporary storage. Recent work has demonstrated that individual differences in working memory capacity measured using a reading span task are related to ability to recognize speech in noise. In this project, we investigated whether the specific implementation of the reading span task influenced the strength of the relationship between working memory capacity and speech recognition. Design The relationship between speech recognition and working memory capacity was examined for two different working memory tests that varied in approach, using a within-subject design. Data consisted of audiometric results along with the two different working memory tests; one speech-in-noise test; and a reading comprehension test. Study sample The test group included 94 older adults with varying hearing loss and 30 younger adults with normal hearing. Results Listeners with poorer working memory capacity had more difficulty understanding speech in noise after accounting for age and degree of hearing loss. That relationship did not differ significantly between the two different implementations of reading span. Conclusions Our findings suggest that different implementations of a verbal reading span task do not affect the strength of the relationship between working memory capacity and speech recognition. PMID:25975360

  18. The Relationship between Binaural Benefit and Difference in Unilateral Speech Recognition Performance for Bilateral Cochlear Implant Users

    PubMed Central

    Yoon, Yang-soo; Li, Yongxin; Kang, Hou-Yong; Fu, Qian-Jie

    2011-01-01

    Objective The full benefit of bilateral cochlear implants may depend on the unilateral performance with each device, the speech materials, processing ability of the user, and/or the listening environment. In this study, bilateral and unilateral speech performances were evaluated in terms of recognition of phonemes and sentences presented in quiet or in noise. Design Speech recognition was measured for unilateral left, unilateral right, and bilateral listening conditions; speech and noise were presented at 0° azimuth. The “binaural benefit” was defined as the difference between bilateral performance and unilateral performance with the better ear. Study Sample 9 adults with bilateral cochlear implants participated. Results On average, results showed a greater binaural benefit in noise than in quiet for all speech tests. More importantly, the binaural benefit was greater when unilateral performance was similar across ears. As the difference in unilateral performance between ears increased, the binaural advantage decreased; this functional relationship was observed across the different speech materials and noise levels even though there was substantial intra- and inter-subject variability. Conclusions The results indicate that subjects who show symmetry in speech recognition performance between implanted ears in general show a large binaural benefit. PMID:21696329

  19. Voice gender discrimination provides a measure of more than pitch-related perception in cochlear implant users

    PubMed Central

    Li, Tianhao; Fu, Qian-Jie

    2013-01-01

    Objectives (1) To investigate whether voice gender discrimination (VGD) could be a useful indicator of the spectral and temporal processing abilities of individual cochlear implant (CI) users; (2) To examine the relationship between VGD and speech recognition with CI when comparable acoustic cues are used for both perception processes. Design VGD was measured using two talker sets with different inter-gender fundamental frequencies (F0), as well as different acoustic CI simulations. Vowel and consonant recognition in quiet and noise were also measured and compared with VGD performance. Study sample Eleven postlingually deaf CI users. Results The results showed that (1) mean VGD performance differed for different stimulus sets, (2) VGD and speech recognition performance varied among individual CI users, and (3) individual VGD performance was significantly correlated with speech recognition performance under certain conditions. Conclusions VGD measured with selected stimulus sets might be useful for assessing not only pitch-related perception, but also spectral and temporal processing by individual CI users. In addition to improvements in spectral resolution and modulation detection, the improvement in higher modulation frequency discrimination might be particularly important for CI users in noisy environments. PMID:21696330

  20. Exploring the feasibility of traditional image querying tasks for industrial radiographs

    NASA Astrophysics Data System (ADS)

    Bray, Iliana E.; Tsai, Stephany J.; Jimenez, Edward S.

    2015-08-01

    Although there have been great strides in object recognition with optical images (photographs), there has been comparatively little research into object recognition for X-ray radiographs. Our exploratory work contributes to this area by creating an object recognition system designed to recognize components from a related database of radiographs. Object recognition for radiographs must be approached differently than for optical images, because radiographs have much less color-based information to distinguish objects, and they exhibit transmission overlap that alters perceived object shapes. The dataset used in this work contained more than 55,000 intermixed radiographs and photographs, all in a compressed JPEG form and with multiple ways of describing pixel information. For this work, a robust and efficient system is needed to combat problems presented by properties of the X-ray imaging modality, the large size of the given database, and the quality of the images contained in said database. We have explored various pre-processing techniques to clean the cluttered and low-quality images in the database, and we have developed our object recognition system by combining multiple object detection and feature extraction methods. We present the preliminary results of the still-evolving hybrid object recognition system.

  1. The Change in Facial Emotion Recognition Ability in Inpatients with Treatment Resistant Schizophrenia After Electroconvulsive Therapy.

    PubMed

    Dalkıran, Mihriban; Tasdemir, Akif; Salihoglu, Tamer; Emul, Murat; Duran, Alaattin; Ugur, Mufit; Yavuz, Ruhi

    2017-09-01

    People with schizophrenia have impairments in emotion recognition along with other social cognitive deficits. In the current study, we aimed to investigate the immediate benefits of ECT on facial emotion recognition ability. Thirty-two treatment resistant patients with schizophrenia who have been indicated for ECT enrolled in the study. Facial emotion stimuli were a set of 56 photographs that depicted seven basic emotions: sadness, anger, happiness, disgust, surprise, fear, and neutral faces. The average age of the participants was 33.4 ± 10.5 years. The rate of recognizing the disgusted facial expression increased significantly after ECT (p < 0.05) and no significant changes were found in the rest of the facial expressions (p > 0.05). After the ECT, the time period of responding to the fear and happy facial expressions were significantly shorter (p < 0.05). Facial emotion recognition ability is an important social cognitive skill for social harmony, proper relation and living independently. At least, the ECT sessions do not seem to affect facial emotion recognition ability negatively and seem to improve identifying disgusted facial emotion which is related with dopamine enriched regions in brain.

  2. Modeling Spoken Word Recognition Performance by Pediatric Cochlear Implant Users using Feature Identification

    PubMed Central

    Frisch, Stefan A.; Pisoni, David B.

    2012-01-01

    Objective Computational simulations were carried out to evaluate the appropriateness of several psycholinguistic theories of spoken word recognition for children who use cochlear implants. These models also investigate the interrelations of commonly used measures of closed-set and open-set tests of speech perception. Design A software simulation of phoneme recognition performance was developed that uses feature identification scores as input. Two simulations of lexical access were developed. In one, early phoneme decisions are used in a lexical search to find the best matching candidate. In the second, phoneme decisions are made only when lexical access occurs. Simulated phoneme and word identification performance was then applied to behavioral data from the Phonetically Balanced Kindergarten test and Lexical Neighborhood Test of open-set word recognition. Simulations of performance were evaluated for children with prelingual sensorineural hearing loss who use cochlear implants with the MPEAK or SPEAK coding strategies. Results Open-set word recognition performance can be successfully predicted using feature identification scores. In addition, we observed no qualitative differences in performance between children using MPEAK and SPEAK, suggesting that both groups of children process spoken words similarly despite differences in input. Word recognition ability was best predicted in the model in which phoneme decisions were delayed until lexical access. Conclusions Closed-set feature identification and open-set word recognition focus on different, but related, levels of language processing. Additional insight for clinical intervention may be achieved by collecting both types of data. The most successful model of performance is consistent with current psycholinguistic theories of spoken word recognition. Thus it appears that the cognitive process of spoken word recognition is fundamentally the same for pediatric cochlear implant users and children and adults with normal hearing. PMID:11132784

  3. Automatic anatomy recognition on CT images with pathology

    NASA Astrophysics Data System (ADS)

    Huang, Lidong; Udupa, Jayaram K.; Tong, Yubing; Odhner, Dewey; Torigian, Drew A.

    2016-03-01

    Body-wide anatomy recognition on CT images with pathology becomes crucial for quantifying body-wide disease burden. This, however, is a challenging problem because various diseases result in various abnormalities of objects such as shape and intensity patterns. We previously developed an automatic anatomy recognition (AAR) system [1] whose applicability was demonstrated on near normal diagnostic CT images in different body regions on 35 organs. The aim of this paper is to investigate strategies for adapting the previous AAR system to diagnostic CT images of patients with various pathologies as a first step toward automated body-wide disease quantification. The AAR approach consists of three main steps - model building, object recognition, and object delineation. In this paper, within the broader AAR framework, we describe a new strategy for object recognition to handle abnormal images. In the model building stage an optimal threshold interval is learned from near-normal training images for each object. This threshold is optimally tuned to the pathological manifestation of the object in the test image. Recognition is performed following a hierarchical representation of the objects. Experimental results for the abdominal body region based on 50 near-normal images used for model building and 20 abnormal images used for object recognition show that object localization accuracy within 2 voxels for liver and spleen and 3 voxels for kidney can be achieved with the new strategy.

  4. Global precedence effects account for individual differences in both face and object recognition performance.

    PubMed

    Gerlach, Christian; Starrfelt, Randi

    2018-03-20

    There has been an increase in studies adopting an individual difference approach to examine visual cognition and in particular in studies trying to relate face recognition performance with measures of holistic processing (the face composite effect and the part-whole effect). In the present study we examine whether global precedence effects, measured by means of non-face stimuli in Navon's paradigm, can also account for individual differences in face recognition and, if so, whether the effect is of similar magnitude for faces and objects. We find evidence that global precedence effects facilitate both face and object recognition, and to a similar extent. Our results suggest that both face and object recognition are characterized by a coarse-to-fine temporal dynamic, where global shape information is derived prior to local shape information, and that the efficiency of face and object recognition is related to the magnitude of the global precedence effect.

  5. Decreased acetylcholine release delays the consolidation of object recognition memory.

    PubMed

    De Jaeger, Xavier; Cammarota, Martín; Prado, Marco A M; Izquierdo, Iván; Prado, Vania F; Pereira, Grace S

    2013-02-01

    Acetylcholine (ACh) is important for different cognitive functions such as learning, memory and attention. The release of ACh depends on its vesicular loading by the vesicular acetylcholine transporter (VAChT). It has been demonstrated that VAChT expression can modulate object recognition memory. However, the role of VAChT expression on object recognition memory persistence still remains to be understood. To address this question we used distinct mouse lines with reduced expression of VAChT, as well as pharmacological manipulations of the cholinergic system. We showed that reduction of cholinergic tone impairs object recognition memory measured at 24h. Surprisingly, object recognition memory, measured at 4 days after training, was impaired by substantial, but not moderate, reduction in VAChT expression. Our results suggest that levels of acetylcholine release strongly modulate object recognition memory consolidation and appear to be of particular importance for memory persistence 4 days after training. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. Intraperirhinal cortex administration of the synthetic cannabinoid, HU210, disrupts object recognition memory in rats.

    PubMed

    Sticht, Martin A; Jacklin, Derek L; Mechoulam, Raphael; Parker, Linda A; Winters, Boyer D

    2015-03-25

    Cannabinoids disrupt learning and memory in human and nonhuman participants. Object recognition memory, which is particularly susceptible to the impairing effects of cannabinoids, relies critically on the perirhinal cortex (PRh); however, to date, the effects of cannabinoids within PRh have not been assessed. In the present study, we evaluated the effects of localized administration of the synthetic cannabinoid, HU210 (0.01, 1.0 μg/hemisphere), into PRh on spontaneous object recognition in Long-Evans rats. Animals received intra-PRh infusions of HU210 before the sample phase, and object recognition memory was assessed at various delays in a subsequent retention test. We found that presample intra-PRh HU210 dose dependently (1.0 μg but not 0.01 μg) interfered with spontaneous object recognition performance, exerting an apparently more pronounced effect when memory demands were increased. These novel findings show that cannabinoid agonists in PRh disrupt object recognition memory. Copyright © 2015 Wolters Kluwer Health, Inc. All rights reserved.

  7. Breaking object correspondence across saccades impairs object recognition: The role of color and luminance.

    PubMed

    Poth, Christian H; Schneider, Werner X

    2016-09-01

    Rapid saccadic eye movements bring the foveal region of the eye's retina onto objects for high-acuity vision. Saccades change the location and resolution of objects' retinal images. To perceive objects as visually stable across saccades, correspondence between the objects before and after the saccade must be established. We have previously shown that breaking object correspondence across the saccade causes a decrement in object recognition (Poth, Herwig, & Schneider, 2015). Color and luminance can establish object correspondence, but it is unknown how these surface features contribute to transsaccadic visual processing. Here, we investigated whether changing the surface features color-and-luminance and color alone across saccades impairs postsaccadic object recognition. Participants made saccades to peripheral objects, which either maintained or changed their surface features across the saccade. After the saccade, participants briefly viewed a letter within the saccade target object (terminated by a pattern mask). Postsaccadic object recognition was assessed as participants' accuracy in reporting the letter. Experiment A used the colors green and red with different luminances as surface features, Experiment B blue and yellow with approximately the same luminances. Changing the surface features across the saccade deteriorated postsaccadic object recognition in both experiments. These findings reveal a link between object recognition and object correspondence relying on the surface features colors and luminance, which is currently not addressed in theories of transsaccadic perception. We interpret the findings within a recent theory ascribing this link to visual attention (Schneider, 2013).

  8. Rapid effects of dorsal hippocampal G-protein coupled estrogen receptor on learning in female mice.

    PubMed

    Lymer, Jennifer; Robinson, Alana; Winters, Boyer D; Choleris, Elena

    2017-03-01

    Through rapid mechanisms of action, estrogens affect learning and memory processes. It has been shown that 17β-estradiol and an Estrogen Receptor (ER) α agonist enhances performance in social recognition, object recognition, and object placement tasks when administered systemically or infused in the dorsal hippocampus. In contrast, systemic and dorsal hippocampal ERβ activation only promote spatial learning. In addition, 17β-estradiol, the ERα and the G-protein coupled estrogen receptor (GPER) agonists increase dendritic spine density in the CA1 hippocampus. Recently, we have shown that selective systemic activation of the GPER also rapidly facilitated social recognition, object recognition, and object placement learning in female mice. Whether activation the GPER specifically in the dorsal hippocampus can also rapidly improve learning and memory prior to acquisition is unknown. Here, we investigated the rapid effects of infusion of the GPER agonist, G-1 (dose: 50nM, 100nM, 200nM), in the dorsal hippocampus on social recognition, object recognition, and object placement learning tasks in home cage. These paradigms were completed within 40min, which is within the range of rapid estrogenic effects. Dorsal hippocampal administration of G-1 improved social (doses: 50nM, 200nM G-1) and object (dose: 200nM G-1) recognition with no effect on object placement. Additionally, when spatial cues were minimized by testing in a Y-apparatus, G-1 administration promoted social (doses: 100nM, 200nM G-1) and object (doses: 50nM, 100nM, 200nM G-1) recognition. Therefore, like ERα, the GPER in the hippocampus appears to be sufficient for the rapid facilitation of social and object recognition in female mice, but not for the rapid facilitation of object placement learning. Thus, the GPER in the dorsal hippocampus is involved in estrogenic mediation of learning and memory and these effects likely occur through rapid signalling mechanisms. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Recognition memory, self-other source memory, and theory-of-mind in children with autism spectrum disorder.

    PubMed

    Lind, Sophie E; Bowler, Dermot M

    2009-09-01

    This study investigated semantic and episodic memory in autism spectrum disorder (ASD), using a task which assessed recognition and self-other source memory. Children with ASD showed undiminished recognition memory but significantly diminished source memory, relative to age- and verbal ability-matched comparison children. Both children with and without ASD showed an "enactment effect", demonstrating significantly better recognition and source memory for self-performed actions than other-person-performed actions. Within the comparison group, theory-of-mind (ToM) task performance was significantly correlated with source memory, specifically for other-person-performed actions (after statistically controlling for verbal ability). Within the ASD group, ToM task performance was not significantly correlated with source memory (after controlling for verbal ability). Possible explanations for these relations between source memory and ToM are considered.

  10. Using an Improved SIFT Algorithm and Fuzzy Closed-Loop Control Strategy for Object Recognition in Cluttered Scenes

    PubMed Central

    Nie, Haitao; Long, Kehui; Ma, Jun; Yue, Dan; Liu, Jinguo

    2015-01-01

    Partial occlusions, large pose variations, and extreme ambient illumination conditions generally cause the performance degradation of object recognition systems. Therefore, this paper presents a novel approach for fast and robust object recognition in cluttered scenes based on an improved scale invariant feature transform (SIFT) algorithm and a fuzzy closed-loop control method. First, a fast SIFT algorithm is proposed by classifying SIFT features into several clusters based on several attributes computed from the sub-orientation histogram (SOH), in the feature matching phase only features that share nearly the same corresponding attributes are compared. Second, a feature matching step is performed following a prioritized order based on the scale factor, which is calculated between the object image and the target object image, guaranteeing robust feature matching. Finally, a fuzzy closed-loop control strategy is applied to increase the accuracy of the object recognition and is essential for autonomous object manipulation process. Compared to the original SIFT algorithm for object recognition, the result of the proposed method shows that the number of SIFT features extracted from an object has a significant increase, and the computing speed of the object recognition processes increases by more than 40%. The experimental results confirmed that the proposed method performs effectively and accurately in cluttered scenes. PMID:25714094

  11. HWDA: A coherence recognition and resolution algorithm for hybrid web data aggregation

    NASA Astrophysics Data System (ADS)

    Guo, Shuhang; Wang, Jian; Wang, Tong

    2017-09-01

    Aiming at the object confliction recognition and resolution problem for hybrid distributed data stream aggregation, a distributed data stream object coherence solution technology is proposed. Firstly, the framework was defined for the object coherence conflict recognition and resolution, named HWDA. Secondly, an object coherence recognition technology was proposed based on formal language description logic and hierarchical dependency relationship between logic rules. Thirdly, a conflict traversal recognition algorithm was proposed based on the defined dependency graph. Next, the conflict resolution technology was prompted based on resolution pattern matching including the definition of the three types of conflict, conflict resolution matching pattern and arbitration resolution method. At last, the experiment use two kinds of web test data sets to validate the effect of application utilizing the conflict recognition and resolution technology of HWDA.

  12. Some Neurocognitive Correlates of Noise-Vocoded Speech Perception in Children with Normal Hearing: A Replication and Extension of Eisenberg et al., 2002

    PubMed Central

    Roman, Adrienne S.; Pisoni, David B.; Kronenberger, William G.; Faulkner, Kathleen F.

    2016-01-01

    Objectives Noise-vocoded speech is a valuable research tool for testing experimental hypotheses about the effects of spectral-degradation on speech recognition in adults with normal hearing (NH). However, very little research has utilized noise-vocoded speech with children with NH. Earlier studies with children with NH focused primarily on the amount of spectral information needed for speech recognition without assessing the contribution of neurocognitive processes to speech perception and spoken word recognition. In this study, we first replicated the seminal findings reported by Eisenberg et al. (2002) who investigated effects of lexical density and word frequency on noise-vocoded speech perception in a small group of children with NH. We then extended the research to investigate relations between noise-vocoded speech recognition abilities and five neurocognitive measures: auditory attention and response set, talker discrimination and verbal and nonverbal short-term working memory. Design Thirty-one children with NH between 5 and 13 years of age were assessed on their ability to perceive lexically controlled words in isolation and in sentences that were noise-vocoded to four spectral channels. Children were also administered vocabulary assessments (PPVT-4 and EVT-2) and measures of auditory attention (NEPSY Auditory Attention (AA) and Response Set (RS) and a talker discrimination task (TD)) and short-term memory (visual digit and symbol spans). Results Consistent with the findings reported in the original Eisenberg et al. (2002) study, we found that children perceived noise-vocoded lexically easy words better than lexically hard words. Words in sentences were also recognized better than the same words presented in isolation. No significant correlations were observed between noise-vocoded speech recognition scores and the PPVT-4 using language quotients to control for age effects. However, children who scored higher on the EVT-2 recognized lexically easy words better than lexically hard words in sentences. Older children perceived noise-vocoded speech better than younger children. Finally, we found that measures of auditory attention and short-term memory capacity were significantly correlated with a child’s ability to perceive noise-vocoded isolated words and sentences. Conclusions First, we successfully replicated the major findings from the Eisenberg et al. (2002) study. Because familiarity, phonological distinctiveness and lexical competition affect word recognition, these findings provide additional support for the proposal that several foundational elementary neurocognitive processes underlie the perception of spectrally-degraded speech. Second, we found strong and significant correlations between performance on neurocognitive measures and children’s ability to recognize words and sentences noise-vocoded to four spectral channels. These findings extend earlier research suggesting that perception of spectrally-degraded speech reflects early peripheral auditory processes as well as additional contributions of executive function, specifically, selective attention and short-term memory processes in spoken word recognition. The present findings suggest that auditory attention and short-term memory support robust spoken word recognition in children with NH even under compromised and challenging listening conditions. These results are relevant to research carried out with listeners who have hearing loss, since they are routinely required to encode, process and understand spectrally-degraded acoustic signals. PMID:28045787

  13. Recombinant growth differentiation factor 11 influences short-term memory and enhances Sox2 expression in middle-aged mice.

    PubMed

    Zhang, Min; Jadavji, Nafisa M; Yoo, Hyung-Suk; Smith, Patrice D

    2018-04-02

    Previous evidence suggests that a significant decline in cognitive ability begins during middle-age and continues to deteriorate with increase in age. Recent work has demonstrated the potential rejuvenation impact of growth differentiation factor-11 (GDF-11) in aged mice. We carried out experiments to evaluate the impact of a single dose of recombinant (rGDF-11) on short-term visual and spatial memory in middle-aged male mice. On the novel object recognition task, we observed middle-aged mice treated rGDF-11 showed improved performance on the novel object recognition task. However, middle-aged mice did not show increased expression of phosphorylated-Smad2/3, a downstream effector of GDF-11. We noted however that the expression of the transcription factor, Sox2 was increased within the dentate gyrus. Our data suggest that a single injection of rGDF-11 contributes to improvements in cognitive function of middle-aged animals, which may be critical in the preservation of short-term memory capacity in old age. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Individual recognition of social rank and social memory performance depends on a functional circadian system.

    PubMed

    Müller, L; Weinert, D

    2016-11-01

    In a natural environment, social abilities of an animal are important for its survival. Particularly, it must recognize its own social rank and the social rank of a conspecific and have a good social memory. While the role of the circadian system for object and spatial recognition and memory is well known, the impact of the social rank and circadian disruptions on social recognition and memory were not investigated so far. In the present study, individual recognition of social rank and social memory performance of Djungarian hamsters revealing different circadian phenotypes were investigated. Wild type (WT) animals show a clear and well-synchronized daily activity rhythm, whereas in arrhythmic (AR) hamsters, the suprachiasmatic nuclei (SCN) do not generate a circadian signal. The aim of the study was to investigate putative consequences of these deteriorations in the circadian system for animalś cognitive abilities. Hamsters were bred and kept under standardized housing conditions with food and water ad libitum and a 14l/10 D lighting regimen. Experimental animals were assigned to different groups (WT and AR) according to their activity pattern obtained by means of infrared motion sensors. Before the experiments, the animals were given to develop a dominant-subordinate relationship in a dyadic encounter. Experiment 1 dealt with individual recognition of social rank. Subordinate and dominant hamsters were tested in an open arena for their behavioral responses towards a familiar (known from the agonistic encounters) or an unfamiliar hamster (from another agonistic encounter) which had the same or an opposite social rank. The investigation time depended on the social rank of the WT subject hamster and its familiarity with the stimulus animal. Both subordinate and dominant WT hamsters preferred an unfamiliar subordinate stimulus animal. In contrast, neither subordinate nor dominant AR hamsters preferred any of the stimulus animals. Thus, disruptions in circadian system result in an impaired individual recognition of social rank. A social recognition/discrimination task was used in Experiment 2 to quantify social memory performance. In a training session, the hamsters were confronted with two unfamiliar stimulus animals. In the test session, one of the two animals was replaced. The training-test interval was 2min or 24h. The times animals did explore the novel and the familiar stimulus animal were recorded, and the discrimination index as a measure of cognitive performance was calculated. Behavioral tests revealed that after 2min both subordinate and dominant WT hamsters were able to discriminate between familiar and novel stimulus animals but after 24h only the subordinate animals. On contrary in AR hamsters, only subordinates were able to perform the social recognition/discrimination task and only after a training-test interval of 2min. The results show that the social rank and the circadian system have an impact on the cognitive abilities of Djungarian hamsters. Disruptions of circadian rhythms impair individual recognition and social memory performance. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Post-Training Reversible Inactivation of the Hippocampus Enhances Novel Object Recognition Memory

    ERIC Educational Resources Information Center

    Oliveira, Ana M. M.; Hawk, Joshua D.; Abel, Ted; Havekes, Robbert

    2010-01-01

    Research on the role of the hippocampus in object recognition memory has produced conflicting results. Previous studies have used permanent hippocampal lesions to assess the requirement for the hippocampus in the object recognition task. However, permanent hippocampal lesions may impact performance through effects on processes besides memory…

  16. Shape and texture fused recognition of flying targets

    NASA Astrophysics Data System (ADS)

    Kovács, Levente; Utasi, Ákos; Kovács, Andrea; Szirányi, Tamás

    2011-06-01

    This paper presents visual detection and recognition of flying targets (e.g. planes, missiles) based on automatically extracted shape and object texture information, for application areas like alerting, recognition and tracking. Targets are extracted based on robust background modeling and a novel contour extraction approach, and object recognition is done by comparisons to shape and texture based query results on a previously gathered real life object dataset. Application areas involve passive defense scenarios, including automatic object detection and tracking with cheap commodity hardware components (CPU, camera and GPS).

  17. Facial emotion recognition, socio-occupational functioning and expressed emotions in schizophrenia versus bipolar disorder.

    PubMed

    Thonse, Umesh; Behere, Rishikesh V; Praharaj, Samir Kumar; Sharma, Podila Sathya Venkata Narasimha

    2018-06-01

    Facial emotion recognition deficits have been consistently demonstrated in patients with severe mental disorders. Expressed emotion is found to be an important predictor of relapse. However, the relationship between facial emotion recognition abilities and expressed emotions and its influence on socio-occupational functioning in schizophrenia versus bipolar disorder has not been studied. In this study we examined 91 patients with schizophrenia and 71 with bipolar disorder for psychopathology, socio occupational functioning and emotion recognition abilities. Primary caregivers of 62 patients with schizophrenia and 49 with bipolar disorder were assessed on Family Attitude Questionnaire to assess their expressed emotions. Patients of schizophrenia and bipolar disorder performed similarly on the emotion recognition task. Patients with schizophrenia group experienced higher critical comments and had a poorer socio-occupational functioning as compared to patients with bipolar disorder. Poorer socio-occupational functioning in patients with schizophrenia was significantly associated with greater dissatisfaction in their caregivers. In patients with bipolar disorder, poorer emotion recognition scores significantly correlated with poorer adaptive living skills and greater hostility and dissatisfaction in their caregivers. The findings of our study suggest that emotion recognition abilities in patients with bipolar disorder are associated with negative expressed emotions leading to problems in adaptive living skills. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Incidental Memory of Younger and Older Adults for Objects Encountered in a Real World Context

    PubMed Central

    Qin, Xiaoyan; Bochsler, Tiana M.; Aizpurua, Alaitz; Cheong, Allen M. Y.; Koutstaal, Wilma; Legge, Gordon E.

    2014-01-01

    Effects of context on the perception of, and incidental memory for, real-world objects have predominantly been investigated in younger individuals, under conditions involving a single static viewpoint. We examined the effects of prior object context and object familiarity on both older and younger adults’ incidental memory for real objects encountered while they traversed a conference room. Recognition memory for context-typical and context-atypical objects was compared with a third group of unfamiliar objects that were not readily named and that had no strongly associated context. Both older and younger adults demonstrated a typicality effect, showing significantly lower 2-alternative-forced-choice recognition of context-typical than context-atypical objects; for these objects, the recognition of older adults either significantly exceeded, or numerically surpassed, that of younger adults. Testing-awareness elevated recognition but did not interact with age or with object type. Older adults showed significantly higher recognition for context-atypical objects than for unfamiliar objects that had no prior strongly associated context. The observation of a typicality effect in both age groups is consistent with preserved semantic schemata processing in aging. The incidental recognition advantage of older over younger adults for the context-typical and context-atypical objects may reflect aging-related differences in goal-related processing, with older adults under comparatively more novel circumstances being more likely to direct their attention to the external environment, or age-related differences in top-down effortful distraction regulation, with older individuals’ attention more readily captured by salient objects in the environment. Older adults’ reduced recognition of unfamiliar objects compared to context-atypical objects may reflect possible age differences in contextually driven expectancy violations. The latter finding underscores the theoretical and methodological value of including a third type of objects–that are comparatively neutral with respect to their contextual associations–to help differentiate between contextual integration effects (for schema-consistent objects) and expectancy violations (for schema-inconsistent objects). PMID:24941065

  19. Motor skills, haptic perception and social abilities in children with mild speech disorders.

    PubMed

    Müürsepp, Iti; Aibast, Herje; Gapeyeva, Helena; Pääsuke, Mati

    2012-02-01

    The aim of the study was to evaluate motor skills, haptic object recognition and social interaction in 5-year-old children with mild specific expressive language impairment (expressive-SLI) and articulation disorder (AD) in comparison of age- and gender matched healthy children. Twenty nine children (23 boys and 6 girls) with expressive-SLI, 27 children (20 boys and 7 girls) with AD and 30 children (23 boys and 7 girls) with typically developing language as controls participated in our study. The children were examined for manual dexterity, ball skills, static and dynamic balance by M-ABC test, haptic object recognition and for social interaction by questionnaire completed by teachers. Children with mild expressive-SLI demonstrated significantly poorer results in all subtests of motor skills (p<0.05), in haptic object recognition and social interaction (p<0.01) compared to controls. There were no statistically significant differences (p>0.05) in measured parameters between children with AD and controls. Children with expressive-SLI performed considerably poorer compared to AD group in balance subtest (p<0.05), and in overall M-ABC test (p<0.01). In children with mild expressive-SLI the functional motor performance, haptic perception and social interaction are considerably more affected than in children with AD. Although motor difficulties in speech production are prevalent in AD, it is localised and does not involve children's general motor skills, haptic perception or social interaction. Copyright © 2011 The Japanese Society of Child Neurology. Published by Elsevier B.V. All rights reserved.

  20. Neuropeptide S interacts with the basolateral amygdala noradrenergic system in facilitating object recognition memory consolidation.

    PubMed

    Han, Ren-Wen; Xu, Hong-Jiao; Zhang, Rui-San; Wang, Pei; Chang, Min; Peng, Ya-Li; Deng, Ke-Yu; Wang, Rui

    2014-01-01

    The noradrenergic activity in the basolateral amygdala (BLA) was reported to be involved in the regulation of object recognition memory. As the BLA expresses high density of receptors for Neuropeptide S (NPS), we investigated whether the BLA is involved in mediating NPS's effects on object recognition memory consolidation and whether such effects require noradrenergic activity. Intracerebroventricular infusion of NPS (1nmol) post training facilitated 24-h memory in a mouse novel object recognition task. The memory-enhancing effect of NPS could be blocked by the β-adrenoceptor antagonist propranolol. Furthermore, post-training intra-BLA infusions of NPS (0.5nmol/side) improved 24-h memory for objects, which was impaired by co-administration of propranolol (0.5μg/side). Taken together, these results indicate that NPS interacts with the BLA noradrenergic system in improving object recognition memory during consolidation. Copyright © 2013 Elsevier Inc. All rights reserved.

  1. Three-dimensional object recognition using similar triangles and decision trees

    NASA Technical Reports Server (NTRS)

    Spirkovska, Lilly

    1993-01-01

    A system, TRIDEC, that is capable of distinguishing between a set of objects despite changes in the objects' positions in the input field, their size, or their rotational orientation in 3D space is described. TRIDEC combines very simple yet effective features with the classification capabilities of inductive decision tree methods. The feature vector is a list of all similar triangles defined by connecting all combinations of three pixels in a coarse coded 127 x 127 pixel input field. The classification is accomplished by building a decision tree using the information provided from a limited number of translated, scaled, and rotated samples. Simulation results are presented which show that TRIDEC achieves 94 percent recognition accuracy in the 2D invariant object recognition domain and 98 percent recognition accuracy in the 3D invariant object recognition domain after training on only a small sample of transformed views of the objects.

  2. The Facial Appearance of CEOs: Faces Signal Selection but Not Performance.

    PubMed

    Stoker, Janka I; Garretsen, Harry; Spreeuwers, Luuk J

    2016-01-01

    Research overwhelmingly shows that facial appearance predicts leader selection. However, the evidence on the relevance of faces for actual leader ability and consequently performance is inconclusive. By using a state-of-the-art, objective measure for face recognition, we test the predictive value of CEOs' faces for firm performance in a large sample of faces. We first compare the faces of Fortune500 CEOs with those of US citizens and professors. We find clear confirmation that CEOs do look different when compared to citizens or professors, replicating the finding that faces matter for selection. More importantly, we also find that faces of CEOs of top performing firms do not differ from other CEOs. Based on our advanced face recognition method, our results suggest that facial appearance matters for leader selection but that it does not do so for leader performance.

  3. Facial emotion recognition ability: psychiatry nurses versus nurses from other departments.

    PubMed

    Gultekin, Gozde; Kincir, Zeliha; Kurt, Merve; Catal, Yasir; Acil, Asli; Aydin, Aybike; Özcan, Mualla; Delikkaya, Busra N; Kacar, Selma; Emul, Murat

    2016-12-01

    Facial emotion recognition is a basic element in non-verbal communication. Although some researchers have shown that recognizing facial expressions may be important in the interaction between doctors and patients, there are no studies concerning facial emotion recognition in nurses. Here, we aimed to investigate facial emotion recognition ability in nurses and compare the abilities between nurses from psychiatry and other departments. In this cross-sectional study, sixty seven nurses were divided into two groups according to their departments: psychiatry (n=31); and, other departments (n=36). A Facial Emotion Recognition Test, constructed from a set of photographs from Ekman and Friesen's book "Pictures of Facial Affect", was administered to all participants. In whole group, the highest mean accuracy rate of recognizing facial emotion was the happy (99.14%) while the lowest accurately recognized facial expression was fear (47.71%). There were no significant differences between two groups among mean accuracy rates in recognizing happy, sad, fear, angry, surprised facial emotion expressions (for all, p>0.05). The ability of recognizing disgusted and neutral facial emotions tended to be better in other nurses than psychiatry nurses (p=0.052 and p=0.053, respectively) Conclusion: This study was the first that revealed indifference in the ability of FER between psychiatry nurses and non-psychiatry nurses. In medical education curricula throughout the world, no specific training program is scheduled for recognizing emotional cues of patients. We considered that improving the ability of recognizing facial emotion expression in medical stuff might be beneficial in reducing inappropriate patient-medical stuff interaction.

  4. Multi-Touch Tabletop System Using Infrared Image Recognition for User Position Identification.

    PubMed

    Suto, Shota; Watanabe, Toshiya; Shibusawa, Susumu; Kamada, Masaru

    2018-05-14

    A tabletop system can facilitate multi-user collaboration in a variety of settings, including small meetings, group work, and education and training exercises. The ability to identify the users touching the table and their positions can promote collaborative work among participants, so methods have been studied that involve attaching sensors to the table, chairs, or to the users themselves. An effective method of recognizing user actions without placing a burden on the user would be some type of visual process, so the development of a method that processes multi-touch gestures by visual means is desired. This paper describes the development of a multi-touch tabletop system using infrared image recognition for user position identification and presents the results of touch-gesture recognition experiments and a system-usability evaluation. Using an inexpensive FTIR touch panel and infrared light, this system picks up the touch areas and the shadow area of the user's hand by an infrared camera to establish an association between the hand and table touch points and estimate the position of the user touching the table. The multi-touch gestures prepared for this system include an operation to change the direction of an object to face the user and a copy operation in which two users generate duplicates of an object. The system-usability evaluation revealed that prior learning was easy and that system operations could be easily performed.

  5. Multi-Touch Tabletop System Using Infrared Image Recognition for User Position Identification

    PubMed Central

    Suto, Shota; Watanabe, Toshiya; Shibusawa, Susumu; Kamada, Masaru

    2018-01-01

    A tabletop system can facilitate multi-user collaboration in a variety of settings, including small meetings, group work, and education and training exercises. The ability to identify the users touching the table and their positions can promote collaborative work among participants, so methods have been studied that involve attaching sensors to the table, chairs, or to the users themselves. An effective method of recognizing user actions without placing a burden on the user would be some type of visual process, so the development of a method that processes multi-touch gestures by visual means is desired. This paper describes the development of a multi-touch tabletop system using infrared image recognition for user position identification and presents the results of touch-gesture recognition experiments and a system-usability evaluation. Using an inexpensive FTIR touch panel and infrared light, this system picks up the touch areas and the shadow area of the user’s hand by an infrared camera to establish an association between the hand and table touch points and estimate the position of the user touching the table. The multi-touch gestures prepared for this system include an operation to change the direction of an object to face the user and a copy operation in which two users generate duplicates of an object. The system-usability evaluation revealed that prior learning was easy and that system operations could be easily performed. PMID:29758006

  6. The medial dorsal thalamic nucleus and the medial prefrontal cortex of the rat function together to support associative recognition and recency but not item recognition.

    PubMed

    Cross, Laura; Brown, Malcolm W; Aggleton, John P; Warburton, E Clea

    2012-12-21

    In humans recognition memory deficits, a typical feature of diencephalic amnesia, have been tentatively linked to mediodorsal thalamic nucleus (MD) damage. Animal studies have occasionally investigated the role of the MD in single-item recognition, but have not systematically analyzed its involvement in other recognition memory processes. In Experiment 1 rats with bilateral excitotoxic lesions in the MD or the medial prefrontal cortex (mPFC) were tested in tasks that assessed single-item recognition (novel object preference), associative recognition memory (object-in-place), and recency discrimination (recency memory task). Experiment 2 examined the functional importance of the interactions between the MD and mPFC using disconnection techniques. Unilateral excitotoxic lesions were placed in both the MD and the mPFC in either the same (MD + mPFC Ipsi) or opposite hemispheres (MD + mPFC Contra group). Bilateral lesions in the MD or mPFC impaired object-in-place and recency memory tasks, but had no effect on novel object preference. In Experiment 2 the MD + mPFC Contra group was significantly impaired in the object-in-place and recency memory tasks compared with the MD + mPFC Ipsi group, but novel object preference was intact. Thus, connections between the MD and mPFC are critical for recognition memory when the discriminations involve associative or recency information. However, the rodent MD is not necessary for single-item recognition memory.

  7. Vision-based object detection and recognition system for intelligent vehicles

    NASA Astrophysics Data System (ADS)

    Ran, Bin; Liu, Henry X.; Martono, Wilfung

    1999-01-01

    Recently, a proactive crash mitigation system is proposed to enhance the crash avoidance and survivability of the Intelligent Vehicles. Accurate object detection and recognition system is a prerequisite for a proactive crash mitigation system, as system component deployment algorithms rely on accurate hazard detection, recognition, and tracking information. In this paper, we present a vision-based approach to detect and recognize vehicles and traffic signs, obtain their information, and track multiple objects by using a sequence of color images taken from a moving vehicle. The entire system consist of two sub-systems, the vehicle detection and recognition sub-system and traffic sign detection and recognition sub-system. Both of the sub- systems consist of four models: object detection model, object recognition model, object information model, and object tracking model. In order to detect potential objects on the road, several features of the objects are investigated, which include symmetrical shape and aspect ratio of a vehicle and color and shape information of the signs. A two-layer neural network is trained to recognize different types of vehicles and a parameterized traffic sign model is established in the process of recognizing a sign. Tracking is accomplished by combining the analysis of single image frame with the analysis of consecutive image frames. The analysis of the single image frame is performed every ten full-size images. The information model will obtain the information related to the object, such as time to collision for the object vehicle and relative distance from the traffic sings. Experimental results demonstrated a robust and accurate system in real time object detection and recognition over thousands of image frames.

  8. The Consolidation of Object and Context Recognition Memory Involve Different Regions of the Temporal Lobe

    ERIC Educational Resources Information Center

    Balderas, Israela; Rodriguez-Ortiz, Carlos J.; Salgado-Tonda, Paloma; Chavez-Hurtado, Julio; McGaugh, James L.; Bermudez-Rattoni, Federico

    2008-01-01

    These experiments investigated the involvement of several temporal lobe regions in consolidation of recognition memory. Anisomycin, a protein synthesis inhibitor, was infused into the hippocampus, perirhinal cortex, insular cortex, or basolateral amygdala of rats immediately after the sample phase of object or object-in-context recognition memory…

  9. Object recognition contributions to figure-ground organization: operations on outlines and subjective contours.

    PubMed

    Peterson, M A; Gibson, B S

    1994-11-01

    In previous research, replicated here, we found that some object recognition processes influence figure-ground organization. We have proposed that these object recognition processes operate on edges (or contours) detected early in visual processing, rather than on regions. Consistent with this proposal, influences from object recognition on figure-ground organization were previously observed in both pictures and stereograms depicting regions of different luminance, but not in random-dot stereograms, where edges arise late in processing (Peterson & Gibson, 1993). In the present experiments, we examined whether or not two other types of contours--outlines and subjective contours--enable object recognition influences on figure-ground organization. For both types of contours we observed a pattern of effects similar to that originally obtained with luminance edges. The results of these experiments are valuable for distinguishing between alternative views of the mechanisms mediating object recognition influences on figure-ground organization. In addition, in both Experiments 1 and 2, fixated regions were seen as figure longer than nonfixated regions, suggesting that fixation location must be included among the variables relevant to figure-ground organization.

  10. Recognition memory span in autopsy-confirmed Dementia with Lewy Bodies and Alzheimer's Disease.

    PubMed

    Salmon, David P; Heindel, William C; Hamilton, Joanne M; Vincent Filoteo, J; Cidambi, Varun; Hansen, Lawrence A; Masliah, Eliezer; Galasko, Douglas

    2015-08-01

    Evidence from patients with amnesia suggests that recognition memory span tasks engage both long-term memory (i.e., secondary memory) processes mediated by the diencephalic-medial temporal lobe memory system and working memory processes mediated by fronto-striatal systems. Thus, the recognition memory span task may be particularly effective for detecting memory deficits in disorders that disrupt both memory systems. The presence of unique pathology in fronto-striatal circuits in Dementia with Lewy Bodies (DLB) compared to AD suggests that performance on the recognition memory span task might be differentially affected in the two disorders even though they have quantitatively similar deficits in secondary memory. In the present study, patients with autopsy-confirmed DLB or AD, and Normal Control (NC) participants, were tested on separate recognition memory span tasks that required them to retain increasing amounts of verbal, spatial, or visual object (i.e., faces) information across trials. Results showed that recognition memory spans for verbal and spatial stimuli, but not face stimuli, were lower in patients with DLB than in those with AD, and more impaired relative to NC performance. This was despite similar deficits in the two patient groups on independent measures of secondary memory such as the total number of words recalled from long-term storage on the Buschke Selective Reminding Test. The disproportionate vulnerability of recognition memory span task performance in DLB compared to AD may be due to greater fronto-striatal involvement in DLB and a corresponding decrement in cooperative interaction between working memory and secondary memory processes. Assessment of recognition memory span may contribute to the ability to distinguish between DLB and AD relatively early in the course of disease. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Age-related increases in false recognition: the role of perceptual and conceptual similarity.

    PubMed

    Pidgeon, Laura M; Morcom, Alexa M

    2014-01-01

    Older adults (OAs) are more likely to falsely recognize novel events than young adults, and recent behavioral and neuroimaging evidence points to a reduced ability to distinguish overlapping information due to decline in hippocampal pattern separation. However, other data suggest a critical role for semantic similarity. Koutstaal et al. [(2003) false recognition of abstract vs. common objects in older and younger adults: testing the semantic categorization account, J. Exp. Psychol. Learn. 29, 499-510] reported that OAs were only vulnerable to false recognition of items with pre-existing semantic representations. We replicated Koutstaal et al.'s (2003) second experiment and examined the influence of independently rated perceptual and conceptual similarity between stimuli and lures. At study, young and OAs judged the pleasantness of pictures of abstract (unfamiliar) and concrete (familiar) items, followed by a surprise recognition test including studied items, similar lures, and novel unrelated items. Experiment 1 used dichotomous "old/new" responses at test, while in Experiment 2 participants were also asked to judge lures as "similar," to increase explicit demands on pattern separation. In both experiments, OAs showed a greater increase in false recognition for concrete than abstract items relative to the young, replicating Koutstaal et al.'s (2003) findings. However, unlike in the earlier study, there was also an age-related increase in false recognition of abstract lures when multiple similar images had been studied. In line with pattern separation accounts of false recognition, OAs were more likely to misclassify concrete lures with high and moderate, but not low degrees of rated similarity to studied items. Results are consistent with the view that OAs are particularly susceptible to semantic interference in recognition memory, and with the possibility that this reflects age-related decline in pattern separation.

  12. Age-related increases in false recognition: the role of perceptual and conceptual similarity

    PubMed Central

    Pidgeon, Laura M.; Morcom, Alexa M.

    2014-01-01

    Older adults (OAs) are more likely to falsely recognize novel events than young adults, and recent behavioral and neuroimaging evidence points to a reduced ability to distinguish overlapping information due to decline in hippocampal pattern separation. However, other data suggest a critical role for semantic similarity. Koutstaal et al. [(2003) false recognition of abstract vs. common objects in older and younger adults: testing the semantic categorization account, J. Exp. Psychol. Learn. 29, 499–510] reported that OAs were only vulnerable to false recognition of items with pre-existing semantic representations. We replicated Koutstaal et al.’s (2003) second experiment and examined the influence of independently rated perceptual and conceptual similarity between stimuli and lures. At study, young and OAs judged the pleasantness of pictures of abstract (unfamiliar) and concrete (familiar) items, followed by a surprise recognition test including studied items, similar lures, and novel unrelated items. Experiment 1 used dichotomous “old/new” responses at test, while in Experiment 2 participants were also asked to judge lures as “similar,” to increase explicit demands on pattern separation. In both experiments, OAs showed a greater increase in false recognition for concrete than abstract items relative to the young, replicating Koutstaal et al.’s (2003) findings. However, unlike in the earlier study, there was also an age-related increase in false recognition of abstract lures when multiple similar images had been studied. In line with pattern separation accounts of false recognition, OAs were more likely to misclassify concrete lures with high and moderate, but not low degrees of rated similarity to studied items. Results are consistent with the view that OAs are particularly susceptible to semantic interference in recognition memory, and with the possibility that this reflects age-related decline in pattern separation. PMID:25368576

  13. Auditory emotion recognition impairments in Schizophrenia: Relationship to acoustic features and cognition

    PubMed Central

    Gold, Rinat; Butler, Pamela; Revheim, Nadine; Leitman, David; Hansen, John A.; Gur, Ruben; Kantrowitz, Joshua T.; Laukka, Petri; Juslin, Patrik N.; Silipo, Gail S.; Javitt, Daniel C.

    2013-01-01

    Objective Schizophrenia is associated with deficits in ability to perceive emotion based upon tone of voice. The basis for this deficit, however, remains unclear and assessment batteries remain limited. We evaluated performance in schizophrenia on a novel voice emotion recognition battery with well characterized physical features, relative to impairments in more general emotional and cognitive function. Methods We studied in a primary sample of 92 patients relative to 73 controls. Stimuli were characterized according to both intended emotion and physical features (e.g., pitch, intensity) that contributed to the emotional percept. Parallel measures of visual emotion recognition, pitch perception, general cognition, and overall outcome were obtained. More limited measures were obtained in an independent replication sample of 36 patients, 31 age-matched controls, and 188 general comparison subjects. Results Patients showed significant, large effect size deficits in voice emotion recognition (F=25.4, p<.00001, d=1.1), and were preferentially impaired in recognition of emotion based upon pitch-, but not intensity-features (group X feature interaction: F=7.79, p=.006). Emotion recognition deficits were significantly correlated with pitch perception impairments both across (r=56, p<.0001) and within (r=.47, p<.0001) group. Path analysis showed both sensory-specific and general cognitive contributions to auditory emotion recognition deficits in schizophrenia. Similar patterns of results were observed in the replication sample. Conclusions The present study demonstrates impairments in auditory emotion recognition in schizophrenia relative to acoustic features of underlying stimuli. Furthermore, it provides tools and highlights the need for greater attention to physical features of stimuli used for study of social cognition in neuropsychiatric disorders. PMID:22362394

  14. Recognition Memory Span in Autopsy-Confirmed Dementia with Lewy Bodies and Alzheimer’s Disease

    PubMed Central

    Salmon, David P.; Heindel, William C.; Hamilton, Joanne M.; Filoteo, J. Vincent; Cidambi, Varun; Hansen, Lawrence A.; Masliah, Eliezer; Galasko, Douglas

    2016-01-01

    Evidence from patients with amnesia suggests that recognition memory span tasks engage both long-term memory (i.e., secondary memory) processes mediated by the diencephalic-medial temporal lobe memory system and working memory processes mediated by fronto-striatal systems. Thus, the recognition memory span task may be particularly effective for detecting memory deficits in disorders that disrupt both memory systems. The presence of unique pathology in fronto-striatal circuits in Dementia with Lewy Bodies (DLB) compared to AD suggests that performance on the recognition memory span task might be differentially affected in the two disorders even though they have quantitatively similar deficits in secondary memory. In the present study, patients with autopsy-confirmed DLB or AD, and normal control (NC) participants, were tested on separate recognition memory span tasks that required them to retain increasing amounts of verbal, spatial, or visual object (i.e., faces) information across trials. Results showed that recognition memory spans for verbal and spatial stimuli, but not face stimuli, were lower in patients with DLB than in those with AD, and more impaired relative to NC performance. This was despite similar deficits in the two patient groups on independent measures of secondary memory such as the total number of words recalled from Long-Term Storage on the Buschke Selective Reminding Test. The disproportionate vulnerability of recognition memory span task performance in DLB compared to AD may be due to greater fronto-striatal involvement in DLB and a corresponding decrement in cooperative interaction between working memory and secondary memory processes. Assessment of recognition memory span may contribute to the ability to distinguish between DLB and AD relatively early in the course of disease. PMID:26184443

  15. Method of synthesized phase objects for pattern recognition with rotation invariance

    NASA Astrophysics Data System (ADS)

    Ostroukh, Alexander P.; Butok, Alexander M.; Shvets, Rostislav A.; Yezhov, Pavel V.; Kim, Jin-Tae; Kuzmenko, Alexander V.

    2015-11-01

    We present a development of the method of synthesized phase objects (SPO-method) [1] for the rotation-invariant pattern recognition. For the standard method of recognition and the SPO-method, the comparison of the parameters of correlation signals for a number of amplitude objects is executed at the realization of a rotation in an optical-digital correlator with the joint Fourier transformation. It is shown that not only the invariance relative to a rotation at a realization of the joint correlation for synthesized phase objects (SP-objects) but also the main advantage of the method of SP-objects over the reference one such as the unified δ-like recognition signal with the largest possible signal-to-noise ratio independent of the type of an object are attained.

  16. Short temporal asynchrony disrupts visual object recognition

    PubMed Central

    Singer, Jedediah M.; Kreiman, Gabriel

    2014-01-01

    Humans can recognize objects and scenes in a small fraction of a second. The cascade of signals underlying rapid recognition might be disrupted by temporally jittering different parts of complex objects. Here we investigated the time course over which shape information can be integrated to allow for recognition of complex objects. We presented fragments of object images in an asynchronous fashion and behaviorally evaluated categorization performance. We observed that visual recognition was significantly disrupted by asynchronies of approximately 30 ms, suggesting that spatiotemporal integration begins to break down with even small deviations from simultaneity. However, moderate temporal asynchrony did not completely obliterate recognition; in fact, integration of visual shape information persisted even with an asynchrony of 100 ms. We describe the data with a concise model based on the dynamic reduction of uncertainty about what image was presented. These results emphasize the importance of timing in visual processing and provide strong constraints for the development of dynamical models of visual shape recognition. PMID:24819738

  17. Modeling recall memory for emotional objects in Alzheimer's disease.

    PubMed

    Sundstrøm, Martin

    2011-07-01

    To examine whether emotional memory (EM) of objects with self-reference in Alzheimer's disease (AD) can be modeled with binomial logistic regression in a free recall and an object recognition test to predict EM enhancement. Twenty patients with AD and twenty healthy controls were studied. Six objects (three presented as gifts) were shown to each participant. Ten minutes later, a free recall and a recognition test were applied. The recognition test had target-objects mixed with six similar distracter objects. Participants were asked to name any object in the recall test and identify each object in the recognition test as known or unknown. The total of gift objects recalled in AD patients (41.6%) was larger than neutral objects (13.3%) and a significant EM recall effect for gifts was found (Wilcoxon: p < .003). EM was not found for recognition in AD patients due to a ceiling effect. Healthy older adults scored overall higher in recall and recognition but showed no EM enhancement due to a ceiling effect. A logistic regression showed that likelihood of emotional recall memory can be modeled as a function of MMSE score (p < .014) and object status (p < .0001) as gift or non-gift. Recall memory was enhanced in AD patients for emotional objects indicating that EM in mild to moderate AD although impaired can be provoked with strong emotional load. The logistic regression model suggests that EM declines with the progression of AD rather than disrupts and may be a useful tool for evaluating magnitude of emotional load.

  18. Novel images and novel locations of familiar images as sensitive translational cognitive tests in humans.

    PubMed

    Raber, Jacob

    2015-05-15

    Object recognition is a sensitive cognitive test to detect effects of genetic and environmental factors on cognition in rodents. There are various versions of object recognition that have been used since the original test was reported by Ennaceur and Delacour in 1988. There are nonhuman primate and human primate versions of object recognition as well, allowing cross-species comparisons. As no language is required for test performance, object recognition is a very valuable test for human research studies in distinct parts of the world, including areas where there might be less years of formal education. The main focus of this review is to illustrate how object recognition can be used to assess cognition in humans under normal physiological and neurological conditions. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. [Improvement in Phoneme Discrimination in Noise in Normal Hearing Adults].

    PubMed

    Schumann, A; Garea Garcia, L; Hoppe, U

    2017-02-01

    Objective: The study's aim was to examine the possibility to train phoneme-discrimination in noise with normal hearing adults, and its effectivity on speech recognition in noise. A specific computerised training program was used, consisting of special nonsense-syllables with background noise, to train participants' discrimination ability. Material and Methods: 46 normal hearing subjects took part in this study, 28 as training group participants, 18 as control group participants. Only the training group subjects were asked to train over a period of 3 weeks, twice a week for an hour with a computer-based training program. Speech recognition in noise were measured pre- to posttraining for the training group subjects with the Freiburger Einsilber Test. The control group subjects obtained test and restest measures within a 2-3 week break. For the training group follow-up speech recognition was measured 2-3 months after the end of the training. Results: The majority of training group subjects improved their phoneme discrimination significantly. Besides, their speech recognition in noise improved significantly during the training compared to the control group, and remained stable for a period of time. Conclusions: Phonem-Discrimination in noise can be trained by normal hearing adults. The improvements have got a positiv effect on speech recognition in noise, also for a longer period of time. © Georg Thieme Verlag KG Stuttgart · New York.

  20. Development of the Ability to Foresee Consequences of Inept Communications.

    ERIC Educational Resources Information Center

    Johnson, Russell; And Others

    This study is an initial investigation of the effects of grade level, item content and type of probe on children's understanding of communicative ineptness. It was hypothesized that children's recognition and avoidance of inept communications would increase as a function of age and that recognition of ineptness would precede the ability to avoid…

  1. Delayed Video Self-Recognition in Children with High Vo Functioning Autism and Asperger's Disorder

    ERIC Educational Resources Information Center

    Dissanayake, Cheryl; Shembrey, Joh; Suddendorf, Thomas

    2010-01-01

    Two studies are reported which investigate delayed video self-recognition (DSR) in children with autistic disorder and Asperger's disorder relative to one another and to their typically developing peers. A secondary aim was to establish whether DSR ability is dependent on metarepresentational ability. Children's verbal and affective responses to…

  2. A Multimodal Approach to Emotion Recognition Ability in Autism Spectrum Disorders

    ERIC Educational Resources Information Center

    Jones, Catherine R. G.; Pickles, Andrew; Falcaro, Milena; Marsden, Anita J. S.; Happe, Francesca; Scott, Sophie K.; Sauter, Disa; Tregay, Jenifer; Phillips, Rebecca J.; Baird, Gillian; Simonoff, Emily; Charman, Tony

    2011-01-01

    Background: Autism spectrum disorders (ASD) are characterised by social and communication difficulties in day-to-day life, including problems in recognising emotions. However, experimental investigations of emotion recognition ability in ASD have been equivocal, hampered by small sample sizes, narrow IQ range and over-focus on the visual modality.…

  3. The Cheshire Cat Enigma: Emotion Recognition Abilities of Preschool Boys with and without Hyperactivity and Aggression

    ERIC Educational Resources Information Center

    Arnold, Megan

    2010-01-01

    This research examined the emotion recognition abilities of preschoolers with and without hyperactivity and aggression. Previous research identified that school age children with Attention Deficit Hyperactivity Disorder (ADHD) have more difficulty understanding facial expressions associated with emotions, take longer than their age-matched peers…

  4. Bayesian Face Recognition and Perceptual Narrowing in Face-Space

    ERIC Educational Resources Information Center

    Balas, Benjamin

    2012-01-01

    During the first year of life, infants' face recognition abilities are subject to "perceptual narrowing", the end result of which is that observers lose the ability to distinguish previously discriminable faces (e.g. other-race faces) from one another. Perceptual narrowing has been reported for faces of different species and different races, in…

  5. Consonant-recognition patterns and self-assessment of hearing handicap.

    PubMed

    Hustedde, C G; Wiley, T L

    1991-12-01

    Two companion experiments were conducted with normal-hearing subjects and subjects with high-frequency, sensorineural hearing loss. In Experiment 1, the validity of a self-assessment device of hearing handicap was evaluated in two groups of hearing-impaired listeners with significantly different consonant-recognition ability. Data for the Hearing Performance Inventory--Revised (Lamb, Owens, & Schubert, 1983) did not reveal differences in self-perceived handicap for the two groups of hearing-impaired listeners; it was sensitive to perceived differences in hearing abilities for listeners who did and did not have a hearing loss. Experiment 2 was aimed at evaluation of consonant error patterns that accounted for observed group differences in consonant-recognition ability. Error patterns on the Nonsense-Syllable Test (NST) across the two subject groups differed in both degree and type of error. Listeners in the group with poorer NST performance always demonstrated greater difficulty with selected low-frequency and high-frequency syllables than did listeners in the group with better NST performance. Overall, the NST was sensitive to differences in consonant-recognition ability for normal-hearing and hearing-impaired listeners.

  6. A focus of attention mechanism for gaze control within a framework for intelligent image analysis tools

    NASA Astrophysics Data System (ADS)

    Rodrigo, Ranga P.; Ranaweera, Kamal; Samarabandu, Jagath K.

    2004-05-01

    Focus of attention is often attributed to biological vision system where the entire field of view is first monitored and then the attention is focused to the object of interest. We propose using a similar approach for object recognition in a color image sequence. The intention is to locate an object based on a prior motive, concentrate on the detected object so that the imaging device can be guided toward it. We use the abilities of the intelligent image analysis framework developed in our laboratory to generate an algorithm dynamically to detect the particular type of object based on the user's object description. The proposed method uses color clustering along with segmentation. The segmented image with labeled regions is used to calculate the shape descriptor parameters. These and the color information are matched with the input description. Gaze is then controlled by issuing camera movement commands as appropriate. We present some preliminary results that demonstrate the success of this approach.

  7. An Effective 3D Shape Descriptor for Object Recognition with RGB-D Sensors

    PubMed Central

    Liu, Zhong; Zhao, Changchen; Wu, Xingming; Chen, Weihai

    2017-01-01

    RGB-D sensors have been widely used in various areas of computer vision and graphics. A good descriptor will effectively improve the performance of operation. This article further analyzes the recognition performance of shape features extracted from multi-modality source data using RGB-D sensors. A hybrid shape descriptor is proposed as a representation of objects for recognition. We first extracted five 2D shape features from contour-based images and five 3D shape features over point cloud data to capture the global and local shape characteristics of an object. The recognition performance was tested for category recognition and instance recognition. Experimental results show that the proposed shape descriptor outperforms several common global-to-global shape descriptors and is comparable to some partial-to-global shape descriptors that achieved the best accuracies in category and instance recognition. Contribution of partial features and computational complexity were also analyzed. The results indicate that the proposed shape features are strong cues for object recognition and can be combined with other features to boost accuracy. PMID:28245553

  8. A method of object recognition for single pixel imaging

    NASA Astrophysics Data System (ADS)

    Li, Boxuan; Zhang, Wenwen

    2018-01-01

    Computational ghost imaging(CGI), utilizing a single-pixel detector, has been extensively used in many fields. However, in order to achieve a high-quality reconstructed image, a large number of iterations are needed, which limits the flexibility of using CGI in practical situations, especially in the field of object recognition. In this paper, we purpose a method utilizing the feature matching to identify the number objects. In the given system, approximately 90% of accuracy of recognition rates can be achieved, which provides a new idea for the application of single pixel imaging in the field of object recognition

  9. A signal detection-item response theory model for evaluating neuropsychological measures.

    PubMed

    Thomas, Michael L; Brown, Gregory G; Gur, Ruben C; Moore, Tyler M; Patt, Virginie M; Risbrough, Victoria B; Baker, Dewleen G

    2018-02-05

    Models from signal detection theory are commonly used to score neuropsychological test data, especially tests of recognition memory. Here we show that certain item response theory models can be formulated as signal detection theory models, thus linking two complementary but distinct methodologies. We then use the approach to evaluate the validity (construct representation) of commonly used research measures, demonstrate the impact of conditional error on neuropsychological outcomes, and evaluate measurement bias. Signal detection-item response theory (SD-IRT) models were fitted to recognition memory data for words, faces, and objects. The sample consisted of U.S. Infantry Marines and Navy Corpsmen participating in the Marine Resiliency Study. Data comprised item responses to the Penn Face Memory Test (PFMT; N = 1,338), Penn Word Memory Test (PWMT; N = 1,331), and Visual Object Learning Test (VOLT; N = 1,249), and self-report of past head injury with loss of consciousness. SD-IRT models adequately fitted recognition memory item data across all modalities. Error varied systematically with ability estimates, and distributions of residuals from the regression of memory discrimination onto self-report of past head injury were positively skewed towards regions of larger measurement error. Analyses of differential item functioning revealed little evidence of systematic bias by level of education. SD-IRT models benefit from the measurement rigor of item response theory-which permits the modeling of item difficulty and examinee ability-and from signal detection theory-which provides an interpretive framework encompassing the experimentally validated constructs of memory discrimination and response bias. We used this approach to validate the construct representation of commonly used research measures and to demonstrate how nonoptimized item parameters can lead to erroneous conclusions when interpreting neuropsychological test data. Future work might include the development of computerized adaptive tests and integration with mixture and random-effects models.

  10. Action Categorization in Rhesus Monkeys: discrimination of grasping from non-grasping manual motor acts.

    PubMed

    Nelissen, Koen; Vanduffel, Wim

    2017-11-08

    The ability to recognize others' actions is an important aspect of social behavior. While neurophysiological and behavioral research in monkeys has offered a better understanding of how the primate brain processes this type of information, further insight with respect to the neural correlates of action recognition requires tasks that allow recording of brain activity or perturbing brain regions while monkeys simultaneously make behavioral judgements about certain aspects of observed actions. Here we investigated whether rhesus monkeys could actively discriminate videos showing grasping or non-grasping manual motor acts in a two-alternative categorization task. After monkeys became proficient in this task, we tested their ability to generalize to a number of untrained, novel videos depicting grasps or other manual motor acts. Monkeys generalized to a wide range of novel human or conspecific grasping and non-grasping motor acts. They failed, however, for videos showing unfamiliar actions such as a non-biological effector performing a grasp, or a human hand touching an object with the back of the hand. This study shows the feasibility of training monkeys to perform active judgements about certain aspects of observed actions, instrumental for causal investigations into the neural correlates of action recognition.

  11. The association between imitation recognition and socio-communicative competencies in chimpanzees (Pan troglodytes).

    PubMed

    Pope, Sarah M; Russell, Jamie L; Hopkins, William D

    2015-01-01

    Imitation recognition provides a viable platform from which advanced social cognitive skills may develop. Despite evidence that non-human primates are capable of imitation recognition, how this ability is related to social cognitive skills is unknown. In this study, we compared imitation recognition performance, as indicated by the production of testing behaviors, with performance on a series of tasks that assess social and physical cognition in 49 chimpanzees. In the initial analyses, we found that males were more responsive than females to being imitated and engaged in significantly greater behavior repetitions and testing sequences. We also found that subjects who consistently recognized being imitated performed better on social but not physical cognitive tasks, as measured by the Primate Cognitive Test Battery. These findings suggest that the neural constructs underlying imitation recognition are likely associated with or among those underlying more general socio-communicative abilities in chimpanzees. Implications regarding how imitation recognition may facilitate other social cognitive processes, such as mirror self-recognition, are discussed.

  12. The association between imitation recognition and socio-communicative competencies in chimpanzees (Pan troglodytes)

    PubMed Central

    Pope, Sarah M.; Russell, Jamie L.; Hopkins, William D.

    2015-01-01

    Imitation recognition provides a viable platform from which advanced social cognitive skills may develop. Despite evidence that non-human primates are capable of imitation recognition, how this ability is related to social cognitive skills is unknown. In this study, we compared imitation recognition performance, as indicated by the production of testing behaviors, with performance on a series of tasks that assess social and physical cognition in 49 chimpanzees. In the initial analyses, we found that males were more responsive than females to being imitated and engaged in significantly greater behavior repetitions and testing sequences. We also found that subjects who consistently recognized being imitated performed better on social but not physical cognitive tasks, as measured by the Primate Cognitive Test Battery. These findings suggest that the neural constructs underlying imitation recognition are likely associated with or among those underlying more general socio-communicative abilities in chimpanzees. Implications regarding how imitation recognition may facilitate other social cognitive processes, such as mirror self-recognition, are discussed. PMID:25767454

  13. Emotion recognition in mild cognitive impairment: relationship to psychosocial disability and caregiver burden.

    PubMed

    McCade, Donna; Savage, Greg; Guastella, Adam; Hickie, Ian B; Lewis, Simon J G; Naismith, Sharon L

    2013-09-01

    Impaired emotion recognition in dementia is associated with increased patient agitation, behavior management difficulties, and caregiver burden. Emerging evidence supports the presence of very early emotion recognition difficulties in mild cognitive impairment (MCI); however, the relationship between these impairments and psychosocial measures is not yet explored. Emotion recognition abilities of 27 patients with nonamnestic MCI (naMCI), 29 patients with amnestic MCI (aMCI), and 22 control participants were assessed. Self-report measures assessed patient functional disability, while informants rated the degree of burden they experienced. Difficulties in recognizing anger was evident in the amnestic subtype. Although both the patient groups reported greater social functioning disability, compared with the controls, a relationship between social dysfunction and anger recognition was evident only for patients with naMCI. A significant association was found between burden and anger recognition in patients with aMCI. Impaired emotion recognition abilities impact MCI subtypes differentially. Interventions targeted at patients with MCI, and caregivers are warranted.

  14. Do subitizing deficits in developmental dyscalculia involve pattern recognition weakness?

    PubMed

    Ashkenazi, Sarit; Mark-Zigdon, Nitza; Henik, Avishai

    2013-01-01

    The abilities of children diagnosed with developmental dyscalculia (DD) were examined in two types of object enumeration: subitizing, and small estimation (5-9 dots). Subitizing is usually defined as a fast and accurate assessment of a number of small dots (range 1 to 4 dots), and estimation is an imprecise process to assess a large number of items (range 5 dots or more). Based on reaction time (RT) and accuracy analysis, our results indicated a deficit in the subitizing and small estimation range among DD participants in relation to controls. There are indications that subitizing is based on pattern recognition, thus presenting dots in a canonical shape in the estimation range should result in a subitizing-like pattern. In line with this theory, our control group presented a subitizing-like pattern in the small estimation range for canonically arranged dots, whereas the DD participants presented a deficit in the estimation of canonically arranged dots. The present finding indicates that pattern recognition difficulties may play a significant role in both subitizing and subitizing deficits among those with DD. © 2012 Blackwell Publishing Ltd.

  15. Clinical evaluation of music perception, appraisal and experience in cochlear implant users.

    PubMed

    Drennan, Ward R; Oleson, Jacob J; Gfeller, Kate; Crosson, Jillian; Driscoll, Virginia D; Won, Jong Ho; Anderson, Elizabeth S; Rubinstein, Jay T

    2015-02-01

    The objectives were to evaluate the relationships among music perception, appraisal, and experience in cochlear implant users in multiple clinical settings and to examine the viability of two assessments designed for clinical use. Background questionnaires (IMBQ) were administered by audiologists in 14 clinics in the United States and Canada. The CAMP included tests of pitch-direction discrimination, and melody and timbre recognition. The IMBQ queried users on prior musical involvement, music listening habits pre and post implant, and music appraisals. One-hundred forty-five users of Advanced Bionics and Cochlear Ltd cochlear implants. Performance on pitch direction discrimination, melody recognition, and timbre recognition tests were consistent with previous studies with smaller cohorts, as well as with more extensive protocols conducted in other centers. Relationships between perceptual accuracy and music enjoyment were weak, suggesting that perception and appraisal are relatively independent for CI users. Perceptual abilities as measured by the CAMP had little to no relationship with music appraisals and little relationship with musical experience. The CAMP and IMBQ are feasible for routine clinical use, providing results consistent with previous thorough laboratory-based investigations.

  16. Software for Partly Automated Recognition of Targets

    NASA Technical Reports Server (NTRS)

    Opitz, David; Blundell, Stuart; Bain, William; Morris, Matthew; Carlson, Ian; Mangrich, Mark; Selinsky, T.

    2002-01-01

    The Feature Analyst is a computer program for assisted (partially automated) recognition of targets in images. This program was developed to accelerate the processing of high-resolution satellite image data for incorporation into geographic information systems (GIS). This program creates an advanced user interface that embeds proprietary machine-learning algorithms in commercial image-processing and GIS software. A human analyst provides samples of target features from multiple sets of data, then the software develops a data-fusion model that automatically extracts the remaining features from selected sets of data. The program thus leverages the natural ability of humans to recognize objects in complex scenes, without requiring the user to explain the human visual recognition process by means of lengthy software. Two major subprograms are the reactive agent and the thinking agent. The reactive agent strives to quickly learn the user's tendencies while the user is selecting targets and to increase the user's productivity by immediately suggesting the next set of pixels that the user may wish to select. The thinking agent utilizes all available resources, taking as much time as needed, to produce the most accurate autonomous feature-extraction model possible.

  17. Superior voice recognition in a patient with acquired prosopagnosia and object agnosia.

    PubMed

    Hoover, Adria E N; Démonet, Jean-François; Steeves, Jennifer K E

    2010-11-01

    Anecdotally, it has been reported that individuals with acquired prosopagnosia compensate for their inability to recognize faces by using other person identity cues such as hair, gait or the voice. Are they therefore superior at the use of non-face cues, specifically voices, to person identity? Here, we empirically measure person and object identity recognition in a patient with acquired prosopagnosia and object agnosia. We quantify person identity (face and voice) and object identity (car and horn) recognition for visual, auditory, and bimodal (visual and auditory) stimuli. The patient is unable to recognize faces or cars, consistent with his prosopagnosia and object agnosia, respectively. He is perfectly able to recognize people's voices and car horns and bimodal stimuli. These data show a reverse shift in the typical weighting of visual over auditory information for audiovisual stimuli in a compromised visual recognition system. Moreover, the patient shows selectively superior voice recognition compared to the controls revealing that two different stimulus domains, persons and objects, may not be equally affected by sensory adaptation effects. This also implies that person and object identity recognition are processed in separate pathways. These data demonstrate that an individual with acquired prosopagnosia and object agnosia can compensate for the visual impairment and become quite skilled at using spared aspects of sensory processing. In the case of acquired prosopagnosia it is advantageous to develop a superior use of voices for person identity recognition in everyday life. Copyright © 2010 Elsevier Ltd. All rights reserved.

  18. Simple Learned Weighted Sums of Inferior Temporal Neuronal Firing Rates Accurately Predict Human Core Object Recognition Performance

    PubMed Central

    Hong, Ha; Solomon, Ethan A.; DiCarlo, James J.

    2015-01-01

    To go beyond qualitative models of the biological substrate of object recognition, we ask: can a single ventral stream neuronal linking hypothesis quantitatively account for core object recognition performance over a broad range of tasks? We measured human performance in 64 object recognition tests using thousands of challenging images that explore shape similarity and identity preserving object variation. We then used multielectrode arrays to measure neuronal population responses to those same images in visual areas V4 and inferior temporal (IT) cortex of monkeys and simulated V1 population responses. We tested leading candidate linking hypotheses and control hypotheses, each postulating how ventral stream neuronal responses underlie object recognition behavior. Specifically, for each hypothesis, we computed the predicted performance on the 64 tests and compared it with the measured pattern of human performance. All tested hypotheses based on low- and mid-level visually evoked activity (pixels, V1, and V4) were very poor predictors of the human behavioral pattern. However, simple learned weighted sums of distributed average IT firing rates exactly predicted the behavioral pattern. More elaborate linking hypotheses relying on IT trial-by-trial correlational structure, finer IT temporal codes, or ones that strictly respect the known spatial substructures of IT (“face patches”) did not improve predictive power. Although these results do not reject those more elaborate hypotheses, they suggest a simple, sufficient quantitative model: each object recognition task is learned from the spatially distributed mean firing rates (100 ms) of ∼60,000 IT neurons and is executed as a simple weighted sum of those firing rates. SIGNIFICANCE STATEMENT We sought to go beyond qualitative models of visual object recognition and determine whether a single neuronal linking hypothesis can quantitatively account for core object recognition behavior. To achieve this, we designed a database of images for evaluating object recognition performance. We used multielectrode arrays to characterize hundreds of neurons in the visual ventral stream of nonhuman primates and measured the object recognition performance of >100 human observers. Remarkably, we found that simple learned weighted sums of firing rates of neurons in monkey inferior temporal (IT) cortex accurately predicted human performance. Although previous work led us to expect that IT would outperform V4, we were surprised by the quantitative precision with which simple IT-based linking hypotheses accounted for human behavior. PMID:26424887

  19. Detection and recognition of targets by using signal polarization properties

    NASA Astrophysics Data System (ADS)

    Ponomaryov, Volodymyr I.; Peralta-Fabi, Ricardo; Popov, Anatoly V.; Babakov, Mikhail F.

    1999-08-01

    The quality of radar target recognition can be enhanced by exploiting its polarization signatures. A specialized X-band polarimetric radar was used for target recognition in experimental investigations. The following polarization characteristics connected to the object geometrical properties were investigated: the amplitudes of the polarization matrix elements; an anisotropy coefficient; depolarization coefficient; asymmetry coefficient; the energy of a backscattering signal; object shape factor. A large quantity of polarimetric radar data was measured and processed to form a database of different object and different weather conditions. The histograms of polarization signatures were approximated by a Nakagami distribution, then used for real- time target recognition. The Neyman-Pearson criterion was used for the target detection, and the criterion of the maximum of a posterior probability was used for recognition problem. Some results of experimental verification of pattern recognition and detection of objects with different electrophysical and geometrical characteristics urban in clutter are presented in this paper.

  20. Parallel and distributed computation for fault-tolerant object recognition

    NASA Technical Reports Server (NTRS)

    Wechsler, Harry

    1988-01-01

    The distributed associative memory (DAM) model is suggested for distributed and fault-tolerant computation as it relates to object recognition tasks. The fault-tolerance is with respect to geometrical distortions (scale and rotation), noisy inputs, occulsion/overlap, and memory faults. An experimental system was developed for fault-tolerant structure recognition which shows the feasibility of such an approach. The approach is futher extended to the problem of multisensory data integration and applied successfully to the recognition of colored polyhedral objects.

  1. Visual Object Detection, Categorization, and Identification Tasks Are Associated with Different Time Courses and Sensitivities

    ERIC Educational Resources Information Center

    de la Rosa, Stephan; Choudhery, Rabia N.; Chatziastros, Astros

    2011-01-01

    Recent evidence suggests that the recognition of an object's presence and its explicit recognition are temporally closely related. Here we re-examined the time course (using a fine and a coarse temporal resolution) and the sensitivity of three possible component processes of visual object recognition. In particular, participants saw briefly…

  2. An ERP Study on Self-Relevant Object Recognition

    ERIC Educational Resources Information Center

    Miyakoshi, Makoto; Nomura, Michio; Ohira, Hideki

    2007-01-01

    We performed an event-related potential study to investigate the self-relevance effect in object recognition. Three stimulus categories were prepared: SELF (participant's own objects), FAMILIAR (disposable and public objects, defined as objects with less-self-relevant familiarity), and UNFAMILIAR (others' objects). The participants' task was to…

  3. Emotional face recognition in adolescent suicide attempters and adolescents engaging in non-suicidal self-injury.

    PubMed

    Seymour, Karen E; Jones, Richard N; Cushman, Grace K; Galvan, Thania; Puzia, Megan E; Kim, Kerri L; Spirito, Anthony; Dickstein, Daniel P

    2016-03-01

    Little is known about the bio-behavioral mechanisms underlying and differentiating suicide attempts from non-suicidal self-injury (NSSI) in adolescents. Adolescents who attempt suicide or engage in NSSI often report significant interpersonal and social difficulties. Emotional face recognition ability is a fundamental skill required for successful social interactions, and deficits in this ability may provide insight into the unique brain-behavior interactions underlying suicide attempts versus NSSI in adolescents. Therefore, we examined emotional face recognition ability among three mutually exclusive groups: (1) inpatient adolescents who attempted suicide (SA, n = 30); (2) inpatient adolescents engaged in NSSI (NSSI, n = 30); and (3) typically developing controls (TDC, n = 30) without psychiatric illness. Participants included adolescents aged 13-17 years, matched on age, gender and full-scale IQ. Emotional face recognition was evaluated using the diagnostic assessment of nonverbal accuracy (DANVA-2). Compared to TDC youth, adolescents with NSSI made more errors on child fearful and adult sad face recognition while controlling for psychopathology and medication status (ps < 0.05). No differences were found on emotional face recognition between NSSI and SA groups. Secondary analyses showed that compared to inpatients without major depression, those with major depression made fewer errors on adult sad face recognition even when controlling for group status (p < 0.05). Further, compared to inpatients without generalized anxiety, those with generalized anxiety made fewer recognition errors on adult happy faces even when controlling for group status (p < 0.05). Adolescent inpatients engaged in NSSI showed greater deficits in emotional face recognition than TDC, but not inpatient adolescents who attempted suicide. Further results suggest the importance of psychopathology in emotional face recognition. Replication of these preliminary results and examination of the role of context-dependent emotional processing are needed moving forward.

  4. A bio-inspired method and system for visual object-based attention and segmentation

    NASA Astrophysics Data System (ADS)

    Huber, David J.; Khosla, Deepak

    2010-04-01

    This paper describes a method and system of human-like attention and object segmentation in visual scenes that (1) attends to regions in a scene in their rank of saliency in the image, (2) extracts the boundary of an attended proto-object based on feature contours, and (3) can be biased to boost the attention paid to specific features in a scene, such as those of a desired target object in static and video imagery. The purpose of the system is to identify regions of a scene of potential importance and extract the region data for processing by an object recognition and classification algorithm. The attention process can be performed in a default, bottom-up manner or a directed, top-down manner which will assign a preference to certain features over others. One can apply this system to any static scene, whether that is a still photograph or imagery captured from video. We employ algorithms that are motivated by findings in neuroscience, psychology, and cognitive science to construct a system that is novel in its modular and stepwise approach to the problems of attention and region extraction, its application of a flooding algorithm to break apart an image into smaller proto-objects based on feature density, and its ability to join smaller regions of similar features into larger proto-objects. This approach allows many complicated operations to be carried out by the system in a very short time, approaching real-time. A researcher can use this system as a robust front-end to a larger system that includes object recognition and scene understanding modules; it is engineered to function over a broad range of situations and can be applied to any scene with minimal tuning from the user.

  5. Mice deficient for striatal Vesicular Acetylcholine Transporter (VAChT) display impaired short-term but normal long-term object recognition memory.

    PubMed

    Palmer, Daniel; Creighton, Samantha; Prado, Vania F; Prado, Marco A M; Choleris, Elena; Winters, Boyer D

    2016-09-15

    Substantial evidence implicates Acetylcholine (ACh) in the acquisition of object memories. While most research has focused on the role of the cholinergic basal forebrain and its cortical targets, there are additional cholinergic networks that may contribute to object recognition. The striatum contains an independent cholinergic network comprised of interneurons. In the current study, we investigated the role of this cholinergic signalling in object recognition using mice deficient for Vesicular Acetylcholine Transporter (VAChT) within interneurons of the striatum. We tested whether these striatal VAChT(D2-Cre-flox/flox) mice would display normal short-term (5 or 15min retention delay) and long-term (3h retention delay) object recognition memory. In a home cage object recognition task, male and female VAChT(D2-Cre-flox/flox) mice were impaired selectively with a 15min retention delay. When tested on an object location task, VAChT(D2-Cre-flox/flox) mice displayed intact spatial memory. Finally, when object recognition was tested in a Y-shaped apparatus, designed to minimize the influence of spatial and contextual cues, only females displayed impaired recognition with a 5min retention delay, but when males were challenged with a 15min retention delay, they were also impaired; neither males nor females were impaired with the 3h delay. The pattern of results suggests that striatal cholinergic transmission plays a role in the short-term memory for object features, but not spatial location. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Modeling guidance and recognition in categorical search: bridging human and computer object detection.

    PubMed

    Zelinsky, Gregory J; Peng, Yifan; Berg, Alexander C; Samaras, Dimitris

    2013-10-08

    Search is commonly described as a repeating cycle of guidance to target-like objects, followed by the recognition of these objects as targets or distractors. Are these indeed separate processes using different visual features? We addressed this question by comparing observer behavior to that of support vector machine (SVM) models trained on guidance and recognition tasks. Observers searched for a categorically defined teddy bear target in four-object arrays. Target-absent trials consisted of random category distractors rated in their visual similarity to teddy bears. Guidance, quantified as first-fixated objects during search, was strongest for targets, followed by target-similar, medium-similarity, and target-dissimilar distractors. False positive errors to first-fixated distractors also decreased with increasing dissimilarity to the target category. To model guidance, nine teddy bear detectors, using features ranging in biological plausibility, were trained on unblurred bears then tested on blurred versions of the same objects appearing in each search display. Guidance estimates were based on target probabilities obtained from these detectors. To model recognition, nine bear/nonbear classifiers, trained and tested on unblurred objects, were used to classify the object that would be fixated first (based on the detector estimates) as a teddy bear or a distractor. Patterns of categorical guidance and recognition accuracy were modeled almost perfectly by an HMAX model in combination with a color histogram feature. We conclude that guidance and recognition in the context of search are not separate processes mediated by different features, and that what the literature knows as guidance is really recognition performed on blurred objects viewed in the visual periphery.

  7. Modeling guidance and recognition in categorical search: Bridging human and computer object detection

    PubMed Central

    Zelinsky, Gregory J.; Peng, Yifan; Berg, Alexander C.; Samaras, Dimitris

    2013-01-01

    Search is commonly described as a repeating cycle of guidance to target-like objects, followed by the recognition of these objects as targets or distractors. Are these indeed separate processes using different visual features? We addressed this question by comparing observer behavior to that of support vector machine (SVM) models trained on guidance and recognition tasks. Observers searched for a categorically defined teddy bear target in four-object arrays. Target-absent trials consisted of random category distractors rated in their visual similarity to teddy bears. Guidance, quantified as first-fixated objects during search, was strongest for targets, followed by target-similar, medium-similarity, and target-dissimilar distractors. False positive errors to first-fixated distractors also decreased with increasing dissimilarity to the target category. To model guidance, nine teddy bear detectors, using features ranging in biological plausibility, were trained on unblurred bears then tested on blurred versions of the same objects appearing in each search display. Guidance estimates were based on target probabilities obtained from these detectors. To model recognition, nine bear/nonbear classifiers, trained and tested on unblurred objects, were used to classify the object that would be fixated first (based on the detector estimates) as a teddy bear or a distractor. Patterns of categorical guidance and recognition accuracy were modeled almost perfectly by an HMAX model in combination with a color histogram feature. We conclude that guidance and recognition in the context of search are not separate processes mediated by different features, and that what the literature knows as guidance is really recognition performed on blurred objects viewed in the visual periphery. PMID:24105460

  8. Word Recognition and Critical Reading.

    ERIC Educational Resources Information Center

    Groff, Patrick

    1991-01-01

    This article discusses the distinctions between literal and critical reading and explains the role that word recognition ability plays in critical reading behavior. It concludes that correct word recognition provides the raw material on which higher order critical reading is based. (DB)

  9. Representation of 3-Dimenstional Objects by the Rat Perirhinal Cortex

    PubMed Central

    Burke, S.N.; Maurer, A.P.; Hartzell, A.L.; Nematollahi, S.; Uprety, A.; Wallace, J.L.; Barnes, C.A.

    2012-01-01

    The perirhinal cortex (PRC) is known to play an important role in object recognition. Little is known, however, regarding the activity of PRC neurons during the presentation of stimuli that are commonly used for recognition memory tasks in rodents, that is, 3-dimensional objects. Rats in the present study were exposed to 3-dimensional objects while they traversed a circular track for food reward. Under some behavioral conditions the track contained novel objects, familiar objects, or no objects. Approximately 38% of PRC neurons demonstrated ‘object fields’ (a selective increase in firing at the location of one or more objects). Although the rats spent more time exploring the objects when they were novel compared to familiar, indicating successful recognition memory, the proportion of object fields and the firing rates of PRC neurons were not affected by the rats’ previous experience with the objects. Together these data indicate that the activity of PRC cells is powerfully affected by the presence of objects while animals navigate through an environment, but under these conditions, the firing patterns are not altered by the relative novelty of objects during successful object recognition. PMID:22987680

  10. The Role of Higher Level Adaptive Coding Mechanisms in the Development of Face Recognition

    ERIC Educational Resources Information Center

    Pimperton, Hannah; Pellicano, Elizabeth; Jeffery, Linda; Rhodes, Gillian

    2009-01-01

    DevDevelopmental improvements in face identity recognition ability are widely documented, but the source of children's immaturity in face recognition remains unclear. Differences in the way in which children and adults visually represent faces might underlie immaturities in face recognition. Recent evidence of a face identity aftereffect (FIAE),…

  11. Recognition Of Complex Three Dimensional Objects Using Three Dimensional Moment Invariants

    NASA Astrophysics Data System (ADS)

    Sadjadi, Firooz A.

    1985-01-01

    A technique for the recognition of complex three dimensional objects is presented. The complex 3-D objects are represented in terms of their 3-D moment invariants, algebraic expressions that remain invariant independent of the 3-D objects' orientations and locations in the field of view. The technique of 3-D moment invariants has been used successfully for simple 3-D object recognition in the past. In this work we have extended this method for the representation of more complex objects. Two complex objects are represented digitally; their 3-D moment invariants have been calculated, and then the invariancy of these 3-D invariant moment expressions is verified by changing the orientation and the location of the objects in the field of view. The results of this study have significant impact on 3-D robotic vision, 3-D target recognition, scene analysis and artificial intelligence.

  12. A Taxonomy of 3D Occluded Objects Recognition Techniques

    NASA Astrophysics Data System (ADS)

    Soleimanizadeh, Shiva; Mohamad, Dzulkifli; Saba, Tanzila; Al-ghamdi, Jarallah Saleh

    2016-03-01

    The overall performances of object recognition techniques under different condition (e.g., occlusion, viewpoint, and illumination) have been improved significantly in recent years. New applications and hardware are shifted towards digital photography, and digital media. This faces an increase in Internet usage requiring object recognition for certain applications; particularly occulded objects. However occlusion is still an issue unhandled, interlacing the relations between extracted feature points through image, research is going on to develop efficient techniques and easy to use algorithms that would help users to source images; this need to overcome problems and issues regarding occlusion. The aim of this research is to review recognition occluded objects algorithms and figure out their pros and cons to solve the occlusion problem features, which are extracted from occluded object to distinguish objects from other co-existing objects by determining the new techniques, which could differentiate the occluded fragment and sections inside an image.

  13. Exogenous temporal cues enhance recognition memory in an object-based manner.

    PubMed

    Ohyama, Junji; Watanabe, Katsumi

    2010-11-01

    Exogenous attention enhances the perception of attended items in both a space-based and an object-based manner. Exogenous attention also improves recognition memory for attended items in the space-based mode. However, it has not been examined whether object-based exogenous attention enhances recognition memory. To address this issue, we examined whether a sudden visual change in a task-irrelevant stimulus (an exogenous cue) would affect participants' recognition memory for items that were serially presented around a cued time. The results showed that recognition accuracy for an item was strongly enhanced when the visual cue occurred at the same location and time as the item (Experiments 1 and 2). The memory enhancement effect occurred when the exogenous visual cue and an item belonged to the same object (Experiments 3 and 4) and even when the cue was counterpredictive of the timing of an item to be asked about (Experiment 5). The present study suggests that an exogenous temporal cue automatically enhances the recognition accuracy for an item that is presented at close temporal proximity to the cue and that recognition memory enhancement occurs in an object-based manner.

  14. Toward a unified model of face and object recognition in the human visual system

    PubMed Central

    Wallis, Guy

    2013-01-01

    Our understanding of the mechanisms and neural substrates underlying visual recognition has made considerable progress over the past 30 years. During this period, accumulating evidence has led many scientists to conclude that objects and faces are recognised in fundamentally distinct ways, and in fundamentally distinct cortical areas. In the psychological literature, in particular, this dissociation has led to a palpable disconnect between theories of how we process and represent the two classes of object. This paper follows a trend in part of the recognition literature to try to reconcile what we know about these two forms of recognition by considering the effects of learning. Taking a widely accepted, self-organizing model of object recognition, this paper explains how such a system is affected by repeated exposure to specific stimulus classes. In so doing, it explains how many aspects of recognition generally regarded as unusual to faces (holistic processing, configural processing, sensitivity to inversion, the other-race effect, the prototype effect, etc.) are emergent properties of category-specific learning within such a system. Overall, the paper describes how a single model of recognition learning can and does produce the seemingly very different types of representation associated with faces and objects. PMID:23966963

  15. Emotion recognition deficits in schizophrenia-spectrum disorders and psychotic bipolar disorder: Findings from the Bipolar-Schizophrenia Network on Intermediate Phenotypes (B-SNIP) study.

    PubMed

    Ruocco, Anthony C; Reilly, James L; Rubin, Leah H; Daros, Alex R; Gershon, Elliot S; Tamminga, Carol A; Pearlson, Godfrey D; Hill, S Kristian; Keshavan, Matcheri S; Gur, Ruben C; Sweeney, John A

    2014-09-01

    Difficulty recognizing facial emotions is an important social-cognitive deficit associated with psychotic disorders. It also may reflect a familial risk for psychosis in schizophrenia-spectrum disorders and bipolar disorder. The objectives of this study from the Bipolar-Schizophrenia Network on Intermediate Phenotypes (B-SNIP) consortium were to: 1) compare emotion recognition deficits in schizophrenia, schizoaffective disorder and bipolar disorder with psychosis, 2) determine the familiality of emotion recognition deficits across these disorders, and 3) evaluate emotion recognition deficits in nonpsychotic relatives with and without elevated Cluster A and Cluster B personality disorder traits. Participants included probands with schizophrenia (n=297), schizoaffective disorder (depressed type, n=61; bipolar type, n=69), bipolar disorder with psychosis (n=248), their first-degree relatives (n=332, n=69, n=154, and n=286, respectively) and healthy controls (n=380). All participants completed the Penn Emotion Recognition Test, a standardized measure of facial emotion recognition assessing four basic emotions (happiness, sadness, anger and fear) and neutral expressions (no emotion). Compared to controls, emotion recognition deficits among probands increased progressively from bipolar disorder to schizoaffective disorder to schizophrenia. Proband and relative groups showed similar deficits perceiving angry and neutral faces, whereas deficits on fearful, happy and sad faces were primarily isolated to schizophrenia probands. Even non-psychotic relatives without elevated Cluster A or Cluster B personality disorder traits showed deficits on neutral and angry faces. Emotion recognition ability was moderately familial only in schizophrenia families. Emotion recognition deficits are prominent but somewhat different across psychotic disorders. These deficits are reflected to a lesser extent in relatives, particularly on angry and neutral faces. Deficits were evident in non-psychotic relatives even without elevated personality disorder traits. Deficits in facial emotion recognition may reflect an important social-cognitive deficit in patients with psychotic disorders. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Recognition of Faces and Greebles in 3-Month-Old Infants: Influence of Temperament and Cognitive Abilities

    ERIC Educational Resources Information Center

    Spangler, Sibylle M.; Freitag, Claudia; Schwarzer, Gudrun; Vierhaus, Marc; Teubert, Manuel; Lamm, Bettina; Kolling, Thorsten; Graf, Frauke; Goertz, Claudia; Fassbender, Ina; Lohaus, Arnold; Knopf, Monika; Keller, Heidi

    2011-01-01

    The aim of the present study was to investigate whether temperament and cognitive abilities are related to recognition performance of Caucasian and African faces and of a nonfacial stimulus class, Greebles. Seventy Caucasian infants were tested at 3 months with a habituation/dishabituation paradigm and their temperament and cognitive abilities…

  17. The Relationship between Emotional Recognition Ability and Challenging Behaviour in Adults with an Intellectual Disability. A Systematic Review

    ERIC Educational Resources Information Center

    Davies, Bronwen; Frude, Neil; Jenkins, Rosemary

    2015-01-01

    This review questions whether a relationship exists between emotional recognition ability and challenging behaviour in people with an intellectual disability. A search was completed of a number of databases to identify relevant articles, and these were then evaluated against defined criteria. Eight articles were reviewed and their aims, study…

  18. Effectiveness of a Phonological Awareness Training Intervention on Word Recognition Ability of Children with Autism Spectrum Disorder

    ERIC Educational Resources Information Center

    Mohammed, Adel Abdulla; Mostafa, Amaal Ahmed

    2012-01-01

    This study describes an action research project designed to improve word recognition ability of children with Autism Spectrum Disorder. A total of 47 children diagnosed as having Autism Spectrum Disorder using Autism Spectrum Disorder Evaluation Inventory (Mohammed, 2006), participated in this study. The sample was randomly divided into two…

  19. Using Automatic Speech Recognition Technology with Elicited Oral Response Testing

    ERIC Educational Resources Information Center

    Cox, Troy L.; Davies, Randall S.

    2012-01-01

    This study examined the use of automatic speech recognition (ASR) scored elicited oral response (EOR) tests to assess the speaking ability of English language learners. It also examined the relationship between ASR-scored EOR and other language proficiency measures and the ability of the ASR to rate speakers without bias to gender or native…

  20. Using Regression to Measure Holistic Face Processing Reveals a Strong Link with Face Recognition Ability

    ERIC Educational Resources Information Center

    DeGutis, Joseph; Wilmer, Jeremy; Mercado, Rogelio J.; Cohan, Sarah

    2013-01-01

    Although holistic processing is thought to underlie normal face recognition ability, widely discrepant reports have recently emerged about this link in an individual differences context. Progress in this domain may have been impeded by the widespread use of subtraction scores, which lack validity due to their contamination with control condition…

  1. TRACX: A Recognition-Based Connectionist Framework for Sequence Segmentation and Chunk Extraction

    ERIC Educational Resources Information Center

    French, Robert M.; Addyman, Caspar; Mareschal, Denis

    2011-01-01

    Individuals of all ages extract structure from the sequences of patterns they encounter in their environment, an ability that is at the very heart of cognition. Exactly what underlies this ability has been the subject of much debate over the years. A novel mechanism, implicit chunk recognition (ICR), is proposed for sequence segmentation and chunk…

  2. Spontaneous expression of mirror self-recognition in monkeys after learning precise visual-proprioceptive association for mirror images

    PubMed Central

    Chang, Liangtang; Zhang, Shikun; Poo, Mu-ming; Gong, Neng

    2017-01-01

    Mirror self-recognition (MSR) is generally considered to be an intrinsic cognitive ability found only in humans and a few species of great apes. Rhesus monkeys do not spontaneously show MSR, but they have the ability to use a mirror as an instrument to find hidden objects. The mechanism underlying the transition from simple mirror use to MSR remains unclear. Here we show that rhesus monkeys could show MSR after learning precise visual-proprioceptive association for mirror images. We trained head-fixed monkeys on a chair in front of a mirror to touch with spatiotemporal precision a laser pointer light spot on an adjacent board that could only be seen in the mirror. After several weeks of training, when the same laser pointer light was projected to the monkey's face, a location not used in training, all three trained monkeys successfully touched the face area marked by the light spot in front of a mirror. All trained monkeys passed the standard face mark test for MSR both on the monkey chair and in their home cage. Importantly, distinct from untrained control monkeys, the trained monkeys showed typical mirror-induced self-directed behaviors in their home cage, such as using the mirror to explore normally unseen body parts. Thus, bodily self-consciousness may be a cognitive ability present in many more species than previously thought, and acquisition of precise visual-proprioceptive association for the images in the mirror is critical for revealing the MSR ability of the animal. PMID:28193875

  3. Seeing the Wood for the Trees: Applying the dual-memory system model to investigate expert teachers' observational skills in natural ecological learning environments

    NASA Astrophysics Data System (ADS)

    Stolpe, Karin; Björklund, Lars

    2012-01-01

    This study aims to investigate two expert ecology teachers' ability to attend to essential details in a complex environment during a field excursion, as well as how they teach this ability to their students. In applying a cognitive dual-memory system model for learning, we also suggest a rationale for their behaviour. The model implies two separate memory systems: the implicit, non-conscious, non-declarative system and the explicit, conscious, declarative system. This model provided the starting point for the research design. However, it was revised from the empirical findings supported by new theoretical insights. The teachers were video and audio recorded during their excursion and interviewed in a stimulated recall setting afterwards. The data were qualitatively analysed using the dual-memory system model. The results show that the teachers used holistic pattern recognition in their own identification of natural objects. However, teachers' main strategy to teach this ability is to give the students explicit rules or specific characteristics. According to the dual-memory system model the holistic pattern recognition is processed in the implicit memory system as a non-conscious match with earlier experienced situations. We suggest that this implicit pattern matching serves as an explanation for teachers' ecological and teaching observational skills. Another function of the implicit memory system is its ability to control automatic behaviour and non-conscious decision-making. The teachers offer the students firsthand sensory experiences which provide a prerequisite for the formation of implicit memories that provides a foundation for expertise.

  4. Spontaneous expression of mirror self-recognition in monkeys after learning precise visual-proprioceptive association for mirror images.

    PubMed

    Chang, Liangtang; Zhang, Shikun; Poo, Mu-Ming; Gong, Neng

    2017-03-21

    Mirror self-recognition (MSR) is generally considered to be an intrinsic cognitive ability found only in humans and a few species of great apes. Rhesus monkeys do not spontaneously show MSR, but they have the ability to use a mirror as an instrument to find hidden objects. The mechanism underlying the transition from simple mirror use to MSR remains unclear. Here we show that rhesus monkeys could show MSR after learning precise visual-proprioceptive association for mirror images. We trained head-fixed monkeys on a chair in front of a mirror to touch with spatiotemporal precision a laser pointer light spot on an adjacent board that could only be seen in the mirror. After several weeks of training, when the same laser pointer light was projected to the monkey's face, a location not used in training, all three trained monkeys successfully touched the face area marked by the light spot in front of a mirror. All trained monkeys passed the standard face mark test for MSR both on the monkey chair and in their home cage. Importantly, distinct from untrained control monkeys, the trained monkeys showed typical mirror-induced self-directed behaviors in their home cage, such as using the mirror to explore normally unseen body parts. Thus, bodily self-consciousness may be a cognitive ability present in many more species than previously thought, and acquisition of precise visual-proprioceptive association for the images in the mirror is critical for revealing the MSR ability of the animal.

  5. Mechanisms and neural basis of object and pattern recognition: a study with chess experts.

    PubMed

    Bilalić, Merim; Langner, Robert; Erb, Michael; Grodd, Wolfgang

    2010-11-01

    Comparing experts with novices offers unique insights into the functioning of cognition, based on the maximization of individual differences. Here we used this expertise approach to disentangle the mechanisms and neural basis behind two processes that contribute to everyday expertise: object and pattern recognition. We compared chess experts and novices performing chess-related and -unrelated (visual) search tasks. As expected, the superiority of experts was limited to the chess-specific task, as there were no differences in a control task that used the same chess stimuli but did not require chess-specific recognition. The analysis of eye movements showed that experts immediately and exclusively focused on the relevant aspects in the chess task, whereas novices also examined irrelevant aspects. With random chess positions, when pattern knowledge could not be used to guide perception, experts nevertheless maintained an advantage. Experts' superior domain-specific parafoveal vision, a consequence of their knowledge about individual domain-specific symbols, enabled improved object recognition. Functional magnetic resonance imaging corroborated this differentiation between object and pattern recognition and showed that chess-specific object recognition was accompanied by bilateral activation of the occipitotemporal junction, whereas chess-specific pattern recognition was related to bilateral activations in the middle part of the collateral sulci. Using the expertise approach together with carefully chosen controls and multiple dependent measures, we identified object and pattern recognition as two essential cognitive processes in expert visual cognition, which may also help to explain the mechanisms of everyday perception.

  6. Accelerometer's position independent physical activity recognition system for long-term activity monitoring in the elderly.

    PubMed

    Khan, Adil Mehmood; Lee, Young-Koo; Lee, Sungyoung; Kim, Tae-Seong

    2010-12-01

    Mobility is a good indicator of health status and thus objective mobility data could be used to assess the health status of elderly patients. Accelerometry has emerged as an effective means for long-term physical activity monitoring in the elderly. However, the output of an accelerometer varies at different positions on a subject's body, even for the same activity, resulting in high within-class variance. Existing accelerometer-based activity recognition systems thus require firm attachment of the sensor to a subject's body. This requirement makes them impractical for long-term activity monitoring during unsupervised free-living as it forces subjects into a fixed life pattern and impede their daily activities. Therefore, we introduce a novel single-triaxial-accelerometer-based activity recognition system that reduces the high within-class variance significantly and allows subjects to carry the sensor freely in any pocket without its firm attachment. We validated our system using seven activities: resting (lying/sitting/standing), walking, walking-upstairs, walking-downstairs, running, cycling, and vacuuming, recorded from five positions: chest pocket, front left trousers pocket, front right trousers pocket, rear trousers pocket, and inner jacket pocket. Its simplicity, ability to perform activities unimpeded, and an average recognition accuracy of 94% make our system a practical solution for continuous long-term activity monitoring in the elderly.

  7. Face Recognition Is Affected by Similarity in Spatial Frequency Range to a Greater Degree Than Within-Category Object Recognition

    ERIC Educational Resources Information Center

    Collin, Charles A.; Liu, Chang Hong; Troje, Nikolaus F.; McMullen, Patricia A.; Chaudhuri, Avi

    2004-01-01

    Previous studies have suggested that face identification is more sensitive to variations in spatial frequency content than object recognition, but none have compared how sensitive the 2 processes are to variations in spatial frequency overlap (SFO). The authors tested face and object matching accuracy under varying SFO conditions. Their results…

  8. Face Memory and Object Recognition in Children with High-Functioning Autism or Asperger Syndrome and in Their Parents

    ERIC Educational Resources Information Center

    Kuusikko-Gauffin, Sanna; Jansson-Verkasalo, Eira; Carter, Alice; Pollock-Wurman, Rachel; Jussila, Katja; Mattila, Marja-Leena; Rahko, Jukka; Ebeling, Hanna; Pauls, David; Moilanen, Irma

    2011-01-01

    Children with Autism Spectrum Disorders (ASDs) have reported to have impairments in face, recognition and face memory, but intact object recognition and object memory. Potential abnormalities, in these fields at the family level of high-functioning children with ASD remains understudied despite, the ever-mounting evidence that ASDs are genetic and…

  9. OPTICAL INFORMATION PROCESSING: Synthesis of an object recognition system based on the profile of the envelope of a laser pulse in pulsed lidars

    NASA Astrophysics Data System (ADS)

    Buryi, E. V.

    1998-05-01

    The main problems in the synthesis of an object recognition system, based on the principles of operation of neuron networks, are considered. Advantages are demonstrated of a hierarchical structure of the recognition algorithm. The use of reading of the amplitude spectrum of signals as information tags is justified and a method is developed for determination of the dimensionality of the tag space. Methods are suggested for ensuring the stability of object recognition in the optical range. It is concluded that it should be possible to recognise perspectives of complex objects.

  10. Lateral entorhinal cortex is necessary for associative but not nonassociative recognition memory

    PubMed Central

    Wilson, David IG; Watanabe, Sakurako; Milner, Helen; Ainge, James A

    2013-01-01

    The lateral entorhinal cortex (LEC) provides one of the two major input pathways to the hippocampus and has been suggested to process the nonspatial contextual details of episodic memory. Combined with spatial information from the medial entorhinal cortex it is hypothesised that this contextual information is used to form an integrated spatially selective, context-specific response in the hippocampus that underlies episodic memory. Recently, we reported that the LEC is required for recognition of objects that have been experienced in a specific context (Wilson et al. (2013) Hippocampus 23:352-366). Here, we sought to extend this work to assess the role of the LEC in recognition of all associative combinations of objects, places and contexts within an episode. Unlike controls, rats with excitotoxic lesions of the LEC showed no evidence of recognizing familiar combinations of object in place, place in context, or object in place and context. However, LEC lesioned rats showed normal recognition of objects and places independently from each other (nonassociative recognition). Together with our previous findings, these data suggest that the LEC is critical for associative recognition memory and may bind together information relating to objects, places, and contexts needed for episodic memory formation. PMID:23836525

  11. Coordinate Transformations in Object Recognition

    ERIC Educational Resources Information Center

    Graf, Markus

    2006-01-01

    A basic problem of visual perception is how human beings recognize objects after spatial transformations. Three central classes of findings have to be accounted for: (a) Recognition performance varies systematically with orientation, size, and position; (b) recognition latencies are sequentially additive, suggesting analogue transformation…

  12. RecceMan: an interactive recognition assistance for image-based reconnaissance: synergistic effects of human perception and computational methods for object recognition, identification, and infrastructure analysis

    NASA Astrophysics Data System (ADS)

    El Bekri, Nadia; Angele, Susanne; Ruckhäberle, Martin; Peinsipp-Byma, Elisabeth; Haelke, Bruno

    2015-10-01

    This paper introduces an interactive recognition assistance system for imaging reconnaissance. This system supports aerial image analysts on missions during two main tasks: Object recognition and infrastructure analysis. Object recognition concentrates on the classification of one single object. Infrastructure analysis deals with the description of the components of an infrastructure and the recognition of the infrastructure type (e.g. military airfield). Based on satellite or aerial images, aerial image analysts are able to extract single object features and thereby recognize different object types. It is one of the most challenging tasks in the imaging reconnaissance. Currently, there are no high potential ATR (automatic target recognition) applications available, as consequence the human observer cannot be replaced entirely. State-of-the-art ATR applications cannot assume in equal measure human perception and interpretation. Why is this still such a critical issue? First, cluttered and noisy images make it difficult to automatically extract, classify and identify object types. Second, due to the changed warfare and the rise of asymmetric threats it is nearly impossible to create an underlying data set containing all features, objects or infrastructure types. Many other reasons like environmental parameters or aspect angles compound the application of ATR supplementary. Due to the lack of suitable ATR procedures, the human factor is still important and so far irreplaceable. In order to use the potential benefits of the human perception and computational methods in a synergistic way, both are unified in an interactive assistance system. RecceMan® (Reconnaissance Manual) offers two different modes for aerial image analysts on missions: the object recognition mode and the infrastructure analysis mode. The aim of the object recognition mode is to recognize a certain object type based on the object features that originated from the image signatures. The infrastructure analysis mode pursues the goal to analyze the function of the infrastructure. The image analyst extracts visually certain target object signatures, assigns them to corresponding object features and is finally able to recognize the object type. The system offers him the possibility to assign the image signatures to features given by sample images. The underlying data set contains a wide range of objects features and object types for different domains like ships or land vehicles. Each domain has its own feature tree developed by aerial image analyst experts. By selecting the corresponding features, the possible solution set of objects is automatically reduced and matches only the objects that contain the selected features. Moreover, we give an outlook of current research in the field of ground target analysis in which we deal with partly automated methods to extract image signatures and assign them to the corresponding features. This research includes methods for automatically determining the orientation of an object and geometric features like width and length of the object. This step enables to reduce automatically the possible object types offered to the image analyst by the interactive recognition assistance system.

  13. Semantic and visual determinants of face recognition in a prosopagnosic patient.

    PubMed

    Dixon, M J; Bub, D N; Arguin, M

    1998-05-01

    Prosopagnosia is the neuropathological inability to recognize familiar people by their faces. It can occur in isolation or can coincide with recognition deficits for other nonface objects. Often, patients whose prosopagnosia is accompanied by object recognition difficulties have more trouble identifying certain categories of objects relative to others. In previous research, we demonstrated that objects that shared multiple visual features and were semantically close posed severe recognition difficulties for a patient with temporal lobe damage. We now demonstrate that this patient's face recognition is constrained by these same parameters. The prosopagnosic patient ELM had difficulties pairing faces to names when the faces shared visual features and the names were semantically related (e.g., Tonya Harding, Nancy Kerrigan, and Josee Chouinard -three ice skaters). He made tenfold fewer errors when the exact same faces were associated with semantically unrelated people (e.g., singer Celine Dion, actress Betty Grable, and First Lady Hillary Clinton). We conclude that prosopagnosia and co-occurring category-specific recognition problems both stem from difficulties disambiguating the stored representations of objects that share multiple visual features and refer to semantically close identities or concepts.

  14. Neuro-cognition and social cognition elements of social functioning and social quality of life.

    PubMed

    Hasson-Ohayon, Ilanit; Mashiach-Eizenberg, Michal; Arnon-Ribenfeld, Nitzan; Kravetz, Shlomo; Roe, David

    2017-12-01

    Previous studies have shown that deficits in social cognition mediate the association between neuro-cognition and functional outcome. Based on these findings, the current study presents an examination of the mediating role of social cognition and includes two different outcomes: social functioning assessed by objective observer and social quality of life assessed by subjective self-report. Instruments measuring different aspects of social cognition, cognitive ability, social functioning and social quality of life were administered to 131 participants who had a diagnosis of a serious mental illness. Results showed that emotion recognition and attributional bias were significant mediators such that cognitive assessment was positively related to both, which in turn, were negatively related to SQoL. While one interpretation of the data suggests that deficits in emotion recognition may serve as a possible defense mechanism, future studies should re-assess this idea. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Anatomically constrained neural network models for the categorization of facial expression

    NASA Astrophysics Data System (ADS)

    McMenamin, Brenton W.; Assadi, Amir H.

    2004-12-01

    The ability to recognize facial expression in humans is performed with the amygdala which uses parallel processing streams to identify the expressions quickly and accurately. Additionally, it is possible that a feedback mechanism may play a role in this process as well. Implementing a model with similar parallel structure and feedback mechanisms could be used to improve current facial recognition algorithms for which varied expressions are a source for error. An anatomically constrained artificial neural-network model was created that uses this parallel processing architecture and feedback to categorize facial expressions. The presence of a feedback mechanism was not found to significantly improve performance for models with parallel architecture. However the use of parallel processing streams significantly improved accuracy over a similar network that did not have parallel architecture. Further investigation is necessary to determine the benefits of using parallel streams and feedback mechanisms in more advanced object recognition tasks.

  16. Anatomically constrained neural network models for the categorization of facial expression

    NASA Astrophysics Data System (ADS)

    McMenamin, Brenton W.; Assadi, Amir H.

    2005-01-01

    The ability to recognize facial expression in humans is performed with the amygdala which uses parallel processing streams to identify the expressions quickly and accurately. Additionally, it is possible that a feedback mechanism may play a role in this process as well. Implementing a model with similar parallel structure and feedback mechanisms could be used to improve current facial recognition algorithms for which varied expressions are a source for error. An anatomically constrained artificial neural-network model was created that uses this parallel processing architecture and feedback to categorize facial expressions. The presence of a feedback mechanism was not found to significantly improve performance for models with parallel architecture. However the use of parallel processing streams significantly improved accuracy over a similar network that did not have parallel architecture. Further investigation is necessary to determine the benefits of using parallel streams and feedback mechanisms in more advanced object recognition tasks.

  17. The Facial Appearance of CEOs: Faces Signal Selection but Not Performance

    PubMed Central

    Garretsen, Harry; Spreeuwers, Luuk J.

    2016-01-01

    Research overwhelmingly shows that facial appearance predicts leader selection. However, the evidence on the relevance of faces for actual leader ability and consequently performance is inconclusive. By using a state-of-the-art, objective measure for face recognition, we test the predictive value of CEOs’ faces for firm performance in a large sample of faces. We first compare the faces of Fortune500 CEOs with those of US citizens and professors. We find clear confirmation that CEOs do look different when compared to citizens or professors, replicating the finding that faces matter for selection. More importantly, we also find that faces of CEOs of top performing firms do not differ from other CEOs. Based on our advanced face recognition method, our results suggest that facial appearance matters for leader selection but that it does not do so for leader performance. PMID:27462986

  18. Internship Abstract and Final Reflection

    NASA Technical Reports Server (NTRS)

    Sandor, Edward

    2016-01-01

    The primary objective for this internship is the evaluation of an embedded natural language processor (NLP) as a way to introduce voice control into future space suits. An embedded natural language processor would provide an astronaut hands-free control for making adjustments to the environment of the space suit and checking status of consumables procedures and navigation. Additionally, the use of an embedded NLP could potentially reduce crew fatigue, increase the crewmember's situational awareness during extravehicular activity (EVA) and improve the ability to focus on mission critical details. The use of an embedded NLP may be valuable for other human spaceflight applications desiring hands-free control as well. An embedded NLP is unique because it is a small device that performs language tasks, including speech recognition, which normally require powerful processors. The dedicated device could perform speech recognition locally with a smaller form-factor and lower power consumption than traditional methods.

  19. Examining object recognition and object-in-Place memory in plateau zokors, Eospalax baileyi.

    PubMed

    Hegab, Ibrahim M; Tan, Yuchen; Wang, Chan; Yao, Baohui; Wang, Haifang; Ji, Weihong; Su, Junhu

    2018-01-01

    Recognition memory is important for the survival and fitness of subterranean rodents due to the barren underground conditions that require avoiding the burden of higher energy costs or possible conflict with conspecifics. Our study aims to examine the object and object/place recognition memories in plateau zokors (Eospalax baileyi) and test whether their underground life exerts sex-specific differences in memory functions using Novel Object Recognition (NOR) and Object-in-Place (OiP) paradigms. Animals were tested in the NOR with short (10min) and long-term (24h) inter-trial intervals (ITI) and in the OiP for a 30-min ITI between the familiarization and testing sessions. Plateau zokors showed a strong preference for novel objects manifested by a longer exploration time for the novel object after 10min ITI but failed to remember the familiar object when tested after 24h, suggesting a lack of long-term memory. In the OiP test, zokors effectively formed an association between the objects and the place where they were formerly encountered, resulting in a higher duration of exploration to the switched objects. However, both sexes showed equivalent results in exploration time during the NOR and OiP tests, which eliminates the possibility of discovering sex-specific variations in memory performance. Taken together, our study illustrates robust novelty preference and an effective short-term recognition memory without marked sex-specific differences, which might elucidate the dynamics of recognition memory formation and retrieval in plateau zokors. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Object Perception Impairments Predict Instrumental Activities of Daily Living Dependence in Alzheimer's Disease

    PubMed Central

    JEFFERSON, ANGELA L.; BARAKAT, LAMIA P.; GIOVANNETTI, TANIA; PAUL, ROBERT H.; GLOSSER, GUILA

    2009-01-01

    This study examined the contribution of object perception and spatial localization to functional dependence among Alzheimer's disease (AD) patients. Forty patients with probable AD completed measures assessing verbal recognition memory, working memory, object perception, spatial localization, semantic knowledge, and global cognition. Primary caregivers completed a measure of activities of daily living (ADLs) that included instrumental and basic self-care subscales (i.e., IADLs and BADLs, respectively). Stepwise multiple regressions revealed that global cognition accounted for significant portions of variance among the ADL total, IADL, and BADL scores. However, when global cognition was removed from the model, object perception was the only significant cognitive predictor of the ADL total and IADL subscale scores, accounting for 18.5% and 19.3% of the variance, respectively. When considering multiple cognitive components simultaneously, object perception and the integrity of the inferotemporal cortex is important in the completion of functional abilities in general and IADLs in particular among AD patients. PMID:16822730

  1. Implicit and Explicit Contributions to Object Recognition: Evidence from Rapid Perceptual Learning

    PubMed Central

    Hassler, Uwe; Friese, Uwe; Gruber, Thomas

    2012-01-01

    The present study investigated implicit and explicit recognition processes of rapidly perceptually learned objects by means of steady-state visual evoked potentials (SSVEP). Participants were initially exposed to object pictures within an incidental learning task (living/non-living categorization). Subsequently, degraded versions of some of these learned pictures were presented together with degraded versions of unlearned pictures and participants had to judge, whether they recognized an object or not. During this test phase, stimuli were presented at 15 Hz eliciting an SSVEP at the same frequency. Source localizations of SSVEP effects revealed for implicit and explicit processes overlapping activations in orbito-frontal and temporal regions. Correlates of explicit object recognition were additionally found in the superior parietal lobe. These findings are discussed to reflect facilitation of object-specific processing areas within the temporal lobe by an orbito-frontal top-down signal as proposed by bi-directional accounts of object recognition. PMID:23056558

  2. Single prolonged stress impairs social and object novelty recognition in rats.

    PubMed

    Eagle, Andrew L; Fitzpatrick, Chris J; Perrine, Shane A

    2013-11-01

    Posttraumatic stress disorder (PTSD) results from exposure to a traumatic event and manifests as re-experiencing, arousal, avoidance, and negative cognition/mood symptoms. Avoidant symptoms, as well as the newly defined negative cognitions/mood, are a serious complication leading to diminished interest in once important or positive activities, such as social interaction; however, the basis of these symptoms remains poorly understood. PTSD patients also exhibit impaired object and social recognition, which may underlie the avoidance and symptoms of negative cognition, such as social estrangement or diminished interest in activities. Previous studies have demonstrated that single prolonged stress (SPS), models PTSD phenotypes, including impairments in learning and memory. Therefore, it was hypothesized that SPS would impair social and object recognition memory. Male Sprague Dawley rats were exposed to SPS then tested in the social choice test (SCT) or novel object recognition test (NOR). These tests measure recognition of novelty over familiarity, a natural preference of rodents. Results show that SPS impaired preference for both social and object novelty. In addition, SPS impairment in social recognition may be caused by impaired behavioral flexibility, or an inability to shift behavior during the SCT. These results demonstrate that traumatic stress can impair social and object recognition memory, which may underlie certain avoidant symptoms or negative cognition in PTSD and be related to impaired behavioral flexibility. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. The implementation of aerial object recognition algorithm based on contour descriptor in FPGA-based on-board vision system

    NASA Astrophysics Data System (ADS)

    Babayan, Pavel; Smirnov, Sergey; Strotov, Valery

    2017-10-01

    This paper describes the aerial object recognition algorithm for on-board and stationary vision system. Suggested algorithm is intended to recognize the objects of a specific kind using the set of the reference objects defined by 3D models. The proposed algorithm based on the outer contour descriptor building. The algorithm consists of two stages: learning and recognition. Learning stage is devoted to the exploring of reference objects. Using 3D models we can build the database containing training images by rendering the 3D model from viewpoints evenly distributed on a sphere. Sphere points distribution is made by the geosphere principle. Gathered training image set is used for calculating descriptors, which will be used in the recognition stage of the algorithm. The recognition stage is focusing on estimating the similarity of the captured object and the reference objects by matching an observed image descriptor and the reference object descriptors. The experimental research was performed using a set of the models of the aircraft of the different types (airplanes, helicopters, UAVs). The proposed orientation estimation algorithm showed good accuracy in all case studies. The real-time performance of the algorithm in FPGA-based vision system was demonstrated.

  4. A Neuromorphic Architecture for Object Recognition and Motion Anticipation Using Burst-STDP

    PubMed Central

    Balduzzi, David; Tononi, Giulio

    2012-01-01

    In this work we investigate the possibilities offered by a minimal framework of artificial spiking neurons to be deployed in silico. Here we introduce a hierarchical network architecture of spiking neurons which learns to recognize moving objects in a visual environment and determine the correct motor output for each object. These tasks are learned through both supervised and unsupervised spike timing dependent plasticity (STDP). STDP is responsible for the strengthening (or weakening) of synapses in relation to pre- and post-synaptic spike times and has been described as a Hebbian paradigm taking place both in vitro and in vivo. We utilize a variation of STDP learning, called burst-STDP, which is based on the notion that, since spikes are expensive in terms of energy consumption, then strong bursting activity carries more information than single (sparse) spikes. Furthermore, this learning algorithm takes advantage of homeostatic renormalization, which has been hypothesized to promote memory consolidation during NREM sleep. Using this learning rule, we design a spiking neural network architecture capable of object recognition, motion detection, attention towards important objects, and motor control outputs. We demonstrate the abilities of our design in a simple environment with distractor objects, multiple objects moving concurrently, and in the presence of noise. Most importantly, we show how this neural network is capable of performing these tasks using a simple leaky-integrate-and-fire (LIF) neuron model with binary synapses, making it fully compatible with state-of-the-art digital neuromorphic hardware designs. As such, the building blocks and learning rules presented in this paper appear promising for scalable fully neuromorphic systems to be implemented in hardware chips. PMID:22615855

  5. Affective and contextual values modulate spatial frequency use in object recognition

    PubMed Central

    Caplette, Laurent; West, Gregory; Gomot, Marie; Gosselin, Frédéric; Wicker, Bruno

    2014-01-01

    Visual object recognition is of fundamental importance in our everyday interaction with the environment. Recent models of visual perception emphasize the role of top-down predictions facilitating object recognition via initial guesses that limit the number of object representations that need to be considered. Several results suggest that this rapid and efficient object processing relies on the early extraction and processing of low spatial frequencies (LSF). The present study aimed to investigate the SF content of visual object representations and its modulation by contextual and affective values of the perceived object during a picture-name verification task. Stimuli consisted of pictures of objects equalized in SF content and categorized as having low or high affective and contextual values. To access the SF content of stored visual representations of objects, SFs of each image were then randomly sampled on a trial-by-trial basis. Results reveal that intermediate SFs between 14 and 24 cycles per object (2.3–4 cycles per degree) are correlated with fast and accurate identification for all categories of objects. Moreover, there was a significant interaction between affective and contextual values over the SFs correlating with fast recognition. These results suggest that affective and contextual values of a visual object modulate the SF content of its internal representation, thus highlighting the flexibility of the visual recognition system. PMID:24904514

  6. To Fear Is to Gain? The Role of Fear Recognition in Risky Decision Making in TBI Patients and Healthy Controls

    PubMed Central

    Visser-Keizer, Annemarie C.; Westerhof-Evers, Herma J.; Gerritsen, Marleen J. J.; van der Naalt, Joukje; Spikman, Jacoba M.

    2016-01-01

    Fear is an important emotional reaction that guides decision making in situations of ambiguity or uncertainty. Both recognition of facial expressions of fear and decision making ability can be impaired after traumatic brain injury (TBI), in particular when the frontal lobe is damaged. So far, it has not been investigated how recognition of fear influences risk behavior in healthy subjects and TBI patients. The ability to recognize fear is thought to be related to the ability to experience fear and to use it as a warning signal to guide decision making. We hypothesized that a better ability to recognize fear would be related to a better regulation of risk behavior, with healthy controls outperforming TBI patients. To investigate this, 59 healthy subjects and 49 TBI patients were assessed with a test for emotion recognition (Facial Expression of Emotion: Stimuli and Tests) and a gambling task (Iowa Gambling Task (IGT)). The results showed that, regardless of post traumatic amnesia duration or the presence of frontal lesions, patients were more impaired than healthy controls on both fear recognition and decision making. In both groups, a significant relationship was found between better fear recognition, the development of an advantageous strategy across the IGT and less risk behavior in the last blocks of the IGT. Educational level moderated this relationship in the final block of the IGT. This study has important clinical implications, indicating that impaired decision making and risk behavior after TBI can be preceded by deficits in the processing of fear. PMID:27870900

  7. To Fear Is to Gain? The Role of Fear Recognition in Risky Decision Making in TBI Patients and Healthy Controls.

    PubMed

    Visser-Keizer, Annemarie C; Westerhof-Evers, Herma J; Gerritsen, Marleen J J; van der Naalt, Joukje; Spikman, Jacoba M

    2016-01-01

    Fear is an important emotional reaction that guides decision making in situations of ambiguity or uncertainty. Both recognition of facial expressions of fear and decision making ability can be impaired after traumatic brain injury (TBI), in particular when the frontal lobe is damaged. So far, it has not been investigated how recognition of fear influences risk behavior in healthy subjects and TBI patients. The ability to recognize fear is thought to be related to the ability to experience fear and to use it as a warning signal to guide decision making. We hypothesized that a better ability to recognize fear would be related to a better regulation of risk behavior, with healthy controls outperforming TBI patients. To investigate this, 59 healthy subjects and 49 TBI patients were assessed with a test for emotion recognition (Facial Expression of Emotion: Stimuli and Tests) and a gambling task (Iowa Gambling Task (IGT)). The results showed that, regardless of post traumatic amnesia duration or the presence of frontal lesions, patients were more impaired than healthy controls on both fear recognition and decision making. In both groups, a significant relationship was found between better fear recognition, the development of an advantageous strategy across the IGT and less risk behavior in the last blocks of the IGT. Educational level moderated this relationship in the final block of the IGT. This study has important clinical implications, indicating that impaired decision making and risk behavior after TBI can be preceded by deficits in the processing of fear.

  8. Combining high-speed SVM learning with CNN feature encoding for real-time target recognition in high-definition video for ISR missions

    NASA Astrophysics Data System (ADS)

    Kroll, Christine; von der Werth, Monika; Leuck, Holger; Stahl, Christoph; Schertler, Klaus

    2017-05-01

    For Intelligence, Surveillance, Reconnaissance (ISR) missions of manned and unmanned air systems typical electrooptical payloads provide high-definition video data which has to be exploited with respect to relevant ground targets in real-time by automatic/assisted target recognition software. Airbus Defence and Space is developing required technologies for real-time sensor exploitation since years and has combined the latest advances of Deep Convolutional Neural Networks (CNN) with a proprietary high-speed Support Vector Machine (SVM) learning method into a powerful object recognition system with impressive results on relevant high-definition video scenes compared to conventional target recognition approaches. This paper describes the principal requirements for real-time target recognition in high-definition video for ISR missions and the Airbus approach of combining an invariant feature extraction using pre-trained CNNs and the high-speed training and classification ability of a novel frequency-domain SVM training method. The frequency-domain approach allows for a highly optimized implementation for General Purpose Computation on a Graphics Processing Unit (GPGPU) and also an efficient training of large training samples. The selected CNN which is pre-trained only once on domain-extrinsic data reveals a highly invariant feature extraction. This allows for a significantly reduced adaptation and training of the target recognition method for new target classes and mission scenarios. A comprehensive training and test dataset was defined and prepared using relevant high-definition airborne video sequences. The assessment concept is explained and performance results are given using the established precision-recall diagrams, average precision and runtime figures on representative test data. A comparison to legacy target recognition approaches shows the impressive performance increase by the proposed CNN+SVM machine-learning approach and the capability of real-time high-definition video exploitation.

  9. A high-throughput screening approach to discovering good forms of biologically inspired visual representation.

    PubMed

    Pinto, Nicolas; Doukhan, David; DiCarlo, James J; Cox, David D

    2009-11-01

    While many models of biological object recognition share a common set of "broad-stroke" properties, the performance of any one model depends strongly on the choice of parameters in a particular instantiation of that model--e.g., the number of units per layer, the size of pooling kernels, exponents in normalization operations, etc. Since the number of such parameters (explicit or implicit) is typically large and the computational cost of evaluating one particular parameter set is high, the space of possible model instantiations goes largely unexplored. Thus, when a model fails to approach the abilities of biological visual systems, we are left uncertain whether this failure is because we are missing a fundamental idea or because the correct "parts" have not been tuned correctly, assembled at sufficient scale, or provided with enough training. Here, we present a high-throughput approach to the exploration of such parameter sets, leveraging recent advances in stream processing hardware (high-end NVIDIA graphic cards and the PlayStation 3's IBM Cell Processor). In analogy to high-throughput screening approaches in molecular biology and genetics, we explored thousands of potential network architectures and parameter instantiations, screening those that show promising object recognition performance for further analysis. We show that this approach can yield significant, reproducible gains in performance across an array of basic object recognition tasks, consistently outperforming a variety of state-of-the-art purpose-built vision systems from the literature. As the scale of available computational power continues to expand, we argue that this approach has the potential to greatly accelerate progress in both artificial vision and our understanding of the computational underpinning of biological vision.

  10. An expanded framework for biomolecular visualization in the classroom: Learning goals and competencies.

    PubMed

    Dries, Daniel R; Dean, Diane M; Listenberger, Laura L; Novak, Walter R P; Franzen, Margaret A; Craig, Paul A

    2017-01-02

    A thorough understanding of the molecular biosciences requires the ability to visualize and manipulate molecules in order to interpret results or to generate hypotheses. While many instructors in biochemistry and molecular biology use visual representations, few indicate that they explicitly teach visual literacy. One reason is the need for a list of core content and competencies to guide a more deliberate instruction in visual literacy. We offer here the second stage in the development of one such resource for biomolecular three-dimensional visual literacy. We present this work with the goal of building a community for online resource development and use. In the first stage, overarching themes were identified and submitted to the biosciences community for comment: atomic geometry; alternate renderings; construction/annotation; het group recognition; molecular dynamics; molecular interactions; monomer recognition; symmetry/asymmetry recognition; structure-function relationships; structural model skepticism; and topology and connectivity. Herein, the overarching themes have been expanded to include a 12th theme (macromolecular assemblies), 27 learning goals, and more than 200 corresponding objectives, many of which cut across multiple overarching themes. The learning goals and objectives offered here provide educators with a framework on which to map the use of molecular visualization in their classrooms. In addition, the framework may also be used by biochemistry and molecular biology educators to identify gaps in coverage and drive the creation of new activities to improve visual literacy. This work represents the first attempt, to our knowledge, to catalog a comprehensive list of explicit learning goals and objectives in visual literacy. © 2016 by The International Union of Biochemistry and Molecular Biology, 45(1):69-75, 2017. © 2016 The Authors Biochemistry and Molecular Biology Education published by Wiley Periodicals, Inc. on behalf of International Union of Biochemistry and Molecular Biology.

  11. Neuroprotective effects of Bacopa monnieri (Brahmi) on novel object recognition and NMDAR1 immunodensity in the prefrontal cortex, striatum and hippocampus of sub-chronic phencyclidine rat model of schizophrenia.

    PubMed

    Piyabhan, Pritsana; Wetchateng, Thanitsara

    2014-08-01

    Cognitive impairment is a major problem, which eventually develops in schizophrenia. It contributes to the patients 'functional disability and cannot be attenuated by antipsychotic drugs. Bacopa monnieri (Brahmi), a neuroprotective herbal medicine in the elderly, might be a novel neuroprotective agent for prevention of cognitive deficit in schizophrenia. To study neuroprotective effects ofBrahmi on novel object recognition task and cerebral glutamate/N-methyl-D- aspartate receptor subtype 1 (NMDAR1) immunodensity in sub-chronic phencyclidine (PCP) rat model ofschizophrenia. Rats were assigned to three groups; Group-A: Control, Group-B: PCP administration and Group- C: Brahmi + PCP. Discrimination ratio (DR) representing cognitive ability was obtainedfrom novel object recognition task. NMDAR1 immunodensity was measured in prefrontal cortex, striatum, cornu ammonis fields I (CA 1) and 2/3 (CA2/3) and dentate gyrus (DG) using immunohistochemistry. DR was significantly reduced in PCP group compared with control. This occurred alongside NMDAR1 up-regulation in CA2/3 and DG but not in prefrontal cortex, striatum or CA1. Brahmi + PCP group showed an increased DR score up to normal which occurred alongside a significantly decreased NMDARI immunodensity in CA2/3 and DG compared with PCP group. Cognitive deficit observed in rats receiving PCP was mediated by NMDAR1 up-regulation in CA2/3 and DG Interestingly, receiving Brahmi before PCP administration can restore this cognitive deficit by decreasingNMDAR1 in these brain areas. Therefore, Brahmi could be a novel neuroprotective agentfor the prevention ofcognitive deficit in schizophrenia.

  12. An expanded framework for biomolecular visualization in the classroom: Learning goals and competencies

    PubMed Central

    Dries, Daniel R.; Dean, Diane M.; Listenberger, Laura L.; Novak, Walter R.P.

    2016-01-01

    Abstract A thorough understanding of the molecular biosciences requires the ability to visualize and manipulate molecules in order to interpret results or to generate hypotheses. While many instructors in biochemistry and molecular biology use visual representations, few indicate that they explicitly teach visual literacy. One reason is the need for a list of core content and competencies to guide a more deliberate instruction in visual literacy. We offer here the second stage in the development of one such resource for biomolecular three‐dimensional visual literacy. We present this work with the goal of building a community for online resource development and use. In the first stage, overarching themes were identified and submitted to the biosciences community for comment: atomic geometry; alternate renderings; construction/annotation; het group recognition; molecular dynamics; molecular interactions; monomer recognition; symmetry/asymmetry recognition; structure‐function relationships; structural model skepticism; and topology and connectivity. Herein, the overarching themes have been expanded to include a 12th theme (macromolecular assemblies), 27 learning goals, and more than 200 corresponding objectives, many of which cut across multiple overarching themes. The learning goals and objectives offered here provide educators with a framework on which to map the use of molecular visualization in their classrooms. In addition, the framework may also be used by biochemistry and molecular biology educators to identify gaps in coverage and drive the creation of new activities to improve visual literacy. This work represents the first attempt, to our knowledge, to catalog a comprehensive list of explicit learning goals and objectives in visual literacy. © 2016 by The International Union of Biochemistry and Molecular Biology, 45(1):69–75, 2017. PMID:27486685

  13. A High-Throughput Screening Approach to Discovering Good Forms of Biologically Inspired Visual Representation

    PubMed Central

    Pinto, Nicolas; Doukhan, David; DiCarlo, James J.; Cox, David D.

    2009-01-01

    While many models of biological object recognition share a common set of “broad-stroke” properties, the performance of any one model depends strongly on the choice of parameters in a particular instantiation of that model—e.g., the number of units per layer, the size of pooling kernels, exponents in normalization operations, etc. Since the number of such parameters (explicit or implicit) is typically large and the computational cost of evaluating one particular parameter set is high, the space of possible model instantiations goes largely unexplored. Thus, when a model fails to approach the abilities of biological visual systems, we are left uncertain whether this failure is because we are missing a fundamental idea or because the correct “parts” have not been tuned correctly, assembled at sufficient scale, or provided with enough training. Here, we present a high-throughput approach to the exploration of such parameter sets, leveraging recent advances in stream processing hardware (high-end NVIDIA graphic cards and the PlayStation 3's IBM Cell Processor). In analogy to high-throughput screening approaches in molecular biology and genetics, we explored thousands of potential network architectures and parameter instantiations, screening those that show promising object recognition performance for further analysis. We show that this approach can yield significant, reproducible gains in performance across an array of basic object recognition tasks, consistently outperforming a variety of state-of-the-art purpose-built vision systems from the literature. As the scale of available computational power continues to expand, we argue that this approach has the potential to greatly accelerate progress in both artificial vision and our understanding of the computational underpinning of biological vision. PMID:19956750

  14. Neural-Network Object-Recognition Program

    NASA Technical Reports Server (NTRS)

    Spirkovska, L.; Reid, M. B.

    1993-01-01

    HONTIOR computer program implements third-order neural network exhibiting invariance under translation, change of scale, and in-plane rotation. Invariance incorporated directly into architecture of network. Only one view of each object needed to train network for two-dimensional-translation-invariant recognition of object. Also used for three-dimensional-transformation-invariant recognition by training network on only set of out-of-plane rotated views. Written in C language.

  15. Face recognition and description abilities in people with mild intellectual disabilities.

    PubMed

    Gawrylowicz, Julie; Gabbert, Fiona; Carson, Derek; Lindsay, William R; Hancock, Peter J B

    2013-09-01

    People with intellectual disabilities (ID) are as likely as the general population to find themselves in the situation of having to identify and/or describe a perpetrator's face to the police. However, limited verbal and memory abilities in people with ID might prevent them to engage in standard police procedures. Two experiments examined face recognition and description abilities in people with mild intellectual disabilities (mID) and compared their performance with that of people without ID. Experiment 1 used three old/new face recognition tasks. Experiment 2 consisted of two face description tasks, during which participants had to verbally describe faces from memory and with the target in view. Participants with mID performed significantly poorer on both recognition and recall tasks than control participants. However, their group performance was better than chance and they showed variability in performance depending on the measures introduced. The practical implications of these findings in forensic settings are discussed. © 2013 John Wiley & Sons Ltd.

  16. Developmental Changes in Face Recognition during Childhood: Evidence from Upright and Inverted Faces

    ERIC Educational Resources Information Center

    de Heering, Adelaide; Rossion, Bruno; Maurer, Daphne

    2012-01-01

    Adults are experts at recognizing faces but there is controversy about how this ability develops with age. We assessed 6- to 12-year-olds and adults using a digitized version of the Benton Face Recognition Test, a sensitive tool for assessing face perception abilities. Children's response times for correct responses did not decrease between ages 6…

  17. Image jitter enhances visual performance when spatial resolution is impaired.

    PubMed

    Watson, Lynne M; Strang, Niall C; Scobie, Fraser; Love, Gordon D; Seidel, Dirk; Manahilov, Velitchko

    2012-09-06

    Visibility of low-spatial frequency stimuli improves when their contrast is modulated at 5 to 10 Hz compared with stationary stimuli. Therefore, temporal modulations of visual objects could enhance the performance of low vision patients who primarily perceive images of low-spatial frequency content. We investigated the effect of retinal-image jitter on word recognition speed and facial emotion recognition in subjects with central visual impairment. Word recognition speed and accuracy of facial emotion discrimination were measured in volunteers with AMD under stationary and jittering conditions. Computer-driven and optoelectronic approaches were used to induce retinal-image jitter with duration of 100 or 166 ms and amplitude within the range of 0.5 to 2.6° visual angle. Word recognition speed was also measured for participants with simulated (Bangerter filters) visual impairment. Text jittering markedly enhanced word recognition speed for people with severe visual loss (101 ± 25%), while for those with moderate visual impairment, this effect was weaker (19 ± 9%). The ability of low vision patients to discriminate the facial emotions of jittering images improved by a factor of 2. A prototype of optoelectronic jitter goggles produced similar improvement in facial emotion discrimination. Word recognition speed in participants with simulated visual impairment was enhanced for interjitter intervals over 100 ms and reduced for shorter intervals. Results suggest that retinal-image jitter with optimal frequency and amplitude is an effective strategy for enhancing visual information processing in the absence of spatial detail. These findings will enable the development of novel tools to improve the quality of life of low vision patients.

  18. Simple Learned Weighted Sums of Inferior Temporal Neuronal Firing Rates Accurately Predict Human Core Object Recognition Performance.

    PubMed

    Majaj, Najib J; Hong, Ha; Solomon, Ethan A; DiCarlo, James J

    2015-09-30

    To go beyond qualitative models of the biological substrate of object recognition, we ask: can a single ventral stream neuronal linking hypothesis quantitatively account for core object recognition performance over a broad range of tasks? We measured human performance in 64 object recognition tests using thousands of challenging images that explore shape similarity and identity preserving object variation. We then used multielectrode arrays to measure neuronal population responses to those same images in visual areas V4 and inferior temporal (IT) cortex of monkeys and simulated V1 population responses. We tested leading candidate linking hypotheses and control hypotheses, each postulating how ventral stream neuronal responses underlie object recognition behavior. Specifically, for each hypothesis, we computed the predicted performance on the 64 tests and compared it with the measured pattern of human performance. All tested hypotheses based on low- and mid-level visually evoked activity (pixels, V1, and V4) were very poor predictors of the human behavioral pattern. However, simple learned weighted sums of distributed average IT firing rates exactly predicted the behavioral pattern. More elaborate linking hypotheses relying on IT trial-by-trial correlational structure, finer IT temporal codes, or ones that strictly respect the known spatial substructures of IT ("face patches") did not improve predictive power. Although these results do not reject those more elaborate hypotheses, they suggest a simple, sufficient quantitative model: each object recognition task is learned from the spatially distributed mean firing rates (100 ms) of ∼60,000 IT neurons and is executed as a simple weighted sum of those firing rates. Significance statement: We sought to go beyond qualitative models of visual object recognition and determine whether a single neuronal linking hypothesis can quantitatively account for core object recognition behavior. To achieve this, we designed a database of images for evaluating object recognition performance. We used multielectrode arrays to characterize hundreds of neurons in the visual ventral stream of nonhuman primates and measured the object recognition performance of >100 human observers. Remarkably, we found that simple learned weighted sums of firing rates of neurons in monkey inferior temporal (IT) cortex accurately predicted human performance. Although previous work led us to expect that IT would outperform V4, we were surprised by the quantitative precision with which simple IT-based linking hypotheses accounted for human behavior. Copyright © 2015 the authors 0270-6474/15/3513402-17$15.00/0.

  19. HDAC inhibition modulates hippocampus-dependent long-term memory for object location in a CBP-dependent manner

    PubMed Central

    Haettig, Jakob; Stefanko, Daniel P.; Multani, Monica L.; Figueroa, Dario X.; McQuown, Susan C.; Wood, Marcelo A.

    2011-01-01

    Transcription of genes required for long-term memory not only involves transcription factors, but also enzymatic protein complexes that modify chromatin structure. Chromatin-modifying enzymes, such as the histone acetyltransferase (HAT) CREB (cyclic-AMP response element binding) binding protein (CBP), are pivotal for the transcriptional regulation required for long-term memory. Several studies have shown that CBP and histone acetylation are necessary for hippocampus-dependent long-term memory and hippocampal long-term potentiation (LTP). Importantly, every genetically modified Cbp mutant mouse exhibits long-term memory impairments in object recognition. However, the role of the hippocampus in object recognition is controversial. To better understand how chromatin-modifying enzymes modulate long-term memory for object recognition, we first examined the role of the hippocampus in retrieval of long-term memory for object recognition or object location. Muscimol inactivation of the dorsal hippocampus prior to retrieval had no effect on long-term memory for object recognition, but completely blocked long-term memory for object location. This was consistent with experiments showing that muscimol inactivation of the hippocampus had no effect on long-term memory for the object itself, supporting the idea that the hippocampus encodes spatial information about an object (such as location or context), whereas cortical areas (such as the perirhinal or insular cortex) encode information about the object itself. Using location-dependent object recognition tasks that engage the hippocampus, we demonstrate that CBP is essential for the modulation of long-term memory via HDAC inhibition. Together, these results indicate that HDAC inhibition modulates memory in the hippocampus via CBP and that different brain regions utilize different chromatin-modifying enzymes to regulate learning and memory. PMID:21224411

  20. Automatic anatomy recognition using neural network learning of object relationships via virtual landmarks

    NASA Astrophysics Data System (ADS)

    Yan, Fengxia; Udupa, Jayaram K.; Tong, Yubing; Xu, Guoping; Odhner, Dewey; Torigian, Drew A.

    2018-03-01

    The recently developed body-wide Automatic Anatomy Recognition (AAR) methodology depends on fuzzy modeling of individual objects, hierarchically arranging objects, constructing an anatomy ensemble of these models, and a dichotomous object recognition-delineation process. The parent-to-offspring spatial relationship in the object hierarchy is crucial in the AAR method. We have found this relationship to be quite complex, and as such any improvement in capturing this relationship information in the anatomy model will improve the process of recognition itself. Currently, the method encodes this relationship based on the layout of the geometric centers of the objects. Motivated by the concept of virtual landmarks (VLs), this paper presents a new one-shot AAR recognition method that utilizes the VLs to learn object relationships by training a neural network to predict the pose and the VLs of an offspring object given the VLs of the parent object in the hierarchy. We set up two neural networks for each parent-offspring object pair in a body region, one for predicting the VLs and another for predicting the pose parameters. The VL-based learning/prediction method is evaluated on two object hierarchies involving 14 objects. We utilize 54 computed tomography (CT) image data sets of head and neck cancer patients and the associated object contours drawn by dosimetrists for routine radiation therapy treatment planning. The VL neural network method is found to yield more accurate object localization than the currently used simple AAR method.

  1. Dietary effects on object recognition: The impact of high-fat high-sugar diets on recollection and familiarity-based memory.

    PubMed

    Tran, Dominic M D; Westbrook, R Frederick

    2018-05-31

    Exposure to a high-fat high-sugar (HFHS) diet rapidly impairs novel-place- but not novel-object-recognition memory in rats (Tran & Westbrook, 2015, 2017). Three experiments sought to investigate the generality of diet-induced cognitive deficits by examining whether there are conditions under which object-recognition memory is impaired. Experiments 1 and 3 tested the strength of short- and long-term object-memory trace, respectively, by varying the interval of time between object familiarization and subsequent novel object test. Experiment 2 tested the effect of increasing working memory load on object-recognition memory by interleaving additional object exposures between familiarization and test in an n-back style task. Experiments 1-3 failed to detect any differences in object recognition between HFHS and control rats. Experiment 4 controlled for object novelty by separately familiarizing both objects presented at test, which included one remote-familiar and one recent-familiar object. Under these conditions, when test objects differed in their relative recency, HFHS rats showed a weaker memory trace for the remote object compared to chow rats. This result suggests that the diet leaves intact recollection judgments, but impairs familiarity judgments. We speculate that the HFHS diet adversely affects "where" memories as well as the quality of "what" memories, and discuss these effects in relation to recollection and familiarity memory models, hippocampal-dependent functions, and episodic food memories. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  2. Motion Imagery Processing and Exploitation (MIPE)

    DTIC Science & Technology

    2013-01-01

    facial recognition —i.e., the identification of a specific person.37 Object detection is often (but not always) considered a prerequisite for instance...The goal of segmentation is to distinguish objects and identify boundaries in images. Some of the earliest approaches to facial recognition involved...methods of instance recognition are at varying levels of maturity. Facial recognition methods are arguably the most mature; the technology is well

  3. [Developmental change in facial recognition by premature infants during infancy].

    PubMed

    Konishi, Yukihiko; Kusaka, Takashi; Nishida, Tomoko; Isobe, Kenichi; Itoh, Susumu

    2014-09-01

    Premature infants are thought to be at increased risk for developmental disorders. We evaluated facial recognition by premature infants during early infancy, as this ability has been reported to be impaired commonly in developmentally disabled children. In premature infants and full-term infants at the age of 4 months (4 corrected months for premature infants), visual behaviors while performing facial recognition tasks were determined and analyzed using an eye-tracking system (Tobii T60 manufactured by Tobii Technologics, Sweden). Both types of infants had a preference towards normal facial expressions; however, no preference towards the upper face was observed in premature infants. Our study suggests that facial recognition ability in premature infants may develop differently from that in full-term infants.

  4. Cognitive deficits in the Snord116 deletion mouse model for Prader-Willi syndrome.

    PubMed

    Adhikari, Anna; Copping, Nycole A; Onaga, Beth; Pride, Michael C; Coulson, Rochelle L; Yang, Mu; Yasui, Dag H; LaSalle, Janine M; Silverman, Jill L

    2018-05-23

    Prader-Willi syndrome (PWS) is an imprinted neurodevelopmental disease caused by a loss of paternal genes on chromosome 15q11-q13. It is characterized by cognitive impairments, developmental delay, sleep abnormalities, and hyperphagia often leading to obesity. Clinical research has shown that a lack of expression of SNORD116, a paternally expressed imprinted gene cluster that encodes multiple copies of a small nucleolar RNA (snoRNA) in both humans and mice, is most likely responsible for many PWS symptoms seen in humans. The majority of previous research using PWS preclinical models focused on characterization of the hyperphagic and metabolic phenotypes. However, a crucial understudied clinical phenotype is cognitive impairments and thus we investigated the learning and memory abilities using a model of PWS, with a heterozygous deletion in Snord116. We utilized the novel object recognition task, which doesn't require external motivation, or exhaustive swim training. Automated findings were further confirmed with manual scoring by a highly trained blinded investigator. We discovered deficits in Snord116+/- mutant mice in the novel object recognition, location memory and tone cue fear conditioning assays when compared to age-, sex- matched, littermate control Snord116+/+ mice. Further, we confirmed that despite physical neo-natal developmental delays, Snord116+/- mice had normal exploratory and motor abilities. These results show that the Snord116+/- deletion murine model is a valuable preclinical model for investigating learning and memory impairments in individuals with PWS without common confounding phenotypes. Copyright © 2018 Elsevier Inc. All rights reserved.

  5. The Two-Systems Account of Theory of Mind: Testing the Links to Social- Perceptual and Cognitive Abilities

    PubMed Central

    Meinhardt-Injac, Bozana; Daum, Moritz M.; Meinhardt, Günter; Persike, Malte

    2018-01-01

    According to the two-systems account of theory of mind (ToM), understanding mental states of others involves both fast social-perceptual processes, as well as slower, reflexive cognitive operations (Frith and Frith, 2008; Apperly and Butterfill, 2009). To test the respective roles of specific abilities in either of these processes we administered 15 experimental procedures to a large sample of 343 participants, testing ability in face recognition and holistic perception, language, and reasoning. ToM was measured by a set of tasks requiring ability to track and to infer complex emotional and mental states of others from faces, eyes, spoken language, and prosody. We used structural equation modeling to test the relative strengths of a social-perceptual (face processing related) and reflexive-cognitive (language and reasoning related) path in predicting ToM ability. The two paths accounted for 58% of ToM variance, thus validating a general two-systems framework. Testing specific predictor paths revealed language and face recognition as strong and significant predictors of ToM. For reasoning, there were neither direct nor mediated effects, albeit reasoning was strongly associated with language. Holistic face perception also failed to show a direct link with ToM ability, while there was a mediated effect via face recognition. These results highlight the respective roles of face recognition and language for the social brain, and contribute closer empirical specification of the general two-systems account. PMID:29445336

  6. Social Approach and Emotion Recognition in Fragile X Syndrome

    ERIC Educational Resources Information Center

    Williams, Tracey A.; Porter, Melanie A.; Langdon, Robyn

    2014-01-01

    Evidence is emerging that individuals with Fragile X syndrome (FXS) display emotion recognition deficits, which may contribute to their significant social difficulties. The current study investigated the emotion recognition abilities, and social approachability judgments, of FXS individuals when processing emotional stimuli. Relative to…

  7. Cross-modal individual recognition in wild African lions.

    PubMed

    Gilfillan, Geoffrey; Vitale, Jessica; McNutt, John Weldon; McComb, Karen

    2016-08-01

    Individual recognition is considered to have been fundamental in the evolution of complex social systems and is thought to be a widespread ability throughout the animal kingdom. Although robust evidence for individual recognition remains limited, recent experimental paradigms that examine cross-modal processing have demonstrated individual recognition in a range of captive non-human animals. It is now highly relevant to test whether cross-modal individual recognition exists within wild populations and thus examine how it is employed during natural social interactions. We address this question by testing audio-visual cross-modal individual recognition in wild African lions (Panthera leo) using an expectancy-violation paradigm. When presented with a scenario where the playback of a loud-call (roaring) broadcast from behind a visual block is incongruent with the conspecific previously seen there, subjects responded more strongly than during the congruent scenario where the call and individual matched. These findings suggest that lions are capable of audio-visual cross-modal individual recognition and provide a useful method for studying this ability in wild populations. © 2016 The Author(s).

  8. Individual differences in the ability to recognise facial identity are associated with social anxiety.

    PubMed

    Davis, Joshua M; McKone, Elinor; Dennett, Hugh; O'Connor, Kirsty B; O'Kearney, Richard; Palermo, Romina

    2011-01-01

    Previous research has been concerned with the relationship between social anxiety and the recognition of face expression but the question of whether there is a relationship between social anxiety and the recognition of face identity has been neglected. Here, we report the first evidence that social anxiety is associated with recognition of face identity, across the population range of individual differences in recognition abilities. Results showed poorer face identity recognition (on the Cambridge Face Memory Test) was correlated with a small but significant increase in social anxiety (Social Interaction Anxiety Scale) but not general anxiety (State-Trait Anxiety Inventory). The correlation was also independent of general visual memory (Cambridge Car Memory Test) and IQ. Theoretically, the correlation could arise because correct identification of people, typically achieved via faces, is important for successful social interactions, extending evidence that individuals with clinical-level deficits in face identity recognition (prosopagnosia) often report social stress due to their inability to recognise others. Equally, the relationship could arise if social anxiety causes reduced exposure or attention to people's faces, and thus to poor development of face recognition mechanisms.

  9. Individual Differences in the Ability to Recognise Facial Identity Are Associated with Social Anxiety

    PubMed Central

    Davis, Joshua M.; McKone, Elinor; Dennett, Hugh; O'Connor, Kirsty B.; O'Kearney, Richard; Palermo, Romina

    2011-01-01

    Previous research has been concerned with the relationship between social anxiety and the recognition of face expression but the question of whether there is a relationship between social anxiety and the recognition of face identity has been neglected. Here, we report the first evidence that social anxiety is associated with recognition of face identity, across the population range of individual differences in recognition abilities. Results showed poorer face identity recognition (on the Cambridge Face Memory Test) was correlated with a small but significant increase in social anxiety (Social Interaction Anxiety Scale) but not general anxiety (State-Trait Anxiety Inventory). The correlation was also independent of general visual memory (Cambridge Car Memory Test) and IQ. Theoretically, the correlation could arise because correct identification of people, typically achieved via faces, is important for successful social interactions, extending evidence that individuals with clinical-level deficits in face identity recognition (prosopagnosia) often report social stress due to their inability to recognise others. Equally, the relationship could arise if social anxiety causes reduced exposure or attention to people's faces, and thus to poor development of face recognition mechanisms. PMID:22194916

  10. Perirhinal Cortex Lesions in Rats: Novelty Detection and Sensitivity to Interference

    PubMed Central

    2015-01-01

    Rats with perirhinal cortex lesions received multiple object recognition trials within a continuous session to examine whether they show false memories. Experiment 1 focused on exploration patterns during the first object recognition test postsurgery, in which each trial contained 1 novel and 1 familiar object. The perirhinal cortex lesions reduced time spent exploring novel objects, but did not affect overall time spent exploring the test objects (novel plus familiar). Replications with subsequent cohorts of rats (Experiments 2, 3, 4.1) repeated this pattern of results. When all recognition memory data were combined (Experiments 1–4), giving totals of 44 perirhinal lesion rats and 40 surgical sham controls, the perirhinal cortex lesions caused a marginal reduction in total exploration time. That decrease in time with novel objects was often compensated by increased exploration of familiar objects. Experiment 4 also assessed the impact of proactive interference on recognition memory. Evidence emerged that prior object experience could additionally impair recognition performance in rats with perirhinal cortex lesions. Experiment 5 examined exploration levels when rats were just given pairs of novel objects to explore. Despite their perirhinal cortex lesions, exploration levels were comparable with those of control rats. While the results of Experiment 4 support the notion that perirhinal lesions can increase sensitivity to proactive interference, the overall findings question whether rats lacking a perirhinal cortex typically behave as if novel objects are familiar, that is, show false recognition. Rather, the rats retain a signal of novelty but struggle to discriminate the identity of that signal. PMID:26030425

  11. The Cambridge Face Memory Test for Children (CFMT-C): a new tool for measuring face recognition skills in childhood.

    PubMed

    Croydon, Abigail; Pimperton, Hannah; Ewing, Louise; Duchaine, Brad C; Pellicano, Elizabeth

    2014-09-01

    Face recognition ability follows a lengthy developmental course, not reaching maturity until well into adulthood. Valid and reliable assessments of face recognition memory ability are necessary to examine patterns of ability and disability in face processing, yet there is a dearth of such assessments for children. We modified a well-known test of face memory in adults, the Cambridge Face Memory Test (Duchaine & Nakayama, 2006, Neuropsychologia, 44, 576-585), to make it developmentally appropriate for children. To establish its utility, we administered either the upright or inverted versions of the computerised Cambridge Face Memory Test - Children (CFMT-C) to 401 children aged between 5 and 12 years. Our results show that the CFMT-C is sufficiently sensitive to demonstrate age-related gains in the recognition of unfamiliar upright and inverted faces, does not suffer from ceiling or floor effects, generates robust inversion effects, and is capable of detecting difficulties in face memory in children diagnosed with autism. Together, these findings indicate that the CFMT-C constitutes a new valid assessment tool for children's face recognition skills. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Rapid Target Detection in High Resolution Remote Sensing Images Using Yolo Model

    NASA Astrophysics Data System (ADS)

    Wu, Z.; Chen, X.; Gao, Y.; Li, Y.

    2018-04-01

    Object detection in high resolution remote sensing images is a fundamental and challenging problem in the field of remote sensing imagery analysis for civil and military application due to the complex neighboring environments, which can cause the recognition algorithms to mistake irrelevant ground objects for target objects. Deep Convolution Neural Network(DCNN) is the hotspot in object detection for its powerful ability of feature extraction and has achieved state-of-the-art results in Computer Vision. Common pipeline of object detection based on DCNN consists of region proposal, CNN feature extraction, region classification and post processing. YOLO model frames object detection as a regression problem, using a single CNN predicts bounding boxes and class probabilities in an end-to-end way and make the predict faster. In this paper, a YOLO based model is used for object detection in high resolution sensing images. The experiments on NWPU VHR-10 dataset and our airport/airplane dataset gain from GoogleEarth show that, compare with the common pipeline, the proposed model speeds up the detection process and have good accuracy.

  13. Running Improves Pattern Separation during Novel Object Recognition.

    PubMed

    Bolz, Leoni; Heigele, Stefanie; Bischofberger, Josef

    2015-10-09

    Running increases adult neurogenesis and improves pattern separation in various memory tasks including context fear conditioning or touch-screen based spatial learning. However, it is unknown whether pattern separation is improved in spontaneous behavior, not emotionally biased by positive or negative reinforcement. Here we investigated the effect of voluntary running on pattern separation during novel object recognition in mice using relatively similar or substantially different objects.We show that running increases hippocampal neurogenesis but does not affect object recognition memory with 1.5 h delay after sample phase. By contrast, at 24 h delay, running significantly improves recognition memory for similar objects, whereas highly different objects can be distinguished by both, running and sedentary mice. These data show that physical exercise improves pattern separation, independent of negative or positive reinforcement. In sedentary mice there is a pronounced temporal gradient for remembering object details. In running mice, however, increased neurogenesis improves hippocampal coding and temporally preserves distinction of novel objects from familiar ones.

  14. Distorted Character Recognition Via An Associative Neural Network

    NASA Astrophysics Data System (ADS)

    Messner, Richard A.; Szu, Harold H.

    1987-03-01

    The purpose of this paper is two-fold. First, it is intended to provide some preliminary results of a character recognition scheme which has foundations in on-going neural network architecture modeling, and secondly, to apply some of the neural network results in a real application area where thirty years of effort has had little effect on providing the machine an ability to recognize distorted objects within the same object class. It is the author's belief that the time is ripe to start applying in ernest the results of over twenty years of effort in neural modeling to some of the more difficult problems which seem so hard to solve by conventional means. The character recognition scheme proposed utilizes a preprocessing stage which performs a 2-dimensional Walsh transform of an input cartesian image field, then sequency filters this spectrum into three feature bands. Various features are then extracted and organized into three sets of feature vectors. These vector patterns that are stored and recalled associatively. Two possible associative neural memory models are proposed for further investigation. The first being an outer-product linear matrix associative memory with a threshold function controlling the strength of the output pattern (similar to Kohonen's crosscorrelation approach [1]). The second approach is based upon a modified version of Grossberg's neural architecture [2] which provides better self-organizing properties due to its adaptive nature. Preliminary results of the sequency filtering and feature extraction preprocessing stage and discussion about the use of the proposed neural architectures is included.

  15. Oligonol improves memory and cognition under an amyloid β(25-35)-induced Alzheimer's mouse model.

    PubMed

    Choi, Yoon Young; Maeda, Takahiro; Fujii, Hajime; Yokozawa, Takako; Kim, Hyun Young; Cho, Eun Ju; Shibamoto, Takayuki

    2014-07-01

    Alzheimer's disease is an age-dependent progressive neurodegenerative disorder that results in impairments of memory and cognitive function. It is hypothesized that oligonol has ameliorative effects on memory impairment and reduced cognitive functions in mice with Alzheimer's disease induced by amyloid β(25-35) (Aβ(25-35)) injection. The protective effect of an oligonol against Aβ(25-35)-induced memory impairment was investigated in an in vivo Alzheimer's mouse model. The aggregation of Aβ25-35 was induced by incubation at 37°C for 3 days before injection into mice brains (5 nmol/mouse), and then oligonol was orally administered at 100 and 200 mg/kg of body weight for 2 weeks. Memory and cognition were observed in T-maze, object recognition, and Morris water maze tests. The group injected with Aβ(25-35) showed impairments in both recognition and memory. However, novel object recognition and new route awareness abilities were dose dependently improved by the oral administration of oligonol. In addition, the results of the Morris water maze test indicated that oligonol exerted protective activity against cognitive impairment induced by Aβ(25-35). Furthermore, nitric oxide formation and lipid peroxidation were significantly elevated by Aβ(25-35), whereas oligonol treatment significantly decreased nitric oxide formation and lipid peroxidation in the brain, liver, and kidneys. The present results suggest that oligonol improves Aβ(25-35)-induced memory deficit and cognition impairment. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Processing statistics: an examination of focused and distributed attention using event related potentials.

    PubMed

    Baijal, Shruti; Nakatani, Chie; van Leeuwen, Cees; Srinivasan, Narayanan

    2013-06-07

    Human observers show remarkable efficiency in statistical estimation; they are able, for instance, to estimate the mean size of visual objects, even if their number exceeds the capacity limits of focused attention. This ability has been understood as the result of a distinct mode of attention, i.e. distributed attention. Compared to the focused attention mode, working memory representations under distributed attention are proposed to be more compressed, leading to reduced working memory loads. An alternate proposal is that distributed attention uses less structured, feature-level representations. These would fill up working memory (WM) more, even when target set size is low. Using event-related potentials, we compared WM loading in a typical distributed attention task (mean size estimation) to that in a corresponding focused attention task (object recognition), using a measure called contralateral delay activity (CDA). Participants performed both tasks on 2, 4, or 8 different-sized target disks. In the recognition task, CDA amplitude increased with set size; notably, however, in the mean estimation task the CDA amplitude was high regardless of set size. In particular for set-size 2, the amplitude was higher in the mean estimation task than in the recognition task. The result showed that the task involves full WM loading even with a low target set size. This suggests that in the distributed attention mode, representations are not compressed, but rather less structured than under focused attention conditions. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Effects of selective activation of M1 and M4 muscarinic receptors on object recognition memory performance in rats.

    PubMed

    Galloway, Claire R; Lebois, Evan P; Shagarabi, Shezza L; Hernandez, Norma A; Manns, Joseph R

    2014-01-01

    Acetylcholine signaling through muscarinic receptors has been shown to benefit memory performance in some conditions, but pan-muscarinic activation also frequently leads to peripheral side effects. Drug therapies that selectively target M1 or M4 muscarinic receptors could potentially improve memory while minimizing side effects mediated by the other muscarinic receptor subtypes. The ability of three recently developed drugs that selectively activate M1 or M4 receptors to improve recognition memory was tested by giving Long-Evans rats subcutaneous injections of three different doses of the M1 agonist VU0364572, the M1 positive allosteric modulator BQCA or the M4 positive allosteric modulator VU0152100 before performing an object recognition memory task. VU0364572 at 0.1 mg/kg, BQCA at 1.0 mg/kg and VU0152100 at 3.0 and 30.0 mg/kg improved the memory performance of rats that performed poorly at baseline, yet the improvements in memory performance were the most statistically robust for VU0152100 at 3.0 mg/kg. The results suggested that selective M1 and M4 receptor activation each improved memory but that the likelihood of obtaining behavioral efficacy at a given dose might vary between subjects even in healthy groups depending on baseline performance. These results also highlighted the potential of drug therapies that selectively target M1 or M4 receptors to improve memory performance in individuals with impaired memory.

  18. What pharmacological interventions indicate concerning the role of the perirhinal cortex in recognition memory

    PubMed Central

    Brown, M.W.; Barker, G.R.I.; Aggleton, J.P.; Warburton, E.C.

    2012-01-01

    Findings of pharmacological studies that have investigated the involvement of specific regions of the brain in recognition memory are reviewed. The particular emphasis of the review concerns what such studies indicate concerning the role of the perirhinal cortex in recognition memory. Most of the studies involve rats and most have investigated recognition memory for objects. Pharmacological studies provide a large body of evidence supporting the essential role of the perirhinal cortex in the acquisition, consolidation and retrieval of object recognition memory. Such studies provide increasingly detailed evidence concerning both the neurotransmitter systems and the underlying intracellular mechanisms involved in recognition memory processes. They have provided evidence in support of synaptic weakening as a major synaptic plastic process within perirhinal cortex underlying object recognition memory. They have also supplied confirmatory evidence that that there is more than one synaptic plastic process involved. The demonstrated necessity to long-term recognition memory of intracellular signalling mechanisms related to synaptic modification within perirhinal cortex establishes a central role for the region in the information storage underlying such memory. Perirhinal cortex is thereby established as an information storage site rather than solely a processing station. Pharmacological studies have also supplied new evidence concerning the detailed roles of other regions, including the hippocampus and the medial prefrontal cortex in different types of recognition memory tasks that include a spatial or temporal component. In so doing, they have also further defined the contribution of perirhinal cortex to such tasks. To date it appears that the contribution of perirhinal cortex to associative and temporal order memory reflects that in simple object recognition memory, namely that perirhinal cortex provides information concerning objects and their prior occurrence (novelty/familiarity). PMID:22841990

  19. A Critical Role for the Nucleus Reuniens in Long-Term, But Not Short-Term Associative Recognition Memory Formation.

    PubMed

    Barker, Gareth R I; Warburton, Elizabeth Clea

    2018-03-28

    Recognition memory for single items requires the perirhinal cortex (PRH), whereas recognition of an item and its associated location requires a functional interaction among the PRH, hippocampus (HPC), and medial prefrontal cortex (mPFC). Although the precise mechanisms through which these interactions are effected are unknown, the nucleus reuniens (NRe) has bidirectional connections with each regions and thus may play a role in recognition memory. Here we investigated, in male rats, whether specific manipulations of NRe function affected performance of recognition memory for single items, object location, or object-in-place associations. Permanent lesions in the NRe significantly impaired long-term, but not short-term, object-in-place associative recognition memory, whereas single item recognition memory and object location memory were unaffected. Temporary inactivation of the NRe during distinct phases of the object-in-place task revealed its importance in both the encoding and retrieval stages of long-term associative recognition memory. Infusions of specific receptor antagonists showed that encoding was dependent on muscarinic and nicotinic cholinergic neurotransmission, whereas NMDA receptor neurotransmission was not required. Finally, we found that long-term object-in-place memory required protein synthesis within the NRe. These data reveal a specific role for the NRe in long-term associative recognition memory through its interactions with the HPC and mPFC, but not the PRH. The delay-dependent involvement of the NRe suggests that it is not a simple relay station between brain regions, but, rather, during high mnemonic demand, facilitates interactions between the mPFC and HPC, a process that requires both cholinergic neurotransmission and protein synthesis. SIGNIFICANCE STATEMENT Recognizing an object and its associated location, which is fundamental to our everyday memory, requires specific hippocampal-cortical interactions, potentially facilitated by the nucleus reuniens (NRe) of the thalamus. However, the role of the NRe itself in associative recognition memory is unknown. Here, we reveal the crucial role of the NRe in encoding and retrieval of long-term object-in-place memory, but not for remembrance of an individual object or individual location and such involvement is cholinergic receptor and protein synthesis dependent. This is the first demonstration that the NRe is a key node within an associative recognition memory network and is not just a simple relay for information within the network. Rather, we argue, the NRe actively modulates information processing during long-term associative memory formation. Copyright © 2018 the authors 0270-6474/18/383208-10$15.00/0.

  20. Differential effects of spaced vs. massed training in long-term object-identity and object-location recognition memory.

    PubMed

    Bello-Medina, Paola C; Sánchez-Carrasco, Livia; González-Ornelas, Nadia R; Jeffery, Kathryn J; Ramírez-Amaya, Víctor

    2013-08-01

    Here we tested whether the well-known superiority of spaced training over massed training is equally evident in both object identity and object location recognition memory. We trained animals with objects placed in a variable or in a fixed location to produce a location-independent object identity memory or a location-dependent object representation. The training consisted of 5 trials that occurred either on one day (Massed) or over the course of 5 consecutive days (Spaced). The memory test was done in independent groups of animals either 24h or 7 days after the last training trial. In each test the animals were exposed to either a novel object, when trained with the objects in variable locations, or to a familiar object in a novel location, when trained with objects in fixed locations. The difference in time spent exploring the changed versus the familiar objects was used as a measure of recognition memory. For the object-identity-trained animals, spaced training produced clear evidence of recognition memory after both 24h and 7 days, but massed-training animals showed it only after 24h. In contrast, for the object-location-trained animals, recognition memory was evident after both retention intervals and with both training procedures. When objects were placed in variable locations for the two types of training and the test was done with a brand-new location, only the spaced-training animals showed recognition at 24h, but surprisingly, after 7 days, animals trained using both procedures were able to recognize the change, suggesting a post-training consolidation process. We suggest that the two training procedures trigger different neural mechanisms that may differ in the two segregated streams that process object information and that may consolidate differently. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Self-body recognition depends on implicit and explicit self-esteem.

    PubMed

    Richetin, Juliette; Xaiz, Annalisa; Maravita, Angelo; Perugini, Marco

    2012-03-01

    The present contribution bridges research on body image, self-esteem, and body recognition. Recent work in neuroscience indicates a superiority in the processing of self relative to others' body parts. The present contribution shows that this ability is not universal but it is qualified by individual differences in implicit and explicit self-esteem. In fact, two studies (n₁ = 41 and n₂ = 35) using two different paradigms in body recognition and direct and indirect measures of self-esteem reveal that this advantage in recognizing one's own body parts is associated with one's level of self-esteem. Moreover, it appears that measures of implicit and explicit self-esteem provide different contributions to self-body recognition abilities and that these contributions depend on how self-body recognition is assessed. Implications of these results are discussed notably in the perspective of research on body image. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. Northeast Artificial Intelligence Consortium Annual Report. Volume 7. 1988 Research in Automated Photointerpretation

    DTIC Science & Technology

    1989-10-01

    weight based on how powerful the corresponding feature is for object recognition and discrimination. For example, consider an arbitrary weight, denoted...quality of the segmentation, how powerful the features and spatial constraints in the knowledge base are (as far as object recognition is concern...that are powerful for object recognition and discrimination. At this point, this selection is performed heuristically through trial-and-error. As a

  3. Haptic Exploration in Humans and Machines: Attribute Integration and Machine Recognition/Implementation.

    DTIC Science & Technology

    1988-04-30

    side it necessary and Identify’ by’ block n~nmbot) haptic hand, touch , vision, robot, object recognition, categorization 20. AGSTRPACT (Continue an...established that the haptic system has remarkable capabilities for object recognition. We define haptics as purposive touch . The basic tactual system...gathered ratings of the importance of dimensions for categorizing common objects by touch . Texture and hardness ratings strongly co-vary, which is

  4. High speed optical object recognition processor with massive holographic memory

    NASA Technical Reports Server (NTRS)

    Chao, T.; Zhou, H.; Reyes, G.

    2002-01-01

    Real-time object recognition using a compact grayscale optical correlator will be introduced. A holographic memory module for storing a large bank of optimum correlation filters, to accommodate the large data throughput rate needed for many real-world applications, has also been developed. System architecture of the optical processor and the holographic memory will be presented. Application examples of this object recognition technology will also be demonstrated.

  5. Visual Recognition Software for Binary Classification and Its Application to Spruce Pollen Identification

    PubMed Central

    Tcheng, David K.; Nayak, Ashwin K.; Fowlkes, Charless C.; Punyasena, Surangi W.

    2016-01-01

    Discriminating between black and white spruce (Picea mariana and Picea glauca) is a difficult palynological classification problem that, if solved, would provide valuable data for paleoclimate reconstructions. We developed an open-source visual recognition software (ARLO, Automated Recognition with Layered Optimization) capable of differentiating between these two species at an accuracy on par with human experts. The system applies pattern recognition and machine learning to the analysis of pollen images and discovers general-purpose image features, defined by simple features of lines and grids of pixels taken at different dimensions, size, spacing, and resolution. It adapts to a given problem by searching for the most effective combination of both feature representation and learning strategy. This results in a powerful and flexible framework for image classification. We worked with images acquired using an automated slide scanner. We first applied a hash-based “pollen spotting” model to segment pollen grains from the slide background. We next tested ARLO’s ability to reconstruct black to white spruce pollen ratios using artificially constructed slides of known ratios. We then developed a more scalable hash-based method of image analysis that was able to distinguish between the pollen of black and white spruce with an estimated accuracy of 83.61%, comparable to human expert performance. Our results demonstrate the capability of machine learning systems to automate challenging taxonomic classifications in pollen analysis, and our success with simple image representations suggests that our approach is generalizable to many other object recognition problems. PMID:26867017

  6. General object recognition is specific: Evidence from novel and familiar objects.

    PubMed

    Richler, Jennifer J; Wilmer, Jeremy B; Gauthier, Isabel

    2017-09-01

    In tests of object recognition, individual differences typically correlate modestly but nontrivially across familiar categories (e.g. cars, faces, shoes, birds, mushrooms). In theory, these correlations could reflect either global, non-specific mechanisms, such as general intelligence (IQ), or more specific mechanisms. Here, we introduce two separate methods for effectively capturing category-general performance variation, one that uses novel objects and one that uses familiar objects. In each case, we show that category-general performance variance is unrelated to IQ, thereby implicating more specific mechanisms. The first approach examines three newly developed novel object memory tests (NOMTs). We predicted that NOMTs would exhibit more shared, category-general variance than familiar object memory tests (FOMTs) because novel objects, unlike familiar objects, lack category-specific environmental influences (e.g. exposure to car magazines or botany classes). This prediction held, and remarkably, virtually none of the substantial shared variance among NOMTs was explained by IQ. Also, while NOMTs correlated nontrivially with two FOMTs (faces, cars), these correlations were smaller than among NOMTs and no larger than between the face and car tests themselves, suggesting that the category-general variance captured by NOMTs is specific not only relative to IQ, but also, to some degree, relative to both face and car recognition. The second approach averaged performance across multiple FOMTs, which we predicted would increase category-general variance by averaging out category-specific factors. This prediction held, and as with NOMTs, virtually none of the shared variance among FOMTs was explained by IQ. Overall, these results support the existence of object recognition mechanisms that, though category-general, are specific relative to IQ and substantially separable from face and car recognition. They also add sensitive, well-normed NOMTs to the tools available to study object recognition. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Involvement of hippocampal NMDA receptors in encoding and consolidation, but not retrieval, processes of spontaneous object location memory in rats.

    PubMed

    Yamada, Kazuo; Arai, Misaki; Suenaga, Toshiko; Ichitani, Yukio

    2017-07-28

    The hippocampus is thought to be involved in object location recognition memory, yet the contribution of hippocampal NMDA receptors to the memory processes, such as encoding, retention and retrieval, is unknown. First, we confirmed that hippocampal infusion of a competitive NMDA receptor antagonist, AP5 (2-amino-5-phosphonopentanoic acid, 20-40nmol), impaired performance of spontaneous object location recognition test but not that of novel object recognition test in Wistar rats. Next, the effects of hippocampal AP5 treatment on each process of object location recognition memory were examined with three different injection times using a 120min delay-interposed test: 15min before the sample phase (Time I), immediately after the sample phase (Time II), and 15min before the test phase (Time III). The blockade of hippocampal NMDA receptors before and immediately after the sample phase, but not before the test phase, markedly impaired performance of object location recognition test, suggesting that hippocampal NMDA receptors play an important role in encoding and consolidation/retention, but not retrieval, of spontaneous object location memory. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Analysis of objects in binary images. M.S. Thesis - Old Dominion Univ.

    NASA Technical Reports Server (NTRS)

    Leonard, Desiree M.

    1991-01-01

    Digital image processing techniques are typically used to produce improved digital images through the application of successive enhancement techniques to a given image or to generate quantitative data about the objects within that image. In support of and to assist researchers in a wide range of disciplines, e.g., interferometry, heavy rain effects on aerodynamics, and structure recognition research, it is often desirable to count objects in an image and compute their geometric properties. Therefore, an image analysis application package, focusing on a subset of image analysis techniques used for object recognition in binary images, was developed. This report describes the techniques and algorithms utilized in three main phases of the application and are categorized as: image segmentation, object recognition, and quantitative analysis. Appendices provide supplemental formulas for the algorithms employed as well as examples and results from the various image segmentation techniques and the object recognition algorithm implemented.

  9. Image processing strategies based on saliency segmentation for object recognition under simulated prosthetic vision.

    PubMed

    Li, Heng; Su, Xiaofan; Wang, Jing; Kan, Han; Han, Tingting; Zeng, Yajie; Chai, Xinyu

    2018-01-01

    Current retinal prostheses can only generate low-resolution visual percepts constituted of limited phosphenes which are elicited by an electrode array and with uncontrollable color and restricted grayscale. Under this visual perception, prosthetic recipients can just complete some simple visual tasks, but more complex tasks like face identification/object recognition are extremely difficult. Therefore, it is necessary to investigate and apply image processing strategies for optimizing the visual perception of the recipients. This study focuses on recognition of the object of interest employing simulated prosthetic vision. We used a saliency segmentation method based on a biologically plausible graph-based visual saliency model and a grabCut-based self-adaptive-iterative optimization framework to automatically extract foreground objects. Based on this, two image processing strategies, Addition of Separate Pixelization and Background Pixel Shrink, were further utilized to enhance the extracted foreground objects. i) The results showed by verification of psychophysical experiments that under simulated prosthetic vision, both strategies had marked advantages over Direct Pixelization in terms of recognition accuracy and efficiency. ii) We also found that recognition performance under two strategies was tied to the segmentation results and was affected positively by the paired-interrelated objects in the scene. The use of the saliency segmentation method and image processing strategies can automatically extract and enhance foreground objects, and significantly improve object recognition performance towards recipients implanted a high-density implant. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Object recognition with severe spatial deficits in Williams syndrome: sparing and breakdown.

    PubMed

    Landau, Barbara; Hoffman, James E; Kurz, Nicole

    2006-07-01

    Williams syndrome (WS) is a rare genetic disorder that results in severe visual-spatial cognitive deficits coupled with relative sparing in language, face recognition, and certain aspects of motion processing. Here, we look for evidence for sparing or impairment in another cognitive system-object recognition. Children with WS, normal mental-age (MA) and chronological age-matched (CA) children, and normal adults viewed pictures of a large range of objects briefly presented under various conditions of degradation, including canonical and unusual orientations, and clear or blurred contours. Objects were shown as either full-color views (Experiment 1) or line drawings (Experiment 2). Across both experiments, WS and MA children performed similarly in all conditions while CA children performed better than both WS group and MA groups with unusual views. This advantage, however, was eliminated when images were also blurred. The error types and relative difficulty of different objects were similar across all participant groups. The results indicate selective sparing of basic mechanisms of object recognition in WS, together with developmental delay or arrest in recognition of objects from unusual viewpoints. These findings are consistent with the growing literature on brain abnormalities in WS which points to selective impairment in the parietal areas of the brain. As a whole, the results lend further support to the growing literature on the functional separability of object recognition mechanisms from other spatial functions, and raise intriguing questions about the link between genetic deficits and cognition.

  11. Central administration of angiotensin IV rapidly enhances novel object recognition among mice.

    PubMed

    Paris, Jason J; Eans, Shainnel O; Mizrachi, Elisa; Reilley, Kate J; Ganno, Michelle L; McLaughlin, Jay P

    2013-07-01

    Angiotensin IV (Val(1)-Tyr(2)-Ile(3)-His(4)-Pro(5)-Phe(6)) has demonstrated potential cognitive-enhancing effects. The present investigation assessed and characterized: (1) dose-dependency of angiotensin IV's cognitive enhancement in a C57BL/6J mouse model of novel object recognition, (2) the time-course for these effects, (3) the identity of residues in the hexapeptide important to these effects and (4) the necessity of actions at angiotensin IV receptors for procognitive activity. Assessment of C57BL/6J mice in a novel object recognition task demonstrated that prior administration of angiotensin IV (0.1, 1.0, or 10.0, but not 0.01 nmol, i.c.v.) significantly enhanced novel object recognition in a dose-dependent manner. These effects were time dependent, with improved novel object recognition observed when angiotensin IV (0.1 nmol, i.c.v.) was administered 10 or 20, but not 30 min prior to the onset of the novel object recognition testing. An alanine scan of the angiotensin IV peptide revealed that replacement of the Val(1), Ile(3), His(4), or Phe(6) residues with Ala attenuated peptide-induced improvements in novel object recognition, whereas Tyr(2) or Pro(5) replacement did not significantly affect performance. Administration of the angiotensin IV receptor antagonist, divalinal-Ang IV (20 nmol, i.c.v.), reduced (but did not abolish) novel object recognition; however, this antagonist completely blocked the procognitive effects of angiotensin IV (0.1 nmol, i.c.v.) in this task. Rotorod testing demonstrated no locomotor effects with any angiotensin IV or divalinal-Ang IV dose tested. These data demonstrate that angiotensin IV produces a rapid enhancement of associative learning and memory performance in a mouse model that was dependent on the angiotensin IV receptor. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Central administration of angiotensin IV rapidly enhances novel object recognition among mice

    PubMed Central

    Paris, Jason J.; Eans, Shainnel O.; Mizrachi, Elisa; Reilley, Kate J.; Ganno, Michelle L.; McLaughlin, Jay P.

    2013-01-01

    Angiotensin IV (Val1-Tyr2-Ile3-His4-Pro5-Phe6) has demonstrated potential cognitive-enhancing effects. The present investigation assessed and characterized: (1) dose-dependency of angiotensin IV's cognitive enhancement in a C57BL/6J mouse model of novel object recognition, (2) the time-course for these effects, (3) the identity of residues in the hexapeptide important to these effects and (4) the necessity of actions at angiotensin IV receptors for pro-cognitive activity. Assessment of C57BL/6J mice in a novel object recognition task demonstrated that prior administration of angiotensin IV (0.1, 1.0, or 10.0, but not 0.01, nmol, i.c.v.) significantly enhanced novel object recognition in a dose-dependent manner. These effects were time dependent, with improved novel object recognition observed when angiotensin IV (0.1 nmol, i.c.v.) was administered 10 or 20, but not 30, min prior to the onset of the novel object recognition testing. An alanine scan of the angiotensin IV peptide revealed that replacement of the Val1, Ile3, His4, or Phe6 residues with Ala attenuated peptide-induced improvements in novel object recognition, whereas Tyr2 or Pro5 replacement did not significantly affect performance. Administration of the angiotensin IV receptor antagonist, divalinal-Ang IV (20 nmol, i.c.v.), reduced (but did not abolish) novel object recognition; however, this antagonist completely blocked the pro-cognitive effects of angiotensin IV (0.1 nmol, i.c.v.) in this task. Rotorod testing demonstrated no locomotor effects for any angiotensin IV or divalinal-Ang IV dose tested. These data demonstrate that angiotensin IV produces a rapid enhancement of associative learning and memory performance in a mouse model that was dependent on the angiotensin IV receptor. PMID:23416700

  13. Cognitive enhancement effects of Bacopa monnieri (Brahmi) on novel object recognition and neuronal density in the prefrontal cortex, striatum and hippocampus in sub-chronic phencyclidine administration rat model of schizophrenia.

    PubMed

    Wetchateng, Thanitsara; Piyabhan, Pritsana

    2015-03-01

    Cognitive deficit is a significant problem, which finally occurs in all schizophrenic patients. It can not be attenuated by any antipsychotic drugs. It is well known that changes of neuronal density are correlated with learning and memory deficits. Bacopa monnieri (Brahmi), popularly known as a cognitive enhancer; might be a novel therapeutic agentfor cognitive deficit in schizophrenia by changing cerebral neuronal density. The objective of this study was to determine the effects of Brahmi on attenuation at cognitive deficit and on the neuronal density in the prefrontal cortex, striatum and cornu ammonis subfield 1 (CA1) and 2/3 (CA2/3) of hippocampus in sub-chronic phencyclidine (PCP) rat model of schizophrenia. Rats were assigned to three groups; Group-1: Control, Group-2: PCP administration and Group-3: PCP + Brahmi. Rats were testedfor cognitive ability by using the novel object recognition test. Neuronal density from a serial Nissl stain sections ofthe prefrontal cortex, striatum and hippocampus ofrat model ofschizophrenia were measured by using Image ProPlus software and manual counting. Sub-chronic administration of PCP results in cognitive deficits in novel object recognition task. This occurred alongside significantly increased neuronal density in CA1. The cognitive deficit was recovery to normal in PCP + Brahmi group and it occurred alongside significantly decreased neuronal density in CA1. On the other hand, significantly increased neuronal density was observed in CA2/3 of PCP + Brahmi group compared with PCP alone. Brahmi is a potential cognitive enhancer against schizophrenia. It reduces neuronal density, most likely glutamatergic neuron, which results in neuronal toxicity and cognitive deficit. Therefore, Brahmi has cognitive enhancement effect by reducing glutamatergic neuron in CAI. Moreover, it also has neurogenesis effect in CA2/3, which is needed to be investigated in the further study.

  14. Three Dimensional Object Recognition Using an Unsupervised Neural Network: Understanding the Distinguishing Features

    DTIC Science & Technology

    1992-12-23

    predominance of structural models of recognition, of which a recent example is the Recognition By Components (RBC) theory ( Biederman , 1987 ). Structural...related to recent statistical theory (Huber, 1985; Friedman, 1987 ) and is derived from a biologically motivated computational theory (Bienenstock et...dimensional object recognition (Intrator and Gold, 1991). The method is related to recent statistical theory (Huber, 1985; Friedman, 1987 ) and is derived

  15. Object Recognition Memory and the Rodent Hippocampus

    ERIC Educational Resources Information Center

    Broadbent, Nicola J.; Gaskin, Stephane; Squire, Larry R.; Clark, Robert E.

    2010-01-01

    In rodents, the novel object recognition task (NOR) has become a benchmark task for assessing recognition memory. Yet, despite its widespread use, a consensus has not developed about which brain structures are important for task performance. We assessed both the anterograde and retrograde effects of hippocampal lesions on performance in the NOR…

  16. Developmental Commonalities between Object and Face Recognition in Adolescence

    PubMed Central

    Jüttner, Martin; Wakui, Elley; Petters, Dean; Davidoff, Jules

    2016-01-01

    In the visual perception literature, the recognition of faces has often been contrasted with that of non-face objects, in terms of differences with regard to the role of parts, part relations and holistic processing. However, recent evidence from developmental studies has begun to blur this sharp distinction. We review evidence for a protracted development of object recognition that is reminiscent of the well-documented slow maturation observed for faces. The prolonged development manifests itself in a retarded processing of metric part relations as opposed to that of individual parts and offers surprising parallels to developmental accounts of face recognition, even though the interpretation of the data is less clear with regard to holistic processing. We conclude that such results might indicate functional commonalities between the mechanisms underlying the recognition of faces and non-face objects, which are modulated by different task requirements in the two stimulus domains. PMID:27014176

  17. Advances in image compression and automatic target recognition; Proceedings of the Meeting, Orlando, FL, Mar. 30, 31, 1989

    NASA Technical Reports Server (NTRS)

    Tescher, Andrew G. (Editor)

    1989-01-01

    Various papers on image compression and automatic target recognition are presented. Individual topics addressed include: target cluster detection in cluttered SAR imagery, model-based target recognition using laser radar imagery, Smart Sensor front-end processor for feature extraction of images, object attitude estimation and tracking from a single video sensor, symmetry detection in human vision, analysis of high resolution aerial images for object detection, obscured object recognition for an ATR application, neural networks for adaptive shape tracking, statistical mechanics and pattern recognition, detection of cylinders in aerial range images, moving object tracking using local windows, new transform method for image data compression, quad-tree product vector quantization of images, predictive trellis encoding of imagery, reduced generalized chain code for contour description, compact architecture for a real-time vision system, use of human visibility functions in segmentation coding, color texture analysis and synthesis using Gibbs random fields.

  18. Development of the Ability to Use Facial, Situational, and Vocal Cues to Infer Others' Affective States.

    ERIC Educational Resources Information Center

    Farber, Ellen A.; Moely, Barbara E.

    Results of two studies investigating children's abilities to use different kinds of cues to infer another's affective state are reported in this paper. In the first study, 48 children (3, 4, and 6 to 7 years of age) were given three different kinds of tasks (interpersonal task, facial recognition task, and vocal recognition task). A cross-age…

  19. Word Recognition and Cognitive Profiles of Chinese Pre-School Children at Risk for Dyslexia through Language Delay or Familial History of Dyslexia

    ERIC Educational Resources Information Center

    McBride-Chang, Catherine; Lam, Fanny; Lam, Catherine; Doo, Sylvia; Wong, Simpson W. L.; Chow, Yvonne Y. Y.

    2008-01-01

    Background: This study sought to identify cognitive abilities that might distinguish Hong Kong Chinese kindergarten children at risk for dyslexia through either language delay or familial history of dyslexia from children who were not at risk and to examine how these abilities were associated with Chinese word recognition. The cognitive skills of…

  20. Emotion Recognition in Stroke Patients with Left and Right Hemispheric Lesion: Results with a New Instrument-The Feel Test

    ERIC Educational Resources Information Center

    Braun, M.; Traue, H.C.; Frisch, S.; Deighton, R.M.; Kessler, H.

    2005-01-01

    The aim of this study was to investigate the effect of a stroke event on people's ability to recognize basic emotions. In particular, the hypothesis that right brain-damaged (RBD) patients would show less of emotion recognition ability compared with left brain-damaged (LBD) patients and healthy controls, was tested. To investigate this the FEEL…

  1. Behavioural interactions between West African dwarf nanny goats and their twin-born kids during the first 48 h post-partum.

    PubMed

    Awotwi; Oppong-Anane; Addae; Oddoye

    2000-07-01

    West African dwarf nanny goats and their twin-born kids were tested to determine their behavioural response to separation and their mutual recognition during the first 48 h post-partum. Does and their kids were given scores ranging from 1 to 5, depending on how they performed in the tests. Animals that showed maximum response and recognition ability were given a score of 5, while those with minimum response and recognition ability scored 1. The kids were prevented from sucking 2 h prior to the tests, which were carried out at 18, 24, 36 and 48 h post-partum. Chi-square procedure was used to determine whether age, sex and birthweight of kids as well as hours post-partum and parity of dams had any effect on these post-partum behaviours. Out of 48 twin-born kids tested, 32 (67%) responded actively to separation from dams (i.e. had scores of 3 or more). The age, sex and birthweight of kids did not significantly affect (P>0.05) their response to separation from their dams. The hours post-partum and the parity of does also did not affect their response to separation from their kids. The dam recognition ability of twin-born kids was very poor. Out of a total of 48 kids tested, only 17 (35%) were able to recognize their dams (i.e. had scores of 3 or more). Even at 36 h, only four out of 14 (26%) could recognize their dams. It was only at 48 h that the majority of kids tested (i.e. 75%) successfully identified their dams. At 48 h, the dam recognition ability of kids was significantly better (P<0.05) than that of 18-h-old kids. Sex and birthweight of 24-48-h-old twin-born kids did not significantly affect (P>0.05) their ability to recognize their dams. The majority of does tested (i.e. 20 out of 24) were able to recognize their twin-born kids. The hour post-partum and parity of does did not significantly affect (P>0.05) their kid recognition ability.

  2. The nitric oxide donor sodium nitroprusside attenuates recognition memory deficits and social withdrawal produced by the NMDA receptor antagonist ketamine and induces anxiolytic-like behaviour in rats.

    PubMed

    Trevlopoulou, Aikaterini; Touzlatzi, Ntilara; Pitsikas, Nikolaos

    2016-03-01

    Experimental evidence indicates that the non-competitive N-methyl-D-aspartate (NMDA) receptor antagonist ketamine impairs cognition and can mimic certain aspects of positive and negative symptoms of schizophrenia in rodents. Nitric oxide (NO) is considered as an intracellular messenger in the brain, and its abnormalities have been linked to schizophrenia. The present study was designed to investigate the ability of the NO donor sodium nitroprusside (SNP) to counteract schizophrenia-like behavioural deficits produced by ketamine in rats. The ability of SNP to reverse ketamine-induced memory deficits and social withdrawal were assessed using the novel object recognition task (NORT) and the social interaction test, respectively. Furthermore, since anxiety disorders are noted to occur commonly in schizophrenics, the effects of SNP on anxiety-like behaviour were examined using the light/dark test. Locomotor activity was also assessed as an independent measure of the potential motoric effects of this NO donor. SNP (0.3 and 1 mg/kg) reversed ketamine (3 mg/kg)-induced short-term recognition memory deficits. SNP (1 mg/kg) counteracted the ketamine (8 mg/kg)-induced social isolation in the social interaction test. The anxiolytic-like effects in the light/dark test of SNP (1 mg/kg) cannot be attributed to changes in locomotor activity. Our findings illustrate a functional interaction between the nitrergic and glutamatergic system that may be of relevance for schizophrenia-like behavioural deficits. The data also suggest a role of NO in anxiety.

  3. Non-accidental properties, metric invariance, and encoding by neurons in a model of ventral stream visual object recognition, VisNet.

    PubMed

    Rolls, Edmund T; Mills, W Patrick C

    2018-05-01

    When objects transform into different views, some properties are maintained, such as whether the edges are convex or concave, and these non-accidental properties are likely to be important in view-invariant object recognition. The metric properties, such as the degree of curvature, may change with different views, and are less likely to be useful in object recognition. It is shown that in a model of invariant visual object recognition in the ventral visual stream, VisNet, non-accidental properties are encoded much more than metric properties by neurons. Moreover, it is shown how with the temporal trace rule training in VisNet, non-accidental properties of objects become encoded by neurons, and how metric properties are treated invariantly. We also show how VisNet can generalize between different objects if they have the same non-accidental property, because the metric properties are likely to overlap. VisNet is a 4-layer unsupervised model of visual object recognition trained by competitive learning that utilizes a temporal trace learning rule to implement the learning of invariance using views that occur close together in time. A second crucial property of this model of object recognition is, when neurons in the level corresponding to the inferior temporal visual cortex respond selectively to objects, whether neurons in the intermediate layers can respond to combinations of features that may be parts of two or more objects. In an investigation using the four sides of a square presented in every possible combination, it was shown that even though different layer 4 neurons are tuned to encode each feature or feature combination orthogonally, neurons in the intermediate layers can respond to features or feature combinations present is several objects. This property is an important part of the way in which high capacity can be achieved in the four-layer ventral visual cortical pathway. These findings concerning non-accidental properties and the use of neurons in intermediate layers of the hierarchy help to emphasise fundamental underlying principles of the computations that may be implemented in the ventral cortical visual stream used in object recognition. Copyright © 2018 Elsevier Inc. All rights reserved.

  4. Hapten-antibody recognition studies in competitive immunoassay of α-zearalanol analogs by computational chemistry and Pearson Correlation analysis.

    PubMed

    Wang, Zhanhui; Luo, Pengjie; Cheng, Linli; Zhang, Suxia; Shen, Jianzhong

    2011-01-01

    The molecular recognition of hapten-antibody is a fundamental event in competitive immunoassay, which guarantees the sensitivity and specificity of immunoassay for the detection of haptens. The aim of this study is to investigate the correlation between binding ability of one monoclonal antibody, 1H9B4, recognizing and the molecular aspects of α-zearalanol analogs. The mouse-derived monoclonal antibody was produced by using α-zearalanol conjugated to bovine serum albumin as an immunogen. The antibody recognition abilities, expressed as IC(50) values, were determined by a competitive ELISA. All of the hapten molecules were optimized by Density Function Theory (DFT) at B3LYP/ 6-31G* level and the conformation and electrostatic molecular isosurface were employed to explain the molecular recognition between α-zearalanol analogs and antibody 1H9B4. Pearson Correlation analysis between molecular descriptors and IC(50) values was qualitatively undertaken and the results showed that one molecular descriptor, surface of the hapten molecule, clearly demonstrated linear relationship with antibody recognition ability, where the relationship coefficient was 0.88 and the correlation was significant at p < 0.05 level. The study shows that computational chemistry and Pearson Correlation analysis can be used as tool to help the immunochemistries better understand the processing of antibody recognition of hapten molecules in competitive immunoassay. Copyright © 2011 John Wiley & Sons, Ltd.

  5. Relative recency influences object-in-context memory

    PubMed Central

    Tam, Shu K.E.; Bonardi, Charlotte; Robinson, Jasper

    2015-01-01

    In two experiments rats received training on an object-in-context (OIC) task, in which they received preexposure to object A in context x, followed by exposure to object B in context y. In a subsequent test both A and B are presented in either context x or context y. Usually more exploration is seen of the object that has not previously been paired with the test context, an effect attributed to the ability to remember where an object was encountered. However, in the typical version of this task, object A has also been encountered less recently than object B at test. This is precisely the arrangement in tests of ‘relatively recency’ (RR), in which more remotely presented objects are explored more than objects experienced more recently. RR could contaminate performance on the OIC task, by enhancing the OIC effect when animals are tested in context y, and masking it when the test is in context x. This possibility was examined in two experiments, and evidence for superior performance in context y was obtained. The implications of this for theoretical interpretations of recognition memory and the procedures used to explore it are discussed. PMID:25546721

  6. Sensor agnostic object recognition using a map seeking circuit

    NASA Astrophysics Data System (ADS)

    Overman, Timothy L.; Hart, Michael

    2012-05-01

    Automatic object recognition capabilities are traditionally tuned to exploit the specific sensing modality they were designed to. Their successes (and shortcomings) are tied to object segmentation from the background, they typically require highly skilled personnel to train them, and they become cumbersome with the introduction of new objects. In this paper we describe a sensor independent algorithm based on the biologically inspired technology of map seeking circuits (MSC) which overcomes many of these obstacles. In particular, the MSC concept offers transparency in object recognition from a common interface to all sensor types, analogous to a USB device. It also provides a common core framework that is independent of the sensor and expandable to support high dimensionality decision spaces. Ease in training is assured by using commercially available 3D models from the video game community. The search time remains linear no matter how many objects are introduced, ensuring rapid object recognition. Here, we report results of an MSC algorithm applied to object recognition and pose estimation from high range resolution radar (1D), electrooptical imagery (2D), and LIDAR point clouds (3D) separately. By abstracting the sensor phenomenology from the underlying a prior knowledge base, MSC shows promise as an easily adaptable tool for incorporating additional sensor inputs.

  7. Contributions of Low and High Spatial Frequency Processing to Impaired Object Recognition Circuitry in Schizophrenia

    PubMed Central

    Calderone, Daniel J.; Hoptman, Matthew J.; Martínez, Antígona; Nair-Collins, Sangeeta; Mauro, Cristina J.; Bar, Moshe; Javitt, Daniel C.; Butler, Pamela D.

    2013-01-01

    Patients with schizophrenia exhibit cognitive and sensory impairment, and object recognition deficits have been linked to sensory deficits. The “frame and fill” model of object recognition posits that low spatial frequency (LSF) information rapidly reaches the prefrontal cortex (PFC) and creates a general shape of an object that feeds back to the ventral temporal cortex to assist object recognition. Visual dysfunction findings in schizophrenia suggest a preferential loss of LSF information. This study used functional magnetic resonance imaging (fMRI) and resting state functional connectivity (RSFC) to investigate the contribution of visual deficits to impaired object “framing” circuitry in schizophrenia. Participants were shown object stimuli that were intact or contained only LSF or high spatial frequency (HSF) information. For controls, fMRI revealed preferential activation to LSF information in precuneus, superior temporal, and medial and dorsolateral PFC areas, whereas patients showed a preference for HSF information or no preference. RSFC revealed a lack of connectivity between early visual areas and PFC for patients. These results demonstrate impaired processing of LSF information during object recognition in schizophrenia, with patients instead displaying increased processing of HSF information. This is consistent with findings of a preference for local over global visual information in schizophrenia. PMID:22735157

  8. Automaticity of Basic-Level Categorization Accounts for Labeling Effects in Visual Recognition Memory

    ERIC Educational Resources Information Center

    Richler, Jennifer J.; Gauthier, Isabel; Palmeri, Thomas J.

    2011-01-01

    Are there consequences of calling objects by their names? Lupyan (2008) suggested that overtly labeling objects impairs subsequent recognition memory because labeling shifts stored memory representations of objects toward the category prototype (representational shift hypothesis). In Experiment 1, we show that processing objects at the basic…

  9. Development of Encoding and Decision Processes in Visual Recognition.

    ERIC Educational Resources Information Center

    Newcombe, Nora; MacKenzie, Doris L.

    This experiment examined two processes which might account for developmental increases in accuracy in visual recognition tasks: age-related increases in efficiency of scanning during inspection, and age-related increases in the ability to make decisions systematically during test. Critical details necessary for recognition were highlighted as…

  10. Body Emotion Recognition Disproportionately Depends on Vertical Orientations during Childhood

    ERIC Educational Resources Information Center

    Balas, Benjamin; Auen, Amanda; Saville, Alyson; Schmidt, Jamie

    2018-01-01

    Children's ability to recognize emotional expressions from faces and bodies develops during childhood. However, the low-level features that support accurate body emotion recognition during development have not been well characterized. This is in marked contrast to facial emotion recognition, which is known to depend upon specific spatial frequency…

  11. Decoding the time-course of object recognition in the human brain: From visual features to categorical decisions.

    PubMed

    Contini, Erika W; Wardle, Susan G; Carlson, Thomas A

    2017-10-01

    Visual object recognition is a complex, dynamic process. Multivariate pattern analysis methods, such as decoding, have begun to reveal how the brain processes complex visual information. Recently, temporal decoding methods for EEG and MEG have offered the potential to evaluate the temporal dynamics of object recognition. Here we review the contribution of M/EEG time-series decoding methods to understanding visual object recognition in the human brain. Consistent with the current understanding of the visual processing hierarchy, low-level visual features dominate decodable object representations early in the time-course, with more abstract representations related to object category emerging later. A key finding is that the time-course of object processing is highly dynamic and rapidly evolving, with limited temporal generalisation of decodable information. Several studies have examined the emergence of object category structure, and we consider to what degree category decoding can be explained by sensitivity to low-level visual features. Finally, we evaluate recent work attempting to link human behaviour to the neural time-course of object processing. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Augmented reality three-dimensional object visualization and recognition with axially distributed sensing.

    PubMed

    Markman, Adam; Shen, Xin; Hua, Hong; Javidi, Bahram

    2016-01-15

    An augmented reality (AR) smartglass display combines real-world scenes with digital information enabling the rapid growth of AR-based applications. We present an augmented reality-based approach for three-dimensional (3D) optical visualization and object recognition using axially distributed sensing (ADS). For object recognition, the 3D scene is reconstructed, and feature extraction is performed by calculating the histogram of oriented gradients (HOG) of a sliding window. A support vector machine (SVM) is then used for classification. Once an object has been identified, the 3D reconstructed scene with the detected object is optically displayed in the smartglasses allowing the user to see the object, remove partial occlusions of the object, and provide critical information about the object such as 3D coordinates, which are not possible with conventional AR devices. To the best of our knowledge, this is the first report on combining axially distributed sensing with 3D object visualization and recognition for applications to augmented reality. The proposed approach can have benefits for many applications, including medical, military, transportation, and manufacturing.

  13. Similar verbal memory impairments in schizophrenia and healthy aging. Implications for understanding of neural mechanisms.

    PubMed

    Silver, Henry; Bilker, Warren B

    2015-03-30

    Memory is impaired in schizophrenia patients but it is not clear whether this is specific to the illness and whether different types of memory (verbal and nonverbal) or memories in different cognitive domains (executive, object recognition) are similarly affected. To study relationships between memory impairments and schizophrenia we compared memory functions in 77 schizophrenia patients, 58 elderly healthy individuals and 41 young healthy individuals. Tests included verbal associative and logical memory and memory in executive and object recognition domains. We compared relationships of memory functions to each other and to other cognitive functions including psychomotor speed and verbal and spatial working memory. Compared to the young healthy group, schizophrenia patients and elderly healthy individuals showed similar severe impairment in logical memory and in the ability to learn new associations (NAL), and similar but less severe impairment in spatial working memory and executive and object memory. Verbal working memory was significantly more impaired in schizophrenia patients than in the healthy elderly. Verbal episodic memory impairment in schizophrenia may share common mechanisms with similar impairment in healthy aging. Impairment in verbal working memory in contrast may reflect mechanisms specific to schizophrenia. Study of verbal explicit memory impairment tapped by the NAL index may advance understanding of abnormal hippocampus dependent mechanisms common to schizophrenia and aging. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  14. Lexical-Access Ability and Cognitive Predictors of Speech Recognition in Noise in Adult Cochlear Implant Users

    PubMed Central

    Smits, Cas; Merkus, Paul; Festen, Joost M.; Goverts, S. Theo

    2017-01-01

    Not all of the variance in speech-recognition performance of cochlear implant (CI) users can be explained by biographic and auditory factors. In normal-hearing listeners, linguistic and cognitive factors determine most of speech-in-noise performance. The current study explored specifically the influence of visually measured lexical-access ability compared with other cognitive factors on speech recognition of 24 postlingually deafened CI users. Speech-recognition performance was measured with monosyllables in quiet (consonant-vowel-consonant [CVC]), sentences-in-noise (SIN), and digit-triplets in noise (DIN). In addition to a composite variable of lexical-access ability (LA), measured with a lexical-decision test (LDT) and word-naming task, vocabulary size, working-memory capacity (Reading Span test [RSpan]), and a visual analogue of the SIN test (text reception threshold test) were measured. The DIN test was used to correct for auditory factors in SIN thresholds by taking the difference between SIN and DIN: SRTdiff. Correlation analyses revealed that duration of hearing loss (dHL) was related to SIN thresholds. Better working-memory capacity was related to SIN and SRTdiff scores. LDT reaction time was positively correlated with SRTdiff scores. No significant relationships were found for CVC or DIN scores with the predictor variables. Regression analyses showed that together with dHL, RSpan explained 55% of the variance in SIN thresholds. When controlling for auditory performance, LA, LDT, and RSpan separately explained, together with dHL, respectively 37%, 36%, and 46% of the variance in SRTdiff outcome. The results suggest that poor verbal working-memory capacity and to a lesser extent poor lexical-access ability limit speech-recognition ability in listeners with a CI. PMID:29205095

  15. Associations between facial emotion recognition and young adolescents’ behaviors in bullying

    PubMed Central

    Gini, Gianluca; Altoè, Gianmarco

    2017-01-01

    This study investigated whether different behaviors young adolescents can act during bullying episodes were associated with their ability to recognize morphed facial expressions of the six basic emotions, expressed at high and low intensity. The sample included 117 middle-school students (45.3% girls; mean age = 12.4 years) who filled in a peer nomination questionnaire and individually performed a computerized emotion recognition task. Bayesian generalized mixed-effects models showed a complex picture, in which type and intensity of emotions, students’ behavior and gender interacted in explaining recognition accuracy. Results were discussed with a particular focus on negative emotions and suggesting a “neutral” nature of emotion recognition ability, which does not necessarily lead to moral behavior but can also be used for pursuing immoral goals. PMID:29131871

  16. The level of cognitive function and recognition of emotions in older adults

    PubMed Central

    Singh-Manoux, Archana; Batty, G. David; Ebmeier, Klaus P.; Jokela, Markus; Harmer, Catherine J.; Kivimäki, Mika

    2017-01-01

    Background The association between cognitive decline and the ability to recognise emotions in interpersonal communication is not well understood. We aimed to investigate the association between cognitive function and the ability to recognise emotions in other people’s facial expressions across the full continuum of cognitive capacity. Methods Cross-sectional analysis of 4039 participants (3016 men, 1023 women aged 59 to 82 years) in the Whitehall II study. Cognitive function was assessed using a 30-item Mini-Mental State Examination (MMSE), further classified into 8 groups: 30, 29, 28, 27, 26, 25, 24, and <24 (possible dementia) MMSE points. The Facial Expression Recognition Task (FERT) was used to examine recognition of anger, fear, disgust, sadness, and happiness. Results The multivariable adjusted difference in the percentage of accurate recognition between the highest and lowest MMSE group was 14.9 (95%CI, 11.1–18.7) for anger, 15.5 (11.9–19.2) for fear, 18.5 (15.2–21.8) for disgust, 11.6 (7.3–16.0) for sadness, and 6.3 (3.1–9.4) for happiness. However, recognition of several emotions was reduced already after 1 to 2-point reduction in MMSE and with further points down in MMSE, the recognition worsened at an accelerated rate. Conclusions The ability to recognize emotion in facial expressions is affected at an early stage of cognitive impairment and might decline at an accelerated rate with the deterioration of cognitive function. Accurate recognition of happiness seems to be less affected by a severe decline in cognitive performance than recognition of negatively valued emotions. PMID:28977015

  17. The effect of background noise on the word activation process in nonnative spoken-word recognition.

    PubMed

    Scharenborg, Odette; Coumans, Juul M J; van Hout, Roeland

    2018-02-01

    This article investigates 2 questions: (1) does the presence of background noise lead to a differential increase in the number of simultaneously activated candidate words in native and nonnative listening? And (2) do individual differences in listeners' cognitive and linguistic abilities explain the differential effect of background noise on (non-)native speech recognition? English and Dutch students participated in an English word recognition experiment, in which either a word's onset or offset was masked by noise. The native listeners outperformed the nonnative listeners in all listening conditions. Importantly, however, the effect of noise on the multiple activation process was found to be remarkably similar in native and nonnative listening. The presence of noise increased the set of candidate words considered for recognition in both native and nonnative listening. The results indicate that the observed performance differences between the English and Dutch listeners should not be primarily attributed to a differential effect of noise, but rather to the difference between native and nonnative listening. Additional analyses showed that word-initial information was found to be more important than word-final information during spoken-word recognition. When word-initial information was no longer reliably available word recognition accuracy dropped and word frequency information could no longer be used suggesting that word frequency information is strongly tied to the onset of words and the earliest moments of lexical access. Proficiency and inhibition ability were found to influence nonnative spoken-word recognition in noise, with a higher proficiency in the nonnative language and worse inhibition ability leading to improved recognition performance. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  18. Aging and visual 3-D shape recognition from motion.

    PubMed

    Norman, J Farley; Adkins, Olivia C; Dowell, Catherine J; Hoyng, Stevie C; Shain, Lindsey M; Pedersen, Lauren E; Kinnard, Jonathan D; Higginbotham, Alexia J; Gilliam, Ashley N

    2017-11-01

    Two experiments were conducted to evaluate the ability of younger and older adults to recognize 3-D object shape from patterns of optical motion. In Experiment 1, participants were required to identify dotted surfaces that rotated in depth (i.e., surface structure portrayed using the kinetic depth effect). The task difficulty was manipulated by limiting the surface point lifetimes within the stimulus apparent motion sequences. In Experiment 2, the participants identified solid, naturally shaped objects (replicas of bell peppers, Capsicum annuum) that were defined by occlusion boundary contours, patterns of specular highlights, or combined optical patterns containing both boundary contours and specular highlights. Significant and adverse effects of increased age were found in both experiments. Despite the fact that previous research has found that increases in age do not reduce solid shape discrimination, our current results indicated that the same conclusion does not hold for shape identification. We demonstrated that aging results in a reduction in the ability to visually recognize 3-D shape independent of how the 3-D structure is defined (motions of isolated points, deformations of smooth optical fields containing specular highlights, etc.).

  19. Signal detection using support vector machines in the presence of ultrasonic speckle

    NASA Astrophysics Data System (ADS)

    Kotropoulos, Constantine L.; Pitas, Ioannis

    2002-04-01

    Support Vector Machines are a general algorithm based on guaranteed risk bounds of statistical learning theory. They have found numerous applications, such as in classification of brain PET images, optical character recognition, object detection, face verification, text categorization and so on. In this paper we propose the use of support vector machines to segment lesions in ultrasound images and we assess thoroughly their lesion detection ability. We demonstrate that trained support vector machines with a Radial Basis Function kernel segment satisfactorily (unseen) ultrasound B-mode images as well as clinical ultrasonic images.

  20. SmartFABER: Recognizing fine-grained abnormal behaviors for early detection of mild cognitive impairment.

    PubMed

    Riboni, Daniele; Bettini, Claudio; Civitarese, Gabriele; Janjua, Zaffar Haider; Helaoui, Rim

    2016-02-01

    In an ageing world population more citizens are at risk of cognitive impairment, with negative consequences on their ability of independent living, quality of life and sustainability of healthcare systems. Cognitive neuroscience researchers have identified behavioral anomalies that are significant indicators of cognitive decline. A general goal is the design of innovative methods and tools for continuously monitoring the functional abilities of the seniors at risk and reporting the behavioral anomalies to the clinicians. SmartFABER is a pervasive system targeting this objective. A non-intrusive sensor network continuously acquires data about the interaction of the senior with the home environment during daily activities. A novel hybrid statistical and knowledge-based technique is used to analyses this data and detect the behavioral anomalies, whose history is presented through a dashboard to the clinicians. Differently from related works, SmartFABER can detect abnormal behaviors at a fine-grained level. We have fully implemented the system and evaluated it using real datasets, partly generated by performing activities in a smart home laboratory, and partly acquired during several months of monitoring of the instrumented home of a senior diagnosed with MCI. Experimental results, including comparisons with other activity recognition techniques, show the effectiveness of SmartFABER in terms of recognition rates. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Numbers, scale and symbols: the public understanding of nanotechnology

    NASA Astrophysics Data System (ADS)

    Batt, Carl A.; Waldron, Anna M.; Broadwater, Natalie

    2008-10-01

    Nanotechnology will be an increasing part of the everyday lives of most people in the world. There is a general recognition that few people understand the implications of the technology, the technology itself or even the definition of the word. This lack of understanding stems from a lack of knowledge about science in general but more specifically difficulty in grasping the size scale and symbolism of nanotechnology. A potential key to informing the general public is establishing the ability to comprehend the scale of nanotechnology. Transitioning from the macro to the nanoscale seems to require an ability to comprehend scales of one-billion. Scaling is a skill not common in most individuals and tests of their ability to extrapolate size based upon scaling a common object demonstrates that most individuals cannot scale to the extent needed to make the transition to nanoscale. Symbolism is another important vehicle to providing the general public with a basis to understand the concepts of nanotechnology. With increasing age, individuals are able to draw representations of atomic scale objects, but these tend to be iconic and the different representations not easily translated. Ball and stick models are most recognized by the public, which provides an opportunity to present not only useful symbolism but also a reference point for the atomic scale.

  2. Formal implementation of a performance evaluation model for the face recognition system.

    PubMed

    Shin, Yong-Nyuo; Kim, Jason; Lee, Yong-Jun; Shin, Woochang; Choi, Jin-Young

    2008-01-01

    Due to usability features, practical applications, and its lack of intrusiveness, face recognition technology, based on information, derived from individuals' facial features, has been attracting considerable attention recently. Reported recognition rates of commercialized face recognition systems cannot be admitted as official recognition rates, as they are based on assumptions that are beneficial to the specific system and face database. Therefore, performance evaluation methods and tools are necessary to objectively measure the accuracy and performance of any face recognition system. In this paper, we propose and formalize a performance evaluation model for the biometric recognition system, implementing an evaluation tool for face recognition systems based on the proposed model. Furthermore, we performed evaluations objectively by providing guidelines for the design and implementation of a performance evaluation system, formalizing the performance test process.

  3. Recognition vs Reverse Engineering in Boolean Concepts Learning

    ERIC Educational Resources Information Center

    Shafat, Gabriel; Levin, Ilya

    2012-01-01

    This paper deals with two types of logical problems--recognition problems and reverse engineering problems, and with the interrelations between these types of problems. The recognition problems are modeled in the form of a visual representation of various objects in a common pattern, with a composition of represented objects in the pattern.…

  4. Effects of hippocampal lesions on the monkey's ability to learn large sets of object-place associations.

    PubMed

    Belcher, Annabelle M; Harrington, Rebecca A; Malkova, Ludise; Mishkin, Mortimer

    2006-01-01

    Earlier studies found that recognition memory for object-place associations was impaired in patients with relatively selective hippocampal damage (Vargha-Khadem et al., Science 1997; 277:376-380), but was unaffected after selective hippocampal lesions in monkeys (Malkova and Mishkin, J Neurosci 2003; 23:1956-1965). A potentially important methodological difference between the two studies is that the patients were required to remember a set of 20 object-place associations for several minutes, whereas the monkeys had to remember only two such associations at a time, and only for a few seconds. To approximate more closely the task given to the patients, we trained monkeys on several successive sets of 10 object-place pairs each, with each set requiring learning across days. Despite the increased associative memory demands, monkeys given hippocampal lesions were unimpaired relative to their unoperated controls, suggesting that differences other than set size and memory duration underlie the different outcomes in the human and animal studies. (c) 2005 Wiley-Liss, Inc.

  5. An on-chip imaging droplet-sorting system: a real-time shape recognition method to screen target cells in droplets with single cell resolution

    NASA Astrophysics Data System (ADS)

    Girault, Mathias; Kim, Hyonchol; Arakawa, Hisayuki; Matsuura, Kenji; Odaka, Masao; Hattori, Akihiro; Terazono, Hideyuki; Yasuda, Kenji

    2017-01-01

    A microfluidic on-chip imaging cell sorter has several advantages over conventional cell sorting methods, especially to identify cells with complex morphologies such as clusters. One of the remaining problems is how to efficiently discriminate targets at the species level without labelling. Hence, we developed a label-free microfluidic droplet-sorting system based on image recognition of cells in droplets. To test the applicability of this method, a mixture of two plankton species with different morphologies (Dunaliella tertiolecta and Phaeodactylum tricornutum) were successfully identified and discriminated at a rate of 10 Hz. We also examined the ability to detect the number of objects encapsulated in a droplet. Single cell droplets sorted into collection channels showed 91 ± 4.5% and 90 ± 3.8% accuracy for D. tertiolecta and P. tricornutum, respectively. Because we used image recognition to confirm single cell droplets, we achieved highly accurate single cell sorting. The results indicate that the integrated method of droplet imaging cell sorting can provide a complementary sorting approach capable of isolating single target cells from a mixture of cells with high accuracy without any staining.

  6. An on-chip imaging droplet-sorting system: a real-time shape recognition method to screen target cells in droplets with single cell resolution.

    PubMed

    Girault, Mathias; Kim, Hyonchol; Arakawa, Hisayuki; Matsuura, Kenji; Odaka, Masao; Hattori, Akihiro; Terazono, Hideyuki; Yasuda, Kenji

    2017-01-06

    A microfluidic on-chip imaging cell sorter has several advantages over conventional cell sorting methods, especially to identify cells with complex morphologies such as clusters. One of the remaining problems is how to efficiently discriminate targets at the species level without labelling. Hence, we developed a label-free microfluidic droplet-sorting system based on image recognition of cells in droplets. To test the applicability of this method, a mixture of two plankton species with different morphologies (Dunaliella tertiolecta and Phaeodactylum tricornutum) were successfully identified and discriminated at a rate of 10 Hz. We also examined the ability to detect the number of objects encapsulated in a droplet. Single cell droplets sorted into collection channels showed 91 ± 4.5% and 90 ± 3.8% accuracy for D. tertiolecta and P. tricornutum, respectively. Because we used image recognition to confirm single cell droplets, we achieved highly accurate single cell sorting. The results indicate that the integrated method of droplet imaging cell sorting can provide a complementary sorting approach capable of isolating single target cells from a mixture of cells with high accuracy without any staining.

  7. Rapid and reversible impairments of short- and long-term social recognition memory are caused by acute isolation of adult rats via distinct mechanisms.

    PubMed

    Shahar-Gold, Hadar; Gur, Rotem; Wagner, Shlomo

    2013-01-01

    Mammalian social organizations require the ability to recognize and remember individual conspecifics. This social recognition memory (SRM) can be examined in rodents using their innate tendency to investigate novel conspecifics more persistently than familiar ones. Here we used the SRM paradigm to examine the influence of housing conditions on the social memory of adult rats. We found that acute social isolation caused within few days a significant impairment in acquisition of short-term SRM of male and female rats. Moreover, SRM consolidation into long-term memory was blocked following only one day of social isolation. Both impairments were reversible, but with different time courses. Furthermore, only the impairment in SRM consolidation was reversed by systemic administration of arginine-vasopressin (AVP). In contrast to SRM, object recognition memory was not affected by social isolation. We conclude that acute social isolation rapidly induces reversible changes in the brain neuronal and molecular mechanisms underlying SRM, which hamper its acquisition and completely block its consolidation. These changes occur via distinct, AVP sensitive and insensitive mechanisms. Thus, acute social isolation of rats swiftly causes changes in their brain and interferes with their normal social behavior.

  8. Software for Partly Automated Recognition of Targets

    NASA Technical Reports Server (NTRS)

    Opitz, David; Blundell, Stuart; Bain, William; Morris, Matthew; Carlson, Ian; Mangrich, Mark

    2003-01-01

    The Feature Analyst is a computer program for assisted (partially automated) recognition of targets in images. This program was developed to accelerate the processing of high-resolution satellite image data for incorporation into geographic information systems (GIS). This program creates an advanced user interface that embeds proprietary machine-learning algorithms in commercial image-processing and GIS software. A human analyst provides samples of target features from multiple sets of data, then the software develops a data-fusion model that automatically extracts the remaining features from selected sets of data. The program thus leverages the natural ability of humans to recognize objects in complex scenes, without requiring the user to explain the human visual recognition process by means of lengthy software. Two major subprograms are the reactive agent and the thinking agent. The reactive agent strives to quickly learn the user s tendencies while the user is selecting targets and to increase the user s productivity by immediately suggesting the next set of pixels that the user may wish to select. The thinking agent utilizes all available resources, taking as much time as needed, to produce the most accurate autonomous feature-extraction model possible.

  9. An on-chip imaging droplet-sorting system: a real-time shape recognition method to screen target cells in droplets with single cell resolution

    PubMed Central

    Girault, Mathias; Kim, Hyonchol; Arakawa, Hisayuki; Matsuura, Kenji; Odaka, Masao; Hattori, Akihiro; Terazono, Hideyuki; Yasuda, Kenji

    2017-01-01

    A microfluidic on-chip imaging cell sorter has several advantages over conventional cell sorting methods, especially to identify cells with complex morphologies such as clusters. One of the remaining problems is how to efficiently discriminate targets at the species level without labelling. Hence, we developed a label-free microfluidic droplet-sorting system based on image recognition of cells in droplets. To test the applicability of this method, a mixture of two plankton species with different morphologies (Dunaliella tertiolecta and Phaeodactylum tricornutum) were successfully identified and discriminated at a rate of 10 Hz. We also examined the ability to detect the number of objects encapsulated in a droplet. Single cell droplets sorted into collection channels showed 91 ± 4.5% and 90 ± 3.8% accuracy for D. tertiolecta and P. tricornutum, respectively. Because we used image recognition to confirm single cell droplets, we achieved highly accurate single cell sorting. The results indicate that the integrated method of droplet imaging cell sorting can provide a complementary sorting approach capable of isolating single target cells from a mixture of cells with high accuracy without any staining. PMID:28059147

  10. Ball-scale based hierarchical multi-object recognition in 3D medical images

    NASA Astrophysics Data System (ADS)

    Bağci, Ulas; Udupa, Jayaram K.; Chen, Xinjian

    2010-03-01

    This paper investigates, using prior shape models and the concept of ball scale (b-scale), ways of automatically recognizing objects in 3D images without performing elaborate searches or optimization. That is, the goal is to place the model in a single shot close to the right pose (position, orientation, and scale) in a given image so that the model boundaries fall in the close vicinity of object boundaries in the image. This is achieved via the following set of key ideas: (a) A semi-automatic way of constructing a multi-object shape model assembly. (b) A novel strategy of encoding, via b-scale, the pose relationship between objects in the training images and their intensity patterns captured in b-scale images. (c) A hierarchical mechanism of positioning the model, in a one-shot way, in a given image from a knowledge of the learnt pose relationship and the b-scale image of the given image to be segmented. The evaluation results on a set of 20 routine clinical abdominal female and male CT data sets indicate the following: (1) Incorporating a large number of objects improves the recognition accuracy dramatically. (2) The recognition algorithm can be thought as a hierarchical framework such that quick replacement of the model assembly is defined as coarse recognition and delineation itself is known as finest recognition. (3) Scale yields useful information about the relationship between the model assembly and any given image such that the recognition results in a placement of the model close to the actual pose without doing any elaborate searches or optimization. (4) Effective object recognition can make delineation most accurate.

  11. Critical object recognition in millimeter-wave images with robustness to rotation and scale.

    PubMed

    Mohammadzade, Hoda; Ghojogh, Benyamin; Faezi, Sina; Shabany, Mahdi

    2017-06-01

    Locating critical objects is crucial in various security applications and industries. For example, in security applications, such as in airports, these objects might be hidden or covered under shields or secret sheaths. Millimeter-wave images can be utilized to discover and recognize the critical objects out of the hidden cases without any health risk due to their non-ionizing features. However, millimeter-wave images usually have waves in and around the detected objects, making object recognition difficult. Thus, regular image processing and classification methods cannot be used for these images and additional pre-processings and classification methods should be introduced. This paper proposes a novel pre-processing method for canceling rotation and scale using principal component analysis. In addition, a two-layer classification method is introduced and utilized for recognition. Moreover, a large dataset of millimeter-wave images is collected and created for experiments. Experimental results show that a typical classification method such as support vector machines can recognize 45.5% of a type of critical objects at 34.2% false alarm rate (FAR), which is a drastically poor recognition. The same method within the proposed recognition framework achieves 92.9% recognition rate at 0.43% FAR, which indicates a highly significant improvement. The significant contribution of this work is to introduce a new method for analyzing millimeter-wave images based on machine vision and learning approaches, which is not yet widely noted in the field of millimeter-wave image analysis.

  12. Advertising of food to children: is brand logo recognition related to their food knowledge, eating behaviours and food preferences?

    PubMed

    Kopelman, C A; Roberts, L M; Adab, P

    2007-12-01

    There remains controversy about the contribution of food advertising targeted at children to the epidemic of childhood obesity in the UK. The aim of this study is to explore the relationship between the ability to recognize brand logos featured in promotional campaigns of the food industry and eating behaviours, food knowledge and preferences in children aged 9-11 attending six primary schools in Birmingham, West Midlands. A '20 flashcard' brand logo quiz assessed children's brand logo recognition ability; a self-completed questionnaire collected information on children's socio-demographic characteristics, eating behaviours, food knowledge and preferences (n=476). Children demonstrated both high brand logo recognition abilities with 88.4% (420/476) recognizing at least 16/20 brand logos in the quiz and high levels of poor diet. No strong correlation was found between higher brand logo recognition ability and poorer eating behaviours, food knowledge and preferences. Although many children are familiar with commonly presented logos of food products, brand awareness does not appear to be a major influence on the consumption of a poor diet amongst children. The regulation or restriction of food advertising to children is unlikely to have a significant impact on obesity rates among children unless combined with measures to address other detrimental influences.

  13. Relationships among vocabulary size, nonverbal cognition, and spoken word recognition in adults with cochlear implants

    NASA Astrophysics Data System (ADS)

    Collison, Elizabeth A.; Munson, Benjamin; Carney, Arlene E.

    2002-05-01

    Recent research has attempted to identify the factors that predict speech perception performance among users of cochlear implants (CIs). Studies have found that approximately 20%-60% of the variance in speech perception scores can be accounted for by factors including duration of deafness, etiology, type of device, and length of implant use, leaving approximately 50% of the variance unaccounted for. The current study examines the extent to which vocabulary size and nonverbal cognitive ability predict CI listeners' spoken word recognition. Fifteen postlingually deafened adults with nucleus or clarion CIs were given standardized assessments of nonverbal cognitive ability and expressive vocabulary size: the Expressive Vocabulary Test, the Test of Nonverbal Intelligence-III, and the Woodcock-Johnson-III Test of Cognitive Ability, Verbal Comprehension subtest. Two spoken word recognition tasks were administered. In the first, listeners identified isophonemic CVC words. In the second, listeners identified gated words varying in lexical frequency and neighborhood density. Analyses will examine the influence of lexical frequency and neighborhood density on the uniqueness point in the gating task, as well as relationships among nonverbal cognitive ability, vocabulary size, and the two spoken word recognition measures. [Work supported by NIH Grant P01 DC00110 and by the Lions 3M Hearing Foundation.

  14. Intact anger recognition in depression despite aberrant visual facial information usage.

    PubMed

    Clark, Cameron M; Chiu, Carina G; Diaz, Ruth L; Goghari, Vina M

    2014-08-01

    Previous literature has indicated abnormalities in facial emotion recognition abilities, as well as deficits in basic visual processes in major depression. However, the literature is unclear on a number of important factors including whether or not these abnormalities represent deficient or enhanced emotion recognition abilities compared to control populations, and the degree to which basic visual deficits might impact this process. The present study investigated emotion recognition abilities for angry versus neutral facial expressions in a sample of undergraduate students with Beck Depression Inventory-II (BDI-II) scores indicative of moderate depression (i.e., ≥20), compared to matched low-BDI-II score (i.e., ≤2) controls via the Bubbles Facial Emotion Perception Task. Results indicated unimpaired behavioural performance in discriminating angry from neutral expressions in the high depressive symptoms group relative to the minimal depressive symptoms group, despite evidence of an abnormal pattern of visual facial information usage. The generalizability of the current findings is limited by the highly structured nature of the facial emotion recognition task used, as well as the use of an analog sample undergraduates scoring high in self-rated symptoms of depression rather than a clinical sample. Our findings suggest that basic visual processes are involved in emotion recognition abnormalities in depression, demonstrating consistency with the emotion recognition literature in other psychopathologies (e.g., schizophrenia, autism, social anxiety). Future research should seek to replicate these findings in clinical populations with major depression, and assess the association between aberrant face gaze behaviours and symptom severity and social functioning. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Integration trumps selection in object recognition.

    PubMed

    Saarela, Toni P; Landy, Michael S

    2015-03-30

    Finding and recognizing objects is a fundamental task of vision. Objects can be defined by several "cues" (color, luminance, texture, etc.), and humans can integrate sensory cues to improve detection and recognition [1-3]. Cortical mechanisms fuse information from multiple cues [4], and shape-selective neural mechanisms can display cue invariance by responding to a given shape independent of the visual cue defining it [5-8]. Selective attention, in contrast, improves recognition by isolating a subset of the visual information [9]. Humans can select single features (red or vertical) within a perceptual dimension (color or orientation), giving faster and more accurate responses to items having the attended feature [10, 11]. Attention elevates neural responses and sharpens neural tuning to the attended feature, as shown by studies in psychophysics and modeling [11, 12], imaging [13-16], and single-cell and neural population recordings [17, 18]. Besides single features, attention can select whole objects [19-21]. Objects are among the suggested "units" of attention because attention to a single feature of an object causes the selection of all of its features [19-21]. Here, we pit integration against attentional selection in object recognition. We find, first, that humans can integrate information near optimally from several perceptual dimensions (color, texture, luminance) to improve recognition. They cannot, however, isolate a single dimension even when the other dimensions provide task-irrelevant, potentially conflicting information. For object recognition, it appears that there is mandatory integration of information from multiple dimensions of visual experience. The advantage afforded by this integration, however, comes at the expense of attentional selection. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Compensation for Blur Requires Increase in Field of View and Viewing Time

    PubMed Central

    Kwon, MiYoung; Liu, Rong; Chien, Lillian

    2016-01-01

    Spatial resolution is an important factor for human pattern recognition. In particular, low resolution (blur) is a defining characteristic of low vision. Here, we examined spatial (field of view) and temporal (stimulus duration) requirements for blurry object recognition. The spatial resolution of an image such as letter or face, was manipulated with a low-pass filter. In experiment 1, studying spatial requirement, observers viewed a fixed-size object through a window of varying sizes, which was repositioned until object identification (moving window paradigm). Field of view requirement, quantified as the number of “views” (window repositions) for correct recognition, was obtained for three blur levels, including no blur. In experiment 2, studying temporal requirement, we determined threshold viewing time, the stimulus duration yielding criterion recognition accuracy, at six blur levels, including no blur. For letter and face recognition, we found blur significantly increased the number of views, suggesting a larger field of view is required to recognize blurry objects. We also found blur significantly increased threshold viewing time, suggesting longer temporal integration is necessary to recognize blurry objects. The temporal integration reflects the tradeoff between stimulus intensity and time. While humans excel at recognizing blurry objects, our findings suggest compensating for blur requires increased field of view and viewing time. The need for larger spatial and longer temporal integration for recognizing blurry objects may further challenge object recognition in low vision. Thus, interactions between blur and field of view should be considered for developing low vision rehabilitation or assistive aids. PMID:27622710

  17. Integration trumps selection in object recognition

    PubMed Central

    Saarela, Toni P.; Landy, Michael S.

    2015-01-01

    Summary Finding and recognizing objects is a fundamental task of vision. Objects can be defined by several “cues” (color, luminance, texture etc.), and humans can integrate sensory cues to improve detection and recognition [1–3]. Cortical mechanisms fuse information from multiple cues [4], and shape-selective neural mechanisms can display cue-invariance by responding to a given shape independent of the visual cue defining it [5–8]. Selective attention, in contrast, improves recognition by isolating a subset of the visual information [9]. Humans can select single features (red or vertical) within a perceptual dimension (color or orientation), giving faster and more accurate responses to items having the attended feature [10,11]. Attention elevates neural responses and sharpens neural tuning to the attended feature, as shown by studies in psychophysics and modeling [11,12], imaging [13–16], and single-cell and neural population recordings [17,18]. Besides single features, attention can select whole objects [19–21]. Objects are among the suggested “units” of attention because attention to a single feature of an object causes the selection of all of its features [19–21]. Here, we pit integration against attentional selection in object recognition. We find, first, that humans can integrate information near-optimally from several perceptual dimensions (color, texture, luminance) to improve recognition. They cannot, however, isolate a single dimension even when the other dimensions provide task-irrelevant, potentially conflicting information. For object recognition, it appears that there is mandatory integration of information from multiple dimensions of visual experience. The advantage afforded by this integration, however, comes at the expense of attentional selection. PMID:25802154

  18. Complementary Hemispheric Asymmetries in Object Naming and Recognition: A Voxel-Based Correlational Study

    ERIC Educational Resources Information Center

    Acres, K.; Taylor, K. I.; Moss, H. E.; Stamatakis, E. A.; Tyler, L. K.

    2009-01-01

    Cognitive neuroscientific research proposes complementary hemispheric asymmetries in naming and recognising visual objects, with a left temporal lobe advantage for object naming and a right temporal lobe advantage for object recognition. Specifically, it has been proposed that the left inferior temporal lobe plays a mediational role linking…

  19. Priming Contour-Deleted Images: Evidence for Immediate Representations in Visual Object Recognition.

    ERIC Educational Resources Information Center

    Biederman, Irving; Cooper, Eric E.

    1991-01-01

    Speed and accuracy of identification of pictures of objects are facilitated by prior viewing. Contributions of image features, convex or concave components, and object models in a repetition priming task were explored in 2 studies involving 96 college students. Results provide evidence of intermediate representations in visual object recognition.…

  20. Electrophysiological evidence for effects of color knowledge in object recognition.

    PubMed

    Lu, Aitao; Xu, Guiping; Jin, Hua; Mo, Lei; Zhang, Jijia; Zhang, John X

    2010-01-29

    Knowledge about the typical colors associated with familiar everyday objects (i.e., strawberries are red) is well-known to be represented in the conceptual semantic system. Evidence that such knowledge may also play a role in early perceptual processes for object recognition is scant. In the present ERP study, participants viewed a list of object pictures and detected infrequent stimulus repetitions. Results show that shortly after stimulus onset, ERP components indexing early perceptual processes, including N1, P2, and N2, differentiated between objects in their appropriate or congruent color from these objects in an inappropriate or incongruent color. Such congruence effect also occurred in N3 associated with semantic processing of pictures but not in N4 for domain-general semantic processing. Our results demonstrate a clear effect of color knowledge in early object recognition stages and support the following proposal-color as a surface property is stored in a multiple-memory system where pre-semantic perceptual and semantic conceptual representations interact during object recognition. (c) 2009 Elsevier Ireland Ltd. All rights reserved.

Top