Sample records for object recognition memory

  1. Object memory effects on figure assignment: conscious object recognition is not necessary or sufficient.

    PubMed

    Peterson, M A; de Gelder, B; Rapcsak, S Z; Gerhardstein, P C; Bachoud-Lévi, A

    2000-01-01

    In three experiments we investigated whether conscious object recognition is necessary or sufficient for effects of object memories on figure assignment. In experiment 1, we examined a brain-damaged participant, AD, whose conscious object recognition is severely impaired. AD's responses about figure assignment do reveal effects from memories of object structure, indicating that conscious object recognition is not necessary for these effects, and identifying the figure-ground test employed here as a new implicit test of access to memories of object structure. In experiments 2 and 3, we tested a second brain-damaged participant, WG, for whom conscious object recognition was relatively spared. Nevertheless, effects from memories of object structure on figure assignment were not evident in WG's responses about figure assignment in experiment 2, indicating that conscious object recognition is not sufficient for effects of object memories on figure assignment. WG's performance sheds light on AD's performance, and has implications for the theoretical understanding of object memory effects on figure assignment.

  2. Decreased acetylcholine release delays the consolidation of object recognition memory.

    PubMed

    De Jaeger, Xavier; Cammarota, Martín; Prado, Marco A M; Izquierdo, Iván; Prado, Vania F; Pereira, Grace S

    2013-02-01

    Acetylcholine (ACh) is important for different cognitive functions such as learning, memory and attention. The release of ACh depends on its vesicular loading by the vesicular acetylcholine transporter (VAChT). It has been demonstrated that VAChT expression can modulate object recognition memory. However, the role of VAChT expression on object recognition memory persistence still remains to be understood. To address this question we used distinct mouse lines with reduced expression of VAChT, as well as pharmacological manipulations of the cholinergic system. We showed that reduction of cholinergic tone impairs object recognition memory measured at 24h. Surprisingly, object recognition memory, measured at 4 days after training, was impaired by substantial, but not moderate, reduction in VAChT expression. Our results suggest that levels of acetylcholine release strongly modulate object recognition memory consolidation and appear to be of particular importance for memory persistence 4 days after training. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. Examining object recognition and object-in-Place memory in plateau zokors, Eospalax baileyi.

    PubMed

    Hegab, Ibrahim M; Tan, Yuchen; Wang, Chan; Yao, Baohui; Wang, Haifang; Ji, Weihong; Su, Junhu

    2018-01-01

    Recognition memory is important for the survival and fitness of subterranean rodents due to the barren underground conditions that require avoiding the burden of higher energy costs or possible conflict with conspecifics. Our study aims to examine the object and object/place recognition memories in plateau zokors (Eospalax baileyi) and test whether their underground life exerts sex-specific differences in memory functions using Novel Object Recognition (NOR) and Object-in-Place (OiP) paradigms. Animals were tested in the NOR with short (10min) and long-term (24h) inter-trial intervals (ITI) and in the OiP for a 30-min ITI between the familiarization and testing sessions. Plateau zokors showed a strong preference for novel objects manifested by a longer exploration time for the novel object after 10min ITI but failed to remember the familiar object when tested after 24h, suggesting a lack of long-term memory. In the OiP test, zokors effectively formed an association between the objects and the place where they were formerly encountered, resulting in a higher duration of exploration to the switched objects. However, both sexes showed equivalent results in exploration time during the NOR and OiP tests, which eliminates the possibility of discovering sex-specific variations in memory performance. Taken together, our study illustrates robust novelty preference and an effective short-term recognition memory without marked sex-specific differences, which might elucidate the dynamics of recognition memory formation and retrieval in plateau zokors. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Distinct roles of basal forebrain cholinergic neurons in spatial and object recognition memory.

    PubMed

    Okada, Kana; Nishizawa, Kayo; Kobayashi, Tomoko; Sakata, Shogo; Kobayashi, Kazuto

    2015-08-06

    Recognition memory requires processing of various types of information such as objects and locations. Impairment in recognition memory is a prominent feature of amnesia and a symptom of Alzheimer's disease (AD). Basal forebrain cholinergic neurons contain two major groups, one localized in the medial septum (MS)/vertical diagonal band of Broca (vDB), and the other in the nucleus basalis magnocellularis (NBM). The roles of these cell groups in recognition memory have been debated, and it remains unclear how they contribute to it. We use a genetic cell targeting technique to selectively eliminate cholinergic cell groups and then test spatial and object recognition memory through different behavioural tasks. Eliminating MS/vDB neurons impairs spatial but not object recognition memory in the reference and working memory tasks, whereas NBM elimination undermines only object recognition memory in the working memory task. These impairments are restored by treatment with acetylcholinesterase inhibitors, anti-dementia drugs for AD. Our results highlight that MS/vDB and NBM cholinergic neurons are not only implicated in recognition memory but also have essential roles in different types of recognition memory.

  5. Exogenous temporal cues enhance recognition memory in an object-based manner.

    PubMed

    Ohyama, Junji; Watanabe, Katsumi

    2010-11-01

    Exogenous attention enhances the perception of attended items in both a space-based and an object-based manner. Exogenous attention also improves recognition memory for attended items in the space-based mode. However, it has not been examined whether object-based exogenous attention enhances recognition memory. To address this issue, we examined whether a sudden visual change in a task-irrelevant stimulus (an exogenous cue) would affect participants' recognition memory for items that were serially presented around a cued time. The results showed that recognition accuracy for an item was strongly enhanced when the visual cue occurred at the same location and time as the item (Experiments 1 and 2). The memory enhancement effect occurred when the exogenous visual cue and an item belonged to the same object (Experiments 3 and 4) and even when the cue was counterpredictive of the timing of an item to be asked about (Experiment 5). The present study suggests that an exogenous temporal cue automatically enhances the recognition accuracy for an item that is presented at close temporal proximity to the cue and that recognition memory enhancement occurs in an object-based manner.

  6. Object Recognition Memory and the Rodent Hippocampus

    ERIC Educational Resources Information Center

    Broadbent, Nicola J.; Gaskin, Stephane; Squire, Larry R.; Clark, Robert E.

    2010-01-01

    In rodents, the novel object recognition task (NOR) has become a benchmark task for assessing recognition memory. Yet, despite its widespread use, a consensus has not developed about which brain structures are important for task performance. We assessed both the anterograde and retrograde effects of hippocampal lesions on performance in the NOR…

  7. High speed optical object recognition processor with massive holographic memory

    NASA Technical Reports Server (NTRS)

    Chao, T.; Zhou, H.; Reyes, G.

    2002-01-01

    Real-time object recognition using a compact grayscale optical correlator will be introduced. A holographic memory module for storing a large bank of optimum correlation filters, to accommodate the large data throughput rate needed for many real-world applications, has also been developed. System architecture of the optical processor and the holographic memory will be presented. Application examples of this object recognition technology will also be demonstrated.

  8. Adrenergic enhancement of consolidation of object recognition memory.

    PubMed

    Dornelles, Arethuza; de Lima, Maria Noemia Martins; Grazziotin, Manoela; Presti-Torres, Juliana; Garcia, Vanessa Athaide; Scalco, Felipe Siciliani; Roesler, Rafael; Schröder, Nadja

    2007-07-01

    Extensive evidence indicates that epinephrine (EPI) modulates memory consolidation for emotionally arousing tasks in animals and human subjects. However, previous studies have not examined the effects of EPI on consolidation of recognition memory. Here we report that systemic administration of EPI enhances consolidation of memory for a novel object recognition (NOR) task under different training conditions. Control male rats given a systemic injection of saline (0.9% NaCl) immediately after NOR training showed significant memory retention when tested at 1.5 or 24, but not 96h after training. In contrast, rats given a post-training injection of EPI showed significant retention of NOR at all delays. In a second experiment using a different training condition, rats treated with EPI, but not SAL-treated animals, showed significant NOR retention at both 1.5 and 24-h delays. We next showed that the EPI-induced enhancement of retention tested at 96h after training was prevented by pretraining systemic administration of the beta-adrenoceptor antagonist propranolol. The findings suggest that, as previously observed in experiments using aversively motivated tasks, epinephrine modulates consolidation of recognition memory and that the effects require activation of beta-adrenoceptors.

  9. Examining Object Location and Object Recognition Memory in Mice

    PubMed Central

    Vogel-Ciernia, Annie; Wood, Marcelo A.

    2014-01-01

    Unit Introduction The ability to store and recall our life experiences defines a person's identity. Consequently, the loss of long-term memory is a particularly devastating part of a variety of cognitive disorders, diseases and injuries. There is a great need to develop therapeutics to treat memory disorders, and thus a variety of animal models and memory paradigms have been developed. Mouse models have been widely used both to study basic disease mechanisms and to evaluate potential drug targets for therapeutic development. The relative ease of genetic manipulation of Mus musculus has led to a wide variety of genetically altered mice that model cognitive disorders ranging from Alzheimer's disease to autism. Rodents, including mice, are particularly adept at encoding and remembering spatial relationships, and these long-term spatial memories are dependent on the medial temporal lobe of the brain. These brain regions are also some of the first and most heavily impacted in disorders of human memory including Alzheimer's disease. Consequently, some of the simplest and most commonly used tests of long-term memory in mice are those that examine memory for objects and spatial relationships. However, many of these tasks, such as Morris water maze and contextual fear conditioning, are dependent upon the encoding and retrieval of emotionally aversive and inherently stressful training events. While these types of memories are important, they do not reflect the typical day-to-day experiences or memories most commonly affected in human disease. In addition, stress hormone release alone can modulate memory and thus obscure or artificially enhance these types of tasks. To avoid these sorts of confounds, we and many others have utilized tasks testing animals’ memory for object location and novel object recognition. These tasks involve exploiting rodents’ innate preference for novelty, and are inherently not stressful. In this protocol we detail how memory for object location

  10. Differential effects of spaced vs. massed training in long-term object-identity and object-location recognition memory.

    PubMed

    Bello-Medina, Paola C; Sánchez-Carrasco, Livia; González-Ornelas, Nadia R; Jeffery, Kathryn J; Ramírez-Amaya, Víctor

    2013-08-01

    Here we tested whether the well-known superiority of spaced training over massed training is equally evident in both object identity and object location recognition memory. We trained animals with objects placed in a variable or in a fixed location to produce a location-independent object identity memory or a location-dependent object representation. The training consisted of 5 trials that occurred either on one day (Massed) or over the course of 5 consecutive days (Spaced). The memory test was done in independent groups of animals either 24h or 7 days after the last training trial. In each test the animals were exposed to either a novel object, when trained with the objects in variable locations, or to a familiar object in a novel location, when trained with objects in fixed locations. The difference in time spent exploring the changed versus the familiar objects was used as a measure of recognition memory. For the object-identity-trained animals, spaced training produced clear evidence of recognition memory after both 24h and 7 days, but massed-training animals showed it only after 24h. In contrast, for the object-location-trained animals, recognition memory was evident after both retention intervals and with both training procedures. When objects were placed in variable locations for the two types of training and the test was done with a brand-new location, only the spaced-training animals showed recognition at 24h, but surprisingly, after 7 days, animals trained using both procedures were able to recognize the change, suggesting a post-training consolidation process. We suggest that the two training procedures trigger different neural mechanisms that may differ in the two segregated streams that process object information and that may consolidate differently. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Ventromedial prefrontal cortex is obligatory for consolidation and reconsolidation of object recognition memory.

    PubMed

    Akirav, Irit; Maroun, Mouna

    2006-12-01

    Once consolidated, a long-term memory item could regain susceptibility to consolidation blockers, that is, reconsolidate, upon its reactivation. Both consolidation and reconsolidation require protein synthesis, but it is not yet known how similar these processes are in terms of molecular, cellular, and neural circuit mechanisms. Whereas most previous studies focused on aversive conditioning in the amygdala and the hippocampus, here we examine the role of the ventromedial prefrontal cortex (vmPFC) in consolidation and reconsolidation of object recognition memory. Object recognition memory is the ability to discriminate the familiarity of previously encountered objects. We found that microinfusion of the protein synthesis inhibitor anisomycin or the N-methyl-D-aspartate (NMDA) receptor antagonist D,L-2-amino-5-phosphonovaleric acid (APV) into the vmPFC, immediately after training, resulted in impairment of long-term (24 h) but not short-term (3 h) recognition memory. Similarly, microinfusion of anisomycin or APV into the vmPFC immediately after reactivation of the long-term memory impaired recognition memory 24 h, but not 3 h, post-reactivation. These results indicate that both protein synthesis and NMDA receptors are required for consolidation and reconsolidation of recognition memory in the vmPFC.

  12. Deletion of the GluA1 AMPA receptor subunit impairs recency-dependent object recognition memory

    PubMed Central

    Sanderson, David J.; Hindley, Emma; Smeaton, Emily; Denny, Nick; Taylor, Amy; Barkus, Chris; Sprengel, Rolf; Seeburg, Peter H.; Bannerman, David M.

    2011-01-01

    Deletion of the GluA1 AMPA receptor subunit impairs short-term spatial recognition memory. It has been suggested that short-term recognition depends upon memory caused by the recent presentation of a stimulus that is independent of contextual–retrieval processes. The aim of the present set of experiments was to test whether the role of GluA1 extends to nonspatial recognition memory. Wild-type and GluA1 knockout mice were tested on the standard object recognition task and a context-independent recognition task that required recency-dependent memory. In a first set of experiments it was found that GluA1 deletion failed to impair performance on either of the object recognition or recency-dependent tasks. However, GluA1 knockout mice displayed increased levels of exploration of the objects in both the sample and test phases compared to controls. In contrast, when the time that GluA1 knockout mice spent exploring the objects was yoked to control mice during the sample phase, it was found that GluA1 deletion now impaired performance on both the object recognition and the recency-dependent tasks. GluA1 deletion failed to impair performance on a context-dependent recognition task regardless of whether object exposure in knockout mice was yoked to controls or not. These results demonstrate that GluA1 is necessary for nonspatial as well as spatial recognition memory and plays an important role in recency-dependent memory processes. PMID:21378100

  13. Neuropeptide S interacts with the basolateral amygdala noradrenergic system in facilitating object recognition memory consolidation.

    PubMed

    Han, Ren-Wen; Xu, Hong-Jiao; Zhang, Rui-San; Wang, Pei; Chang, Min; Peng, Ya-Li; Deng, Ke-Yu; Wang, Rui

    2014-01-01

    The noradrenergic activity in the basolateral amygdala (BLA) was reported to be involved in the regulation of object recognition memory. As the BLA expresses high density of receptors for Neuropeptide S (NPS), we investigated whether the BLA is involved in mediating NPS's effects on object recognition memory consolidation and whether such effects require noradrenergic activity. Intracerebroventricular infusion of NPS (1nmol) post training facilitated 24-h memory in a mouse novel object recognition task. The memory-enhancing effect of NPS could be blocked by the β-adrenoceptor antagonist propranolol. Furthermore, post-training intra-BLA infusions of NPS (0.5nmol/side) improved 24-h memory for objects, which was impaired by co-administration of propranolol (0.5μg/side). Taken together, these results indicate that NPS interacts with the BLA noradrenergic system in improving object recognition memory during consolidation. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. Intraperirhinal cortex administration of the synthetic cannabinoid, HU210, disrupts object recognition memory in rats.

    PubMed

    Sticht, Martin A; Jacklin, Derek L; Mechoulam, Raphael; Parker, Linda A; Winters, Boyer D

    2015-03-25

    Cannabinoids disrupt learning and memory in human and nonhuman participants. Object recognition memory, which is particularly susceptible to the impairing effects of cannabinoids, relies critically on the perirhinal cortex (PRh); however, to date, the effects of cannabinoids within PRh have not been assessed. In the present study, we evaluated the effects of localized administration of the synthetic cannabinoid, HU210 (0.01, 1.0 μg/hemisphere), into PRh on spontaneous object recognition in Long-Evans rats. Animals received intra-PRh infusions of HU210 before the sample phase, and object recognition memory was assessed at various delays in a subsequent retention test. We found that presample intra-PRh HU210 dose dependently (1.0 μg but not 0.01 μg) interfered with spontaneous object recognition performance, exerting an apparently more pronounced effect when memory demands were increased. These novel findings show that cannabinoid agonists in PRh disrupt object recognition memory. Copyright © 2015 Wolters Kluwer Health, Inc. All rights reserved.

  15. Dopamine D1 receptor activation leads to object recognition memory in a coral reef fish.

    PubMed

    Hamilton, Trevor J; Tresguerres, Martin; Kline, David I

    2017-07-01

    Object recognition memory is the ability to identify previously seen objects and is an adaptive mechanism that increases survival for many species throughout the animal kingdom. Previously believed to be possessed by only the highest order mammals, it is now becoming clear that fish are also capable of this type of memory formation. Similar to the mammalian hippocampus, the dorsolateral pallium regulates distinct memory processes and is modulated by neurotransmitters such as dopamine. Caribbean bicolour damselfish ( Stegastes partitus ) live in complex environments dominated by coral reef structures and thus likely possess many types of complex memory abilities including object recognition. This study used a novel object recognition test in which fish were first presented two identical objects, then after a retention interval of 10 min with no objects, the fish were presented with a novel object and one of the objects they had previously encountered in the first trial. We demonstrate that the dopamine D 1 -receptor agonist (SKF 38393) induces the formation of object recognition memories in these fish. Thus, our results suggest that dopamine-receptor mediated enhancement of spatial memory formation in fish represents an evolutionarily conserved mechanism in vertebrates. © 2017 The Author(s).

  16. Glucocorticoid effects on object recognition memory require training-associated emotional arousal.

    PubMed

    Okuda, Shoki; Roozendaal, Benno; McGaugh, James L

    2004-01-20

    Considerable evidence implicates glucocorticoid hormones in the regulation of memory consolidation and memory retrieval. The present experiments investigated whether the influence of these hormones on memory depends on the level of emotional arousal induced by the training experience. We investigated this issue in male Sprague-Dawley rats by examining the effects of immediate posttraining systemic injections of the glucocorticoid corticosterone on object recognition memory under two conditions that differed in their training-associated emotional arousal. In rats that were not previously habituated to the experimental context, corticosterone (0.3, 1.0, or 3.0 mg/kg, s.c.) administered immediately after a 3-min training trial enhanced 24-hr retention performance in an inverted-U shaped dose-response relationship. In contrast, corticosterone did not affect 24-hr retention of rats that received extensive prior habituation to the experimental context and, thus, had decreased novelty-induced emotional arousal during training. Additionally, immediate posttraining administration of corticosterone to nonhabituated rats, in doses that enhanced 24-hr retention, impaired object recognition performance at a 1-hr retention interval whereas corticosterone administered after training to well-habituated rats did not impair 1-hr retention. Thus, the present findings suggest that training-induced emotional arousal may be essential for glucocorticoid effects on object recognition memory.

  17. A role for the CAMKK pathway in visual object recognition memory.

    PubMed

    Tinsley, Chris J; Narduzzo, Katherine E; Brown, Malcolm W; Warburton, E Clea

    2012-03-01

    The role of the CAMKK pathway in object recognition memory was investigated. Rats' performance in a preferential object recognition test was examined after local infusion into the perirhinal cortex of the CAMKK inhibitor STO-609. STO-609 infused either before or immediately after acquisition impaired memory tested after a 24 h but not a 20-min delay. Memory was not impaired when STO-609 was infused 20 min after acquisition. The expression of a downstream reaction product of CAMKK was measured by immunohistochemical staining for phospho-CAMKI(Thr177) at 10, 40, 70, and 100 min following the viewing of novel and familiar images of objects. Processing familiar images resulted in more pCAMKI stained neurons in the perirhinal cortex than processing novel images at the 10- and 40-min delays. Prior infusion of STO-609 caused a reduction in pCAMKI stained neurons in response to viewing either novel or familiar images, consistent with its role as an inhibitor of CAMKK. The results establish that the CAMKK pathway within the perirhinal cortex is important for the consolidation of object recognition memory. The activation of pCAMKI after acquisition is earlier than previously reported for pCAMKII. Copyright © 2011 Wiley Periodicals, Inc.

  18. Standard object recognition memory and "what" and "where" components: Improvement by post-training epinephrine in highly habituated rats.

    PubMed

    Jurado-Berbel, Patricia; Costa-Miserachs, David; Torras-Garcia, Meritxell; Coll-Andreu, Margalida; Portell-Cortés, Isabel

    2010-02-11

    The present work examined whether post-training systemic epinephrine (EPI) is able to modulate short-term (3h) and long-term (24 h and 48 h) memory of standard object recognition, as well as long-term (24 h) memory of separate "what" (object identity) and "where" (object location) components of object recognition. Although object recognition training is associated to low arousal levels, all the animals received habituation to the training box in order to further reduce emotional arousal. Post-training EPI improved long-term (24 h and 48 h), but not short-term (3 h), memory in the standard object recognition task, as well as 24 h memory for both object identity and object location. These data indicate that post-training epinephrine: (1) facilitates long-term memory for standard object recognition; (2) exerts separate facilitatory effects on "what" (object identity) and "where" (object location) components of object recognition; and (3) is capable of improving memory for a low arousing task even in highly habituated rats.

  19. Plastic modifications induced by object recognition memory processing

    PubMed Central

    Clarke, Julia Rosauro; Cammarota, Martín; Gruart, Agnès; Izquierdo, Iván; Delgado-García, José María

    2010-01-01

    Long-term potentiation (LTP) phenomenon is widely accepted as a cellular model of memory consolidation. Object recognition (OR) is a particularly useful way of studying declarative memory in rodents because it makes use of their innate preference for novel over familiar objects. In this study, mice had electrodes implanted in the hippocampal Schaffer collaterals–pyramidal CA1 pathway and were trained for OR. Field EPSPs evoked at the CA3-CA1 synapse were recorded at the moment of training and at different times thereafter. LTP-like synaptic enhancement was found 6 h posttraining. A testing session was conducted 24 h after training, in the presence of one familiar and one novel object. Hippocampal synaptic facilitation was observed during exploration of familiar and novel objects. A short depotentiation period was observed early after the test and was followed by a later phase of synaptic efficacy enhancement. Here, we show that OR memory consolidation is accompanied by transient potentiation in the hippocampal CA3-CA1 synapses, while reconsolidation of this memory requires a short-lasting phase of depotentiation that could account for its well described vulnerability. The late synaptic enhancement phase, on the other hand, would be a consequence of memory restabilization. PMID:20133798

  20. A new selective developmental deficit: Impaired object recognition with normal face recognition.

    PubMed

    Germine, Laura; Cashdollar, Nathan; Düzel, Emrah; Duchaine, Bradley

    2011-05-01

    Studies of developmental deficits in face recognition, or developmental prosopagnosia, have shown that individuals who have not suffered brain damage can show face recognition impairments coupled with normal object recognition (Duchaine and Nakayama, 2005; Duchaine et al., 2006; Nunn et al., 2001). However, no developmental cases with the opposite dissociation - normal face recognition with impaired object recognition - have been reported. The existence of a case of non-face developmental visual agnosia would indicate that the development of normal face recognition mechanisms does not rely on the development of normal object recognition mechanisms. To see whether a developmental variant of non-face visual object agnosia exists, we conducted a series of web-based object and face recognition tests to screen for individuals showing object recognition memory impairments but not face recognition impairments. Through this screening process, we identified AW, an otherwise normal 19-year-old female, who was then tested in the lab on face and object recognition tests. AW's performance was impaired in within-class visual recognition memory across six different visual categories (guns, horses, scenes, tools, doors, and cars). In contrast, she scored normally on seven tests of face recognition, tests of memory for two other object categories (houses and glasses), and tests of recall memory for visual shapes. Testing confirmed that her impairment was not related to a general deficit in lower-level perception, object perception, basic-level recognition, or memory. AW's results provide the first neuropsychological evidence that recognition memory for non-face visual object categories can be selectively impaired in individuals without brain damage or other memory impairment. These results indicate that the development of recognition memory for faces does not depend on intact object recognition memory and provide further evidence for category-specific dissociations in visual

  1. Post-Training Reversible Inactivation of the Hippocampus Enhances Novel Object Recognition Memory

    ERIC Educational Resources Information Center

    Oliveira, Ana M. M.; Hawk, Joshua D.; Abel, Ted; Havekes, Robbert

    2010-01-01

    Research on the role of the hippocampus in object recognition memory has produced conflicting results. Previous studies have used permanent hippocampal lesions to assess the requirement for the hippocampus in the object recognition task. However, permanent hippocampal lesions may impact performance through effects on processes besides memory…

  2. Dentate gyrus supports slope recognition memory, shades of grey-context pattern separation and recognition memory, and CA3 supports pattern completion for object memory.

    PubMed

    Kesner, Raymond P; Kirk, Ryan A; Yu, Zhenghui; Polansky, Caitlin; Musso, Nick D

    2016-03-01

    In order to examine the role of the dorsal dentate gyrus (dDG) in slope (vertical space) recognition and possible pattern separation, various slope (vertical space) degrees were used in a novel exploratory paradigm to measure novelty detection for changes in slope (vertical space) recognition memory and slope memory pattern separation in Experiment 1. The results of the experiment indicate that control rats displayed a slope recognition memory function with a pattern separation process for slope memory that is dependent upon the magnitude of change in slope between study and test phases. In contrast, the dDG lesioned rats displayed an impairment in slope recognition memory, though because there was no significant interaction between the two groups and slope memory, a reliable pattern separation impairment for slope could not be firmly established in the DG lesioned rats. In Experiment 2, in order to determine whether, the dDG plays a role in shades of grey spatial context recognition and possible pattern separation, shades of grey were used in a novel exploratory paradigm to measure novelty detection for changes in the shades of grey context environment. The results of the experiment indicate that control rats displayed a shades of grey-context pattern separation effect across levels of separation of context (shades of grey). In contrast, the DG lesioned rats displayed a significant interaction between the two groups and levels of shades of grey suggesting impairment in a pattern separation function for levels of shades of grey. In Experiment 3 in order to determine whether the dorsal CA3 (dCA3) plays a role in object pattern completion, a new task requiring less training and using a choice that was based on choosing the correct set of objects on a two-choice discrimination task was used. The results indicated that control rats displayed a pattern completion function based on the availability of one, two, three or four cues. In contrast, the dCA3 lesioned rats

  3. How landmark suitability shapes recognition memory signals for objects in the medial temporal lobes.

    PubMed

    Martin, Chris B; Sullivan, Jacqueline A; Wright, Jessey; Köhler, Stefan

    2018-02-01

    A role of perirhinal cortex (PrC) in recognition memory for objects has been well established. Contributions of parahippocampal cortex (PhC) to this function, while documented, remain less well understood. Here, we used fMRI to examine whether the organization of item-based recognition memory signals across these two structures is shaped by object category, independent of any difference in representing episodic context. Guided by research suggesting that PhC plays a critical role in processing landmarks, we focused on three categories of objects that differ from each other in their landmark suitability as confirmed with behavioral ratings (buildings > trees > aircraft). Participants made item-based recognition-memory decisions for novel and previously studied objects from these categories, which were matched in accuracy. Multi-voxel pattern classification revealed category-specific item-recognition memory signals along the long axis of PrC and PhC, with no sharp functional boundaries between these structures. Memory signals for buildings were observed in the mid to posterior extent of PhC, signals for trees in anterior to posterior segments of PhC, and signals for aircraft in mid to posterior aspects of PrC and the anterior extent of PhC. Notably, item-based memory signals for the category with highest landmark suitability ratings were observed only in those posterior segments of PhC that also allowed for classification of landmark suitability of objects when memory status was held constant. These findings provide new evidence in support of the notion that item-based memory signals for objects are not limited to PrC, and that the organization of these signals along the longitudinal axis that crosses PrC and PhC can be captured with reference to landmark suitability. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Neuropeptide Trefoil factor 3 improves learning and retention of novel object recognition memory in mice.

    PubMed

    Shi, Hai-Shui; Yin, Xi; Song, Li; Guo, Qing-Jun; Luo, Xiang-Heng

    2012-02-01

    Accumulating evidence has implicated neuropeptides in modulating recognition, learning and memory. However, to date, no study has investigated the effects of neuropeptide Trefoil factor 3 (TFF3) on the process of learning and memory. In the present study, we evaluated the acute effects of TFF3 administration (0.1 and 0.5mg/kg, i.p.) on the acquisition and retention of object recognition memory in mice. We found that TFF3 administration significantly enhanced both short-term and long-term memory during the retention test, conducted 90 min and 24h after training respectively. Remarkably, acute TFF3 administration transformed a learning event that would not normally result in long-term memory into an event retained for a long-term period and produced no effect on locomotor activity in mice. In conclusion, the present results provide an important role of TFF3 in improving object recognition memory and reserving it for a longer time, which suggests a potential therapeutic application for diseases with recognition and memory impairment. Copyright © 2011 Elsevier B.V. All rights reserved.

  5. Neurophysiological indices of perceptual object priming in the absence of explicit recognition memory.

    PubMed

    Harris, Jill D; Cutmore, Tim R H; O'Gorman, John; Finnigan, Simon; Shum, David

    2009-02-01

    The aim of this study was to identify ERP correlates of perceptual object priming that are insensitive to factors affecting explicit, episodic memory. EEG was recorded from 21 participants while they performed a visual object recognition test on a combination of unstudied items and old items that were previously encountered during either a 'deep' or 'shallow' levels-of-processing (LOP) study task. The results demonstrated a midline P150 old/new effect which was sensitive only to objects' old/new status and not to the accuracy of recognition responses to old items, or to the LOP manipulation. Similar outcomes were observed for the subsequent P200 and N400 effects, the former of which had a parietal scalp maximum and the latter, a broadly distributed topography. In addition an LPC old/new effect typical of those reported in past ERP recognition studies was observed. These outcomes support the proposal that the P150 effect is reflective of perceptual object priming and moreover, provide novel evidence that this and the P200 effect are independent of explicit recognition memory process(es).

  6. Reversibility of object recognition but not spatial memory impairment following binge-like alcohol exposure in rats

    PubMed Central

    Cippitelli, Andrea; Zook, Michelle; Bell, Lauren; Damadzic, Ruslan; Eskay, Robert L.; Schwandt, Melanie; Heilig, Markus

    2010-01-01

    Excessive alcohol use leads to neurodegeneration in several brain structures including the hippocampal dentate gyrus and the entorhinal cortex. Cognitive deficits that result are among the most insidious and debilitating consequences of alcoholism. The object exploration task (OET) provides a sensitive measurement of spatial memory impairment induced by hippocampal and cortical damage. In this study, we examine whether the observed neurotoxicity produced by a 4-day binge ethanol treatment results in long-term memory impairment by observing the time course of reactions to spatial change (object configuration) and non-spatial change (object recognition). Wistar rats were assessed for their abilities to detect spatial configuration in the OET at 1 week and 10 weeks following the ethanol treatment, in which ethanol groups received 9–15 g/kg/day and achieved blood alcohol levels over 300 mg/dl. At 1 week, results indicated that the binge alcohol treatment produced impairment in both spatial memory and non-spatial object recognition performance. Unlike the controls, ethanol treated rats did not increase the duration or number of contacts with the displaced object in the spatial memory task, nor did they increase the duration of contacts with the novel object in the object recognition task. After 10 weeks, spatial memory remained impaired in the ethanol treated rats but object recognition ability was recovered. Our data suggest that episodes of binge-like alcohol exposure result in long-term and possibly permanent impairments in memory for the configuration of objects during exploration, whereas the ability to detect non-spatial changes is only temporarily affected. PMID:20849966

  7. Dietary effects on object recognition: The impact of high-fat high-sugar diets on recollection and familiarity-based memory.

    PubMed

    Tran, Dominic M D; Westbrook, R Frederick

    2018-05-31

    Exposure to a high-fat high-sugar (HFHS) diet rapidly impairs novel-place- but not novel-object-recognition memory in rats (Tran & Westbrook, 2015, 2017). Three experiments sought to investigate the generality of diet-induced cognitive deficits by examining whether there are conditions under which object-recognition memory is impaired. Experiments 1 and 3 tested the strength of short- and long-term object-memory trace, respectively, by varying the interval of time between object familiarization and subsequent novel object test. Experiment 2 tested the effect of increasing working memory load on object-recognition memory by interleaving additional object exposures between familiarization and test in an n-back style task. Experiments 1-3 failed to detect any differences in object recognition between HFHS and control rats. Experiment 4 controlled for object novelty by separately familiarizing both objects presented at test, which included one remote-familiar and one recent-familiar object. Under these conditions, when test objects differed in their relative recency, HFHS rats showed a weaker memory trace for the remote object compared to chow rats. This result suggests that the diet leaves intact recollection judgments, but impairs familiarity judgments. We speculate that the HFHS diet adversely affects "where" memories as well as the quality of "what" memories, and discuss these effects in relation to recollection and familiarity memory models, hippocampal-dependent functions, and episodic food memories. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  8. Infant visual attention and object recognition.

    PubMed

    Reynolds, Greg D

    2015-05-15

    This paper explores the role visual attention plays in the recognition of objects in infancy. Research and theory on the development of infant attention and recognition memory are reviewed in three major sections. The first section reviews some of the major findings and theory emerging from a rich tradition of behavioral research utilizing preferential looking tasks to examine visual attention and recognition memory in infancy. The second section examines research utilizing neural measures of attention and object recognition in infancy as well as research on brain-behavior relations in the early development of attention and recognition memory. The third section addresses potential areas of the brain involved in infant object recognition and visual attention. An integrated synthesis of some of the existing models of the development of visual attention is presented which may account for the observed changes in behavioral and neural measures of visual attention and object recognition that occur across infancy. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Infant Visual Attention and Object Recognition

    PubMed Central

    Reynolds, Greg D.

    2015-01-01

    This paper explores the role visual attention plays in the recognition of objects in infancy. Research and theory on the development of infant attention and recognition memory are reviewed in three major sections. The first section reviews some of the major findings and theory emerging from a rich tradition of behavioral research utilizing preferential looking tasks to examine visual attention and recognition memory in infancy. The second section examines research utilizing neural measures of attention and object recognition in infancy as well as research on brain-behavior relations in the early development of attention and recognition memory. The third section addresses potential areas of the brain involved in infant object recognition and visual attention. An integrated synthesis of some of the existing models of the development of visual attention is presented which may account for the observed changes in behavioral and neural measures of visual attention and object recognition that occur across infancy. PMID:25596333

  10. Reversibility of object recognition but not spatial memory impairment following binge-like alcohol exposure in rats.

    PubMed

    Cippitelli, Andrea; Zook, Michelle; Bell, Lauren; Damadzic, Ruslan; Eskay, Robert L; Schwandt, Melanie; Heilig, Markus

    2010-11-01

    Excessive alcohol use leads to neurodegeneration in several brain structures including the hippocampal dentate gyrus and the entorhinal cortex. Cognitive deficits that result are among the most insidious and debilitating consequences of alcoholism. The object exploration task (OET) provides a sensitive measurement of spatial memory impairment induced by hippocampal and cortical damage. In this study, we examine whether the observed neurotoxicity produced by a 4-day binge ethanol treatment results in long-term memory impairment by observing the time course of reactions to spatial change (object configuration) and non-spatial change (object recognition). Wistar rats were assessed for their abilities to detect spatial configuration in the OET at 1 week and 10 weeks following the ethanol treatment, in which ethanol groups received 9-15 g/kg/day and achieved blood alcohol levels over 300 mg/dl. At 1 week, results indicated that the binge alcohol treatment produced impairment in both spatial memory and non-spatial object recognition performance. Unlike the controls, ethanol treated rats did not increase the duration or number of contacts with the displaced object in the spatial memory task, nor did they increase the duration of contacts with the novel object in the object recognition task. After 10 weeks, spatial memory remained impaired in the ethanol treated rats but object recognition ability was recovered. Our data suggest that episodes of binge-like alcohol exposure result in long-term and possibly permanent impairments in memory for the configuration of objects during exploration, whereas the ability to detect non-spatial changes is only temporarily affected. Copyright © 2010 Elsevier Inc. All rights reserved.

  11. Dopamine D1 receptor stimulation modulates the formation and retrieval of novel object recognition memory: Role of the prelimbic cortex

    PubMed Central

    Pezze, Marie A.; Marshall, Hayley J.; Fone, Kevin C.F.; Cassaday, Helen J.

    2015-01-01

    Previous studies have shown that dopamine D1 receptor antagonists impair novel object recognition memory but the effects of dopamine D1 receptor stimulation remain to be determined. This study investigated the effects of the selective dopamine D1 receptor agonist SKF81297 on acquisition and retrieval in the novel object recognition task in male Wistar rats. SKF81297 (0.4 and 0.8 mg/kg s.c.) given 15 min before the sampling phase impaired novel object recognition evaluated 10 min or 24 h later. The same treatments also reduced novel object recognition memory tested 24 h after the sampling phase and when given 15 min before the choice session. These data indicate that D1 receptor stimulation modulates both the encoding and retrieval of object recognition memory. Microinfusion of SKF81297 (0.025 or 0.05 μg/side) into the prelimbic sub-region of the medial prefrontal cortex (mPFC) in this case 10 min before the sampling phase also impaired novel object recognition memory, suggesting that the mPFC is one important site mediating the effects of D1 receptor stimulation on visual recognition memory. PMID:26277743

  12. Neuropeptide S enhances memory and mitigates memory impairment induced by MK801, scopolamine or Aβ₁₋₄₂ in mice novel object and object location recognition tasks.

    PubMed

    Han, Ren-Wen; Zhang, Rui-San; Xu, Hong-Jiao; Chang, Min; Peng, Ya-Li; Wang, Rui

    2013-07-01

    Neuropeptide S (NPS), the endogenous ligand of NPSR, has been shown to promote arousal and anxiolytic-like effects. According to the predominant distribution of NPSR in brain tissues associated with learning and memory, NPS has been reported to modulate cognitive function in rodents. Here, we investigated the role of NPS in memory formation, and determined whether NPS could mitigate memory impairment induced by selective N-methyl-D-aspartate receptor antagonist MK801, muscarinic cholinergic receptor antagonist scopolamine or Aβ₁₋₄₂ in mice, using novel object and object location recognition tasks. Intracerebroventricular (i.c.v.) injection of 1 nmol NPS 5 min after training not only facilitated object recognition memory formation, but also prolonged memory retention in both tasks. The improvement of object recognition memory induced by NPS could be blocked by the selective NPSR antagonist SHA 68, indicating pharmacological specificity. Then, we found that i.c.v. injection of NPS reversed memory disruption induced by MK801, scopolamine or Aβ₁₋₄₂ in both tasks. In summary, our results indicate that NPS facilitates memory formation and prolongs the retention of memory through activation of the NPSR, and mitigates amnesia induced by blockage of glutamatergic or cholinergic system or by Aβ₁₋₄₂, suggesting that NPS/NPSR system may be a new target for enhancing memory and treating amnesia. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Hippocampal histone acetylation regulates object recognition and the estradiol-induced enhancement of object recognition

    PubMed Central

    Zhao, Zaorui; Fan, Lu; Fortress, Ashley M.; Boulware, Marissa I.; Frick, Karyn M.

    2012-01-01

    Histone acetylation has recently been implicated in learning and memory processes, yet necessity of histone acetylation for such processes has not been demonstrated using pharmacological inhibitors of histone acetyltransferases (HATs). As such, the present study tested whether garcinol, a potent HAT inhibitor in vitro, could impair hippocampal memory consolidation and block the memory-enhancing effects of the modulatory hormone 17β-estradiol (E2). We first showed that bilateral infusion of garcinol (0.1, 1, or 10 μg/side) into the dorsal hippocampus (DH) immediately after training impaired object recognition memory consolidation in ovariectomized female mice. A behaviorally effective dose of garcinol (10 μg/side) also significantly decreased DH HAT activity. We next examined whether DH infusion of a behaviorally subeffective dose of garcinol (1 ng/side) could block the effects of DH E2 infusion on object recognition and epigenetic processes. Immediately after training, ovariectomized female mice received bilateral DH infusions of vehicle, E2 (5 μg/side), garcinol (1 ng/side), or E2 plus garcinol. Forty-eight hours later, garcinol blocked the memory-enhancing effects of E2. Garcinol also reversed the E2-induced increase in DH histone H3 acetylation, HAT activity, and levels of the de novo methyltransferase DNMT3B, as well as the E2-induced decrease in levels of the memory repressor protein histone deacetylase 2 (HDAC2). Collectively, these findings suggest that histone acetylation is critical for object recognition memory consolidation and the beneficial effects of E2 on object recognition. Importantly, this work demonstrates that the role of histone acetylation in memory processes can be studied using a HAT inhibitor. PMID:22396409

  14. Long-lasting effects of prenatal dietary choline availability on object recognition memory ability in adult rats.

    PubMed

    Moreno, Hayarelis C; de Brugada, Isabel; Carias, Diamela; Gallo, Milagros

    2013-11-01

    Choline is an essential nutrient required for early development. Previous studies have shown that prenatal choline availability influences adult memory abilities depending on the medial temporal lobe integrity. The relevance of prenatal choline availability on object recognition memory was assessed in adult Wistar rats. Three groups of pregnant Wistar rats were fed from E12 to E18 with choline-deficient (0 g/kg choline chloride), standard (1.1 g/kg choline chloride), or choline-supplemented (5 g/kg choline chloride) diets. The offspring was cross-fostered to rat dams fed a standard diet during pregnancy and tested at the age of 3 months in an object recognition memory task applying retention tests 24 and 48 hours after acquisition. Although no significant differences have been found in the performance of the three groups during the first retention test, the supplemented group exhibited improved memory compared with both the standard and the deficient group in the second retention test, 48 hours after acquisition. In addition, at the second retention test the deficient group did not differ from chance. Taken together, the results support the notion of a long-lasting beneficial effect of prenatal choline supplementation on object recognition memory which is evident when the rats reach adulthood. The results are discussed in terms of their relevance for improving the understanding of the cholinergic involvement in object recognition memory and the implications of the importance of maternal diet for lifelong cognitive abilities.

  15. The Consolidation of Object and Context Recognition Memory Involve Different Regions of the Temporal Lobe

    ERIC Educational Resources Information Center

    Balderas, Israela; Rodriguez-Ortiz, Carlos J.; Salgado-Tonda, Paloma; Chavez-Hurtado, Julio; McGaugh, James L.; Bermudez-Rattoni, Federico

    2008-01-01

    These experiments investigated the involvement of several temporal lobe regions in consolidation of recognition memory. Anisomycin, a protein synthesis inhibitor, was infused into the hippocampus, perirhinal cortex, insular cortex, or basolateral amygdala of rats immediately after the sample phase of object or object-in-context recognition memory…

  16. Estradiol enhances object recognition memory in Swiss female mice by activating hippocampal estrogen receptor α.

    PubMed

    Pereira, Luciana M; Bastos, Cristiane P; de Souza, Jéssica M; Ribeiro, Fabíola M; Pereira, Grace S

    2014-10-01

    In rodents, 17β-estradiol (E2) enhances hippocampal function and improves performance in several memory tasks. Regarding the object recognition paradigm, E2 commonly act as a cognitive enhancer. However, the types of estrogen receptor (ER) involved, as well as the underlying molecular mechanisms are still under investigation. In the present study, we asked whether E2 enhances object recognition memory by activating ERα and/or ERβ in the hippocampus of Swiss female mice. First, we showed that immediately post-training intraperitoneal (i.p.) injection of E2 (0.2 mg/kg) allowed object recognition memory to persist 48 h in ovariectomized (OVX) Swiss female mice. This result indicates that Swiss female mice are sensitive to the promnesic effects of E2 and is in accordance with other studies, which used C57/BL6 female mice. To verify if the activation of hippocampal ERα or ERβ would be sufficient to improve object memory, we used PPT and DPN, which are selective ERα and ERβ agonists, respectively. We found that PPT, but not DPN, improved object memory in Swiss female mice. However, DPN was able to improve memory in C57/BL6 female mice, which is in accordance with other studies. Next, we tested if the E2 effect on improving object memory depends on ER activation in the hippocampus. Thus, we tested if the infusion of intra-hippocampal TPBM and PHTPP, selective antagonists of ERα and ERβ, respectively, would block the memory enhancement effect of E2. Our results showed that TPBM, but not PHTPP, blunted the promnesic effect of E2, strongly suggesting that in Swiss female mice, the ERα and not the ERβ is the receptor involved in the promnesic effect of E2. It was already demonstrated that E2, as well as PPT and DPN, increase the phospho-ERK2 level in the dorsal hippocampus of C57/BL6 mice. Here we observed that PPT increased phospho-ERK1, while DPN decreased phospho-ERK2 in the dorsal hippocampus of Swiss female mice subjected to the object recognition sample phase

  17. Face Memory and Object Recognition in Children with High-Functioning Autism or Asperger Syndrome and in Their Parents

    ERIC Educational Resources Information Center

    Kuusikko-Gauffin, Sanna; Jansson-Verkasalo, Eira; Carter, Alice; Pollock-Wurman, Rachel; Jussila, Katja; Mattila, Marja-Leena; Rahko, Jukka; Ebeling, Hanna; Pauls, David; Moilanen, Irma

    2011-01-01

    Children with Autism Spectrum Disorders (ASDs) have reported to have impairments in face, recognition and face memory, but intact object recognition and object memory. Potential abnormalities, in these fields at the family level of high-functioning children with ASD remains understudied despite, the ever-mounting evidence that ASDs are genetic and…

  18. The medial prefrontal cortex-lateral entorhinal cortex circuit is essential for episodic-like memory and associative object-recognition.

    PubMed

    Chao, Owen Y; Huston, Joseph P; Li, Jay-Shake; Wang, An-Li; de Souza Silva, Maria A

    2016-05-01

    The prefrontal cortex directly projects to the lateral entorhinal cortex (LEC), an important substrate for engaging item-associated information and relaying the information to the hippocampus. Here we ask to what extent the communication between the prefrontal cortex and LEC is critically involved in the processing of episodic-like memory. We applied a disconnection procedure to test whether the interaction between the medial prefrontal cortex (mPFC) and LEC is essential for the expression of recognition memory. It was found that male rats that received unilateral NMDA lesions of the mPFC and LEC in the same hemisphere, exhibited intact episodic-like (what-where-when) and object-recognition memories. When these lesions were placed in the opposite hemispheres (disconnection), episodic-like and associative memories for object identity, location and context were impaired. However, the disconnection did not impair the components of episodic memory, namely memory for novel object (what), object place (where) and temporal order (when), per se. Thus, the present findings suggest that the mPFC and LEC are a critical part of a neural circuit that underlies episodic-like and associative object-recognition memory. © 2015 Wiley Periodicals, Inc.

  19. Somatostatin Signaling in Neuronal Cilia Is Criticalfor Object Recognition Memory

    PubMed Central

    Einstein, Emily B.; Patterson, Carlyn A.; Hon, Beverly J.; Regan, Kathleen A.; Reddi, Jyoti; Melnikoff, David E.; Mateer, Marcus J.; Schulz, Stefan; Johnson, Brian N.

    2010-01-01

    Most neurons possess a single, nonmotile cilium that projects out from the cell surface. These microtubule-based organelles are important in brain development and neurogenesis; however, their function in mature neurons is unknown. Cilia express a complement of proteins distinct from other neuronal compartments, one of which is the somatostatin receptor subtype SST3. We show here that SST3 is critical for object recognition memory in mice. sst3 knock-out mice are severely impaired in discriminating novel objects, whereas they retain normal memory for object location. Further, systemic injection of an SST3 antagonist (ACQ090) disrupts recall of familiar objects in wild-type mice. To examine mechanisms of SST3, we tested synaptic plasticity in CA1 hippocampus. Electrically evoked long-term potentiation (LTP) was normal in sst3 knock-out mice, while adenylyl cyclase/cAMP-mediated LTP was impaired. The SST3 antagonist also disrupted cAMP-mediated LTP. Basal cAMP levels in hippocampal lysate were reduced in sst3 knock-out mice compared with wild-type mice, while the forskolin-induced increase in cAMP levels was normal. The SST3 antagonist inhibited forskolin-stimulated cAMP increases, whereas the SST3 agonist L-796,778 increased basal cAMP levels in hippocampal slices but not hippocampal lysate. Our results show that somatostatin signaling in neuronal cilia is critical for recognition memory and suggest that the cAMP pathway is a conserved signaling motif in cilia. Neuronal cilia therefore represent a novel nonsynaptic compartment crucial for signaling involved in a specific form of synaptic plasticity and in novelty detection. PMID:20335466

  20. Heterozygous Che-1 KO mice show deficiencies in object recognition memory persistence.

    PubMed

    Zalcman, Gisela; Corbi, Nicoletta; Di Certo, Maria Grazia; Mattei, Elisabetta; Federman, Noel; Romano, Arturo

    2016-10-06

    Transcriptional regulation is a key process in the formation of long-term memories. Che-1 is a protein involved in the regulation of gene transcription that has recently been proved to bind the transcription factor NF-κB, which is known to be involved in many memory-related molecular events. This evidence prompted us to investigate the putative role of Che-1 in memory processes. For this study we newly generated a line of Che-1(+/-) heterozygous mice. Che-1 homozygous KO mouse is lethal during development, but Che-1(+/-) heterozygous mouse is normal in its general anatomical and physiological characteristics. We analyzed the behavioral characteristic and memory performance of Che-1(+/-) mice in two NF-κB dependent types of memory. We found that Che-1(+/-) mice show similar locomotor activity and thigmotactic behavior than wild type (WT) mice in an open field. In a similar way, no differences were found in anxiety-like behavior between Che-1(+/-) and WT mice in an elevated plus maze as well as in fear response in a contextual fear conditioning (CFC) and object exploration in a novel object recognition (NOR) task. No differences were found between WT and Che-1(+/-) mice performance in CFC training and when tested at 24h or 7days after training. Similar performance was found between groups in NOR task, both in training and 24h testing performance. However, we found that object recognition memory persistence at 7days was impaired in Che-1(+/-) heterozygous mice. This is the first evidence showing that Che-1 is involved in memory processes. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  1. BDNF Expression in Perirhinal Cortex is Associated with Exercise-Induced Improvement in Object Recognition Memory

    PubMed Central

    Hopkins, Michael E.; Bucci, David J.

    2010-01-01

    Physical exercise induces widespread neurobiological adaptations and improves learning and memory. Most research in this field has focused on hippocampus-based spatial tasks and changes in brain-derived neurotrophic factor (BDNF) as a putative substrate underlying exercise-induced cognitive improvements. Chronic exercise can also be anxiolytic and causes adaptive changes in stress reactivity. The present study employed a perirhinal cortex-dependent object recognition task as well as the elevated plus maze to directly test for interactions between the cognitive and anxiolytic effects of exercise in male Long Evans rats. Hippocampal and perirhinal cortex tissue was collected to determine whether the relationship between BDNF and cognitive performance extends to this non-spatial and non-hippocampal-dependent task. We also examined whether the cognitive improvements persisted once the exercise regimen was terminated. Our data indicate that 4 weeks of voluntary exercise every-other-day improved object recognition memory. Importantly, BDNF expression in the perirhinal cortex of exercising rats was strongly correlated with object recognition memory. Exercise also decreased anxiety-like behavior, however there was no evidence to support a relationship between anxiety-like behavior and performance on the novel object recognition task. There was a trend for a negative relationship between anxiety-like behavior and hippocampal BDNF. Neither the cognitive improvements nor the relationship between cognitive function and perirhinal BDNF levels persisted after 2 weeks of inactivity. These are the first data demonstrating that region-specific changes in BDNF protein levels are correlated with exercise-induced improvements in non-spatial memory, mediated by structures outside the hippocampus and are consistent with the theory that, with regard to object recognition, the anxiolytic and cognitive effects of exercise may be mediated through separable mechanisms. PMID:20601027

  2. Object location and object recognition memory impairments, motivation deficits and depression in a model of Gulf War illness.

    PubMed

    Hattiangady, Bharathi; Mishra, Vikas; Kodali, Maheedhar; Shuai, Bing; Rao, Xiolan; Shetty, Ashok K

    2014-01-01

    Memory and mood deficits are the enduring brain-related symptoms in Gulf War illness (GWI). Both animal model and epidemiological investigations have indicated that these impairments in a majority of GW veterans are linked to exposures to chemicals such as pyridostigmine bromide (PB, an antinerve gas drug), permethrin (PM, an insecticide) and DEET (a mosquito repellant) encountered during the Persian Gulf War-1. Our previous study in a rat model has shown that combined exposures to low doses of GWI-related (GWIR) chemicals PB, PM, and DEET with or without 5-min of restraint stress (a mild stress paradigm) causes hippocampus-dependent spatial memory dysfunction in a water maze test (WMT) and increased depressive-like behavior in a forced swim test (FST). In this study, using a larger cohort of rats exposed to GWIR-chemicals and stress, we investigated whether the memory deficiency identified earlier in a WMT is reproducible with an alternative and stress free hippocampus-dependent memory test such as the object location test (OLT). We also ascertained the possible co-existence of hippocampus-independent memory dysfunction using a novel object recognition test (NORT), and alterations in mood function with additional tests for motivation and depression. Our results provide new evidence that exposure to low doses of GWIR-chemicals and mild stress for 4 weeks causes deficits in hippocampus-dependent object location memory and perirhinal cortex-dependent novel object recognition memory. An open field test performed prior to other behavioral analyses revealed that memory impairments were not associated with increased anxiety or deficits in general motor ability. However, behavioral tests for mood function such as a voluntary physical exercise paradigm and a novelty suppressed feeding test (NSFT) demonstrated decreased motivation levels and depression. Thus, exposure to GWIR-chemicals and stress causes both hippocampus-dependent and hippocampus-independent memory

  3. Rotation And Scale Invariant Object Recognition Using A Distributed Associative Memory

    NASA Astrophysics Data System (ADS)

    Wechsler, Harry; Zimmerman, George Lee

    1988-04-01

    This paper describes an approach to 2-dimensional object recognition. Complex-log conformal mapping is combined with a distributed associative memory to create a system which recognizes objects regardless of changes in rotation or scale. Recalled information from the memorized database is used to classify an object, reconstruct the memorized version of the object, and estimate the magnitude of changes in scale or rotation. The system response is resistant to moderate amounts of noise and occlusion. Several experiments, using real, gray scale images, are presented to show the feasibility of our approach.

  4. Kisspeptin-13 enhances memory and mitigates memory impairment induced by Aβ1-42 in mice novel object and object location recognition tasks.

    PubMed

    Jiang, J H; He, Z; Peng, Y L; Jin, W D; Wang, Z; Han, R W; Chang, M; Wang, R

    2015-09-01

    Kisspeptin (KP), the endogenous ligand of GPR54, is a recently discovered neuropeptide shown to be involved in regulating reproductive system, anxiety-related behavior, locomotion, food intake, and suppression of metastasis across a range of cancers. KP is transcribed within the hippocampus, and GPR54 has been found in the amygdala and hippocampus, suggesting that KP might be involved in mediating learning and memory. However, the role of KP in cognition was largely unclear. Here, we investigated the role of KP-13, one of the endogenous active isoforms, in memory processes, and determined whether KP-13 could mitigate memory impairment induced by Aβ1-42 in mice, using novel object recognition (NOR) and object location recognition (OLR) tasks. Intracerebroventricular (i.c.v.) infusion of KP-13 (2μg) immediately after training not only facilitated memory formation, but also prolonged memory retention in both tasks. The memory-improving effects of KP-13 could be blocked by the GPR54 receptor antagonist, kisspeptin-234 (234), and GnRH receptors antagonist, Cetrorelix, suggesting pharmacological specificity. Then the memory-enhancing effects were also presented after infusion of KP-13 into the hippocampus. Moreover, we found that i.c.v. injection of KP-13 was able to reverse the memory impairment induced by Aβ1-42, which was inhibited by 234. To sum up, the results of our work indicate that KP-13 could facilitate memory formation and prolong memory retention through activation of the GPR54 and GnRH receptors, and suppress memory-impairing effect of Aβ1-42 through activation of the GPR54, suggesting that KP-13 may be a potential drug for enhancing memory and treating Alzheimer's disease. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Short-term blueberry-enriched diet prevents and reverses object recognition memory loss in aging rats.

    PubMed

    Malin, David H; Lee, David R; Goyarzu, Pilar; Chang, Yu-Hsuan; Ennis, Lalanya J; Beckett, Elizabeth; Shukitt-Hale, Barbara; Joseph, James A

    2011-03-01

    Previously, 4 mo of a blueberry-enriched (BB) antioxidant diet prevented impaired object recognition memory in aging rats. Experiment 1 determined whether 1- and 2-mo BB diets would have a similar effect and whether the benefits would disappear promptly after terminating the diets. Experiment 2 determined whether a 1-mo BB diet could subsequently reverse existing object memory impairment in aging rats. In experiment 1, Fischer-344 rats were maintained on an appropriate control diet or on 1 or 2 mo of the BB diet before testing object memory at 19 mo postnatally. In experiment 2, rats were tested for object recognition memory at 19 mo and again at 20 mo after 1 mo of maintenance on a 2% BB or control diet. In experiment 1, the control group performed no better than chance, whereas the 1- and 2-mo BB diet groups performed similarly and significantly better than controls. The 2-mo BB-diet group, but not the 1-mo group, maintained its performance over a subsequent month on a standard laboratory diet. In experiment 2, the 19-mo-old rats performed near chance. At 20 mo of age, the rats subsequently maintained on the BB diet significantly increased their object memory scores, whereas the control diet group exhibited a non-significant decline. The change in object memory scores differed significantly between the two diet groups. These results suggest that a considerable degree of age-related object memory decline can be prevented and reversed by brief maintenance on BB diets. Copyright © 2011 Elsevier Inc. All rights reserved.

  6. A role for calcium-calmodulin-dependent protein kinase II in the consolidation of visual object recognition memory.

    PubMed

    Tinsley, C J; Narduzzo, K E; Ho, J W; Barker, G R; Brown, M W; Warburton, E C

    2009-09-01

    The aim was to investigate the role of calcium-calmodulin-dependent protein kinase (CAMK)II in object recognition memory. The performance of rats in a preferential object recognition test was examined after local infusion of the CAMKII inhibitors KN-62 or autocamtide-2-related inhibitory peptide (AIP) into the perirhinal cortex. KN-62 or AIP infused after acquisition impaired memory tested at 24 h, indicating an involvement of CAMKII in the consolidation of recognition memory. Memory was impaired when KN-62 was infused at 20 min after acquisition or when AIP was infused at 20, 40, 60 or 100 min after acquisition. The time-course of CAMKII activation in rats was further examined by immunohistochemical staining for phospho-CAMKII(Thre286)alpha at 10, 40, 70 and 100 min following the viewing of novel and familiar images. At 70 min, processing novel images resulted in more phospho-CAMKII(Thre286)alpha-stained neurons in the perirhinal cortex than did the processing of familiar images, consistent with the viewing of novel images increasing the activity of CAMKII at this time. This difference was eliminated by prior infusion of AIP. These findings establish that CAMKII is active within the perirhinal region between approximately 20 and 100 min following learning and then returns to baseline. Thus, increased CAMKII activity is essential for the consolidation of long-term object recognition memory but continuation of that increased activity throughout the 24 h memory delay is not necessary for maintenance of the memory.

  7. Conversion of short-term to long-term memory in the novel object recognition paradigm.

    PubMed

    Moore, Shannon J; Deshpande, Kaivalya; Stinnett, Gwen S; Seasholtz, Audrey F; Murphy, Geoffrey G

    2013-10-01

    It is well-known that stress can significantly impact learning; however, whether this effect facilitates or impairs the resultant memory depends on the characteristics of the stressor. Investigation of these dynamics can be confounded by the role of the stressor in motivating performance in a task. Positing a cohesive model of the effect of stress on learning and memory necessitates elucidating the consequences of stressful stimuli independently from task-specific functions. Therefore, the goal of this study was to examine the effect of manipulating a task-independent stressor (elevated light level) on short-term and long-term memory in the novel object recognition paradigm. Short-term memory was elicited in both low light and high light conditions, but long-term memory specifically required high light conditions during the acquisition phase (familiarization trial) and was independent of the light level during retrieval (test trial). Additionally, long-term memory appeared to be independent of stress-mediated glucocorticoid release, as both low and high light produced similar levels of plasma corticosterone, which further did not correlate with subsequent memory performance. Finally, both short-term and long-term memory showed no savings between repeated experiments suggesting that this novel object recognition paradigm may be useful for longitudinal studies, particularly when investigating treatments to stabilize or enhance weak memories in neurodegenerative diseases or during age-related cognitive decline. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. Conversion of short-term to long-term memory in the novel object recognition paradigm

    PubMed Central

    Moore, Shannon J.; Deshpande, Kaivalya; Stinnett, Gwen S.; Seasholtz, Audrey F.; Murphy, Geoffrey G.

    2013-01-01

    It is well-known that stress can significantly impact learning; however, whether this effect facilitates or impairs the resultant memory depends on the characteristics of the stressor. Investigation of these dynamics can be confounded by the role of the stressor in motivating performance in a task. Positing a cohesive model of the effect of stress on learning and memory necessitates elucidating the consequences of stressful stimuli independently from task-specific functions. Therefore, the goal of this study was to examine the effect of manipulating a task-independent stressor (elevated light level) on short-term and long-term memory in the novel object recognition paradigm. Short-term memory was elicited in both low light and high light conditions, but long-term memory specifically required high light conditions during the acquisition phase (familiarization trial) and was independent of the light level during retrieval (test trial). Additionally, long-term memory appeared to be independent of stress-mediated glucocorticoid release, as both low and high light produced similar levels of plasma corticosterone, which further did not correlate with subsequent memory performance. Finally, both short-term and long-term memory showed no savings between repeated experiments suggesting that this novel object recognition paradigm may be useful for longitudinal studies, particularly when investigating treatments to stabilize or enhance weak memories in neurodegenerative diseases or during age-related cognitive decline. PMID:23835143

  9. Progestogens’ effects and mechanisms for object recognition memory across the lifespan

    PubMed Central

    Walf, Alicia A.; Koonce, Carolyn J.; Frye, Cheryl A.

    2016-01-01

    This review explores the effects of female reproductive hormones, estrogens and progestogens, with a focus on progesterone and allopregnanolone, on object memory. Progesterone and its metabolites, in particular allopregnanolone, exert various effects on both cognitive and non-mnemonic functions in females. The well-known object recognition task is a valuable experimental paradigm that can be used to determine the effects and mechanisms of progestogens for mnemonic effects across the lifespan, which will be discussed herein. In this task there is little test-decay when different objects are used as targets and baseline valance for objects is controlled. This allows repeated testing, within-subjects designs, and longitudinal assessments, which aid understanding of changes in hormonal milieu. Objects are not aversive or food-based, which are hormone-sensitive factors. This review focuses on published data from our laboratory, and others, using the object recognition task in rodents to assess the role and mechanisms of progestogens throughout the lifespan. Improvements in object recognition performance of rodents are often associated with higher hormone levels in the hippocampus and prefrontal cortex during natural cycles, with hormone replacement following ovariectomy in young animals, or with aging. The capacity for reversal of age- and reproductive senescence-related decline in cognitive performance, and changes in neural plasticity that may be dissociated from peripheral effects with such decline, are discussed. The focus here will be on the effects of brain-derived factors, such as the neurosteroid, allopregnanolone, and other hormones, for enhancing object recognition across the lifespan. PMID:26235328

  10. Divergent short- and long-term effects of acute stress in object recognition memory are mediated by endogenous opioid system activation.

    PubMed

    Nava-Mesa, Mauricio O; Lamprea, Marisol R; Múnera, Alejandro

    2013-11-01

    Acute stress induces short-term object recognition memory impairment and elicits endogenous opioid system activation. The aim of this study was thus to evaluate whether opiate system activation mediates the acute stress-induced object recognition memory changes. Adult male Wistar rats were trained in an object recognition task designed to test both short- and long-term memory. Subjects were randomly assigned to receive an intraperitoneal injection of saline, 1 mg/kg naltrexone or 3 mg/kg naltrexone, four and a half hours before the sample trial. Five minutes after the injection, half the subjects were submitted to movement restraint during four hours while the other half remained in their home cages. Non-stressed subjects receiving saline (control) performed adequately during the short-term memory test, while stressed subjects receiving saline displayed impaired performance. Naltrexone prevented such deleterious effect, in spite of the fact that it had no intrinsic effect on short-term object recognition memory. Stressed subjects receiving saline and non-stressed subjects receiving naltrexone performed adequately during the long-term memory test; however, control subjects as well as stressed subjects receiving a high dose of naltrexone performed poorly. Control subjects' dissociated performance during both memory tests suggests that the short-term memory test induced a retroactive interference effect mediated through light opioid system activation; such effect was prevented either by low dose naltrexone administration or by strongly activating the opioid system through acute stress. Both short-term memory retrieval impairment and long-term memory improvement observed in stressed subjects may have been mediated through strong opioid system activation, since they were prevented by high dose naltrexone administration. Therefore, the activation of the opioid system plays a dual modulating role in object recognition memory. Copyright © 2013 Elsevier Inc. All rights

  11. Bidirectional Modulation of Recognition Memory

    PubMed Central

    Ho, Jonathan W.; Poeta, Devon L.; Jacobson, Tara K.; Zolnik, Timothy A.; Neske, Garrett T.; Connors, Barry W.

    2015-01-01

    Perirhinal cortex (PER) has a well established role in the familiarity-based recognition of individual items and objects. For example, animals and humans with perirhinal damage are unable to distinguish familiar from novel objects in recognition memory tasks. In the normal brain, perirhinal neurons respond to novelty and familiarity by increasing or decreasing firing rates. Recent work also implicates oscillatory activity in the low-beta and low-gamma frequency bands in sensory detection, perception, and recognition. Using optogenetic methods in a spontaneous object exploration (SOR) task, we altered recognition memory performance in rats. In the SOR task, normal rats preferentially explore novel images over familiar ones. We modulated exploratory behavior in this task by optically stimulating channelrhodopsin-expressing perirhinal neurons at various frequencies while rats looked at novel or familiar 2D images. Stimulation at 30–40 Hz during looking caused rats to treat a familiar image as if it were novel by increasing time looking at the image. Stimulation at 30–40 Hz was not effective in increasing exploration of novel images. Stimulation at 10–15 Hz caused animals to treat a novel image as familiar by decreasing time looking at the image, but did not affect looking times for images that were already familiar. We conclude that optical stimulation of PER at different frequencies can alter visual recognition memory bidirectionally. SIGNIFICANCE STATEMENT Recognition of novelty and familiarity are important for learning, memory, and decision making. Perirhinal cortex (PER) has a well established role in the familiarity-based recognition of individual items and objects, but how novelty and familiarity are encoded and transmitted in the brain is not known. Perirhinal neurons respond to novelty and familiarity by changing firing rates, but recent work suggests that brain oscillations may also be important for recognition. In this study, we showed that

  12. Intracellular Zn(2+) signaling in the dentate gyrus is required for object recognition memory.

    PubMed

    Takeda, Atsushi; Tamano, Haruna; Ogawa, Taisuke; Takada, Shunsuke; Nakamura, Masatoshi; Fujii, Hiroaki; Ando, Masaki

    2014-11-01

    The role of perforant pathway-dentate granule cell synapses in cognitive behavior was examined focusing on synaptic Zn(2+) signaling in the dentate gyrus. Object recognition memory was transiently impaired when extracellular Zn(2+) levels were decreased by injection of clioquinol and N,N,N',N'-tetrakis-(2-pyridylmethyl) ethylendediamine. To pursue the effect of the loss and/or blockade of Zn(2+) signaling in dentate granule cells, ZnAF-2DA (100 pmol, 0.1 mM/1 µl), an intracellular Zn(2+) chelator, was locally injected into the dentate molecular layer of rats. ZnAF-2DA injection, which was estimated to chelate intracellular Zn(2+) signaling only in the dentate gyrus, affected object recognition memory 1 h after training without affecting intracellular Ca(2+) signaling in the dentate molecular layer. In vivo dentate gyrus long-term potentiation (LTP) was affected under the local perfusion of the recording region (the dentate granule cell layer) with 0.1 mM ZnAF-2DA, but not with 1-10 mM CaEDTA, an extracellular Zn(2+) chelator, suggesting that the blockade of intracellular Zn(2+) signaling in dentate granule cells affects dentate gyrus LTP. The present study demonstrates that intracellular Zn(2+) signaling in the dentate gyrus is required for object recognition memory, probably via dentate gyrus LTP expression. Copyright © 2014 Wiley Periodicals, Inc.

  13. Mice deficient for striatal Vesicular Acetylcholine Transporter (VAChT) display impaired short-term but normal long-term object recognition memory.

    PubMed

    Palmer, Daniel; Creighton, Samantha; Prado, Vania F; Prado, Marco A M; Choleris, Elena; Winters, Boyer D

    2016-09-15

    Substantial evidence implicates Acetylcholine (ACh) in the acquisition of object memories. While most research has focused on the role of the cholinergic basal forebrain and its cortical targets, there are additional cholinergic networks that may contribute to object recognition. The striatum contains an independent cholinergic network comprised of interneurons. In the current study, we investigated the role of this cholinergic signalling in object recognition using mice deficient for Vesicular Acetylcholine Transporter (VAChT) within interneurons of the striatum. We tested whether these striatal VAChT(D2-Cre-flox/flox) mice would display normal short-term (5 or 15min retention delay) and long-term (3h retention delay) object recognition memory. In a home cage object recognition task, male and female VAChT(D2-Cre-flox/flox) mice were impaired selectively with a 15min retention delay. When tested on an object location task, VAChT(D2-Cre-flox/flox) mice displayed intact spatial memory. Finally, when object recognition was tested in a Y-shaped apparatus, designed to minimize the influence of spatial and contextual cues, only females displayed impaired recognition with a 5min retention delay, but when males were challenged with a 15min retention delay, they were also impaired; neither males nor females were impaired with the 3h delay. The pattern of results suggests that striatal cholinergic transmission plays a role in the short-term memory for object features, but not spatial location. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Depth rotation and mirror-image reflection reduce affective preference as well as recognition memory for pictures of novel objects.

    PubMed

    Lawson, Rebecca

    2004-10-01

    In two experiments, the identification of novel 3-D objects was worse for depth-rotated and mirror-reflected views, compared with the study view in an implicit affective preference memory task, as well as in an explicit recognition memory task. In Experiment 1, recognition was worse and preference was lower when depth-rotated views of an object were paired with an unstudied object relative to trials when the study view of that object was shown. There was a similar trend for mirror-reflected views. In Experiment 2, the study view of an object was both recognized and preferred above chance when it was paired with either depth-rotated or mirror-reflected views of that object. These results suggest that view-sensitive representations of objects mediate performance in implicit, as well as explicit, memory tasks. The findings do not support the claim that separate episodic and structural description representations underlie performance in implicit and explicit memory tasks, respectively.

  15. Eye movements during object recognition in visual agnosia.

    PubMed

    Charles Leek, E; Patterson, Candy; Paul, Matthew A; Rafal, Robert; Cristino, Filipe

    2012-07-01

    This paper reports the first ever detailed study about eye movement patterns during single object recognition in visual agnosia. Eye movements were recorded in a patient with an integrative agnosic deficit during two recognition tasks: common object naming and novel object recognition memory. The patient showed normal directional biases in saccades and fixation dwell times in both tasks and was as likely as controls to fixate within object bounding contour regardless of recognition accuracy. In contrast, following initial saccades of similar amplitude to controls, the patient showed a bias for short saccades. In object naming, but not in recognition memory, the similarity of the spatial distributions of patient and control fixations was modulated by recognition accuracy. The study provides new evidence about how eye movements can be used to elucidate the functional impairments underlying object recognition deficits. We argue that the results reflect a breakdown in normal functional processes involved in the integration of shape information across object structure during the visual perception of shape. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Recognition-induced forgetting of faces in visual long-term memory.

    PubMed

    Rugo, Kelsi F; Tamler, Kendall N; Woodman, Geoffrey F; Maxcey, Ashleigh M

    2017-10-01

    Despite more than a century of evidence that long-term memory for pictures and words are different, much of what we know about memory comes from studies using words. Recent research examining visual long-term memory has demonstrated that recognizing an object induces the forgetting of objects from the same category. This recognition-induced forgetting has been shown with a variety of everyday objects. However, unlike everyday objects, faces are objects of expertise. As a result, faces may be immune to recognition-induced forgetting. However, despite excellent memory for such stimuli, we found that faces were susceptible to recognition-induced forgetting. Our findings have implications for how models of human memory account for recognition-induced forgetting as well as represent objects of expertise and consequences for eyewitness testimony and the justice system.

  17. Running Improves Pattern Separation during Novel Object Recognition.

    PubMed

    Bolz, Leoni; Heigele, Stefanie; Bischofberger, Josef

    2015-10-09

    Running increases adult neurogenesis and improves pattern separation in various memory tasks including context fear conditioning or touch-screen based spatial learning. However, it is unknown whether pattern separation is improved in spontaneous behavior, not emotionally biased by positive or negative reinforcement. Here we investigated the effect of voluntary running on pattern separation during novel object recognition in mice using relatively similar or substantially different objects.We show that running increases hippocampal neurogenesis but does not affect object recognition memory with 1.5 h delay after sample phase. By contrast, at 24 h delay, running significantly improves recognition memory for similar objects, whereas highly different objects can be distinguished by both, running and sedentary mice. These data show that physical exercise improves pattern separation, independent of negative or positive reinforcement. In sedentary mice there is a pronounced temporal gradient for remembering object details. In running mice, however, increased neurogenesis improves hippocampal coding and temporally preserves distinction of novel objects from familiar ones.

  18. Multivariate fMRI and Eye Tracking Reveal Differential Effects of Visual Interference on Recognition Memory Judgments for Objects and Scenes.

    PubMed

    O'Neil, Edward B; Watson, Hilary C; Dhillon, Sonya; Lobaugh, Nancy J; Lee, Andy C H

    2015-09-01

    Recent work has demonstrated that the perirhinal cortex (PRC) supports conjunctive object representations that aid object recognition memory following visual object interference. It is unclear, however, how these representations interact with other brain regions implicated in mnemonic retrieval and how congruent and incongruent interference influences the processing of targets and foils during object recognition. To address this, multivariate partial least squares was applied to fMRI data acquired during an interference match-to-sample task, in which participants made object or scene recognition judgments after object or scene interference. This revealed a pattern of activity sensitive to object recognition following congruent (i.e., object) interference that included PRC, prefrontal, and parietal regions. Moreover, functional connectivity analysis revealed a common pattern of PRC connectivity across interference and recognition conditions. Examination of eye movements during the same task in a separate study revealed that participants gazed more at targets than foils during correct object recognition decisions, regardless of interference congruency. By contrast, participants viewed foils more than targets for incorrect object memory judgments, but only after congruent interference. Our findings suggest that congruent interference makes object foils appear familiar and that a network of regions, including PRC, is recruited to overcome the effects of interference.

  19. Memory consolidation and expression of object recognition are susceptible to retroactive interference.

    PubMed

    Villar, María Eugenia; Martinez, María Cecilia; Lopes da Cunha, Pamela; Ballarini, Fabricio; Viola, Haydee

    2017-02-01

    With the aim of analyzing if object recognition long-term memory (OR-LTM) formation is susceptible to retroactive interference (RI), we submitted rats to sequential sample sessions using the same arena but changing the identity of a pair of objects placed in it. Separate groups of animals were tested in the arena in order to evaluate the LTM for these objects. Our results suggest that OR-LTM formation was retroactively interfered within a critical time window by the exploration of a new, but not familiar, object. This RI acted on the consolidation of the object explored in the first sample session because its OR-STM measured 3h after training was not affected, whereas the OR-LTM measured at 24h was impaired. This sample session also impaired the expression of OR memory when it took place before the test. Moreover, local inactivation of the dorsal Hippocampus (Hp) or the medial Prefrontal Cortex (mPFC) previous to the exploration of the second pair of objects impaired their consolidation restoring the LTM for the objects explored in the first session. This data suggests that both brain regions are involved in the processing of OR-memory and also that if those regions are engaged in another process before finishing the first consolidation process its LTM will be impaired by RI. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Effects of heavy particle irradiation and diet on object recognition memory in rats

    NASA Astrophysics Data System (ADS)

    Rabin, Bernard M.; Carrihill-Knoll, Kirsty; Hinchman, Marie; Shukitt-Hale, Barbara; Joseph, James A.; Foster, Brian C.

    2009-04-01

    On long-duration missions to other planets astronauts will be exposed to types and doses of radiation that are not experienced in low earth orbit. Previous research using a ground-based model for exposure to cosmic rays has shown that exposure to heavy particles, such as 56Fe, disrupts spatial learning and memory measured using the Morris water maze. Maintaining rats on diets containing antioxidant phytochemicals for 2 weeks prior to irradiation ameliorated this deficit. The present experiments were designed to determine: (1) the generality of the particle-induced disruption of memory by examining the effects of exposure to 56Fe particles on object recognition memory; and (2) whether maintaining rats on these antioxidant diets for 2 weeks prior to irradiation would also ameliorate any potential deficit. The results showed that exposure to low doses of 56Fe particles does disrupt recognition memory and that maintaining rats on antioxidant diets containing blueberry and strawberry extract for only 2 weeks was effective in ameliorating the disruptive effects of irradiation. The results are discussed in terms of the mechanisms by which exposure to these particles may produce effects on neurocognitive performance.

  1. The effect of scene context on episodic object recognition: parahippocampal cortex mediates memory encoding and retrieval success.

    PubMed

    Hayes, Scott M; Nadel, Lynn; Ryan, Lee

    2007-01-01

    Previous research has investigated intentional retrieval of contextual information and contextual influences on object identification and word recognition, yet few studies have investigated context effects in episodic memory for objects. To address this issue, unique objects embedded in a visually rich scene or on a white background were presented to participants. At test, objects were presented either in the original scene or on a white background. A series of behavioral studies with young adults demonstrated a context shift decrement (CSD)-decreased recognition performance when context is changed between encoding and retrieval. The CSD was not attenuated by encoding or retrieval manipulations, suggesting that binding of object and context may be automatic. A final experiment explored the neural correlates of the CSD, using functional Magnetic Resonance Imaging. Parahippocampal cortex (PHC) activation (right greater than left) during incidental encoding was associated with subsequent memory of objects in the context shift condition. Greater activity in right PHC was also observed during successful recognition of objects previously presented in a scene. Finally, a subset of regions activated during scene encoding, such as bilateral PHC, was reactivated when the object was presented on a white background at retrieval. Although participants were not required to intentionally retrieve contextual information, the results suggest that PHC may reinstate visual context to mediate successful episodic memory retrieval. The CSD is attributed to automatic and obligatory binding of object and context. The results suggest that PHC is important not only for processing of scene information, but also plays a role in successful episodic memory encoding and retrieval. These findings are consistent with the view that spatial information is stored in the hippocampal complex, one of the central tenets of Multiple Trace Theory. (c) 2007 Wiley-Liss, Inc.

  2. Insular Cortex Is Involved in Consolidation of Object Recognition Memory

    ERIC Educational Resources Information Center

    Bermudez-Rattoni, Federico; Okuda, Shoki; Roozendaal, Benno; McGaugh, James L.

    2005-01-01

    Extensive evidence indicates that the insular cortex (IC), also termed gustatory cortex, is critically involved in conditioned taste aversion and taste recognition memory. Although most studies of the involvement of the IC in memory have investigated taste, there is some evidence that the IC is involved in memory that is not based on taste. In…

  3. Physical Exercise During Adolescence Versus Adulthood: Differential Effects on Object Recognition Memory and BDNF Levels

    PubMed Central

    Hopkins, Michael E.; Nitecki, Roni; Bucci, David J.

    2011-01-01

    It is well established that physical exercise can enhance hippocampal-dependent forms of learning and memory in laboratory animals, commensurate with increases in hippocampal neural plasticity (BDNF mRNA/protein, neurogenesis, LTP). However, very little is known about the effects of exercise on other, non-spatial forms of learning and memory. In addition, there has been little investigation of the duration of the effects of exercise on behavior or plasticity. Likewise, few studies have compared the effects of exercising during adulthood versus adolescence. This is particularly important since exercise may capitalize on the peak of neural plasticity observed during adolescence, resulting in a different pattern of behavioral and neurobiological effects. The present study addressed these gaps in the literature by comparing the effects of 4 weeks of voluntary exercise (wheel running) during adulthood or adolescence on novel object recognition and BDNF levels in the perirhinal cortex (PER) and hippocampus (HP). Exercising during adulthood improved object recognition memory when rats were tested immediately after 4 weeks of exercise, an effect that was accompanied by increased BDNF levels in PER and HP. When rats were tested again 2 weeks after exercise ended, the effects of exercise on recognition memory and BDNF levels were no longer present. Exercising during adolescence had a very different pattern of effects. First, both exercising and non-exercising rats could discriminate between novel and familiar objects immediately after the exercise regimen ended; furthermore there was no group difference in BDNF levels. Two or four weeks later, however, rats that had previously exercised as adolescents could still discriminate between novel and familiar objects, while non-exercising rats could not. Moreover, the formerly exercising rats exhibited higher levels of BDNF in PER compared to HP, while the reverse was true in the non-exercising rats. These findings reveal a novel

  4. Short-term blueberry-enriched antioxidant diet prevents and reverses object recognition memory loss in aged rats

    USDA-ARS?s Scientific Manuscript database

    Objective Previously, four months of a blueberry-enriched (BB) antioxidant diet prevented impaired object recognition memory in aged rats. Experiment 1 determined whether one and two-month BB diets would have a similar effect and whether the benefits would disappear promptly after terminating the d...

  5. Differing time dependencies of object recognition memory impairments produced by nicotinic and muscarinic cholinergic antagonism in perirhinal cortex

    PubMed Central

    Tinsley, Chris J.; Fontaine-Palmer, Nadine S.; Vincent, Maria; Endean, Emma P.E.; Aggleton, John P.; Brown, Malcolm W.; Warburton, E. Clea

    2011-01-01

    The roles of muscarinic and nicotinic cholinergic receptors in perirhinal cortex in object recognition memory were compared. Rats' discrimination of a novel object preference test (NOP) test was measured after either systemic or local infusion into the perirhinal cortex of the nicotinic receptor antagonist methyllycaconitine (MLA), which targets alpha-7 (α7) amongst other nicotinic receptors or the muscarinic receptor antagonists scopolamine, AFDX-384, and pirenzepine. Methyllycaconitine administered systemically or intraperirhinally before acquisition impaired recognition memory tested after a 24-h, but not a 20-min delay. In contrast, all three muscarinic antagonists produced a similar, unusual pattern of impairment with amnesia after a 20-min delay, but remembrance after a 24-h delay. Thus, the amnesic effects of nicotinic and muscarinic antagonism were doubly dissociated across the 20-min and 24-h delays. The same pattern of shorter-term but not longer-term memory impairment was found for scopolamine whether the object preference test was carried out in a square arena or a Y-maze and whether rats of the Dark Agouti or Lister-hooded strains were used. Coinfusion of MLA and either scopolamine or AFDX-384 produced an impairment profile matching that for MLA. Hence, the antagonists did not act additively when coadministered. These findings establish an important role in recognition memory for both nicotinic and muscarinic cholinergic receptors in perirhinal cortex, and provide a challenge to simple ideas about the role of cholinergic processes in recognition memory: The effects of muscarinic and nicotinic antagonism are neither independent nor additive. PMID:21693636

  6. Differing time dependencies of object recognition memory impairments produced by nicotinic and muscarinic cholinergic antagonism in perirhinal cortex.

    PubMed

    Tinsley, Chris J; Fontaine-Palmer, Nadine S; Vincent, Maria; Endean, Emma P E; Aggleton, John P; Brown, Malcolm W; Warburton, E Clea

    2011-01-01

    The roles of muscarinic and nicotinic cholinergic receptors in perirhinal cortex in object recognition memory were compared. Rats' discrimination of a novel object preference test (NOP) test was measured after either systemic or local infusion into the perirhinal cortex of the nicotinic receptor antagonist methyllycaconitine (MLA), which targets alpha-7 (α7) amongst other nicotinic receptors or the muscarinic receptor antagonists scopolamine, AFDX-384, and pirenzepine. Methyllycaconitine administered systemically or intraperirhinally before acquisition impaired recognition memory tested after a 24-h, but not a 20-min delay. In contrast, all three muscarinic antagonists produced a similar, unusual pattern of impairment with amnesia after a 20-min delay, but remembrance after a 24-h delay. Thus, the amnesic effects of nicotinic and muscarinic antagonism were doubly dissociated across the 20-min and 24-h delays. The same pattern of shorter-term but not longer-term memory impairment was found for scopolamine whether the object preference test was carried out in a square arena or a Y-maze and whether rats of the Dark Agouti or Lister-hooded strains were used. Coinfusion of MLA and either scopolamine or AFDX-384 produced an impairment profile matching that for MLA. Hence, the antagonists did not act additively when coadministered. These findings establish an important role in recognition memory for both nicotinic and muscarinic cholinergic receptors in perirhinal cortex, and provide a challenge to simple ideas about the role of cholinergic processes in recognition memory: The effects of muscarinic and nicotinic antagonism are neither independent nor additive.

  7. A Temporally Distinct Role for Group I and Group II Metabotropic Glutamate Receptors in Object Recognition Memory

    ERIC Educational Resources Information Center

    Brown, Malcolm Watson; Warburton, Elizabeth Clea; Barker, Gareth Robert Isaac; Bashir, Zafar Iqbal

    2006-01-01

    Recognition memory, involving the ability to discriminate between a novel and familiar object, depends on the integrity of the perirhinal cortex (PRH). Glutamate, the main excitatory neurotransmitter in the cortex, is essential for many types of memory processes. Of the subtypes of glutamate receptor, metabotropic receptors (mGluRs) have received…

  8. Excess influx of Zn(2+) into dentate granule cells affects object recognition memory via attenuated LTP.

    PubMed

    Suzuki, Miki; Fujise, Yuki; Tsuchiya, Yuka; Tamano, Haruna; Takeda, Atsushi

    2015-08-01

    The influx of extracellular Zn(2+) into dentate granule cells is nonessential for dentate gyrus long-term potentiation (LTP) and the physiological significance of extracellular Zn(2+) dynamics is unknown in the dentate gyrus. Excess increase in extracellular Zn(2+) in the hippocampal CA1, which is induced with excitation of zincergic neurons, induces memory deficit via excess influx of Zn(2+) into CA1 pyramidal cells. In the present study, it was examined whether extracellular Zn(2+) induces object recognition memory deficit via excess influx of Zn(2+) into dentate granule cells. KCl (100 mM, 2 µl) was locally injected into the dentate gyrus. The increase in intracellular Zn(2+) in dentate granule cells induced with high K(+) was blocked by co-injection of CaEDTA and CNQX, an extracellular Zn(2+) chelator and an AMPA receptor antagonist, respectively, suggesting that high K(+) increases the influx of Zn(2+) into dentate granule cells via AMPA receptor activation. Dentate gyrus LTP induction was attenuated 1 h after KCl injection into the dentate gyrus and also attenuated when KCl was injected 5 min after the induction. Memory deficit was induced when training of object recognition test was performed 1 h after KCl injection into the dentate gyrus and also induced when KCl was injected 5 min after the training. High K(+)-induced impairments of LTP and memory were rescued by co-injection of CaEDTA. These results indicate that excess influx of Zn(2+) into dentate granule cells via AMPA receptor activation affects object recognition memory via attenuated LTP induction. Even in the dentate gyrus where is scarcely innervated by zincergic neurons, it is likely that extracellular Zn(2+) homeostasis is strictly regulated for cognition. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Parallel and distributed computation for fault-tolerant object recognition

    NASA Technical Reports Server (NTRS)

    Wechsler, Harry

    1988-01-01

    The distributed associative memory (DAM) model is suggested for distributed and fault-tolerant computation as it relates to object recognition tasks. The fault-tolerance is with respect to geometrical distortions (scale and rotation), noisy inputs, occulsion/overlap, and memory faults. An experimental system was developed for fault-tolerant structure recognition which shows the feasibility of such an approach. The approach is futher extended to the problem of multisensory data integration and applied successfully to the recognition of colored polyhedral objects.

  10. Acute stress negatively affects object recognition early memory consolidation and memory retrieval unrelated to state-dependency.

    PubMed

    Nelissen, Ellis; Prickaerts, Jos; Blokland, Arjan

    2018-06-01

    It is well known that stress affects memory performance. However, there still appears to be inconstancy in literature about how acute stress affects the different stages of memory: acquisition, consolidation and retrieval. In this study, we exposed rats to acute stress and measured the effect on memory performance in the object recognition task as a measure for episodic memory. Stress was induced 30 min prior to the learning phase to affect acquisition, directly after the learning phase to affect consolidation, or 30 min before the retrieval phase to affect retrieval. Additionally, we induced stress both 30 min prior to the learning phase and 30 min prior to the retrieval phase to test whether the effects were related to state-dependency. As expected, we found that acute stress did not affect acquisition but had a negative impact on retrieval. To our knowledge, we are the first to show that early consolidation was negatively affected by acute stress. We also show that stress does not have a state-dependent effect on memory. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. DORSAL HIPPOCAMPAL PROGESTERONE INFUSIONS ENHANCE OBJECT RECOGNITION IN YOUNG FEMALE MICE

    PubMed Central

    Orr, Patrick T.; Lewis, Michael C.; Frick, Karyn M.

    2009-01-01

    The effects of progesterone on memory are not nearly as well studied as the effects of estrogens. Although progesterone can reportedly enhance spatial and/or object recognition in female rodents when given immediately after training, previous studies have injected progesterone systemically, and therefore, the brain regions mediating this enhancement are not clear. As such, this study was designed to determine the role of the dorsal hippocampus in mediating the beneficial effect of progesterone on object recognition. Young ovariectomized C57BL/6 mice were trained in a hippocampal-dependent object recognition task utilizing two identical objects, and then immediately or 2 hrs afterwards, received bilateral dorsal hippocampal infusions of vehicle or 0.01, 0.1, or 1.0 μg/μl water-soluble progesterone. Forty-eight hours later, object recognition memory was tested using a previously explored object and a novel object. Relative to the vehicle group, memory for the familiar object was enhanced in all groups receiving immediate infusions of progesterone. Progesterone infusion delayed 2 hrs after training did not affect object recognition. These data suggest that the dorsal hippocampus may play a critical role in progesterone-induced enhancement of object recognition. PMID:19477194

  12. Exploiting core knowledge for visual object recognition.

    PubMed

    Schurgin, Mark W; Flombaum, Jonathan I

    2017-03-01

    Humans recognize thousands of objects, and with relative tolerance to variable retinal inputs. The acquisition of this ability is not fully understood, and it remains an area in which artificial systems have yet to surpass people. We sought to investigate the memory process that supports object recognition. Specifically, we investigated the association of inputs that co-occur over short periods of time. We tested the hypothesis that human perception exploits expectations about object kinematics to limit the scope of association to inputs that are likely to have the same token as a source. In several experiments we exposed participants to images of objects, and we then tested recognition sensitivity. Using motion, we manipulated whether successive encounters with an image took place through kinematics that implied the same or a different token as the source of those encounters. Images were injected with noise, or shown at varying orientations, and we included 2 manipulations of motion kinematics. Across all experiments, memory performance was better for images that had been previously encountered with kinematics that implied a single token. A model-based analysis similarly showed greater memory strength when images were shown via kinematics that implied a single token. These results suggest that constraints from physics are built into the mechanisms that support memory about objects. Such constraints-often characterized as 'Core Knowledge'-are known to support perception and cognition broadly, even in young infants. But they have never been considered as a mechanism for memory with respect to recognition. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  13. One-single physical exercise session after object recognition learning promotes memory persistence through hippocampal noradrenergic mechanisms.

    PubMed

    da Silva de Vargas, Liane; Neves, Ben-Hur Souto das; Roehrs, Rafael; Izquierdo, Iván; Mello-Carpes, Pâmela

    2017-06-30

    Previously we showed the involvement of the hippocampal noradrenergic system in the consolidation and persistence of object recognition (OR) memory. Here we show that one-single physical exercise session performed immediately after learning promotes OR memory persistence and increases norepinephrine levels in the hippocampus. Additionally, effects of exercise on memory are avoided by an intra-hippocampal beta-adrenergic antagonist infusion. Taken together, these results suggest that exercise effects on memory can be related to noradrenergic mechanisms and acute physical exercise can be a non-pharmacological intervention to assist memory consolidation and persistence, with few or no side effects. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. The role of perceptual load in object recognition.

    PubMed

    Lavie, Nilli; Lin, Zhicheng; Zokaei, Nahid; Thoma, Volker

    2009-10-01

    Predictions from perceptual load theory (Lavie, 1995, 2005) regarding object recognition across the same or different viewpoints were tested. Results showed that high perceptual load reduces distracter recognition levels despite always presenting distracter objects from the same view. They also showed that the levels of distracter recognition were unaffected by a change in the distracter object view under conditions of low perceptual load. These results were found both with repetition priming measures of distracter recognition and with performance on a surprise recognition memory test. The results support load theory proposals that distracter recognition critically depends on the level of perceptual load. The implications for the role of attention in object recognition theories are discussed. PsycINFO Database Record (c) 2009 APA, all rights reserved.

  15. Estradiol-Induced Object Recognition Memory Consolidation Is Dependent on Activation of mTOR Signaling in the Dorsal Hippocampus

    ERIC Educational Resources Information Center

    Fortress, Ashley M.; Fan, Lu; Orr, Patrick T.; Zhao, Zaorui; Frick, Karyn M.

    2013-01-01

    The mammalian target of rapamycin (mTOR) signaling pathway is an important regulator of protein synthesis and is essential for various forms of hippocampal memory. Here, we asked whether the enhancement of object recognition memory consolidation produced by dorsal hippocampal infusion of 17[Beta]-estradiol (E[subscript 2]) is dependent on mTOR…

  16. Orientation congruency effects for familiar objects: coordinate transformations in object recognition.

    PubMed

    Graf, M; Kaping, D; Bülthoff, H H

    2005-03-01

    How do observers recognize objects after spatial transformations? Recent neurocomputational models have proposed that object recognition is based on coordinate transformations that align memory and stimulus representations. If the recognition of a misoriented object is achieved by adjusting a coordinate system (or reference frame), then recognition should be facilitated when the object is preceded by a different object in the same orientation. In the two experiments reported here, two objects were presented in brief masked displays that were in close temporal contiguity; the objects were in either congruent or incongruent picture-plane orientations. Results showed that naming accuracy was higher for congruent than for incongruent orientations. The congruency effect was independent of superordinate category membership (Experiment 1) and was found for objects with different main axes of elongation (Experiment 2). The results indicate congruency effects for common familiar objects even when they have dissimilar shapes. These findings are compatible with models in which object recognition is achieved by an adjustment of a perceptual coordinate system.

  17. Effect of 1.8 GHz radiofrequency electromagnetic radiation on novel object associative recognition memory in mice

    PubMed Central

    Wang, Kai; Lu, Jun-Mei; Xing, Zhen-He; Zhao, Qian-Ru; Hu, Lin-Qi; Xue, Lei; Zhang, Jie; Mei, Yan-Ai

    2017-01-01

    Mounting evidence suggests that exposure to radiofrequency electromagnetic radiation (RF-EMR) can influence learning and memory in rodents. In this study, we examined the effects of single exposure to 1.8 GHz RF-EMR for 30 min on subsequent recognition memory in mice, using the novel object recognition task (NORT). RF-EMR exposure at an intensity of >2.2 W/kg specific absorption rate (SAR) power density induced a significant density-dependent increase in NORT index with no corresponding changes in spontaneous locomotor activity. RF-EMR exposure increased dendritic-spine density and length in hippocampal and prefrontal cortical neurons, as shown by Golgi staining. Whole-cell recordings in acute hippocampal and medial prefrontal cortical slices showed that RF-EMR exposure significantly altered the resting membrane potential and action potential frequency, and reduced the action potential half-width, threshold, and onset delay in pyramidal neurons. These results demonstrate that exposure to 1.8 GHz RF-EMR for 30 min can significantly increase recognition memory in mice, and can change dendritic-spine morphology and neuronal excitability in the hippocampus and prefrontal cortex. The SAR in this study (3.3 W/kg) was outside the range encountered in normal daily life, and its relevance as a potential therapeutic approach for disorders associated with recognition memory deficits remains to be clarified. PMID:28303965

  18. The Vasopressin 1b Receptor Antagonist A-988315 Blocks Stress Effects on the Retrieval of Object-Recognition Memory

    PubMed Central

    Barsegyan, Areg; Atsak, Piray; Hornberger, Wilfried B; Jacobson, Peer B; van Gaalen, Marcel M; Roozendaal, Benno

    2015-01-01

    Stress-induced activation of the hypothalamo–pituitary–adrenocortical (HPA) axis and high circulating glucocorticoid levels are well known to impair the retrieval of memory. Vasopressin can activate the HPA axis by stimulating vasopressin 1b (V1b) receptors located on the pituitary. In the present study, we investigated the effect of A-988315, a selective and highly potent non-peptidergic V1b-receptor antagonist with good pharmacokinetic properties, in blocking stress effects on HPA-axis activity and memory retrieval. To study cognitive performance, male Sprague-Dawley rats were trained on an object-discrimination task during which they could freely explore two identical objects. Memory for the objects and their location was tested 24 h later. A-988315 (20 or 60 mg/kg) or water was administered orally 90 min before retention testing, followed 60 min later by stress of footshock exposure. A-988315 dose-dependently dampened stress-induced increases in corticosterone plasma levels, but did not significantly alter HPA-axis activity of non-stressed control rats. Most importantly, A-988315 administration prevented stress-induced impairment of memory retrieval on both the object-recognition and the object-location tasks. A-988315 did not alter the retention of non-stressed rats and did not influence the total time spent exploring the objects or experimental context in either stressed or non-stressed rats. Thus, these findings indicate that direct antagonism of V1b receptors is an effective treatment to block stress-induced activation of the HPA axis and the consequent impairment of retrieval of different aspects of recognition memory. PMID:25669604

  19. Hippocampal Activation of Rac1 Regulates the Forgetting of Object Recognition Memory.

    PubMed

    Liu, Yunlong; Du, Shuwen; Lv, Li; Lei, Bo; Shi, Wei; Tang, Yikai; Wang, Lianzhang; Zhong, Yi

    2016-09-12

    Forgetting is a universal feature for most types of memories. The best-defined and extensively characterized behaviors that depict forgetting are natural memory decay and interference-based forgetting [1, 2]. Molecular mechanisms underlying the active forgetting remain to be determined for memories in vertebrates. Recent progress has begun to unravel such mechanisms underlying the active forgetting [3-11] that is induced through the behavior-dependent activation of intracellular signaling pathways. In Drosophila, training-induced activation of the small G protein Rac1 mediates natural memory decay and interference-based forgetting of aversive conditioning memory [3]. In mice, the activation of photoactivable-Rac1 in recently potentiated spines in a motor learning task erases the motor memory [12]. These lines of evidence prompted us to investigate a role for Rac1 in time-based natural memory decay and interference-based forgetting in mice. The inhibition of Rac1 activity in hippocampal neurons through targeted expression of a dominant-negative Rac1 form extended object recognition memory from less than 72 hr to over 72 hr, whereas Rac1 activation accelerated memory decay within 24 hr. Interference-induced forgetting of this memory was correlated with Rac1 activation and was completely blocked by inhibition of Rac1 activity. Electrophysiological recordings of long-term potentiation provided independent evidence that further supported a role for Rac1 activation in forgetting. Thus, Rac1-dependent forgetting is evolutionarily conserved from invertebrates to vertebrates. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. General object recognition is specific: Evidence from novel and familiar objects.

    PubMed

    Richler, Jennifer J; Wilmer, Jeremy B; Gauthier, Isabel

    2017-09-01

    In tests of object recognition, individual differences typically correlate modestly but nontrivially across familiar categories (e.g. cars, faces, shoes, birds, mushrooms). In theory, these correlations could reflect either global, non-specific mechanisms, such as general intelligence (IQ), or more specific mechanisms. Here, we introduce two separate methods for effectively capturing category-general performance variation, one that uses novel objects and one that uses familiar objects. In each case, we show that category-general performance variance is unrelated to IQ, thereby implicating more specific mechanisms. The first approach examines three newly developed novel object memory tests (NOMTs). We predicted that NOMTs would exhibit more shared, category-general variance than familiar object memory tests (FOMTs) because novel objects, unlike familiar objects, lack category-specific environmental influences (e.g. exposure to car magazines or botany classes). This prediction held, and remarkably, virtually none of the substantial shared variance among NOMTs was explained by IQ. Also, while NOMTs correlated nontrivially with two FOMTs (faces, cars), these correlations were smaller than among NOMTs and no larger than between the face and car tests themselves, suggesting that the category-general variance captured by NOMTs is specific not only relative to IQ, but also, to some degree, relative to both face and car recognition. The second approach averaged performance across multiple FOMTs, which we predicted would increase category-general variance by averaging out category-specific factors. This prediction held, and as with NOMTs, virtually none of the shared variance among FOMTs was explained by IQ. Overall, these results support the existence of object recognition mechanisms that, though category-general, are specific relative to IQ and substantially separable from face and car recognition. They also add sensitive, well-normed NOMTs to the tools available to study

  1. Differential Roles for "Nr4a1" and "Nr4a2" in Object Location vs. Object Recognition Long-Term Memory

    ERIC Educational Resources Information Center

    McNulty, Susan E.; Barrett, Ruth M.; Vogel-Ciernia, Annie; Malvaez, Melissa; Hernandez, Nicole; Davatolhagh, M. Felicia; Matheos, Dina P.; Schiffman, Aaron; Wood, Marcelo A.

    2012-01-01

    "Nr4a1" and "Nr4a2" are transcription factors and immediate early genes belonging to the nuclear receptor Nr4a family. In this study, we examine their role in long-term memory formation for object location and object recognition. Using siRNA to block expression of either "Nr4a1" or "Nr4a2", we found that "Nr4a2" is necessary for both long-term…

  2. How Does Using Object Names Influence Visual Recognition Memory?

    ERIC Educational Resources Information Center

    Richler, Jennifer J.; Palmeri, Thomas J.; Gauthier, Isabel

    2013-01-01

    Two recent lines of research suggest that explicitly naming objects at study influences subsequent memory for those objects at test. Lupyan (2008) suggested that naming "impairs" memory by a representational shift of stored representations of named objects toward the prototype (labeling effect). MacLeod, Gopie, Hourihan, Neary, and Ozubko (2010)…

  3. What pharmacological interventions indicate concerning the role of the perirhinal cortex in recognition memory

    PubMed Central

    Brown, M.W.; Barker, G.R.I.; Aggleton, J.P.; Warburton, E.C.

    2012-01-01

    Findings of pharmacological studies that have investigated the involvement of specific regions of the brain in recognition memory are reviewed. The particular emphasis of the review concerns what such studies indicate concerning the role of the perirhinal cortex in recognition memory. Most of the studies involve rats and most have investigated recognition memory for objects. Pharmacological studies provide a large body of evidence supporting the essential role of the perirhinal cortex in the acquisition, consolidation and retrieval of object recognition memory. Such studies provide increasingly detailed evidence concerning both the neurotransmitter systems and the underlying intracellular mechanisms involved in recognition memory processes. They have provided evidence in support of synaptic weakening as a major synaptic plastic process within perirhinal cortex underlying object recognition memory. They have also supplied confirmatory evidence that that there is more than one synaptic plastic process involved. The demonstrated necessity to long-term recognition memory of intracellular signalling mechanisms related to synaptic modification within perirhinal cortex establishes a central role for the region in the information storage underlying such memory. Perirhinal cortex is thereby established as an information storage site rather than solely a processing station. Pharmacological studies have also supplied new evidence concerning the detailed roles of other regions, including the hippocampus and the medial prefrontal cortex in different types of recognition memory tasks that include a spatial or temporal component. In so doing, they have also further defined the contribution of perirhinal cortex to such tasks. To date it appears that the contribution of perirhinal cortex to associative and temporal order memory reflects that in simple object recognition memory, namely that perirhinal cortex provides information concerning objects and their prior occurrence (novelty

  4. Visual memory in unilateral spatial neglect: immediate recall versus delayed recognition.

    PubMed

    Moreh, Elior; Malkinson, Tal Seidel; Zohary, Ehud; Soroker, Nachum

    2014-09-01

    Patients with unilateral spatial neglect (USN) often show impaired performance in spatial working memory tasks, apart from the difficulty retrieving "left-sided" spatial data from long-term memory, shown in the "piazza effect" by Bisiach and colleagues. This study's aim was to compare the effect of the spatial position of a visual object on immediate and delayed memory performance in USN patients. Specifically, immediate verbal recall performance, tested using a simultaneous presentation of four visual objects in four quadrants, was compared with memory in a later-provided recognition task, in which objects were individually shown at the screen center. Unlike healthy controls, USN patients showed a left-side disadvantage and a vertical bias in the immediate free recall task (69% vs. 42% recall for right- and left-sided objects, respectively). In the recognition task, the patients correctly recognized half of "old" items, and their correct rejection rate was 95.5%. Importantly, when the analysis focused on previously recalled items (in the immediate task), no statistically significant difference was found in the delayed recognition of objects according to their original quadrant of presentation. Furthermore, USN patients were able to recollect the correct original location of the recognized objects in 60% of the cases, well beyond chance level. This suggests that the memory trace formed in these cases was not only semantic but also contained a visuospatial tag. Finally, successful recognition of objects missed in recall trials points to formation of memory traces for neglected contralesional objects, which may become accessible to retrieval processes in explicit memory.

  5. Modeling recall memory for emotional objects in Alzheimer's disease.

    PubMed

    Sundstrøm, Martin

    2011-07-01

    To examine whether emotional memory (EM) of objects with self-reference in Alzheimer's disease (AD) can be modeled with binomial logistic regression in a free recall and an object recognition test to predict EM enhancement. Twenty patients with AD and twenty healthy controls were studied. Six objects (three presented as gifts) were shown to each participant. Ten minutes later, a free recall and a recognition test were applied. The recognition test had target-objects mixed with six similar distracter objects. Participants were asked to name any object in the recall test and identify each object in the recognition test as known or unknown. The total of gift objects recalled in AD patients (41.6%) was larger than neutral objects (13.3%) and a significant EM recall effect for gifts was found (Wilcoxon: p < .003). EM was not found for recognition in AD patients due to a ceiling effect. Healthy older adults scored overall higher in recall and recognition but showed no EM enhancement due to a ceiling effect. A logistic regression showed that likelihood of emotional recall memory can be modeled as a function of MMSE score (p < .014) and object status (p < .0001) as gift or non-gift. Recall memory was enhanced in AD patients for emotional objects indicating that EM in mild to moderate AD although impaired can be provoked with strong emotional load. The logistic regression model suggests that EM declines with the progression of AD rather than disrupts and may be a useful tool for evaluating magnitude of emotional load.

  6. Behavioral methods for the study of the Ras-ERK pathway in memory formation and consolidation: passive avoidance and novel object recognition tests.

    PubMed

    d'Isa, Raffaele; Brambilla, Riccardo; Fasano, Stefania

    2014-01-01

    Memory is a high-level brain function that enables organisms to adapt their behavioral responses to the environment, hence increasing their probability of survival. The Ras-ERK pathway is a key molecular intracellular signalling cascade for memory consolidation. In this chapter we will describe two main one-trial behavioral tests commonly used in the field of memory research in order to assess the role of Ras-ERK signalling in long-term memory: passive avoidance and object recognition. Passive avoidance (PA) is a fear-motivated instrumental learning task, designed by Jarvik and Essman in 1960, in which animals learn to refrain from emitting a behavioral response that has previously been associated with a punishment. We will describe here the detailed protocol and show some examples of how PA can reveal impairments or enhancements in memory consolidation following loss or gain of function genetic manipulations of the Ras-ERK pathway. The phenotypes of global mutants as Ras-GRF1 KO, GENA53, and ERK1 KO mice, as well as of conditional region-specific mutants (striatal K-CREB mice), will be illustrated as examples. Novel object recognition (NOR), developed by Ennaceur and Delacour in 1988, is instead a more recent and highly ecological test, which relies on the natural tendency of rodents to spontaneously approach and explore novel objects, representing hence a useful non-stressful tool for the study of memory in animals without the employment of punishments or starvation/water restriction regimens. Careful indications will be given on how to select the positions for the novel object, in order to counterbalance for individual side preferences among mice during the training. Finally, the methods for calculating two learning indexes will be described. In addition to the classical discrimination index (DI) that measures the ability of an animal to discriminate between two different objects which are presented at the same time, we will describe the formula of a new index

  7. Reconciling change blindness with long-term memory for objects.

    PubMed

    Wood, Katherine; Simons, Daniel J

    2017-02-01

    How can we reconcile remarkably precise long-term memory for thousands of images with failures to detect changes to similar images? We explored whether people can use detailed, long-term memory to improve change detection performance. Subjects studied a set of images of objects and then performed recognition and change detection tasks with those images. Recognition memory performance exceeded change detection performance, even when a single familiar object in the postchange display consistently indicated the change location. In fact, participants were no better when a familiar object predicted the change location than when the displays consisted of unfamiliar objects. When given an explicit strategy to search for a familiar object as a way to improve performance on the change detection task, they performed no better than in a 6-alternative recognition memory task. Subjects only benefited from the presence of familiar objects in the change detection task when they had more time to view the prechange array before it switched. Once the cost to using the change detection information decreased, subjects made use of it in conjunction with memory to boost performance on the familiar-item change detection task. This suggests that even useful information will go unused if it is sufficiently difficult to extract.

  8. Single prolonged stress impairs social and object novelty recognition in rats.

    PubMed

    Eagle, Andrew L; Fitzpatrick, Chris J; Perrine, Shane A

    2013-11-01

    Posttraumatic stress disorder (PTSD) results from exposure to a traumatic event and manifests as re-experiencing, arousal, avoidance, and negative cognition/mood symptoms. Avoidant symptoms, as well as the newly defined negative cognitions/mood, are a serious complication leading to diminished interest in once important or positive activities, such as social interaction; however, the basis of these symptoms remains poorly understood. PTSD patients also exhibit impaired object and social recognition, which may underlie the avoidance and symptoms of negative cognition, such as social estrangement or diminished interest in activities. Previous studies have demonstrated that single prolonged stress (SPS), models PTSD phenotypes, including impairments in learning and memory. Therefore, it was hypothesized that SPS would impair social and object recognition memory. Male Sprague Dawley rats were exposed to SPS then tested in the social choice test (SCT) or novel object recognition test (NOR). These tests measure recognition of novelty over familiarity, a natural preference of rodents. Results show that SPS impaired preference for both social and object novelty. In addition, SPS impairment in social recognition may be caused by impaired behavioral flexibility, or an inability to shift behavior during the SCT. These results demonstrate that traumatic stress can impair social and object recognition memory, which may underlie certain avoidant symptoms or negative cognition in PTSD and be related to impaired behavioral flexibility. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Infant Visual Recognition Memory

    ERIC Educational Resources Information Center

    Rose, Susan A.; Feldman, Judith F.; Jankowski, Jeffery J.

    2004-01-01

    Visual recognition memory is a robust form of memory that is evident from early infancy, shows pronounced developmental change, and is influenced by many of the same factors that affect adult memory; it is surprisingly resistant to decay and interference. Infant visual recognition memory shows (a) modest reliability, (b) good discriminant…

  10. Willughbeia cochinchinensis prevents scopolamine-induced deficits in memory, spatial learning, and object recognition in rodents.

    PubMed

    Can, Mao Van; Tran, Anh Hai; Pham, Dam Minh; Dinh, Bao Quoc; Le, Quan Van; Nguyen, Ba Van; Nguyen, Mai Thanh Thi; Nguyen, Hai Xuan; Nguyen, Nhan Trung; Nishijo, Hisao

    2018-03-25

    Willughbeia cochinchinensis (WC) has been used in Vietnamese traditional medicine for the treatment of dementia as well as diarrhea, heartburn, and cutaneous abscess and as a diuretic. Alzheimer's disease (AD) is one of the most prevalent diseases in elderly individuals. Acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitors have been widely used to treat patients with AD. In the present study, we investigated anti-AChE and anti-BChE activities of a natural product, WC, for its potential applications in therapies to prevent/treat dementia. First, compounds extracted from WC were tested for their AChE and BChE inhibitory activities in vitro. Second, in vivo behavioral experiments were performed to investigate the effects of WC at doses of 100, 150, and 200mg/kg on scopolamine (1.5mg/kg)-induced memory and cognitive deficits in mice. The behavior of mice treated with and without WC and/or scopolamine was tested using the Y-maze, Morris water maze, and novel object recognition task. The results of the in vitro assay demonstrated anti-AChE and anti-BChE activities of the compounds extracted from WC. The results of behavioral experiments showed that the administration of WC prevented 1) scopolamine-induced decrease in spontaneous alternation (%) behavior in the Y-maze, 2) scopolamine-induced deficits in spatial learning and memory in the Morris water maze, and 3) scopolamine-induced deficits in novel object recognition. These results indicate that WC prevents cognitive and memory deficits induced by scopolamine injection. Our findings suggest that WC may represent a novel candidate for the treatment of memory and cognitive deficits in humans with dementia. Copyright © 2017. Published by Elsevier B.V.

  11. Selective attention meets spontaneous recognition memory: Evidence for effects at retrieval.

    PubMed

    Moen, Katherine C; Miller, Jeremy K; Lloyd, Marianne E

    2017-03-01

    Previous research on the effects of Divided Attention on recognition memory have shown consistent impairments during encoding but more variable effects at retrieval. The present study explored whether effects of Selective Attention at retrieval and subsequent testing were parallel to those of Divided Attention. Participants studied a list of pictures and then had a recognition memory test that included both full attention and selective attention (the to be responded to object was overlaid atop a blue outlined object) trials. All participants then completed a second recognition memory test. The results of 2 experiments suggest that subsequent tests consistently show impacts of the status of the ignored stimulus, and that having an initial test changes performance on a later test. The results are discussed in relation to effect of attention on memory more generally as well as spontaneous recognition memory research. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Lateral Entorhinal Cortex is Critical for Novel Object-Context Recognition

    PubMed Central

    Wilson, David IG; Langston, Rosamund F; Schlesiger, Magdalene I; Wagner, Monica; Watanabe, Sakurako; Ainge, James A

    2013-01-01

    Episodic memory incorporates information about specific events or occasions including spatial locations and the contextual features of the environment in which the event took place. It has been modeled in rats using spontaneous exploration of novel configurations of objects, their locations, and the contexts in which they are presented. While we have a detailed understanding of how spatial location is processed in the brain relatively little is known about where the nonspatial contextual components of episodic memory are processed. Initial experiments measured c-fos expression during an object-context recognition (OCR) task to examine which networks within the brain process contextual features of an event. Increased c-fos expression was found in the lateral entorhinal cortex (LEC; a major hippocampal afferent) during OCR relative to control conditions. In a subsequent experiment it was demonstrated that rats with lesions of LEC were unable to recognize object-context associations yet showed normal object recognition and normal context recognition. These data suggest that contextual features of the environment are integrated with object identity in LEC and demonstrate that recognition of such object-context associations requires the LEC. This is consistent with the suggestion that contextual features of an event are processed in LEC and that this information is combined with spatial information from medial entorhinal cortex to form episodic memory in the hippocampus. © 2013 Wiley Periodicals, Inc. PMID:23389958

  13. Estradiol-induced object recognition memory consolidation is dependent on activation of mTOR signaling in the dorsal hippocampus

    PubMed Central

    Fortress, Ashley M.; Fan, Lu; Orr, Patrick T.; Zhao, Zaorui; Frick, Karyn M.

    2013-01-01

    The mammalian target of rapamycin (mTOR) signaling pathway is an important regulator of protein synthesis and is essential for various forms of hippocampal memory. Here, we asked whether the enhancement of object recognition memory consolidation produced by dorsal hippocampal infusion of 17β-estradiol (E2) is dependent on mTOR signaling in the dorsal hippocampus, and whether E2-induced mTOR signaling is dependent on dorsal hippocampal phosphatidylinositol 3-kinase (PI3K) and extracellular signal-regulated kinase (ERK) activation. We first demonstrated that the enhancement of object recognition induced by E2 was blocked by dorsal hippocampal inhibition of ERK, PI3K, or mTOR activation. We then showed that an increase in dorsal hippocampal ERK phosphorylation 5 min after intracerebroventricular (ICV) E2 infusion was also blocked by dorsal hippocampal infusion of the three cell signaling inhibitors. Next, we found that ICV infusion of E2 increased phosphorylation of the downstream mTOR targets S6K (Thr-421) and 4E-BP1 in the dorsal hippocampus 5 min after infusion, and that this phosphorylation was blocked by dorsal hippocampal infusion of inhibitors of ERK, PI3K, and mTOR. Collectively, these data demonstrate for the first time that activation of the dorsal hippocampal mTOR signaling pathway is necessary for E2 to enhance object recognition memory consolidation and that E2-induced mTOR activation is dependent on upstream activation of ERK and PI3K signaling. PMID:23422279

  14. The memory state heuristic: A formal model based on repeated recognition judgments.

    PubMed

    Castela, Marta; Erdfelder, Edgar

    2017-02-01

    The recognition heuristic (RH) theory predicts that, in comparative judgment tasks, if one object is recognized and the other is not, the recognized one is chosen. The memory-state heuristic (MSH) extends the RH by assuming that choices are not affected by recognition judgments per se, but by the memory states underlying these judgments (i.e., recognition certainty, uncertainty, or rejection certainty). Specifically, the larger the discrepancy between memory states, the larger the probability of choosing the object in the higher state. The typical RH paradigm does not allow estimation of the underlying memory states because it is unknown whether the objects were previously experienced or not. Therefore, we extended the paradigm by repeating the recognition task twice. In line with high threshold models of recognition, we assumed that inconsistent recognition judgments result from uncertainty whereas consistent judgments most likely result from memory certainty. In Experiment 1, we fitted 2 nested multinomial models to the data: an MSH model that formalizes the relation between memory states and binary choices explicitly and an approximate model that ignores the (unlikely) possibility of consistent guesses. Both models provided converging results. As predicted, reliance on recognition increased with the discrepancy in the underlying memory states. In Experiment 2, we replicated these results and found support for choice consistency predictions of the MSH. Additionally, recognition and choice latencies were in agreement with the MSH in both experiments. Finally, we validated critical parameters of our MSH model through a cross-validation method and a third experiment. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  15. Regulation of object recognition and object placement by ovarian sex steroid hormones

    PubMed Central

    Tuscher, Jennifer J.; Fortress, Ashley M.; Kim, Jaekyoon; Frick, Karyn M.

    2014-01-01

    The ovarian hormones 17β-estradiol (E2) and progesterone (P4) are potent modulators of hippocampal memory formation. Both hormones have been demonstrated to enhance hippocampal memory by regulating the cellular and molecular mechanisms thought to underlie memory formation. Behavioral neuroendocrinologists have increasingly used the object recognition and object placement (object location) tasks to investigate the role of E2 and P4 in regulating hippocampal memory formation in rodents. These one-trial learning tasks are ideal for studying acute effects of hormone treatments on different phases of memory because they can be administered during acquisition (pre-training), consolidation (post-training), or retrieval (pre-testing). This review synthesizes the rodent literature testing the effects of E2 and P4 on object recognition (OR) and object placement (OP), and the molecular mechanisms in the hippocampus supporting memory formation in these tasks. Some general trends emerge from the data. Among gonadally intact females, object memory tends to be best when E2 and P4 levels are elevated during the estrous cycle, pregnancy, and in middle age. In ovariectomized females, E2 given before or immediately after testing generally enhances OR and OP in young and middle-aged rats and mice, although effects are mixed in aged rodents. Effects of E2 treatment on OR 7and OP memory consolidation can be mediated by both classical estrogen receptors (ERα and ERβ), and depend on glutamate receptors (NMDA, mGluR1) and activation of numerous cell signaling cascades (e.g., ERK, PI3K/Akt, mTOR) and epigenetic processes (e.g., histone H3 acetylation, DNA methylation). Acute P4 treatment given immediately after training also enhances OR and OP in young and middle-aged ovariectomized females by activating similar cell signaling pathways as E2 (e.g., ERK, mTOR). The few studies that have administered both hormones in combination suggest that treatment can enhance OR and OP, but that

  16. Recognition memory is modulated by visual similarity.

    PubMed

    Yago, Elena; Ishai, Alumit

    2006-06-01

    We used event-related fMRI to test whether recognition memory depends on visual similarity between familiar prototypes and novel exemplars. Subjects memorized portraits, landscapes, and abstract compositions by six painters with a unique style, and later performed a memory recognition task. The prototypes were presented with new exemplars that were either visually similar or dissimilar. Behaviorally, novel, dissimilar items were detected faster and more accurately. We found activation in a distributed cortical network that included face- and object-selective regions in the visual cortex, where familiar prototypes evoked stronger responses than new exemplars; attention-related regions in parietal cortex, where responses elicited by new exemplars were reduced with decreased similarity to the prototypes; and the hippocampus and memory-related regions in parietal and prefrontal cortices, where stronger responses were evoked by the dissimilar exemplars. Our findings suggest that recognition memory is mediated by classification of novel exemplars as a match or a mismatch, based on their visual similarity to familiar prototypes.

  17. Lateral entorhinal cortex is necessary for associative but not nonassociative recognition memory

    PubMed Central

    Wilson, David IG; Watanabe, Sakurako; Milner, Helen; Ainge, James A

    2013-01-01

    The lateral entorhinal cortex (LEC) provides one of the two major input pathways to the hippocampus and has been suggested to process the nonspatial contextual details of episodic memory. Combined with spatial information from the medial entorhinal cortex it is hypothesised that this contextual information is used to form an integrated spatially selective, context-specific response in the hippocampus that underlies episodic memory. Recently, we reported that the LEC is required for recognition of objects that have been experienced in a specific context (Wilson et al. (2013) Hippocampus 23:352-366). Here, we sought to extend this work to assess the role of the LEC in recognition of all associative combinations of objects, places and contexts within an episode. Unlike controls, rats with excitotoxic lesions of the LEC showed no evidence of recognizing familiar combinations of object in place, place in context, or object in place and context. However, LEC lesioned rats showed normal recognition of objects and places independently from each other (nonassociative recognition). Together with our previous findings, these data suggest that the LEC is critical for associative recognition memory and may bind together information relating to objects, places, and contexts needed for episodic memory formation. PMID:23836525

  18. The role of the hippocampus in recognition memory.

    PubMed

    Bird, Chris M

    2017-08-01

    Many theories of declarative memory propose that it is supported by partially separable processes underpinned by different brain structures. The hippocampus plays a critical role in binding together item and contextual information together and processing the relationships between individual items. By contrast, the processing of individual items and their later recognition can be supported by extrahippocampal regions of the medial temporal lobes (MTL), particularly when recognition is based on feelings of familiarity without the retrieval of any associated information. These theories are domain-general in that "items" might be words, faces, objects, scenes, etc. However, there is mixed evidence that item recognition does not require the hippocampus, or that familiarity-based recognition can be supported by extrahippocampal regions. By contrast, there is compelling evidence that in humans, hippocampal damage does not affect recognition memory for unfamiliar faces, whilst recognition memory for several other stimulus classes is impaired. I propose that regions outside of the hippocampus can support recognition of unfamiliar faces because they are perceived as discrete items and have no prior conceptual associations. Conversely, extrahippocampal processes are inadequate for recognition of items which (a) have been previously experienced, (b) are conceptually meaningful, or (c) are perceived as being comprised of individual elements. This account reconciles findings from primate and human studies of recognition memory. Furthermore, it suggests that while the hippocampus is critical for binding and relational processing, these processes are required for item recognition memory in most situations. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Role of the Anterior Cingulate Cortex in the Retrieval of Novel Object Recognition Memory after a Long Delay

    ERIC Educational Resources Information Center

    Pezze, Marie A.; Marshall, Hayley J.; Fone, Kevin C. F.; Cassaday, Helen J.

    2017-01-01

    Previous in vivo electrophysiological studies suggest that the anterior cingulate cortex (ACgx) is an important substrate of novel object recognition (NOR) memory. However, intervention studies are needed to confirm this conclusion and permanent lesion studies cannot distinguish effects on encoding and retrieval. The interval between encoding and…

  20. From brain synapses to systems for learning and memory: Object recognition, spatial navigation, timed conditioning, and movement control.

    PubMed

    Grossberg, Stephen

    2015-09-24

    This article provides an overview of neural models of synaptic learning and memory whose expression in adaptive behavior depends critically on the circuits and systems in which the synapses are embedded. It reviews Adaptive Resonance Theory, or ART, models that use excitatory matching and match-based learning to achieve fast category learning and whose learned memories are dynamically stabilized by top-down expectations, attentional focusing, and memory search. ART clarifies mechanistic relationships between consciousness, learning, expectation, attention, resonance, and synchrony. ART models are embedded in ARTSCAN architectures that unify processes of invariant object category learning, recognition, spatial and object attention, predictive remapping, and eye movement search, and that clarify how conscious object vision and recognition may fail during perceptual crowding and parietal neglect. The generality of learned categories depends upon a vigilance process that is regulated by acetylcholine via the nucleus basalis. Vigilance can get stuck at too high or too low values, thereby causing learning problems in autism and medial temporal amnesia. Similar synaptic learning laws support qualitatively different behaviors: Invariant object category learning in the inferotemporal cortex; learning of grid cells and place cells in the entorhinal and hippocampal cortices during spatial navigation; and learning of time cells in the entorhinal-hippocampal system during adaptively timed conditioning, including trace conditioning. Spatial and temporal processes through the medial and lateral entorhinal-hippocampal system seem to be carried out with homologous circuit designs. Variations of a shared laminar neocortical circuit design have modeled 3D vision, speech perception, and cognitive working memory and learning. A complementary kind of inhibitory matching and mismatch learning controls movement. This article is part of a Special Issue entitled SI: Brain and Memory

  1. Effect of perinatal asphyxia on tuberomammillary nucleus neuronal density and object recognition memory: A possible role for histamine?

    PubMed

    Flores-Balter, Gabriela; Cordova-Jadue, Héctor; Chiti-Morales, Alessandra; Lespay, Carolyne; Espina-Marchant, Pablo; Falcon, Romina; Grinspun, Noemi; Sanchez, Jessica; Bustamante, Diego; Morales, Paola; Herrera-Marschitz, Mario; Valdés, José L

    2016-10-15

    Perinatal asphyxia (PA) is associated with long-term neuronal damage and cognitive deficits in adulthood, such as learning and memory disabilities. After PA, specific brain regions are compromised, including neocortex, hippocampus, basal ganglia, and ascending neuromodulatory pathways, such as dopamine system, explaining some of the cognitive disabilities. We hypothesize that other neuromodulatory systems, such as histamine system from the tuberomammillary nucleus (TMN), which widely project to telencephalon, shown to be relevant for learning and memory, may be compromised by PA. We investigated here the effect of PA on (i) Density and neuronal activity of TMN neurons by double immunoreactivity for adenosine deaminase (ADA) and c-Fos, as marker for histaminergic neurons and neuronal activity respectively. (ii) Expression of the histamine-synthesizing enzyme, histidine decarboxylase (HDC) by western blot and (iii) thioperamide an H3 histamine receptor antagonist, on an object recognition memory task. Asphyxia-exposed rats showed a decrease of ADA density and c-Fos activity in TMN, and decrease of HDC expression in hypothalamus. Asphyxia-exposed rats also showed a low performance in object recognition memory compared to caesarean-delivered controls, which was reverted in a dose-dependent manner by the H3 antagonist thioperamide (5-10mg/kg, i.p.). The present results show that the histaminergic neuronal system of the TMN is involved in the long-term effects induced by PA, affecting learning and memory. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Semantic memory in object use.

    PubMed

    Silveri, Maria Caterina; Ciccarelli, Nicoletta

    2009-10-01

    We studied five patients with semantic memory disorders, four with semantic dementia and one with herpes simplex virus encephalitis, to investigate the involvement of semantic conceptual knowledge in object use. Comparisons between patients who had semantic deficits of different severity, as well as the follow-up, showed that the ability to use objects was largely preserved when the deficit was mild but progressively decayed as the deficit became more severe. Naming was generally more impaired than object use. Production tasks (pantomime execution and actual object use) and comprehension tasks (pantomime recognition and action recognition) as well as functional knowledge about objects were impaired when the semantic deficit was severe. Semantic and unrelated errors were produced during object use, but actions were always fluent and patients performed normally on a novel tools task in which the semantic demand was minimal. Patients with severe semantic deficits scored borderline on ideational apraxia tasks. Our data indicate that functional semantic knowledge is crucial for using objects in a conventional way and suggest that non-semantic factors, mainly non-declarative components of memory, might compensate to some extent for semantic disorders and guarantee some residual ability to use very common objects independently of semantic knowledge.

  3. HDAC inhibition modulates hippocampus-dependent long-term memory for object location in a CBP-dependent manner

    PubMed Central

    Haettig, Jakob; Stefanko, Daniel P.; Multani, Monica L.; Figueroa, Dario X.; McQuown, Susan C.; Wood, Marcelo A.

    2011-01-01

    Transcription of genes required for long-term memory not only involves transcription factors, but also enzymatic protein complexes that modify chromatin structure. Chromatin-modifying enzymes, such as the histone acetyltransferase (HAT) CREB (cyclic-AMP response element binding) binding protein (CBP), are pivotal for the transcriptional regulation required for long-term memory. Several studies have shown that CBP and histone acetylation are necessary for hippocampus-dependent long-term memory and hippocampal long-term potentiation (LTP). Importantly, every genetically modified Cbp mutant mouse exhibits long-term memory impairments in object recognition. However, the role of the hippocampus in object recognition is controversial. To better understand how chromatin-modifying enzymes modulate long-term memory for object recognition, we first examined the role of the hippocampus in retrieval of long-term memory for object recognition or object location. Muscimol inactivation of the dorsal hippocampus prior to retrieval had no effect on long-term memory for object recognition, but completely blocked long-term memory for object location. This was consistent with experiments showing that muscimol inactivation of the hippocampus had no effect on long-term memory for the object itself, supporting the idea that the hippocampus encodes spatial information about an object (such as location or context), whereas cortical areas (such as the perirhinal or insular cortex) encode information about the object itself. Using location-dependent object recognition tasks that engage the hippocampus, we demonstrate that CBP is essential for the modulation of long-term memory via HDAC inhibition. Together, these results indicate that HDAC inhibition modulates memory in the hippocampus via CBP and that different brain regions utilize different chromatin-modifying enzymes to regulate learning and memory. PMID:21224411

  4. Forms Of Memory For Representation Of Visual Objects

    DTIC Science & Technology

    1991-02-14

    description system that functions independently of the episodic memory system that is damaged in amnesia and supports explicit remembering. Miscellaneous...well as semantic and functional information about an object, are preserved in the episodic system. 4. Priming and recognition of depth-cued, 3D objects A...requirement should serve to enhance an object’s distinctiveness in episodic memory . We also predicted robust priming for symmetric objects; this is because

  5. Remembering the snake in the grass: Threat enhances recognition but not source memory.

    PubMed

    Meyer, Miriam Magdalena; Bell, Raoul; Buchner, Axel

    2015-12-01

    Research on the influence of emotion on source memory has yielded inconsistent findings. The object-based framework (Mather, 2007) predicts that negatively arousing stimuli attract attention, resulting in enhanced within-object binding, and, thereby, enhanced source memory for intrinsic context features of emotional stimuli. To test this prediction, we presented pictures of threatening and harmless animals, the color of which had been experimentally manipulated. In a memory test, old-new recognition for the animals and source memory for their color was assessed. In all 3 experiments, old-new recognition was better for the more threatening material, which supports previous reports of an emotional memory enhancement. This recognition advantage was due to the emotional properties of the stimulus material, and not specific for snake stimuli. However, inconsistent with the prediction of the object-based framework, intrinsic source memory was not affected by emotion. (c) 2015 APA, all rights reserved).

  6. Implications of Animal Object Memory Research for Human Amnesia

    ERIC Educational Resources Information Center

    Winters, Boyer D.; Saksida, Lisa M.; Bussey, Timothy J.

    2010-01-01

    Damage to structures in the human medial temporal lobe causes severe memory impairment. Animal object recognition tests gained prominence from attempts to model "global" human medial temporal lobe amnesia, such as that observed in patient HM. These tasks, such as delayed nonmatching-to-sample and spontaneous object recognition, for assessing…

  7. Neuritin reverses deficits in murine novel object associative recognition memory caused by exposure to extremely low-frequency (50 Hz) electromagnetic fields.

    PubMed

    Zhao, Qian-Ru; Lu, Jun-Mei; Yao, Jin-Jing; Zhang, Zheng-Yu; Ling, Chen; Mei, Yan-Ai

    2015-07-03

    Animal studies have shown that electromagnetic field exposure may interfere with the activity of brain cells, thereby generating behavioral and cognitive disturbances. However, the underlying mechanisms and possible preventions are still unknown. In this study, we used a mouse model to examine the effects of exposure to extremely low-frequency (50 Hz) electromagnetic fields (ELF MFs) on a recognition memory task and morphological changes of hippocampal neurons. The data showed that ELF MFs exposure (1 mT, 12 h/day) induced a time-dependent deficit in novel object associative recognition memory and also decreased hippocampal dendritic spine density. This effect was observed without corresponding changes in spontaneous locomotor activity and was transient, which has only been seen after exposing mice to ELF MFs for 7-10 days. The over-expression of hippocampal neuritin, an activity-dependent neurotrophic factor, using an adeno-associated virus (AAV) vector significantly increased the neuritin level and dendritic spine density. This increase was paralleled with ELF MFs exposure-induced deficits in recognition memory and reductions of dendritic spine density. Collectively, our study provides evidence for the association between ELF MFs exposure, impairment of recognition memory, and resulting changes in hippocampal dendritic spine density. Neuritin prevented this ELF MFs-exposure-induced effect by increasing the hippocampal spine density.

  8. The posterior parietal cortex in recognition memory: a neuropsychological study.

    PubMed

    Haramati, Sharon; Soroker, Nachum; Dudai, Yadin; Levy, Daniel A

    2008-01-01

    Several recent functional neuroimaging studies have reported robust bilateral activation (L>R) in lateral posterior parietal cortex and precuneus during recognition memory retrieval tasks. It has not yet been determined what cognitive processes are represented by those activations. In order to examine whether parietal lobe-based processes are necessary for basic episodic recognition abilities, we tested a group of 17 first-incident CVA patients whose cortical damage included (but was not limited to) extensive unilateral posterior parietal lesions. These patients performed a series of tasks that yielded parietal activations in previous fMRI studies: yes/no recognition judgments on visual words and on colored object pictures and identifiable environmental sounds. We found that patients with left hemisphere lesions were not impaired compared to controls in any of the tasks. Patients with right hemisphere lesions were not significantly impaired in memory for visual words, but were impaired in recognition of object pictures and sounds. Two lesion--behavior analyses--area-based correlations and voxel-based lesion symptom mapping (VLSM)---indicate that these impairments resulted from extra-parietal damage, specifically to frontal and lateral temporal areas. These findings suggest that extensive parietal damage does not impair recognition performance. We suggest that parietal activations recorded during recognition memory tasks might reflect peri-retrieval processes, such as the storage of retrieved memoranda in a working memory buffer for further cognitive processing.

  9. Neurotrophins play differential roles in short and long-term recognition memory.

    PubMed

    Callaghan, Charlotte K; Kelly, Aine M

    2013-09-01

    The neurotrophin family of proteins are believed to mediate various forms of synaptic plasticity in the adult brain. Here we have assessed the roles of these proteins in object recognition memory in the rat, using icv infusions of function-blocking antibodies or the tyrosine kinase antagonist, tyrphostin AG879, to block Trk receptors. We report that tyrphostin AG879 impairs both short-term and long-term recognition memory, indicating a requirement for Trk receptor activation in both processes. The effect of inhibition of each of the neurotrophins with activity-blocking neutralising antibodies was also tested. Treatment with anti-BDNF, anti-NGF or anti-NT4 had no effect on short-term memory, but blocked long-term recognition memory. Treatment with anti-NT3 had no effect on either process. We also assessed changes in expression of neurotrophins and their respective receptors in the hippocampus, dentate gyrus and perirhinal cortex over a 24 h period following training in the object recognition task. We observed time-dependent changes in expression of the Trk receptors and their ligands in the dentate gyrus and perirhinal cortex. The data are consistent with a pivotal role for neurotrophic factors in the expression of recognition memory. Copyright © 2013 Elsevier Inc. All rights reserved.

  10. Correlations of recognition memory performance with expression and methylation of brain-derived neurotrophic factor in rats.

    PubMed

    Muñoz, Pablo C; Aspé, Mauricio A; Contreras, Luis S; Palacios, Adrián G

    2010-01-01

    Object recognition memory allows discrimination between novel and familiar objects. This kind of memory consists of two components: recollection, which depends on the hippocampus, and familiarity, which depends on the perirhinal cortex (Pcx). The importance of brain-derived neurotrophic factor (BDNF) for recognition memory has already been recognized. Recent evidence suggests that DNA methylation regulates the expression of BDNF and memory. Behavioral and molecular approaches were used to understand the potential contribution of DNA methylation to recognition memory. To that end, rats were tested for their ability to distinguish novel from familiar objects by using a spontaneous object recognition task. Furthermore, the level of DNA methylation was estimated after trials with a methyl-sensitive PCR. We found a significant correlation between performance on the novel object task and the expression of BDNF, negatively in hippocampal slices and positively in perirhinal cortical slices. By contrast, methylation of DNA in CpG island 1 in the promoter of exon 1 in BDNF only correlated in hippocampal slices, but not in the Pxc cortical slices from trained animals. These results suggest that DNA methylation may be involved in the regulation of the BDNF gene during recognition memory, at least in the hippocampus.

  11. Deficits in long-term recognition memory reveal dissociated subtypes in congenital prosopagnosia.

    PubMed

    Stollhoff, Rainer; Jost, Jürgen; Elze, Tobias; Kennerknecht, Ingo

    2011-01-25

    The study investigates long-term recognition memory in congenital prosopagnosia (CP), a lifelong impairment in face identification that is present from birth. Previous investigations of processing deficits in CP have mostly relied on short-term recognition tests to estimate the scope and severity of individual deficits. We firstly report on a controlled test of long-term (one year) recognition memory for faces and objects conducted with a large group of participants with CP. Long-term recognition memory is significantly impaired in eight CP participants (CPs). In all but one case, this deficit was selective to faces and didn't extend to intra-class recognition of object stimuli. In a test of famous face recognition, long-term recognition deficits were less pronounced, even after accounting for differences in media consumption between controls and CPs. Secondly, we combined test results on long-term and short-term recognition of faces and objects, and found a large heterogeneity in severity and scope of individual deficits. Analysis of the observed heterogeneity revealed a dissociation of CP into subtypes with a homogeneous phenotypical profile. Thirdly, we found that among CPs self-assessment of real-life difficulties, based on a standardized questionnaire, and experimentally assessed face recognition deficits are strongly correlated. Our results demonstrate that controlled tests of long-term recognition memory are needed to fully assess face recognition deficits in CP. Based on controlled and comprehensive experimental testing, CP can be dissociated into subtypes with a homogeneous phenotypical profile. The CP subtypes identified align with those found in prosopagnosia caused by cortical lesions; they can be interpreted with respect to a hierarchical neural system for face perception.

  12. Deficits in Long-Term Recognition Memory Reveal Dissociated Subtypes in Congenital Prosopagnosia

    PubMed Central

    Stollhoff, Rainer; Jost, Jürgen; Elze, Tobias; Kennerknecht, Ingo

    2011-01-01

    The study investigates long-term recognition memory in congenital prosopagnosia (CP), a lifelong impairment in face identification that is present from birth. Previous investigations of processing deficits in CP have mostly relied on short-term recognition tests to estimate the scope and severity of individual deficits. We firstly report on a controlled test of long-term (one year) recognition memory for faces and objects conducted with a large group of participants with CP. Long-term recognition memory is significantly impaired in eight CP participants (CPs). In all but one case, this deficit was selective to faces and didn't extend to intra-class recognition of object stimuli. In a test of famous face recognition, long-term recognition deficits were less pronounced, even after accounting for differences in media consumption between controls and CPs. Secondly, we combined test results on long-term and short-term recognition of faces and objects, and found a large heterogeneity in severity and scope of individual deficits. Analysis of the observed heterogeneity revealed a dissociation of CP into subtypes with a homogeneous phenotypical profile. Thirdly, we found that among CPs self-assessment of real-life difficulties, based on a standardized questionnaire, and experimentally assessed face recognition deficits are strongly correlated. Our results demonstrate that controlled tests of long-term recognition memory are needed to fully assess face recognition deficits in CP. Based on controlled and comprehensive experimental testing, CP can be dissociated into subtypes with a homogeneous phenotypical profile. The CP subtypes identified align with those found in prosopagnosia caused by cortical lesions; they can be interpreted with respect to a hierarchical neural system for face perception. PMID:21283572

  13. A Critical Role for the Nucleus Reuniens in Long-Term, But Not Short-Term Associative Recognition Memory Formation.

    PubMed

    Barker, Gareth R I; Warburton, Elizabeth Clea

    2018-03-28

    Recognition memory for single items requires the perirhinal cortex (PRH), whereas recognition of an item and its associated location requires a functional interaction among the PRH, hippocampus (HPC), and medial prefrontal cortex (mPFC). Although the precise mechanisms through which these interactions are effected are unknown, the nucleus reuniens (NRe) has bidirectional connections with each regions and thus may play a role in recognition memory. Here we investigated, in male rats, whether specific manipulations of NRe function affected performance of recognition memory for single items, object location, or object-in-place associations. Permanent lesions in the NRe significantly impaired long-term, but not short-term, object-in-place associative recognition memory, whereas single item recognition memory and object location memory were unaffected. Temporary inactivation of the NRe during distinct phases of the object-in-place task revealed its importance in both the encoding and retrieval stages of long-term associative recognition memory. Infusions of specific receptor antagonists showed that encoding was dependent on muscarinic and nicotinic cholinergic neurotransmission, whereas NMDA receptor neurotransmission was not required. Finally, we found that long-term object-in-place memory required protein synthesis within the NRe. These data reveal a specific role for the NRe in long-term associative recognition memory through its interactions with the HPC and mPFC, but not the PRH. The delay-dependent involvement of the NRe suggests that it is not a simple relay station between brain regions, but, rather, during high mnemonic demand, facilitates interactions between the mPFC and HPC, a process that requires both cholinergic neurotransmission and protein synthesis. SIGNIFICANCE STATEMENT Recognizing an object and its associated location, which is fundamental to our everyday memory, requires specific hippocampal-cortical interactions, potentially facilitated by the

  14. Effects of selective activation of M1 and M4 muscarinic receptors on object recognition memory performance in rats.

    PubMed

    Galloway, Claire R; Lebois, Evan P; Shagarabi, Shezza L; Hernandez, Norma A; Manns, Joseph R

    2014-01-01

    Acetylcholine signaling through muscarinic receptors has been shown to benefit memory performance in some conditions, but pan-muscarinic activation also frequently leads to peripheral side effects. Drug therapies that selectively target M1 or M4 muscarinic receptors could potentially improve memory while minimizing side effects mediated by the other muscarinic receptor subtypes. The ability of three recently developed drugs that selectively activate M1 or M4 receptors to improve recognition memory was tested by giving Long-Evans rats subcutaneous injections of three different doses of the M1 agonist VU0364572, the M1 positive allosteric modulator BQCA or the M4 positive allosteric modulator VU0152100 before performing an object recognition memory task. VU0364572 at 0.1 mg/kg, BQCA at 1.0 mg/kg and VU0152100 at 3.0 and 30.0 mg/kg improved the memory performance of rats that performed poorly at baseline, yet the improvements in memory performance were the most statistically robust for VU0152100 at 3.0 mg/kg. The results suggested that selective M1 and M4 receptor activation each improved memory but that the likelihood of obtaining behavioral efficacy at a given dose might vary between subjects even in healthy groups depending on baseline performance. These results also highlighted the potential of drug therapies that selectively target M1 or M4 receptors to improve memory performance in individuals with impaired memory.

  15. Astrocytes contribute to gamma oscillations and recognition memory.

    PubMed

    Lee, Hosuk Sean; Ghetti, Andrea; Pinto-Duarte, António; Wang, Xin; Dziewczapolski, Gustavo; Galimi, Francesco; Huitron-Resendiz, Salvador; Piña-Crespo, Juan C; Roberts, Amanda J; Verma, Inder M; Sejnowski, Terrence J; Heinemann, Stephen F

    2014-08-12

    Glial cells are an integral part of functional communication in the brain. Here we show that astrocytes contribute to the fast dynamics of neural circuits that underlie normal cognitive behaviors. In particular, we found that the selective expression of tetanus neurotoxin (TeNT) in astrocytes significantly reduced the duration of carbachol-induced gamma oscillations in hippocampal slices. These data prompted us to develop a novel transgenic mouse model, specifically with inducible tetanus toxin expression in astrocytes. In this in vivo model, we found evidence of a marked decrease in electroencephalographic (EEG) power in the gamma frequency range in awake-behaving mice, whereas neuronal synaptic activity remained intact. The reduction in cortical gamma oscillations was accompanied by impaired behavioral performance in the novel object recognition test, whereas other forms of memory, including working memory and fear conditioning, remained unchanged. These results support a key role for gamma oscillations in recognition memory. Both EEG alterations and behavioral deficits in novel object recognition were reversed by suppression of tetanus toxin expression. These data reveal an unexpected role for astrocytes as essential contributors to information processing and cognitive behavior.

  16. Altered object exploration but not temporal order memory retrieval in an object recognition test following treatment of rats with the group II metabotropic glutamate receptor agonist LY379268.

    PubMed

    Lins, Brittney R; Ballendine, Stephanie A; Howland, John G

    2014-02-07

    Temporal order memory refers to the ability to distinguish past experiences in the order that they occurred. Temporal order memory for objects is often tested in rodents using spontaneous object recognition paradigms. The circuitry mediating memory in these tests is distributed and involves ionotropic glutamate receptors in the perirhinal cortex and medial prefrontal cortex. It is unknown what role, if any, metabotropic glutamate receptors have in temporal order memory for objects. The present experiment examined the role of metabotropic glutamate receptors in temporal memory retrieval using the group II metabotropic glutamate receptor selective agonist LY379268. Rats were trained on a temporal memory test with three phases: two sample phases (60 min between them) in which rats explored two novel objects and a test phase (60 min after the second sample phase) which included a copy of each object previously encountered. Under these conditions, we confirmed that rats showed a significant exploratory preference for the object presented during the first sample phase. In a second experiment, we found that LY379268 (0.3, 1.0, or 3.0mg/kg; i.p.; 30 min before the test phase) had no effect on temporal memory retrieval but dose-dependently reduced time spent exploring the objects. Our results show that enhancing mGluR2 activity under conditions when TM is intact does not influence memory retrieval. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  17. A Single-System Model Predicts Recognition Memory and Repetition Priming in Amnesia

    PubMed Central

    Kessels, Roy P.C.; Wester, Arie J.; Shanks, David R.

    2014-01-01

    We challenge the claim that there are distinct neural systems for explicit and implicit memory by demonstrating that a formal single-system model predicts the pattern of recognition memory (explicit) and repetition priming (implicit) in amnesia. In the current investigation, human participants with amnesia categorized pictures of objects at study and then, at test, identified fragmented versions of studied (old) and nonstudied (new) objects (providing a measure of priming), and made a recognition memory judgment (old vs new) for each object. Numerous results in the amnesic patients were predicted in advance by the single-system model, as follows: (1) deficits in recognition memory and priming were evident relative to a control group; (2) items judged as old were identified at greater levels of fragmentation than items judged new, regardless of whether the items were actually old or new; and (3) the magnitude of the priming effect (the identification advantage for old vs new items) overall was greater than that of items judged new. Model evidence measures also favored the single-system model over two formal multiple-systems models. The findings support the single-system model, which explains the pattern of recognition and priming in amnesia primarily as a reduction in the strength of a single dimension of memory strength, rather than a selective explicit memory system deficit. PMID:25122896

  18. Hippocampal Infusion of Zeta Inhibitory Peptide Impairs Recent, but Not Remote, Recognition Memory in Rats

    PubMed Central

    Hales, Jena B.; Ocampo, Amber C.; Broadbent, Nicola J.; Clark, Robert E.

    2015-01-01

    Spatial memory in rodents can be erased following the infusion of zeta inhibitory peptide (ZIP) into the dorsal hippocampus via indwelling guide cannulas. It is believed that ZIP impairs spatial memory by reversing established late-phase long-term potentiation (LTP). However, it is unclear whether other forms of hippocampus-dependent memory, such as recognition memory, are also supported by hippocampal LTP. In the current study, we tested recognition memory in rats following hippocampal ZIP infusion. In order to combat the limited targeting of infusions via cannula, we implemented a stereotaxic approach for infusing ZIP throughout the dorsal, intermediate, and ventral hippocampus. Rats infused with ZIP 3–7 days after training on the novel object recognition task exhibited impaired object recognition memory compared to control rats (those infused with aCSF). In contrast, rats infused with ZIP 1 month after training performed similar to control rats. The ability to form new memories after ZIP infusions remained intact. We suggest that enhanced recognition memory for recent events is supported by hippocampal LTP, which can be reversed by hippocampal ZIP infusion. PMID:26380123

  19. A motor similarity effect in object memory.

    PubMed

    Downing-Doucet, Frédéric; Guérard, Katherine

    2014-08-01

    In line with theories of embodied cognition (e.g., Versace et al. European Journal of Cognitive Psychology, 21, 522-560, 2009), several studies have suggested that the motor system used to interact with objects in our environment is involved in object recognition (e.g., Helbig, Graf, & Kiefer Experimental Brain Research, 174, 221-228, 2006). However, the role of the motor system in immediate memory for objects is more controversial. The objective of the present study was to investigate the role of the motor system in object memory by manipulating the similarity between the actions associated to series of objects to be retained in memory. In Experiment 1, we showed that lists of objects associated to dissimilar actions were better recalled than lists associated to similar actions. We then showed that this effect was abolished when participants were required to perform a concurrent motor suppression task (Experiment 2) and when the objects to be memorized were unmanipulable (Experiment 3). The motor similarity effect provides evidence for the role of motor affordances in object memory.

  20. Tc1 mouse model of trisomy-21 dissociates properties of short- and long-term recognition memory.

    PubMed

    Hall, Jessica H; Wiseman, Frances K; Fisher, Elizabeth M C; Tybulewicz, Victor L J; Harwood, John L; Good, Mark A

    2016-04-01

    The present study examined memory function in Tc1 mice, a transchromosomic model of Down syndrome (DS). Tc1 mice demonstrated an unusual delay-dependent deficit in recognition memory. More specifically, Tc1 mice showed intact immediate (30sec), impaired short-term (10-min) and intact long-term (24-h) memory for objects. A similar pattern was observed for olfactory stimuli, confirming the generality of the pattern across sensory modalities. The specificity of the behavioural deficits in Tc1 mice was confirmed using APP overexpressing mice that showed the opposite pattern of object memory deficits. In contrast to object memory, Tc1 mice showed no deficit in either immediate or long-term memory for object-in-place information. Similarly, Tc1 mice showed no deficit in short-term memory for object-location information. The latter result indicates that Tc1 mice were able to detect and react to spatial novelty at the same delay interval that was sensitive to an object novelty recognition impairment. These results demonstrate (1) that novelty detection per se and (2) the encoding of visuo-spatial information was not disrupted in adult Tc1 mice. The authors conclude that the task specific nature of the short-term recognition memory deficit suggests that the trisomy of genes on human chromosome 21 in Tc1 mice impacts on (perirhinal) cortical systems supporting short-term object and olfactory recognition memory. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  1. Automaticity of Basic-Level Categorization Accounts for Labeling Effects in Visual Recognition Memory

    ERIC Educational Resources Information Center

    Richler, Jennifer J.; Gauthier, Isabel; Palmeri, Thomas J.

    2011-01-01

    Are there consequences of calling objects by their names? Lupyan (2008) suggested that overtly labeling objects impairs subsequent recognition memory because labeling shifts stored memory representations of objects toward the category prototype (representational shift hypothesis). In Experiment 1, we show that processing objects at the basic…

  2. The Memory State Heuristic: A Formal Model Based on Repeated Recognition Judgments

    ERIC Educational Resources Information Center

    Castela, Marta; Erdfelder, Edgar

    2017-01-01

    The recognition heuristic (RH) theory predicts that, in comparative judgment tasks, if one object is recognized and the other is not, the recognized one is chosen. The memory-state heuristic (MSH) extends the RH by assuming that choices are not affected by recognition judgments per se, but by the memory states underlying these judgments (i.e.,…

  3. Recognition memory in developmental prosopagnosia: electrophysiological evidence for abnormal routes to face recognition

    PubMed Central

    Burns, Edwin J.; Tree, Jeremy J.; Weidemann, Christoph T.

    2014-01-01

    Dual process models of recognition memory propose two distinct routes for recognizing a face: recollection and familiarity. Recollection is characterized by the remembering of some contextual detail from a previous encounter with a face whereas familiarity is the feeling of finding a face familiar without any contextual details. The Remember/Know (R/K) paradigm is thought to index the relative contributions of recollection and familiarity to recognition performance. Despite researchers measuring face recognition deficits in developmental prosopagnosia (DP) through a variety of methods, none have considered the distinct contributions of recollection and familiarity to recognition performance. The present study examined recognition memory for faces in eight individuals with DP and a group of controls using an R/K paradigm while recording electroencephalogram (EEG) data at the scalp. Those with DP were found to produce fewer correct “remember” responses and more false alarms than controls. EEG results showed that posterior “remember” old/new effects were delayed and restricted to the right posterior (RP) area in those with DP in comparison to the controls. A posterior “know” old/new effect commonly associated with familiarity for faces was only present in the controls whereas individuals with DP exhibited a frontal “know” old/new effect commonly associated with words, objects and pictures. These results suggest that individuals with DP do not utilize normal face-specific routes when making face recognition judgments but instead process faces using a pathway more commonly associated with objects. PMID:25177283

  4. Neuritin reverses deficits in murine novel object associative recognition memory caused by exposure to extremely low-frequency (50 Hz) electromagnetic fields

    PubMed Central

    Zhao, Qian-Ru; Lu, Jun-Mei; Yao, Jin-Jing; Zhang, Zheng-Yu; Ling, Chen; Mei, Yan-Ai

    2015-01-01

    Animal studies have shown that electromagnetic field exposure may interfere with the activity of brain cells, thereby generating behavioral and cognitive disturbances. However, the underlying mechanisms and possible preventions are still unknown. In this study, we used a mouse model to examine the effects of exposure to extremely low-frequency (50 Hz) electromagnetic fields (ELF MFs) on a recognition memory task and morphological changes of hippocampal neurons. The data showed that ELF MFs exposure (1 mT, 12 h/day) induced a time-dependent deficit in novel object associative recognition memory and also decreased hippocampal dendritic spine density. This effect was observed without corresponding changes in spontaneous locomotor activity and was transient, which has only been seen after exposing mice to ELF MFs for 7-10 days. The over-expression of hippocampal neuritin, an activity-dependent neurotrophic factor, using an adeno-associated virus (AAV) vector significantly increased the neuritin level and dendritic spine density. This increase was paralleled with ELF MFs exposure-induced deficits in recognition memory and reductions of dendritic spine density. Collectively, our study provides evidence for the association between ELF MFs exposure, impairment of recognition memory, and resulting changes in hippocampal dendritic spine density. Neuritin prevented this ELF MFs-exposure-induced effect by increasing the hippocampal spine density. PMID:26138388

  5. Nicotine Administration Attenuates Methamphetamine-Induced Novel Object Recognition Deficits

    PubMed Central

    Vieira-Brock, Paula L.; McFadden, Lisa M.; Nielsen, Shannon M.; Smith, Misty D.; Hanson, Glen R.

    2015-01-01

    Background: Previous studies have demonstrated that methamphetamine abuse leads to memory deficits and these are associated with relapse. Furthermore, extensive evidence indicates that nicotine prevents and/or improves memory deficits in different models of cognitive dysfunction and these nicotinic effects might be mediated by hippocampal or cortical nicotinic acetylcholine receptors. The present study investigated whether nicotine attenuates methamphetamine-induced novel object recognition deficits in rats and explored potential underlying mechanisms. Methods: Adolescent or adult male Sprague-Dawley rats received either nicotine water (10–75 μg/mL) or tap water for several weeks. Methamphetamine (4×7.5mg/kg/injection) or saline was administered either before or after chronic nicotine exposure. Novel object recognition was evaluated 6 days after methamphetamine or saline. Serotonin transporter function and density and α4β2 nicotinic acetylcholine receptor density were assessed on the following day. Results: Chronic nicotine intake via drinking water beginning during either adolescence or adulthood attenuated the novel object recognition deficits caused by a high-dose methamphetamine administration. Similarly, nicotine attenuated methamphetamine-induced deficits in novel object recognition when administered after methamphetamine treatment. However, nicotine did not attenuate the serotonergic deficits caused by methamphetamine in adults. Conversely, nicotine attenuated methamphetamine-induced deficits in α4β2 nicotinic acetylcholine receptor density in the hippocampal CA1 region. Furthermore, nicotine increased α4β2 nicotinic acetylcholine receptor density in the hippocampal CA3, dentate gyrus and perirhinal cortex in both saline- and methamphetamine-treated rats. Conclusions: Overall, these findings suggest that nicotine-induced increases in α4β2 nicotinic acetylcholine receptors in the hippocampus and perirhinal cortex might be one mechanism by which

  6. The Formation and Stability of Recognition Memory: What Happens Upon Recall?

    PubMed Central

    Davis, Sabrina; Renaudineau, Sophie; Poirier, Roseline; Poucet, Bruno; Save, Etienne; Laroche, Serge

    2010-01-01

    The idea that an already consolidated memory can become destabilized after recall and requires a process of reconsolidation to maintain it for subsequent use has gained much credence over the past decade. Experimental studies in rodents have shown pharmacological, genetic, or injurious manipulation at the time of memory reactivation can disrupt the already consolidated memory. Despite the force of experimental data showing this phenomenon, a number of questions have remained unanswered and no consensus has emerged as to the conditions under which a memory can be disrupted following reactivation. To date most rodent studies of reconsolidation are based on negatively reinforced memories, in particular fear-associated memories, while the storage and stability of forms of memory that do not rely on explicit reinforcement have been less often studied. In this review, we focus on recognition memory, a paradigm widely used in humans to probe declarative memory. We briefly outline recent advances in our understanding of the processes and brain circuits involved in recognition memory and review the evidence that recognition memory can undergo reconsolidation upon reactivation. We also review recent findings suggesting that some molecular mechanisms underlying consolidation of recognition memory are similarly recruited after recall to ensure memory stability, while others are more specifically engaged in consolidation or reconsolidation. Finally, we provide novel data on the role of Rsk2, a mental retardation gene, and of the transcription factor zif268/egr1 in reconsolidation of object-location memory, and offer suggestions as to how assessing the activation of certain molecular mechanisms following recall in recognition memory may help understand the relative importance of different aspects of remodeling or updating long-lasting memories. PMID:21120149

  7. Memantine and recognition memory: possible facilitation of its behavioral effects by the nitric oxide (NO) donor molsidomine.

    PubMed

    Pitsikas, Nikolaos; Sakellaridis, Nikolaos

    2007-10-01

    The effects of the non-competitive N-methyl-D-aspartate (NMDA) receptor antagonist memantine on recognition memory were investigated in the rat by using the object recognition task. In addition, a possible interaction between memantine and the nitric oxide (NO) donor molsidomine in antagonizing extinction of recognition memory was also evaluated utilizing the same behavioral procedure. In a first dose-response study, post-training administration of memantine (10 and 20, but not 3 mg/kg) antagonized recognition memory deficits in the rat, suggesting that memantine modulates storage and/or retrieval of information. In a subsequent study, combination of sub-threshold doses of memantine (3 mg/kg) and the NO donor molsidomine (1 mg/kg) counteracted delay-dependent impairments in the same task. Neither memantine (3 mg/kg) nor molsidomine (1 mg/kg) alone reduced object recognition performance deficits. The present findings indicate a) that memantine is involved in recognition memory and b) support a functional interaction between memantine and molsidomine on recognition memory mechanisms.

  8. Accurate forced-choice recognition without awareness of memory retrieval.

    PubMed

    Voss, Joel L; Baym, Carol L; Paller, Ken A

    2008-06-01

    Recognition confidence and the explicit awareness of memory retrieval commonly accompany accurate responding in recognition tests. Memory performance in recognition tests is widely assumed to measure explicit memory, but the generality of this assumption is questionable. Indeed, whether recognition in nonhumans is always supported by explicit memory is highly controversial. Here we identified circumstances wherein highly accurate recognition was unaccompanied by hallmark features of explicit memory. When memory for kaleidoscopes was tested using a two-alternative forced-choice recognition test with similar foils, recognition was enhanced by an attentional manipulation at encoding known to degrade explicit memory. Moreover, explicit recognition was most accurate when the awareness of retrieval was absent. These dissociations between accuracy and phenomenological features of explicit memory are consistent with the notion that correct responding resulted from experience-dependent enhancements of perceptual fluency with specific stimuli--the putative mechanism for perceptual priming effects in implicit memory tests. This mechanism may contribute to recognition performance in a variety of frequently-employed testing circumstances. Our results thus argue for a novel view of recognition, in that analyses of its neurocognitive foundations must take into account the potential for both (1) recognition mechanisms allied with implicit memory and (2) recognition mechanisms allied with explicit memory.

  9. Cholinergic manipulations bidirectionally regulate object memory destabilization

    PubMed Central

    Stiver, Mikaela L.; Jacklin, Derek L.; Mitchnick, Krista A.; Vicic, Nevena; Carlin, Justine; O'Hara, Matthew

    2015-01-01

    Consolidated memories can become destabilized and open to modification upon retrieval. Destabilization is most reliably prompted when novel information is present during memory reactivation. We hypothesized that the neurotransmitter acetylcholine (ACh) plays an important role in novelty-induced memory destabilization because of its established involvement in new learning. Accordingly, we investigated the effects of cholinergic manipulations in rats using an object recognition paradigm that requires reactivation novelty to destabilize object memories. The muscarinic receptor antagonist scopolamine, systemically or infused directly into the perirhinal cortex, blocked this novelty-induced memory destabilization. Conversely, systemic oxotremorine or carbachol, muscarinic receptor agonists, administered systemically or intraperirhinally, respectively, mimicked the destabilizing effect of novel information during reactivation. These bidirectional effects suggest a crucial influence of ACh on memory destabilization and the updating functions of reconsolidation. This is a hitherto unappreciated mnemonic role for ACh with implications for its potential involvement in cognitive flexibility and the dynamic process of long-term memory storage. PMID:25776038

  10. ERP correlates of object recognition memory in Down syndrome: Do active and passive tasks measure the same thing?

    PubMed

    Van Hoogmoed, A H; Nadel, L; Spanò, G; Edgin, J O

    2016-02-01

    Event related potentials (ERPs) can help to determine the cognitive and neural processes underlying memory functions and are often used to study populations with severe memory impairment. In healthy adults, memory is typically assessed with active tasks, while in patient studies passive memory paradigms are generally used. In this study we examined whether active and passive continuous object recognition tasks measure the same underlying memory process in typically developing (TD) adults and in individuals with Down syndrome (DS), a population with known hippocampal impairment. We further explored how ERPs in these tasks relate to behavioral measures of memory. Data-driven analysis techniques revealed large differences in old-new effects in the active versus passive task in TD adults, but no difference between these tasks in DS. The group with DS required additional processing in the active task in comparison to the TD group in two ways. First, the old-new effect started 150 ms later. Second, more repetitions were required to show the old-new effect. In the group with DS, performance on a behavioral measure of object-location memory was related to ERP measures across both tasks. In total, our results suggest that active and passive ERP memory measures do not differ in DS and likely reflect the use of implicit memory, but not explicit processing, on both tasks. Our findings highlight the need for a greater understanding of the comparison between active and passive ERP paradigms before they are inferred to measure similar functions across populations (e.g., infants or intellectual disability). Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. AMPA Receptor Endocytosis in Rat Perirhinal Cortex Underlies Retrieval of Object Memory

    ERIC Educational Resources Information Center

    Cazakoff, Brittany N.; Howland, John G.

    2011-01-01

    Mechanisms consistent with long-term depression in the perirhinal cortex (PRh) play a fundamental role in object recognition memory; however, whether AMPA receptor endocytosis is involved in distinct phases of recognition memory is not known. To address this question, we used local PRh infusions of the cell membrane-permeable Tat-GluA2[subscript…

  12. Exploratory behavior and recognition memory in medial septal electrolytic, neuro- and immunotoxic lesioned rats.

    PubMed

    Dashniani, M G; Burjanadze, M A; Naneishvili, T L; Chkhikvishvili, N C; Beselia, G V; Kruashvili, L B; Pochkhidze, N O; Chighladze, M R

    2015-01-01

    In the present study, the effect of the medial septal (MS) lesions on exploratory activity in the open field and the spatial and object recognition memory has been investigated. This experiment compares three types of MS lesions: electrolytic lesions that destroy cells and fibers of passage, neurotoxic - ibotenic acid lesions that spare fibers of passage but predominantly affect the septal noncholinergic neurons, and immunotoxin - 192 IgG-saporin infusions that only eliminate cholinergic neurons. The main results are: the MS electrolytic lesioned rats were impaired in habituating to the environment in the repeated spatial environment, but rats with immuno- or neurotoxic lesions of the MS did not differ from control ones; the MS electrolytic and ibotenic acid lesioned rats showed an increase in their exploratory activity to the objects and were impaired in habituating to the objects in the repeated spatial environment; rats with immunolesions of the MS did not differ from control rats; electrolytic lesions of the MS disrupt spatial recognition memory; rats with immuno- or neurotoxic lesions of the MS were normal in detecting spatial novelty; all of the MS-lesioned and control rats clearly reacted to the object novelty by exploring the new object more than familiar ones. Results observed across lesion techniques indicate that: (i) the deficits after nonselective damage of MS are limited to a subset of cognitive processes dependent on the hippocampus, (ii) MS is substantial for spatial, but not for object recognition memory - the object recognition memory can be supported outside the septohippocampal system; (iii) the selective loss of septohippocampal cholinergic or noncholinergic projections does not disrupt the function of the hippocampus to a sufficient extent to impair spatial recognition memory; (iv) there is dissociation between the two major components (cholinergic and noncholinergic) of the septohippocampal pathway in exploratory behavior assessed in the open

  13. Object, spatial and social recognition testing in a single test paradigm.

    PubMed

    Lian, Bin; Gao, Jun; Sui, Nan; Feng, Tingyong; Li, Ming

    2018-07-01

    Animals have the ability to process information about an object or a conspecific's physical features and location, and alter its behavior when such information is updated. In the laboratory, the object, spatial and social recognition are often studied in separate tasks, making them unsuitable to study the potential dissociations and interactions among various types of recognition memories. The present study introduced a single paradigm to detect the object and spatial recognition, and social recognition of a familiar and novel conspecific. Specifically, male and female Sprague-Dawley adult (>75 days old) or preadolescent (25-28 days old) rats were tested with two objects and one social partner in an open-field arena for four 10-min sessions with a 20-min inter-session interval. After the first sample session, a new object replaced one of the sampled objects in the second session, and the location of one of the old objects was changed in the third session. Finally, a new social partner was introduced in the fourth session and replaced the familiar one. Exploration time with each stimulus was recorded and measures for the three recognitions were calculated based on the discrimination ratio. Overall results show that adult and preadolescent male and female rats spent more time exploring the social partner than the objects, showing a clear preference for social stimulus over nonsocial one. They also did not differ in their abilities to discriminate a new object, a new location and a new social partner from a familiar one, and to recognize a familiar conspecific. Acute administration of MK-801 (a NMDA receptor antagonist, 0.025 and 0.10 mg/kg, i.p.) after the sample session dose-dependently reduced the total time spent on exploring the social partner and objects in the adult rats, and had a significantly larger effect in the females than in the males. MK-801 also dose-dependently increased motor activity. However, it did not alter the object, spatial and social

  14. Recognition of abstract objects via neural oscillators: interaction among topological organization, associative memory and gamma band synchronization.

    PubMed

    Ursino, Mauro; Magosso, Elisa; Cuppini, Cristiano

    2009-02-01

    Synchronization of neural activity in the gamma band is assumed to play a significant role not only in perceptual processing, but also in higher cognitive functions. Here, we propose a neural network of Wilson-Cowan oscillators to simulate recognition of abstract objects, each represented as a collection of four features. Features are ordered in topological maps of oscillators connected via excitatory lateral synapses, to implement a similarity principle. Experience on previous objects is stored in long-range synapses connecting the different topological maps, and trained via timing dependent Hebbian learning (previous knowledge principle). Finally, a downstream decision network detects the presence of a reliable object representation, when all features are oscillating in synchrony. Simulations performed giving various simultaneous objects to the network (from 1 to 4), with some missing and/or modified properties suggest that the network can reconstruct objects, and segment them from the other simultaneously present objects, even in case of deteriorated information, noise, and moderate correlation among the inputs (one common feature). The balance between sensitivity and specificity depends on the strength of the Hebbian learning. Achieving a correct reconstruction in all cases, however, requires ad hoc selection of the oscillation frequency. The model represents an attempt to investigate the interactions among topological maps, autoassociative memory, and gamma-band synchronization, for recognition of abstract objects.

  15. An Electrophysiological Signature of Unconscious Recognition Memory

    PubMed Central

    Voss, Joel L.; Paller, Ken A.

    2009-01-01

    Contradicting the common assumption that accurate recognition reflects explicit-memory processing, we describe evidence for recognition lacking two hallmark explicit-memory features: awareness of memory retrieval and facilitation by attentive encoding. Kaleidoscope images were encoded in conjunction with an attentional diversion and subsequently recognized more accurately than those encoded without diversion. Confidence in recognition was superior following attentive encoding, though recognition was remarkably accurate when people claimed to be unaware of memory retrieval. This “implicit recognition” was associated with frontal-occipital negative brain potentials at 200-400 ms post-stimulus-onset, which were spatially and temporally distinct from positive brain potentials corresponding to explicit recollection and familiarity. This dissociation between behavioral and electrophysiological characteristics of “implicit recognition” versus explicit recognition indicates that a neurocognitive mechanism with properties similar to those that produce implicit memory can be operative in standard recognition tests. People can accurately discriminate repeat stimuli from new stimuli without necessarily knowing it. PMID:19198606

  16. In search of a recognition memory engram

    PubMed Central

    Brown, M.W.; Banks, P.J.

    2015-01-01

    A large body of data from human and animal studies using psychological, recording, imaging, and lesion techniques indicates that recognition memory involves at least two separable processes: familiarity discrimination and recollection. Familiarity discrimination for individual visual stimuli seems to be effected by a system centred on the perirhinal cortex of the temporal lobe. The fundamental change that encodes prior occurrence within the perirhinal cortex is a reduction in the responses of neurones when a stimulus is repeated. Neuronal network modelling indicates that a system based on such a change in responsiveness is potentially highly efficient in information theoretic terms. A review is given of findings indicating that perirhinal cortex acts as a storage site for recognition memory of objects and that such storage depends upon processes producing synaptic weakening. PMID:25280908

  17. Recognition memory span in autopsy-confirmed Dementia with Lewy Bodies and Alzheimer's Disease.

    PubMed

    Salmon, David P; Heindel, William C; Hamilton, Joanne M; Vincent Filoteo, J; Cidambi, Varun; Hansen, Lawrence A; Masliah, Eliezer; Galasko, Douglas

    2015-08-01

    Evidence from patients with amnesia suggests that recognition memory span tasks engage both long-term memory (i.e., secondary memory) processes mediated by the diencephalic-medial temporal lobe memory system and working memory processes mediated by fronto-striatal systems. Thus, the recognition memory span task may be particularly effective for detecting memory deficits in disorders that disrupt both memory systems. The presence of unique pathology in fronto-striatal circuits in Dementia with Lewy Bodies (DLB) compared to AD suggests that performance on the recognition memory span task might be differentially affected in the two disorders even though they have quantitatively similar deficits in secondary memory. In the present study, patients with autopsy-confirmed DLB or AD, and Normal Control (NC) participants, were tested on separate recognition memory span tasks that required them to retain increasing amounts of verbal, spatial, or visual object (i.e., faces) information across trials. Results showed that recognition memory spans for verbal and spatial stimuli, but not face stimuli, were lower in patients with DLB than in those with AD, and more impaired relative to NC performance. This was despite similar deficits in the two patient groups on independent measures of secondary memory such as the total number of words recalled from long-term storage on the Buschke Selective Reminding Test. The disproportionate vulnerability of recognition memory span task performance in DLB compared to AD may be due to greater fronto-striatal involvement in DLB and a corresponding decrement in cooperative interaction between working memory and secondary memory processes. Assessment of recognition memory span may contribute to the ability to distinguish between DLB and AD relatively early in the course of disease. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Effects of ethanol, Δ(9)-tetrahydrocannabinol, or their combination on object recognition memory and object preference in adolescent and adult male rats.

    PubMed

    Swartzwelder, Nicholas A; Risher, M Louise; Abdelwahab, Sabri H; D'Abo, Anouska; Rezvani, Amir H; Levin, Edward D; Wilson, Wilkie A; Swartzwelder, H Scott; Acheson, Shawn K

    2012-10-03

    Recent advances have been made in our understanding of the deleterious effects of both ethanol and THC on adolescent behavior and brain development. However, very little is known about the combined effects of EtOH+THC during adolescence, a time in which these drugs are often used together. The purpose of this experiment was to: (1) determine whether EtOH and/or THC induced greater working memory impairment in adolescent than adult male rats using the novel object recognition (NOR) task and (2) determine whether the EtOH+THC combination would produce a more potent additive effect in adolescents than adults when compared to these drugs alone. NOR was performed with a 24h delay under each of the four drug conditions: vehicle; 1.5g/kg ethanol; 1.0mg/kg THC; and 1.5g/kg EtOH+1.0mg/kg THC, at 72h intervals. The results show that there was an age effect on working memory in NOR after the EtOH+THC challenge. Specifically, adolescent animals showed a preference for the familiar object whereas adults showed no preference for the novel or familiar object, the latter being characteristic of a classic working memory deficit. These effects were not dependent on changes in exploration across session, global activity across drug condition, or total object exploration. These novel findings clearly indicate that further understanding of this age-drug interaction is crucial to elucidating the influence that adolescent EtOH+THC use may have on repeated drug use and abuse later in life. Published by Elsevier Ireland Ltd.

  19. Social enrichment improves social recognition memory in male rats.

    PubMed

    Toyoshima, Michimasa; Yamada, Kazuo; Sugita, Manami; Ichitani, Yukio

    2018-05-01

    The social environment is thought to have a strong impact on cognitive functions. In the present study, we investigated whether social enrichment could affect rats' memory ability using the "Different Objects Task (DOT)," in which the levels of memory load could be modulated by changing the number of objects to be remembered. In addition, we applied the DOT to a social discrimination task using unfamiliar conspecific juveniles instead of objects. Animals were housed in one of the three different housing conditions after weaning [postnatal day (PND) 21]: social-separated (1 per cage), standard (3 per cage), or social-enriched (10 per cage) conditions. The object and social recognition tasks were conducted on PND 60. In the sample phase, the rats were allowed to explore a field in which 3, 4, or 5 different, unfamiliar stimuli (conspecific juveniles through a mesh or objects) were presented. In the test phase conducted after a 5-min delay, social-separated rats were able to discriminate the novel conspecific from the familiar ones only under the condition in which three different conspecifics were presented; social-enriched rats managed to recognize the novel conspecific even under the condition of five different conspecifics. On the other hand, in the object recognition task, both social-separated and social-enriched rats were able to discriminate the novel object from the familiar ones under the condition of five different objects. These results suggest that social enrichment can enhance social, but not object, memory span.

  20. Ciproxifan, an H3 receptor antagonist, improves short-term recognition memory impaired by isoflurane anesthesia.

    PubMed

    Ding, Fang; Zheng, Limin; Liu, Min; Chen, Rongfa; Leung, L Stan; Luo, Tao

    2016-08-01

    Exposure to volatile anesthetics has been reported to cause temporary or sustained impairments in learning and memory in pre-clinical studies. The selective antagonists of the histamine H3 receptors (H3R) are considered to be a promising group of novel therapeutic agents for the treatment of cognitive disorders. The aim of this study was to evaluate the effect of H3R antagonist ciproxifan on isoflurane-induced deficits in an object recognition task. Adult C57BL/6 J mice were exposed to isoflurane (1.3 %) or vehicle gas for 2 h. The object recognition tests were carried at 24 h or 7 days after exposure to anesthesia to exploit the tendency of mice to prefer exploring novel objects in an environment when a familiar object is also present. During the training phase, two identical objects were placed in two defined sites of the chamber. During the test phase, performed 1 or 24 h after the training phase, one of the objects was replaced by a new object with a different shape. The time spent exploring each object was recorded. A robust deficit in object recognition memory occurred 1 day after exposure to isoflurane anesthesia. Isoflurane-treated mice spent significantly less time exploring a novel object at 1 h but not at 24 h after the training phase. The deficit in short-term memory was reversed by the administration of ciproxifan 30 min before behavioral training. Isoflurane exposure induces reversible deficits in object recognition memory. Ciproxifan appears to be a potential therapeutic agent for improving post-anesthesia cognitive memory performance.

  1. Estradiol and luteinizing hormone regulate recognition memory following subchronic phencyclidine: Evidence for hippocampal GABA action.

    PubMed

    Riordan, Alexander J; Schaler, Ari W; Fried, Jenny; Paine, Tracie A; Thornton, Janice E

    2018-05-01

    The cognitive symptoms of schizophrenia are poorly understood and difficult to treat. Estrogens may mitigate these symptoms via unknown mechanisms. To examine these mechanisms, we tested whether increasing estradiol (E) or decreasing luteinizing hormone (LH) could mitigate short-term episodic memory loss in a phencyclidine (PCP) model of schizophrenia. We then assessed whether changes in cortical or hippocampal GABA may underlie these effects. Female rats were ovariectomized and injected subchronically with PCP. To modulate E and LH, animals received estradiol capsules or Antide injections. Short-term episodic memory was assessed using the novel object recognition task (NORT). Brain expression of GAD67 was analyzed via western blot, and parvalbumin-containing cells were counted using immunohistochemistry. Some rats received hippocampal infusions of a GABA A agonist, GABA A antagonist, or GAD inhibitor before behavioral testing. We found that PCP reduced hippocampal GAD67 and abolished recognition memory. Antide restored hippocampal GAD67 and rescued recognition memory in PCP-treated animals. Estradiol prevented PCP's amnesic effect in NORT but failed to restore hippocampal GAD67. PCP did not cause significant differences in number of parvalbumin-expressing cells or cortical expression of GAD67. Hippocampal infusions of a GABA A agonist restored recognition memory in PCP-treated rats. Blocking hippocampal GAD or GABA A receptors in ovx animals reproduced recognition memory loss similar to PCP and inhibited estradiol's protection of recognition memory in PCP-treated animals. In summary, decreasing LH or increasing E can lessen short-term episodic memory loss, as measured by novel object recognition, in a PCP model of schizophrenia. Alterations in hippocampal GABA may contribute to both PCP's effects on recognition memory and the hormones' ability to prevent or reverse them. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. The Doors and People Test: The Effect of Frontal Lobe Lesions on Recall and Recognition Memory Performance

    PubMed Central

    2016-01-01

    Objective: Memory deficits in patients with frontal lobe lesions are most apparent on free recall tasks that require the selection, initiation, and implementation of retrieval strategies. The effect of frontal lesions on recognition memory performance is less clear with some studies reporting recognition memory impairments but others not. The majority of these studies do not directly compare recall and recognition within the same group of frontal patients, assessing only recall or recognition memory performance. Other studies that do compare recall and recognition in the same frontal group do not consider recall or recognition tests that are comparable for difficulty. Recognition memory impairments may not be reported because recognition memory tasks are less demanding. Method: This study aimed to investigate recall and recognition impairments in the same group of 47 frontal patients and 78 healthy controls. The Doors and People Test was administered as a neuropsychological test of memory as it assesses both verbal and visual recall and recognition using subtests that are matched for difficulty. Results: Significant verbal and visual recall and recognition impairments were found in the frontal patients. Conclusion: These results demonstrate that when frontal patients are assessed on recall and recognition memory tests of comparable difficulty, memory impairments are found on both types of episodic memory test. PMID:26752123

  3. Recognition Memory Span in Autopsy-Confirmed Dementia with Lewy Bodies and Alzheimer’s Disease

    PubMed Central

    Salmon, David P.; Heindel, William C.; Hamilton, Joanne M.; Filoteo, J. Vincent; Cidambi, Varun; Hansen, Lawrence A.; Masliah, Eliezer; Galasko, Douglas

    2016-01-01

    Evidence from patients with amnesia suggests that recognition memory span tasks engage both long-term memory (i.e., secondary memory) processes mediated by the diencephalic-medial temporal lobe memory system and working memory processes mediated by fronto-striatal systems. Thus, the recognition memory span task may be particularly effective for detecting memory deficits in disorders that disrupt both memory systems. The presence of unique pathology in fronto-striatal circuits in Dementia with Lewy Bodies (DLB) compared to AD suggests that performance on the recognition memory span task might be differentially affected in the two disorders even though they have quantitatively similar deficits in secondary memory. In the present study, patients with autopsy-confirmed DLB or AD, and normal control (NC) participants, were tested on separate recognition memory span tasks that required them to retain increasing amounts of verbal, spatial, or visual object (i.e., faces) information across trials. Results showed that recognition memory spans for verbal and spatial stimuli, but not face stimuli, were lower in patients with DLB than in those with AD, and more impaired relative to NC performance. This was despite similar deficits in the two patient groups on independent measures of secondary memory such as the total number of words recalled from Long-Term Storage on the Buschke Selective Reminding Test. The disproportionate vulnerability of recognition memory span task performance in DLB compared to AD may be due to greater fronto-striatal involvement in DLB and a corresponding decrement in cooperative interaction between working memory and secondary memory processes. Assessment of recognition memory span may contribute to the ability to distinguish between DLB and AD relatively early in the course of disease. PMID:26184443

  4. Memory Asymmetry of Forward and Backward Associations in Recognition Tasks

    ERIC Educational Resources Information Center

    Yang, Jiongjiong; Zhao, Peng; Zhu, Zijian; Mecklinger, Axel; Fang, Zhiyong; Li, Han

    2013-01-01

    There is an intensive debate on whether memory for serial order is symmetric. The objective of this study was to explore whether associative asymmetry is modulated by memory task (recognition vs. cued recall). Participants were asked to memorize word triples (Experiments 1-2) or pairs (Experiments 3-6) during the study phase. They then recalled…

  5. Interactive object recognition assistance: an approach to recognition starting from target objects

    NASA Astrophysics Data System (ADS)

    Geisler, Juergen; Littfass, Michael

    1999-07-01

    Recognition of target objects in remotely sensed imagery required detailed knowledge about the target object domain as well as about mapping properties of the sensing system. The art of object recognition is to combine both worlds appropriately and to provide models of target appearance with respect to sensor characteristics. Common approaches to support interactive object recognition are either driven from the sensor point of view and address the problem of displaying images in a manner adequate to the sensing system. Or they focus on target objects and provide exhaustive encyclopedic information about this domain. Our paper discusses an approach to assist interactive object recognition based on knowledge about target objects and taking into account the significance of object features with respect to characteristics of the sensed imagery, e.g. spatial and spectral resolution. An `interactive recognition assistant' takes the image analyst through the interpretation process by indicating step-by-step the respectively most significant features of objects in an actual set of candidates. The significance of object features is expressed by pregenerated trees of significance, and by the dynamic computation of decision relevance for every feature at each step of the recognition process. In the context of this approach we discuss the question of modeling and storing the multisensorial/multispectral appearances of target objects and object classes as well as the problem of an adequate dynamic human-machine-interface that takes into account various mental models of human image interpretation.

  6. Sleep Enhances Explicit Recollection in Recognition Memory

    ERIC Educational Resources Information Center

    Drosopoulos, Spyridon; Wagner, Ullrich; Born, Jan

    2005-01-01

    Recognition memory is considered to be supported by two different memory processes, i.e., the explicit recollection of information about a previous event and an implicit process of recognition based on a contextual sense of familiarity. Both types of memory supposedly rely on distinct memory systems. Sleep is known to enhance the consolidation of…

  7. Dissociating electrophysiological correlates of subjective, objective, and correct memory in investigating the emotion-induced recognition bias.

    PubMed

    Windmann, Sabine; Hill, Holger

    2014-10-01

    Performance on tasks requiring discrimination of at least two stimuli can be viewed either from an objective perspective (referring to actual stimulus differences), or from a subjective perspective (corresponding to participant's responses). Using event-related potentials recorded during an old/new recognition memory test involving emotionally laden and neutral words studied either blockwise or randomly intermixed, we show here how the objective perspective (old versus new items) yields late effects of blockwise emotional item presentation at parietal sites that the subjective perspective fails to find, whereas the subjective perspective ("old" versus "new" responses) is more sensitive to early effects of emotion at anterior sites than the objective perspective. Our results demonstrate the potential advantage of dissociating the subjective and the objective perspective onto task performance (in addition to analyzing trials with correct responses), especially for investigations of illusions and information processing biases, in behavioral and cognitive neuroscience studies. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. A requirement for the immediate early gene zif268 in reconsolidation of recognition memory after retrieval.

    PubMed

    Bozon, Bruno; Davis, Sabrina; Laroche, Serge

    2003-11-13

    Recent research has revived interest in the possibility that previously consolidated memories need to reconsolidate when recalled to return to accessible long-term memory. Evidence suggests that both consolidation and reconsolidation of certain types of memory require protein synthesis, but whether similar molecular mechanisms are involved remains unclear. Here, we explore whether zif268, an activity-dependent inducible immediate early gene (IEG) required for consolidation of new memories, is also recruited for reconsolidation of recognition memory following reactivation. We show that when a consolidated memory for objects is recalled, zif268 mutant mice are impaired in further long-term but not short-term recognition memory. The impairment is specific to reactivation with the previously memorized objects in the relevant context, occurs in delayed recall, and does not recover over several days. These findings indicate that IEG-mediated transcriptional regulation in neurons is one common molecular mechanism for the storage of newly formed and reactivated recognition memories.

  9. Carbonic anhydrase activation enhances object recognition memory in mice through phosphorylation of the extracellular signal-regulated kinase in the cortex and the hippocampus.

    PubMed

    Canto de Souza, Lucas; Provensi, Gustavo; Vullo, Daniela; Carta, Fabrizio; Scozzafava, Andrea; Costa, Alessia; Schmidt, Scheila Daiane; Passani, Maria Beatrice; Supuran, Claudiu T; Blandina, Patrizio

    2017-05-15

    Rats injected with by d-phenylalanine, a carbonic anhydrase (CA) activator, enhanced spatial learning, whereas rats given acetazolamide, a CA inhibitor, exhibited impairments of fear memory consolidation. However, the related mechanisms are unclear. We investigated if CAs are involved in a non-spatial recognition memory task assessed using the object recognition test (ORT). Systemic administration of acetazolamide to male CD1 mice caused amnesia in the ORT and reduced CA activity in brain homogenates, while treatment with d-phenylalanine enhanced memory and increased CA activity. We provided also the first evidence that d-phenylalanine administration rapidly activated extracellular signal-regulated kinase (ERK) pathways, a critical step for memory formation, in the cortex and the hippocampus, two brain areas involved in memory processing. Effects elicited by d-phenylalanine were completely blunted by co-administration of acetazolamide, but not of 1-N-(4-sulfamoylphenyl-ethyl)-2,4,6-trimethylpyridinium perchlorate (C18), a CA inhibitor that, differently from acetazolamide, does not cross the blood brain barrier. Our results strongly suggest that brain but not peripheral CAs activation potentiates memory as a result of ERK pathway enhanced activation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Developmental Changes in Item and Source Memory: Evidence from an ERP Recognition Memory Study with Children, Adolescents, and Adults

    ERIC Educational Resources Information Center

    Sprondel, Volker; Kipp, Kerstin H.; Mecklinger, Axel

    2011-01-01

    Event-related potential (ERP) correlates of item and source memory were assessed in 18 children (7-8 years), 20 adolescents (13-14 years), and 20 adults (20-29 years) performing a continuous recognition memory task with object and nonobject stimuli. Memory performance increased with age and was particularly low for source memory in children. The…

  11. Recognition memory in tree shrew (Tupaia belangeri) after repeated familiarization sessions.

    PubMed

    Khani, Abbas; Rainer, Gregor

    2012-07-01

    Recognition memories are formed during perceptual experience and allow subsequent recognition of previously encountered objects as well as their distinction from novel objects. As a consequence, novel objects are generally explored longer than familiar objects by many species. This novelty preference has been documented in rodents using the novel object recognition (NOR) test, as well is in primates including humans using preferential looking time paradigms. Here, we examine novelty preference using the NOR task in tree shrew, a small animal species that is considered to be an intermediary between rodents and primates. Our paradigm consisted of three phases: arena familiarization, object familiarization sessions with two identical objects in the arena and finally a test session following a 24-h retention period with a familiar and a novel object in the arena. We employed two different object familiarization durations: one and three sessions on consecutive days. After three object familiarization sessions, tree shrews exhibited robust preference for novel objects on the test day. This was accompanied by significant reduction in familiar object exploration time, occurring largely between the first and second day of object familiarization. By contrast, tree shrews did not show a significant preference for the novel object after a one-session object familiarization. Nonetheless, they spent significantly less time exploring the familiar object on the test day compared to the object familiarization day, indicating that they did maintain a memory trace for the familiar object. Our study revealed different time courses for familiar object habituation and emergence of novelty preference, suggesting that novelty preference is dependent on well-consolidated memory of the competing familiar object. Taken together, our results demonstrate robust novelty preference of tree shrews, in general similarity to previous findings in rodents and primates. Copyright © 2012 Elsevier B

  12. In search of a recognition memory engram.

    PubMed

    Brown, M W; Banks, P J

    2015-03-01

    A large body of data from human and animal studies using psychological, recording, imaging, and lesion techniques indicates that recognition memory involves at least two separable processes: familiarity discrimination and recollection. Familiarity discrimination for individual visual stimuli seems to be effected by a system centred on the perirhinal cortex of the temporal lobe. The fundamental change that encodes prior occurrence within the perirhinal cortex is a reduction in the responses of neurones when a stimulus is repeated. Neuronal network modelling indicates that a system based on such a change in responsiveness is potentially highly efficient in information theoretic terms. A review is given of findings indicating that perirhinal cortex acts as a storage site for recognition memory of objects and that such storage depends upon processes producing synaptic weakening. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  13. Effects of grasp compatibility on long-term memory for objects.

    PubMed

    Canits, Ivonne; Pecher, Diane; Zeelenberg, René

    2018-01-01

    Previous studies have shown action potentiation during conceptual processing of manipulable objects. In four experiments, we investigated whether these motor actions also play a role in long-term memory. Participants categorized objects that afforded either a power grasp or a precision grasp as natural or artifact by grasping cylinders with either a power grasp or a precision grasp. In all experiments, responses were faster when the affordance of the object was compatible with the type of grasp response. However, subsequent free recall and recognition memory tasks revealed no better memory for object pictures and object names for which the grasp affordance was compatible with the grasp response. The present results therefore do not support the hypothesis that motor actions play a role in long-term memory. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Object-location memory in adults with autism spectrum disorder.

    PubMed

    Ring, Melanie; Gaigg, Sebastian B; Bowler, Dermot M

    2015-10-01

    This study tested implicit and explicit spatial relational memory in Autism Spectrum Disorder (ASD). Participants were asked to study pictures of rooms and pictures of daily objects for which locations were highlighted in the rooms. Participants were later tested for their memory of the object locations either by being asked to place objects back into their original locations or into new locations. Proportions of times when participants choose the previously studied locations for the objects irrespective of the instruction were used to derive indices of explicit and implicit memory [process-dissociation procedure, Jacoby, 1991, 1998]. In addition, participants performed object and location recognition and source memory tasks where they were asked about which locations belonged to the objects and which objects to the locations. The data revealed difficulty for ASD individuals in actively retrieving object locations (explicit memory) but not in subconsciously remembering them (implicit memory). These difficulties cannot be explained by difficulties in memory for objects or locations per se (i.e., the difficulty pertains to object-location relations). Together these observations lend further support to the idea that ASD is characterised by relatively circumscribed difficulties in relational rather than item-specific memory processes and show that these difficulties extend to the domain of spatial information. They also lend further support to the idea that memory difficulties in ASD can be reduced when support is provided at test. © 2015 International Society for Autism Research, Wiley Periodicals, Inc.

  15. What Three-Year-Olds Remember from Their Past: Long-Term Memory for Persons, Objects, and Actions

    ERIC Educational Resources Information Center

    Hirte, Monika; Graf, Frauke; Kim, Ziyon; Knopf, Monika

    2017-01-01

    From birth on, infants show long-term recognition memory for persons. Furthermore, infants from six months onwards are able to store and retrieve demonstrated actions over long-term intervals in deferred imitation tasks. Thus, information about the model demonstrating the object-related actions is stored and recognition memory for the objects as…

  16. Development of a sonar-based object recognition system

    NASA Astrophysics Data System (ADS)

    Ecemis, Mustafa Ihsan

    2001-02-01

    Sonars are used extensively in mobile robotics for obstacle detection, ranging and avoidance. However, these range-finding applications do not exploit the full range of information carried in sonar echoes. In addition, mobile robots need robust object recognition systems. Therefore, a simple and robust object recognition system using ultrasonic sensors may have a wide range of applications in robotics. This dissertation develops and analyzes an object recognition system that uses ultrasonic sensors of the type commonly found on mobile robots. Three principal experiments are used to test the sonar recognition system: object recognition at various distances, object recognition during unconstrained motion, and softness discrimination. The hardware setup, consisting of an inexpensive Polaroid sonar and a data acquisition board, is described first. The software for ultrasound signal generation, echo detection, data collection, and data processing is then presented. Next, the dissertation describes two methods to extract information from the echoes, one in the frequency domain and the other in the time domain. The system uses the fuzzy ARTMAP neural network to recognize objects on the basis of the information content of their echoes. In order to demonstrate that the performance of the system does not depend on the specific classification method being used, the K- Nearest Neighbors (KNN) Algorithm is also implemented. KNN yields a test accuracy similar to fuzzy ARTMAP in all experiments. Finally, the dissertation describes a method for extracting features from the envelope function in order to reduce the dimension of the input vector used by the classifiers. Decreasing the size of the input vectors reduces the memory requirements of the system and makes it run faster. It is shown that this method does not affect the performance of the system dramatically and is more appropriate for some tasks. The results of these experiments demonstrate that sonar can be used to develop

  17. Chronic treatment with sulbutiamine improves memory in an object recognition task and reduces some amnesic effects of dizocilpine in a spatial delayed-non-match-to-sample task.

    PubMed

    Bizot, Jean-Charles; Herpin, Alexandre; Pothion, Stéphanie; Pirot, Sylvain; Trovero, Fabrice; Ollat, Hélène

    2005-07-01

    The effect of a sulbutiamine chronic treatment on memory was studied in rats with a spatial delayed-non-match-to-sample (DNMTS) task in a radial maze and a two trial object recognition task. After completion of training in the DNMTS task, animals were subjected for 9 weeks to daily injections of either saline or sulbutiamine (12.5 or 25 mg/kg). Sulbutiamine did not modify memory in the DNMTS task but improved it in the object recognition task. Dizocilpine, impaired both acquisition and retention of the DNMTS task in the saline-treated group, but not in the two sulbutiamine-treated groups, suggesting that sulbutiamine may counteract the amnesia induced by a blockade of the N-methyl-D-aspartate glutamate receptors. Taken together, these results are in favor of a beneficial effect of sulbutiamine on working and episodic memory.

  18. Differential modulatory effects of cocaine on marmoset monkey recognition memory.

    PubMed

    Melamed, Jonathan L; de Jesus, Fernando M; Aquino, Jéssica; Vannuchi, Clarissa R S; Duarte, Renata B M; Maior, Rafael S; Tomaz, Carlos; Barros, Marilia

    2017-01-01

    Acute and repeated exposure to cocaine alters the cognitive performance of humans and animals. How each administration schedule affects the same memory task has yet to be properly established in nonhuman primates. Therefore, we assessed the performance of marmoset monkeys in a spontaneous object-location (SOL) recognition memory task after acute and repeated exposure to cocaine (COC; 5mg/kg, ip). Two identical neutral stimuli were explored on the 10-min sample trial, after which preferential exploration of the displaced vs the stationary object was analyzed on the 10-min test trial. For the acute treatment, cocaine was given immediately after the sample presentation, and spatial recognition was then tested after a 24-h interval. For the repeated exposure schedule, daily cocaine injections were given on 7 consecutive days. After a 7-day drug-free period, the SOL task was carried out with a 10-min intertrial interval. When given acutely postsample, COC improved the marmosets' recognition memory, whereas it had a detrimental effect after the repeated exposure. Thus, depending on the administration schedule, COC exerted opposing effects on the marmosets' ability to recognize spatial changes. This agrees with recent studies in rodents and the recognition impairment seen in human addicts. Further studies related to the effects of cocaine's acute×prior drug history on the same cognitive domain are warranted. © 2017 Elsevier B.V. All rights reserved.

  19. Paradoxical false memory for objects after brain damage.

    PubMed

    McTighe, Stephanie M; Cowell, Rosemary A; Winters, Boyer D; Bussey, Timothy J; Saksida, Lisa M

    2010-12-03

    Poor memory after brain damage is usually considered to be a result of information being lost or rendered inaccessible. It is assumed that such memory impairment must be due to the incorrect interpretation of previously encountered information as being novel. In object recognition memory experiments with rats, we found that memory impairment can take the opposite form: a tendency to treat novel experiences as familiar. This impairment could be rescued with the use of a visual-restriction procedure that reduces interference. Such a pattern of data can be explained in terms of a recent representational-hierarchical view of cognition.

  20. An object memory bias induced by communicative reference.

    PubMed

    Marno, Hanna; Davelaar, Eddy J; Csibra, Gergely

    2016-01-01

    In humans, a good proportion of knowledge, including knowledge about objects and object kinds, is acquired via social learning by direct communication from others. If communicative signals raise the expectation of social learning about objects, intrinsic (permanent) features that support object recognition are relevant to store into memory, while extrinsic (accidental) object properties can be ignored. We investigated this hypothesis by instructing participants to memorise shape-colour associations that constituted either an extrinsic object property (the colour of the box that contained the object, Experiment 1) or an intrinsic one (the colour of the object, Experiment 2). Compared to a non-communicative context, communicative presentation of the objects impaired participants' performance when they recalled extrinsic object properties, while their incidental memory of the intrinsic shape-colour associations was not affected. Communicative signals had no effect on performance when the task required the memorisation of intrinsic object properties. The negative effect of communicative reference on the memory of extrinsic properties was also confirmed in Experiment 3, where this property was object location. Such a memory bias suggests that referent objects in communication tend to be seen as representatives of their kind rather than as individuals. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Age-Related Differences in Recognition Memory for Items and Associations: Contribution of Individual Differences in Working Memory and Metamemory

    PubMed Central

    Bender, Andrew R.; Raz, Naftali

    2012-01-01

    Ability to form new associations between unrelated items is particularly sensitive to aging, but the reasons for such differential vulnerability are unclear. In this study, we examined the role of objective and subjective factors (working memory and beliefs about memory strategies) on differential relations of age with recognition of items and associations. Healthy adults (N = 100, age 21 to 79) studied word pairs, completed item and association recognition tests, and rated the effectiveness of shallow (e.g., repetition) and deep (e.g., imagery or sentence generation) encoding strategies. Advanced age was associated with reduced working memory (WM) capacity and poorer associative recognition. In addition, reduced WM capacity, beliefs in the utility of ineffective encoding strategies, and lack of endorsement of effective ones were independently associated with impaired associative memory. Thus, maladaptive beliefs about memory in conjunction with reduced cognitive resources account in part for differences in associative memory commonly attributed to aging. PMID:22251381

  2. Electrophysiological evidence for effects of color knowledge in object recognition.

    PubMed

    Lu, Aitao; Xu, Guiping; Jin, Hua; Mo, Lei; Zhang, Jijia; Zhang, John X

    2010-01-29

    Knowledge about the typical colors associated with familiar everyday objects (i.e., strawberries are red) is well-known to be represented in the conceptual semantic system. Evidence that such knowledge may also play a role in early perceptual processes for object recognition is scant. In the present ERP study, participants viewed a list of object pictures and detected infrequent stimulus repetitions. Results show that shortly after stimulus onset, ERP components indexing early perceptual processes, including N1, P2, and N2, differentiated between objects in their appropriate or congruent color from these objects in an inappropriate or incongruent color. Such congruence effect also occurred in N3 associated with semantic processing of pictures but not in N4 for domain-general semantic processing. Our results demonstrate a clear effect of color knowledge in early object recognition stages and support the following proposal-color as a surface property is stored in a multiple-memory system where pre-semantic perceptual and semantic conceptual representations interact during object recognition. (c) 2009 Elsevier Ireland Ltd. All rights reserved.

  3. Selective attention affects conceptual object priming and recognition: a study with young and older adults.

    PubMed

    Ballesteros, Soledad; Mayas, Julia

    2014-01-01

    In the present study, we investigated the effects of selective attention at encoding on conceptual object priming (Experiment 1) and old-new recognition memory (Experiment 2) tasks in young and older adults. The procedures of both experiments included encoding and memory test phases separated by a short delay. At encoding, the picture outlines of two familiar objects, one in blue and the other in green, were presented to the left and to the right of fixation. In Experiment 1, participants were instructed to attend to the picture outline of a certain color and to classify the object as natural or artificial. After a short delay, participants performed a natural/artificial speeded conceptual classification task with repeated attended, repeated unattended, and new pictures. In Experiment 2, participants at encoding memorized the attended pictures and classify them as natural or artificial. After the encoding phase, they performed an old-new recognition memory task. Consistent with previous findings with perceptual priming tasks, we found that conceptual object priming, like explicit memory, required attention at encoding. Significant priming was obtained in both age groups, but only for those pictures that were attended at encoding. Although older adults were slower than young adults, both groups showed facilitation for attended pictures. In line with previous studies, young adults had better recognition memory than older adults.

  4. Selective attention affects conceptual object priming and recognition: a study with young and older adults

    PubMed Central

    Ballesteros, Soledad; Mayas, Julia

    2015-01-01

    In the present study, we investigated the effects of selective attention at encoding on conceptual object priming (Experiment 1) and old–new recognition memory (Experiment 2) tasks in young and older adults. The procedures of both experiments included encoding and memory test phases separated by a short delay. At encoding, the picture outlines of two familiar objects, one in blue and the other in green, were presented to the left and to the right of fixation. In Experiment 1, participants were instructed to attend to the picture outline of a certain color and to classify the object as natural or artificial. After a short delay, participants performed a natural/artificial speeded conceptual classification task with repeated attended, repeated unattended, and new pictures. In Experiment 2, participants at encoding memorized the attended pictures and classify them as natural or artificial. After the encoding phase, they performed an old–new recognition memory task. Consistent with previous findings with perceptual priming tasks, we found that conceptual object priming, like explicit memory, required attention at encoding. Significant priming was obtained in both age groups, but only for those pictures that were attended at encoding. Although older adults were slower than young adults, both groups showed facilitation for attended pictures. In line with previous studies, young adults had better recognition memory than older adults. PMID:25628588

  5. Recognition Memory for Realistic Synthetic Faces

    PubMed Central

    Yotsumoto, Yuko; Kahana, Michael J.; Wilson, Hugh R.; Sekuler, Robert

    2006-01-01

    A series of experiments examined short-term recognition memory for trios of briefly-presented, synthetic human faces derived from three real human faces. The stimuli were graded series of faces, which differed by varying known amounts from the face of the average female. Faces based on each of the three real faces were transformed so as to lie along orthogonal axes in a 3-D face space. Experiment 1 showed that the synthetic faces' perceptual similarity stucture strongly influenced recognition memory. Results were fit by NEMo, a noisy exemplar model of perceptual recognition memory. The fits revealed that recognition memory was influenced both by the similarity of the probe to series items, and by the similarities among the series items themselves. Non-metric multi-dimensional scaling (MDS) showed that faces' perceptual representations largely preserved the 3-D space in which the face stimuli were arrayed. NEMo gave a better account of the results when similarity was defined as perceptual, MDS similarity rather than physical proximity of one face to another. Experiment 2 confirmed the importance of within-list homogeneity directly, without mediation of a model. We discuss the affinities and differences between visual memory for synthetic faces and memory for simpler stimuli. PMID:17948069

  6. Enhanced recognition memory following glycine transporter 1 deletion in forebrain neurons.

    PubMed

    Singer, Philipp; Boison, Detlev; Möhler, Hanns; Feldon, Joram; Yee, Benjamin K

    2007-10-01

    Selective deletion of glycine transporter 1 (GlyT1) in forebrain neurons enhances N-methyl-D-aspartate receptor (NMDAR)-dependent neurotransmission and facilitates associative learning. These effects are attributable to increases in extracellular glycine availability in forebrain neurons due to reduced glycine re-uptake. Using a forebrain- and neuron-specific GlyT1-knockout mouse line (CamKIIalphaCre; GlyT1tm1.2fl/fI), the authors investigated whether this molecular intervention can affect recognition memory. In a spontaneous object recognition memory test, enhanced preference for a novel object was demonstrated in mutant mice relative to littermate control subjects at a retention interval of 2 hr, but not at 2 min. Furthermore, mutants were responsive to a switch in the relative spatial positions of objects, whereas control subjects were not. These potential procognitive effects were demonstrated against a lack of difference in contextual novelty detection: Mutant and control subjects showed equivalent preference for a novel over a familiar context. Results therefore extend the possible range of potential promnesic effects of specific forebrain neuronal GlyT1 deletion from associative learning to recognition memory and further support the possibility that mnemonic functions can be enhanced by reducing GlyT1 function. (PsycINFO Database Record (c) 2007 APA, all rights reserved).

  7. Estrous cycle, pregnancy, and parity enhance performance of rats in object recognition or object placement tasks

    PubMed Central

    Paris, Jason J; Frye, Cheryl A

    2008-01-01

    Ovarian hormone elevations are associated with enhanced learning/memory. During behavioral estrus or pregnancy, progestins, such as progesterone (P4) and its metabolite 5α-pregnan-3α-ol-20-one (3α,5α-THP), are elevated due, in part, to corpora luteal and placental secretion. During ‘pseudopregnancy’, the induction of corpora luteal functioning results in a hormonal milieu analogous to pregnancy, which ceases after about 12 days, due to the lack of placental formation. Multiparity is also associated with enhanced learning/memory, perhaps due to prior steroid exposure during pregnancy. Given evidence that progestins and/or parity may influence cognition, we investigated how natural alterations in the progestin milieu influence cognitive performance. In Experiment 1, virgin rats (nulliparous) or rats with two prior pregnancies (multiparous) were assessed on the object placement and recognition tasks, when in high-estrogen/P4 (behavioral estrus) or low-estrogen/P4 (diestrus) phases of the estrous cycle. In Experiment 2, primiparous or multiparous rats were tested in the object placement and recognition tasks when not pregnant, pseudopregnant, or pregnant (between gestational days (GDs) 6 and 12). In Experiment 3, pregnant primiparous or multiparous rats were assessed daily in the object placement or recognition tasks. Females in natural states associated with higher endogenous progestins (behavioral estrus, pregnancy, multiparity) outperformed rats in low progestin states (diestrus, non-pregnancy, nulliparity) on the object placement and recognition tasks. In earlier pregnancy, multiparous, compared with primiparous, rats had a lower corticosterone, but higher estrogen levels, concomitant with better object placement performance. From GD 13 until post partum, primiparous rats had higher 3α,5α-THP levels and improved object placement performance compared with multiparous rats. PMID:18390689

  8. Higher-Order Neural Networks Applied to 2D and 3D Object Recognition

    NASA Technical Reports Server (NTRS)

    Spirkovska, Lilly; Reid, Max B.

    1994-01-01

    A Higher-Order Neural Network (HONN) can be designed to be invariant to geometric transformations such as scale, translation, and in-plane rotation. Invariances are built directly into the architecture of a HONN and do not need to be learned. Thus, for 2D object recognition, the network needs to be trained on just one view of each object class, not numerous scaled, translated, and rotated views. Because the 2D object recognition task is a component of the 3D object recognition task, built-in 2D invariance also decreases the size of the training set required for 3D object recognition. We present results for 2D object recognition both in simulation and within a robotic vision experiment and for 3D object recognition in simulation. We also compare our method to other approaches and show that HONNs have distinct advantages for position, scale, and rotation-invariant object recognition. The major drawback of HONNs is that the size of the input field is limited due to the memory required for the large number of interconnections in a fully connected network. We present partial connectivity strategies and a coarse-coding technique for overcoming this limitation and increasing the input field to that required by practical object recognition problems.

  9. Characterizing age-related decline of recognition memory and brain activation profile in mice.

    PubMed

    Belblidia, Hassina; Leger, Marianne; Abdelmalek, Abdelouadoud; Quiedeville, Anne; Calocer, Floriane; Boulouard, Michel; Jozet-Alves, Christelle; Freret, Thomas; Schumann-Bard, Pascale

    2018-06-01

    Episodic memory decline is one of the earlier deficits occurring during normal aging in humans. The question of spatial versus non-spatial sensitivity to age-related memory decline is of importance for a full understanding of these changes. Here, we characterized the effect of normal aging on both non-spatial (object) and spatial (object location) memory performances as well as on associated neuronal activation in mice. Novel-object (NOR) and object-location (OLR) recognition tests, respectively assessing the identity and spatial features of object memory, were examined at different ages. We show that memory performances in both tests were altered by aging as early as 15 months of age: NOR memory was partially impaired whereas OLR memory was found to be fully disrupted at 15 months of age. Brain activation profiles were assessed for both tests using immunohistochemical detection of c-Fos (neuronal activation marker) in 3and 15 month-old mice. Normal performances in NOR task by 3 month-old mice were associated to an activation of the hippocampus and a trend towards an activation in the perirhinal cortex, in a way that did significantly differ with 15 month-old mice. During OLR task, brain activation took place in the hippocampus in 3 month-old but not significantly in 15 month-old mice, which were fully impaired at this task. These differential alterations of the object- and object-location recognition memory may be linked to differential alteration of the neuronal networks supporting these tasks. Copyright © 2018 Elsevier Inc. All rights reserved.

  10. Binding neutral information to emotional contexts: Brain dynamics of long-term recognition memory.

    PubMed

    Ventura-Bort, Carlos; Löw, Andreas; Wendt, Julia; Moltó, Javier; Poy, Rosario; Dolcos, Florin; Hamm, Alfons O; Weymar, Mathias

    2016-04-01

    There is abundant evidence in memory research that emotional stimuli are better remembered than neutral stimuli. However, effects of an emotionally charged context on memory for associated neutral elements is also important, particularly in trauma and stress-related disorders, where strong memories are often activated by neutral cues due to their emotional associations. In the present study, we used event-related potentials (ERPs) to investigate long-term recognition memory (1-week delay) for neutral objects that had been paired with emotionally arousing or neutral scenes during encoding. Context effects were clearly evident in the ERPs: An early frontal ERP old/new difference (300-500 ms) was enhanced for objects encoded in unpleasant compared to pleasant and neutral contexts; and a late central-parietal old/new difference (400-700 ms) was observed for objects paired with both pleasant and unpleasant contexts but not for items paired with neutral backgrounds. Interestingly, objects encoded in emotional contexts (and novel objects) also prompted an enhanced frontal early (180-220 ms) positivity compared to objects paired with neutral scenes indicating early perceptual significance. The present data suggest that emotional--particularly unpleasant--backgrounds strengthen memory for items encountered within these contexts and engage automatic and explicit recognition processes. These results could help in understanding binding mechanisms involved in the activation of trauma-related memories by neutral cues.

  11. Selective verbal recognition memory impairments are associated with atrophy of the language network in non-semantic variants of primary progressive aphasia.

    PubMed

    Nilakantan, Aneesha S; Voss, Joel L; Weintraub, Sandra; Mesulam, M-Marsel; Rogalski, Emily J

    2017-06-01

    Primary progressive aphasia (PPA) is clinically defined by an initial loss of language function and preservation of other cognitive abilities, including episodic memory. While PPA primarily affects the left-lateralized perisylvian language network, some clinical neuropsychological tests suggest concurrent initial memory loss. The goal of this study was to test recognition memory of objects and words in the visual and auditory modality to separate language-processing impairments from retentive memory in PPA. Individuals with non-semantic PPA had longer reaction times and higher false alarms for auditory word stimuli compared to visual object stimuli. Moreover, false alarms for auditory word recognition memory were related to cortical thickness within the left inferior frontal gyrus and left temporal pole, while false alarms for visual object recognition memory was related to cortical thickness within the right-temporal pole. This pattern of results suggests that specific vulnerability in processing verbal stimuli can hinder episodic memory in PPA, and provides evidence for differential contributions of the left and right temporal poles in word and object recognition memory. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. A Pilot Study of a Test for Visual Recognition Memory in Adults with Moderate to Severe Intellectual Disability

    ERIC Educational Resources Information Center

    Pyo, Geunyeong; Ala, Tom; Kyrouac, Gregory A.; Verhulst, Steven J.

    2010-01-01

    Objective assessment of memory functioning is an important part of evaluation for Dementia of Alzheimer Type (DAT). The revised Picture Recognition Memory Test (r-PRMT) is a test for visual recognition memory to assess memory functioning of persons with intellectual disabilities (ID), specifically targeting moderate to severe ID. A pilot study was…

  13. Nobiletin improves emotional and novelty recognition memory but not spatial referential memory.

    PubMed

    Kang, Jiyun; Shin, Jung-Won; Kim, Yoo-Rim; Swanberg, Kelley M; Kim, Yooseung; Bae, Jae Ryong; Kim, Young Ki; Lee, Jinwon; Kim, Soo-Yeon; Sohn, Nak-Won; Maeng, Sungho

    2017-01-01

    How to maintain and enhance cognitive functions for both aged and young populations is a highly interesting subject. But candidate memory-enhancing reagents are tested almost exclusively on lesioned or aged animals. Also, there is insufficient information on the type of memory these reagents can improve. Working memory, located in the prefrontal cortex, manages short-term sensory information, but, by gaining significant relevance, this information is converted to long-term memory by hippocampal formation and/or amygdala, followed by tagging with space-time or emotional cues, respectively. Nobiletin is a product of citrus peel known for cognitive-enhancing effects in various pharmacological and neurodegenerative disease models, yet, it is not well studied in non-lesioned animals and the type of memory that nobiletin can improve remains unclear. In this study, 8-week-old male mice were tested using behavioral measurements for working, spatial referential, emotional and visual recognition memory after daily administration of nobiletin. While nobiletin did not induce any change of spontaneous activity in the open field test, freezing by fear conditioning and novel object recognition increased. However, the effectiveness of spatial navigation in the Y-maze and Morris water maze was not improved. These results mean that nobiletin can specifically improve memories of emotionally salient information associated with fear and novelty, but not of spatial information without emotional saliency. Accordingly, the use of nobiletin on normal subjects as a memory enhancer would be more effective on emotional types but may have limited value for the improvement of episodic memories.

  14. PKC-epsilon activation is required for recognition memory in the rat.

    PubMed

    Zisopoulou, Styliani; Asimaki, Olga; Leondaritis, George; Vasilaki, Anna; Sakellaridis, Nikos; Pitsikas, Nikolaos; Mangoura, Dimitra

    2013-09-15

    Activation of PKCɛ, an abundant and developmentally regulated PKC isoform in the brain, has been implicated in memory throughout life and across species. Yet, direct evidence for a mechanistic role for PKCɛ in memory is still lacking. Hence, we sought to evaluate this in rats, using short-term treatments with two PKCɛ-selective peptides, the inhibitory ɛV1-2 and the activating ψɛRACK, and the novel object recognition task (NORT). Our results show that the PKCɛ-selective activator ψɛRACK, did not have a significant effect on recognition memory. In the short time frames used, however, inhibition of PKCɛ activation with the peptide inhibitor ɛV1-2 significantly impaired recognition memory. Moreover, when we addressed at the molecular level the immediate proximal signalling events of PKCɛ activation in acutely dissected rat hippocampi, we found that ψɛRACK increased in a time-dependent manner phosphorylation of MARCKS and activation of Src, Raf, and finally ERK1/2, whereas ɛV1-2 inhibited all basal activity of this pathway. Taken together, these findings present the first direct evidence that PKCɛ activation is an essential molecular component of recognition memory and point toward the use of systemically administered PKCɛ-regulating peptides as memory study tools and putative therapeutic agents. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. On the dynamic nature of the engram: evidence for circuit-level reorganization of object memory traces following reactivation.

    PubMed

    Winters, Boyer D; Tucci, Mark C; Jacklin, Derek L; Reid, James M; Newsome, James

    2011-11-30

    Research has implicated the perirhinal cortex (PRh) in several aspects of object recognition memory. The specific role of the hippocampus (HPC) remains controversial, but its involvement in object recognition may pertain to processing contextual information in relation to objects rather than object representation per se. Here we investigated the roles of the PRh and HPC in object memory reconsolidation using the spontaneous object recognition task for rats. Intra-PRh infusions of the protein synthesis inhibitor anisomycin immediately following memory reactivation prevented object memory reconsolidation. Similar deficits were observed when a novel object or a salient contextual change was introduced during the reactivation phase. Intra-HPC infusions of anisomycin, however, blocked object memory reconsolidation only when a contextual change was introduced during reactivation. Moreover, disrupting functional interaction between the HPC and PRh by infusing anisomycin unilaterally into each structure in opposite hemispheres also impaired reconsolidation when reactivation was done in an altered context. These results show for the first time that the PRh is critical for reconsolidation of object memory traces and provide insight into the dynamic process of object memory storage; the selective requirement for hippocampal involvement following reactivation in an altered context suggests a substantial circuit level object trace reorganization whereby an initially PRh-dependent object memory becomes reliant on both the HPC and PRh and their interaction. Such trace reorganization may play a central role in reconsolidation-mediated memory updating and could represent an important aspect of lingering consolidation processes proposed to underlie long-term memory modulation and stabilization.

  16. Memory Asymmetry of Forward and Backward Associations in Recognition Tasks

    PubMed Central

    Yang, Jiongjiong; Zhu, Zijian; Mecklinger, Axel; Fang, Zhiyong; Li, Han

    2013-01-01

    There is an intensive debate on whether memory for serial order is symmetric. The objective of this study was to explore whether associative asymmetry is modulated by memory task (recognition vs. cued recall). Participants were asked to memorize word triples (Experiment 1–2) or pairs (Experiment 3–6) during the study phase. They then recalled the word by a cue during a cued recall task (Experiment 1–4), and judged whether the presented two words were in the same or in a different order compared to the study phase during a recognition task (Experiment 1–6). To control for perceptual matching between the study and test phase, participants were presented with vertical test pairs when they made directional judgment in Experiment 5. In Experiment 6, participants also made associative recognition judgments for word pairs presented at the same or the reversed position. The results showed that forward associations were recalled at similar levels as backward associations, and that the correlations between forward and backward associations were high in the cued recall tasks. On the other hand, the direction of forward associations was recognized more accurately (and more quickly) than backward associations, and their correlations were comparable to the control condition in the recognition tasks. This forward advantage was also obtained for the associative recognition task. Diminishing positional information did not change the pattern of associative asymmetry. These results suggest that associative asymmetry is modulated by cued recall and recognition manipulations, and that direction as a constituent part of a memory trace can facilitate associative memory. PMID:22924326

  17. The short and long term effects of docetaxel chemotherapy on rodent object recognition and spatial reference memory.

    PubMed

    Fardell, Joanna E; Vardy, Janette; Johnston, Ian N

    2013-10-17

    Previous animal studies have examined the potential for cytostatic drugs to induce learning and memory deficits in laboratory animals but, to date, there is no pre-clinical evidence that taxanes have the potential to cause cognitive impairment. Therefore our aim was to explore the short- and long-term cognitive effects of different dosing schedules of the taxane docetaxel (DTX) on laboratory rodents. Healthy male hooded Wistar rats were treated with DTX (6 mg/kg, 10mg/kg) or physiological saline (control), once a week for 3 weeks (Experiment 1) or once only (10mg/kg; Experiment 2). Cognitive function was assessed using the novel object recognition (NOR) task and spatial water maze (WM) task 1 to 3 weeks after treatment and again 4 months after treatment. Shortly after DTX treatment, rats perform poorly on NOR regardless of treatment regimen. Treatment with a single injection of 10mg/kg DTX does not appear to induce sustained deficits in object recognition or peripheral neuropathy. Overall these findings show that treatment with the taxane DTX in the absence of cancer and other anti-cancer treatments causes cognitive impairment in healthy rodents. Copyright © 2013 Elsevier Inc. All rights reserved.

  18. Sex-specific effects of Cacna1c haploinsufficiency on object recognition, spatial memory, and reversal learning capabilities in rats.

    PubMed

    Braun, Moria D; Kisko, Theresa M; Vecchia, Débora Dalla; Andreatini, Roberto; Schwarting, Rainer K W; Wöhr, Markus

    2018-05-23

    The CACNA1C gene is strongly implicated in the etiology of multiple major neuropsychiatric disorders, such as bipolar disorder, major depression, and schizophrenia, with cognitive deficits being a common feature. It is unclear, however, by which mechanisms CACNA1C variants advance the risk of developing neuropsychiatric disorders. This study set out to investigate cognitive functioning in a newly developed genetic Cacna1c rat model. Specifically, spatial and reversal learning, as well as object recognition memory were assessed in heterozygous Cacna1c +/- rats and compared to wildtype Cacna1c +/+ littermate controls in both sexes. Our results show that both Cacna1c +/+ and Cacna1c +/- animals were able to learn the rewarded arm configuration of a radial maze over the course of seven days. Both groups also showed reversal learning patterns indicative of intact abilities. In females, genotype differences were evident in the initial spatial learning phase, with Cacna1c +/- females showing hypo-activity and fewer mixed errors. In males, a difference was found during probe trials for both learning phases, with Cacna1c +/- rats displaying better distinction between previously baited and non-baited arms; and regarding cognitive flexibility in favor of the Cacna1c +/+ animals. All experimental groups proved to be sensitive to reward magnitude and fully able to distinguish between novel and familiar objects in the novel object recognition task. Taken together, these results indicate that Cacna1c haploinsufficiency has a minor, but positive impact on (spatial) memory functions in rats. Copyright © 2018 Elsevier Inc. All rights reserved.

  19. Two processes support visual recognition memory in rhesus monkeys.

    PubMed

    Guderian, Sebastian; Brigham, Danielle; Mishkin, Mortimer

    2011-11-29

    A large body of evidence in humans suggests that recognition memory can be supported by both recollection and familiarity. Recollection-based recognition is characterized by the retrieval of contextual information about the episode in which an item was previously encountered, whereas familiarity-based recognition is characterized instead by knowledge only that the item had been encountered previously in the absence of any context. To date, it is unknown whether monkeys rely on similar mnemonic processes to perform recognition memory tasks. Here, we present evidence from the analysis of receiver operating characteristics, suggesting that visual recognition memory in rhesus monkeys also can be supported by two separate processes and that these processes have features considered to be characteristic of recollection and familiarity. Thus, the present study provides converging evidence across species for a dual process model of recognition memory and opens up the possibility of studying the neural mechanisms of recognition memory in nonhuman primates on tasks that are highly similar to the ones used in humans.

  20. Incidental Memory of Younger and Older Adults for Objects Encountered in a Real World Context

    PubMed Central

    Qin, Xiaoyan; Bochsler, Tiana M.; Aizpurua, Alaitz; Cheong, Allen M. Y.; Koutstaal, Wilma; Legge, Gordon E.

    2014-01-01

    Effects of context on the perception of, and incidental memory for, real-world objects have predominantly been investigated in younger individuals, under conditions involving a single static viewpoint. We examined the effects of prior object context and object familiarity on both older and younger adults’ incidental memory for real objects encountered while they traversed a conference room. Recognition memory for context-typical and context-atypical objects was compared with a third group of unfamiliar objects that were not readily named and that had no strongly associated context. Both older and younger adults demonstrated a typicality effect, showing significantly lower 2-alternative-forced-choice recognition of context-typical than context-atypical objects; for these objects, the recognition of older adults either significantly exceeded, or numerically surpassed, that of younger adults. Testing-awareness elevated recognition but did not interact with age or with object type. Older adults showed significantly higher recognition for context-atypical objects than for unfamiliar objects that had no prior strongly associated context. The observation of a typicality effect in both age groups is consistent with preserved semantic schemata processing in aging. The incidental recognition advantage of older over younger adults for the context-typical and context-atypical objects may reflect aging-related differences in goal-related processing, with older adults under comparatively more novel circumstances being more likely to direct their attention to the external environment, or age-related differences in top-down effortful distraction regulation, with older individuals’ attention more readily captured by salient objects in the environment. Older adults’ reduced recognition of unfamiliar objects compared to context-atypical objects may reflect possible age differences in contextually driven expectancy violations. The latter finding underscores the theoretical and

  1. fMRI characterization of visual working memory recognition.

    PubMed

    Rahm, Benjamin; Kaiser, Jochen; Unterrainer, Josef M; Simon, Juliane; Bledowski, Christoph

    2014-04-15

    Encoding and maintenance of information in visual working memory have been extensively studied, highlighting the crucial and capacity-limiting role of fronto-parietal regions. In contrast, the neural basis of recognition in visual working memory has remained largely unspecified. Cognitive models suggest that recognition relies on a matching process that compares sensory information with the mental representations held in memory. To characterize the neural basis of recognition we varied both the need for recognition and the degree of similarity between the probe item and the memory contents, while independently manipulating memory load to produce load-related fronto-parietal activations. fMRI revealed a fractionation of working memory functions across four distributed networks. First, fronto-parietal regions were activated independent of the need for recognition. Second, anterior parts of load-related parietal regions contributed to recognition but their activations were independent of the difficulty of matching in terms of sample-probe similarity. These results argue against a key role of the fronto-parietal attention network in recognition. Rather the third group of regions including bilateral temporo-parietal junction, posterior cingulate cortex and superior frontal sulcus reflected demands on matching both in terms of sample-probe-similarity and the number of items to be compared. Also, fourth, bilateral motor regions and right superior parietal cortex showed higher activation when matching provided clear evidence for a decision. Together, the segregation between the well-known fronto-parietal activations attributed to attentional operations in working memory from those regions involved in matching supports the theoretical view of separable attentional and mnemonic contributions to working memory. Yet, the close theoretical and empirical correspondence to perceptual decision making may call for an explicit consideration of decision making mechanisms in

  2. Representations of Shape in Object Recognition and Long-Term Visual Memory

    DTIC Science & Technology

    1993-02-11

    in anything other than linguistic terms ( Biederman , 1987 , for example). STATUS 1. Viewpoint-Dependent Features in Object Representation Tarr and...is object- based orientation-independent representations sufficient for "basic-level" categorization ( Biederman , 1987 ; Corballis, 1988). Alternatively...space. REFERENCES Biederman , I. ( 1987 ). Recognition-by-components: A theory of human image understanding. Psychological Review, 94,115-147. Cooper, L

  3. Mapping parahippocampal systems for recognition and recency memory in the absence of the rat hippocampus

    PubMed Central

    Kinnavane, L; Amin, E; Horne, M; Aggleton, J P

    2014-01-01

    The present study examined immediate-early gene expression in the perirhinal cortex of rats with hippocampal lesions. The goal was to test those models of recognition memory which assume that the perirhinal cortex can function independently of the hippocampus. The c-fos gene was targeted, as its expression in the perirhinal cortex is strongly associated with recognition memory. Four groups of rats were examined. Rats with hippocampal lesions and their surgical controls were given either a recognition memory task (novel vs. familiar objects) or a relative recency task (objects with differing degrees of familiarity). Perirhinal Fos expression in the hippocampal-lesioned groups correlated with both recognition and recency performance. The hippocampal lesions, however, had no apparent effect on overall levels of perirhinal or entorhinal cortex c-fos expression in response to novel objects, with only restricted effects being seen in the recency condition. Network analyses showed that whereas the patterns of parahippocampal interactions were differentially affected by novel or familiar objects, these correlated networks were not altered by hippocampal lesions. Additional analyses in control rats revealed two modes of correlated medial temporal activation. Novel stimuli recruited the pathway from the lateral entorhinal cortex (cortical layer II or III) to hippocampal field CA3, and thence to CA1. Familiar stimuli recruited the direct pathway from the lateral entorhinal cortex (principally layer III) to CA1. The present findings not only reveal the independence from the hippocampus of some perirhinal systems associated with recognition memory, but also show how novel stimuli engage hippocampal subfields in qualitatively different ways from familiar stimuli. PMID:25264133

  4. Advances in the behavioural testing and network imaging of rodent recognition memory

    PubMed Central

    Kinnavane, Lisa; Albasser, Mathieu M.; Aggleton, John P.

    2015-01-01

    Research into object recognition memory has been galvanised by the introduction of spontaneous preference tests for rodents. The standard task, however, contains a number of inherent shortcomings that reduce its power. Particular issues include the problem that individual trials are time consuming, so limiting the total number of trials in any condition. In addition, the spontaneous nature of the behaviour and the variability between test objects add unwanted noise. To combat these issues, the ‘bow-tie maze’ was introduced. Although still based on the spontaneous preference of novel over familiar stimuli, the ability to give multiple trials within a session without handling the rodents, as well as using the same objects as both novel and familiar samples on different trials, overcomes key limitations in the standard task. Giving multiple trials within a single session also creates new opportunities for functional imaging of object recognition memory. A series of studies are described that examine the expression of the immediate-early gene, c-fos. Object recognition memory is associated with increases in perirhinal cortex and area Te2 c-fos activity. When rats explore novel objects the pathway from the perirhinal cortex to lateral entorhinal cortex, and then to the dentate gyrus and CA3, is engaged. In contrast, when familiar objects are explored the pathway from the perirhinal cortex to lateral entorhinal cortex, and then to CA1, takes precedence. The switch to the perforant pathway (novel stimuli) from the temporoammonic pathway (familiar stimuli) may assist the enhanced associative learning promoted by novel stimuli. PMID:25106740

  5. The progesterone-induced enhancement of object recognition memory consolidation involves activation of the extracellular signal-regulated kinase (ERK) and mammalian target of rapamycin (mTOR) pathways in the dorsal hippocampus

    PubMed Central

    Orr, Patrick T.; Rubin, Amanda J.; Fan, Lu; Kent, Brianne A.; Frick, Karyn M.

    2012-01-01

    Although much recent work has elucidated the biochemical mechanisms underlying the modulation of memory by 17β-estradiol, little is known about the signaling events through which progesterone (P) regulates memory. We recently demonstrated that immediate post-training infusion of P into the dorsal hippocampus enhances object recognition memory consolidation in young ovariectomized female mice (Orr et al., 2009). The goal of the present study was to identify the biochemical alterations that might underlie this mnemonic enhancement. We hypothesized that the P-induced enhancement of object recognition would be dependent on activation of the ERK and mTOR pathways. In young ovariectomized mice, we found that bilateral dorsal hippocampal infusion of P significantly increased levels of phospho-p42 ERK and the mTOR substrate S6K in the dorsal hippocampus 5 minutes after infusion. Phospho-p42 ERK levels were downregulated 15 minutes after infusion and returned to baseline 30 minutes after infusion, suggesting a biphasic effect of P on ERK activation. Dorsal hippocampal ERK and mTOR activation were necessary for P to facilitate memory consolidation, as suggested by the fact that inhibitors of both pathways infused into the dorsal hippocampus immediately after training blocked the P-induced enhancement of object recognition. Collectively, these data provide the first demonstration that the ability of P to enhance memory consolidation depends on the rapid activation of cell signaling and protein synthesis pathways in the dorsal hippocampus. PMID:22265866

  6. Examining ERP correlates of recognition memory: Evidence of accurate source recognition without recollection

    PubMed Central

    Addante, Richard, J.; Ranganath, Charan; Yonelinas, Andrew, P.

    2012-01-01

    Recollection is typically associated with high recognition confidence and accurate source memory. However, subjects sometimes make accurate source memory judgments even for items that are not confidently recognized, and it is not known whether these responses are based on recollection or some other memory process. In the current study, we measured event related potentials (ERPs) while subjects made item and source memory confidence judgments in order to determine whether recollection supported accurate source recognition responses for items that were not confidently recognized. In line with previous studies, we found that recognition memory was associated with two ERP effects: an early on-setting FN400 effect, and a later parietal old-new effect [Late Positive Component (LPC)], which have been associated with familiarity and recollection, respectively. The FN400 increased gradually with item recognition confidence, whereas the LPC was only observed for highly confident recognition responses. The LPC was also related to source accuracy, but only for items that had received a high confidence item recognition response; accurate source judgments to items that were less confidently recognized did not exhibit the typical ERP correlate of recollection or familiarity, but rather showed a late, broadly distributed negative ERP difference. The results indicate that accurate source judgments of episodic context can occur even when recollection fails. PMID:22548808

  7. Endomorphin-1 attenuates Aβ42 induced impairment of novel object and object location recognition tasks in mice.

    PubMed

    Zhang, Rui-san; Xu, Hong-jiao; Jiang, Jin-hong; Han, Ren-wen; Chang, Min; Peng, Ya-li; Wang, Yuan; Wang, Rui

    2015-12-10

    A growing body of evidence suggests that the agglomeration of amyloid-β (Aβ) may be a trigger for Alzheimer׳s disease (AD). Central infusion of Aβ42 can lead to memory impairment in mice. Inhibiting the aggregation of Aβ has been considered a therapeutic strategy for AD. Endomorphin-1 (EM-1), an endogenous agonist of μ-opioid receptors, has been shown to inhibit the aggregation of Aβ in vitro. In the present study, we investigated whether EM-1 could alleviate the memory-impairing effects of Aβ42 in mice using novel object recognition (NOR) and object location recognition (OLR) tasks. We showed that co-administration of EM-1 was able to ameliorate Aβ42-induced amnesia in the lateral ventricle and the hippocampus, and these effects could not be inhibited by naloxone, an antagonist of μ-opioid receptors. Infusion of EM-1 or naloxone separately into the lateral ventricle had no influence on memory in the tasks. These results suggested that EM-1 might be effective as a drug for AD preventative treatment by inhibiting Aβ aggregation directly as a molecular modifier. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Role of the anterior cingulate cortex in the retrieval of novel object recognition memory after a long delay

    PubMed Central

    Pezze, Marie A.; Marshall, Hayley J.; Fone, Kevin CF.; Cassaday, Helen J.

    2017-01-01

    Previous in vivo electrophysiological studies suggest that the anterior cingulate cortex (ACgx) is an important substrate of novel object recognition (NOR) memory. However, intervention studies are needed to confirm this conclusion and permanent lesion studies cannot distinguish effects on encoding and retrieval. The interval between encoding and retrieval tests may also be a critical determinant of the role of the ACgx. The current series of experiments used micro-infusion of the GABAA receptor agonist, muscimol, into ACgx to reversibly inactivate the area and distinguish its role in encoding and retrieval. ACgx infusions of muscimol, before encoding did not alter NOR assessed after a delay of 20 min or 24 h. However, when infused into the ACgx before retrieval muscimol impaired NOR assessed after a delay of 24 h, but not after a 20-min retention test. Together these findings suggest that the ACgx plays a time-dependent role in the retrieval, but not the encoding, of NOR memory, neuronal activation being required for the retrieval of remote (24 h old), but not recent (20 min old) visual memory. PMID:28620078

  9. Real Time Large Memory Optical Pattern Recognition.

    DTIC Science & Technology

    1984-06-01

    AD-Ri58 023 REAL TIME LARGE MEMORY OPTICAL PATTERN RECOGNITION(U) - h ARMY MISSILE COMMAND REDSTONE ARSENAL AL RESEARCH DIRECTORATE D A GREGORY JUN...TECHNICAL REPORT RR-84-9 Ln REAL TIME LARGE MEMORY OPTICAL PATTERN RECOGNITION Don A. Gregory Research Directorate US Army Missile Laboratory JUNE 1984 L...RR-84-9 , ___/_ _ __ _ __ _ __ _ __"__ _ 4. TITLE (and Subtitle) S. TYPE OF REPORT & PERIOD COVERED Real Time Large Memory Optical Pattern Technical

  10. Two processes support visual recognition memory in rhesus monkeys

    PubMed Central

    Guderian, Sebastian; Brigham, Danielle; Mishkin, Mortimer

    2011-01-01

    A large body of evidence in humans suggests that recognition memory can be supported by both recollection and familiarity. Recollection-based recognition is characterized by the retrieval of contextual information about the episode in which an item was previously encountered, whereas familiarity-based recognition is characterized instead by knowledge only that the item had been encountered previously in the absence of any context. To date, it is unknown whether monkeys rely on similar mnemonic processes to perform recognition memory tasks. Here, we present evidence from the analysis of receiver operating characteristics, suggesting that visual recognition memory in rhesus monkeys also can be supported by two separate processes and that these processes have features considered to be characteristic of recollection and familiarity. Thus, the present study provides converging evidence across species for a dual process model of recognition memory and opens up the possibility of studying the neural mechanisms of recognition memory in nonhuman primates on tasks that are highly similar to the ones used in humans. PMID:22084079

  11. Involvement of hippocampal NMDA receptors in encoding and consolidation, but not retrieval, processes of spontaneous object location memory in rats.

    PubMed

    Yamada, Kazuo; Arai, Misaki; Suenaga, Toshiko; Ichitani, Yukio

    2017-07-28

    The hippocampus is thought to be involved in object location recognition memory, yet the contribution of hippocampal NMDA receptors to the memory processes, such as encoding, retention and retrieval, is unknown. First, we confirmed that hippocampal infusion of a competitive NMDA receptor antagonist, AP5 (2-amino-5-phosphonopentanoic acid, 20-40nmol), impaired performance of spontaneous object location recognition test but not that of novel object recognition test in Wistar rats. Next, the effects of hippocampal AP5 treatment on each process of object location recognition memory were examined with three different injection times using a 120min delay-interposed test: 15min before the sample phase (Time I), immediately after the sample phase (Time II), and 15min before the test phase (Time III). The blockade of hippocampal NMDA receptors before and immediately after the sample phase, but not before the test phase, markedly impaired performance of object location recognition test, suggesting that hippocampal NMDA receptors play an important role in encoding and consolidation/retention, but not retrieval, of spontaneous object location memory. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Can corrective feedback improve recognition memory?

    PubMed

    Kantner, Justin; Lindsay, D Stephen

    2010-06-01

    An understanding of the effects of corrective feedback on recognition memory can inform both recognition theory and memory training programs, but few published studies have investigated the issue. Although the evidence to date suggests that feedback does not improve recognition accuracy, few studies have directly examined its effect on sensitivity, and fewer have created conditions that facilitate a feedback advantage by encouraging controlled processing at test. In Experiment 1, null effects of feedback were observed following both deep and shallow encoding of categorized study lists. In Experiment 2, feedback robustly influenced response bias by allowing participants to discern highly uneven base rates of old and new items, but sensitivity remained unaffected. In Experiment 3, a false-memory procedure, feedback failed to attenuate false recognition of critical lures. In Experiment 4, participants were unable to use feedback to learn a simple category rule separating old items from new items, despite the fact that feedback was of substantial benefit in a nearly identical categorization task. The recognition system, despite a documented ability to utilize controlled strategic or inferential decision-making processes, appears largely impenetrable to a benefit of corrective feedback.

  13. Short exposure to a diet rich in both fat and sugar or sugar alone impairs place, but not object recognition memory in rats.

    PubMed

    Beilharz, Jessica E; Maniam, Jayanthi; Morris, Margaret J

    2014-03-01

    High energy diets have been shown to impair cognition however, the rapidity of these effects, and the dietary component/s responsible are currently unclear. We conducted two experiments in rats to examine the effects of short-term exposure to a diet rich in sugar and fat or rich in sugar on object (perirhinal-dependent) and place (hippocampal-dependent) recognition memory, and the role of inflammatory mediators in these responses. In Experiment 1, rats fed a cafeteria style diet containing chow supplemented with lard, cakes, biscuits, and a 10% sucrose solution performed worse on the place, but not the object recognition task, than chow fed control rats when tested after 5, 11, and 20 days. In Experiment 2, rats fed the cafeteria style diet either with or without sucrose and rats fed chow supplemented with sucrose also performed worse on the place, but not the object recognition task when tested after 5, 11, and 20 days. Rats fed the cafeteria diets consumed five times more energy than control rats and exhibited increased plasma leptin, insulin and triglyceride concentrations; these were not affected in the sucrose only rats. Rats exposed to sucrose exhibited both increased hippocampal inflammation (TNF-α and IL-1β mRNA) and oxidative stress, as indicated by an upregulation of NRF1 mRNA compared to control rats. In contrast, these markers were not significantly elevated in rats that received the cafeteria diet without added sucrose. Hippocampal BDNF and neuritin mRNA were similar across all groups. These results show that relatively short exposures to diets rich in both fat and sugar or rich in sugar, impair hippocampal-dependent place recognition memory prior to the emergence of weight differences, and suggest a role for oxidative stress and neuroinflammation in this impairment. Crown Copyright © 2013. Published by Elsevier Inc. All rights reserved.

  14. The relationship between change detection and recognition of centrally attended objects in motion pictures.

    PubMed

    Angelone, Bonnie L; Levin, Daniel T; Simons, Daniel J

    2003-01-01

    Observers typically detect changes to central objects more readily than changes to marginal objects, but they sometimes miss changes to central, attended objects as well. However, even if observers do not report such changes, they may be able to recognize the changed object. In three experiments we explored change detection and recognition memory for several types of changes to central objects in motion pictures. Observers who failed to detect a change still performed at above chance levels on a recognition task in almost all conditions. In addition, observers who detected the change were no more accurate in their recognition than those who did not detect the change. Despite large differences in the detectability of changes across conditions, those observers who missed the change did not vary in their ability to recognize the changing object.

  15. Role of PFC during retrieval of recognition memory in rodents.

    PubMed

    Bekinschtein, Pedro; Weisstaub, Noelia

    2014-01-01

    One of the challenges for memory researches is the study of the neurobiology of episodic memory which is defined by the integration of all the different components of experiences that support the conscious recollection of events. The features of episodic memory includes a particular object or person ("what"), the context in which the experience took place ("where") and the particular time at which the event occurred ("when"). Although episodic memory has been mainly studied in humans, there are many studies that demonstrate these features in non-human animals. Here, we summarize a set of studies that employ different versions of recognition memory tasks in animals to study the role of the medial prefrontal cortex in episodic memory. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Transfer-appropriate processing in recognition memory: perceptual and conceptual effects on recognition memory depend on task demands.

    PubMed

    Parks, Colleen M

    2013-07-01

    Research examining the importance of surface-level information to familiarity in recognition memory tasks is mixed: Sometimes it affects recognition and sometimes it does not. One potential explanation of the inconsistent findings comes from the ideas of dual process theory of recognition and the transfer-appropriate processing framework, which suggest that the extent to which perceptual fluency matters on a recognition test depends in large part on the task demands. A test that recruits perceptual processing for discrimination should show greater perceptual effects and smaller conceptual effects than standard recognition, similar to the pattern of effects found in perceptual implicit memory tasks. This idea was tested in the current experiment by crossing a levels of processing manipulation with a modality manipulation on a series of recognition tests that ranged from conceptual (standard recognition) to very perceptually demanding (a speeded recognition test with degraded stimuli). Results showed that the levels of processing effect decreased and the effect of modality increased when tests were made perceptually demanding. These results support the idea that surface-level features influence performance on recognition tests when they are made salient by the task demands. PsycINFO Database Record (c) 2013 APA, all rights reserved.

  17. Recognition memory probes affect what is remembered in schizophrenia.

    PubMed

    Schwartz, Barbara L; Parker, Elizabeth S; Rosse, Richard B; Deutsch, Stephen I

    2009-05-15

    Cognitive psychology offers tools to localize the memory processes most vulnerable to disruption in schizophrenia and to identify how patients with schizophrenia best remember. In this research, we used the University of Southern California Repeatable Episodic Memory Test (USC-REMT; Parker, E.S., Landau, S.M., Whipple, S.C., Schwartz, B.L., 2004. Aging, recall, and recognition: A study on the sensitivity of the University of Southern California Repeatable Episodic Memory Test (USC-REMT). Journal of Clinical and Experimental Neuropsychology 26(3), 428-440.) to examine how two different recognition memory probes affect memory performance in patients with schizophrenia and matched controls. Patients with schizophrenia studied equivalent word lists and were tested by yes-no recognition and forced-choice recognition following identical encoding and storage conditions. Compared with controls, patients with schizophrenia were particularly impaired when tested by yes-no recognition relative to forced-choice recognition. Patients had greatest deficits on hits in yes-no recognition but did not exhibit elevated false alarms. The data point to the importance of retrieval processes in schizophrenia, and highlight the need for further research on ways to help patients with schizophrenia access what they have learned.

  18. Basic perceptual changes that alter meaning and neural correlates of recognition memory

    PubMed Central

    Gao, Chuanji; Hermiller, Molly S.; Voss, Joel L.; Guo, Chunyan

    2015-01-01

    It is difficult to pinpoint the border between perceptual and conceptual processing, despite their treatment as distinct entities in many studies of recognition memory. For instance, alteration of simple perceptual characteristics of a stimulus can radically change meaning, such as the color of bread changing from white to green. We sought to better understand the role of perceptual and conceptual processing in memory by identifying the effects of changing a basic perceptual feature (color) on behavioral and neural correlates of memory in circumstances when this change would be expected to either change the meaning of a stimulus or to have no effect on meaning (i.e., to influence conceptual processing or not). Abstract visual shapes (“squiggles”) were colorized during study and presented during test in either the same color or a different color. Those squiggles that subjects found to resemble meaningful objects supported behavioral measures of conceptual priming, whereas meaningless squiggles did not. Further, changing color from study to test had a selective effect on behavioral correlates of priming for meaningful squiggles, indicating that color change altered conceptual processing. During a recognition memory test, color change altered event-related brain potential (ERP) correlates of memory for meaningful squiggles but not for meaningless squiggles. Specifically, color change reduced the amplitude of frontally distributed N400 potentials (FN400), implying that these potentials indicated conceptual processing during recognition memory that was sensitive to color change. In contrast, color change had no effect on FN400 correlates of recognition for meaningless squiggles, which were overall smaller in amplitude than for meaningful squiggles (further indicating that these potentials signal conceptual processing during recognition). Thus, merely changing the color of abstract visual shapes can alter their meaning, changing behavioral and neural correlates of

  19. Pupil size changes during recognition memory.

    PubMed

    Otero, Samantha C; Weekes, Brendan S; Hutton, Samuel B

    2011-10-01

    Pupils dilate to a greater extent when participants view old compared to new items during recognition memory tests. We report three experiments investigating the cognitive processes associated with this pupil old/new effect. Using a remember/know procedure, we found that the effect occurred for old items that were both remembered and known at recognition, although it was attenuated for known compared to remembered items. In Experiment 2, the pupil old/new effect was observed when items were presented acoustically, suggesting the effect does not depend on low-level visual processes. The pupil old/new effect was also greater for items encoded under deep compared to shallow orienting instructions, suggesting it may reflect the strength of the underlying memory trace. Finally, the pupil old/new effect was also found when participants falsely recognized items as being old. We propose that pupils respond to a strength-of-memory signal and suggest that pupillometry provides a useful technique for exploring the underlying mechanisms of recognition memory. Copyright © 2011 Society for Psychophysiological Research.

  20. Transfer-Appropriate Processing in Recognition Memory: Perceptual and Conceptual Effects on Recognition Memory Depend on Task Demands

    ERIC Educational Resources Information Center

    Parks, Colleen M.

    2013-01-01

    Research examining the importance of surface-level information to familiarity in recognition memory tasks is mixed: Sometimes it affects recognition and sometimes it does not. One potential explanation of the inconsistent findings comes from the ideas of dual process theory of recognition and the transfer-appropriate processing framework, which…

  1. Amyloid beta 25-35 impairs reconsolidation of object recognition memory in rats and this effect is prevented by lithium carbonate.

    PubMed

    Álvarez-Ruíz, Yarummy; Carrillo-Mora, Paul

    2013-08-26

    Previous studies in transgenic mice models of Alzheimer's disease (AD) have demonstrated an age dependent memory reconsolidation failure, suggesting that this may be an additional mechanism that contributes to the memory impairment observed in AD. However, so far it is unknown whether this effect can be caused by exogenous administration of amyloid beta (Aβ). The purpose was to determine the effects of soluble Aβ 25-35 on reconsolidation of object recognition memory (ORM) in rats, and assess whether these effects can be prevented by lithium carbonate (LiCa). In this study, male Wistar rats were used and the following groups were formed (N=6-13): (a) control, given saline solution; (b) [NMDA antagonist] MK-801 (0.1 mg/kg); (c) LiCa (350 mg/kg); (d) Aβ 25-35 (100 μM) injected into both hippocampi; and (e) Aβ 25-35+LiCa. In all cases, treatments were administered with or without reactivation of memory. The results showed that soluble Aβ 25-35 produces ORM impairment similar to MK-801 when given shortly after memory reactivation, and this effect is prevented by prior administration of LiCa. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  2. Enhanced recognition memory in grapheme-color synaesthesia for different categories of visual stimuli.

    PubMed

    Ward, Jamie; Hovard, Peter; Jones, Alicia; Rothen, Nicolas

    2013-01-01

    Memory has been shown to be enhanced in grapheme-color synaesthesia, and this enhancement extends to certain visual stimuli (that don't induce synaesthesia) as well as stimuli comprised of graphemes (which do). Previous studies have used a variety of testing procedures to assess memory in synaesthesia (e.g., free recall, recognition, associative learning) making it hard to know the extent to which memory benefits are attributable to the stimulus properties themselves, the testing method, participant strategies, or some combination of these factors. In the first experiment, we use the same testing procedure (recognition memory) for a variety of stimuli (written words, non-words, scenes, and fractals) and also check which memorization strategies were used. We demonstrate that grapheme-color synaesthetes show enhanced memory across all these stimuli, but this is not found for a non-visual type of synaesthesia (lexical-gustatory). In the second experiment, the memory advantage for scenes is explored further by manipulating the properties of the old and new images (changing color, orientation, or object presence). Again, grapheme-color synaesthetes show a memory advantage for scenes across all manipulations. Although recognition memory is generally enhanced in this study, the largest effects were found for abstract visual images (fractals) and scenes for which color can be used to discriminate old/new status.

  3. Category Specificity in Normal Episodic Learning: Applications to Object Recognition and Category-Specific Agnosia

    ERIC Educational Resources Information Center

    Bukach, Cindy M.; Bub, Daniel N.; Masson, Michael E. J.; Lindsay, D. Stephen

    2004-01-01

    Studies of patients with category-specific agnosia (CSA) have given rise to multiple theories of object recognition, most of which assume the existence of a stable, abstract semantic memory system. We applied an episodic view of memory to questions raised by CSA in a series of studies examining normal observers' recall of newly learned attributes…

  4. Environmental enrichment improves novel object recognition and enhances agonistic behavior in male mice.

    PubMed

    Mesa-Gresa, Patricia; Pérez-Martinez, Asunción; Redolat, Rosa

    2013-01-01

    Environmental enrichment (EE) is an experimental paradigm in which rodents are housed in complex environments containing objects that provide stimulation, the effects of which are expected to improve the welfare of these subjects. EE has been shown to considerably improve learning and memory in rodents. However, knowledge about the effects of EE on social interaction is generally limited and rather controversial. Thus, our aim was to evaluate both novel object recognition and agonistic behavior in NMRI mice receiving EE, hypothesizing enhanced cognition and slightly enhanced agonistic interaction upon EE rearing. During a 4-week period half the mice (n = 16) were exposed to EE and the other half (n = 16) remained in a standard environment (SE). On PND 56-57, animals performed the object recognition test, in which recognition memory was measured using a discrimination index. The social interaction test consisted of an encounter between an experimental animal and a standard opponent. Results indicated that EE mice explored the new object for longer periods than SE animals (P < .05). During social encounters, EE mice devoted more time to sociability and agonistic behavior (P < .05) than their non-EE counterparts. In conclusion, EE has been shown to improve object recognition and increase agonistic behavior in adolescent/early adulthood mice. In the future we intend to extend this study on a longitudinal basis in order to assess in more depth the effect of EE and the consistency of the above-mentioned observations in NMRI mice. Copyright © 2013 Wiley Periodicals, Inc.

  5. Cotinine improves visual recognition memory and decreases cortical Tau phosphorylation in the Tg6799 mice.

    PubMed

    Grizzell, J Alex; Patel, Sagar; Barreto, George E; Echeverria, Valentina

    2017-08-01

    Alzheimer's disease (AD) is associated with the progressive aggregation of hyperphosphorylated forms of the microtubule associated protein Tau in the central nervous system. Cotinine, the main metabolite of nicotine, reduced working memory deficits, synaptic loss, and amyloid β peptide aggregation into oligomers and plaques as well as inhibited the cerebral Tau kinase, glycogen synthase 3β (GSK3β) in the transgenic (Tg)6799 (5XFAD) mice. In this study, the effect of cotinine on visual recognition memory and cortical Tau phosphorylation at the GSK3β sites Serine (Ser)-396/Ser-404 and phospho-CREB were investigated in the Tg6799 and non-transgenic (NT) littermate mice. Tg mice showed short-term visual recognition memory impairment in the novel object recognition test, and higher levels of Tau phosphorylation when compared to NT mice. Cotinine significantly improved visual recognition memory performance increased CREB phosphorylation and reduced cortical Tau phosphorylation. Potential mechanisms underlying theses beneficial effects are discussed. Copyright © 2017. Published by Elsevier Inc.

  6. Cognitive and neural mechanisms of decision biases in recognition memory.

    PubMed

    Windmann, Sabine; Urbach, Thomas P; Kutas, Marta

    2002-08-01

    In recognition memory tasks, stimuli can be classified as "old" either on the basis of accurate memory or a bias to respond "old", yet bias has received little attention in the cognitive neuroscience literature. Here we examined the pattern and timing of bias-related effects in event-related brain potentials (ERPs) to determine whether the bias is linked more to memory retrieval or to response verification processes. Participants were divided into a High Bias and a Low Bias group according to their bias to respond "old". These groups did not differ in recognition accuracy or in the ERP pattern to items that actually were old versus new (Objective Old/New Effect). However, when the old/new distinction was based on each subject's perspective, i.e. when items judged "old" were compared with those judged "new" (Subjective Old/New Effect), significant group differences were observed over prefrontal sites with a timing (300-500 ms poststimulus) more consistent with bias acting early on memory retrieval processes than on post-retrieval response verification processes. In the standard old/new effect (Hits vs Correct Rejections), these group differences were intermediate to those for the Objective and the Subjective comparisons, indicating that such comparisons are confounded by response bias. We propose that these biases are top-down controlled processes mediated by prefrontal cortex areas.

  7. The Anatomy of Non-conscious Recognition Memory.

    PubMed

    Rosenthal, Clive R; Soto, David

    2016-11-01

    Cortical regions as early as primary visual cortex have been implicated in recognition memory. Here, we outline the challenges that this presents for neurobiological accounts of recognition memory. We conclude that understanding the role of early visual cortex (EVC) in this process will require the use of protocols that mask stimuli from visual awareness. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Remember-Know and Source Memory Instructions Can Qualitatively Change Old-New Recognition Accuracy: The Modality-Match Effect in Recognition Memory

    ERIC Educational Resources Information Center

    Mulligan, Neil W.; Besken, Miri; Peterson, Daniel

    2010-01-01

    Remember-Know (RK) and source memory tasks were designed to elucidate processes underlying memory retrieval. As part of more complex judgments, both tests produce a measure of old-new recognition, which is typically treated as equivalent to that derived from a standard recognition task. The present study demonstrates, however, that recognition…

  9. Depletion of perineuronal nets enhances recognition memory and long-term depression in the perirhinal cortex

    PubMed Central

    Romberg, Carola; Yang, Sujeong; Melani, Riccardo; Andrews, Melissa R.; Horner, Alexa E.; Spillantini, Maria G.; Bussey, Timothy J.; Fawcett, James W.; Pizzorusso, Tommaso; Saksida, Lisa M.

    2013-01-01

    Perineuronal nets are extracellular matrix structures surrounding cortical neuronal cell bodies and proximal dendrites, and are involved in the control of brain plasticity and the closure of critical periods. Expression of the link protein Crtl1/Hapln1 in neurons has recently been identified as the key event triggering the formation of perineuronal nets. Here we show that the genetic attenuation of perineuronal nets in adult brain Crtl1 knockout mice enhances long term object recognition memory and facilitates long-term depression in the perirhinal cortex, a neural correlate of object recognition memory. Identical prolongation of memory follows localised digestion of perineuronal nets with chondroitinase ABC, an enzyme that degrades the chondroitin sulphate proteoglycans (CSPGs) components of PNNs. The memory-enhancing effect of chondroitinase ABC treatment attenuated over time, suggesting that regeneration of PNNs gradually restored control plasticity levels. Our findings indicate that perineuronal nets regulate both memory and experience-driven synaptic plasticity in adulthood. PMID:23595763

  10. Cognitive object recognition system (CORS)

    NASA Astrophysics Data System (ADS)

    Raju, Chaitanya; Varadarajan, Karthik Mahesh; Krishnamurthi, Niyant; Xu, Shuli; Biederman, Irving; Kelley, Troy

    2010-04-01

    We have developed a framework, Cognitive Object Recognition System (CORS), inspired by current neurocomputational models and psychophysical research in which multiple recognition algorithms (shape based geometric primitives, 'geons,' and non-geometric feature-based algorithms) are integrated to provide a comprehensive solution to object recognition and landmarking. Objects are defined as a combination of geons, corresponding to their simple parts, and the relations among the parts. However, those objects that are not easily decomposable into geons, such as bushes and trees, are recognized by CORS using "feature-based" algorithms. The unique interaction between these algorithms is a novel approach that combines the effectiveness of both algorithms and takes us closer to a generalized approach to object recognition. CORS allows recognition of objects through a larger range of poses using geometric primitives and performs well under heavy occlusion - about 35% of object surface is sufficient. Furthermore, geon composition of an object allows image understanding and reasoning even with novel objects. With reliable landmarking capability, the system improves vision-based robot navigation in GPS-denied environments. Feasibility of the CORS system was demonstrated with real stereo images captured from a Pioneer robot. The system can currently identify doors, door handles, staircases, trashcans and other relevant landmarks in the indoor environment.

  11. Effects of pre-experimental knowledge on recognition memory.

    PubMed

    Bird, Chris M; Davies, Rachel A; Ward, Jamie; Burgess, Neil

    2011-01-01

    The influence of pre-experimental autobiographical knowledge on recognition memory was investigated using as memoranda faces that were either personally known or unknown to the participant. Under a dual process theory, such knowledge boosted both recollection- and familiarity-based recognition judgements. Under an unequal variance signal detection model, pre-experimental knowledge increased both the variance and the separation of the target and foil memory strength distributions, boosting hits and correct rejections. Thus, pre-experimental knowledge has profound effects on the multiple, interacting processes that subserve recognition memory, and likely in the neural systems that underpin them.

  12. Achievement motivation and memory: achievement goals differentially influence immediate and delayed remember-know recognition memory.

    PubMed

    Murayama, Kou; Elliot, Andrew J

    2011-10-01

    Little research has been conducted on achievement motivation and memory and, more specifically, on achievement goals and memory. In the present research, the authors conducted two experiments designed to examine the influence of mastery-approach and performance-approach goals on immediate and delayed remember-know recognition memory. The experiments revealed differential effects for achievement goals over time: Performance-approach goals showed higher correct remember responding on an immediate recognition test, whereas mastery-approach goals showed higher correct remember responding on a delayed recognition test. Achievement goals had no influence on overall recognition memory and no consistent influence on know responding across experiments. These findings indicate that it is important to consider quality, not just quantity, in both motivation and memory, when studying relations between these constructs.

  13. Astroglial CB1 Receptors Determine Synaptic D-Serine Availability to Enable Recognition Memory.

    PubMed

    Robin, Laurie M; Oliveira da Cruz, José F; Langlais, Valentin C; Martin-Fernandez, Mario; Metna-Laurent, Mathilde; Busquets-Garcia, Arnau; Bellocchio, Luigi; Soria-Gomez, Edgar; Papouin, Thomas; Varilh, Marjorie; Sherwood, Mark W; Belluomo, Ilaria; Balcells, Georgina; Matias, Isabelle; Bosier, Barbara; Drago, Filippo; Van Eeckhaut, Ann; Smolders, Ilse; Georges, Francois; Araque, Alfonso; Panatier, Aude; Oliet, Stéphane H R; Marsicano, Giovanni

    2018-06-06

    Bidirectional communication between neurons and astrocytes shapes synaptic plasticity and behavior. D-serine is a necessary co-agonist of synaptic N-methyl-D-aspartate receptors (NMDARs), but the physiological factors regulating its impact on memory processes are scantly known. We show that astroglial CB 1 receptors are key determinants of object recognition memory by determining the availability of D-serine at hippocampal synapses. Mutant mice lacking CB 1 receptors from astroglial cells (GFAP-CB 1 -KO) displayed impaired object recognition memory and decreased in vivo and in vitro long-term potentiation (LTP) at CA3-CA1 hippocampal synapses. Activation of CB 1 receptors increased intracellular astroglial Ca 2+ levels and extracellular levels of D-serine in hippocampal slices. Accordingly, GFAP-CB 1 -KO displayed lower occupancy of the co-agonist binding site of synaptic hippocampal NMDARs. Finally, elevation of D-serine levels fully rescued LTP and memory impairments of GFAP-CB 1 -KO mice. These data reveal a novel mechanism of in vivo astroglial control of memory and synaptic plasticity via the D-serine-dependent control of NMDARs. Copyright © 2018 Elsevier Inc. All rights reserved.

  14. Emotional memory: No source memory without old-new recognition.

    PubMed

    Bell, Raoul; Mieth, Laura; Buchner, Axel

    2017-02-01

    Findings reported in the memory literature suggest that the emotional components of an encoding episode can be dissociated from nonemotional memory. In particular, it has been found that the previous association with threatening events can be retrieved in aversive conditioning even in the absence of item identification. In the present study, we test whether emotional source memory can be independent of item recognition. Participants saw pictures of snakes paired with threatening and nonthreatening context information (poisonousness or nonpoisonousness). In the source memory test, participants were required to remember whether a snake was associated with poisonousness or nonpoisonousness. A simple extension of a well-established multinomial source monitoring model was used to measure source memory for unrecognized items. By using this model, it was possible to assess directly whether participants were able to associate a previously seen snake with poisonousness or nonpoisonousness even if the snake itself was not recognized as having been presented during the experiment. In 3 experiments, emotional source memory was only found for recognized items. While source memory for recognized items differed between emotional and nonemotional information, source memory for unrecognized items was equally absent for emotional and nonemotional information. We conclude that emotional context information is bound to item representations and cannot be retrieved in the absence of item recognition. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  15. Neural correlates of auditory recognition memory in the primate dorsal temporal pole

    PubMed Central

    Ng, Chi-Wing; Plakke, Bethany

    2013-01-01

    Temporal pole (TP) cortex is associated with higher-order sensory perception and/or recognition memory, as human patients with damage in this region show impaired performance during some tasks requiring recognition memory (Olson et al. 2007). The underlying mechanisms of TP processing are largely based on examination of the visual nervous system in humans and monkeys, while little is known about neuronal activity patterns in the auditory portion of this region, dorsal TP (dTP; Poremba et al. 2003). The present study examines single-unit activity of dTP in rhesus monkeys performing a delayed matching-to-sample task utilizing auditory stimuli, wherein two sounds are determined to be the same or different. Neurons of dTP encode several task-relevant events during the delayed matching-to-sample task, and encoding of auditory cues in this region is associated with accurate recognition performance. Population activity in dTP shows a match suppression mechanism to identical, repeated sound stimuli similar to that observed in the visual object identification pathway located ventral to dTP (Desimone 1996; Nakamura and Kubota 1996). However, in contrast to sustained visual delay-related activity in nearby analogous regions, auditory delay-related activity in dTP is transient and limited. Neurons in dTP respond selectively to different sound stimuli and often change their sound response preferences between experimental contexts. Current findings suggest a significant role for dTP in auditory recognition memory similar in many respects to the visual nervous system, while delay memory firing patterns are not prominent, which may relate to monkeys' shorter forgetting thresholds for auditory vs. visual objects. PMID:24198324

  16. Pupil dilation during recognition memory: Isolating unexpected recognition from judgment uncertainty.

    PubMed

    Mill, Ravi D; O'Connor, Akira R; Dobbins, Ian G

    2016-09-01

    Optimally discriminating familiar from novel stimuli demands a decision-making process informed by prior expectations. Here we demonstrate that pupillary dilation (PD) responses during recognition memory decisions are modulated by expectations, and more specifically, that pupil dilation increases for unexpected compared to expected recognition. Furthermore, multi-level modeling demonstrated that the time course of the dilation during each individual trial contains separable early and late dilation components, with the early amplitude capturing unexpected recognition, and the later trailing slope reflecting general judgment uncertainty or effort. This is the first demonstration that the early dilation response during recognition is dependent upon observer expectations and that separate recognition expectation and judgment uncertainty components are present in the dilation time course of every trial. The findings provide novel insights into adaptive memory-linked orienting mechanisms as well as the general cognitive underpinnings of the pupillary index of autonomic nervous system activity. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Electrophysiological distinctions between recognition memory with and without awareness

    PubMed Central

    Ko, Philip C.; Duda, Bryant; Hussey, Erin P.; Ally, Brandon A.

    2013-01-01

    The influence of implicit memory representations on explicit recognition may help to explain cases of accurate recognition decisions made with high uncertainty. During a recognition task, implicit memory may enhance the fluency of a test item, biasing decision processes to endorse it as “old”. This model may help explain recognition-without-identification, a remarkable phenomenon in which participants make highly accurate recognition decisions despite the inability to identify the test item. The current study investigated whether recognition-without-identification for pictures elicits a similar pattern of neural activity as other types of accurate recognition decisions made with uncertainty. Further, this study also examined whether recognition-without-identification for pictures could be attained by the use of perceptual and conceptual information from memory. To accomplish this, participants studied pictures and then performed a recognition task under difficult viewing conditions while event-related potentials (ERPs) were recorded. Behavioral results showed that recognition was highly accurate even when test items could not be identified, demonstrating recognition-without identification. The behavioral performance also indicated that recognition-without-identification was mediated by both perceptual and conceptual information, independently of one another. The ERP results showed dramatically different memory related activity during the early 300 to 500 ms epoch for identified items that were studied compared to unidentified items that were studied. Similar to previous work highlighting accurate recognition without retrieval awareness, test items that were not identified, but correctly endorsed as “old,” elicited a negative posterior old/new effect (i.e., N300). In contrast, test items that were identified and correctly endorsed as “old,” elicited the classic positive frontal old/new effect (i.e., FN400). Importantly, both of these effects were

  18. Enhanced recognition memory in grapheme-color synaesthesia for different categories of visual stimuli

    PubMed Central

    Ward, Jamie; Hovard, Peter; Jones, Alicia; Rothen, Nicolas

    2013-01-01

    Memory has been shown to be enhanced in grapheme-color synaesthesia, and this enhancement extends to certain visual stimuli (that don't induce synaesthesia) as well as stimuli comprised of graphemes (which do). Previous studies have used a variety of testing procedures to assess memory in synaesthesia (e.g., free recall, recognition, associative learning) making it hard to know the extent to which memory benefits are attributable to the stimulus properties themselves, the testing method, participant strategies, or some combination of these factors. In the first experiment, we use the same testing procedure (recognition memory) for a variety of stimuli (written words, non-words, scenes, and fractals) and also check which memorization strategies were used. We demonstrate that grapheme-color synaesthetes show enhanced memory across all these stimuli, but this is not found for a non-visual type of synaesthesia (lexical-gustatory). In the second experiment, the memory advantage for scenes is explored further by manipulating the properties of the old and new images (changing color, orientation, or object presence). Again, grapheme-color synaesthetes show a memory advantage for scenes across all manipulations. Although recognition memory is generally enhanced in this study, the largest effects were found for abstract visual images (fractals) and scenes for which color can be used to discriminate old/new status. PMID:24187542

  19. Recognition memory strength is predicted by pupillary responses at encoding while fixation patterns distinguish recollection from familiarity.

    PubMed

    Kafkas, Alexandros; Montaldi, Daniela

    2011-10-01

    Thirty-five healthy participants incidentally encoded a set of man-made and natural object pictures, while their pupil response and eye movements were recorded. At retrieval, studied and new stimuli were rated as novel, familiar (strong, moderate, or weak), or recollected. We found that both pupil response and fixation patterns at encoding predict later recognition memory strength. The extent of pupillary response accompanying incidental encoding was found to be predictive of subsequent memory. In addition, the number of fixations was also predictive of later recognition memory strength, suggesting that the accumulation of greater visual detail, even for single objects, is critical for the creation of a strong memory. Moreover, fixation patterns at encoding distinguished between recollection and familiarity at retrieval, with more dispersed fixations predicting familiarity and more clustered fixations predicting recollection. These data reveal close links between the autonomic control of pupil responses and eye movement patterns on the one hand and memory encoding on the other. Moreover, the data illustrate quantitative as well as qualitative differences in the incidental visual processing of stimuli, which are differentially predictive of the strength and the kind of memory experienced at recognition.

  20. Size-Sensitive Perceptual Representations Underlie Visual and Haptic Object Recognition

    PubMed Central

    Craddock, Matt; Lawson, Rebecca

    2009-01-01

    A variety of similarities between visual and haptic object recognition suggests that the two modalities may share common representations. However, it is unclear whether such common representations preserve low-level perceptual features or whether transfer between vision and haptics is mediated by high-level, abstract representations. Two experiments used a sequential shape-matching task to examine the effects of size changes on unimodal and crossmodal visual and haptic object recognition. Participants felt or saw 3D plastic models of familiar objects. The two objects presented on a trial were either the same size or different sizes and were the same shape or different but similar shapes. Participants were told to ignore size changes and to match on shape alone. In Experiment 1, size changes on same-shape trials impaired performance similarly for both visual-to-visual and haptic-to-haptic shape matching. In Experiment 2, size changes impaired performance on both visual-to-haptic and haptic-to-visual shape matching and there was no interaction between the cost of size changes and direction of transfer. Together the unimodal and crossmodal matching results suggest that the same, size-specific perceptual representations underlie both visual and haptic object recognition, and indicate that crossmodal memory for objects must be at least partly based on common perceptual representations. PMID:19956685

  1. Activation of mitogen-activated protein kinase/extracellular signal-regulated kinase in hippocampal circuitry is required for consolidation and reconsolidation of recognition memory.

    PubMed

    Kelly, Aine; Laroche, Serge; Davis, Sabrina

    2003-06-15

    Consolidation and reconsolidation of long-term memory have been shown to be dependent on the synthesis of new proteins, but the specific molecular mechanisms underlying these events remain to be elucidated. The mitogen-activated protein kinase (MAPK) pathway can trigger genomic responses in neurons, leading to changes in protein synthesis, and several studies have identified its pivotal role in synaptic plasticity and long-term memory formation. In this study, we analyze the involvement of this pathway in the consolidation and reconsolidation of long-term recognition memory, using an object recognition task. We show that inhibition of the MAPK pathway by intracerebroventricular injection of the MEK [MAPK/extracellular signal-regulated kinase (ERK)] inhibitor UO126 blocks consolidation of object recognition memory but does not affect short-term memory. Brain regions of the entorhinal cortex-hippocampal circuitry were analyzed for ERK activation, and it was shown that consolidation of recognition memory was associated with increased phosphorylation of ERK in the dentate gyrus and entorhinal cortex, although total expression of ERK was unchanged. We also report that inhibition of the MAPK pathway blocks reconsolidation of recognition memory, and this was shown to be dependent on reactivation of the memory trace by brief reexposure to the objects. In addition, reconsolidation of memory was associated with an increase in the phosphorylation of ERK in entorhinal cortex and CA1. In summary, our data show that the MAPK kinase pathway is required for both consolidation and reconsolidation of long-term recognition memory, and that this is associated with hyperphosphorylation of ERK in different subregions of the entorhinal cortex-hippocampal circuitry.

  2. Relaxing decision criteria does not improve recognition memory in amnesic patients.

    PubMed

    Reber, P J; Squire, L R

    1999-05-01

    An important question about the organization of memory is whether information available in non-declarative memory can contribute to performance on tasks of declarative memory. Dorfman, Kihlstrom, Cork, and Misiaszek (1995) described a circumstance in which the phenomenon of priming might benefit recognition memory performance. They reported that patients receiving electroconvulsive therapy improved their recognition performance when they were encouraged to relax their criteria for endorsing test items as familiar. It was suggested that priming improved recognition by making information available about the familiarity of test items. In three experiments, we sought unsuccessfully to reproduce this phenomenon in amnesic patients. In Experiment 3, we reproduced the methods and procedure used by Dorfman et al. but still found no evidence for improved recognition memory following the manipulation of decision criteria. Although negative findings have their own limitations, our findings suggest that the phenomenon reported by Dorfman et al. does not generalize well. Our results agree with several recent findings that suggest that priming is independent of recognition memory and does not contribute to recognition memory scores.

  3. Amifostine ameliorates recognition memory defect in acute radiation syndrome caused by relatively low-dose of gamma radiation.

    PubMed

    Lee, Hae-June; Kim, Joong-Sun; Song, Myoung-Sub; Seo, Heung-Sik; Yang, Miyoung; Kim, Jong Choon; Jo, Sung-Kee; Shin, Taekyun; Moon, Changjong; Kim, Sung-Ho

    2010-03-01

    This study examined whether amifostine (WR-2721) could attenuate memory impairment and suppress hippocampal neurogenesis in adult mice with the relatively low-dose exposure of acute radiation syndrome (ARS). These were assessed using object recognition memory test, the terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling assay, and immunohistochemical markers of neurogenesis [Ki-67 and doublecortin (DCX)]. Amifostine treatment (214 mg/kg, i.p.) prior to irradiation significantly attenuated the recognition memory defect in ARS, and markedly blocked the apoptotic death and decrease of Ki-67- and DCX-positive cells in ARS. Therefore, amifostine may attenuate recognition memory defect in a relatively low-dose exposure of ARS in adult mice, possibly by inhibiting a detrimental effect of irradiation on hippocampal neurogenesis.

  4. Recognition Memory, Self-Other Source Memory, and Theory-of-Mind in Children with Autism Spectrum Disorder

    ERIC Educational Resources Information Center

    Lind, Sophie E.; Bowler, Dermot M.

    2009-01-01

    This study investigated semantic and episodic memory in autism spectrum disorder (ASD), using a task which assessed recognition and self-other source memory. Children with ASD showed undiminished recognition memory but significantly diminished source memory, relative to age- and verbal ability-matched comparison children. Both children with and…

  5. Central administration of angiotensin IV rapidly enhances novel object recognition among mice

    PubMed Central

    Paris, Jason J.; Eans, Shainnel O.; Mizrachi, Elisa; Reilley, Kate J.; Ganno, Michelle L.; McLaughlin, Jay P.

    2013-01-01

    Angiotensin IV (Val1-Tyr2-Ile3-His4-Pro5-Phe6) has demonstrated potential cognitive-enhancing effects. The present investigation assessed and characterized: (1) dose-dependency of angiotensin IV's cognitive enhancement in a C57BL/6J mouse model of novel object recognition, (2) the time-course for these effects, (3) the identity of residues in the hexapeptide important to these effects and (4) the necessity of actions at angiotensin IV receptors for pro-cognitive activity. Assessment of C57BL/6J mice in a novel object recognition task demonstrated that prior administration of angiotensin IV (0.1, 1.0, or 10.0, but not 0.01, nmol, i.c.v.) significantly enhanced novel object recognition in a dose-dependent manner. These effects were time dependent, with improved novel object recognition observed when angiotensin IV (0.1 nmol, i.c.v.) was administered 10 or 20, but not 30, min prior to the onset of the novel object recognition testing. An alanine scan of the angiotensin IV peptide revealed that replacement of the Val1, Ile3, His4, or Phe6 residues with Ala attenuated peptide-induced improvements in novel object recognition, whereas Tyr2 or Pro5 replacement did not significantly affect performance. Administration of the angiotensin IV receptor antagonist, divalinal-Ang IV (20 nmol, i.c.v.), reduced (but did not abolish) novel object recognition; however, this antagonist completely blocked the pro-cognitive effects of angiotensin IV (0.1 nmol, i.c.v.) in this task. Rotorod testing demonstrated no locomotor effects for any angiotensin IV or divalinal-Ang IV dose tested. These data demonstrate that angiotensin IV produces a rapid enhancement of associative learning and memory performance in a mouse model that was dependent on the angiotensin IV receptor. PMID:23416700

  6. Central administration of angiotensin IV rapidly enhances novel object recognition among mice.

    PubMed

    Paris, Jason J; Eans, Shainnel O; Mizrachi, Elisa; Reilley, Kate J; Ganno, Michelle L; McLaughlin, Jay P

    2013-07-01

    Angiotensin IV (Val(1)-Tyr(2)-Ile(3)-His(4)-Pro(5)-Phe(6)) has demonstrated potential cognitive-enhancing effects. The present investigation assessed and characterized: (1) dose-dependency of angiotensin IV's cognitive enhancement in a C57BL/6J mouse model of novel object recognition, (2) the time-course for these effects, (3) the identity of residues in the hexapeptide important to these effects and (4) the necessity of actions at angiotensin IV receptors for procognitive activity. Assessment of C57BL/6J mice in a novel object recognition task demonstrated that prior administration of angiotensin IV (0.1, 1.0, or 10.0, but not 0.01 nmol, i.c.v.) significantly enhanced novel object recognition in a dose-dependent manner. These effects were time dependent, with improved novel object recognition observed when angiotensin IV (0.1 nmol, i.c.v.) was administered 10 or 20, but not 30 min prior to the onset of the novel object recognition testing. An alanine scan of the angiotensin IV peptide revealed that replacement of the Val(1), Ile(3), His(4), or Phe(6) residues with Ala attenuated peptide-induced improvements in novel object recognition, whereas Tyr(2) or Pro(5) replacement did not significantly affect performance. Administration of the angiotensin IV receptor antagonist, divalinal-Ang IV (20 nmol, i.c.v.), reduced (but did not abolish) novel object recognition; however, this antagonist completely blocked the procognitive effects of angiotensin IV (0.1 nmol, i.c.v.) in this task. Rotorod testing demonstrated no locomotor effects with any angiotensin IV or divalinal-Ang IV dose tested. These data demonstrate that angiotensin IV produces a rapid enhancement of associative learning and memory performance in a mouse model that was dependent on the angiotensin IV receptor. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Neural Correlates of Individual Differences in Infant Visual Attention and Recognition Memory

    PubMed Central

    Reynolds, Greg D.; Guy, Maggie W.; Zhang, Dantong

    2010-01-01

    Past studies have identified individual differences in infant visual attention based upon peak look duration during initial exposure to a stimulus. Colombo and colleagues (e.g., Colombo & Mitchell, 1990) found that infants that demonstrate brief visual fixations (i.e., short lookers) during familiarization are more likely to demonstrate evidence of recognition memory during subsequent stimulus exposure than infants that demonstrate long visual fixations (i.e., long lookers). The current study utilized event-related potentials to examine possible neural mechanisms associated with individual differences in visual attention and recognition memory for 6- and 7.5-month-old infants. Short- and long-looking infants viewed images of familiar and novel objects during ERP testing. There was a stimulus type by looker type interaction at temporal and frontal electrodes on the late slow wave (LSW). Short lookers demonstrated a LSW that was significantly greater in amplitude in response to novel stimulus presentations. No significant differences in LSW amplitude were found based on stimulus type for long lookers. These results indicate deeper processing and recognition memory of the familiar stimulus for short lookers. PMID:21666833

  8. Loss of object recognition memory produced by extended access to methamphetamine self-administration is reversed by positive allosteric modulation of metabotropic glutamate receptor 5.

    PubMed

    Reichel, Carmela M; Schwendt, Marek; McGinty, Jacqueline F; Olive, M Foster; See, Ronald E

    2011-03-01

    Chronic methamphetamine (meth) abuse can lead to persisting cognitive deficits. Here, we utilized a long-access meth self-administration (SA) protocol to assess recognition memory and metabotropic glutamate receptor (mGluR) expression, and the possible reversal of cognitive impairments with the mGluR5 allosteric modulator, 3-cyano-N-(1,3-diphenyl-1H-pyrazol-5-yl) benzamide (CDPPB). Male, Long-Evans rats self-administered i.v. meth (0.02 mg/infusion) on an FR1 schedule of reinforcement or received yoked-saline infusions. After seven daily 1-h sessions, rats were switched to 6-h daily sessions for 14 days, and then underwent drug abstinence. Rats were tested for object recognition memory at 1 week after meth SA at 90 min and 24 h retention intervals. In a separate experiment, rats underwent the same protocol, but received either vehicle or CDPPB (30 mg/kg) after familiarization. Rats were killed on day 8 or 14 post-SA and brain tissue was obtained. Meth intake escalated over the extended access period. Additionally, meth-experienced rats showed deficits in both short- and long-term recognition memory, demonstrated by a lack of novel object exploration. The deficit at 90 min was reversed by CDPPB treatment. On day 8, meth intake during SA negatively correlated with mGluR expression in the perirhinal and prefrontal cortex, and mGluR5 receptor expression was decreased 14 days after discontinuation of meth. This effect was specific to mGluR5 levels in the perirhinal cortex, as no differences were identified in the hippocampus or in mGluR2/3 receptors. These results from a clinically-relevant animal model of addiction suggest that mGluR5 receptor modulation may be a potential treatment of cognitive dysfunction in meth addiction.

  9. Episodic Short-Term Recognition Requires Encoding into Visual Working Memory: Evidence from Probe Recognition after Letter Report

    PubMed Central

    Poth, Christian H.; Schneider, Werner X.

    2016-01-01

    Human vision is organized in discrete processing episodes (e.g., eye fixations or task-steps). Object information must be transmitted across episodes to enable episodic short-term recognition: recognizing whether a current object has been seen in a previous episode. We ask whether episodic short-term recognition presupposes that objects have been encoded into capacity-limited visual working memory (VWM), which retains visual information for report. Alternatively, it could rely on the activation of visual features or categories that occurs before encoding into VWM. We assessed the dependence of episodic short-term recognition on VWM by a new paradigm combining letter report and probe recognition. Participants viewed displays of 10 letters and reported as many as possible after a retention interval (whole report). Next, participants viewed a probe letter and indicated whether it had been one of the 10 letters (probe recognition). In Experiment 1, probe recognition was more accurate for letters that had been encoded into VWM (reported letters) compared with non-encoded letters (non-reported letters). Interestingly, those letters that participants reported in their whole report had been near to one another within the letter displays. This suggests that the encoding into VWM proceeded in a spatially clustered manner. In Experiment 2, participants reported only one of 10 letters (partial report) and probes either referred to this letter, to letters that had been near to it, or far from it. Probe recognition was more accurate for near than for far letters, although none of these letters had to be reported. These findings indicate that episodic short-term recognition is constrained to a small number of simultaneously presented objects that have been encoded into VWM. PMID:27713722

  10. Episodic Short-Term Recognition Requires Encoding into Visual Working Memory: Evidence from Probe Recognition after Letter Report.

    PubMed

    Poth, Christian H; Schneider, Werner X

    2016-01-01

    Human vision is organized in discrete processing episodes (e.g., eye fixations or task-steps). Object information must be transmitted across episodes to enable episodic short-term recognition: recognizing whether a current object has been seen in a previous episode. We ask whether episodic short-term recognition presupposes that objects have been encoded into capacity-limited visual working memory (VWM), which retains visual information for report. Alternatively, it could rely on the activation of visual features or categories that occurs before encoding into VWM. We assessed the dependence of episodic short-term recognition on VWM by a new paradigm combining letter report and probe recognition. Participants viewed displays of 10 letters and reported as many as possible after a retention interval (whole report). Next, participants viewed a probe letter and indicated whether it had been one of the 10 letters (probe recognition). In Experiment 1, probe recognition was more accurate for letters that had been encoded into VWM (reported letters) compared with non-encoded letters (non-reported letters). Interestingly, those letters that participants reported in their whole report had been near to one another within the letter displays. This suggests that the encoding into VWM proceeded in a spatially clustered manner. In Experiment 2, participants reported only one of 10 letters (partial report) and probes either referred to this letter, to letters that had been near to it, or far from it. Probe recognition was more accurate for near than for far letters, although none of these letters had to be reported. These findings indicate that episodic short-term recognition is constrained to a small number of simultaneously presented objects that have been encoded into VWM.

  11. Remembering the object you fear: brain potentials during recognition of spiders in spider-fearful individuals.

    PubMed

    Michalowski, Jaroslaw M; Weymar, Mathias; Hamm, Alfons O

    2014-01-01

    In the present study we investigated long-term memory for unpleasant, neutral and spider pictures in 15 spider-fearful and 15 non-fearful control individuals using behavioral and electrophysiological measures. During the initial (incidental) encoding, pictures were passively viewed in three separate blocks and were subsequently rated for valence and arousal. A recognition memory task was performed one week later in which old and new unpleasant, neutral and spider pictures were presented. Replicating previous results, we found enhanced memory performance and higher confidence ratings for unpleasant when compared to neutral materials in both animal fearful individuals and controls. When compared to controls high animal fearful individuals also showed a tendency towards better memory accuracy and significantly higher confidence during recognition of spider pictures, suggesting that memory of objects prompting specific fear is also facilitated in fearful individuals. In line, spider-fearful but not control participants responded with larger ERP positivity for correctly recognized old when compared to correctly rejected new spider pictures, thus showing the same effects in the neural signature of emotional memory for feared objects that were already discovered for other emotional materials. The increased fear memory for phobic materials observed in the present study in spider-fearful individuals might result in an enhanced fear response and reinforce negative beliefs aggravating anxiety symptomatology and hindering recovery.

  12. Recognition memory, self-other source memory, and theory-of-mind in children with autism spectrum disorder.

    PubMed

    Lind, Sophie E; Bowler, Dermot M

    2009-09-01

    This study investigated semantic and episodic memory in autism spectrum disorder (ASD), using a task which assessed recognition and self-other source memory. Children with ASD showed undiminished recognition memory but significantly diminished source memory, relative to age- and verbal ability-matched comparison children. Both children with and without ASD showed an "enactment effect", demonstrating significantly better recognition and source memory for self-performed actions than other-person-performed actions. Within the comparison group, theory-of-mind (ToM) task performance was significantly correlated with source memory, specifically for other-person-performed actions (after statistically controlling for verbal ability). Within the ASD group, ToM task performance was not significantly correlated with source memory (after controlling for verbal ability). Possible explanations for these relations between source memory and ToM are considered.

  13. An ERP study of recognition memory for concrete and abstract pictures in school-aged children

    PubMed Central

    Boucher, Olivier; Chouinard-Leclaire, Christine; Muckle, Gina; Westerlund, Alissa; Burden, Matthew J.; Jacobson, Sandra W.; Jacobson, Joseph L.

    2016-01-01

    Recognition memory for concrete, nameable pictures is typically faster and more accurate than for abstract pictures. A dual-coding account for these findings suggests that concrete pictures are processed into verbal and image codes, whereas abstract pictures are encoded in image codes only. Recognition memory relies on two successive and distinct processes, namely familiarity and recollection. Whether these two processes are similarly or differently affected by stimulus concreteness remains unknown. This study examined the effect of picture concreteness on visual recognition memory processes using event-related potentials (ERPs). In a sample of children involved in a longitudinal study, participants (N = 96; mean age = 11.3 years) were assessed on a continuous visual recognition memory task in which half the pictures were easily nameable, everyday concrete objects, and the other half were three-dimensional abstract, sculpture-like objects. Behavioral performance and ERP correlates of familiarity and recollection (respectively, the FN400 and P600 repetition effects) were measured. Behavioral results indicated faster and more accurate identification of concrete pictures as “new” or “old” (i.e., previously displayed) compared to abstract pictures. ERPs were characterised by a larger repetition effect, on the P600 amplitude, for concrete than for abstract images, suggesting a graded recollection process dependant on the type of material to be recollected. Topographic differences were observed within the FN400 latency interval, especially over anterior-inferior electrodes, with the repetition effect more pronounced and localized over the left hemisphere for concrete stimuli, potentially reflecting different neural processes underlying early processing of verbal/semantic and visual material in memory. PMID:27329352

  14. The Role of Recognition Memory in Anaphor Identification

    PubMed Central

    Dopkins, Stephen; Trinh Ngo, Catherine

    2007-01-01

    In studies of anaphor comprehension, the capacity for recognizing a noun in a sentence decreases following the resolution of a repeated-noun anaphor (Gernsbacher, 1989). In studies of recognition memory, the capacity for recognizing a noun in a scrambled sentence decreases following the recognition that another noun has occurred before in the scrambled sentence (Dopkins & Ngo, 2002). The results of the present study suggest that these two phenomena reflect the same recognition memory process. The results suggest further that this is not because participants in studies of anaphor comprehension ignore the discourse properties of the stimulus materials and treat them as lists of words upon which memory tests are to be given. These results suggest that recognition processes play a role in anaphor comprehension and that such processes are in part the means by which repeated-noun anaphors are identified as such. PMID:18163155

  15. [Influence of object material and inter-trial interval on novel object recognition test in mice].

    PubMed

    Li, Sheng-jian; Huang, Zhu-yan; Ye, Yi-lu; Yu, Yue-ping; Zhang, Wei-ping; Wei, Er-qing; Zhang, Qi

    2014-05-01

    To investigate the efficacy of novel object recognition (NOR) test in assessment of learning and memory ability in ICR mice in different experimental conditions. One hundred and thirty male ICR mice were randomly divided into 10 groups: 4 groups for different inter-trial intervals (ITI: 10 min, 90 min, 4 h, 24 h), 4 groups for different object materials (wood-wood, plastic-plastic, plastic-wood, wood-plastic) and 2 groups for repeated test (measured once a day or every 3 days, totally three times in each group). The locomotor tracks in the open field were recorded. The amount of time spent exploring the novel and familiar objects, the discrimination ratio (DR) and the discrimination index (DI) were analyzed. Compared with familiar object, DR and DI of novel object were both increased at ITI of 10 min and 90 min (P<0.01). Exploring time, DR and DI were greatly influenced by different object materials. DR and DI remained stable by using identical object material. NOR test could be done repeatedly in the same batch of mice. NOR test can be used to assess the learning and memory ability in mice at shorter ITI and with identical material. It can be done repeatedly.

  16. Rhinal and Dorsolateral Prefrontal Cortex Lesions Produce Selective Impairments in Object and Spatial Learning and Memory in Canines

    PubMed Central

    Christie, Lori-Ann; Saunders, Richard C.; Kowalska, Danuta, M.; MacKay, William A.; Head, Elizabeth; Cotman, Carl W.; Milgram, Norton W.

    2014-01-01

    To examine the effects of rhinal and dorsolateral prefrontal cortex lesions on object and spatial recognition memory in canines, we used a protocol in which both an object (delayed non-matching to sample, or DNMS) and a spatial (delayed non-matching to position or DNMP) recognition task were administered daily. The tasks used similar procedures such that only the type of stimulus information to be remembered differed. Rhinal cortex (RC) lesions produced a selective deficit on the DNMS task, both in retention of the task rules at short delays and in object recognition memory. By contrast, performance on the DNMP task remained intact at both short and long delay intervals in RC animals. Subjects who received dorsolateral prefrontal cortex (dlPFC) lesions were impaired on a spatial task at a short, 5-sec delay, suggesting disrupted retention of the general task rules, however, this impairment was transient; long-term spatial memory performance was unaffected in dlPFC subjects. The present results provide support for the involvement of the RC in object, but not visuospatial, processing and recognition memory, whereas the dlPFC appears to mediate retention of a non-matching rule. These findings support theories of functional specialization within the medial temporal lobe and frontal cortex and suggest that rhinal and dorsolateral prefrontal cortices in canines are functionally similar to analogous regions in other mammals. PMID:18792072

  17. Infant Visual Recognition Memory: Independent Contributions of Speed and Attention.

    ERIC Educational Resources Information Center

    Rose, Susan A.; Feldman, Judith F.; Jankowski, Jeffery J.

    2003-01-01

    Examined contributions of cognitive processing speed, short-term memory capacity, and attention to infant visual recognition memory. Found that infants who showed better attention and faster processing had better recognition memory. Contributions of attention and processing speed were independent of one another and similar at all ages studied--5,…

  18. The development of object recognition memory in rhesus macaques with neonatal lesions of the perirhinal cortex.

    PubMed

    Zeamer, Alyson; Richardson, Rebecca L; Weiss, Alison R; Bachevalier, Jocelyne

    2015-02-01

    To investigate the role of the perirhinal cortex on the development of recognition measured by the visual paired-comparison (VPC) task, infant monkeys with neonatal perirhinal lesions and sham-operated controls were tested at 1.5, 6, 18, and 48 months of age on the VPC task with color stimuli and intermixed delays of 10 s, 30 s, 60 s, and 120 s. Monkeys with neonatal perirhinal lesions showed an increase in novelty preference between 1.5 and 6 months of age similar to controls, although at these two ages, performance remained significantly poorer than that of control animals. With age, performance in animals with neonatal perirhinal lesions deteriorated as compared to that of controls. In contrast to the lack of novelty preference in monkeys with perirhinal lesions acquired in adulthood, novelty preference in the neonatally operated animals remained above chance at all delays and all ages. The data suggest that, although incidental recognition memory processes can be supported by the perirhinal cortex in early infancy, other temporal cortical areas may support these processes in the absence of a functional perirhinal cortex early in development. The neural substrates mediating incidental recognition memory processes appear to be more widespread in early infancy than in adulthood. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  19. Memory color of natural familiar objects: effects of surface texture and 3-D shape.

    PubMed

    Vurro, Milena; Ling, Yazhu; Hurlbert, Anya C

    2013-06-28

    Natural objects typically possess characteristic contours, chromatic surface textures, and three-dimensional shapes. These diagnostic features aid object recognition, as does memory color, the color most associated in memory with a particular object. Here we aim to determine whether polychromatic surface texture, 3-D shape, and contour diagnosticity improve memory color for familiar objects, separately and in combination. We use solid three-dimensional familiar objects rendered with their natural texture, which participants adjust in real time to match their memory color for the object. We analyze mean, accuracy, and precision of the memory color settings relative to the natural color of the objects under the same conditions. We find that in all conditions, memory colors deviate slightly but significantly in the same direction from the natural color. Surface polychromaticity, shape diagnosticity, and three dimensionality each improve memory color accuracy, relative to uniformly colored, generic, or two-dimensional shapes, respectively. Shape diagnosticity improves the precision of memory color also, and there is a trend for polychromaticity to do so as well. Differently from other studies, we find that the object contour alone also improves memory color. Thus, enhancing the naturalness of the stimulus, in terms of either surface or shape properties, enhances the accuracy and precision of memory color. The results support the hypothesis that memory color representations are polychromatic and are synergistically linked with diagnostic shape representations.

  20. Sources of interference in item and associative recognition memory.

    PubMed

    Osth, Adam F; Dennis, Simon

    2015-04-01

    A powerful theoretical framework for exploring recognition memory is the global matching framework, in which a cue's memory strength reflects the similarity of the retrieval cues being matched against the contents of memory simultaneously. Contributions at retrieval can be categorized as matches and mismatches to the item and context cues, including the self match (match on item and context), item noise (match on context, mismatch on item), context noise (match on item, mismatch on context), and background noise (mismatch on item and context). We present a model that directly parameterizes the matches and mismatches to the item and context cues, which enables estimation of the magnitude of each interference contribution (item noise, context noise, and background noise). The model was fit within a hierarchical Bayesian framework to 10 recognition memory datasets that use manipulations of strength, list length, list strength, word frequency, study-test delay, and stimulus class in item and associative recognition. Estimates of the model parameters revealed at most a small contribution of item noise that varies by stimulus class, with virtually no item noise for single words and scenes. Despite the unpopularity of background noise in recognition memory models, background noise estimates dominated at retrieval across nearly all stimulus classes with the exception of high frequency words, which exhibited equivalent levels of context noise and background noise. These parameter estimates suggest that the majority of interference in recognition memory stems from experiences acquired before the learning episode. (c) 2015 APA, all rights reserved).

  1. Optogenetic Stimulation of Prefrontal Glutamatergic Neurons Enhances Recognition Memory.

    PubMed

    Benn, Abigail; Barker, Gareth R I; Stuart, Sarah A; Roloff, Eva V L; Teschemacher, Anja G; Warburton, E Clea; Robinson, Emma S J

    2016-05-04

    Finding effective cognitive enhancers is a major health challenge; however, modulating glutamatergic neurotransmission has the potential to enhance performance in recognition memory tasks. Previous studies using glutamate receptor antagonists have revealed that the medial prefrontal cortex (mPFC) plays a central role in associative recognition memory. The present study investigates short-term recognition memory using optogenetics to target glutamatergic neurons within the rodent mPFC specifically. Selective stimulation of glutamatergic neurons during the online maintenance of information enhanced associative recognition memory in normal animals. This cognitive enhancing effect was replicated by local infusions of the AMPAkine CX516, but not CX546, which differ in their effects on EPSPs. This suggests that enhancing the amplitude, but not the duration, of excitatory synaptic currents improves memory performance. Increasing glutamate release through infusions of the mGluR7 presynaptic receptor antagonist MMPIP had no effect on performance. These results provide new mechanistic information that could guide the targeting of future cognitive enhancers. Our work suggests that improved associative-recognition memory can be achieved by enhancing endogenous glutamatergic neuronal activity selectively using an optogenetic approach. We build on these observations to recapitulate this effect using drug treatments that enhance the amplitude of EPSPs; however, drugs that alter the duration of the EPSP or increase glutamate release lack efficacy. This suggests that both neural and temporal specificity are needed to achieve cognitive enhancement. Copyright © 2016 Benn et al.

  2. From Chair to "Chair": A Representational Shift Account of Object Labeling Effects on Memory

    ERIC Educational Resources Information Center

    Lupyan, Gary

    2008-01-01

    What are the consequences of calling things by their names? Six experiments investigated how classifying familiar objects with basic-level names (chairs, tables, and lamps) affected recognition memory. Memory was found to be worse for items that were overtly classified with the category name--as reflected by lower hit rates--compared with items…

  3. Usage of semantic representations in recognition memory.

    PubMed

    Nishiyama, Ryoji; Hirano, Tetsuji; Ukita, Jun

    2017-11-01

    Meanings of words facilitate false acceptance as well as correct rejection of lures in recognition memory tests, depending on the experimental context. This suggests that semantic representations are both directly and indirectly (i.e., mediated by perceptual representations) used in remembering. Studies using memory conjunction errors (MCEs) paradigms, in which the lures consist of component parts of studied words, have reported semantic facilitation of rejection of the lures. However, attending to components of the lures could potentially cause this. Therefore, we investigated whether semantic overlap of lures facilitates MCEs using Japanese Kanji words in which a whole-word image is more concerned in reading. Experiments demonstrated semantic facilitation of MCEs in a delayed recognition test (Experiment 1), and in immediate recognition tests in which participants were prevented from using phonological or orthographic representations (Experiment 2), and the salient effect on individuals with high semantic memory capacities (Experiment 3). Additionally, analysis of the receiver operating characteristic suggested that this effect is attributed to familiarity-based memory judgement and phantom recollection. These findings indicate that semantic representations can be directly used in remembering, even when perceptual representations of studied words are available.

  4. Estradiol and ERβ agonists enhance recognition memory, and DPN, an ERβ agonist, alters brain monoamines

    PubMed Central

    Jacome, Luis F.; Gautreaux, Claris; Inagaki, Tomoko; Mohan, Govini; Alves, Stephen; Lubbers, Laura S.; Luine, Victoria

    2010-01-01

    Effects of estradiol benzoate (EB), ERα-selective agonist, propyl pyrazole triol (PPT) and ERβ-selective agonists, diarylpropionitrile (DPN) and Compound 19 (C-19) on memory were investigated in OVX rats using object recognition (OR) and placement (OP) memory tasks. Treatments were acute (behavior 4 h later) or sub chronic (daily injections for 2 days with behavior 48 h later). Objects were explored in sample trials (T1), and discrimination between sample (old) and new object/location in recognition trials (T2) was examined after 2–4 h inter-trial delays. Subjects treated sub chronically with EB, DPN, and C-19, but not PPT, discriminated between old and new objects and objects in old and new locations, suggesting that, at these doses and duration of treatments, estrogenic interactions with ERβ contributes to enhancements in recognition memory. Acute injections of DPN, but not PPT, immediately after T1, also enhanced discrimination for both tasks (C19 was not investigated). Effects of EB, DPN and PPT on anxiety and locomotion, measured on elevated plus maze and open field, did not appear to account for the mnemonic enhancements. Monoamines and metabolites were measured following DPN treatment in subjects that did not receive behavioral testing. DPN was associated with alterations in monoamines in several brain areas: indexed by the metabolite, 3-methoxy-4-hydroxyphenylglycol (MHPG), or the MHPG/norepinephrine (NE) ratio, NE activity was increased by 60–130% in the prefrontal cortex (PFC) and ventral hippocampus, and NE activity was decreased by 40–80% in the v. diagonal bands and CA1. Levels of the dopamine (DA) metabolite, homovanillic acid (HVA), increased 100% in the PFC and decreased by 50% in the dentate gyrus following DPN treatment. The metabolite of serotonin, 5-hydroxyindole acetic acid (5-HIAA), was increased in the PFC and CA3, by approximately 20%. No monoaminergic changes were noted in striatum or medial septum. Results suggest that ER

  5. Perirhinal Cortex Resolves Feature Ambiguity in Configural Object Recognition and Perceptual Oddity Tasks

    ERIC Educational Resources Information Center

    Bartko, Susan J.; Winters, Boyer D.; Cowell, Rosemary A.; Saksida, Lisa M.; Bussey, Timothy J.

    2007-01-01

    The perirhinal cortex (PRh) has a well-established role in object recognition memory. More recent studies suggest that PRh is also important for two-choice visual discrimination tasks. Specifically, it has been suggested that PRh contains conjunctive representations that help resolve feature ambiguity, which occurs when a task cannot easily be…

  6. Bayesian Analysis of Recognition Memory: The Case of the List-Length Effect

    ERIC Educational Resources Information Center

    Dennis, Simon; Lee, Michael D.; Kinnell, Angela

    2008-01-01

    Recognition memory experiments are an important source of empirical constraints for theories of memory. Unfortunately, standard methods for analyzing recognition memory data have problems that are often severe enough to prevent clear answers being obtained. A key example is whether longer lists lead to poorer recognition performance. The presence…

  7. Resilient memory for melodies: The number of intervening melodies does not influence novel melody recognition.

    PubMed

    Herff, Steffen A; Olsen, Kirk N; Dean, Roger T

    2018-05-01

    In many memory domains, a decrease in recognition performance between the first and second presentation of an object is observed as the number of intervening items increases. However, this effect is not universal. Within the auditory domain, this form of interference has been demonstrated in word and single-note recognition, but has yet to be substantiated using relatively complex musical material such as a melody. Indeed, it is becoming clear that music shows intriguing properties when it comes to memory. This study investigated how the number of intervening items influences memory for melodies. In Experiments 1, 2 and 3, one melody was presented per trial in a continuous recognition paradigm. After each melody, participants indicated whether they had heard the melody in the experiment before by responding "old" or "new." In Experiment 4, participants rated perceived familiarity for every melody without being told that melodies reoccur. In four experiments using two corpora of music, two different memory tasks, transposed and untransposed melodies and up to 195 intervening melodies, no sign of a disruptive effect from the number of intervening melodies beyond the first was observed. We propose a new "regenerative multiple representations" conjecture to explain why intervening items increase interference in recognition memory for most domains but not music. This conjecture makes several testable predictions and has the potential to strengthen our understanding of domain specificity in human memory, while moving one step closer to explaining the "paradox" that is memory for melody.

  8. ERP Correlates of Recognition Memory in Autism Spectrum Disorder

    ERIC Educational Resources Information Center

    Massand, Esha; Bowler, Dermot M.; Mottron, Laurent; Hosein, Anthony; Jemel, Boutheina

    2013-01-01

    Recognition memory in autism spectrum disorder (ASD) tends to be undiminished compared to that of typically developing (TD) individuals (Bowler et al. 2007), but it is still unknown whether memory in ASD relies on qualitatively similar or different neurophysiology. We sought to explore the neural activity underlying recognition by employing the…

  9. Cyclic GMP-mediated memory enhancement in the object recognition test by inhibitors of phosphodiesterase-2 in mice.

    PubMed

    Lueptow, Lindsay M; Zhan, Chang-Guo; O'Donnell, James M

    2016-02-01

    Cyclic nucleotide phosphodiesterase-2 (PDE2) is a potential therapeutic target for the treatment of cognitive dysfunction. Using the object recognition test (ORT), this study assessed the effects of two PDE2 inhibitors, Bay 60-7550 and ND7001, on learning and memory, and examined underlying mechanisms. To assess the role of PDE2 inhibition on phases of memory, Bay 60-7550 (3 mg/kg) was administered: 30 min prior to training; 0, 1, or 3 h after training; or 30 min prior to recall testing. To assess cyclic nucleotide involvement in PDE2 inhibitor-enhanced memory consolidation, either the nitric oxide synthase inhibitor NG-nitro-L-arginine methyl ester (L-NAME; 20 mg/kg; intraperitoneal (IP)), soluble guanylyl cyclase inhibitor 1H-[-1,2,4]oxadiazolo-[4,3-a]quinoxalin-1-one (ODQ; 20 mg/kg; IP), protein kinase G inhibitor KT5823 (2.5 μg; intracerebroventricular (ICV)), or protein kinase A inhibitor H89 (1 μg; ICV) was administered 30 min prior to the PDE2 inhibitor Bay 60-7550 (3 mg/kg) or ND7001 (3 mg/kg). Changes in the phosphorylation of 3'5'-cyclic adenosine monophosphate (cAMP) response element binding protein (CREB) at Ser-133 and vasodilator-stimulated phosphoprotein (VASP) at Ser-239 were determined to confirm activation of cAMP and 3'5'-cyclic guanosine monophosphate (cGMP) signaling. Bay 60-7550 (3 mg/kg) enhanced memory of mice in the ORT when given 30 min prior to training, immediately after training, or 30 min prior to recall. Inhibitors of the cGMP pathway blocked the memory-enhancing effects of both Bay 60-7550 (3 mg/kg) and ND7001 (3 mg/kg) on early consolidation processes. Bay 60-7550 (3 mg/kg) enhanced phosphorylation of CREB and VASP, both targets of cGMP-dependent protein kinase (PKG). These results confirm a potential of PDE2, or components of its signaling pathway, as a therapeutic target for drug discovery focused on restoring memory function.

  10. The Vanderbilt Expertise Test Reveals Domain-General and Domain-Specific Sex Effects in Object Recognition

    PubMed Central

    McGugin, Rankin W.; Richler, Jennifer J.; Herzmann, Grit; Speegle, Magen; Gauthier, Isabel

    2012-01-01

    Individual differences in face recognition are often contrasted with differences in object recognition using a single object category. Likewise, individual differences in perceptual expertise for a given object domain have typically been measured relative to only a single category baseline. In Experiment 1, we present a new test of object recognition, the Vanderbilt Expertise Test (VET), which is comparable in methods to the Cambridge Face Memory Task (CFMT) but uses eight different object categories. Principal component analysis reveals that the underlying structure of the VET can be largely explained by two independent factors, which demonstrate good reliability and capture interesting sex differences inherent in the VET structure. In Experiment 2, we show how the VET can be used to separate domain-specific from domain-general contributions to a standard measure of perceptual expertise. While domain-specific contributions are found for car matching for both men and women and for plane matching in men, women in this sample appear to use more domain-general strategies to match planes. In Experiment 3, we use the VET to demonstrate that holistic processing of faces predicts face recognition independently of general object recognition ability, which has a sex-specific contribution to face recognition. Overall, the results suggest that the VET is a reliable and valid measure of object recognition abilities and can measure both domain-general skills and domain-specific expertise, which were both found to depend on the sex of observers. PMID:22877929

  11. An ERP study of recognition memory for concrete and abstract pictures in school-aged children.

    PubMed

    Boucher, Olivier; Chouinard-Leclaire, Christine; Muckle, Gina; Westerlund, Alissa; Burden, Matthew J; Jacobson, Sandra W; Jacobson, Joseph L

    2016-08-01

    Recognition memory for concrete, nameable pictures is typically faster and more accurate than for abstract pictures. A dual-coding account for these findings suggests that concrete pictures are processed into verbal and image codes, whereas abstract pictures are encoded in image codes only. Recognition memory relies on two successive and distinct processes, namely familiarity and recollection. Whether these two processes are similarly or differently affected by stimulus concreteness remains unknown. This study examined the effect of picture concreteness on visual recognition memory processes using event-related potentials (ERPs). In a sample of children involved in a longitudinal study, participants (N=96; mean age=11.3years) were assessed on a continuous visual recognition memory task in which half the pictures were easily nameable, everyday concrete objects, and the other half were three-dimensional abstract, sculpture-like objects. Behavioral performance and ERP correlates of familiarity and recollection (respectively, the FN400 and P600 repetition effects) were measured. Behavioral results indicated faster and more accurate identification of concrete pictures as "new" or "old" (i.e., previously displayed) compared to abstract pictures. ERPs were characterized by a larger repetition effect, on the P600 amplitude, for concrete than for abstract images, suggesting a graded recollection process dependent on the type of material to be recollected. Topographic differences were observed within the FN400 latency interval, especially over anterior-inferior electrodes, with the repetition effect more pronounced and localized over the left hemisphere for concrete stimuli, potentially reflecting different neural processes underlying early processing of verbal/semantic and visual material in memory. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Recognition of Famous Names Predicts Episodic Memory Decline in Cognitively Intact Elders

    PubMed Central

    Seidenberg, Michael; Kay, Christina; Woodard, John L.; Nielson, Kristy A.; Smith, J. Carson; Kandah, Cassandra; Guidotti Breting, Leslie M.; Novitski, Julia; Lancaster, Melissa; Matthews, Monica; Hantke, Nathan; Butts, Alissa; Rao, Stephen M.

    2013-01-01

    Objective: Semantic memory impairment is common in both Mild Cognitive Impairment (MCI) and early Alzheimer’s disease (AD), and the ability to recognize familiar people is particularly vulnerable. A time-limited temporal gradient (TG) in which well known people from decades earlier are better recalled than those learned recently is also reported in both AD and MCI. In this study, we hypothesized that the TG pattern on a famous name recognition task (FNRT) administered to cognitively intact elders would predict future episodic memory decline, and would also show a significant correlation with hippocampal volume. Methods: 78 healthy elders (ages 65-90) with normal cognition and episodic memory at baseline were administered a FNRT. Follow-up episodic memory testing 18 months later produced two groups: Declining (≥ 1 SD reduction in episodic memory) and Stable (< 1 SD). Results: The Declining group (N=27) recognized fewer recent famous names than the Stable group (N=51), while recognition for remote names was comparable. Baseline MRI volumes for both the left and right hippocampus was significantly smaller in the Declining group than the Stable group. Smaller baseline hippocampal volume was also significantly correlated with poorer performance for recent, but not remote famous names. Logistic regression analyses indicated that baseline TG performance was a significant predictor of group status (Declining versus Stable) independent of chronological age and APOE ε4 inheritance. Conclusions: Famous name recognition may serve as an early pre-clinical cognitive marker of episodic memory decline in older individuals. PMID:23688215

  13. Effects of the cannabinoid 1 receptor peptide ligands hemopressin, (m)RVD-hemopressin(α) and (m)VD-hemopressin(α) on memory in novel object and object location recognition tasks in normal young and Aβ1-42-treated mice.

    PubMed

    Zhang, Rui-San; He, Zhen; Jin, Wei-Dong; Wang, Rui

    2016-10-01

    The cannabinoid system plays an important role in memory processes, many studies have indicated that cannabinoid receptor ligands have ability to modulate memory in rodents. A nonapeptide hemopressin (Hp) derived from rat brain, acts as a peptide antagonist or selective inverse peptide agonist of cannabinoid 1 (CB1) receptor. N-terminally extended forms of Hp isolated from mouse brain, (m)RVD-hemopressin(α) (RVD) and (m)VD-hemopressin(α) (VD) also bind CB1 receptor, however, as peptide agonists. Here, we investigated the roles of Hp, RVD, and VD on memory in mice using novel object recognition (NOR) and object location recognition (OLR) tasks. In normal young mice, intracerebroventricular (i.c.v.) infusion of Hp before training not only improved memory formation, but also prolonged memory retention in the tasks, these effects could be inhibited by RVD or VD at the same dose and intraperitoneal (i.p.) injection of a small molecule agonist of CB1 receptor WIN55, 212-2 15min before administration of Hp inhibited the memory-improving effect of Hp. In addition, under the same experimental conditions, i.c.v. RVD or VD displayed memory-impairing effects, which could be prevented by Hp (i.c.v.) or AM251 (i.p.), a small molecule antagonist of CB1 receptor. Infusion of amyloid-β (1-42) (Aβ1-42) 14days before training resulted in impairment of memory in mice which could be used as animal model of Alzheimer's disease (AD). In these mice, RVD or VD (i.c.v.) reversed the memory impairment induced by Aβ1-42, and the effects of RVD and VD could be suppressed by Hp (i.c.v.) or AM251 (2mg/kg, i.p.). Separate administration of Hp had no effect in Aβ1-42-treated mice. The above results suggested that Hp, RVD and VD, as CB1 receptor peptide ligands, may be potential drugs to treatment of the memory deficit-involving disease, just as AD. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Proactive Interference in Short-Term Recognition and Recall Memory

    ERIC Educational Resources Information Center

    Dillon, Richard F.; Petrusic, William M.

    1972-01-01

    Purpose of study was to (a) compare the rate of increase of proactive interference over the first few trials under recall and recognition memory test conditions, (2) determine the effects of two types of distractors on short-term recognition, and (3) test memory after proactive interference had reached a stable level under each of three test…

  15. Aniracetam restores object recognition impaired by age, scopolamine, and nucleus basalis lesions.

    PubMed

    Bartolini, L; Casamenti, F; Pepeu, G

    1996-02-01

    Object recognition was investigated in adult and aging male rats in a two-trials, unrewarded, test that assessed a form of working-episodic memory. Exploration time in the first trial, in which two copies of the same object were presented, was recorded. In the second trial, in which one of the familiar objects and a new object were presented, the time spent exploring the two objects was separately recorded and a discrimination index was calculated. Adult rats explored the new object longer than the familiar object when the intertrial time ranged from 1 to 60 min. Rats older than 20 months of age did not discriminate between familiar and new objects. Object discrimination was lost in adult rats after scopolamine (0.2 mg/kg SC) administration and with lesions of the nucleus basalis, resulting in a 40% decrease in cortical ChAT activity. Both aniracetam (25, 50, 100 mg/kg os) and oxiracetam (50 mg/kg os) restored object recognition in aging rats, in rats treated with scopolamine, and with lesions of the nucleus basalis. In the rat, object discrimination appears to depend on the integrity of the cholinergic system, and nootropic drugs can correct its disruption.

  16. The Effects of Two Health Information Texts on Patient Recognition Memory: A Randomized Controlled Trial

    PubMed Central

    Freed, Erin; Long, Debra; Rodriguez, Tonantzin; Franks, Peter; Kravitz, Richard L.; Jerant, Anthony

    2013-01-01

    Objective To compare the effects of two health information texts on patient recognition memory, a key aspect of comprehension. Methods Randomized controlled trial (N = 60), comparing the effects of experimental and control colorectal cancer (CRC) screening texts on recognition memory, measured using a statement recognition test, accounting for response bias (score range −0.91 to 5.34). The experimental text had a lower Flesch-Kincaid reading grade level (7.4 versus 9.6), was more focused on addressing screening barriers, and employed more comparative tables than the control text. Results Recognition memory was higher in the experimental group (2.54 versus 1.09, t= −3.63, P = 0.001), including after adjustment for age, education, and health literacy (β = 0.42, 95% CI 0.17, 0.68, P = 0.001), and in analyses limited to persons with college degrees (β = 0.52, 95% CI 0.18, 0.86, P = 0.004) or no self-reported health literacy problems (β = 0.39, 95% CI 0.07, 0.71, P = 0.02). Conclusion An experimental CRC screening text improved recognition memory, including among patients with high education and self-assessed health literacy. Practice Implications CRC screening texts comparable to our experimental text may be warranted for all screening-eligible patients, if such texts improve screening uptake. PMID:23541216

  17. The functional neuroanatomy of verbal memory in Alzheimer's disease: [18F]-Fluoro-2-deoxy-D-glucose positron emission tomography (FDG-PET) correlates of recency and recognition memory.

    PubMed

    Staffaroni, Adam M; Melrose, Rebecca J; Leskin, Lorraine P; Riskin-Jones, Hannah; Harwood, Dylan; Mandelkern, Mark; Sultzer, David L

    2017-09-01

    The objective of this study was to distinguish the functional neuroanatomy of verbal learning and recognition in Alzheimer's disease (AD) using the Consortium to Establish a Registry for Alzheimer's Disease (CERAD) Word Learning task. In 81 Veterans diagnosed with dementia due to AD, we conducted a cluster-based correlation analysis to assess the relationships between recency and recognition memory scores from the CERAD Word Learning Task and cortical metabolic activity measured using [ 18 F]-fluoro-2-deoxy-D-glucose positron emission tomography (FDG-PET). AD patients (Mini-Mental State Examination, MMSE mean = 20.2) performed significantly better on the recall of recency items during learning trials than of primacy and middle items. Recency memory was associated with cerebral metabolism in the left middle and inferior temporal gyri and left fusiform gyrus (p < .05 at the corrected cluster level). In contrast, recognition memory was correlated with metabolic activity in two clusters: (a) a large cluster that included the left hippocampus, parahippocampal gyrus, entorhinal cortex, anterior temporal lobe, and inferior and middle temporal gyri; (b) the bilateral orbitofrontal cortices (OFC). The present study further informs our understanding of the disparate functional neuroanatomy of recency memory and recognition memory in AD. We anticipated that the recency effect would be relatively preserved and associated with temporoparietal brain regions implicated in short-term verbal memory, while recognition memory would be associated with the medial temporal lobe and possibly the OFC. Consistent with our a priori hypotheses, list learning in our AD sample was characterized by a reduced primacy effect and a relatively spared recency effect; however, recency memory was associated with cerebral metabolism in inferior and lateral temporal regions associated with the semantic memory network, rather than regions associated with short-term verbal memory. The correlates of

  18. Self-Imagining Enhances Recognition Memory in Memory-Impaired Individuals with Neurological Damage

    PubMed Central

    Grilli, Matthew D.; Glisky, Elizabeth L.

    2010-01-01

    Objective The ability to imagine an elaborative event from a personal perspective relies on a number of cognitive processes that may potentially enhance subsequent memory for the event, including visual imagery, semantic elaboration, emotional processing, and self-referential processing. In an effort to find a novel strategy for enhancing memory in memory-impaired individuals with neurological damage, the present study investigated the mnemonic benefit of a method we refer to as “self-imagining” – or the imagining of an event from a realistic, personal perspective. Method Fourteen individuals with neurologically-based memory deficits and fourteen healthy control participants intentionally encoded neutral and emotional sentences under three instructions: structural-baseline processing, semantic processing, and self-imagining. Results Findings revealed a robust “self-imagination effect” as self-imagination enhanced recognition memory relative to deep semantic elaboration in both memory-impaired individuals, F (1, 13) = 32.11, p < .001, η2 = .71, and healthy controls, F (1, 13) = 5.57, p < .05, η2 = .30. In addition, results indicated that mnemonic benefits of self-imagination were not limited by severity of the memory disorder nor were they related to self-reported vividness of visual imagery, semantic processing, or emotional content of the materials. Conclusions The findings suggest that the self-imagination effect may depend on unique mnemonic mechanisms possibly related to self-referential processing, and that imagining an event from a personal perspective makes that event particularly memorable even for those individuals with severe memory deficits. Self-imagining may thus provide an effective rehabilitation strategy for individuals with memory impairment. PMID:20873930

  19. Auditory-visual object recognition time suggests specific processing for animal sounds.

    PubMed

    Suied, Clara; Viaud-Delmon, Isabelle

    2009-01-01

    Recognizing an object requires binding together several cues, which may be distributed across different sensory modalities, and ignoring competing information originating from other objects. In addition, knowledge of the semantic category of an object is fundamental to determine how we should react to it. Here we investigate the role of semantic categories in the processing of auditory-visual objects. We used an auditory-visual object-recognition task (go/no-go paradigm). We compared recognition times for two categories: a biologically relevant one (animals) and a non-biologically relevant one (means of transport). Participants were asked to react as fast as possible to target objects, presented in the visual and/or the auditory modality, and to withhold their response for distractor objects. A first main finding was that, when participants were presented with unimodal or bimodal congruent stimuli (an image and a sound from the same object), similar reaction times were observed for all object categories. Thus, there was no advantage in the speed of recognition for biologically relevant compared to non-biologically relevant objects. A second finding was that, in the presence of a biologically relevant auditory distractor, the processing of a target object was slowed down, whether or not it was itself biologically relevant. It seems impossible to effectively ignore an animal sound, even when it is irrelevant to the task. These results suggest a specific and mandatory processing of animal sounds, possibly due to phylogenetic memory and consistent with the idea that hearing is particularly efficient as an alerting sense. They also highlight the importance of taking into account the auditory modality when investigating the way object concepts of biologically relevant categories are stored and retrieved.

  20. ERP correlates of recognition memory in Autism Spectrum Disorder.

    PubMed

    Massand, Esha; Bowler, Dermot M; Mottron, Laurent; Hosein, Anthony; Jemel, Boutheina

    2013-09-01

    Recognition memory in autism spectrum disorder (ASD) tends to be undiminished compared to that of typically developing (TD) individuals (Bowler et al. 2007), but it is still unknown whether memory in ASD relies on qualitatively similar or different neurophysiology. We sought to explore the neural activity underlying recognition by employing the old/new word repetition event-related potential effect. Behavioural recognition performance was comparable across both groups, and demonstrated superior recognition for low frequency over high frequency words. However, the ASD group showed a parietal rather than anterior onset (300-500 ms), and diminished right frontal old/new effects (800-1500 ms) relative to TD individuals. This study shows that undiminished recognition performance results from a pattern of differing functional neurophysiology in ASD.

  1. Adult Word Recognition and Visual Sequential Memory

    ERIC Educational Resources Information Center

    Holmes, V. M.

    2012-01-01

    Two experiments were conducted investigating the role of visual sequential memory skill in the word recognition efficiency of undergraduate university students. Word recognition was assessed in a lexical decision task using regularly and strangely spelt words, and nonwords that were either standard orthographically legal strings or items made from…

  2. Process Demands of Rejection Mechanisms of Recognition Memory

    ERIC Educational Resources Information Center

    Odegard, Timothy N.; Koen, Joshua D.; Gama, Jorge M.

    2008-01-01

    A surge of research has been conducted to examine memory editing mechanisms that help distinguish accurate from inaccurate memories. In the present experiment, the authors examined the ability of participants to use novelty detection, recollection rejection, and plausibility judgments to reject lures presented on a recognition memory test.…

  3. Method and System for Object Recognition Search

    NASA Technical Reports Server (NTRS)

    Duong, Tuan A. (Inventor); Duong, Vu A. (Inventor); Stubberud, Allen R. (Inventor)

    2012-01-01

    A method for object recognition using shape and color features of the object to be recognized. An adaptive architecture is used to recognize and adapt the shape and color features for moving objects to enable object recognition.

  4. Recognition memory of newly learned faces.

    PubMed

    Ishai, Alumit; Yago, Elena

    2006-12-11

    We used event-related fMRI to study recognition memory of newly learned faces. Caucasian subjects memorized unfamiliar, neutral and happy South Korean faces and 4 days later performed a memory retrieval task in the MR scanner. We predicted that previously seen faces would be recognized faster and more accurately and would elicit stronger neural activation than novel faces. Consistent with our hypothesis, novel faces were recognized more slowly and less accurately than previously seen faces. We found activation in a distributed cortical network that included face-responsive regions in the visual cortex, parietal and prefrontal regions, and the hippocampus. Within all regions, correctly recognized, previously seen faces evoked stronger activation than novel faces. Additionally, in parietal and prefrontal cortices, stronger activation was observed during correct than incorrect trials. Finally, in the hippocampus, false alarms to happy faces elicited stronger responses than false alarms to neutral faces. Our findings suggest that face recognition memory is mediated by stimulus-specific representations stored in extrastriate regions; parietal and prefrontal regions where old and new items are classified; and the hippocampus where veridical memory traces are recovered.

  5. Collaboration can improve individual recognition memory: evidence from immediate and delayed tests.

    PubMed

    Rajaram, Suparna; Pereira-Pasarin, Luciane P

    2007-02-01

    In two experiments, we tested the effects of collaboration on individual recognition memory. In Experiment 1, participants studied pictures and words either for meaning or for surface properties and made recognition memory judgments individually either following group discussion among 3 members (collaborative condition) or in the absence of discussion (noncollaborative condition). Levels of processing and picture superiority effects were replicated, and collaboration significantly increased individual recognition memory. Experiment 2 replicated this positive effect and showed that even though memory sensitivity declined at longer delays (48 h and 1 week), collaboration continued to exert a positive influence. These findings show that (1) consensus is not necessary for producing benefits of collaboration on individual recognition, (2) collaborative facilitation on individual memory is robust, and (3) collaboration enhances individual memory further if conditions predispose individual accuracy in the absence of collaboration.

  6. Astrocytic expression of HIV-1 Nef impairs spatial and recognition memory

    PubMed Central

    Chompre, Gladys; Cruz, Emmanuel; Maldonado, Lucianette; Rivera-Amill, Vanessa; Porter, James T.; Noel, Richard J.

    2012-01-01

    Despite the widespread use of antiretroviral therapy that effectively limits viral replication, memory impairment remains a dilemma for HIV infected people. In the CNS, HIV infection of astrocytes leads to the production of the HIV-1 Nef protein without viral replication. Post mortem studies have found Nef expression in hippocampal astrocytes of people with HIV associated dementia suggesting that astrocytic Nef may contribute to HIV associated cognitive impairment even when viral replication is suppressed. To test whether astrocytic expression of Nef is sufficient to induce cognitive deficits, we examined the effect of implanting primary rat astrocytes expressing Nef into the hippocampus on spatial and recognition memory. Rats implanted unilaterally with astrocytes expressing Nef showed impaired novel location and novel object recognition in comparison with controls implanted with astrocytes expressing green fluorescent protein (GFP). This impairment was correlated with an increase in chemokine ligand 2 (CCL2) expression and the infiltration of peripheral macrophages into the hippocampus at the site of injection. Furthermore, the Nef exposed rats exhibited a bilateral loss of CA3 neurons. These results suggest that Nef protein expressed by the implanted astrocytes activates the immune system leading to neuronal damage and spatial and recognition memory deficits. Therefore, the continued expression of Nef by astrocytes in the absence of viral replication has the potential to contribute to HIV associated cognitive impairment. PMID:22926191

  7. Individual differences in forced-choice recognition memory: Partitioning contributions of recollection and familiarity

    PubMed Central

    Migo, Ellen M.; Quamme, Joel R.; Holmes, Selina; Bendell, Andrew; Norman, Kenneth A.; Mayes, Andrew R.; Montaldi, Daniela

    2014-01-01

    In forced-choice recognition memory, two different testing formats are possible under conditions of high target-foil similarity: each target can be presented alongside foils similar to itself (forced-choice corresponding; FCC), or alongside foils similar to other targets (forced-choice non-corresponding; FCNC).Recent behavioural and neuropsychological studies suggest that FCC performance can be supported by familiarity whereas FCNC performance is supported primarily by recollection. In this paper, we corroborate this finding from an individual differences perspective. A group of older adults were given a test of FCC and FCNC recognition for object pictures, as well as standardised tests of recall, recognition and IQ. Recall measures were found to predict FCNC, but not FCC performance, consistent with a critical role for recollection in FCNC only. After the common influence of recall was removed, standardised tests of recognition predicted FCC, but not FCNC performance. This is consistent with a contribution of only familiarity in FCC. Simulations show that a two process model, where familiarity and recollection make separate contributions to recognition, is ten times more likely to give these results than a single-process model. This evidence highlights the importance of recognition memory test design when examining the involvement of recollection and familiarity. PMID:24796268

  8. Individual differences in forced-choice recognition memory: partitioning contributions of recollection and familiarity.

    PubMed

    Migo, Ellen M; Quamme, Joel R; Holmes, Selina; Bendell, Andrew; Norman, Kenneth A; Mayes, Andrew R; Montaldi, Daniela

    2014-01-01

    In forced-choice recognition memory, two different testing formats are possible under conditions of high target-foil similarity: Each target can be presented alongside foils similar to itself (forced-choice corresponding; FCC), or alongside foils similar to other targets (forced-choice noncorresponding; FCNC). Recent behavioural and neuropsychological studies suggest that FCC performance can be supported by familiarity whereas FCNC performance is supported primarily by recollection. In this paper, we corroborate this finding from an individual differences perspective. A group of older adults were given a test of FCC and FCNC recognition for object pictures, as well as standardized tests of recall, recognition, and IQ. Recall measures were found to predict FCNC, but not FCC performance, consistent with a critical role for recollection in FCNC only. After the common influence of recall was removed, standardized tests of recognition predicted FCC, but not FCNC performance. This is consistent with a contribution of only familiarity in FCC. Simulations show that a two-process model, where familiarity and recollection make separate contributions to recognition, is 10 times more likely to give these results than a single-process model. This evidence highlights the importance of recognition memory test design when examining the involvement of recollection and familiarity.

  9. Functional Connectivity of Multiple Brain Regions Required for the Consolidation of Social Recognition Memory.

    PubMed

    Tanimizu, Toshiyuki; Kenney, Justin W; Okano, Emiko; Kadoma, Kazune; Frankland, Paul W; Kida, Satoshi

    2017-04-12

    Social recognition memory is an essential and basic component of social behavior that is used to discriminate familiar and novel animals/humans. Previous studies have shown the importance of several brain regions for social recognition memories; however, the mechanisms underlying the consolidation of social recognition memory at the molecular and anatomic levels remain unknown. Here, we show a brain network necessary for the generation of social recognition memory in mice. A mouse genetic study showed that cAMP-responsive element-binding protein (CREB)-mediated transcription is required for the formation of social recognition memory. Importantly, significant inductions of the CREB target immediate-early genes c-fos and Arc were observed in the hippocampus (CA1 and CA3 regions), medial prefrontal cortex (mPFC), anterior cingulate cortex (ACC), and amygdala (basolateral region) when social recognition memory was generated. Pharmacological experiments using a microinfusion of the protein synthesis inhibitor anisomycin showed that protein synthesis in these brain regions is required for the consolidation of social recognition memory. These findings suggested that social recognition memory is consolidated through the activation of CREB-mediated gene expression in the hippocampus/mPFC/ACC/amygdala. Network analyses suggested that these four brain regions show functional connectivity with other brain regions and, more importantly, that the hippocampus functions as a hub to integrate brain networks and generate social recognition memory, whereas the ACC and amygdala are important for coordinating brain activity when social interaction is initiated by connecting with other brain regions. We have found that a brain network composed of the hippocampus/mPFC/ACC/amygdala is required for the consolidation of social recognition memory. SIGNIFICANCE STATEMENT Here, we identify brain networks composed of multiple brain regions for the consolidation of social recognition memory. We

  10. Short- and long-term effects of nicotine and the histone deacetylase inhibitor phenylbutyrate on novel object recognition in zebrafish.

    PubMed

    Faillace, M P; Pisera-Fuster, A; Medrano, M P; Bejarano, A C; Bernabeu, R O

    2017-03-01

    Zebrafish have a sophisticated color- and shape-sensitive visual system, so we examined color cue-based novel object recognition in zebrafish. We evaluated preference in the absence or presence of drugs that affect attention and memory retention in rodents: nicotine and the histone deacetylase inhibitor (HDACi) phenylbutyrate (PhB). The objective of this study was to evaluate whether nicotine and PhB affect innate preferences of zebrafish for familiar and novel objects after short- and long-retention intervals. We developed modified object recognition (OR) tasks using neutral novel and familiar objects in different colors. We also tested objects which differed with respect to the exploratory behavior they elicited from naïve zebrafish. Zebrafish showed an innate preference for exploring red or green objects rather than yellow or blue objects. Zebrafish were better at discriminating color changes than changes in object shape or size. Nicotine significantly enhanced or changed short-term innate novel object preference whereas PhB had similar effects when preference was assessed 24 h after training. Analysis of other zebrafish behaviors corroborated these results. Zebrafish were innately reluctant or prone to explore colored novel objects, so drug effects on innate preference for objects can be evaluated changing the color of objects with a simple geometry. Zebrafish exhibited recognition memory for novel objects with similar innate significance. Interestingly, nicotine and PhB significantly modified innate object preference.

  11. Memory evaluation in mild cognitive impairment using recall and recognition tests.

    PubMed

    Bennett, Ilana J; Golob, Edward J; Parker, Elizabeth S; Starr, Arnold

    2006-11-01

    Amnestic mild cognitive impairment (MCI) is a selective episodic memory deficit that often indicates early Alzheimer's disease. Episodic memory function in MCI is typically defined by deficits in free recall, but can also be tested using recognition procedures. To assess both recall and recognition in MCI, MCI (n = 21) and older comparison (n = 30) groups completed the USC-Repeatable Episodic Memory Test. Subjects memorized two verbally presented 15-item lists. One list was used for three free recall trials, immediately followed by yes/no recognition. The second list was used for three-alternative forced-choice recognition. Relative to the comparison group, MCI had significantly fewer hits and more false alarms in yes/no recognition, and were less accurate in forced-choice recognition. Signal detection analysis showed that group differences were not due to response bias. Discriminant function analysis showed that yes/no recognition was a better predictor of group membership than free recall or forced-choice measures. MCI subjects recalled fewer items than comparison subjects, with no group differences in repetitions, intrusions, serial position effects, or measures of recall strategy (subjective organization, recall consistency). Performance deficits on free recall and recognition in MCI suggest a combination of both tests may be useful for defining episodic memory impairment associated with MCI and early Alzheimer's disease.

  12. Modulation of recognition memory performance by light requires both melanopsin and classical photoreceptors

    PubMed Central

    Tam, Shu K. E.; Hasan, Sibah; Hughes, Steven; Hankins, Mark W.; Foster, Russell G.; Bannerman, David M.

    2016-01-01

    Acute light exposure exerts various effects on physiology and behaviour. Although the effects of light on brain network activity in humans are well demonstrated, the effects of light on cognitive performance are inconclusive, with the size, as well as direction, of the effect depending on the nature of the task. Similarly, in nocturnal rodents, bright light can either facilitate or disrupt performance depending on the type of task employed. Crucially, it is unclear whether the effects of light on behavioural performance are mediated via the classical image-forming rods and cones or the melanopsin-expressing photosensitive retinal ganglion cells. Here, we investigate the modulatory effects of light on memory performance in mice using the spontaneous object recognition task. Importantly, we examine which photoreceptors are required to mediate the effects of light on memory performance. By using a cross-over design, we show that object recognition memory is disrupted when the test phase is conducted under a bright light (350 lux), regardless of the light level in the sample phase (10 or 350 lux), demonstrating that exposure to a bright light at the time of test, rather than at the time of encoding, impairs performance. Strikingly, the modulatory effect of light on memory performance is completely abolished in both melanopsin-deficient and rodless–coneless mice. Our findings provide direct evidence that melanopsin-driven and rod/cone-driven photoresponses are integrated in order to mediate the effect of light on memory performance. PMID:28003454

  13. Modulation of recognition memory performance by light requires both melanopsin and classical photoreceptors.

    PubMed

    Tam, Shu K E; Hasan, Sibah; Hughes, Steven; Hankins, Mark W; Foster, Russell G; Bannerman, David M; Peirson, Stuart N

    2016-12-28

    Acute light exposure exerts various effects on physiology and behaviour. Although the effects of light on brain network activity in humans are well demonstrated, the effects of light on cognitive performance are inconclusive, with the size, as well as direction, of the effect depending on the nature of the task. Similarly, in nocturnal rodents, bright light can either facilitate or disrupt performance depending on the type of task employed. Crucially, it is unclear whether the effects of light on behavioural performance are mediated via the classical image-forming rods and cones or the melanopsin-expressing photosensitive retinal ganglion cells. Here, we investigate the modulatory effects of light on memory performance in mice using the spontaneous object recognition task. Importantly, we examine which photoreceptors are required to mediate the effects of light on memory performance. By using a cross-over design, we show that object recognition memory is disrupted when the test phase is conducted under a bright light (350 lux), regardless of the light level in the sample phase (10 or 350 lux), demonstrating that exposure to a bright light at the time of test, rather than at the time of encoding, impairs performance. Strikingly, the modulatory effect of light on memory performance is completely abolished in both melanopsin-deficient and rodless-coneless mice. Our findings provide direct evidence that melanopsin-driven and rod/cone-driven photoresponses are integrated in order to mediate the effect of light on memory performance. © 2016 The Authors.

  14. Neural-Network Object-Recognition Program

    NASA Technical Reports Server (NTRS)

    Spirkovska, L.; Reid, M. B.

    1993-01-01

    HONTIOR computer program implements third-order neural network exhibiting invariance under translation, change of scale, and in-plane rotation. Invariance incorporated directly into architecture of network. Only one view of each object needed to train network for two-dimensional-translation-invariant recognition of object. Also used for three-dimensional-transformation-invariant recognition by training network on only set of out-of-plane rotated views. Written in C language.

  15. Estradiol-induced object memory consolidation in middle-aged female mice requires dorsal hippocampal ERK and PI3K activation

    PubMed Central

    Fan, Lu; Zhao, Zaorui; Orr, Patrick T.; Chambers, Cassie H.; Lewis, Michael C.; Frick, Karyn M.

    2010-01-01

    We previously demonstrated that dorsal hippocampal extracellular signal-regulated kinase (ERK) activation is necessary for 17β-estradiol (E2) to enhance novel object recognition in young ovariectomized mice (Fernandez et al., 2008). Here, we asked whether E2 has similar memory-enhancing effects in middle-aged and aged ovariectomized mice, and whether these effects depend on ERK and phosphatidylinositol 3-kinase (PI3K)/Akt activation. We first demonstrated that intracerebroventricular (ICV) E2 or intrahippocampal (IH) E2 infusion immediately after object recognition training enhanced memory consolidation in middle-aged, but not aged, females. The E2-induced enhancement in middle-aged females was blocked by IH inhibition of ERK or PI3K activation. IH or ICV E2 infusion in middle-aged females increased phosphorylation of p42 ERK in the dorsal hippocampus 15, but not 5, min after infusion, an effect that was blocked by IH inhibition of ERK or PI3K activation. Dorsal hippocampal PI3K and Akt phosphorylation was increased 5 min after IH or ICV E2 infusion in middle-aged, but not aged, females. ICV E2 infusion also increased PI3K phosphorylation after 15 min, and this effect was blocked by IH PI3K, but not ERK, inhibition. These data demonstrate for the first time that activation of dorsal hippocampal PI3K/Akt and ERK signaling pathways is necessary for E2 to enhance object recognition memory in middle-aged females. They also reveal that similar dorsal hippocampal signaling pathways mediate E2-induced object recognition memory enhancement in young and middle-aged females, and that the inability of E2 to activate these pathways may underlie its failure to enhance object recognition in aged females. PMID:20335475

  16. Apelin-13 exerts antidepressant-like and recognition memory improving activities in stressed rats.

    PubMed

    Li, E; Deng, Haifeng; Wang, Bo; Fu, Wan; You, Yong; Tian, Shaowen

    2016-03-01

    Apelin is the endogenous ligand for the G-protein-coupled receptor (APJ). The localization of APJ in limbic structures suggests a potential role for apelin in emotional processes. However, the role of apelin in the regulation of stress-induced responses such as depression and memory impairment is largely unknown. In the present study, we evaluated the role of apelin-13 in the regulation of stress-induced depression and memory impairment in rats. We report that repeated intracerebroventricular injections of apelin-13 reversed behavioral despair (immobility) in the forced swim (FS) test, a model widely used for the selection of new antidepressant agents. Apelin-13 also reversed behavioral deficits (escape failure) in the learned helplessness test. The magnitude of the antiimmobility and anti-escape failure effects of apelin-13 was comparable to that of imipramine, a classic antidepressant used as a positive control. Rats exposed to FS stress showed memory performance impairment in the novel object recognition test, and this impairment was improved by apelin-13 treatment. Apelin-13 did not affect recognition memory performance in non-stressed rats. Furthermore, the pretreatment of LY294002 (PI3K inhibitors) or PD98059 (ERK1/2 inhibitor) blocked apelin-13-mediated activities in FS-stressed rats. These findings suggest that apelin-13 exerts antidepressant-like and recognition memory improving activities through activating PI3K and ERK1/2 signaling pathways in stressed rats. Copyright © 2016 Elsevier B.V. and ECNP. All rights reserved.

  17. Recognition-induced forgetting is not due to category-based set size.

    PubMed

    Maxcey, Ashleigh M

    2016-01-01

    What are the consequences of accessing a visual long-term memory representation? Previous work has shown that accessing a long-term memory representation via retrieval improves memory for the targeted item and hurts memory for related items, a phenomenon called retrieval-induced forgetting. Recently we found a similar forgetting phenomenon with recognition of visual objects. Recognition-induced forgetting occurs when practice recognizing an object during a two-alternative forced-choice task, from a group of objects learned at the same time, leads to worse memory for objects from that group that were not practiced. An alternative explanation of this effect is that category-based set size is inducing forgetting, not recognition practice as claimed by some researchers. This alternative explanation is possible because during recognition practice subjects make old-new judgments in a two-alternative forced-choice task, and are thus exposed to more objects from practiced categories, potentially inducing forgetting due to set-size. Herein I pitted the category-based set size hypothesis against the recognition-induced forgetting hypothesis. To this end, I parametrically manipulated the amount of practice objects received in the recognition-induced forgetting paradigm. If forgetting is due to category-based set size, then the magnitude of forgetting of related objects will increase as the number of practice trials increases. If forgetting is recognition induced, the set size of exemplars from any given category should not be predictive of memory for practiced objects. Consistent with this latter hypothesis, additional practice systematically improved memory for practiced objects, but did not systematically affect forgetting of related objects. These results firmly establish that recognition practice induces forgetting of related memories. Future directions and important real-world applications of using recognition to access our visual memories of previously encountered

  18. Orexin signaling during social defeat stress influences subsequent social interaction behaviour and recognition memory.

    PubMed

    Eacret, Darrell; Grafe, Laura A; Dobkin, Jane; Gotter, Anthony L; Rengerb, John J; Winrow, Christopher J; Bhatnagar, Seema

    2018-06-11

    Orexins are neuropeptides synthesized in the lateral hypothalamus that influence arousal, feeding, reward pathways, and the response to stress. However, the role of orexins in repeated stress is not fully characterized. Here, we examined how orexins and their receptors contribute to the coping response during repeated social defeat and subsequent anxiety-like and memory-related behaviors. Specifically, we used Designer Receptors Exclusively Activated by Designer Drugs (DREADDs) to stimulate orexins prior to each of five consecutive days of social defeat stress in adult male rats. Additionally, we determined the role of the orexin 2 receptor in these behaviors by using a selective orexin 2 receptor antagonist (MK-1064) administered prior to each social defeat. Following the 5 day social defeat conditioning period, rats were evaluated in social interaction and novel object recognition paradigms to assess anxiety-like behavior and recognition memory, respectively. Activation of orexin neurons by DREADDs prior to each social defeat decreased the average latency to become defeated across 5 days, indicative of a passive coping strategy that we have previously linked to a stress vulnerable phenotype. Moreover, stimulation of orexin signaling during defeat conditioning decreased subsequent social interaction and performance in the novel object recognition test indicating increased subsequent anxiety-like behavior and reduced working memory. Blocking the orexin 2 receptor during repeated defeat did not alter these effects. Together, our results suggest that orexin neuron activation produces a passive coping phenotype during social defeat leading to subsequent anxiety-like behaviors and memory deficits. Copyright © 2018. Published by Elsevier B.V.

  19. Sex influence on face recognition memory moderated by presentation duration and reencoding.

    PubMed

    Weirich, Sebastian; Hoffmann, Ferdinand; Meissner, Lucia; Heinz, Andreas; Bengner, Thomas

    2011-11-01

    It has been suggested that women have a better face recognition memory than men. Here we analyzed whether this advantage depends on a better encoding or consolidation of information and if the advantage is visible during short-term memory (STM), only, or whether it also remains evident in long-term memory (LTM). We tested short- and long-term face recognition memory in 36 nonclinical participants (19 women). We varied the duration of item presentation (1, 5, and 10 s), the time of testing (immediately after the study phase, 1 hr, and 24 hr later), and the possibility to reencode items (none, immediately after the study phase, after 1 hr). Women showed better overall face recognition memory than men (ηp² = .15, p < .05). We found this advantage, however, only with a longer duration of item presentation (interaction effect Sex × ηp² = .16, p < .05). Women's advantage in face recognition was visible mainly if participants had the possibility to reencode faces during former test trials. Our results suggest women do not have a better face recognition memory than men per se, but may profit more than men from longer durations of presentation during encoding or the possibility for reencoding. Future research on sex differences in face recognition memory should explicate possible causes for the better encoding of face information in women.

  20. [Building and validation of a test evaluating verbal recognition memory: The Forty test (f40)].

    PubMed

    Marqué, A; Hommet, C; Constans, T; Perrier, D; Bardet, F; Chaput, M; Mondon, K

    2011-04-01

    Neuropsychologic evaluation is a primordial diagnostic tool. Numerous tests explore episodic memory but few tests exist to assess incidental verbal episodic memory or verbal recognition memory. This memory is however impaired early in certain neurodegenerative diseases such as Alzheimer's disease. Our objective was to create a test sensitive and specific to this cognitive dysfunction. Our test was performed by 33 healthy volunteers and 51 patients (19 with idiopathic Parkinson's disease, 16 with Alzheimer's disease at the prodromal stage and 16 with Alzheimer's disease). Independently of age, education level and global cognitive impairment, the young and old healthy volunteers and the patients with idiopathic Parkinson's disease displayed results significantly better than the group of Alzheimer's disease at the prodromal stage and Alzheimer's disease patients. Our test appears to be sensitive to dysfunction of verbal recognition memory. A score of 30/40 or less on the Forty test discriminates 91% of subjects with a cortical pattern of memory. This test could be recommended for clinical neuropsychological practice. Copyright © 2010 Elsevier Masson SAS. All rights reserved.

  1. Haloperidol increases false recognition memory of thematically related pictures in healthy volunteers.

    PubMed

    Guarnieri, Regina V; Buratto, Luciano G; Gomes, Carlos F A; Ribeiro, Rafaela L; de Souza, Altay A Lino; Stein, Lilian M; Galduróz, José C; Bueno, Orlando F A

    2017-01-01

    Dopamine can modulate long-term episodic memory. Its potential role on the generation of false memories, however, is less well known. In a randomized, double-blind, placebo-controlled experiment, 24 young healthy volunteers ingested a 4-mg oral dose of haloperidol, a dopamine D 2 -receptor antagonist, or placebo, before taking part in a recognition memory task. Haloperidol was active during both study and test phases of the experiment. Participants in the haloperidol group produced more false recognition responses than those in the placebo group, despite similar levels of correct recognition. These findings show that dopamine blockade in healthy volunteers can specifically increase false recognition memory. Copyright © 2016 John Wiley & Sons, Ltd.

  2. Females scan more than males: a potential mechanism for sex differences in recognition memory.

    PubMed

    Heisz, Jennifer J; Pottruff, Molly M; Shore, David I

    2013-07-01

    Recognition-memory tests reveal individual differences in episodic memory; however, by themselves, these tests provide little information regarding the stage (or stages) in memory processing at which differences are manifested. We used eye-tracking technology, together with a recognition paradigm, to achieve a more detailed analysis of visual processing during encoding and retrieval. Although this approach may be useful for assessing differences in memory across many different populations, we focused on sex differences in face memory. Females outperformed males on recognition-memory tests, and this advantage was directly related to females' scanning behavior at encoding. Moreover, additional exposures to the faces reduced sex differences in face recognition, which suggests that males may be able to improve their recognition memory by extracting more information at encoding through increased scanning. A strategy of increased scanning at encoding may prove to be a simple way to enhance memory performance in other populations with memory impairment.

  3. Indoleamine 2,3-dioxygenase-dependent neurotoxic kynurenine metabolism mediates inflammation-induced deficit in recognition memory

    PubMed Central

    Heisler, Jillian M.; O’Connor, Jason C.

    2015-01-01

    Cognitive dysfunction in depression is a prevalent and debilitating symptom that is poorly treated by the currently available pharmacotherapies. Research over the past decade has provided evidence for proinflammatory involvement in the neurobiology of depressive disorders and symptoms associated with these disorders, including aspects of memory dysfunction. Recent clinical studies implicate inflammation-related changes in kynurenine metabolism as a potential pathogenic factor in the development of a range of depressive symptoms, including deficits in cognition and memory. Additionally, preclinical work has demonstrated a number of mood-related depressive-like behaviors to be dependent on indoleamine 2,3-dioxygenase-1 (IDO1), the inflammation-induced rate-limiting enzyme of the kynurenine pathway. Here, we demonstrate in a mouse model, that peripheral administration of endotoxin induced a deficit in recognition memory. Mice deficient in IDO were protected from cognitive impairment. Furthermore, endotoxin-induced inflammation increased kynurenine metabolism within the perirhinal/entorhinal cortices, brain regions which have been implicated in recognition memory. A single peripheral injection of kynurenine, the metabolic product of IDO1, was sufficient to induce a deficit in recognition memory in both control and IDO null mice. Finally, kynurenine monooxygenase (KMO) deficient mice were also protected from inflammation-induced deficits on novel object recognition. These data implicate IDO-dependent neurotoxic kynurenine metabolism as a pathogenic factor for cognitive dysfunction in inflammation-induced depressive disorders and a potential novel target for the treatment of these disorders. PMID:26130057

  4. Acute Alcohol Effects on Repetition Priming and Word Recognition Memory with Equivalent Memory Cues

    ERIC Educational Resources Information Center

    Ray, Suchismita; Bates, Marsha E.

    2006-01-01

    Acute alcohol intoxication effects on memory were examined using a recollection-based word recognition memory task and a repetition priming task of memory for the same information without explicit reference to the study context. Memory cues were equivalent across tasks; encoding was manipulated by varying the frequency of occurrence (FOC) of words…

  5. The medial dorsal thalamic nucleus and the medial prefrontal cortex of the rat function together to support associative recognition and recency but not item recognition.

    PubMed

    Cross, Laura; Brown, Malcolm W; Aggleton, John P; Warburton, E Clea

    2012-12-21

    In humans recognition memory deficits, a typical feature of diencephalic amnesia, have been tentatively linked to mediodorsal thalamic nucleus (MD) damage. Animal studies have occasionally investigated the role of the MD in single-item recognition, but have not systematically analyzed its involvement in other recognition memory processes. In Experiment 1 rats with bilateral excitotoxic lesions in the MD or the medial prefrontal cortex (mPFC) were tested in tasks that assessed single-item recognition (novel object preference), associative recognition memory (object-in-place), and recency discrimination (recency memory task). Experiment 2 examined the functional importance of the interactions between the MD and mPFC using disconnection techniques. Unilateral excitotoxic lesions were placed in both the MD and the mPFC in either the same (MD + mPFC Ipsi) or opposite hemispheres (MD + mPFC Contra group). Bilateral lesions in the MD or mPFC impaired object-in-place and recency memory tasks, but had no effect on novel object preference. In Experiment 2 the MD + mPFC Contra group was significantly impaired in the object-in-place and recency memory tasks compared with the MD + mPFC Ipsi group, but novel object preference was intact. Thus, connections between the MD and mPFC are critical for recognition memory when the discriminations involve associative or recency information. However, the rodent MD is not necessary for single-item recognition memory.

  6. Effects of Lateral Reversal on Recognition Memory for Photographs of Faces.

    ERIC Educational Resources Information Center

    McKelvie, Stuart J.

    1983-01-01

    Examined recognition memory for photographs of faces in four experiments using students and adults. Results supported a feature (rather than Gestalt) model of facial recognition in which the two sides of the face are different in its memory representation. (JAC)

  7. Using Maintenance Rehearsal to Explore Recognition Memory

    ERIC Educational Resources Information Center

    Humphreys, Michael S.; Maguire, Angela M.; McFarlane, Kimberley A.; Burt, Jennifer S.; Bolland, Scott W.; Murray, Krista L.; Dunn, Ryan

    2010-01-01

    We examined associative and item recognition using the maintenance rehearsal paradigm. Our intent was to control for mnemonic strategies; to produce a low, graded level of learning; and to provide evidence of the role of attention in long-term memory. An advantage for low-frequency words emerged in both associative and item recognition at very low…

  8. Verbal Memory Functioning in Adolescents and Young Adults with Costello Syndrome: Evidence for Relative Preservation in Recognition Memory

    PubMed Central

    Schwartz, David D.; Katzenstein, Jennifer M.; Hopkins, Elisabeth; Stabley, Deborah L.; Sol-Church, Katia; Gripp, Karen W.; Axelrad, Marni E.

    2013-01-01

    Costello syndrome (CS) is a rare genetic disorder caused by germline mutations in the HRAS proto-oncogene which belongs to the family of syndromes called rasopathies. HRAS plays a key role in synaptic long-term potentiation (LTP) and memory formation. Prior research has found impaired recall memory in CS despite enhancement in LTP that would predict memory preservation. Based on findings in other rasopathies, we hypothesized that the memory deficit in CS would be specific to recall, and that recognition memory would show relative preservation. Memory was tested using word-list learning and story memory tasks with both recall and recognition trials, a design that allowed us to examine these processes separately. Participants were 11 adolescents and young adults with molecularly confirmed CS, all of whom fell in the mild to moderate range of intellectual disability. Results indicated a clear dissociation between verbal recall, which was impaired (M = 69 ± 14), and recognition memory, which was relatively intact (M = 86 ± 14). Story recognition was highly correlated with listening comprehension (r = .986), which also fell in the low-average range (M = 80 ± 12.9). Performance on other measures of linguistic ability and academic skills was impaired. The findings suggest relatively preserved recognition memory that also provides some support for verbal comprehension. This is the first report of relatively normal performance in a cognitive domain in CS. Further research is needed to better understand the mechanisms by which altered RAS-MAPK signaling affects neuronal plasticity and memory processes in the brain. PMID:23918324

  9. Fluency Effects in Recognition Memory: Are Perceptual Fluency and Conceptual Fluency Interchangeable?

    ERIC Educational Resources Information Center

    Lanska, Meredith; Olds, Justin M.; Westerman, Deanne L.

    2014-01-01

    On a recognition memory test, both perceptual and conceptual fluency can engender a sense of familiarity and elicit recognition memory illusions. To date, perceptual and conceptual fluency have been studied separately but are they interchangeable in terms of their influence on recognition judgments? Five experiments compared the effect of…

  10. The neural substrates of recognition memory for verbal information: spanning the divide between short- and long-term memory.

    PubMed

    Buchsbaum, Bradley R; Padmanabhan, Aarthi; Berman, Karen Faith

    2011-04-01

    One of the classic categorical divisions in the history of memory research is that between short-term and long-term memory. Indeed, because memory for the immediate past (a few seconds) and memory for the relatively more remote past (several seconds and beyond) are assumed to rely on distinct neural systems, more often than not, memory research has focused either on short- (or "working memory") or on long-term memory. Using an auditory-verbal continuous recognition paradigm designed for fMRI, we examined how the neural signatures of recognition memory change across an interval of time (from 2.5 to 30 sec) that spans this hypothetical division between short- and long-term memory. The results revealed that activity during successful auditory-verbal item recognition in inferior parietal cortex and the posterior superior temporal lobe was maximal for early lags, whereas, conversely, activity in the left inferior frontal gyrus increased as a function of lag. Taken together, the results reveal that as the interval between item repetitions increases, there is a shift in the distribution of memory-related activity that moves from posterior temporo-parietal cortex (lags 1-4) to inferior frontal regions (lags 5-10), indicating that as time advances, the burden of recognition memory is increasingly placed on top-down retrieval mechanisms that are mediated by structures in inferior frontal cortex.

  11. Hippocampal activity during recognition memory co-varies with the accuracy and confidence of source memory judgments.

    PubMed

    Yu, Sarah S; Johnson, Jeffrey D; Rugg, Michael D

    2012-06-01

    It has been proposed that the hippocampus selectively supports retrieval of contextual associations, but an alternative view holds that the hippocampus supports strong memories regardless of whether they contain contextual information. We employed a memory test that combined the 'Remember/Know' and source memory procedures, which allowed test items to be segregated both by memory strength (recognition accuracy) and, separately, by the quality of the contextual information that could be retrieved (indexed by the accuracy/confidence of a source memory judgment). As measured by fMRI, retrieval-related hippocampal activity tracked the quality of retrieved contextual information and not memory strength. These findings are consistent with the proposal that the hippocampus supports contextual recollection rather than recognition memory more generally. Copyright © 2011 Wiley Periodicals, Inc.

  12. Impaired recognition of faces and objects in dyslexia: Evidence for ventral stream dysfunction?

    PubMed

    Sigurdardottir, Heida Maria; Ívarsson, Eysteinn; Kristinsdóttir, Kristjana; Kristjánsson, Árni

    2015-09-01

    The objective of this study was to establish whether or not dyslexics are impaired at the recognition of faces and other complex nonword visual objects. This would be expected based on a meta-analysis revealing that children and adult dyslexics show functional abnormalities within the left fusiform gyrus, a brain region high up in the ventral visual stream, which is thought to support the recognition of words, faces, and other objects. 20 adult dyslexics (M = 29 years) and 20 matched typical readers (M = 29 years) participated in the study. One dyslexic-typical reader pair was excluded based on Adult Reading History Questionnaire scores and IS-FORM reading scores. Performance was measured on 3 high-level visual processing tasks: the Cambridge Face Memory Test, the Vanderbilt Holistic Face Processing Test, and the Vanderbilt Expertise Test. People with dyslexia are impaired in their recognition of faces and other visually complex objects. Their holistic processing of faces appears to be intact, suggesting that dyslexics may instead be specifically impaired at part-based processing of visual objects. The difficulty that people with dyslexia experience with reading might be the most salient manifestation of a more general high-level visual deficit. (c) 2015 APA, all rights reserved).

  13. The effect of word concreteness on recognition memory.

    PubMed

    Fliessbach, K; Weis, S; Klaver, P; Elger, C E; Weber, B

    2006-09-01

    Concrete words that are readily imagined are better remembered than abstract words. Theoretical explanations for this effect either claim a dual coding of concrete words in the form of both a verbal and a sensory code (dual-coding theory), or a more accessible semantic network for concrete words than for abstract words (context-availability theory). However, the neural mechanisms of improved memory for concrete versus abstract words are poorly understood. Here, we investigated the processing of concrete and abstract words during encoding and retrieval in a recognition memory task using event-related functional magnetic resonance imaging (fMRI). As predicted, memory performance was significantly better for concrete words than for abstract words. Abstract words elicited stronger activations of the left inferior frontal cortex both during encoding and recognition than did concrete words. Stronger activation of this area was also associated with successful encoding for both abstract and concrete words. Concrete words elicited stronger activations bilaterally in the posterior inferior parietal lobe during recognition. The left parietal activation was associated with correct identification of old stimuli. The anterior precuneus, left cerebellar hemisphere and the posterior and anterior cingulate cortex showed activations both for successful recognition of concrete words and for online processing of concrete words during encoding. Additionally, we observed a correlation across subjects between brain activity in the left anterior fusiform gyrus and hippocampus during recognition of learned words and the strength of the concreteness effect. These findings support the idea of specific brain processes for concrete words, which are reactivated during successful recognition.

  14. Facilitating Recognition Memory: The Use of Distinctive Contexts in Study Materials and Tests.

    ERIC Educational Resources Information Center

    Marlin, Carol A.; And Others

    The effects of distinctive background settings on children's recognition memory for subjects and objects of related sentences was examined. As a follow-up to a study by Levin, Ghatala, and Truman (1979), the effects of presenting distinctive background contexts in sentences and multiple-choice tests were separated from the effects of providing…

  15. Novelty-induced emotional arousal modulates cannabinoid effects on recognition memory and adrenocortical activity.

    PubMed

    Campolongo, Patrizia; Morena, Maria; Scaccianoce, Sergio; Trezza, Viviana; Chiarotti, Flavia; Schelling, Gustav; Cuomo, Vincenzo; Roozendaal, Benno

    2013-06-01

    Although it is well established that cannabinoid drugs can influence cognitive performance, the findings-describing both enhancing and impairing effects-have been ambiguous. Here, we investigated the effects of posttraining systemic administration of the synthetic cannabinoid agonist WIN55,212-2 (0.1, 0.3, or 1.0 mg/kg) on short- and long-term retention of object recognition memory under two conditions that differed in their training-associated arousal level. In male Sprague-Dawley rats that were not previously habituated to the experimental context, WIN55,212-2 administered immediately after a 3-min training trial, biphasically impaired retention performance at a 1-h interval. In contrast, WIN55,212-2 enhanced 1-h retention of rats that had received extensive prior habituation to the experimental context. Interestingly, immediate posttraining administration of WIN55,212-2 to non-habituated rats, in doses that impaired 1-h retention, enhanced object recognition performance at a 24-h interval. Posttraining WIN55,212-2 administration to habituated rats did not significantly affect 24-h retention. In light of intimate interactions between cannabinoids and the hypothalamic-pituitary-adrenal axis, we further investigated whether cannabinoid administration might differently influence training-induced glucocorticoid activity in rats in these two habituation conditions. WIN55,212-2 administered after object recognition training elevated plasma corticosterone levels in non-habituated rats whereas it decreased corticosterone levels in habituated rats. Most importantly, following pretreatment with the corticosterone-synthesis inhibitor metyrapone, WIN55,212-2 effects on 1- and 24-h retention of non-habituated rats became similar to those seen in the low-aroused habituated animals, indicating that cannabinoid-induced regulation of adrenocortical activity contributes to the environmentally sensitive effects of systemically administered cannabinoids on short- and long

  16. Novelty-Induced Emotional Arousal Modulates Cannabinoid Effects on Recognition Memory and Adrenocortical Activity

    PubMed Central

    Campolongo, Patrizia; Morena, Maria; Scaccianoce, Sergio; Trezza, Viviana; Chiarotti, Flavia; Schelling, Gustav; Cuomo, Vincenzo; Roozendaal, Benno

    2013-01-01

    Although it is well established that cannabinoid drugs can influence cognitive performance, the findings—describing both enhancing and impairing effects—have been ambiguous. Here, we investigated the effects of posttraining systemic administration of the synthetic cannabinoid agonist WIN55,212-2 (0.1, 0.3, or 1.0 mg/kg) on short- and long-term retention of object recognition memory under two conditions that differed in their training-associated arousal level. In male Sprague-Dawley rats that were not previously habituated to the experimental context, WIN55,212-2 administered immediately after a 3-min training trial, biphasically impaired retention performance at a 1-h interval. In contrast, WIN55,212-2 enhanced 1-h retention of rats that had received extensive prior habituation to the experimental context. Interestingly, immediate posttraining administration of WIN55,212-2 to non-habituated rats, in doses that impaired 1-h retention, enhanced object recognition performance at a 24-h interval. Posttraining WIN55,212-2 administration to habituated rats did not significantly affect 24-h retention. In light of intimate interactions between cannabinoids and the hypothalamic–pituitary–adrenal axis, we further investigated whether cannabinoid administration might differently influence training-induced glucocorticoid activity in rats in these two habituation conditions. WIN55,212-2 administered after object recognition training elevated plasma corticosterone levels in non-habituated rats whereas it decreased corticosterone levels in habituated rats. Most importantly, following pretreatment with the corticosterone-synthesis inhibitor metyrapone, WIN55,212-2 effects on 1- and 24-h retention of non-habituated rats became similar to those seen in the low-aroused habituated animals, indicating that cannabinoid-induced regulation of adrenocortical activity contributes to the environmentally sensitive effects of systemically administered cannabinoids on short- and long

  17. Recognition Decisions from Visual Working Memory Are Mediated by Continuous Latent Strengths

    ERIC Educational Resources Information Center

    Ricker, Timothy J.; Thiele, Jonathan E.; Swagman, April R.; Rouder, Jeffrey N.

    2017-01-01

    Making recognition decisions often requires us to reference the contents of working memory, the information available for ongoing cognitive processing. As such, understanding how recognition decisions are made when based on the contents of working memory is of critical importance. In this work we examine whether recognition decisions based on the…

  18. Coordinate Transformations in Object Recognition

    ERIC Educational Resources Information Center

    Graf, Markus

    2006-01-01

    A basic problem of visual perception is how human beings recognize objects after spatial transformations. Three central classes of findings have to be accounted for: (a) Recognition performance varies systematically with orientation, size, and position; (b) recognition latencies are sequentially additive, suggesting analogue transformation…

  19. The fate of object memory traces under change detection and change blindness.

    PubMed

    Busch, Niko A

    2013-07-03

    Observers often fail to detect substantial changes in a visual scene. This so-called change blindness is often taken as evidence that visual representations are sparse and volatile. This notion rests on the assumption that the failure to detect a change implies that representations of the changing objects are lost all together. However, recent evidence suggests that under change blindness, object memory representations may be formed and stored, but not retrieved. This study investigated the fate of object memory representations when changes go unnoticed. Participants were presented with scenes consisting of real world objects, one of which changed on each trial, while recording event-related potentials (ERPs). Participants were first asked to localize where the change had occurred. In an additional recognition task, participants then discriminated old objects, either from the pre-change or the post-change scene, from entirely new objects. Neural traces of object memories were studied by comparing ERPs for old and novel objects. Participants performed poorly in the detection task and often failed to recognize objects from the scene, especially pre-change objects. However, a robust old/novel effect was observed in the ERP, even when participants were change blind and did not recognize the old object. This implicit memory trace was found both for pre-change and post-change objects. These findings suggest that object memories are stored even under change blindness. Thus, visual representations may not be as sparse and volatile as previously thought. Rather, change blindness may point to a failure to retrieve and use these representations for change detection. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. The Impact of Left and Right Intracranial Tumors on Picture and Word Recognition Memory

    ERIC Educational Resources Information Center

    Goldstein, Bram; Armstrong, Carol L.; Modestino, Edward; Ledakis, George; John, Cameron; Hunter, Jill V.

    2004-01-01

    This study investigated the effects of left and right intracranial tumors on picture and word recognition memory. We hypothesized that left hemispheric (LH) patients would exhibit greater word recognition memory impairment than right hemispheric (RH) patients, with no significant hemispheric group picture recognition memory differences. The LH…

  1. The effect of mood-context on visual recognition and recall memory.

    PubMed

    Robinson, Sarita J; Rollings, Lucy J L

    2011-01-01

    Although it is widely known that memory is enhanced when encoding and retrieval occur in the same state, the impact of elevated stress/arousal is less understood. This study explores mood-dependent memory's effects on visual recognition and recall of material memorized either in a neutral mood or under higher stress/arousal levels. Participants' (N = 60) recognition and recall were assessed while they experienced either the same o a mismatched mood at retrieval. The results suggested that both visual recognition and recall memory were higher when participants experienced the same mood at encoding and retrieval compared with those who experienced a mismatch in mood context between encoding and retrieval. These findings offer support for a mood dependency effect on both the recognition and recall of visual information.

  2. Recognition Decisions From Visual Working Memory Are Mediated by Continuous Latent Strengths.

    PubMed

    Ricker, Timothy J; Thiele, Jonathan E; Swagman, April R; Rouder, Jeffrey N

    2017-08-01

    Making recognition decisions often requires us to reference the contents of working memory, the information available for ongoing cognitive processing. As such, understanding how recognition decisions are made when based on the contents of working memory is of critical importance. In this work we examine whether recognition decisions based on the contents of visual working memory follow a continuous decision process of graded information about the correct choice or a discrete decision process reflecting only knowing and guessing. We find a clear pattern in favor of a continuous latent strength model of visual working memory-based decision making, supporting the notion that visual recognition decision processes are impacted by the degree of matching between the contents of working memory and the choices given. Relation to relevant findings and the implications for human information processing more generally are discussed. Copyright © 2016 Cognitive Science Society, Inc.

  3. Transcranial focal electrical stimulation via tripolar concentric ring electrodes does not modify the short- and long-term memory formation in rats evaluated in the novel object recognition test

    PubMed Central

    Rogel-Salazar, G; Luna-Munguía, H; Stevens, KE; Besio, WG

    2013-01-01

    Noninvasive transcranial focal electrical stimulation (TFS) via tripolar concentric ring electrodes (TCREs) has been under development by Besio as an alternative/complementary therapy for seizure control. TFS has shown efficacy attenuating penicillin, pilocarpine, and pentylenetetrazole– induced acute seizures in rat models. This study evaluated the effects of TFS via TCREs on the memory formation of healthy rats as a safety test of TFS. The short and long-term memory formation was tested after the application of TFS using the novel object recognition (NOR) test. Independent groups were used: naïve, control (without TFS), and TFS (treated). Naïve, control, and stimulated groups spent more time investigating the new object than the familiar one during the test phase. TFS via TCREs given once does not modify the short- and long-term memory formation in rats in the NOR test. Results provide an important step towards a better understanding for the safe usage of TFS via TCREs. PMID:23419871

  4. Indomethacin counteracts the effects of chronic social defeat stress on emotional but not recognition memory in mice.

    PubMed

    Duque, Aránzazu; Vinader-Caerols, Concepción; Monleón, Santiago

    2017-01-01

    We have previously observed the impairing effects of chronic social defeat stress (CSDS) on emotional memory in mice. Given the relation between stress and inflammatory processes, we sought to study the effectiveness of the anti-inflammatory indomethacin in reversing the detrimental effects of CSDS on emotional memory in mice. The effects of CSDS and indomethacin on recognition memory were also evaluated. Male CD1 mice were randomly divided into four groups: non-stressed + saline (NS+SAL); non-stressed + indomethacin (NS+IND); stressed + saline (S+SAL); and stressed + indomethacin (S+IND). Stressed animals were exposed to a daily 10 min agonistic confrontation (CSDS) for 20 days. All subjects were treated daily with saline or indomethacin (10 mg/kg, i.p.). 24 h after the CSDS period, all the mice were evaluated in a social interaction test to distinguish between those that were resilient or susceptible to social stress. All subjects (n = 10-12 per group) were then evaluated in inhibitory avoidance (IA), novel object recognition (NOR), elevated plus maze and hot plate tests. As in control animals (NS+SAL group), IA learning was observed in the resilient groups, as well as in the susceptible mice treated with indomethacin (S+IND group). Recognition memory was observed in the non-stressed and the resilient mice, but not in the susceptible animals. Also, stressed mice exhibited higher anxiety levels. No significant differences were observed in locomotor activity or analgesia. In conclusion, CSDS induces anxiety in post-pubertal mice and impairs emotional and recognition memory in the susceptible subjects. The effects of CSDS on emotional memory, but not on recognition memory and anxiety, are reversed by indomethacin. Moreover, memory impairment is not secondary to the effects of CSDS on locomotor activity, emotionality or pain sensitivity.

  5. Indomethacin counteracts the effects of chronic social defeat stress on emotional but not recognition memory in mice

    PubMed Central

    Duque, Aránzazu; Vinader-Caerols, Concepción

    2017-01-01

    We have previously observed the impairing effects of chronic social defeat stress (CSDS) on emotional memory in mice. Given the relation between stress and inflammatory processes, we sought to study the effectiveness of the anti-inflammatory indomethacin in reversing the detrimental effects of CSDS on emotional memory in mice. The effects of CSDS and indomethacin on recognition memory were also evaluated. Male CD1 mice were randomly divided into four groups: non-stressed + saline (NS+SAL); non-stressed + indomethacin (NS+IND); stressed + saline (S+SAL); and stressed + indomethacin (S+IND). Stressed animals were exposed to a daily 10 min agonistic confrontation (CSDS) for 20 days. All subjects were treated daily with saline or indomethacin (10 mg/kg, i.p.). 24 h after the CSDS period, all the mice were evaluated in a social interaction test to distinguish between those that were resilient or susceptible to social stress. All subjects (n = 10–12 per group) were then evaluated in inhibitory avoidance (IA), novel object recognition (NOR), elevated plus maze and hot plate tests. As in control animals (NS+SAL group), IA learning was observed in the resilient groups, as well as in the susceptible mice treated with indomethacin (S+IND group). Recognition memory was observed in the non-stressed and the resilient mice, but not in the susceptible animals. Also, stressed mice exhibited higher anxiety levels. No significant differences were observed in locomotor activity or analgesia. In conclusion, CSDS induces anxiety in post-pubertal mice and impairs emotional and recognition memory in the susceptible subjects. The effects of CSDS on emotional memory, but not on recognition memory and anxiety, are reversed by indomethacin. Moreover, memory impairment is not secondary to the effects of CSDS on locomotor activity, emotionality or pain sensitivity. PMID:28278165

  6. Effects of Pre-Experimental Knowledge on Recognition Memory

    ERIC Educational Resources Information Center

    Bird, Chris M.; Davies, Rachel A.; Ward, Jamie; Burgess, Neil

    2011-01-01

    The influence of pre-experimental autobiographical knowledge on recognition memory was investigated using as memoranda faces that were either personally known or unknown to the participant. Under a dual process theory, such knowledge boosted both recollection- and familiarity-based recognition judgements. Under an unequal variance signal detection…

  7. Short temporal asynchrony disrupts visual object recognition

    PubMed Central

    Singer, Jedediah M.; Kreiman, Gabriel

    2014-01-01

    Humans can recognize objects and scenes in a small fraction of a second. The cascade of signals underlying rapid recognition might be disrupted by temporally jittering different parts of complex objects. Here we investigated the time course over which shape information can be integrated to allow for recognition of complex objects. We presented fragments of object images in an asynchronous fashion and behaviorally evaluated categorization performance. We observed that visual recognition was significantly disrupted by asynchronies of approximately 30 ms, suggesting that spatiotemporal integration begins to break down with even small deviations from simultaneity. However, moderate temporal asynchrony did not completely obliterate recognition; in fact, integration of visual shape information persisted even with an asynchrony of 100 ms. We describe the data with a concise model based on the dynamic reduction of uncertainty about what image was presented. These results emphasize the importance of timing in visual processing and provide strong constraints for the development of dynamical models of visual shape recognition. PMID:24819738

  8. The Doors and People Test: The effect of frontal lobe lesions on recall and recognition memory performance.

    PubMed

    MacPherson, Sarah E; Turner, Martha S; Bozzali, Marco; Cipolotti, Lisa; Shallice, Tim

    2016-03-01

    Memory deficits in patients with frontal lobe lesions are most apparent on free recall tasks that require the selection, initiation, and implementation of retrieval strategies. The effect of frontal lesions on recognition memory performance is less clear with some studies reporting recognition memory impairments but others not. The majority of these studies do not directly compare recall and recognition within the same group of frontal patients, assessing only recall or recognition memory performance. Other studies that do compare recall and recognition in the same frontal group do not consider recall or recognition tests that are comparable for difficulty. Recognition memory impairments may not be reported because recognition memory tasks are less demanding. This study aimed to investigate recall and recognition impairments in the same group of 47 frontal patients and 78 healthy controls. The Doors and People Test was administered as a neuropsychological test of memory as it assesses both verbal and visual recall and recognition using subtests that are matched for difficulty. Significant verbal and visual recall and recognition impairments were found in the frontal patients. These results demonstrate that when frontal patients are assessed on recall and recognition memory tests of comparable difficulty, memory impairments are found on both types of episodic memory test. (c) 2016 APA, all rights reserved).

  9. Integration trumps selection in object recognition.

    PubMed

    Saarela, Toni P; Landy, Michael S

    2015-03-30

    Finding and recognizing objects is a fundamental task of vision. Objects can be defined by several "cues" (color, luminance, texture, etc.), and humans can integrate sensory cues to improve detection and recognition [1-3]. Cortical mechanisms fuse information from multiple cues [4], and shape-selective neural mechanisms can display cue invariance by responding to a given shape independent of the visual cue defining it [5-8]. Selective attention, in contrast, improves recognition by isolating a subset of the visual information [9]. Humans can select single features (red or vertical) within a perceptual dimension (color or orientation), giving faster and more accurate responses to items having the attended feature [10, 11]. Attention elevates neural responses and sharpens neural tuning to the attended feature, as shown by studies in psychophysics and modeling [11, 12], imaging [13-16], and single-cell and neural population recordings [17, 18]. Besides single features, attention can select whole objects [19-21]. Objects are among the suggested "units" of attention because attention to a single feature of an object causes the selection of all of its features [19-21]. Here, we pit integration against attentional selection in object recognition. We find, first, that humans can integrate information near optimally from several perceptual dimensions (color, texture, luminance) to improve recognition. They cannot, however, isolate a single dimension even when the other dimensions provide task-irrelevant, potentially conflicting information. For object recognition, it appears that there is mandatory integration of information from multiple dimensions of visual experience. The advantage afforded by this integration, however, comes at the expense of attentional selection. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Integration trumps selection in object recognition

    PubMed Central

    Saarela, Toni P.; Landy, Michael S.

    2015-01-01

    Summary Finding and recognizing objects is a fundamental task of vision. Objects can be defined by several “cues” (color, luminance, texture etc.), and humans can integrate sensory cues to improve detection and recognition [1–3]. Cortical mechanisms fuse information from multiple cues [4], and shape-selective neural mechanisms can display cue-invariance by responding to a given shape independent of the visual cue defining it [5–8]. Selective attention, in contrast, improves recognition by isolating a subset of the visual information [9]. Humans can select single features (red or vertical) within a perceptual dimension (color or orientation), giving faster and more accurate responses to items having the attended feature [10,11]. Attention elevates neural responses and sharpens neural tuning to the attended feature, as shown by studies in psychophysics and modeling [11,12], imaging [13–16], and single-cell and neural population recordings [17,18]. Besides single features, attention can select whole objects [19–21]. Objects are among the suggested “units” of attention because attention to a single feature of an object causes the selection of all of its features [19–21]. Here, we pit integration against attentional selection in object recognition. We find, first, that humans can integrate information near-optimally from several perceptual dimensions (color, texture, luminance) to improve recognition. They cannot, however, isolate a single dimension even when the other dimensions provide task-irrelevant, potentially conflicting information. For object recognition, it appears that there is mandatory integration of information from multiple dimensions of visual experience. The advantage afforded by this integration, however, comes at the expense of attentional selection. PMID:25802154

  11. Effects of hydrocortisone on false memory recognition in healthy men and women.

    PubMed

    Duesenberg, Moritz; Weber, Juliane; Schaeuffele, Carmen; Fleischer, Juliane; Hellmann-Regen, Julian; Roepke, Stefan; Moritz, Steffen; Otte, Christian; Wingenfeld, Katja

    2016-12-01

    Most of the studies focusing on the effect of stress on false memories by using psychosocial and physiological stressors yielded diverse results. In the present study, we systematically tested the effect of exogenous hydrocortisone using a false memory paradigm. In this placebo-controlled study, 37 healthy men and 38 healthy women (mean age 24.59 years) received either 10 mg of hydrocortisone or placebo 75 min before using the false memory, that is, Deese-Roediger-McDermott (DRM), paradigm. We used emotionally charged and neutral DRM-based word lists to look for false recognition rates in comparison to true recognition rates. Overall, we expected an increase in false memory after hydrocortisone compared to placebo. No differences between the cortisol and the placebo group were revealed for false and for true recognition performance. In general, false recognition rates were lower compared to true recognition rates. Furthermore, we found a valence effect (neutral, positive, negative, disgust word stimuli), indicating higher rates of true and false recognition for emotional compared to neutral words. We further found an interaction effect between sex and recognition. Post hoc t tests showed that for true recognition women showed a significantly better memory performance than men, independent of treatment. This study does not support the hypothesis that cortisol decreases the ability to distinguish between old versus novel words in young healthy individuals. However, sex and emotional valence of word stimuli appear to be important moderators. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  12. Relative recency influences object-in-context memory

    PubMed Central

    Tam, Shu K.E.; Bonardi, Charlotte; Robinson, Jasper

    2015-01-01

    In two experiments rats received training on an object-in-context (OIC) task, in which they received preexposure to object A in context x, followed by exposure to object B in context y. In a subsequent test both A and B are presented in either context x or context y. Usually more exploration is seen of the object that has not previously been paired with the test context, an effect attributed to the ability to remember where an object was encountered. However, in the typical version of this task, object A has also been encountered less recently than object B at test. This is precisely the arrangement in tests of ‘relatively recency’ (RR), in which more remotely presented objects are explored more than objects experienced more recently. RR could contaminate performance on the OIC task, by enhancing the OIC effect when animals are tested in context y, and masking it when the test is in context x. This possibility was examined in two experiments, and evidence for superior performance in context y was obtained. The implications of this for theoretical interpretations of recognition memory and the procedures used to explore it are discussed. PMID:25546721

  13. The impact of beliefs about face recognition ability on memory retrieval processes in young and older adults.

    PubMed

    Humphries, Joyce E; Flowe, Heather D; Hall, Louise C; Williams, Louise C; Ryder, Hannah L

    2016-01-01

    This study examined whether beliefs about face recognition ability differentially influence memory retrieval in older compared to young adults. Participants evaluated their ability to recognise faces and were also given information about their ability to perceive and recognise faces. The information was ostensibly based on an objective measure of their ability, but in actuality, participants had been randomly assigned the information they received (high ability, low ability or no information control). Following this information, face recognition accuracy for a set of previously studied faces was measured using a remember-know memory paradigm. Older adults rated their ability to recognise faces as poorer compared to young adults. Additionally, negative information about face recognition ability improved only older adults' ability to recognise a previously seen face. Older adults were also found to engage in more familiarity than item-specific processing than young adults, but information about their face recognition ability did not affect face processing style. The role that older adults' memory beliefs have in the meta-cognitive strategies they employ is discussed.

  14. Enhanced tactile encoding and memory recognition in congenital blindness.

    PubMed

    D'Angiulli, Amedeo; Waraich, Paul

    2002-06-01

    Several behavioural studies have shown that early-blind persons possess superior tactile skills. Since neurophysiological data show that early-blind persons recruit visual as well as somatosensory cortex to carry out tactile processing (cross-modal plasticity), blind persons' sharper tactile skills may be related to cortical re-organisation resulting from loss of vision early in their life. To examine the nature of blind individuals' tactile superiority and its implications for cross-modal plasticity, we compared the tactile performance of congenitally totally blind, low-vision and sighted children on raised-line picture identification test and re-test, assessing effects of task familiarity, exploratory strategy and memory recognition. What distinguished the blind from the other children was higher memory recognition and higher tactile encoding associated with efficient exploration. These results suggest that enhanced perceptual encoding and recognition memory may be two cognitive correlates of cross-modal plasticity in congenital blindness.

  15. Are Face and Object Recognition Independent? A Neurocomputational Modeling Exploration.

    PubMed

    Wang, Panqu; Gauthier, Isabel; Cottrell, Garrison

    2016-04-01

    Are face and object recognition abilities independent? Although it is commonly believed that they are, Gauthier et al. [Gauthier, I., McGugin, R. W., Richler, J. J., Herzmann, G., Speegle, M., & VanGulick, A. E. Experience moderates overlap between object and face recognition, suggesting a common ability. Journal of Vision, 14, 7, 2014] recently showed that these abilities become more correlated as experience with nonface categories increases. They argued that there is a single underlying visual ability, v, that is expressed in performance with both face and nonface categories as experience grows. Using the Cambridge Face Memory Test and the Vanderbilt Expertise Test, they showed that the shared variance between Cambridge Face Memory Test and Vanderbilt Expertise Test performance increases monotonically as experience increases. Here, we address why a shared resource across different visual domains does not lead to competition and to an inverse correlation in abilities? We explain this conundrum using our neurocomputational model of face and object processing ["The Model", TM, Cottrell, G. W., & Hsiao, J. H. Neurocomputational models of face processing. In A. J. Calder, G. Rhodes, M. Johnson, & J. Haxby (Eds.), The Oxford handbook of face perception. Oxford, UK: Oxford University Press, 2011]. We model the domain general ability v as the available computational resources (number of hidden units) in the mapping from input to label and experience as the frequency of individual exemplars in an object category appearing during network training. Our results show that, as in the behavioral data, the correlation between subordinate level face and object recognition accuracy increases as experience grows. We suggest that different domains do not compete for resources because the relevant features are shared between faces and objects. The essential power of experience is to generate a "spreading transform" for faces (separating them in representational space) that

  16. Object memory and change detection: dissociation as a function of visual and conceptual similarity.

    PubMed

    Yeh, Yei-Yu; Yang, Cheng-Ta

    2008-01-01

    People often fail to detect a change between two visual scenes, a phenomenon referred to as change blindness. This study investigates how a post-change object's similarity to the pre-change object influences memory of the pre-change object and affects change detection. The results of Experiment 1 showed that similarity lowered detection sensitivity but did not affect the speed of identifying the pre-change object, suggesting that similarity between the pre- and post-change objects does not degrade the pre-change representation. Identification speed for the pre-change object was faster than naming the new object regardless of detection accuracy. Similarity also decreased detection sensitivity in Experiment 2 but improved the recognition of the pre-change object under both correct detection and detection failure. The similarity effect on recognition was greatly reduced when 20% of each pre-change stimulus was masked by random dots in Experiment 3. Together the results suggest that the level of pre-change representation under detection failure is equivalent to the level under correct detection and that the pre-change representation is almost complete. Similarity lowers detection sensitivity but improves explicit access in recognition. Dissociation arises between recognition and change detection as the two judgments rely on the match-to-mismatch signal and mismatch-to-match signal, respectively.

  17. Using maintenance rehearsal to explore recognition memory.

    PubMed

    Humphreys, Michael S; Maguire, Angela M; McFarlane, Kimberley A; Burt, Jennifer S; Bolland, Scott W; Murray, Krista L; Dunn, Ryan

    2010-01-01

    We examined associative and item recognition using the maintenance rehearsal paradigm. Our intent was to control for mnemonic strategies; to produce a low, graded level of learning; and to provide evidence of the role of attention in long-term memory. An advantage for low-frequency words emerged in both associative and item recognition at very low levels of learning. This early emergence casts doubt on explanations based on the traditional concept of recollection. A comparison of false alarms supports a role for item information or the joint use of cues but not familiarity in producing associative false alarms. We may also have found a way to measure the amount of attention being paid to a to-be-learned item or pair, independently of memory performance on the attended item. This result may be an important step in determining whether coherent theories about the role of attention in long- and short-term memory can be created. (PsycINFO Database Record (c) 2009 APA, all rights reserved).

  18. Role of medial prefrontal cortex serotonin 2A receptors in the control of retrieval of recognition memory in rats.

    PubMed

    Bekinschtein, Pedro; Renner, Maria Constanza; Gonzalez, Maria Carolina; Weisstaub, Noelia

    2013-10-02

    Often, retrieval cues are not uniquely related to one specific memory, which could lead to memory interference. Controlling interference is particularly important during episodic memory retrieval or when remembering specific events in a spatiotemporal context. Despite a clear involvement of prefrontal cortex (PFC) in episodic memory in human studies, information regarding the mechanisms and neurotransmitter systems in PFC involved in memory is scarce. Although the serotoninergic system has been linked to PFC functionality and modulation, its role in memory processing is poorly understood. We hypothesized that the serotoninergic system in PFC, in particular the 5-HT2A receptor (5-HT2AR) could have a role in the control of memory retrieval. In this work we used different versions of the object recognition task in rats to study the role of the serotoninergic modulation in the medial PFC (mPFC) in memory retrieval. We found that blockade of 5-HT2AR in mPFC affects retrieval of an object in context memory in a spontaneous novelty preference task, while sparing single-item recognition memory. We also determined that 5-HT2ARs in mPFC are required for hippocampal-mPFC interaction during retrieval of this type of memory, suggesting that the mPFC controls the expression of memory traces stored in the hippocampus biasing retrieval to the most relevant one.

  19. Interplay between affect and arousal in recognition memory.

    PubMed

    Greene, Ciara M; Bahri, Pooja; Soto, David

    2010-07-23

    Emotional states linked to arousal and mood are known to affect the efficiency of cognitive performance. However, the extent to which memory processes may be affected by arousal, mood or their interaction is poorly understood. Following a study phase of abstract shapes, we altered the emotional state of participants by means of exposure to music that varied in both mood and arousal dimensions, leading to four different emotional states: (i) positive mood-high arousal; (ii) positive mood-low arousal; (iii) negative mood-high arousal; (iv) negative mood-low arousal. Following the emotional induction, participants performed a memory recognition test. Critically, there was an interaction between mood and arousal on recognition performance. Memory was enhanced in the positive mood-high arousal and in the negative mood-low arousal states, relative to the other emotional conditions. Neither mood nor arousal alone but their interaction appears most critical to understanding the emotional enhancement of memory.

  20. Visual working memory is more tolerant than visual long-term memory.

    PubMed

    Schurgin, Mark W; Flombaum, Jonathan I

    2018-05-07

    Human visual memory is tolerant, meaning that it supports object recognition despite variability across encounters at the image level. Tolerant object recognition remains one capacity in which artificial intelligence trails humans. Typically, tolerance is described as a property of human visual long-term memory (VLTM). In contrast, visual working memory (VWM) is not usually ascribed a role in tolerant recognition, with tests of that system usually demanding discriminatory power-identifying changes, not sameness. There are good reasons to expect that VLTM is more tolerant; functionally, recognition over the long-term must accommodate the fact that objects will not be viewed under identical conditions; and practically, the passive and massive nature of VLTM may impose relatively permissive criteria for thinking that two inputs are the same. But empirically, tolerance has never been compared across working and long-term visual memory. We therefore developed a novel paradigm for equating encoding and test across different memory types. In each experiment trial, participants saw two objects, memory for one tested immediately (VWM) and later for the other (VLTM). VWM performance was better than VLTM and remained robust despite the introduction of image and object variability. In contrast, VLTM performance suffered linearly as more variability was introduced into test stimuli. Additional experiments excluded interference effects as causes for the observed differences. These results suggest the possibility of a previously unidentified role for VWM in the acquisition of tolerant representations for object recognition. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  1. Analysis and Recognition of Curve Type as The Basis of Object Recognition in Image

    NASA Astrophysics Data System (ADS)

    Nugraha, Nurma; Madenda, Sarifuddin; Indarti, Dina; Dewi Agushinta, R.; Ernastuti

    2016-06-01

    An object in an image when analyzed further will show the characteristics that distinguish one object with another object in an image. Characteristics that are used in object recognition in an image can be a color, shape, pattern, texture and spatial information that can be used to represent objects in the digital image. The method has recently been developed for image feature extraction on objects that share characteristics curve analysis (simple curve) and use the search feature of chain code object. This study will develop an algorithm analysis and the recognition of the type of curve as the basis for object recognition in images, with proposing addition of complex curve characteristics with maximum four branches that will be used for the process of object recognition in images. Definition of complex curve is the curve that has a point of intersection. By using some of the image of the edge detection, the algorithm was able to do the analysis and recognition of complex curve shape well.

  2. Unraveling the Contributions of the Diencephalon to Recognition Memory: A Review

    ERIC Educational Resources Information Center

    Aggleton, John P.; Dumont, Julie R.; Warburton, Elizabeth Clea

    2011-01-01

    Both clinical investigations and studies with animals reveal nuclei within the diencephalon that are vital for recognition memory (the judgment of prior occurrence). This review seeks to identify these nuclei and to consider why they might be important for recognition memory. Despite the lack of clinical cases with circumscribed pathology within…

  3. Research on improving image recognition robustness by combining multiple features with associative memory

    NASA Astrophysics Data System (ADS)

    Guo, Dongwei; Wang, Zhe

    2018-05-01

    Convolutional neural networks (CNN) achieve great success in computer vision, it can learn hierarchical representation from raw pixels and has outstanding performance in various image recognition tasks [1]. However, CNN is easy to be fraudulent in terms of it is possible to produce images totally unrecognizable to human eyes that CNNs believe with near certainty are familiar objects. [2]. In this paper, an associative memory model based on multiple features is proposed. Within this model, feature extraction and classification are carried out by CNN, T-SNE and exponential bidirectional associative memory neural network (EBAM). The geometric features extracted from CNN and the digital features extracted from T-SNE are associated by EBAM. Thus we ensure the recognition of robustness by a comprehensive assessment of the two features. In our model, we can get only 8% error rate with fraudulent data. In systems that require a high safety factor or some key areas, strong robustness is extremely important, if we can ensure the image recognition robustness, network security will be greatly improved and the social production efficiency will be extremely enhanced.

  4. How similar are recognition memory and inductive reasoning?

    PubMed

    Hayes, Brett K; Heit, Evan

    2013-07-01

    Conventionally, memory and reasoning are seen as different types of cognitive activities driven by different processes. In two experiments, we challenged this view by examining the relationship between recognition memory and inductive reasoning involving multiple forms of similarity. A common study set (members of a conjunctive category) was followed by a test set containing old and new category members, as well as items that matched the study set on only one dimension. The study and test sets were presented under recognition or induction instructions. In Experiments 1 and 2, the inductive property being generalized was varied in order to direct attention to different dimensions of similarity. When there was no time pressure on decisions, patterns of positive responding were strongly affected by property type, indicating that different types of similarity were driving recognition and induction. By comparison, speeded judgments showed weaker property effects and could be explained by generalization based on overall similarity. An exemplar model, GEN-EX (GENeralization from EXamples), could account for both the induction and recognition data. These findings show that induction and recognition share core component processes, even when the tasks involve flexible forms of similarity.

  5. Social Recognition Memory Requires Two Stages of Protein Synthesis in Mice

    ERIC Educational Resources Information Center

    Wolf, Gerald; Engelmann, Mario; Richter, Karin

    2005-01-01

    Olfactory recognition memory was tested in adult male mice using a social discrimination task. The testing was conducted to begin to characterize the role of protein synthesis and the specific brain regions associated with activity in this task. Long-term olfactory recognition memory was blocked when the protein synthesis inhibitor anisomycin was…

  6. 5-HT2a receptor in mPFC influences context-guided reconsolidation of object memory in perirhinal cortex.

    PubMed

    Morici, Juan Facundo; Miranda, Magdalena; Gallo, Francisco Tomás; Zanoni, Belén; Bekinschtein, Pedro; Weisstaub, Noelia V

    2018-05-02

    Context-dependent memories may guide adaptive behavior relaying in previous experience while updating stored information through reconsolidation. Retrieval can be triggered by partial and shared cues. When the cue is presented, the most relevant memory should be updated. In a contextual version of the object recognition task, we examined the effect of medial PFC (mPFC) serotonin 2a receptor (5-HT2aR) blockade during retrieval in reconsolidation of competing objects memories. We found that mPFC 5-HT2aR controls retrieval and reconsolidation of object memories in the perirhinal cortex (PRH), but not in the dorsal hippocampus in rats. Also, reconsolidation of objects memories in PRH required a functional interaction between the ventral hippocampus and the mPFC. Our results indicate that in the presence of conflicting information at retrieval, mPFC 5-HT2aR may facilitate top-down context-guided control over PRH to control the behavioral response and object memory reconsolidation. © 2018, Morici et al.

  7. 5-HT2a receptor in mPFC influences context-guided reconsolidation of object memory in perirhinal cortex

    PubMed Central

    Morici, Juan Facundo; Miranda, Magdalena; Gallo, Francisco Tomás; Zanoni, Belén; Bekinschtein, Pedro

    2018-01-01

    Context-dependent memories may guide adaptive behavior relaying in previous experience while updating stored information through reconsolidation. Retrieval can be triggered by partial and shared cues. When the cue is presented, the most relevant memory should be updated. In a contextual version of the object recognition task, we examined the effect of medial PFC (mPFC) serotonin 2a receptor (5-HT2aR) blockade during retrieval in reconsolidation of competing objects memories. We found that mPFC 5-HT2aR controls retrieval and reconsolidation of object memories in the perirhinal cortex (PRH), but not in the dorsal hippocampus in rats. Also, reconsolidation of objects memories in PRH required a functional interaction between the ventral hippocampus and the mPFC. Our results indicate that in the presence of conflicting information at retrieval, mPFC 5-HT2aR may facilitate top-down context-guided control over PRH to control the behavioral response and object memory reconsolidation. PMID:29717980

  8. Fan Size and Foil Type in Recognition Memory.

    ERIC Educational Resources Information Center

    Walls, Richard T.; And Others

    An experiment involving 20 graduate and undergraduate students (7 males and 13 females) at West Virginia University (Morgantown) assessed "fan network structures" of recognition memory. A fan in network memory structure occurs when several facts are connected into a single node (concept). The more links from that concept to various…

  9. Holographic implementation of a binary associative memory for improved recognition

    NASA Astrophysics Data System (ADS)

    Bandyopadhyay, Somnath; Ghosh, Ajay; Datta, Asit K.

    1998-03-01

    Neural network associate memory has found wide application sin pattern recognition techniques. We propose an associative memory model for binary character recognition. The interconnection strengths of the memory are binary valued. The concept of sparse coding is sued to enhance the storage efficiency of the model. The question of imposed preconditioning of pattern vectors, which is inherent in a sparsely coded conventional memory, is eliminated by using a multistep correlation technique an the ability of correct association is enhanced in a real-time application. A potential optoelectronic implementation of the proposed associative memory is also described. The learning and recall is possible by using digital optical matrix-vector multiplication, where full use of parallelism and connectivity of optics is made. A hologram is used in the experiment as a longer memory (LTM) for storing all input information. The short-term memory or the interconnection weight matrix required during the recall process is configured by retrieving the necessary information from the holographic LTM.

  10. Neural correlates of recognition memory of social information in people with schizophrenia.

    PubMed

    Harvey, Philippe-Olivier; Lepage, Martin

    2014-03-01

    Social dysfunction is a hallmark characteristic of schizophrenia. Part of it may stem from an inability to efficiently encode social information into memory and retrieve it later. This study focused on whether patients with schizophrenia show a memory boost for socially relevant information and engage the same neural network as controls when processing social stimuli that were previously encoded into memory. Patients with schizophrenia and healthy controls performed a social and nonsocial picture recognition memory task while being scanned. We calculated memory performance using d'. Our main analysis focused on brain activity associated with recognition memory of social and nonsocial pictures. Our study included 28 patients with schizophrenia and 26 controls. Healthy controls demonstrated a memory boost for socially relevant information. In contrast, patients with schizophrenia failed to show enhanced recognition sensitivity for social pictures. At the neural level, patients did not engage the dorsomedial prefrontal cortex (DMPFC) as much as controls while recognizing social pictures. Our study did not include direct measures of self-referential processing. All but 3 patients were taking antipsychotic medications, which may have altered both the behavioural performance during the picture recognition memory task and brain activity. Impaired social memory in patients with schizophrenia may be associated with altered DMPFC activity. A reduction of DMPFC activity may reflect less involvement of self-referential processes during memory retrieval. Our functional MRI results contribute to a better mapping of the neural disturbances associated with social memory impairment in patients with schizophrenia and may facilitate the development of innovative treatments, such as transcranial magnetic stimulation.

  11. Modeling Confidence and Response Time in Recognition Memory

    ERIC Educational Resources Information Center

    Ratcliff, Roger; Starns, Jeffrey J.

    2009-01-01

    A new model for confidence judgments in recognition memory is presented. In the model, the match between a single test item and memory produces a distribution of evidence, with better matches corresponding to distributions with higher means. On this match dimension, confidence criteria are placed, and the areas between the criteria under the…

  12. Food restriction affects Y-maze spatial recognition memory in developing mice.

    PubMed

    Fu, Yu; Chen, Yanmei; Li, Liane; Wang, Yumei; Kong, Xiangyang; Wang, Jianhong

    2017-08-01

    The ambiguous effects of food restriction (FR) on cognition in rodents have been mostly explored in the aged brain by a variety of paradigms, in which either rewards or punishments are involved. This study aims to examine the effects of chronic and acute FR with varying intensities on spatial recognition memory in developing mice. We have used a Y-maze task that is based on the innate tendency of rodents to explore novel environments. In chronic FR, mice had 70-30% chow of control for seven weeks. In acute FR, mice were food restricted for 12-48h before the tests. We found that chronic FR had no effect on the preference of mice for novelty in the Y-maze, but severe FR (50-30% of control) caused impairment on spatial recognition memory. The impairment significantly correlated with the slow weight growth induced by FR. Acute FR also did not affect the novelty preference of mice, but either improved or impaired the memory retention. These data suggest chronic FR impairs Y-maze spatial recognition memory in developing mice depending on FR intensity and individual tolerability of the FR. Moreover, acute FR exerts diverse effects on the memory, either positive or negative. Our findings have revealed new insights on the effects of FR on spatial recognition memory in developing animals. Copyright © 2017 ISDN. Published by Elsevier Ltd. All rights reserved.

  13. The Role of Perceptual Load in Object Recognition

    ERIC Educational Resources Information Center

    Lavie, Nilli; Lin, Zhicheng; Zokaei, Nahid; Thoma, Volker

    2009-01-01

    Predictions from perceptual load theory (Lavie, 1995, 2005) regarding object recognition across the same or different viewpoints were tested. Results showed that high perceptual load reduces distracter recognition levels despite always presenting distracter objects from the same view. They also showed that the levels of distracter recognition were…

  14. Recognition Memory for Novel Stimuli: The Structural Regularity Hypothesis

    ERIC Educational Resources Information Center

    Cleary, Anne M.; Morris, Alison L.; Langley, Moses M.

    2007-01-01

    Early studies of human memory suggest that adherence to a known structural regularity (e.g., orthographic regularity) benefits memory for an otherwise novel stimulus (e.g., G. A. Miller, 1958). However, a more recent study suggests that structural regularity can lead to an increase in false-positive responses on recognition memory tests (B. W. A.…

  15. Fast neuromimetic object recognition using FPGA outperforms GPU implementations.

    PubMed

    Orchard, Garrick; Martin, Jacob G; Vogelstein, R Jacob; Etienne-Cummings, Ralph

    2013-08-01

    Recognition of objects in still images has traditionally been regarded as a difficult computational problem. Although modern automated methods for visual object recognition have achieved steadily increasing recognition accuracy, even the most advanced computational vision approaches are unable to obtain performance equal to that of humans. This has led to the creation of many biologically inspired models of visual object recognition, among them the hierarchical model and X (HMAX) model. HMAX is traditionally known to achieve high accuracy in visual object recognition tasks at the expense of significant computational complexity. Increasing complexity, in turn, increases computation time, reducing the number of images that can be processed per unit time. In this paper we describe how the computationally intensive and biologically inspired HMAX model for visual object recognition can be modified for implementation on a commercial field-programmable aate Array, specifically the Xilinx Virtex 6 ML605 evaluation board with XC6VLX240T FPGA. We show that with minor modifications to the traditional HMAX model we can perform recognition on images of size 128 × 128 pixels at a rate of 190 images per second with a less than 1% loss in recognition accuracy in both binary and multiclass visual object recognition tasks.

  16. Zif268/Egr1 gain of function facilitates hippocampal synaptic plasticity and long-term spatial recognition memory.

    PubMed

    Penke, Zsuzsa; Morice, Elise; Veyrac, Alexandra; Gros, Alexandra; Chagneau, Carine; LeBlanc, Pascale; Samson, Nathalie; Baumgärtel, Karsten; Mansuy, Isabelle M; Davis, Sabrina; Laroche, Serge

    2014-01-05

    It is well established that Zif268/Egr1, a member of the Egr family of transcription factors, is critical for the consolidation of several forms of memory; however, it is as yet uncertain whether increasing expression of Zif268 in neurons can facilitate memory formation. Here, we used an inducible transgenic mouse model to specifically induce Zif268 overexpression in forebrain neurons and examined the effect on recognition memory and hippocampal synaptic transmission and plasticity. We found that Zif268 overexpression during the establishment of memory for objects did not change the ability to form a long-term memory of objects, but enhanced the capacity to form a long-term memory of the spatial location of objects. This enhancement was paralleled by increased long-term potentiation in the dentate gyrus of the hippocampus and by increased activity-dependent expression of Zif268 and selected Zif268 target genes. These results provide novel evidence that transcriptional mechanisms engaging Zif268 contribute to determining the strength of newly encoded memories.

  17. Intracerebroventricular oxytocin administration in rats enhances object recognition and increases expression of neurotrophins, microtubule-associated protein 2, and synapsin I.

    PubMed

    Havranek, Tomas; Zatkova, Martina; Lestanova, Zuzana; Bacova, Zuzana; Mravec, Boris; Hodosy, Julius; Strbak, Vladimir; Bakos, Jan

    2015-06-01

    Brain oxytocin regulates a variety of social and affiliative behaviors and affects also learning and memory. However, mechanisms of its action at the level of neuronal circuits are not fully understood. The present study tests the hypothesis that molecular factors required for memory formation and synaptic plasticity, including brain-derived neurotrophic factor, neural growth factor, nestin, microtubule-associated protein 2 (MAP2), and synapsin I, are enhanced by central administration of oxytocin. We also investigated whether oxytocin enhances object recognition and acts as anxiolytic agent. Therefore, male Wistar rats were infused continuously with oxytocin (20 ng/µl) via an osmotic minipump into the lateral cerebral ventricle for 7 days; controls were infused with vehicle. The object recognition test, open field test, and elevated plus maze test were performed on the sixth, seventh, and eighth days from starting the infusion. No significant effects of oxytocin on anxious-like behavior were observed. The object recognition test showed that oxytocin-treated rats significantly preferred unknown objects. Oxytocin treatment significantly increased gene expression and protein levels of neurotrophins, MAP2, and synapsin I in the hippocampus. No changes were observed in nestin expression. Our results provide the first direct evidence implicating oxytocin as a regulator of brain plasticity at the level of changes of neuronal growth factors, cytoskeletal proteins, and behavior. The data support assumption that oxytocin is important for short-term hippocampus-dependent memory. © 2015 Wiley Periodicals, Inc.

  18. Shape and Color Features for Object Recognition Search

    NASA Technical Reports Server (NTRS)

    Duong, Tuan A.; Duong, Vu A.; Stubberud, Allen R.

    2012-01-01

    A bio-inspired shape feature of an object of interest emulates the integration of the saccadic eye movement and horizontal layer in vertebrate retina for object recognition search where a single object can be used one at a time. The optimal computational model for shape-extraction-based principal component analysis (PCA) was also developed to reduce processing time and enable the real-time adaptive system capability. A color feature of the object is employed as color segmentation to empower the shape feature recognition to solve the object recognition in the heterogeneous environment where a single technique - shape or color - may expose its difficulties. To enable the effective system, an adaptive architecture and autonomous mechanism were developed to recognize and adapt the shape and color feature of the moving object. The bio-inspired object recognition based on bio-inspired shape and color can be effective to recognize a person of interest in the heterogeneous environment where the single technique exposed its difficulties to perform effective recognition. Moreover, this work also demonstrates the mechanism and architecture of the autonomous adaptive system to enable the realistic system for the practical use in the future.

  19. Transcranial focal electrical stimulation via tripolar concentric ring electrodes does not modify the short- and long-term memory formation in rats evaluated in the novel object recognition test.

    PubMed

    Rogel-Salazar, G; Luna-Munguía, H; Stevens, K E; Besio, W G

    2013-04-01

    Noninvasive transcranial focal electrical stimulation (TFS) via tripolar concentric ring electrodes (TCREs) has been under development as an alternative/complementary therapy for seizure control. Transcranial focal electrical stimulation has shown efficacy in attenuating penicillin-, pilocarpine-, and pentylenetetrazole-induced acute seizures in rat models. This study evaluated the effects of TFS via TCREs on the memory formation of healthy rats as a safety test of TFS. Short- and long-term memory formation was tested after the application of TFS using the novel object recognition (NOR) test. The following independent groups were used: naïve, control (without TFS), and TFS (treated). The naïve, control, and stimulated groups spent more time investigating the new object than the familiar one during the test phase. Transcranial focal electrical stimulation via TCREs given once does not modify the short- and long-term memory formation in rats in the NOR test. Results provide an important step towards a better understanding for the safe usage of TFS via TCREs. Copyright © 2013 Elsevier Inc. All rights reserved.

  20. Erythropoietin improves object placement recognition memory in a time dependent manner in both, uninjured animals and fimbria-fornix-lesioned male rats.

    PubMed

    Almaguer-Melian, W; Mercerón-Martinez, D; Delgado-Ocaña, S; Alberti-Amador, E; Gonzalez-Gómez, R; Bergado, Jorge A

    2018-04-01

    An increasing number of reports sustain a possible role of erythropoietin (EPO) as neuroprotective agent. In two previous articles we have evaluated EPO as plasticity promoting agent, and to contribute the restoration of brain function affected by acquired damage. We have shown that EPO is able to induce an increased synaptic efficacy in vivo along with a plasticity promoting effect. In the Morris water maze EPO administration to fimbria-fornix lesioned male rats induces a significant improvement of their spatial memory, affected by the lesion. Singularly, EPO was only effective when administered shortly after training (10 min) but not after several hours (5 h), suggesting a specific EPO effect on time dependent plasticity process. In the present paper we have expanded this line of evidence using a low stress paradigm of object placement recognition in lesioned and healthy male rats. The memory trace in this model is short-lasting; animals could recognize the change in object position when tested 24 h after, but not 48 or 72 h after the acquisition session. EPO administration 10 min after acquisition significantly prolongs retention to, at least, 72 h in healthy rats. No effect was seen if EPO was administered 5 h after training, suggesting a specific EPO modulatory effect on the consolidation process. Remarkably, early EPO treatment to fimbria fornix lesioned animals reverts the memory deficit caused by the lesion. An increased expression of the plasticity related gene arc, was also confirmed in the hippocampus and the prefrontal cortex, that is likely to be involved in the behavioral improvement observed. Copyright © 2018 Elsevier Inc. All rights reserved.

  1. Individual differences in language and working memory affect children's speech recognition in noise.

    PubMed

    McCreery, Ryan W; Spratford, Meredith; Kirby, Benjamin; Brennan, Marc

    2017-05-01

    We examined how cognitive and linguistic skills affect speech recognition in noise for children with normal hearing. Children with better working memory and language abilities were expected to have better speech recognition in noise than peers with poorer skills in these domains. As part of a prospective, cross-sectional study, children with normal hearing completed speech recognition in noise for three types of stimuli: (1) monosyllabic words, (2) syntactically correct but semantically anomalous sentences and (3) semantically and syntactically anomalous word sequences. Measures of vocabulary, syntax and working memory were used to predict individual differences in speech recognition in noise. Ninety-six children with normal hearing, who were between 5 and 12 years of age. Higher working memory was associated with better speech recognition in noise for all three stimulus types. Higher vocabulary abilities were associated with better recognition in noise for sentences and word sequences, but not for words. Working memory and language both influence children's speech recognition in noise, but the relationships vary across types of stimuli. These findings suggest that clinical assessment of speech recognition is likely to reflect underlying cognitive and linguistic abilities, in addition to a child's auditory skills, consistent with the Ease of Language Understanding model.

  2. Object recognition of ladar with support vector machine

    NASA Astrophysics Data System (ADS)

    Sun, Jian-Feng; Li, Qi; Wang, Qi

    2005-01-01

    Intensity, range and Doppler images can be obtained by using laser radar. Laser radar can detect much more object information than other detecting sensor, such as passive infrared imaging and synthetic aperture radar (SAR), so it is well suited as the sensor of object recognition. Traditional method of laser radar object recognition is extracting target features, which can be influenced by noise. In this paper, a laser radar recognition method-Support Vector Machine is introduced. Support Vector Machine (SVM) is a new hotspot of recognition research after neural network. It has well performance on digital written and face recognition. Two series experiments about SVM designed for preprocessing and non-preprocessing samples are performed by real laser radar images, and the experiments results are compared.

  3. Neural correlates of recognition memory of social information in people with schizophrenia

    PubMed Central

    Harvey, Philippe-Olivier; Lepage, Martin

    2014-01-01

    Background Social dysfunction is a hallmark characteristic of schizophrenia. Part of it may stem from an inability to efficiently encode social information into memory and retrieve it later. This study focused on whether patients with schizophrenia show a memory boost for socially relevant information and engage the same neural network as controls when processing social stimuli that were previously encoded into memory. Methods Patients with schizophrenia and healthy controls performed a social and nonsocial picture recognition memory task while being scanned. We calculated memory performance using d′. Our main analysis focused on brain activity associated with recognition memory of social and nonsocial pictures. Results Our study included 28 patients with schizophrenia and 26 controls. Healthy controls demonstrated a memory boost for socially relevant information. In contrast, patients with schizophrenia failed to show enhanced recognition sensitivity for social pictures. At the neural level, patients did not engage the dorsomedial prefrontal cortex (DMPFC) as much as controls while recognizing social pictures. Limitations Our study did not include direct measures of self-referential processing. All but 3 patients were taking antipsychotic medications, which may have altered both the behavioural performance during the picture recognition memory task and brain activity. Conclusion Impaired social memory in patients with schizophrenia may be associated with altered DMPFC activity. A reduction of DMPFC activity may reflect less involvement of self-referential processes during memory retrieval. Our functional MRI results contribute to a better mapping of the neural disturbances associated with social memory impairment in patients with schizophrenia and may facilitate the development of innovative treatments, such as transcranial magnetic stimulation. PMID:24119792

  4. Face recognition by applying wavelet subband representation and kernel associative memory.

    PubMed

    Zhang, Bai-Ling; Zhang, Haihong; Ge, Shuzhi Sam

    2004-01-01

    In this paper, we propose an efficient face recognition scheme which has two features: 1) representation of face images by two-dimensional (2-D) wavelet subband coefficients and 2) recognition by a modular, personalised classification method based on kernel associative memory models. Compared to PCA projections and low resolution "thumb-nail" image representations, wavelet subband coefficients can efficiently capture substantial facial features while keeping computational complexity low. As there are usually very limited samples, we constructed an associative memory (AM) model for each person and proposed to improve the performance of AM models by kernel methods. Specifically, we first applied kernel transforms to each possible training pair of faces sample and then mapped the high-dimensional feature space back to input space. Our scheme using modular autoassociative memory for face recognition is inspired by the same motivation as using autoencoders for optical character recognition (OCR), for which the advantages has been proven. By associative memory, all the prototypical faces of one particular person are used to reconstruct themselves and the reconstruction error for a probe face image is used to decide if the probe face is from the corresponding person. We carried out extensive experiments on three standard face recognition datasets, the FERET data, the XM2VTS data, and the ORL data. Detailed comparisons with earlier published results are provided and our proposed scheme offers better recognition accuracy on all of the face datasets.

  5. Are subjective memory problems related to suggestibility, compliance, false memories, and objective memory performance?

    PubMed

    Van Bergen, Saskia; Jelicic, Marko; Merckelbach, Harald

    2009-01-01

    The relationship between subjective memory beliefs and suggestibility, compliance, false memories, and objective memory performance was studied in a community sample of young and middle-aged people (N = 142). We hypothesized that people with subjective memory problems would exhibit higher suggestibility and compliance levels and would be more susceptible to false recollections than those who are optimistic about their memory. In addition, we expected a discrepancy between subjective memory judgments and objective memory performance. We found that subjective memory judgments correlated significantly with compliance, with more negative memory judgments accompanying higher levels of compliance. Contrary to our expectation, subjective memory problems did not correlate with suggestibility or false recollections. Furthermore, participants were accurate in estimating their objective memory performance.

  6. The role of unconscious memory errors in judgments of confidence for sentence recognition.

    PubMed

    Sampaio, Cristina; Brewer, William F

    2009-03-01

    The present experiment tested the hypothesis that unconscious reconstructive memory processing can lead to the breakdown of the relationship between memory confidence and memory accuracy. Participants heard deceptive schema-inference sentences and nondeceptive sentences and were tested with either simple or forced-choice recognition. The nondeceptive items showed a positive relation between confidence and accuracy in both simple and forced-choice recognition. However, the deceptive items showed a strong negative confidence/accuracy relationship in simple recognition and a low positive relationship in forced choice. The mean levels of confidence for erroneous responses for deceptive items were inappropriately high in simple recognition but lower in forced choice. These results suggest that unconscious reconstructive memory processes involved in memory for the deceptive schema-inference items led to inaccurate confidence judgments and that, when participants were made aware of the deceptive nature of the schema-inference items through the use of a forced-choice procedure, they adjusted their confidence accordingly.

  7. Intrahippocampal injection of Cortistatin-14 impairs recognition memory consolidation in mice through activation of sst2, ghrelin and GABAA/B receptors.

    PubMed

    Jiang, Jinhong; Peng, Yali; He, Zhen; Wei, Lijuan; Jin, Weidong; Wang, Xiaoli; Chang, Min

    2017-07-01

    Cortistatin-14 (CST-14), a neuropeptide related to somatostatin, is primarily localized within the cortex and hippocampus. In the hippocampus, CST-14 inhibits CA1 neuronal pyramidal cell firing and co-exists with GABA. However, its role in cognitive is still not clarified. The first aim of our study was to elucidate the role of CST-14 signaling in consolidation and reconsolidation of recognition memory in mice, using novel object recognition task. The results showed that central CST-14 induced in impairment of long-term and short-term recognition memory, indicating memory consolidation impairment effect. Similarly, we found that CST-14 did not impaired long-term and short-term reconsolidation recognition memory. To further investigate the underlying mechanisms of CST-14 in memory process, we used cyclosomatostatin (c-SOM, a selective sst 1-5 receptor antagonist), cyanamid154806 (a selective sst 2 receptor antagonist), ODN-8 (a high affinity and selectivity compound for sst 3 receptor), [d-Lys 3 ]GHRP-6 (a selective ghrelin receptor antagonist), picrotoxin (PTX, a GABA A receptor antagonist), and sacolfen (a GABA B receptor antagonist) to research its effects in recognition. Our results firstly indicated that the memory-impairing effects of CST-14 were significantly reversed by c-SOM, cyanamid154806, [d-Lys 3 ]GHRP-6, PTX and sacolfen, but not ODN-8, suggesting that the blockage of recognition memory consolidation induced by CST-14 involves sst 2 , ghrelin and GABA system. The present study provides a potential strategy to regulate memory processes, providing new evidence that reconsolidation is not a simple reiteration of consolidation. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Object Recognition and Localization: The Role of Tactile Sensors

    PubMed Central

    Aggarwal, Achint; Kirchner, Frank

    2014-01-01

    Tactile sensors, because of their intrinsic insensitivity to lighting conditions and water turbidity, provide promising opportunities for augmenting the capabilities of vision sensors in applications involving object recognition and localization. This paper presents two approaches for haptic object recognition and localization for ground and underwater environments. The first approach called Batch Ransac and Iterative Closest Point augmented Particle Filter (BRICPPF) is based on an innovative combination of particle filters, Iterative-Closest-Point algorithm, and a feature-based Random Sampling and Consensus (RANSAC) algorithm for database matching. It can handle a large database of 3D-objects of complex shapes and performs a complete six-degree-of-freedom localization of static objects. The algorithms are validated by experimentation in ground and underwater environments using real hardware. To our knowledge this is the first instance of haptic object recognition and localization in underwater environments. The second approach is biologically inspired, and provides a close integration between exploration and recognition. An edge following exploration strategy is developed that receives feedback from the current state of recognition. A recognition by parts approach is developed which uses the BRICPPF for object sub-part recognition. Object exploration is either directed to explore a part until it is successfully recognized, or is directed towards new parts to endorse the current recognition belief. This approach is validated by simulation experiments. PMID:24553087

  9. Object-Place Recognition Learning Triggers Rapid Induction of Plasticity-Related Immediate Early Genes and Synaptic Proteins in the Rat Dentate Gyrus

    PubMed Central

    Soulé, Jonathan; Penke, Zsuzsa; Kanhema, Tambudzai; Alme, Maria Nordheim; Laroche, Serge; Bramham, Clive R.

    2008-01-01

    Long-term recognition memory requires protein synthesis, but little is known about the coordinate regulation of specific genes. Here, we examined expression of the plasticity-associated immediate early genes (Arc, Zif268, and Narp) in the dentate gyrus following long-term object-place recognition learning in rats. RT-PCR analysis from dentate gyrus tissue collected shortly after training did not reveal learning-specific changes in Arc mRNA expression. In situ hybridization and immunohistochemistry were therefore used to assess possible sparse effects on gene expression. Learning about objects increased the density of granule cells expressing Arc, and to a lesser extent Narp, specifically in the dorsal blade of the dentate gyrus, while Zif268 expression was elevated across both blades. Thus, object-place recognition triggers rapid, blade-specific upregulation of plasticity-associated immediate early genes. Furthermore, Western blot analysis of dentate gyrus homogenates demonstrated concomitant upregulation of three postsynaptic density proteins (Arc, PSD-95, and α-CaMKII) with key roles in long-term synaptic plasticity and long-term memory. PMID:19190776

  10. Generalization between canonical and non-canonical views in object recognition

    PubMed Central

    Ghose, Tandra; Liu, Zili

    2013-01-01

    Viewpoint generalization in object recognition is the process that allows recognition of a given 3D object from many different viewpoints despite variations in its 2D projections. We used the canonical view effects as a foundation to empirically test the validity of a major theory in object recognition, the view-approximation model (Poggio & Edelman, 1990). This model predicts that generalization should be better when an object is first seen from a non-canonical view and then a canonical view than when seen in the reversed order. We also manipulated object similarity to study the degree to which this view generalization was constrained by shape details and task instructions (object vs. image recognition). Old-new recognition performance for basic and subordinate level objects was measured in separate blocks. We found that for object recognition, view generalization between canonical and non-canonical views was comparable for basic level objects. For subordinate level objects, recognition performance was more accurate from non-canonical to canonical views than the other way around. When the task was changed from object recognition to image recognition, the pattern of the results reversed. Interestingly, participants responded “old” to “new” images of “old” objects with a substantially higher rate than to “new” objects, despite instructions to the contrary, thereby indicating involuntary view generalization. Our empirical findings are incompatible with the prediction of the view-approximation theory, and argue against the hypothesis that views are stored independently. PMID:23283692

  11. Spaced Learning Enhances Subsequent Recognition Memory by Reducing Neural Repetition Suppression

    PubMed Central

    Xue, Gui; Mei, Leilei; Chen, Chuansheng; Lu, Zhong-Lin; Poldrack, Russell; Dong, Qi

    2012-01-01

    Spaced learning usually leads to better recognition memory as compared with massed learning, yet the underlying neural mechanisms remain elusive. One open question is whether the spacing effect is achieved by reducing neural repetition suppression. In this fMRI study, participants were scanned while intentionally memorizing 120 novel faces, half under the massed learning condition (i.e., four consecutive repetitions with jittered interstimulus interval) and the other half under the spaced learning condition (i.e., the four repetitions were interleaved). Recognition memory tests afterward revealed a significant spacing effect: Participants recognized more items learned under the spaced learning condition than under the massed learning condition. Successful face memory encoding was associated with stronger activation in the bilateral fusiform gyrus, which showed a significant repetition suppression effect modulated by subsequent memory status and spaced learning. Specifically, remembered faces showed smaller repetition suppression than forgotten faces under both learning conditions, and spaced learning significantly reduced repetition suppression. These results suggest that spaced learning enhances recognition memory by reducing neural repetition suppression. PMID:20617892

  12. Spaced learning enhances subsequent recognition memory by reducing neural repetition suppression.

    PubMed

    Xue, Gui; Mei, Leilei; Chen, Chuansheng; Lu, Zhong-Lin; Poldrack, Russell; Dong, Qi

    2011-07-01

    Spaced learning usually leads to better recognition memory as compared with massed learning, yet the underlying neural mechanisms remain elusive. One open question is whether the spacing effect is achieved by reducing neural repetition suppression. In this fMRI study, participants were scanned while intentionally memorizing 120 novel faces, half under the massed learning condition (i.e., four consecutive repetitions with jittered interstimulus interval) and the other half under the spaced learning condition (i.e., the four repetitions were interleaved). Recognition memory tests afterward revealed a significant spacing effect: Participants recognized more items learned under the spaced learning condition than under the massed learning condition. Successful face memory encoding was associated with stronger activation in the bilateral fusiform gyrus, which showed a significant repetition suppression effect modulated by subsequent memory status and spaced learning. Specifically, remembered faces showed smaller repetition suppression than forgotten faces under both learning conditions, and spaced learning significantly reduced repetition suppression. These results suggest that spaced learning enhances recognition memory by reducing neural repetition suppression.

  13. The effects of acute social isolation on long-term social recognition memory.

    PubMed

    Leser, Noam; Wagner, Shlomo

    2015-10-01

    The abilities to recognize individual animals of the same species and to distinguish them from other individuals are the basis for all mammalian social organizations and relationships. These abilities, termed social recognition memory, can be explored in mice and rats using their innate tendency to investigate novel social stimuli more persistently than familiar ones. Using this methodology it was found that social recognition memory is mediated by a specific neural network in the brain, the activity of which is modulated by several molecules, such the neuropeptides oxytocin and vasopressin. During the last 15 years several independent studies have revealed that social recognition memory of mice and rats depends upon their housing conditions. Specifically, long-term social recognition memory cannot be formed as shortly as few days following social isolation of the animal. This rapid and reversible impairment caused by acute social isolation seems to be specific to social memory and has not been observed in other types of memory. Here we review these studies and suggest that this unique system may serve for exploring of the mechanisms underlying the well-known negative effects of partial or perceived social isolation on human mental health. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Loss of hfe function reverses impaired recognition memory caused by olfactory manganese exposure in mice.

    PubMed

    Ye, Qi; Kim, Jonghan

    2015-03-01

    Excessive manganese (Mn) in the brain promotes a variety of abnormal behaviors, including memory deficits, decreased motor skills and psychotic behavior resembling Parkinson's disease. Hereditary hemochromatosis (HH) is a prevalent genetic iron overload disorder worldwide. Dysfunction in HFE gene is the major cause of HH. Our previous study has demonstrated that olfactory Mn uptake is altered by HFE deficiency, suggesting that loss of HFE function could alter manganese-associated neurotoxicity. To test this hypothesis, Hfe-knockout (Hfe (-/-)) and wild-type (Hfe (+/+)) mice mice were intranasally-instilled with manganese chloride (MnCl2 5 mg/kg) or water daily for 3 weeks and examined for memory function. Olfactory Mn diminished both short-term recognition and spatial memory in Hfe (+/+) mice, as examined by novel object recognition task and Barnes maze test, respectively. Interestingly, Hfe (-/-) mice did not show impaired recognition memory caused by Mn exposure, suggesting a potential protective effect of Hfe deficiency against Mn-induced memory deficits. Since many of the neurotoxic effects of manganese are thought to result from increased oxidative stress, we quantified activities of anti-oxidant enzymes in the prefrontal cortex (PFC). Mn instillation decreased superoxide dismutase 1 (SOD1) activity in Hfe (+/+) mice, but not in Hfe (-/-) mice. In addition, Hfe deficiency up-regulated SOD1 and glutathione peroxidase activities. These results suggest a beneficial role of Hfe deficiency in attenuating Mn-induced oxidative stress in the PFC. Furthermore, Mn exposure reduced nicotinic acetylcholine receptor levels in the PFC, indicating that blunted acetylcholine signaling could contribute to impaired memory associated with intranasal manganese. Together, our model suggests that disrupted cholinergic system in the brain is involved in airborne Mn-induced memory deficits and loss of HFE function could in part prevent memory loss via a potential up-regulation of

  15. The effect of mild acute stress during memory consolidation on emotional recognition memory.

    PubMed

    Corbett, Brittany; Weinberg, Lisa; Duarte, Audrey

    2017-11-01

    Stress during consolidation improves recognition memory performance. Generally, this memory benefit is greater for emotionally arousing stimuli than neutral stimuli. The strength of the stressor also plays a role in memory performance, with memory performance improving up to a moderate level of stress and thereafter worsening. As our daily stressors are generally minimal in strength, we chose to induce mild acute stress to determine its effect on memory performance. In the current study, we investigated if mild acute stress during consolidation improves memory performance for emotionally arousing images. To investigate this, we had participants encode highly arousing negative, minimally arousing negative, and neutral images. We induced stress using the Montreal Imaging Stress Task (MIST) in half of the participants and a control task to the other half of the participants directly after encoding (i.e. during consolidation) and tested recognition 48h later. We found no difference in memory performance between the stress and control group. We found a graded pattern among confidence, with responders in the stress group having the least amount of confidence in their hits and controls having the most. Across groups, we found highly arousing negative images were better remembered than minimally arousing negative or neutral images. Although stress did not affect memory accuracy, responders, as defined by cortisol reactivity, were less confident in their decisions. Our results suggest that the daily stressors humans experience, regardless of their emotional affect, do not have adverse effects on memory. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Impaired social recognition memory in Recombination Activating Gene 1-deficient mice

    PubMed Central

    McGowan, Patrick O.; Hope, Thomas A.; Meck, Warren H.; Kelsoe, Garnett; Williams, Christina L.

    2012-01-01

    The Recombination Activating Genes (RAGs) encode two enzymes that play key roles in the adaptive immune system. RAG1 and RAG2 mediate VDJ recombination, a process necessary for the maturation of B- and T-cells. Interestingly, RAG1 is also expressed in the brain, particularly in areas of high neural density such as the hippocampus, although its function is unknown. We tested evidence that RAG1 plays a role in brain function using a social recognition memory task, an assessment of the acquisition and retention of conspecific identity. In a first experiment, we found that RAG1-deficient mice show impaired social recognition memory compared to mice wildtype for the RAG1 allele. In a second experiment, by breeding to homogenize background genotype we found that RAG1-deficient mice show impaired social recognition memory relative to heterozygous or RAG2-deficient littermates. Because RAG1 and RAG2 null mice are both immunodeficient, the results suggest that the memory impairment is not an indirect effect of immunological dysfunction. RAG1-deficient mice show normal habituation to non-socially derived odors and habituation to an open-field, indicating that the observed effect is not likely a result of a general deficit in habituation to novelty. These data trace the origin of the impairment in social recognition memory in RAG1-deficient mice to the RAG1 gene locus and implicate RAG1 in memory formation. PMID:21354115

  17. MAO-A Phenotype Effects Response Sensitivity and the Parietal Old/New Effect during Recognition Memory

    PubMed Central

    Ross, Robert S.; Smolen, Andrew; Curran, Tim; Nyhus, Erika

    2018-01-01

    A critical problem for developing personalized treatment plans for cognitive disruptions is the lack of understanding how individual differences influence cognition. Recognition memory is one cognitive ability that varies from person to person and that variation may be related to different genetic phenotypes. One gene that may impact recognition memory is the monoamine oxidase A gene (MAO-A), which influences the transcription rate of MAO-A. Examination of how MAO-A phenotypes impact behavioral and event-related potentials (ERPs) correlates of recognition memory may help explain individual differences in recognition memory performance. Therefore, the current study uses electroencephalography (EEG) in combination with genetic phenotyping of the MAO-A gene to determine how well-characterized ERP components of recognition memory, the early frontal old/new effect, left parietal old/new effect, late frontal old/new effect, and the late posterior negativity (LPN) are impacted by MAO-A phenotype during item and source memory. Our results show that individuals with the MAO-A phenotype leading to increased transcription have lower response sensitivity during both item and source memory. Additionally, during item memory the left parietal old/new effect is not present due to increased ERP amplitude for correct rejections. The results suggest that MAO-A phenotype changes EEG correlates of recognition memory and influences how well individuals differentiate between old and new items. PMID:29487517

  18. Further evidence that amygdala and hippocampus contribute equally to recognition memory.

    PubMed

    Saunders, R C; Murray, E A; Mishkin, M

    1984-01-01

    The medial temporal neuropathology found in an amnesic neurosurgical patient [17] was simulated in monkeys in an attempt to determine whether the patient's mnemonic disorder, which had been ascribed to bilateral hippocampal destruction, may have also been due in part to unilateral amygdaloid removal. For this purpose, monkeys were prepared with bilateral hippocampectomy combined with unilateral amygdalectomy, and (as a control) bilateral amygdalectomy combined with unilateral hippocampectomy. The animals were trained both before and after surgery on a one-trial visual recognition task requiring memory of single objects for 10 sec each and then given a postoperative performance test in which their one-trial recognition ability was taxed with longer delays (up to 2 min) and longer lists (up to 10 objects). The two groups, which did not differ reliably at any stage, obtained average scores on the performance test 75 and 80%, respectively. Comparison with the results of an earlier experiment [8] indicates that this performance level lies approximately midway between that of monkeys with amygdaloid or hippocampal removals alone (91%) and that of monkeys with combined amygdalo-hippocampal removals (60%). The results point to a direct quantitative relationship between degree of recognition impairment and amount of conjoint damage to the amygdala and hippocampus irrespective of the specific structure involved. Evidence from neurosurgical cases tested in visual recognition [21] indicates that the same conclusion may apply to man.

  19. Auditory memory can be object based.

    PubMed

    Dyson, Benjamin J; Ishfaq, Feraz

    2008-04-01

    Identifying how memories are organized remains a fundamental issue in psychology. Previous work has shown that visual short-term memory is organized according to the object of origin, with participants being better at retrieving multiple pieces of information from the same object than from different objects. However, it is not yet clear whether similar memory structures are employed for other modalities, such as audition. Under analogous conditions in the auditory domain, we found that short-term memories for sound can also be organized according to object, with a same-object advantage being demonstrated for the retrieval of information in an auditory scene defined by two complex sounds overlapping in both space and time. Our results provide support for the notion of an auditory object, in addition to the continued identification of similar processing constraints across visual and auditory domains. The identification of modality-independent organizational principles of memory, such as object-based coding, suggests possible mechanisms by which the human processing system remembers multimodal experiences.

  20. On the contribution of unconscious processes to recognition memory.

    PubMed

    Cleary, Anne M

    2012-01-01

    Abstract Voss et al. review work showing unconscious contributions to recognition memory. An electrophysiological effect, the N300, appears to signify an unconscious recognition process. Whether such unconscious recognition requires highly specific experimental circumstances or can occur in typical types of recognition testing situations has remained a question. The fact that the N300 has also been shown to be the sole electrophysiological correlate of the recognition-without-identification effect that occurs with visual word fragments suggests that unconscious processes may contribute to a wider range of recognition testing situations than those originally investigated by Voss and colleagues. Some implications of this possibility are discussed.

  1. Ketamine impairs recognition memory consolidation and prevents learning-induced increase in hippocampal brain-derived neurotrophic factor levels.

    PubMed

    Goulart, B K; de Lima, M N M; de Farias, C B; Reolon, G K; Almeida, V R; Quevedo, J; Kapczinski, F; Schröder, N; Roesler, R

    2010-06-02

    The non-competitive N-methyl-d-aspartate (NMDA) glutamate receptor antagonist ketamine has been shown to produce cognitive deficits. However, the effects of ketamine on the consolidation phase of memory remain poorly characterized. Here we show that systemic administration of ketamine immediately after training dose-dependently impairs long-term retention of memory for a novel object recognition (NOR) task in rats. Control experiments showed that the impairing effects of ketamine could not be attributed to an influence on memory retrieval or sensorimotor effects. In addition, ketamine prevented the increase in hippocampal brain-derived neurotrophic factor (BDNF) levels induced by NOR learning. Our results show for the first time that ketamine disrupts the consolidation phase of long-term recognition memory. In addition, the findings suggest that the amnestic effects of ketamine might be at least partially mediated by an influence on BDNF signaling in the hippocampus. Copyright 2010 IBRO. Published by Elsevier Ltd. All rights reserved.

  2. Test Sequence Priming in Recognition Memory

    ERIC Educational Resources Information Center

    Johns, Elizabeth E.; Mewhort, D. J. K.

    2009-01-01

    The authors examined priming within the test sequence in 3 recognition memory experiments. A probe primed its successor whenever both probes shared a feature with the same studied item ("interjacent priming"), indicating that the study item like the probe is central to the decision. Interjacent priming occurred even when the 2 probes did…

  3. Recognition memory for low- and high-frequency-filtered emotional faces: Low spatial frequencies drive emotional memory enhancement, whereas high spatial frequencies drive the emotion-induced recognition bias.

    PubMed

    Rohr, Michaela; Tröger, Johannes; Michely, Nils; Uhde, Alarith; Wentura, Dirk

    2017-07-01

    This article deals with two well-documented phenomena regarding emotional stimuli: emotional memory enhancement-that is, better long-term memory for emotional than for neutral stimuli-and the emotion-induced recognition bias-that is, a more liberal response criterion for emotional than for neutral stimuli. Studies on visual emotion perception and attention suggest that emotion-related processes can be modulated by means of spatial-frequency filtering of the presented emotional stimuli. Specifically, low spatial frequencies are assumed to play a primary role for the influence of emotion on attention and judgment. Given this theoretical background, we investigated whether spatial-frequency filtering also impacts (1) the memory advantage for emotional faces and (2) the emotion-induced recognition bias, in a series of old/new recognition experiments. Participants completed incidental-learning tasks with high- (HSF) and low- (LSF) spatial-frequency-filtered emotional and neutral faces. The results of the surprise recognition tests showed a clear memory advantage for emotional stimuli. Most importantly, the emotional memory enhancement was significantly larger for face images containing only low-frequency information (LSF faces) than for HSF faces across all experiments, suggesting that LSF information plays a critical role in this effect, whereas the emotion-induced recognition bias was found only for HSF stimuli. We discuss our findings in terms of both the traditional account of different processing pathways for HSF and LSF information and a stimulus features account. The double dissociation in the results favors the latter account-that is, an explanation in terms of differences in the characteristics of HSF and LSF stimuli.

  4. The effects of prolonged administration of norepinephrine reuptake inhibitors on long-term potentiation in dentate gyrus, and on tests of spatial and object recognition memory in rats.

    PubMed

    Walling, Susan G; Milway, J Stephen; Ingram, Matthew; Lau, Catherine; Morrison, Gillian; Martin, Gerard M

    2016-02-01

    Phasic norepinephrine (NE) release events are involved in arousal, novelty detection and in plasticity processes underlying learning and memory in mammalian systems. Although the effects of phasic NE release events on plasticity and memory are prevalently documented, it is less understood what effects chronic NE reuptake inhibition and sustained increases in noradrenergic tone, might have on plasticity and cognitive processes in rodent models of learning and memory. This study investigates the effects of chronic NE reuptake inhibition on hippocampal plasticity and memory in rats. Rats were administered NE reuptake inhibitors (NRIs) desipramine (DMI; 0, 3, or 7.5mg/kg/day) or nortriptyline (NTP; 0, 10 or 20mg/kg/day) in drinking water. Long-term potentiation (LTP; 200 Hz) of the perforant path-dentate gyrus evoked potential was examined in urethane anesthetized rats after 30-32 days of DMI treatment. Short- (4-h) and long-term (24-h) spatial memory was tested in separate rats administered 0 or 7.5mg/kg/day DMI (25-30 days) using a two-trial spatial memory test. Additionally, the effects of chronically administered DMI and NTP were tested in rats using a two-trial, Object Recognition Test (ORT) at 2- and 24-h after 45 and 60 days of drug administration. Rats administered 3 or 7.5mg/kg/day DMI had attenuated LTP of the EPSP slope but not the population spike at the perforant path-dentate gyrus synapse. Short- and long-term memory for objects is differentially disrupted in rats after prolonged administration of DMI and NTP. Rats that were administered 7.5mg/kg/day DMI showed decreased memory for a two-trial spatial task when tested at 4-h. In the novel ORT, rats receiving 0 or 7.5mg/kg/day DMI showed a preference for the arm containing a Novel object when tested at both 2- and 24-h demonstrating both short- and long-term memory retention of the Familiar object. Rats that received either dose of NTP or 3mg/kg/day DMI showed impaired memory at 2-h, however this

  5. Association of enhanced limbic response to threat with decreased cortical facial recognition memory response in schizophrenia

    PubMed Central

    Satterthwaite, Theodore D.; Wolf, Daniel H.; Loughead, James; Ruparel, Kosha; Valdez, Jeffrey N.; Siegel, Steven J.; Kohler, Christian G.; Gur, Raquel E.; Gur, Ruben C.

    2014-01-01

    Objective Recognition memory of faces is impaired in patients with schizophrenia, as is the neural processing of threat-related signals, but how these deficits interact to produce symptoms is unclear. Here we used an affective face recognition paradigm to examine possible interactions between cognitive and affective neural systems in schizophrenia. Methods fMRI (3T) BOLD response was examined in 21 controls and 16 patients during a two-choice recognition task using images of human faces. Each target face had previously been displayed with a threatening or non-threatening affect, but here were displayed with neutral affect. Responses to successful recognition and for the effect of previously threatening vs. non-threatening affect were evaluated, and correlations with total BPRS examined. Functional connectivity analyses examined the relationship between activation in the amygdala and cortical regions involved in recognition memory. Results Patients performed the task more slowly than controls. Controls recruited the expected cortical regions to a greater degree than patients, and patients with more severe symptoms demonstrated proportionally less recruitment. Increased symptoms were also correlated with augmented amygdala and orbitofrontal cortex response to threatening faces. Controls exhibited a negative correlation between activity in the amygdala and cortical regions involved in cognition, while patients showed a weakening of that relationship. Conclusions Increased symptoms were related to an enhanced threat response in limbic regions and a diminished recognition memory response in cortical regions, supporting a link between two brain systems often examined in isolation. This finding suggests that abnormal processing of threat-related signals in the environment may exacerbate cognitive impairment in schizophrenia. PMID:20194482

  6. FRIT characterized hierarchical kernel memory arrangement for multiband palmprint recognition

    NASA Astrophysics Data System (ADS)

    Kisku, Dakshina R.; Gupta, Phalguni; Sing, Jamuna K.

    2015-10-01

    In this paper, we present a hierarchical kernel associative memory (H-KAM) based computational model with Finite Ridgelet Transform (FRIT) representation for multispectral palmprint recognition. To characterize a multispectral palmprint image, the Finite Ridgelet Transform is used to achieve a very compact and distinctive representation of linear singularities while it also captures the singularities along lines and edges. The proposed system makes use of Finite Ridgelet Transform to represent multispectral palmprint image and it is then modeled by Kernel Associative Memories. Finally, the recognition scheme is thoroughly tested with a benchmarking multispectral palmprint database CASIA. For recognition purpose a Bayesian classifier is used. The experimental results exhibit robustness of the proposed system under different wavelengths of palm image.

  7. Effect of nitrogen narcosis on free recall and recognition memory in open water.

    PubMed

    Hobbs, M; Kneller, W

    2009-01-01

    Previous research has demonstrated that nitrogen narcosis causes decrements in memory performance but the precise aspect of memory impaired is not clear in the literature. The present research investigated the effect of narcosis on free recall and recognition memory by appling signal detection theory (SDT) to the analysis of the recognition data. Using a repeated measures design, the free recall and recognition memory of 20 divers was tested in four learning-recall conditions: shallow-shallow (SS), deep-deep (DD), shallow-deep (SD) and deep-shallow (DS). The data was collected in the ocean offDahab, Egypt with shallow water representing a depth of 0-10m (33ft) and deep water 37-40m (121-131ft). The presence of narcosis was independently indexed with subjective ratings. In comparison to the SS condition there was a clear impairment of free recall in the DD and DS conditions, but not the SD condition. Recognition memory remained unaffected by narcosis. It was concluded narcosis-induced memory decrements cannot be explained as simply an impairment of input into long term memory or of self-guided search and it is suggested instead that narcosis acts to reduce the level of processing/encoding of information.

  8. When Do Objects Become Landmarks? A VR Study of the Effect of Task Relevance on Spatial Memory

    PubMed Central

    Han, Xue; Byrne, Patrick; Kahana, Michael; Becker, Suzanna

    2012-01-01

    We investigated how objects come to serve as landmarks in spatial memory, and more specifically how they form part of an allocentric cognitive map. Participants performing a virtual driving task incidentally learned the layout of a virtual town and locations of objects in that town. They were subsequently tested on their spatial and recognition memory for the objects. To assess whether the objects were encoded allocentrically we examined pointing consistency across tested viewpoints. In three experiments, we found that spatial memory for objects at navigationally relevant locations was more consistent across tested viewpoints, particularly when participants had more limited experience of the environment. When participants’ attention was focused on the appearance of objects, the navigational relevance effect was eliminated, whereas when their attention was focused on objects’ locations, this effect was enhanced, supporting the hypothesis that when objects are processed in the service of navigation, rather than merely being viewed as objects, they engage qualitatively distinct attentional systems and are incorporated into an allocentric spatial representation. The results are consistent with evidence from the neuroimaging literature that when objects are relevant to navigation, they not only engage the ventral “object processing stream”, but also the dorsal stream and medial temporal lobe memory system classically associated with allocentric spatial memory. PMID:22586455

  9. MicroRNA-132 regulates recognition memory and synaptic plasticity in the perirhinal cortex

    PubMed Central

    Scott, Helen L; Tamagnini, Francesco; Narduzzo, Katherine E; Howarth, Joanna L; Lee, Youn-Bok; Wong, Liang-Fong; Brown, Malcolm W; Warburton, Elizabeth C; Bashir, Zafar I; Uney, James B

    2012-01-01

    Evidence suggests that the acquisition of recognition memory depends upon CREB-dependent long-lasting changes in synaptic plasticity in the perirhinal cortex. The CREB-responsive microRNA miR-132 has been shown to regulate synaptic transmission and we set out to investigate a role for this microRNA in recognition memory and its underlying plasticity mechanisms. To this end we mediated the specific overexpression of miR-132 selectively in the rat perirhinal cortex and demonstrated impairment in short-term recognition memory. This functional deficit was associated with a reduction in both long-term depression and long-term potentiation. These results confirm that microRNAs are key coordinators of the intracellular pathways that mediate experience-dependent changes in the brain. In addition, these results demonstrate a role for miR-132 in the neuronal mechanisms underlying the formation of short-term recognition memory. PMID:22845676

  10. An unforgettable apple: memory and attention for forbidden objects.

    PubMed

    Truong, Grace; Turk, David J; Handy, Todd C

    2013-12-01

    Are we humans drawn to the forbidden? From jumbo-sized soft drinks to illicit substances, the influence of prohibited ownership on subsequent demand has made this question a pressing one. We know that objects that we ourselves own have a heightened psychological saliency, relative to comparable objects that are owned by others, but do these kinds of effects extend from self-owned to "forbidden" objects? To address this question, we developed a modified version of the Turk shopping paradigm in which "purchased" items were assigned to various recipients. Participants sorted everyday objects labeled as "self-owned", "other-owned," and either "forbidden to oneself" (Experiment 1) or "forbidden to everyone" (Experiment 2). Subsequent surprise recognition memory tests revealed that forbidden objects with high (Experiment 1) but not with low (Experiment 2) self-relevance were recognized as well as were self-owned objects, and better than other-owned objects. In a third and final experiment, we used event-related potentials (ERPs) to determine whether self-owned and self-forbidden objects, which showed a common memory advantage, are in fact treated the same at a neurocognitive-affective level. We found that both object types were associated with enhanced cognitive analysis, relative to other-owned objects, as measured by the P300 ERP component. However, we also found that self-forbidden objects uniquely triggered an enhanced response preceding the P300, in an ERP component (the N2) that is sensitive to more rapid, affect-related processing. Our findings thus suggest that, whereas self-forbidden objects share a common cognitive signature with self-owned objects, they are unique in being identified more quickly at a neurocognitive level.

  11. Effects of aging and divided attention on recognition memory processes for single and associative information.

    PubMed

    Kinjo, Hikari

    2011-04-01

    In the divided attention paradigm to test age-related associative memory deficits, whether the effects of divided attention occur at encoding or retrieval has not been clarified, and the effect on retention has not been studied. This study explored whether and how much divided attention at either encoding, retention, or retrieval diminished accuracy in recognizing a single feature (object or location) and associated features (object+location) by 23 elderly people (13 women; M age = 70.6 yr., SD = 2.8) recruited from a neighborhood community circle, and 29 female college students (M age = 20.8 yr., SD = 1.1). The results showed a significant decline in memory performance for both age groups due to divided attention in location and associative memory at retention, suggesting that the retention process demands attentional resources. Overall, regardless of their relative deficiency in associative memory, older adults showed an effect of divided attention comparable to that of younger adults in a recognition task.

  12. The Response Dynamics of Recognition Memory: Sensitivity and Bias

    ERIC Educational Resources Information Center

    Koop, Gregory J.; Criss, Amy H.

    2016-01-01

    Advances in theories of memory are hampered by insufficient metrics for measuring memory. The goal of this paper is to further the development of model-independent, sensitive empirical measures of the recognition decision process. We evaluate whether metrics from continuous mouse tracking, or response dynamics, uniquely identify response bias and…

  13. Breaking object correspondence across saccades impairs object recognition: The role of color and luminance.

    PubMed

    Poth, Christian H; Schneider, Werner X

    2016-09-01

    Rapid saccadic eye movements bring the foveal region of the eye's retina onto objects for high-acuity vision. Saccades change the location and resolution of objects' retinal images. To perceive objects as visually stable across saccades, correspondence between the objects before and after the saccade must be established. We have previously shown that breaking object correspondence across the saccade causes a decrement in object recognition (Poth, Herwig, & Schneider, 2015). Color and luminance can establish object correspondence, but it is unknown how these surface features contribute to transsaccadic visual processing. Here, we investigated whether changing the surface features color-and-luminance and color alone across saccades impairs postsaccadic object recognition. Participants made saccades to peripheral objects, which either maintained or changed their surface features across the saccade. After the saccade, participants briefly viewed a letter within the saccade target object (terminated by a pattern mask). Postsaccadic object recognition was assessed as participants' accuracy in reporting the letter. Experiment A used the colors green and red with different luminances as surface features, Experiment B blue and yellow with approximately the same luminances. Changing the surface features across the saccade deteriorated postsaccadic object recognition in both experiments. These findings reveal a link between object recognition and object correspondence relying on the surface features colors and luminance, which is currently not addressed in theories of transsaccadic perception. We interpret the findings within a recent theory ascribing this link to visual attention (Schneider, 2013).

  14. Use of the recognition heuristic depends on the domain's recognition validity, not on the recognition validity of selected sets of objects.

    PubMed

    Pohl, Rüdiger F; Michalkiewicz, Martha; Erdfelder, Edgar; Hilbig, Benjamin E

    2017-07-01

    According to the recognition-heuristic theory, decision makers solve paired comparisons in which one object is recognized and the other not by recognition alone, inferring that recognized objects have higher criterion values than unrecognized ones. However, success-and thus usefulness-of this heuristic depends on the validity of recognition as a cue, and adaptive decision making, in turn, requires that decision makers are sensitive to it. To this end, decision makers could base their evaluation of the recognition validity either on the selected set of objects (the set's recognition validity), or on the underlying domain from which the objects were drawn (the domain's recognition validity). In two experiments, we manipulated the recognition validity both in the selected set of objects and between domains from which the sets were drawn. The results clearly show that use of the recognition heuristic depends on the domain's recognition validity, not on the set's recognition validity. In other words, participants treat all sets as roughly representative of the underlying domain and adjust their decision strategy adaptively (only) with respect to the more general environment rather than the specific items they are faced with.

  15. Working Memory Load Affects Processing Time in Spoken Word Recognition: Evidence from Eye-Movements

    PubMed Central

    Hadar, Britt; Skrzypek, Joshua E.; Wingfield, Arthur; Ben-David, Boaz M.

    2016-01-01

    In daily life, speech perception is usually accompanied by other tasks that tap into working memory capacity. However, the role of working memory on speech processing is not clear. The goal of this study was to examine how working memory load affects the timeline for spoken word recognition in ideal listening conditions. We used the “visual world” eye-tracking paradigm. The task consisted of spoken instructions referring to one of four objects depicted on a computer monitor (e.g., “point at the candle”). Half of the trials presented a phonological competitor to the target word that either overlapped in the initial syllable (onset) or at the last syllable (offset). Eye movements captured listeners' ability to differentiate the target noun from its depicted phonological competitor (e.g., candy or sandal). We manipulated working memory load by using a digit pre-load task, where participants had to retain either one (low-load) or four (high-load) spoken digits for the duration of a spoken word recognition trial. The data show that the high-load condition delayed real-time target discrimination. Specifically, a four-digit load was sufficient to delay the point of discrimination between the spoken target word and its phonological competitor. Our results emphasize the important role working memory plays in speech perception, even when performed by young adults in ideal listening conditions. PMID:27242424

  16. Muscarinic Receptor-Dependent Long Term Depression in the Perirhinal Cortex and Recognition Memory are Impaired in the rTg4510 Mouse Model of Tauopathy.

    PubMed

    Scullion, Sarah E; Barker, Gareth R I; Warburton, E Clea; Randall, Andrew D; Brown, Jonathan T

    2018-02-26

    Neurodegenerative diseases affecting cognitive dysfunction, such as Alzheimer's disease and fronto-temporal dementia, are often associated impairments in the visual recognition memory system. Recent evidence suggests that synaptic plasticity, in particular long term depression (LTD), in the perirhinal cortex (PRh) is a critical cellular mechanism underlying recognition memory. In this study, we have examined novel object recognition and PRh LTD in rTg4510 mice, which transgenically overexpress tau P301L . We found that 8-9 month old rTg4510 mice had significant deficits in long- but not short-term novel object recognition memory. Furthermore, we also established that PRh slices prepared from rTg4510 mice, unlike those prepared from wildtype littermates, could not support a muscarinic acetylcholine receptor-dependent form of LTD, induced by a 5 Hz stimulation protocol. In contrast, bath application of the muscarinic agonist carbachol induced a form of chemical LTD in both WT and rTg4510 slices. Finally, when rTg4510 slices were preincubated with the acetylcholinesterase inhibitor donepezil, the 5 Hz stimulation protocol was capable of inducing significant levels of LTD. These data suggest that dysfunctional cholinergic innervation of the PRh of rTg4510 mice, results in deficits in synaptic LTD which may contribute to aberrant recognition memory in this rodent model of tauopathy.

  17. Effects of GABAB receptors in the insula on recognition memory observed with intellicage.

    PubMed

    Wu, Nan; Wang, Feng; Jin, Zhe; Zhang, Zhen; Wang, Lian-Kun; Zhang, Chun; Sun, Tao

    2017-04-17

    Insular function has gradually become a topic of intense study in cognitive research. Recognition memory is a commonly studied type of memory in memory research. GABA B R has been shown to be closely related to memory formation. In the present study, we used intellicage, which is a new intelligent behavioural test system, and a bilateral drug microinjection technique to inject into the bilateral insula, to examine the relationship between GABA B R and recognition memory. Male Sprague-Dawley rats were randomly divided into control, Sham, Nacl, baclofen and CGP35348 groups. Different testing procedures were employed using intellicage to detect changes in rat recognition memory. The expression of GABA B R (GB1, GB2) in the insula of rats was determined by immunofluorescence and western blotting at the protein level. In addition, the expression of GABA B R (GB 1 , GB 2 ) was detected by RT-PCR at the mRNA level. The results of the intellicage test showed that recognition memory was impaired in terms of position learning, punitive learning and punitive reversal learning by using baclofen and CGP35348. In position reversal learning, no significant differences were found in terms of cognitive memory ability between the control groups and the CGP and baclofen groups. Immunofluorescence data showed GABA B R (GB1, GB2) expression in the insula, while data from RT-PCR and western blot analysis demonstrated that the relative expression of GB1 and GB2 was significantly increased in the baclofen group compared with the control groups. In the CGP35348 group, the expression of GB1 and GB2 was significantly decreased, but there was no significant difference in GB1 or GB2 expression in the control groups. GABA B R expression in the insula plays an important role in the formation of recognition memory in rats.

  18. The impact of left and right intracranial tumors on picture and word recognition memory.

    PubMed

    Goldstein, Bram; Armstrong, Carol L; Modestino, Edward; Ledakis, George; John, Cameron; Hunter, Jill V

    2004-02-01

    This study investigated the effects of left and right intracranial tumors on picture and word recognition memory. We hypothesized that left hemispheric (LH) patients would exhibit greater word recognition memory impairment than right hemispheric (RH) patients, with no significant hemispheric group picture recognition memory differences. The LH patient group obtained a significantly slower mean picture recognition reaction time than the RH group. The LH group had a higher proportion of tumors extending into the temporal lobes, possibly accounting for their greater pictorial processing impairments. Dual coding and enhanced visual imagery may have contributed to the patient groups' similar performance on the remainder of the measures.

  19. Associative Recognition Memory Awareness Improved by Theta-Burst Stimulation of Frontopolar Cortex

    PubMed Central

    Ryals, Anthony J.; Rogers, Lynn M.; Gross, Evan Z.; Polnaszek, Kelly L.; Voss, Joel L.

    2016-01-01

    Neuroimaging and lesion studies have implicated specific prefrontal cortex locations in subjective memory awareness. Based on this evidence, a rostrocaudal organization has been proposed whereby increasingly anterior prefrontal regions are increasingly involved in memory awareness. We used theta-burst transcranial magnetic stimulation (TBS) to temporarily modulate dorsolateral versus frontopolar prefrontal cortex to test for distinct causal roles in memory awareness. In three sessions, participants received TBS bilaterally to frontopolar cortex, dorsolateral prefrontal cortex, or a control location prior to performing an associative-recognition task involving judgments of memory awareness. Objective memory performance (i.e., accuracy) did not differ based on stimulation location. In contrast, frontopolar stimulation significantly influenced several measures of memory awareness. During study, judgments of learning were more accurate such that lower ratings were given to items that were subsequently forgotten selectively following frontopolar TBS. Confidence ratings during test were also higher for correct trials following frontopolar TBS. Finally, trial-by-trial correspondence between overt performance and subjective awareness during study demonstrated a linear increase across control, dorsolateral, and frontopolar TBS locations, supporting a rostrocaudal hierarchy of prefrontal contributions to memory awareness. These findings indicate that frontopolar cortex contributes causally to memory awareness, which was improved selectively by anatomically targeted TBS. PMID:25577574

  20. Constant Light Desynchronizes Olfactory versus Object and Visuospatial Recognition Memory Performance

    PubMed Central

    Tam, Shu K.E.; Hasan, Sibah; Brown, Laurence A.; Jagannath, Aarti; Hankins, Mark W.; Foster, Russell G.; Vyazovskiy, Vladyslav V.

    2017-01-01

    Circadian rhythms optimize physiology and behavior to the varying demands of the 24 h day. The master circadian clock is located in the suprachiasmatic nuclei (SCN) of the hypothalamus and it regulates circadian oscillators in tissues throughout the body to prevent internal desynchrony. Here, we demonstrate for the first time that, under standard 12 h:12 h light/dark (LD) cycles, object, visuospatial, and olfactory recognition performance in C57BL/6J mice is consistently better at midday relative to midnight. However, under repeated exposure to constant light (rLL), recognition performance becomes desynchronized, with object and visuospatial performance better at subjective midday and olfactory performance better at subjective midnight. This desynchrony in behavioral performance is mirrored by changes in expression of the canonical clock genes Period1 and Period2 (Per1 and Per2), as well as the immediate-early gene Fos in the SCN, dorsal hippocampus, and olfactory bulb. Under rLL, rhythmic Per1 and Fos expression is attenuated in the SCN. In contrast, hippocampal gene expression remains rhythmic, mirroring object and visuospatial performance. Strikingly, Per1 and Fos expression in the olfactory bulb is reversed, mirroring the inverted olfactory performance. Temporal desynchrony among these regions does not result in arrhythmicity because core body temperature and exploratory activity rhythms persist under rLL. Our data provide the first demonstration that abnormal lighting conditions can give rise to temporal desynchrony between autonomous circadian oscillators in different regions, with different consequences for performance across different sensory domains. Such a dispersed network of dissociable circadian oscillators may provide greater flexibility when faced with conflicting environmental signals. SIGNIFICANCE STATEMENT A master circadian clock in the suprachiasmatic nuclei (SCN) of the hypothalamus regulates physiology and behavior across the 24 h day by

  1. Development of Flexible Visual Recognition Memory in Human Infants

    ERIC Educational Resources Information Center

    Robinson, Astri J.; Pascalis, Olivier

    2004-01-01

    Research using the visual paired comparison task has shown that visual recognition memory across changing contexts is dependent on the integrity of the hippocampal formation in human adults and in monkeys. The acquisition of contextual flexibility may contribute to the change in memory performance that occurs late in the first year of life. To…

  2. Memory bias for negative emotional words in recognition memory is driven by effects of category membership.

    PubMed

    White, Corey N; Kapucu, Aycan; Bruno, Davide; Rotello, Caren M; Ratcliff, Roger

    2014-01-01

    Recognition memory studies often find that emotional items are more likely than neutral items to be labelled as studied. Previous work suggests this bias is driven by increased memory strength/familiarity for emotional items. We explored strength and bias interpretations of this effect with the conjecture that emotional stimuli might seem more familiar because they share features with studied items from the same category. Categorical effects were manipulated in a recognition task by presenting lists with a small, medium or large proportion of emotional words. The liberal memory bias for emotional words was only observed when a medium or large proportion of categorised words were presented in the lists. Similar, though weaker, effects were observed with categorised words that were not emotional (animal names). These results suggest that liberal memory bias for emotional items may be largely driven by effects of category membership.

  3. Semantic relations differentially impact associative recognition memory: electrophysiological evidence.

    PubMed

    Kriukova, Olga; Bridger, Emma; Mecklinger, Axel

    2013-10-01

    Though associative recognition memory is thought to rely primarily on recollection, recent research indicates that familiarity might also make a substantial contribution when to-be-learned items are integrated into a coherent structure by means of an existing semantic relation. It remains unclear how different types of semantic relations, such as categorical (e.g., dancer-singer) and thematic (e.g., dancer-stage) relations might affect associative recognition, however. Using event-related potentials (ERPs), we addressed this question by manipulating the type of semantic link between paired words in an associative recognition memory experiment. An early midfrontal old/new effect, typically linked to familiarity, was observed across the relation types. In contrast, a robust left parietal old/new effect was found in the categorical condition only, suggesting a clear contribution of recollection to associative recognition for this kind of pairs. One interpretation of this pattern is that familiarity was sufficiently diagnostic for associative recognition of thematic relations, which could result from the integrative nature of the thematic relatedness compared to the similarity-based nature of categorical pairs. The present study suggests that the extent to which recollection and familiarity are involved in associative recognition is at least in part determined by the properties of semantic relations between the paired associates. Copyright © 2013 Elsevier Inc. All rights reserved.

  4. Sleep Enhances Recognition Memory for Conspecifics as Bound into Spatial Context

    PubMed Central

    Sawangjit, Anuck; Kelemen, Eduard; Born, Jan; Inostroza, Marion

    2017-01-01

    Social memory refers to the fundamental ability of social species to recognize their conspecifics in quite different contexts. Sleep has been shown to benefit consolidation, especially of hippocampus-dependent episodic memory whereas effects of sleep on social memory are less well studied. Here, we examined the effect of sleep on memory for conspecifics in rats. To discriminate interactions between the consolidation of social memory and of spatial context during sleep, adult Long Evans rats performed on a social discrimination task in a radial arm maze. The Learning phase comprised three 10-min sampling sessions in which the rats explored a juvenile rat presented at a different arm of the maze in each session. Then the rats were allowed to sleep (n = 18) or stayed awake (n = 18) for 120 min. During the following 10-min Test phase, the familiar juvenile rat (of the Learning phase) was presented along with a novel juvenile rat, each rat at an opposite arm of the maze. Significant social recognition memory, as indicated by preferential exploration of the novel over the familiar conspecific, occurred only after post-learning sleep, but not after wakefulness. Sleep, compared with wakefulness, significantly enhanced social recognition during the first minute of the Test phase. However, memory expression depended on the spatial configuration: Significant social recognition memory emerged only after sleep when the rat encountered the novel conspecific at a place different from that of the familiar juvenile in the last sampling session before sleep. Though unspecific retrieval-related effects cannot entirely be excluded, our findings suggest that sleep, rather than independently enhancing social and spatial aspects of memory, consolidates social memory by acting on an episodic representation that binds the memory of the conspecific together with the spatial context in which it was recently encountered. PMID:28270755

  5. Language and memory for object location.

    PubMed

    Gudde, Harmen B; Coventry, Kenny R; Engelhardt, Paul E

    2016-08-01

    In three experiments, we investigated the influence of two types of language on memory for object location: demonstratives (this, that) and possessives (my, your). Participants first read instructions containing demonstratives/possessives to place objects at different locations, and then had to recall those object locations (following object removal). Experiments 1 and 2 tested contrasting predictions of two possible accounts of language on object location memory: the Expectation Model (Coventry, Griffiths, & Hamilton, 2014) and the congruence account (Bonfiglioli, Finocchiaro, Gesierich, Rositani, & Vescovi, 2009). In Experiment 3, the role of attention allocation as a possible mechanism was investigated. Results across all three experiments show striking effects of language on object location memory, with the pattern of data supporting the Expectation Model. In this model, the expected location cued by language and the actual location are concatenated leading to (mis)memory for object location, consistent with models of predictive coding (Bar, 2009; Friston, 2003). Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  6. Can color changes alter the neural correlates of recognition memory? Manipulation of processing affects an electrophysiological indicator of conceptual implicit memory.

    PubMed

    Cui, Xiaoyu; Gao, Chuanji; Zhou, Jianshe; Guo, Chunyan

    2016-09-28

    It has been widely shown that recognition memory includes two distinct retrieval processes: familiarity and recollection. Many studies have shown that recognition memory can be facilitated when there is a perceptual match between the studied and the tested items. Most event-related potential studies have explored the perceptual match effect on familiarity on the basis of the hypothesis that the specific event-related potential component associated with familiarity is the FN400 (300-500 ms mid-frontal effect). However, it is currently unclear whether the FN400 indexes familiarity or conceptual implicit memory. In addition, on the basis of the findings of a previous study, the so-called perceptual manipulations in previous studies may also involve some conceptual alterations. Therefore, we sought to determine the influence of perceptual manipulation by color changes on recognition memory when the perceptual or the conceptual processes were emphasized. Specifically, different instructions (perceptually or conceptually oriented) were provided to the participants. The results showed that color changes may significantly affect overall recognition memory behaviorally and that congruent items were recognized with a higher accuracy rate than incongruent items in both tasks, but no corresponding neural changes were found. Despite the evident familiarity shown in the two tasks (the behavioral performance of recognition memory was much higher than at the chance level), the FN400 effect was found in conceptually oriented tasks, but not perceptually oriented tasks. It is thus highly interesting that the FN400 effect was not induced, although color manipulation of recognition memory was behaviorally shown, as seen in previous studies. Our findings of the FN400 effect for the conceptual but not perceptual condition support the explanation that the FN400 effect indexes conceptual implicit memory.

  7. Conflict and Criterion Setting in Recognition Memory

    ERIC Educational Resources Information Center

    Curran, Tim; DeBuse, Casey; Leynes, P. Andrew

    2007-01-01

    Recognition memory requires both retrieval processes and control processes such as criterion setting. Decision criteria were manipulated by offering different payoffs for correct "old" versus "new" responses. Criterion setting influenced the following late-occurring (1,000+ ms), conflict-sensitive event-related brain potential (ERP) components:…

  8. Systemic L-Kynurenine sulfate administration disrupts object recognition memory, alters open field behavior and decreases c-Fos immunopositivity in C57Bl/6 mice.

    PubMed

    Varga, Dániel; Herédi, Judit; Kánvási, Zita; Ruszka, Marian; Kis, Zsolt; Ono, Etsuro; Iwamori, Naoki; Iwamori, Tokuko; Takakuwa, Hiroki; Vécsei, László; Toldi, József; Gellért, Levente

    2015-01-01

    L-Kynurenine (L-KYN) is a central metabolite of tryptophan degradation through the kynurenine pathway (KP). The systemic administration of L-KYN sulfate (L-KYNs) leads to a rapid elevation of the neuroactive KP metabolite kynurenic acid (KYNA). An elevated level of KYNA may have multiple effects on the synaptic transmission, resulting in complex behavioral changes, such as hypoactivity or spatial working memory deficits. These results emerged from studies that focused on rats, after low-dose L-KYNs treatment. However, in several studies neuroprotection was achieved through the administration of high-dose L-KYNs. In the present study, our aim was to investigate whether the systemic administration of a high dose of L-KYNs (300 mg/bwkg; i.p.) would produce alterations in behavioral tasks (open field or object recognition) in C57Bl/6j mice. To evaluate the changes in neuronal activity after L-KYNs treatment, in a separate group of animals we estimated c-Fos expression levels in the corresponding subcortical brain areas. The L-KYNs treatment did not affect the general ambulatory activity of C57Bl/6j mice, whereas it altered their moving patterns, elevating the movement velocity and resting time. Additionally, it seemed to increase anxiety-like behavior, as peripheral zone preference of the open field arena emerged and the rearing activity was attenuated. The treatment also completely abolished the formation of object recognition memory and resulted in decreases in the number of c-Fos-immunopositive-cells in the dorsal part of the striatum and in the CA1 pyramidal cell layer of the hippocampus. We conclude that a single exposure to L-KYNs leads to behavioral disturbances, which might be related to the altered basal c-Fos protein expression in C57Bl/6j mice.

  9. Mechanisms of object recognition: what we have learned from pigeons

    PubMed Central

    Soto, Fabian A.; Wasserman, Edward A.

    2014-01-01

    Behavioral studies of object recognition in pigeons have been conducted for 50 years, yielding a large body of data. Recent work has been directed toward synthesizing this evidence and understanding the visual, associative, and cognitive mechanisms that are involved. The outcome is that pigeons are likely to be the non-primate species for which the computational mechanisms of object recognition are best understood. Here, we review this research and suggest that a core set of mechanisms for object recognition might be present in all vertebrates, including pigeons and people, making pigeons an excellent candidate model to study the neural mechanisms of object recognition. Behavioral and computational evidence suggests that error-driven learning participates in object category learning by pigeons and people, and recent neuroscientific research suggests that the basal ganglia, which are homologous in these species, may implement error-driven learning of stimulus-response associations. Furthermore, learning of abstract category representations can be observed in pigeons and other vertebrates. Finally, there is evidence that feedforward visual processing, a central mechanism in models of object recognition in the primate ventral stream, plays a role in object recognition by pigeons. We also highlight differences between pigeons and people in object recognition abilities, and propose candidate adaptive specializations which may explain them, such as holistic face processing and rule-based category learning in primates. From a modern comparative perspective, such specializations are to be expected regardless of the model species under study. The fact that we have a good idea of which aspects of object recognition differ in people and pigeons should be seen as an advantage over other animal models. From this perspective, we suggest that there is much to learn about human object recognition from studying the “simple” brains of pigeons. PMID:25352784

  10. Effects of curcumin on short-term spatial and recognition memory, adult neurogenesis and neuroinflammation in a streptozotocin-induced rat model of dementia of Alzheimer's type.

    PubMed

    Bassani, Taysa B; Turnes, Joelle M; Moura, Eric L R; Bonato, Jéssica M; Cóppola-Segovia, Valentín; Zanata, Silvio M; Oliveira, Rúbia M M W; Vital, Maria A B F

    2017-09-29

    Curcumin is a natural polyphenol with evidence of antioxidant, anti-inflammatory and neuroprotective properties. Recent evidence also suggests that curcumin increases cognitive performance in animal models of dementia, and this effect would be related to its capacity to enhance adult neurogenesis. The aim of this study was to test the hypothesis that curcumin treatment would be able to preserve cognition by increasing neurogenesis and decreasing neuroinflammation in the model of dementia of Alzheimer's type induced by an intracerebroventricular injection of streptozotocin (ICV-STZ) in Wistar rats. The animals were injected with ICV-STZ or vehicle and curcumin treatments (25, 50 and 100mg/kg, gavage) were performed for 30days. Four weeks after surgery, STZ-lesioned animals exhibited impairments in short-term spatial memory (Object Location Test (OLT) and Y maze) and short-term recognition memory (Object Recognition Test - ORT), decreased cell proliferation and immature neurons (Ki-67- and doublecortin-positive cells, respectively) in the subventricular zone (SVZ) and dentate gyrus (DG) of hippocampus, and increased immunoreactivity for the glial markers GFAP and Iba-1 (neuroinflammation). Curcumin treatment in the doses of 50 and 100mg/kg prevented the deficits in recognition memory in the ORT, but not in spatial memory in the OLT and Y maze. Curcumin treatment exerted only slight improvements in neuroinflammation, resulting in no improvements in hippocampal and subventricular neurogenesis. These results suggest a positive effect of curcumin in object recognition memory which was not related to hippocampal neurogenesis. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Repetition Suppression and Reactivation in Auditory–Verbal Short-Term Recognition Memory

    PubMed Central

    D'Esposito, Mark

    2009-01-01

    The neural response to stimulus repetition is not uniform across brain regions, stimulus modalities, or task contexts. For instance, it has been observed in many functional magnetic resonance imaging (fMRI) studies that sometimes stimulus repetition leads to a relative reduction in neural activity (repetition suppression), whereas in other cases repetition results in a relative increase in activity (repetition enhancement). In the present study, we hypothesized that in the context of a verbal short-term recognition memory task, repetition-related “increases” should be observed in the same posterior temporal regions that have been previously associated with “persistent activity” in working memory rehearsal paradigms. We used fMRI and a continuous recognition memory paradigm with short lags to examine repetition effects in the posterior and anterior regions of the superior temporal cortex. Results showed that, consistent with our hypothesis, the 2 posterior temporal regions consistently associated with working memory maintenance, also show repetition increases during short-term recognition memory. In contrast, a region in the anterior superior temporal lobe showed repetition suppression effects, consistent with previous research work on perceptual adaptation in the auditory–verbal domain. We interpret these results in light of recent theories of the functional specialization along the anterior and posterior axes of the superior temporal lobe. PMID:18987393

  12. Repetition suppression and reactivation in auditory-verbal short-term recognition memory.

    PubMed

    Buchsbaum, Bradley R; D'Esposito, Mark

    2009-06-01

    The neural response to stimulus repetition is not uniform across brain regions, stimulus modalities, or task contexts. For instance, it has been observed in many functional magnetic resonance imaging (fMRI) studies that sometimes stimulus repetition leads to a relative reduction in neural activity (repetition suppression), whereas in other cases repetition results in a relative increase in activity (repetition enhancement). In the present study, we hypothesized that in the context of a verbal short-term recognition memory task, repetition-related "increases" should be observed in the same posterior temporal regions that have been previously associated with "persistent activity" in working memory rehearsal paradigms. We used fMRI and a continuous recognition memory paradigm with short lags to examine repetition effects in the posterior and anterior regions of the superior temporal cortex. Results showed that, consistent with our hypothesis, the 2 posterior temporal regions consistently associated with working memory maintenance, also show repetition increases during short-term recognition memory. In contrast, a region in the anterior superior temporal lobe showed repetition suppression effects, consistent with previous research work on perceptual adaptation in the auditory-verbal domain. We interpret these results in light of recent theories of the functional specialization along the anterior and posterior axes of the superior temporal lobe.

  13. Neurocomputational bases of object and face recognition.

    PubMed Central

    Biederman, I; Kalocsai, P

    1997-01-01

    A number of behavioural phenomena distinguish the recognition of faces and objects, even when members of a set of objects are highly similar. Because faces have the same parts in approximately the same relations, individuation of faces typically requires specification of the metric variation in a holistic and integral representation of the facial surface. The direct mapping of a hypercolumn-like pattern of activation onto a representation layer that preserves relative spatial filter values in a two-dimensional (2D) coordinate space, as proposed by C. von der Malsburg and his associates, may account for many of the phenomena associated with face recognition. An additional refinement, in which each column of filters (termed a 'jet') is centred on a particular facial feature (or fiducial point), allows selectivity of the input into the holistic representation to avoid incorporation of occluding or nearby surfaces. The initial hypercolumn representation also characterizes the first stage of object perception, but the image variation for objects at a given location in a 2D coordinate space may be too great to yield sufficient predictability directly from the output of spatial kernels. Consequently, objects can be represented by a structural description specifying qualitative (typically, non-accidental) characterizations of an object's parts, the attributes of the parts, and the relations among the parts, largely based on orientation and depth discontinuities (as shown by Hummel & Biederman). A series of experiments on the name priming or physical matching of complementary images (in the Fourier domain) of objects and faces documents that whereas face recognition is strongly dependent on the original spatial filter values, evidence from object recognition indicates strong invariance to these values, even when distinguishing among objects that are as similar as faces. PMID:9304687

  14. The effects of sleep deprivation on item and associative recognition memory.

    PubMed

    Ratcliff, Roger; Van Dongen, Hans P A

    2018-02-01

    Sleep deprivation adversely affects the ability to perform cognitive tasks, but theories range from predicting an overall decline in cognitive functioning because of reduced stability in attentional networks to specific deficits in various cognitive domains or processes. We measured the effects of sleep deprivation on two memory tasks, item recognition ("was this word in the list studied") and associative recognition ("were these two words studied in the same pair"). These tasks test memory for information encoded a few minutes earlier and so do not address effects of sleep deprivation on working memory or consolidation after sleep. A diffusion model was used to decompose accuracy and response time distributions to produce parameter estimates of components of cognitive processing. The model assumes that over time, noisy evidence from the task stimulus is accumulated to one of two decision criteria, and parameters governing this process are extracted and interpreted in terms of distinct cognitive processes. Results showed that sleep deprivation reduces drift rate (evidence used in the decision process), with little effect on the other components of the decision process. These results contrast with the effects of aging, which show little decline in item recognition but large declines in associative recognition. The results suggest that sleep deprivation degrades the quality of information stored in memory and that this may occur through degraded attentional processes. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  15. Coarse-coded higher-order neural networks for PSRI object recognition. [position, scale, and rotation invariant

    NASA Technical Reports Server (NTRS)

    Spirkovska, Lilly; Reid, Max B.

    1993-01-01

    A higher-order neural network (HONN) can be designed to be invariant to changes in scale, translation, and inplane rotation. Invariances are built directly into the architecture of a HONN and do not need to be learned. Consequently, fewer training passes and a smaller training set are required to learn to distinguish between objects. The size of the input field is limited, however, because of the memory required for the large number of interconnections in a fully connected HONN. By coarse coding the input image, the input field size can be increased to allow the larger input scenes required for practical object recognition problems. We describe a coarse coding technique and present simulation results illustrating its usefulness and its limitations. Our simulations show that a third-order neural network can be trained to distinguish between two objects in a 4096 x 4096 pixel input field independent of transformations in translation, in-plane rotation, and scale in less than ten passes through the training set. Furthermore, we empirically determine the limits of the coarse coding technique in the object recognition domain.

  16. Chronic methylphenidate-effects over circadian cycle of young and adult rats submitted to open-field and object recognition tests.

    PubMed

    Gomes, Karin M; Souza, Renan P; Valvassori, Samira S; Réus, Gislaine Z; Inácio, Cecília G; Martins, Márcio R; Comim, Clarissa M; Quevedo, João

    2009-11-01

    In this study age-, circadian rhythm- and methylphenidate administration- effect on open field habituation and object recognition were analyzed. Young and adult male Wistar rats were treated with saline or methylphenidate 2.0 mg/kg for 28 days. Experiments were performed during the light and the dark cycle. Locomotor activity was significantly altered by circadian cycle and methylphenidate treatment during the training session and by drug treatment during the testing session. Exploratory activity was significantly modulated by age during the training session and by age and drug treatment during the testing session. Object recognition memory was altered by cycle at the training session; by age 1.5 h later and by cycle and age 24 h after the training session. These results show that methylphenidate treatment was the major modulator factor on open-field test while cycle and age had an important effect on object recognition experiment.

  17. Automation of the novel object recognition task for use in adolescent rats

    PubMed Central

    Silvers, Janelle M.; Harrod, Steven B.; Mactutus, Charles F.; Booze, Rosemarie M.

    2010-01-01

    The novel object recognition task is gaining popularity for its ability to test a complex behavior which relies on the integrity of memory and attention systems without placing undue stress upon the animal. While the task places few requirements upon the animal, it traditionally requires the experimenter to observe the test phase directly and record behavior. This approach can severely limit the number of subjects which can be tested in a reasonable period of time, as training and testing occur on the same day and span several hours. The current study was designed to test the feasibility of automation of this task for adolescent rats using standard activity chambers, with the goals of increased objectivity, flexibility, and throughput of subjects. PMID:17719091

  18. Memory bias for negative emotional words in recognition memory is driven by effects of category membership

    PubMed Central

    White, Corey N.; Kapucu, Aycan; Bruno, Davide; Rotello, Caren M.; Ratcliff, Roger

    2014-01-01

    Recognition memory studies often find that emotional items are more likely than neutral items to be labeled as studied. Previous work suggests this bias is driven by increased memory strength/familiarity for emotional items. We explored strength and bias interpretations of this effect with the conjecture that emotional stimuli might seem more familiar because they share features with studied items from the same category. Categorical effects were manipulated in a recognition task by presenting lists with a small, medium, or large proportion of emotional words. The liberal memory bias for emotional words was only observed when a medium or large proportion of categorized words were presented in the lists. Similar, though weaker, effects were observed with categorized words that were not emotional (animal names). These results suggest that liberal memory bias for emotional items may be largely driven by effects of category membership. PMID:24303902

  19. Object recognition with hierarchical discriminant saliency networks.

    PubMed

    Han, Sunhyoung; Vasconcelos, Nuno

    2014-01-01

    The benefits of integrating attention and object recognition are investigated. While attention is frequently modeled as a pre-processor for recognition, we investigate the hypothesis that attention is an intrinsic component of recognition and vice-versa. This hypothesis is tested with a recognition model, the hierarchical discriminant saliency network (HDSN), whose layers are top-down saliency detectors, tuned for a visual class according to the principles of discriminant saliency. As a model of neural computation, the HDSN has two possible implementations. In a biologically plausible implementation, all layers comply with the standard neurophysiological model of visual cortex, with sub-layers of simple and complex units that implement a combination of filtering, divisive normalization, pooling, and non-linearities. In a convolutional neural network implementation, all layers are convolutional and implement a combination of filtering, rectification, and pooling. The rectification is performed with a parametric extension of the now popular rectified linear units (ReLUs), whose parameters can be tuned for the detection of target object classes. This enables a number of functional enhancements over neural network models that lack a connection to saliency, including optimal feature denoising mechanisms for recognition, modulation of saliency responses by the discriminant power of the underlying features, and the ability to detect both feature presence and absence. In either implementation, each layer has a precise statistical interpretation, and all parameters are tuned by statistical learning. Each saliency detection layer learns more discriminant saliency templates than its predecessors and higher layers have larger pooling fields. This enables the HDSN to simultaneously achieve high selectivity to target object classes and invariance. The performance of the network in saliency and object recognition tasks is compared to those of models from the biological and

  20. Emotion-attention interactions in recognition memory for distractor faces.

    PubMed

    Srinivasan, Narayanan; Gupta, Rashmi

    2010-04-01

    Effective filtering of distractor information has been shown to be dependent on perceptual load. Given the salience of emotional information and the presence of emotion-attention interactions, we wanted to explore the recognition memory for emotional distractors especially as a function of focused attention and distributed attention by manipulating load and the spatial spread of attention. We performed two experiments to study emotion-attention interactions by measuring recognition memory performance for distractor neutral and emotional faces. Participants performed a color discrimination task (low-load) or letter identification task (high-load) with a letter string display in Experiment 1 and a high-load letter identification task with letters presented in a circular array in Experiment 2. The stimuli were presented against a distractor face background. The recognition memory results show that happy faces were recognized better than sad faces under conditions of less focused or distributed attention. When attention is more spatially focused, sad faces were recognized better than happy faces. The study provides evidence for emotion-attention interactions in which specific emotional information like sad or happy is associated with focused or distributed attention respectively. Distractor processing with emotional information also has implications for theories of attention. Copyright 2010 APA, all rights reserved.

  1. Verifying visual properties in sentence verification facilitates picture recognition memory.

    PubMed

    Pecher, Diane; Zanolie, Kiki; Zeelenberg, René

    2007-01-01

    According to the perceptual symbols theory (Barsalou, 1999), sensorimotor simulations underlie the representation of concepts. We investigated whether recognition memory for pictures of concepts was facilitated by earlier representation of visual properties of those concepts. During study, concept names (e.g., apple) were presented in a property verification task with a visual property (e.g., shiny) or with a nonvisual property (e.g., tart). Delayed picture recognition memory was better if the concept name had been presented with a visual property than if it had been presented with a nonvisual property. These results indicate that modality-specific simulations are used for concept representation.

  2. Arousal Rather than Basic Emotions Influence Long-Term Recognition Memory in Humans

    PubMed Central

    Marchewka, Artur; Wypych, Marek; Moslehi, Abnoos; Riegel, Monika; Michałowski, Jarosław M.; Jednoróg, Katarzyna

    2016-01-01

    Emotion can influence various cognitive processes, however its impact on memory has been traditionally studied over relatively short retention periods and in line with dimensional models of affect. The present study aimed to investigate emotional effects on long-term recognition memory according to a combined framework of affective dimensions and basic emotions. Images selected from the Nencki Affective Picture System were rated on the scale of affective dimensions and basic emotions. After 6 months, subjects took part in a surprise recognition test during an fMRI session. The more negative the pictures the better they were remembered, but also the more false recognitions they provoked. Similar effects were found for the arousal dimension. Recognition success was greater for pictures with lower intensity of happiness and with higher intensity of surprise, sadness, fear, and disgust. Consecutive fMRI analyses showed a significant activation for remembered (recognized) vs. forgotten (not recognized) images in anterior cingulate and bilateral anterior insula as well as in bilateral caudate nuclei and right thalamus. Further, arousal was found to be the only subjective rating significantly modulating brain activation. Higher subjective arousal evoked higher activation associated with memory recognition in the right caudate and the left cingulate gyrus. Notably, no significant modulation was observed for other subjective ratings, including basic emotion intensities. These results emphasize the crucial role of arousal for long-term recognition memory and support the hypothesis that the memorized material, over time, becomes stored in a distributed cortical network including the core salience network and basal ganglia. PMID:27818626

  3. Arousal Rather than Basic Emotions Influence Long-Term Recognition Memory in Humans.

    PubMed

    Marchewka, Artur; Wypych, Marek; Moslehi, Abnoos; Riegel, Monika; Michałowski, Jarosław M; Jednoróg, Katarzyna

    2016-01-01

    Emotion can influence various cognitive processes, however its impact on memory has been traditionally studied over relatively short retention periods and in line with dimensional models of affect. The present study aimed to investigate emotional effects on long-term recognition memory according to a combined framework of affective dimensions and basic emotions. Images selected from the Nencki Affective Picture System were rated on the scale of affective dimensions and basic emotions. After 6 months, subjects took part in a surprise recognition test during an fMRI session. The more negative the pictures the better they were remembered, but also the more false recognitions they provoked. Similar effects were found for the arousal dimension. Recognition success was greater for pictures with lower intensity of happiness and with higher intensity of surprise, sadness, fear, and disgust. Consecutive fMRI analyses showed a significant activation for remembered (recognized) vs. forgotten (not recognized) images in anterior cingulate and bilateral anterior insula as well as in bilateral caudate nuclei and right thalamus. Further, arousal was found to be the only subjective rating significantly modulating brain activation. Higher subjective arousal evoked higher activation associated with memory recognition in the right caudate and the left cingulate gyrus. Notably, no significant modulation was observed for other subjective ratings, including basic emotion intensities. These results emphasize the crucial role of arousal for long-term recognition memory and support the hypothesis that the memorized material, over time, becomes stored in a distributed cortical network including the core salience network and basal ganglia.

  4. Cross-modal working memory binding and word recognition skills: how specific is the link?

    PubMed

    Wang, Shinmin; Allen, Richard J

    2018-04-01

    Recent research has suggested that the creation of temporary bound representations of information from different sources within working memory uniquely relates to word recognition abilities in school-age children. However, it is unclear to what extent this link is attributable specifically to the binding ability for cross-modal information. This study examined the performance of Grade 3 (8-9 years old) children on binding tasks requiring either temporary association formation of two visual items (i.e., within-modal binding) or pairs of visually presented abstract shapes and auditorily presented nonwords (i.e., cross-modal binding). Children's word recognition skills were related to performance on the cross-modal binding task but not on the within-modal binding task. Further regression models showed that cross-modal binding memory was a significant predictor of word recognition when memory for its constituent elements, general abilities, and crucially, within-modal binding memory were taken into account. These findings may suggest a specific link between the ability to bind information across modalities within working memory and word recognition skills.

  5. Representational explanations of “process” dissociations in recognition: The DRYAD theory of aging and memory judgments

    PubMed Central

    Benjamin, Aaron S.

    2011-01-01

    It is widely assumed that older adults suffer a deficit in the psychological processes that underlie remembering of contextual or source information. This conclusion is based in large part on empirical interactions, including disordinal ones, that reveal differential effects of manipulations of memory strength on recognition in young and old subjects. This paper lays out an alternative theory that takes as a starting point the overwhelming evidence from the psychometric literature that the effects of age on memory share a single mediating influence. Thus, the theory assumes no differences between younger and older subjects other than a global difference in memory fidelity—that is, the older subjects are presumed to have less valid representations of events and objects than are young subjects. The theory is articulated through three major assumptions and implemented in a computational model, DRYAD, in order to simulate fundamental results in the literature on aging and recognition, including the very interactions taken to imply selective impairment in older people. The theoretical perspective presented here allows for a critical examination of the widely held belief that aging entails the selective disruption of particular memory processes. PMID:20822289

  6. Gender differences in memory for objects and their locations: a study on automatic versus controlled encoding and retrieval contexts.

    PubMed

    De Goede, Maartje; Postma, Albert

    2008-04-01

    Object-location memory is the only spatial task where female subjects have been shown to outperform males. This result is not consistent across all studies, and may be due to the combination of the multi-component structure of object location memory with the conditions under which different studies were done. Possible gender differences in object location memory and its component object identity memory were assessed in the present study. In order to disentangle these two components, an object location memory task (in which objects had to be relocated in daily environments), and a separate object identity recognition task were carried out. This study also focused on the conditions under which object locations were encoded and retrieved. Only half of the participants were aware of the fact that object locations had to be retrieved later on. Moreover, by applying the 'process dissociation procedure' to the object location memory assessments and the 'remember-know' paradigm to the object identity measure, the amount of explicit (conscious) and implicit (unconscious) retrieval was estimated for each component. In general, females performed better than males on the object location memory task. However, when controlled for object identity memory, females no longer outperformed males, whereas they did not obtain a higher general object identity memory score, nor did they have more explicit or implicit recollection of the object identities. These complicated effects might stem from a difference between males and females, in the way locations or associations between objects and locations are retrieved. In general, participants had more explicit (conscious) recollection than implicit (unconscious) recollection. No effect of encoding context was found, nor any interaction effect of gender, encoding and retrieval context.

  7. Who is the boss? Individual recognition memory and social hierarchy formation in crayfish.

    PubMed

    Jiménez-Morales, Nayeli; Mendoza-Ángeles, Karina; Porras-Villalobos, Mercedes; Ibarra-Coronado, Elizabeth; Roldán-Roldán, Gabriel; Hernández-Falcón, Jesús

    2018-01-01

    Under laboratory conditions, crayfish establish hierarchical orders through agonistic encounters whose outcome defines the dominant one and one, or more, submissive animals. These agonistic encounters are ritualistic, based on threats, pushes, attacks, grabs, and avoidance behaviors that include retreats and escape responses. Agonistic behavior in a triad of unfamiliar, size-matched animals is intense on the first day of social interaction and the intensity fades on daily repetitions. The dominant animal keeps its status for long periods, and the submissive ones seem to remember 'who the boss is'. It has been assumed that animals remember and recognize their hierarchical status by urine signals, but the putative substance mediating this recognition has not been reported. The aim of this work was to characterize this hierarchical recognition memory. Triads of unfamiliar crayfish (male animals, size and weight-matched) were faced during standardized agonistic protocols for five consecutive days to analyze memory acquisition dynamics (Experiment 1). In Experiment 2, dominant crayfish were shifted among triads to disclose whether hierarchy depended upon individual recognition memory or recognition of status. The maintenance of the hierarchical structure without behavioral reinforcement was assessed by immobilizing the dominant animal during eleven daily agonistic encounters, and considering any shift in the dominance order (Experiment 3). Standard amnesic treatments (anisomycin, scopolamine or cold-anesthesia) were given to all members of the triads immediately after the first interaction session to prevent individual recognition memory consolidation and evaluate its effect on the hierarchical order (Experiment 4). Acquisition of hierarchical recognition occurs at the first agonistic encounter and agonistic behavior gradually diminishes in the following days; animals keep their hierarchical order despite the inability of the dominant crayfish to attack the submissive

  8. Recollection and Familiarity in Recognition Memory: Evidence from ROC Curves

    ERIC Educational Resources Information Center

    Heathcote, Andrew; Raymond, Frances; Dunn, John

    2006-01-01

    Does recognition memory rely on discrete recollection, continuous evidence, or both? Is continuous evidence sensitive to only the recency and duration of study (familiarity), or is it also sensitive to details of the study episode? Dual process theories assume recognition is based on recollection and familiarity, with only recollection providing…

  9. Model-Driven Study of Visual Memory

    DTIC Science & Technology

    2004-12-01

    dimensional stimuli (synthetic human faces ) afford important insights into episodic recognition memory. The results were well accommodated by a summed...the unusual properties of the z-transformed ROCS. 15. SUBJECT TERMS Memory, visual memory, computational model, human memory, faces , identity 16...3 Accomplishments/New Findings 3 Work on Objective One: Recognition Memory for Synthetic Faces . 3 Experim ent 1

  10. Behavioral model of visual perception and recognition

    NASA Astrophysics Data System (ADS)

    Rybak, Ilya A.; Golovan, Alexander V.; Gusakova, Valentina I.

    1993-09-01

    In the processes of visual perception and recognition human eyes actively select essential information by way of successive fixations at the most informative points of the image. A behavioral program defining a scanpath of the image is formed at the stage of learning (object memorizing) and consists of sequential motor actions, which are shifts of attention from one to another point of fixation, and sensory signals expected to arrive in response to each shift of attention. In the modern view of the problem, invariant object recognition is provided by the following: (1) separated processing of `what' (object features) and `where' (spatial features) information at high levels of the visual system; (2) mechanisms of visual attention using `where' information; (3) representation of `what' information in an object-based frame of reference (OFR). However, most recent models of vision based on OFR have demonstrated the ability of invariant recognition of only simple objects like letters or binary objects without background, i.e. objects to which a frame of reference is easily attached. In contrast, we use not OFR, but a feature-based frame of reference (FFR), connected with the basic feature (edge) at the fixation point. This has provided for our model, the ability for invariant representation of complex objects in gray-level images, but demands realization of behavioral aspects of vision described above. The developed model contains a neural network subsystem of low-level vision which extracts a set of primary features (edges) in each fixation, and high- level subsystem consisting of `what' (Sensory Memory) and `where' (Motor Memory) modules. The resolution of primary features extraction decreases with distances from the point of fixation. FFR provides both the invariant representation of object features in Sensor Memory and shifts of attention in Motor Memory. Object recognition consists in successive recall (from Motor Memory) and execution of shifts of attention and

  11. Out of place, out of mind: Schema-driven false memory effects for object-location bindings.

    PubMed

    Lew, Adina R; Howe, Mark L

    2017-03-01

    Events consist of diverse elements, each processed in specialized neocortical networks, with temporal lobe memory systems binding these elements to form coherent event memories. We provide a novel theoretical analysis of an unexplored consequence of the independence of memory systems for elements and their bindings, 1 that raises the paradoxical prediction that schema-driven false memories can act solely on the binding of event elements despite the superior retrieval of individual elements. This is because if 2, or more, schema-relevant elements are bound together in unexpected conjunctions, the unexpected conjunction will increase attention during encoding to both the elements and their bindings, but only the bindings will receive competition with evoked schema-expected bindings. We test our model by examining memory for object-location bindings in recognition (Study 1) and recall (Studies 2 and 3) tasks. After studying schema-relevant objects in unexpected locations (e.g., pan on a stool in a kitchen scene), participants who then viewed these objects in expected locations (e.g., pan on stove) at test were more likely to falsely remember this object-location pairing as correct, compared with participants that viewed a different unexpected object-location pairing (e.g., pan on floor). In recall, participants were more likely to correctly remember individual schema-relevant objects originally viewed in unexpected, as opposed to expected locations, but were then more likely to misplace these items in the original room scene to expected places, relative to control schema-irrelevant objects. Our theoretical analysis and novel paradigm provide a tool for investigating memory distortions acting on binding processes. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  12. The growth of glioblastoma orthotopic xenografts in nude mice is directly correlated with impaired object recognition memory.

    PubMed

    Wasilewska-Sampaio, Ana Paula; Santos, Tiago G; Lopes, Marilene Hohmuth; Cammarota, Martin; Martins, Vilma Regina

    2014-01-17

    Cognitive dysfunction is found in patients with brain tumors and there is a need to determine whether it can be replicated in an experimental model. In the present study, the object recognition (OR) paradigm was used to investigate cognitive performance in nude mice, which represent one of the most important animal models available to study human tumors in vivo. Mice with orthotopic xenografts of the human U87MG glioblastoma cell line were trained at 9, 14, and 18days (D9, D14, and D18, respectively) after implantation of 5×10(5) cells. At D9, the mice showed normal behavior when tested 90min or 24h after training and compared to control nude mice. Animals at D14 were still able to discriminate between familiar and novel objects, but exhibited a lower performance than animals at D9. Total impairment in the OR memory was observed when animals were evaluated on D18. These alterations were detected earlier than any other clinical symptoms, which were observed only 22-24days after tumor implantation. There was a significant correlation between the discrimination index (d2) and time after tumor implantation as well as between d2 and tumor volume. These data indicate that the OR task is a robust test to identify early behavior alterations caused by glioblastoma in nude mice. In addition, these results suggest that OR task can be a reliable tool to test the efficacy of new therapies against these tumors. © 2013 Elsevier Inc. All rights reserved.

  13. A high-fat high-sugar diet-induced impairment in place-recognition memory is reversible and training-dependent.

    PubMed

    Tran, Dominic M D; Westbrook, R Frederick

    2017-03-01

    A high-fat high-sugar (HFHS) diet is associated with cognitive deficits in people and produces spatial learning and memory deficits in rodents. Notable, such diets rapidly impair place-, but not object-recognition memory in rats within one week of exposure. Three experiments examined whether this impairment was reversed by removal of the diet, or prevented by pre-diet training. Experiment 1 showed that rats switched from HFHS to chow recovered from the place-recognition impairment that they displayed while on HFHS. Experiment 2 showed that control rats ("Untrained") who were exposed to an empty testing arena while on chow, were impaired in place-recognition when switched to HFHS and tested for the first time. However, rats tested ("Trained") on the place and object task while on chow, were protected from the diet-induce deficit and maintained good place-recognition when switched to HFHS. Experiment 3 examined the conditions of this protection effect by training rats in a square arena while on chow, and testing them in a rectangular arena while on HFHS. We have previously demonstrated that chow rats, but not HFHS rats, show geometry-based reorientation on a rectangular arena place-recognition task (Tran & Westbrook, 2015). Experiment 3 assessed whether rats switched to the HFHS diet after training on the place and object tasks in a square area, would show geometry-based reorientation in a rectangular arena. The protective benefit of training was replicated in the square arena, but both Untrained and Trained HFHS failed to show geometry-based reorientation in the rectangular arena. These findings are discussed in relation to the specificity of the training effect, the role of the hippocampus in diet-induced deficits, and their implications for dietary effects on cognition in people. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Memory Distortion and Its Avoidance: An Event-Related Potentials Study on False Recognition and Correct Rejection

    PubMed Central

    Beato, Maria Soledad

    2016-01-01

    Memory researchers have long been captivated by the nature of memory distortions and have made efforts to identify the neural correlates of true and false memories. However, the underlying mechanisms of avoiding false memories by correctly rejecting related lures remains underexplored. In this study, we employed a variant of the Deese/Roediger-McDermott paradigm to explore neural signatures of committing and avoiding false memories. ERP were obtained for True recognition, False recognition, Correct rejection of new items, and, more importantly, Correct rejection of related lures. With these ERP data, early-frontal, left-parietal, and late right-frontal old/new effects (associated with familiarity, recollection, and monitoring processes, respectively) were analysed. Results indicated that there were similar patterns for True and False recognition in all three old/new effects analysed in our study. Also, False recognition and Correct rejection of related lures activities seemed to share common underlying familiarity-based processes. The ERP similarities between False recognition and Correct rejection of related lures disappeared when recollection processes were examined because only False recognition presented a parietal old/new effect. This finding supported the view that actual false recollections underlie false memories, providing evidence consistent with previous behavioural research and with most ERP and neuroimaging studies. Later, with the onset of monitoring processes, False recognition and Correct rejection of related lures waveforms presented, again, clearly dissociated patterns. Specifically, False recognition and True recognition showed more positive going patterns than Correct rejection of related lures signal and Correct rejection of new items signature. Since False recognition and Correct rejection of related lures triggered familiarity-recognition processes, our results suggest that deciding which items are studied is based more on recollection

  15. Memory Distortion and Its Avoidance: An Event-Related Potentials Study on False Recognition and Correct Rejection.

    PubMed

    Cadavid, Sara; Beato, Maria Soledad

    2016-01-01

    Memory researchers have long been captivated by the nature of memory distortions and have made efforts to identify the neural correlates of true and false memories. However, the underlying mechanisms of avoiding false memories by correctly rejecting related lures remains underexplored. In this study, we employed a variant of the Deese/Roediger-McDermott paradigm to explore neural signatures of committing and avoiding false memories. ERP were obtained for True recognition, False recognition, Correct rejection of new items, and, more importantly, Correct rejection of related lures. With these ERP data, early-frontal, left-parietal, and late right-frontal old/new effects (associated with familiarity, recollection, and monitoring processes, respectively) were analysed. Results indicated that there were similar patterns for True and False recognition in all three old/new effects analysed in our study. Also, False recognition and Correct rejection of related lures activities seemed to share common underlying familiarity-based processes. The ERP similarities between False recognition and Correct rejection of related lures disappeared when recollection processes were examined because only False recognition presented a parietal old/new effect. This finding supported the view that actual false recollections underlie false memories, providing evidence consistent with previous behavioural research and with most ERP and neuroimaging studies. Later, with the onset of monitoring processes, False recognition and Correct rejection of related lures waveforms presented, again, clearly dissociated patterns. Specifically, False recognition and True recognition showed more positive going patterns than Correct rejection of related lures signal and Correct rejection of new items signature. Since False recognition and Correct rejection of related lures triggered familiarity-recognition processes, our results suggest that deciding which items are studied is based more on recollection

  16. Vaginocervical stimulation enhances social recognition memory in rats via oxytocin release in the olfactory bulb.

    PubMed

    Larrazolo-López, A; Kendrick, K M; Aburto-Arciniega, M; Arriaga-Avila, V; Morimoto, S; Frias, M; Guevara-Guzmán, R

    2008-03-27

    The ability of vaginocervical stimulation (VCS) to promote olfactory social recognition memory at different stages of the ovarian cycle was investigated in female rats. A juvenile social recognition paradigm was used and memory retention tested at 30 and 300 min after an adult was exposed to a juvenile during three 4-min trials. Results showed that an intact social recognition memory was present at 30 min in animals with or without VCS and at all stages of the estrus cycle. However, whereas no animals in any stage of the estrus cycle showed retention of the specific recognition memory at 300 min, those in the proestrus/estrus phase that received VCS 10 min before the trial started did. In vivo microdialysis studies showed that there was a significant release of oxytocin after VCS in the olfactory bulb during proestrus. There was also increased oxytocin immunoreactivity within the olfactory bulb after VCS in proestrus animals compared with diestrus ones. Furthermore, when animals received an infusion of an oxytocin antagonist directly into the olfactory bulb, or a systemic administration of alpha or beta noradrenaline-antagonists, they failed to show evidence for maintenance of a selective olfactory recognition memory at 300 min. Animals with vagus or pelvic nerve section also showed no memory retention when tested after 300 min. These results suggest that VCS releases oxytocin in the olfactory bulb to enhance the social recognition memory and that this may be due to modulatory actions on noradrenaline release. The vagus and pelvic nerves are responsible for carrying the information from the pelvic area to the CNS.

  17. Dual-process theory and signal-detection theory of recognition memory.

    PubMed

    Wixted, John T

    2007-01-01

    Two influential models of recognition memory, the unequal-variance signal-detection model and a dual-process threshold/detection model, accurately describe the receiver operating characteristic, but only the latter model can provide estimates of recollection and familiarity. Such estimates often accord with those provided by the remember-know procedure, and both methods are now widely used in the neuroscience literature to identify the brain correlates of recollection and familiarity. However, in recent years, a substantial literature has accumulated directly contrasting the signal-detection model against the threshold/detection model, and that literature is almost unanimous in its endorsement of signal-detection theory. A dual-process version of signal-detection theory implies that individual recognition decisions are not process pure, and it suggests new ways to investigate the brain correlates of recognition memory. ((c) 2007 APA, all rights reserved).

  18. Spatial Object Recognition Enables Endogenous LTD that Curtails LTP in the Mouse Hippocampus

    PubMed Central

    Goh, Jinzhong Jeremy

    2013-01-01

    Although synaptic plasticity is believed to comprise the cellular substrate for learning and memory, limited direct evidence exists that hippocampus-dependent learning actually triggers synaptic plasticity. It is likely, however, that long-term potentiation (LTP) works in concert with its counterpart, long-term depression (LTD) in the creation of spatial memory. It has been reported in rats that weak synaptic plasticity is facilitated into persistent plasticity if afferent stimulation is coupled with a novel spatial learning event. It is not known if this phenomenon also occurs in other species. We recorded from the hippocampal CA1 of freely behaving mice and observed that novel spatial learning triggers endogenous LTD. Specifically, we observed that LTD is enabled when test-pulse afferent stimulation is given during the learning of object constellations or during a spatial object recognition task. Intriguingly, LTP is significantly impaired by the same tasks, suggesting that LTD is the main cellular substrate for this type of learning. These data indicate that learning-facilitated plasticity is not exclusive to rats and that spatial learning leads to endogenous LTD in the hippocampus, suggesting an important role for this type of synaptic plasticity in the creation of hippocampus-dependent memory. PMID:22510536

  19. Recognition and source memory as multivariate decision processes.

    PubMed

    Banks, W P

    2000-07-01

    Recognition memory, source memory, and exclusion performance are three important domains of study in memory, each with its own findings, it specific theoretical developments, and its separate research literature. It is proposed here that results from all three domains can be treated with a single analytic model. This article shows how to generate a comprehensive memory representation based on multidimensional signal detection theory and how to make predictions for each of these paradigms using decision axes drawn through the space. The detection model is simpler than the comparable multinomial model, it is more easily generalizable, and it does not make threshold assumptions. An experiment using the same memory set for all three tasks demonstrates the analysis and tests the model. The results show that some seemingly complex relations between the paradigms derive from an underlying simplicity of structure.

  20. A Developmental Study of Semantic Elaboration and Interpretation in Recognition Memory.

    ERIC Educational Resources Information Center

    Perlmutter, Marion

    1980-01-01

    Two experiments examined semantic elaboration and interpretation in recognition memory of 4-year-olds and college students. Subjects were presented pictures of color-specific and non-color-specific items, and then tested for their recognition of the chroma of the items. (Author/MP)

  1. Administration of the Phosphodiesterase Type 4 Inhibitor Rolipram into the Amygdala at a Specific Time Interval after Learning Increases Recognition Memory Persistence

    ERIC Educational Resources Information Center

    Werenicz, Aline; Christoff, Raissa R.; Blank, Martina; Jobim, Paulo F. C.; Pedroso, Thiago R.; Reolon, Gustavo K.; Schroder, Nadja; Roesler, Rafael

    2012-01-01

    Here we show that administration of the phosphodiesterase type 4 (PDE4) inhibitor rolipram into the basolateral complex of the amygdala (BLA) at a specific time interval after training enhances memory consolidation and induces memory persistence for novel object recognition (NOR) in rats. Intra-BLA infusion of rolipram immediately, 1.5 h, or 6 h…

  2. HONTIOR - HIGHER-ORDER NEURAL NETWORK FOR TRANSFORMATION INVARIANT OBJECT RECOGNITION

    NASA Technical Reports Server (NTRS)

    Spirkovska, L.

    1994-01-01

    Neural networks have been applied in numerous fields, including transformation invariant object recognition, wherein an object is recognized despite changes in the object's position in the input field, size, or rotation. One of the more successful neural network methods used in invariant object recognition is the higher-order neural network (HONN) method. With a HONN, known relationships are exploited and the desired invariances are built directly into the architecture of the network, eliminating the need for the network to learn invariance to transformations. This results in a significant reduction in the training time required, since the network needs to be trained on only one view of each object, not on numerous transformed views. Moreover, one hundred percent accuracy is guaranteed for images characterized by the built-in distortions, providing noise is not introduced through pixelation. The program HONTIOR implements a third-order neural network having invariance to translation, scale, and in-plane rotation built directly into the architecture, Thus, for 2-D transformation invariance, the network needs only to be trained on just one view of each object. HONTIOR can also be used for 3-D transformation invariant object recognition by training the network only on a set of out-of-plane rotated views. Historically, the major drawback of HONNs has been that the size of the input field was limited to the memory required for the large number of interconnections in a fully connected network. HONTIOR solves this problem by coarse coding the input images (coding an image as a set of overlapping but offset coarser images). Using this scheme, large input fields (4096 x 4096 pixels) can easily be represented using very little virtual memory (30Mb). The HONTIOR distribution consists of three main programs. The first program contains the training and testing routines for a third-order neural network. The second program contains the same training and testing procedures as the

  3. Timing of presentation and nature of stimuli determine retroactive interference with social recognition memory in mice.

    PubMed

    Perna, Judith Camats; Wotjak, Carsten T; Stork, Oliver; Engelmann, Mario

    2015-05-01

    The present study was designed to further investigate the nature of stimuli and the timing of their presentation, which can induce retroactive interference with social recognition memory in mice. In accordance with our previous observations, confrontation with an unfamiliar conspecific juvenile 3h and 6h, but not 22 h, after the initial learning session resulted in retroactive interference. The same effect was observed with the exposure to both enantiomers of the monomolecular odour carvone, and with a novel object. Exposure to a loud tone (12 KHz, 90 dB) caused retroactive interference at 6h, but not 3h and 22 h, after sampling. Our data show that retroactive interference of social recognition memory can be induced by exposing the experimental subjects to the defined stimuli presented <22 h after learning in their home cage. The distinct interference triggered by the tone presentation at 6h after sampling may be linked to the intrinsic aversiveness of the loud tone and suggests that at this time point memory consolidation is particularly sensitive to stress. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Individual recognition of social rank and social memory performance depends on a functional circadian system.

    PubMed

    Müller, L; Weinert, D

    2016-11-01

    In a natural environment, social abilities of an animal are important for its survival. Particularly, it must recognize its own social rank and the social rank of a conspecific and have a good social memory. While the role of the circadian system for object and spatial recognition and memory is well known, the impact of the social rank and circadian disruptions on social recognition and memory were not investigated so far. In the present study, individual recognition of social rank and social memory performance of Djungarian hamsters revealing different circadian phenotypes were investigated. Wild type (WT) animals show a clear and well-synchronized daily activity rhythm, whereas in arrhythmic (AR) hamsters, the suprachiasmatic nuclei (SCN) do not generate a circadian signal. The aim of the study was to investigate putative consequences of these deteriorations in the circadian system for animalś cognitive abilities. Hamsters were bred and kept under standardized housing conditions with food and water ad libitum and a 14l/10 D lighting regimen. Experimental animals were assigned to different groups (WT and AR) according to their activity pattern obtained by means of infrared motion sensors. Before the experiments, the animals were given to develop a dominant-subordinate relationship in a dyadic encounter. Experiment 1 dealt with individual recognition of social rank. Subordinate and dominant hamsters were tested in an open arena for their behavioral responses towards a familiar (known from the agonistic encounters) or an unfamiliar hamster (from another agonistic encounter) which had the same or an opposite social rank. The investigation time depended on the social rank of the WT subject hamster and its familiarity with the stimulus animal. Both subordinate and dominant WT hamsters preferred an unfamiliar subordinate stimulus animal. In contrast, neither subordinate nor dominant AR hamsters preferred any of the stimulus animals. Thus, disruptions in circadian

  5. Face-Recognition Memory: Implications for Children's Eyewitness Testimony.

    ERIC Educational Resources Information Center

    Chance, June E.; Goldstein, Alvin G.

    1984-01-01

    Reviews studies of face-recognition memory and considers implications for assessing the dependability of children's performances as eyewitnesses. Considers personal factors (age, intellectual differences, and gender) and situational factors (familiarity of face, retention interval, and others). Also identifies developmental questions for future…

  6. The effect of dehydroepiandrosterone (DHEA) on recognition memory decision processes and discrimination in postmenopausal women.

    PubMed

    Hirshman, Elliot; Wells, Ellen; Wierman, Margaret E; Anderson, Benjamin; Butler, Andrew; Senholzi, Meredith; Fisher, Julia

    2003-03-01

    In this article, the theoretical distinction between recognition memory decision and discrimination processes is used to explore the effect of dehydroepiandrosterone (DHEA) in postmenopausal women. DHEA is an adrenal steroid that diminishes with aging. It has enhanced memory in laboratory animals. An 8-week placebo-controlled, double-blind experiment in which 30 women (ages 39-70) received a 50-mg/day oral dose of DHEA for 4 weeks demonstrated that DHEA made subjects more conservative (i.e., less likely to call test items "old") in their recognition memory decisions and enhanced recognition memory discrimination for items presented briefly. The former result may reflect an empirical regularity (Hirshman, 1995) in which recent strong memory experiences make participants more conservative. The latter result may reflect the effect of DHEA on visual perception, with consequent effects on memory. These results suggest the methodological importance of focusing on decision processes when examining the effects of hormones on memory.

  7. Object Recognition using Feature- and Color-Based Methods

    NASA Technical Reports Server (NTRS)

    Duong, Tuan; Duong, Vu; Stubberud, Allen

    2008-01-01

    An improved adaptive method of processing image data in an artificial neural network has been developed to enable automated, real-time recognition of possibly moving objects under changing (including suddenly changing) conditions of illumination and perspective. The method involves a combination of two prior object-recognition methods one based on adaptive detection of shape features and one based on adaptive color segmentation to enable recognition in situations in which either prior method by itself may be inadequate. The chosen prior feature-based method is known as adaptive principal-component analysis (APCA); the chosen prior color-based method is known as adaptive color segmentation (ACOSE). These methods are made to interact with each other in a closed-loop system to obtain an optimal solution of the object-recognition problem in a dynamic environment. One of the results of the interaction is to increase, beyond what would otherwise be possible, the accuracy of the determination of a region of interest (containing an object that one seeks to recognize) within an image. Another result is to provide a minimized adaptive step that can be used to update the results obtained by the two component methods when changes of color and apparent shape occur. The net effect is to enable the neural network to update its recognition output and improve its recognition capability via an adaptive learning sequence. In principle, the improved method could readily be implemented in integrated circuitry to make a compact, low-power, real-time object-recognition system. It has been proposed to demonstrate the feasibility of such a system by integrating a 256-by-256 active-pixel sensor with APCA, ACOSE, and neural processing circuitry on a single chip. It has been estimated that such a system on a chip would have a volume no larger than a few cubic centimeters, could operate at a rate as high as 1,000 frames per second, and would consume in the order of milliwatts of power.

  8. Experience moderates overlap between object and face recognition, suggesting a common ability

    PubMed Central

    Gauthier, Isabel; McGugin, Rankin W.; Richler, Jennifer J.; Herzmann, Grit; Speegle, Magen; Van Gulick, Ana E.

    2014-01-01

    Some research finds that face recognition is largely independent from the recognition of other objects; a specialized and innate ability to recognize faces could therefore have little or nothing to do with our ability to recognize objects. We propose a new framework in which recognition performance for any category is the product of domain-general ability and category-specific experience. In Experiment 1, we show that the overlap between face and object recognition depends on experience with objects. In 256 subjects we measured face recognition, object recognition for eight categories, and self-reported experience with these categories. Experience predicted neither face recognition nor object recognition but moderated their relationship: Face recognition performance is increasingly similar to object recognition performance with increasing object experience. If a subject has a lot of experience with objects and is found to perform poorly, they also prove to have a low ability with faces. In a follow-up survey, we explored the dimensions of experience with objects that may have contributed to self-reported experience in Experiment 1. Different dimensions of experience appear to be more salient for different categories, with general self-reports of expertise reflecting judgments of verbal knowledge about a category more than judgments of visual performance. The complexity of experience and current limitations in its measurement support the importance of aggregating across multiple categories. Our findings imply that both face and object recognition are supported by a common, domain-general ability expressed through experience with a category and best measured when accounting for experience. PMID:24993021

  9. Experience moderates overlap between object and face recognition, suggesting a common ability.

    PubMed

    Gauthier, Isabel; McGugin, Rankin W; Richler, Jennifer J; Herzmann, Grit; Speegle, Magen; Van Gulick, Ana E

    2014-07-03

    Some research finds that face recognition is largely independent from the recognition of other objects; a specialized and innate ability to recognize faces could therefore have little or nothing to do with our ability to recognize objects. We propose a new framework in which recognition performance for any category is the product of domain-general ability and category-specific experience. In Experiment 1, we show that the overlap between face and object recognition depends on experience with objects. In 256 subjects we measured face recognition, object recognition for eight categories, and self-reported experience with these categories. Experience predicted neither face recognition nor object recognition but moderated their relationship: Face recognition performance is increasingly similar to object recognition performance with increasing object experience. If a subject has a lot of experience with objects and is found to perform poorly, they also prove to have a low ability with faces. In a follow-up survey, we explored the dimensions of experience with objects that may have contributed to self-reported experience in Experiment 1. Different dimensions of experience appear to be more salient for different categories, with general self-reports of expertise reflecting judgments of verbal knowledge about a category more than judgments of visual performance. The complexity of experience and current limitations in its measurement support the importance of aggregating across multiple categories. Our findings imply that both face and object recognition are supported by a common, domain-general ability expressed through experience with a category and best measured when accounting for experience. © 2014 ARVO.

  10. Nuclear factor kappa B-dependent Zif268 expression in hippocampus is required for recognition memory in mice.

    PubMed

    Zalcman, Gisela; Federman, Noel; de la Fuente, Verónica; Romano, Arturo

    2015-03-01

    Long-term memory formation requires gene expression after acquisition of new information. The first step in the regulation of gene expression is the participation of transcription factors (TFs) such as nuclear factor kappa B (NF-кB), which are present before the neuronal activity induced by training. It was proposed that the activation of these types of TFs allows a second step in gene regulation by induction of immediate-early genes (IEGs) whose protein products are, in turn, TFs. Between these IEGs, zif268 has been found to play a critical role in long-term memory formation and reprocessing after retrieval. Here we found in mice hippocampus that, on one hand, NF-кB was activated 45 min after training in a novel object recognition (NOR) task and that inhibiting NF-кB immediately after training by intrahippocampal administration of NF-кB Decoy DNA impaired NOR memory consolidation. On the other hand, Zif268 protein expression was induced 45 min after NOR training and the administration of DNA antisense to its mRNA post-training impaired recognition memory. Finally, we found that the inhibition of NF-кB by NF-кB Decoy DNA reduced significantly the training-induced Zif268 increment, indicating that NF-кB is involved in the regulation of Zif268 expression. Thus, the present results support the involvement of NF-кB activity-dependent Zif268 expression in the hippocampus during recognition memory consolidation. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Signal detection with criterion noise: applications to recognition memory.

    PubMed

    Benjamin, Aaron S; Diaz, Michael; Wee, Serena

    2009-01-01

    A tacit but fundamental assumption of the theory of signal detection is that criterion placement is a noise-free process. This article challenges that assumption on theoretical and empirical grounds and presents the noisy decision theory of signal detection (ND-TSD). Generalized equations for the isosensitivity function and for measures of discrimination incorporating criterion variability are derived, and the model's relationship with extant models of decision making in discrimination tasks is examined. An experiment evaluating recognition memory for ensembles of word stimuli revealed that criterion noise is not trivial in magnitude and contributes substantially to variance in the slope of the isosensitivity function. The authors discuss how ND-TSD can help explain a number of current and historical puzzles in recognition memory, including the inconsistent relationship between manipulations of learning and the isosensitivity function's slope, the lack of invariance of the slope with manipulations of bias or payoffs, the effects of aging on the decision-making process in recognition, and the nature of responding in remember-know decision tasks. ND-TSD poses novel, theoretically meaningful constraints on theories of recognition and decision making more generally, and provides a mechanism for rapprochement between theories of decision making that employ deterministic response rules and those that postulate probabilistic response rules.

  12. Trajectory Recognition as the Basis for Object Individuation: A Functional Model of Object File Instantiation and Object-Token Encoding

    PubMed Central

    Fields, Chris

    2011-01-01

    The perception of persisting visual objects is mediated by transient intermediate representations, object files, that are instantiated in response to some, but not all, visual trajectories. The standard object file concept does not, however, provide a mechanism sufficient to account for all experimental data on visual object persistence, object tracking, and the ability to perceive spatially disconnected stimuli as continuously existing objects. Based on relevant anatomical, functional, and developmental data, a functional model is constructed that bases visual object individuation on the recognition of temporal sequences of apparent center-of-mass positions that are specifically identified as trajectories by dedicated “trajectory recognition networks” downstream of the medial–temporal motion-detection area. This model is shown to account for a wide range of data, and to generate a variety of testable predictions. Individual differences in the recognition, abstraction, and encoding of trajectory information are expected to generate distinct object persistence judgments and object recognition abilities. Dominance of trajectory information over feature information in stored object tokens during early infancy, in particular, is expected to disrupt the ability to re-identify human and other individuals across perceptual episodes, and lead to developmental outcomes with characteristics of autism spectrum disorders. PMID:21716599

  13. A method of object recognition for single pixel imaging

    NASA Astrophysics Data System (ADS)

    Li, Boxuan; Zhang, Wenwen

    2018-01-01

    Computational ghost imaging(CGI), utilizing a single-pixel detector, has been extensively used in many fields. However, in order to achieve a high-quality reconstructed image, a large number of iterations are needed, which limits the flexibility of using CGI in practical situations, especially in the field of object recognition. In this paper, we purpose a method utilizing the feature matching to identify the number objects. In the given system, approximately 90% of accuracy of recognition rates can be achieved, which provides a new idea for the application of single pixel imaging in the field of object recognition

  14. Effect of Dietary Iron Loading on Recognition Memory in Growing Rats

    PubMed Central

    Han, Murui; Kim, Jonghan

    2015-01-01

    While nutritional and neurobehavioral problems are associated with both iron deficiency during growth and overload in the elderly, the effect of iron loading in growing ages on neurobehavioral performance has not been fully explored. To characterize the role of dietary iron loading in memory function in the young, weanling rats were fed iron-loading diet (10,000 mg iron/kg diet) or iron-adequate control diet (50 mg/kg) for one month, during which a battery of behavioral tests were conducted. Iron-loaded rats displayed elevated non-heme iron levels in serum and liver, indicating a condition of systemic iron overload. In the brain, non-heme iron was elevated in the prefrontal cortex of iron-loaded rats compared with controls, whereas there was no difference in iron content in other brain regions between the two diet groups. While iron loading did not alter motor coordination or anxiety-like behavior, iron-loaded rats exhibited a better recognition memory, as represented by an increased novel object recognition index (22% increase from the reference value) than control rats (12% increase; P=0.047). Western blot analysis showed an up-regulation of dopamine receptor 1 in the prefrontal cortex from iron-loaded rats (142% increase; P=0.002). Furthermore, levels of glutamate receptors (both NMDA and AMPA) and nicotinic acetylcholine receptor (nAChR) were significantly elevated in the prefrontal cortex of iron-loaded rats (62% increase in NR1; 70% increase in Glu1A; 115% increase in nAChR). Dietary iron loading also increased the expression of NMDA receptors and nAChR in the hippocampus. These results support the idea that iron is essential for learning and memory and further reveal that iron supplementation during developmental and rapidly growing periods of life improves memory performance. Our investigation also demonstrates that both cholinergic and glutamatergic neurotransmission pathways are regulated by dietary iron and provides a molecular basis for the role of iron

  15. Verification Processes in Recognition Memory: The Role of Natural Language Mediators

    ERIC Educational Resources Information Center

    Marshall, Philip H.; Smith, Randolph A. S.

    1977-01-01

    The existence of verification processes in recognition memory was confirmed in the context of Adams' (Adams & Bray, 1970) closed-loop theory. Subjects' recognition was tested following a learning session. The expectation was that data would reveal consistent internal relationships supporting the position that natural language mediation plays…

  16. A Taxonomy of 3D Occluded Objects Recognition Techniques

    NASA Astrophysics Data System (ADS)

    Soleimanizadeh, Shiva; Mohamad, Dzulkifli; Saba, Tanzila; Al-ghamdi, Jarallah Saleh

    2016-03-01

    The overall performances of object recognition techniques under different condition (e.g., occlusion, viewpoint, and illumination) have been improved significantly in recent years. New applications and hardware are shifted towards digital photography, and digital media. This faces an increase in Internet usage requiring object recognition for certain applications; particularly occulded objects. However occlusion is still an issue unhandled, interlacing the relations between extracted feature points through image, research is going on to develop efficient techniques and easy to use algorithms that would help users to source images; this need to overcome problems and issues regarding occlusion. The aim of this research is to review recognition occluded objects algorithms and figure out their pros and cons to solve the occlusion problem features, which are extracted from occluded object to distinguish objects from other co-existing objects by determining the new techniques, which could differentiate the occluded fragment and sections inside an image.

  17. Recognition memory for vibrotactile rhythms: an fMRI study in blind and sighted individuals.

    PubMed

    Sinclair, Robert J; Dixit, Sachin; Burton, Harold

    2011-01-01

    Calcarine sulcal cortex possibly contributes to semantic recognition memory in early blind (EB). We assessed a recognition memory role using vibrotactile rhythms and a retrieval success paradigm involving learned "old" and "new" rhythms in EB and sighted. EB showed no activation differences in occipital cortex indicating retrieval success but replicated findings of somatosensory processing. Both groups showed retrieval success in primary somatosensory, precuneus, and orbitofrontal cortex. The S1 activity might indicate generic sensory memory processes.

  18. The Dynamic Multisensory Engram: Neural Circuitry Underlying Crossmodal Object Recognition in Rats Changes with the Nature of Object Experience.

    PubMed

    Jacklin, Derek L; Cloke, Jacob M; Potvin, Alphonse; Garrett, Inara; Winters, Boyer D

    2016-01-27

    Rats, humans, and monkeys demonstrate robust crossmodal object recognition (CMOR), identifying objects across sensory modalities. We have shown that rats' performance of a spontaneous tactile-to-visual CMOR task requires functional integration of perirhinal (PRh) and posterior parietal (PPC) cortices, which seemingly provide visual and tactile object feature processing, respectively. However, research with primates has suggested that PRh is sufficient for multisensory object representation. We tested this hypothesis in rats using a modification of the CMOR task in which multimodal preexposure to the to-be-remembered objects significantly facilitates performance. In the original CMOR task, with no preexposure, reversible lesions of PRh or PPC produced patterns of impairment consistent with modality-specific contributions. Conversely, in the CMOR task with preexposure, PPC lesions had no effect, whereas PRh involvement was robust, proving necessary for phases of the task that did not require PRh activity when rats did not have preexposure; this pattern was supported by results from c-fos imaging. We suggest that multimodal preexposure alters the circuitry responsible for object recognition, in this case obviating the need for PPC contributions and expanding PRh involvement, consistent with the polymodal nature of PRh connections and results from primates indicating a key role for PRh in multisensory object representation. These findings have significant implications for our understanding of multisensory information processing, suggesting that the nature of an individual's past experience with an object strongly determines the brain circuitry involved in representing that object's multisensory features in memory. The ability to integrate information from multiple sensory modalities is crucial to the survival of organisms living in complex environments. Appropriate responses to behaviorally relevant objects are informed by integration of multisensory object features

  19. Impact of Fetal-Neonatal Iron Deficiency on Recognition Memory at 2 Months of Age.

    PubMed

    Geng, Fengji; Mai, Xiaoqin; Zhan, Jianying; Xu, Lin; Zhao, Zhengyan; Georgieff, Michael; Shao, Jie; Lozoff, Betsy

    2015-12-01

    To assess the effects of fetal-neonatal iron deficiency on recognition memory in early infancy. Perinatal iron deficiency delays or disrupts hippocampal development in animal models and thus may impair related neural functions in human infants, such as recognition memory. Event-related potentials were used in an auditory recognition memory task to compare 2-month-old Chinese infants with iron sufficiency or deficiency at birth. Fetal-neonatal iron deficiency was defined 2 ways: high zinc protoporphyrin/heme ratio (ZPP/H > 118 μmol/mol) or low serum ferritin (<75 μg/L) in cord blood. Late slow wave was used to measure infant recognition of mother's voice. Event related potentials patterns differed significantly for fetal-neonatal iron deficiency as defined by high cord ZPP/H but not low ferritin. Comparing 35 infants with iron deficiency (ZPP/H > 118 μmol/mol) to 92 with lower ZPP/H (iron-sufficient), only infants with iron sufficiency showed larger late slow wave amplitude for stranger's voice than mother's voice in frontal-central and parietal-occipital locations, indicating the recognition of mother's voice. Infants with iron sufficiency showed electrophysiological evidence of recognizing their mother's voice, whereas infants with fetal-neonatal iron deficiency did not. Their poorer auditory recognition memory at 2 months of age is consistent with effects of fetal-neonatal iron deficiency on the developing hippocampus. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Keeping an eye on the truth? Pupil size changes associated with recognition memory.

    PubMed

    Heaver, Becky; Hutton, Sam B

    2011-05-01

    During recognition memory tests participants' pupils dilate more when they view old items compared to novel items. We sought to replicate this "pupil old/new effect" and to determine its relationship to participants' responses. We compared changes in pupil size during recognition when participants were given standard recognition memory instructions, instructions to feign amnesia, and instructions to report all items as new. Participants' pupils dilated more to old items compared to new items under all three instruction conditions. This finding suggests that the increase in pupil size that occurs when participants encounter previously studied items is not under conscious control. Given that pupil size can be reliably and simply measured, the pupil old/new effect may have potential in clinical settings as a means for determining whether patients are feigning memory loss.

  1. Course of Relational and Non-Relational Recognition Memory across the Adult Lifespan

    ERIC Educational Resources Information Center

    Soei, Eleonore; Daum, Irene

    2008-01-01

    Human recognition memory shows a decline during normal ageing, which is thought to be related to age-associated dysfunctions of mediotemporal lobe structures. Whether the hippocampus is critical for human general relational memory or for spatial relational memory only is still disputed. The human perirhinal cortex is thought to be critically…

  2. Restoration of Dopamine Release Deficits during Object Recognition Memory Acquisition Attenuates Cognitive Impairment in a Triple Transgenic Mice Model of Alzheimer's Disease

    ERIC Educational Resources Information Center

    Guzman-Ramos, Kioko; Moreno-Castilla, Perla; Castro-Cruz, Monica; McGaugh, James L.; Martinez-Coria, Hilda; LaFerla, Frank M.; Bermudez-Rattoni, Federico

    2012-01-01

    Previous findings indicate that the acquisition and consolidation of recognition memory involves dopaminergic activity. Although dopamine deregulation has been observed in Alzheimer's disease (AD) patients, the dysfunction of this neurotransmitter has not been investigated in animal models of AD. The aim of this study was to assess, by in vivo…

  3. Vision-based object detection and recognition system for intelligent vehicles

    NASA Astrophysics Data System (ADS)

    Ran, Bin; Liu, Henry X.; Martono, Wilfung

    1999-01-01

    Recently, a proactive crash mitigation system is proposed to enhance the crash avoidance and survivability of the Intelligent Vehicles. Accurate object detection and recognition system is a prerequisite for a proactive crash mitigation system, as system component deployment algorithms rely on accurate hazard detection, recognition, and tracking information. In this paper, we present a vision-based approach to detect and recognize vehicles and traffic signs, obtain their information, and track multiple objects by using a sequence of color images taken from a moving vehicle. The entire system consist of two sub-systems, the vehicle detection and recognition sub-system and traffic sign detection and recognition sub-system. Both of the sub- systems consist of four models: object detection model, object recognition model, object information model, and object tracking model. In order to detect potential objects on the road, several features of the objects are investigated, which include symmetrical shape and aspect ratio of a vehicle and color and shape information of the signs. A two-layer neural network is trained to recognize different types of vehicles and a parameterized traffic sign model is established in the process of recognizing a sign. Tracking is accomplished by combining the analysis of single image frame with the analysis of consecutive image frames. The analysis of the single image frame is performed every ten full-size images. The information model will obtain the information related to the object, such as time to collision for the object vehicle and relative distance from the traffic sings. Experimental results demonstrated a robust and accurate system in real time object detection and recognition over thousands of image frames.

  4. Practice makes imperfect: Working memory training can harm recognition memory performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matzen, Laura E.; Trumbo, Michael C.; Haass, Michael J.

    There is a great deal of debate concerning the benefits of working memory (WM) training and whether that training can transfer to other tasks. Although a consistent finding is that WM training programs elicit a short-term near-transfer effect (i.e., improvement in WM skills), results are inconsistent when considering persistence of such improvement and far transfer effects. In this study, we compared three groups of participants: a group that received WM training, a group that received training on how to use a mental imagery memory strategy, and a control group that received no training. Although the WM training group improved onmore » the trained task, their posttraining performance on nontrained WM tasks did not differ from that of the other two groups. In addition, although the imagery training group’s performance on a recognition memory task increased after training, the WM training group’s performance on the task decreased after training. Participants’ descriptions of the strategies they used to remember the studied items indicated that WM training may lead people to adopt memory strategies that are less effective for other types of memory tasks. Our results indicate that WM training may have unintended consequences for other types of memory performance.« less

  5. Recognition Memory: Adding a Response Deadline Eliminates Recollection but Spares Familiarity

    ERIC Educational Resources Information Center

    Sauvage, Magdalena M.; Beer, Zachery; Eichenbaum, Howard

    2010-01-01

    A current controversy in memory research concerns whether recognition is supported by distinct processes of familiarity and recollection, or instead by a single process wherein familiarity and recollection reflect weak and strong memories, respectively. Recent studies using receiver operating characteristic (ROC) analyses in an animal model have…

  6. Sensor agnostic object recognition using a map seeking circuit

    NASA Astrophysics Data System (ADS)

    Overman, Timothy L.; Hart, Michael

    2012-05-01

    Automatic object recognition capabilities are traditionally tuned to exploit the specific sensing modality they were designed to. Their successes (and shortcomings) are tied to object segmentation from the background, they typically require highly skilled personnel to train them, and they become cumbersome with the introduction of new objects. In this paper we describe a sensor independent algorithm based on the biologically inspired technology of map seeking circuits (MSC) which overcomes many of these obstacles. In particular, the MSC concept offers transparency in object recognition from a common interface to all sensor types, analogous to a USB device. It also provides a common core framework that is independent of the sensor and expandable to support high dimensionality decision spaces. Ease in training is assured by using commercially available 3D models from the video game community. The search time remains linear no matter how many objects are introduced, ensuring rapid object recognition. Here, we report results of an MSC algorithm applied to object recognition and pose estimation from high range resolution radar (1D), electrooptical imagery (2D), and LIDAR point clouds (3D) separately. By abstracting the sensor phenomenology from the underlying a prior knowledge base, MSC shows promise as an easily adaptable tool for incorporating additional sensor inputs.

  7. Recognition memory for vibrotactile rhythms: An fMRI study in blind and sighted individuals

    PubMed Central

    SINCLAIR, ROBERT J.; DIXIT, SACHIN; BURTON, HAROLD

    2014-01-01

    Calcarine sulcal cortex possibly contributes to semantic recognition memory in early blind (EB). We assessed a recognition memory role using vibrotactile rhythms and a retrieval success paradigm involving learned “old” and “new” rhythms in EB and sighted. EB showed no activation differences in occipital cortex indicating retrieval success but replicated findings of somatosensory processing. Both groups showed retrieval success in primary somatosensory, precuneus, and orbitofrontal cortex. The S1 activity might indicate generic sensory memory processes. PMID:21846300

  8. Nicotinic α7 and α4β2 agonists enhance the formation and retrieval of recognition memory: Potential mechanisms for cognitive performance enhancement in neurological and psychiatric disorders.

    PubMed

    McLean, Samantha L; Grayson, Ben; Marsh, Samuel; Zarroug, Samah H O; Harte, Michael K; Neill, Jo C

    2016-04-01

    Cholinergic dysfunction has been shown to be central to the pathophysiology of Alzheimer's disease and has also been postulated to contribute to cognitive dysfunction observed in various psychiatric disorders, including schizophrenia. Deficits are found across a number of cognitive domains and in spite of several attempts to develop new therapies, these remain an unmet clinical need. In the current study we investigated the efficacy of donepezil, risperidone and selective nicotinic α7 and α4β2 receptor agonists to reverse a delay-induced deficit in recognition memory. Adult female Hooded Lister rats received drug treatments and were tested in the novel object recognition (NOR) task following a 6h inter-trial interval (ITI). In all treatment groups, there was no preference for the left or right identical objects in the acquisition trial. Risperidone failed to enhance recognition memory in this paradigm whereas donepezil was effective such that rats discriminated between the novel and familiar object in the retention trial following a 6h ITI. Although a narrow dose range of PNU-282987 and RJR-2403 was tested, only one dose of each increased recognition memory, the highest dose of PNU-282987 (10mg/kg) and the lowest dose of RJR-2403 (0.1mg/kg), indicative of enhanced cognitive performance. Interestingly, these compounds were also efficacious when administered either before the acquisition or the retention trial of the task, suggesting an important role for nicotinic receptor subtypes in the formation and retrieval of recognition memory. Copyright © 2016. Published by Elsevier B.V.

  9. Three-dimensional object recognition based on planar images

    NASA Astrophysics Data System (ADS)

    Mital, Dinesh P.; Teoh, Eam-Khwang; Au, K. C.; Chng, E. K.

    1993-01-01

    This paper presents the development and realization of a robotic vision system for the recognition of 3-dimensional (3-D) objects. The system can recognize a single object from among a group of known regular convex polyhedron objects that is constrained to lie on a calibrated flat platform. The approach adopted comprises a series of image processing operations on a single 2-dimensional (2-D) intensity image to derive an image line drawing. Subsequently, a feature matching technique is employed to determine 2-D spatial correspondences of the image line drawing with the model in the database. Besides its identification ability, the system can also provide important position and orientation information of the recognized object. The system was implemented on an IBM-PC AT machine executing at 8 MHz without the 80287 Maths Co-processor. In our overall performance evaluation based on a 600 recognition cycles test, the system demonstrated an accuracy of above 80% with recognition time well within 10 seconds. The recognition time is, however, indirectly dependent on the number of models in the database. The reliability of the system is also affected by illumination conditions which must be clinically controlled as in any industrial robotic vision system.

  10. Effect of Time Delay on Recognition Memory for Pictures: The Modulatory Role of Emotion

    PubMed Central

    Wang, Bo

    2014-01-01

    This study investigated the modulatory role of emotion in the effect of time delay on recognition memory for pictures. Participants viewed neutral, positive and negative pictures, and took a recognition memory test 5 minutes, 24 hours, or 1 week after learning. The findings are: 1) For neutral, positive and negative pictures, overall recognition accuracy in the 5-min delay did not significantly differ from that in the 24-h delay. For neutral and positive pictures, overall recognition accuracy in the 1-week delay was lower than in the 24-h delay; for negative pictures, overall recognition in the 24-h and 1-week delay did not significantly differ. Therefore negative emotion modulates the effect of time delay on recognition memory, maintaining retention of overall recognition accuracy only within a certain frame of time. 2) For the three types of pictures, recollection and familiarity in the 5-min delay did not significantly differ from that in the 24-h and the 1-week delay. Thus emotion does not appear to modulate the effect of time delay on recollection and familiarity. However, recollection in the 24-h delay was higher than in the 1-week delay, whereas familiarity in the 24-h delay was lower than in the 1-week delay. PMID:24971457

  11. Three-dimensional object recognition using similar triangles and decision trees

    NASA Technical Reports Server (NTRS)

    Spirkovska, Lilly

    1993-01-01

    A system, TRIDEC, that is capable of distinguishing between a set of objects despite changes in the objects' positions in the input field, their size, or their rotational orientation in 3D space is described. TRIDEC combines very simple yet effective features with the classification capabilities of inductive decision tree methods. The feature vector is a list of all similar triangles defined by connecting all combinations of three pixels in a coarse coded 127 x 127 pixel input field. The classification is accomplished by building a decision tree using the information provided from a limited number of translated, scaled, and rotated samples. Simulation results are presented which show that TRIDEC achieves 94 percent recognition accuracy in the 2D invariant object recognition domain and 98 percent recognition accuracy in the 3D invariant object recognition domain after training on only a small sample of transformed views of the objects.

  12. Age, environment, object recognition and morphological diversity of GFAP-immunolabeled astrocytes.

    PubMed

    Diniz, Daniel Guerreiro; de Oliveira, Marcus Augusto; de Lima, Camila Mendes; Fôro, César Augusto Raiol; Sosthenes, Marcia Consentino Kronka; Bento-Torres, João; da Costa Vasconcelos, Pedro Fernando; Anthony, Daniel Clive; Diniz, Cristovam Wanderley Picanço

    2016-10-10

    Few studies have explored the glial response to a standard environment and how the response may be associated with age-related cognitive decline in learning and memory. Here we investigated aging and environmental influences on hippocampal-dependent tasks and on the morphology of an unbiased selected population of astrocytes from the molecular layer of dentate gyrus, which is the main target of perforant pathway. Six and twenty-month-old female, albino Swiss mice were housed, from weaning, in a standard or enriched environment, including running wheels for exercise and tested for object recognition and contextual memories. Young adult and aged subjects, independent of environment, were able to distinguish familiar from novel objects. All experimental groups, except aged mice from standard environment, distinguish stationary from displaced objects. Young adult but not aged mice, independent of environment, were able to distinguish older from recent objects. Only young mice from an enriched environment were able to distinguish novel from familiar contexts. Unbiased selected astrocytes from the molecular layer of the dentate gyrus were reconstructed in three-dimensions and classified using hierarchical cluster analysis of bimodal or multimodal morphological features. We found two morphological phenotypes of astrocytes and we designated type I the astrocytes that exhibited significantly higher values of morphological complexity as compared with type II. Complexity = [Sum of the terminal orders + Number of terminals] × [Total branch length/Number of primary branches]. On average, type I morphological complexity seems to be much more sensitive to age and environmental influences than that of type II. Indeed, aging and environmental impoverishment interact and reduce the morphological complexity of type I astrocytes at a point that they could not be distinguished anymore from type II. We suggest these two types of astrocytes may have different physiological roles

  13. Sensory, Cognitive, and Sensorimotor Learning Effects in Recognition Memory for Music.

    PubMed

    Mathias, Brian; Tillmann, Barbara; Palmer, Caroline

    2016-08-01

    Recent research suggests that perception and action are strongly interrelated and that motor experience may aid memory recognition. We investigated the role of motor experience in auditory memory recognition processes by musicians using behavioral, ERP, and neural source current density measures. Skilled pianists learned one set of novel melodies by producing them and another set by perception only. Pianists then completed an auditory memory recognition test during which the previously learned melodies were presented with or without an out-of-key pitch alteration while the EEG was recorded. Pianists indicated whether each melody was altered from or identical to one of the original melodies. Altered pitches elicited a larger N2 ERP component than original pitches, and pitches within previously produced melodies elicited a larger N2 than pitches in previously perceived melodies. Cortical motor planning regions were more strongly activated within the time frame of the N2 following altered pitches in previously produced melodies compared with previously perceived melodies, and larger N2 amplitudes were associated with greater detection accuracy following production learning than perception learning. Early sensory (N1) and later cognitive (P3a) components elicited by pitch alterations correlated with predictions of sensory echoic and schematic tonality models, respectively, but only for the perception learning condition, suggesting that production experience alters the extent to which performers rely on sensory and tonal recognition cues. These findings provide evidence for distinct time courses of sensory, schematic, and motoric influences within the same recognition task and suggest that learned auditory-motor associations influence responses to out-of-key pitches.

  14. Cortical Thickness in Fusiform Face Area Predicts Face and Object Recognition Performance

    PubMed Central

    McGugin, Rankin W.; Van Gulick, Ana E.; Gauthier, Isabel

    2016-01-01

    The fusiform face area (FFA) is defined by its selectivity for faces. Several studies have shown that the response of FFA to non-face objects can predict behavioral performance for these objects. However, one possible account is that experts pay more attention to objects in their domain of expertise, driving signals up. Here we show an effect of expertise with non-face objects in FFA that cannot be explained by differential attention to objects of expertise. We explore the relationship between cortical thickness of FFA and face and object recognition using the Cambridge Face Memory Test and Vanderbilt Expertise Test, respectively. We measured cortical thickness in functionally-defined regions in a group of men who evidenced functional expertise effects for cars in FFA. Performance with faces and objects together accounted for approximately 40% of the variance in cortical thickness of several FFA patches. While subjects with a thicker FFA cortex performed better with vehicles, those with a thinner FFA cortex performed better with faces and living objects. The results point to a domain-general role of FFA in object perception and reveal an interesting double dissociation that does not contrast faces and objects, but rather living and non-living objects. PMID:26439272

  15. Preserved recognition in a case of developmental amnesia: implications for the acquisition of semantic memory?

    PubMed

    Baddeley, A; Vargha-Khadem, F; Mishkin, M

    2001-04-01

    We report the performance on recognition memory tests of Jon, who, despite amnesia from early childhood, has developed normal levels of performance on tests of intelligence, language, and general knowledge. Despite impaired recall, he performed within the normal range on each of six recognition tests, but he appears to lack the recollective phenomenological experience normally associated with episodic memory. His recall of previously unfamiliar newsreel events was impaired, but gained substantially from repetition over a 2-day period. Our results are consistent with the hypothesis that the recollective process of episodic memory is not necessary either for recognition or for the acquisition of semantic knowledge.

  16. The relationships between trait anxiety, place recognition memory, and learning strategy.

    PubMed

    Hawley, Wayne R; Grissom, Elin M; Dohanich, Gary P

    2011-01-20

    Rodents learn to navigate mazes using various strategies that are governed by specific regions of the brain. The type of strategy used when learning to navigate a spatial environment is moderated by a number of factors including emotional states. Heightened anxiety states, induced by exposure to stressors or administration of anxiogenic agents, have been found to bias male rats toward the use of a striatum-based stimulus-response strategy rather than a hippocampus-based place strategy. However, no study has yet examined the relationship between natural anxiety levels, or trait anxiety, and the type of learning strategy used by rats on a dual-solution task. In the current experiment, levels of inherent anxiety were measured in an open field and compared to performance on two separate cognitive tasks, a Y-maze task that assessed place recognition memory, and a visible platform water maze task that assessed learning strategy. Results indicated that place recognition memory on the Y-maze correlated with the use of place learning strategy on the water maze. Furthermore, lower levels of trait anxiety correlated positively with better place recognition memory and with the preferred use of place learning strategy. Therefore, competency in place memory and bias in place strategy are linked to the levels of inherent anxiety in male rats. Copyright © 2010 Elsevier B.V. All rights reserved.

  17. On the Relationship between Memory and Perception: Sequential Dependencies in Recognition Memory Testing

    ERIC Educational Resources Information Center

    Malmberg, Kenneth J.; Annis, Jeffrey

    2012-01-01

    Many models of recognition are derived from models originally applied to perception tasks, which assume that decisions from trial to trial are independent. While the independence assumption is violated for many perception tasks, we present the results of several experiments intended to relate memory and perception by exploring sequential…

  18. Developmental Commonalities between Object and Face Recognition in Adolescence

    PubMed Central

    Jüttner, Martin; Wakui, Elley; Petters, Dean; Davidoff, Jules

    2016-01-01

    In the visual perception literature, the recognition of faces has often been contrasted with that of non-face objects, in terms of differences with regard to the role of parts, part relations and holistic processing. However, recent evidence from developmental studies has begun to blur this sharp distinction. We review evidence for a protracted development of object recognition that is reminiscent of the well-documented slow maturation observed for faces. The prolonged development manifests itself in a retarded processing of metric part relations as opposed to that of individual parts and offers surprising parallels to developmental accounts of face recognition, even though the interpretation of the data is less clear with regard to holistic processing. We conclude that such results might indicate functional commonalities between the mechanisms underlying the recognition of faces and non-face objects, which are modulated by different task requirements in the two stimulus domains. PMID:27014176

  19. A reduction in hippocampal GABAA receptor alpha5 subunits disrupts the memory for location of objects in mice.

    PubMed

    Prut, L; Prenosil, G; Willadt, S; Vogt, K; Fritschy, J-M; Crestani, F

    2010-07-01

    The memory for location of objects, which binds information about objects to discrete positions or spatial contexts of occurrence, is a form of episodic memory particularly sensitive to hippocampal damage. Its early decline is symptomatic for elderly dementia. Substances that selectively reduce alpha5-GABA(A) receptor function are currently developed as potential cognition enhancers for Alzheimer's syndrome and other dementia, consistent with genetic studies implicating these receptors that are highly expressed in hippocampus in learning performance. Here we explored the consequences of reduced GABA(A)alpha5-subunit contents, as occurring in alpha5(H105R) knock-in mice, on the memory for location of objects. This required the behavioral characterization of alpha5(H105R) and wild-type animals in various tasks examining learning and memory retrieval strategies for objects, locations, contexts and their combinations. In mutants, decreased amounts of alpha5-subunits and retained long-term potentiation in hippocampus were confirmed. They exhibited hyperactivity with conserved circadian rhythm in familiar actimeters, and normal exploration and emotional reactivity in novel places, allocentric spatial guidance, and motor pattern learning acquisition, inhibition and flexibility in T- and eight-arm mazes. Processing of object, position and context memories and object-guided response learning were spared. Genotype difference in object-in-place memory retrieval and in encoding and response learning strategies for object-location combinations manifested as a bias favoring object-based recognition and guidance strategies over spatial processing of objects in the mutants. These findings identify in alpha5(H105R) mice a behavioral-cognitive phenotype affecting basal locomotion and the memory for location of objects indicative of hippocampal dysfunction resulting from moderately decreased alpha5-subunit contents.

  20. An ERP Study on Self-Relevant Object Recognition

    ERIC Educational Resources Information Center

    Miyakoshi, Makoto; Nomura, Michio; Ohira, Hideki

    2007-01-01

    We performed an event-related potential study to investigate the self-relevance effect in object recognition. Three stimulus categories were prepared: SELF (participant's own objects), FAMILIAR (disposable and public objects, defined as objects with less-self-relevant familiarity), and UNFAMILIAR (others' objects). The participants' task was to…

  1. Do object refixations during scene viewing indicate rehearsal in visual working memory?

    PubMed

    Zelinsky, Gregory J; Loschky, Lester C; Dickinson, Christopher A

    2011-05-01

    Do refixations serve a rehearsal function in visual working memory (VWM)? We analyzed refixations from observers freely viewing multiobject scenes. An eyetracker was used to limit the viewing of a scene to a specified number of objects fixated after the target (intervening objects), followed by a four-alternative forced choice recognition test. Results showed that the probability of target refixation increased with the number of fixated intervening objects, and these refixations produced a 16% accuracy benefit over the first five intervening-object conditions. Additionally, refixations most frequently occurred after fixations on only one to two other objects, regardless of the intervening-object condition. These behaviors could not be explained by random or minimally constrained computational models; a VWM component was required to completely describe these data. We explain these findings in terms of a monitor-refixate rehearsal system: The activations of object representations in VWM are monitored, with refixations occurring when these activations decrease suddenly.

  2. Physical exercise prevents short and long-term deficits on aversive and recognition memory and attenuates brain oxidative damage induced by maternal deprivation.

    PubMed

    Neves, Ben-Hur; Menezes, Jefferson; Souza, Mauren Assis; Mello-Carpes, Pâmela B

    2015-12-01

    It is known from previous research that physical exercise prevents long-term memory deficits induced by maternal deprivation in rats. But we could not assume similar effects of physical exercise on short-term memory, as short- and long-term memories are known to result from some different memory consolidation processes. Here we demonstrated that, in addition to long-term memory deficit, the short-term memory deficit resultant from maternal deprivation in object recognition and aversive memory tasks is also prevented by physical exercise. Additionally, one of the mechanisms by which the physical exercise influences the memory processes involves its effects attenuating the oxidative damage in the maternal deprived rats' hippocampus and prefrontal cortex.

  3. One process is not enough! A speed-accuracy tradeoff study of recognition memory.

    PubMed

    Boldini, Angela; Russo, Riccardo; Avons, S E

    2004-04-01

    Speed-accuracy tradeoff (SAT) methods have been used to contrast single- and dual-process accounts of recognition memory. In these procedures, subjects are presented with individual test items and are required to make recognition decisions under various time constraints. In this experiment, we presented word lists under incidental learning conditions, varying the modality of presentation and level of processing. At test, we manipulated the interval between each visually presented test item and a response signal, thus controlling the amount of time available to retrieve target information. Study-test modality match had a beneficial effect on recognition accuracy at short response-signal delays (< or =300 msec). Conversely, recognition accuracy benefited more from deep than from shallow processing at study only at relatively long response-signal delays (> or =300 msec). The results are congruent with views suggesting that both fast familiarity and slower recollection processes contribute to recognition memory.

  4. The development of newborn object recognition in fast and slow visual worlds

    PubMed Central

    Wood, Justin N.; Wood, Samantha M. W.

    2016-01-01

    Object recognition is central to perception and cognition. Yet relatively little is known about the environmental factors that cause invariant object recognition to emerge in the newborn brain. Is this ability a hardwired property of vision? Or does the development of invariant object recognition require experience with a particular kind of visual environment? Here, we used a high-throughput controlled-rearing method to examine whether newborn chicks (Gallus gallus) require visual experience with slowly changing objects to develop invariant object recognition abilities. When newborn chicks were raised with a slowly rotating virtual object, the chicks built invariant object representations that generalized across novel viewpoints and rotation speeds. In contrast, when newborn chicks were raised with a virtual object that rotated more quickly, the chicks built viewpoint-specific object representations that failed to generalize to novel viewpoints and rotation speeds. Moreover, there was a direct relationship between the speed of the object and the amount of invariance in the chick's object representation. Thus, visual experience with slowly changing objects plays a critical role in the development of invariant object recognition. These results indicate that invariant object recognition is not a hardwired property of vision, but is learned rapidly when newborns encounter a slowly changing visual world. PMID:27097925

  5. When fear forms memories: threat of shock and brain potentials during encoding and recognition.

    PubMed

    Weymar, Mathias; Bradley, Margaret M; Hamm, Alfons O; Lang, Peter J

    2013-03-01

    The anticipation of highly aversive events is associated with measurable defensive activation, and both animal and human research suggests that stress-inducing contexts can facilitate memory. Here, we investigated whether encoding stimuli in the context of anticipating an aversive shock affects recognition memory. Event-related potentials (ERPs) were measured during a recognition test for words that were encoded in a font color that signaled threat or safety. At encoding, cues signaling threat of shock, compared to safety, prompted enhanced P2 and P3 components. Correct recognition of words encoded in the context of threat, compared to safety, was associated with an enhanced old-new ERP difference (500-700 msec; centro-parietal), and this difference was most reliable for emotional words. Moreover, larger old-new ERP differences when recognizing emotional words encoded in a threatening context were associated with better recognition, compared to words encoded in safety. Taken together, the data indicate enhanced memory for stimuli encoded in a context in which an aversive event is merely anticipated, which could assist in understanding effects of anxiety and stress on memory processes. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Effects of Age and Working Memory Capacity on Speech Recognition Performance in Noise Among Listeners With Normal Hearing.

    PubMed

    Gordon-Salant, Sandra; Cole, Stacey Samuels

    2016-01-01

    This study aimed to determine if younger and older listeners with normal hearing who differ on working memory span perform differently on speech recognition tests in noise. Older adults typically exhibit poorer speech recognition scores in noise than younger adults, which is attributed primarily to poorer hearing sensitivity and more limited working memory capacity in older than younger adults. Previous studies typically tested older listeners with poorer hearing sensitivity and shorter working memory spans than younger listeners, making it difficult to discern the importance of working memory capacity on speech recognition. This investigation controlled for hearing sensitivity and compared speech recognition performance in noise by younger and older listeners who were subdivided into high and low working memory groups. Performance patterns were compared for different speech materials to assess whether or not the effect of working memory capacity varies with the demands of the specific speech test. The authors hypothesized that (1) normal-hearing listeners with low working memory span would exhibit poorer speech recognition performance in noise than those with high working memory span; (2) older listeners with normal hearing would show poorer speech recognition scores than younger listeners with normal hearing, when the two age groups were matched for working memory span; and (3) an interaction between age and working memory would be observed for speech materials that provide contextual cues. Twenty-eight older (61 to 75 years) and 25 younger (18 to 25 years) normal-hearing listeners were assigned to groups based on age and working memory status. Northwestern University Auditory Test No. 6 words and Institute of Electrical and Electronics Engineers sentences were presented in noise using an adaptive procedure to measure the signal-to-noise ratio corresponding to 50% correct performance. Cognitive ability was evaluated with two tests of working memory (Listening

  7. Schematic Influences on Category Learning and Recognition Memory

    ERIC Educational Resources Information Center

    Sakamoto, Yasuaki; Love, Bradley C.

    2004-01-01

    The results from 3 category learning experiments suggest that items are better remembered when they violate a salient knowledge structure such as a rule. The more salient the knowledge structure, the stronger the memory for deviant items. The effect of learning errors on subsequent recognition appears to be mediated through the imposed knowledge…

  8. Attention and perceptual implicit memory: effects of selective versus divided attention and number of visual objects.

    PubMed

    Mulligan, Neil W

    2002-08-01

    Extant research presents conflicting results on whether manipulations of attention during encoding affect perceptual priming. Two suggested mediating factors are type of manipulation (selective vs divided) and whether attention is manipulated across multiple objects or within a single object. Words printed in different colors (Experiment 1) or flanked by colored blocks (Experiment 2) were presented at encoding. In the full-attention condition, participants always read the word, in the unattended condition they always identified the color, and in the divided-attention conditions, participants attended to both word identity and color. Perceptual priming was assessed with perceptual identification and explicit memory with recognition. Relative to the full-attention condition, attending to color always reduced priming. Dividing attention between word identity and color, however, only disrupted priming when these attributes were presented as multiple objects (Experiment 2) but not when they were dimensions of a common object (Experiment 1). On the explicit test, manipulations of attention always affected recognition accuracy.

  9. Multi-objects recognition for distributed intelligent sensor networks

    NASA Astrophysics Data System (ADS)

    He, Haibo; Chen, Sheng; Cao, Yuan; Desai, Sachi; Hohil, Myron E.

    2008-04-01

    This paper proposes an innovative approach for multi-objects recognition for homeland security and defense based intelligent sensor networks. Unlike the conventional way of information analysis, data mining in such networks is typically characterized with high information ambiguity/uncertainty, data redundancy, high dimensionality and real-time constrains. Furthermore, since a typical military based network normally includes multiple mobile sensor platforms, ground forces, fortified tanks, combat flights, and other resources, it is critical to develop intelligent data mining approaches to fuse different information resources to understand dynamic environments, to support decision making processes, and finally to achieve the goals. This paper aims to address these issues with a focus on multi-objects recognition. Instead of classifying a single object as in the traditional image classification problems, the proposed method can automatically learn multiple objectives simultaneously. Image segmentation techniques are used to identify the interesting regions in the field, which correspond to multiple objects such as soldiers or tanks. Since different objects will come with different feature sizes, we propose a feature scaling method to represent each object in the same number of dimensions. This is achieved by linear/nonlinear scaling and sampling techniques. Finally, support vector machine (SVM) based learning algorithms are developed to learn and build the associations for different objects, and such knowledge will be adaptively accumulated for objects recognition in the testing stage. We test the effectiveness of proposed method in different simulated military environments.

  10. Sex and spatial position effects on object location memory following intentional learning of object identities.

    PubMed

    Alexander, Gerianne M; Packard, Mark G; Peterson, Bradley S

    2002-01-01

    Memory for object location relative both to veridical center (left versus right visual hemispace) and to eccentricity (central versus peripheral objects) was measured in 26 males and 25 females using the Silverman and Eals Location Memory Task. A subset of participants (17 males and 13 females) also completed a measure of implicit learning, the mirror-tracing task. No sex differences were observed in memory for object identities. Further, in both sexes, memory for object locations was better for peripherally located objects than for centrally located objects. In contrast to these similarities in female and male task performance, females but not males showed better recovery of object locations in the right compared to the left visual hemispace. Moreover, memory for object locations in the right hemispace was associated with mirror-tracing performance in women but not in men. Together, these data suggest that the processing of object features and object identification in the left cerebral hemisphere may include processing of spatial information that may contribute to superior object location memory in females relative to males.

  11. Object recognition and localization from 3D point clouds by maximum-likelihood estimation

    NASA Astrophysics Data System (ADS)

    Dantanarayana, Harshana G.; Huntley, Jonathan M.

    2017-08-01

    We present an algorithm based on maximum-likelihood analysis for the automated recognition of objects, and estimation of their pose, from 3D point clouds. Surfaces segmented from depth images are used as the features, unlike `interest point'-based algorithms which normally discard such data. Compared to the 6D Hough transform, it has negligible memory requirements, and is computationally efficient compared to iterative closest point algorithms. The same method is applicable to both the initial recognition/pose estimation problem as well as subsequent pose refinement through appropriate choice of the dispersion of the probability density functions. This single unified approach therefore avoids the usual requirement for different algorithms for these two tasks. In addition to the theoretical description, a simple 2 degrees of freedom (d.f.) example is given, followed by a full 6 d.f. analysis of 3D point cloud data from a cluttered scene acquired by a projected fringe-based scanner, which demonstrated an RMS alignment error as low as 0.3 mm.

  12. Binding Objects to Locations: The Relationship between Object Files and Visual Working Memory

    ERIC Educational Resources Information Center

    Hollingworth, Andrew; Rasmussen, Ian P.

    2010-01-01

    The relationship between object files and visual working memory (VWM) was investigated in a new paradigm combining features of traditional VWM experiments (color change detection) and object-file experiments (memory for the properties of moving objects). Object-file theory was found to account for a key component of object-position binding in VWM:…

  13. Self-imagining enhances recognition memory in memory-impaired individuals with neurological damage.

    PubMed

    Grilli, Matthew D; Glisky, Elizabeth L

    2010-11-01

    The ability to imagine an elaborative event from a personal perspective relies on several cognitive processes that may potentially enhance subsequent memory for the event, including visual imagery, semantic elaboration, emotional processing, and self-referential processing. In an effort to find a novel strategy for enhancing memory in memory-impaired individuals with neurological damage, we investigated the mnemonic benefit of a method we refer to as self-imagining-the imagining of an event from a realistic, personal perspective. Fourteen individuals with neurologically based memory deficits and 14 healthy control participants intentionally encoded neutral and emotional sentences under three instructions: structural-baseline processing, semantic processing, and self-imagining. Findings revealed a robust "self-imagination effect (SIE)," as self-imagination enhanced recognition memory relative to deep semantic elaboration in both memory-impaired individuals, F(1, 13) = 32.11, p < .001, η2 = .71; and healthy controls, F(1, 13) = 5.57, p < .05, η2 = .30. In addition, results indicated that mnemonic benefits of self-imagination were not limited by severity of the memory disorder nor were they related to self-reported vividness of visual imagery, semantic processing, or emotional content of the materials. The findings suggest that the SIE may depend on unique mnemonic mechanisms possibly related to self-referential processing and that imagining an event from a personal perspective makes that event particularly memorable even for those individuals with severe memory deficits. Self-imagining may thus provide an effective rehabilitation strategy for individuals with memory impairment.

  14. EFFECT OF INTRAUTERINE PCB EXPOSURE ON VISUAL RECOGNITION MEMORY

    EPA Science Inventory

    Adverse neonatal outcomes have been associated with intrauterine exposure to polychlorinated biphenyls (PCBs). In a follow-up study of exposed and nonexposed infants, 123 infants tested at birth were administered Fagan's test of visual recognition memory at 7 months. 2 measures o...

  15. Comparison of Object Recognition Behavior in Human and Monkey

    PubMed Central

    Rajalingham, Rishi; Schmidt, Kailyn

    2015-01-01

    Although the rhesus monkey is used widely as an animal model of human visual processing, it is not known whether invariant visual object recognition behavior is quantitatively comparable across monkeys and humans. To address this question, we systematically compared the core object recognition behavior of two monkeys with that of human subjects. To test true object recognition behavior (rather than image matching), we generated several thousand naturalistic synthetic images of 24 basic-level objects with high variation in viewing parameters and image background. Monkeys were trained to perform binary object recognition tasks on a match-to-sample paradigm. Data from 605 human subjects performing the same tasks on Mechanical Turk were aggregated to characterize “pooled human” object recognition behavior, as well as 33 separate Mechanical Turk subjects to characterize individual human subject behavior. Our results show that monkeys learn each new object in a few days, after which they not only match mean human performance but show a pattern of object confusion that is highly correlated with pooled human confusion patterns and is statistically indistinguishable from individual human subjects. Importantly, this shared human and monkey pattern of 3D object confusion is not shared with low-level visual representations (pixels, V1+; models of the retina and primary visual cortex) but is shared with a state-of-the-art computer vision feature representation. Together, these results are consistent with the hypothesis that rhesus monkeys and humans share a common neural shape representation that directly supports object perception. SIGNIFICANCE STATEMENT To date, several mammalian species have shown promise as animal models for studying the neural mechanisms underlying high-level visual processing in humans. In light of this diversity, making tight comparisons between nonhuman and human primates is particularly critical in determining the best use of nonhuman primates to

  16. The Impact of Age, Background Noise, Semantic Ambiguity, and Hearing Loss on Recognition Memory for Spoken Sentences.

    PubMed

    Koeritzer, Margaret A; Rogers, Chad S; Van Engen, Kristin J; Peelle, Jonathan E

    2018-03-15

    The goal of this study was to determine how background noise, linguistic properties of spoken sentences, and listener abilities (hearing sensitivity and verbal working memory) affect cognitive demand during auditory sentence comprehension. We tested 30 young adults and 30 older adults. Participants heard lists of sentences in quiet and in 8-talker babble at signal-to-noise ratios of +15 dB and +5 dB, which increased acoustic challenge but left the speech largely intelligible. Half of the sentences contained semantically ambiguous words to additionally manipulate cognitive challenge. Following each list, participants performed a visual recognition memory task in which they viewed written sentences and indicated whether they remembered hearing the sentence previously. Recognition memory (indexed by d') was poorer for acoustically challenging sentences, poorer for sentences containing ambiguous words, and differentially poorer for noisy high-ambiguity sentences. Similar patterns were observed for Z-transformed response time data. There were no main effects of age, but age interacted with both acoustic clarity and semantic ambiguity such that older adults' recognition memory was poorer for acoustically degraded high-ambiguity sentences than the young adults'. Within the older adult group, exploratory correlation analyses suggested that poorer hearing ability was associated with poorer recognition memory for sentences in noise, and better verbal working memory was associated with better recognition memory for sentences in noise. Our results demonstrate listeners' reliance on domain-general cognitive processes when listening to acoustically challenging speech, even when speech is highly intelligible. Acoustic challenge and semantic ambiguity both reduce the accuracy of listeners' recognition memory for spoken sentences. https://doi.org/10.23641/asha.5848059.

  17. Recognition Confidence under Violated and Confirmed Memory Expectations

    ERIC Educational Resources Information Center

    Jaeger, Antonio; Cox, Justin C.; Dobbins, Ian G.

    2012-01-01

    Individuals' memory experiences typically covary with those of others' around them, and on average, an item is more likely to be familiar if a companion recommends it as such. Although it would be ideal if observers could use the external recommendations of others' as statistical priors during recognition decisions, it is currently unclear how or…

  18. 1Interaction between serum BDNF and aerobic fitness predicts recognition memory in healthy young adults

    PubMed Central

    Whiteman, Andrew; Young, Daniel E.; He, Xuemei; Chen, Tai C.; Wagenaar, Robert C.; Stern, Chantal; Schon, Karin

    2013-01-01

    Convergent evidence from human and non-human animal studies suggests aerobic exercise and increased aerobic capacity may be beneficial for brain health and cognition. It is thought growth factors may mediate this putative relationship, particularly by augmenting plasticity mechanisms in the hippocampus, a brain region critical for learning and memory. Among these factors, glucocorticoids, brain derived neurotrophic factor (BDNF), insulin-like growth factor-1 (IGF-1), and vascular endothelial growth factor (VEGF), hormones that have considerable and diverse physiological importance, are thought to effect normal and exercise-induced hippocampal plasticity. Despite these predictions, relatively few published human studies have tested hypotheses that relate exercise and fitness to the hippocampus, and none have considered the potential links to all of these hormonal components. Here we present cross-sectional data from a study of recognition memory; serum BDNF, cortisol, IGF-1, and VEGF levels; and aerobic capacity in healthy young adults. We measured circulating levels of these hormones together with performance on a recognition memory task, and a standard graded treadmill test of aerobic fitness. Regression analyses demonstrated BDNF and aerobic fitness predict recognition memory in an interactive manner. In addition, IGF-1 was positively associated with aerobic fitness, but not with recognition memory. Our results may suggest an exercise adaptation-related change in the BDNF dose-response curve that relates to hippocampal memory. PMID:24269495

  19. Examining Event-Related Potential (ERP) correlates of decision bias in recognition memory judgments.

    PubMed

    Hill, Holger; Windmann, Sabine

    2014-01-01

    Memory judgments can be based on accurate memory information or on decision bias (the tendency to report that an event is part of episodic memory when one is in fact unsure). Event related potentials (ERP) correlates are important research tools for elucidating the dynamics underlying memory judgments but so far have been established only for investigations of accurate old/new discrimination. To identify the ERP correlates of bias, and observe how these interact with ERP correlates of memory, we conducted three experiments that manipulated decision bias within participants via instructions during recognition memory tests while their ERPs were recorded. In Experiment 1, the bias manipulation was performed between blocks of trials (automatized bias) and compared to trial-by-trial shifts of bias in accord with an external cue (flexibly controlled bias). In Experiment 2, the bias manipulation was performed at two different levels of accurate old/new discrimination as the memory strength of old (studied) items was varied. In Experiment 3, the bias manipulation was added to another, bottom-up driven manipulation of bias induced via familiarity. In the first two Experiments, and in the low familiarity condition of Experiment 3, we found evidence of an early frontocentral ERP component at 320 ms poststimulus (the FN320) that was sensitive to the manipulation of bias via instruction, with more negative amplitudes indexing more liberal bias. By contrast, later during the trial (500-700 ms poststimulus), bias effects interacted with old/new effects across all three experiments. Results suggest that the decision criterion is typically activated early during recognition memory trials, and is integrated with retrieved memory signals and task-specific processing demands later during the trial. More generally, the findings demonstrate how ERPs can help to specify the dynamics of recognition memory processes under top-down and bottom-up controlled retrieval conditions.

  20. Examining Event-Related Potential (ERP) Correlates of Decision Bias in Recognition Memory Judgments

    PubMed Central

    Hill, Holger; Windmann, Sabine

    2014-01-01

    Memory judgments can be based on accurate memory information or on decision bias (the tendency to report that an event is part of episodic memory when one is in fact unsure). Event related potentials (ERP) correlates are important research tools for elucidating the dynamics underlying memory judgments but so far have been established only for investigations of accurate old/new discrimination. To identify the ERP correlates of bias, and observe how these interact with ERP correlates of memory, we conducted three experiments that manipulated decision bias within participants via instructions during recognition memory tests while their ERPs were recorded. In Experiment 1, the bias manipulation was performed between blocks of trials (automatized bias) and compared to trial-by-trial shifts of bias in accord with an external cue (flexibly controlled bias). In Experiment 2, the bias manipulation was performed at two different levels of accurate old/new discrimination as the memory strength of old (studied) items was varied. In Experiment 3, the bias manipulation was added to another, bottom-up driven manipulation of bias induced via familiarity. In the first two Experiments, and in the low familiarity condition of Experiment 3, we found evidence of an early frontocentral ERP component at 320 ms poststimulus (the FN320) that was sensitive to the manipulation of bias via instruction, with more negative amplitudes indexing more liberal bias. By contrast, later during the trial (500–700 ms poststimulus), bias effects interacted with old/new effects across all three experiments. Results suggest that the decision criterion is typically activated early during recognition memory trials, and is integrated with retrieved memory signals and task-specific processing demands later during the trial. More generally, the findings demonstrate how ERPs can help to specify the dynamics of recognition memory processes under top-down and bottom-up controlled retrieval conditions. PMID

  1. Distinct parietal sites mediate the influences of mood, arousal, and their interaction on human recognition memory.

    PubMed

    Greene, Ciara M; Flannery, Oliver; Soto, David

    2014-12-01

    The two dimensions of emotion, mood valence and arousal, have independent effects on recognition memory. At present, however, it is not clear how those effects are reflected in the human brain. Previous research in this area has generally dealt with memory for emotionally valenced or arousing stimuli, but the manner in which interacting mood and arousal states modulate responses in memory substrates remains poorly understood. We investigated memory for emotionally neutral items while independently manipulating mood valence and arousal state by means of music exposure. Four emotional conditions were created: positive mood/high arousal, positive mood/low arousal, negative mood/high arousal, and negative mood/low arousal. We observed distinct effects of mood valence and arousal in parietal substrates of recognition memory. Positive mood increased activity in ventral posterior parietal cortex (PPC) and orbitofrontal cortex, whereas arousal condition modulated activity in dorsal PPC and the posterior cingulate. An interaction between valence and arousal was observed in left ventral PPC, notably in a parietal area distinct from the those identified for the main effects, with a stronger effect of mood on recognition memory responses here under conditions of relative high versus low arousal. We interpreted the PPC activations in terms of the attention-to-memory hypothesis: Increased arousal may lead to increased top-down control of memory, and hence dorsal PPC activation, whereas positive mood valence may result in increased activity in ventral PPC regions associated with bottom-up attention to memory. These findings indicate that distinct parietal sites mediate the influences of mood, arousal, and their interplay during recognition memory.

  2. Perceptual Plasticity for Auditory Object Recognition

    PubMed Central

    Heald, Shannon L. M.; Van Hedger, Stephen C.; Nusbaum, Howard C.

    2017-01-01

    In our auditory environment, we rarely experience the exact acoustic waveform twice. This is especially true for communicative signals that have meaning for listeners. In speech and music, the acoustic signal changes as a function of the talker (or instrument), speaking (or playing) rate, and room acoustics, to name a few factors. Yet, despite this acoustic variability, we are able to recognize a sentence or melody as the same across various kinds of acoustic inputs and determine meaning based on listening goals, expectations, context, and experience. The recognition process relates acoustic signals to prior experience despite variability in signal-relevant and signal-irrelevant acoustic properties, some of which could be considered as “noise” in service of a recognition goal. However, some acoustic variability, if systematic, is lawful and can be exploited by listeners to aid in recognition. Perceivable changes in systematic variability can herald a need for listeners to reorganize perception and reorient their attention to more immediately signal-relevant cues. This view is not incorporated currently in many extant theories of auditory perception, which traditionally reduce psychological or neural representations of perceptual objects and the processes that act on them to static entities. While this reduction is likely done for the sake of empirical tractability, such a reduction may seriously distort the perceptual process to be modeled. We argue that perceptual representations, as well as the processes underlying perception, are dynamically determined by an interaction between the uncertainty of the auditory signal and constraints of context. This suggests that the process of auditory recognition is highly context-dependent in that the identity of a given auditory object may be intrinsically tied to its preceding context. To argue for the flexible neural and psychological updating of sound-to-meaning mappings across speech and music, we draw upon examples

  3. Social Recognition Memory: The Effect of Other People's Responses for Previously Seen and Unseen Items

    ERIC Educational Resources Information Center

    Wright, Daniel B.; Mathews, Sorcha A.; Skagerberg, Elin M.

    2005-01-01

    When people discuss their memories, what one person says can influence what another personal reports. In 3 studies, participants were shown sets of stimuli and then given recognition memory tests to measure the effect of one person's response on another's. The 1st study (n=24) used word recognition with participant-confederate pairs and found that…

  4. Speech Recognition in Adults With Cochlear Implants: The Effects of Working Memory, Phonological Sensitivity, and Aging.

    PubMed

    Moberly, Aaron C; Harris, Michael S; Boyce, Lauren; Nittrouer, Susan

    2017-04-14

    Models of speech recognition suggest that "top-down" linguistic and cognitive functions, such as use of phonotactic constraints and working memory, facilitate recognition under conditions of degradation, such as in noise. The question addressed in this study was what happens to these functions when a listener who has experienced years of hearing loss obtains a cochlear implant. Thirty adults with cochlear implants and 30 age-matched controls with age-normal hearing underwent testing of verbal working memory using digit span and serial recall of words. Phonological capacities were assessed using a lexical decision task and nonword repetition. Recognition of words in sentences in speech-shaped noise was measured. Implant users had only slightly poorer working memory accuracy than did controls and only on serial recall of words; however, phonological sensitivity was highly impaired. Working memory did not facilitate speech recognition in noise for either group. Phonological sensitivity predicted sentence recognition for implant users but not for listeners with normal hearing. Clinical speech recognition outcomes for adult implant users relate to the ability of these users to process phonological information. Results suggest that phonological capacities may serve as potential clinical targets through rehabilitative training. Such novel interventions may be particularly helpful for older adult implant users.

  5. Speech Recognition in Adults With Cochlear Implants: The Effects of Working Memory, Phonological Sensitivity, and Aging

    PubMed Central

    Harris, Michael S.; Boyce, Lauren; Nittrouer, Susan

    2017-01-01

    Purpose Models of speech recognition suggest that “top-down” linguistic and cognitive functions, such as use of phonotactic constraints and working memory, facilitate recognition under conditions of degradation, such as in noise. The question addressed in this study was what happens to these functions when a listener who has experienced years of hearing loss obtains a cochlear implant. Method Thirty adults with cochlear implants and 30 age-matched controls with age-normal hearing underwent testing of verbal working memory using digit span and serial recall of words. Phonological capacities were assessed using a lexical decision task and nonword repetition. Recognition of words in sentences in speech-shaped noise was measured. Results Implant users had only slightly poorer working memory accuracy than did controls and only on serial recall of words; however, phonological sensitivity was highly impaired. Working memory did not facilitate speech recognition in noise for either group. Phonological sensitivity predicted sentence recognition for implant users but not for listeners with normal hearing. Conclusion Clinical speech recognition outcomes for adult implant users relate to the ability of these users to process phonological information. Results suggest that phonological capacities may serve as potential clinical targets through rehabilitative training. Such novel interventions may be particularly helpful for older adult implant users. PMID:28384805

  6. Psychoactive drugs and false memory: comparison of dextroamphetamine and delta-9-tetrahydrocannabinol on false recognition

    PubMed Central

    Ballard, Michael E.; Gallo, David A.; de Wit, Harriet

    2014-01-01

    Rationale Several psychoactive drugs are known to influence episodic memory. However, these drugs’ effects on false memory, or the tendency to incorrectly remember nonstudied information, remain poorly understood. Objectives Here, we examined the effects of two commonly used psychoactive drugs, one with memory-enhancing properties (dextroamphetamine; AMP), and another with memory-impairing properties (Δ9-tetrahydrocannabinol; THC), on false memory using the Deese/Roediger–McDermott (DRM) illusion. Methods Two parallel studies were conducted in which healthy volunteers received either AMP (0, 10, and 20 mg) or THC (0, 7.5, and 15 mg) in within-subjects, randomized, double-blind designs. Participants studied DRM word lists under the influence of the drugs, and their recognition memory for the studied words was tested 2 days later, under sober conditions. Results As expected, AMP increased memory of studied words relative to placebo, and THC reduced memory of studied words. Although neither drug significantly affected false memory relative to placebo, AMP increased false memory relative to THC. Across participants, both drugs’ effects on true memory were positively correlated with their effects on false memory. Conclusions Our results indicate that AMP and THC have opposing effects on true memory, and these effects appear to correspond to similar, albeit more subtle, effects on false memory. These findings are consistent with previous research using the DRM illusion and provide further evidence that psychoactive drugs can affect the encoding processes that ultimately result in the creation of false memories. PMID:21647577

  7. The role of color information on object recognition: a review and meta-analysis.

    PubMed

    Bramão, Inês; Reis, Alexandra; Petersson, Karl Magnus; Faísca, Luís

    2011-09-01

    In this study, we systematically review the scientific literature on the effect of color on object recognition. Thirty-five independent experiments, comprising 1535 participants, were included in a meta-analysis. We found a moderate effect of color on object recognition (d=0.28). Specific effects of moderator variables were analyzed and we found that color diagnosticity is the factor with the greatest moderator effect on the influence of color in object recognition; studies using color diagnostic objects showed a significant color effect (d=0.43), whereas a marginal color effect was found in studies that used non-color diagnostic objects (d=0.18). The present study did not permit the drawing of specific conclusions about the moderator effect of the object recognition task; while the meta-analytic review showed that color information improves object recognition mainly in studies using naming tasks (d=0.36), the literature review revealed a large body of evidence showing positive effects of color information on object recognition in studies using a large variety of visual recognition tasks. We also found that color is important for the ability to recognize artifacts and natural objects, to recognize objects presented as types (line-drawings) or as tokens (photographs), and to recognize objects that are presented without surface details, such as texture or shadow. Taken together, the results of the meta-analysis strongly support the contention that color plays a role in object recognition. This suggests that the role of color should be taken into account in models of visual object recognition. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. Short memory fuzzy fusion image recognition schema employing spatial and Fourier descriptors

    NASA Astrophysics Data System (ADS)

    Raptis, Sotiris N.; Tzafestas, Spyros G.

    2001-03-01

    Single images quite often do not bear enough information for precise interpretation due to a variety of reasons. Multiple image fusion and adequate integration recently became the state of the art in the pattern recognition field. In this paper presented here and enhanced multiple observation schema is discussed investigating improvements to the baseline fuzzy- probabilistic image fusion methodology. The first innovation introduced consists in considering only a limited but seemingly ore effective part of the uncertainty information obtained by a certain time restricting older uncertainty dependencies and alleviating computational burden that is now needed for short sequence (stored into memory) of samples. The second innovation essentially grouping them into feature-blind object hypotheses. Experiment settings include a sequence of independent views obtained by camera being moved around the investigated object.

  9. Variability in the impairment of recognition memory in patients with frontal lobe lesions.

    PubMed

    Bastin, Christine; Van der Linden, Martial; Lekeu, Françoise; Andrés, Pilar; Salmon, Eric

    2006-10-01

    Fourteen patients with frontal lobe lesions and 14 normal subjects were tested on a recognition memory task that required discriminating between target words, new words that are synonyms of the targets and unrelated distractors. A deficit was found in 12 of the patients. Moreover, three different patterns of recognition impairment were identified: (I) poor memory for targets, (II) normal hits but increased false recognitions for both types of distractors, (III) normal hit rates, but increased false recognitions for synonyms only. Differences in terms of location of the damage and behavioral characteristics between these subgroups were examined. An encoding deficit was proposed to explain the performance of patients in subgroup I. The behavioral patterns of the patients in subgroups II and III could be interpreted as deficient post-retrieval verification processes and an inability to recollect item-specific information, respectively.

  10. Stereo Viewing Modulates Three-Dimensional Shape Processing During Object Recognition: A High-Density ERP Study

    PubMed Central

    2017-01-01

    The role of stereo disparity in the recognition of 3-dimensional (3D) object shape remains an unresolved issue for theoretical models of the human visual system. We examined this issue using high-density (128 channel) recordings of event-related potentials (ERPs). A recognition memory task was used in which observers were trained to recognize a subset of complex, multipart, 3D novel objects under conditions of either (bi-) monocular or stereo viewing. In a subsequent test phase they discriminated previously trained targets from untrained distractor objects that shared either local parts, 3D spatial configuration, or neither dimension, across both previously seen and novel viewpoints. The behavioral data showed a stereo advantage for target recognition at untrained viewpoints. ERPs showed early differential amplitude modulations to shape similarity defined by local part structure and global 3D spatial configuration. This occurred initially during an N1 component around 145–190 ms poststimulus onset, and then subsequently during an N2/P3 component around 260–385 ms poststimulus onset. For mono viewing, amplitude modulation during the N1 was greatest between targets and distracters with different local parts for trained views only. For stereo viewing, amplitude modulation during the N2/P3 was greatest between targets and distracters with different global 3D spatial configurations and generalized across trained and untrained views. The results show that image classification is modulated by stereo information about the local part, and global 3D spatial configuration of object shape. The findings challenge current theoretical models that do not attribute functional significance to stereo input during the computation of 3D object shape. PMID:29022728

  11. Object representations in visual memory: evidence from visual illusions.

    PubMed

    Ben-Shalom, Asaf; Ganel, Tzvi

    2012-07-26

    Human visual memory is considered to contain different levels of object representations. Representations in visual working memory (VWM) are thought to contain relatively elaborated information about object structure. Conversely, representations in iconic memory are thought to be more perceptual in nature. In four experiments, we tested the effects of two different categories of visual illusions on representations in VWM and in iconic memory. Unlike VWM that was affected by both types of illusions, iconic memory was immune to the effects of within-object contextual illusions and was affected only by illusions driven by between-objects contextual properties. These results show that iconic and visual working memory contain dissociable representations of object shape. These findings suggest that the global properties of the visual scene are processed prior to the processing of specific elements.

  12. It Takes Two–Skilled Recognition of Objects Engages Lateral Areas in Both Hemispheres

    PubMed Central

    Bilalić, Merim; Kiesel, Andrea; Pohl, Carsten; Erb, Michael; Grodd, Wolfgang

    2011-01-01

    Our object recognition abilities, a direct product of our experience with objects, are fine-tuned to perfection. Left temporal and lateral areas along the dorsal, action related stream, as well as left infero-temporal areas along the ventral, object related stream are engaged in object recognition. Here we show that expertise modulates the activity of dorsal areas in the recognition of man-made objects with clearly specified functions. Expert chess players were faster than chess novices in identifying chess objects and their functional relations. Experts' advantage was domain-specific as there were no differences between groups in a control task featuring geometrical shapes. The pattern of eye movements supported the notion that experts' extensive knowledge about domain objects and their functions enabled superior recognition even when experts were not directly fixating the objects of interest. Functional magnetic resonance imaging (fMRI) related exclusively the areas along the dorsal stream to chess specific object recognition. Besides the commonly involved left temporal and parietal lateral brain areas, we found that only in experts homologous areas on the right hemisphere were also engaged in chess specific object recognition. Based on these results, we discuss whether skilled object recognition does not only involve a more efficient version of the processes found in non-skilled recognition, but also qualitatively different cognitive processes which engage additional brain areas. PMID:21283683

  13. Measuring the Speed of Newborn Object Recognition in Controlled Visual Worlds

    ERIC Educational Resources Information Center

    Wood, Justin N.; Wood, Samantha M. W.

    2017-01-01

    How long does it take for a newborn to recognize an object? Adults can recognize objects rapidly, but measuring object recognition speed in newborns has not previously been possible. Here we introduce an automated controlled-rearing method for measuring the speed of newborn object recognition in controlled visual worlds. We raised newborn chicks…

  14. Release from output interference in recognition memory: A test of the attention hypothesis.

    PubMed

    Criss, Amy H; Salomão, Cristina; Malmberg, Kenneth J; Aue, William; Kılıç, Aslı; Claridge, MarkAvery

    2018-05-01

    Retrieval results in both costs and benefits to episodic memory. Output interference (OI) refers to the finding that episodic memory accuracy decreases with increasing test trials. Release from OI is the restoration of original accuracy at some point during the test. For example, a release from OI in recognition memory testing occurs when the semantic similarity between stimuli decreases midway through testing, suggesting that item representations stored on early trials cause interference on tests occurring on later trials to the extent that the earlier items share features with the latter items. In two recognition memory experiments, we demonstrate release from OI for words and faces. We also test whether release from OI is the result of interference or is due to a boost in attention caused by reorienting to a novel stimulus type. A test for the foils presented during the initial test list supports the interference account of OI. Implications for models of memory are discussed.

  15. Primacy of memory linkage in choice among valued objects.

    PubMed

    Jones, Gregory V; Martin, Maryanne

    2006-12-01

    Three psychological levels at which an object may be processed have been characterized by Norman (2004) in terms of the object's appearance, its usability, and its capacity to elicit memories. A series of experiments was carried out to investigate participants' choices among valued objects recalled in accordance with these three criteria. It was found consistently that objects selected for their capacity to elicit memories--here termed mnemoactive objects--were valued significantly more than the other objects. Even the financial or social importance of an object was outweighed by the importance of its memory link; possible implications for the economic analysis of subjective well-being are briefly discussed. The same pattern of mnemoactive dominance was found across age and gender. Appropriate choice of objects may allow an individual to exert a degree of indirect voluntary control over the activation of involuntary autobiographical memories, providing a new perspective on Proust's approach to memory.

  16. Not All Attention Orienting is Created Equal: Recognition Memory is Enhanced When Attention Orienting Involves Distractor Suppression

    PubMed Central

    Markant, Julie; Worden, Michael S.; Amso, Dima

    2015-01-01

    Learning through visual exploration often requires orienting of attention to meaningful information in a cluttered world. Previous work has shown that attention modulates visual cortex activity, with enhanced activity for attended targets and suppressed activity for competing inputs, thus enhancing the visual experience. Here we examined the idea that learning may be engaged differentially with variations in attention orienting mechanisms that drive driving eye movements during visual search and exploration. We hypothesized that attention orienting mechanisms that engaged suppression of a previously attended location will boost memory encoding of the currently attended target objects to a greater extent than those that involve target enhancement alone To test this hypothesis we capitalized on the classic spatial cueing task and the inhibition of return (IOR) mechanism (Posner, Rafal, & Choate, 1985; Posner, 1980) to demonstrate that object images encoded in the context of concurrent suppression at a previously attended location were encoded more effectively and remembered better than those encoded without concurrent suppression. Furthermore, fMRI analyses revealed that this memory benefit was driven by attention modulation of visual cortex activity, as increased suppression of the previously attended location in visual cortex during target object encoding predicted better subsequent recognition memory performance. These results suggest that not all attention orienting impacts learning and memory equally. PMID:25701278

  17. WAY 267,464, a non-peptide oxytocin receptor agonist, impairs social recognition memory in rats through a vasopressin 1A receptor antagonist action.

    PubMed

    Hicks, Callum; Ramos, Linnet; Reekie, Tristan A; Narlawar, Rajeshwar; Kassiou, Michael; McGregor, Iain S

    2015-08-01

    Recent in vitro studies suggest that the oxytocin receptor (OTR) agonist WAY 267,464 has vasopressin 1A receptor (V1AR) antagonist effects. This might limit its therapeutic potential due to the positive involvement of the V1AR in social behavior. The objective of this study was to assess functional V1AR antagonist-like effects of WAY 267,464 in vivo using a test of social recognition memory. Adult experimental rats were tested for their recognition of a juvenile conspecific rat that they had briefly met 30 or 120 min previously. The modulatory effects of vasopressin (AVP), the selective V1AR antagonist SR49059, and WAY 267,464 were examined together with those of the selective OTR antagonist Compound 25 (C25). Drugs were administered immediately after the first meeting. Control rats showed recognition of juveniles at a 30 min, but not a 120 min retention interval. AVP (0.005, but not 0.001 mg/kg intraperitoneal (i.p.)) improved memory such that recognition was evident after 120 min. This was prevented by pretreatment with SR49059 (1 mg/kg) and WAY 267,464 (10, 30, and 100 mg/kg). Given alone, SR49059 (1 mg/kg) and WAY 267,464 (30 and 100 mg/kg) impaired memory at a 30 min retention interval. The impairment with WAY 267,464 was not prevented by C25 (5 mg/kg), suggesting V1AR rather than OTR mediation of the effect. Given alone, C25 also impaired memory. These results highlight a tonic role for endogenous AVP (and oxytocin) in social recognition memory and indicate that WAY 267,464 functions in vivo as a V1AR antagonist to prevent the memory-enhancing effects of AVP.

  18. Optical character recognition with feature extraction and associative memory matrix

    NASA Astrophysics Data System (ADS)

    Sasaki, Osami; Shibahara, Akihito; Suzuki, Takamasa

    1998-06-01

    A method is proposed in which handwritten characters are recognized using feature extraction and an associative memory matrix. In feature extraction, simple processes such as shifting and superimposing patterns are executed. A memory matrix is generated with singular value decomposition and by modifying small singular values. The method is optically implemented with two liquid crystal displays. Experimental results for the recognition of 25 handwritten alphabet characters clearly shows the effectiveness of the method.

  19. Combining heterogenous features for 3D hand-held object recognition

    NASA Astrophysics Data System (ADS)

    Lv, Xiong; Wang, Shuang; Li, Xiangyang; Jiang, Shuqiang

    2014-10-01

    Object recognition has wide applications in the area of human-machine interaction and multimedia retrieval. However, due to the problem of visual polysemous and concept polymorphism, it is still a great challenge to obtain reliable recognition result for the 2D images. Recently, with the emergence and easy availability of RGB-D equipment such as Kinect, this challenge could be relieved because the depth channel could bring more information. A very special and important case of object recognition is hand-held object recognition, as hand is a straight and natural way for both human-human interaction and human-machine interaction. In this paper, we study the problem of 3D object recognition by combining heterogenous features with different modalities and extraction techniques. For hand-craft feature, although it reserves the low-level information such as shape and color, it has shown weakness in representing hiconvolutionalgh-level semantic information compared with the automatic learned feature, especially deep feature. Deep feature has shown its great advantages in large scale dataset recognition but is not always robust to rotation or scale variance compared with hand-craft feature. In this paper, we propose a method to combine hand-craft point cloud features and deep learned features in RGB and depth channle. First, hand-held object segmentation is implemented by using depth cues and human skeleton information. Second, we combine the extracted hetegerogenous 3D features in different stages using linear concatenation and multiple kernel learning (MKL). Then a training model is used to recognize 3D handheld objects. Experimental results validate the effectiveness and gerneralization ability of the proposed method.

  20. Aging memories: differential decay of episodic memory components.

    PubMed

    Talamini, Lucia M; Gorree, Eva

    2012-05-17

    Some memories about events can persist for decades, even a lifetime. However, recent memories incorporate rich sensory information, including knowledge on the spatial and temporal ordering of event features, while old memories typically lack this "filmic" quality. We suggest that this apparent change in the nature of memories may reflect a preferential loss of hippocampus-dependent, configurational information over more cortically based memory components, including memory for individual objects. The current study systematically tests this hypothesis, using a new paradigm that allows the contemporaneous assessment of memory for objects, object pairings, and object-position conjunctions. Retention of each memory component was tested, at multiple intervals, up to 3 mo following encoding. The three memory subtasks adopted the same retrieval paradigm and were matched for initial difficulty. Results show differential decay of the tested episodic memory components, whereby memory for configurational aspects of a scene (objects' co-occurrence and object position) decays faster than memory for featured objects. Interestingly, memory requiring a visually detailed object representation decays at a similar rate as global object recognition, arguing against interpretations based on task difficulty and against the notion that (visual) detail is forgotten preferentially. These findings show that memories undergo qualitative changes as they age. More specifically, event memories become less configurational over time, preferentially losing some of the higher order associations that are dependent on the hippocampus for initial fast encoding. Implications for theories of long-term memory are discussed.