Sample records for object tracking algorithm

  1. Adaptive object tracking via both positive and negative models matching

    NASA Astrophysics Data System (ADS)

    Li, Shaomei; Gao, Chao; Wang, Yawen

    2015-03-01

    To improve tracking drift which often occurs in adaptive tracking, an algorithm based on the fusion of tracking and detection is proposed in this paper. Firstly, object tracking is posed as abinary classification problem and is modeled by partial least squares (PLS) analysis. Secondly, tracking object frame by frame via particle filtering. Thirdly, validating the tracking reliability based on both positive and negative models matching. Finally, relocating the object based on SIFT features matching and voting when drift occurs. Object appearance model is updated at the same time. The algorithm can not only sense tracking drift but also relocate the object whenever needed. Experimental results demonstrate that this algorithm outperforms state-of-the-art algorithms on many challenging sequences.

  2. Single and multiple object tracking using log-euclidean Riemannian subspace and block-division appearance model.

    PubMed

    Hu, Weiming; Li, Xi; Luo, Wenhan; Zhang, Xiaoqin; Maybank, Stephen; Zhang, Zhongfei

    2012-12-01

    Object appearance modeling is crucial for tracking objects, especially in videos captured by nonstationary cameras and for reasoning about occlusions between multiple moving objects. Based on the log-euclidean Riemannian metric on symmetric positive definite matrices, we propose an incremental log-euclidean Riemannian subspace learning algorithm in which covariance matrices of image features are mapped into a vector space with the log-euclidean Riemannian metric. Based on the subspace learning algorithm, we develop a log-euclidean block-division appearance model which captures both the global and local spatial layout information about object appearances. Single object tracking and multi-object tracking with occlusion reasoning are then achieved by particle filtering-based Bayesian state inference. During tracking, incremental updating of the log-euclidean block-division appearance model captures changes in object appearance. For multi-object tracking, the appearance models of the objects can be updated even in the presence of occlusions. Experimental results demonstrate that the proposed tracking algorithm obtains more accurate results than six state-of-the-art tracking algorithms.

  3. An experimental comparison of online object-tracking algorithms

    NASA Astrophysics Data System (ADS)

    Wang, Qing; Chen, Feng; Xu, Wenli; Yang, Ming-Hsuan

    2011-09-01

    This paper reviews and evaluates several state-of-the-art online object tracking algorithms. Notwithstanding decades of efforts, object tracking remains a challenging problem due to factors such as illumination, pose, scale, deformation, motion blur, noise, and occlusion. To account for appearance change, most recent tracking algorithms focus on robust object representations and effective state prediction. In this paper, we analyze the components of each tracking method and identify their key roles in dealing with specific challenges, thereby shedding light on how to choose and design algorithms for different situations. We compare state-of-the-art online tracking methods including the IVT,1 VRT,2 FragT,3 BoostT,4 SemiT,5 BeSemiT,6 L1T,7 MILT,8 VTD9 and TLD10 algorithms on numerous challenging sequences, and evaluate them with different performance metrics. The qualitative and quantitative comparative results demonstrate the strength and weakness of these algorithms.

  4. Multi-Complementary Model for Long-Term Tracking

    PubMed Central

    Zhang, Deng; Zhang, Junchang; Xia, Chenyang

    2018-01-01

    In recent years, video target tracking algorithms have been widely used. However, many tracking algorithms do not achieve satisfactory performance, especially when dealing with problems such as object occlusions, background clutters, motion blur, low illumination color images, and sudden illumination changes in real scenes. In this paper, we incorporate an object model based on contour information into a Staple tracker that combines the correlation filter model and color model to greatly improve the tracking robustness. Since each model is responsible for tracking specific features, the three complementary models combine for more robust tracking. In addition, we propose an efficient object detection model with contour and color histogram features, which has good detection performance and better detection efficiency compared to the traditional target detection algorithm. Finally, we optimize the traditional scale calculation, which greatly improves the tracking execution speed. We evaluate our tracker on the Object Tracking Benchmarks 2013 (OTB-13) and Object Tracking Benchmarks 2015 (OTB-15) benchmark datasets. With the OTB-13 benchmark datasets, our algorithm is improved by 4.8%, 9.6%, and 10.9% on the success plots of OPE, TRE and SRE, respectively, in contrast to another classic LCT (Long-term Correlation Tracking) algorithm. On the OTB-15 benchmark datasets, when compared with the LCT algorithm, our algorithm achieves 10.4%, 12.5%, and 16.1% improvement on the success plots of OPE, TRE, and SRE, respectively. At the same time, it needs to be emphasized that, due to the high computational efficiency of the color model and the object detection model using efficient data structures, and the speed advantage of the correlation filters, our tracking algorithm could still achieve good tracking speed. PMID:29425170

  5. Multiple objects tracking with HOGs matching in circular windows

    NASA Astrophysics Data System (ADS)

    Miramontes-Jaramillo, Daniel; Kober, Vitaly; Díaz-Ramírez, Víctor H.

    2014-09-01

    In recent years tracking applications with development of new technologies like smart TVs, Kinect, Google Glass and Oculus Rift become very important. When tracking uses a matching algorithm, a good prediction algorithm is required to reduce the search area for each object to be tracked as well as processing time. In this work, we analyze the performance of different tracking algorithms based on prediction and matching for a real-time tracking multiple objects. The used matching algorithm utilizes histograms of oriented gradients. It carries out matching in circular windows, and possesses rotation invariance and tolerance to viewpoint and scale changes. The proposed algorithm is implemented in a personal computer with GPU, and its performance is analyzed in terms of processing time in real scenarios. Such implementation takes advantage of current technologies and helps to process video sequences in real-time for tracking several objects at the same time.

  6. The research on the mean shift algorithm for target tracking

    NASA Astrophysics Data System (ADS)

    CAO, Honghong

    2017-06-01

    The traditional mean shift algorithm for target tracking is effective and high real-time, but there still are some shortcomings. The traditional mean shift algorithm is easy to fall into local optimum in the tracking process, the effectiveness of the method is weak when the object is moving fast. And the size of the tracking window never changes, the method will fail when the size of the moving object changes, as a result, we come up with a new method. We use particle swarm optimization algorithm to optimize the mean shift algorithm for target tracking, Meanwhile, SIFT (scale-invariant feature transform) and affine transformation make the size of tracking window adaptive. At last, we evaluate the method by comparing experiments. Experimental result indicates that the proposed method can effectively track the object and the size of the tracking window changes.

  7. Efficient Spatiotemporal Clutter Rejection and Nonlinear Filtering-based Dim Resolved and Unresolved Object Tracking Algorithms

    NASA Astrophysics Data System (ADS)

    Tartakovsky, A.; Tong, M.; Brown, A. P.; Agh, C.

    2013-09-01

    We develop efficient spatiotemporal image processing algorithms for rejection of non-stationary clutter and tracking of multiple dim objects using non-linear track-before-detect methods. For clutter suppression, we include an innovative image alignment (registration) algorithm. The images are assumed to contain elements of the same scene, but taken at different angles, from different locations, and at different times, with substantial clutter non-stationarity. These challenges are typical for space-based and surface-based IR/EO moving sensors, e.g., highly elliptical orbit or low earth orbit scenarios. The algorithm assumes that the images are related via a planar homography, also known as the projective transformation. The parameters are estimated in an iterative manner, at each step adjusting the parameter vector so as to achieve improved alignment of the images. Operating in the parameter space rather than in the coordinate space is a new idea, which makes the algorithm more robust with respect to noise as well as to large inter-frame disturbances, while operating at real-time rates. For dim object tracking, we include new advancements to a particle non-linear filtering-based track-before-detect (TrbD) algorithm. The new TrbD algorithm includes both real-time full image search for resolved objects not yet in track and joint super-resolution and tracking of individual objects in closely spaced object (CSO) clusters. The real-time full image search provides near-optimal detection and tracking of multiple extremely dim, maneuvering objects/clusters. The super-resolution and tracking CSO TrbD algorithm provides efficient near-optimal estimation of the number of unresolved objects in a CSO cluster, as well as the locations, velocities, accelerations, and intensities of the individual objects. We demonstrate that the algorithm is able to accurately estimate the number of CSO objects and their locations when the initial uncertainty on the number of objects is large. We demonstrate performance of the TrbD algorithm both for satellite-based and surface-based EO/IR surveillance scenarios.

  8. Nonstationary EO/IR Clutter Suppression and Dim Object Tracking

    NASA Astrophysics Data System (ADS)

    Tartakovsky, A.; Brown, A.; Brown, J.

    2010-09-01

    We develop and evaluate the performance of advanced algorithms which provide significantly improved capabilities for automated detection and tracking of ballistic and flying dim objects in the presence of highly structured intense clutter. Applications include ballistic missile early warning, midcourse tracking, trajectory prediction, and resident space object detection and tracking. The set of algorithms include, in particular, adaptive spatiotemporal clutter estimation-suppression and nonlinear filtering-based multiple-object track-before-detect. These algorithms are suitable for integration into geostationary, highly elliptical, or low earth orbit scanning or staring sensor suites, and are based on data-driven processing that adapts to real-world clutter backgrounds, including celestial, earth limb, or terrestrial clutter. In many scenarios of interest, e.g., for highly elliptic and, especially, low earth orbits, the resulting clutter is highly nonstationary, providing a significant challenge for clutter suppression to or below sensor noise levels, which is essential for dim object detection and tracking. We demonstrate the success of the developed algorithms using semi-synthetic and real data. In particular, our algorithms are shown to be capable of detecting and tracking point objects with signal-to-clutter levels down to 1/1000 and signal-to-noise levels down to 1/4.

  9. Detection and Tracking of Dynamic Objects by Using a Multirobot System: Application to Critical Infrastructures Surveillance

    PubMed Central

    Rodríguez-Canosa, Gonzalo; Giner, Jaime del Cerro; Barrientos, Antonio

    2014-01-01

    The detection and tracking of mobile objects (DATMO) is progressively gaining importance for security and surveillance applications. This article proposes a set of new algorithms and procedures for detecting and tracking mobile objects by robots that work collaboratively as part of a multirobot system. These surveillance algorithms are conceived of to work with data provided by long distance range sensors and are intended for highly reliable object detection in wide outdoor environments. Contrary to most common approaches, in which detection and tracking are done by an integrated procedure, the approach proposed here relies on a modular structure, in which detection and tracking are carried out independently, and the latter might accept input data from different detection algorithms. Two movement detection algorithms have been developed for the detection of dynamic objects by using both static and/or mobile robots. The solution to the overall problem is based on the use of a Kalman filter to predict the next state of each tracked object. Additionally, new tracking algorithms capable of combining dynamic objects lists coming from either one or various sources complete the solution. The complementary performance of the separated modular structure for detection and identification is evaluated and, finally, a selection of test examples discussed. PMID:24526305

  10. Multiple objects tracking in fluorescence microscopy.

    PubMed

    Kalaidzidis, Yannis

    2009-01-01

    Many processes in cell biology are connected to the movement of compact entities: intracellular vesicles and even single molecules. The tracking of individual objects is important for understanding cellular dynamics. Here we describe the tracking algorithms which have been developed in the non-biological fields and successfully applied to object detection and tracking in biological applications. The characteristics features of the different algorithms are compared.

  11. Detection and Tracking of Moving Objects with Real-Time Onboard Vision System

    NASA Astrophysics Data System (ADS)

    Erokhin, D. Y.; Feldman, A. B.; Korepanov, S. E.

    2017-05-01

    Detection of moving objects in video sequence received from moving video sensor is a one of the most important problem in computer vision. The main purpose of this work is developing set of algorithms, which can detect and track moving objects in real time computer vision system. This set includes three main parts: the algorithm for estimation and compensation of geometric transformations of images, an algorithm for detection of moving objects, an algorithm to tracking of the detected objects and prediction their position. The results can be claimed to create onboard vision systems of aircraft, including those relating to small and unmanned aircraft.

  12. Multiple object tracking using the shortest path faster association algorithm.

    PubMed

    Xi, Zhenghao; Liu, Heping; Liu, Huaping; Yang, Bin

    2014-01-01

    To solve the persistently multiple object tracking in cluttered environments, this paper presents a novel tracking association approach based on the shortest path faster algorithm. First, the multiple object tracking is formulated as an integer programming problem of the flow network. Then we relax the integer programming to a standard linear programming problem. Therefore, the global optimum can be quickly obtained using the shortest path faster algorithm. The proposed method avoids the difficulties of integer programming, and it has a lower worst-case complexity than competing methods but better robustness and tracking accuracy in complex environments. Simulation results show that the proposed algorithm takes less time than other state-of-the-art methods and can operate in real time.

  13. Multiple Object Tracking Using the Shortest Path Faster Association Algorithm

    PubMed Central

    Liu, Heping; Liu, Huaping; Yang, Bin

    2014-01-01

    To solve the persistently multiple object tracking in cluttered environments, this paper presents a novel tracking association approach based on the shortest path faster algorithm. First, the multiple object tracking is formulated as an integer programming problem of the flow network. Then we relax the integer programming to a standard linear programming problem. Therefore, the global optimum can be quickly obtained using the shortest path faster algorithm. The proposed method avoids the difficulties of integer programming, and it has a lower worst-case complexity than competing methods but better robustness and tracking accuracy in complex environments. Simulation results show that the proposed algorithm takes less time than other state-of-the-art methods and can operate in real time. PMID:25215322

  14. Tracking Algorithm of Multiple Pedestrians Based on Particle Filters in Video Sequences

    PubMed Central

    Liu, Yun; Wang, Chuanxu; Zhang, Shujun; Cui, Xuehong

    2016-01-01

    Pedestrian tracking is a critical problem in the field of computer vision. Particle filters have been proven to be very useful in pedestrian tracking for nonlinear and non-Gaussian estimation problems. However, pedestrian tracking in complex environment is still facing many problems due to changes of pedestrian postures and scale, moving background, mutual occlusion, and presence of pedestrian. To surmount these difficulties, this paper presents tracking algorithm of multiple pedestrians based on particle filters in video sequences. The algorithm acquires confidence value of the object and the background through extracting a priori knowledge thus to achieve multipedestrian detection; it adopts color and texture features into particle filter to get better observation results and then automatically adjusts weight value of each feature according to current tracking environment. During the process of tracking, the algorithm processes severe occlusion condition to prevent drift and loss phenomena caused by object occlusion and associates detection results with particle state to propose discriminated method for object disappearance and emergence thus to achieve robust tracking of multiple pedestrians. Experimental verification and analysis in video sequences demonstrate that proposed algorithm improves the tracking performance and has better tracking results. PMID:27847514

  15. A coarse-to-fine kernel matching approach for mean-shift based visual tracking

    NASA Astrophysics Data System (ADS)

    Liangfu, L.; Zuren, F.; Weidong, C.; Ming, J.

    2009-03-01

    Mean shift is an efficient pattern match algorithm. It is widely used in visual tracking fields since it need not perform whole search in the image space. It employs gradient optimization method to reduce the time of feature matching and realize rapid object localization, and uses Bhattacharyya coefficient as the similarity measure between object template and candidate template. This thesis presents a mean shift algorithm based on coarse-to-fine search for the best kernel matching. This paper researches for object tracking with large motion area based on mean shift. To realize efficient tracking of such an object, we present a kernel matching method from coarseness to fine. If the motion areas of the object between two frames are very large and they are not overlapped in image space, then the traditional mean shift method can only obtain local optimal value by iterative computing in the old object window area, so the real tracking position cannot be obtained and the object tracking will be disabled. Our proposed algorithm can efficiently use a similarity measure function to realize the rough location of motion object, then use mean shift method to obtain the accurate local optimal value by iterative computing, which successfully realizes object tracking with large motion. Experimental results show its good performance in accuracy and speed when compared with background-weighted histogram algorithm in the literature.

  16. Object Occlusion Detection Using Automatic Camera Calibration for a Wide-Area Video Surveillance System

    PubMed Central

    Jung, Jaehoon; Yoon, Inhye; Paik, Joonki

    2016-01-01

    This paper presents an object occlusion detection algorithm using object depth information that is estimated by automatic camera calibration. The object occlusion problem is a major factor to degrade the performance of object tracking and recognition. To detect an object occlusion, the proposed algorithm consists of three steps: (i) automatic camera calibration using both moving objects and a background structure; (ii) object depth estimation; and (iii) detection of occluded regions. The proposed algorithm estimates the depth of the object without extra sensors but with a generic red, green and blue (RGB) camera. As a result, the proposed algorithm can be applied to improve the performance of object tracking and object recognition algorithms for video surveillance systems. PMID:27347978

  17. Visual Tracking via Sparse and Local Linear Coding.

    PubMed

    Wang, Guofeng; Qin, Xueying; Zhong, Fan; Liu, Yue; Li, Hongbo; Peng, Qunsheng; Yang, Ming-Hsuan

    2015-11-01

    The state search is an important component of any object tracking algorithm. Numerous algorithms have been proposed, but stochastic sampling methods (e.g., particle filters) are arguably one of the most effective approaches. However, the discretization of the state space complicates the search for the precise object location. In this paper, we propose a novel tracking algorithm that extends the state space of particle observations from discrete to continuous. The solution is determined accurately via iterative linear coding between two convex hulls. The algorithm is modeled by an optimal function, which can be efficiently solved by either convex sparse coding or locality constrained linear coding. The algorithm is also very flexible and can be combined with many generic object representations. Thus, we first use sparse representation to achieve an efficient searching mechanism of the algorithm and demonstrate its accuracy. Next, two other object representation models, i.e., least soft-threshold squares and adaptive structural local sparse appearance, are implemented with improved accuracy to demonstrate the flexibility of our algorithm. Qualitative and quantitative experimental results demonstrate that the proposed tracking algorithm performs favorably against the state-of-the-art methods in dynamic scenes.

  18. Single and Multiple Object Tracking Using a Multi-Feature Joint Sparse Representation.

    PubMed

    Hu, Weiming; Li, Wei; Zhang, Xiaoqin; Maybank, Stephen

    2015-04-01

    In this paper, we propose a tracking algorithm based on a multi-feature joint sparse representation. The templates for the sparse representation can include pixel values, textures, and edges. In the multi-feature joint optimization, noise or occlusion is dealt with using a set of trivial templates. A sparse weight constraint is introduced to dynamically select the relevant templates from the full set of templates. A variance ratio measure is adopted to adaptively adjust the weights of different features. The multi-feature template set is updated adaptively. We further propose an algorithm for tracking multi-objects with occlusion handling based on the multi-feature joint sparse reconstruction. The observation model based on sparse reconstruction automatically focuses on the visible parts of an occluded object by using the information in the trivial templates. The multi-object tracking is simplified into a joint Bayesian inference. The experimental results show the superiority of our algorithm over several state-of-the-art tracking algorithms.

  19. Nonstationary EO/IR Clutter Suppression and Dim Object Tracking

    DTIC Science & Technology

    2010-01-01

    Brown, A., and Brown, J., Enhanced Algorithms for EO /IR Electronic Stabilization, Clutter Suppression, and Track - Before - Detect for Multiple Low...estimation-suppression and nonlinear filtering-based multiple-object track - before - detect . These algorithms are suitable for integration into...In such cases, it is imperative to develop efficient real or near-real time tracking before detection methods. This paper continues the work started

  20. Research on target tracking algorithm based on spatio-temporal context

    NASA Astrophysics Data System (ADS)

    Li, Baiping; Xu, Sanmei; Kang, Hongjuan

    2017-07-01

    In this paper, a novel target tracking algorithm based on spatio-temporal context is proposed. During the tracking process, the camera shaking or occlusion may lead to the failure of tracking. The proposed algorithm can solve this problem effectively. The method use the spatio-temporal context algorithm as the main research object. We get the first frame's target region via mouse. Then the spatio-temporal context algorithm is used to get the tracking targets of the sequence of frames. During this process a similarity measure function based on perceptual hash algorithm is used to judge the tracking results. If tracking failed, reset the initial value of Mean Shift algorithm for the subsequent target tracking. Experiment results show that the proposed algorithm can achieve real-time and stable tracking when camera shaking or target occlusion.

  1. A novel vehicle tracking algorithm based on mean shift and active contour model in complex environment

    NASA Astrophysics Data System (ADS)

    Cai, Lei; Wang, Lin; Li, Bo; Zhang, Libao; Lv, Wen

    2017-06-01

    Vehicle tracking technology is currently one of the most active research topics in machine vision. It is an important part of intelligent transportation system. However, in theory and technology, it still faces many challenges including real-time and robustness. In video surveillance, the targets need to be detected in real-time and to be calculated accurate position for judging the motives. The contents of video sequence images and the target motion are complex, so the objects can't be expressed by a unified mathematical model. Object-tracking is defined as locating the interest moving target in each frame of a piece of video. The current tracking technology can achieve reliable results in simple environment over the target with easy identified characteristics. However, in more complex environment, it is easy to lose the target because of the mismatch between the target appearance and its dynamic model. Moreover, the target usually has a complex shape, but the tradition target tracking algorithm usually represents the tracking results by simple geometric such as rectangle or circle, so it cannot provide accurate information for the subsequent upper application. This paper combines a traditional object-tracking technology, Mean-Shift algorithm, with a kind of image segmentation algorithm, Active-Contour model, to get the outlines of objects while the tracking process and automatically handle topology changes. Meanwhile, the outline information is used to aid tracking algorithm to improve it.

  2. Real-time reliability measure-driven multi-hypothesis tracking using 2D and 3D features

    NASA Astrophysics Data System (ADS)

    Zúñiga, Marcos D.; Brémond, François; Thonnat, Monique

    2011-12-01

    We propose a new multi-target tracking approach, which is able to reliably track multiple objects even with poor segmentation results due to noisy environments. The approach takes advantage of a new dual object model combining 2D and 3D features through reliability measures. In order to obtain these 3D features, a new classifier associates an object class label to each moving region (e.g. person, vehicle), a parallelepiped model and visual reliability measures of its attributes. These reliability measures allow to properly weight the contribution of noisy, erroneous or false data in order to better maintain the integrity of the object dynamics model. Then, a new multi-target tracking algorithm uses these object descriptions to generate tracking hypotheses about the objects moving in the scene. This tracking approach is able to manage many-to-many visual target correspondences. For achieving this characteristic, the algorithm takes advantage of 3D models for merging dissociated visual evidence (moving regions) potentially corresponding to the same real object, according to previously obtained information. The tracking approach has been validated using video surveillance benchmarks publicly accessible. The obtained performance is real time and the results are competitive compared with other tracking algorithms, with minimal (or null) reconfiguration effort between different videos.

  3. Object tracking using plenoptic image sequences

    NASA Astrophysics Data System (ADS)

    Kim, Jae Woo; Bae, Seong-Joon; Park, Seongjin; Kim, Do Hyung

    2017-05-01

    Object tracking is a very important problem in computer vision research. Among the difficulties of object tracking, partial occlusion problem is one of the most serious and challenging problems. To address the problem, we proposed novel approaches to object tracking on plenoptic image sequences. Our approaches take advantage of the refocusing capability that plenoptic images provide. Our approaches input the sequences of focal stacks constructed from plenoptic image sequences. The proposed image selection algorithms select the sequence of optimal images that can maximize the tracking accuracy from the sequence of focal stacks. Focus measure approach and confidence measure approach were proposed for image selection and both of the approaches were validated by the experiments using thirteen plenoptic image sequences that include heavily occluded target objects. The experimental results showed that the proposed approaches were satisfactory comparing to the conventional 2D object tracking algorithms.

  4. Large scale tracking algorithms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hansen, Ross L.; Love, Joshua Alan; Melgaard, David Kennett

    2015-01-01

    Low signal-to-noise data processing algorithms for improved detection, tracking, discrimination and situational threat assessment are a key research challenge. As sensor technologies progress, the number of pixels will increase signi cantly. This will result in increased resolution, which could improve object discrimination, but unfortunately, will also result in a significant increase in the number of potential targets to track. Many tracking techniques, like multi-hypothesis trackers, suffer from a combinatorial explosion as the number of potential targets increase. As the resolution increases, the phenomenology applied towards detection algorithms also changes. For low resolution sensors, "blob" tracking is the norm. For highermore » resolution data, additional information may be employed in the detection and classfication steps. The most challenging scenarios are those where the targets cannot be fully resolved, yet must be tracked and distinguished for neighboring closely spaced objects. Tracking vehicles in an urban environment is an example of such a challenging scenario. This report evaluates several potential tracking algorithms for large-scale tracking in an urban environment.« less

  5. A mathematical model for computer image tracking.

    PubMed

    Legters, G R; Young, T Y

    1982-06-01

    A mathematical model using an operator formulation for a moving object in a sequence of images is presented. Time-varying translation and rotation operators are derived to describe the motion. A variational estimation algorithm is developed to track the dynamic parameters of the operators. The occlusion problem is alleviated by using a predictive Kalman filter to keep the tracking on course during severe occlusion. The tracking algorithm (variational estimation in conjunction with Kalman filter) is implemented to track moving objects with occasional occlusion in computer-simulated binary images.

  6. Design and implementation of a vision-based hovering and feature tracking algorithm for a quadrotor

    NASA Astrophysics Data System (ADS)

    Lee, Y. H.; Chahl, J. S.

    2016-10-01

    This paper demonstrates an approach to the vision-based control of the unmanned quadrotors for hover and object tracking. The algorithms used the Speed Up Robust Features (SURF) algorithm to detect objects. The pose of the object in the image was then calculated in order to pass the pose information to the flight controller. Finally, the flight controller steered the quadrotor to approach the object based on the calculated pose data. The above processes was run using standard onboard resources found in the 3DR Solo quadrotor in an embedded computing environment. The obtained results showed that the algorithm behaved well during its missions, tracking and hovering, although there were significant latencies due to low CPU performance of the onboard image processing system.

  7. Model of ballistic targets' dynamics used for trajectory tracking algorithms

    NASA Astrophysics Data System (ADS)

    Okoń-FÄ fara, Marta; Kawalec, Adam; Witczak, Andrzej

    2017-04-01

    There are known only few ballistic object tracking algorithms. To develop such algorithms and to its further testing, it is necessary to implement possibly simple and reliable objects' dynamics model. The article presents the dynamics' model of a tactical ballistic missile (TBM) including the three stages of flight: the boost stage and two passive stages - the ascending one and the descending one. Additionally, the procedure of transformation from the local coordinate system to the polar-radar oriented and the global is presented. The prepared theoretical data may be used to determine the tracking algorithm parameters and to its further verification.

  8. Tracks detection from high-orbit space objects

    NASA Astrophysics Data System (ADS)

    Shumilov, Yu. P.; Vygon, V. G.; Grishin, E. A.; Konoplev, A. O.; Semichev, O. P.; Shargorodskii, V. D.

    2017-05-01

    The paper presents studies results of a complex algorithm for the detection of highly orbital space objects. Before the implementation of the algorithm, a series of frames with weak tracks of space objects, which can be discrete, is recorded. The algorithm includes pre-processing, classical for astronomy, consistent filtering of each frame and its threshold processing, shear transformation, median filtering of the transformed series of frames, repeated threshold processing and detection decision making. Modeling of space objects weak tracks on of the night starry sky real frames obtained in the regime of a stationary telescope was carried out. It is shown that the permeability of an optoelectronic device has increased by almost 2m.

  9. Long-term scale adaptive tracking with kernel correlation filters

    NASA Astrophysics Data System (ADS)

    Wang, Yueren; Zhang, Hong; Zhang, Lei; Yang, Yifan; Sun, Mingui

    2018-04-01

    Object tracking in video sequences has broad applications in both military and civilian domains. However, as the length of input video sequence increases, a number of problems arise, such as severe object occlusion, object appearance variation, and object out-of-view (some portion or the entire object leaves the image space). To deal with these problems and identify the object being tracked from cluttered background, we present a robust appearance model using Speeded Up Robust Features (SURF) and advanced integrated features consisting of the Felzenszwalb's Histogram of Oriented Gradients (FHOG) and color attributes. Since re-detection is essential in long-term tracking, we develop an effective object re-detection strategy based on moving area detection. We employ the popular kernel correlation filters in our algorithm design, which facilitates high-speed object tracking. Our evaluation using the CVPR2013 Object Tracking Benchmark (OTB2013) dataset illustrates that the proposed algorithm outperforms reference state-of-the-art trackers in various challenging scenarios.

  10. Determination of feature generation methods for PTZ camera object tracking

    NASA Astrophysics Data System (ADS)

    Doyle, Daniel D.; Black, Jonathan T.

    2012-06-01

    Object detection and tracking using computer vision (CV) techniques have been widely applied to sensor fusion applications. Many papers continue to be written that speed up performance and increase learning of artificially intelligent systems through improved algorithms, workload distribution, and information fusion. Military application of real-time tracking systems is becoming more and more complex with an ever increasing need of fusion and CV techniques to actively track and control dynamic systems. Examples include the use of metrology systems for tracking and measuring micro air vehicles (MAVs) and autonomous navigation systems for controlling MAVs. This paper seeks to contribute to the determination of select tracking algorithms that best track a moving object using a pan/tilt/zoom (PTZ) camera applicable to both of the examples presented. The select feature generation algorithms compared in this paper are the trained Scale-Invariant Feature Transform (SIFT) and Speeded Up Robust Features (SURF), the Mixture of Gaussians (MoG) background subtraction method, the Lucas- Kanade optical flow method (2000) and the Farneback optical flow method (2003). The matching algorithm used in this paper for the trained feature generation algorithms is the Fast Library for Approximate Nearest Neighbors (FLANN). The BSD licensed OpenCV library is used extensively to demonstrate the viability of each algorithm and its performance. Initial testing is performed on a sequence of images using a stationary camera. Further testing is performed on a sequence of images such that the PTZ camera is moving in order to capture the moving object. Comparisons are made based upon accuracy, speed and memory.

  11. Adaptive learning compressive tracking based on Markov location prediction

    NASA Astrophysics Data System (ADS)

    Zhou, Xingyu; Fu, Dongmei; Yang, Tao; Shi, Yanan

    2017-03-01

    Object tracking is an interdisciplinary research topic in image processing, pattern recognition, and computer vision which has theoretical and practical application value in video surveillance, virtual reality, and automatic navigation. Compressive tracking (CT) has many advantages, such as efficiency and accuracy. However, when there are object occlusion, abrupt motion and blur, similar objects, and scale changing, the CT has the problem of tracking drift. We propose the Markov object location prediction to get the initial position of the object. Then CT is used to locate the object accurately, and the classifier parameter adaptive updating strategy is given based on the confidence map. At the same time according to the object location, extract the scale features, which is able to deal with object scale variations effectively. Experimental results show that the proposed algorithm has better tracking accuracy and robustness than current advanced algorithms and achieves real-time performance.

  12. Object-oriented feature-tracking algorithms for SAR images of the marginal ice zone

    NASA Technical Reports Server (NTRS)

    Daida, Jason; Samadani, Ramin; Vesecky, John F.

    1990-01-01

    An unsupervised method that chooses and applies the most appropriate tracking algorithm from among different sea-ice tracking algorithms is reported. In contrast to current unsupervised methods, this method chooses and applies an algorithm by partially examining a sequential image pair to draw inferences about what was examined. Based on these inferences the reported method subsequently chooses which algorithm to apply to specific areas of the image pair where that algorithm should work best.

  13. An algorithm of adaptive scale object tracking in occlusion

    NASA Astrophysics Data System (ADS)

    Zhao, Congmei

    2017-05-01

    Although the correlation filter-based trackers achieve the competitive results both on accuracy and robustness, there are still some problems in handling scale variations, object occlusion, fast motions and so on. In this paper, a multi-scale kernel correlation filter algorithm based on random fern detector was proposed. The tracking task was decomposed into the target scale estimation and the translation estimation. At the same time, the Color Names features and HOG features were fused in response level to further improve the overall tracking performance of the algorithm. In addition, an online random fern classifier was trained to re-obtain the target after the target was lost. By comparing with some algorithms such as KCF, DSST, TLD, MIL, CT and CSK, experimental results show that the proposed approach could estimate the object state accurately and handle the object occlusion effectively.

  14. Human-like object tracking and gaze estimation with PKD android

    PubMed Central

    Wijayasinghe, Indika B.; Miller, Haylie L.; Das, Sumit K; Bugnariu, Nicoleta L.; Popa, Dan O.

    2018-01-01

    As the use of robots increases for tasks that require human-robot interactions, it is vital that robots exhibit and understand human-like cues for effective communication. In this paper, we describe the implementation of object tracking capability on Philip K. Dick (PKD) android and a gaze tracking algorithm, both of which further robot capabilities with regard to human communication. PKD's ability to track objects with human-like head postures is achieved with visual feedback from a Kinect system and an eye camera. The goal of object tracking with human-like gestures is twofold : to facilitate better human-robot interactions and to enable PKD as a human gaze emulator for future studies. The gaze tracking system employs a mobile eye tracking system (ETG; SensoMotoric Instruments) and a motion capture system (Cortex; Motion Analysis Corp.) for tracking the head orientations. Objects to be tracked are displayed by a virtual reality system, the Computer Assisted Rehabilitation Environment (CAREN; MotekForce Link). The gaze tracking algorithm converts eye tracking data and head orientations to gaze information facilitating two objectives: to evaluate the performance of the object tracking system for PKD and to use the gaze information to predict the intentions of the user, enabling the robot to understand physical cues by humans. PMID:29416193

  15. Human-like object tracking and gaze estimation with PKD android

    NASA Astrophysics Data System (ADS)

    Wijayasinghe, Indika B.; Miller, Haylie L.; Das, Sumit K.; Bugnariu, Nicoleta L.; Popa, Dan O.

    2016-05-01

    As the use of robots increases for tasks that require human-robot interactions, it is vital that robots exhibit and understand human-like cues for effective communication. In this paper, we describe the implementation of object tracking capability on Philip K. Dick (PKD) android and a gaze tracking algorithm, both of which further robot capabilities with regard to human communication. PKD's ability to track objects with human-like head postures is achieved with visual feedback from a Kinect system and an eye camera. The goal of object tracking with human-like gestures is twofold: to facilitate better human-robot interactions and to enable PKD as a human gaze emulator for future studies. The gaze tracking system employs a mobile eye tracking system (ETG; SensoMotoric Instruments) and a motion capture system (Cortex; Motion Analysis Corp.) for tracking the head orientations. Objects to be tracked are displayed by a virtual reality system, the Computer Assisted Rehabilitation Environment (CAREN; MotekForce Link). The gaze tracking algorithm converts eye tracking data and head orientations to gaze information facilitating two objectives: to evaluate the performance of the object tracking system for PKD and to use the gaze information to predict the intentions of the user, enabling the robot to understand physical cues by humans.

  16. Research on infrared small-target tracking technology under complex background

    NASA Astrophysics Data System (ADS)

    Liu, Lei; Wang, Xin; Chen, Jilu; Pan, Tao

    2012-10-01

    In this paper, some basic principles and the implementing flow charts of a series of algorithms for target tracking are described. On the foundation of above works, a moving target tracking software base on the OpenCV is developed by the software developing platform MFC. Three kinds of tracking algorithms are integrated in this software. These two tracking algorithms are Kalman Filter tracking method and Camshift tracking method. In order to explain the software clearly, the framework and the function are described in this paper. At last, the implementing processes and results are analyzed, and those algorithms for tracking targets are evaluated from the two aspects of subjective and objective. This paper is very significant in the application of the infrared target tracking technology.

  17. Semi-Supervised Tensor-Based Graph Embedding Learning and Its Application to Visual Discriminant Tracking.

    PubMed

    Hu, Weiming; Gao, Jin; Xing, Junliang; Zhang, Chao; Maybank, Stephen

    2017-01-01

    An appearance model adaptable to changes in object appearance is critical in visual object tracking. In this paper, we treat an image patch as a two-order tensor which preserves the original image structure. We design two graphs for characterizing the intrinsic local geometrical structure of the tensor samples of the object and the background. Graph embedding is used to reduce the dimensions of the tensors while preserving the structure of the graphs. Then, a discriminant embedding space is constructed. We prove two propositions for finding the transformation matrices which are used to map the original tensor samples to the tensor-based graph embedding space. In order to encode more discriminant information in the embedding space, we propose a transfer-learning- based semi-supervised strategy to iteratively adjust the embedding space into which discriminative information obtained from earlier times is transferred. We apply the proposed semi-supervised tensor-based graph embedding learning algorithm to visual tracking. The new tracking algorithm captures an object's appearance characteristics during tracking and uses a particle filter to estimate the optimal object state. Experimental results on the CVPR 2013 benchmark dataset demonstrate the effectiveness of the proposed tracking algorithm.

  18. An Objective Comparison of Cell Tracking Algorithms

    PubMed Central

    Ulman, Vladimír; Maška, Martin; Magnusson, Klas E. G.; Ronneberger, Olaf; Haubold, Carsten; Harder, Nathalie; Matula, Pavel; Matula, Petr; Svoboda, David; Radojevic, Miroslav; Smal, Ihor; Rohr, Karl; Jaldén, Joakim; Blau, Helen M.; Dzyubachyk, Oleh; Lelieveldt, Boudewijn; Xiao, Pengdong; Li, Yuexiang; Cho, Siu-Yeung; Dufour, Alexandre C.; Olivo-Marin, Jean-Christophe; Reyes-Aldasoro, Constantino C.; Solis-Lemus, Jose A.; Bensch, Robert; Brox, Thomas; Stegmaier, Johannes; Mikut, Ralf; Wolf, Steffen; Hamprecht, Fred. A.; Esteves, Tiago; Quelhas, Pedro; Demirel, Ömer; Malmström, Lars; Jug, Florian; Tomancak, Pavel; Meijering, Erik; Muñoz-Barrutia, Arrate; Kozubek, Michal; Ortiz-de-Solorzano, Carlos

    2017-01-01

    We present a combined report on the results of three editions of the Cell Tracking Challenge, an ongoing initiative aimed at promoting the development and objective evaluation of cell tracking algorithms. With twenty-one participating algorithms and a data repository consisting of thirteen datasets of various microscopy modalities, the challenge displays today’s state of the art in the field. We analyze the results using performance measures for segmentation and tracking that rank all participating methods. We also analyze the performance of all algorithms in terms of biological measures and their practical usability. Even though some methods score high in all technical aspects, not a single one obtains fully correct solutions. We show that methods that either take prior information into account using learning strategies or analyze cells in a global spatio-temporal video context perform better than other methods under the segmentation and tracking scenarios included in the challenge. PMID:29083403

  19. An objective comparison of cell-tracking algorithms.

    PubMed

    Ulman, Vladimír; Maška, Martin; Magnusson, Klas E G; Ronneberger, Olaf; Haubold, Carsten; Harder, Nathalie; Matula, Pavel; Matula, Petr; Svoboda, David; Radojevic, Miroslav; Smal, Ihor; Rohr, Karl; Jaldén, Joakim; Blau, Helen M; Dzyubachyk, Oleh; Lelieveldt, Boudewijn; Xiao, Pengdong; Li, Yuexiang; Cho, Siu-Yeung; Dufour, Alexandre C; Olivo-Marin, Jean-Christophe; Reyes-Aldasoro, Constantino C; Solis-Lemus, Jose A; Bensch, Robert; Brox, Thomas; Stegmaier, Johannes; Mikut, Ralf; Wolf, Steffen; Hamprecht, Fred A; Esteves, Tiago; Quelhas, Pedro; Demirel, Ömer; Malmström, Lars; Jug, Florian; Tomancak, Pavel; Meijering, Erik; Muñoz-Barrutia, Arrate; Kozubek, Michal; Ortiz-de-Solorzano, Carlos

    2017-12-01

    We present a combined report on the results of three editions of the Cell Tracking Challenge, an ongoing initiative aimed at promoting the development and objective evaluation of cell segmentation and tracking algorithms. With 21 participating algorithms and a data repository consisting of 13 data sets from various microscopy modalities, the challenge displays today's state-of-the-art methodology in the field. We analyzed the challenge results using performance measures for segmentation and tracking that rank all participating methods. We also analyzed the performance of all of the algorithms in terms of biological measures and practical usability. Although some methods scored high in all technical aspects, none obtained fully correct solutions. We found that methods that either take prior information into account using learning strategies or analyze cells in a global spatiotemporal video context performed better than other methods under the segmentation and tracking scenarios included in the challenge.

  20. Color Feature-Based Object Tracking through Particle Swarm Optimization with Improved Inertia Weight

    PubMed Central

    Guo, Siqiu; Zhang, Tao; Song, Yulong

    2018-01-01

    This paper presents a particle swarm tracking algorithm with improved inertia weight based on color features. The weighted color histogram is used as the target feature to reduce the contribution of target edge pixels in the target feature, which makes the algorithm insensitive to the target non-rigid deformation, scale variation, and rotation. Meanwhile, the influence of partial obstruction on the description of target features is reduced. The particle swarm optimization algorithm can complete the multi-peak search, which can cope well with the object occlusion tracking problem. This means that the target is located precisely where the similarity function appears multi-peak. When the particle swarm optimization algorithm is applied to the object tracking, the inertia weight adjustment mechanism has some limitations. This paper presents an improved method. The concept of particle maturity is introduced to improve the inertia weight adjustment mechanism, which could adjust the inertia weight in time according to the different states of each particle in each generation. Experimental results show that our algorithm achieves state-of-the-art performance in a wide range of scenarios. PMID:29690610

  1. Color Feature-Based Object Tracking through Particle Swarm Optimization with Improved Inertia Weight.

    PubMed

    Guo, Siqiu; Zhang, Tao; Song, Yulong; Qian, Feng

    2018-04-23

    This paper presents a particle swarm tracking algorithm with improved inertia weight based on color features. The weighted color histogram is used as the target feature to reduce the contribution of target edge pixels in the target feature, which makes the algorithm insensitive to the target non-rigid deformation, scale variation, and rotation. Meanwhile, the influence of partial obstruction on the description of target features is reduced. The particle swarm optimization algorithm can complete the multi-peak search, which can cope well with the object occlusion tracking problem. This means that the target is located precisely where the similarity function appears multi-peak. When the particle swarm optimization algorithm is applied to the object tracking, the inertia weight adjustment mechanism has some limitations. This paper presents an improved method. The concept of particle maturity is introduced to improve the inertia weight adjustment mechanism, which could adjust the inertia weight in time according to the different states of each particle in each generation. Experimental results show that our algorithm achieves state-of-the-art performance in a wide range of scenarios.

  2. Tracker Toolkit

    NASA Technical Reports Server (NTRS)

    Lewis, Steven J.; Palacios, David M.

    2013-01-01

    This software can track multiple moving objects within a video stream simultaneously, use visual features to aid in the tracking, and initiate tracks based on object detection in a subregion. A simple programmatic interface allows plugging into larger image chain modeling suites. It extracts unique visual features for aid in tracking and later analysis, and includes sub-functionality for extracting visual features about an object identified within an image frame. Tracker Toolkit utilizes a feature extraction algorithm to tag each object with metadata features about its size, shape, color, and movement. Its functionality is independent of the scale of objects within a scene. The only assumption made on the tracked objects is that they move. There are no constraints on size within the scene, shape, or type of movement. The Tracker Toolkit is also capable of following an arbitrary number of objects in the same scene, identifying and propagating the track of each object from frame to frame. Target objects may be specified for tracking beforehand, or may be dynamically discovered within a tripwire region. Initialization of the Tracker Toolkit algorithm includes two steps: Initializing the data structures for tracked target objects, including targets preselected for tracking; and initializing the tripwire region. If no tripwire region is desired, this step is skipped. The tripwire region is an area within the frames that is always checked for new objects, and all new objects discovered within the region will be tracked until lost (by leaving the frame, stopping, or blending in to the background).

  3. Object tracking with adaptive HOG detector and adaptive Rao-Blackwellised particle filter

    NASA Astrophysics Data System (ADS)

    Rosa, Stefano; Paleari, Marco; Ariano, Paolo; Bona, Basilio

    2012-01-01

    Scenarios for a manned mission to the Moon or Mars call for astronaut teams to be accompanied by semiautonomous robots. A prerequisite for human-robot interaction is the capability of successfully tracking humans and objects in the environment. In this paper we present a system for real-time visual object tracking in 2D images for mobile robotic systems. The proposed algorithm is able to specialize to individual objects and to adapt to substantial changes in illumination and object appearance during tracking. The algorithm is composed by two main blocks: a detector based on Histogram of Oriented Gradient (HOG) descriptors and linear Support Vector Machines (SVM), and a tracker which is implemented by an adaptive Rao-Blackwellised particle filter (RBPF). The SVM is re-trained online on new samples taken from previous predicted positions. We use the effective sample size to decide when the classifier needs to be re-trained. Position hypotheses for the tracked object are the result of a clustering procedure applied on the set of particles. The algorithm has been tested on challenging video sequences presenting strong changes in object appearance, illumination, and occlusion. Experimental tests show that the presented method is able to achieve near real-time performances with a precision of about 7 pixels on standard video sequences of dimensions 320 × 240.

  4. A-Track: Detecting Moving Objects in FITS images

    NASA Astrophysics Data System (ADS)

    Atay, T.; Kaplan, M.; Kilic, Y.; Karapinar, N.

    2017-04-01

    A-Track is a fast, open-source, cross-platform pipeline for detecting moving objects (asteroids and comets) in sequential telescope images in FITS format. The moving objects are detected using a modified line detection algorithm.

  5. Automatic Tracking Algorithm in Coaxial Near-Infrared Laser Ablation Endoscope for Fetus Surgery

    NASA Astrophysics Data System (ADS)

    Hu, Yan; Yamanaka, Noriaki; Masamune, Ken

    2014-07-01

    This article reports a stable vessel object tracking method for the treatment of twin-to-twin transfusion syndrome based on our previous 2 DOF endoscope. During the treatment of laser coagulation, it is necessary to focus on the exact position of the target object, however it moves by the mother's respiratory motion and still remains a challenge to obtain and track the position precisely. In this article, an algorithm which uses features from accelerated segment test (FAST) to extract the features and optical flow as the object tracking method, is proposed to deal with above problem. Further, we experimentally simulate the movement due to the mother's respiration, and the results of position errors and similarity verify the effectiveness of the proposed tracking algorithm for laser ablation endoscopy in-vitro and under water considering two influential factors. At average, the errors are about 10 pixels and the similarity over 0.92 are obtained in the experiments.

  6. Detecting multiple moving objects in crowded environments with coherent motion regions

    DOEpatents

    Cheriyadat, Anil M.; Radke, Richard J.

    2013-06-11

    Coherent motion regions extend in time as well as space, enforcing consistency in detected objects over long time periods and making the algorithm robust to noisy or short point tracks. As a result of enforcing the constraint that selected coherent motion regions contain disjoint sets of tracks defined in a three-dimensional space including a time dimension. An algorithm operates directly on raw, unconditioned low-level feature point tracks, and minimizes a global measure of the coherent motion regions. At least one discrete moving object is identified in a time series of video images based on the trajectory similarity factors, which is a measure of a maximum distance between a pair of feature point tracks.

  7. Vision-based measurement for rotational speed by improving Lucas-Kanade template tracking algorithm.

    PubMed

    Guo, Jie; Zhu, Chang'an; Lu, Siliang; Zhang, Dashan; Zhang, Chunyu

    2016-09-01

    Rotational angle and speed are important parameters for condition monitoring and fault diagnosis of rotating machineries, and their measurement is useful in precision machining and early warning of faults. In this study, a novel vision-based measurement algorithm is proposed to complete this task. A high-speed camera is first used to capture the video of the rotational object. To extract the rotational angle, the template-based Lucas-Kanade algorithm is introduced to complete motion tracking by aligning the template image in the video sequence. Given the special case of nonplanar surface of the cylinder object, a nonlinear transformation is designed for modeling the rotation tracking. In spite of the unconventional and complex form, the transformation can realize angle extraction concisely with only one parameter. A simulation is then conducted to verify the tracking effect, and a practical tracking strategy is further proposed to track consecutively the video sequence. Based on the proposed algorithm, instantaneous rotational speed (IRS) can be measured accurately and efficiently. Finally, the effectiveness of the proposed algorithm is verified on a brushless direct current motor test rig through the comparison with results obtained by the microphone. Experimental results demonstrate that the proposed algorithm can extract accurately rotational angles and can measure IRS with the advantage of noncontact and effectiveness.

  8. An open source framework for tracking and state estimation ('Stone Soup')

    NASA Astrophysics Data System (ADS)

    Thomas, Paul A.; Barr, Jordi; Balaji, Bhashyam; White, Kruger

    2017-05-01

    The ability to detect and unambiguously follow all moving entities in a state-space is important in multiple domains both in defence (e.g. air surveillance, maritime situational awareness, ground moving target indication) and the civil sphere (e.g. astronomy, biology, epidemiology, dispersion modelling). However, tracking and state estimation researchers and practitioners have difficulties recreating state-of-the-art algorithms in order to benchmark their own work. Furthermore, system developers need to assess which algorithms meet operational requirements objectively and exhaustively rather than intuitively or driven by personal favourites. We have therefore commenced the development of a collaborative initiative to create an open source framework for production, demonstration and evaluation of Tracking and State Estimation algorithms. The initiative will develop a (MIT-licensed) software platform for researchers and practitioners to test, verify and benchmark a variety of multi-sensor and multi-object state estimation algorithms. The initiative is supported by four defence laboratories, who will contribute to the development effort for the framework. The tracking and state estimation community will derive significant benefits from this work, including: access to repositories of verified and validated tracking and state estimation algorithms, a framework for the evaluation of multiple algorithms, standardisation of interfaces and access to challenging data sets. Keywords: Tracking,

  9. Locator-Checker-Scaler Object Tracking Using Spatially Ordered and Weighted Patch Descriptor.

    PubMed

    Kim, Han-Ul; Kim, Chang-Su

    2017-08-01

    In this paper, we propose a simple yet effective object descriptor and a novel tracking algorithm to track a target object accurately. For the object description, we divide the bounding box of a target object into multiple patches and describe them with color and gradient histograms. Then, we determine the foreground weight of each patch to alleviate the impacts of background information in the bounding box. To this end, we perform random walk with restart (RWR) simulation. We then concatenate the weighted patch descriptors to yield the spatially ordered and weighted patch (SOWP) descriptor. For the object tracking, we incorporate the proposed SOWP descriptor into a novel tracking algorithm, which has three components: locator, checker, and scaler (LCS). The locator and the scaler estimate the center location and the size of a target, respectively. The checker determines whether it is safe to adjust the target scale in a current frame. These three components cooperate with one another to achieve robust tracking. Experimental results demonstrate that the proposed LCS tracker achieves excellent performance on recent benchmarks.

  10. A system for learning statistical motion patterns.

    PubMed

    Hu, Weiming; Xiao, Xuejuan; Fu, Zhouyu; Xie, Dan; Tan, Tieniu; Maybank, Steve

    2006-09-01

    Analysis of motion patterns is an effective approach for anomaly detection and behavior prediction. Current approaches for the analysis of motion patterns depend on known scenes, where objects move in predefined ways. It is highly desirable to automatically construct object motion patterns which reflect the knowledge of the scene. In this paper, we present a system for automatically learning motion patterns for anomaly detection and behavior prediction based on a proposed algorithm for robustly tracking multiple objects. In the tracking algorithm, foreground pixels are clustered using a fast accurate fuzzy K-means algorithm. Growing and prediction of the cluster centroids of foreground pixels ensure that each cluster centroid is associated with a moving object in the scene. In the algorithm for learning motion patterns, trajectories are clustered hierarchically using spatial and temporal information and then each motion pattern is represented with a chain of Gaussian distributions. Based on the learned statistical motion patterns, statistical methods are used to detect anomalies and predict behaviors. Our system is tested using image sequences acquired, respectively, from a crowded real traffic scene and a model traffic scene. Experimental results show the robustness of the tracking algorithm, the efficiency of the algorithm for learning motion patterns, and the encouraging performance of algorithms for anomaly detection and behavior prediction.

  11. On the Impact of Localization and Density Control Algorithms in Target Tracking Applications for Wireless Sensor Networks

    PubMed Central

    Campos, Andre N.; Souza, Efren L.; Nakamura, Fabiola G.; Nakamura, Eduardo F.; Rodrigues, Joel J. P. C.

    2012-01-01

    Target tracking is an important application of wireless sensor networks. The networks' ability to locate and track an object is directed linked to the nodes' ability to locate themselves. Consequently, localization systems are essential for target tracking applications. In addition, sensor networks are often deployed in remote or hostile environments. Therefore, density control algorithms are used to increase network lifetime while maintaining its sensing capabilities. In this work, we analyze the impact of localization algorithms (RPE and DPE) and density control algorithms (GAF, A3 and OGDC) on target tracking applications. We adapt the density control algorithms to address the k-coverage problem. In addition, we analyze the impact of network density, residual integration with density control, and k-coverage on both target tracking accuracy and network lifetime. Our results show that DPE is a better choice for target tracking applications than RPE. Moreover, among the evaluated density control algorithms, OGDC is the best option among the three. Although the choice of the density control algorithm has little impact on the tracking precision, OGDC outperforms GAF and A3 in terms of tracking time. PMID:22969329

  12. Accurate object tracking system by integrating texture and depth cues

    NASA Astrophysics Data System (ADS)

    Chen, Ju-Chin; Lin, Yu-Hang

    2016-03-01

    A robust object tracking system that is invariant to object appearance variations and background clutter is proposed. Multiple instance learning with a boosting algorithm is applied to select discriminant texture information between the object and background data. Additionally, depth information, which is important to distinguish the object from a complicated background, is integrated. We propose two depth-based models that can compensate texture information to cope with both appearance variants and background clutter. Moreover, in order to reduce the risk of drifting problem increased for the textureless depth templates, an update mechanism is proposed to select more precise tracking results to avoid incorrect model updates. In the experiments, the robustness of the proposed system is evaluated and quantitative results are provided for performance analysis. Experimental results show that the proposed system can provide the best success rate and has more accurate tracking results than other well-known algorithms.

  13. Decentralized cooperative TOA/AOA target tracking for hierarchical wireless sensor networks.

    PubMed

    Chen, Ying-Chih; Wen, Chih-Yu

    2012-11-08

    This paper proposes a distributed method for cooperative target tracking in hierarchical wireless sensor networks. The concept of leader-based information processing is conducted to achieve object positioning, considering a cluster-based network topology. Random timers and local information are applied to adaptively select a sub-cluster for the localization task. The proposed energy-efficient tracking algorithm allows each sub-cluster member to locally estimate the target position with a Bayesian filtering framework and a neural networking model, and further performs estimation fusion in the leader node with the covariance intersection algorithm. This paper evaluates the merits and trade-offs of the protocol design towards developing more efficient and practical algorithms for object position estimation.

  14. Lightning Jump Algorithm and Relation to Thunderstorm Cell Tracking, GLM Proxy and other Meteorological Measurements

    NASA Technical Reports Server (NTRS)

    Schultz, Christopher J.; Carey, Larry; Cecil, Dan; Bateman, Monte; Stano, Geoffrey; Goodman, Steve

    2012-01-01

    Objective of project is to refine, adapt and demonstrate the Lightning Jump Algorithm (LJA) for transition to GOES -R GLM (Geostationary Lightning Mapper) readiness and to establish a path to operations Ongoing work . reducing risk in GLM lightning proxy, cell tracking, LJA algorithm automation, and data fusion (e.g., radar + lightning).

  15. Associating optical measurements of MEO and GEO objects using Population-Based Meta-Heuristic methods

    NASA Astrophysics Data System (ADS)

    Zittersteijn, M.; Vananti, A.; Schildknecht, T.; Dolado Perez, J. C.; Martinot, V.

    2016-11-01

    Currently several thousands of objects are being tracked in the MEO and GEO regions through optical means. The problem faced in this framework is that of Multiple Target Tracking (MTT). The MTT problem quickly becomes an NP-hard combinatorial optimization problem. This means that the effort required to solve the MTT problem increases exponentially with the number of tracked objects. In an attempt to find an approximate solution of sufficient quality, several Population-Based Meta-Heuristic (PBMH) algorithms are implemented and tested on simulated optical measurements. These first results show that one of the tested algorithms, namely the Elitist Genetic Algorithm (EGA), consistently displays the desired behavior of finding good approximate solutions before reaching the optimum. The results further suggest that the algorithm possesses a polynomial time complexity, as the computation times are consistent with a polynomial model. With the advent of improved sensors and a heightened interest in the problem of space debris, it is expected that the number of tracked objects will grow by an order of magnitude in the near future. This research aims to provide a method that can treat the association and orbit determination problems simultaneously, and is able to efficiently process large data sets with minimal manual intervention.

  16. Using LabView for real-time monitoring and tracking of multiple biological objects

    NASA Astrophysics Data System (ADS)

    Nikolskyy, Aleksandr I.; Krasilenko, Vladimir G.; Bilynsky, Yosyp Y.; Starovier, Anzhelika

    2017-04-01

    Today real-time studying and tracking of movement dynamics of various biological objects is important and widely researched. Features of objects, conditions of their visualization and model parameters strongly influence the choice of optimal methods and algorithms for a specific task. Therefore, to automate the processes of adaptation of recognition tracking algorithms, several Labview project trackers are considered in the article. Projects allow changing templates for training and retraining the system quickly. They adapt to the speed of objects and statistical characteristics of noise in images. New functions of comparison of images or their features, descriptors and pre-processing methods will be discussed. The experiments carried out to test the trackers on real video files will be presented and analyzed.

  17. Online Hierarchical Sparse Representation of Multifeature for Robust Object Tracking

    PubMed Central

    Qu, Shiru

    2016-01-01

    Object tracking based on sparse representation has given promising tracking results in recent years. However, the trackers under the framework of sparse representation always overemphasize the sparse representation and ignore the correlation of visual information. In addition, the sparse coding methods only encode the local region independently and ignore the spatial neighborhood information of the image. In this paper, we propose a robust tracking algorithm. Firstly, multiple complementary features are used to describe the object appearance; the appearance model of the tracked target is modeled by instantaneous and stable appearance features simultaneously. A two-stage sparse-coded method which takes the spatial neighborhood information of the image patch and the computation burden into consideration is used to compute the reconstructed object appearance. Then, the reliability of each tracker is measured by the tracking likelihood function of transient and reconstructed appearance models. Finally, the most reliable tracker is obtained by a well established particle filter framework; the training set and the template library are incrementally updated based on the current tracking results. Experiment results on different challenging video sequences show that the proposed algorithm performs well with superior tracking accuracy and robustness. PMID:27630710

  18. The research and application of visual saliency and adaptive support vector machine in target tracking field.

    PubMed

    Chen, Yuantao; Xu, Weihong; Kuang, Fangjun; Gao, Shangbing

    2013-01-01

    The efficient target tracking algorithm researches have become current research focus of intelligent robots. The main problems of target tracking process in mobile robot face environmental uncertainty. They are very difficult to estimate the target states, illumination change, target shape changes, complex backgrounds, and other factors and all affect the occlusion in tracking robustness. To further improve the target tracking's accuracy and reliability, we present a novel target tracking algorithm to use visual saliency and adaptive support vector machine (ASVM). Furthermore, the paper's algorithm has been based on the mixture saliency of image features. These features include color, brightness, and sport feature. The execution process used visual saliency features and those common characteristics have been expressed as the target's saliency. Numerous experiments demonstrate the effectiveness and timeliness of the proposed target tracking algorithm in video sequences where the target objects undergo large changes in pose, scale, and illumination.

  19. Object Tracking and Target Reacquisition Based on 3-D Range Data for Moving Vehicles

    PubMed Central

    Lee, Jehoon; Lankton, Shawn; Tannenbaum, Allen

    2013-01-01

    In this paper, we propose an approach for tracking an object of interest based on 3-D range data. We employ particle filtering and active contours to simultaneously estimate the global motion of the object and its local deformations. The proposed algorithm takes advantage of range information to deal with the challenging (but common) situation in which the tracked object disappears from the image domain entirely and reappears later. To cope with this problem, a method based on principle component analysis (PCA) of shape information is proposed. In the proposed method, if the target disappears out of frame, shape similarity energy is used to detect target candidates that match a template shape learned online from previously observed frames. Thus, we require no a priori knowledge of the target’s shape. Experimental results show the practical applicability and robustness of the proposed algorithm in realistic tracking scenarios. PMID:21486717

  20. CellProfiler Tracer: exploring and validating high-throughput, time-lapse microscopy image data.

    PubMed

    Bray, Mark-Anthony; Carpenter, Anne E

    2015-11-04

    Time-lapse analysis of cellular images is an important and growing need in biology. Algorithms for cell tracking are widely available; what researchers have been missing is a single open-source software package to visualize standard tracking output (from software like CellProfiler) in a way that allows convenient assessment of track quality, especially for researchers tuning tracking parameters for high-content time-lapse experiments. This makes quality assessment and algorithm adjustment a substantial challenge, particularly when dealing with hundreds of time-lapse movies collected in a high-throughput manner. We present CellProfiler Tracer, a free and open-source tool that complements the object tracking functionality of the CellProfiler biological image analysis package. Tracer allows multi-parametric morphological data to be visualized on object tracks, providing visualizations that have already been validated within the scientific community for time-lapse experiments, and combining them with simple graph-based measures for highlighting possible tracking artifacts. CellProfiler Tracer is a useful, free tool for inspection and quality control of object tracking data, available from http://www.cellprofiler.org/tracer/.

  1. Radar Detection of Marine Mammals

    DTIC Science & Technology

    2010-09-30

    associative tracker using the Munkres algorithm was used. This was then expanded to include a track - before - detect algorithm, the Baysean Field...small, slow moving objects (i.e. whales). In order to address the third concern (M2 mode), we have tested using a track - before - detect tracker termed

  2. Framework for performance evaluation of face, text, and vehicle detection and tracking in video: data, metrics, and protocol.

    PubMed

    Kasturi, Rangachar; Goldgof, Dmitry; Soundararajan, Padmanabhan; Manohar, Vasant; Garofolo, John; Bowers, Rachel; Boonstra, Matthew; Korzhova, Valentina; Zhang, Jing

    2009-02-01

    Common benchmark data sets, standardized performance metrics, and baseline algorithms have demonstrated considerable impact on research and development in a variety of application domains. These resources provide both consumers and developers of technology with a common framework to objectively compare the performance of different algorithms and algorithmic improvements. In this paper, we present such a framework for evaluating object detection and tracking in video: specifically for face, text, and vehicle objects. This framework includes the source video data, ground-truth annotations (along with guidelines for annotation), performance metrics, evaluation protocols, and tools including scoring software and baseline algorithms. For each detection and tracking task and supported domain, we developed a 50-clip training set and a 50-clip test set. Each data clip is approximately 2.5 minutes long and has been completely spatially/temporally annotated at the I-frame level. Each task/domain, therefore, has an associated annotated corpus of approximately 450,000 frames. The scope of such annotation is unprecedented and was designed to begin to support the necessary quantities of data for robust machine learning approaches, as well as a statistically significant comparison of the performance of algorithms. The goal of this work was to systematically address the challenges of object detection and tracking through a common evaluation framework that permits a meaningful objective comparison of techniques, provides the research community with sufficient data for the exploration of automatic modeling techniques, encourages the incorporation of objective evaluation into the development process, and contributes useful lasting resources of a scale and magnitude that will prove to be extremely useful to the computer vision research community for years to come.

  3. Kalman filter-based tracking of moving objects using linear ultrasonic sensor array for road vehicles

    NASA Astrophysics Data System (ADS)

    Li, Shengbo Eben; Li, Guofa; Yu, Jiaying; Liu, Chang; Cheng, Bo; Wang, Jianqiang; Li, Keqiang

    2018-01-01

    Detection and tracking of objects in the side-near-field has attracted much attention for the development of advanced driver assistance systems. This paper presents a cost-effective approach to track moving objects around vehicles using linearly arrayed ultrasonic sensors. To understand the detection characteristics of a single sensor, an empirical detection model was developed considering the shapes and surface materials of various detected objects. Eight sensors were arrayed linearly to expand the detection range for further application in traffic environment recognition. Two types of tracking algorithms, including an Extended Kalman filter (EKF) and an Unscented Kalman filter (UKF), for the sensor array were designed for dynamic object tracking. The ultrasonic sensor array was designed to have two types of fire sequences: mutual firing or serial firing. The effectiveness of the designed algorithms were verified in two typical driving scenarios: passing intersections with traffic sign poles or street lights, and overtaking another vehicle. Experimental results showed that both EKF and UKF had more precise tracking position and smaller RMSE (root mean square error) than a traditional triangular positioning method. The effectiveness also encourages the application of cost-effective ultrasonic sensors in the near-field environment perception in autonomous driving systems.

  4. New color-based tracking algorithm for joints of the upper extremities

    NASA Astrophysics Data System (ADS)

    Wu, Xiangping; Chow, Daniel H. K.; Zheng, Xiaoxiang

    2007-11-01

    To track the joints of the upper limb of stroke sufferers for rehabilitation assessment, a new tracking algorithm which utilizes a developed color-based particle filter and a novel strategy for handling occlusions is proposed in this paper. Objects are represented by their color histogram models and particle filter is introduced to track the objects within a probability framework. Kalman filter, as a local optimizer, is integrated into the sampling stage of the particle filter that steers samples to a region with high likelihood and therefore fewer samples is required. A color clustering method and anatomic constraints are used in dealing with occlusion problem. Compared with the general basic particle filtering method, the experimental results show that the new algorithm has reduced the number of samples and hence the computational consumption, and has achieved better abilities of handling complete occlusion over a few frames.

  5. Security Applications Of Computer Motion Detection

    NASA Astrophysics Data System (ADS)

    Bernat, Andrew P.; Nelan, Joseph; Riter, Stephen; Frankel, Harry

    1987-05-01

    An important area of application of computer vision is the detection of human motion in security systems. This paper describes the development of a computer vision system which can detect and track human movement across the international border between the United States and Mexico. Because of the wide range of environmental conditions, this application represents a stringent test of computer vision algorithms for motion detection and object identification. The desired output of this vision system is accurate, real-time locations for individual aliens and accurate statistical data as to the frequency of illegal border crossings. Because most detection and tracking routines assume rigid body motion, which is not characteristic of humans, new algorithms capable of reliable operation in our application are required. Furthermore, most current detection and tracking algorithms assume a uniform background against which motion is viewed - the urban environment along the US-Mexican border is anything but uniform. The system works in three stages: motion detection, object tracking and object identi-fication. We have implemented motion detection using simple frame differencing, maximum likelihood estimation, mean and median tests and are evaluating them for accuracy and computational efficiency. Due to the complex nature of the urban environment (background and foreground objects consisting of buildings, vegetation, vehicles, wind-blown debris, animals, etc.), motion detection alone is not sufficiently accurate. Object tracking and identification are handled by an expert system which takes shape, location and trajectory information as input and determines if the moving object is indeed representative of an illegal border crossing.

  6. Fast Compressive Tracking.

    PubMed

    Zhang, Kaihua; Zhang, Lei; Yang, Ming-Hsuan

    2014-10-01

    It is a challenging task to develop effective and efficient appearance models for robust object tracking due to factors such as pose variation, illumination change, occlusion, and motion blur. Existing online tracking algorithms often update models with samples from observations in recent frames. Despite much success has been demonstrated, numerous issues remain to be addressed. First, while these adaptive appearance models are data-dependent, there does not exist sufficient amount of data for online algorithms to learn at the outset. Second, online tracking algorithms often encounter the drift problems. As a result of self-taught learning, misaligned samples are likely to be added and degrade the appearance models. In this paper, we propose a simple yet effective and efficient tracking algorithm with an appearance model based on features extracted from a multiscale image feature space with data-independent basis. The proposed appearance model employs non-adaptive random projections that preserve the structure of the image feature space of objects. A very sparse measurement matrix is constructed to efficiently extract the features for the appearance model. We compress sample images of the foreground target and the background using the same sparse measurement matrix. The tracking task is formulated as a binary classification via a naive Bayes classifier with online update in the compressed domain. A coarse-to-fine search strategy is adopted to further reduce the computational complexity in the detection procedure. The proposed compressive tracking algorithm runs in real-time and performs favorably against state-of-the-art methods on challenging sequences in terms of efficiency, accuracy and robustness.

  7. Segmentation and tracking in echocardiographic sequences: active contours guided by optical flow estimates

    NASA Technical Reports Server (NTRS)

    Mikic, I.; Krucinski, S.; Thomas, J. D.

    1998-01-01

    This paper presents a method for segmentation and tracking of cardiac structures in ultrasound image sequences. The developed algorithm is based on the active contour framework. This approach requires initial placement of the contour close to the desired position in the image, usually an object outline. Best contour shape and position are then calculated, assuming that at this configuration a global energy function, associated with a contour, attains its minimum. Active contours can be used for tracking by selecting a solution from a previous frame as an initial position in a present frame. Such an approach, however, fails for large displacements of the object of interest. This paper presents a technique that incorporates the information on pixel velocities (optical flow) into the estimate of initial contour to enable tracking of fast-moving objects. The algorithm was tested on several ultrasound image sequences, each covering one complete cardiac cycle. The contour successfully tracked boundaries of mitral valve leaflets, aortic root and endocardial borders of the left ventricle. The algorithm-generated outlines were compared against manual tracings by expert physicians. The automated method resulted in contours that were within the boundaries of intraobserver variability.

  8. Enhanced object-based tracking algorithm for convective rain storms and cells

    NASA Astrophysics Data System (ADS)

    Muñoz, Carlos; Wang, Li-Pen; Willems, Patrick

    2018-03-01

    This paper proposes a new object-based storm tracking algorithm, based upon TITAN (Thunderstorm Identification, Tracking, Analysis and Nowcasting). TITAN is a widely-used convective storm tracking algorithm but has limitations in handling small-scale yet high-intensity storm entities due to its single-threshold identification approach. It also has difficulties to effectively track fast-moving storms because of the employed matching approach that largely relies on the overlapping areas between successive storm entities. To address these deficiencies, a number of modifications are proposed and tested in this paper. These include a two-stage multi-threshold storm identification, a new formulation for characterizing storm's physical features, and an enhanced matching technique in synergy with an optical-flow storm field tracker, as well as, according to these modifications, a more complex merging and splitting scheme. High-resolution (5-min and 529-m) radar reflectivity data for 18 storm events over Belgium are used to calibrate and evaluate the algorithm. The performance of the proposed algorithm is compared with that of the original TITAN. The results suggest that the proposed algorithm can better isolate and match convective rainfall entities, as well as to provide more reliable and detailed motion estimates. Furthermore, the improvement is found to be more significant for higher rainfall intensities. The new algorithm has the potential to serve as a basis for further applications, such as storm nowcasting and long-term stochastic spatial and temporal rainfall generation.

  9. A complete system for head tracking using motion-based particle filter and randomly perturbed active contour

    NASA Astrophysics Data System (ADS)

    Bouaynaya, N.; Schonfeld, Dan

    2005-03-01

    Many real world applications in computer and multimedia such as augmented reality and environmental imaging require an elastic accurate contour around a tracked object. In the first part of the paper we introduce a novel tracking algorithm that combines a motion estimation technique with the Bayesian Importance Sampling framework. We use Adaptive Block Matching (ABM) as the motion estimation technique. We construct the proposal density from the estimated motion vector. The resulting algorithm requires a small number of particles for efficient tracking. The tracking is adaptive to different categories of motion even with a poor a priori knowledge of the system dynamics. Particulary off-line learning is not needed. A parametric representation of the object is used for tracking purposes. In the second part of the paper, we refine the tracking output from a parametric sample to an elastic contour around the object. We use a 1D active contour model based on a dynamic programming scheme to refine the output of the tracker. To improve the convergence of the active contour, we perform the optimization over a set of randomly perturbed initial conditions. Our experiments are applied to head tracking. We report promising tracking results in complex environments.

  10. Onboard Robust Visual Tracking for UAVs Using a Reliable Global-Local Object Model

    PubMed Central

    Fu, Changhong; Duan, Ran; Kircali, Dogan; Kayacan, Erdal

    2016-01-01

    In this paper, we present a novel onboard robust visual algorithm for long-term arbitrary 2D and 3D object tracking using a reliable global-local object model for unmanned aerial vehicle (UAV) applications, e.g., autonomous tracking and chasing a moving target. The first main approach in this novel algorithm is the use of a global matching and local tracking approach. In other words, the algorithm initially finds feature correspondences in a way that an improved binary descriptor is developed for global feature matching and an iterative Lucas–Kanade optical flow algorithm is employed for local feature tracking. The second main module is the use of an efficient local geometric filter (LGF), which handles outlier feature correspondences based on a new forward-backward pairwise dissimilarity measure, thereby maintaining pairwise geometric consistency. In the proposed LGF module, a hierarchical agglomerative clustering, i.e., bottom-up aggregation, is applied using an effective single-link method. The third proposed module is a heuristic local outlier factor (to the best of our knowledge, it is utilized for the first time to deal with outlier features in a visual tracking application), which further maximizes the representation of the target object in which we formulate outlier feature detection as a binary classification problem with the output features of the LGF module. Extensive UAV flight experiments show that the proposed visual tracker achieves real-time frame rates of more than thirty-five frames per second on an i7 processor with 640 × 512 image resolution and outperforms the most popular state-of-the-art trackers favorably in terms of robustness, efficiency and accuracy. PMID:27589769

  11. Long-term object tracking combined offline with online learning

    NASA Astrophysics Data System (ADS)

    Hu, Mengjie; Wei, Zhenzhong; Zhang, Guangjun

    2016-04-01

    We propose a simple yet effective method for long-term object tracking. Different from the traditional visual tracking method, which mainly depends on frame-to-frame correspondence, we combine high-level semantic information with low-level correspondences. Our framework is formulated in a confidence selection framework, which allows our system to recover from drift and partly deal with occlusion. To summarize, our algorithm can be roughly decomposed into an initialization stage and a tracking stage. In the initialization stage, an offline detector is trained to get the object appearance information at the category level, which is used for detecting the potential target and initializing the tracking stage. The tracking stage consists of three modules: the online tracking module, detection module, and decision module. A pretrained detector is used for maintaining drift of the online tracker, while the online tracker is used for filtering out false positive detections. A confidence selection mechanism is proposed to optimize the object location based on the online tracker and detection. If the target is lost, the pretrained detector is utilized to reinitialize the whole algorithm when the target is relocated. During experiments, we evaluate our method on several challenging video sequences, and it demonstrates huge improvement compared with detection and online tracking only.

  12. Detection and tracking of drones using advanced acoustic cameras

    NASA Astrophysics Data System (ADS)

    Busset, Joël.; Perrodin, Florian; Wellig, Peter; Ott, Beat; Heutschi, Kurt; Rühl, Torben; Nussbaumer, Thomas

    2015-10-01

    Recent events of drones flying over city centers, official buildings and nuclear installations stressed the growing threat of uncontrolled drone proliferation and the lack of real countermeasure. Indeed, detecting and tracking them can be difficult with traditional techniques. A system to acoustically detect and track small moving objects, such as drones or ground robots, using acoustic cameras is presented. The described sensor, is completely passive, and composed of a 120-element microphone array and a video camera. The acoustic imaging algorithm determines in real-time the sound power level coming from all directions, using the phase of the sound signals. A tracking algorithm is then able to follow the sound sources. Additionally, a beamforming algorithm selectively extracts the sound coming from each tracked sound source. This extracted sound signal can be used to identify sound signatures and determine the type of object. The described techniques can detect and track any object that produces noise (engines, propellers, tires, etc). It is a good complementary approach to more traditional techniques such as (i) optical and infrared cameras, for which the object may only represent few pixels and may be hidden by the blooming of a bright background, and (ii) radar or other echo-localization techniques, suffering from the weakness of the echo signal coming back to the sensor. The distance of detection depends on the type (frequency range) and volume of the noise emitted by the object, and on the background noise of the environment. Detection range and resilience to background noise were tested in both, laboratory environments and outdoor conditions. It was determined that drones can be tracked up to 160 to 250 meters, depending on their type. Speech extraction was also experimentally investigated: the speech signal of a person being 80 to 100 meters away can be captured with acceptable speech intelligibility.

  13. Visual perception system and method for a humanoid robot

    NASA Technical Reports Server (NTRS)

    Chelian, Suhas E. (Inventor); Linn, Douglas Martin (Inventor); Wampler, II, Charles W. (Inventor); Bridgwater, Lyndon (Inventor); Wells, James W. (Inventor); Mc Kay, Neil David (Inventor)

    2012-01-01

    A robotic system includes a humanoid robot with robotic joints each moveable using an actuator(s), and a distributed controller for controlling the movement of each of the robotic joints. The controller includes a visual perception module (VPM) for visually identifying and tracking an object in the field of view of the robot under threshold lighting conditions. The VPM includes optical devices for collecting an image of the object, a positional extraction device, and a host machine having an algorithm for processing the image and positional information. The algorithm visually identifies and tracks the object, and automatically adapts an exposure time of the optical devices to prevent feature data loss of the image under the threshold lighting conditions. A method of identifying and tracking the object includes collecting the image, extracting positional information of the object, and automatically adapting the exposure time to thereby prevent feature data loss of the image.

  14. Image-based tracking system for vibration measurement of a rotating object using a laser scanning vibrometer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Dongkyu, E-mail: akein@gist.ac.kr; Khalil, Hossam; Jo, Youngjoon

    2016-06-28

    An image-based tracking system using laser scanning vibrometer is developed for vibration measurement of a rotating object. The proposed system unlike a conventional one can be used where the position or velocity sensor such as an encoder cannot be attached to an object. An image processing algorithm is introduced to detect a landmark and laser beam based on their colors. Then, through using feedback control system, the laser beam can track a rotating object.

  15. Real-time moving objects detection and tracking from airborne infrared camera

    NASA Astrophysics Data System (ADS)

    Zingoni, Andrea; Diani, Marco; Corsini, Giovanni

    2017-10-01

    Detecting and tracking moving objects in real-time from an airborne infrared (IR) camera offers interesting possibilities in video surveillance, remote sensing and computer vision applications, such as monitoring large areas simultaneously, quickly changing the point of view on the scene and pursuing objects of interest. To fully exploit such a potential, versatile solutions are needed, but, in the literature, the majority of them works only under specific conditions about the considered scenario, the characteristics of the moving objects or the aircraft movements. In order to overcome these limitations, we propose a novel approach to the problem, based on the use of a cheap inertial navigation system (INS), mounted on the aircraft. To exploit jointly the information contained in the acquired video sequence and the data provided by the INS, a specific detection and tracking algorithm has been developed. It consists of three main stages performed iteratively on each acquired frame. The detection stage, in which a coarse detection map is computed, using a local statistic both fast to calculate and robust to noise and self-deletion of the targeted objects. The registration stage, in which the position of the detected objects is coherently reported on a common reference frame, by exploiting the INS data. The tracking stage, in which the steady objects are rejected, the moving objects are tracked, and an estimation of their future position is computed, to be used in the subsequent iteration. The algorithm has been tested on a large dataset of simulated IR video sequences, recreating different environments and different movements of the aircraft. Promising results have been obtained, both in terms of detection and false alarm rate, and in terms of accuracy in the estimation of position and velocity of the objects. In addition, for each frame, the detection and tracking map has been generated by the algorithm, before the acquisition of the subsequent frame, proving its capability to work in real-time.

  16. Deterministic object tracking using Gaussian ringlet and directional edge features

    NASA Astrophysics Data System (ADS)

    Krieger, Evan W.; Sidike, Paheding; Aspiras, Theus; Asari, Vijayan K.

    2017-10-01

    Challenges currently existing for intensity-based histogram feature tracking methods in wide area motion imagery (WAMI) data include object structural information distortions, background variations, and object scale change. These issues are caused by different pavement or ground types and from changing the sensor or altitude. All of these challenges need to be overcome in order to have a robust object tracker, while attaining a computation time appropriate for real-time processing. To achieve this, we present a novel method, Directional Ringlet Intensity Feature Transform (DRIFT), which employs Kirsch kernel filtering for edge features and a ringlet feature mapping for rotational invariance. The method also includes an automatic scale change component to obtain accurate object boundaries and improvements for lowering computation times. We evaluated the DRIFT algorithm on two challenging WAMI datasets, namely Columbus Large Image Format (CLIF) and Large Area Image Recorder (LAIR), to evaluate its robustness and efficiency. Additional evaluations on general tracking video sequences are performed using the Visual Tracker Benchmark and Visual Object Tracking 2014 databases to demonstrate the algorithms ability with additional challenges in long complex sequences including scale change. Experimental results show that the proposed approach yields competitive results compared to state-of-the-art object tracking methods on the testing datasets.

  17. Enhanced online convolutional neural networks for object tracking

    NASA Astrophysics Data System (ADS)

    Zhang, Dengzhuo; Gao, Yun; Zhou, Hao; Li, Tianwen

    2018-04-01

    In recent several years, object tracking based on convolution neural network has gained more and more attention. The initialization and update of convolution filters can directly affect the precision of object tracking effective. In this paper, a novel object tracking via an enhanced online convolution neural network without offline training is proposed, which initializes the convolution filters by a k-means++ algorithm and updates the filters by an error back-propagation. The comparative experiments of 7 trackers on 15 challenging sequences showed that our tracker can perform better than other trackers in terms of AUC and precision.

  18. Fast object reconstruction in block-based compressive low-light-level imaging

    NASA Astrophysics Data System (ADS)

    Ke, Jun; Sui, Dong; Wei, Ping

    2014-11-01

    In this paper we propose a simply yet effective and efficient method for long-term object tracking. Different from traditional visual tracking method which mainly depends on frame-to-frame correspondence, we combine high-level semantic information with low-level correspondences. Our framework is formulated in a confidence selection framework, which allows our system to recover from drift and partly deal with occlusion problem. To summarize, our algorithm can be roughly decomposed in a initialization stage and a tracking stage. In the initialization stage, an offline classifier is trained to get the object appearance information in category level. When the video stream is coming, the pre-trained offline classifier is used for detecting the potential target and initializing the tracking stage. In the tracking stage, it consists of three parts which are online tracking part, offline tracking part and confidence judgment part. Online tracking part captures the specific target appearance information while detection part localizes the object based on the pre-trained offline classifier. Since there is no data dependence between online tracking and offline detection, these two parts are running in parallel to significantly improve the processing speed. A confidence selection mechanism is proposed to optimize the object location. Besides, we also propose a simple mechanism to judge the absence of the object. If the target is lost, the pre-trained offline classifier is utilized to re-initialize the whole algorithm as long as the target is re-located. During experiment, we evaluate our method on several challenging video sequences and demonstrate competitive results.

  19. Structure preserving clustering-object tracking via subgroup motion pattern segmentation

    NASA Astrophysics Data System (ADS)

    Fan, Zheyi; Zhu, Yixuan; Jiang, Jiao; Weng, Shuqin; Liu, Zhiwen

    2018-01-01

    Tracking clustering objects with similar appearances simultaneously in collective scenes is a challenging task in the field of collective motion analysis. Recent work on clustering-object tracking often suffers from poor tracking accuracy and terrible real-time performance due to the neglect or the misjudgment of the motion differences among objects. To address this problem, we propose a subgroup motion pattern segmentation framework based on a multilayer clustering structure and establish spatial constraints only among objects in the same subgroup, which entails having consistent motion direction and close spatial position. In addition, the subgroup segmentation results are updated dynamically because crowd motion patterns are changeable and affected by objects' destinations and scene structures. The spatial structure information combined with the appearance similarity information is used in the structure preserving object tracking framework to track objects. Extensive experiments conducted on several datasets containing multiple real-world crowd scenes validate the accuracy and the robustness of the presented algorithm for tracking objects in collective scenes.

  20. Vision-based algorithms for near-host object detection and multilane sensing

    NASA Astrophysics Data System (ADS)

    Kenue, Surender K.

    1995-01-01

    Vision-based sensing can be used for lane sensing, adaptive cruise control, collision warning, and driver performance monitoring functions of intelligent vehicles. Current computer vision algorithms are not robust for handling multiple vehicles in highway scenarios. Several new algorithms are proposed for multi-lane sensing, near-host object detection, vehicle cut-in situations, and specifying regions of interest for object tracking. These algorithms were tested successfully on more than 6000 images taken from real-highway scenes under different daytime lighting conditions.

  1. Can we track holes?

    PubMed Central

    Horowitz, Todd S.; Kuzmova, Yoana

    2011-01-01

    The evidence is mixed as to whether the visual system treats objects and holes differently. We used a multiple object tracking task to test the hypothesis that figural objects are easier to track than holes. Observers tracked four of eight items (holes or objects). We used an adaptive algorithm to estimate the speed allowing 75% tracking accuracy. In Experiments 1–5, the distinction between holes and figures was accomplished by pictorial cues, while red-cyan anaglyphs were used to provide the illusion of depth in Experiment 6. We variously used Gaussian pixel noise, photographic scenes, or synthetic textures as backgrounds. Tracking was more difficult when a complex background was visible, as opposed to a blank background. Tracking was easier when disks carried fixed, unique markings. When these factors were controlled for, tracking holes was no more difficult than tracking figures, suggesting that they are equivalent stimuli for tracking purposes. PMID:21334361

  2. Hardware accelerator design for tracking in smart camera

    NASA Astrophysics Data System (ADS)

    Singh, Sanjay; Dunga, Srinivasa Murali; Saini, Ravi; Mandal, A. S.; Shekhar, Chandra; Vohra, Anil

    2011-10-01

    Smart Cameras are important components in video analysis. For video analysis, smart cameras needs to detect interesting moving objects, track such objects from frame to frame, and perform analysis of object track in real time. Therefore, the use of real-time tracking is prominent in smart cameras. The software implementation of tracking algorithm on a general purpose processor (like PowerPC) could achieve low frame rate far from real-time requirements. This paper presents the SIMD approach based hardware accelerator designed for real-time tracking of objects in a scene. The system is designed and simulated using VHDL and implemented on Xilinx XUP Virtex-IIPro FPGA. Resulted frame rate is 30 frames per second for 250x200 resolution video in gray scale.

  3. A benchmark for comparison of cell tracking algorithms

    PubMed Central

    Maška, Martin; Ulman, Vladimír; Svoboda, David; Matula, Pavel; Matula, Petr; Ederra, Cristina; Urbiola, Ainhoa; España, Tomás; Venkatesan, Subramanian; Balak, Deepak M.W.; Karas, Pavel; Bolcková, Tereza; Štreitová, Markéta; Carthel, Craig; Coraluppi, Stefano; Harder, Nathalie; Rohr, Karl; Magnusson, Klas E. G.; Jaldén, Joakim; Blau, Helen M.; Dzyubachyk, Oleh; Křížek, Pavel; Hagen, Guy M.; Pastor-Escuredo, David; Jimenez-Carretero, Daniel; Ledesma-Carbayo, Maria J.; Muñoz-Barrutia, Arrate; Meijering, Erik; Kozubek, Michal; Ortiz-de-Solorzano, Carlos

    2014-01-01

    Motivation: Automatic tracking of cells in multidimensional time-lapse fluorescence microscopy is an important task in many biomedical applications. A novel framework for objective evaluation of cell tracking algorithms has been established under the auspices of the IEEE International Symposium on Biomedical Imaging 2013 Cell Tracking Challenge. In this article, we present the logistics, datasets, methods and results of the challenge and lay down the principles for future uses of this benchmark. Results: The main contributions of the challenge include the creation of a comprehensive video dataset repository and the definition of objective measures for comparison and ranking of the algorithms. With this benchmark, six algorithms covering a variety of segmentation and tracking paradigms have been compared and ranked based on their performance on both synthetic and real datasets. Given the diversity of the datasets, we do not declare a single winner of the challenge. Instead, we present and discuss the results for each individual dataset separately. Availability and implementation: The challenge Web site (http://www.codesolorzano.com/celltrackingchallenge) provides access to the training and competition datasets, along with the ground truth of the training videos. It also provides access to Windows and Linux executable files of the evaluation software and most of the algorithms that competed in the challenge. Contact: codesolorzano@unav.es Supplementary information: Supplementary data are available at Bioinformatics online. PMID:24526711

  4. Incremental Structured Dictionary Learning for Video Sensor-Based Object Tracking

    PubMed Central

    Xue, Ming; Yang, Hua; Zheng, Shibao; Zhou, Yi; Yu, Zhenghua

    2014-01-01

    To tackle robust object tracking for video sensor-based applications, an online discriminative algorithm based on incremental discriminative structured dictionary learning (IDSDL-VT) is presented. In our framework, a discriminative dictionary combining both positive, negative and trivial patches is designed to sparsely represent the overlapped target patches. Then, a local update (LU) strategy is proposed for sparse coefficient learning. To formulate the training and classification process, a multiple linear classifier group based on a K-combined voting (KCV) function is proposed. As the dictionary evolves, the models are also trained to timely adapt the target appearance variation. Qualitative and quantitative evaluations on challenging image sequences compared with state-of-the-art algorithms demonstrate that the proposed tracking algorithm achieves a more favorable performance. We also illustrate its relay application in visual sensor networks. PMID:24549252

  5. Do Algorithms Homogenize Students' Achievements in Secondary School Better than Teachers' Tracking Decisions?

    ERIC Educational Resources Information Center

    Klapproth, Florian

    2015-01-01

    Two objectives guided this research. First, this study examined how well teachers' tracking decisions contribute to the homogenization of their students' achievements. Second, the study explored whether teachers' tracking decisions would be outperformed in homogenizing the students' achievements by statistical models of tracking decisions. These…

  6. An efficient fully unsupervised video object segmentation scheme using an adaptive neural-network classifier architecture.

    PubMed

    Doulamis, A; Doulamis, N; Ntalianis, K; Kollias, S

    2003-01-01

    In this paper, an unsupervised video object (VO) segmentation and tracking algorithm is proposed based on an adaptable neural-network architecture. The proposed scheme comprises: 1) a VO tracking module and 2) an initial VO estimation module. Object tracking is handled as a classification problem and implemented through an adaptive network classifier, which provides better results compared to conventional motion-based tracking algorithms. Network adaptation is accomplished through an efficient and cost effective weight updating algorithm, providing a minimum degradation of the previous network knowledge and taking into account the current content conditions. A retraining set is constructed and used for this purpose based on initial VO estimation results. Two different scenarios are investigated. The first concerns extraction of human entities in video conferencing applications, while the second exploits depth information to identify generic VOs in stereoscopic video sequences. Human face/ body detection based on Gaussian distributions is accomplished in the first scenario, while segmentation fusion is obtained using color and depth information in the second scenario. A decision mechanism is also incorporated to detect time instances for weight updating. Experimental results and comparisons indicate the good performance of the proposed scheme even in sequences with complicated content (object bending, occlusion).

  7. Enhanced Algorithms for EO/IR Electronic Stabilization, Clutter Suppression, and Track-Before-Detect for Multiple Low Observable Targets

    NASA Astrophysics Data System (ADS)

    Tartakovsky, A.; Brown, A.; Brown, J.

    The paper describes the development and evaluation of a suite of advanced algorithms which provide significantly-improved capabilities for finding, fixing, and tracking multiple ballistic and flying low observable objects in highly stressing cluttered environments. The algorithms have been developed for use in satellite-based staring and scanning optical surveillance suites for applications including theatre and intercontinental ballistic missile early warning, trajectory prediction, and multi-sensor track handoff for midcourse discrimination and intercept. The functions performed by the algorithms include electronic sensor motion compensation providing sub-pixel stabilization (to 1/100 of a pixel), as well as advanced temporal-spatial clutter estimation and suppression to below sensor noise levels, followed by statistical background modeling and Bayesian multiple-target track-before-detect filtering. The multiple-target tracking is performed in physical world coordinates to allow for multi-sensor fusion, trajectory prediction, and intercept. Output of detected object cues and data visualization are also provided. The algorithms are designed to handle a wide variety of real-world challenges. Imaged scenes may be highly complex and infinitely varied -- the scene background may contain significant celestial, earth limb, or terrestrial clutter. For example, when viewing combined earth limb and terrestrial scenes, a combination of stationary and non-stationary clutter may be present, including cloud formations, varying atmospheric transmittance and reflectance of sunlight and other celestial light sources, aurora, glint off sea surfaces, and varied natural and man-made terrain features. The targets of interest may also appear to be dim, relative to the scene background, rendering much of the existing deployed software useless for optical target detection and tracking. Additionally, it may be necessary to detect and track a large number of objects in the threat cloud, and these objects may not always be resolvable in individual data frames. In the present paper, the performance of the developed algorithms is demonstrated using real-world data containing resident space objects observed from the MSX platform, with backgrounds varying from celestial to combined celestial and earth limb, with instances of extremely bright aurora clutter. Simulation results are also presented for parameterized variations in signal-to-clutter levels (down to 1/1000) and signal-to-noise levels (down to 1/6) for simulated targets against real-world terrestrial clutter backgrounds. We also discuss algorithm processing requirements and C++ software processing capabilities from our on-going MDA- and AFRL-sponsored development of an image processing toolkit (iPTK). In the current effort, the iPTK is being developed to a Technology Readiness Level (TRL) of 6 by mid-2010, in preparation for possible integration with STSS-like, SBIRS high-like and SBSS-like surveillance suites.

  8. Developing the fuzzy c-means clustering algorithm based on maximum entropy for multitarget tracking in a cluttered environment

    NASA Astrophysics Data System (ADS)

    Chen, Xiao; Li, Yaan; Yu, Jing; Li, Yuxing

    2018-01-01

    For fast and more effective implementation of tracking multiple targets in a cluttered environment, we propose a multiple targets tracking (MTT) algorithm called maximum entropy fuzzy c-means clustering joint probabilistic data association that combines fuzzy c-means clustering and the joint probabilistic data association (PDA) algorithm. The algorithm uses the membership value to express the probability of the target originating from measurement. The membership value is obtained through fuzzy c-means clustering objective function optimized by the maximum entropy principle. When considering the effect of the public measurement, we use a correction factor to adjust the association probability matrix to estimate the state of the target. As this algorithm avoids confirmation matrix splitting, it can solve the high computational load problem of the joint PDA algorithm. The results of simulations and analysis conducted for tracking neighbor parallel targets and cross targets in a different density cluttered environment show that the proposed algorithm can realize MTT quickly and efficiently in a cluttered environment. Further, the performance of the proposed algorithm remains constant with increasing process noise variance. The proposed algorithm has the advantages of efficiency and low computational load, which can ensure optimum performance when tracking multiple targets in a dense cluttered environment.

  9. Track Everything: Limiting Prior Knowledge in Online Multi-Object Recognition.

    PubMed

    Wong, Sebastien C; Stamatescu, Victor; Gatt, Adam; Kearney, David; Lee, Ivan; McDonnell, Mark D

    2017-10-01

    This paper addresses the problem of online tracking and classification of multiple objects in an image sequence. Our proposed solution is to first track all objects in the scene without relying on object-specific prior knowledge, which in other systems can take the form of hand-crafted features or user-based track initialization. We then classify the tracked objects with a fast-learning image classifier, that is based on a shallow convolutional neural network architecture and demonstrate that object recognition improves when this is combined with object state information from the tracking algorithm. We argue that by transferring the use of prior knowledge from the detection and tracking stages to the classification stage, we can design a robust, general purpose object recognition system with the ability to detect and track a variety of object types. We describe our biologically inspired implementation, which adaptively learns the shape and motion of tracked objects, and apply it to the Neovision2 Tower benchmark data set, which contains multiple object types. An experimental evaluation demonstrates that our approach is competitive with the state-of-the-art video object recognition systems that do make use of object-specific prior knowledge in detection and tracking, while providing additional practical advantages by virtue of its generality.

  10. A GPU-Accelerated 3-D Coupled Subsample Estimation Algorithm for Volumetric Breast Strain Elastography.

    PubMed

    Peng, Bo; Wang, Yuqi; Hall, Timothy J; Jiang, Jingfeng

    2017-04-01

    Our primary objective of this paper was to extend a previously published 2-D coupled subsample tracking algorithm for 3-D speckle tracking in the framework of ultrasound breast strain elastography. In order to overcome heavy computational cost, we investigated the use of a graphic processing unit (GPU) to accelerate the 3-D coupled subsample speckle tracking method. The performance of the proposed GPU implementation was tested using a tissue-mimicking phantom and in vivo breast ultrasound data. The performance of this 3-D subsample tracking algorithm was compared with the conventional 3-D quadratic subsample estimation algorithm. On the basis of these evaluations, we concluded that the GPU implementation of this 3-D subsample estimation algorithm can provide high-quality strain data (i.e., high correlation between the predeformation and the motion-compensated postdeformation radio frequency echo data and high contrast-to-noise ratio strain images), as compared with the conventional 3-D quadratic subsample algorithm. Using the GPU implementation of the 3-D speckle tracking algorithm, volumetric strain data can be achieved relatively fast (approximately 20 s per volume [2.5 cm ×2.5 cm ×2.5 cm]).

  11. Multi-view video segmentation and tracking for video surveillance

    NASA Astrophysics Data System (ADS)

    Mohammadi, Gelareh; Dufaux, Frederic; Minh, Thien Ha; Ebrahimi, Touradj

    2009-05-01

    Tracking moving objects is a critical step for smart video surveillance systems. Despite the complexity increase, multiple camera systems exhibit the undoubted advantages of covering wide areas and handling the occurrence of occlusions by exploiting the different viewpoints. The technical problems in multiple camera systems are several: installation, calibration, objects matching, switching, data fusion, and occlusion handling. In this paper, we address the issue of tracking moving objects in an environment covered by multiple un-calibrated cameras with overlapping fields of view, typical of most surveillance setups. Our main objective is to create a framework that can be used to integrate objecttracking information from multiple video sources. Basically, the proposed technique consists of the following steps. We first perform a single-view tracking algorithm on each camera view, and then apply a consistent object labeling algorithm on all views. In the next step, we verify objects in each view separately for inconsistencies. Correspondent objects are extracted through a Homography transform from one view to the other and vice versa. Having found the correspondent objects of different views, we partition each object into homogeneous regions. In the last step, we apply the Homography transform to find the region map of first view in the second view and vice versa. For each region (in the main frame and mapped frame) a set of descriptors are extracted to find the best match between two views based on region descriptors similarity. This method is able to deal with multiple objects. Track management issues such as occlusion, appearance and disappearance of objects are resolved using information from all views. This method is capable of tracking rigid and deformable objects and this versatility lets it to be suitable for different application scenarios.

  12. Space debris tracking based on fuzzy running Gaussian average adaptive particle filter track-before-detect algorithm

    NASA Astrophysics Data System (ADS)

    Torteeka, Peerapong; Gao, Peng-Qi; Shen, Ming; Guo, Xiao-Zhang; Yang, Da-Tao; Yu, Huan-Huan; Zhou, Wei-Ping; Zhao, You

    2017-02-01

    Although tracking with a passive optical telescope is a powerful technique for space debris observation, it is limited by its sensitivity to dynamic background noise. Traditionally, in the field of astronomy, static background subtraction based on a median image technique has been used to extract moving space objects prior to the tracking operation, as this is computationally efficient. The main disadvantage of this technique is that it is not robust to variable illumination conditions. In this article, we propose an approach for tracking small and dim space debris in the context of a dynamic background via one of the optical telescopes that is part of the space surveillance network project, named the Asia-Pacific ground-based Optical Space Observation System or APOSOS. The approach combines a fuzzy running Gaussian average for robust moving-object extraction with dim-target tracking using a particle-filter-based track-before-detect method. The performance of the proposed algorithm is experimentally evaluated, and the results show that the scheme achieves a satisfactory level of accuracy for space debris tracking.

  13. Tri-track: free software for large-scale particle tracking.

    PubMed

    Vallotton, Pascal; Olivier, Sandra

    2013-04-01

    The ability to correctly track objects in time-lapse sequences is important in many applications of microscopy. Individual object motions typically display a level of dynamic regularity reflecting the existence of an underlying physics or biology. Best results are obtained when this local information is exploited. Additionally, if the particle number is known to be approximately constant, a large number of tracking scenarios may be rejected on the basis that they are not compatible with a known maximum particle velocity. This represents information of a global nature, which should ideally be exploited too. Some time ago, we devised an efficient algorithm that exploited both types of information. The tracking task was reduced to a max-flow min-cost problem instance through a novel graph structure that comprised vertices representing objects from three consecutive image frames. The algorithm is explained here for the first time. A user-friendly implementation is provided, and the specific relaxation mechanism responsible for the method's effectiveness is uncovered. The software is particularly competitive for complex dynamics such as dense antiparallel flows, or in situations where object displacements are considerable. As an application, we characterize a remarkable vortex structure formed by bacteria engaged in interstitial motility.

  14. Textual and shape-based feature extraction and neuro-fuzzy classifier for nuclear track recognition

    NASA Astrophysics Data System (ADS)

    Khayat, Omid; Afarideh, Hossein

    2013-04-01

    Track counting algorithms as one of the fundamental principles of nuclear science have been emphasized in the recent years. Accurate measurement of nuclear tracks on solid-state nuclear track detectors is the aim of track counting systems. Commonly track counting systems comprise a hardware system for the task of imaging and software for analysing the track images. In this paper, a track recognition algorithm based on 12 defined textual and shape-based features and a neuro-fuzzy classifier is proposed. Features are defined so as to discern the tracks from the background and small objects. Then, according to the defined features, tracks are detected using a trained neuro-fuzzy system. Features and the classifier are finally validated via 100 Alpha track images and 40 training samples. It is shown that principle textual and shape-based features concomitantly yield a high rate of track detection compared with the single-feature based methods.

  15. An improved multi-domain convolution tracking algorithm

    NASA Astrophysics Data System (ADS)

    Sun, Xin; Wang, Haiying; Zeng, Yingsen

    2018-04-01

    Along with the wide application of the Deep Learning in the field of Computer vision, Deep learning has become a mainstream direction in the field of object tracking. The tracking algorithm in this paper is based on the improved multidomain convolution neural network, and the VOT video set is pre-trained on the network by multi-domain training strategy. In the process of online tracking, the network evaluates candidate targets sampled from vicinity of the prediction target in the previous with Gaussian distribution, and the candidate target with the highest score is recognized as the prediction target of this frame. The Bounding Box Regression model is introduced to make the prediction target closer to the ground-truths target box of the test set. Grouping-update strategy is involved to extract and select useful update samples in each frame, which can effectively prevent over fitting. And adapt to changes in both target and environment. To improve the speed of the algorithm while maintaining the performance, the number of candidate target succeed in adjusting dynamically with the help of Self-adaption parameter Strategy. Finally, the algorithm is tested by OTB set, compared with other high-performance tracking algorithms, and the plot of success rate and the accuracy are drawn. which illustrates outstanding performance of the tracking algorithm in this paper.

  16. Siamese convolutional networks for tracking the spine motion

    NASA Astrophysics Data System (ADS)

    Liu, Yuan; Sui, Xiubao; Sun, Yicheng; Liu, Chengwei; Hu, Yong

    2017-09-01

    Deep learning models have demonstrated great success in various computer vision tasks such as image classification and object tracking. However, tracking the lumbar spine by digitalized video fluoroscopic imaging (DVFI), which can quantitatively analyze the motion mode of spine to diagnose lumbar instability, has not yet been well developed due to the lack of steady and robust tracking method. In this paper, we propose a novel visual tracking algorithm of the lumbar vertebra motion based on a Siamese convolutional neural network (CNN) model. We train a full-convolutional neural network offline to learn generic image features. The network is trained to learn a similarity function that compares the labeled target in the first frame with the candidate patches in the current frame. The similarity function returns a high score if the two images depict the same object. Once learned, the similarity function is used to track a previously unseen object without any adapting online. In the current frame, our tracker is performed by evaluating the candidate rotated patches sampled around the previous frame target position and presents a rotated bounding box to locate the predicted target precisely. Results indicate that the proposed tracking method can detect the lumbar vertebra steadily and robustly. Especially for images with low contrast and cluttered background, the presented tracker can still achieve good tracking performance. Further, the proposed algorithm operates at high speed for real time tracking.

  17. An improved KCF tracking algorithm based on multi-feature and multi-scale

    NASA Astrophysics Data System (ADS)

    Wu, Wei; Wang, Ding; Luo, Xin; Su, Yang; Tian, Weiye

    2018-02-01

    The purpose of visual tracking is to associate the target object in a continuous video frame. In recent years, the method based on the kernel correlation filter has become the research hotspot. However, the algorithm still has some problems such as video capture equipment fast jitter, tracking scale transformation. In order to improve the ability of scale transformation and feature description, this paper has carried an innovative algorithm based on the multi feature fusion and multi-scale transform. The experimental results show that our method solves the problem that the target model update when is blocked or its scale transforms. The accuracy of the evaluation (OPE) is 77.0%, 75.4% and the success rate is 69.7%, 66.4% on the VOT and OTB datasets. Compared with the optimal one of the existing target-based tracking algorithms, the accuracy of the algorithm is improved by 6.7% and 6.3% respectively. The success rates are improved by 13.7% and 14.2% respectively.

  18. Multi-object tracking of human spermatozoa

    NASA Astrophysics Data System (ADS)

    Sørensen, Lauge; Østergaard, Jakob; Johansen, Peter; de Bruijne, Marleen

    2008-03-01

    We propose a system for tracking of human spermatozoa in phase-contrast microscopy image sequences. One of the main aims of a computer-aided sperm analysis (CASA) system is to automatically assess sperm quality based on spermatozoa motility variables. In our case, the problem of assessing sperm quality is cast as a multi-object tracking problem, where the objects being tracked are the spermatozoa. The system combines a particle filter and Kalman filters for robust motion estimation of the spermatozoa tracks. Further, the combinatorial aspect of assigning observations to labels in the particle filter is formulated as a linear assignment problem solved using the Hungarian algorithm on a rectangular cost matrix, making the algorithm capable of handling missing or spurious observations. The costs are calculated using hidden Markov models that express the plausibility of an observation being the next position in the track history of the particle labels. Observations are extracted using a scale-space blob detector utilizing the fact that the spermatozoa appear as bright blobs in a phase-contrast microscope. The output of the system is the complete motion track of each of the spermatozoa. Based on these tracks, different CASA motility variables can be computed, for example curvilinear velocity or straight-line velocity. The performance of the system is tested on three different phase-contrast image sequences of varying complexity, both by visual inspection of the estimated spermatozoa tracks and by measuring the mean squared error (MSE) between the estimated spermatozoa tracks and manually annotated tracks, showing good agreement.

  19. A high-speed tracking algorithm for dense granular media

    NASA Astrophysics Data System (ADS)

    Cerda, Mauricio; Navarro, Cristóbal A.; Silva, Juan; Waitukaitis, Scott R.; Mujica, Nicolás; Hitschfeld, Nancy

    2018-06-01

    Many fields of study, including medical imaging, granular physics, colloidal physics, and active matter, require the precise identification and tracking of particle-like objects in images. While many algorithms exist to track particles in diffuse conditions, these often perform poorly when particles are densely packed together-as in, for example, solid-like systems of granular materials. Incorrect particle identification can have significant effects on the calculation of physical quantities, which makes the development of more precise and faster tracking algorithms a worthwhile endeavor. In this work, we present a new tracking algorithm to identify particles in dense systems that is both highly accurate and fast. We demonstrate the efficacy of our approach by analyzing images of dense, solid-state granular media, where we achieve an identification error of 5% in the worst evaluated cases. Going further, we propose a parallelization strategy for our algorithm using a GPU, which results in a speedup of up to 10 × when compared to a sequential CPU implementation in C and up to 40 × when compared to the reference MATLAB library widely used for particle tracking. Our results extend the capabilities of state-of-the-art particle tracking methods by allowing fast, high-fidelity detection in dense media at high resolutions.

  20. Tracking of multiple targets using online learning for reference model adaptation.

    PubMed

    Pernkopf, Franz

    2008-12-01

    Recently, much work has been done in multiple object tracking on the one hand and on reference model adaptation for a single-object tracker on the other side. In this paper, we do both tracking of multiple objects (faces of people) in a meeting scenario and online learning to incrementally update the models of the tracked objects to account for appearance changes during tracking. Additionally, we automatically initialize and terminate tracking of individual objects based on low-level features, i.e., face color, face size, and object movement. Many methods unlike our approach assume that the target region has been initialized by hand in the first frame. For tracking, a particle filter is incorporated to propagate sample distributions over time. We discuss the close relationship between our implemented tracker based on particle filters and genetic algorithms. Numerous experiments on meeting data demonstrate the capabilities of our tracking approach. Additionally, we provide an empirical verification of the reference model learning during tracking of indoor and outdoor scenes which supports a more robust tracking. Therefore, we report the average of the standard deviation of the trajectories over numerous tracking runs depending on the learning rate.

  1. Scalable Conjunction Processing using Spatiotemporally Indexed Ephemeris Data

    NASA Astrophysics Data System (ADS)

    Budianto-Ho, I.; Johnson, S.; Sivilli, R.; Alberty, C.; Scarberry, R.

    2014-09-01

    The collision warnings produced by the Joint Space Operations Center (JSpOC) are of critical importance in protecting U.S. and allied spacecraft against destructive collisions and protecting the lives of astronauts during space flight. As the Space Surveillance Network (SSN) improves its sensor capabilities for tracking small and dim space objects, the number of tracked objects increases from thousands to hundreds of thousands of objects, while the number of potential conjunctions increases with the square of the number of tracked objects. Classical filtering techniques such as apogee and perigee filters have proven insufficient. Novel and orders of magnitude faster conjunction analysis algorithms are required to find conjunctions in a timely manner. Stellar Science has developed innovative filtering techniques for satellite conjunction processing using spatiotemporally indexed ephemeris data that efficiently and accurately reduces the number of objects requiring high-fidelity and computationally-intensive conjunction analysis. Two such algorithms, one based on the k-d Tree pioneered in robotics applications and the other based on Spatial Hash Tables used in computer gaming and animation, use, at worst, an initial O(N log N) preprocessing pass (where N is the number of tracked objects) to build large O(N) spatial data structures that substantially reduce the required number of O(N^2) computations, substituting linear memory usage for quadratic processing time. The filters have been implemented as Open Services Gateway initiative (OSGi) plug-ins for the Continuous Anomalous Orbital Situation Discriminator (CAOS-D) conjunction analysis architecture. We have demonstrated the effectiveness, efficiency, and scalability of the techniques using a catalog of 100,000 objects, an analysis window of one day, on a 64-core computer with 1TB shared memory. Each algorithm can process the full catalog in 6 minutes or less, almost a twenty-fold performance improvement over the baseline implementation running on the same machine. We will present an overview of the algorithms and results that demonstrate the scalability of our concepts.

  2. Algorithms for detection of objects in image sequences captured from an airborne imaging system

    NASA Technical Reports Server (NTRS)

    Kasturi, Rangachar; Camps, Octavia; Tang, Yuan-Liang; Devadiga, Sadashiva; Gandhi, Tarak

    1995-01-01

    This research was initiated as a part of the effort at the NASA Ames Research Center to design a computer vision based system that can enhance the safety of navigation by aiding the pilots in detecting various obstacles on the runway during critical section of the flight such as a landing maneuver. The primary goal is the development of algorithms for detection of moving objects from a sequence of images obtained from an on-board video camera. Image regions corresponding to the independently moving objects are segmented from the background by applying constraint filtering on the optical flow computed from the initial few frames of the sequence. These detected regions are tracked over subsequent frames using a model based tracking algorithm. Position and velocity of the moving objects in the world coordinate is estimated using an extended Kalman filter. The algorithms are tested using the NASA line image sequence with six static trucks and a simulated moving truck and experimental results are described. Various limitations of the currently implemented version of the above algorithm are identified and possible solutions to build a practical working system are investigated.

  3. Interacting with target tracking algorithms in a gaze-enhanced motion video analysis system

    NASA Astrophysics Data System (ADS)

    Hild, Jutta; Krüger, Wolfgang; Heinze, Norbert; Peinsipp-Byma, Elisabeth; Beyerer, Jürgen

    2016-05-01

    Motion video analysis is a challenging task, particularly if real-time analysis is required. It is therefore an important issue how to provide suitable assistance for the human operator. Given that the use of customized video analysis systems is more and more established, one supporting measure is to provide system functions which perform subtasks of the analysis. Recent progress in the development of automated image exploitation algorithms allow, e.g., real-time moving target tracking. Another supporting measure is to provide a user interface which strives to reduce the perceptual, cognitive and motor load of the human operator for example by incorporating the operator's visual focus of attention. A gaze-enhanced user interface is able to help here. This work extends prior work on automated target recognition, segmentation, and tracking algorithms as well as about the benefits of a gaze-enhanced user interface for interaction with moving targets. We also propose a prototypical system design aiming to combine both the qualities of the human observer's perception and the automated algorithms in order to improve the overall performance of a real-time video analysis system. In this contribution, we address two novel issues analyzing gaze-based interaction with target tracking algorithms. The first issue extends the gaze-based triggering of a target tracking process, e.g., investigating how to best relaunch in the case of track loss. The second issue addresses the initialization of tracking algorithms without motion segmentation where the operator has to provide the system with the object's image region in order to start the tracking algorithm.

  4. An evolutionary computation based algorithm for calculating solar differential rotation by automatic tracking of coronal bright points

    NASA Astrophysics Data System (ADS)

    Shahamatnia, Ehsan; Dorotovič, Ivan; Fonseca, Jose M.; Ribeiro, Rita A.

    2016-03-01

    Developing specialized software tools is essential to support studies of solar activity evolution. With new space missions such as Solar Dynamics Observatory (SDO), solar images are being produced in unprecedented volumes. To capitalize on that huge data availability, the scientific community needs a new generation of software tools for automatic and efficient data processing. In this paper a prototype of a modular framework for solar feature detection, characterization, and tracking is presented. To develop an efficient system capable of automatic solar feature tracking and measuring, a hybrid approach combining specialized image processing, evolutionary optimization, and soft computing algorithms is being followed. The specialized hybrid algorithm for tracking solar features allows automatic feature tracking while gathering characterization details about the tracked features. The hybrid algorithm takes advantages of the snake model, a specialized image processing algorithm widely used in applications such as boundary delineation, image segmentation, and object tracking. Further, it exploits the flexibility and efficiency of Particle Swarm Optimization (PSO), a stochastic population based optimization algorithm. PSO has been used successfully in a wide range of applications including combinatorial optimization, control, clustering, robotics, scheduling, and image processing and video analysis applications. The proposed tool, denoted PSO-Snake model, was already successfully tested in other works for tracking sunspots and coronal bright points. In this work, we discuss the application of the PSO-Snake algorithm for calculating the sidereal rotational angular velocity of the solar corona. To validate the results we compare them with published manual results performed by an expert.

  5. Collaborative real-time scheduling of multiple PTZ cameras for multiple object tracking in video surveillance

    NASA Astrophysics Data System (ADS)

    Liu, Yu-Che; Huang, Chung-Lin

    2013-03-01

    This paper proposes a multi-PTZ-camera control mechanism to acquire close-up imagery of human objects in a surveillance system. The control algorithm is based on the output of multi-camera, multi-target tracking. Three main concerns of the algorithm are (1) the imagery of human object's face for biometric purposes, (2) the optimal video quality of the human objects, and (3) minimum hand-off time. Here, we define an objective function based on the expected capture conditions such as the camera-subject distance, pan tile angles of capture, face visibility and others. Such objective function serves to effectively balance the number of captures per subject and quality of captures. In the experiments, we demonstrate the performance of the system which operates in real-time under real world conditions on three PTZ cameras.

  6. A GPU-accelerated 3D Coupled Sub-sample Estimation Algorithm for Volumetric Breast Strain Elastography

    PubMed Central

    Peng, Bo; Wang, Yuqi; Hall, Timothy J; Jiang, Jingfeng

    2017-01-01

    Our primary objective of this work was to extend a previously published 2D coupled sub-sample tracking algorithm for 3D speckle tracking in the framework of ultrasound breast strain elastography. In order to overcome heavy computational cost, we investigated the use of a graphic processing unit (GPU) to accelerate the 3D coupled sub-sample speckle tracking method. The performance of the proposed GPU implementation was tested using a tissue-mimicking (TM) phantom and in vivo breast ultrasound data. The performance of this 3D sub-sample tracking algorithm was compared with the conventional 3D quadratic sub-sample estimation algorithm. On the basis of these evaluations, we concluded that the GPU implementation of this 3D sub-sample estimation algorithm can provide high-quality strain data (i.e. high correlation between the pre- and the motion-compensated post-deformation RF echo data and high contrast-to-noise ratio strain images), as compared to the conventional 3D quadratic sub-sample algorithm. Using the GPU implementation of the 3D speckle tracking algorithm, volumetric strain data can be achieved relatively fast (approximately 20 seconds per volume [2.5 cm × 2.5 cm × 2.5 cm]). PMID:28166493

  7. Visual Sensor Based Abnormal Event Detection with Moving Shadow Removal in Home Healthcare Applications

    PubMed Central

    Lee, Young-Sook; Chung, Wan-Young

    2012-01-01

    Vision-based abnormal event detection for home healthcare systems can be greatly improved using visual sensor-based techniques able to detect, track and recognize objects in the scene. However, in moving object detection and tracking processes, moving cast shadows can be misclassified as part of objects or moving objects. Shadow removal is an essential step for developing video surveillance systems. The goal of the primary is to design novel computer vision techniques that can extract objects more accurately and discriminate between abnormal and normal activities. To improve the accuracy of object detection and tracking, our proposed shadow removal algorithm is employed. Abnormal event detection based on visual sensor by using shape features variation and 3-D trajectory is presented to overcome the low fall detection rate. The experimental results showed that the success rate of detecting abnormal events was 97% with a false positive rate of 2%. Our proposed algorithm can allow distinguishing diverse fall activities such as forward falls, backward falls, and falling asides from normal activities. PMID:22368486

  8. Nonlinear Motion Tracking by Deep Learning Architecture

    NASA Astrophysics Data System (ADS)

    Verma, Arnav; Samaiya, Devesh; Gupta, Karunesh K.

    2018-03-01

    In the world of Artificial Intelligence, object motion tracking is one of the major problems. The extensive research is being carried out to track people in crowd. This paper presents a unique technique for nonlinear motion tracking in the absence of prior knowledge of nature of nonlinear path that the object being tracked may follow. We achieve this by first obtaining the centroid of the object and then using the centroid as the current example for a recurrent neural network trained using real-time recurrent learning. We have tweaked the standard algorithm slightly and have accumulated the gradient for few previous iterations instead of using just the current iteration as is the norm. We show that for a single object, such a recurrent neural network is highly capable of approximating the nonlinearity of its path.

  9. Tracking Objects with Networked Scattered Directional Sensors

    NASA Astrophysics Data System (ADS)

    Plarre, Kurt; Kumar, P. R.

    2007-12-01

    We study the problem of object tracking using highly directional sensors—sensors whose field of vision is a line or a line segment. A network of such sensors monitors a certain region of the plane. Sporadically, objects moving in straight lines and at a constant speed cross the region. A sensor detects an object when it crosses its line of sight, and records the time of the detection. No distance or angle measurements are available. The task of the sensors is to estimate the directions and speeds of the objects, and the sensor lines, which are unknown a priori. This estimation problem involves the minimization of a highly nonconvex cost function. To overcome this difficulty, we introduce an algorithm, which we call "adaptive basis algorithm." This algorithm is divided into three phases: in the first phase, the algorithm is initialized using data from six sensors and four objects; in the second phase, the estimates are updated as data from more sensors and objects are incorporated. The third phase is an optional coordinated transformation. The estimation is done in an "ad-hoc" coordinate system, which we call "adaptive coordinate system." When more information is available, for example, the location of six sensors, the estimates can be transformed to the "real-world" coordinate system. This constitutes the third phase.

  10. Estimation of contour motion and deformation for nonrigid object tracking

    NASA Astrophysics Data System (ADS)

    Shao, Jie; Porikli, Fatih; Chellappa, Rama

    2007-08-01

    We present an algorithm for nonrigid contour tracking in heavily cluttered background scenes. Based on the properties of nonrigid contour movements, a sequential framework for estimating contour motion and deformation is proposed. We solve the nonrigid contour tracking problem by decomposing it into three subproblems: motion estimation, deformation estimation, and shape regulation. First, we employ a particle filter to estimate the global motion parameters of the affine transform between successive frames. Then we generate a probabilistic deformation map to deform the contour. To improve robustness, multiple cues are used for deformation probability estimation. Finally, we use a shape prior model to constrain the deformed contour. This enables us to retrieve the occluded parts of the contours and accurately track them while allowing shape changes specific to the given object types. Our experiments show that the proposed algorithm significantly improves the tracker performance.

  11. Lightning Jump Algorithm Development for the GOES·R Geostationary Lightning Mapper

    NASA Technical Reports Server (NTRS)

    Schultz. E.; Schultz. C.; Chronis, T.; Stough, S.; Carey, L.; Calhoun, K.; Ortega, K.; Stano, G.; Cecil, D.; Bateman, M.; hide

    2014-01-01

    Current work on the lightning jump algorithm to be used in GOES-R Geostationary Lightning Mapper (GLM)'s data stream is multifaceted due to the intricate interplay between the storm tracking, GLM proxy data, and the performance of the lightning jump itself. This work outlines the progress of the last year, where analysis and performance of the lightning jump algorithm with automated storm tracking and GLM proxy data were assessed using over 700 storms from North Alabama. The cases analyzed coincide with previous semi-objective work performed using total lightning mapping array (LMA) measurements in Schultz et al. (2011). Analysis shows that key components of the algorithm (flash rate and sigma thresholds) have the greatest influence on the performance of the algorithm when validating using severe storm reports. Automated objective analysis using the GLM proxy data has shown probability of detection (POD) values around 60% with false alarm rates (FAR) around 73% using similar methodology to Schultz et al. (2011). However, when applying verification methods similar to those employed by the National Weather Service, POD values increase slightly (69%) and FAR values decrease (63%). The relationship between storm tracking and lightning jump has also been tested in a real-time framework at NSSL. This system includes fully automated tracking by radar alone, real-time LMA and radar observations and the lightning jump. Results indicate that the POD is strong at 65%. However, the FAR is significantly higher than in Schultz et al. (2011) (50-80% depending on various tracking/lightning jump parameters) when using storm reports for verification. Given known issues with Storm Data, the performance of the real-time jump algorithm is also being tested with high density radar and surface observations from the NSSL Severe Hazards Analysis & Verification Experiment (SHAVE).

  12. Online Object Tracking, Learning and Parsing with And-Or Graphs.

    PubMed

    Wu, Tianfu; Lu, Yang; Zhu, Song-Chun

    2017-12-01

    This paper presents a method, called AOGTracker, for simultaneously tracking, learning and parsing (TLP) of unknown objects in video sequences with a hierarchical and compositional And-Or graph (AOG) representation. The TLP method is formulated in the Bayesian framework with a spatial and a temporal dynamic programming (DP) algorithms inferring object bounding boxes on-the-fly. During online learning, the AOG is discriminatively learned using latent SVM [1] to account for appearance (e.g., lighting and partial occlusion) and structural (e.g., different poses and viewpoints) variations of a tracked object, as well as distractors (e.g., similar objects) in background. Three key issues in online inference and learning are addressed: (i) maintaining purity of positive and negative examples collected online, (ii) controling model complexity in latent structure learning, and (iii) identifying critical moments to re-learn the structure of AOG based on its intrackability. The intrackability measures uncertainty of an AOG based on its score maps in a frame. In experiments, our AOGTracker is tested on two popular tracking benchmarks with the same parameter setting: the TB-100/50/CVPR2013 benchmarks  , [3] , and the VOT benchmarks [4] -VOT 2013, 2014, 2015 and TIR2015 (thermal imagery tracking). In the former, our AOGTracker outperforms state-of-the-art tracking algorithms including two trackers based on deep convolutional network   [5] , [6] . In the latter, our AOGTracker outperforms all other trackers in VOT2013 and is comparable to the state-of-the-art methods in VOT2014, 2015 and TIR2015.

  13. A High-Speed Target-Free Vision-Based Sensor for Bus Rapid Transit Viaduct Vibration Measurements Using CMT and ORB Algorithms.

    PubMed

    Hu, Qijun; He, Songsheng; Wang, Shilong; Liu, Yugang; Zhang, Zutao; He, Leping; Wang, Fubin; Cai, Qijie; Shi, Rendan; Yang, Yuan

    2017-06-06

    Bus Rapid Transit (BRT) has become an increasing source of concern for public transportation of modern cities. Traditional contact sensing techniques during the process of health monitoring of BRT viaducts cannot overcome the deficiency that the normal free-flow of traffic would be blocked. Advances in computer vision technology provide a new line of thought for solving this problem. In this study, a high-speed target-free vision-based sensor is proposed to measure the vibration of structures without interrupting traffic. An improved keypoints matching algorithm based on consensus-based matching and tracking (CMT) object tracking algorithm is adopted and further developed together with oriented brief (ORB) keypoints detection algorithm for practicable and effective tracking of objects. Moreover, by synthesizing the existing scaling factor calculation methods, more rational approaches to reducing errors are implemented. The performance of the vision-based sensor is evaluated through a series of laboratory tests. Experimental tests with different target types, frequencies, amplitudes and motion patterns are conducted. The performance of the method is satisfactory, which indicates that the vision sensor can extract accurate structure vibration signals by tracking either artificial or natural targets. Field tests further demonstrate that the vision sensor is both practicable and reliable.

  14. A High-Speed Target-Free Vision-Based Sensor for Bus Rapid Transit Viaduct Vibration Measurements Using CMT and ORB Algorithms

    PubMed Central

    Hu, Qijun; He, Songsheng; Wang, Shilong; Liu, Yugang; Zhang, Zutao; He, Leping; Wang, Fubin; Cai, Qijie; Shi, Rendan; Yang, Yuan

    2017-01-01

    Bus Rapid Transit (BRT) has become an increasing source of concern for public transportation of modern cities. Traditional contact sensing techniques during the process of health monitoring of BRT viaducts cannot overcome the deficiency that the normal free-flow of traffic would be blocked. Advances in computer vision technology provide a new line of thought for solving this problem. In this study, a high-speed target-free vision-based sensor is proposed to measure the vibration of structures without interrupting traffic. An improved keypoints matching algorithm based on consensus-based matching and tracking (CMT) object tracking algorithm is adopted and further developed together with oriented brief (ORB) keypoints detection algorithm for practicable and effective tracking of objects. Moreover, by synthesizing the existing scaling factor calculation methods, more rational approaches to reducing errors are implemented. The performance of the vision-based sensor is evaluated through a series of laboratory tests. Experimental tests with different target types, frequencies, amplitudes and motion patterns are conducted. The performance of the method is satisfactory, which indicates that the vision sensor can extract accurate structure vibration signals by tracking either artificial or natural targets. Field tests further demonstrate that the vision sensor is both practicable and reliable. PMID:28587275

  15. An object tracking method based on guided filter for night fusion image

    NASA Astrophysics Data System (ADS)

    Qian, Xiaoyan; Wang, Yuedong; Han, Lei

    2016-01-01

    Online object tracking is a challenging problem as it entails learning an effective model to account for appearance change caused by intrinsic and extrinsic factors. In this paper, we propose a novel online object tracking with guided image filter for accurate and robust night fusion image tracking. Firstly, frame difference is applied to produce the coarse target, which helps to generate observation models. Under the restriction of these models and local source image, guided filter generates sufficient and accurate foreground target. Then accurate boundaries of the target can be extracted from detection results. Finally timely updating for observation models help to avoid tracking shift. Both qualitative and quantitative evaluations on challenging image sequences demonstrate that the proposed tracking algorithm performs favorably against several state-of-art methods.

  16. Track-Before-Detect Algorithm for Faint Moving Objects based on Random Sampling and Consensus

    NASA Astrophysics Data System (ADS)

    Dao, P.; Rast, R.; Schlaegel, W.; Schmidt, V.; Dentamaro, A.

    2014-09-01

    There are many algorithms developed for tracking and detecting faint moving objects in congested backgrounds. One obvious application is detection of targets in images where each pixel corresponds to the received power in a particular location. In our application, a visible imager operated in stare mode observes geostationary objects as fixed, stars as moving and non-geostationary objects as drifting in the field of view. We would like to achieve high sensitivity detection of the drifters. The ability to improve SNR with track-before-detect (TBD) processing, where target information is collected and collated before the detection decision is made, allows respectable performance against dim moving objects. Generally, a TBD algorithm consists of a pre-processing stage that highlights potential targets and a temporal filtering stage. However, the algorithms that have been successfully demonstrated, e.g. Viterbi-based and Bayesian-based, demand formidable processing power and memory. We propose an algorithm that exploits the quasi constant velocity of objects, the predictability of the stellar clutter and the intrinsically low false alarm rate of detecting signature candidates in 3-D, based on an iterative method called "RANdom SAmple Consensus” and one that can run real-time on a typical PC. The technique is tailored for searching objects with small telescopes in stare mode. Our RANSAC-MT (Moving Target) algorithm estimates parameters of a mathematical model (e.g., linear motion) from a set of observed data which contains a significant number of outliers while identifying inliers. In the pre-processing phase, candidate blobs were selected based on morphology and an intensity threshold that would normally generate unacceptable level of false alarms. The RANSAC sampling rejects candidates that conform to the predictable motion of the stars. Data collected with a 17 inch telescope by AFRL/RH and a COTS lens/EM-CCD sensor by the AFRL/RD Satellite Assessment Center is used to assess the performance of the algorithm. In the second application, a visible imager operated in sidereal mode observes geostationary objects as moving, stars as fixed except for field rotation, and non-geostationary objects as drifting. RANSAC-MT is used to detect the drifter. In this set of data, the drifting space object was detected at a distance of 13800 km. The AFRL/RH set of data, collected in the stare mode, contained the signature of two geostationary satellites. The signature of a moving object was simulated and added to the sequence of frames to determine the sensitivity in magnitude. The performance compares well with the more intensive TBD algorithms reported in the literature.

  17. Detection of dominant flow and abnormal events in surveillance video

    NASA Astrophysics Data System (ADS)

    Kwak, Sooyeong; Byun, Hyeran

    2011-02-01

    We propose an algorithm for abnormal event detection in surveillance video. The proposed algorithm is based on a semi-unsupervised learning method, a kind of feature-based approach so that it does not detect the moving object individually. The proposed algorithm identifies dominant flow without individual object tracking using a latent Dirichlet allocation model in crowded environments. It can also automatically detect and localize an abnormally moving object in real-life video. The performance tests are taken with several real-life databases, and their results show that the proposed algorithm can efficiently detect abnormally moving objects in real time. The proposed algorithm can be applied to any situation in which abnormal directions or abnormal speeds are detected regardless of direction.

  18. Memory-Based Multiagent Coevolution Modeling for Robust Moving Object Tracking

    PubMed Central

    Wang, Yanjiang; Qi, Yujuan; Li, Yongping

    2013-01-01

    The three-stage human brain memory model is incorporated into a multiagent coevolutionary process for finding the best match of the appearance of an object, and a memory-based multiagent coevolution algorithm for robust tracking the moving objects is presented in this paper. Each agent can remember, retrieve, or forget the appearance of the object through its own memory system by its own experience. A number of such memory-based agents are randomly distributed nearby the located object region and then mapped onto a 2D lattice-like environment for predicting the new location of the object by their coevolutionary behaviors, such as competition, recombination, and migration. Experimental results show that the proposed method can deal with large appearance changes and heavy occlusions when tracking a moving object. It can locate the correct object after the appearance changed or the occlusion recovered and outperforms the traditional particle filter-based tracking methods. PMID:23843739

  19. Memory-based multiagent coevolution modeling for robust moving object tracking.

    PubMed

    Wang, Yanjiang; Qi, Yujuan; Li, Yongping

    2013-01-01

    The three-stage human brain memory model is incorporated into a multiagent coevolutionary process for finding the best match of the appearance of an object, and a memory-based multiagent coevolution algorithm for robust tracking the moving objects is presented in this paper. Each agent can remember, retrieve, or forget the appearance of the object through its own memory system by its own experience. A number of such memory-based agents are randomly distributed nearby the located object region and then mapped onto a 2D lattice-like environment for predicting the new location of the object by their coevolutionary behaviors, such as competition, recombination, and migration. Experimental results show that the proposed method can deal with large appearance changes and heavy occlusions when tracking a moving object. It can locate the correct object after the appearance changed or the occlusion recovered and outperforms the traditional particle filter-based tracking methods.

  20. Semi-automated location identification of catheters in digital chest radiographs

    NASA Astrophysics Data System (ADS)

    Keller, Brad M.; Reeves, Anthony P.; Cham, Matthew D.; Henschke, Claudia I.; Yankelevitz, David F.

    2007-03-01

    Localization of catheter tips is the most common task in intensive care unit imaging. In this work, catheters appearing in digital chest radiographs acquired by portable chest x-rays were tracked using a semi-automatic method. Due to the fact that catheters are synthetic objects, its profile does not vary drastically over its length. Therefore, we use forward looking registration with normalized cross-correlation in order to take advantage of a priori information of the catheter profile. The registration is accomplished with a two-dimensional template representative of the catheter to be tracked generated using two seed points given by the user. To validate catheter tracking with this method, we look at two metrics: accuracy and precision. The algorithms results are compared to a ground truth established by catheter midlines marked by expert radiologists. Using 12 objects of interest comprised of naso-gastric, endo-tracheal tubes, and chest tubes, and PICC and central venous catheters, we find that our algorithm can fully track 75% of the objects of interest, with a average tracking accuracy and precision of 85.0%, 93.6% respectively using the above metrics. Such a technique would be useful for physicians wishing to verify the positioning of catheter tips using chest radiographs.

  1. Improvements in Space Surveillance Processing for Wide Field of View Optical Sensors

    NASA Astrophysics Data System (ADS)

    Sydney, P.; Wetterer, C.

    2014-09-01

    For more than a decade, an autonomous satellite tracking system at the Air Force Maui Optical and Supercomputing (AMOS) observatory has been generating routine astrometric measurements of Earth-orbiting Resident Space Objects (RSOs) using small commercial telescopes and sensors. Recent work has focused on developing an improved processing system, enhancing measurement performance and response while supporting other sensor systems and missions. This paper will outline improved techniques in scheduling, detection, astrometric and photometric measurements, and catalog maintenance. The processing system now integrates with Special Perturbation (SP) based astrodynamics algorithms, allowing covariance-based scheduling and more precise orbital estimates and object identification. A merit-based scheduling algorithm provides a global optimization framework to support diverse collection tasks and missions. The detection algorithms support a range of target tracking and camera acquisition rates. New comprehensive star catalogs allow for more precise astrometric and photometric calibrations including differential photometry for monitoring environmental changes. This paper will also examine measurement performance with varying tracking rates and acquisition parameters.

  2. Designs and Algorithms to Map Eye Tracking Data with Dynamic Multielement Moving Objects.

    PubMed

    Kang, Ziho; Mandal, Saptarshi; Crutchfield, Jerry; Millan, Angel; McClung, Sarah N

    2016-01-01

    Design concepts and algorithms were developed to address the eye tracking analysis issues that arise when (1) participants interrogate dynamic multielement objects that can overlap on the display and (2) visual angle error of the eye trackers is incapable of providing exact eye fixation coordinates. These issues were addressed by (1) developing dynamic areas of interests (AOIs) in the form of either convex or rectangular shapes to represent the moving and shape-changing multielement objects, (2) introducing the concept of AOI gap tolerance (AGT) that controls the size of the AOIs to address the overlapping and visual angle error issues, and (3) finding a near optimal AGT value. The approach was tested in the context of air traffic control (ATC) operations where air traffic controller specialists (ATCSs) interrogated multiple moving aircraft on a radar display to detect and control the aircraft for the purpose of maintaining safe and expeditious air transportation. In addition, we show how eye tracking analysis results can differ based on how we define dynamic AOIs to determine eye fixations on moving objects. The results serve as a framework to more accurately analyze eye tracking data and to better support the analysis of human performance.

  3. Designs and Algorithms to Map Eye Tracking Data with Dynamic Multielement Moving Objects

    PubMed Central

    Mandal, Saptarshi

    2016-01-01

    Design concepts and algorithms were developed to address the eye tracking analysis issues that arise when (1) participants interrogate dynamic multielement objects that can overlap on the display and (2) visual angle error of the eye trackers is incapable of providing exact eye fixation coordinates. These issues were addressed by (1) developing dynamic areas of interests (AOIs) in the form of either convex or rectangular shapes to represent the moving and shape-changing multielement objects, (2) introducing the concept of AOI gap tolerance (AGT) that controls the size of the AOIs to address the overlapping and visual angle error issues, and (3) finding a near optimal AGT value. The approach was tested in the context of air traffic control (ATC) operations where air traffic controller specialists (ATCSs) interrogated multiple moving aircraft on a radar display to detect and control the aircraft for the purpose of maintaining safe and expeditious air transportation. In addition, we show how eye tracking analysis results can differ based on how we define dynamic AOIs to determine eye fixations on moving objects. The results serve as a framework to more accurately analyze eye tracking data and to better support the analysis of human performance. PMID:27725830

  4. Visual object tracking by correlation filters and online learning

    NASA Astrophysics Data System (ADS)

    Zhang, Xin; Xia, Gui-Song; Lu, Qikai; Shen, Weiming; Zhang, Liangpei

    2018-06-01

    Due to the complexity of background scenarios and the variation of target appearance, it is difficult to achieve high accuracy and fast speed for object tracking. Currently, correlation filters based trackers (CFTs) show promising performance in object tracking. The CFTs estimate the target's position by correlation filters with different kinds of features. However, most of CFTs can hardly re-detect the target in the case of long-term tracking drifts. In this paper, a feature integration object tracker named correlation filters and online learning (CFOL) is proposed. CFOL estimates the target's position and its corresponding correlation score using the same discriminative correlation filter with multi-features. To reduce tracking drifts, a new sampling and updating strategy for online learning is proposed. Experiments conducted on 51 image sequences demonstrate that the proposed algorithm is superior to the state-of-the-art approaches.

  5. New robust algorithm for tracking cells in videos of Drosophila morphogenesis based on finding an ideal path in segmented spatio-temporal cellular structures.

    PubMed

    Bellaïche, Yohanns; Bosveld, Floris; Graner, François; Mikula, Karol; Remesíková, Mariana; Smísek, Michal

    2011-01-01

    In this paper, we present a novel algorithm for tracking cells in time lapse confocal microscopy movie of a Drosophila epithelial tissue during pupal morphogenesis. We consider a 2D + time video as a 3D static image, where frames are stacked atop each other, and using a spatio-temporal segmentation algorithm we obtain information about spatio-temporal 3D tubes representing evolutions of cells. The main idea for tracking is the usage of two distance functions--first one from the cells in the initial frame and second one from segmented boundaries. We track the cells backwards in time. The first distance function attracts the subsequently constructed cell trajectories to the cells in the initial frame and the second one forces them to be close to centerlines of the segmented tubular structures. This makes our tracking algorithm robust against noise and missing spatio-temporal boundaries. This approach can be generalized to a 3D + time video analysis, where spatio-temporal tubes are 4D objects.

  6. Improved Space Surveillance Network (SSN) Scheduling using Artificial Intelligence Techniques

    NASA Astrophysics Data System (ADS)

    Stottler, D.

    There are close to 20,000 cataloged manmade objects in space, the large majority of which are not active, functioning satellites. These are tracked by phased array and mechanical radars and ground and space-based optical telescopes, collectively known as the Space Surveillance Network (SSN). A better SSN schedule of observations could, using exactly the same legacy sensor resources, improve space catalog accuracy through more complementary tracking, provide better responsiveness to real-time changes, better track small debris in low earth orbit (LEO) through efficient use of applicable sensors, efficiently track deep space (DS) frequent revisit objects, handle increased numbers of objects and new types of sensors, and take advantage of future improved communication and control to globally optimize the SSN schedule. We have developed a scheduling algorithm that takes as input the space catalog and the associated covariance matrices and produces a globally optimized schedule for each sensor site as to what objects to observe and when. This algorithm is able to schedule more observations with the same sensor resources and have those observations be more complementary, in terms of the precision with which each orbit metric is known, to produce a satellite observation schedule that, when executed, minimizes the covariances across the entire space object catalog. If used operationally, the results would be significantly increased accuracy of the space catalog with fewer lost objects with the same set of sensor resources. This approach inherently can also trade-off fewer high priority tasks against more lower-priority tasks, when there is benefit in doing so. Currently the project has completed a prototyping and feasibility study, using open source data on the SSN's sensors, that showed significant reduction in orbit metric covariances. The algorithm techniques and results will be discussed along with future directions for the research.

  7. A-Track: A new approach for detection of moving objects in FITS images

    NASA Astrophysics Data System (ADS)

    Atay, T.; Kaplan, M.; Kilic, Y.; Karapinar, N.

    2016-10-01

    We have developed a fast, open-source, cross-platform pipeline, called A-Track, for detecting the moving objects (asteroids and comets) in sequential telescope images in FITS format. The pipeline is coded in Python 3. The moving objects are detected using a modified line detection algorithm, called MILD. We tested the pipeline on astronomical data acquired by an SI-1100 CCD with a 1-meter telescope. We found that A-Track performs very well in terms of detection efficiency, stability, and processing time. The code is hosted on GitHub under the GNU GPL v3 license.

  8. Robust visual tracking based on deep convolutional neural networks and kernelized correlation filters

    NASA Astrophysics Data System (ADS)

    Yang, Hua; Zhong, Donghong; Liu, Chenyi; Song, Kaiyou; Yin, Zhouping

    2018-03-01

    Object tracking is still a challenging problem in computer vision, as it entails learning an effective model to account for appearance changes caused by occlusion, out of view, plane rotation, scale change, and background clutter. This paper proposes a robust visual tracking algorithm called deep convolutional neural network (DCNNCT) to simultaneously address these challenges. The proposed DCNNCT algorithm utilizes a DCNN to extract the image feature of a tracked target, and the full range of information regarding each convolutional layer is used to express the image feature. Subsequently, the kernelized correlation filters (CF) in each convolutional layer are adaptively learned, the correlation response maps of that are combined to estimate the location of the tracked target. To avoid the case of tracking failure, an online random ferns classifier is employed to redetect the tracked target, and a dual-threshold scheme is used to obtain the final target location by comparing the tracking result with the detection result. Finally, the change in scale of the target is determined by building scale pyramids and training a CF. Extensive experiments demonstrate that the proposed algorithm is effective at tracking, especially when evaluated using an index called the overlap rate. The DCNNCT algorithm is also highly competitive in terms of robustness with respect to state-of-the-art trackers in various challenging scenarios.

  9. Virtual target tracking (VTT) as applied to mobile satellite communication networks

    NASA Astrophysics Data System (ADS)

    Amoozegar, Farid

    1999-08-01

    Traditionally, target tracking has been used for aerospace applications, such as, tracking highly maneuvering targets in a cluttered environment for missile-to-target intercept scenarios. Although the speed and maneuvering capability of current aerospace targets demand more efficient algorithms, many complex techniques have already been proposed in the literature, which primarily cover the defense applications of tracking methods. On the other hand, the rapid growth of Global Communication Systems, Global Information Systems (GIS), and Global Positioning Systems (GPS) is creating new and more diverse challenges for multi-target tracking applications. Mobile communication and computing can very well appreciate a huge market for Cellular Communication and Tracking Devices (CCTD), which will be tracking networked devices at the cellular level. The objective of this paper is to introduce a new concept, i.e., Virtual Target Tracking (VTT) for commercial applications of multi-target tracking algorithms and techniques as applied to mobile satellite communication networks. It would be discussed how Virtual Target Tracking would bring more diversity to target tracking research.

  10. A long-term tropical mesoscale convective systems dataset based on a novel objective automatic tracking algorithm

    NASA Astrophysics Data System (ADS)

    Huang, Xiaomeng; Hu, Chenqi; Huang, Xing; Chu, Yang; Tseng, Yu-heng; Zhang, Guang Jun; Lin, Yanluan

    2018-01-01

    Mesoscale convective systems (MCSs) are important components of tropical weather systems and the climate system. Long-term data of MCS are of great significance in weather and climate research. Using long-term (1985-2008) global satellite infrared (IR) data, we developed a novel objective automatic tracking algorithm, which combines a Kalman filter (KF) with the conventional area-overlapping method, to generate a comprehensive MCS dataset. The new algorithm can effectively track small and fast-moving MCSs and thus obtain more realistic and complete tracking results than previous studies. A few examples are provided to illustrate the potential application of the dataset with a focus on the diurnal variations of MCSs over land and ocean regions. We find that the MCSs occurring over land tend to initiate in the afternoon with greater intensity, but the oceanic MCSs are more likely to initiate in the early morning with weaker intensity. A double peak in the maximum spatial coverage is noted over the western Pacific, especially over the southwestern Pacific during the austral summer. Oceanic MCSs also persist for approximately 1 h longer than their continental counterparts.

  11. Extending Correlation Filter-Based Visual Tracking by Tree-Structured Ensemble and Spatial Windowing.

    PubMed

    Gundogdu, Erhan; Ozkan, Huseyin; Alatan, A Aydin

    2017-11-01

    Correlation filters have been successfully used in visual tracking due to their modeling power and computational efficiency. However, the state-of-the-art correlation filter-based (CFB) tracking algorithms tend to quickly discard the previous poses of the target, since they consider only a single filter in their models. On the contrary, our approach is to register multiple CFB trackers for previous poses and exploit the registered knowledge when an appearance change occurs. To this end, we propose a novel tracking algorithm [of complexity O(D) ] based on a large ensemble of CFB trackers. The ensemble [of size O(2 D ) ] is organized over a binary tree (depth D ), and learns the target appearance subspaces such that each constituent tracker becomes an expert of a certain appearance. During tracking, the proposed algorithm combines only the appearance-aware relevant experts to produce boosted tracking decisions. Additionally, we propose a versatile spatial windowing technique to enhance the individual expert trackers. For this purpose, spatial windows are learned for target objects as well as the correlation filters and then the windowed regions are processed for more robust correlations. In our extensive experiments on benchmark datasets, we achieve a substantial performance increase by using the proposed tracking algorithm together with the spatial windowing.

  12. Enhancement of ELDA Tracker Based on CNN Features and Adaptive Model Update.

    PubMed

    Gao, Changxin; Shi, Huizhang; Yu, Jin-Gang; Sang, Nong

    2016-04-15

    Appearance representation and the observation model are the most important components in designing a robust visual tracking algorithm for video-based sensors. Additionally, the exemplar-based linear discriminant analysis (ELDA) model has shown good performance in object tracking. Based on that, we improve the ELDA tracking algorithm by deep convolutional neural network (CNN) features and adaptive model update. Deep CNN features have been successfully used in various computer vision tasks. Extracting CNN features on all of the candidate windows is time consuming. To address this problem, a two-step CNN feature extraction method is proposed by separately computing convolutional layers and fully-connected layers. Due to the strong discriminative ability of CNN features and the exemplar-based model, we update both object and background models to improve their adaptivity and to deal with the tradeoff between discriminative ability and adaptivity. An object updating method is proposed to select the "good" models (detectors), which are quite discriminative and uncorrelated to other selected models. Meanwhile, we build the background model as a Gaussian mixture model (GMM) to adapt to complex scenes, which is initialized offline and updated online. The proposed tracker is evaluated on a benchmark dataset of 50 video sequences with various challenges. It achieves the best overall performance among the compared state-of-the-art trackers, which demonstrates the effectiveness and robustness of our tracking algorithm.

  13. Enhancement of ELDA Tracker Based on CNN Features and Adaptive Model Update

    PubMed Central

    Gao, Changxin; Shi, Huizhang; Yu, Jin-Gang; Sang, Nong

    2016-01-01

    Appearance representation and the observation model are the most important components in designing a robust visual tracking algorithm for video-based sensors. Additionally, the exemplar-based linear discriminant analysis (ELDA) model has shown good performance in object tracking. Based on that, we improve the ELDA tracking algorithm by deep convolutional neural network (CNN) features and adaptive model update. Deep CNN features have been successfully used in various computer vision tasks. Extracting CNN features on all of the candidate windows is time consuming. To address this problem, a two-step CNN feature extraction method is proposed by separately computing convolutional layers and fully-connected layers. Due to the strong discriminative ability of CNN features and the exemplar-based model, we update both object and background models to improve their adaptivity and to deal with the tradeoff between discriminative ability and adaptivity. An object updating method is proposed to select the “good” models (detectors), which are quite discriminative and uncorrelated to other selected models. Meanwhile, we build the background model as a Gaussian mixture model (GMM) to adapt to complex scenes, which is initialized offline and updated online. The proposed tracker is evaluated on a benchmark dataset of 50 video sequences with various challenges. It achieves the best overall performance among the compared state-of-the-art trackers, which demonstrates the effectiveness and robustness of our tracking algorithm. PMID:27092505

  14. Real and virtual explorations of the environment and interactive tracking of movable objects for the blind on the basis of tactile-acoustical maps and 3D environment models.

    PubMed

    Hub, Andreas; Hartter, Tim; Kombrink, Stefan; Ertl, Thomas

    2008-01-01

    PURPOSE.: This study describes the development of a multi-functional assistant system for the blind which combines localisation, real and virtual navigation within modelled environments and the identification and tracking of fixed and movable objects. The approximate position of buildings is determined with a global positioning sensor (GPS), then the user establishes exact position at a specific landmark, like a door. This location initialises indoor navigation, based on an inertial sensor, a step recognition algorithm and map. Tracking of movable objects is provided by another inertial sensor and a head-mounted stereo camera, combined with 3D environmental models. This study developed an algorithm based on shape and colour to identify objects and used a common face detection algorithm to inform the user of the presence and position of others. The system allows blind people to determine their position with approximately 1 metre accuracy. Virtual exploration of the environment can be accomplished by moving one's finger on a touch screen of a small portable tablet PC. The name of rooms, building features and hazards, modelled objects and their positions are presented acoustically or in Braille. Given adequate environmental models, this system offers blind people the opportunity to navigate independently and safely, even within unknown environments. Additionally, the system facilitates education and rehabilitation by providing, in several languages, object names, features and relative positions.

  15. MRI-based dynamic tracking of an untethered ferromagnetic microcapsule navigating in liquid

    NASA Astrophysics Data System (ADS)

    Dahmen, Christian; Belharet, Karim; Folio, David; Ferreira, Antoine; Fatikow, Sergej

    2016-04-01

    The propulsion of ferromagnetic objects by means of MRI gradients is a promising approach to enable new forms of therapy. In this work, necessary techniques are presented to make this approach work. This includes path planning algorithms working on MRI data, ferromagnetic artifact imaging and a tracking algorithm which delivers position feedback for the ferromagnetic objects, and a propulsion sequence to enable interleaved magnetic propulsion and imaging. Using a dedicated software environment, integrating path-planning methods and real-time tracking, a clinical MRI system is adapted to provide this new functionality for controlled interventional targeted therapeutic applications. Through MRI-based sensing analysis, this article aims to propose a framework to plan a robust pathway to enhance the navigation ability to reach deep locations in the human body. The proposed approaches are validated with different experiments.

  16. Accurate mask-based spatially regularized correlation filter for visual tracking

    NASA Astrophysics Data System (ADS)

    Gu, Xiaodong; Xu, Xinping

    2017-01-01

    Recently, discriminative correlation filter (DCF)-based trackers have achieved extremely successful results in many competitions and benchmarks. These methods utilize a periodic assumption of the training samples to efficiently learn a classifier. However, this assumption will produce unwanted boundary effects, which severely degrade the tracking performance. Correlation filters with limited boundaries and spatially regularized DCFs were proposed to reduce boundary effects. However, their methods used the fixed mask or predesigned weights function, respectively, which was unsuitable for large appearance variation. We propose an accurate mask-based spatially regularized correlation filter for visual tracking. Our augmented objective can reduce the boundary effect even in large appearance variation. In our algorithm, the masking matrix is converted into the regularized function that acts on the correlation filter in frequency domain, which makes the algorithm fast convergence. Our online tracking algorithm performs favorably against state-of-the-art trackers on OTB-2015 Benchmark in terms of efficiency, accuracy, and robustness.

  17. Robot tracking system improvements and visual calibration of orbiter position for radiator inspection

    NASA Technical Reports Server (NTRS)

    Tonkay, Gregory

    1990-01-01

    The following separate topics are addressed: (1) improving a robotic tracking system; and (2) providing insights into orbiter position calibration for radiator inspection. The objective of the tracking system project was to provide the capability to track moving targets more accurately by adjusting parameters in the control system and implementing a predictive algorithm. A computer model was developed to emulate the tracking system. Using this model as a test bed, a self-tuning algorithm was developed to tune the system gains. The model yielded important findings concerning factors that affect the gains. The self-tuning algorithms will provide the concepts to write a program to automatically tune the gains in the real system. The section concerning orbiter position calibration provides a comparison to previous work that had been performed for plant growth. It provided the conceptualized routines required to visually determine the orbiter position and orientation. Furthermore, it identified the types of information which are required to flow between the robot controller and the vision system.

  18. A Kalman-Filter-Based Common Algorithm Approach for Object Detection in Surgery Scene to Assist Surgeon's Situation Awareness in Robot-Assisted Laparoscopic Surgery

    PubMed Central

    2018-01-01

    Although the use of the surgical robot is rapidly expanding for various medical treatments, there still exist safety issues and concerns about robot-assisted surgeries due to limited vision through a laparoscope, which may cause compromised situation awareness and surgical errors requiring rapid emergency conversion to open surgery. To assist surgeon's situation awareness and preventive emergency response, this study proposes situation information guidance through a vision-based common algorithm architecture for automatic detection and tracking of intraoperative hemorrhage and surgical instruments. The proposed common architecture comprises the location of the object of interest using feature texture, morphological information, and the tracking of the object based on Kalman filter for robustness with reduced error. The average recall and precision of the instrument detection in four prostate surgery videos were 96% and 86%, and the accuracy of the hemorrhage detection in two prostate surgery videos was 98%. Results demonstrate the robustness of the automatic intraoperative object detection and tracking which can be used to enhance the surgeon's preventive state recognition during robot-assisted surgery. PMID:29854366

  19. Improved segmentation of occluded and adjoining vehicles in traffic surveillance videos

    NASA Astrophysics Data System (ADS)

    Juneja, Medha; Grover, Priyanka

    2013-12-01

    Occlusion in image processing refers to concealment of any part of the object or the whole object from view of an observer. Real time videos captured by static cameras on roads often encounter overlapping and hence, occlusion of vehicles. Occlusion in traffic surveillance videos usually occurs when an object which is being tracked is hidden by another object. This makes it difficult for the object detection algorithms to distinguish all the vehicles efficiently. Also morphological operations tend to join the close proximity vehicles resulting in formation of a single bounding box around more than one vehicle. Such problems lead to errors in further video processing, like counting of vehicles in a video. The proposed system brings forward efficient moving object detection and tracking approach to reduce such errors. The paper uses successive frame subtraction technique for detection of moving objects. Further, this paper implements the watershed algorithm to segment the overlapped and adjoining vehicles. The segmentation results have been improved by the use of noise and morphological operations.

  20. Detection of nuclei in 4D Nomarski DIC microscope images of early Caenorhabditis elegans embryos using local image entropy and object tracking

    PubMed Central

    Hamahashi, Shugo; Onami, Shuichi; Kitano, Hiroaki

    2005-01-01

    Background The ability to detect nuclei in embryos is essential for studying the development of multicellular organisms. A system of automated nuclear detection has already been tested on a set of four-dimensional (4D) Nomarski differential interference contrast (DIC) microscope images of Caenorhabditis elegans embryos. However, the system needed laborious hand-tuning of its parameters every time a new image set was used. It could not detect nuclei in the process of cell division, and could detect nuclei only from the two- to eight-cell stages. Results We developed a system that automates the detection of nuclei in a set of 4D DIC microscope images of C. elegans embryos. Local image entropy is used to produce regions of the images that have the image texture of the nucleus. From these regions, those that actually detect nuclei are manually selected at the first and last time points of the image set, and an object-tracking algorithm then selects regions that detect nuclei in between the first and last time points. The use of local image entropy makes the system applicable to multiple image sets without the need to change its parameter values. The use of an object-tracking algorithm enables the system to detect nuclei in the process of cell division. The system detected nuclei with high sensitivity and specificity from the one- to 24-cell stages. Conclusion A combination of local image entropy and an object-tracking algorithm enabled highly objective and productive detection of nuclei in a set of 4D DIC microscope images of C. elegans embryos. The system will facilitate genomic and computational analyses of C. elegans embryos. PMID:15910690

  1. Approach for counting vehicles in congested traffic flow

    NASA Astrophysics Data System (ADS)

    Tan, Xiaojun; Li, Jun; Liu, Wei

    2005-02-01

    More and more image sensors are used in intelligent transportation systems. In practice, occlusion is always a problem when counting vehicles in congested traffic. This paper tries to present an approach to solve the problem. The proposed approach consists of three main procedures. Firstly, a new algorithm of background subtraction is performed. The aim is to segment moving objects from an illumination-variant background. Secondly, object tracking is performed, where the CONDENSATION algorithm is used. This can avoid the problem of matching vehicles in successive frames. Thirdly, an inspecting procedure is executed to count the vehicles. When a bus firstly occludes a car and then the bus moves away a few frames later, the car will appear in the scene. The inspecting procedure should find the "new" car and add it as a tracking object.

  2. Discriminative object tracking via sparse representation and online dictionary learning.

    PubMed

    Xie, Yuan; Zhang, Wensheng; Li, Cuihua; Lin, Shuyang; Qu, Yanyun; Zhang, Yinghua

    2014-04-01

    We propose a robust tracking algorithm based on local sparse coding with discriminative dictionary learning and new keypoint matching schema. This algorithm consists of two parts: the local sparse coding with online updated discriminative dictionary for tracking (SOD part), and the keypoint matching refinement for enhancing the tracking performance (KP part). In the SOD part, the local image patches of the target object and background are represented by their sparse codes using an over-complete discriminative dictionary. Such discriminative dictionary, which encodes the information of both the foreground and the background, may provide more discriminative power. Furthermore, in order to adapt the dictionary to the variation of the foreground and background during the tracking, an online learning method is employed to update the dictionary. The KP part utilizes refined keypoint matching schema to improve the performance of the SOD. With the help of sparse representation and online updated discriminative dictionary, the KP part are more robust than the traditional method to reject the incorrect matches and eliminate the outliers. The proposed method is embedded into a Bayesian inference framework for visual tracking. Experimental results on several challenging video sequences demonstrate the effectiveness and robustness of our approach.

  3. Moving Object Detection Using a Parallax Shift Vector Algorithm

    NASA Astrophysics Data System (ADS)

    Gural, Peter S.; Otto, Paul R.; Tedesco, Edward F.

    2018-07-01

    There are various algorithms currently in use to detect asteroids from ground-based observatories, but they are generally restricted to linear or mildly curved movement of the target object across the field of view. Space-based sensors in high inclination, low Earth orbits can induce significant parallax in a collected sequence of images, especially for objects at the typical distances of asteroids in the inner solar system. This results in a highly nonlinear motion pattern of the asteroid across the sensor, which requires a more sophisticated search pattern for detection processing. Both the classical pattern matching used in ground-based asteroid search and the more sensitive matched filtering and synthetic tracking techniques, can be adapted to account for highly complex parallax motion. A new shift vector generation methodology is discussed along with its impacts on commonly used detection algorithms, processing load, and responsiveness to asteroid track reporting. The matched filter, template generator, and pattern matcher source code for the software described herein are available via GitHub.

  4. Model-based vision for space applications

    NASA Technical Reports Server (NTRS)

    Chaconas, Karen; Nashman, Marilyn; Lumia, Ronald

    1992-01-01

    This paper describes a method for tracking moving image features by combining spatial and temporal edge information with model based feature information. The algorithm updates the two-dimensional position of object features by correlating predicted model features with current image data. The results of the correlation process are used to compute an updated model. The algorithm makes use of a high temporal sampling rate with respect to spatial changes of the image features and operates in a real-time multiprocessing environment. Preliminary results demonstrate successful tracking for image feature velocities between 1.1 and 4.5 pixels every image frame. This work has applications for docking, assembly, retrieval of floating objects and a host of other space-related tasks.

  5. Shadow Detection Based on Regions of Light Sources for Object Extraction in Nighttime Video

    PubMed Central

    Lee, Gil-beom; Lee, Myeong-jin; Lee, Woo-Kyung; Park, Joo-heon; Kim, Tae-Hwan

    2017-01-01

    Intelligent video surveillance systems detect pre-configured surveillance events through background modeling, foreground and object extraction, object tracking, and event detection. Shadow regions inside video frames sometimes appear as foreground objects, interfere with ensuing processes, and finally degrade the event detection performance of the systems. Conventional studies have mostly used intensity, color, texture, and geometric information to perform shadow detection in daytime video, but these methods lack the capability of removing shadows in nighttime video. In this paper, a novel shadow detection algorithm for nighttime video is proposed; this algorithm partitions each foreground object based on the object’s vertical histogram and screens out shadow objects by validating their orientations heading toward regions of light sources. From the experimental results, it can be seen that the proposed algorithm shows more than 93.8% shadow removal and 89.9% object extraction rates for nighttime video sequences, and the algorithm outperforms conventional shadow removal algorithms designed for daytime videos. PMID:28327515

  6. A Fast MEANSHIFT Algorithm-Based Target Tracking System

    PubMed Central

    Sun, Jian

    2012-01-01

    Tracking moving targets in complex scenes using an active video camera is a challenging task. Tracking accuracy and efficiency are two key yet generally incompatible aspects of a Target Tracking System (TTS). A compromise scheme will be studied in this paper. A fast mean-shift-based Target Tracking scheme is designed and realized, which is robust to partial occlusion and changes in object appearance. The physical simulation shows that the image signal processing speed is >50 frame/s. PMID:22969397

  7. Toward automating Hammersmith pulled-to-sit examination of infants using feature point based video object tracking.

    PubMed

    Dogra, Debi P; Majumdar, Arun K; Sural, Shamik; Mukherjee, Jayanta; Mukherjee, Suchandra; Singh, Arun

    2012-01-01

    Hammersmith Infant Neurological Examination (HINE) is a set of tests used for grading neurological development of infants on a scale of 0 to 3. These tests help in assessing neurophysiological development of babies, especially preterm infants who are born before (the fetus reaches) the gestational age of 36 weeks. Such tests are often conducted in the follow-up clinics of hospitals for grading infants with suspected disabilities. Assessment based on HINE depends on the expertise of the physicians involved in conducting the examinations. It has been noted that some of these tests, especially pulled-to-sit and lateral tilting, are difficult to assess solely based on visual observation. For example, during the pulled-to-sit examination, the examiner needs to observe the relative movement of the head with respect to torso while pulling the infant by holding wrists. The examiner may find it difficult to follow the head movement from the coronal view. Video object tracking based automatic or semi-automatic analysis can be helpful in this case. In this paper, we present a video based method to automate the analysis of pulled-to-sit examination. In this context, a dynamic programming and node pruning based efficient video object tracking algorithm has been proposed. Pulled-to-sit event detection is handled by the proposed tracking algorithm that uses a 2-D geometric model of the scene. The algorithm has been tested with normal as well as marker based videos of the examination recorded at the neuro-development clinic of the SSKM Hospital, Kolkata, India. It is found that the proposed algorithm is capable of estimating the pulled-to-sit score with sensitivity (80%-92%) and specificity (89%-96%).

  8. Real-time acquisition and tracking system with multiple Kalman filters

    NASA Astrophysics Data System (ADS)

    Beard, Gary C.; McCarter, Timothy G.; Spodeck, Walter; Fletcher, James E.

    1994-07-01

    The design of a real-time, ground-based, infrared tracking system with proven field success in tracking boost vehicles through burnout is presented with emphasis on the software design. The system was originally developed to deliver relative angular positions during boost, and thrust termination time to a sensor fusion station in real-time. Autonomous target acquisition and angle-only tracking features were developed to ensure success under stressing conditions. A unique feature of the system is the incorporation of multiple copies of a Kalman filter tracking algorithm running in parallel in order to minimize run-time. The system is capable of updating the state vector for an object at measurement rates approaching 90 Hz. This paper will address the top-level software design, details of the algorithms employed, system performance history in the field, and possible future upgrades.

  9. A Class of Prediction-Correction Methods for Time-Varying Convex Optimization

    NASA Astrophysics Data System (ADS)

    Simonetto, Andrea; Mokhtari, Aryan; Koppel, Alec; Leus, Geert; Ribeiro, Alejandro

    2016-09-01

    This paper considers unconstrained convex optimization problems with time-varying objective functions. We propose algorithms with a discrete time-sampling scheme to find and track the solution trajectory based on prediction and correction steps, while sampling the problem data at a constant rate of $1/h$, where $h$ is the length of the sampling interval. The prediction step is derived by analyzing the iso-residual dynamics of the optimality conditions. The correction step adjusts for the distance between the current prediction and the optimizer at each time step, and consists either of one or multiple gradient steps or Newton steps, which respectively correspond to the gradient trajectory tracking (GTT) or Newton trajectory tracking (NTT) algorithms. Under suitable conditions, we establish that the asymptotic error incurred by both proposed methods behaves as $O(h^2)$, and in some cases as $O(h^4)$, which outperforms the state-of-the-art error bound of $O(h)$ for correction-only methods in the gradient-correction step. Moreover, when the characteristics of the objective function variation are not available, we propose approximate gradient and Newton tracking algorithms (AGT and ANT, respectively) that still attain these asymptotical error bounds. Numerical simulations demonstrate the practical utility of the proposed methods and that they improve upon existing techniques by several orders of magnitude.

  10. Tracking of Maneuvering Complex Extended Object with Coupled Motion Kinematics and Extension Dynamics Using Range Extent Measurements

    PubMed Central

    Sun, Lifan; Ji, Baofeng; Lan, Jian; He, Zishu; Pu, Jiexin

    2017-01-01

    The key to successful maneuvering complex extended object tracking (MCEOT) using range extent measurements provided by high resolution sensors lies in accurate and effective modeling of both the extension dynamics and the centroid kinematics. During object maneuvers, the extension dynamics of an object with a complex shape is highly coupled with the centroid kinematics. However, this difficult but important problem is rarely considered and solved explicitly. In view of this, this paper proposes a general approach to modeling a maneuvering complex extended object based on Minkowski sum, so that the coupled turn maneuvers in both the centroid states and extensions can be described accurately. The new model has a concise and unified form, in which the complex extension dynamics can be simply and jointly characterized by multiple simple sub-objects’ extension dynamics based on Minkowski sum. The proposed maneuvering model fits range extent measurements very well due to its favorable properties. Based on this model, an MCEOT algorithm dealing with motion and extension maneuvers is also derived. Two different cases of the turn maneuvers with known/unknown turn rates are specifically considered. The proposed algorithm which jointly estimates the kinematic state and the object extension can also be easily implemented. Simulation results demonstrate the effectiveness of the proposed modeling and tracking approaches. PMID:28937629

  11. Multiple player tracking in sports video: a dual-mode two-way bayesian inference approach with progressive observation modeling.

    PubMed

    Xing, Junliang; Ai, Haizhou; Liu, Liwei; Lao, Shihong

    2011-06-01

    Multiple object tracking (MOT) is a very challenging task yet of fundamental importance for many practical applications. In this paper, we focus on the problem of tracking multiple players in sports video which is even more difficult due to the abrupt movements of players and their complex interactions. To handle the difficulties in this problem, we present a new MOT algorithm which contributes both in the observation modeling level and in the tracking strategy level. For the observation modeling, we develop a progressive observation modeling process that is able to provide strong tracking observations and greatly facilitate the tracking task. For the tracking strategy, we propose a dual-mode two-way Bayesian inference approach which dynamically switches between an offline general model and an online dedicated model to deal with single isolated object tracking and multiple occluded object tracking integrally by forward filtering and backward smoothing. Extensive experiments on different kinds of sports videos, including football, basketball, as well as hockey, demonstrate the effectiveness and efficiency of the proposed method.

  12. An Incentive-based Online Optimization Framework for Distribution Grids

    DOE PAGES

    Zhou, Xinyang; Dall'Anese, Emiliano; Chen, Lijun; ...

    2017-10-09

    This article formulates a time-varying social-welfare maximization problem for distribution grids with distributed energy resources (DERs) and develops online distributed algorithms to identify (and track) its solutions. In the considered setting, network operator and DER-owners pursue given operational and economic objectives, while concurrently ensuring that voltages are within prescribed limits. The proposed algorithm affords an online implementation to enable tracking of the solutions in the presence of time-varying operational conditions and changing optimization objectives. It involves a strategy where the network operator collects voltage measurements throughout the feeder to build incentive signals for the DER-owners in real time; DERs thenmore » adjust the generated/consumed powers in order to avoid the violation of the voltage constraints while maximizing given objectives. Stability of the proposed schemes is analytically established and numerically corroborated.« less

  13. An Incentive-based Online Optimization Framework for Distribution Grids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Xinyang; Dall'Anese, Emiliano; Chen, Lijun

    This article formulates a time-varying social-welfare maximization problem for distribution grids with distributed energy resources (DERs) and develops online distributed algorithms to identify (and track) its solutions. In the considered setting, network operator and DER-owners pursue given operational and economic objectives, while concurrently ensuring that voltages are within prescribed limits. The proposed algorithm affords an online implementation to enable tracking of the solutions in the presence of time-varying operational conditions and changing optimization objectives. It involves a strategy where the network operator collects voltage measurements throughout the feeder to build incentive signals for the DER-owners in real time; DERs thenmore » adjust the generated/consumed powers in order to avoid the violation of the voltage constraints while maximizing given objectives. Stability of the proposed schemes is analytically established and numerically corroborated.« less

  14. Object tracking algorithm based on the color histogram probability distribution

    NASA Astrophysics Data System (ADS)

    Li, Ning; Lu, Tongwei; Zhang, Yanduo

    2018-04-01

    In order to resolve tracking failure resulted from target's being occlusion and follower jamming caused by objects similar to target in the background, reduce the influence of light intensity. This paper change HSV and YCbCr color channel correction the update center of the target, continuously updated image threshold self-adaptive target detection effect, Clustering the initial obstacles is roughly range, shorten the threshold range, maximum to detect the target. In order to improve the accuracy of detector, this paper increased the Kalman filter to estimate the target state area. The direction predictor based on the Markov model is added to realize the target state estimation under the condition of background color interference and enhance the ability of the detector to identify similar objects. The experimental results show that the improved algorithm more accurate and faster speed of processing.

  15. Moving object detection and tracking in videos through turbulent medium

    NASA Astrophysics Data System (ADS)

    Halder, Kalyan Kumar; Tahtali, Murat; Anavatti, Sreenatha G.

    2016-06-01

    This paper addresses the problem of identifying and tracking moving objects in a video sequence having a time-varying background. This is a fundamental task in many computer vision applications, though a very challenging one because of turbulence that causes blurring and spatiotemporal movements of the background images. Our proposed approach involves two major steps. First, a moving object detection algorithm that deals with the detection of real motions by separating the turbulence-induced motions using a two-level thresholding technique is used. In the second step, a feature-based generalized regression neural network is applied to track the detected objects throughout the frames in the video sequence. The proposed approach uses the centroid and area features of the moving objects and creates the reference regions instantly by selecting the objects within a circle. Simulation experiments are carried out on several turbulence-degraded video sequences and comparisons with an earlier method confirms that the proposed approach provides a more effective tracking of the targets.

  16. Evaluation of Moving Object Detection Based on Various Input Noise Using Fixed Camera

    NASA Astrophysics Data System (ADS)

    Kiaee, N.; Hashemizadeh, E.; Zarrinpanjeh, N.

    2017-09-01

    Detecting and tracking objects in video has been as a research area of interest in the field of image processing and computer vision. This paper evaluates the performance of a novel method for object detection algorithm in video sequences. This process helps us to know the advantage of this method which is being used. The proposed framework compares the correct and wrong detection percentage of this algorithm. This method was evaluated with the collected data in the field of urban transport which include car and pedestrian in fixed camera situation. The results show that the accuracy of the algorithm will decreases because of image resolution reduction.

  17. Automated Recognition of 3D Features in GPIR Images

    NASA Technical Reports Server (NTRS)

    Park, Han; Stough, Timothy; Fijany, Amir

    2007-01-01

    A method of automated recognition of three-dimensional (3D) features in images generated by ground-penetrating imaging radar (GPIR) is undergoing development. GPIR 3D images can be analyzed to detect and identify such subsurface features as pipes and other utility conduits. Until now, much of the analysis of GPIR images has been performed manually by expert operators who must visually identify and track each feature. The present method is intended to satisfy a need for more efficient and accurate analysis by means of algorithms that can automatically identify and track subsurface features, with minimal supervision by human operators. In this method, data from multiple sources (for example, data on different features extracted by different algorithms) are fused together for identifying subsurface objects. The algorithms of this method can be classified in several different ways. In one classification, the algorithms fall into three classes: (1) image-processing algorithms, (2) feature- extraction algorithms, and (3) a multiaxis data-fusion/pattern-recognition algorithm that includes a combination of machine-learning, pattern-recognition, and object-linking algorithms. The image-processing class includes preprocessing algorithms for reducing noise and enhancing target features for pattern recognition. The feature-extraction algorithms operate on preprocessed data to extract such specific features in images as two-dimensional (2D) slices of a pipe. Then the multiaxis data-fusion/ pattern-recognition algorithm identifies, classifies, and reconstructs 3D objects from the extracted features. In this process, multiple 2D features extracted by use of different algorithms and representing views along different directions are used to identify and reconstruct 3D objects. In object linking, which is an essential part of this process, features identified in successive 2D slices and located within a threshold radius of identical features in adjacent slices are linked in a directed-graph data structure. Relative to past approaches, this multiaxis approach offers the advantages of more reliable detections, better discrimination of objects, and provision of redundant information, which can be helpful in filling gaps in feature recognition by one of the component algorithms. The image-processing class also includes postprocessing algorithms that enhance identified features to prepare them for further scrutiny by human analysts (see figure). Enhancement of images as a postprocessing step is a significant departure from traditional practice, in which enhancement of images is a preprocessing step.

  18. Matching Real and Synthetic Panoramic Images Using a Variant of Geometric Hashing

    NASA Astrophysics Data System (ADS)

    Li-Chee-Ming, J.; Armenakis, C.

    2017-05-01

    This work demonstrates an approach to automatically initialize a visual model-based tracker, and recover from lost tracking, without prior camera pose information. These approaches are commonly referred to as tracking-by-detection. Previous tracking-by-detection techniques used either fiducials (i.e. landmarks or markers) or the object's texture. The main contribution of this work is the development of a tracking-by-detection algorithm that is based solely on natural geometric features. A variant of geometric hashing, a model-to-image registration algorithm, is proposed that searches for a matching panoramic image from a database of synthetic panoramic images captured in a 3D virtual environment. The approach identifies corresponding features between the matched panoramic images. The corresponding features are to be used in a photogrammetric space resection to estimate the camera pose. The experiments apply this algorithm to initialize a model-based tracker in an indoor environment using the 3D CAD model of the building.

  19. Connected Component Model for Multi-Object Tracking.

    PubMed

    He, Zhenyu; Li, Xin; You, Xinge; Tao, Dacheng; Tang, Yuan Yan

    2016-08-01

    In multi-object tracking, it is critical to explore the data associations by exploiting the temporal information from a sequence of frames rather than the information from the adjacent two frames. Since straightforwardly obtaining data associations from multi-frames is an NP-hard multi-dimensional assignment (MDA) problem, most existing methods solve this MDA problem by either developing complicated approximate algorithms, or simplifying MDA as a 2D assignment problem based upon the information extracted only from adjacent frames. In this paper, we show that the relation between associations of two observations is the equivalence relation in the data association problem, based on the spatial-temporal constraint that the trajectories of different objects must be disjoint. Therefore, the MDA problem can be equivalently divided into independent subproblems by equivalence partitioning. In contrast to existing works for solving the MDA problem, we develop a connected component model (CCM) by exploiting the constraints of the data association and the equivalence relation on the constraints. Based upon CCM, we can efficiently obtain the global solution of the MDA problem for multi-object tracking by optimizing a sequence of independent data association subproblems. Experiments on challenging public data sets demonstrate that our algorithm outperforms the state-of-the-art approaches.

  20. Single-camera three-dimensional tracking of natural particulate and zooplankton

    NASA Astrophysics Data System (ADS)

    Troutman, Valerie A.; Dabiri, John O.

    2018-07-01

    We develop and characterize an image processing algorithm to adapt single-camera defocusing digital particle image velocimetry (DDPIV) for three-dimensional (3D) particle tracking velocimetry (PTV) of natural particulates, such as those present in the ocean. The conventional DDPIV technique is extended to facilitate tracking of non-uniform, non-spherical particles within a volume depth an order of magnitude larger than current single-camera applications (i.e. 10 cm  ×  10 cm  ×  24 cm depth) by a dynamic template matching method. This 2D cross-correlation method does not rely on precise determination of the centroid of the tracked objects. To accommodate the broad range of particle number densities found in natural marine environments, the performance of the measurement technique at higher particle densities has been improved by utilizing the time-history of tracked objects to inform 3D reconstruction. The developed processing algorithms were analyzed using synthetically generated images of flow induced by Hill’s spherical vortex, and the capabilities of the measurement technique were demonstrated empirically through volumetric reconstructions of the 3D trajectories of particles and highly non-spherical, 5 mm zooplankton.

  1. An algorithm to track laboratory zebrafish shoals.

    PubMed

    Feijó, Gregory de Oliveira; Sangalli, Vicenzo Abichequer; da Silva, Isaac Newton Lima; Pinho, Márcio Sarroglia

    2018-05-01

    In this paper, a semi-automatic multi-object tracking method to track a group of unmarked zebrafish is proposed. This method can handle partial occlusion cases, maintaining the correct identity of each individual. For every object, we extracted a set of geometric features to be used in the two main stages of the algorithm. The first stage selected the best candidate, based both on the blobs identified in the image and the estimate generated by a Kalman Filter instance. In the second stage, if the same candidate-blob is selected by two or more instances, a blob-partitioning algorithm takes place in order to split this blob and reestablish the instances' identities. If the algorithm cannot determine the identity of a blob, a manual intervention is required. This procedure was compared against a manual labeled ground truth on four video sequences with different numbers of fish and spatial resolution. The performance of the proposed method is then compared against two well-known zebrafish tracking methods found in the literature: one that treats occlusion scenarios and one that only track fish that are not in occlusion. Based on the data set used, the proposed method outperforms the first method in correctly separating fish in occlusion, increasing its efficiency by at least 8.15% of the cases. As for the second, the proposed method's overall performance outperformed the second in some of the tested videos, especially those with lower image quality, because the second method requires high-spatial resolution images, which is not a requirement for the proposed method. Yet, the proposed method was able to separate fish involved in occlusion and correctly assign its identity in up to 87.85% of the cases, without accounting for user intervention. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Rapid, topology-based particle tracking for high-resolution measurements of large complex 3D motion fields.

    PubMed

    Patel, Mohak; Leggett, Susan E; Landauer, Alexander K; Wong, Ian Y; Franck, Christian

    2018-04-03

    Spatiotemporal tracking of tracer particles or objects of interest can reveal localized behaviors in biological and physical systems. However, existing tracking algorithms are most effective for relatively low numbers of particles that undergo displacements smaller than their typical interparticle separation distance. Here, we demonstrate a single particle tracking algorithm to reconstruct large complex motion fields with large particle numbers, orders of magnitude larger than previously tractably resolvable, thus opening the door for attaining very high Nyquist spatial frequency motion recovery in the images. Our key innovations are feature vectors that encode nearest neighbor positions, a rigorous outlier removal scheme, and an iterative deformation warping scheme. We test this technique for its accuracy and computational efficacy using synthetically and experimentally generated 3D particle images, including non-affine deformation fields in soft materials, complex fluid flows, and cell-generated deformations. We augment this algorithm with additional particle information (e.g., color, size, or shape) to further enhance tracking accuracy for high gradient and large displacement fields. These applications demonstrate that this versatile technique can rapidly track unprecedented numbers of particles to resolve large and complex motion fields in 2D and 3D images, particularly when spatial correlations exist.

  3. Robust multiperson detection and tracking for mobile service and social robots.

    PubMed

    Li, Liyuan; Yan, Shuicheng; Yu, Xinguo; Tan, Yeow Kee; Li, Haizhou

    2012-10-01

    This paper proposes an efficient system which integrates multiple vision models for robust multiperson detection and tracking for mobile service and social robots in public environments. The core technique is a novel maximum likelihood (ML)-based algorithm which combines the multimodel detections in mean-shift tracking. First, a likelihood probability which integrates detections and similarity to local appearance is defined. Then, an expectation-maximization (EM)-like mean-shift algorithm is derived under the ML framework. In each iteration, the E-step estimates the associations to the detections, and the M-step locates the new position according to the ML criterion. To be robust to the complex crowded scenarios for multiperson tracking, an improved sequential strategy to perform the mean-shift tracking is proposed. Under this strategy, human objects are tracked sequentially according to their priority order. To balance the efficiency and robustness for real-time performance, at each stage, the first two objects from the list of the priority order are tested, and the one with the higher score is selected. The proposed method has been successfully implemented on real-world service and social robots. The vision system integrates stereo-based and histograms-of-oriented-gradients-based human detections, occlusion reasoning, and sequential mean-shift tracking. Various examples to show the advantages and robustness of the proposed system for multiperson tracking from mobile robots are presented. Quantitative evaluations on the performance of multiperson tracking are also performed. Experimental results indicate that significant improvements have been achieved by using the proposed method.

  4. Design of a Solar Tracking Interactive Kiosk

    ERIC Educational Resources Information Center

    Greene, Nathaniel R.; Brunskill, Jeffrey C.

    2017-01-01

    A two-axis solar tracker and its interactive kiosk were designed by an interdisciplinary team of students and faculty. The objective was to develop a publicly accessible kiosk that would facilitate the study of energy usage and production on campus. Tracking is accomplished by an open-loop algorithm, microcontroller, and ham radio rotator. Solar…

  5. Verification hybrid control of a wheeled mobile robot and manipulator

    NASA Astrophysics Data System (ADS)

    Muszynska, Magdalena; Burghardt, Andrzej; Kurc, Krzysztof; Szybicki, Dariusz

    2016-04-01

    In this article, innovative approaches to realization of the wheeled mobile robots and manipulator tracking are presented. Conceptions include application of the neural-fuzzy systems to compensation of the controlled system's nonlinearities in the tracking control task. Proposed control algorithms work on-line, contain structure, that adapt to the changeable work conditions of the controlled systems, and do not require the preliminary learning. The algorithm was verification on the real object which was a Scorbot - ER 4pc robotic manipulator and a Pioneer - 2DX mobile robot.

  6. A Globally Optimal Particle Tracking Technique for Stereo Imaging Velocimetry Experiments

    NASA Technical Reports Server (NTRS)

    McDowell, Mark

    2008-01-01

    An important phase of any Stereo Imaging Velocimetry experiment is particle tracking. Particle tracking seeks to identify and characterize the motion of individual particles entrained in a fluid or air experiment. We analyze a cylindrical chamber filled with water and seeded with density-matched particles. In every four-frame sequence, we identify a particle track by assigning a unique track label for each camera image. The conventional approach to particle tracking is to use an exhaustive tree-search method utilizing greedy algorithms to reduce search times. However, these types of algorithms are not optimal due to a cascade effect of incorrect decisions upon adjacent tracks. We examine the use of a guided evolutionary neural net with simulated annealing to arrive at a globally optimal assignment of tracks. The net is guided both by the minimization of the search space through the use of prior limiting assumptions about valid tracks and by a strategy which seeks to avoid high-energy intermediate states which can trap the net in a local minimum. A stochastic search algorithm is used in place of back-propagation of error to further reduce the chance of being trapped in an energy well. Global optimization is achieved by minimizing an objective function, which includes both track smoothness and particle-image utilization parameters. In this paper we describe our model and present our experimental results. We compare our results with a nonoptimizing, predictive tracker and obtain an average increase in valid track yield of 27 percent

  7. Adaptive and accelerated tracking-learning-detection

    NASA Astrophysics Data System (ADS)

    Guo, Pengyu; Li, Xin; Ding, Shaowen; Tian, Zunhua; Zhang, Xiaohu

    2013-08-01

    An improved online long-term visual tracking algorithm, named adaptive and accelerated TLD (AA-TLD) based on Tracking-Learning-Detection (TLD) which is a novel tracking framework has been introduced in this paper. The improvement focuses on two aspects, one is adaption, which makes the algorithm not dependent on the pre-defined scanning grids by online generating scale space, and the other is efficiency, which uses not only algorithm-level acceleration like scale prediction that employs auto-regression and moving average (ARMA) model to learn the object motion to lessen the detector's searching range and the fixed number of positive and negative samples that ensures a constant retrieving time, but also CPU and GPU parallel technology to achieve hardware acceleration. In addition, in order to obtain a better effect, some TLD's details are redesigned, which uses a weight including both normalized correlation coefficient and scale size to integrate results, and adjusts distance metric thresholds online. A contrastive experiment on success rate, center location error and execution time, is carried out to show a performance and efficiency upgrade over state-of-the-art TLD with partial TLD datasets and Shenzhou IX return capsule image sequences. The algorithm can be used in the field of video surveillance to meet the need of real-time video tracking.

  8. Robust object tracking techniques for vision-based 3D motion analysis applications

    NASA Astrophysics Data System (ADS)

    Knyaz, Vladimir A.; Zheltov, Sergey Y.; Vishnyakov, Boris V.

    2016-04-01

    Automated and accurate spatial motion capturing of an object is necessary for a wide variety of applications including industry and science, virtual reality and movie, medicine and sports. For the most part of applications a reliability and an accuracy of the data obtained as well as convenience for a user are the main characteristics defining the quality of the motion capture system. Among the existing systems for 3D data acquisition, based on different physical principles (accelerometry, magnetometry, time-of-flight, vision-based), optical motion capture systems have a set of advantages such as high speed of acquisition, potential for high accuracy and automation based on advanced image processing algorithms. For vision-based motion capture accurate and robust object features detecting and tracking through the video sequence are the key elements along with a level of automation of capturing process. So for providing high accuracy of obtained spatial data the developed vision-based motion capture system "Mosca" is based on photogrammetric principles of 3D measurements and supports high speed image acquisition in synchronized mode. It includes from 2 to 4 technical vision cameras for capturing video sequences of object motion. The original camera calibration and external orientation procedures provide the basis for high accuracy of 3D measurements. A set of algorithms as for detecting, identifying and tracking of similar targets, so for marker-less object motion capture is developed and tested. The results of algorithms' evaluation show high robustness and high reliability for various motion analysis tasks in technical and biomechanics applications.

  9. Robust multiple cue fusion-based high-speed and nonrigid object tracking algorithm for short track speed skating

    NASA Astrophysics Data System (ADS)

    Liu, Chenguang; Cheng, Heng-Da; Zhang, Yingtao; Wang, Yuxuan; Xian, Min

    2016-01-01

    This paper presents a methodology for tracking multiple skaters in short track speed skating competitions. Nonrigid skaters move at high speed with severe occlusions happening frequently among them. The camera is panned quickly in order to capture the skaters in a large and dynamic scene. To automatically track the skaters and precisely output their trajectories becomes a challenging task in object tracking. We employ the global rink information to compensate camera motion and obtain the global spatial information of skaters, utilize random forest to fuse multiple cues and predict the blob of each skater, and finally apply a silhouette- and edge-based template-matching and blob-evolving method to labelling pixels to a skater. The effectiveness and robustness of the proposed method are verified through thorough experiments.

  10. A mobile agent-based moving objects indexing algorithm in location based service

    NASA Astrophysics Data System (ADS)

    Fang, Zhixiang; Li, Qingquan; Xu, Hong

    2006-10-01

    This paper will extends the advantages of location based service, specifically using their ability to management and indexing the positions of moving object, Moreover with this objective in mind, a mobile agent-based moving objects indexing algorithm is proposed in this paper to efficiently process indexing request and acclimatize itself to limitation of location based service environment. The prominent feature of this structure is viewing moving object's behavior as the mobile agent's span, the unique mapping between the geographical position of moving objects and span point of mobile agent is built to maintain the close relationship of them, and is significant clue for mobile agent-based moving objects indexing to tracking moving objects.

  11. Real time eye tracking using Kalman extended spatio-temporal context learning

    NASA Astrophysics Data System (ADS)

    Munir, Farzeen; Minhas, Fayyaz ul Amir Asfar; Jalil, Abdul; Jeon, Moongu

    2017-06-01

    Real time eye tracking has numerous applications in human computer interaction such as a mouse cursor control in a computer system. It is useful for persons with muscular or motion impairments. However, tracking the movement of the eye is complicated by occlusion due to blinking, head movement, screen glare, rapid eye movements, etc. In this work, we present the algorithmic and construction details of a real time eye tracking system. Our proposed system is an extension of Spatio-Temporal context learning through Kalman Filtering. Spatio-Temporal Context Learning offers state of the art accuracy in general object tracking but its performance suffers due to object occlusion. Addition of the Kalman filter allows the proposed method to model the dynamics of the motion of the eye and provide robust eye tracking in cases of occlusion. We demonstrate the effectiveness of this tracking technique by controlling the computer cursor in real time by eye movements.

  12. Performance improvement of multi-class detection using greedy algorithm for Viola-Jones cascade selection

    NASA Astrophysics Data System (ADS)

    Tereshin, Alexander A.; Usilin, Sergey A.; Arlazarov, Vladimir V.

    2018-04-01

    This paper aims to study the problem of multi-class object detection in video stream with Viola-Jones cascades. An adaptive algorithm for selecting Viola-Jones cascade based on greedy choice strategy in solution of the N-armed bandit problem is proposed. The efficiency of the algorithm on the problem of detection and recognition of the bank card logos in the video stream is shown. The proposed algorithm can be effectively used in documents localization and identification, recognition of road scene elements, localization and tracking of the lengthy objects , and for solving other problems of rigid object detection in a heterogeneous data flows. The computational efficiency of the algorithm makes it possible to use it both on personal computers and on mobile devices based on processors with low power consumption.

  13. Stereo vision tracking of multiple objects in complex indoor environments.

    PubMed

    Marrón-Romera, Marta; García, Juan C; Sotelo, Miguel A; Pizarro, Daniel; Mazo, Manuel; Cañas, José M; Losada, Cristina; Marcos, Alvaro

    2010-01-01

    This paper presents a novel system capable of solving the problem of tracking multiple targets in a crowded, complex and dynamic indoor environment, like those typical of mobile robot applications. The proposed solution is based on a stereo vision set in the acquisition step and a probabilistic algorithm in the obstacles position estimation process. The system obtains 3D position and speed information related to each object in the robot's environment; then it achieves a classification between building elements (ceiling, walls, columns and so on) and the rest of items in robot surroundings. All objects in robot surroundings, both dynamic and static, are considered to be obstacles but the structure of the environment itself. A combination of a Bayesian algorithm and a deterministic clustering process is used in order to obtain a multimodal representation of speed and position of detected obstacles. Performance of the final system has been tested against state of the art proposals; test results validate the authors' proposal. The designed algorithms and procedures provide a solution to those applications where similar multimodal data structures are found.

  14. Associating optical measurements and estimating orbits of geocentric objects with a Genetic Algorithm: performance limitations.

    NASA Astrophysics Data System (ADS)

    Zittersteijn, Michiel; Schildknecht, Thomas; Vananti, Alessandro; Dolado Perez, Juan Carlos; Martinot, Vincent

    2016-07-01

    Currently several thousands of objects are being tracked in the MEO and GEO regions through optical means. With the advent of improved sensors and a heightened interest in the problem of space debris, it is expected that the number of tracked objects will grow by an order of magnitude in the near future. This research aims to provide a method that can treat the correlation and orbit determination problems simultaneously, and is able to efficiently process large data sets with minimal manual intervention. This problem is also known as the Multiple Target Tracking (MTT) problem. The complexity of the MTT problem is defined by its dimension S. Current research tends to focus on the S = 2 MTT problem. The reason for this is that for S = 2 the problem has a P-complexity. However, with S = 2 the decision to associate a set of observations is based on the minimum amount of information, in ambiguous situations (e.g. satellite clusters) this will lead to incorrect associations. The S > 2 MTT problem is an NP-hard combinatorial optimization problem. In previous work an Elitist Genetic Algorithm (EGA) was proposed as a method to approximately solve this problem. It was shown that the EGA is able to find a good approximate solution with a polynomial time complexity. The EGA relies on solving the Lambert problem in order to perform the necessary orbit determinations. This means that the algorithm is restricted to orbits that are described by Keplerian motion. The work presented in this paper focuses on the impact that this restriction has on the algorithm performance.

  15. Collaborative real-time motion video analysis by human observer and image exploitation algorithms

    NASA Astrophysics Data System (ADS)

    Hild, Jutta; Krüger, Wolfgang; Brüstle, Stefan; Trantelle, Patrick; Unmüßig, Gabriel; Heinze, Norbert; Peinsipp-Byma, Elisabeth; Beyerer, Jürgen

    2015-05-01

    Motion video analysis is a challenging task, especially in real-time applications. In most safety and security critical applications, a human observer is an obligatory part of the overall analysis system. Over the last years, substantial progress has been made in the development of automated image exploitation algorithms. Hence, we investigate how the benefits of automated video analysis can be integrated suitably into the current video exploitation systems. In this paper, a system design is introduced which strives to combine both the qualities of the human observer's perception and the automated algorithms, thus aiming to improve the overall performance of a real-time video analysis system. The system design builds on prior work where we showed the benefits for the human observer by means of a user interface which utilizes the human visual focus of attention revealed by the eye gaze direction for interaction with the image exploitation system; eye tracker-based interaction allows much faster, more convenient, and equally precise moving target acquisition in video images than traditional computer mouse selection. The system design also builds on prior work we did on automated target detection, segmentation, and tracking algorithms. Beside the system design, a first pilot study is presented, where we investigated how the participants (all non-experts in video analysis) performed in initializing an object tracking subsystem by selecting a target for tracking. Preliminary results show that the gaze + key press technique is an effective, efficient, and easy to use interaction technique when performing selection operations on moving targets in videos in order to initialize an object tracking function.

  16. Pixel decomposition for tracking in low resolution videos

    NASA Astrophysics Data System (ADS)

    Govinda, Vivekanand; Ralph, Jason F.; Spencer, Joseph W.; Goulermas, John Y.; Yang, Lihua; Abbas, Alaa M.

    2008-04-01

    This paper describes a novel set of algorithms that allows indoor activity to be monitored using data from very low resolution imagers and other non-intrusive sensors. The objects are not resolved but activity may still be determined. This allows the use of such technology in sensitive environments where privacy must be maintained. Spectral un-mixing algorithms from remote sensing were adapted for this environment. These algorithms allow the fractional contributions from different colours within each pixel to be estimated and this is used to assist in the detection and monitoring of small objects or sub-pixel motion.

  17. Lightning Jump Algorithm and Relation to Thunderstorm Cell Tracking, GLM Proxy and Other Meteorological Measurements

    NASA Technical Reports Server (NTRS)

    Schultz, Christopher J.; Carey, Lawrence D.; Cecil, Daniel J.; Bateman, Monte

    2012-01-01

    The lightning jump algorithm has a robust history in correlating upward trends in lightning to severe and hazardous weather occurrence. The algorithm uses the correlation between the physical principles that govern an updraft's ability to produce microphysical and kinematic conditions conducive for electrification and its role in the development of severe weather conditions. Recent work has demonstrated that the lightning jump algorithm concept holds significant promise in the operational realm, aiding in the identification of thunderstorms that have potential to produce severe or hazardous weather. However, a large amount of work still needs to be completed in spite of these positive results. The total lightning jump algorithm is not a stand-alone concept that can be used independent of other meteorological measurements, parameters, and techniques. For example, the algorithm is highly dependent upon thunderstorm tracking to build lightning histories on convective cells. Current tracking methods show that thunderstorm cell tracking is most reliable and cell histories are most accurate when radar information is incorporated with lightning data. In the absence of radar data, the cell tracking is a bit less reliable but the value added by the lightning information is much greater. For optimal application, the algorithm should be integrated with other measurements that assess storm scale properties (e.g., satellite, radar). Therefore, the recent focus of this research effort has been assessing the lightning jump's relation to thunderstorm tracking, meteorological parameters, and its potential uses in operational meteorology. Furthermore, the algorithm must be tailored for the optically-based GOES-R Geostationary Lightning Mapper (GLM), as what has been observed using Very High Frequency Lightning Mapping Array (VHF LMA) measurements will not exactly translate to what will be observed by GLM due to resolution and other instrument differences. Herein, we present some of the promising aspects and challenges encountered in utilizing objective tracking and GLM proxy data, as well as recent results that demonstrate the value added information gained by combining the lightning jump concept with traditional meteorological measurements.

  18. A Novel Optical/digital Processing System for Pattern Recognition

    NASA Technical Reports Server (NTRS)

    Boone, Bradley G.; Shukla, Oodaye B.

    1993-01-01

    This paper describes two processing algorithms that can be implemented optically: the Radon transform and angular correlation. These two algorithms can be combined in one optical processor to extract all the basic geometric and amplitude features from objects embedded in video imagery. We show that the internal amplitude structure of objects is recovered by the Radon transform, which is a well-known result, but, in addition, we show simulation results that calculate angular correlation, a simple but unique algorithm that extracts object boundaries from suitably threshold images from which length, width, area, aspect ratio, and orientation can be derived. In addition to circumventing scale and rotation distortions, these simulations indicate that the features derived from the angular correlation algorithm are relatively insensitive to tracking shifts and image noise. Some optical architecture concepts, including one based on micro-optical lenslet arrays, have been developed to implement these algorithms. Simulation test and evaluation using simple synthetic object data will be described, including results of a study that uses object boundaries (derivable from angular correlation) to classify simple objects using a neural network.

  19. Image-based topology for sensor gridlocking and association

    NASA Astrophysics Data System (ADS)

    Stanek, Clay J.; Javidi, Bahram; Yanni, Philip

    2002-07-01

    Correlation engines have been evolving since the implementation of radar. In modern sensor fusion architectures, correlation and gridlock filtering are required to produce common, continuous, and unambiguous tracks of all objects in the surveillance area. The objective is to provide a unified picture of the theatre or area of interest to battlefield decision makers, ultimately enabling them to make better inferences for future action and eliminate fratricide by reducing ambiguities. Here, correlation refers to association, which in this context is track-to-track association. A related process, gridlock filtering or gridlocking, refers to the reduction in navigation errors and sensor misalignment errors so that one sensor's track data can be accurately transformed into another sensor's coordinate system. As platforms gain multiple sensors, the correlation and gridlocking of tracks become significantly more difficult. Much of the existing correlation technology revolves around various interpretations of the generalized Bayesian decision rule: choose the action that minimizes conditional risk. One implementation of this principle equates the risk minimization statement to the comparison of ratios of a priori probability distributions to thresholds. The binary decision problem phrased in terms of likelihood ratios is also known as the famed Neyman-Pearson hypothesis test. Using another restatement of the principle for a symmetric loss function, risk minimization leads to a decision that maximizes the a posteriori probability distribution. Even for deterministic decision rules, situations can arise in correlation where there are ambiguities. For these situations, a common algorithm used is a sparse assignment technique such as the Munkres or JVC algorithm. Furthermore, associated tracks may be combined with the hope of reducing the positional uncertainty of a target or object identified by an existing track from the information of several fused/correlated tracks. Gridlocking is typically accomplished with some type of least-squares algorithm, such as the Kalman filtering technique, which attempts to locate the best bias error vector estimate from a set of correlated/fused track pairs. Here, we will introduce a new approach to this longstanding problem by adapting many of the familiar concepts from pattern recognition, ones certainly familiar to target recognition applications. Furthermore, we will show how this technique can lend itself to specialized processing, such as that available through an optical or hybrid correlator.

  20. ESAM: Endocrine inspired Sensor Activation Mechanism for multi-target tracking in WSNs

    NASA Astrophysics Data System (ADS)

    Adil Mahdi, Omar; Wahab, Ainuddin Wahid Abdul; Idris, Mohd Yamani Idna; Znaid, Ammar Abu; Khan, Suleman; Al-Mayouf, Yusor Rafid Bahar

    2016-10-01

    Target tracking is a significant application of wireless sensor networks (WSNs) in which deployment of self-organizing and energy efficient algorithms is required. The tracking accuracy increases as more sensor nodes are activated around the target but more energy is consumed. Thus, in this study, we focus on limiting the number of sensors by forming an ad-hoc network that operates autonomously. This will reduce the energy consumption and prolong the sensor network lifetime. In this paper, we propose a fully distributed algorithm, an Endocrine inspired Sensor Activation Mechanism for multi target-tracking (ESAM) which reflecting the properties of real life sensor activation system based on the information circulating principle in the endocrine system of the human body. Sensor nodes in our network are secreting different hormones according to certain rules. The hormone level enables the nodes to regulate an efficient sleep and wake up cycle of nodes to reduce the energy consumption. It is evident from the simulation results that the proposed ESAM in autonomous sensor network exhibits a stable performance without the need of commands from a central controller. Moreover, the proposed ESAM generates more efficient and persistent results as compared to other algorithms for tracking an invading object.

  1. Efficient integration of spectral features for vehicle tracking utilizing an adaptive sensor

    NASA Astrophysics Data System (ADS)

    Uzkent, Burak; Hoffman, Matthew J.; Vodacek, Anthony

    2015-03-01

    Object tracking in urban environments is an important and challenging problem that is traditionally tackled using visible and near infrared wavelengths. By inserting extended data such as spectral features of the objects one can improve the reliability of the identification process. However, huge increase in data created by hyperspectral imaging is usually prohibitive. To overcome the complexity problem, we propose a persistent air-to-ground target tracking system inspired by a state-of-the-art, adaptive, multi-modal sensor. The adaptive sensor is capable of providing panchromatic images as well as the spectra of desired pixels. This addresses the data challenge of hyperspectral tracking by only recording spectral data as needed. Spectral likelihoods are integrated into a data association algorithm in a Bayesian fashion to minimize the likelihood of misidentification. A framework for controlling spectral data collection is developed by incorporating motion segmentation information and prior information from a Gaussian Sum filter (GSF) movement predictions from a multi-model forecasting set. An intersection mask of the surveillance area is extracted from OpenStreetMap source and incorporated into the tracking algorithm to perform online refinement of multiple model set. The proposed system is tested using challenging and realistic scenarios generated in an adverse environment.

  2. A hybrid localization technique for patient tracking.

    PubMed

    Rodionov, Denis; Kolev, George; Bushminkin, Kirill

    2013-01-01

    Nowadays numerous technologies are employed for tracking patients and assets in hospitals or nursing homes. Each of them has advantages and drawbacks. For example, WiFi localization has relatively good accuracy but cannot be used in case of power outage or in the areas with poor WiFi coverage. Magnetometer positioning or cellular network does not have such problems but they are not as accurate as localization with WiFi. This paper describes technique that simultaneously employs different localization technologies for enhancing stability and average accuracy of localization. The proposed algorithm is based on fingerprinting method paired with data fusion and prediction algorithms for estimating the object location. The core idea of the algorithm is technology fusion using error estimation methods. For testing accuracy and performance of the algorithm testing simulation environment has been implemented. Significant accuracy improvement was showed in practical scenarios.

  3. Data Fusion for a Vision-Radiological System: a Statistical Calibration Algorithm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Enqvist, Andreas; Koppal, Sanjeev; Riley, Phillip

    2015-07-01

    Presented here is a fusion system based on simple, low-cost computer vision and radiological sensors for tracking of multiple objects and identifying potential radiological materials being transported or shipped. The main focus of this work is the development of calibration algorithms for characterizing the fused sensor system as a single entity. There is an apparent need for correcting for a scene deviation from the basic inverse distance-squared law governing the detection rates even when evaluating system calibration algorithms. In particular, the computer vision system enables a map of distance-dependence of the sources being tracked, to which the time-dependent radiological datamore » can be incorporated by means of data fusion of the two sensors' output data. (authors)« less

  4. H2LIFT: global navigation simulation ship tracking and WMD detection in the maritime domain

    NASA Astrophysics Data System (ADS)

    Wyffels, Kevin

    2007-04-01

    This paper presents initial results for a tracking simulation of multiple maritime vehicles for use in a data fusion program detecting Weapons of Mass Destruction (WMD). This simulation supports a fusion algorithm (H2LIFT) for collecting and analyzing data providing a heuristic analysis tool for detecting weapons of mass destruction in the maritime domain. Tools required to develop a navigational simulation fitting a set of project objectives are introduced for integration into the H2LIFT algorithm. Emphasis is placed on the specific requirements of the H2LIFT project, however the basic equations, algorithms, and methodologies can be used as tools in a variety of scenario simulations. Discussion will be focused on track modeling (e.g. position tracking of ships), navigational techniques, WMD detection, and simulation of these models using Matlab and Simulink. Initial results provide absolute ship position data for a given multi-ship maritime scenario with random generation of a given ship containing a WMD. Required coordinate systems, conversions between coordinate systems, Earth modeling techniques, and navigational conventions and techniques are introduced for development of the simulations.

  5. Passive RFID Rotation Dimension Reduction via Aggregation

    NASA Astrophysics Data System (ADS)

    Matthews, Eric

    Radio Frequency IDentification (RFID) has applications in object identification, position, and orientation tracking. RFID technology can be applied in hospitals for patient and equipment tracking, stores and warehouses for product tracking, robots for self-localisation, tracking hazardous materials, or locating any other desired object. Efficient and accurate algorithms that perform localisation are required to extract meaningful data beyond simple identification. A Received Signal Strength Indicator (RSSI) is the strength of a received radio frequency signal used to localise passive and active RFID tags. Many factors affect RSSI such as reflections, tag rotation in 3D space, and obstacles blocking line-of-sight. LANDMARC is a statistical method for estimating tag location based on a target tag's similarity to surrounding reference tags. LANDMARC does not take into account the rotation of the target tag. By either aggregating multiple reference tag positions at various rotations, or by determining a rotation value for a newly read tag, we can perform an expected value calculation based on a comparison to the k-most similar training samples via an algorithm called K-Nearest Neighbours (KNN) more accurately. By choosing the average as the aggregation function, we improve the relative accuracy of single-rotation LANDMARC localisation by 10%, and any-rotation localisation by 20%.

  6. An inexpensive programmable illumination microscope with active feedback.

    PubMed

    Tompkins, Nathan; Fraden, Seth

    2016-02-01

    We have developed a programmable illumination system capable of tracking and illuminating numerous objects simultaneously using only low-cost and reused optical components. The active feedback control software allows for a closed-loop system that tracks and perturbs objects of interest automatically. Our system uses a static stage where the objects of interest are tracked computationally as they move across the field of view allowing for a large number of simultaneous experiments. An algorithmically determined illumination pattern can be applied anywhere in the field of view with simultaneous imaging and perturbation using different colors of light to enable spatially and temporally structured illumination. Our system consists of a consumer projector, camera, 35-mm camera lens, and a small number of other optical and scaffolding components. The entire apparatus can be assembled for under $4,000.

  7. Automated object detection and tracking with a flash LiDAR system

    NASA Astrophysics Data System (ADS)

    Hammer, Marcus; Hebel, Marcus; Arens, Michael

    2016-10-01

    The detection of objects, or persons, is a common task in the fields of environment surveillance, object observation or danger defense. There are several approaches for automated detection with conventional imaging sensors as well as with LiDAR sensors, but for the latter the real-time detection is hampered by the scanning character and therefore by the data distortion of most LiDAR systems. The paper presents a solution for real-time data acquisition of a flash LiDAR sensor with synchronous raw data analysis, point cloud calculation, object detection, calculation of the next best view and steering of the pan-tilt head of the sensor. As a result the attention is always focused on the object, independent of the behavior of the object. Even for highly volatile and rapid changes in the direction of motion the object is kept in the field of view. The experimental setup used in this paper is realized with an elementary person detection algorithm in medium distances (20 m to 60 m) to show the efficiency of the system for objects with a high angular speed. It is easy to replace the detection part by any other object detection algorithm and thus it is easy to track nearly any object, for example a car or a boat or an UAV in various distances.

  8. Multiple Hypothesis Tracking (MHT) for Space Surveillance: Results and Simulation Studies

    NASA Astrophysics Data System (ADS)

    Singh, N.; Poore, A.; Sheaff, C.; Aristoff, J.; Jah, M.

    2013-09-01

    With the anticipated installation of more accurate sensors and the increased probability of future collisions between space objects, the potential number of observable space objects is likely to increase by an order of magnitude within the next decade, thereby placing an ever-increasing burden on current operational systems. Moreover, the need to track closely-spaced objects due, for example, to breakups as illustrated by the recent Chinese ASAT test or the Iridium-Kosmos collision, requires new, robust, and autonomous methods for space surveillance to enable the development and maintenance of the present and future space catalog and to support the overall space surveillance mission. The problem of correctly associating a stream of uncorrelated tracks (UCTs) and uncorrelated optical observations (UCOs) into common objects is critical to mitigating the number of UCTs and is a prerequisite to subsequent space catalog maintenance. Presently, such association operations are mainly performed using non-statistical simple fixed-gate association logic. In this paper, we report on the salient features and the performance of a newly-developed statistically-robust system-level multiple hypothesis tracking (MHT) system for advanced space surveillance. The multiple-frame assignment (MFA) formulation of MHT, together with supporting astrodynamics algorithms, provides a new joint capability for space catalog maintenance, UCT/UCO resolution, and initial orbit determination. The MFA-MHT framework incorporates multiple hypotheses for report to system track data association and uses a multi-arc construction to accommodate recently developed algorithms for multiple hypothesis filtering (e.g., AEGIS, CAR-MHF, UMAP, and MMAE). This MHT framework allows us to evaluate the benefits of many different algorithms ranging from single- and multiple-frame data association to filtering and uncertainty quantification. In this paper, it will be shown that the MHT system can provide superior tracking performance compared to existing methods at a lower computational cost, especially for closely-spaced objects, in realistic multi-sensor multi-object tracking scenarios over multiple regimes of space. Specifically, we demonstrate that the prototype MHT system can accurately and efficiently process tens of thousands of UCTs and angles-only UCOs emanating from thousands of objects in LEO, GEO, MEO and HELO, many of which are closely-spaced, in real-time on a single laptop computer, thereby making it well-suited for large-scale breakup and tracking scenarios. This is possible in part because complexity reduction techniques are used to control the runtime of MHT without sacrificing accuracy. We assess the performance of MHT in relation to other tracking methods in multi-target, multi-sensor scenarios ranging from easy to difficult (i.e., widely-spaced objects to closely-spaced objects), using realistic physics and probabilities of detection less than one. In LEO, it is shown that the MHT system is able to address the challenges of processing breakups by analyzing multiple frames of data simultaneously in order to improve association decisions, reduce cross-tagging, and reduce unassociated UCTs. As a result, the multi-frame MHT system can establish orbits up to ten times faster than single-frame methods. Finally, it is shown that in GEO, MEO and HELO, the MHT system is able to address the challenges of processing angles-only optical observations by providing a unified multi-frame framework.

  9. Improved relocatable over-the-horizon radar detection and tracking using the maximum likelihood adaptive neural system algorithm

    NASA Astrophysics Data System (ADS)

    Perlovsky, Leonid I.; Webb, Virgil H.; Bradley, Scott R.; Hansen, Christopher A.

    1998-07-01

    An advanced detection and tracking system is being developed for the U.S. Navy's Relocatable Over-the-Horizon Radar (ROTHR) to provide improved tracking performance against small aircraft typically used in drug-smuggling activities. The development is based on the Maximum Likelihood Adaptive Neural System (MLANS), a model-based neural network that combines advantages of neural network and model-based algorithmic approaches. The objective of the MLANS tracker development effort is to address user requirements for increased detection and tracking capability in clutter and improved track position, heading, and speed accuracy. The MLANS tracker is expected to outperform other approaches to detection and tracking for the following reasons. It incorporates adaptive internal models of target return signals, target tracks and maneuvers, and clutter signals, which leads to concurrent clutter suppression, detection, and tracking (track-before-detect). It is not combinatorial and thus does not require any thresholding or peak picking and can track in low signal-to-noise conditions. It incorporates superresolution spectrum estimation techniques exceeding the performance of conventional maximum likelihood and maximum entropy methods. The unique spectrum estimation method is based on the Einsteinian interpretation of the ROTHR received energy spectrum as a probability density of signal frequency. The MLANS neural architecture and learning mechanism are founded on spectrum models and maximization of the "Einsteinian" likelihood, allowing knowledge of the physical behavior of both targets and clutter to be injected into the tracker algorithms. The paper describes the addressed requirements and expected improvements, theoretical foundations, engineering methodology, and results of the development effort to date.

  10. Real time tracking by LOPF algorithm with mixture model

    NASA Astrophysics Data System (ADS)

    Meng, Bo; Zhu, Ming; Han, Guangliang; Wu, Zhiguo

    2007-11-01

    A new particle filter-the Local Optimum Particle Filter (LOPF) algorithm is presented for tracking object accurately and steadily in visual sequences in real time which is a challenge task in computer vision field. In order to using the particles efficiently, we first use Sobel algorithm to extract the profile of the object. Then, we employ a new Local Optimum algorithm to auto-initialize some certain number of particles from these edge points as centre of the particles. The main advantage we do this in stead of selecting particles randomly in conventional particle filter is that we can pay more attentions on these more important optimum candidates and reduce the unnecessary calculation on those negligible ones, in addition we can overcome the conventional degeneracy phenomenon in a way and decrease the computational costs. Otherwise, the threshold is a key factor that affecting the results very much. So here we adapt an adaptive threshold choosing method to get the optimal Sobel result. The dissimilarities between the target model and the target candidates are expressed by a metric derived from the Bhattacharyya coefficient. Here, we use both the counter cue to select the particles and the color cur to describe the targets as the mixture target model. The effectiveness of our scheme is demonstrated by real visual tracking experiments. Results from simulations and experiments with real video data show the improved performance of the proposed algorithm when compared with that of the standard particle filter. The superior performance is evident when the target encountering the occlusion in real video where the standard particle filter usually fails.

  11. Parallel computation of level set method for 500 Hz visual servo control

    NASA Astrophysics Data System (ADS)

    Fei, Xianfeng; Igarashi, Yasunobu; Hashimoto, Koichi

    2008-11-01

    We propose a 2D microorganism tracking system using a parallel level set method and a column parallel vision system (CPV). This system keeps a single microorganism in the middle of the visual field under a microscope by visual servoing an automated stage. We propose a new energy function for the level set method. This function constrains an amount of light intensity inside the detected object contour to control the number of the detected objects. This algorithm is implemented in CPV system and computational time for each frame is 2 [ms], approximately. A tracking experiment for about 25 s is demonstrated. Also we demonstrate a single paramecium can be kept tracking even if other paramecia appear in the visual field and contact with the tracked paramecium.

  12. Object tracking using multiple camera video streams

    NASA Astrophysics Data System (ADS)

    Mehrubeoglu, Mehrube; Rojas, Diego; McLauchlan, Lifford

    2010-05-01

    Two synchronized cameras are utilized to obtain independent video streams to detect moving objects from two different viewing angles. The video frames are directly correlated in time. Moving objects in image frames from the two cameras are identified and tagged for tracking. One advantage of such a system involves overcoming effects of occlusions that could result in an object in partial or full view in one camera, when the same object is fully visible in another camera. Object registration is achieved by determining the location of common features in the moving object across simultaneous frames. Perspective differences are adjusted. Combining information from images from multiple cameras increases robustness of the tracking process. Motion tracking is achieved by determining anomalies caused by the objects' movement across frames in time in each and the combined video information. The path of each object is determined heuristically. Accuracy of detection is dependent on the speed of the object as well as variations in direction of motion. Fast cameras increase accuracy but limit the speed and complexity of the algorithm. Such an imaging system has applications in traffic analysis, surveillance and security, as well as object modeling from multi-view images. The system can easily be expanded by increasing the number of cameras such that there is an overlap between the scenes from at least two cameras in proximity. An object can then be tracked long distances or across multiple cameras continuously, applicable, for example, in wireless sensor networks for surveillance or navigation.

  13. Automated Storm Tracking and the Lightning Jump Algorithm Using GOES-R Geostationary Lightning Mapper (GLM) Proxy Data.

    PubMed

    Schultz, Elise V; Schultz, Christopher J; Carey, Lawrence D; Cecil, Daniel J; Bateman, Monte

    2016-01-01

    This study develops a fully automated lightning jump system encompassing objective storm tracking, Geostationary Lightning Mapper proxy data, and the lightning jump algorithm (LJA), which are important elements in the transition of the LJA concept from a research to an operational based algorithm. Storm cluster tracking is based on a product created from the combination of a radar parameter (vertically integrated liquid, VIL), and lightning information (flash rate density). Evaluations showed that the spatial scale of tracked features or storm clusters had a large impact on the lightning jump system performance, where increasing spatial scale size resulted in decreased dynamic range of the system's performance. This framework will also serve as a means to refine the LJA itself to enhance its operational applicability. Parameters within the system are isolated and the system's performance is evaluated with adjustments to parameter sensitivity. The system's performance is evaluated using the probability of detection (POD) and false alarm ratio (FAR) statistics. Of the algorithm parameters tested, sigma-level (metric of lightning jump strength) and flash rate threshold influenced the system's performance the most. Finally, verification methodologies are investigated. It is discovered that minor changes in verification methodology can dramatically impact the evaluation of the lightning jump system.

  14. Automated Storm Tracking and the Lightning Jump Algorithm Using GOES-R Geostationary Lightning Mapper (GLM) Proxy Data

    NASA Technical Reports Server (NTRS)

    Schultz, Elise; Schultz, Christopher Joseph; Carey, Lawrence D.; Cecil, Daniel J.; Bateman, Monte

    2016-01-01

    This study develops a fully automated lightning jump system encompassing objective storm tracking, Geostationary Lightning Mapper proxy data, and the lightning jump algorithm (LJA), which are important elements in the transition of the LJA concept from a research to an operational based algorithm. Storm cluster tracking is based on a product created from the combination of a radar parameter (vertically integrated liquid, VIL), and lightning information (flash rate density). Evaluations showed that the spatial scale of tracked features or storm clusters had a large impact on the lightning jump system performance, where increasing spatial scale size resulted in decreased dynamic range of the system's performance. This framework will also serve as a means to refine the LJA itself to enhance its operational applicability. Parameters within the system are isolated and the system's performance is evaluated with adjustments to parameter sensitivity. The system's performance is evaluated using the probability of detection (POD) and false alarm ratio (FAR) statistics. Of the algorithm parameters tested, sigma-level (metric of lightning jump strength) and flash rate threshold influenced the system's performance the most. Finally, verification methodologies are investigated. It is discovered that minor changes in verification methodology can dramatically impact the evaluation of the lightning jump system.

  15. Automated Storm Tracking and the Lightning Jump Algorithm Using GOES-R Geostationary Lightning Mapper (GLM) Proxy Data

    PubMed Central

    SCHULTZ, ELISE V.; SCHULTZ, CHRISTOPHER J.; CAREY, LAWRENCE D.; CECIL, DANIEL J.; BATEMAN, MONTE

    2017-01-01

    This study develops a fully automated lightning jump system encompassing objective storm tracking, Geostationary Lightning Mapper proxy data, and the lightning jump algorithm (LJA), which are important elements in the transition of the LJA concept from a research to an operational based algorithm. Storm cluster tracking is based on a product created from the combination of a radar parameter (vertically integrated liquid, VIL), and lightning information (flash rate density). Evaluations showed that the spatial scale of tracked features or storm clusters had a large impact on the lightning jump system performance, where increasing spatial scale size resulted in decreased dynamic range of the system’s performance. This framework will also serve as a means to refine the LJA itself to enhance its operational applicability. Parameters within the system are isolated and the system’s performance is evaluated with adjustments to parameter sensitivity. The system’s performance is evaluated using the probability of detection (POD) and false alarm ratio (FAR) statistics. Of the algorithm parameters tested, sigma-level (metric of lightning jump strength) and flash rate threshold influenced the system’s performance the most. Finally, verification methodologies are investigated. It is discovered that minor changes in verification methodology can dramatically impact the evaluation of the lightning jump system. PMID:29303164

  16. Particle tracking and extended object imaging by interferometric super resolution microscopy

    NASA Astrophysics Data System (ADS)

    Gdor, Itay; Yoo, Seunghwan; Wang, Xiaolei; Daddysman, Matthew; Wilton, Rosemarie; Ferrier, Nicola; Hereld, Mark; Cossairt, Oliver (Ollie); Katsaggelos, Aggelos; Scherer, Norbert F.

    2018-02-01

    An interferometric fluorescent microscope and a novel theoretic image reconstruction approach were developed and used to obtain super-resolution images of live biological samples and to enable dynamic real time tracking. The tracking utilizes the information stored in the interference pattern of both the illuminating incoherent light and the emitted light. By periodically shifting the interferometer phase and a phase retrieval algorithm we obtain information that allow localization with sub-2 nm axial resolution at 5 Hz.

  17. Sensor modeling and demonstration of a multi-object spectrometer for performance-driven sensing

    NASA Astrophysics Data System (ADS)

    Kerekes, John P.; Presnar, Michael D.; Fourspring, Kenneth D.; Ninkov, Zoran; Pogorzala, David R.; Raisanen, Alan D.; Rice, Andrew C.; Vasquez, Juan R.; Patel, Jeffrey P.; MacIntyre, Robert T.; Brown, Scott D.

    2009-05-01

    A novel multi-object spectrometer (MOS) is being explored for use as an adaptive performance-driven sensor that tracks moving targets. Developed originally for astronomical applications, the instrument utilizes an array of micromirrors to reflect light to a panchromatic imaging array. When an object of interest is detected the individual micromirrors imaging the object are tilted to reflect the light to a spectrometer to collect a full spectrum. This paper will present example sensor performance from empirical data collected in laboratory experiments, as well as our approach in designing optical and radiometric models of the MOS channels and the micromirror array. Simulation of moving vehicles in a highfidelity, hyperspectral scene is used to generate a dynamic video input for the adaptive sensor. Performance-driven algorithms for feature-aided target tracking and modality selection exploit multiple electromagnetic observables to track moving vehicle targets.

  18. Improved semi-supervised online boosting for object tracking

    NASA Astrophysics Data System (ADS)

    Li, Yicui; Qi, Lin; Tan, Shukun

    2016-10-01

    The advantage of an online semi-supervised boosting method which takes object tracking problem as a classification problem, is training a binary classifier from labeled and unlabeled examples. Appropriate object features are selected based on real time changes in the object. However, the online semi-supervised boosting method faces one key problem: The traditional self-training using the classification results to update the classifier itself, often leads to drifting or tracking failure, due to the accumulated error during each update of the tracker. To overcome the disadvantages of semi-supervised online boosting based on object tracking methods, the contribution of this paper is an improved online semi-supervised boosting method, in which the learning process is guided by positive (P) and negative (N) constraints, termed P-N constraints, which restrict the labeling of the unlabeled samples. First, we train the classification by an online semi-supervised boosting. Then, this classification is used to process the next frame. Finally, the classification is analyzed by the P-N constraints, which are used to verify if the labels of unlabeled data assigned by the classifier are in line with the assumptions made about positive and negative samples. The proposed algorithm can effectively improve the discriminative ability of the classifier and significantly alleviate the drifting problem in tracking applications. In the experiments, we demonstrate real-time tracking of our tracker on several challenging test sequences where our tracker outperforms other related on-line tracking methods and achieves promising tracking performance.

  19. Adaptive Correlation Model for Visual Tracking Using Keypoints Matching and Deep Convolutional Feature.

    PubMed

    Li, Yuankun; Xu, Tingfa; Deng, Honggao; Shi, Guokai; Guo, Jie

    2018-02-23

    Although correlation filter (CF)-based visual tracking algorithms have achieved appealing results, there are still some problems to be solved. When the target object goes through long-term occlusions or scale variation, the correlation model used in existing CF-based algorithms will inevitably learn some non-target information or partial-target information. In order to avoid model contamination and enhance the adaptability of model updating, we introduce the keypoints matching strategy and adjust the model learning rate dynamically according to the matching score. Moreover, the proposed approach extracts convolutional features from a deep convolutional neural network (DCNN) to accurately estimate the position and scale of the target. Experimental results demonstrate that the proposed tracker has achieved satisfactory performance in a wide range of challenging tracking scenarios.

  20. Indoor Trajectory Tracking Scheme Based on Delaunay Triangulation and Heuristic Information in Wireless Sensor Networks.

    PubMed

    Qin, Junping; Sun, Shiwen; Deng, Qingxu; Liu, Limin; Tian, Yonghong

    2017-06-02

    Object tracking and detection is one of the most significant research areas for wireless sensor networks. Existing indoor trajectory tracking schemes in wireless sensor networks are based on continuous localization and moving object data mining. Indoor trajectory tracking based on the received signal strength indicator ( RSSI ) has received increased attention because it has low cost and requires no special infrastructure. However, RSSI tracking introduces uncertainty because of the inaccuracies of measurement instruments and the irregularities (unstable, multipath, diffraction) of wireless signal transmissions in indoor environments. Heuristic information includes some key factors for trajectory tracking procedures. This paper proposes a novel trajectory tracking scheme based on Delaunay triangulation and heuristic information (TTDH). In this scheme, the entire field is divided into a series of triangular regions. The common side of adjacent triangular regions is regarded as a regional boundary. Our scheme detects heuristic information related to a moving object's trajectory, including boundaries and triangular regions. Then, the trajectory is formed by means of a dynamic time-warping position-fingerprint-matching algorithm with heuristic information constraints. Field experiments show that the average error distance of our scheme is less than 1.5 m, and that error does not accumulate among the regions.

  1. Development and Application of an Objective Tracking Algorithm for Tropical Cyclones over the North-West Pacific purely based on Wind Speeds

    NASA Astrophysics Data System (ADS)

    Befort, Daniel J.; Kruschke, Tim; Leckebusch, Gregor C.

    2017-04-01

    Tropical Cyclones over East Asia have huge socio-economic impacts due to their strong wind fields and large rainfall amounts. Especially, the most severe events are associated with huge economic losses, e.g. Typhoon Herb in 1996 is related to overall losses exceeding 5 billion US (Munich Re, 2016). In this study, an objective tracking algorithm is applied to JRA55 reanalysis data from 1979 to 2014 over the Western North Pacific. For this purpose, a purely wind based algorithm, formerly used to identify extra-tropical wind storms, has been further developed. The algorithm is based on the exceedance of the local 98th percentile to define strong wind fields in gridded climate data. To be detected as a tropical cyclone candidate, the following criteria must be fulfilled: 1) the wind storm must exist for at least eight 6-hourly time steps and 2) the wind field must exceed a minimum size of 130.000km2 for each time step. The usage of wind information is motivated to focus on damage related events, however, a pre-selection based on the affected region is necessary to remove events of extra-tropical nature. Using IBTrACS Best Tracks for validation, it is found that about 62% of all detected tropical cyclone events in JRA55 reanalysis can be matched to an observed best track. As expected the relative amount of matched tracks increases with the wind intensity of the event, with a hit rate of about 98% for Violent Typhoons, above 90% for Very Strong Typhoons and about 75% for Typhoons. Overall these results are encouraging as the parameters used to detect tropical cyclones in JRA55, e.g. minimum area, are also suitable to detect TCs in most CMIP5 simulations and will thus allow estimates of potential future changes.

  2. Refraction corrected calibration for aquatic locomotion research: application of Snell's law improves spatial accuracy.

    PubMed

    Henrion, Sebastian; Spoor, Cees W; Pieters, Remco P M; Müller, Ulrike K; van Leeuwen, Johan L

    2015-07-07

    Images of underwater objects are distorted by refraction at the water-glass-air interfaces and these distortions can lead to substantial errors when reconstructing the objects' position and shape. So far, aquatic locomotion studies have minimized refraction in their experimental setups and used the direct linear transform algorithm (DLT) to reconstruct position information, which does not model refraction explicitly. Here we present a refraction corrected ray-tracing algorithm (RCRT) that reconstructs position information using Snell's law. We validated this reconstruction by calculating 3D reconstruction error-the difference between actual and reconstructed position of a marker. We found that reconstruction error is small (typically less than 1%). Compared with the DLT algorithm, the RCRT has overall lower reconstruction errors, especially outside the calibration volume, and errors are essentially insensitive to camera position and orientation and the number and position of the calibration points. To demonstrate the effectiveness of the RCRT, we tracked an anatomical marker on a seahorse recorded with four cameras to reconstruct the swimming trajectory for six different camera configurations. The RCRT algorithm is accurate and robust and it allows cameras to be oriented at large angles of incidence and facilitates the development of accurate tracking algorithms to quantify aquatic manoeuvers.

  3. The robot's eyes - Stereo vision system for automated scene analysis

    NASA Technical Reports Server (NTRS)

    Williams, D. S.

    1977-01-01

    Attention is given to the robot stereo vision system which maintains the image produced by solid-state detector television cameras in a dynamic random access memory called RAPID. The imaging hardware consists of sensors (two solid-state image arrays using a charge injection technique), a video-rate analog-to-digital converter, the RAPID memory, and various types of computer-controlled displays, and preprocessing equipment (for reflexive actions, processing aids, and object detection). The software is aimed at locating objects and transversibility. An object-tracking algorithm is discussed and it is noted that tracking speed is in the 50-75 pixels/s range.

  4. Joint Multi-Leaf Segmentation, Alignment, and Tracking for Fluorescence Plant Videos.

    PubMed

    Yin, Xi; Liu, Xiaoming; Chen, Jin; Kramer, David M

    2018-06-01

    This paper proposes a novel framework for fluorescence plant video processing. The plant research community is interested in the leaf-level photosynthetic analysis within a plant. A prerequisite for such analysis is to segment all leaves, estimate their structures, and track them over time. We identify this as a joint multi-leaf segmentation, alignment, and tracking problem. First, leaf segmentation and alignment are applied on the last frame of a plant video to find a number of well-aligned leaf candidates. Second, leaf tracking is applied on the remaining frames with leaf candidate transformation from the previous frame. We form two optimization problems with shared terms in their objective functions for leaf alignment and tracking respectively. A quantitative evaluation framework is formulated to evaluate the performance of our algorithm with four metrics. Two models are learned to predict the alignment accuracy and detect tracking failure respectively in order to provide guidance for subsequent plant biology analysis. The limitation of our algorithm is also studied. Experimental results show the effectiveness, efficiency, and robustness of the proposed method.

  5. A Space Object Detection Algorithm using Fourier Domain Likelihood Ratio Test

    NASA Astrophysics Data System (ADS)

    Becker, D.; Cain, S.

    Space object detection is of great importance in the highly dependent yet competitive and congested space domain. Detection algorithms employed play a crucial role in fulfilling the detection component in the situational awareness mission to detect, track, characterize and catalog unknown space objects. Many current space detection algorithms use a matched filter or a spatial correlator to make a detection decision at a single pixel point of a spatial image based on the assumption that the data follows a Gaussian distribution. This paper explores the potential for detection performance advantages when operating in the Fourier domain of long exposure images of small and/or dim space objects from ground based telescopes. A binary hypothesis test is developed based on the joint probability distribution function of the image under the hypothesis that an object is present and under the hypothesis that the image only contains background noise. The detection algorithm tests each pixel point of the Fourier transformed images to make the determination if an object is present based on the criteria threshold found in the likelihood ratio test. Using simulated data, the performance of the Fourier domain detection algorithm is compared to the current algorithm used in space situational awareness applications to evaluate its value.

  6. A difference tracking algorithm based on discrete sine transform

    NASA Astrophysics Data System (ADS)

    Liu, HaoPeng; Yao, Yong; Lei, HeBing; Wu, HaoKun

    2018-04-01

    Target tracking is an important field of computer vision. The template matching tracking algorithm based on squared difference matching (SSD) and standard correlation coefficient (NCC) matching is very sensitive to the gray change of image. When the brightness or gray change, the tracking algorithm will be affected by high-frequency information. Tracking accuracy is reduced, resulting in loss of tracking target. In this paper, a differential tracking algorithm based on discrete sine transform is proposed to reduce the influence of image gray or brightness change. The algorithm that combines the discrete sine transform and the difference algorithm maps the target image into a image digital sequence. The Kalman filter predicts the target position. Using the Hamming distance determines the degree of similarity between the target and the template. The window closest to the template is determined the target to be tracked. The target to be tracked updates the template. Based on the above achieve target tracking. The algorithm is tested in this paper. Compared with SSD and NCC template matching algorithms, the algorithm tracks target stably when image gray or brightness change. And the tracking speed can meet the read-time requirement.

  7. An inexpensive programmable illumination microscope with active feedback

    PubMed Central

    Tompkins, Nathan; Fraden, Seth

    2016-01-01

    We have developed a programmable illumination system capable of tracking and illuminating numerous objects simultaneously using only low-cost and reused optical components. The active feedback control software allows for a closed-loop system that tracks and perturbs objects of interest automatically. Our system uses a static stage where the objects of interest are tracked computationally as they move across the field of view allowing for a large number of simultaneous experiments. An algorithmically determined illumination pattern can be applied anywhere in the field of view with simultaneous imaging and perturbation using different colors of light to enable spatially and temporally structured illumination. Our system consists of a consumer projector, camera, 35-mm camera lens, and a small number of other optical and scaffolding components. The entire apparatus can be assembled for under $4,000. PMID:27642182

  8. Automated target recognition and tracking using an optical pattern recognition neural network

    NASA Technical Reports Server (NTRS)

    Chao, Tien-Hsin

    1991-01-01

    The on-going development of an automatic target recognition and tracking system at the Jet Propulsion Laboratory is presented. This system is an optical pattern recognition neural network (OPRNN) that is an integration of an innovative optical parallel processor and a feature extraction based neural net training algorithm. The parallel optical processor provides high speed and vast parallelism as well as full shift invariance. The neural network algorithm enables simultaneous discrimination of multiple noisy targets in spite of their scales, rotations, perspectives, and various deformations. This fully developed OPRNN system can be effectively utilized for the automated spacecraft recognition and tracking that will lead to success in the Automated Rendezvous and Capture (AR&C) of the unmanned Cargo Transfer Vehicle (CTV). One of the most powerful optical parallel processors for automatic target recognition is the multichannel correlator. With the inherent advantages of parallel processing capability and shift invariance, multiple objects can be simultaneously recognized and tracked using this multichannel correlator. This target tracking capability can be greatly enhanced by utilizing a powerful feature extraction based neural network training algorithm such as the neocognitron. The OPRNN, currently under investigation at JPL, is constructed with an optical multichannel correlator where holographic filters have been prepared using the neocognitron training algorithm. The computation speed of the neocognitron-type OPRNN is up to 10(exp 14) analog connections/sec that enabling the OPRNN to outperform its state-of-the-art electronics counterpart by at least two orders of magnitude.

  9. Layered data association using graph-theoretic formulation with applications to tennis ball tracking in monocular sequences.

    PubMed

    Yan, Fei; Christmas, William; Kittler, Josef

    2008-10-01

    In this paper, we propose a multilayered data association scheme with graph-theoretic formulation for tracking multiple objects that undergo switching dynamics in clutter. The proposed scheme takes as input object candidates detected in each frame. At the object candidate level, "tracklets'' are "grown'' from sets of candidates that have high probabilities of containing only true positives. At the tracklet level, a directed and weighted graph is constructed, where each node is a tracklet, and the edge weight between two nodes is defined according to the "compatibility'' of the two tracklets. The association problem is then formulated as an all-pairs shortest path (APSP) problem in this graph. Finally, at the path level, by analyzing the APSPs, all object trajectories are identified, and track initiation and track termination are automatically dealt with. By exploiting a special topological property of the graph, we have also developed a more efficient APSP algorithm than the general-purpose ones. The proposed data association scheme is applied to tennis sequences to track tennis balls. Experiments show that it works well on sequences where other data association methods perform poorly or fail completely.

  10. Matched filter based detection of floating mines in IR spacetime

    NASA Astrophysics Data System (ADS)

    Borghgraef, Alexander; Lapierre, Fabian; Philips, Wilfried; Acheroy, Marc

    2009-09-01

    Ship-based automatic detection of small floating objects on an agitated sea surface remains a hard problem. Our main concern is the detection of floating mines, which proved a real threat to shipping in confined waterways during the first Gulf War, but applications include salvaging,search-and-rescue and perimeter or harbour defense. IR video was chosen for its day-and-night imaging capability, and its availability on military vessels. Detection is difficult because a rough sea is seen as a dynamic background of moving objects with size order, shape and temperature similar to those of the floating mine. We do find a determinant characteristic in the target's periodic motion, which differs from that of the propagating surface waves composing the background. The classical detection and tracking approaches give bad results when applied to this problem. While background detection algorithms assume a quasi-static background, the sea surface is actually very dynamic, causing this category of algorithms to fail. Kalman or particle filter algorithms on the other hand, which stress temporal coherence, suffer from tracking loss due to occlusions and the great noise level of the image. We propose an innovative approach. This approach uses the periodicity of the objects movement and thus its temporal coherence. The principle is to consider the video data as a spacetime volume similar to a hyperspectral data cube by replacing the spectral axis with a temporal axis. We can then apply algorithms developed for hyperspectral detection problems to the detection of small floating objects. We treat the detection problem using multilinear algebra, designing a number of finite impulse response filters (FIR) maximizing the target response. The algorithm was applied to test footage of practice mines in the infrared.

  11. The implementation of an automated tracking algorithm for the track detection of migratory anticyclones affecting the Mediterranean

    NASA Astrophysics Data System (ADS)

    Hatzaki, Maria; Flocas, Elena A.; Simmonds, Ian; Kouroutzoglou, John; Keay, Kevin; Rudeva, Irina

    2013-04-01

    Migratory cyclones and anticyclones mainly account for the short-term weather variations in extra-tropical regions. By contrast to cyclones that have drawn major scientific attention due to their direct link to active weather and precipitation, climatological studies on anticyclones are limited, even though they also are associated with extreme weather phenomena and play an important role in global and regional climate. This is especially true for the Mediterranean, a region particularly vulnerable to climate change, and the little research which has been done is essentially confined to the manual analysis of synoptic charts. For the construction of a comprehensive climatology of migratory anticyclonic systems in the Mediterranean using an objective methodology, the Melbourne University automatic tracking algorithm is applied, based to the ERA-Interim reanalysis mean sea level pressure database. The algorithm's reliability in accurately capturing the weather patterns and synoptic climatology of the transient activity has been widely proven. This algorithm has been extensively applied for cyclone studies worldwide and it has been also successfully applied for the Mediterranean, though its use for anticyclone tracking is limited to the Southern Hemisphere. In this study the performance of the tracking algorithm under different data resolutions and different choices of parameter settings in the scheme is examined. Our focus is on the appropriate modification of the algorithm in order to efficiently capture the individual characteristics of the anticyclonic tracks in the Mediterranean, a closed basin with complex topography. We show that the number of the detected anticyclonic centers and the resulting tracks largely depend upon the data resolution and the search radius. We also find that different scale anticyclones and secondary centers that lie within larger anticyclone structures can be adequately represented; this is important, since the extensions of major anticyclonic systems affect the Mediterranean basin throughout the year. Acknowledgement: This research project is implemented within the framework of the Action «Supporting Postdoctoral Researchers» of the Operational Program "Education and Lifelong Learning" (Action's Beneficiary: General Secretariat for Research and Technology), and is co-financed by the European Social Fund (ESF) and the Greek State. Some funding from the Australian Research Council is also acknowledged.

  12. A theory of phase singularities for image representation and its applications to object tracking and image matching.

    PubMed

    Qiao, Yu; Wang, Wei; Minematsu, Nobuaki; Liu, Jianzhuang; Takeda, Mitsuo; Tang, Xiaoou

    2009-10-01

    This paper studies phase singularities (PSs) for image representation. We show that PSs calculated with Laguerre-Gauss filters contain important information and provide a useful tool for image analysis. PSs are invariant to image translation and rotation. We introduce several invariant features to characterize the core structures around PSs and analyze the stability of PSs to noise addition and scale change. We also study the characteristics of PSs in a scale space, which lead to a method to select key scales along phase singularity curves. We demonstrate two applications of PSs: object tracking and image matching. In object tracking, we use the iterative closest point algorithm to determine the correspondences of PSs between two adjacent frames. The use of PSs allows us to precisely determine the motions of tracked objects. In image matching, we combine PSs and scale-invariant feature transform (SIFT) descriptor to deal with the variations between two images and examine the proposed method on a benchmark database. The results indicate that our method can find more correct matching pairs with higher repeatability rates than some well-known methods.

  13. Robust skin color-based moving object detection for video surveillance

    NASA Astrophysics Data System (ADS)

    Kaliraj, Kalirajan; Manimaran, Sudha

    2016-07-01

    Robust skin color-based moving object detection for video surveillance is proposed. The objective of the proposed algorithm is to detect and track the target under complex situations. The proposed framework comprises four stages, which include preprocessing, skin color-based feature detection, feature classification, and target localization and tracking. In the preprocessing stage, the input image frame is smoothed using averaging filter and transformed into YCrCb color space. In skin color detection, skin color regions are detected using Otsu's method of global thresholding. In the feature classification, histograms of both skin and nonskin regions are constructed and the features are classified into foregrounds and backgrounds based on Bayesian skin color classifier. The foreground skin regions are localized by a connected component labeling process. Finally, the localized foreground skin regions are confirmed as a target by verifying the region properties, and nontarget regions are rejected using the Euler method. At last, the target is tracked by enclosing the bounding box around the target region in all video frames. The experiment was conducted on various publicly available data sets and the performance was evaluated with baseline methods. It evidently shows that the proposed algorithm works well against slowly varying illumination, target rotations, scaling, fast, and abrupt motion changes.

  14. Position estimation and driving of an autonomous vehicle by monocular vision

    NASA Astrophysics Data System (ADS)

    Hanan, Jay C.; Kayathi, Pavan; Hughlett, Casey L.

    2007-04-01

    Automatic adaptive tracking in real-time for target recognition provided autonomous control of a scale model electric truck. The two-wheel drive truck was modified as an autonomous rover test-bed for vision based guidance and navigation. Methods were implemented to monitor tracking error and ensure a safe, accurate arrival at the intended science target. Some methods are situation independent relying only on the confidence error of the target recognition algorithm. Other methods take advantage of the scenario of combined motion and tracking to filter out anomalies. In either case, only a single calibrated camera was needed for position estimation. Results from real-time autonomous driving tests on the JPL simulated Mars yard are presented. Recognition error was often situation dependent. For the rover case, the background was in motion and may be characterized to provide visual cues on rover travel such as rate, pitch, roll, and distance to objects of interest or hazards. Objects in the scene may be used as landmarks, or waypoints, for such estimations. As objects are approached, their scale increases and their orientation may change. In addition, particularly on rough terrain, these orientation and scale changes may be unpredictable. Feature extraction combined with the neural network algorithm was successful in providing visual odometry in the simulated Mars environment.

  15. Foliage penetration by using 4-D point cloud data

    NASA Astrophysics Data System (ADS)

    Méndez Rodríguez, Javier; Sánchez-Reyes, Pedro J.; Cruz-Rivera, Sol M.

    2012-06-01

    Real-time awareness and rapid target detection are critical for the success of military missions. New technologies capable of detecting targets concealed in forest areas are needed in order to track and identify possible threats. Currently, LAser Detection And Ranging (LADAR) systems are capable of detecting obscured targets; however, tracking capabilities are severely limited. Now, a new LADAR-derived technology is under development to generate 4-D datasets (3-D video in a point cloud format). As such, there is a new need for algorithms that are able to process data in real time. We propose an algorithm capable of removing vegetation and other objects that may obfuscate concealed targets in a real 3-D environment. The algorithm is based on wavelets and can be used as a pre-processing step in a target recognition algorithm. Applications of the algorithm in a real-time 3-D system could help make pilots aware of high risk hidden targets such as tanks and weapons, among others. We will be using a 4-D simulated point cloud data to demonstrate the capabilities of our algorithm.

  16. Wireless sensor networks for heritage object deformation detection and tracking algorithm.

    PubMed

    Xie, Zhijun; Huang, Guangyan; Zarei, Roozbeh; He, Jing; Zhang, Yanchun; Ye, Hongwu

    2014-10-31

    Deformation is the direct cause of heritage object collapse. It is significant to monitor and signal the early warnings of the deformation of heritage objects. However, traditional heritage object monitoring methods only roughly monitor a simple-shaped heritage object as a whole, but cannot monitor complicated heritage objects, which may have a large number of surfaces inside and outside. Wireless sensor networks, comprising many small-sized, low-cost, low-power intelligent sensor nodes, are more useful to detect the deformation of every small part of the heritage objects. Wireless sensor networks need an effective mechanism to reduce both the communication costs and energy consumption in order to monitor the heritage objects in real time. In this paper, we provide an effective heritage object deformation detection and tracking method using wireless sensor networks (EffeHDDT). In EffeHDDT, we discover a connected core set of sensor nodes to reduce the communication cost for transmitting and collecting the data of the sensor networks. Particularly, we propose a heritage object boundary detecting and tracking mechanism. Both theoretical analysis and experimental results demonstrate that our EffeHDDT method outperforms the existing methods in terms of network traffic and the precision of the deformation detection.

  17. Wireless Sensor Networks for Heritage Object Deformation Detection and Tracking Algorithm

    PubMed Central

    Xie, Zhijun; Huang, Guangyan; Zarei, Roozbeh; He, Jing; Zhang, Yanchun; Ye, Hongwu

    2014-01-01

    Deformation is the direct cause of heritage object collapse. It is significant to monitor and signal the early warnings of the deformation of heritage objects. However, traditional heritage object monitoring methods only roughly monitor a simple-shaped heritage object as a whole, but cannot monitor complicated heritage objects, which may have a large number of surfaces inside and outside. Wireless sensor networks, comprising many small-sized, low-cost, low-power intelligent sensor nodes, are more useful to detect the deformation of every small part of the heritage objects. Wireless sensor networks need an effective mechanism to reduce both the communication costs and energy consumption in order to monitor the heritage objects in real time. In this paper, we provide an effective heritage object deformation detection and tracking method using wireless sensor networks (EffeHDDT). In EffeHDDT, we discover a connected core set of sensor nodes to reduce the communication cost for transmitting and collecting the data of the sensor networks. Particularly, we propose a heritage object boundary detecting and tracking mechanism. Both theoretical analysis and experimental results demonstrate that our EffeHDDT method outperforms the existing methods in terms of network traffic and the precision of the deformation detection. PMID:25365458

  18. An efficient sequential approach to tracking multiple objects through crowds for real-time intelligent CCTV systems.

    PubMed

    Li, Liyuan; Huang, Weimin; Gu, Irene Yu-Hua; Luo, Ruijiang; Tian, Qi

    2008-10-01

    Efficiency and robustness are the two most important issues for multiobject tracking algorithms in real-time intelligent video surveillance systems. We propose a novel 2.5-D approach to real-time multiobject tracking in crowds, which is formulated as a maximum a posteriori estimation problem and is approximated through an assignment step and a location step. Observing that the occluding object is usually less affected by the occluded objects, sequential solutions for the assignment and the location are derived. A novel dominant color histogram (DCH) is proposed as an efficient object model. The DCH can be regarded as a generalized color histogram, where dominant colors are selected based on a given distance measure. Comparing with conventional color histograms, the DCH only requires a few color components (31 on average). Furthermore, our theoretical analysis and evaluation on real data have shown that DCHs are robust to illumination changes. Using the DCH, efficient implementations of sequential solutions for the assignment and location steps are proposed. The assignment step includes the estimation of the depth order for the objects in a dispersing group, one-by-one assignment, and feature exclusion from the group representation. The location step includes the depth-order estimation for the objects in a new group, the two-phase mean-shift location, and the exclusion of tracked objects from the new position in the group. Multiobject tracking results and evaluation from public data sets are presented. Experiments on image sequences captured from crowded public environments have shown good tracking results, where about 90% of the objects have been successfully tracked with the correct identification numbers by the proposed method. Our results and evaluation have indicated that the method is efficient and robust for tracking multiple objects (>or= 3) in complex occlusion for real-world surveillance scenarios.

  19. Object tracking on mobile devices using binary descriptors

    NASA Astrophysics Data System (ADS)

    Savakis, Andreas; Quraishi, Mohammad Faiz; Minnehan, Breton

    2015-03-01

    With the growing ubiquity of mobile devices, advanced applications are relying on computer vision techniques to provide novel experiences for users. Currently, few tracking approaches take into consideration the resource constraints on mobile devices. Designing efficient tracking algorithms and optimizing performance for mobile devices can result in better and more efficient tracking for applications, such as augmented reality. In this paper, we use binary descriptors, including Fast Retina Keypoint (FREAK), Oriented FAST and Rotated BRIEF (ORB), Binary Robust Independent Features (BRIEF), and Binary Robust Invariant Scalable Keypoints (BRISK) to obtain real time tracking performance on mobile devices. We consider both Google's Android and Apple's iOS operating systems to implement our tracking approach. The Android implementation is done using Android's Native Development Kit (NDK), which gives the performance benefits of using native code as well as access to legacy libraries. The iOS implementation was created using both the native Objective-C and the C++ programing languages. We also introduce simplified versions of the BRIEF and BRISK descriptors that improve processing speed without compromising tracking accuracy.

  20. Ray tracing through a hexahedral mesh in HADES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Henderson, G L; Aufderheide, M B

    In this paper we describe a new ray tracing method targeted for inclusion in HADES. The algorithm tracks rays through three-dimensional tetrakis hexahedral mesh objects, like those used by the ARES code to model inertial confinement experiments.

  1. Automatic summarization of changes in biological image sequences using algorithmic information theory.

    PubMed

    Cohen, Andrew R; Bjornsson, Christopher S; Temple, Sally; Banker, Gary; Roysam, Badrinath

    2009-08-01

    An algorithmic information-theoretic method is presented for object-level summarization of meaningful changes in image sequences. Object extraction and tracking data are represented as an attributed tracking graph (ATG). Time courses of object states are compared using an adaptive information distance measure, aided by a closed-form multidimensional quantization. The notion of meaningful summarization is captured by using the gap statistic to estimate the randomness deficiency from algorithmic statistics. The summary is the clustering result and feature subset that maximize the gap statistic. This approach was validated on four bioimaging applications: 1) It was applied to a synthetic data set containing two populations of cells differing in the rate of growth, for which it correctly identified the two populations and the single feature out of 23 that separated them; 2) it was applied to 59 movies of three types of neuroprosthetic devices being inserted in the brain tissue at three speeds each, for which it correctly identified insertion speed as the primary factor affecting tissue strain; 3) when applied to movies of cultured neural progenitor cells, it correctly distinguished neurons from progenitors without requiring the use of a fixative stain; and 4) when analyzing intracellular molecular transport in cultured neurons undergoing axon specification, it automatically confirmed the role of kinesins in axon specification.

  2. Homography-based multiple-camera person-tracking

    NASA Astrophysics Data System (ADS)

    Turk, Matthew R.

    2009-01-01

    Multiple video cameras are cheaply installed overlooking an area of interest. While computerized single-camera tracking is well-developed, multiple-camera tracking is a relatively new problem. The main multi-camera problem is to give the same tracking label to all projections of a real-world target. This is called the consistent labelling problem. Khan and Shah (2003) introduced a method to use field of view lines to perform multiple-camera tracking. The method creates inter-camera meta-target associations when objects enter at the scene edges. They also said that a plane-induced homography could be used for tracking, but this method was not well described. Their homography-based system would not work if targets use only one side of a camera to enter the scene. This paper overcomes this limitation and fully describes a practical homography-based tracker. A new method to find the feet feature is introduced. The method works especially well if the camera is tilted, when using the bottom centre of the target's bounding-box would produce inaccurate results. The new method is more accurate than the bounding-box method even when the camera is not tilted. Next, a method is presented that uses a series of corresponding point pairs "dropped" by oblivious, live human targets to find a plane-induced homography. The point pairs are created by tracking the feet locations of moving targets that were associated using the field of view line method. Finally, a homography-based multiple-camera tracking algorithm is introduced. Rules governing when to create the homography are specified. The algorithm ensures that homography-based tracking only starts after a non-degenerate homography is found. The method works when not all four field of view lines are discoverable; only one line needs to be found to use the algorithm. To initialize the system, the operator must specify pairs of overlapping cameras. Aside from that, the algorithm is fully automatic and uses the natural movement of live targets for training. No calibration is required. Testing shows that the algorithm performs very well in real-world sequences. The consistent labelling problem is solved, even for targets that appear via in-scene entrances. Full occlusions are handled. Although implemented in Matlab, the multiple-camera tracking system runs at eight frames per second. A faster implementation would be suitable for real-world use at typical video frame rates.

  3. Interface of the general fitting tool GENFIT2 in PandaRoot

    NASA Astrophysics Data System (ADS)

    Prencipe, Elisabetta; Spataro, Stefano; Stockmanns, Tobias; PANDA Collaboration

    2017-10-01

    \\bar{{{P}}}ANDA is a planned experiment at FAIR (Darmstadt) with a cooled antiproton beam in a range [1.5; 15] GeV/c, allowing a wide physics program in nuclear and particle physics. It is the only experiment worldwide, which combines a solenoid field (B=2T) and a dipole field (B=2Tm) in a spectrometer with a fixed target topology, in that energy regime. The tracking system of \\bar{{{P}}}ANDA involves the presence of a high performance silicon vertex detector, a GEM detector, a straw-tubes central tracker, a forward tracking system, and a luminosity monitor. The offline tracking algorithm is developed within the PandaRoot framework, which is a part of the FairRoot project. The tool here presented is based on algorithms containing the Kalman Filter equations and a deterministic annealing filter. This general fitting tool (GENFIT2) offers to users also a Runge-Kutta track representation, and interfaces with Millepede II (useful for alignment) and RAVE (vertex finder). It is independent on the detector geometry and the magnetic field map, and written in C++ object-oriented modular code. Several fitting algorithms are available with GENFIT2, with user-adjustable parameters; therefore the tool is of friendly usage. A check on the fit convergence is done by GENFIT2 as well. The Kalman-Filter-based algorithms have a wide range of applications; among those in particle physics they can perform extrapolations of track parameters and covariance matrices. The adoptions of the PandaRoot framework to connect to Genfit2 are described, and the impact of GENFIT2 on the physics simulations of \\bar{{{P}}}ANDA are shown: significant improvement is reported for those channels where a good low momentum tracking is required (pT < 400 MeV/c).

  4. Remote Safety Monitoring for Elderly Persons Based on Omni-Vision Analysis

    PubMed Central

    Xiang, Yun; Tang, Yi-ping; Ma, Bao-qing; Yan, Hang-chen; Jiang, Jun; Tian, Xu-yuan

    2015-01-01

    Remote monitoring service for elderly persons is important as the aged populations in most developed countries continue growing. To monitor the safety and health of the elderly population, we propose a novel omni-directional vision sensor based system, which can detect and track object motion, recognize human posture, and analyze human behavior automatically. In this work, we have made the following contributions: (1) we develop a remote safety monitoring system which can provide real-time and automatic health care for the elderly persons and (2) we design a novel motion history or energy images based algorithm for motion object tracking. Our system can accurately and efficiently collect, analyze, and transfer elderly activity information and provide health care in real-time. Experimental results show that our technique can improve the data analysis efficiency by 58.5% for object tracking. Moreover, for the human posture recognition application, the success rate can reach 98.6% on average. PMID:25978761

  5. A database for reproducible manipulation research: CapriDB - Capture, Print, Innovate.

    PubMed

    Pokorny, Florian T; Bekiroglu, Yasemin; Pauwels, Karl; Butepage, Judith; Scherer, Clara; Kragic, Danica

    2017-04-01

    We present a novel approach and database which combines the inexpensive generation of 3D object models via monocular or RGB-D camera images with 3D printing and a state of the art object tracking algorithm. Unlike recent efforts towards the creation of 3D object databases for robotics, our approach does not require expensive and controlled 3D scanning setups and aims to enable anyone with a camera to scan, print and track complex objects for manipulation research. The proposed approach results in detailed textured mesh models whose 3D printed replicas provide close approximations of the originals. A key motivation for utilizing 3D printed objects is the ability to precisely control and vary object properties such as the size, material properties and mass distribution in the 3D printing process to obtain reproducible conditions for robotic manipulation research. We present CapriDB - an extensible database resulting from this approach containing initially 40 textured and 3D printable mesh models together with tracking features to facilitate the adoption of the proposed approach.

  6. Laser vision seam tracking system based on image processing and continuous convolution operator tracker

    NASA Astrophysics Data System (ADS)

    Zou, Yanbiao; Chen, Tao

    2018-06-01

    To address the problem of low welding precision caused by the poor real-time tracking performance of common welding robots, a novel seam tracking system with excellent real-time tracking performance and high accuracy is designed based on the morphological image processing method and continuous convolution operator tracker (CCOT) object tracking algorithm. The system consists of a six-axis welding robot, a line laser sensor, and an industrial computer. This work also studies the measurement principle involved in the designed system. Through the CCOT algorithm, the weld feature points are determined in real time from the noise image during the welding process, and the 3D coordinate values of these points are obtained according to the measurement principle to control the movement of the robot and the torch in real time. Experimental results show that the sensor has a frequency of 50 Hz. The welding torch runs smoothly with a strong arc light and splash interference. Tracking error can reach ±0.2 mm, and the minimal distance between the laser stripe and the welding molten pool can reach 15 mm, which can significantly fulfill actual welding requirements.

  7. Global Linking of Cell Tracks Using the Viterbi Algorithm

    PubMed Central

    Jaldén, Joakim; Gilbert, Penney M.; Blau, Helen M.

    2016-01-01

    Automated tracking of living cells in microscopy image sequences is an important and challenging problem. With this application in mind, we propose a global track linking algorithm, which links cell outlines generated by a segmentation algorithm into tracks. The algorithm adds tracks to the image sequence one at a time, in a way which uses information from the complete image sequence in every linking decision. This is achieved by finding the tracks which give the largest possible increases to a probabilistically motivated scoring function, using the Viterbi algorithm. We also present a novel way to alter previously created tracks when new tracks are created, thus mitigating the effects of error propagation. The algorithm can handle mitosis, apoptosis, and migration in and out of the imaged area, and can also deal with false positives, missed detections, and clusters of jointly segmented cells. The algorithm performance is demonstrated on two challenging datasets acquired using bright-field microscopy, but in principle, the algorithm can be used with any cell type and any imaging technique, presuming there is a suitable segmentation algorithm. PMID:25415983

  8. Data Fusion for a Vision-Radiological System for Source Tracking and Discovery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Enqvist, Andreas; Koppal, Sanjeev

    2015-07-01

    A multidisciplinary approach to allow the tracking of the movement of radioactive sources by fusing data from multiple radiological and visual sensors is under development. The goal is to improve the ability to detect, locate, track and identify nuclear/radiological threats. The key concept is that such widely available visual and depth sensors can impact radiological detection, since the intensity fall-off in the count rate can be correlated to movement in three dimensions. To enable this, we pose an important question; what is the right combination of sensing modalities and vision algorithms that can best compliment a radiological sensor, for themore » purpose of detection and tracking of radioactive material? Similarly what is the best radiation detection methods and unfolding algorithms suited for data fusion with tracking data? Data fusion of multi-sensor data for radiation detection have seen some interesting developments lately. Significant examples include intelligent radiation sensor systems (IRSS), which are based on larger numbers of distributed similar or identical radiation sensors coupled with position data for network capable to detect and locate radiation source. Other developments are gamma-ray imaging systems based on Compton scatter in segmented detector arrays. Similar developments using coded apertures or scatter cameras for neutrons have recently occurred. The main limitation of such systems is not so much in their capability but rather in their complexity and cost which is prohibitive for large scale deployment. Presented here is a fusion system based on simple, low-cost computer vision and radiological sensors for tracking of multiple objects and identifying potential radiological materials being transported or shipped. The main focus of this work is the development on two separate calibration algorithms for characterizing the fused sensor system. The deviation from a simple inverse square-root fall-off of radiation intensity is explored and accounted for. In particular, the computer vision system enables a map of distance-dependence of the sources being tracked. Infrared, laser or stereoscopic vision sensors are all options for computer-vision implementation depending on interior vs exterior deployment, resolution desired and other factors. Similarly the radiation sensors will be focused on gamma-ray or neutron detection due to the long travel length and ability to penetrate even moderate shielding. There is a significant difference between the vision sensors and radiation sensors in the way the 'source' or signals are generated. A vision sensor needs an external light-source to illuminate the object and then detects the re-emitted illumination (or lack thereof). However, for a radiation detector, the radioactive material is the source itself. The only exception to this is the field of active interrogations where radiation is beamed into a material to entice new/additional radiation emission beyond what the material would emit spontaneously. The aspect of the nuclear material being the source itself means that all other objects in the environment are 'illuminated' or irradiated by the source. Most radiation will readily penetrate regular material, scatter in new directions or be absorbed. Thus if a radiation source is located near a larger object that object will in turn scatter some radiation that was initially emitted in a direction other than the direction of the radiation detector, this can add to the count rate that is observed. The effect of these scatter is a deviation from the traditional distance dependence of the radiation signal and is a key challenge that needs a combined system calibration solution and algorithms. Thus both an algebraic approach as well as a statistical approach have been developed and independently evaluated to investigate the sensitivity to this deviation from the simplified radiation fall-off as a function of distance. The resulting calibrated system algorithms are used and demonstrated in various laboratory scenarios, and later in realistic tracking scenarios. The selection and testing of radiological and computer-vision sensors for the additional specific scenarios will be the subject of ongoing and future work. (authors)« less

  9. Infrared dim moving target tracking via sparsity-based discriminative classifier and convolutional network

    NASA Astrophysics Data System (ADS)

    Qian, Kun; Zhou, Huixin; Wang, Bingjian; Song, Shangzhen; Zhao, Dong

    2017-11-01

    Infrared dim and small target tracking is a great challenging task. The main challenge for target tracking is to account for appearance change of an object, which submerges in the cluttered background. An efficient appearance model that exploits both the global template and local representation over infrared image sequences is constructed for dim moving target tracking. A Sparsity-based Discriminative Classifier (SDC) and a Convolutional Network-based Generative Model (CNGM) are combined with a prior model. In the SDC model, a sparse representation-based algorithm is adopted to calculate the confidence value that assigns more weights to target templates than negative background templates. In the CNGM model, simple cell feature maps are obtained by calculating the convolution between target templates and fixed filters, which are extracted from the target region at the first frame. These maps measure similarities between each filter and local intensity patterns across the target template, therefore encoding its local structural information. Then, all the maps form a representation, preserving the inner geometric layout of a candidate template. Furthermore, the fixed target template set is processed via an efficient prior model. The same operation is applied to candidate templates in the CNGM model. The online update scheme not only accounts for appearance variations but also alleviates the migration problem. At last, collaborative confidence values of particles are utilized to generate particles' importance weights. Experiments on various infrared sequences have validated the tracking capability of the presented algorithm. Experimental results show that this algorithm runs in real-time and provides a higher accuracy than state of the art algorithms.

  10. Adaptive block online learning target tracking based on super pixel segmentation

    NASA Astrophysics Data System (ADS)

    Cheng, Yue; Li, Jianzeng

    2018-04-01

    Video target tracking technology under the unremitting exploration of predecessors has made big progress, but there are still lots of problems not solved. This paper proposed a new algorithm of target tracking based on image segmentation technology. Firstly we divide the selected region using simple linear iterative clustering (SLIC) algorithm, after that, we block the area with the improved density-based spatial clustering of applications with noise (DBSCAN) clustering algorithm. Each sub-block independently trained classifier and tracked, then the algorithm ignore the failed tracking sub-block while reintegrate the rest of the sub-blocks into tracking box to complete the target tracking. The experimental results show that our algorithm can work effectively under occlusion interference, rotation change, scale change and many other problems in target tracking compared with the current mainstream algorithms.

  11. A hybrid multi-objective imperialist competitive algorithm and Monte Carlo method for robust safety design of a rail vehicle

    NASA Astrophysics Data System (ADS)

    Nejlaoui, Mohamed; Houidi, Ajmi; Affi, Zouhaier; Romdhane, Lotfi

    2017-10-01

    This paper deals with the robust safety design optimization of a rail vehicle system moving in short radius curved tracks. A combined multi-objective imperialist competitive algorithm and Monte Carlo method is developed and used for the robust multi-objective optimization of the rail vehicle system. This robust optimization of rail vehicle safety considers simultaneously the derailment angle and its standard deviation where the design parameters uncertainties are considered. The obtained results showed that the robust design reduces significantly the sensitivity of the rail vehicle safety to the design parameters uncertainties compared to the determinist one and to the literature results.

  12. Fringe pattern demodulation with a two-frame digital phase-locked loop algorithm.

    PubMed

    Gdeisat, Munther A; Burton, David R; Lalor, Michael J

    2002-09-10

    A novel technique called a two-frame digital phase-locked loop for fringe pattern demodulation is presented. In this scheme, two fringe patterns with different spatial carrier frequencies are grabbed for an object. A digital phase-locked loop algorithm tracks and demodulates the phase difference between both fringe patterns by employing the wrapped phase components of one of the fringe patterns as a reference to demodulate the second fringe pattern. The desired phase information can be extracted from the demodulated phase difference. We tested the algorithm experimentally using real fringe patterns. The technique is shown to be suitable for noncontact measurement of objects with rapid surface variations, and it outperforms the Fourier fringe analysis technique in this aspect. Phase maps produced withthis algorithm are noisy in comparison with phase maps generated with the Fourier fringe analysis technique.

  13. Robust online tracking via adaptive samples selection with saliency detection

    NASA Astrophysics Data System (ADS)

    Yan, Jia; Chen, Xi; Zhu, QiuPing

    2013-12-01

    Online tracking has shown to be successful in tracking of previously unknown objects. However, there are two important factors which lead to drift problem of online tracking, the one is how to select the exact labeled samples even when the target locations are inaccurate, and the other is how to handle the confusors which have similar features with the target. In this article, we propose a robust online tracking algorithm with adaptive samples selection based on saliency detection to overcome the drift problem. To deal with the problem of degrading the classifiers using mis-aligned samples, we introduce the saliency detection method to our tracking problem. Saliency maps and the strong classifiers are combined to extract the most correct positive samples. Our approach employs a simple yet saliency detection algorithm based on image spectral residual analysis. Furthermore, instead of using the random patches as the negative samples, we propose a reasonable selection criterion, in which both the saliency confidence and similarity are considered with the benefits that confusors in the surrounding background are incorporated into the classifiers update process before the drift occurs. The tracking task is formulated as a binary classification via online boosting framework. Experiment results in several challenging video sequences demonstrate the accuracy and stability of our tracker.

  14. Contributed Review: Source-localization algorithms and applications using time of arrival and time difference of arrival measurements

    DOE PAGES

    Li, Xinya; Deng, Zhiqun Daniel; Rauchenstein, Lynn T.; ...

    2016-04-01

    Locating the position of fixed or mobile sources (i.e., transmitters) based on received measurements from sensors is an important research area that is attracting much research interest. In this paper, we present localization algorithms using time of arrivals (TOA) and time difference of arrivals (TDOA) to achieve high accuracy under line-of-sight conditions. The circular (TOA) and hyperbolic (TDOA) location systems both use nonlinear equations that relate the locations of the sensors and tracked objects. These nonlinear equations can develop accuracy challenges because of the existence of measurement errors and efficiency challenges that lead to high computational burdens. Least squares-based andmore » maximum likelihood-based algorithms have become the most popular categories of location estimators. We also summarize the advantages and disadvantages of various positioning algorithms. By improving measurement techniques and localization algorithms, localization applications can be extended into the signal-processing-related domains of radar, sonar, the Global Positioning System, wireless sensor networks, underwater animal tracking, mobile communications, and multimedia.« less

  15. Contributed Review: Source-localization algorithms and applications using time of arrival and time difference of arrival measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Xinya; Deng, Zhiqun Daniel; Rauchenstein, Lynn T.

    Locating the position of fixed or mobile sources (i.e., transmitters) based on received measurements from sensors is an important research area that is attracting much research interest. In this paper, we present localization algorithms using time of arrivals (TOA) and time difference of arrivals (TDOA) to achieve high accuracy under line-of-sight conditions. The circular (TOA) and hyperbolic (TDOA) location systems both use nonlinear equations that relate the locations of the sensors and tracked objects. These nonlinear equations can develop accuracy challenges because of the existence of measurement errors and efficiency challenges that lead to high computational burdens. Least squares-based andmore » maximum likelihood-based algorithms have become the most popular categories of location estimators. We also summarize the advantages and disadvantages of various positioning algorithms. By improving measurement techniques and localization algorithms, localization applications can be extended into the signal-processing-related domains of radar, sonar, the Global Positioning System, wireless sensor networks, underwater animal tracking, mobile communications, and multimedia.« less

  16. 3-D rigid body tracking using vision and depth sensors.

    PubMed

    Gedik, O Serdar; Alatan, A Aydn

    2013-10-01

    In robotics and augmented reality applications, model-based 3-D tracking of rigid objects is generally required. With the help of accurate pose estimates, it is required to increase reliability and decrease jitter in total. Among many solutions of pose estimation in the literature, pure vision-based 3-D trackers require either manual initializations or offline training stages. On the other hand, trackers relying on pure depth sensors are not suitable for AR applications. An automated 3-D tracking algorithm, which is based on fusion of vision and depth sensors via extended Kalman filter, is proposed in this paper. A novel measurement-tracking scheme, which is based on estimation of optical flow using intensity and shape index map data of 3-D point cloud, increases 2-D, as well as 3-D, tracking performance significantly. The proposed method requires neither manual initialization of pose nor offline training, while enabling highly accurate 3-D tracking. The accuracy of the proposed method is tested against a number of conventional techniques, and a superior performance is clearly observed in terms of both objectively via error metrics and subjectively for the rendered scenes.

  17. Infrared measurement and composite tracking algorithm for air-breathing hypersonic vehicles

    NASA Astrophysics Data System (ADS)

    Zhang, Zhao; Gao, Changsheng; Jing, Wuxing

    2018-03-01

    Air-breathing hypersonic vehicles have capabilities of hypersonic speed and strong maneuvering, and thus pose a significant challenge to conventional tracking methodologies. To achieve desirable tracking performance for hypersonic targets, this paper investigates the problems related to measurement model design and tracking model mismatching. First, owing to the severe aerothermal effect of hypersonic motion, an infrared measurement model in near space is designed and analyzed based on target infrared radiation and an atmospheric model. Second, using information from infrared sensors, a composite tracking algorithm is proposed via a combination of the interactive multiple models (IMM) algorithm, fitting dynamics model, and strong tracking filter. During the procedure, the IMMs algorithm generates tracking data to establish a fitting dynamics model of the target. Then, the strong tracking unscented Kalman filter is employed to estimate the target states for suppressing the impact of target maneuvers. Simulations are performed to verify the feasibility of the presented composite tracking algorithm. The results demonstrate that the designed infrared measurement model effectively and continuously observes hypersonic vehicles, and the proposed composite tracking algorithm accurately and stably tracks these targets.

  18. COBE navigation with one-way return-link Doppler in the post-helium-venting phase

    NASA Technical Reports Server (NTRS)

    Dunham, Joan; Nemesure, M.; Samii, M. V.; Maher, M.; Teles, Jerome; Jackson, J.

    1991-01-01

    The results of a navigation experiment with one way return link Doppler tracking measurements for operational orbit determination of the Cosmic Background Explorer (COBE) spacecraft are presented. The frequency of the tracking signal for the one way measurements was stabilized with an Ultrastable Oscillator (USO), and the signal was relayed by the Tracking and Data Relay Satellite System (TDRSS). The study achieved three objectives: space qualification of TDRSS noncoherent one way return link Doppler tracking; determination of flight performance of the USO coupled to the second generation TDRSS compatible user transponder; and verification of algorithms for navigation using actual one way tracking data. Orbit determination and the inflight USO performance evaluation results are presented.

  19. Development of collision avoidance system for useful UAV applications using image sensors with laser transmitter

    NASA Astrophysics Data System (ADS)

    Cheong, M. K.; Bahiki, M. R.; Azrad, S.

    2016-10-01

    The main goal of this study is to demonstrate the approach of achieving collision avoidance on Quadrotor Unmanned Aerial Vehicle (QUAV) using image sensors with colour- based tracking method. A pair of high definition (HD) stereo cameras were chosen as the stereo vision sensor to obtain depth data from flat object surfaces. Laser transmitter was utilized to project high contrast tracking spot for depth calculation using common triangulation. Stereo vision algorithm was developed to acquire the distance from tracked point to QUAV and the control algorithm was designed to manipulate QUAV's response based on depth calculated. Attitude and position controller were designed using the non-linear model with the help of Optitrack motion tracking system. A number of collision avoidance flight tests were carried out to validate the performance of the stereo vision and control algorithm based on image sensors. In the results, the UAV was able to hover with fairly good accuracy in both static and dynamic collision avoidance for short range collision avoidance. Collision avoidance performance of the UAV was better with obstacle of dull surfaces in comparison to shiny surfaces. The minimum collision avoidance distance achievable was 0.4 m. The approach was suitable to be applied in short range collision avoidance.

  20. Rapid Object Detection Systems, Utilising Deep Learning and Unmanned Aerial Systems (uas) for Civil Engineering Applications

    NASA Astrophysics Data System (ADS)

    Griffiths, D.; Boehm, J.

    2018-05-01

    With deep learning approaches now out-performing traditional image processing techniques for image understanding, this paper accesses the potential of rapid generation of Convolutional Neural Networks (CNNs) for applied engineering purposes. Three CNNs are trained on 275 UAS-derived and freely available online images for object detection of 3m2 segments of railway track. These includes two models based on the Faster RCNN object detection algorithm (Resnet and Incpetion-Resnet) as well as the novel onestage Focal Loss network architecture (Retinanet). Model performance was assessed with respect to three accuracy metrics. The first two consisted of Intersection over Union (IoU) with thresholds 0.5 and 0.1. The last assesses accuracy based on the proportion of track covered by object detection proposals against total track length. In under six hours of training (and two hours of manual labelling) the models detected 91.3 %, 83.1 % and 75.6 % of track in the 500 test images acquired from the UAS survey Retinanet, Resnet and Inception-Resnet respectively. We then discuss the potential for such applications of such systems within the engineering field for a range of scenarios.

  1. Multiple feature fusion via covariance matrix for visual tracking

    NASA Astrophysics Data System (ADS)

    Jin, Zefenfen; Hou, Zhiqiang; Yu, Wangsheng; Wang, Xin; Sun, Hui

    2018-04-01

    Aiming at the problem of complicated dynamic scenes in visual target tracking, a multi-feature fusion tracking algorithm based on covariance matrix is proposed to improve the robustness of the tracking algorithm. In the frame-work of quantum genetic algorithm, this paper uses the region covariance descriptor to fuse the color, edge and texture features. It also uses a fast covariance intersection algorithm to update the model. The low dimension of region covariance descriptor, the fast convergence speed and strong global optimization ability of quantum genetic algorithm, and the fast computation of fast covariance intersection algorithm are used to improve the computational efficiency of fusion, matching, and updating process, so that the algorithm achieves a fast and effective multi-feature fusion tracking. The experiments prove that the proposed algorithm can not only achieve fast and robust tracking but also effectively handle interference of occlusion, rotation, deformation, motion blur and so on.

  2. Tracking multiple particles in fluorescence time-lapse microscopy images via probabilistic data association.

    PubMed

    Godinez, William J; Rohr, Karl

    2015-02-01

    Tracking subcellular structures as well as viral structures displayed as 'particles' in fluorescence microscopy images yields quantitative information on the underlying dynamical processes. We have developed an approach for tracking multiple fluorescent particles based on probabilistic data association. The approach combines a localization scheme that uses a bottom-up strategy based on the spot-enhancing filter as well as a top-down strategy based on an ellipsoidal sampling scheme that uses the Gaussian probability distributions computed by a Kalman filter. The localization scheme yields multiple measurements that are incorporated into the Kalman filter via a combined innovation, where the association probabilities are interpreted as weights calculated using an image likelihood. To track objects in close proximity, we compute the support of each image position relative to the neighboring objects of a tracked object and use this support to recalculate the weights. To cope with multiple motion models, we integrated the interacting multiple model algorithm. The approach has been successfully applied to synthetic 2-D and 3-D images as well as to real 2-D and 3-D microscopy images, and the performance has been quantified. In addition, the approach was successfully applied to the 2-D and 3-D image data of the recent Particle Tracking Challenge at the IEEE International Symposium on Biomedical Imaging (ISBI) 2012.

  3. Terrain mapping and control of unmanned aerial vehicles

    NASA Astrophysics Data System (ADS)

    Kang, Yeonsik

    In this thesis, methods for terrain mapping and control of unmanned aerial vehicles (UAVs) are proposed. First, robust obstacle detection and tracking algorithm are introduced to eliminate the clutter noise uncorrelated with the real obstacle. This is an important problem since most types of sensor measurements are vulnerable to noise. In order to eliminate such noise, a Kalman filter-based interacting multiple model (IMM) algorithm is employed to effectively detect obstacles and estimate their positions precisely. Using the outcome of the IMM-based obstacle detection algorithm, a new method of building a probabilistic occupancy grid map is proposed based on Bayes rule in probability theory. Since the proposed map update law uses the outputs of the IMM-based obstacle detection algorithm, simultaneous tracking of moving targets and mapping of stationary obstacles are possible. This can be helpful especially in a noisy outdoor environment where different types of obstacles exist. Another feature of the algorithm is its capability to eliminate clutter noise as well as measurement noise. The proposed algorithm is simulated in Matlab using realistic sensor models. The results show close agreement with the layout of real obstacles. An efficient method called "quadtree" is used to process massive geographical information in a convenient manner. The algorithm is evaluated in a realistic simulation environment called RIPTIDE, which the NASA Ames Research Center developed to access the performance of complicated software for UAVs. Supposing that a UAV is equipped with abovementioned obstacle detection and mapping algorithm, the control problem of a small fixed-wing UAV is studied. A Nonlinear Model Predictive Control (NMPC is designed as a high level controller for the fixed-wing UAV using a kinematic model of the UAV. The kinematic model is employed because of the assumption that there exist low level controls on the UAV. The UAV dynamics are nonlinear with input constraints which is the main challenge explored in this thesis. The control objective of the NMPC is determined to track a desired line, and the analysis of the designed NMPC's stability is followed to find the conditions that can assure stability. Then, the control objective is extended to track adjoined multiple line segments with obstacle avoidance capability. In simulation, the performance of the NMPC is superb with fast convergence and small overshoot. The computation time is not a burden for a fixed-wing UAV controller with a Pentium level on-board computer that provides a reasonable control update rate.

  4. Study of moving object detecting and tracking algorithm for video surveillance system

    NASA Astrophysics Data System (ADS)

    Wang, Tao; Zhang, Rongfu

    2010-10-01

    This paper describes a specific process of moving target detecting and tracking in the video surveillance.Obtain high-quality background is the key to achieving differential target detecting in the video surveillance.The paper is based on a block segmentation method to build clear background,and using the method of background difference to detecing moving target,after a series of treatment we can be extracted the more comprehensive object from original image,then using the smallest bounding rectangle to locate the object.In the video surveillance system, the delay of camera and other reasons lead to tracking lag,the model of Kalman filter based on template matching was proposed,using deduced and estimated capacity of Kalman,the center of smallest bounding rectangle for predictive value,predicted the position in the next moment may appare,followed by template matching in the region as the center of this position,by calculate the cross-correlation similarity of current image and reference image,can determine the best matching center.As narrowed the scope of searching,thereby reduced the searching time,so there be achieve fast-tracking.

  5. Tracking Object Existence From an Autonomous Patrol Vehicle

    NASA Technical Reports Server (NTRS)

    Wolf, Michael; Scharenbroich, Lucas

    2011-01-01

    An autonomous vehicle patrols a large region, during which an algorithm receives measurements of detected potential objects within its sensor range. The goal of the algorithm is to track all objects in the region over time. This problem differs from traditional multi-target tracking scenarios because the region of interest is much larger than the sensor range and relies on the movement of the sensor through this region for coverage. The goal is to know whether anything has changed between visits to the same location. In particular, two kinds of alert conditions must be detected: (1) a previously detected object has disappeared and (2) a new object has appeared in a location already checked. For the time an object is within sensor range, the object can be assumed to remain stationary, changing position only between visits. The problem is difficult because the upstream object detection processing is likely to make many errors, resulting in heavy clutter (false positives) and missed detections (false negatives), and because only noisy, bearings-only measurements are available. This work has three main goals: (1) Associate incoming measurements with known objects or mark them as new objects or false positives, as appropriate. For this, a multiple hypothesis tracker was adapted to this scenario. (2) Localize the objects using multiple bearings-only measurements to provide estimates of global position (e.g., latitude and longitude). A nonlinear Kalman filter extension provides these 2D position estimates using the 1D measurements. (3) Calculate the probability that a suspected object truly exists (in the estimated position), and determine whether alert conditions have been triggered (for new objects or disappeared objects). The concept of a probability of existence was created, and a new Bayesian method for updating this probability at each time step was developed. A probabilistic multiple hypothesis approach is chosen because of its superiority in handling the uncertainty arising from errors in sensors and upstream processes. However, traditional target tracking methods typically assume a stationary detection volume of interest, whereas in this case, one must make adjustments for being able to see only a small portion of the region of interest and understand when an alert situation has occurred. To track object existence inside and outside the vehicle's sensor range, a probability of existence was defined for each hypothesized object, and this value was updated at every time step in a Bayesian manner based on expected characteristics of the sensor and object and whether that object has been detected in the most recent time step. Then, this value feeds into a sequential probability ratio test (SPRT) to determine the status of the object (suspected, confirmed, or deleted). Alerts are sent upon selected status transitions. Additionally, in order to track objects that move in and out of sensor range and update the probability of existence appropriately a variable probability detection has been defined and the hypothesis probability equations have been re-derived to accommodate this change. Unsupervised object tracking is a pervasive issue in automated perception systems. This work could apply to any mobile platform (ground vehicle, sea vessel, air vehicle, or orbiter) that intermittently revisits regions of interest and needs to determine whether anything interesting has changed.

  6. Autonomous Flight Safety System - Phase III

    NASA Technical Reports Server (NTRS)

    2008-01-01

    The Autonomous Flight Safety System (AFSS) is a joint KSC and Wallops Flight Facility project that uses tracking and attitude data from onboard Global Positioning System (GPS) and inertial measurement unit (IMU) sensors and configurable rule-based algorithms to make flight termination decisions. AFSS objectives are to increase launch capabilities by permitting launches from locations without range safety infrastructure, reduce costs by eliminating some downrange tracking and communication assets, and reduce the reaction time for flight termination decisions.

  7. Multi-resolution model-based traffic sign detection and tracking

    NASA Astrophysics Data System (ADS)

    Marinas, Javier; Salgado, Luis; Camplani, Massimo

    2012-06-01

    In this paper we propose an innovative approach to tackle the problem of traffic sign detection using a computer vision algorithm and taking into account real-time operation constraints, trying to establish intelligent strategies to simplify as much as possible the algorithm complexity and to speed up the process. Firstly, a set of candidates is generated according to a color segmentation stage, followed by a region analysis strategy, where spatial characteristic of previously detected objects are taken into account. Finally, temporal coherence is introduced by means of a tracking scheme, performed using a Kalman filter for each potential candidate. Taking into consideration time constraints, efficiency is achieved two-fold: on the one side, a multi-resolution strategy is adopted for segmentation, where global operation will be applied only to low-resolution images, increasing the resolution to the maximum only when a potential road sign is being tracked. On the other side, we take advantage of the expected spacing between traffic signs. Namely, the tracking of objects of interest allows to generate inhibition areas, which are those ones where no new traffic signs are expected to appear due to the existence of a TS in the neighborhood. The proposed solution has been tested with real sequences in both urban areas and highways, and proved to achieve higher computational efficiency, especially as a result of the multi-resolution approach.

  8. Seismic noise attenuation using an online subspace tracking algorithm

    NASA Astrophysics Data System (ADS)

    Zhou, Yatong; Li, Shuhua; Zhang, Dong; Chen, Yangkang

    2018-02-01

    We propose a new low-rank based noise attenuation method using an efficient algorithm for tracking subspaces from highly corrupted seismic observations. The subspace tracking algorithm requires only basic linear algebraic manipulations. The algorithm is derived by analysing incremental gradient descent on the Grassmannian manifold of subspaces. When the multidimensional seismic data are mapped to a low-rank space, the subspace tracking algorithm can be directly applied to the input low-rank matrix to estimate the useful signals. Since the subspace tracking algorithm is an online algorithm, it is more robust to random noise than traditional truncated singular value decomposition (TSVD) based subspace tracking algorithm. Compared with the state-of-the-art algorithms, the proposed denoising method can obtain better performance. More specifically, the proposed method outperforms the TSVD-based singular spectrum analysis method in causing less residual noise and also in saving half of the computational cost. Several synthetic and field data examples with different levels of complexities demonstrate the effectiveness and robustness of the presented algorithm in rejecting different types of noise including random noise, spiky noise, blending noise, and coherent noise.

  9. Infrared small target tracking based on SOPC

    NASA Astrophysics Data System (ADS)

    Hu, Taotao; Fan, Xiang; Zhang, Yu-Jin; Cheng, Zheng-dong; Zhu, Bin

    2011-01-01

    The paper presents a low cost FPGA based solution for a real-time infrared small target tracking system. A specialized architecture is presented based on a soft RISC processor capable of running kernel based mean shift tracking algorithm. Mean shift tracking algorithm is realized in NIOS II soft-core with SOPC (System on a Programmable Chip) technology. Though mean shift algorithm is widely used for target tracking, the original mean shift algorithm can not be directly used for infrared small target tracking. As infrared small target only has intensity information, so an improved mean shift algorithm is presented in this paper. How to describe target will determine whether target can be tracked by mean shift algorithm. Because color target can be tracked well by mean shift algorithm, imitating color image expression, spatial component and temporal component are advanced to describe target, which forms pseudo-color image. In order to improve the processing speed parallel technology and pipeline technology are taken. Two RAM are taken to stored images separately by ping-pong technology. A FLASH is used to store mass temp data. The experimental results show that infrared small target is tracked stably in complicated background.

  10. Grasping rigid objects in zero-g

    NASA Astrophysics Data System (ADS)

    Anderson, Greg D.

    1993-12-01

    The extra vehicular activity helper/retriever (EVAHR) is a prototype for an autonomous free- flying robotic astronaut helper. The ability to grasp a moving object is a fundamental skill required for any autonomous free-flyer. This paper discusses an algorithm that couples resolved acceleration control with potential field based obstacle avoidance to enable a manipulator to track and capture a rigid object in (imperfect) zero-g while avoiding joint limits, singular configurations, and unintentional impacts between the manipulator and the environment.

  11. Intelligence-aided multitarget tracking for urban operations - a case study: counter terrorism

    NASA Astrophysics Data System (ADS)

    Sathyan, T.; Bharadwaj, K.; Sinha, A.; Kirubarajan, T.

    2006-05-01

    In this paper, we present a framework for tracking multiple mobile targets in an urban environment based on data from multiple sources of information, and for evaluating the threat these targets pose to assets of interest (AOI). The motivating scenario is one where we have to track many targets, each with different (unknown) destinations and/or intents. The tracking algorithm is aided by information about the urban environment (e.g., road maps, buildings, hideouts), and strategic and intelligence data. The tracking algorithm needs to be dynamic in that it has to handle a time-varying number of targets and the ever-changing urban environment depending on the locations of the moving objects and AOI. Our solution uses the variable structure interacting multiple model (VS-IMM) estimator, which has been shown to be effective in tracking targets based on road map information. Intelligence information is represented as target class information and incorporated through a combined likelihood calculation within the VS-IMM estimator. In addition, we develop a model to calculate the probability that a particular target can attack a given AOI. This model for the calculation of the probability of attack is based on the target kinematic and class information. Simulation results are presented to demonstrate the operation of the proposed framework on a representative scenario.

  12. Development and validation of the AFIT scene and sensor emulator for testing (ASSET)

    NASA Astrophysics Data System (ADS)

    Young, Shannon R.; Steward, Bryan J.; Gross, Kevin C.

    2017-05-01

    ASSET is a physics-based model used to generate synthetic data sets of wide field of view (WFOV) electro-optical and infrared (EO/IR) sensors with realistic radiometric properties, noise characteristics, and sensor artifacts. It was developed to meet the need for applications where precise knowledge of the underlying truth is required but is impractical to obtain for real sensors. For example, due to accelerating advances in imaging technology, the volume of data available from WFOV EO/IR sensors has drastically increased over the past several decades, and as a result, there is a need for fast, robust, automatic detection and tracking algorithms. Evaluation of these algorithms is difficult for objects that traverse a wide area (100-10,000 km) because obtaining accurate truth for the full object trajectory often requires costly instrumentation. Additionally, tracking and detection algorithms perform differently depending on factors such as the object kinematics, environment, and sensor configuration. A variety of truth data sets spanning these parameters are needed for thorough testing, which is often cost prohibitive. The use of synthetic data sets for algorithm development allows for full control of scene parameters with full knowledge of truth. However, in order for analysis using synthetic data to be meaningful, the data must be truly representative of real sensor collections. ASSET aims to provide a means of generating such representative data sets for WFOV sensors operating in the visible through thermal infrared. The work reported here describes the ASSET model, as well as provides validation results from comparisons to laboratory imagers and satellite data (e.g. Landsat-8).

  13. A composite controller for trajectory tracking applied to the Furuta pendulum.

    PubMed

    Aguilar-Avelar, Carlos; Moreno-Valenzuela, Javier

    2015-07-01

    In this paper, a new composite scheme is proposed, where the total control action is composed of the sum of a feedback-linearization-based controller and an energy-based compensation. This new proposition is applied to the rotary inverted pendulum or Furuta pendulum. The Furuta pendulum is a well-known underactuated mechanical system with two degrees of freedom. The control objective in this case is the tracking of a desired periodic trajectory in the actuated joint, while the unactuated link is regulated at the upward position. The closed-loop system is analyzed showing uniformly ultimately boundedness of the error trajectories. The design procedure is shown in a constructive form, such that it may be applied to other underactuated mechanical systems, with the proper definitions of the output function and the energy function. Numerical simulations and real-time experiments show the practical viability of the controller. Finally, the proposed algorithm is compared with a tracking controller previously reported in the literature. The new algorithm shows better performance in both arm trajectory tracking and pendulum regulation. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  14. Radar Detection of Marine Mammals

    DTIC Science & Technology

    2011-09-30

    BFT-BPT algorithm for use with our radar data. This track - before - detect algorithm had been effective in enhancing small but persistent signatures in...will be possible with the detect before track algorithm. 4 We next evaluated the track before detect algorithm, the BFT-BPT, on the CEDAR data

  15. Validating Machine Learning Algorithms for Twitter Data Against Established Measures of Suicidality

    PubMed Central

    2016-01-01

    Background One of the leading causes of death in the United States (US) is suicide and new methods of assessment are needed to track its risk in real time. Objective Our objective is to validate the use of machine learning algorithms for Twitter data against empirically validated measures of suicidality in the US population. Methods Using a machine learning algorithm, the Twitter feeds of 135 Mechanical Turk (MTurk) participants were compared with validated, self-report measures of suicide risk. Results Our findings show that people who are at high suicidal risk can be easily differentiated from those who are not by machine learning algorithms, which accurately identify the clinically significant suicidal rate in 92% of cases (sensitivity: 53%, specificity: 97%, positive predictive value: 75%, negative predictive value: 93%). Conclusions Machine learning algorithms are efficient in differentiating people who are at a suicidal risk from those who are not. Evidence for suicidality can be measured in nonclinical populations using social media data. PMID:27185366

  16. A versatile pitch tracking algorithm: from human speech to killer whale vocalizations.

    PubMed

    Shapiro, Ari Daniel; Wang, Chao

    2009-07-01

    In this article, a pitch tracking algorithm [named discrete logarithmic Fourier transformation-pitch detection algorithm (DLFT-PDA)], originally designed for human telephone speech, was modified for killer whale vocalizations. The multiple frequency components of some of these vocalizations demand a spectral (rather than temporal) approach to pitch tracking. The DLFT-PDA algorithm derives reliable estimations of pitch and the temporal change of pitch from the harmonic structure of the vocal signal. Scores from both estimations are combined in a dynamic programming search to find a smooth pitch track. The algorithm is capable of tracking killer whale calls that contain simultaneous low and high frequency components and compares favorably across most signal to noise ratio ranges to the peak-picking and sidewinder algorithms that have been used for tracking killer whale vocalizations previously.

  17. Near-real-time biplanar fluoroscopic tracking system for the video tumor fighter

    NASA Astrophysics Data System (ADS)

    Lawson, Michael A.; Wika, Kevin G.; Gilles, George T.; Ritter, Rogers C.

    1991-06-01

    We have developed software capable of the three-dimensional tracking of objects in the brain volume, and the subsequent overlaying of an image of the object onto previously obtained MR or CT scans. This software has been developed for use with the Magnetic Stereotaxis System (MSS), also called the 'Video Tumor Fighter' (VTF). The software was written for a Sun 4/110 SPARC workstation with an ANDROX ICS-400 image processing card installed to manage this task. At present, the system uses input from two orthogonally-oriented, visible- light cameras and a simulated scene to determine the three-dimensional position of the object of interest. The coordinates are then transformed into MR or CT coordinates and an image of the object is displayed in the appropriate intersecting MR slice on a computer screen. This paper describes the tracking algorithm and discusses how it was implemented in software. The system's hardware is also described. The limitations of the present system are discussed and plans for incorporating bi-planar, x-ray fluoroscopy are presented.

  18. Good Features to Correlate for Visual Tracking

    NASA Astrophysics Data System (ADS)

    Gundogdu, Erhan; Alatan, A. Aydin

    2018-05-01

    During the recent years, correlation filters have shown dominant and spectacular results for visual object tracking. The types of the features that are employed in these family of trackers significantly affect the performance of visual tracking. The ultimate goal is to utilize robust features invariant to any kind of appearance change of the object, while predicting the object location as properly as in the case of no appearance change. As the deep learning based methods have emerged, the study of learning features for specific tasks has accelerated. For instance, discriminative visual tracking methods based on deep architectures have been studied with promising performance. Nevertheless, correlation filter based (CFB) trackers confine themselves to use the pre-trained networks which are trained for object classification problem. To this end, in this manuscript the problem of learning deep fully convolutional features for the CFB visual tracking is formulated. In order to learn the proposed model, a novel and efficient backpropagation algorithm is presented based on the loss function of the network. The proposed learning framework enables the network model to be flexible for a custom design. Moreover, it alleviates the dependency on the network trained for classification. Extensive performance analysis shows the efficacy of the proposed custom design in the CFB tracking framework. By fine-tuning the convolutional parts of a state-of-the-art network and integrating this model to a CFB tracker, which is the top performing one of VOT2016, 18% increase is achieved in terms of expected average overlap, and tracking failures are decreased by 25%, while maintaining the superiority over the state-of-the-art methods in OTB-2013 and OTB-2015 tracking datasets.

  19. A generalized muon trajectory estimation algorithm with energy loss for application to muon tomography

    NASA Astrophysics Data System (ADS)

    Chatzidakis, Stylianos; Liu, Zhengzhi; Hayward, Jason P.; Scaglione, John M.

    2018-03-01

    This work presents a generalized muon trajectory estimation algorithm to estimate the path of a muon in either uniform or nonuniform media. The use of cosmic ray muons in nuclear nonproliferation and safeguard verification applications has recently gained attention due to the non-intrusive and passive nature of the inspection, penetrating capabilities, as well as recent advances in detectors that measure position and direction of the individual muons before and after traversing the imaged object. However, muon image reconstruction techniques are limited in resolution due to low muon flux and the effects of multiple Coulomb scattering (MCS). Current reconstruction algorithms, e.g., point of closest approach (PoCA) or straight-line path (SLP), rely on overly simple assumptions for muon path estimation through the imaged object. For robust muon tomography, efficient and flexible physics-based algorithms are needed to model the MCS process and accurately estimate the most probable trajectory of a muon as it traverses an object. In the present work, the use of a Bayesian framework and a Gaussian approximation of MCS is explored for estimation of the most likely path of a cosmic ray muon traversing uniform or nonuniform media and undergoing MCS. The algorithm's precision is compared to Monte Carlo simulated muon trajectories. It was found that the algorithm is expected to be able to predict muon tracks to less than 1.5 mm root mean square (RMS) for 0.5 GeV muons and 0.25 mm RMS for 3 GeV muons, a 50% improvement compared to SLP and 15% improvement when compared to PoCA. Further, a 30% increase in useful muon flux was observed relative to PoCA. Muon track prediction improved for higher muon energies or smaller penetration depth where energy loss is not significant. The effect of energy loss due to ionization is investigated, and a linear energy loss relation that is easy to use is proposed.

  20. Objective assessment of operator performance during ultrasound-guided procedures.

    PubMed

    Tabriz, David M; Street, Mandie; Pilgram, Thomas K; Duncan, James R

    2011-09-01

    Simulation permits objective assessment of operator performance in a controlled and safe environment. Image-guided procedures often require accurate needle placement, and we designed a system to monitor how ultrasound guidance is used to monitor needle advancement toward a target. The results were correlated with other estimates of operator skill. The simulator consisted of a tissue phantom, ultrasound unit, and electromagnetic tracking system. Operators were asked to guide a needle toward a visible point target. Performance was video-recorded and synchronized with the electromagnetic tracking data. A series of algorithms based on motor control theory and human information processing were used to convert raw tracking data into different performance indices. Scoring algorithms converted the tracking data into efficiency, quality, task difficulty, and targeting scores that were aggregated to create performance indices. After initial feasibility testing, a standardized assessment was developed. Operators (N = 12) with a broad spectrum of skill and experience were enrolled and tested. Overall scores were based on performance during ten simulated procedures. Prior clinical experience was used to independently estimate operator skill. When summed, the performance indices correlated well with estimated skill. Operators with minimal or no prior experience scored markedly lower than experienced operators. The overall score tended to increase according to operator's clinical experience. Operator experience was linked to decreased variation in multiple aspects of performance. The aggregated results of multiple trials provided the best correlation between estimated skill and performance. A metric for the operator's ability to maintain the needle aimed at the target discriminated between operators with different levels of experience. This study used a highly focused task model, standardized assessment, and objective data analysis to assess performance during simulated ultrasound-guided needle placement. The performance indices were closely related to operator experience.

  1. Clock Synchronization for Multihop Wireless Sensor Networks

    ERIC Educational Resources Information Center

    Solis Robles, Roberto

    2009-01-01

    In wireless sensor networks, more so generally than in other types of distributed systems, clock synchronization is crucial since by having this service available, several applications such as media access protocols, object tracking, or data fusion, would improve their performance. In this dissertation, we propose a set of algorithms to achieve…

  2. A proposed adaptive step size perturbation and observation maximum power point tracking algorithm based on photovoltaic system modeling

    NASA Astrophysics Data System (ADS)

    Huang, Yu

    Solar energy becomes one of the major alternative renewable energy options for its huge abundance and accessibility. Due to the intermittent nature, the high demand of Maximum Power Point Tracking (MPPT) techniques exists when a Photovoltaic (PV) system is used to extract energy from the sunlight. This thesis proposed an advanced Perturbation and Observation (P&O) algorithm aiming for relatively practical circumstances. Firstly, a practical PV system model is studied with determining the series and shunt resistances which are neglected in some research. Moreover, in this proposed algorithm, the duty ratio of a boost DC-DC converter is the object of the perturbation deploying input impedance conversion to achieve working voltage adjustment. Based on the control strategy, the adaptive duty ratio step size P&O algorithm is proposed with major modifications made for sharp insolation change as well as low insolation scenarios. Matlab/Simulink simulation for PV model, boost converter control strategy and various MPPT process is conducted step by step. The proposed adaptive P&O algorithm is validated by the simulation results and detail analysis of sharp insolation changes, low insolation condition and continuous insolation variation.

  3. Detection, 3-D positioning, and sizing of small pore defects using digital radiography and tracking

    NASA Astrophysics Data System (ADS)

    Lindgren, Erik

    2014-12-01

    This article presents an algorithm that handles the detection, positioning, and sizing of submillimeter-sized pores in welds using radiographic inspection and tracking. The possibility to detect, position, and size pores which have a low contrast-to-noise ratio increases the value of the nondestructive evaluation of welds by facilitating fatigue life predictions with lower uncertainty. In this article, a multiple hypothesis tracker with an extended Kalman filter is used to track an unknown number of pore indications in a sequence of radiographs as an object is rotated. Each pore is not required to be detected in all radiographs. In addition, in the tracking step, three-dimensional (3-D) positions of pore defects are calculated. To optimize, set up, and pre-evaluate the algorithm, the article explores a design of experimental approach in combination with synthetic radiographs of titanium laser welds containing pore defects. The pre-evaluation on synthetic radiographs at industrially reasonable contrast-to-noise ratios indicate less than 1% false detection rates at high detection rates and less than 0.1 mm of positioning errors for more than 90% of the pores. A comparison between experimental results of the presented algorithm and a computerized tomography reference measurement shows qualitatively good agreement in the 3-D positions of approximately 0.1-mm diameter pores in 5-mm-thick Ti-6242.

  4. SU-G-JeP1-12: Head-To-Head Performance Characterization of Two Multileaf Collimator Tracking Algorithms for Radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Caillet, V; Colvill, E; Royal North Shore Hospital, St Leonards, Sydney

    2016-06-15

    Purpose: Multi-leaf collimator (MLC) tracking is being clinically pioneered to continuously compensate for thoracic and abdominal motion during radiotherapy. The purpose of this work is to characterize the performance of two MLC tracking algorithms for cancer radiotherapy, based on a direct optimization and a piecewise leaf fitting approach respectively. Methods: To test the algorithms, both physical and in silico experiments were performed. Previously published high and low modulation VMAT plans for lung and prostate cancer cases were used along with eight patient-measured organ-specific trajectories. For both MLC tracking algorithm, the plans were run with their corresponding patient trajectories. The physicalmore » experiments were performed on a Trilogy Varian linac and a programmable phantom (HexaMotion platform). For each MLC tracking algorithm, plan and patient trajectory, the tracking accuracy was quantified as the difference in aperture area between ideal and fitted MLC. To compare algorithms, the average cumulative tracking error area for each experiment was calculated. The two-sample Kolmogorov-Smirnov (KS) test was used to evaluate the cumulative tracking errors between algorithms. Results: Comparison of tracking errors for the physical and in silico experiments showed minor differences between the two algorithms. The KS D-statistics for the physical experiments were below 0.05 denoting no significant differences between the two distributions pattern and the average error area (direct optimization/piecewise leaf-fitting) were comparable (66.64 cm2/65.65 cm2). For the in silico experiments, the KS D-statistics were below 0.05 and the average errors area were also equivalent (49.38 cm2/48.98 cm2). Conclusion: The comparison between the two leaf fittings algorithms demonstrated no significant differences in tracking errors, neither in a clinically realistic environment nor in silico. The similarities in the two independent algorithms give confidence in the use of either algorithm for clinical implementation.« less

  5. FPGA Online Tracking Algorithm for the PANDA Straw Tube Tracker

    NASA Astrophysics Data System (ADS)

    Liang, Yutie; Ye, Hua; Galuska, Martin J.; Gessler, Thomas; Kuhn, Wolfgang; Lange, Jens Soren; Wagner, Milan N.; Liu, Zhen'an; Zhao, Jingzhou

    2017-06-01

    A novel FPGA based online tracking algorithm for helix track reconstruction in a solenoidal field, developed for the PANDA spectrometer, is described. Employing the Straw Tube Tracker detector with 4636 straw tubes, the algorithm includes a complex track finder, and a track fitter. Implemented in VHDL, the algorithm is tested on a Xilinx Virtex-4 FX60 FPGA chip with different types of events, at different event rates. A processing time of 7 $\\mu$s per event for an average of 6 charged tracks is obtained. The momentum resolution is about 3\\% (4\\%) for $p_t$ ($p_z$) at 1 GeV/c. Comparing to the algorithm running on a CPU chip (single core Intel Xeon E5520 at 2.26 GHz), an improvement of 3 orders of magnitude in processing time is obtained. The algorithm can handle severe overlapping of events which are typical for interaction rates above 10 MHz.

  6. Implementation of a state of the art automated system for the production of cloud/water vapor motion winds from geostationary satellites

    NASA Technical Reports Server (NTRS)

    Velden, Christopher

    1995-01-01

    The research objectives in this proposal were part of a continuing program at UW-CIMSS to develop and refine an automated geostationary satellite winds processing system which can be utilized in both research and operational environments. The majority of the originally proposed tasks were successfully accomplished, and in some cases the progress exceeded the original goals. Much of the research and development supported by this grant resulted in upgrades and modifications to the existing automated satellite winds tracking algorithm. These modifications were put to the test through case study demonstrations and numerical model impact studies. After being successfully demonstrated, the modifications and upgrades were implemented into the NESDIS algorithms in Washington DC, and have become part of the operational support. A major focus of the research supported under this grant attended to the continued development of water vapor tracked winds from geostationary observations. The fully automated UW-CIMSS tracking algorithm has been tuned to provide complete upper-tropospheric coverage from this data source, with data set quality close to that of operational cloud motion winds. Multispectral water vapor observations were collected and processed from several different geostationary satellites. The tracking and quality control algorithms were tuned and refined based on ground-truth comparisons and case studies involving impact on numerical model analyses and forecasts. The results have shown the water vapor motion winds are of good quality, complement the cloud motion wind data, and can have a positive impact in NWP on many meteorological scales.

  7. Automated Cloud Observation for Ground Telescope Optimization

    NASA Astrophysics Data System (ADS)

    Lane, B.; Jeffries, M. W., Jr.; Therien, W.; Nguyen, H.

    As the number of man-made objects placed in space each year increases with advancements in commercial, academic and industry, the number of objects required to be detected, tracked, and characterized continues to grow at an exponential rate. Commercial companies, such as ExoAnalytic Solutions, have deployed ground based sensors to maintain track custody of these objects. For the ExoAnalytic Global Telescope Network (EGTN), observation of such objects are collected at the rate of over 10 million unique observations per month (as of September 2017). Currently, the EGTN does not optimally collect data on nights with significant cloud levels. However, a majority of these nights prove to be partially cloudy providing clear portions in the sky for EGTN sensors to observe. It proves useful for a telescope to utilize these clear areas to continue resident space object (RSO) observation. By dynamically updating the tasking with the varying cloud positions, the number of observations could potentially increase dramatically due to increased persistence, cadence, and revisit. This paper will discuss the recent algorithms being implemented within the EGTN, including the motivation, need, and general design. The use of automated image processing as well as various edge detection methods, including Canny, Sobel, and Marching Squares, on real-time large FOV images of the sky enhance the tasking and scheduling of a ground based telescope is discussed in Section 2. Implementations of these algorithms on single and expanding to multiple telescopes, will be explored. Results of applying these algorithms to the EGTN in real-time and comparison to non-optimized EGTN tasking is presented in Section 3. Finally, in Section 4 we explore future work in applying these throughout the EGTN as well as other optical telescopes.

  8. Tracking problem for electromechanical system under influence of external perturbations

    NASA Astrophysics Data System (ADS)

    Kochetkov, Sergey A.; Krasnova, Svetlana A.; Utkin, Victor A.

    2017-01-01

    For electromechanical objects the new control algorithms (vortex algprithms) are developed on the base of discontinuous functions. The distinctive feature of these algorithms is providing of asymptotical convergence of the output variables to zero under influence of unknown bounded disturbances of prescribed class. The advantages of proposed approach is demonstrated for direct current motor with permanent excitation. It is shown that inner variables of the system converge to unknown bounded disturbances and guarantee asymptotical convergence of output variables to zero.

  9. GeoBuilder: a geometric algorithm visualization and debugging system for 2D and 3D geometric computing.

    PubMed

    Wei, Jyh-Da; Tsai, Ming-Hung; Lee, Gen-Cher; Huang, Jeng-Hung; Lee, Der-Tsai

    2009-01-01

    Algorithm visualization is a unique research topic that integrates engineering skills such as computer graphics, system programming, database management, computer networks, etc., to facilitate algorithmic researchers in testing their ideas, demonstrating new findings, and teaching algorithm design in the classroom. Within the broad applications of algorithm visualization, there still remain performance issues that deserve further research, e.g., system portability, collaboration capability, and animation effect in 3D environments. Using modern technologies of Java programming, we develop an algorithm visualization and debugging system, dubbed GeoBuilder, for geometric computing. The GeoBuilder system features Java's promising portability, engagement of collaboration in algorithm development, and automatic camera positioning for tracking 3D geometric objects. In this paper, we describe the design of the GeoBuilder system and demonstrate its applications.

  10. Vision-based object detection and recognition system for intelligent vehicles

    NASA Astrophysics Data System (ADS)

    Ran, Bin; Liu, Henry X.; Martono, Wilfung

    1999-01-01

    Recently, a proactive crash mitigation system is proposed to enhance the crash avoidance and survivability of the Intelligent Vehicles. Accurate object detection and recognition system is a prerequisite for a proactive crash mitigation system, as system component deployment algorithms rely on accurate hazard detection, recognition, and tracking information. In this paper, we present a vision-based approach to detect and recognize vehicles and traffic signs, obtain their information, and track multiple objects by using a sequence of color images taken from a moving vehicle. The entire system consist of two sub-systems, the vehicle detection and recognition sub-system and traffic sign detection and recognition sub-system. Both of the sub- systems consist of four models: object detection model, object recognition model, object information model, and object tracking model. In order to detect potential objects on the road, several features of the objects are investigated, which include symmetrical shape and aspect ratio of a vehicle and color and shape information of the signs. A two-layer neural network is trained to recognize different types of vehicles and a parameterized traffic sign model is established in the process of recognizing a sign. Tracking is accomplished by combining the analysis of single image frame with the analysis of consecutive image frames. The analysis of the single image frame is performed every ten full-size images. The information model will obtain the information related to the object, such as time to collision for the object vehicle and relative distance from the traffic sings. Experimental results demonstrated a robust and accurate system in real time object detection and recognition over thousands of image frames.

  11. Hyperspectral Imager-Tracker

    NASA Technical Reports Server (NTRS)

    Agurok, Llya

    2013-01-01

    The Hyperspectral Imager-Tracker (HIT) is a technique for visualization and tracking of low-contrast, fast-moving objects. The HIT architecture is based on an innovative and only recently developed concept in imaging optics. This innovative architecture will give the Light Prescriptions Innovators (LPI) HIT the possibility of simultaneously collecting the spectral band images (hyperspectral cube), IR images, and to operate with high-light-gathering power and high magnification for multiple fast- moving objects. Adaptive Spectral Filtering algorithms will efficiently increase the contrast of low-contrast scenes. The most hazardous parts of a space mission are the first stage of a launch and the last 10 kilometers of the landing trajectory. In general, a close watch on spacecraft operation is required at distances up to 70 km. Tracking at such distances is usually associated with the use of radar, but its milliradian angular resolution translates to 100- m spatial resolution at 70-km distance. With sufficient power, radar can track a spacecraft as a whole object, but will not provide detail in the case of an accident, particularly for small debris in the onemeter range, which can only be achieved optically. It will be important to track the debris, which could disintegrate further into more debris, all the way to the ground. Such fragmentation could cause ballistic predictions, based on observations using high-resolution but narrow-field optics for only the first few seconds of the event, to be inaccurate. No optical imager architecture exists to satisfy NASA requirements. The HIT was developed for space vehicle tracking, in-flight inspection, and in the case of an accident, a detailed recording of the event. The system is a combination of five subsystems: (1) a roving fovea telescope with a wide 30 field of regard; (2) narrow, high-resolution fovea field optics; (3) a Coude optics system for telescope output beam stabilization; (4) a hyperspectral-mutispectral imaging assembly; and (5) image analysis software with effective adaptive spectral filtering algorithm for real-time contrast enhancement.

  12. Space Situational Awareness Data Processing Scalability Utilizing Google Cloud Services

    NASA Astrophysics Data System (ADS)

    Greenly, D.; Duncan, M.; Wysack, J.; Flores, F.

    Space Situational Awareness (SSA) is a fundamental and critical component of current space operations. The term SSA encompasses the awareness, understanding and predictability of all objects in space. As the population of orbital space objects and debris increases, the number of collision avoidance maneuvers grows and prompts the need for accurate and timely process measures. The SSA mission continually evolves to near real-time assessment and analysis demanding the need for higher processing capabilities. By conventional methods, meeting these demands requires the integration of new hardware to keep pace with the growing complexity of maneuver planning algorithms. SpaceNav has implemented a highly scalable architecture that will track satellites and debris by utilizing powerful virtual machines on the Google Cloud Platform. SpaceNav algorithms for processing CDMs outpace conventional means. A robust processing environment for tracking data, collision avoidance maneuvers and various other aspects of SSA can be created and deleted on demand. Migrating SpaceNav tools and algorithms into the Google Cloud Platform will be discussed and the trials and tribulations involved. Information will be shared on how and why certain cloud products were used as well as integration techniques that were implemented. Key items to be presented are: 1.Scientific algorithms and SpaceNav tools integrated into a scalable architecture a) Maneuver Planning b) Parallel Processing c) Monte Carlo Simulations d) Optimization Algorithms e) SW Application Development/Integration into the Google Cloud Platform 2. Compute Engine Processing a) Application Engine Automated Processing b) Performance testing and Performance Scalability c) Cloud MySQL databases and Database Scalability d) Cloud Data Storage e) Redundancy and Availability

  13. Results of analysis of archive MSG data in the context of MCS prediction system development for economic decisions assistance - case studies

    NASA Astrophysics Data System (ADS)

    Szafranek, K.; Jakubiak, B.; Lech, R.; Tomczuk, M.

    2012-04-01

    PROZA (Operational decision-making based on atmospheric conditions) is the project co-financed by the European Union through the European Regional Development Fund. One of its tasks is to develop the operational forecast system, which is supposed to support different economies branches like forestry or fruit farming by reducing the risk of economic decisions with taking into consideration weather conditions. In the frame of this studies system of sudden convective phenomena (storms or tornados) prediction is going to be built. The main authors' purpose is to predict MCSs (Mezoscale Convective Systems) basing on MSG (Meteosat Second Generation) real-time data. Until now several tests were performed. The Meteosat satellite images in selected spectral channels collected for Central Europe Region for May and August 2010 were used to detect and track cloud systems related to MCSs. In proposed tracking method first the cloud objects are defined using the temperature threshold and next the selected cells are tracked using principle of overlapping position on consecutive images. The main benefit to use a temperature thresholding to define cells is its simplicity. During the tracking process the algorithm links the cells of the image at time t to the one of the following image at time t+dt that correspond to the same cloud system (Morel-Senesi algorithm). An automated detection and elimination of some instabilities presented in tracking algorithm was developed. The poster presents analysis of exemplary MCSs in the context of near real-time prediction system development.

  14. Scene-Aware Adaptive Updating for Visual Tracking via Correlation Filters

    PubMed Central

    Zhang, Sirou; Qiao, Xiaoya

    2017-01-01

    In recent years, visual object tracking has been widely used in military guidance, human-computer interaction, road traffic, scene monitoring and many other fields. The tracking algorithms based on correlation filters have shown good performance in terms of accuracy and tracking speed. However, their performance is not satisfactory in scenes with scale variation, deformation, and occlusion. In this paper, we propose a scene-aware adaptive updating mechanism for visual tracking via a kernel correlation filter (KCF). First, a low complexity scale estimation method is presented, in which the corresponding weight in five scales is employed to determine the final target scale. Then, the adaptive updating mechanism is presented based on the scene-classification. We classify the video scenes as four categories by video content analysis. According to the target scene, we exploit the adaptive updating mechanism to update the kernel correlation filter to improve the robustness of the tracker, especially in scenes with scale variation, deformation, and occlusion. We evaluate our tracker on the CVPR2013 benchmark. The experimental results obtained with the proposed algorithm are improved by 33.3%, 15%, 6%, 21.9% and 19.8% compared to those of the KCF tracker on the scene with scale variation, partial or long-time large-area occlusion, deformation, fast motion and out-of-view. PMID:29140311

  15. Conditional Random Field (CRF)-Boosting: Constructing a Robust Online Hybrid Boosting Multiple Object Tracker Facilitated by CRF Learning

    PubMed Central

    Yang, Ehwa; Gwak, Jeonghwan; Jeon, Moongu

    2017-01-01

    Due to the reasonably acceptable performance of state-of-the-art object detectors, tracking-by-detection is a standard strategy for visual multi-object tracking (MOT). In particular, online MOT is more demanding due to its diverse applications in time-critical situations. A main issue of realizing online MOT is how to associate noisy object detection results on a new frame with previously being tracked objects. In this work, we propose a multi-object tracker method called CRF-boosting which utilizes a hybrid data association method based on online hybrid boosting facilitated by a conditional random field (CRF) for establishing online MOT. For data association, learned CRF is used to generate reliable low-level tracklets and then these are used as the input of the hybrid boosting. To do so, while existing data association methods based on boosting algorithms have the necessity of training data having ground truth information to improve robustness, CRF-boosting ensures sufficient robustness without such information due to the synergetic cascaded learning procedure. Further, a hierarchical feature association framework is adopted to further improve MOT accuracy. From experimental results on public datasets, we could conclude that the benefit of proposed hybrid approach compared to the other competitive MOT systems is noticeable. PMID:28304366

  16. Finger tracking for hand-held device interface using profile-matching stereo vision

    NASA Astrophysics Data System (ADS)

    Chang, Yung-Ping; Lee, Dah-Jye; Moore, Jason; Desai, Alok; Tippetts, Beau

    2013-01-01

    Hundreds of millions of people use hand-held devices frequently and control them by touching the screen with their fingers. If this method of operation is being used by people who are driving, the probability of deaths and accidents occurring substantially increases. With a non-contact control interface, people do not need to touch the screen. As a result, people will not need to pay as much attention to their phones and thus drive more safely than they would otherwise. This interface can be achieved with real-time stereovision. A novel Intensity Profile Shape-Matching Algorithm is able to obtain 3-D information from a pair of stereo images in real time. While this algorithm does have a trade-off between accuracy and processing speed, the result of this algorithm proves the accuracy is sufficient for the practical use of recognizing human poses and finger movement tracking. By choosing an interval of disparity, an object at a certain distance range can be segmented. In other words, we detect the object by its distance to the cameras. The advantage of this profile shape-matching algorithm is that detection of correspondences relies on the shape of profile and not on intensity values, which are subjected to lighting variations. Based on the resulting 3-D information, the movement of fingers in space from a specific distance can be determined. Finger location and movement can then be analyzed for non-contact control of hand-held devices.

  17. UltraTrack: Software for semi-automated tracking of muscle fascicles in sequences of B-mode ultrasound images.

    PubMed

    Farris, Dominic James; Lichtwark, Glen A

    2016-05-01

    Dynamic measurements of human muscle fascicle length from sequences of B-mode ultrasound images have become increasingly prevalent in biomedical research. Manual digitisation of these images is time consuming and algorithms for automating the process have been developed. Here we present a freely available software implementation of a previously validated algorithm for semi-automated tracking of muscle fascicle length in dynamic ultrasound image recordings, "UltraTrack". UltraTrack implements an affine extension to an optic flow algorithm to track movement of the muscle fascicle end-points throughout dynamically recorded sequences of images. The underlying algorithm has been previously described and its reliability tested, but here we present the software implementation with features for: tracking multiple fascicles in multiple muscles simultaneously; correcting temporal drift in measurements; manually adjusting tracking results; saving and re-loading of tracking results and loading a range of file formats. Two example runs of the software are presented detailing the tracking of fascicles from several lower limb muscles during a squatting and walking activity. We have presented a software implementation of a validated fascicle-tracking algorithm and made the source code and standalone versions freely available for download. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  18. Endoscopic feature tracking for augmented-reality assisted prosthesis selection in mitral valve repair

    NASA Astrophysics Data System (ADS)

    Engelhardt, Sandy; Kolb, Silvio; De Simone, Raffaele; Karck, Matthias; Meinzer, Hans-Peter; Wolf, Ivo

    2016-03-01

    Mitral valve annuloplasty describes a surgical procedure where an artificial prosthesis is sutured onto the anatomical structure of the mitral annulus to re-establish the valve's functionality. Choosing an appropriate commercially available ring size and shape is a difficult decision the surgeon has to make intraoperatively according to his experience. In our augmented-reality framework, digitalized ring models are superimposed onto endoscopic image streams without using any additional hardware. To place the ring model on the proper position within the endoscopic image plane, a pose estimation is performed that depends on the localization of sutures placed by the surgeon around the leaflet origins and punctured through the stiffer structure of the annulus. In this work, the tissue penetration points are tracked by the real-time capable Lucas Kanade optical flow algorithm. The accuracy and robustness of this tracking algorithm is investigated with respect to the question whether outliers influence the subsequent pose estimation. Our results suggest that optical flow is very stable for a variety of different endoscopic scenes and tracking errors do not affect the position of the superimposed virtual objects in the scene, making this approach a viable candidate for annuloplasty augmented reality-enhanced decision support.

  19. Robust visual object tracking with interleaved segmentation

    NASA Astrophysics Data System (ADS)

    Abel, Peter; Kieritz, Hilke; Becker, Stefan; Arens, Michael

    2017-10-01

    In this paper we present a new approach for tracking non-rigid, deformable objects by means of merging an on-line boosting-based tracker and a fast foreground background segmentation. We extend an on-line boosting- based tracker, which uses axes-aligned bounding boxes with fixed aspect-ratio as tracking states. By constructing a confidence map from the on-line boosting-based tracker and unifying this map with a confidence map, which is obtained from a foreground background segmentation algorithm, we build a superior confidence map. For constructing a rough confidence map of a new frame based on on-line boosting, we employ the responses of the strong classifier as well as the single weak classifier responses that were built before during the updating step. This confidence map provides a rough estimation of the object's position and dimension. In order to refine this confidence map, we build a fine, pixel-wisely segmented confidence map and merge both maps together. Our segmentation method is color-histogram-based and provides a fine and fast image segmentation. By means of back-projection and the Bayes' rule, we obtain a confidence value for every pixel. The rough and the fine confidence maps are merged together by building an adaptively weighted sum of both maps. The weights are obtained by utilizing the variances of both confidence maps. Further, we apply morphological operators in the merged confidence map in order to reduce the noise. In the resulting map we estimate the object localization and dimension via continuous adaptive mean shift. Our approach provides a rotated rectangle as tracking states, which enables a more precise description of non-rigid, deformable objects than axes-aligned bounding boxes. We evaluate our tracker on the visual object tracking (VOT) benchmark dataset 2016.

  20. Object tracking based on harmony search: comparative study

    NASA Astrophysics Data System (ADS)

    Gao, Ming-Liang; He, Xiao-Hai; Luo, Dai-Sheng; Yu, Yan-Mei

    2012-10-01

    Visual tracking can be treated as an optimization problem. A new meta-heuristic optimal algorithm, Harmony Search (HS), was first applied to perform visual tracking by Fourie et al. As the authors point out, many subjects are still required in ongoing research. Our work is a continuation of Fourie's study, with four prominent improved variations of HS, namely Improved Harmony Search (IHS), Global-best Harmony Search (GHS), Self-adaptive Harmony Search (SHS) and Differential Harmony Search (DHS) adopted into the tracking system. Their performances are tested and analyzed on multiple challenging video sequences. Experimental results show that IHS is best, with DHS ranking second among the four improved trackers when the iteration number is small. However, the differences between all four reduced gradually, along with the increasing number of iterations.

  1. Using Deep Learning Algorithm to Enhance Image-review Software for Surveillance Cameras

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cui, Yonggang; Thomas, Maikael A.

    We propose the development of proven deep learning algorithms to flag objects and events of interest in Next Generation Surveillance System (NGSS) surveillance to make IAEA image review more efficient. Video surveillance is one of the core monitoring technologies used by the IAEA Department of Safeguards when implementing safeguards at nuclear facilities worldwide. The current image review software GARS has limited automated functions, such as scene-change detection, black image detection and missing scene analysis, but struggles with highly cluttered backgrounds. A cutting-edge algorithm to be developed in this project will enable efficient and effective searches in images and video streamsmore » by identifying and tracking safeguards relevant objects and detect anomalies in their vicinity. In this project, we will develop the algorithm, test it with the IAEA surveillance cameras and data sets collected at simulated nuclear facilities at BNL and SNL, and implement it in a software program for potential integration into the IAEA’s IRAP (Integrated Review and Analysis Program).« less

  2. Learning Collaborative Sparse Representation for Grayscale-Thermal Tracking.

    PubMed

    Li, Chenglong; Cheng, Hui; Hu, Shiyi; Liu, Xiaobai; Tang, Jin; Lin, Liang

    2016-09-27

    Integrating multiple different yet complementary feature representations has been proved to be an effective way for boosting tracking performance. This paper investigates how to perform robust object tracking in challenging scenarios by adaptively incorporating information from grayscale and thermal videos, and proposes a novel collaborative algorithm for online tracking. In particular, an adaptive fusion scheme is proposed based on collaborative sparse representation in Bayesian filtering framework. We jointly optimize sparse codes and the reliable weights of different modalities in an online way. In addition, this work contributes a comprehensive video benchmark, which includes 50 grayscale-thermal sequences and their ground truth annotations for tracking purpose. The videos are with high diversity and the annotations were finished by one single person to guarantee consistency. Extensive experiments against other stateof- the-art trackers with both grayscale and grayscale-thermal inputs demonstrate the effectiveness of the proposed tracking approach. Through analyzing quantitative results, we also provide basic insights and potential future research directions in grayscale-thermal tracking.

  3. Flow-rate control for managing communications in tracking and surveillance networks

    NASA Astrophysics Data System (ADS)

    Miller, Scott A.; Chong, Edwin K. P.

    2007-09-01

    This paper describes a primal-dual distributed algorithm for managing communications in a bandwidth-limited sensor network for tracking and surveillance. The algorithm possesses some scale-invariance properties and adaptive gains that make it more practical for applications such as tracking where the conditions change over time. A simulation study comparing this algorithm with a priority-queue-based approach in a network tracking scenario shows significant improvement in the resulting track quality when using flow control to manage communications.

  4. Novel probabilistic and distributed algorithms for guidance, control, and nonlinear estimation of large-scale multi-agent systems

    NASA Astrophysics Data System (ADS)

    Bandyopadhyay, Saptarshi

    Multi-agent systems are widely used for constructing a desired formation shape, exploring an area, surveillance, coverage, and other cooperative tasks. This dissertation introduces novel algorithms in the three main areas of shape formation, distributed estimation, and attitude control of large-scale multi-agent systems. In the first part of this dissertation, we address the problem of shape formation for thousands to millions of agents. Here, we present two novel algorithms for guiding a large-scale swarm of robotic systems into a desired formation shape in a distributed and scalable manner. These probabilistic swarm guidance algorithms adopt an Eulerian framework, where the physical space is partitioned into bins and the swarm's density distribution over each bin is controlled using tunable Markov chains. In the first algorithm - Probabilistic Swarm Guidance using Inhomogeneous Markov Chains (PSG-IMC) - each agent determines its bin transition probabilities using a time-inhomogeneous Markov chain that is constructed in real-time using feedback from the current swarm distribution. This PSG-IMC algorithm minimizes the expected cost of the transitions required to achieve and maintain the desired formation shape, even when agents are added to or removed from the swarm. The algorithm scales well with a large number of agents and complex formation shapes, and can also be adapted for area exploration applications. In the second algorithm - Probabilistic Swarm Guidance using Optimal Transport (PSG-OT) - each agent determines its bin transition probabilities by solving an optimal transport problem, which is recast as a linear program. In the presence of perfect feedback of the current swarm distribution, this algorithm minimizes the given cost function, guarantees faster convergence, reduces the number of transitions for achieving the desired formation, and is robust to disturbances or damages to the formation. We demonstrate the effectiveness of these two proposed swarm guidance algorithms using results from numerical simulations and closed-loop hardware experiments on multiple quadrotors. In the second part of this dissertation, we present two novel discrete-time algorithms for distributed estimation, which track a single target using a network of heterogeneous sensing agents. The Distributed Bayesian Filtering (DBF) algorithm, the sensing agents combine their normalized likelihood functions using the logarithmic opinion pool and the discrete-time dynamic average consensus algorithm. Each agent's estimated likelihood function converges to an error ball centered on the joint likelihood function of the centralized multi-sensor Bayesian filtering algorithm. Using a new proof technique, the convergence, stability, and robustness properties of the DBF algorithm are rigorously characterized. The explicit bounds on the time step of the robust DBF algorithm are shown to depend on the time-scale of the target dynamics. Furthermore, the DBF algorithm for linear-Gaussian models can be cast into a modified form of the Kalman information filter. In the Bayesian Consensus Filtering (BCF) algorithm, the agents combine their estimated posterior pdfs multiple times within each time step using the logarithmic opinion pool scheme. Thus, each agent's consensual pdf minimizes the sum of Kullback-Leibler divergences with the local posterior pdfs. The performance and robust properties of these algorithms are validated using numerical simulations. In the third part of this dissertation, we present an attitude control strategy and a new nonlinear tracking controller for a spacecraft carrying a large object, such as an asteroid or a boulder. If the captured object is larger or comparable in size to the spacecraft and has significant modeling uncertainties, conventional nonlinear control laws that use exact feed-forward cancellation are not suitable because they exhibit a large resultant disturbance torque. The proposed nonlinear tracking control law guarantees global exponential convergence of tracking errors with finite-gain Lp stability in the presence of modeling uncertainties and disturbances, and reduces the resultant disturbance torque. Further, this control law permits the use of any attitude representation and its integral control formulation eliminates any constant disturbance. Under small uncertainties, the best strategy for stabilizing the combined system is to track a fuel-optimal reference trajectory using this nonlinear control law, because it consumes the least amount of fuel. In the presence of large uncertainties, the most effective strategy is to track the derivative plus proportional-derivative based reference trajectory, because it reduces the resultant disturbance torque. The effectiveness of the proposed attitude control law is demonstrated by using results of numerical simulation based on an Asteroid Redirect Mission concept. The new algorithms proposed in this dissertation will facilitate the development of versatile autonomous multi-agent systems that are capable of performing a variety of complex tasks in a robust and scalable manner.

  5. A generalized muon trajectory estimation algorithm with energy loss for application to muon tomography

    DOE PAGES

    Chatzidakis, Stylianos; Liu, Zhengzhi; Hayward, Jason P.; ...

    2018-03-28

    Here, this work presents a generalized muon trajectory estimation (GMTE) algorithm to estimate the path of a muon in either uniform or nonuniform media. The use of cosmic ray muons in nuclear nonproliferation and safeguards verification applications has recently gained attention due to the non-intrusive and passive nature of the inspection, penetrating capabilities, as well as recent advances in detectors that measure position and direction of the individual muons before and after traversing the imaged object. However, muon image reconstruction techniques are limited in resolution due to low muon flux and the effects of multiple Coulomb scattering (MCS). Current reconstructionmore » algorithms, e.g., point of closest approach (PoCA) or straight-line path (SLP), rely on overly simple assumptions for muon path estimation through the imaged object. For robust muon tomography, efficient and flexible physics-based algorithms are needed to model the MCS process and accurately estimate the most probable trajectory of a muon as it traverses an object. In the present work, the use of a Bayesian framework and a Gaussian approximation of MCS are explored for estimation of the most likely path of a cosmic ray muon traversing uniform or nonuniform media and undergoing MCS. The algorithm’s precision is compared to Monte Carlo simulated muon trajectories. It was found that the algorithm is expected to be able to predict muon tracks to less than 1.5 mm RMS for 0.5 GeV muons and 0.25 mm RMS for 3 GeV muons, a 50% improvement compared to SLP and 15% improvement when compared to PoCA. Further, a 30% increase in useful muon flux was observed relative to PoCA. Muon track prediction improved for higher muon energies or smaller penetration depth where energy loss is not significant. Finally, the effect of energy loss due to ionization is investigated, and a linear energy loss relation that is easy to use is proposed.« less

  6. A generalized muon trajectory estimation algorithm with energy loss for application to muon tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chatzidakis, Stylianos; Liu, Zhengzhi; Hayward, Jason P.

    Here, this work presents a generalized muon trajectory estimation (GMTE) algorithm to estimate the path of a muon in either uniform or nonuniform media. The use of cosmic ray muons in nuclear nonproliferation and safeguards verification applications has recently gained attention due to the non-intrusive and passive nature of the inspection, penetrating capabilities, as well as recent advances in detectors that measure position and direction of the individual muons before and after traversing the imaged object. However, muon image reconstruction techniques are limited in resolution due to low muon flux and the effects of multiple Coulomb scattering (MCS). Current reconstructionmore » algorithms, e.g., point of closest approach (PoCA) or straight-line path (SLP), rely on overly simple assumptions for muon path estimation through the imaged object. For robust muon tomography, efficient and flexible physics-based algorithms are needed to model the MCS process and accurately estimate the most probable trajectory of a muon as it traverses an object. In the present work, the use of a Bayesian framework and a Gaussian approximation of MCS are explored for estimation of the most likely path of a cosmic ray muon traversing uniform or nonuniform media and undergoing MCS. The algorithm’s precision is compared to Monte Carlo simulated muon trajectories. It was found that the algorithm is expected to be able to predict muon tracks to less than 1.5 mm RMS for 0.5 GeV muons and 0.25 mm RMS for 3 GeV muons, a 50% improvement compared to SLP and 15% improvement when compared to PoCA. Further, a 30% increase in useful muon flux was observed relative to PoCA. Muon track prediction improved for higher muon energies or smaller penetration depth where energy loss is not significant. Finally, the effect of energy loss due to ionization is investigated, and a linear energy loss relation that is easy to use is proposed.« less

  7. Connecting a cognitive architecture to robotic perception

    NASA Astrophysics Data System (ADS)

    Kurup, Unmesh; Lebiere, Christian; Stentz, Anthony; Hebert, Martial

    2012-06-01

    We present an integrated architecture in which perception and cognition interact and provide information to each other leading to improved performance in real-world situations. Our system integrates the Felzenswalb et. al. object-detection algorithm with the ACT-R cognitive architecture. The targeted task is to predict and classify pedestrian behavior in a checkpoint scenario, most specifically to discriminate between normal versus checkpoint-avoiding behavior. The Felzenswalb algorithm is a learning-based algorithm for detecting and localizing objects in images. ACT-R is a cognitive architecture that has been successfully used to model human cognition with a high degree of fidelity on tasks ranging from basic decision-making to the control of complex systems such as driving or air traffic control. The Felzenswalb algorithm detects pedestrians in the image and provides ACT-R a set of features based primarily on their locations. ACT-R uses its pattern-matching capabilities, specifically its partial-matching and blending mechanisms, to track objects across multiple images and classify their behavior based on the sequence of observed features. ACT-R also provides feedback to the Felzenswalb algorithm in the form of expected object locations that allow the algorithm to eliminate false-positives and improve its overall performance. This capability is an instance of the benefits pursued in developing a richer interaction between bottom-up perceptual processes and top-down goal-directed cognition. We trained the system on individual behaviors (only one person in the scene) and evaluated its performance across single and multiple behavior sets.

  8. Improved space object detection using short-exposure image data with daylight background.

    PubMed

    Becker, David; Cain, Stephen

    2018-05-10

    Space object detection is of great importance in the highly dependent yet competitive and congested space domain. The detection algorithms employed play a crucial role in fulfilling the detection component in the space situational awareness mission to detect, track, characterize, and catalog unknown space objects. Many current space detection algorithms use a matched filter or a spatial correlator on long-exposure data to make a detection decision at a single pixel point of a spatial image based on the assumption that the data follow a Gaussian distribution. Long-exposure imaging is critical to detection performance in these algorithms; however, for imaging under daylight conditions, it becomes necessary to create a long-exposure image as the sum of many short-exposure images. This paper explores the potential for increasing detection capabilities for small and dim space objects in a stack of short-exposure images dominated by a bright background. The algorithm proposed in this paper improves the traditional stack and average method of forming a long-exposure image by selectively removing short-exposure frames of data that do not positively contribute to the overall signal-to-noise ratio of the averaged image. The performance of the algorithm is compared to a traditional matched filter detector using data generated in MATLAB as well as laboratory-collected data. The results are illustrated on a receiver operating characteristic curve to highlight the increased probability of detection associated with the proposed algorithm.

  9. Tracking tumor boundary in MV-EPID images without implanted markers: A feasibility study.

    PubMed

    Zhang, Xiaoyong; Homma, Noriyasu; Ichiji, Kei; Takai, Yoshihiro; Yoshizawa, Makoto

    2015-05-01

    To develop a markerless tracking algorithm to track the tumor boundary in megavoltage (MV)-electronic portal imaging device (EPID) images for image-guided radiation therapy. A level set method (LSM)-based algorithm is developed to track tumor boundary in EPID image sequences. Given an EPID image sequence, an initial curve is manually specified in the first frame. Driven by a region-scalable energy fitting function, the initial curve automatically evolves toward the tumor boundary and stops on the desired boundary while the energy function reaches its minimum. For the subsequent frames, the tracking algorithm updates the initial curve by using the tracking result in the previous frame and reuses the LSM to detect the tumor boundary in the subsequent frame so that the tracking processing can be continued without user intervention. The tracking algorithm is tested on three image datasets, including a 4-D phantom EPID image sequence, four digitally deformable phantom image sequences with different noise levels, and four clinical EPID image sequences acquired in lung cancer treatment. The tracking accuracy is evaluated based on two metrics: centroid localization error (CLE) and volume overlap index (VOI) between the tracking result and the ground truth. For the 4-D phantom image sequence, the CLE is 0.23 ± 0.20 mm, and VOI is 95.6% ± 0.2%. For the digital phantom image sequences, the total CLE and VOI are 0.11 ± 0.08 mm and 96.7% ± 0.7%, respectively. In addition, for the clinical EPID image sequences, the proposed algorithm achieves 0.32 ± 0.77 mm in the CLE and 72.1% ± 5.5% in the VOI. These results demonstrate the effectiveness of the authors' proposed method both in tumor localization and boundary tracking in EPID images. In addition, compared with two existing tracking algorithms, the proposed method achieves a higher accuracy in tumor localization. In this paper, the authors presented a feasibility study of tracking tumor boundary in EPID images by using a LSM-based algorithm. Experimental results conducted on phantom and clinical EPID images demonstrated the effectiveness of the tracking algorithm for visible tumor target. Compared with previous tracking methods, the authors' algorithm has the potential to improve the tracking accuracy in radiation therapy. In addition, real-time tumor boundary information within the irradiation field will be potentially useful for further applications, such as adaptive beam delivery, dose evaluation.

  10. A ridge tracking algorithm and error estimate for efficient computation of Lagrangian coherent structures.

    PubMed

    Lipinski, Doug; Mohseni, Kamran

    2010-03-01

    A ridge tracking algorithm for the computation and extraction of Lagrangian coherent structures (LCS) is developed. This algorithm takes advantage of the spatial coherence of LCS by tracking the ridges which form LCS to avoid unnecessary computations away from the ridges. We also make use of the temporal coherence of LCS by approximating the time dependent motion of the LCS with passive tracer particles. To justify this approximation, we provide an estimate of the difference between the motion of the LCS and that of tracer particles which begin on the LCS. In addition to the speedup in computational time, the ridge tracking algorithm uses less memory and results in smaller output files than the standard LCS algorithm. Finally, we apply our ridge tracking algorithm to two test cases, an analytically defined double gyre as well as the more complicated example of the numerical simulation of a swimming jellyfish. In our test cases, we find up to a 35 times speedup when compared with the standard LCS algorithm.

  11. Experiments with conjugate gradient algorithms for homotopy curve tracking

    NASA Technical Reports Server (NTRS)

    Irani, Kashmira M.; Ribbens, Calvin J.; Watson, Layne T.; Kamat, Manohar P.; Walker, Homer F.

    1991-01-01

    There are algorithms for finding zeros or fixed points of nonlinear systems of equations that are globally convergent for almost all starting points, i.e., with probability one. The essence of all such algorithms is the construction of an appropriate homotopy map and then tracking some smooth curve in the zero set of this homotopy map. HOMPACK is a mathematical software package implementing globally convergent homotopy algorithms with three different techniques for tracking a homotopy zero curve, and has separate routines for dense and sparse Jacobian matrices. The HOMPACK algorithms for sparse Jacobian matrices use a preconditioned conjugate gradient algorithm for the computation of the kernel of the homotopy Jacobian matrix, a required linear algebra step for homotopy curve tracking. Here, variants of the conjugate gradient algorithm are implemented in the context of homotopy curve tracking and compared with Craig's preconditioned conjugate gradient method used in HOMPACK. The test problems used include actual large scale, sparse structural mechanics problems.

  12. Optical derotator alignment using image-processing algorithm for tracking laser vibrometer measurements of rotating objects.

    PubMed

    Khalil, Hossam; Kim, Dongkyu; Jo, Youngjoon; Park, Kyihwan

    2017-06-01

    An optical component called a Dove prism is used to rotate the laser beam of a laser-scanning vibrometer (LSV). This is called a derotator and is used for measuring the vibration of rotating objects. The main advantage of a derotator is that it works independently from an LSV. However, this device requires very specific alignment, in which the axis of the Dove prism must coincide with the rotational axis of the object. If the derotator is misaligned with the rotating object, the results of the vibration measurement are imprecise, owing to the alteration of the laser beam on the surface of the rotating object. In this study, a method is proposed for aligning a derotator with a rotating object through an image-processing algorithm that obtains the trajectory of a landmark attached to the object. After the trajectory of the landmark is mathematically modeled, the amount of derotator misalignment with respect to the object is calculated. The accuracy of the proposed method for aligning the derotator with the rotating object is experimentally tested.

  13. A maximum power point tracking algorithm for buoy-rope-drum wave energy converters

    NASA Astrophysics Data System (ADS)

    Wang, J. Q.; Zhang, X. C.; Zhou, Y.; Cui, Z. C.; Zhu, L. S.

    2016-08-01

    The maximum power point tracking control is the key link to improve the energy conversion efficiency of wave energy converters (WEC). This paper presents a novel variable step size Perturb and Observe maximum power point tracking algorithm with a power classification standard for control of a buoy-rope-drum WEC. The algorithm and simulation model of the buoy-rope-drum WEC are presented in details, as well as simulation experiment results. The results show that the algorithm tracks the maximum power point of the WEC fast and accurately.

  14. Orbital Debris Detection and Tracking Strategies for the NASA/AFRL Meter Class Autonomous Telescope (MCAT)

    NASA Technical Reports Server (NTRS)

    Mulrooney, M.; Hickson, P.; Stansbery, Eugene G.

    2010-01-01

    MCAT (Meter-Class Autonomous Telescope) is a 1.3m f/4 Ritchey-Chr tien on a double horseshoe equatorial mount that will be deployed in early 2011 to the western pacific island of Legan in the Kwajalein Atoll to perform orbital debris observations. MCAT will be capable of tracking earth orbital objects at all inclinations and at altitudes from 200 km to geosynchronous. MCAT s primary objective is the detection of new orbital debris in both low-inclination low-earth orbits (LEO) and at geosynchronous earth orbit (GEO). MCAT was thus designed with a fast focal ratio and a large unvignetted image circle able to accommodate a detector sized to yield a large field of view. The selected primary detector is a close-cycle cooled 4Kx4K 15um pixel CCD camera that yields a 0.9 degree diagonal field. For orbital debris detection in widely spaced angular rate regimes, the camera must offer low read-noise performance over a wide range of framing rates. MCAT s 4-port camera operates from 100 kHz to 1.5 MHz per port at 2 e- and 10 e- read noise respectively. This enables low-noise multi-second exposures for GEO observations as well as rapid (several frames per second) exposures for LEO. GEO observations will be performed using a counter-sidereal time delay integration (TDI) technique which NASA has used successfully in the past. For MCAT the GEO survey, detection, and follow-up prediction algorithms will be automated. These algorithms will be detailed herein. For LEO observations two methods will be employed. The first, Orbit Survey Mode (OSM), will scan specific orbital inclination and altitude regimes, detect new orbital debris objects against trailed background stars, and adjust the telescope track to follow the detected object. The second, Stare and Chase Mode (SCM), will perform a stare, then detect and track objects that enter the field of view which satisfy specific rate and brightness criteria. As with GEO, the LEO operational modes will be fully automated and will be described herein. The automation of photometric and astrometric processing (thus streamlining data collection for environmental modeling) will also be discussed.

  15. Grey Wolf based control for speed ripple reduction at low speed operation of PMSM drives.

    PubMed

    Djerioui, Ali; Houari, Azeddine; Ait-Ahmed, Mourad; Benkhoris, Mohamed-Fouad; Chouder, Aissa; Machmoum, Mohamed

    2018-03-01

    Speed ripple at low speed-high torque operation of Permanent Magnet Synchronous Machine (PMSM) drives is considered as one of the major issues to be treated. The presented work proposes an efficient PMSM speed controller based on Grey Wolf (GW) algorithm to ensure a high-performance control for speed ripple reduction at low speed operation. The main idea of the proposed control algorithm is to propose a specific objective function in order to incorporate the advantage of fast optimization process of the GW optimizer. The role of GW optimizer is to find the optimal input controls that satisfy the speed tracking requirements. The synthesis methodology of the proposed control algorithm is detailed and the feasibility and performances of the proposed speed controller is confirmed by simulation and experimental results. The GW algorithm is a model-free controller and the parameters of its objective function are easy to be tuned. The GW controller is compared to PI one on real test bench. Then, the superiority of the first algorithm is highlighted. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.

  16. UWB Tracking Algorithms: AOA and TDOA

    NASA Technical Reports Server (NTRS)

    Ni, Jianjun David; Arndt, D.; Ngo, P.; Gross, J.; Refford, Melinda

    2006-01-01

    Ultra-Wideband (UWB) tracking prototype systems are currently under development at NASA Johnson Space Center for various applications on space exploration. For long range applications, a two-cluster Angle of Arrival (AOA) tracking method is employed for implementation of the tracking system; for close-in applications, a Time Difference of Arrival (TDOA) positioning methodology is exploited. Both AOA and TDOA are chosen to utilize the achievable fine time resolution of UWB signals. This talk presents a brief introduction to AOA and TDOA methodologies. The theoretical analysis of these two algorithms reveal the affecting parameters impact on the tracking resolution. For the AOA algorithm, simulations show that a tracking resolution less than 0.5% of the range can be achieved with the current achievable time resolution of UWB signals. For the TDOA algorithm used in close-in applications, simulations show that the (sub-inch) high tracking resolution is achieved with a chosen tracking baseline configuration. The analytical and simulated results provide insightful guidance for the UWB tracking system design.

  17. ViCoMo: visual context modeling for scene understanding in video surveillance

    NASA Astrophysics Data System (ADS)

    Creusen, Ivo M.; Javanbakhti, Solmaz; Loomans, Marijn J. H.; Hazelhoff, Lykele B.; Roubtsova, Nadejda; Zinger, Svitlana; de With, Peter H. N.

    2013-10-01

    The use of contextual information can significantly aid scene understanding of surveillance video. Just detecting people and tracking them does not provide sufficient information to detect situations that require operator attention. We propose a proof-of-concept system that uses several sources of contextual information to improve scene understanding in surveillance video. The focus is on two scenarios that represent common video surveillance situations, parking lot surveillance and crowd monitoring. In the first scenario, a pan-tilt-zoom (PTZ) camera tracking system is developed for parking lot surveillance. Context is provided by the traffic sign recognition system to localize regular and handicapped parking spot signs as well as license plates. The PTZ algorithm has the ability to selectively detect and track persons based on scene context. In the second scenario, a group analysis algorithm is introduced to detect groups of people. Contextual information is provided by traffic sign recognition and region labeling algorithms and exploited for behavior understanding. In both scenarios, decision engines are used to interpret and classify the output of the subsystems and if necessary raise operator alerts. We show that using context information enables the automated analysis of complicated scenarios that were previously not possible using conventional moving object classification techniques.

  18. Quantifying diffusion MRI tractography of the corticospinal tract in brain tumors with deterministic and probabilistic methods☆

    PubMed Central

    Bucci, Monica; Mandelli, Maria Luisa; Berman, Jeffrey I.; Amirbekian, Bagrat; Nguyen, Christopher; Berger, Mitchel S.; Henry, Roland G.

    2013-01-01

    Introduction Diffusion MRI tractography has been increasingly used to delineate white matter pathways in vivo for which the leading clinical application is presurgical mapping of eloquent regions. However, there is rare opportunity to quantify the accuracy or sensitivity of these approaches to delineate white matter fiber pathways in vivo due to the lack of a gold standard. Intraoperative electrical stimulation (IES) provides a gold standard for the location and existence of functional motor pathways that can be used to determine the accuracy and sensitivity of fiber tracking algorithms. In this study we used intraoperative stimulation from brain tumor patients as a gold standard to estimate the sensitivity and accuracy of diffusion tensor MRI (DTI) and q-ball models of diffusion with deterministic and probabilistic fiber tracking algorithms for delineation of motor pathways. Methods We used preoperative high angular resolution diffusion MRI (HARDI) data (55 directions, b = 2000 s/mm2) acquired in a clinically feasible time frame from 12 patients who underwent a craniotomy for resection of a cerebral glioma. The corticospinal fiber tracts were delineated with DTI and q-ball models using deterministic and probabilistic algorithms. We used cortical and white matter IES sites as a gold standard for the presence and location of functional motor pathways. Sensitivity was defined as the true positive rate of delineating fiber pathways based on cortical IES stimulation sites. For accuracy and precision of the course of the fiber tracts, we measured the distance between the subcortical stimulation sites and the tractography result. Positive predictive rate of the delineated tracts was assessed by comparison of subcortical IES motor function (upper extremity, lower extremity, face) with the connection of the tractography pathway in the motor cortex. Results We obtained 21 cortical and 8 subcortical IES sites from intraoperative mapping of motor pathways. Probabilistic q-ball had the best sensitivity (79%) as determined from cortical IES compared to deterministic q-ball (50%), probabilistic DTI (36%), and deterministic DTI (10%). The sensitivity using the q-ball algorithm (65%) was significantly higher than using DTI (23%) (p < 0.001) and the probabilistic algorithms (58%) were more sensitive than deterministic approaches (30%) (p = 0.003). Probabilistic q-ball fiber tracks had the smallest offset to the subcortical stimulation sites. The offsets between diffusion fiber tracks and subcortical IES sites were increased significantly for those cases where the diffusion fiber tracks were visibly thinner than expected. There was perfect concordance between the subcortical IES function (e.g. hand stimulation) and the cortical connection of the nearest diffusion fiber track (e.g. upper extremity cortex). Discussion This study highlights the tremendous utility of intraoperative stimulation sites to provide a gold standard from which to evaluate diffusion MRI fiber tracking methods and has provided an object standard for evaluation of different diffusion models and approaches to fiber tracking. The probabilistic q-ball fiber tractography was significantly better than DTI methods in terms of sensitivity and accuracy of the course through the white matter. The commonly used DTI fiber tracking approach was shown to have very poor sensitivity (as low as 10% for deterministic DTI fiber tracking) for delineation of the lateral aspects of the corticospinal tract in our study. Effects of the tumor/edema resulted in significantly larger offsets between the subcortical IES and the preoperative fiber tracks. The provided data show that probabilistic HARDI tractography is the most objective and reproducible analysis but given the small sample and number of stimulation points a generalization about our results should be given with caution. Indeed our results inform the capabilities of preoperative diffusion fiber tracking and indicate that such data should be used carefully when making pre-surgical and intra-operative management decisions. PMID:24273719

  19. Uncued Low SNR Detection with Likelihood from Image Multi Bernoulli Filter

    NASA Astrophysics Data System (ADS)

    Murphy, T.; Holzinger, M.

    2016-09-01

    Both SSA and SDA necessitate uncued, partially informed detection and orbit determination efforts for small space objects which often produce only low strength electro-optical signatures. General frame to frame detection and tracking of objects includes methods such as moving target indicator, multiple hypothesis testing, direct track-before-detect methods, and random finite set based multiobject tracking. This paper will apply the multi-Bernoilli filter to low signal-to-noise ratio (SNR), uncued detection of space objects for space domain awareness applications. The primary novel innovation in this paper is a detailed analysis of the existing state-of-the-art likelihood functions and a likelihood function, based on a binary hypothesis, previously proposed by the authors. The algorithm is tested on electro-optical imagery obtained from a variety of sensors at Georgia Tech, including the GT-SORT 0.5m Raven-class telescope, and a twenty degree field of view high frame rate CMOS sensor. In particular, a data set of an extended pass of the Hitomi Astro-H satellite approximately 3 days after loss of communication and potential break up is examined.

  20. Tracking at High Level Trigger in CMS

    NASA Astrophysics Data System (ADS)

    Tosi, M.

    2016-04-01

    The trigger systems of the LHC detectors play a crucial role in determining the physics capabilities of experiments. A reduction of several orders of magnitude of the event rate is needed to reach values compatible with detector readout, offline storage and analysis capability. The CMS experiment has been designed with a two-level trigger system: the Level-1 Trigger (L1T), implemented on custom-designed electronics, and the High Level Trigger (HLT), a streamlined version of the CMS offline reconstruction software running on a computer farm. A software trigger system requires a trade-off between the complexity of the algorithms, the sustainable output rate, and the selection efficiency. With the computing power available during the 2012 data taking the maximum reconstruction time at HLT was about 200 ms per event, at the nominal L1T rate of 100 kHz. Track reconstruction algorithms are widely used in the HLT, for the reconstruction of the physics objects as well as in the identification of b-jets and lepton isolation. Reconstructed tracks are also used to distinguish the primary vertex, which identifies the hard interaction process, from the pileup ones. This task is particularly important in the LHC environment given the large number of interactions per bunch crossing: on average 25 in 2012, and expected to be around 40 in Run II. We will present the performance of HLT tracking algorithms, discussing its impact on CMS physics program, as well as new developments done towards the next data taking in 2015.

  1. Array-based infra-red detection: an enabling technology for people counting, sensing, tracking, and intelligent detection

    NASA Astrophysics Data System (ADS)

    Stogdale, Nick; Hollock, Steve; Johnson, Neil; Sumpter, Neil

    2003-09-01

    A 16x16 element un-cooled pyroelectric detector array has been developed which, when allied with advanced tracking and detection algorithms, has created a universal detector with multiple applications. Low-cost manufacturing techniques are used to fabricate a hybrid detector, intended for economic use in commercial markets. The detector has found extensive application in accurate people counting, detection, tracking, secure area protection, directional sensing and area violation; topics which are all pertinent to the provision of Homeland Security. The detection and tracking algorithms have, when allied with interpolation techniques, allowed a performance much higher than might be expected from a 16x16 array. This paper reviews the technology, with particular attention to the array structure, algorithms and interpolation techniques and outlines its application in a number of challenging market areas. Viewed from above, moving people are seen as 'hot blobs' moving through the field of view of the detector; background clutter or stationary objects are not seen and the detector works irrespective of lighting or environmental conditions. Advanced algorithms detect the people and extract size, shape, direction and velocity vectors allowing the number of people to be detected and their trajectories of motion to be tracked. Provision of virtual lines in the scene allows bi-directional counting of people flowing in and out of an entrance or area. Definition of a virtual closed area in the scene allows counting of the presence of stationary people within a defined area. Definition of 'counting lines' allows the counting of people, the ability to augment access control devices by confirming a 'one swipe one entry' judgement and analysis of the flow and destination of moving people. For example, passing the 'wrong way' up a denied passageway can be detected. Counting stationary people within a 'defined area' allows the behaviour and size of groups of stationary people to be analysed and counted, an alarm condition can also be generated when people stray into such areas.

  2. SU-F-303-11: Implementation and Applications of Rapid, SIFT-Based Cine MR Image Binning and Region Tracking

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mazur, T; Wang, Y; Fischer-Valuck, B

    2015-06-15

    Purpose: To develop a novel and rapid, SIFT-based algorithm for assessing feature motion on cine MR images acquired during MRI-guided radiotherapy treatments. In particular, we apply SIFT descriptors toward both partitioning cine images into respiratory states and tracking regions across frames. Methods: Among a training set of images acquired during a fraction, we densely assign SIFT descriptors to pixels within the images. We cluster these descriptors across all frames in order to produce a dictionary of trackable features. Associating the best-matching descriptors at every frame among the training images to these features, we construct motion traces for the features. Wemore » use these traces to define respiratory bins for sorting images in order to facilitate robust pixel-by-pixel tracking. Instead of applying conventional methods for identifying pixel correspondences across frames we utilize a recently-developed algorithm that derives correspondences via a matching objective for SIFT descriptors. Results: We apply these methods to a collection of lung, abdominal, and breast patients. We evaluate the procedure for respiratory binning using target sites exhibiting high-amplitude motion among 20 lung and abdominal patients. In particular, we investigate whether these methods yield minimal variation between images within a bin by perturbing the resulting image distributions among bins. Moreover, we compare the motion between averaged images across respiratory states to 4DCT data for these patients. We evaluate the algorithm for obtaining pixel correspondences between frames by tracking contours among a set of breast patients. As an initial case, we track easily-identifiable edges of lumpectomy cavities that show minimal motion over treatment. Conclusions: These SIFT-based methods reliably extract motion information from cine MR images acquired during patient treatments. While we performed our analysis retrospectively, the algorithm lends itself to prospective motion assessment. Applications of these methods include motion assessment, identifying treatment windows for gating, and determining optimal margins for treatment.« less

  3. Electro-optic tracking R&D for defense surveillance

    NASA Astrophysics Data System (ADS)

    Sutherland, Stuart; Woodruff, Chris J.

    1995-09-01

    Two aspects of work on automatic target detection and tracking for electro-optic (EO) surveillance are described. Firstly, a detection and tracking algorithm test-bed developed by DSTO and running on a PC under Windows NT is being used to assess candidate algorithms for unresolved and minimally resolved target detection. The structure of this test-bed is described and examples are given of its user interfaces and outputs. Secondly, a development by Australian industry under a Defence-funded contract, of a reconfigurable generic track processor (GTP) is outlined. The GTP will include reconfigurable image processing stages and target tracking algorithms. It will be used to demonstrate to the Australian Defence Force automatic detection and tracking capabilities, and to serve as a hardware base for real time algorithm refinement.

  4. Tracking tumor boundary in MV-EPID images without implanted markers: A feasibility study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Xiaoyong, E-mail: xiaoyong@ieee.org; Homma, Noriyasu, E-mail: homma@ieee.org; Ichiji, Kei, E-mail: ichiji@yoshizawa.ecei.tohoku.ac.jp

    2015-05-15

    Purpose: To develop a markerless tracking algorithm to track the tumor boundary in megavoltage (MV)-electronic portal imaging device (EPID) images for image-guided radiation therapy. Methods: A level set method (LSM)-based algorithm is developed to track tumor boundary in EPID image sequences. Given an EPID image sequence, an initial curve is manually specified in the first frame. Driven by a region-scalable energy fitting function, the initial curve automatically evolves toward the tumor boundary and stops on the desired boundary while the energy function reaches its minimum. For the subsequent frames, the tracking algorithm updates the initial curve by using the trackingmore » result in the previous frame and reuses the LSM to detect the tumor boundary in the subsequent frame so that the tracking processing can be continued without user intervention. The tracking algorithm is tested on three image datasets, including a 4-D phantom EPID image sequence, four digitally deformable phantom image sequences with different noise levels, and four clinical EPID image sequences acquired in lung cancer treatment. The tracking accuracy is evaluated based on two metrics: centroid localization error (CLE) and volume overlap index (VOI) between the tracking result and the ground truth. Results: For the 4-D phantom image sequence, the CLE is 0.23 ± 0.20 mm, and VOI is 95.6% ± 0.2%. For the digital phantom image sequences, the total CLE and VOI are 0.11 ± 0.08 mm and 96.7% ± 0.7%, respectively. In addition, for the clinical EPID image sequences, the proposed algorithm achieves 0.32 ± 0.77 mm in the CLE and 72.1% ± 5.5% in the VOI. These results demonstrate the effectiveness of the authors’ proposed method both in tumor localization and boundary tracking in EPID images. In addition, compared with two existing tracking algorithms, the proposed method achieves a higher accuracy in tumor localization. Conclusions: In this paper, the authors presented a feasibility study of tracking tumor boundary in EPID images by using a LSM-based algorithm. Experimental results conducted on phantom and clinical EPID images demonstrated the effectiveness of the tracking algorithm for visible tumor target. Compared with previous tracking methods, the authors’ algorithm has the potential to improve the tracking accuracy in radiation therapy. In addition, real-time tumor boundary information within the irradiation field will be potentially useful for further applications, such as adaptive beam delivery, dose evaluation.« less

  5. Penalty dynamic programming algorithm for dim targets detection in sensor systems.

    PubMed

    Huang, Dayu; Xue, Anke; Guo, Yunfei

    2012-01-01

    In order to detect and track multiple maneuvering dim targets in sensor systems, an improved dynamic programming track-before-detect algorithm (DP-TBD) called penalty DP-TBD (PDP-TBD) is proposed. The performances of tracking techniques are used as a feedback to the detection part. The feedback is constructed by a penalty term in the merit function, and the penalty term is a function of the possible target state estimation, which can be obtained by the tracking methods. With this feedback, the algorithm combines traditional tracking techniques with DP-TBD and it can be applied to simultaneously detect and track maneuvering dim targets. Meanwhile, a reasonable constraint that a sensor measurement can originate from one target or clutter is proposed to minimize track separation. Thus, the algorithm can be used in the multi-target situation with unknown target numbers. The efficiency and advantages of PDP-TBD compared with two existing methods are demonstrated by several simulations.

  6. Integration of an On-Axis General Sun-Tracking Formula in the Algorithm of an Open-Loop Sun-Tracking System

    PubMed Central

    Chong, Kok-Keong; Wong, Chee-Woon; Siaw, Fei-Lu; Yew, Tiong-Keat; Ng, See-Seng; Liang, Meng-Suan; Lim, Yun-Seng; Lau, Sing-Liong

    2009-01-01

    A novel on-axis general sun-tracking formula has been integrated in the algorithm of an open-loop sun-tracking system in order to track the sun accurately and cost effectively. Sun-tracking errors due to installation defects of the 25 m2 prototype solar concentrator have been analyzed from recorded solar images with the use of a CCD camera. With the recorded data, misaligned angles from ideal azimuth-elevation axes have been determined and corrected by a straightforward changing of the parameters' values in the general formula of the tracking algorithm to improve the tracking accuracy to 2.99 mrad, which falls below the encoder resolution limit of 4.13 mrad. PMID:22408483

  7. Game theory-based visual tracking approach focusing on color and texture features.

    PubMed

    Jin, Zefenfen; Hou, Zhiqiang; Yu, Wangsheng; Chen, Chuanhua; Wang, Xin

    2017-07-20

    It is difficult for a single-feature tracking algorithm to achieve strong robustness under a complex environment. To solve this problem, we proposed a multifeature fusion tracking algorithm that is based on game theory. By focusing on color and texture features as two gamers, this algorithm accomplishes tracking by using a mean shift iterative formula to search for the Nash equilibrium of the game. The contribution of different features is always keeping the state of optical balance, so that the algorithm can fully take advantage of feature fusion. According to the experiment results, this algorithm proves to possess good performance, especially under the condition of scene variation, target occlusion, and similar interference.

  8. Binocular Vision-Based Position and Pose of Hand Detection and Tracking in Space

    NASA Astrophysics Data System (ADS)

    Jun, Chen; Wenjun, Hou; Qing, Sheng

    After the study of image segmentation, CamShift target tracking algorithm and stereo vision model of space, an improved algorithm based of Frames Difference and a new space point positioning model were proposed, a binocular visual motion tracking system was constructed to verify the improved algorithm and the new model. The problem of the spatial location and pose of the hand detection and tracking have been solved.

  9. Study of Computational Structures for Multiobject Tracking Algorithms

    DTIC Science & Technology

    1986-12-01

    MULTIOBJECT TRACKING ALGORITHMS 12. PERSONAL AUTHOR(S) i Allen, Thomas G .; Kurien, Thomas; Washburn, Robert B. Jr. 13a. TYPE OF REPORT 13b. TIME COVERED 14...mentioned possible restructurings of the tracking algorithm that increase the amount of available parallelism ’ g ~. are investigated. This step is extremely...sufficient for our needs here. In the following section we will examine the structure and computational requirements of the track- g , oriented approach

  10. Generalized Minimum-Time Follow-up Approaches Applied to Tasking Electro-Optical Sensor Tasking

    NASA Astrophysics Data System (ADS)

    Murphy, T. S.; Holzinger, M. J.

    This work proposes a methodology for tasking of sensors to search an area of state space for a particular object, group of objects, or class of objects. This work creates a general unified mathematical framework for analyzing reacquisition, search, scheduling, and custody operations. In particular, this work looks at searching for unknown space object(s) with prior knowledge in the form of a set, which can be defined via an uncorrelated track, region of state space, or a variety of other methods. The follow-up tasking can occur from a variable location and time, which often requires searching a large region of the sky. This work analyzes the area of a search region over time to inform a time optimal search method. Simulation work looks at analyzing search regions relative to a particular sensor, and testing a tasking algorithm to search through the region. The tasking algorithm is also validated on a reacquisition problem with a telescope system at Georgia Tech.

  11. Strong Tracking Spherical Simplex-Radial Cubature Kalman Filter for Maneuvering Target Tracking.

    PubMed

    Liu, Hua; Wu, Wen

    2017-03-31

    Conventional spherical simplex-radial cubature Kalman filter (SSRCKF) for maneuvering target tracking may decline in accuracy and even diverge when a target makes abrupt state changes. To overcome this problem, a novel algorithm named strong tracking spherical simplex-radial cubature Kalman filter (STSSRCKF) is proposed in this paper. The proposed algorithm uses the spherical simplex-radial (SSR) rule to obtain a higher accuracy than cubature Kalman filter (CKF) algorithm. Meanwhile, by introducing strong tracking filter (STF) into SSRCKF and modifying the predicted states' error covariance with a time-varying fading factor, the gain matrix is adjusted on line so that the robustness of the filter and the capability of dealing with uncertainty factors is improved. In this way, the proposed algorithm has the advantages of both STF's strong robustness and SSRCKF's high accuracy. Finally, a maneuvering target tracking problem with abrupt state changes is used to test the performance of the proposed filter. Simulation results show that the STSSRCKF algorithm can get better estimation accuracy and greater robustness for maneuvering target tracking.

  12. Strong Tracking Spherical Simplex-Radial Cubature Kalman Filter for Maneuvering Target Tracking

    PubMed Central

    Liu, Hua; Wu, Wen

    2017-01-01

    Conventional spherical simplex-radial cubature Kalman filter (SSRCKF) for maneuvering target tracking may decline in accuracy and even diverge when a target makes abrupt state changes. To overcome this problem, a novel algorithm named strong tracking spherical simplex-radial cubature Kalman filter (STSSRCKF) is proposed in this paper. The proposed algorithm uses the spherical simplex-radial (SSR) rule to obtain a higher accuracy than cubature Kalman filter (CKF) algorithm. Meanwhile, by introducing strong tracking filter (STF) into SSRCKF and modifying the predicted states’ error covariance with a time-varying fading factor, the gain matrix is adjusted on line so that the robustness of the filter and the capability of dealing with uncertainty factors is improved. In this way, the proposed algorithm has the advantages of both STF’s strong robustness and SSRCKF’s high accuracy. Finally, a maneuvering target tracking problem with abrupt state changes is used to test the performance of the proposed filter. Simulation results show that the STSSRCKF algorithm can get better estimation accuracy and greater robustness for maneuvering target tracking. PMID:28362347

  13. Decontaminate feature for tracking: adaptive tracking via evolutionary feature subset

    NASA Astrophysics Data System (ADS)

    Liu, Qiaoyuan; Wang, Yuru; Yin, Minghao; Ren, Jinchang; Li, Ruizhi

    2017-11-01

    Although various visual tracking algorithms have been proposed in the last 2-3 decades, it remains a challenging problem for effective tracking with fast motion, deformation, occlusion, etc. Under complex tracking conditions, most tracking models are not discriminative and adaptive enough. When the combined feature vectors are inputted to the visual models, this may lead to redundancy causing low efficiency and ambiguity causing poor performance. An effective tracking algorithm is proposed to decontaminate features for each video sequence adaptively, where the visual modeling is treated as an optimization problem from the perspective of evolution. Every feature vector is compared to a biological individual and then decontaminated via classical evolutionary algorithms. With the optimized subsets of features, the "curse of dimensionality" has been avoided while the accuracy of the visual model has been improved. The proposed algorithm has been tested on several publicly available datasets with various tracking challenges and benchmarked with a number of state-of-the-art approaches. The comprehensive experiments have demonstrated the efficacy of the proposed methodology.

  14. Data fusion for target tracking and classification with wireless sensor network

    NASA Astrophysics Data System (ADS)

    Pannetier, Benjamin; Doumerc, Robin; Moras, Julien; Dezert, Jean; Canevet, Loic

    2016-10-01

    In this paper, we address the problem of multiple ground target tracking and classification with information obtained from a unattended wireless sensor network. A multiple target tracking (MTT) algorithm, taking into account road and vegetation information, is proposed based on a centralized architecture. One of the key issue is how to adapt classical MTT approach to satisfy embedded processing. Based on track statistics, the classification algorithm uses estimated location, velocity and acceleration to help to classify targets. The algorithms enables tracking human and vehicles driving both on and off road. We integrate road or trail width and vegetation cover, as constraints in target motion models to improve performance of tracking under constraint with classification fusion. Our algorithm also presents different dynamic models, to palliate the maneuvers of targets. The tracking and classification algorithms are integrated into an operational platform (the fusion node). In order to handle realistic ground target tracking scenarios, we use an autonomous smart computer deposited in the surveillance area. After the calibration step of the heterogeneous sensor network, our system is able to handle real data from a wireless ground sensor network. The performance of system is evaluated in a real exercise for intelligence operation ("hunter hunt" scenario).

  15. Photovoltaic Cells Mppt Algorithm and Design of Controller Monitoring System

    NASA Astrophysics Data System (ADS)

    Meng, X. Z.; Feng, H. B.

    2017-10-01

    This paper combined the advantages of each maximum power point tracking (MPPT) algorithm, put forward a kind of algorithm with higher speed and higher precision, based on this algorithm designed a maximum power point tracking controller with ARM. The controller, communication technology and PC software formed a control system. Results of the simulation and experiment showed that the process of maximum power tracking was effective, and the system was stable.

  16. Automatic multiple zebrafish larvae tracking in unconstrained microscopic video conditions.

    PubMed

    Wang, Xiaoying; Cheng, Eva; Burnett, Ian S; Huang, Yushi; Wlodkowic, Donald

    2017-12-14

    The accurate tracking of zebrafish larvae movement is fundamental to research in many biomedical, pharmaceutical, and behavioral science applications. However, the locomotive characteristics of zebrafish larvae are significantly different from adult zebrafish, where existing adult zebrafish tracking systems cannot reliably track zebrafish larvae. Further, the far smaller size differentiation between larvae and the container render the detection of water impurities inevitable, which further affects the tracking of zebrafish larvae or require very strict video imaging conditions that typically result in unreliable tracking results for realistic experimental conditions. This paper investigates the adaptation of advanced computer vision segmentation techniques and multiple object tracking algorithms to develop an accurate, efficient and reliable multiple zebrafish larvae tracking system. The proposed system has been tested on a set of single and multiple adult and larvae zebrafish videos in a wide variety of (complex) video conditions, including shadowing, labels, water bubbles and background artifacts. Compared with existing state-of-the-art and commercial multiple organism tracking systems, the proposed system improves the tracking accuracy by up to 31.57% in unconstrained video imaging conditions. To facilitate the evaluation on zebrafish segmentation and tracking research, a dataset with annotated ground truth is also presented. The software is also publicly accessible.

  17. An Improved Interacting Multiple Model Filtering Algorithm Based on the Cubature Kalman Filter for Maneuvering Target Tracking.

    PubMed

    Zhu, Wei; Wang, Wei; Yuan, Gannan

    2016-06-01

    In order to improve the tracking accuracy, model estimation accuracy and quick response of multiple model maneuvering target tracking, the interacting multiple models five degree cubature Kalman filter (IMM5CKF) is proposed in this paper. In the proposed algorithm, the interacting multiple models (IMM) algorithm processes all the models through a Markov Chain to simultaneously enhance the model tracking accuracy of target tracking. Then a five degree cubature Kalman filter (5CKF) evaluates the surface integral by a higher but deterministic odd ordered spherical cubature rule to improve the tracking accuracy and the model switch sensitivity of the IMM algorithm. Finally, the simulation results demonstrate that the proposed algorithm exhibits quick and smooth switching when disposing different maneuver models, and it also performs better than the interacting multiple models cubature Kalman filter (IMMCKF), interacting multiple models unscented Kalman filter (IMMUKF), 5CKF and the optimal mode transition matrix IMM (OMTM-IMM).

  18. RAPTOR-scan: Identifying and Tracking Objects Through Thousands of Sky Images

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davidoff, Sherri; Wozniak, Przemyslaw

    2004-09-28

    The RAPTOR-scan system mines data for optical transients associated with gamma-ray bursts and is used to create a catalog for the RAPTOR telescope system. RAPTOR-scan can detect and track individual astronomical objects across data sets containing millions of observed points.Accurately identifying a real object over many optical images (clustering the individual appearances) is necessary in order to analyze object light curves. To achieve this, RAPTOR telescope observations are sent in real time to a database. Each morning, a program based on the DBSCAN algorithm clusters the observations and labels each one with an object identifier. Once clustering is complete, themore » analysis program may be used to query the database and produce light curves, maps of the sky field, or other informative displays.Although RAPTOR-scan was designed for the RAPTOR optical telescope system, it is a general tool designed to identify objects in a collection of astronomical data and facilitate quick data analysis. RAPTOR-scan will be released as free software under the GNU General Public License.« less

  19. Recent Advancements in Lightning Jump Algorithm Work

    NASA Technical Reports Server (NTRS)

    Schultz, Christopher J.; Petersen, Walter A.; Carey, Lawrence D.

    2010-01-01

    In the past year, the primary objectives were to show the usefulness of total lightning as compared to traditional cloud-to-ground (CG) networks, test the lightning jump algorithm configurations in other regions of the country, increase the number of thunderstorms within our thunderstorm database, and to pinpoint environments that could prove difficult for any lightning jump configuration. A total of 561 thunderstorms have been examined in the past year (409 non-severe, 152 severe) from four regions of the country (North Alabama, Washington D.C., High Plains of CO/KS, and Oklahoma). Results continue to indicate that the 2 lightning jump algorithm configuration holds the most promise in terms of prospective operational lightning jump algorithms, with a probability of detection (POD) at 81%, a false alarm rate (FAR) of 45%, a critical success index (CSI) of 49% and a Heidke Skill Score (HSS) of 0.66. The second best performing algorithm configuration was the Threshold 4 algorithm, which had a POD of 72%, FAR of 51%, a CSI of 41% and an HSS of 0.58. Because a more complex algorithm configuration shows the most promise in terms of prospective operational lightning jump algorithms, accurate thunderstorm cell tracking work must be undertaken to track lightning trends on an individual thunderstorm basis over time. While these numbers for the 2 configuration are impressive, the algorithm does have its weaknesses. Specifically, low-topped and tropical cyclone thunderstorm environments are present issues for the 2 lightning jump algorithm, because of the suppressed vertical depth impact on overall flash counts (i.e., a relative dearth in lightning). For example, in a sample of 120 thunderstorms from northern Alabama that contained 72 missed events by the 2 algorithm 36% of the misses were associated with these two environments (17 storms).

  20. A novel Gravity-FREAK feature extraction and Gravity-KLT tracking registration algorithm based on iPhone MEMS mobile sensor in mobile environment

    PubMed Central

    Lin, Fan; Xiao, Bin

    2017-01-01

    Based on the traditional Fast Retina Keypoint (FREAK) feature description algorithm, this paper proposed a Gravity-FREAK feature description algorithm based on Micro-electromechanical Systems (MEMS) sensor to overcome the limited computing performance and memory resources of mobile devices and further improve the reality interaction experience of clients through digital information added to the real world by augmented reality technology. The algorithm takes the gravity projection vector corresponding to the feature point as its feature orientation, which saved the time of calculating the neighborhood gray gradient of each feature point, reduced the cost of calculation and improved the accuracy of feature extraction. In the case of registration method of matching and tracking natural features, the adaptive and generic corner detection based on the Gravity-FREAK matching purification algorithm was used to eliminate abnormal matches, and Gravity Kaneda-Lucas Tracking (KLT) algorithm based on MEMS sensor can be used for the tracking registration of the targets and robustness improvement of tracking registration algorithm under mobile environment. PMID:29088228

  1. A novel Gravity-FREAK feature extraction and Gravity-KLT tracking registration algorithm based on iPhone MEMS mobile sensor in mobile environment.

    PubMed

    Hong, Zhiling; Lin, Fan; Xiao, Bin

    2017-01-01

    Based on the traditional Fast Retina Keypoint (FREAK) feature description algorithm, this paper proposed a Gravity-FREAK feature description algorithm based on Micro-electromechanical Systems (MEMS) sensor to overcome the limited computing performance and memory resources of mobile devices and further improve the reality interaction experience of clients through digital information added to the real world by augmented reality technology. The algorithm takes the gravity projection vector corresponding to the feature point as its feature orientation, which saved the time of calculating the neighborhood gray gradient of each feature point, reduced the cost of calculation and improved the accuracy of feature extraction. In the case of registration method of matching and tracking natural features, the adaptive and generic corner detection based on the Gravity-FREAK matching purification algorithm was used to eliminate abnormal matches, and Gravity Kaneda-Lucas Tracking (KLT) algorithm based on MEMS sensor can be used for the tracking registration of the targets and robustness improvement of tracking registration algorithm under mobile environment.

  2. Person detection and tracking with a 360° lidar system

    NASA Astrophysics Data System (ADS)

    Hammer, Marcus; Hebel, Marcus; Arens, Michael

    2017-10-01

    Today it is easily possible to generate dense point clouds of the sensor environment using 360° LiDAR (Light Detection and Ranging) sensors which are available since a number of years. The interpretation of these data is much more challenging. For the automated data evaluation the detection and classification of objects is a fundamental task. Especially in urban scenarios moving objects like persons or vehicles are of particular interest, for instance in automatic collision avoidance, for mobile sensor platforms or surveillance tasks. In literature there are several approaches for automated person detection in point clouds. While most techniques show acceptable results in object detection, the computation time is often crucial. The runtime can be problematic, especially due to the amount of data in the panoramic 360° point clouds. On the other hand, for most applications an object detection and classification in real time is needed. The paper presents a proposal for a fast, real-time capable algorithm for person detection, classification and tracking in panoramic point clouds.

  3. Motion-Blur-Free High-Speed Video Shooting Using a Resonant Mirror

    PubMed Central

    Inoue, Michiaki; Gu, Qingyi; Takaki, Takeshi; Ishii, Idaku; Tajima, Kenji

    2017-01-01

    This study proposes a novel concept of actuator-driven frame-by-frame intermittent tracking for motion-blur-free video shooting of fast-moving objects. The camera frame and shutter timings are controlled for motion blur reduction in synchronization with a free-vibration-type actuator vibrating with a large amplitude at hundreds of hertz so that motion blur can be significantly reduced in free-viewpoint high-frame-rate video shooting for fast-moving objects by deriving the maximum performance of the actuator. We develop a prototype of a motion-blur-free video shooting system by implementing our frame-by-frame intermittent tracking algorithm on a high-speed video camera system with a resonant mirror vibrating at 750 Hz. It can capture 1024 × 1024 images of fast-moving objects at 750 fps with an exposure time of 0.33 ms without motion blur. Several experimental results for fast-moving objects verify that our proposed method can reduce image degradation from motion blur without decreasing the camera exposure time. PMID:29109385

  4. Aerial surveillance based on hierarchical object classification for ground target detection

    NASA Astrophysics Data System (ADS)

    Vázquez-Cervantes, Alberto; García-Huerta, Juan-Manuel; Hernández-Díaz, Teresa; Soto-Cajiga, J. A.; Jiménez-Hernández, Hugo

    2015-03-01

    Unmanned aerial vehicles have turned important in surveillance application due to the flexibility and ability to inspect and displace in different regions of interest. The instrumentation and autonomy of these vehicles have been increased; i.e. the camera sensor is now integrated. Mounted cameras allow flexibility to monitor several regions of interest, displacing and changing the camera view. A well common task performed by this kind of vehicles correspond to object localization and tracking. This work presents a hierarchical novel algorithm to detect and locate objects. The algorithm is based on a detection-by-example approach; this is, the target evidence is provided at the beginning of the vehicle's route. Afterwards, the vehicle inspects the scenario, detecting all similar objects through UTM-GPS coordinate references. Detection process consists on a sampling information process of the target object. Sampling process encode in a hierarchical tree with different sampling's densities. Coding space correspond to a huge binary space dimension. Properties such as independence and associative operators are defined in this space to construct a relation between the target object and a set of selected features. Different densities of sampling are used to discriminate from general to particular features that correspond to the target. The hierarchy is used as a way to adapt the complexity of the algorithm due to optimized battery duty cycle of the aerial device. Finally, this approach is tested in several outdoors scenarios, proving that the hierarchical algorithm works efficiently under several conditions.

  5. Rigid shape matching by segmentation averaging.

    PubMed

    Wang, Hongzhi; Oliensis, John

    2010-04-01

    We use segmentations to match images by shape. The new matching technique does not require point-to-point edge correspondence and is robust to small shape variations and spatial shifts. To address the unreliability of segmentations computed bottom-up, we give a closed form approximation to an average over all segmentations. Our method has many extensions, yielding new algorithms for tracking, object detection, segmentation, and edge-preserving smoothing. For segmentation, instead of a maximum a posteriori approach, we compute the "central" segmentation minimizing the average distance to all segmentations of an image. For smoothing, instead of smoothing images based on local structures, we smooth based on the global optimal image structures. Our methods for segmentation, smoothing, and object detection perform competitively, and we also show promising results in shape-based tracking.

  6. A-Track: A New Approach for Detection of Moving Objects in FITS Images

    NASA Astrophysics Data System (ADS)

    Kılıç, Yücel; Karapınar, Nurdan; Atay, Tolga; Kaplan, Murat

    2016-07-01

    Small planet and asteroid observations are important for understanding the origin and evolution of the Solar System. In this work, we have developed a fast and robust pipeline, called A-Track, for detecting asteroids and comets in sequential telescope images. The moving objects are detected using a modified line detection algorithm, called ILDA. We have coded the pipeline in Python 3, where we have made use of various scientific modules in Python to process the FITS images. We tested the code on photometrical data taken by an SI-1100 CCD with a 1-meter telescope at TUBITAK National Observatory, Antalya. The pipeline can be used to analyze large data archives or daily sequential data. The code is hosted on GitHub under the GNU GPL v3 license.

  7. Real-time object tracking based on scale-invariant features employing bio-inspired hardware.

    PubMed

    Yasukawa, Shinsuke; Okuno, Hirotsugu; Ishii, Kazuo; Yagi, Tetsuya

    2016-09-01

    We developed a vision sensor system that performs a scale-invariant feature transform (SIFT) in real time. To apply the SIFT algorithm efficiently, we focus on a two-fold process performed by the visual system: whole-image parallel filtering and frequency-band parallel processing. The vision sensor system comprises an active pixel sensor, a metal-oxide semiconductor (MOS)-based resistive network, a field-programmable gate array (FPGA), and a digital computer. We employed the MOS-based resistive network for instantaneous spatial filtering and a configurable filter size. The FPGA is used to pipeline process the frequency-band signals. The proposed system was evaluated by tracking the feature points detected on an object in a video. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Nonlinear-Based MEMS Sensors and Active Switches for Gas Detection.

    PubMed

    Bouchaala, Adam; Jaber, Nizar; Yassine, Omar; Shekhah, Osama; Chernikova, Valeriya; Eddaoudi, Mohamed; Younis, Mohammad I

    2016-05-25

    The objective of this paper is to demonstrate the integration of a MOF thin film on electrostatically actuated microstructures to realize a switch triggered by gas and a sensing algorithm based on amplitude tracking. The devices are based on the nonlinear response of micromachined clamped-clamped beams. The microbeams are coated with a metal-organic framework (MOF), namely HKUST-1, to achieve high sensitivity. The softening and hardening nonlinear behaviors of the microbeams are exploited to demonstrate the ideas. For gas sensing, an amplitude-based tracking algorithm is developed to quantify the captured quantity of gas. Then, a MEMS switch triggered by gas using the nonlinear response of the microbeam is demonstrated. Noise analysis is conducted, which shows that the switch has high stability against thermal noise. The proposed switch is promising for delivering binary sensing information, and also can be used directly to activate useful functionalities, such as alarming.

  9. Nonlinear-Based MEMS Sensors and Active Switches for Gas Detection

    PubMed Central

    Bouchaala, Adam; Jaber, Nizar; Yassine, Omar; Shekhah, Osama; Chernikova, Valeriya; Eddaoudi, Mohamed; Younis, Mohammad I.

    2016-01-01

    The objective of this paper is to demonstrate the integration of a MOF thin film on electrostatically actuated microstructures to realize a switch triggered by gas and a sensing algorithm based on amplitude tracking. The devices are based on the nonlinear response of micromachined clamped-clamped beams. The microbeams are coated with a metal-organic framework (MOF), namely HKUST-1, to achieve high sensitivity. The softening and hardening nonlinear behaviors of the microbeams are exploited to demonstrate the ideas. For gas sensing, an amplitude-based tracking algorithm is developed to quantify the captured quantity of gas. Then, a MEMS switch triggered by gas using the nonlinear response of the microbeam is demonstrated. Noise analysis is conducted, which shows that the switch has high stability against thermal noise. The proposed switch is promising for delivering binary sensing information, and also can be used directly to activate useful functionalities, such as alarming. PMID:27231914

  10. Location detection and tracking of moving targets by a 2D IR-UWB radar system.

    PubMed

    Nguyen, Van-Han; Pyun, Jae-Young

    2015-03-19

    In indoor environments, the Global Positioning System (GPS) and long-range tracking radar systems are not optimal, because of signal propagation limitations in the indoor environment. In recent years, the use of ultra-wide band (UWB) technology has become a possible solution for object detection, localization and tracking in indoor environments, because of its high range resolution, compact size and low cost. This paper presents improved target detection and tracking techniques for moving objects with impulse-radio UWB (IR-UWB) radar in a short-range indoor area. This is achieved through signal-processing steps, such as clutter reduction, target detection, target localization and tracking. In this paper, we introduce a new combination consisting of our proposed signal-processing procedures. In the clutter-reduction step, a filtering method that uses a Kalman filter (KF) is proposed. Then, in the target detection step, a modification of the conventional CLEAN algorithm which is used to estimate the impulse response from observation region is applied for the advanced elimination of false alarms. Then, the output is fed into the target localization and tracking step, in which the target location and trajectory are determined and tracked by using unscented KF in two-dimensional coordinates. In each step, the proposed methods are compared to conventional methods to demonstrate the differences in performance. The experiments are carried out using actual IR-UWB radar under different scenarios. The results verify that the proposed methods can improve the probability and efficiency of target detection and tracking.

  11. Pareto Design of State Feedback Tracking Control of a Biped Robot via Multiobjective PSO in Comparison with Sigma Method and Genetic Algorithms: Modified NSGAII and MATLAB's Toolbox

    PubMed Central

    Mahmoodabadi, M. J.; Taherkhorsandi, M.; Bagheri, A.

    2014-01-01

    An optimal robust state feedback tracking controller is introduced to control a biped robot. In the literature, the parameters of the controller are usually determined by a tedious trial and error process. To eliminate this process and design the parameters of the proposed controller, the multiobjective evolutionary algorithms, that is, the proposed method, modified NSGAII, Sigma method, and MATLAB's Toolbox MOGA, are employed in this study. Among the used evolutionary optimization algorithms to design the controller for biped robots, the proposed method operates better in the aspect of designing the controller since it provides ample opportunities for designers to choose the most appropriate point based upon the design criteria. Three points are chosen from the nondominated solutions of the obtained Pareto front based on two conflicting objective functions, that is, the normalized summation of angle errors and normalized summation of control effort. Obtained results elucidate the efficiency of the proposed controller in order to control a biped robot. PMID:24616619

  12. Application of the one-dimensional Fourier transform for tracking moving objects in noisy environments

    NASA Technical Reports Server (NTRS)

    Rajala, S. A.; Riddle, A. N.; Snyder, W. E.

    1983-01-01

    In Riddle and Rajala (1981), an algorithm was presented which operates on an image sequence to identify all sets of pixels having the same velocity. The algorithm operates by performing a transformation in which all pixels with the same two-dimensional velocity map to a peak in a transform space. The transform can be decomposed into applications of the one-dimensional Fourier transform and therefore can gain from the computational advantages of the FFT. The aim of this paper is the concern with the fundamental limitations of that algorithm, particularly as relates to its sensitivity to image-disturbing parameters as noise, jitter, and clutter. A modification to the algorithm is then proposed which increases its robustness in the presence of these disturbances.

  13. Tracking Small Artists

    NASA Astrophysics Data System (ADS)

    Russell, James C.; Klette, Reinhard; Chen, Chia-Yen

    Tracks of small animals are important in environmental surveillance, where pattern recognition algorithms allow species identification of the individuals creating tracks. These individuals can also be seen as artists, presented in their natural environments with a canvas upon which they can make prints. We present tracks of small mammals and reptiles which have been collected for identification purposes, and re-interpret them from an esthetic point of view. We re-classify these tracks not by their geometric qualities as pattern recognition algorithms would, but through interpreting the 'artist', their brush strokes and intensity. We describe the algorithms used to enhance and present the work of the 'artists'.

  14. A Real-Time Position-Locating Algorithm for CCD-Based Sunspot Tracking

    NASA Technical Reports Server (NTRS)

    Taylor, Jaime R.

    1996-01-01

    NASA Marshall Space Flight Center's (MSFC) EXperimental Vector Magnetograph (EXVM) polarimeter measures the sun's vector magnetic field. These measurements are taken to improve understanding of the sun's magnetic field in the hopes to better predict solar flares. Part of the procedure for the EXVM requires image motion stabilization over a period of a few minutes. A high speed tracker can be used to reduce image motion produced by wind loading on the EXVM, fluctuations in the atmosphere and other vibrations. The tracker consists of two elements, an image motion detector and a control system. The image motion detector determines the image movement from one frame to the next and sends an error signal to the control system. For the ground based application to reduce image motion due to atmospheric fluctuations requires an error determination at the rate of at least 100 hz. It would be desirable to have an error determination rate of 1 kHz to assure that higher rate image motion is reduced and to increase the control system stability. Two algorithms are presented that are typically used for tracking. These algorithms are examined for their applicability for tracking sunspots, specifically their accuracy if only one column and one row of CCD pixels are used. To examine the accuracy of this method two techniques are used. One involves moving a sunspot image a known distance with computer software, then applying the particular algorithm to see how accurately it determines this movement. The second technique involves using a rate table to control the object motion, then applying the algorithms to see how accurately each determines the actual motion. Results from these two techniques are presented.

  15. Implementation of jump-diffusion algorithms for understanding FLIR scenes

    NASA Astrophysics Data System (ADS)

    Lanterman, Aaron D.; Miller, Michael I.; Snyder, Donald L.

    1995-07-01

    Our pattern theoretic approach to the automated understanding of forward-looking infrared (FLIR) images brings the traditionally separate endeavors of detection, tracking, and recognition together into a unified jump-diffusion process. New objects are detected and object types are recognized through discrete jump moves. Between jumps, the location and orientation of objects are estimated via continuous diffusions. An hypothesized scene, simulated from the emissive characteristics of the hypothesized scene elements, is compared with the collected data by a likelihood function based on sensor statistics. This likelihood is combined with a prior distribution defined over the set of possible scenes to form a posterior distribution. The jump-diffusion process empirically generates the posterior distribution. Both the diffusion and jump operations involve the simulation of a scene produced by a hypothesized configuration. Scene simulation is most effectively accomplished by pipelined rendering engines such as silicon graphics. We demonstrate the execution of our algorithm on a silicon graphics onyx/reality engine.

  16. A fast hybrid algorithm combining regularized motion tracking and predictive search for reducing the occurrence of large displacement errors.

    PubMed

    Jiang, Jingfeng; Hall, Timothy J

    2011-04-01

    A hybrid approach that inherits both the robustness of the regularized motion tracking approach and the efficiency of the predictive search approach is reported. The basic idea is to use regularized speckle tracking to obtain high-quality seeds in an explorative search that can be used in the subsequent intelligent predictive search. The performance of the hybrid speckle-tracking algorithm was compared with three published speckle-tracking methods using in vivo breast lesion data. We found that the hybrid algorithm provided higher displacement quality metric values, lower root mean squared errors compared with a locally smoothed displacement field, and higher improvement ratios compared with the classic block-matching algorithm. On the basis of these comparisons, we concluded that the hybrid method can further enhance the accuracy of speckle tracking compared with its real-time counterparts, at the expense of slightly higher computational demands. © 2011 IEEE

  17. Tracking cells in Life Cell Imaging videos using topological alignments.

    PubMed

    Mosig, Axel; Jäger, Stefan; Wang, Chaofeng; Nath, Sumit; Ersoy, Ilker; Palaniappan, Kannap-pan; Chen, Su-Shing

    2009-07-16

    With the increasing availability of live cell imaging technology, tracking cells and other moving objects in live cell videos has become a major challenge for bioimage informatics. An inherent problem for most cell tracking algorithms is over- or under-segmentation of cells - many algorithms tend to recognize one cell as several cells or vice versa. We propose to approach this problem through so-called topological alignments, which we apply to address the problem of linking segmentations of two consecutive frames in the video sequence. Starting from the output of a conventional segmentation procedure, we align pairs of consecutive frames through assigning sets of segments in one frame to sets of segments in the next frame. We achieve this through finding maximum weighted solutions to a generalized "bipartite matching" between two hierarchies of segments, where we derive weights from relative overlap scores of convex hulls of sets of segments. For solving the matching task, we rely on an integer linear program. Practical experiments demonstrate that the matching task can be solved efficiently in practice, and that our method is both effective and useful for tracking cells in data sets derived from a so-called Large Scale Digital Cell Analysis System (LSDCAS). The source code of the implementation is available for download from http://www.picb.ac.cn/patterns/Software/topaln.

  18. SU-G-BRA-06: Quantification of Tracking Performance of a Multi-Layer Electronic Portal Imaging Device

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Y; Rottmann, J; Myronakis, M

    2016-06-15

    Purpose: The purpose of this study was to quantify the improvement in tumor tracking, with and without fiducial markers, afforded by employing a multi-layer (MLI) electronic portal imaging device (EPID) over the current state-of-the-art, single-layer, digital megavolt imager (DMI) architecture. Methods: An ideal observer signal-to-noise ratio (d’) approach was used to quantify the ability of an MLI EPID and a current, state-of-the-art DMI EPID to track lung tumors from the treatment beam’s-eye-view. Using each detector modulation transfer function (MTF) and noise power spectrum (NPS) as inputs, a detection task was employed with object functions describing simple three-dimensional Cartesian shapes (spheresmore » and cylinders). Marker-less tumor tracking algorithms often use texture discrimination to differentiate benign and malignant tissue. The performance of such algorithms is simulated by employing a discrimination task for the ideal observer, which measures the ability of a system to differentiate two image quantities. These were defined as the measured textures for benign and malignant lung tissue. Results: The NNPS of the MLI ∼25% of that of the DMI at the expense of decreased MTF at intermediate frequencies (0.25≤« less

  19. Automated recognition and tracking of aerosol threat plumes with an IR camera pod

    NASA Astrophysics Data System (ADS)

    Fauth, Ryan; Powell, Christopher; Gruber, Thomas; Clapp, Dan

    2012-06-01

    Protection of fixed sites from chemical, biological, or radiological aerosol plume attacks depends on early warning so that there is time to take mitigating actions. Early warning requires continuous, autonomous, and rapid coverage of large surrounding areas; however, this must be done at an affordable cost. Once a potential threat plume is detected though, a different type of sensor (e.g., a more expensive, slower sensor) may be cued for identification purposes, but the problem is to quickly identify all of the potential threats around the fixed site of interest. To address this problem of low cost, persistent, wide area surveillance, an IR camera pod and multi-image stitching and processing algorithms have been developed for automatic recognition and tracking of aerosol plumes. A rugged, modular, static pod design, which accommodates as many as four micro-bolometer IR cameras for 45deg to 180deg of azimuth coverage, is presented. Various OpenCV1 based image-processing algorithms, including stitching of multiple adjacent FOVs, recognition of aerosol plume objects, and the tracking of aerosol plumes, are presented using process block diagrams and sample field test results, including chemical and biological simulant plumes. Methods for dealing with the background removal, brightness equalization between images, and focus quality for optimal plume tracking are also discussed.

  20. Tracking a Non-Cooperative Target Using Real-Time Stereovision-Based Control: An Experimental Study.

    PubMed

    Shtark, Tomer; Gurfil, Pini

    2017-03-31

    Tracking a non-cooperative target is a challenge, because in unfamiliar environments most targets are unknown and unspecified. Stereovision is suited to deal with this issue, because it allows to passively scan large areas and estimate the relative position, velocity and shape of objects. This research is an experimental effort aimed at developing, implementing and evaluating a real-time non-cooperative target tracking methods using stereovision measurements only. A computer-vision feature detection and matching algorithm was developed in order to identify and locate the target in the captured images. Three different filters were designed for estimating the relative position and velocity, and their performance was compared. A line-of-sight control algorithm was used for the purpose of keeping the target within the field-of-view. Extensive analytical and numerical investigations were conducted on the multi-view stereo projection equations and their solutions, which were used to initialize the different filters. This research shows, using an experimental and numerical evaluation, the benefits of using the unscented Kalman filter and the total least squares technique in the stereovision-based tracking problem. These findings offer a general and more accurate method for solving the static and dynamic stereovision triangulation problems and the concomitant line-of-sight control.

  1. Tracking a Non-Cooperative Target Using Real-Time Stereovision-Based Control: An Experimental Study

    PubMed Central

    Shtark, Tomer; Gurfil, Pini

    2017-01-01

    Tracking a non-cooperative target is a challenge, because in unfamiliar environments most targets are unknown and unspecified. Stereovision is suited to deal with this issue, because it allows to passively scan large areas and estimate the relative position, velocity and shape of objects. This research is an experimental effort aimed at developing, implementing and evaluating a real-time non-cooperative target tracking methods using stereovision measurements only. A computer-vision feature detection and matching algorithm was developed in order to identify and locate the target in the captured images. Three different filters were designed for estimating the relative position and velocity, and their performance was compared. A line-of-sight control algorithm was used for the purpose of keeping the target within the field-of-view. Extensive analytical and numerical investigations were conducted on the multi-view stereo projection equations and their solutions, which were used to initialize the different filters. This research shows, using an experimental and numerical evaluation, the benefits of using the unscented Kalman filter and the total least squares technique in the stereovision-based tracking problem. These findings offer a general and more accurate method for solving the static and dynamic stereovision triangulation problems and the concomitant line-of-sight control. PMID:28362338

  2. Penalty Dynamic Programming Algorithm for Dim Targets Detection in Sensor Systems

    PubMed Central

    Huang, Dayu; Xue, Anke; Guo, Yunfei

    2012-01-01

    In order to detect and track multiple maneuvering dim targets in sensor systems, an improved dynamic programming track-before-detect algorithm (DP-TBD) called penalty DP-TBD (PDP-TBD) is proposed. The performances of tracking techniques are used as a feedback to the detection part. The feedback is constructed by a penalty term in the merit function, and the penalty term is a function of the possible target state estimation, which can be obtained by the tracking methods. With this feedback, the algorithm combines traditional tracking techniques with DP-TBD and it can be applied to simultaneously detect and track maneuvering dim targets. Meanwhile, a reasonable constraint that a sensor measurement can originate from one target or clutter is proposed to minimize track separation. Thus, the algorithm can be used in the multi-target situation with unknown target numbers. The efficiency and advantages of PDP-TBD compared with two existing methods are demonstrated by several simulations. PMID:22666074

  3. Trajectory Control of Rendezvous with Maneuver Target Spacecraft

    NASA Technical Reports Server (NTRS)

    Zhou, Zhinqiang

    2012-01-01

    In this paper, a nonlinear trajectory control algorithm of rendezvous with maneuvering target spacecraft is presented. The disturbance forces on the chaser and target spacecraft and the thrust forces on the chaser spacecraft are considered in the analysis. The control algorithm developed in this paper uses the relative distance and relative velocity between the target and chaser spacecraft as the inputs. A general formula of reference relative trajectory of the chaser spacecraft to the target spacecraft is developed and applied to four different proximity maneuvers, which are in-track circling, cross-track circling, in-track spiral rendezvous and cross-track spiral rendezvous. The closed-loop differential equations of the proximity relative motion with the control algorithm are derived. It is proven in the paper that the tracking errors between the commanded relative trajectory and the actual relative trajectory are bounded within a constant region determined by the control gains. The prediction of the tracking errors is obtained. Design examples are provided to show the implementation of the control algorithm. The simulation results show that the actual relative trajectory tracks the commanded relative trajectory tightly. The predicted tracking errors match those calculated in the simulation results. The control algorithm developed in this paper can also be applied to interception of maneuver target spacecraft and relative trajectory control of spacecraft formation flying.

  4. Apparatus and method for tracking a molecule or particle in three dimensions

    DOEpatents

    Werner, James H [Los Alamos, NM; Goodwin, Peter M [Los Alamos, NM; Lessard, Guillaume [Santa Fe, NM

    2009-03-03

    An apparatus and method were used to track the movement of fluorescent particles in three dimensions. Control software was used with the apparatus to implement a tracking algorithm for tracking the motion of the individual particles in glycerol/water mixtures. Monte Carlo simulations suggest that the tracking algorithms in combination with the apparatus may be used for tracking the motion of single fluorescent or fluorescently labeled biomolecules in three dimensions.

  5. Iterative Track Fitting Using Cluster Classification in Multi Wire Proportional Chamber

    NASA Astrophysics Data System (ADS)

    Primor, David; Mikenberg, Giora; Etzion, Erez; Messer, Hagit

    2007-10-01

    This paper addresses the problem of track fitting of a charged particle in a multi wire proportional chamber (MWPC) using cathode readout strips. When a charged particle crosses a MWPC, a positive charge is induced on a cluster of adjacent strips. In the presence of high radiation background, the cluster charge measurements may be contaminated due to background particles, leading to less accurate hit position estimation. The least squares method for track fitting assumes the same position error distribution for all hits and thus loses its optimal properties on contaminated data. For this reason, a new robust algorithm is proposed. The algorithm first uses the known spatial charge distribution caused by a single charged particle over the strips, and classifies the clusters into ldquocleanrdquo and ldquodirtyrdquo clusters. Then, using the classification results, it performs an iterative weighted least squares fitting procedure, updating its optimal weights each iteration. The performance of the suggested algorithm is compared to other track fitting techniques using a simulation of tracks with radiation background. It is shown that the algorithm improves the track fitting performance significantly. A practical implementation of the algorithm is presented for muon track fitting in the cathode strip chamber (CSC) of the ATLAS experiment.

  6. An energy-saving nonlinear position control strategy for electro-hydraulic servo systems.

    PubMed

    Baghestan, Keivan; Rezaei, Seyed Mehdi; Talebi, Heidar Ali; Zareinejad, Mohammad

    2015-11-01

    The electro-hydraulic servo system (EHSS) demonstrates numerous advantages in size and performance compared to other actuation methods. Oftentimes, its utilization in industrial and machinery settings is limited by its inferior efficiency. In this paper, a nonlinear backstepping control algorithm with an energy-saving approach is proposed for position control in the EHSS. To achieve improved efficiency, two control valves including a proportional directional valve (PDV) and a proportional relief valve (PRV) are used to achieve the control objectives. To design the control algorithm, the state space model equations of the system are transformed to their normal form and the control law through the PDV is designed using a backstepping approach for position tracking. Then, another nonlinear set of laws is derived to achieve energy-saving through the PRV input. This control design method, based on the normal form representation, imposes internal dynamics on the closed-loop system. The stability of the internal dynamics is analyzed in special cases of operation. Experimental results verify that both tracking and energy-saving objectives are satisfied for the closed-loop system. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  7. Generation of synthetic image sequences for the verification of matching and tracking algorithms for deformation analysis

    NASA Astrophysics Data System (ADS)

    Bethmann, F.; Jepping, C.; Luhmann, T.

    2013-04-01

    This paper reports on a method for the generation of synthetic image data for almost arbitrary static or dynamic 3D scenarios. Image data generation is based on pre-defined 3D objects, object textures, camera orientation data and their imaging properties. The procedure does not focus on the creation of photo-realistic images under consideration of complex imaging and reflection models as they are used by common computer graphics programs. In contrast, the method is designed with main emphasis on geometrically correct synthetic images without radiometric impact. The calculation process includes photogrammetric distortion models, hence cameras with arbitrary geometric imaging characteristics can be applied. Consequently, image sets can be created that are consistent to mathematical photogrammetric models to be used as sup-pixel accurate data for the assessment of high-precision photogrammetric processing methods. In the first instance the paper describes the process of image simulation under consideration of colour value interpolation, MTF/PSF and so on. Subsequently the geometric quality of the synthetic images is evaluated with ellipse operators. Finally, simulated image sets are used to investigate matching and tracking algorithms as they have been developed at IAPG for deformation measurement in car safety testing.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boris, J.P.; Picone, J.M.; Lambrakos, S.G.

    The Surveillance, Correlation, and Tracking (SCAT) problem is the computation-limited kernel of future battle-management systems currently being developed, for example, under the Strategic Defense Initiative (SDI). This report shows how high-performance SCAT can be performed in this decade. Estimates suggest that an increase by a factor of at least one thousand in computational capacity will be necessary to track 10/sup 5/ SDI objects in real time. This large improvement is needed because standard algorithms for data organization in important segments of the SCAT problem scale as N/sup 2/ and N/sup 3/, where N is the number of perceived objects. Itmore » is shown that the required speed-up factor can now be achieved because of two new developments: 1) a heterogeneous element supercomputer system based on available parallel-processing technology can account for over one order of magnitude performance improvement today over existing supercomputers; and 2) algorithmic innovations development recently by the NRL Laboratory for Computational Physics will account for another two orders of magnitude improvement. Based on these advances, a comprehensive, high-performance kernel for a simulator/system to perform the SCAT portion of SDI battle management is described.« less

  9. Simultaneous localization and calibration for electromagnetic tracking systems.

    PubMed

    Sadjadi, Hossein; Hashtrudi-Zaad, Keyvan; Fichtinger, Gabor

    2016-06-01

    In clinical environments, field distortion can cause significant electromagnetic tracking errors. Therefore, dynamic calibration of electromagnetic tracking systems is essential to compensate for measurement errors. It is proposed to integrate the motion model of the tracked instrument with redundant EM sensor observations and to apply a simultaneous localization and mapping algorithm in order to accurately estimate the pose of the instrument and create a map of the field distortion in real-time. Experiments were conducted in the presence of ferromagnetic and electrically-conductive field distorting objects and results compared with those of a conventional sensor fusion approach. The proposed method reduced the tracking error from 3.94±1.61 mm to 1.82±0.62 mm in the presence of steel, and from 0.31±0.22 mm to 0.11±0.14 mm in the presence of aluminum. With reduced tracking error and independence from external tracking devices or pre-operative calibrations, the approach is promising for reliable EM navigation in various clinical procedures. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  10. Determining the bias and variance of a deterministic finger-tracking algorithm.

    PubMed

    Morash, Valerie S; van der Velden, Bas H M

    2016-06-01

    Finger tracking has the potential to expand haptic research and applications, as eye tracking has done in vision research. In research applications, it is desirable to know the bias and variance associated with a finger-tracking method. However, assessing the bias and variance of a deterministic method is not straightforward. Multiple measurements of the same finger position data will not produce different results, implying zero variance. Here, we present a method of assessing deterministic finger-tracking variance and bias through comparison to a non-deterministic measure. A proof-of-concept is presented using a video-based finger-tracking algorithm developed for the specific purpose of tracking participant fingers during a psychological research study. The algorithm uses ridge detection on videos of the participant's hand, and estimates the location of the right index fingertip. The algorithm was evaluated using data from four participants, who explored tactile maps using only their right index finger and all right-hand fingers. The algorithm identified the index fingertip in 99.78 % of one-finger video frames and 97.55 % of five-finger video frames. Although the algorithm produced slightly biased and more dispersed estimates relative to a human coder, these differences (x=0.08 cm, y=0.04 cm) and standard deviations (σ x =0.16 cm, σ y =0.21 cm) were small compared to the size of a fingertip (1.5-2.0 cm). Some example finger-tracking results are provided where corrections are made using the bias and variance estimates.

  11. Tool for Automated Retrieval of Generic Event Tracks (TARGET)

    NASA Technical Reports Server (NTRS)

    Clune, Thomas; Freeman, Shawn; Cruz, Carlos; Burns, Robert; Kuo, Kwo-Sen; Kouatchou, Jules

    2013-01-01

    Methods have been developed to identify and track tornado-producing mesoscale convective systems (MCSs) automatically over the continental United States, in order to facilitate systematic studies of these powerful and often destructive events. Several data sources were combined to ensure event identification accuracy. Records of watches and warnings issued by National Weather Service (NWS), and tornado locations and tracks from the Tornado History Project (THP) were used to locate MCSs in high-resolution precipitation observations and GOES infrared (11-micron) Rapid Scan Operation (RSO) imagery. Thresholds are then applied to the latter two data sets to define MCS events and track their developments. MCSs produce a broad range of severe convective weather events that are significantly affecting the living conditions of the populations exposed to them. Understanding how MCSs grow and develop could help scientists improve their weather prediction models, and also provide tools to decision-makers whose goals are to protect populations and their property. Associating storm cells across frames of remotely sensed images poses a difficult problem because storms evolve, split, and merge. Any storm-tracking method should include the following processes: storm identification, storm tracking, and quantification of storm intensity and activity. The spatiotemporal coordinates of the tracks will enable researchers to obtain other coincident observations to conduct more thorough studies of these events. In addition to their tracked locations, their areal extents, precipitation intensities, and accumulations all as functions of their evolutions in time were also obtained and recorded for these events. All parameters so derived can be catalogued into a moving object database (MODB) for custom queries. The purpose of this software is to provide a generalized, cross-platform, pluggable tool for identifying events within a set of scientific data based upon specified criteria with the possibility of storing identified events into a searchable database. The core of the application uses an implementation of the connected component labeling (CCL) algorithm to identify areas of interest, then uses a set of criteria to establish spatial and temporal relationships between identified components. The CCL algorithm is used for identifying objects within images for computer vision. This application applies it to scientific data sets using arbitrary criteria. The most novel concept was applying a generalized CCL implementation to scientific data sets for establishing events both spatially and temporally. The combination of several existing concepts (pluggable components, generalized CCL algorithm, etc.) into one application is also novel. In addition, how the system is designed, i.e., its extensibility with pluggable components, and its configurability with a simple configuration file, is innovative. This allows the system to be applied to new scenarios with ease.

  12. Vehicle tracking using fuzzy-based vehicle detection window with adaptive parameters

    NASA Astrophysics Data System (ADS)

    Chitsobhuk, Orachat; Kasemsiri, Watjanapong; Glomglome, Sorayut; Lapamonpinyo, Pipatphon

    2018-04-01

    In this paper, fuzzy-based vehicle tracking system is proposed. The proposed system consists of two main processes: vehicle detection and vehicle tracking. In the first process, the Gradient-based Adaptive Threshold Estimation (GATE) algorithm is adopted to provide the suitable threshold value for the sobel edge detection. The estimated threshold can be adapted to the changes of diverse illumination conditions throughout the day. This leads to greater vehicle detection performance compared to a fixed user's defined threshold. In the second process, this paper proposes the novel vehicle tracking algorithms namely Fuzzy-based Vehicle Analysis (FBA) in order to reduce the false estimation of the vehicle tracking caused by uneven edges of the large vehicles and vehicle changing lanes. The proposed FBA algorithm employs the average edge density and the Horizontal Moving Edge Detection (HMED) algorithm to alleviate those problems by adopting fuzzy rule-based algorithms to rectify the vehicle tracking. The experimental results demonstrate that the proposed system provides the high accuracy of vehicle detection about 98.22%. In addition, it also offers the low false detection rates about 3.92%.

  13. Real-Time 3D Tracking and Reconstruction on Mobile Phones.

    PubMed

    Prisacariu, Victor Adrian; Kähler, Olaf; Murray, David W; Reid, Ian D

    2015-05-01

    We present a novel framework for jointly tracking a camera in 3D and reconstructing the 3D model of an observed object. Due to the region based approach, our formulation can handle untextured objects, partial occlusions, motion blur, dynamic backgrounds and imperfect lighting. Our formulation also allows for a very efficient implementation which achieves real-time performance on a mobile phone, by running the pose estimation and the shape optimisation in parallel. We use a level set based pose estimation but completely avoid the, typically required, explicit computation of a global distance. This leads to tracking rates of more than 100 Hz on a desktop PC and 30 Hz on a mobile phone. Further, we incorporate additional orientation information from the phone's inertial sensor which helps us resolve the tracking ambiguities inherent to region based formulations. The reconstruction step first probabilistically integrates 2D image statistics from selected keyframes into a 3D volume, and then imposes coherency and compactness using a total variational regularisation term. The global optimum of the overall energy function is found using a continuous max-flow algorithm and we show that, similar to tracking, the integration of per voxel posteriors instead of likelihoods improves the precision and accuracy of the reconstruction.

  14. Robotic Vision-Based Localization in an Urban Environment

    NASA Technical Reports Server (NTRS)

    Mchenry, Michael; Cheng, Yang; Matthies

    2007-01-01

    A system of electronic hardware and software, now undergoing development, automatically estimates the location of a robotic land vehicle in an urban environment using a somewhat imprecise map, which has been generated in advance from aerial imagery. This system does not utilize the Global Positioning System and does not include any odometry, inertial measurement units, or any other sensors except a stereoscopic pair of black-and-white digital video cameras mounted on the vehicle. Of course, the system also includes a computer running software that processes the video image data. The software consists mostly of three components corresponding to the three major image-data-processing functions: Visual Odometry This component automatically tracks point features in the imagery and computes the relative motion of the cameras between sequential image frames. This component incorporates a modified version of a visual-odometry algorithm originally published in 1989. The algorithm selects point features, performs multiresolution area-correlation computations to match the features in stereoscopic images, tracks the features through the sequence of images, and uses the tracking results to estimate the six-degree-of-freedom motion of the camera between consecutive stereoscopic pairs of images (see figure). Urban Feature Detection and Ranging Using the same data as those processed by the visual-odometry component, this component strives to determine the three-dimensional (3D) coordinates of vertical and horizontal lines that are likely to be parts of, or close to, the exterior surfaces of buildings. The basic sequence of processes performed by this component is the following: 1. An edge-detection algorithm is applied, yielding a set of linked lists of edge pixels, a horizontal-gradient image, and a vertical-gradient image. 2. Straight-line segments of edges are extracted from the linked lists generated in step 1. Any straight-line segments longer than an arbitrary threshold (e.g., 30 pixels) are assumed to belong to buildings or other artificial objects. 3. A gradient-filter algorithm is used to test straight-line segments longer than the threshold to determine whether they represent edges of natural or artificial objects. In somewhat oversimplified terms, the test is based on the assumption that the gradient of image intensity varies little along a segment that represents the edge of an artificial object.

  15. FINAL TECHNICAL REPORT: Underwater Active Acoustic Monitoring Network For Marine And Hydrokinetic Energy Projects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stein, Peter J.; Edson, Patrick L.

    2013-12-20

    This project saw the completion of the design and development of a second generation, high frequency (90-120 kHz) Subsurface-Threat Detection Sonar Network (SDSN). The system was deployed, operated, and tested in Cobscook Bay, Maine near the site the Ocean Renewable Power Company TidGen™ power unit. This effort resulted in a very successful demonstration of the SDSN detection, tracking, localization, and classification capabilities in a high current, MHK environment as measured by results from the detection and tracking trials in Cobscook Bay. The new high frequency node, designed to operate outside the hearing range of a subset of marine mammals, wasmore » shown to detect and track objects of marine mammal-like target strength to ranges of approximately 500 meters. This performance range results in the SDSN system tracking objects for a significant duration - on the order of minutes - even in a tidal flow of 5-7 knots, potentially allowing time for MHK system or operator decision-making if marine mammals are present. Having demonstrated detection and tracking of synthetic targets with target strengths similar to some marine mammals, the primary hurdle to eventual automated monitoring is a dataset of actual marine mammal kinematic behavior and modifying the tracking algorithms and parameters which are currently tuned to human diver kinematics and classification.« less

  16. Etracker: A Mobile Gaze-Tracking System with Near-Eye Display Based on a Combined Gaze-Tracking Algorithm.

    PubMed

    Li, Bin; Fu, Hong; Wen, Desheng; Lo, WaiLun

    2018-05-19

    Eye tracking technology has become increasingly important for psychological analysis, medical diagnosis, driver assistance systems, and many other applications. Various gaze-tracking models have been established by previous researchers. However, there is currently no near-eye display system with accurate gaze-tracking performance and a convenient user experience. In this paper, we constructed a complete prototype of the mobile gaze-tracking system ' Etracker ' with a near-eye viewing device for human gaze tracking. We proposed a combined gaze-tracking algorithm. In this algorithm, the convolutional neural network is used to remove blinking images and predict coarse gaze position, and then a geometric model is defined for accurate human gaze tracking. Moreover, we proposed using the mean value of gazes to resolve pupil center changes caused by nystagmus in calibration algorithms, so that an individual user only needs to calibrate it the first time, which makes our system more convenient. The experiments on gaze data from 26 participants show that the eye center detection accuracy is 98% and Etracker can provide an average gaze accuracy of 0.53° at a rate of 30⁻60 Hz.

  17. Tri-linear interpolation-based cerebral white matter fiber imaging

    PubMed Central

    Jiang, Shan; Zhang, Pengfei; Han, Tong; Liu, Weihua; Liu, Meixia

    2013-01-01

    Diffusion tensor imaging is a unique method to visualize white matter fibers three-dimensionally, non-invasively and in vivo, and therefore it is an important tool for observing and researching neural regeneration. Different diffusion tensor imaging-based fiber tracking methods have been already investigated, but making the computing faster, fiber tracking longer and smoother and the details shown clearer are needed to be improved for clinical applications. This study proposed a new fiber tracking strategy based on tri-linear interpolation. We selected a patient with acute infarction of the right basal ganglia and designed experiments based on either the tri-linear interpolation algorithm or tensorline algorithm. Fiber tracking in the same regions of interest (genu of the corpus callosum) was performed separately. The validity of the tri-linear interpolation algorithm was verified by quantitative analysis, and its feasibility in clinical diagnosis was confirmed by the contrast between tracking results and the disease condition of the patient as well as the actual brain anatomy. Statistical results showed that the maximum length and average length of the white matter fibers tracked by the tri-linear interpolation algorithm were significantly longer. The tracking images of the fibers indicated that this method can obtain smoother tracked fibers, more obvious orientation and clearer details. Tracking fiber abnormalities are in good agreement with the actual condition of patients, and tracking displayed fibers that passed though the corpus callosum, which was consistent with the anatomical structures of the brain. Therefore, the tri-linear interpolation algorithm can achieve a clear, anatomically correct and reliable tracking result. PMID:25206524

  18. Optimizing the Shunting Schedule of Electric Multiple Units Depot Using an Enhanced Particle Swarm Optimization Algorithm

    PubMed Central

    Jin, Junchen

    2016-01-01

    The shunting schedule of electric multiple units depot (SSED) is one of the essential plans for high-speed train maintenance activities. This paper presents a 0-1 programming model to address the problem of determining an optimal SSED through automatic computing. The objective of the model is to minimize the number of shunting movements and the constraints include track occupation conflicts, shunting routes conflicts, time durations of maintenance processes, and shunting running time. An enhanced particle swarm optimization (EPSO) algorithm is proposed to solve the optimization problem. Finally, an empirical study from Shanghai South EMU Depot is carried out to illustrate the model and EPSO algorithm. The optimization results indicate that the proposed method is valid for the SSED problem and that the EPSO algorithm outperforms the traditional PSO algorithm on the aspect of optimality. PMID:27436998

  19. Multitarget mixture reduction algorithm with incorporated target existence recursions

    NASA Astrophysics Data System (ADS)

    Ristic, Branko; Arulampalam, Sanjeev

    2000-07-01

    The paper derives a deferred logic data association algorithm based on the mixture reduction approach originally due to Salmond [SPIE vol.1305, 1990]. The novelty of the proposed algorithm provides the recursive formulae for both data association and target existence (confidence) estimation, thus allowing automatic track initiation and termination. T he track initiation performance of the proposed filter is investigated by computer simulations. It is observed that at moderately high levels of clutter density the proposed filter initiates tracks more reliably than its corresponding PDA filter. An extension of the proposed filter to the multi-target case is also presented. In addition, the paper compares the track maintenance performance of the MR algorithm with an MHT implementation.

  20. Optimal Appearance Model for Visual Tracking

    PubMed Central

    Wang, Yuru; Jiang, Longkui; Liu, Qiaoyuan; Yin, Minghao

    2016-01-01

    Many studies argue that integrating multiple cues in an adaptive way increases tracking performance. However, what is the definition of adaptiveness and how to realize it remains an open issue. On the premise that the model with optimal discriminative ability is also optimal for tracking the target, this work realizes adaptiveness and robustness through the optimization of multi-cue integration models. Specifically, based on prior knowledge and current observation, a set of discrete samples are generated to approximate the foreground and background distribution. With the goal of optimizing the classification margin, an objective function is defined, and the appearance model is optimized by introducing optimization algorithms. The proposed optimized appearance model framework is embedded into a particle filter for a field test, and it is demonstrated to be robust against various kinds of complex tracking conditions. This model is general and can be easily extended to other parameterized multi-cue models. PMID:26789639

  1. Detection and tracking of human targets in indoor and urban environments using through-the-wall radar sensors

    NASA Astrophysics Data System (ADS)

    Radzicki, Vincent R.; Boutte, David; Taylor, Paul; Lee, Hua

    2017-05-01

    Radar based detection of human targets behind walls or in dense urban environments is an important technical challenge with many practical applications in security, defense, and disaster recovery. Radar reflections from a human can be orders of magnitude weaker than those from objects encountered in urban settings such as walls, cars, or possibly rubble after a disaster. Furthermore, these objects can act as secondary reflectors and produce multipath returns from a person. To mitigate these issues, processing of radar return data needs to be optimized for recognizing human motion features such as walking, running, or breathing. This paper presents a theoretical analysis on the modulation effects human motion has on the radar waveform and how high levels of multipath can distort these motion effects. From this analysis, an algorithm is designed and optimized for tracking human motion in heavily clutter environments. The tracking results will be used as the fundamental detection/classification tool to discriminate human targets from others by identifying human motion traits such as predictable walking patterns and periodicity in breathing rates. The theoretical formulations will be tested against simulation and measured data collected using a low power, portable see-through-the-wall radar system that could be practically deployed in real-world scenarios. Lastly, the performance of the algorithm is evaluated in a series of experiments where both a single person and multiple people are moving in an indoor, cluttered environment.

  2. Interplanetary Dust Observations by the Juno MAG Investigation

    NASA Astrophysics Data System (ADS)

    Jørgensen, John; Benn, Mathias; Denver, Troelz; Connerney, Jack; Jørgensen, Peter; Bolton, Scott; Brauer, Peter; Levin, Steven; Oliversen, Ronald

    2017-04-01

    The spin-stabilized and solar powered Juno spacecraft recently concluded a 5-year voyage through the solar system en route to Jupiter, arriving on July 4th, 2016. During the cruise phase from Earth to the Jovian system, the Magnetometer investigation (MAG) operated two magnetic field sensors and four co-located imaging systems designed to provide accurate attitude knowledge for the MAG sensors. One of these four imaging sensors - camera "D" of the Advanced Stellar Compass (ASC) - was operated in a mode designed to detect all luminous objects in its field of view, recording and characterizing those not found in the on-board star catalog. The capability to detect and track such objects ("non-stellar objects", or NSOs) provides a unique opportunity to sense and characterize interplanetary dust particles. The camera's detection threshold was set to MV9 to minimize false detections and discourage tracking of known objects. On-board filtering algorithms selected only those objects tracked through more than 5 consecutive images and moving with an apparent angular rate between 15"/s and 10,000"/s. The coordinates (RA, DEC), intensity, and apparent velocity of such objects were stored for eventual downlink. Direct detection of proximate dust particles is precluded by their large (10-30 km/s) relative velocity and extreme angular rates, but their presence may be inferred using the collecting area of Juno's large ( 55m2) solar arrays. Dust particles impact the spacecraft at high velocity, creating an expanding plasma cloud and ejecta with modest (few m/s) velocities. These excavated particles are revealed in reflected sunlight and tracked moving away from the spacecraft from the point of impact. Application of this novel detection method during Juno's traversal of the solar system provides new information on the distribution of interplanetary (µm-sized) dust.

  3. Figure–ground discrimination behavior in Drosophila. I. Spatial organization of wing-steering responses

    PubMed Central

    Fox, Jessica L.; Aptekar, Jacob W.; Zolotova, Nadezhda M.; Shoemaker, Patrick A.; Frye, Mark A.

    2014-01-01

    The behavioral algorithms and neural subsystems for visual figure–ground discrimination are not sufficiently described in any model system. The fly visual system shares structural and functional similarity with that of vertebrates and, like vertebrates, flies robustly track visual figures in the face of ground motion. This computation is crucial for animals that pursue salient objects under the high performance requirements imposed by flight behavior. Flies smoothly track small objects and use wide-field optic flow to maintain flight-stabilizing optomotor reflexes. The spatial and temporal properties of visual figure tracking and wide-field stabilization have been characterized in flies, but how the two systems interact spatially to allow flies to actively track figures against a moving ground has not. We took a systems identification approach in flying Drosophila and measured wing-steering responses to velocity impulses of figure and ground motion independently. We constructed a spatiotemporal action field (STAF) – the behavioral analog of a spatiotemporal receptive field – revealing how the behavioral impulse responses to figure tracking and concurrent ground stabilization vary for figure motion centered at each location across the visual azimuth. The figure tracking and ground stabilization STAFs show distinct spatial tuning and temporal dynamics, confirming the independence of the two systems. When the figure tracking system is activated by a narrow vertical bar moving within the frontal field of view, ground motion is essentially ignored despite comprising over 90% of the total visual input. PMID:24198267

  4. Enhancement of tracking performance in electro-optical system based on servo control algorithm

    NASA Astrophysics Data System (ADS)

    Choi, WooJin; Kim, SungSu; Jung, DaeYoon; Seo, HyoungKyu

    2017-10-01

    Modern electro-optical surveillance and reconnaissance systems require tracking capability to get exact images of target or to accurately direct the line of sight to target which is moving or still. This leads to the tracking system composed of image based tracking algorithm and servo control algorithm. In this study, we focus on the servo control function to minimize the overshoot in the tracking motion and do not miss the target. The scheme is to limit acceleration and velocity parameters in the tracking controller, depending on the target state information in the image. We implement the proposed techniques by creating a system model of DIRCM and simulate the same environment, validate the performance on the actual equipment.

  5. UWB Tracking System Design with TDOA Algorithm

    NASA Technical Reports Server (NTRS)

    Ni, Jianjun; Arndt, Dickey; Ngo, Phong; Phan, Chau; Gross, Julia; Dusl, John; Schwing, Alan

    2006-01-01

    This presentation discusses an ultra-wideband (UWB) tracking system design effort using a tracking algorithm TDOA (Time Difference of Arrival). UWB technology is exploited to implement the tracking system due to its properties, such as high data rate, fine time resolution, and low power spectral density. A system design using commercially available UWB products is proposed. A two-stage weighted least square method is chosen to solve the TDOA non-linear equations. Matlab simulations in both two-dimensional space and three-dimensional space show that the tracking algorithm can achieve fine tracking resolution with low noise TDOA data. The error analysis reveals various ways to improve the tracking resolution. Lab experiments demonstrate the UWBTDOA tracking capability with fine resolution. This research effort is motivated by a prototype development project Mini-AERCam (Autonomous Extra-vehicular Robotic Camera), a free-flying video camera system under development at NASA Johnson Space Center for aid in surveillance around the International Space Station (ISS).

  6. Genetic algorithm with maximum-minimum crossover (GA-MMC) applied in optimization of radiation pattern control of phased-array radars for rocket tracking systems.

    PubMed

    Silva, Leonardo W T; Barros, Vitor F; Silva, Sandro G

    2014-08-18

    In launching operations, Rocket Tracking Systems (RTS) process the trajectory data obtained by radar sensors. In order to improve functionality and maintenance, radars can be upgraded by replacing antennas with parabolic reflectors (PRs) with phased arrays (PAs). These arrays enable the electronic control of the radiation pattern by adjusting the signal supplied to each radiating element. However, in projects of phased array radars (PARs), the modeling of the problem is subject to various combinations of excitation signals producing a complex optimization problem. In this case, it is possible to calculate the problem solutions with optimization methods such as genetic algorithms (GAs). For this, the Genetic Algorithm with Maximum-Minimum Crossover (GA-MMC) method was developed to control the radiation pattern of PAs. The GA-MMC uses a reconfigurable algorithm with multiple objectives, differentiated coding and a new crossover genetic operator. This operator has a different approach from the conventional one, because it performs the crossover of the fittest individuals with the least fit individuals in order to enhance the genetic diversity. Thus, GA-MMC was successful in more than 90% of the tests for each application, increased the fitness of the final population by more than 20% and reduced the premature convergence.

  7. Genetic Algorithm with Maximum-Minimum Crossover (GA-MMC) Applied in Optimization of Radiation Pattern Control of Phased-Array Radars for Rocket Tracking Systems

    PubMed Central

    Silva, Leonardo W. T.; Barros, Vitor F.; Silva, Sandro G.

    2014-01-01

    In launching operations, Rocket Tracking Systems (RTS) process the trajectory data obtained by radar sensors. In order to improve functionality and maintenance, radars can be upgraded by replacing antennas with parabolic reflectors (PRs) with phased arrays (PAs). These arrays enable the electronic control of the radiation pattern by adjusting the signal supplied to each radiating element. However, in projects of phased array radars (PARs), the modeling of the problem is subject to various combinations of excitation signals producing a complex optimization problem. In this case, it is possible to calculate the problem solutions with optimization methods such as genetic algorithms (GAs). For this, the Genetic Algorithm with Maximum-Minimum Crossover (GA-MMC) method was developed to control the radiation pattern of PAs. The GA-MMC uses a reconfigurable algorithm with multiple objectives, differentiated coding and a new crossover genetic operator. This operator has a different approach from the conventional one, because it performs the crossover of the fittest individuals with the least fit individuals in order to enhance the genetic diversity. Thus, GA-MMC was successful in more than 90% of the tests for each application, increased the fitness of the final population by more than 20% and reduced the premature convergence. PMID:25196013

  8. Multi-objective control of nonlinear boiler-turbine dynamics with actuator magnitude and rate constraints.

    PubMed

    Chen, Pang-Chia

    2013-01-01

    This paper investigates multi-objective controller design approaches for nonlinear boiler-turbine dynamics subject to actuator magnitude and rate constraints. System nonlinearity is handled by a suitable linear parameter varying system representation with drum pressure as the system varying parameter. Variation of the drum pressure is represented by suitable norm-bounded uncertainty and affine dependence on system matrices. Based on linear matrix inequality algorithms, the magnitude and rate constraints on the actuator and the deviations of fluid density and water level are formulated while the tracking abilities on the drum pressure and power output are optimized. Variation ranges of drum pressure and magnitude tracking commands are used as controller design parameters, determined according to the boiler-turbine's operation range. Copyright © 2012 ISA. Published by Elsevier Ltd. All rights reserved.

  9. A Comparison of JPDA and Belief Propagation for Data Association in SSA

    NASA Astrophysics Data System (ADS)

    Rutten, M.; Williams, J.; Gordon, N.; Jah, M.; Baldwin, J.; Stauch, J.

    2014-09-01

    The process of initial orbit determination, or catalogue maintenance, using a set of unlabeled observations requires a method of choosing which observation was due to which object. Realities of imperfect sensors mean that the association must be made in the presence of both missed detections and false alarms. Data association is not only essential to processing observations it can also be one of the most significant computational bottlenecks. The constrained admissible region multiple hypothesis filter (CAR-MHF) is an algorithm for initial orbit determination using short-arc observations of space objects. CAR-MHF has used joint probabilistic data association (JPDA), a well-established approach to multi-target data association. A recent development in the target tracking literature is the use of graphical models to formulate data association problems. Using an approximate inference algorithm, belief propagation (BP), on the graphical model results in an algorithm this is both computationally efficient and accurate. This paper compares CAR-MHF using JPDA and CAR-MHF using BP for the problem of initial orbit determination on a set of deep-space objects. The results of the analysis will show that by using the BP algorithm there are significant gains in computational load without any statistically significant loss in overall performance of the orbit determination.

  10. The new approach for infrared target tracking based on the particle filter algorithm

    NASA Astrophysics Data System (ADS)

    Sun, Hang; Han, Hong-xia

    2011-08-01

    Target tracking on the complex background in the infrared image sequence is hot research field. It provides the important basis in some fields such as video monitoring, precision, and video compression human-computer interaction. As a typical algorithms in the target tracking framework based on filtering and data connection, the particle filter with non-parameter estimation characteristic have ability to deal with nonlinear and non-Gaussian problems so it were widely used. There are various forms of density in the particle filter algorithm to make it valid when target occlusion occurred or recover tracking back from failure in track procedure, but in order to capture the change of the state space, it need a certain amount of particles to ensure samples is enough, and this number will increase in accompany with dimension and increase exponentially, this led to the increased amount of calculation is presented. In this paper particle filter algorithm and the Mean shift will be combined. Aiming at deficiencies of the classic mean shift Tracking algorithm easily trapped into local minima and Unable to get global optimal under the complex background. From these two perspectives that "adaptive multiple information fusion" and "with particle filter framework combining", we expand the classic Mean Shift tracking framework .Based on the previous perspective, we proposed an improved Mean Shift infrared target tracking algorithm based on multiple information fusion. In the analysis of the infrared characteristics of target basis, Algorithm firstly extracted target gray and edge character and Proposed to guide the above two characteristics by the moving of the target information thus we can get new sports guide grayscale characteristics and motion guide border feature. Then proposes a new adaptive fusion mechanism, used these two new information adaptive to integrate into the Mean Shift tracking framework. Finally we designed a kind of automatic target model updating strategy to further improve tracking performance. Experimental results show that this algorithm can compensate shortcoming of the particle filter has too much computation, and can effectively overcome the fault that mean shift is easy to fall into local extreme value instead of global maximum value .Last because of the gray and fusion target motion information, this approach also inhibit interference from the background, ultimately improve the stability and the real-time of the target track.

  11. CUDA-Accelerated Geodesic Ray-Tracing for Fiber Tracking

    PubMed Central

    van Aart, Evert; Sepasian, Neda; Jalba, Andrei; Vilanova, Anna

    2011-01-01

    Diffusion Tensor Imaging (DTI) allows to noninvasively measure the diffusion of water in fibrous tissue. By reconstructing the fibers from DTI data using a fiber-tracking algorithm, we can deduce the structure of the tissue. In this paper, we outline an approach to accelerating such a fiber-tracking algorithm using a Graphics Processing Unit (GPU). This algorithm, which is based on the calculation of geodesics, has shown promising results for both synthetic and real data, but is limited in its applicability by its high computational requirements. We present a solution which uses the parallelism offered by modern GPUs, in combination with the CUDA platform by NVIDIA, to significantly reduce the execution time of the fiber-tracking algorithm. Compared to a multithreaded CPU implementation of the same algorithm, our GPU mapping achieves a speedup factor of up to 40 times. PMID:21941525

  12. Context-specific selection of algorithms for recursive feature tracking in endoscopic image using a new methodology.

    PubMed

    Selka, F; Nicolau, S; Agnus, V; Bessaid, A; Marescaux, J; Soler, L

    2015-03-01

    In minimally invasive surgery, the tracking of deformable tissue is a critical component for image-guided applications. Deformation of the tissue can be recovered by tracking features using tissue surface information (texture, color,...). Recent work in this field has shown success in acquiring tissue motion. However, the performance evaluation of detection and tracking algorithms on such images are still difficult and are not standardized. This is mainly due to the lack of ground truth data on real data. Moreover, in order to avoid supplementary techniques to remove outliers, no quantitative work has been undertaken to evaluate the benefit of a pre-process based on image filtering, which can improve feature tracking robustness. In this paper, we propose a methodology to validate detection and feature tracking algorithms, using a trick based on forward-backward tracking that provides an artificial ground truth data. We describe a clear and complete methodology to evaluate and compare different detection and tracking algorithms. In addition, we extend our framework to propose a strategy to identify the best combinations from a set of detector, tracker and pre-process algorithms, according to the live intra-operative data. Experimental results have been performed on in vivo datasets and show that pre-process can have a strong influence on tracking performance and that our strategy to find the best combinations is relevant for a reasonable computation cost. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. An extended Kalman filter for mouse tracking.

    PubMed

    Choi, Hongjun; Kim, Mingi; Lee, Onseok

    2018-05-19

    Animal tracking is an important tool for observing behavior, which is useful in various research areas. Animal specimens can be tracked using dynamic models and observation models that require several types of data. Tracking mouse has several barriers due to the physical characteristics of the mouse, their unpredictable movement, and cluttered environments. Therefore, we propose a reliable method that uses a detection stage and a tracking stage to successfully track mouse. The detection stage detects the surface area of the mouse skin, and the tracking stage implements an extended Kalman filter to estimate the state variables of a nonlinear model. The changes in the overall shape of the mouse are tracked using an oval-shaped tracking model to estimate the parameters for the ellipse. An experiment is conducted to demonstrate the performance of the proposed tracking algorithm using six video images showing various types of movement, and the ground truth values for synthetic images are compared to the values generated by the tracking algorithm. A conventional manual tracking method is also applied to compare across eight experimenters. Furthermore, the effectiveness of the proposed tracking method is also demonstrated by applying the tracking algorithm with actual images of mouse. Graphical abstract.

  14. Orbital State Uncertainty Realism

    NASA Astrophysics Data System (ADS)

    Horwood, J.; Poore, A. B.

    2012-09-01

    Fundamental to the success of the space situational awareness (SSA) mission is the rigorous inclusion of uncertainty in the space surveillance network. The *proper characterization of uncertainty* in the orbital state of a space object is a common requirement to many SSA functions including tracking and data association, resolution of uncorrelated tracks (UCTs), conjunction analysis and probability of collision, sensor resource management, and anomaly detection. While tracking environments, such as air and missile defense, make extensive use of Gaussian and local linearity assumptions within algorithms for uncertainty management, space surveillance is inherently different due to long time gaps between updates, high misdetection rates, nonlinear and non-conservative dynamics, and non-Gaussian phenomena. The latter implies that "covariance realism" is not always sufficient. SSA also requires "uncertainty realism"; the proper characterization of both the state and covariance and all non-zero higher-order cumulants. In other words, a proper characterization of a space object's full state *probability density function (PDF)* is required. In order to provide a more statistically rigorous treatment of uncertainty in the space surveillance tracking environment and to better support the aforementioned SSA functions, a new class of multivariate PDFs are formulated which more accurately characterize the uncertainty of a space object's state or orbit. The new distribution contains a parameter set controlling the higher-order cumulants which gives the level sets a distinctive "banana" or "boomerang" shape and degenerates to a Gaussian in a suitable limit. Using the new class of PDFs within the general Bayesian nonlinear filter, the resulting filter prediction step (i.e., uncertainty propagation) is shown to have the *same computational cost as the traditional unscented Kalman filter* with the former able to maintain a proper characterization of the uncertainty for up to *ten times as long* as the latter. The filter correction step also furnishes a statistically rigorous *prediction error* which appears in the likelihood ratios for scoring the association of one report or observation to another. Thus, the new filter can be used to support multi-target tracking within a general multiple hypothesis tracking framework. Additionally, the new distribution admits a distance metric which extends the classical Mahalanobis distance (chi^2 statistic). This metric provides a test for statistical significance and facilitates single-frame data association methods with the potential to easily extend the covariance-based track association algorithm of Hill, Sabol, and Alfriend. The filtering, data fusion, and association methods using the new class of orbital state PDFs are shown to be mathematically tractable and operationally viable.

  15. Experimental investigation of a moving averaging algorithm for motion perpendicular to the leaf travel direction in dynamic MLC target tracking.

    PubMed

    Yoon, Jai-Woong; Sawant, Amit; Suh, Yelin; Cho, Byung-Chul; Suh, Tae-Suk; Keall, Paul

    2011-07-01

    In dynamic multileaf collimator (MLC) motion tracking with complex intensity-modulated radiation therapy (IMRT) fields, target motion perpendicular to the MLC leaf travel direction can cause beam holds, which increase beam delivery time by up to a factor of 4. As a means to balance delivery efficiency and accuracy, a moving average algorithm was incorporated into a dynamic MLC motion tracking system (i.e., moving average tracking) to account for target motion perpendicular to the MLC leaf travel direction. The experimental investigation of the moving average algorithm compared with real-time tracking and no compensation beam delivery is described. The properties of the moving average algorithm were measured and compared with those of real-time tracking (dynamic MLC motion tracking accounting for both target motion parallel and perpendicular to the leaf travel direction) and no compensation beam delivery. The algorithm was investigated using a synthetic motion trace with a baseline drift and four patient-measured 3D tumor motion traces representing regular and irregular motions with varying baseline drifts. Each motion trace was reproduced by a moving platform. The delivery efficiency, geometric accuracy, and dosimetric accuracy were evaluated for conformal, step-and-shoot IMRT, and dynamic sliding window IMRT treatment plans using the synthetic and patient motion traces. The dosimetric accuracy was quantified via a tgamma-test with a 3%/3 mm criterion. The delivery efficiency ranged from 89 to 100% for moving average tracking, 26%-100% for real-time tracking, and 100% (by definition) for no compensation. The root-mean-square geometric error ranged from 3.2 to 4.0 mm for moving average tracking, 0.7-1.1 mm for real-time tracking, and 3.7-7.2 mm for no compensation. The percentage of dosimetric points failing the gamma-test ranged from 4 to 30% for moving average tracking, 0%-23% for real-time tracking, and 10%-47% for no compensation. The delivery efficiency of moving average tracking was up to four times higher than that of real-time tracking and approached the efficiency of no compensation for all cases. The geometric accuracy and dosimetric accuracy of the moving average algorithm was between real-time tracking and no compensation, approximately half the percentage of dosimetric points failing the gamma-test compared with no compensation.

  16. Evaluation of Real-Time Hand Motion Tracking Using a Range Camera and the Mean-Shift Algorithm

    NASA Astrophysics Data System (ADS)

    Lahamy, H.; Lichti, D.

    2011-09-01

    Several sensors have been tested for improving the interaction between humans and machines including traditional web cameras, special gloves, haptic devices, cameras providing stereo pairs of images and range cameras. Meanwhile, several methods are described in the literature for tracking hand motion: the Kalman filter, the mean-shift algorithm and the condensation algorithm. In this research, the combination of a range camera and the simple version of the mean-shift algorithm has been evaluated for its capability for hand motion tracking. The evaluation was assessed in terms of position accuracy of the tracking trajectory in x, y and z directions in the camera space and the time difference between image acquisition and image display. Three parameters have been analyzed regarding their influence on the tracking process: the speed of the hand movement, the distance between the camera and the hand and finally the integration time of the camera. Prior to the evaluation, the required warm-up time of the camera has been measured. This study has demonstrated the suitability of the range camera used in combination with the mean-shift algorithm for real-time hand motion tracking but for very high speed hand movement in the traverse plane with respect to the camera, the tracking accuracy is low and requires improvement.

  17. Performance analysis of visual tracking algorithms for motion-based user interfaces on mobile devices

    NASA Astrophysics Data System (ADS)

    Winkler, Stefan; Rangaswamy, Karthik; Tedjokusumo, Jefry; Zhou, ZhiYing

    2008-02-01

    Determining the self-motion of a camera is useful for many applications. A number of visual motion-tracking algorithms have been developed till date, each with their own advantages and restrictions. Some of them have also made their foray into the mobile world, powering augmented reality-based applications on phones with inbuilt cameras. In this paper, we compare the performances of three feature or landmark-guided motion tracking algorithms, namely marker-based tracking with MXRToolkit, face tracking based on CamShift, and MonoSLAM. We analyze and compare the complexity, accuracy, sensitivity, robustness and restrictions of each of the above methods. Our performance tests are conducted over two stages: The first stage of testing uses video sequences created with simulated camera movements along the six degrees of freedom in order to compare accuracy in tracking, while the second stage analyzes the robustness of the algorithms by testing for manipulative factors like image scaling and frame-skipping.

  18. A small-scale hyperacute compound eye featuring active eye tremor: application to visual stabilization, target tracking, and short-range odometry.

    PubMed

    Colonnier, Fabien; Manecy, Augustin; Juston, Raphaël; Mallot, Hanspeter; Leitel, Robert; Floreano, Dario; Viollet, Stéphane

    2015-02-25

    In this study, a miniature artificial compound eye (15 mm in diameter) called the curved artificial compound eye (CurvACE) was endowed for the first time with hyperacuity, using similar micro-movements to those occurring in the fly's compound eye. A periodic micro-scanning movement of only a few degrees enables the vibrating compound eye to locate contrasting objects with a 40-fold greater resolution than that imposed by the interommatidial angle. In this study, we developed a new algorithm merging the output of 35 local processing units consisting of adjacent pairs of artificial ommatidia. The local measurements performed by each pair are processed in parallel with very few computational resources, which makes it possible to reach a high refresh rate of 500 Hz. An aerial robotic platform with two degrees of freedom equipped with the active CurvACE placed over naturally textured panels was able to assess its linear position accurately with respect to the environment thanks to its efficient gaze stabilization system. The algorithm was found to perform robustly at different light conditions as well as distance variations relative to the ground and featured small closed-loop positioning errors of the robot in the range of 45 mm. In addition, three tasks of interest were performed without having to change the algorithm: short-range odometry, visual stabilization, and tracking contrasting objects (hands) moving over a textured background.

  19. An object correlation and maneuver detection approach for space surveillance

    NASA Astrophysics Data System (ADS)

    Huang, Jian; Hu, Wei-Dong; Xin, Qin; Du, Xiao-Yong

    2012-10-01

    Object correlation and maneuver detection are persistent problems in space surveillance and maintenance of a space object catalog. We integrate these two problems into one interrelated problem, and consider them simultaneously under a scenario where space objects only perform a single in-track orbital maneuver during the time intervals between observations. We mathematically formulate this integrated scenario as a maximum a posteriori (MAP) estimation. In this work, we propose a novel approach to solve the MAP estimation. More precisely, the corresponding posterior probability of an orbital maneuver and a joint association event can be approximated by the Joint Probabilistic Data Association (JPDA) algorithm. Subsequently, the maneuvering parameters are estimated by optimally solving the constrained non-linear least squares iterative process based on the second-order cone programming (SOCP) algorithm. The desired solution is derived according to the MAP criterions. The performance and advantages of the proposed approach have been shown by both theoretical analysis and simulation results. We hope that our work will stimulate future work on space surveillance and maintenance of a space object catalog.

  20. Eye-Tracking Verification of the Strategy Used to Analyse Algorithms Expressed in a Flowchart and Pseudocode

    ERIC Educational Resources Information Center

    Andrzejewska, Magdalena; Stolinska, Anna; Blasiak, Wladyslaw; Peczkowski, Pawel; Rosiek, Roman; Rozek, Bozena; Sajka, Miroslawa; Wcislo, Dariusz

    2016-01-01

    The results of qualitative and quantitative investigations conducted with individuals who learned algorithms in school are presented in this article. In these investigations, eye-tracking technology was used to follow the process of solving algorithmic problems. The algorithmic problems were presented in two comparable variants: in a pseudocode…

  1. Image Edge Tracking via Ant Colony Optimization

    NASA Astrophysics Data System (ADS)

    Li, Ruowei; Wu, Hongkun; Liu, Shilong; Rahman, M. A.; Liu, Sanchi; Kwok, Ngai Ming

    2018-04-01

    A good edge plot should use continuous thin lines to describe the complete contour of the captured object. However, the detection of weak edges is a challenging task because of the associated low pixel intensities. Ant Colony Optimization (ACO) has been employed by many researchers to address this problem. The algorithm is a meta-heuristic method developed by mimicking the natural behaviour of ants. It uses iterative searches to find the optimal solution that cannot be found via traditional optimization approaches. In this work, ACO is employed to track and repair broken edges obtained via conventional Sobel edge detector to produced a result with more connected edges.

  2. Interacting Multiple Model (IMM) Fifth-Degree Spherical Simplex-Radial Cubature Kalman Filter for Maneuvering Target Tracking

    PubMed Central

    Liu, Hua; Wu, Wen

    2017-01-01

    For improving the tracking accuracy and model switching speed of maneuvering target tracking in nonlinear systems, a new algorithm named the interacting multiple model fifth-degree spherical simplex-radial cubature Kalman filter (IMM5thSSRCKF) is proposed in this paper. The new algorithm is a combination of the interacting multiple model (IMM) filter and the fifth-degree spherical simplex-radial cubature Kalman filter (5thSSRCKF). The proposed algorithm makes use of Markov process to describe the switching probability among the models, and uses 5thSSRCKF to deal with the state estimation of each model. The 5thSSRCKF is an improved filter algorithm, which utilizes the fifth-degree spherical simplex-radial rule to improve the filtering accuracy. Finally, the tracking performance of the IMM5thSSRCKF is evaluated by simulation in a typical maneuvering target tracking scenario. Simulation results show that the proposed algorithm has better tracking performance and quicker model switching speed when disposing maneuver models compared with the interacting multiple model unscented Kalman filter (IMMUKF), the interacting multiple model cubature Kalman filter (IMMCKF) and the interacting multiple model fifth-degree cubature Kalman filter (IMM5thCKF). PMID:28608843

  3. Interacting Multiple Model (IMM) Fifth-Degree Spherical Simplex-Radial Cubature Kalman Filter for Maneuvering Target Tracking.

    PubMed

    Liu, Hua; Wu, Wen

    2017-06-13

    For improving the tracking accuracy and model switching speed of maneuvering target tracking in nonlinear systems, a new algorithm named the interacting multiple model fifth-degree spherical simplex-radial cubature Kalman filter (IMM5thSSRCKF) is proposed in this paper. The new algorithm is a combination of the interacting multiple model (IMM) filter and the fifth-degree spherical simplex-radial cubature Kalman filter (5thSSRCKF). The proposed algorithm makes use of Markov process to describe the switching probability among the models, and uses 5thSSRCKF to deal with the state estimation of each model. The 5thSSRCKF is an improved filter algorithm, which utilizes the fifth-degree spherical simplex-radial rule to improve the filtering accuracy. Finally, the tracking performance of the IMM5thSSRCKF is evaluated by simulation in a typical maneuvering target tracking scenario. Simulation results show that the proposed algorithm has better tracking performance and quicker model switching speed when disposing maneuver models compared with the interacting multiple model unscented Kalman filter (IMMUKF), the interacting multiple model cubature Kalman filter (IMMCKF) and the interacting multiple model fifth-degree cubature Kalman filter (IMM5thCKF).

  4. Kassiopeia: a modern, extensible C++ particle tracking package

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Furse, Daniel; Groh, Stefan; Trost, Nikolaus

    The Kassiopeia particle tracking framework is an object-oriented software package using modern C++ techniques, written originally to meet the needs of the KATRIN collaboration. Kassiopeia features a new algorithmic paradigm for particle tracking simulations which targets experiments containing complex geometries and electromagnetic fields, with high priority put on calculation efficiency, customizability, extensibility, and ease-of-use for novice programmers. To solve Kassiopeia's target physics problem the software is capable of simulating particle trajectories governed by arbitrarily complex differential equations of motion, continuous physics processes that may in part be modeled as terms perturbing that equation of motion, stochastic processes that occur inmore » flight such as bulk scattering and decay, and stochastic surface processes occurring at interfaces, including transmission and reflection effects. This entire set of computations takes place against the backdrop of a rich geometry package which serves a variety of roles, including initialization of electromagnetic field simulations and the support of state-dependent algorithm-swapping and behavioral changes as a particle's state evolves. Thanks to the very general approach taken by Kassiopeia it can be used by other experiments facing similar challenges when calculating particle trajectories in electromagnetic fields. It is publicly available at https://github.com/KATRIN-Experiment/Kassiopeia.« less

  5. Kassiopeia: a modern, extensible C++ particle tracking package

    DOE PAGES

    Furse, Daniel; Groh, Stefan; Trost, Nikolaus; ...

    2017-05-16

    The Kassiopeia particle tracking framework is an object-oriented software package using modern C++ techniques, written originally to meet the needs of the KATRIN collaboration. Kassiopeia features a new algorithmic paradigm for particle tracking simulations which targets experiments containing complex geometries and electromagnetic fields, with high priority put on calculation efficiency, customizability, extensibility, and ease-of-use for novice programmers. To solve Kassiopeia's target physics problem the software is capable of simulating particle trajectories governed by arbitrarily complex differential equations of motion, continuous physics processes that may in part be modeled as terms perturbing that equation of motion, stochastic processes that occur inmore » flight such as bulk scattering and decay, and stochastic surface processes occurring at interfaces, including transmission and reflection effects. This entire set of computations takes place against the backdrop of a rich geometry package which serves a variety of roles, including initialization of electromagnetic field simulations and the support of state-dependent algorithm-swapping and behavioral changes as a particle's state evolves. Thanks to the very general approach taken by Kassiopeia it can be used by other experiments facing similar challenges when calculating particle trajectories in electromagnetic fields. It is publicly available at https://github.com/KATRIN-Experiment/Kassiopeia.« less

  6. Kassiopeia: a modern, extensible C++ particle tracking package

    NASA Astrophysics Data System (ADS)

    Furse, Daniel; Groh, Stefan; Trost, Nikolaus; Babutzka, Martin; Barrett, John P.; Behrens, Jan; Buzinsky, Nicholas; Corona, Thomas; Enomoto, Sanshiro; Erhard, Moritz; Formaggio, Joseph A.; Glück, Ferenc; Harms, Fabian; Heizmann, Florian; Hilk, Daniel; Käfer, Wolfgang; Kleesiek, Marco; Leiber, Benjamin; Mertens, Susanne; Oblath, Noah S.; Renschler, Pascal; Schwarz, Johannes; Slocum, Penny L.; Wandkowsky, Nancy; Wierman, Kevin; Zacher, Michael

    2017-05-01

    The Kassiopeia particle tracking framework is an object-oriented software package using modern C++ techniques, written originally to meet the needs of the KATRIN collaboration. Kassiopeia features a new algorithmic paradigm for particle tracking simulations which targets experiments containing complex geometries and electromagnetic fields, with high priority put on calculation efficiency, customizability, extensibility, and ease-of-use for novice programmers. To solve Kassiopeia's target physics problem the software is capable of simulating particle trajectories governed by arbitrarily complex differential equations of motion, continuous physics processes that may in part be modeled as terms perturbing that equation of motion, stochastic processes that occur in flight such as bulk scattering and decay, and stochastic surface processes occurring at interfaces, including transmission and reflection effects. This entire set of computations takes place against the backdrop of a rich geometry package which serves a variety of roles, including initialization of electromagnetic field simulations and the support of state-dependent algorithm-swapping and behavioral changes as a particle’s state evolves. Thanks to the very general approach taken by Kassiopeia it can be used by other experiments facing similar challenges when calculating particle trajectories in electromagnetic fields. It is publicly available at https://github.com/KATRIN-Experiment/Kassiopeia.

  7. Optical neural network system for pose determination of spinning satellites

    NASA Technical Reports Server (NTRS)

    Lee, Andrew; Casasent, David

    1990-01-01

    An optical neural network architecture and algorithm based on a Hopfield optimization network are presented for multitarget tracking. This tracker utilizes a neuron for every possible target track, and a quadratic energy function of neural activities which is minimized using gradient descent neural evolution. The neural net tracker is demonstrated as part of a system for determining position and orientation (pose) of spinning satellites with respect to a robotic spacecraft. The input to the system is time sequence video from a single camera. Novelty detection and filtering are utilized to locate and segment novel regions from the input images. The neural net multitarget tracker determines the correspondences (or tracks) of the novel regions as a function of time, and hence the paths of object (satellite) parts. The path traced out by a given part or region is approximately elliptical in image space, and the position, shape and orientation of the ellipse are functions of the satellite geometry and its pose. Having a geometric model of the satellite, and the elliptical path of a part in image space, the three-dimensional pose of the satellite is determined. Digital simulation results using this algorithm are presented for various satellite poses and lighting conditions.

  8. Identifying the location of a concealed object through unintentional eye movements

    PubMed Central

    Neuman, Yair; Assaf, Dan; Israeli, Navot

    2015-01-01

    In some investigative and interrogative contexts, the investigator is seeking to identify the location of an object (e.g., implanted bomb) which is known to a given subject (e.g., a terrorist). In this paper, we present a non-intrusive methodology for uncovering the loci of a concealed object by analyzing the subject's eye movements. Using a combination of eye tracking, psychological manipulation and a search algorithm, we have performed two experiments. In the first experiment, we have gained 58% hit rate in identifying the location of the concealed object and in the second experiment 56% hit rate. The pros and cons of the methodology for forensic investigation are discussed. PMID:25904879

  9. Target-type probability combining algorithms for multisensor tracking

    NASA Astrophysics Data System (ADS)

    Wigren, Torbjorn

    2001-08-01

    Algorithms for the handing of target type information in an operational multi-sensor tracking system are presented. The paper discusses recursive target type estimation, computation of crosses from passive data (strobe track triangulation), as well as the computation of the quality of the crosses for deghosting purposes. The focus is on Bayesian algorithms that operate in the discrete target type probability space, and on the approximations introduced for computational complexity reduction. The centralized algorithms are able to fuse discrete data from a variety of sensors and information sources, including IFF equipment, ESM's, IRST's as well as flight envelopes estimated from track data. All algorithms are asynchronous and can be tuned to handle clutter, erroneous associations as well as missed and erroneous detections. A key to obtain this ability is the inclusion of data forgetting by a procedure for propagation of target type probability states between measurement time instances. Other important properties of the algorithms are their abilities to handle ambiguous data and scenarios. The above aspects are illustrated in a simulations study. The simulation setup includes 46 air targets of 6 different types that are tracked by 5 airborne sensor platforms using ESM's and IRST's as data sources.

  10. Online Tracking Algorithms on GPUs for the P̅ANDA Experiment at FAIR

    NASA Astrophysics Data System (ADS)

    Bianchi, L.; Herten, A.; Ritman, J.; Stockmanns, T.; Adinetz, A.; Kraus, J.; Pleiter, D.

    2015-12-01

    P̅ANDA is a future hadron and nuclear physics experiment at the FAIR facility in construction in Darmstadt, Germany. In contrast to the majority of current experiments, PANDA's strategy for data acquisition is based on event reconstruction from free-streaming data, performed in real time entirely by software algorithms using global detector information. This paper reports the status of the development of algorithms for the reconstruction of charged particle tracks, optimized online data processing applications, using General-Purpose Graphic Processing Units (GPU). Two algorithms for trackfinding, the Triplet Finder and the Circle Hough, are described, and details of their GPU implementations are highlighted. Average track reconstruction times of less than 100 ns are obtained running the Triplet Finder on state-of- the-art GPU cards. In addition, a proof-of-concept system for the dispatch of data to tracking algorithms using Message Queues is presented.

  11. Fuzzy Neural Network-Based Interacting Multiple Model for Multi-Node Target Tracking Algorithm

    PubMed Central

    Sun, Baoliang; Jiang, Chunlan; Li, Ming

    2016-01-01

    An interacting multiple model for multi-node target tracking algorithm was proposed based on a fuzzy neural network (FNN) to solve the multi-node target tracking problem of wireless sensor networks (WSNs). Measured error variance was adaptively adjusted during the multiple model interacting output stage using the difference between the theoretical and estimated values of the measured error covariance matrix. The FNN fusion system was established during multi-node fusion to integrate with the target state estimated data from different nodes and consequently obtain network target state estimation. The feasibility of the algorithm was verified based on a network of nine detection nodes. Experimental results indicated that the proposed algorithm could trace the maneuvering target effectively under sensor failure and unknown system measurement errors. The proposed algorithm exhibited great practicability in the multi-node target tracking of WSNs. PMID:27809271

  12. A joint tracking method for NSCC based on WLS algorithm

    NASA Astrophysics Data System (ADS)

    Luo, Ruidan; Xu, Ying; Yuan, Hong

    2017-12-01

    Navigation signal based on compound carrier (NSCC), has the flexible multi-carrier scheme and various scheme parameters configuration, which enables it to possess significant efficiency of navigation augmentation in terms of spectral efficiency, tracking accuracy, multipath mitigation capability and anti-jamming reduction compared with legacy navigation signals. Meanwhile, the typical scheme characteristics can provide auxiliary information for signal synchronism algorithm design. This paper, based on the characteristics of NSCC, proposed a kind of joint tracking method utilizing Weighted Least Square (WLS) algorithm. In this method, the LS algorithm is employed to jointly estimate each sub-carrier frequency shift with the frequency-Doppler linear relationship, by utilizing the known sub-carrier frequency. Besides, the weighting matrix is set adaptively according to the sub-carrier power to ensure the estimation accuracy. Both the theory analysis and simulation results illustrate that the tracking accuracy and sensitivity of this method outperforms the single-carrier algorithm with lower SNR.

  13. Research of maneuvering target prediction and tracking technology based on IMM algorithm

    NASA Astrophysics Data System (ADS)

    Cao, Zheng; Mao, Yao; Deng, Chao; Liu, Qiong; Chen, Jing

    2016-09-01

    Maneuvering target prediction and tracking technology is widely used in both military and civilian applications, the study of those technologies is all along the hotspot and difficulty. In the Electro-Optical acquisition-tracking-pointing system (ATP), the primary traditional maneuvering targets are ballistic target, large aircraft and other big targets. Those targets have the features of fast velocity and a strong regular trajectory and Kalman Filtering and polynomial fitting have good effects when they are used to track those targets. In recent years, the small unmanned aerial vehicles developed rapidly for they are small, nimble and simple operation. The small unmanned aerial vehicles have strong maneuverability in the observation system of ATP although they are close-in, slow and small targets. Moreover, those vehicles are under the manual operation, therefore, the acceleration of them changes greatly and they move erratically. So the prediction and tracking precision is low when traditional algorithms are used to track the maneuvering fly of those targets, such as speeding up, turning, climbing and so on. The interacting multiple model algorithm (IMM) use multiple models to match target real movement trajectory, there are interactions between each model. The IMM algorithm can switch model based on a Markov chain to adapt to the change of target movement trajectory, so it is suitable to solve the prediction and tracking problems of the small unmanned aerial vehicles because of the better adaptability of irregular movement. This paper has set up model set of constant velocity model (CV), constant acceleration model (CA), constant turning model (CT) and current statistical model. And the results of simulating and analyzing the real movement trajectory data of the small unmanned aerial vehicles show that the prediction and tracking technology based on the interacting multiple model algorithm can get relatively lower tracking error and improve tracking precision comparing with traditional algorithms.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qin, SB; Cady, ST; Dominguez-Garcia, AD

    This paper presents the theory and implementation of a distributed algorithm for controlling differential power processing converters in photovoltaic (PV) applications. This distributed algorithm achieves true maximum power point tracking of series-connected PV submodules by relying only on local voltage measurements and neighbor-to-neighbor communication between the differential power converters. Compared to previous solutions, the proposed algorithm achieves reduced number of perturbations at each step and potentially faster tracking without adding extra hardware; all these features make this algorithm well-suited for long submodule strings. The formulation of the algorithm, discussion of its properties, as well as three case studies are presented.more » The performance of the distributed tracking algorithm has been verified via experiments, which yielded quantifiable improvements over other techniques that have been implemented in practice. Both simulations and hardware experiments have confirmed the effectiveness of the proposed distributed algorithm.« less

  15. Processing uncertain RFID data in traceability supply chains.

    PubMed

    Xie, Dong; Xiao, Jie; Guo, Guangjun; Jiang, Tong

    2014-01-01

    Radio Frequency Identification (RFID) is widely used to track and trace objects in traceability supply chains. However, massive uncertain data produced by RFID readers are not effective and efficient to be used in RFID application systems. Following the analysis of key features of RFID objects, this paper proposes a new framework for effectively and efficiently processing uncertain RFID data, and supporting a variety of queries for tracking and tracing RFID objects. We adjust different smoothing windows according to different rates of uncertain data, employ different strategies to process uncertain readings, and distinguish ghost, missing, and incomplete data according to their apparent positions. We propose a comprehensive data model which is suitable for different application scenarios. In addition, a path coding scheme is proposed to significantly compress massive data by aggregating the path sequence, the position, and the time intervals. The scheme is suitable for cyclic or long paths. Moreover, we further propose a processing algorithm for group and independent objects. Experimental evaluations show that our approach is effective and efficient in terms of the compression and traceability queries.

  16. Processing Uncertain RFID Data in Traceability Supply Chains

    PubMed Central

    Xie, Dong; Xiao, Jie

    2014-01-01

    Radio Frequency Identification (RFID) is widely used to track and trace objects in traceability supply chains. However, massive uncertain data produced by RFID readers are not effective and efficient to be used in RFID application systems. Following the analysis of key features of RFID objects, this paper proposes a new framework for effectively and efficiently processing uncertain RFID data, and supporting a variety of queries for tracking and tracing RFID objects. We adjust different smoothing windows according to different rates of uncertain data, employ different strategies to process uncertain readings, and distinguish ghost, missing, and incomplete data according to their apparent positions. We propose a comprehensive data model which is suitable for different application scenarios. In addition, a path coding scheme is proposed to significantly compress massive data by aggregating the path sequence, the position, and the time intervals. The scheme is suitable for cyclic or long paths. Moreover, we further propose a processing algorithm for group and independent objects. Experimental evaluations show that our approach is effective and efficient in terms of the compression and traceability queries. PMID:24737978

  17. A novel application of PageRank and user preference algorithms for assessing the relative performance of track athletes in competition.

    PubMed

    Beggs, Clive B; Shepherd, Simon J; Emmonds, Stacey; Jones, Ben

    2017-01-01

    Ranking enables coaches, sporting authorities, and pundits to determine the relative performance of individual athletes and teams in comparison to their peers. While ranking is relatively straightforward in sports that employ traditional leagues, it is more difficult in sports where competition is fragmented (e.g. athletics, boxing, etc.), with not all competitors competing against each other. In such situations, complex points systems are often employed to rank athletes. However, these systems have the inherent weakness that they frequently rely on subjective assessments in order to gauge the calibre of the competitors involved. Here we show how two Internet derived algorithms, the PageRank (PR) and user preference (UP) algorithms, when utilised with a simple 'who beat who' matrix, can be used to accurately rank track athletes, avoiding the need for subjective assessment. We applied the PR and UP algorithms to the 2015 IAAF Diamond League men's 100m competition and compared their performance with the Keener, Colley and Massey ranking algorithms. The top five places computed by the PR and UP algorithms, and the Diamond League '2016' points system were all identical, with the Kendall's tau distance between the PR standings and '2016' points system standings being just 15, indicating that only 5.9% of pairs differed in their order between these two lists. By comparison, the UP and '2016' standings displayed a less strong relationship, with a tau distance of 95, indicating that 37.6% of the pairs differed in their order. When compared with the standings produced using the Keener, Colley and Massey algorithms, the PR standings appeared to be closest to the Keener standings (tau distance = 67, 26.5% pair order disagreement), whereas the UP standings were more similar to the Colley and Massey standings, with the tau distances between these ranking lists being only 48 (19.0% pair order disagreement) and 59 (23.3% pair order disagreement) respectively. In particular, the UP algorithm ranked 'one-off' victors more highly than the PR algorithm, suggesting that the UP algorithm captures alternative characteristics to the PR algorithm, which may more suitable for predicting future performance in say knockout tournaments, rather than for use in competitions such as the Diamond League. As such, these Internet derived algorithms appear to have considerable potential for objectively assessing the relative performance of track athletes, without the need for complicated points equivalence tables. Importantly, because both algorithms utilise a 'who beat who' model, they automatically adjust for the strength of the competition, thus avoiding the need for subjective decision making.

  18. Novel particle tracking algorithm based on the Random Sample Consensus Model for the Active Target Time Projection Chamber (AT-TPC)

    NASA Astrophysics Data System (ADS)

    Ayyad, Yassid; Mittig, Wolfgang; Bazin, Daniel; Beceiro-Novo, Saul; Cortesi, Marco

    2018-02-01

    The three-dimensional reconstruction of particle tracks in a time projection chamber is a challenging task that requires advanced classification and fitting algorithms. In this work, we have developed and implemented a novel algorithm based on the Random Sample Consensus Model (RANSAC). The RANSAC is used to classify tracks including pile-up, to remove uncorrelated noise hits, as well as to reconstruct the vertex of the reaction. The algorithm, developed within the Active Target Time Projection Chamber (AT-TPC) framework, was tested and validated by analyzing the 4He+4He reaction. Results, performance and quality of the proposed algorithm are presented and discussed in detail.

  19. Edge-following algorithm for tracking geological features

    NASA Technical Reports Server (NTRS)

    Tietz, J. C.

    1977-01-01

    Sequential edge-tracking algorithm employs circular scanning to point permit effective real-time tracking of coastlines and rivers from earth resources satellites. Technique eliminates expensive high-resolution cameras. System might also be adaptable for application in monitoring automated assembly lines, inspecting conveyor belts, or analyzing thermographs, or x ray images.

  20. Estimation of the object orientation and location with the use of MEMS sensors

    NASA Astrophysics Data System (ADS)

    Sawicki, Aleksander; Walendziuk, Wojciech; Idzkowski, Adam

    2015-09-01

    The article presents the implementation of the estimation algorithms of orientation in 3D space and the displacement of an object in a 2D space. Moreover, a general orientation storage methods using Euler angles, quaternion and rotation matrix are presented. The experimental part presents the results of the complementary filter implementation. In the study experimental microprocessor module based on STM32f4 Discovery system and myRIO hardware platform equipped with FPGA were used. The attempt to track an object in two-dimensional space, which are showed in the final part of this article, were made with the use of the equipment mentioned above.

  1. Autonomous subpixel satellite track end point determination for space-based images.

    PubMed

    Simms, Lance M

    2011-08-01

    An algorithm for determining satellite track end points with subpixel resolution in spaced-based images is presented. The algorithm allows for significant curvature in the imaged track due to rotation of the spacecraft capturing the image. The motivation behind the subpixel end point determination is first presented, followed by a description of the methodology used. Results from running the algorithm on real ground-based and simulated spaced-based images are shown to highlight its effectiveness.

  2. Visual feature extraction and establishment of visual tags in the intelligent visual internet of things

    NASA Astrophysics Data System (ADS)

    Zhao, Yiqun; Wang, Zhihui

    2015-12-01

    The Internet of things (IOT) is a kind of intelligent networks which can be used to locate, track, identify and supervise people and objects. One of important core technologies of intelligent visual internet of things ( IVIOT) is the intelligent visual tag system. In this paper, a research is done into visual feature extraction and establishment of visual tags of the human face based on ORL face database. Firstly, we use the principal component analysis (PCA) algorithm for face feature extraction, then adopt the support vector machine (SVM) for classifying and face recognition, finally establish a visual tag for face which is already classified. We conducted a experiment focused on a group of people face images, the result show that the proposed algorithm have good performance, and can show the visual tag of objects conveniently.

  3. Biologically inspired computation and learning in Sensorimotor Systems

    NASA Astrophysics Data System (ADS)

    Lee, Daniel D.; Seung, H. S.

    2001-11-01

    Networking systems presently lack the ability to intelligently process the rich multimedia content of the data traffic they carry. Endowing artificial systems with the ability to adapt to changing conditions requires algorithms that can rapidly learn from examples. We demonstrate the application of such learning algorithms on an inexpensive quadruped robot constructed to perform simple sensorimotor tasks. The robot learns to track a particular object by discovering the salient visual and auditory cues unique to that object. The system uses a convolutional neural network that automatically combines color, luminance, motion, and auditory information. The weights of the networks are adjusted using feedback from a teacher to reflect the reliability of the various input channels in the surrounding environment. Additionally, the robot is able to compensate for its own motion by adapting the parameters of a vestibular ocular reflex system.

  4. An autonomous robot inspired by insect neurophysiology pursues moving features in natural environments

    NASA Astrophysics Data System (ADS)

    Bagheri, Zahra M.; Cazzolato, Benjamin S.; Grainger, Steven; O'Carroll, David C.; Wiederman, Steven D.

    2017-08-01

    Objective. Many computer vision and robotic applications require the implementation of robust and efficient target-tracking algorithms on a moving platform. However, deployment of a real-time system is challenging, even with the computational power of modern hardware. Lightweight and low-powered flying insects, such as dragonflies, track prey or conspecifics within cluttered natural environments, illustrating an efficient biological solution to the target-tracking problem. Approach. We used our recent recordings from ‘small target motion detector’ neurons in the dragonfly brain to inspire the development of a closed-loop target detection and tracking algorithm. This model exploits facilitation, a slow build-up of response to targets which move along long, continuous trajectories, as seen in our electrophysiological data. To test performance in real-world conditions, we implemented this model on a robotic platform that uses active pursuit strategies based on insect behaviour. Main results. Our robot performs robustly in closed-loop pursuit of targets, despite a range of challenging conditions used in our experiments; low contrast targets, heavily cluttered environments and the presence of distracters. We show that the facilitation stage boosts responses to targets moving along continuous trajectories, improving contrast sensitivity and detection of small moving targets against textured backgrounds. Moreover, the temporal properties of facilitation play a useful role in handling vibration of the robotic platform. We also show that the adoption of feed-forward models which predict the sensory consequences of self-movement can significantly improve target detection during saccadic movements. Significance. Our results provide insight into the neuronal mechanisms that underlie biological target detection and selection (from a moving platform), as well as highlight the effectiveness of our bio-inspired algorithm in an artificial visual system.

  5. A low-cost mobile adaptive tracking system for chronic pulmonary patients in home environment.

    PubMed

    Işik, Ali Hakan; Güler, Inan; Sener, Melahat Uzel

    2013-01-01

    The main objective of this study is presenting a real-time mobile adaptive tracking system for patients diagnosed with diseases such as asthma or chronic obstructive pulmonary disease and application results at home. The main role of the system is to support and track chronic pulmonary patients in real time who are comfortable in their home environment. It is not intended to replace the doctor, regular treatment, and diagnosis. In this study, the Java 2 micro edition-based system is integrated with portable spirometry, smartphone, extensible markup language-based Web services, Web server, and Web pages for visualizing pulmonary function test results. The Bluetooth(®) (Bluetooth SIG, Kirkland, WA) virtual serial port protocol is used to obtain the test results from spirometry. General packet radio service, wireless local area network, or third-generation-based wireless networks are used to send the test results from a smartphone to the remote database. The system provides real-time classification of test results with the back propagation artificial neural network algorithm on a mobile smartphone. It also provides the generation of appropriate short message service-based notification and sending of all data to the Web server. In this study, the test results of 486 patients, obtained from Atatürk Chest Diseases and Thoracic Surgery Training and Research Hospital in Ankara, Turkey, are used as the training and test set in the algorithm. The algorithm has 98.7% accuracy, 97.83% specificity, 97.63% sensitivity, and 0.946 correlation values. The results show that the system is cheap (900 Euros) and reliable. The developed real-time system provides improvement in classification accuracy and facilitates tracking of chronic pulmonary patients.

  6. The performance analysis of three-dimensional track-before-detect algorithm based on Fisher-Tippett-Gnedenko theorem

    NASA Astrophysics Data System (ADS)

    Cho, Hoonkyung; Chun, Joohwan; Song, Sungchan

    2016-09-01

    The dim moving target tracking from the infrared image sequence in the presence of high clutter and noise has been recently under intensive investigation. The track-before-detect (TBD) algorithm processing the image sequence over a number of frames before decisions on the target track and existence is known to be especially attractive in very low SNR environments (⩽ 3 dB). In this paper, we shortly present a three-dimensional (3-D) TBD with dynamic programming (TBD-DP) algorithm using multiple IR image sensors. Since traditional two-dimensional TBD algorithm cannot track and detect the along the viewing direction, we use 3-D TBD with multiple sensors and also strictly analyze the detection performance (false alarm and detection probabilities) based on Fisher-Tippett-Gnedenko theorem. The 3-D TBD-DP algorithm which does not require a separate image registration step uses the pixel intensity values jointly read off from multiple image frames to compute the merit function required in the DP process. Therefore, we also establish the relationship between the pixel coordinates of image frame and the reference coordinates.

  7. Dynamic Denoising of Tracking Sequences

    PubMed Central

    Michailovich, Oleg; Tannenbaum, Allen

    2009-01-01

    In this paper, we describe an approach to the problem of simultaneously enhancing image sequences and tracking the objects of interest represented by the latter. The enhancement part of the algorithm is based on Bayesian wavelet denoising, which has been chosen due to its exceptional ability to incorporate diverse a priori information into the process of image recovery. In particular, we demonstrate that, in dynamic settings, useful statistical priors can come both from some reasonable assumptions on the properties of the image to be enhanced as well as from the images that have already been observed before the current scene. Using such priors forms the main contribution of the present paper which is the proposal of the dynamic denoising as a tool for simultaneously enhancing and tracking image sequences. Within the proposed framework, the previous observations of a dynamic scene are employed to enhance its present observation. The mechanism that allows the fusion of the information within successive image frames is Bayesian estimation, while transferring the useful information between the images is governed by a Kalman filter that is used for both prediction and estimation of the dynamics of tracked objects. Therefore, in this methodology, the processes of target tracking and image enhancement “collaborate” in an interlacing manner, rather than being applied separately. The dynamic denoising is demonstrated on several examples of SAR imagery. The results demonstrated in this paper indicate a number of advantages of the proposed dynamic denoising over “static” approaches, in which the tracking images are enhanced independently of each other. PMID:18482881

  8. Study of Track Irregularity Time Series Calibration and Variation Pattern at Unit Section

    PubMed Central

    Jia, Chaolong; Wei, Lili; Wang, Hanning; Yang, Jiulin

    2014-01-01

    Focusing on problems existing in track irregularity time series data quality, this paper first presents abnormal data identification, data offset correction algorithm, local outlier data identification, and noise cancellation algorithms. And then proposes track irregularity time series decomposition and reconstruction through the wavelet decomposition and reconstruction approach. Finally, the patterns and features of track irregularity standard deviation data sequence in unit sections are studied, and the changing trend of track irregularity time series is discovered and described. PMID:25435869

  9. Real-time tracking using stereo and motion: Visual perception for space robotics

    NASA Technical Reports Server (NTRS)

    Nishihara, H. Keith; Thomas, Hans; Huber, Eric; Reid, C. Ann

    1994-01-01

    The state-of-the-art in computing technology is rapidly attaining the performance necessary to implement many early vision algorithms at real-time rates. This new capability is helping to accelerate progress in vision research by improving our ability to evaluate the performance of algorithms in dynamic environments. In particular, we are becoming much more aware of the relative stability of various visual measurements in the presence of camera motion and system noise. This new processing speed is also allowing us to raise our sights toward accomplishing much higher-level processing tasks, such as figure-ground separation and active object tracking, in real-time. This paper describes a methodology for using early visual measurements to accomplish higher-level tasks; it then presents an overview of the high-speed accelerators developed at Teleos to support early visual measurements. The final section describes the successful deployment of a real-time vision system to provide visual perception for the Extravehicular Activity Helper/Retriever robotic system in tests aboard NASA's KC135 reduced gravity aircraft.

  10. Multi-vehicle detection with identity awareness using cascade Adaboost and Adaptive Kalman filter for driver assistant system.

    PubMed

    Wang, Baofeng; Qi, Zhiquan; Chen, Sizhong; Liu, Zhaodu; Ma, Guocheng

    2017-01-01

    Vision-based vehicle detection is an important issue for advanced driver assistance systems. In this paper, we presented an improved multi-vehicle detection and tracking method using cascade Adaboost and Adaptive Kalman filter(AKF) with target identity awareness. A cascade Adaboost classifier using Haar-like features was built for vehicle detection, followed by a more comprehensive verification process which could refine the vehicle hypothesis in terms of both location and dimension. In vehicle tracking, each vehicle was tracked with independent identity by an Adaptive Kalman filter in collaboration with a data association approach. The AKF adaptively adjusted the measurement and process noise covariance through on-line stochastic modelling to compensate the dynamics changes. The data association correctly assigned different detections with tracks using global nearest neighbour(GNN) algorithm while considering the local validation. During tracking, a temporal context based track management was proposed to decide whether to initiate, maintain or terminate the tracks of different objects, thus suppressing the sparse false alarms and compensating the temporary detection failures. Finally, the proposed method was tested on various challenging real roads, and the experimental results showed that the vehicle detection performance was greatly improved with higher accuracy and robustness.

  11. Vision-based guidance for an automated roving vehicle

    NASA Technical Reports Server (NTRS)

    Griffin, M. D.; Cunningham, R. T.; Eskenazi, R.

    1978-01-01

    A controller designed to guide an automated vehicle to a specified target without external intervention is described. The intended application is to the requirements of planetary exploration, where substantial autonomy is required because of the prohibitive time lags associated with closed-loop ground control. The guidance algorithm consists of a set of piecewise-linear control laws for velocity and steering commands, and is executable in real time with fixed-point arithmetic. The use of a previously-reported object tracking algorithm for the vision system to provide position feedback data is described. Test results of the control system on a breadboard rover at the Jet Propulsion Laboratory are included.

  12. WE-AB-303-08: Direct Lung Tumor Tracking Using Short Imaging Arcs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shieh, C; Huang, C; Keall, P

    2015-06-15

    Purpose: Most current tumor tracking technologies rely on implanted markers, which suffer from potential toxicity of marker placement and mis-targeting due to marker migration. Several markerless tracking methods have been proposed: these are either indirect methods or have difficulties tracking lung tumors in most clinical cases due to overlapping anatomies in 2D projection images. We propose a direct lung tumor tracking algorithm robust to overlapping anatomies using short imaging arcs. Methods: The proposed algorithm tracks the tumor based on kV projections acquired within the latest six-degree imaging arc. To account for respiratory motion, an external motion surrogate is used tomore » select projections of the same phase within the latest arc. For each arc, the pre-treatment 4D cone-beam CT (CBCT) with tumor contours are used to estimate and remove the contribution to the integral attenuation from surrounding anatomies. The position of the tumor model extracted from 4D CBCT of the same phase is then optimized to match the processed projections using the conjugate gradient method. The algorithm was retrospectively validated on two kV scans of a lung cancer patient with implanted fiducial markers. This patient was selected as the tumor is attached to the mediastinum, representing a challenging case for markerless tracking methods. The tracking results were converted to expected marker positions and compared with marker trajectories obtained via direct marker segmentation (ground truth). Results: The root-mean-squared-errors of tracking were 0.8 mm and 0.9 mm in the superior-inferior direction for the two scans. Tracking error was found to be below 2 and 3 mm for 90% and 98% of the time, respectively. Conclusions: A direct lung tumor tracking algorithm robust to overlapping anatomies was proposed and validated on two scans of a lung cancer patient. Sub-millimeter tracking accuracy was observed, indicating the potential of this algorithm for real-time guidance applications.« less

  13. Tracking and recognition face in videos with incremental local sparse representation model

    NASA Astrophysics Data System (ADS)

    Wang, Chao; Wang, Yunhong; Zhang, Zhaoxiang

    2013-10-01

    This paper addresses the problem of tracking and recognizing faces via incremental local sparse representation. First a robust face tracking algorithm is proposed via employing local sparse appearance and covariance pooling method. In the following face recognition stage, with the employment of a novel template update strategy, which combines incremental subspace learning, our recognition algorithm adapts the template to appearance changes and reduces the influence of occlusion and illumination variation. This leads to a robust video-based face tracking and recognition with desirable performance. In the experiments, we test the quality of face recognition in real-world noisy videos on YouTube database, which includes 47 celebrities. Our proposed method produces a high face recognition rate at 95% of all videos. The proposed face tracking and recognition algorithms are also tested on a set of noisy videos under heavy occlusion and illumination variation. The tracking results on challenging benchmark videos demonstrate that the proposed tracking algorithm performs favorably against several state-of-the-art methods. In the case of the challenging dataset in which faces undergo occlusion and illumination variation, and tracking and recognition experiments under significant pose variation on the University of California, San Diego (Honda/UCSD) database, our proposed method also consistently demonstrates a high recognition rate.

  14. Neural network fusion capabilities for efficient implementation of tracking algorithms

    NASA Astrophysics Data System (ADS)

    Sundareshan, Malur K.; Amoozegar, Farid

    1996-05-01

    The ability to efficiently fuse information of different forms for facilitating intelligent decision-making is one of the major capabilities of trained multilayer neural networks that is being recognized int eh recent times. While development of innovative adaptive control algorithms for nonlinear dynamical plants which attempt to exploit these capabilities seems to be more popular, a corresponding development of nonlinear estimation algorithms using these approaches, particularly for application in target surveillance and guidance operations, has not received similar attention. In this paper we describe the capabilities and functionality of neural network algorithms for data fusion and implementation of nonlinear tracking filters. For a discussion of details and for serving as a vehicle for quantitative performance evaluations, the illustrative case of estimating the position and velocity of surveillance targets is considered. Efficient target tracking algorithms that can utilize data from a host of sensing modalities and are capable of reliably tracking even uncooperative targets executing fast and complex maneuvers are of interest in a number of applications. The primary motivation for employing neural networks in these applications comes form the efficiency with which more features extracted from different sensor measurements can be utilized as inputs for estimating target maneuvers. Such an approach results in an overall nonlinear tracking filter which has several advantages over the popular efforts at designing nonlinear estimation algorithms for tracking applications, the principle one being the reduction of mathematical and computational complexities. A system architecture that efficiently integrates the processing capabilities of a trained multilayer neural net with the tracking performance of a Kalman filter is described in this paper.

  15. Analysis of CAD Model-based Visual Tracking for Microassembly using a New Block Set for MATLAB/Simulink

    NASA Astrophysics Data System (ADS)

    Kudryavtsev, Andrey V.; Laurent, Guillaume J.; Clévy, Cédric; Tamadazte, Brahim; Lutz, Philippe

    2015-10-01

    Microassembly is an innovative alternative to the microfabrication process of MOEMS, which is quite complex. It usually implies the use of microrobots controlled by an operator. The reliability of this approach has been already confirmed for micro-optical technologies. However, the characterization of assemblies has shown that the operator is the main source of inaccuracies in the teleoperated microassembly. Therefore, there is great interest in automating the microassembly process. One of the constraints of automation in microscale is the lack of high precision sensors capable to provide the full information about the object position. Thus, the usage of visual-based feedback represents a very promising approach allowing to automate the microassembly process. The purpose of this article is to characterize the techniques of object position estimation based on the visual data, i.e., visual tracking techniques from the ViSP library. These algorithms enables a 3-D object pose using a single view of the scene and the CAD model of the object. The performance of three main types of model-based trackers is analyzed and quantified: edge-based, texture-based and hybrid tracker. The problems of visual tracking in microscale are discussed. The control of the micromanipulation station used in the framework of our project is performed using a new Simulink block set. Experimental results are shown and demonstrate the possibility to obtain the repeatability below 1 µm.

  16. Space Object Maneuver Detection Algorithms Using TLE Data

    NASA Astrophysics Data System (ADS)

    Pittelkau, M.

    2016-09-01

    An important aspect of Space Situational Awareness (SSA) is detection of deliberate and accidental orbit changes of space objects. Although space surveillance systems detect orbit maneuvers within their tracking algorithms, maneuver data are not readily disseminated for general use. However, two-line element (TLE) data is available and can be used to detect maneuvers of space objects. This work is an attempt to improve upon existing TLE-based maneuver detection algorithms. Three adaptive maneuver detection algorithms are developed and evaluated: The first is a fading-memory Kalman filter, which is equivalent to the sliding-window least-squares polynomial fit, but computationally more efficient and adaptive to the noise in the TLE data. The second algorithm is based on a sample cumulative distribution function (CDF) computed from a histogram of the magnitude-squared |V|2 of change-in-velocity vectors (V), which is computed from the TLE data. A maneuver detection threshold is computed from the median estimated from the CDF, or from the CDF and a specified probability of false alarm. The third algorithm is a median filter. The median filter is the simplest of a class of nonlinear filters called order statistics filters, which is within the theory of robust statistics. The output of the median filter is practically insensitive to outliers, or large maneuvers. The median of the |V|2 data is proportional to the variance of the V, so the variance is estimated from the output of the median filter. A maneuver is detected when the input data exceeds a constant times the estimated variance.

  17. Ray-tracing method for creeping waves on arbitrarily shaped nonuniform rational B-splines surfaces.

    PubMed

    Chen, Xi; He, Si-Yuan; Yu, Ding-Feng; Yin, Hong-Cheng; Hu, Wei-Dong; Zhu, Guo-Qiang

    2013-04-01

    An accurate creeping ray-tracing algorithm is presented in this paper to determine the tracks of creeping waves (or creeping rays) on arbitrarily shaped free-form parametric surfaces [nonuniform rational B-splines (NURBS) surfaces]. The main challenge in calculating the surface diffracted fields on NURBS surfaces is due to the difficulty in determining the geodesic paths along which the creeping rays propagate. On one single parametric surface patch, the geodesic paths need to be computed by solving the geodesic equations numerically. Furthermore, realistic objects are generally modeled as the union of several connected NURBS patches. Due to the discontinuity of the parameter between the patches, it is more complicated to compute geodesic paths on several connected patches than on one single patch. Thus, a creeping ray-tracing algorithm is presented in this paper to compute the geodesic paths of creeping rays on the complex objects that are modeled as the combination of several NURBS surface patches. In the algorithm, the creeping ray tracing on each surface patch is performed by solving the geodesic equations with a Runge-Kutta method. When the creeping ray propagates from one patch to another, a transition method is developed to handle the transition of the creeping ray tracing across the border between the patches. This creeping ray-tracing algorithm can meet practical requirements because it can be applied to the objects with complex shapes. The algorithm can also extend the applicability of NURBS for electromagnetic and optical applications. The validity and usefulness of the algorithm can be verified from the numerical results.

  18. A Minimum Fuel Based Estimator for Maneuver and Natrual Dynamics Reconstruction

    NASA Astrophysics Data System (ADS)

    Lubey, D.; Scheeres, D.

    2013-09-01

    The vast and growing population of objects in Earth orbit (active and defunct spacecraft, orbital debris, etc.) offers many unique challenges when it comes to tracking these objects and associating the resulting observations. Complicating these challenges are the inaccurate natural dynamical models of these objects, the active maneuvers of spacecraft that deviate them from their ballistic trajectories, and the fact that spacecraft are tracked and operated by separate agencies. Maneuver detection and reconstruction algorithms can help with each of these issues by estimating mismodeled and unmodeled dynamics through indirect observation of spacecraft. It also helps to verify the associations made by an object correlation algorithm or aid in making those associations, which is essential when tracking objects in orbit. The algorithm developed in this study applies an Optimal Control Problem (OCP) Distance Metric approach to the problems of Maneuver Reconstruction and Dynamics Estimation. This was first developed by Holzinger, Scheeres, and Alfriend (2011), with a subsequent study by Singh, Horwood, and Poore (2012). This method estimates the minimum fuel control policy rather than the state as a typical Kalman Filter would. This difference ensures that the states are connected through a given dynamical model and allows for automatic covariance manipulation, which can help to prevent filter saturation. Using a string of measurements (either verified or hypothesized to correlate with one another), the algorithm outputs a corresponding string of adjoint and state estimates with associated noise. Post-processing techniques are implemented, which when applied to the adjoint estimates can remove noise and expose unmodeled maneuvers and mismodeled natural dynamics. Specifically, the estimated controls are used to determine spacecraft dependent accelerations (atmospheric drag and solar radiation pressure) using an adapted form of the Optimal Control based natural dynamics estimation scheme developed by Lubey and Scheeres (2012). In order to allow for direct comparison, the estimator developed here was modeled after a typical Kalman Filter. The estimator forces the terminal state to lie on a manifold that satisfies the least squares with a priori information cost function, thus establishing a link with a typical Kalman filter. Terms are collected into a pseudo-Kalman Gain, which creates an equivalent form in the state estimates and covariances between the two estimators. While the two estimators share common roots, the inclusion of control in the Minimum Fuel Estimator gives it special properties. For instance, the inclusion of adjoint noise can help to automatically prevent filter saturation in a manner similar to a State Noise Compensation Algorithm. This property is quite important when considering dynamics mismodeling as filter saturation will cause estimate divergence for mismodeled systems. Additional properties and alternative forms of the estimator are also explored in this study. Several implementations of this estimator are given in this paper. It is applied to LEO, GEO, and GTO orbits with drag and SRP mismodeling. The inclusion of unmodeled maneuvers is also considered. These numerical simulations verify the mathematical properties of this estimator, and demonstrate the advantages that this estimator has over typical Kalman Filters.

  19. Quantitative analysis of the improvement in omnidirectional maritime surveillance and tracking due to real-time image enhancement

    NASA Astrophysics Data System (ADS)

    de Villiers, Jason P.; Bachoo, Asheer K.; Nicolls, Fred C.; le Roux, Francois P. J.

    2011-05-01

    Tracking targets in a panoramic image is in many senses the inverse problem of tracking targets with a narrow field of view camera on a pan-tilt pedestal. In a narrow field of view camera tracking a moving target, the object is constant and the background is changing. A panoramic camera is able to model the entire scene, or background, and those areas it cannot model well are the potential targets and typically subtended far fewer pixels in the panoramic view compared to the narrow field of view. The outputs of an outward staring array of calibrated machine vision cameras are stitched into a single omnidirectional panorama and used to observe False Bay near Simon's Town, South Africa. A ground truth data-set was created by geo-aligning the camera array and placing a differential global position system receiver on a small target boat thus allowing its position in the array's field of view to be determined. Common tracking techniques including level-sets, Kalman filters and particle filters were implemented to run on the central processing unit of the tracking computer. Image enhancement techniques including multi-scale tone mapping, interpolated local histogram equalisation and several sharpening techniques were implemented on the graphics processing unit. An objective measurement of each tracking algorithm's robustness in the presence of sea-glint, low contrast visibility and sea clutter - such as white caps is performed on the raw recorded video data. These results are then compared to those obtained with the enhanced video data.

  20. First Attempt of Orbit Determination of SLR Satellites and Space Debris Using Genetic Algorithms

    NASA Astrophysics Data System (ADS)

    Deleflie, F.; Coulot, D.; Descosta, R.; Fernier, A.; Richard, P.

    2013-08-01

    We present an orbit determination method based on genetic algorithms. Contrary to usual estimation methods mainly based on least-squares methods, these algorithms do not require any a priori knowledge of the initial state vector to be estimated. These algorithms can be applied when a new satellite is launched or for uncatalogued objects that appear in images obtained from robotic telescopes such as the TAROT ones. We show in this paper preliminary results obtained from an SLR satellite, for which tracking data acquired by the ILRS network enable to build accurate orbital arcs at a few centimeter level, which can be used as a reference orbit ; in this case, the basic observations are made up of time series of ranges, obtained from various tracking stations. We show as well the results obtained from the observations acquired by the two TAROT telescopes on the Telecom-2D satellite operated by CNES ; in that case, the observations are made up of time series of azimuths and elevations, seen from the two TAROT telescopes. The method is carried out in several steps: (i) an analytical propagation of the equations of motion, (ii) an estimation kernel based on genetic algorithms, which follows the usual steps of such approaches: initialization and evolution of a selected population, so as to determine the best parameters. Each parameter to be estimated, namely each initial keplerian element, has to be searched among an interval that is preliminary chosen. The algorithm is supposed to converge towards an optimum over a reasonable computational time.

  1. Burst suppression probability algorithms: state-space methods for tracking EEG burst suppression

    NASA Astrophysics Data System (ADS)

    Chemali, Jessica; Ching, ShiNung; Purdon, Patrick L.; Solt, Ken; Brown, Emery N.

    2013-10-01

    Objective. Burst suppression is an electroencephalogram pattern in which bursts of electrical activity alternate with an isoelectric state. This pattern is commonly seen in states of severely reduced brain activity such as profound general anesthesia, anoxic brain injuries, hypothermia and certain developmental disorders. Devising accurate, reliable ways to quantify burst suppression is an important clinical and research problem. Although thresholding and segmentation algorithms readily identify burst suppression periods, analysis algorithms require long intervals of data to characterize burst suppression at a given time and provide no framework for statistical inference. Approach. We introduce the concept of the burst suppression probability (BSP) to define the brain's instantaneous propensity of being in the suppressed state. To conduct dynamic analyses of burst suppression we propose a state-space model in which the observation process is a binomial model and the state equation is a Gaussian random walk. We estimate the model using an approximate expectation maximization algorithm and illustrate its application in the analysis of rodent burst suppression recordings under general anesthesia and a patient during induction of controlled hypothermia. Main result. The BSP algorithms track burst suppression on a second-to-second time scale, and make possible formal statistical comparisons of burst suppression at different times. Significance. The state-space approach suggests a principled and informative way to analyze burst suppression that can be used to monitor, and eventually to control, the brain states of patients in the operating room and in the intensive care unit.

  2. Advances in multi-sensor data fusion: algorithms and applications.

    PubMed

    Dong, Jiang; Zhuang, Dafang; Huang, Yaohuan; Fu, Jingying

    2009-01-01

    With the development of satellite and remote sensing techniques, more and more image data from airborne/satellite sensors have become available. Multi-sensor image fusion seeks to combine information from different images to obtain more inferences than can be derived from a single sensor. In image-based application fields, image fusion has emerged as a promising research area since the end of the last century. The paper presents an overview of recent advances in multi-sensor satellite image fusion. Firstly, the most popular existing fusion algorithms are introduced, with emphasis on their recent improvements. Advances in main applications fields in remote sensing, including object identification, classification, change detection and maneuvering targets tracking, are described. Both advantages and limitations of those applications are then discussed. Recommendations are addressed, including: (1) Improvements of fusion algorithms; (2) Development of "algorithm fusion" methods; (3) Establishment of an automatic quality assessment scheme.

  3. Knowledge-based vision for space station object motion detection, recognition, and tracking

    NASA Technical Reports Server (NTRS)

    Symosek, P.; Panda, D.; Yalamanchili, S.; Wehner, W., III

    1987-01-01

    Computer vision, especially color image analysis and understanding, has much to offer in the area of the automation of Space Station tasks such as construction, satellite servicing, rendezvous and proximity operations, inspection, experiment monitoring, data management and training. Knowledge-based techniques improve the performance of vision algorithms for unstructured environments because of their ability to deal with imprecise a priori information or inaccurately estimated feature data and still produce useful results. Conventional techniques using statistical and purely model-based approaches lack flexibility in dealing with the variabilities anticipated in the unstructured viewing environment of space. Algorithms developed under NASA sponsorship for Space Station applications to demonstrate the value of a hypothesized architecture for a Video Image Processor (VIP) are presented. Approaches to the enhancement of the performance of these algorithms with knowledge-based techniques and the potential for deployment of highly-parallel multi-processor systems for these algorithms are discussed.

  4. Evaluation of beam tracking strategies for the THOR-CSW solar wind instrument

    NASA Astrophysics Data System (ADS)

    De Keyser, Johan; Lavraud, Benoit; Prech, Lubomir; Neefs, Eddy; Berkenbosch, Sophie; Beeckman, Bram; Maggiolo, Romain; Fedorov, Andrei; Baruah, Rituparna; Wong, King-Wah; Amoros, Carine; Mathon, Romain; Génot, Vincent

    2017-04-01

    We compare different beam tracking strategies for the Cold Solar Wind (CSW) plasma spectrometer on the ESA M4 THOR mission candidate. The goal is to intelligently select the energy and angular windows the instrument is sampling and to adapt these windows as the solar wind properties evolve, with the aim to maximize the velocity distribution acquisition rate while maintaining excellent energy and angular resolution. Using synthetic data constructed using high-cadence measurements by the Faraday cup instrument on the Spektr-R mission (30 ms resolution), we test the performance of energy beam tracking with or without angular beam tracking. The algorithm can be fed both by data acquired by the plasma spectrometer during the previous measurement cycle, or by data from another instrument, in casu the Faraday Cup (FAR) instrument foreseen on THOR. We verify how these beam tracking algorithms behave for different sizes of the energy and angular windows, and for different data integration times, in order to assess the limitations of the algorithm and to avoid situations in which the algorithm loses track of the beam.

  5. Event detection for car park entries by video-surveillance

    NASA Astrophysics Data System (ADS)

    Coquin, Didier; Tailland, Johan; Cintract, Michel

    2007-10-01

    Intelligent surveillance has become an important research issue due to the high cost and low efficiency of human supervisors, and machine intelligence is required to provide a solution for automated event detection. In this paper we describe a real-time system that has been used for detecting car park entries, using an adaptive background learning algorithm and two indicators representing activity and identity to overcome the difficulty of tracking objects.

  6. Visual Persons Behavior Diary Generation Model based on Trajectories and Pose Estimation

    NASA Astrophysics Data System (ADS)

    Gang, Chen; Bin, Chen; Yuming, Liu; Hui, Li

    2018-03-01

    The behavior pattern of persons was the important output of the surveillance analysis. This paper focus on the generation model of visual person behavior diary. The pipeline includes the person detection, tracking, and the person behavior classify. This paper adopts the deep convolutional neural model YOLO (You Only Look Once)V2 for person detection module. Multi person tracking was based on the detection framework. The Hungarian assignment algorithm was used to the matching. The person appearance model was integrated by HSV color model and Hash code model. The person object motion was estimated by the Kalman Filter. The multi objects were matching with exist tracklets through the appearance and motion location distance by the Hungarian assignment method. A long continuous trajectory for one person was get by the spatial-temporal continual linking algorithm. And the face recognition information was used to identify the trajectory. The trajectories with identification information can be used to generate the visual diary of person behavior based on the scene context information and person action estimation. The relevant modules are tested in public data sets and our own capture video sets. The test results show that the method can be used to generate the visual person behavior pattern diary with certain accuracy.

  7. Optimal tracking and second order sliding power control of the DFIG wind turbine

    NASA Astrophysics Data System (ADS)

    Abdeddaim, S.; Betka, A.; Charrouf, O.

    2017-02-01

    In the present paper, an optimal operation of a grid-connected variable speed wind turbine equipped with a Doubly Fed Induction Generator (DFIG) is presented. The proposed cascaded nonlinear controller is designed to perform two main objectives. In the outer loop, a maximum power point tracking (MPPT) algorithm based on fuzzy logic theory is designed to permanently extract the optimal aerodynamic energy, whereas in the inner loop, a second order sliding mode control (2-SM) is applied to achieve smooth regulation of both stator active and reactive powers quantities. The obtained simulation results show a permanent track of the MPP point regardless of the turbine power-speed slope moreover the proposed sliding mode control strategy presents attractive features such as chattering-free, compared to the conventional first order sliding technique (1-SM).

  8. UWB Tracking Software Development

    NASA Technical Reports Server (NTRS)

    Gross, Julia; Arndt, Dickey; Ngo, Phong; Phan, Chau; Dusl, John; Ni, Jianjun; Rafford, Melinda

    2006-01-01

    An Ultra-Wideband (UWB) two-cluster Angle of Arrival (AOA) tracking prototype system is currently being developed and tested at NASA Johnson Space Center for space exploration applications. This talk discusses the software development efforts for this UWB two-cluster AOA tracking system. The role the software plays in this system is to take waveform data from two UWB radio receivers as an input, feed this input into an AOA tracking algorithm, and generate the target position as an output. The architecture of the software (Input/Output Interface and Algorithm Core) will be introduced in this talk. The development of this software has three phases. In Phase I, the software is mostly Matlab driven and calls C++ socket functions to provide the communication links to the radios. This is beneficial in the early stage when it is necessary to frequently test changes in the algorithm. Phase II of the development is to have the software mostly C++ driven and call a Matlab function for the AOA tracking algorithm. This is beneficial in order to send the tracking results to other systems and also to improve the tracking update rate of the system. The third phase is part of future work and is to have the software completely C++ driven with a graphics user interface. This software design enables the fine resolution tracking of the UWB two-cluster AOA tracking system.

  9. An adaptive tracker for ShipIR/NTCS

    NASA Astrophysics Data System (ADS)

    Ramaswamy, Srinivasan; Vaitekunas, David A.

    2015-05-01

    A key component in any image-based tracking system is the adaptive tracking algorithm used to segment the image into potential targets, rank-and-select the best candidate target, and the gating of the selected target to further improve tracker performance. This paper will describe a new adaptive tracker algorithm added to the naval threat countermeasure simulator (NTCS) of the NATO-standard ship signature model (ShipIR). The new adaptive tracking algorithm is an optional feature used with any of the existing internal NTCS or user-defined seeker algorithms (e.g., binary centroid, intensity centroid, and threshold intensity centroid). The algorithm segments the detected pixels into clusters, and the smallest set of clusters that meet the detection criterion is obtained by using a knapsack algorithm to identify the set of clusters that should not be used. The rectangular area containing the chosen clusters defines an inner boundary, from which a weighted centroid is calculated as the aim-point. A track-gate is then positioned around the clusters, taking into account the rate of change of the bounding area and compensating for any gimbal displacement. A sequence of scenarios is used to test the new tracking algorithm on a generic unclassified DDG ShipIR model, with and without flares, and demonstrate how some of the key seeker signals are impacted by both the ship and flare intrinsic signatures.

  10. A Saccade Based Framework for Real-Time Motion Segmentation Using Event Based Vision Sensors

    PubMed Central

    Mishra, Abhishek; Ghosh, Rohan; Principe, Jose C.; Thakor, Nitish V.; Kukreja, Sunil L.

    2017-01-01

    Motion segmentation is a critical pre-processing step for autonomous robotic systems to facilitate tracking of moving objects in cluttered environments. Event based sensors are low power analog devices that represent a scene by means of asynchronous information updates of only the dynamic details at high temporal resolution and, hence, require significantly less calculations. However, motion segmentation using spatiotemporal data is a challenging task due to data asynchrony. Prior approaches for object tracking using neuromorphic sensors perform well while the sensor is static or a known model of the object to be followed is available. To address these limitations, in this paper we develop a technique for generalized motion segmentation based on spatial statistics across time frames. First, we create micromotion on the platform to facilitate the separation of static and dynamic elements of a scene, inspired by human saccadic eye movements. Second, we introduce the concept of spike-groups as a methodology to partition spatio-temporal event groups, which facilitates computation of scene statistics and characterize objects in it. Experimental results show that our algorithm is able to classify dynamic objects with a moving camera with maximum accuracy of 92%. PMID:28316563

  11. A comparative study on the motion of various objects inside an air tunnel

    NASA Astrophysics Data System (ADS)

    Shibani, Wanis Mustafa E.; Zulkafli, Mohd Fadhli; Basunoand, Bambang

    2017-04-01

    This paper presents a comparative study of the movement of various rigid bodies through an air tunnel for both two and three-dimensional flow problems. Three kinds of objects under investigation are in the form of box, ball and wedge shape. The investigation was carried out through the use of a commercial CFD software, named Fluent, in order to determine aerodynamic forces, act on the object as well as to track its movement. Adopted numerical scheme is the time-averaged Navier-Stokes equation with k - ɛ as its turbulence modeling and the scheme was solved using the SIMPLE algorithm. Triangular elements grid was used in 2D case, while tetrahedron elements for 3D case. Grid independence studies were performed for each problem from a coarse to fine grid. The motion of an object is restricted in one direction only and is found by tracking its center of mass at every time step. The result indicates the movement of the object is increasing as the flow moves down stream and the box have the fastest speed compare to the other two shapes for both 2D and 3D cases.

  12. "SmartMonitor"--an intelligent security system for the protection of individuals and small properties with the possibility of home automation.

    PubMed

    Frejlichowski, Dariusz; Gościewska, Katarzyna; Forczmański, Paweł; Hofman, Radosław

    2014-06-05

    "SmartMonitor" is an intelligent security system based on image analysis that combines the advantages of alarm, video surveillance and home automation systems. The system is a complete solution that automatically reacts to every learned situation in a pre-specified way and has various applications, e.g., home and surrounding protection against unauthorized intrusion, crime detection or supervision over ill persons. The software is based on well-known and proven methods and algorithms for visual content analysis (VCA) that were appropriately modified and adopted to fit specific needs and create a video processing model which consists of foreground region detection and localization, candidate object extraction, object classification and tracking. In this paper, the "SmartMonitor" system is presented along with its architecture, employed methods and algorithms, and object analysis approach. Some experimental results on system operation are also provided. In the paper, focus is put on one of the aforementioned functionalities of the system, namely supervision over ill persons.

  13. Multitarget tracking in cluttered environment for a multistatic passive radar system under the DAB/DVB network

    NASA Astrophysics Data System (ADS)

    Shi, Yi Fang; Park, Seung Hyo; Song, Taek Lyul

    2017-12-01

    The target tracking using multistatic passive radar in a digital audio/video broadcast (DAB/DVB) network with illuminators of opportunity faces two main challenges: the first challenge is that one has to solve the measurement-to-illuminator association ambiguity in addition to the conventional association ambiguity between the measurements and targets, which introduces a significantly complex three-dimensional (3-D) data association problem among the target-measurement illuminator, this is because all the illuminators transmit the same carrier frequency signals and signals transmitted by different illuminators but reflected via the same target become indistinguishable; the other challenge is that only the bistatic range and range-rate measurements are available while the angle information is unavailable or of very poor quality. In this paper, the authors propose a new target tracking algorithm directly in three-dimensional (3-D) Cartesian coordinates with the capability of track management using the probability of target existence as a track quality measure. The proposed algorithm is termed sequential processing-joint integrated probabilistic data association (SP-JIPDA), which applies the modified sequential processing technique to resolve the additional association ambiguity between measurements and illuminators. The SP-JIPDA algorithm sequentially operates the JIPDA tracker to update each track for each illuminator with all the measurements in the common measurement set at each time. For reasons of fair comparison, the existing modified joint probabilistic data association (MJPDA) algorithm that addresses the 3-D data association problem via "supertargets" using gate grouping and provides tracks directly in 3-D Cartesian coordinates, is enhanced by incorporating the probability of target existence as an effective track quality measure for track management. Both algorithms deal with nonlinear observations using the extended Kalman filtering. A simulation study is performed to verify the superiority of the proposed SP-JIPDA algorithm over the MJIPDA in this multistatic passive radar system.

  14. Four-dimensional guidance algorithms for aircraft in an air traffic control environment

    NASA Technical Reports Server (NTRS)

    Pecsvaradi, T.

    1975-01-01

    Theoretical development and computer implementation of three guidance algorithms are presented. From a small set of input parameters the algorithms generate the ground track, altitude profile, and speed profile required to implement an experimental 4-D guidance system. Given a sequence of waypoints that define a nominal flight path, the first algorithm generates a realistic, flyable ground track consisting of a sequence of straight line segments and circular arcs. Each circular turn is constrained by the minimum turning radius of the aircraft. The ground track and the specified waypoint altitudes are used as inputs to the second algorithm which generates the altitude profile. The altitude profile consists of piecewise constant flight path angle segments, each segment lying within specified upper and lower bounds. The third algorithm generates a feasible speed profile subject to constraints on the rate of change in speed, permissible speed ranges, and effects of wind. Flight path parameters are then combined into a chronological sequence to form the 4-D guidance vectors. These vectors can be used to drive the autopilot/autothrottle of the aircraft so that a 4-D flight path could be tracked completely automatically; or these vectors may be used to drive the flight director and other cockpit displays, thereby enabling the pilot to track a 4-D flight path manually.

  15. Optimum location of external markers using feature selection algorithms for real‐time tumor tracking in external‐beam radiotherapy: a virtual phantom study

    PubMed Central

    Nankali, Saber; Miandoab, Payam Samadi; Baghizadeh, Amin

    2016-01-01

    In external‐beam radiotherapy, using external markers is one of the most reliable tools to predict tumor position, in clinical applications. The main challenge in this approach is tumor motion tracking with highest accuracy that depends heavily on external markers location, and this issue is the objective of this study. Four commercially available feature selection algorithms entitled 1) Correlation‐based Feature Selection, 2) Classifier, 3) Principal Components, and 4) Relief were proposed to find optimum location of external markers in combination with two “Genetic” and “Ranker” searching procedures. The performance of these algorithms has been evaluated using four‐dimensional extended cardiac‐torso anthropomorphic phantom. Six tumors in lung, three tumors in liver, and 49 points on the thorax surface were taken into account to simulate internal and external motions, respectively. The root mean square error of an adaptive neuro‐fuzzy inference system (ANFIS) as prediction model was considered as metric for quantitatively evaluating the performance of proposed feature selection algorithms. To do this, the thorax surface region was divided into nine smaller segments and predefined tumors motion was predicted by ANFIS using external motion data of given markers at each small segment, separately. Our comparative results showed that all feature selection algorithms can reasonably select specific external markers from those segments where the root mean square error of the ANFIS model is minimum. Moreover, the performance accuracy of proposed feature selection algorithms was compared, separately. For this, each tumor motion was predicted using motion data of those external markers selected by each feature selection algorithm. Duncan statistical test, followed by F‐test, on final results reflected that all proposed feature selection algorithms have the same performance accuracy for lung tumors. But for liver tumors, a correlation‐based feature selection algorithm, in combination with a genetic search algorithm, proved to yield best performance accuracy for selecting optimum markers. PACS numbers: 87.55.km, 87.56.Fc PMID:26894358

  16. Optimum location of external markers using feature selection algorithms for real-time tumor tracking in external-beam radiotherapy: a virtual phantom study.

    PubMed

    Nankali, Saber; Torshabi, Ahmad Esmaili; Miandoab, Payam Samadi; Baghizadeh, Amin

    2016-01-08

    In external-beam radiotherapy, using external markers is one of the most reliable tools to predict tumor position, in clinical applications. The main challenge in this approach is tumor motion tracking with highest accuracy that depends heavily on external markers location, and this issue is the objective of this study. Four commercially available feature selection algorithms entitled 1) Correlation-based Feature Selection, 2) Classifier, 3) Principal Components, and 4) Relief were proposed to find optimum location of external markers in combination with two "Genetic" and "Ranker" searching procedures. The performance of these algorithms has been evaluated using four-dimensional extended cardiac-torso anthropomorphic phantom. Six tumors in lung, three tumors in liver, and 49 points on the thorax surface were taken into account to simulate internal and external motions, respectively. The root mean square error of an adaptive neuro-fuzzy inference system (ANFIS) as prediction model was considered as metric for quantitatively evaluating the performance of proposed feature selection algorithms. To do this, the thorax surface region was divided into nine smaller segments and predefined tumors motion was predicted by ANFIS using external motion data of given markers at each small segment, separately. Our comparative results showed that all feature selection algorithms can reasonably select specific external markers from those segments where the root mean square error of the ANFIS model is minimum. Moreover, the performance accuracy of proposed feature selection algorithms was compared, separately. For this, each tumor motion was predicted using motion data of those external markers selected by each feature selection algorithm. Duncan statistical test, followed by F-test, on final results reflected that all proposed feature selection algorithms have the same performance accuracy for lung tumors. But for liver tumors, a correlation-based feature selection algorithm, in combination with a genetic search algorithm, proved to yield best performance accuracy for selecting optimum markers.

  17. B-spline based image tracking by detection

    NASA Astrophysics Data System (ADS)

    Balaji, Bhashyam; Sithiravel, Rajiv; Damini, Anthony; Kirubarajan, Thiagalingam; Rajan, Sreeraman

    2016-05-01

    Visual image tracking involves the estimation of the motion of any desired targets in a surveillance region using a sequence of images. A standard method of isolating moving targets in image tracking uses background subtraction. The standard background subtraction method is often impacted by irrelevant information in the images, which can lead to poor performance in image-based target tracking. In this paper, a B-Spline based image tracking is implemented. The novel method models the background and foreground using the B-Spline method followed by a tracking-by-detection algorithm. The effectiveness of the proposed algorithm is demonstrated.

  18. A real-time dynamic-MLC control algorithm for delivering IMRT to targets undergoing 2D rigid motion in the beam's eye view.

    PubMed

    McMahon, Ryan; Berbeco, Ross; Nishioka, Seiko; Ishikawa, Masayori; Papiez, Lech

    2008-09-01

    An MLC control algorithm for delivering intensity modulated radiation therapy (IMRT) to targets that are undergoing two-dimensional (2D) rigid motion in the beam's eye view (BEV) is presented. The goal of this method is to deliver 3D-derived fluence maps over a moving patient anatomy. Target motion measured prior to delivery is first used to design a set of planned dynamic-MLC (DMLC) sliding-window leaf trajectories. During actual delivery, the algorithm relies on real-time feedback to compensate for target motion that does not agree with the motion measured during planning. The methodology is based on an existing one-dimensional (ID) algorithm that uses on-the-fly intensity calculations to appropriately adjust the DMLC leaf trajectories in real-time during exposure delivery [McMahon et al., Med. Phys. 34, 3211-3223 (2007)]. To extend the 1D algorithm's application to 2D target motion, a real-time leaf-pair shifting mechanism has been developed. Target motion that is orthogonal to leaf travel is tracked by appropriately shifting the positions of all MLC leaves. The performance of the tracking algorithm was tested for a single beam of a fractionated IMRT treatment, using a clinically derived intensity profile and a 2D target trajectory based on measured patient data. Comparisons were made between 2D tracking, 1D tracking, and no tracking. The impact of the tracking lag time and the frequency of real-time imaging were investigated. A study of the dependence of the algorithm's performance on the level of agreement between the motion measured during planning and delivery was also included. Results demonstrated that tracking both components of the 2D motion (i.e., parallel and orthogonal to leaf travel) results in delivered fluence profiles that are superior to those that track the component of motion that is parallel to leaf travel alone. Tracking lag time effects may lead to relatively large intensity delivery errors compared to the other sources of error investigated. However, the algorithm presented is robust in the sense that it does not rely on a high level of agreement between the target motion measured during treatment planning and delivery.

  19. Real-time depth camera tracking with geometrically stable weight algorithm

    NASA Astrophysics Data System (ADS)

    Fu, Xingyin; Zhu, Feng; Qi, Feng; Wang, Mingming

    2017-03-01

    We present an approach for real-time camera tracking with depth stream. Existing methods are prone to drift in sceneries without sufficient geometric information. First, we propose a new weight method for an iterative closest point algorithm commonly used in real-time dense mapping and tracking systems. By detecting uncertainty in pose and increasing weight of points that constrain unstable transformations, our system achieves accurate and robust trajectory estimation results. Our pipeline can be fully parallelized with GPU and incorporated into the current real-time depth camera tracking system seamlessly. Second, we compare the state-of-the-art weight algorithms and propose a weight degradation algorithm according to the measurement characteristics of a consumer depth camera. Third, we use Nvidia Kepler Shuffle instructions during warp and block reduction to improve the efficiency of our system. Results on the public TUM RGB-D database benchmark demonstrate that our camera tracking system achieves state-of-the-art results both in accuracy and efficiency.

  20. A unified and efficient framework for court-net sports video analysis using 3D camera modeling

    NASA Astrophysics Data System (ADS)

    Han, Jungong; de With, Peter H. N.

    2007-01-01

    The extensive amount of video data stored on available media (hard and optical disks) necessitates video content analysis, which is a cornerstone for different user-friendly applications, such as, smart video retrieval and intelligent video summarization. This paper aims at finding a unified and efficient framework for court-net sports video analysis. We concentrate on techniques that are generally applicable for more than one sports type to come to a unified approach. To this end, our framework employs the concept of multi-level analysis, where a novel 3-D camera modeling is utilized to bridge the gap between the object-level and the scene-level analysis. The new 3-D camera modeling is based on collecting features points from two planes, which are perpendicular to each other, so that a true 3-D reference is obtained. Another important contribution is a new tracking algorithm for the objects (i.e. players). The algorithm can track up to four players simultaneously. The complete system contributes to summarization by various forms of information, of which the most important are the moving trajectory and real-speed of each player, as well as 3-D height information of objects and the semantic event segments in a game. We illustrate the performance of the proposed system by evaluating it for a variety of court-net sports videos containing badminton, tennis and volleyball, and we show that the feature detection performance is above 92% and events detection about 90%.

  1. Deep Impact Autonomous Navigation : the trials of targeting the unknown

    NASA Technical Reports Server (NTRS)

    Kubitschek, Daniel G.; Mastrodemos, Nickolaos; Werner, Robert A.; Kennedy, Brian M.; Synnott, Stephen P.; Null, George W.; Bhaskaran, Shyam; Riedel, Joseph E.; Vaughan, Andrew T.

    2006-01-01

    On July 4, 2005 at 05:44:34.2 UTC the Impactor Spacecraft (s/c) impacted comet Tempel 1 with a relative speed of 10.3 km/s capturing high-resolution images of the surface of a cometary nucleus just seconds before impact. Meanwhile, the Flyby s/c captured the impact event using both the Medium Resolution Imager (MRI) and the High Resolution Imager (HRI) and tracked the nucleus for the entire 800 sec period between impact and shield attitude transition. The objective of the Impactor s/c was to impact in an illuminated area viewable from the Flyby s/c and capture high-resolution context images of the impact site. This was accomplished by using autonomous navigation (AutoNav) algorithms and precise attitude information from the attitude determination and control subsystem (ADCS). The Flyby s/c had two primary objectives: 1) capture the impact event with the highest temporal resolution possible in order to observe the ejecta plume expansion dynamics; and 2) track the impact site for at least 800 sec to observe the crater formation and capture the highest resolution images possible of the fully developed crater. These two objectives were met by estimating the Flyby s/c trajectory relative to Tempel 1 using the same AutoNav algorithms along with precise attitude information from ADCS and independently selecting the best impact site. This paper describes the AutoNav system, what happened during the encounter with Tempel 1 and what could have happened.

  2. Performance Analysis of the Probabilistic Multi-Hypothesis Tracking Algorithm on the SEABAR Data Sets

    DTIC Science & Technology

    2009-07-01

    Performance Analysis of the Probabilistic Multi- Hypothesis Tracking Algorithm On the SEABAR Data Sets Dr. Christian G . Hempel Naval...Hypothesis Tracking,” NUWC-NPT Technical Report 10,428, Naval Undersea Warfare Center Division, Newport, RI, 15 February 1995. [2] G . McLachlan, T...the 9th International Conference on Information Fusion, Florence Italy, July, 2006. [8] C. Hempel, “Track Initialization for Multi-Static Active Sonay

  3. A parallelization scheme of the periodic signals tracking algorithm for isochronous mass spectrometry on GPUs

    NASA Astrophysics Data System (ADS)

    Chen, R. J.; Wang, M.; Yan, X. L.; Yang, Q.; Lam, Y. H.; Yang, L.; Zhang, Y. H.

    2017-12-01

    The periodic signals tracking algorithm has been used to determine the revolution times of ions stored in storage rings in isochronous mass spectrometry (IMS) experiments. It has been a challenge to perform real-time data analysis by using the periodic signals tracking algorithm in the IMS experiments. In this paper, a parallelization scheme of the periodic signals tracking algorithm is introduced and a new program is developed. The computing time of data analysis can be reduced by a factor of ∼71 and of ∼346 by using our new program on Tesla C1060 GPU and Tesla K20c GPU, compared to using old program on Xeon E5540 CPU. We succeed in performing real-time data analysis for the IMS experiments by using the new program on Tesla K20c GPU.

  4. A hand tracking algorithm with particle filter and improved GVF snake model

    NASA Astrophysics Data System (ADS)

    Sun, Yi-qi; Wu, Ai-guo; Dong, Na; Shao, Yi-zhe

    2017-07-01

    To solve the problem that the accurate information of hand cannot be obtained by particle filter, a hand tracking algorithm based on particle filter combined with skin-color adaptive gradient vector flow (GVF) snake model is proposed. Adaptive GVF and skin color adaptive external guidance force are introduced to the traditional GVF snake model, guiding the curve to quickly converge to the deep concave region of hand contour and obtaining the complex hand contour accurately. This algorithm realizes a real-time correction of the particle filter parameters, avoiding the particle drift phenomenon. Experimental results show that the proposed algorithm can reduce the root mean square error of the hand tracking by 53%, and improve the accuracy of hand tracking in the case of complex and moving background, even with a large range of occlusion.

  5. Multi-Target Angle Tracking Algorithm for Bistatic MIMO Radar Based on the Elements of the Covariance Matrix

    PubMed Central

    Zhang, Zhengyan; Zhang, Jianyun; Zhou, Qingsong; Li, Xiaobo

    2018-01-01

    In this paper, we consider the problem of tracking the direction of arrivals (DOA) and the direction of departure (DOD) of multiple targets for bistatic multiple-input multiple-output (MIMO) radar. A high-precision tracking algorithm for target angle is proposed. First, the linear relationship between the covariance matrix difference and the angle difference of the adjacent moment was obtained through three approximate relations. Then, the proposed algorithm obtained the relationship between the elements in the covariance matrix difference. On this basis, the performance of the algorithm was improved by averaging the covariance matrix element. Finally, the least square method was used to estimate the DOD and DOA. The algorithm realized the automatic correlation of the angle and provided better performance when compared with the adaptive asymmetric joint diagonalization (AAJD) algorithm. The simulation results demonstrated the effectiveness of the proposed algorithm. The algorithm provides the technical support for the practical application of MIMO radar. PMID:29518957

  6. Multi-Target Angle Tracking Algorithm for Bistatic Multiple-Input Multiple-Output (MIMO) Radar Based on the Elements of the Covariance Matrix.

    PubMed

    Zhang, Zhengyan; Zhang, Jianyun; Zhou, Qingsong; Li, Xiaobo

    2018-03-07

    In this paper, we consider the problem of tracking the direction of arrivals (DOA) and the direction of departure (DOD) of multiple targets for bistatic multiple-input multiple-output (MIMO) radar. A high-precision tracking algorithm for target angle is proposed. First, the linear relationship between the covariance matrix difference and the angle difference of the adjacent moment was obtained through three approximate relations. Then, the proposed algorithm obtained the relationship between the elements in the covariance matrix difference. On this basis, the performance of the algorithm was improved by averaging the covariance matrix element. Finally, the least square method was used to estimate the DOD and DOA. The algorithm realized the automatic correlation of the angle and provided better performance when compared with the adaptive asymmetric joint diagonalization (AAJD) algorithm. The simulation results demonstrated the effectiveness of the proposed algorithm. The algorithm provides the technical support for the practical application of MIMO radar.

  7. An Improved Method of Pose Estimation for Lighthouse Base Station Extension.

    PubMed

    Yang, Yi; Weng, Dongdong; Li, Dong; Xun, Hang

    2017-10-22

    In 2015, HTC and Valve launched a virtual reality headset empowered with Lighthouse, the cutting-edge space positioning technology. Although Lighthouse is superior in terms of accuracy, latency and refresh rate, its algorithms do not support base station expansion, and is flawed concerning occlusion in moving targets, that is, it is unable to calculate their poses with a small set of sensors, resulting in the loss of optical tracking data. In view of these problems, this paper proposes an improved pose estimation algorithm for cases where occlusion is involved. Our algorithm calculates the pose of a given object with a unified dataset comprising of inputs from sensors recognized by all base stations, as long as three or more sensors detect a signal in total, no matter from which base station. To verify our algorithm, HTC official base stations and autonomous developed receivers are used for prototyping. The experiment result shows that our pose calculation algorithm can achieve precise positioning when a few sensors detect the signal.

  8. An Improved Method of Pose Estimation for Lighthouse Base Station Extension

    PubMed Central

    Yang, Yi; Weng, Dongdong; Li, Dong; Xun, Hang

    2017-01-01

    In 2015, HTC and Valve launched a virtual reality headset empowered with Lighthouse, the cutting-edge space positioning technology. Although Lighthouse is superior in terms of accuracy, latency and refresh rate, its algorithms do not support base station expansion, and is flawed concerning occlusion in moving targets, that is, it is unable to calculate their poses with a small set of sensors, resulting in the loss of optical tracking data. In view of these problems, this paper proposes an improved pose estimation algorithm for cases where occlusion is involved. Our algorithm calculates the pose of a given object with a unified dataset comprising of inputs from sensors recognized by all base stations, as long as three or more sensors detect a signal in total, no matter from which base station. To verify our algorithm, HTC official base stations and autonomous developed receivers are used for prototyping. The experiment result shows that our pose calculation algorithm can achieve precise positioning when a few sensors detect the signal. PMID:29065509

  9. Validating Machine Learning Algorithms for Twitter Data Against Established Measures of Suicidality.

    PubMed

    Braithwaite, Scott R; Giraud-Carrier, Christophe; West, Josh; Barnes, Michael D; Hanson, Carl Lee

    2016-05-16

    One of the leading causes of death in the United States (US) is suicide and new methods of assessment are needed to track its risk in real time. Our objective is to validate the use of machine learning algorithms for Twitter data against empirically validated measures of suicidality in the US population. Using a machine learning algorithm, the Twitter feeds of 135 Mechanical Turk (MTurk) participants were compared with validated, self-report measures of suicide risk. Our findings show that people who are at high suicidal risk can be easily differentiated from those who are not by machine learning algorithms, which accurately identify the clinically significant suicidal rate in 92% of cases (sensitivity: 53%, specificity: 97%, positive predictive value: 75%, negative predictive value: 93%). Machine learning algorithms are efficient in differentiating people who are at a suicidal risk from those who are not. Evidence for suicidality can be measured in nonclinical populations using social media data.

  10. An Improved Perturb and Observe Algorithm for Photovoltaic Motion Carriers

    NASA Astrophysics Data System (ADS)

    Peng, Lele; Xu, Wei; Li, Liming; Zheng, Shubin

    2018-03-01

    An improved perturbation and observation algorithm for photovoltaic motion carriers is proposed in this paper. The model of the proposed algorithm is given by using Lambert W function and tangent error method. Moreover, by using matlab and experiment of photovoltaic system, the tracking performance of the proposed algorithm is tested. And the results demonstrate that the improved algorithm has fast tracking speed and high efficiency. Furthermore, the energy conversion efficiency by the improved method has increased by nearly 8.2%.

  11. Control strategy of grid-connected photovoltaic generation system based on GMPPT method

    NASA Astrophysics Data System (ADS)

    Wang, Zhongfeng; Zhang, Xuyang; Hu, Bo; Liu, Jun; Li, Ligang; Gu, Yongqiang; Zhou, Bowen

    2018-02-01

    There are multiple local maximum power points when photovoltaic (PV) array runs under partial shading condition (PSC).However, the traditional maximum power point tracking (MPPT) algorithm might be easily trapped in local maximum power points (MPPs) and cannot find the global maximum power point (GMPP). To solve such problem, a global maximum power point tracking method (GMPPT) is improved, combined with traditional MPPT method and particle swarm optimization (PSO) algorithm. Under different operating conditions of PV cells, different tracking algorithms are used. When the environment changes, the improved PSO algorithm is adopted to realize the global optimal search, and the variable step incremental conductance (INC) method is adopted to achieve MPPT in optimal local location. Based on the simulation model of the PV grid system built in Matlab/Simulink, comparative analysis of the tracking effect of MPPT by the proposed control algorithm and the traditional MPPT method under the uniform solar condition and PSC, validate the correctness, feasibility and effectiveness of the proposed control strategy.

  12. Multiple Drosophila Tracking System with Heading Direction

    PubMed Central

    Sirigrivatanawong, Pudith; Arai, Shogo; Thoma, Vladimiros; Hashimoto, Koichi

    2017-01-01

    Machine vision systems have been widely used for image analysis, especially that which is beyond human ability. In biology, studies of behavior help scientists to understand the relationship between sensory stimuli and animal responses. This typically requires the analysis and quantification of animal locomotion. In our work, we focus on the analysis of the locomotion of the fruit fly Drosophila melanogaster, a widely used model organism in biological research. Our system consists of two components: fly detection and tracking. Our system provides the ability to extract a group of flies as the objects of concern and furthermore determines the heading direction of each fly. As each fly moves, the system states are refined with a Kalman filter to obtain the optimal estimation. For the tracking step, combining information such as position and heading direction with assignment algorithms gives a successful tracking result. The use of heading direction increases the system efficiency when dealing with identity loss and flies swapping situations. The system can also operate with a variety of videos with different light intensities. PMID:28067800

  13. Evaluation of an image-based tracking workflow using a passive marker and resonant micro-coil fiducials for automatic image plane alignment in interventional MRI.

    PubMed

    Neumann, M; Breton, E; Cuvillon, L; Pan, L; Lorenz, C H; de Mathelin, M

    2012-01-01

    In this paper, an original workflow is presented for MR image plane alignment based on tracking in real-time MR images. A test device consisting of two resonant micro-coils and a passive marker is proposed for detection using image-based algorithms. Micro-coils allow for automated initialization of the object detection in dedicated low flip angle projection images; then the passive marker is tracked in clinical real-time MR images, with alternation between two oblique orthogonal image planes along the test device axis; in case the passive marker is lost in real-time images, the workflow is reinitialized. The proposed workflow was designed to minimize dedicated acquisition time to a single dedicated acquisition in the ideal case (no reinitialization required). First experiments have shown promising results for test-device tracking precision, with a mean position error of 0.79 mm and a mean orientation error of 0.24°.

  14. Local adaptive contrast enhancement for color images

    NASA Astrophysics Data System (ADS)

    Dijk, Judith; den Hollander, Richard J. M.; Schavemaker, John G. M.; Schutte, Klamer

    2007-04-01

    A camera or display usually has a smaller dynamic range than the human eye. For this reason, objects that can be detected by the naked eye may not be visible in recorded images. Lighting is here an important factor; improper local lighting impairs visibility of details or even entire objects. When a human is observing a scene with different kinds of lighting, such as shadows, he will need to see details in both the dark and light parts of the scene. For grey value images such as IR imagery, algorithms have been developed in which the local contrast of the image is enhanced using local adaptive techniques. In this paper, we present how such algorithms can be adapted so that details in color images are enhanced while color information is retained. We propose to apply the contrast enhancement on color images by applying a grey value contrast enhancement algorithm to the luminance channel of the color signal. The color coordinates of the signal will remain the same. Care is taken that the saturation change is not too high. Gamut mapping is performed so that the output can be displayed on a monitor. The proposed technique can for instance be used by operators monitoring movements of people in order to detect suspicious behavior. To do this effectively, specific individuals should both be easy to recognize and track. This requires optimal local contrast, and is sometimes much helped by color when tracking a person with colored clothes. In such applications, enhanced local contrast in color images leads to more effective monitoring.

  15. An anti-disturbing real time pose estimation method and system

    NASA Astrophysics Data System (ADS)

    Zhou, Jian; Zhang, Xiao-hu

    2011-08-01

    Pose estimation relating two-dimensional (2D) images to three-dimensional (3D) rigid object need some known features to track. In practice, there are many algorithms which perform this task in high accuracy, but all of these algorithms suffer from features lost. This paper investigated the pose estimation when numbers of known features or even all of them were invisible. Firstly, known features were tracked to calculate pose in the current and the next image. Secondly, some unknown but good features to track were automatically detected in the current and the next image. Thirdly, those unknown features which were on the rigid and could match each other in the two images were retained. Because of the motion characteristic of the rigid object, the 3D information of those unknown features on the rigid could be solved by the rigid object's pose at the two moment and their 2D information in the two images except only two case: the first one was that both camera and object have no relative motion and camera parameter such as focus length, principle point, and etc. have no change at the two moment; the second one was that there was no shared scene or no matched feature in the two image. Finally, because those unknown features at the first time were known now, pose estimation could go on in the followed images in spite of the missing of known features in the beginning by repeating the process mentioned above. The robustness of pose estimation by different features detection algorithms such as Kanade-Lucas-Tomasi (KLT) feature, Scale Invariant Feature Transform (SIFT) and Speed Up Robust Feature (SURF) were compared and the compact of the different relative motion between camera and the rigid object were discussed in this paper. Graphic Processing Unit (GPU) parallel computing was also used to extract and to match hundreds of features for real time pose estimation which was hard to work on Central Processing Unit (CPU). Compared with other pose estimation methods, this new method can estimate pose between camera and object when part even all known features are lost, and has a quick response time benefit from GPU parallel computing. The method present here can be used widely in vision-guide techniques to strengthen its intelligence and generalization, which can also play an important role in autonomous navigation and positioning, robots fields at unknown environment. The results of simulation and experiments demonstrate that proposed method could suppress noise effectively, extracted features robustly, and achieve the real time need. Theory analysis and experiment shows the method is reasonable and efficient.

  16. Robust Arm and Hand Tracking by Unsupervised Context Learning

    PubMed Central

    Spruyt, Vincent; Ledda, Alessandro; Philips, Wilfried

    2014-01-01

    Hand tracking in video is an increasingly popular research field due to the rise of novel human-computer interaction methods. However, robust and real-time hand tracking in unconstrained environments remains a challenging task due to the high number of degrees of freedom and the non-rigid character of the human hand. In this paper, we propose an unsupervised method to automatically learn the context in which a hand is embedded. This context includes the arm and any other object that coherently moves along with the hand. We introduce two novel methods to incorporate this context information into a probabilistic tracking framework, and introduce a simple yet effective solution to estimate the position of the arm. Finally, we show that our method greatly increases robustness against occlusion and cluttered background, without degrading tracking performance if no contextual information is available. The proposed real-time algorithm is shown to outperform the current state-of-the-art by evaluating it on three publicly available video datasets. Furthermore, a novel dataset is created and made publicly available for the research community. PMID:25004155

  17. Probabilistic Multi-Person Tracking Using Dynamic Bayes Networks

    NASA Astrophysics Data System (ADS)

    Klinger, T.; Rottensteiner, F.; Heipke, C.

    2015-08-01

    Tracking-by-detection is a widely used practice in recent tracking systems. These usually rely on independent single frame detections that are handled as observations in a recursive estimation framework. If these observations are imprecise the generated trajectory is prone to be updated towards a wrong position. In contrary to existing methods our novel approach uses a Dynamic Bayes Network in which the state vector of a recursive Bayes filter, as well as the location of the tracked object in the image are modelled as unknowns. These unknowns are estimated in a probabilistic framework taking into account a dynamic model, and a state-of-the-art pedestrian detector and classifier. The classifier is based on the Random Forest-algorithm and is capable of being trained incrementally so that new training samples can be incorporated at runtime. This allows the classifier to adapt to the changing appearance of a target and to unlearn outdated features. The approach is evaluated on a publicly available benchmark. The results confirm that our approach is well suited for tracking pedestrians over long distances while at the same time achieving comparatively good geometric accuracy.

  18. A robust approach towards unknown transformation, regional adjacency graphs, multigraph matching, segmentation video frames from unnamed aerial vehicles (UAV)

    NASA Astrophysics Data System (ADS)

    Gohatre, Umakant Bhaskar; Patil, Venkat P.

    2018-04-01

    In computer vision application, the multiple object detection and tracking, in real-time operation is one of the important research field, that have gained a lot of attentions, in last few years for finding non stationary entities in the field of image sequence. The detection of object is advance towards following the moving object in video and then representation of object is step to track. The multiple object recognition proof is one of the testing assignment from detection multiple objects from video sequence. The picture enrollment has been for quite some time utilized as a reason for the location the detection of moving multiple objects. The technique of registration to discover correspondence between back to back casing sets in view of picture appearance under inflexible and relative change. The picture enrollment is not appropriate to deal with event occasion that can be result in potential missed objects. In this paper, for address such problems, designs propose novel approach. The divided video outlines utilizing area adjancy diagram of visual appearance and geometric properties. Then it performed between graph sequences by using multi graph matching, then getting matching region labeling by a proposed graph coloring algorithms which assign foreground label to respective region. The plan design is robust to unknown transformation with significant improvement in overall existing work which is related to moving multiple objects detection in real time parameters.

  19. Image registration of naval IR images

    NASA Astrophysics Data System (ADS)

    Rodland, Arne J.

    1996-06-01

    In a real world application an image from a stabilized sensor on a moving platform will not be 100 percent stabilized. There will always be a small unknown error in the stabilization due to factors such as dynamic deformations in the structure between sensor and reference Inertial Navigation Unit, servo inaccuracies, etc. For a high resolution imaging sensor this stabilization error causes the image to move several pixels in unknown direction between frames. TO be able to detect and track small moving objects from such a sensor, this unknown movement of the sensor image must be estimated. An algorithm that searches for land contours in the image has been evaluated. The algorithm searches for high contrast points distributed over the whole image. As long as moving objects in the scene only cover a small area of the scene, most of the points are located on solid ground. By matching the list of points from frame to frame, the movement of the image due to stabilization errors can be estimated and compensated. The point list is searched for points with diverging movement from the estimated stabilization error. These points are then assumed to be located on moving objects. Points assumed to be located on moving objects are gradually exchanged with new points located in the same area. Most of the processing is performed on the list of points and not on the complete image. The algorithm is therefore very fast and well suited for real time implementation. The algorithm has been tested on images from an experimental IR scanner. Stabilization errors were added artificially to the image such that the output from the algorithm could be compared with the artificially added stabilization errors.

  20. Track-to-track association for object matching in an inter-vehicle communication system

    NASA Astrophysics Data System (ADS)

    Yuan, Ting; Roth, Tobias; Chen, Qi; Breu, Jakob; Bogdanovic, Miro; Weiss, Christian A.

    2015-09-01

    Autonomous driving poses unique challenges for vehicle environment perception due to the complex driving environment the autonomous vehicle finds itself in and differentiates from remote vehicles. Due to inherent uncertainty of the traffic environments and incomplete knowledge due to sensor limitation, an autonomous driving system using only local onboard sensor information is generally not sufficiently enough for conducting a reliable intelligent driving with guaranteed safety. In order to overcome limitations of the local (host) vehicle sensing system and to increase the likelihood of correct detections and classifications, collaborative information from cooperative remote vehicles could substantially facilitate effectiveness of vehicle decision making process. Dedicated Short Range Communication (DSRC) system provides a powerful inter-vehicle wireless communication channel to enhance host vehicle environment perceiving capability with the aid of transmitted information from remote vehicles. However, there is a major challenge before one can fuse the DSRC-transmitted remote information and host vehicle Radar-observed information (in the present case): the remote DRSC data must be correctly associated with the corresponding onboard Radar data; namely, an object matching problem. Direct raw data association (i.e., measurement-to-measurement association - M2MA) is straightforward but error-prone, due to inherent uncertain nature of the observation data. The uncertainties could lead to serious difficulty in matching decision, especially, using non-stationary data. In this study, we present an object matching algorithm based on track-to-track association (T2TA) and evaluate the proposed approach with prototype vehicles in real traffic scenarios. To fully exploit potential of the DSRC system, only GPS position data from remote vehicle are used in fusion center (at host vehicle), i.e., we try to get what we need from the least amount of information; additional feature information can help the data association but are not currently considered. Comparing to M2MA, benefits of the T2TA object matching approach are: i) tracks taking into account important statistical information can provide more reliable inference results; ii) the track-formed smoothed trajectories can be used for an easier shape matching; iii) each local vehicle can design its own tracker and sends only tracks to fusion center to alleviate communication constraints. A real traffic study with different driving environments, based on a statistical hypothesis test, shows promising object matching results of significant practical implications.

  1. Maneuver Algorithm for Bearings-Only Target Tracking with Acceleration and Field of View Constraints

    NASA Astrophysics Data System (ADS)

    Roh, Heekun; Shim, Sang-Wook; Tahk, Min-Jea

    2018-05-01

    This paper proposes a maneuver algorithm for the agent performing target tracking with bearing angle information only. The goal of the agent is to estimate the target position and velocity based only on the bearing angle data. The methods of bearings-only target state estimation are outlined. The nature of bearings-only target tracking problem is then addressed. Based on the insight from above-mentioned properties, the maneuver algorithm for the agent is suggested. The proposed algorithm is composed of a nonlinear, hysteresis guidance law and the estimation accuracy assessment criteria based on the theory of Cramer-Rao bound. The proposed guidance law generates lateral acceleration command based on current field of view angle. The accuracy criteria supply the expected estimation variance, which acts as a terminal criterion for the proposed algorithm. The aforementioned algorithm is verified with a two-dimensional simulation.

  2. Multi-objective dynamic aperture optimization for storage rings

    DOE PAGES

    Li, Yongjun; Yang, Lingyun

    2016-11-30

    We report an efficient dynamic aperture (DA) optimization approach using multiobjective genetic algorithm (MOGA), which is driven by nonlinear driving terms computation. It was found that having small low order driving terms is a necessary but insufficient condition of having a decent DA. Then direct DA tracking simulation is implemented among the last generation candidates to select the best solutions. The approach was demonstrated successfully in optimizing NSLS-II storage ring DA.

  3. Measuring the lesion load of multiple sclerosis patients within the corticospinal tract

    NASA Astrophysics Data System (ADS)

    Klein, Jan; Hanken, Katrin; Koceva, Jasna; Hildebrandt, Helmut; Hahn, Horst K.

    2015-03-01

    In this paper we present a framework for reliable determination of the lesion load within the corticospinal tract (CST) of multiple sclerosis patients. The basis constitutes a probabilistic fiber tracking approach which checks possible parameter intervals on the fly using an anatomical brain atlas. By exploiting the range of those intervals, the algorithm is able to resolve fiber crossings and to determine the CST in its full entity although it can use a simple diffusion tensor model. Another advantage is its short running time, tracking the CST takes less than a minute. For segmenting the lesions we developed a semi-automatic approach. First, a trained classifier is applied to multimodal MRI data (T1/FLAIR) where the spectrum of lesions has been determined in advance by a clustering algorithm. This leads to an automatic detection of the lesions which can be manually corrected afterwards using a threshold-based approach. For evaluation we scanned 46 MS patients and 16 healthy controls. Fiber tracking has been performed using our novel fiber tracking and a standard defection based algorithm. Regression analysis of the old and new version of the algorithm showed a highly significant superiority of the new algorithm for disease duration. Additionally, a low correlation between old and new approach supports the observation that standard DTI fiber tracking is not always able to track and quantify the CST reliably.

  4. Vision-Aided Inertial Navigation

    NASA Technical Reports Server (NTRS)

    Roumeliotis, Stergios I. (Inventor); Mourikis, Anastasios I. (Inventor)

    2017-01-01

    This document discloses, among other things, a system and method for implementing an algorithm to determine pose, velocity, acceleration or other navigation information using feature tracking data. The algorithm has computational complexity that is linear with the number of features tracked.

  5. A Bayesian approach to tracking patients having changing pharmacokinetic parameters

    NASA Technical Reports Server (NTRS)

    Bayard, David S.; Jelliffe, Roger W.

    2004-01-01

    This paper considers the updating of Bayesian posterior densities for pharmacokinetic models associated with patients having changing parameter values. For estimation purposes it is proposed to use the Interacting Multiple Model (IMM) estimation algorithm, which is currently a popular algorithm in the aerospace community for tracking maneuvering targets. The IMM algorithm is described, and compared to the multiple model (MM) and Maximum A-Posteriori (MAP) Bayesian estimation methods, which are presently used for posterior updating when pharmacokinetic parameters do not change. Both the MM and MAP Bayesian estimation methods are used in their sequential forms, to facilitate tracking of changing parameters. Results indicate that the IMM algorithm is well suited for tracking time-varying pharmacokinetic parameters in acutely ill and unstable patients, incurring only about half of the integrated error compared to the sequential MM and MAP methods on the same example.

  6. Aspects of detection and tracking of ground targets from an airborne EO/IR sensor

    NASA Astrophysics Data System (ADS)

    Balaji, Bhashyam; Sithiravel, Rajiv; Daya, Zahir; Kirubarajan, Thiagalingam

    2015-05-01

    An airborne EO/IR (electro-optical/infrared) camera system comprises of a suite of sensors, such as a narrow and wide field of view (FOV) EO and mid-wave IR sensors. EO/IR camera systems are regularly employed on military and search and rescue aircrafts. The EO/IR system can be used to detect and identify objects rapidly in daylight and at night, often with superior performance in challenging conditions such as fog. There exist several algorithms for detecting potential targets in the bearing elevation grid. The nonlinear filtering problem is one of estimation of the kinematic parameters from bearing and elevation measurements from a moving platform. In this paper, we developed a complete model for the state of a target as detected by an airborne EO/IR system and simulated a typical scenario with single target with 1 or 2 airborne sensors. We have demonstrated the ability to track the target with `high precision' and noted the improvement from using two sensors on a single platform or on separate platforms. The performance of the Extended Kalman filter (EKF) is investigated on simulated data. Image/video data collected from an IR sensor on an airborne platform are processed using an image tracking by detection algorithm.

  7. An Extended Kalman Filter-Based Attitude Tracking Algorithm for Star Sensors

    PubMed Central

    Li, Jian; Wei, Xinguo; Zhang, Guangjun

    2017-01-01

    Efficiency and reliability are key issues when a star sensor operates in tracking mode. In the case of high attitude dynamics, the performance of existing attitude tracking algorithms degenerates rapidly. In this paper an extended Kalman filtering-based attitude tracking algorithm is presented. The star sensor is modeled as a nonlinear stochastic system with the state estimate providing the three degree-of-freedom attitude quaternion and angular velocity. The star positions in the star image are predicted and measured to estimate the optimal attitude. Furthermore, all the cataloged stars observed in the sensor field-of-view according the predicted image motion are accessed using a catalog partition table to speed up the tracking, called star mapping. Software simulation and night-sky experiment are performed to validate the efficiency and reliability of the proposed method. PMID:28825684

  8. An Extended Kalman Filter-Based Attitude Tracking Algorithm for Star Sensors.

    PubMed

    Li, Jian; Wei, Xinguo; Zhang, Guangjun

    2017-08-21

    Efficiency and reliability are key issues when a star sensor operates in tracking mode. In the case of high attitude dynamics, the performance of existing attitude tracking algorithms degenerates rapidly. In this paper an extended Kalman filtering-based attitude tracking algorithm is presented. The star sensor is modeled as a nonlinear stochastic system with the state estimate providing the three degree-of-freedom attitude quaternion and angular velocity. The star positions in the star image are predicted and measured to estimate the optimal attitude. Furthermore, all the cataloged stars observed in the sensor field-of-view according the predicted image motion are accessed using a catalog partition table to speed up the tracking, called star mapping. Software simulation and night-sky experiment are performed to validate the efficiency and reliability of the proposed method.

  9. Recent numerical and algorithmic advances within the volume tracking framework for modeling interfacial flows

    DOE PAGES

    François, Marianne M.

    2015-05-28

    A review of recent advances made in numerical methods and algorithms within the volume tracking framework is presented. The volume tracking method, also known as the volume-of-fluid method has become an established numerical approach to model and simulate interfacial flows. Its advantage is its strict mass conservation. However, because the interface is not explicitly tracked but captured via the material volume fraction on a fixed mesh, accurate estimation of the interface position, its geometric properties and modeling of interfacial physics in the volume tracking framework remain difficult. Several improvements have been made over the last decade to address these challenges.more » In this study, the multimaterial interface reconstruction method via power diagram, curvature estimation via heights and mean values and the balanced-force algorithm for surface tension are highlighted.« less

  10. Towards Automated Three-Dimensional Tracking of Nephrons through Stacked Histological Image Sets

    PubMed Central

    Bhikha, Charita; Andreasen, Arne; Christensen, Erik I.; Letts, Robyn F. R.; Pantanowitz, Adam; Rubin, David M.; Thomsen, Jesper S.; Zhai, Xiao-Yue

    2015-01-01

    An automated approach for tracking individual nephrons through three-dimensional histological image sets of mouse and rat kidneys is presented. In a previous study, the available images were tracked manually through the image sets in order to explore renal microarchitecture. The purpose of the current research is to reduce the time and effort required to manually trace nephrons by creating an automated, intelligent system as a standard tool for such datasets. The algorithm is robust enough to isolate closely packed nephrons and track their convoluted paths despite a number of nonideal, interfering conditions such as local image distortions, artefacts, and interstitial tissue interference. The system comprises image preprocessing, feature extraction, and a custom graph-based tracking algorithm, which is validated by a rule base and a machine learning algorithm. A study of a selection of automatically tracked nephrons, when compared with manual tracking, yields a 95% tracking accuracy for structures in the cortex, while those in the medulla have lower accuracy due to narrower diameter and higher density. Limited manual intervention is introduced to improve tracking, enabling full nephron paths to be obtained with an average of 17 manual corrections per mouse nephron and 58 manual corrections per rat nephron. PMID:26170896

  11. Detection and tracking of a moving target using SAR images with the particle filter-based track-before-detect algorithm.

    PubMed

    Gao, Han; Li, Jingwen

    2014-06-19

    A novel approach to detecting and tracking a moving target using synthetic aperture radar (SAR) images is proposed in this paper. Achieved with the particle filter (PF) based track-before-detect (TBD) algorithm, the approach is capable of detecting and tracking the low signal-to-noise ratio (SNR) moving target with SAR systems, which the traditional track-after-detect (TAD) approach is inadequate for. By incorporating the signal model of the SAR moving target into the algorithm, the ambiguity in target azimuth position and radial velocity is resolved while tracking, which leads directly to the true estimation. With the sub-area substituted for the whole area to calculate the likelihood ratio and a pertinent choice of the number of particles, the computational efficiency is improved with little loss in the detection and tracking performance. The feasibility of the approach is validated and the performance is evaluated with Monte Carlo trials. It is demonstrated that the proposed approach is capable to detect and track a moving target with SNR as low as 7 dB, and outperforms the traditional TAD approach when the SNR is below 14 dB.

  12. Detection and Tracking of a Moving Target Using SAR Images with the Particle Filter-Based Track-Before-Detect Algorithm

    PubMed Central

    Gao, Han; Li, Jingwen

    2014-01-01

    A novel approach to detecting and tracking a moving target using synthetic aperture radar (SAR) images is proposed in this paper. Achieved with the particle filter (PF) based track-before-detect (TBD) algorithm, the approach is capable of detecting and tracking the low signal-to-noise ratio (SNR) moving target with SAR systems, which the traditional track-after-detect (TAD) approach is inadequate for. By incorporating the signal model of the SAR moving target into the algorithm, the ambiguity in target azimuth position and radial velocity is resolved while tracking, which leads directly to the true estimation. With the sub-area substituted for the whole area to calculate the likelihood ratio and a pertinent choice of the number of particles, the computational efficiency is improved with little loss in the detection and tracking performance. The feasibility of the approach is validated and the performance is evaluated with Monte Carlo trials. It is demonstrated that the proposed approach is capable to detect and track a moving target with SNR as low as 7 dB, and outperforms the traditional TAD approach when the SNR is below 14 dB. PMID:24949640

  13. Towards Automated Three-Dimensional Tracking of Nephrons through Stacked Histological Image Sets.

    PubMed

    Bhikha, Charita; Andreasen, Arne; Christensen, Erik I; Letts, Robyn F R; Pantanowitz, Adam; Rubin, David M; Thomsen, Jesper S; Zhai, Xiao-Yue

    2015-01-01

    An automated approach for tracking individual nephrons through three-dimensional histological image sets of mouse and rat kidneys is presented. In a previous study, the available images were tracked manually through the image sets in order to explore renal microarchitecture. The purpose of the current research is to reduce the time and effort required to manually trace nephrons by creating an automated, intelligent system as a standard tool for such datasets. The algorithm is robust enough to isolate closely packed nephrons and track their convoluted paths despite a number of nonideal, interfering conditions such as local image distortions, artefacts, and interstitial tissue interference. The system comprises image preprocessing, feature extraction, and a custom graph-based tracking algorithm, which is validated by a rule base and a machine learning algorithm. A study of a selection of automatically tracked nephrons, when compared with manual tracking, yields a 95% tracking accuracy for structures in the cortex, while those in the medulla have lower accuracy due to narrower diameter and higher density. Limited manual intervention is introduced to improve tracking, enabling full nephron paths to be obtained with an average of 17 manual corrections per mouse nephron and 58 manual corrections per rat nephron.

  14. Evolutionary Dynamic Multiobjective Optimization Via Kalman Filter Prediction.

    PubMed

    Muruganantham, Arrchana; Tan, Kay Chen; Vadakkepat, Prahlad

    2016-12-01

    Evolutionary algorithms are effective in solving static multiobjective optimization problems resulting in the emergence of a number of state-of-the-art multiobjective evolutionary algorithms (MOEAs). Nevertheless, the interest in applying them to solve dynamic multiobjective optimization problems has only been tepid. Benchmark problems, appropriate performance metrics, as well as efficient algorithms are required to further the research in this field. One or more objectives may change with time in dynamic optimization problems. The optimization algorithm must be able to track the moving optima efficiently. A prediction model can learn the patterns from past experience and predict future changes. In this paper, a new dynamic MOEA using Kalman filter (KF) predictions in decision space is proposed to solve the aforementioned problems. The predictions help to guide the search toward the changed optima, thereby accelerating convergence. A scoring scheme is devised to hybridize the KF prediction with a random reinitialization method. Experimental results and performance comparisons with other state-of-the-art algorithms demonstrate that the proposed algorithm is capable of significantly improving the dynamic optimization performance.

  15. Vehicle active steering control research based on two-DOF robust internal model control

    NASA Astrophysics Data System (ADS)

    Wu, Jian; Liu, Yahui; Wang, Fengbo; Bao, Chunjiang; Sun, Qun; Zhao, Youqun

    2016-07-01

    Because of vehicle's external disturbances and model uncertainties, robust control algorithms have obtained popularity in vehicle stability control. The robust control usually gives up performance in order to guarantee the robustness of the control algorithm, therefore an improved robust internal model control(IMC) algorithm blending model tracking and internal model control is put forward for active steering system in order to reach high performance of yaw rate tracking with certain robustness. The proposed algorithm inherits the good model tracking ability of the IMC control and guarantees robustness to model uncertainties. In order to separate the design process of model tracking from the robustness design process, the improved 2 degree of freedom(DOF) robust internal model controller structure is given from the standard Youla parameterization. Simulations of double lane change maneuver and those of crosswind disturbances are conducted for evaluating the robust control algorithm, on the basis of a nonlinear vehicle simulation model with a magic tyre model. Results show that the established 2-DOF robust IMC method has better model tracking ability and a guaranteed level of robustness and robust performance, which can enhance the vehicle stability and handling, regardless of variations of the vehicle model parameters and the external crosswind interferences. Contradiction between performance and robustness of active steering control algorithm is solved and higher control performance with certain robustness to model uncertainties is obtained.

  16. Data association approaches in bearings-only multi-target tracking

    NASA Astrophysics Data System (ADS)

    Xu, Benlian; Wang, Zhiquan

    2008-03-01

    According to requirements of time computation complexity and correctness of data association of the multi-target tracking, two algorithms are suggested in this paper. The proposed Algorithm 1 is developed from the modified version of dual Simplex method, and it has the advantage of direct and explicit form of the optimal solution. The Algorithm 2 is based on the idea of Algorithm 1 and rotational sort method, it combines not only advantages of Algorithm 1, but also reduces the computational burden, whose complexity is only 1/ N times that of Algorithm 1. Finally, numerical analyses are carried out to evaluate the performance of the two data association algorithms.

  17. Application of inertial instruments for DSN antenna pointing and tracking

    NASA Technical Reports Server (NTRS)

    Eldred, D. B.; Nerheim, N. M.; Holmes, K. G.

    1990-01-01

    The feasibility of using inertial instruments to determine the pointing attitude of the NASA Deep Space Network antennas is examined. The objective is to obtain 1 mdeg pointing knowledge in both blind pointing and tracking modes to facilitate operation of the Deep Space Network 70 m antennas at 32 GHz. A measurement system employing accelerometers, an inclinometer, and optical gyroscopes is proposed. The initial pointing attitude is established by determining the direction of the local gravity vector using the accelerometers and the inclinometer, and the Earth's spin axis using the gyroscopes. Pointing during long-term tracking is maintained by integrating the gyroscope rates and augmenting these measurements with knowledge of the local gravity vector. A minimum-variance estimator is used to combine measurements to obtain the antenna pointing attitude. A key feature of the algorithm is its ability to recalibrate accelerometer parameters during operation. A survey of available inertial instrument technologies is also given.

  18. Consistently Sampled Correlation Filters with Space Anisotropic Regularization for Visual Tracking

    PubMed Central

    Shi, Guokai; Xu, Tingfa; Luo, Jiqiang; Li, Yuankun

    2017-01-01

    Most existing correlation filter-based tracking algorithms, which use fixed patches and cyclic shifts as training and detection measures, assume that the training samples are reliable and ignore the inconsistencies between training samples and detection samples. We propose to construct and study a consistently sampled correlation filter with space anisotropic regularization (CSSAR) to solve these two problems simultaneously. Our approach constructs a spatiotemporally consistent sample strategy to alleviate the redundancies in training samples caused by the cyclical shifts, eliminate the inconsistencies between training samples and detection samples, and introduce space anisotropic regularization to constrain the correlation filter for alleviating drift caused by occlusion. Moreover, an optimization strategy based on the Gauss-Seidel method was developed for obtaining robust and efficient online learning. Both qualitative and quantitative evaluations demonstrate that our tracker outperforms state-of-the-art trackers in object tracking benchmarks (OTBs). PMID:29231876

  19. A novel application of PageRank and user preference algorithms for assessing the relative performance of track athletes in competition

    PubMed Central

    Shepherd, Simon J.; Emmonds, Stacey; Jones, Ben

    2017-01-01

    Ranking enables coaches, sporting authorities, and pundits to determine the relative performance of individual athletes and teams in comparison to their peers. While ranking is relatively straightforward in sports that employ traditional leagues, it is more difficult in sports where competition is fragmented (e.g. athletics, boxing, etc.), with not all competitors competing against each other. In such situations, complex points systems are often employed to rank athletes. However, these systems have the inherent weakness that they frequently rely on subjective assessments in order to gauge the calibre of the competitors involved. Here we show how two Internet derived algorithms, the PageRank (PR) and user preference (UP) algorithms, when utilised with a simple ‘who beat who’ matrix, can be used to accurately rank track athletes, avoiding the need for subjective assessment. We applied the PR and UP algorithms to the 2015 IAAF Diamond League men’s 100m competition and compared their performance with the Keener, Colley and Massey ranking algorithms. The top five places computed by the PR and UP algorithms, and the Diamond League ‘2016’ points system were all identical, with the Kendall’s tau distance between the PR standings and ‘2016’ points system standings being just 15, indicating that only 5.9% of pairs differed in their order between these two lists. By comparison, the UP and ‘2016’ standings displayed a less strong relationship, with a tau distance of 95, indicating that 37.6% of the pairs differed in their order. When compared with the standings produced using the Keener, Colley and Massey algorithms, the PR standings appeared to be closest to the Keener standings (tau distance = 67, 26.5% pair order disagreement), whereas the UP standings were more similar to the Colley and Massey standings, with the tau distances between these ranking lists being only 48 (19.0% pair order disagreement) and 59 (23.3% pair order disagreement) respectively. In particular, the UP algorithm ranked ‘one-off’ victors more highly than the PR algorithm, suggesting that the UP algorithm captures alternative characteristics to the PR algorithm, which may more suitable for predicting future performance in say knockout tournaments, rather than for use in competitions such as the Diamond League. As such, these Internet derived algorithms appear to have considerable potential for objectively assessing the relative performance of track athletes, without the need for complicated points equivalence tables. Importantly, because both algorithms utilise a ‘who beat who’ model, they automatically adjust for the strength of the competition, thus avoiding the need for subjective decision making. PMID:28575009

  20. Joint Transform Correlation for face tracking: elderly fall detection application

    NASA Astrophysics Data System (ADS)

    Katz, Philippe; Aron, Michael; Alfalou, Ayman

    2013-03-01

    In this paper, an iterative tracking algorithm based on a non-linear JTC (Joint Transform Correlator) architecture and enhanced by a digital image processing method is proposed and validated. This algorithm is based on the computation of a correlation plane where the reference image is updated at each frame. For that purpose, we use the JTC technique in real time to track a patient (target image) in a room fitted with a video camera. The correlation plane is used to localize the target image in the current video frame (frame i). Then, the reference image to be exploited in the next frame (frame i+1) is updated according to the previous one (frame i). In an effort to validate our algorithm, our work is divided into two parts: (i) a large study based on different sequences with several situations and different JTC parameters is achieved in order to quantify their effects on the tracking performances (decimation, non-linearity coefficient, size of the correlation plane, size of the region of interest...). (ii) the tracking algorithm is integrated into an application of elderly fall detection. The first reference image is a face detected by means of Haar descriptors, and then localized into the new video image thanks to our tracking method. In order to avoid a bad update of the reference frame, a method based on a comparison of image intensity histograms is proposed and integrated in our algorithm. This step ensures a robust tracking of the reference frame. This article focuses on face tracking step optimisation and evalutation. A supplementary step of fall detection, based on vertical acceleration and position, will be added and studied in further work.

  1. A Hybrid Maximum Power Point Tracking Method for Automobile Exhaust Thermoelectric Generator

    NASA Astrophysics Data System (ADS)

    Quan, Rui; Zhou, Wei; Yang, Guangyou; Quan, Shuhai

    2017-05-01

    To make full use of the maximum output power of automobile exhaust thermoelectric generator (AETEG) based on Bi2Te3 thermoelectric modules (TEMs), taking into account the advantages and disadvantages of existing maximum power point tracking methods, and according to the output characteristics of TEMs, a hybrid maximum power point tracking method combining perturb and observe (P&O) algorithm, quadratic interpolation and constant voltage tracking method was put forward in this paper. Firstly, it searched the maximum power point with P&O algorithms and a quadratic interpolation method, then, it forced the AETEG to work at its maximum power point with constant voltage tracking. A synchronous buck converter and controller were implemented in the electric bus of the AETEG applied in a military sports utility vehicle, and the whole system was modeled and simulated with a MATLAB/Simulink environment. Simulation results demonstrate that the maximum output power of the AETEG based on the proposed hybrid method is increased by about 3.0% and 3.7% compared with that using only the P&O algorithm and the quadratic interpolation method, respectively. The shorter tracking time is only 1.4 s, which is reduced by half compared with that of the P&O algorithm and quadratic interpolation method, respectively. The experimental results demonstrate that the tracked maximum power is approximately equal to the real value using the proposed hybrid method,and it can preferentially deal with the voltage fluctuation of the AETEG with only P&O algorithm, and resolve the issue that its working point can barely be adjusted only with constant voltage tracking when the operation conditions change.

  2. Radar tracking with an interacting multiple model and probabilistic data association filter for civil aviation applications.

    PubMed

    Jan, Shau-Shiun; Kao, Yu-Chun

    2013-05-17

    The current trend of the civil aviation technology is to modernize the legacy air traffic control (ATC) system that is mainly supported by many ground based navigation aids to be the new air traffic management (ATM) system that is enabled by global positioning system (GPS) technology. Due to the low receiving power of GPS signal, it is a major concern to aviation authorities that the operation of the ATM system might experience service interruption when the GPS signal is jammed by either intentional or unintentional radio-frequency interference. To maintain the normal operation of the ATM system during the period of GPS outage, the use of the current radar system is proposed in this paper. However, the tracking performance of the current radar system could not meet the required performance of the ATM system, and an enhanced tracking algorithm, the interacting multiple model and probabilistic data association filter (IMMPDAF), is therefore developed to support the navigation and surveillance services of the ATM system. The conventional radar tracking algorithm, the nearest neighbor Kalman filter (NNKF), is used as the baseline to evaluate the proposed radar tracking algorithm, and the real flight data is used to validate the IMMPDAF algorithm. As shown in the results, the proposed IMMPDAF algorithm could enhance the tracking performance of the current aviation radar system and meets the required performance of the new ATM system. Thus, the current radar system with the IMMPDAF algorithm could be used as an alternative system to continue aviation navigation and surveillance services of the ATM system during GPS outage periods.

  3. Radar Tracking with an Interacting Multiple Model and Probabilistic Data Association Filter for Civil Aviation Applications

    PubMed Central

    Jan, Shau-Shiun; Kao, Yu-Chun

    2013-01-01

    The current trend of the civil aviation technology is to modernize the legacy air traffic control (ATC) system that is mainly supported by many ground based navigation aids to be the new air traffic management (ATM) system that is enabled by global positioning system (GPS) technology. Due to the low receiving power of GPS signal, it is a major concern to aviation authorities that the operation of the ATM system might experience service interruption when the GPS signal is jammed by either intentional or unintentional radio-frequency interference. To maintain the normal operation of the ATM system during the period of GPS outage, the use of the current radar system is proposed in this paper. However, the tracking performance of the current radar system could not meet the required performance of the ATM system, and an enhanced tracking algorithm, the interacting multiple model and probabilistic data association filter (IMMPDAF), is therefore developed to support the navigation and surveillance services of the ATM system. The conventional radar tracking algorithm, the nearest neighbor Kalman filter (NNKF), is used as the baseline to evaluate the proposed radar tracking algorithm, and the real flight data is used to validate the IMMPDAF algorithm. As shown in the results, the proposed IMMPDAF algorithm could enhance the tracking performance of the current aviation radar system and meets the required performance of the new ATM system. Thus, the current radar system with the IMMPDAF algorithm could be used as an alternative system to continue aviation navigation and surveillance services of the ATM system during GPS outage periods. PMID:23686142

  4. Streak detection and analysis pipeline for optical images

    NASA Astrophysics Data System (ADS)

    Virtanen, J.; Granvik, M.; Torppa, J.; Muinonen, K.; Poikonen, J.; Lehti, J.; Säntti, T.; Komulainen, T.; Flohrer, T.

    2014-07-01

    We describe a novel data processing and analysis pipeline for optical observations of moving objects, either of natural (asteroids, meteors) or artificial origin (satellites, space debris). The monitoring of the space object populations requires reliable acquisition of observational data to support the development and validation of population models, and to build and maintain catalogues of orbital elements. The orbital catalogues are, in turn, needed for the assessment of close approaches (for asteroids, with the Earth; for satellites, with each other) and for the support of contingency situations or launches. For both types of populations, there is also increasing interest to detect fainter objects corresponding to the small end of the size distribution. We focus on the low signal-to-noise (SNR) detection of objects with high angular velocities, resulting in long and faint object trails, or streaks, in the optical images. The currently available, mature image processing algorithms for detection and astrometric reduction of optical data cover objects that cross the sensor field-of-view comparably slowly, and, particularly for satellites, within a rather narrow, predefined range of angular velocities. By applying specific tracking techniques, the objects appear point-like or as short trails in the exposures. However, the general survey scenario is always a 'track-before-detect' problem, resulting in streaks of arbitrary lengths. Although some considerations for low-SNR processing of streak-like features are available in the current image processing and computer vision literature, algorithms are not readily available yet. In the ESA-funded StreakDet (Streak detection and astrometric reduction) project, we develop and evaluate an automated processing pipeline applicable to single images (as compared to consecutive frames of the same field) obtained with any observing scenario, including space-based surveys and both low- and high-altitude populations. The algorithmic flow starts from the segmentation of the acquired image (i.e., the extraction of all sources), followed by the astrometric and photometric characterization of the candidate streaks, and ends with orbital validation of the detected streaks. For the low-SNR extraction of objects, we put forward an approach which does not rely on a priori information, such as the object velocities, a typical assumption in earlier implementations. Our algorithm is based on local grayscale mean difference evaluation, followed by a threshold operation and spatial filtering of black-and-white (1-bit) data to remove stars and other non-streak features. For long streaks, the challenge is to extract position information and related registered epochs with sufficient precision. Moreover, satellite streaks can show up in complex morphologies because of their fast, and often irregular lightcurve variations. A central concept of the pipeline is streak classification which guides the actual characterization process by aiming to identify the interesting sources and to filter out the uninteresting ones, as well as by allowing the tailoring of algorithms for specific streak classes (e.g. PSF fitting for point-like vs. long, disintegrated streaks). Finally, to validate the single-image detections, the processing is finalized by orbital analysis using our statistical inverse methods (see, Muinonen et al., this conference), resulting in preliminary orbital classification (e.g., Earth-bound vs. non-Earth-bound orbits) for the detected streaks.

  5. Vision-Based Haptic Feedback for Remote Micromanipulation in-SEM Environment

    NASA Astrophysics Data System (ADS)

    Bolopion, Aude; Dahmen, Christian; Stolle, Christian; Haliyo, Sinan; Régnier, Stéphane; Fatikow, Sergej

    2012-07-01

    This article presents an intuitive environment for remote micromanipulation composed of both haptic feedback and virtual reconstruction of the scene. To enable nonexpert users to perform complex teleoperated micromanipulation tasks, it is of utmost importance to provide them with information about the 3-D relative positions of the objects and the tools. Haptic feedback is an intuitive way to transmit such information. Since position sensors are not available at this scale, visual feedback is used to derive information about the scene. In this work, three different techniques are implemented, evaluated, and compared to derive the object positions from scanning electron microscope images. The modified correlation matching with generated template algorithm is accurate and provides reliable detection of objects. To track the tool, a marker-based approach is chosen since fast detection is required for stable haptic feedback. Information derived from these algorithms is used to propose an intuitive remote manipulation system that enables users situated in geographically distant sites to benefit from specific equipments, such as SEMs. Stability of the haptic feedback is ensured by the minimization of the delays, the computational efficiency of vision algorithms, and the proper tuning of the haptic coupling. Virtual guides are proposed to avoid any involuntary collisions between the tool and the objects. This approach is validated by a teleoperation involving melamine microspheres with a diameter of less than 2 μ m between Paris, France and Oldenburg, Germany.

  6. Calculating observables in inhomogeneous cosmologies. Part I: general framework

    NASA Astrophysics Data System (ADS)

    Hellaby, Charles; Walters, Anthony

    2018-02-01

    We lay out a general framework for calculating the variation of a set of cosmological observables, down the past null cone of an arbitrarily placed observer, in a given arbitrary inhomogeneous metric. The observables include redshift, proper motions, area distance and redshift-space density. Of particular interest are observables that are zero in the spherically symmetric case, such as proper motions. The algorithm is based on the null geodesic equation and the geodesic deviation equation, and it is tailored to creating a practical numerical implementation. The algorithm provides a method for tracking which light rays connect moving objects to the observer at successive times. Our algorithm is applied to the particular case of the Szekeres metric. A numerical implementation has been created and some results will be presented in a subsequent paper. Future work will explore the range of possibilities.

  7. Research on Environmental Adjustment of Cloud Ranch Based on BP Neural Network PID Control

    NASA Astrophysics Data System (ADS)

    Ren, Jinzhi; Xiang, Wei; Zhao, Lin; Wu, Jianbo; Huang, Lianzhen; Tu, Qinggang; Zhao, Heming

    2018-01-01

    In order to make the intelligent ranch management mode replace the traditional artificial one gradually, this paper proposes a pasture environment control system based on cloud server, and puts forward the PID control algorithm based on BP neural network to control temperature and humidity better in the pasture environment. First, to model the temperature and humidity (controlled object) of the pasture, we can get the transfer function. Then the traditional PID control algorithm and the PID one based on BP neural network are applied to the transfer function. The obtained step tracking curves can be seen that the PID controller based on BP neural network has obvious superiority in adjusting time and error, etc. This algorithm, calculating reasonable control parameters of the temperature and humidity to control environment, can be better used in the cloud service platform.

  8. Small Orbital Stereo Tracking Camera Technology Development

    NASA Technical Reports Server (NTRS)

    Bryan, Tom; Macleod, Todd; Gagliano, Larry

    2015-01-01

    On-Orbit Small Debris Tracking and Characterization is a technical gap in the current National Space Situational Awareness necessary to safeguard orbital assets and crew. This poses a major risk of MOD damage to ISS and Exploration vehicles. In 2015 this technology was added to NASA's Office of Chief Technologist roadmap. For missions flying in or assembled in or staging from LEO, the physical threat to vehicle and crew is needed in order to properly design the proper level of MOD impact shielding and proper mission design restrictions. Need to verify debris flux and size population versus ground RADAR tracking. Use of ISS for In-Situ Orbital Debris Tracking development provides attitude, power, data and orbital access without a dedicated spacecraft or restricted operations on-board a host vehicle as a secondary payload. Sensor Applicable to in-situ measuring orbital debris in flux and population in other orbits or on other vehicles. Could enhance safety on and around ISS. Some technologies extensible to monitoring of extraterrestrial debris as well to help accomplish this, new technologies must be developed quickly. The Small Orbital Stereo Tracking Camera is one such up and coming technology. It consists of flying a pair of intensified megapixel telephoto cameras to evaluate Orbital Debris (OD) monitoring in proximity of International Space Station. It will demonstrate on-orbit optical tracking (in situ) of various sized objects versus ground RADAR tracking and small OD models. The cameras are based on Flight Proven Advanced Video Guidance Sensor pixel to spot algorithms (Orbital Express) and military targeting cameras. And by using twin cameras we can provide Stereo images for ranging & mission redundancy. When pointed into the orbital velocity vector (RAM), objects approaching or near the stereo camera set can be differentiated from the stars moving upward in background.

  9. Small Orbital Stereo Tracking Camera Technology Development

    NASA Technical Reports Server (NTRS)

    Bryan, Tom; MacLeod, Todd; Gagliano, Larry

    2016-01-01

    On-Orbit Small Debris Tracking and Characterization is a technical gap in the current National Space Situational Awareness necessary to safeguard orbital assets and crew. This poses a major risk of MOD damage to ISS and Exploration vehicles. In 2015 this technology was added to NASA's Office of Chief Technologist roadmap. For missions flying in or assembled in or staging from LEO, the physical threat to vehicle and crew is needed in order to properly design the proper level of MOD impact shielding and proper mission design restrictions. Need to verify debris flux and size population versus ground RADAR tracking. Use of ISS for In-Situ Orbital Debris Tracking development provides attitude, power, data and orbital access without a dedicated spacecraft or restricted operations on-board a host vehicle as a secondary payload. Sensor Applicable to in-situ measuring orbital debris in flux and population in other orbits or on other vehicles. Could enhance safety on and around ISS. Some technologies extensible to monitoring of extraterrestrial debris as well To help accomplish this, new technologies must be developed quickly. The Small Orbital Stereo Tracking Camera is one such up and coming technology. It consists of flying a pair of intensified megapixel telephoto cameras to evaluate Orbital Debris (OD) monitoring in proximity of International Space Station. It will demonstrate on-orbit optical tracking (in situ) of various sized objects versus ground RADAR tracking and small OD models. The cameras are based on Flight Proven Advanced Video Guidance Sensor pixel to spot algorithms (Orbital Express) and military targeting cameras. And by using twin cameras we can provide Stereo images for ranging & mission redundancy. When pointed into the orbital velocity vector (RAM), objects approaching or near the stereo camera set can be differentiated from the stars moving upward in background.

  10. Sensitivity Analysis of Genetic Algorithm Parameters for Optimal Groundwater Monitoring Network Design

    NASA Astrophysics Data System (ADS)

    Abdeh-Kolahchi, A.; Satish, M.; Datta, B.

    2004-05-01

    A state art groundwater monitoring network design is introduced. The method combines groundwater flow and transport results with optimization Genetic Algorithm (GA) to identify optimal monitoring well locations. Optimization theory uses different techniques to find a set of parameter values that minimize or maximize objective functions. The suggested groundwater optimal monitoring network design is based on the objective of maximizing the probability of tracking a transient contamination plume by determining sequential monitoring locations. The MODFLOW and MT3DMS models included as separate modules within the Groundwater Modeling System (GMS) are used to develop three dimensional groundwater flow and contamination transport simulation. The groundwater flow and contamination simulation results are introduced as input to the optimization model, using Genetic Algorithm (GA) to identify the groundwater optimal monitoring network design, based on several candidate monitoring locations. The groundwater monitoring network design model is used Genetic Algorithms with binary variables representing potential monitoring location. As the number of decision variables and constraints increase, the non-linearity of the objective function also increases which make difficulty to obtain optimal solutions. The genetic algorithm is an evolutionary global optimization technique, which is capable of finding the optimal solution for many complex problems. In this study, the GA approach capable of finding the global optimal solution to a groundwater monitoring network design problem involving 18.4X 1018 feasible solutions will be discussed. However, to ensure the efficiency of the solution process and global optimality of the solution obtained using GA, it is necessary that appropriate GA parameter values be specified. The sensitivity analysis of genetic algorithms parameters such as random number, crossover probability, mutation probability, and elitism are discussed for solution of monitoring network design.

  11. Orbit computation of the TELECOM-2D satellite with a Genetic Algorithm

    NASA Astrophysics Data System (ADS)

    Deleflie, Florent; Coulot, David; Vienne, Alain; Decosta, Romain; Richard, Pascal; Lasri, Mohammed Amjad

    2014-07-01

    In order to test a preliminary orbit determination method, we fit an orbit of the geostationary satellite TELECOM-2D, as if we did not know any a priori information on its trajectory. The method is based on a genetic algorithm coupled to an analytical propagator of the trajectory, that is used over a couple of days, and that uses a whole set of altazimutal data that are acquired by the tracking network made up of the two TAROT telescopes. The adjusted orbit is then compared to a numerical reference. The method is described, and the results are analyzed, as a step towards an operational method of preliminary orbit determination for uncatalogued objects.

  12. LivePhantom: Retrieving Virtual World Light Data to Real Environments.

    PubMed

    Kolivand, Hoshang; Billinghurst, Mark; Sunar, Mohd Shahrizal

    2016-01-01

    To achieve realistic Augmented Reality (AR), shadows play an important role in creating a 3D impression of a scene. Casting virtual shadows on real and virtual objects is one of the topics of research being conducted in this area. In this paper, we propose a new method for creating complex AR indoor scenes using real time depth detection to exert virtual shadows on virtual and real environments. A Kinect camera was used to produce a depth map for the physical scene mixing into a single real-time transparent tacit surface. Once this is created, the camera's position can be tracked from the reconstructed 3D scene. Real objects are represented by virtual object phantoms in the AR scene enabling users holding a webcam and a standard Kinect camera to capture and reconstruct environments simultaneously. The tracking capability of the algorithm is shown and the findings are assessed drawing upon qualitative and quantitative methods making comparisons with previous AR phantom generation applications. The results demonstrate the robustness of the technique for realistic indoor rendering in AR systems.

  13. LivePhantom: Retrieving Virtual World Light Data to Real Environments

    PubMed Central

    2016-01-01

    To achieve realistic Augmented Reality (AR), shadows play an important role in creating a 3D impression of a scene. Casting virtual shadows on real and virtual objects is one of the topics of research being conducted in this area. In this paper, we propose a new method for creating complex AR indoor scenes using real time depth detection to exert virtual shadows on virtual and real environments. A Kinect camera was used to produce a depth map for the physical scene mixing into a single real-time transparent tacit surface. Once this is created, the camera’s position can be tracked from the reconstructed 3D scene. Real objects are represented by virtual object phantoms in the AR scene enabling users holding a webcam and a standard Kinect camera to capture and reconstruct environments simultaneously. The tracking capability of the algorithm is shown and the findings are assessed drawing upon qualitative and quantitative methods making comparisons with previous AR phantom generation applications. The results demonstrate the robustness of the technique for realistic indoor rendering in AR systems. PMID:27930663

  14. Physical Models for Particle Tracking Simulations in the RF Gap

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shishlo, Andrei P.; Holmes, Jeffrey A.

    2015-06-01

    This document describes the algorithms that are used in the PyORBIT code to track the particles accelerated in the Radio-Frequency cavities. It gives the mathematical description of the algorithms and the assumptions made in each case. The derived formulas have been implemented in the PyORBIT code. The necessary data for each algorithm are described in detail.

  15. Simulation and performance of an artificial retina for 40 MHz track reconstruction

    DOE PAGES

    Abba, A.; Bedeschi, F.; Citterio, M.; ...

    2015-03-05

    We present the results of a detailed simulation of the artificial retina pattern-recognition algorithm, designed to reconstruct events with hundreds of charged-particle tracks in pixel and silicon detectors at LHCb with LHC crossing frequency of 40 MHz. Performances of the artificial retina algorithm are assessed using the official Monte Carlo samples of the LHCb experiment. We found performances for the retina pattern-recognition algorithm comparable with the full LHCb reconstruction algorithm.

  16. Hybrid three-dimensional and support vector machine approach for automatic vehicle tracking and classification using a single camera

    NASA Astrophysics Data System (ADS)

    Kachach, Redouane; Cañas, José María

    2016-05-01

    Using video in traffic monitoring is one of the most active research domains in the computer vision community. TrafficMonitor, a system that employs a hybrid approach for automatic vehicle tracking and classification on highways using a simple stationary calibrated camera, is presented. The proposed system consists of three modules: vehicle detection, vehicle tracking, and vehicle classification. Moving vehicles are detected by an enhanced Gaussian mixture model background estimation algorithm. The design includes a technique to resolve the occlusion problem by using a combination of two-dimensional proximity tracking algorithm and the Kanade-Lucas-Tomasi feature tracking algorithm. The last module classifies the shapes identified into five vehicle categories: motorcycle, car, van, bus, and truck by using three-dimensional templates and an algorithm based on histogram of oriented gradients and the support vector machine classifier. Several experiments have been performed using both real and simulated traffic in order to validate the system. The experiments were conducted on GRAM-RTM dataset and a proper real video dataset which is made publicly available as part of this work.

  17. Accurately tracking single-cell movement trajectories in microfluidic cell sorting devices.

    PubMed

    Jeong, Jenny; Frohberg, Nicholas J; Zhou, Enlu; Sulchek, Todd; Qiu, Peng

    2018-01-01

    Microfluidics are routinely used to study cellular properties, including the efficient quantification of single-cell biomechanics and label-free cell sorting based on the biomechanical properties, such as elasticity, viscosity, stiffness, and adhesion. Both quantification and sorting applications require optimal design of the microfluidic devices and mathematical modeling of the interactions between cells, fluid, and the channel of the device. As a first step toward building such a mathematical model, we collected video recordings of cells moving through a ridged microfluidic channel designed to compress and redirect cells according to cell biomechanics. We developed an efficient algorithm that automatically and accurately tracked the cell trajectories in the recordings. We tested the algorithm on recordings of cells with different stiffness, and showed the correlation between cell stiffness and the tracked trajectories. Moreover, the tracking algorithm successfully picked up subtle differences of cell motion when passing through consecutive ridges. The algorithm for accurately tracking cell trajectories paves the way for future efforts of modeling the flow, forces, and dynamics of cell properties in microfluidics applications.

  18. Improving maximum power point tracking of partially shaded photovoltaic system by using IPSO-BELBIC

    NASA Astrophysics Data System (ADS)

    Al-Alim El-Garhy, M. Abd; Mubarak, R. I.; El-Bably, M.

    2017-08-01

    Solar photovoltaic (PV) arrays in remote applications are often related to the rapid changes in the partial shading pattern. Rapid changes of the partial shading pattern make the tracking of maximum power point (MPP) of the global peak through the local ones too difficult. An essential need to make a fast and efficient algorithm to detect the peaks values which always vary as the sun irradiance changes. This paper presents two algorithms based on the improved particle swarm optimization technique one of them with PID controller (IPSO-PID), and the other one with Brain Emotional Learning Based Intelligent Controller (IPSO-BELBIC). These techniques improve the maximum power point (MPP) tracking capabilities for photovoltaic (PV) system under partial shading circumstances. The main aim of these improved algorithms is to accelerate the velocity of IPSO to reach to (MPP) and increase its efficiency. These algorithms also improve the tracking time under complex irradiance conditions. Based on these conditions, the tracking time of these presented techniques improves to 2 msec, with an efficiency of 100%.

  19. Spacecraft Attitude Tracking and Maneuver Using Combined Magnetic Actuators

    NASA Technical Reports Server (NTRS)

    Zhou, Zhiqiang

    2012-01-01

    A paper describes attitude-control algorithms using the combination of magnetic actuators with reaction wheel assemblies (RWAs) or other types of actuators such as thrusters. The combination of magnetic actuators with one or two RWAs aligned with different body axis expands the two-dimensional control torque to three-dimensional. The algorithms can guarantee the spacecraft attitude and rates to track the commanded attitude precisely. A design example is presented for nadir-pointing, pitch, and yaw maneuvers. The results show that precise attitude tracking can be reached and the attitude- control accuracy is comparable with RWA-based attitude control. When there are only one or two workable RWAs due to RWA failures, the attitude-control system can switch to the control algorithms for the combined magnetic actuators with the RWAs without going to the safe mode, and the control accuracy can be maintained. The attitude-control algorithms of the combined actuators are derived, which can guarantee the spacecraft attitude and rates to track the commanded values precisely. Results show that precise attitude tracking can be reached, and the attitude-control accuracy is comparable with 3-axis wheel control.

  20. Dense-HOG-based drift-reduced 3D face tracking for infant pain monitoring

    NASA Astrophysics Data System (ADS)

    Saeijs, Ronald W. J. J.; Tjon A Ten, Walther E.; de With, Peter H. N.

    2017-03-01

    This paper presents a new algorithm for 3D face tracking intended for clinical infant pain monitoring. The algorithm uses a cylinder head model and 3D head pose recovery by alignment of dynamically extracted templates based on dense-HOG features. The algorithm includes extensions for drift reduction, using re-registration in combination with multi-pose state estimation by means of a square-root unscented Kalman filter. The paper reports experimental results on videos of moving infants in hospital who are relaxed or in pain. Results show good tracking behavior for poses up to 50 degrees from upright-frontal. In terms of eye location error relative to inter-ocular distance, the mean tracking error is below 9%.

Top