Sample records for object tracking method

  1. Computer-aided target tracking in motion analysis studies

    NASA Astrophysics Data System (ADS)

    Burdick, Dominic C.; Marcuse, M. L.; Mislan, J. D.

    1990-08-01

    Motion analysis studies require the precise tracking of reference objects in sequential scenes. In a typical situation, events of interest are captured at high frame rates using special cameras, and selected objects or targets are tracked on a frame by frame basis to provide necessary data for motion reconstruction. Tracking is usually done using manual methods which are slow and prone to error. A computer based image analysis system has been developed that performs tracking automatically. The objective of this work was to eliminate the bottleneck due to manual methods in high volume tracking applications such as the analysis of crash test films for the automotive industry. The system has proven to be successful in tracking standard fiducial targets and other objects in crash test scenes. Over 95 percent of target positions which could be located using manual methods can be tracked by the system, with a significant improvement in throughput over manual methods. Future work will focus on the tracking of clusters of targets and on tracking deformable objects such as airbags.

  2. Real-Time Occlusion Handling in Augmented Reality Based on an Object Tracking Approach

    PubMed Central

    Tian, Yuan; Guan, Tao; Wang, Cheng

    2010-01-01

    To produce a realistic augmentation in Augmented Reality, the correct relative positions of real objects and virtual objects are very important. In this paper, we propose a novel real-time occlusion handling method based on an object tracking approach. Our method is divided into three steps: selection of the occluding object, object tracking and occlusion handling. The user selects the occluding object using an interactive segmentation method. The contour of the selected object is then tracked in the subsequent frames in real-time. In the occlusion handling step, all the pixels on the tracked object are redrawn on the unprocessed augmented image to produce a new synthesized image in which the relative position between the real and virtual object is correct. The proposed method has several advantages. First, it is robust and stable, since it remains effective when the camera is moved through large changes of viewing angles and volumes or when the object and the background have similar colors. Second, it is fast, since the real object can be tracked in real-time. Last, a smoothing technique provides seamless merging between the augmented and virtual object. Several experiments are provided to validate the performance of the proposed method. PMID:22319278

  3. Object Tracking Using Adaptive Covariance Descriptor and Clustering-Based Model Updating for Visual Surveillance

    PubMed Central

    Qin, Lei; Snoussi, Hichem; Abdallah, Fahed

    2014-01-01

    We propose a novel approach for tracking an arbitrary object in video sequences for visual surveillance. The first contribution of this work is an automatic feature extraction method that is able to extract compact discriminative features from a feature pool before computing the region covariance descriptor. As the feature extraction method is adaptive to a specific object of interest, we refer to the region covariance descriptor computed using the extracted features as the adaptive covariance descriptor. The second contribution is to propose a weakly supervised method for updating the object appearance model during tracking. The method performs a mean-shift clustering procedure among the tracking result samples accumulated during a period of time and selects a group of reliable samples for updating the object appearance model. As such, the object appearance model is kept up-to-date and is prevented from contamination even in case of tracking mistakes. We conducted comparing experiments on real-world video sequences, which confirmed the effectiveness of the proposed approaches. The tracking system that integrates the adaptive covariance descriptor and the clustering-based model updating method accomplished stable object tracking on challenging video sequences. PMID:24865883

  4. Confidence-Based Data Association and Discriminative Deep Appearance Learning for Robust Online Multi-Object Tracking.

    PubMed

    Bae, Seung-Hwan; Yoon, Kuk-Jin

    2018-03-01

    Online multi-object tracking aims at estimating the tracks of multiple objects instantly with each incoming frame and the information provided up to the moment. It still remains a difficult problem in complex scenes, because of the large ambiguity in associating multiple objects in consecutive frames and the low discriminability between objects appearances. In this paper, we propose a robust online multi-object tracking method that can handle these difficulties effectively. We first define the tracklet confidence using the detectability and continuity of a tracklet, and decompose a multi-object tracking problem into small subproblems based on the tracklet confidence. We then solve the online multi-object tracking problem by associating tracklets and detections in different ways according to their confidence values. Based on this strategy, tracklets sequentially grow with online-provided detections, and fragmented tracklets are linked up with others without any iterative and expensive association steps. For more reliable association between tracklets and detections, we also propose a deep appearance learning method to learn a discriminative appearance model from large training datasets, since the conventional appearance learning methods do not provide rich representation that can distinguish multiple objects with large appearance variations. In addition, we combine online transfer learning for improving appearance discriminability by adapting the pre-trained deep model during online tracking. Experiments with challenging public datasets show distinct performance improvement over other state-of-the-arts batch and online tracking methods, and prove the effect and usefulness of the proposed methods for online multi-object tracking.

  5. A visual tracking method based on deep learning without online model updating

    NASA Astrophysics Data System (ADS)

    Tang, Cong; Wang, Yicheng; Feng, Yunsong; Zheng, Chao; Jin, Wei

    2018-02-01

    The paper proposes a visual tracking method based on deep learning without online model updating. In consideration of the advantages of deep learning in feature representation, deep model SSD (Single Shot Multibox Detector) is used as the object extractor in the tracking model. Simultaneously, the color histogram feature and HOG (Histogram of Oriented Gradient) feature are combined to select the tracking object. In the process of tracking, multi-scale object searching map is built to improve the detection performance of deep detection model and the tracking efficiency. In the experiment of eight respective tracking video sequences in the baseline dataset, compared with six state-of-the-art methods, the method in the paper has better robustness in the tracking challenging factors, such as deformation, scale variation, rotation variation, illumination variation, and background clutters, moreover, its general performance is better than other six tracking methods.

  6. The research on the mean shift algorithm for target tracking

    NASA Astrophysics Data System (ADS)

    CAO, Honghong

    2017-06-01

    The traditional mean shift algorithm for target tracking is effective and high real-time, but there still are some shortcomings. The traditional mean shift algorithm is easy to fall into local optimum in the tracking process, the effectiveness of the method is weak when the object is moving fast. And the size of the tracking window never changes, the method will fail when the size of the moving object changes, as a result, we come up with a new method. We use particle swarm optimization algorithm to optimize the mean shift algorithm for target tracking, Meanwhile, SIFT (scale-invariant feature transform) and affine transformation make the size of tracking window adaptive. At last, we evaluate the method by comparing experiments. Experimental result indicates that the proposed method can effectively track the object and the size of the tracking window changes.

  7. Visual tracking using objectness-bounding box regression and correlation filters

    NASA Astrophysics Data System (ADS)

    Mbelwa, Jimmy T.; Zhao, Qingjie; Lu, Yao; Wang, Fasheng; Mbise, Mercy

    2018-03-01

    Visual tracking is a fundamental problem in computer vision with extensive application domains in surveillance and intelligent systems. Recently, correlation filter-based tracking methods have shown a great achievement in terms of robustness, accuracy, and speed. However, such methods have a problem of dealing with fast motion (FM), motion blur (MB), illumination variation (IV), and drifting caused by occlusion (OCC). To solve this problem, a tracking method that integrates objectness-bounding box regression (O-BBR) model and a scheme based on kernelized correlation filter (KCF) is proposed. The scheme based on KCF is used to improve the tracking performance of FM and MB. For handling drift problem caused by OCC and IV, we propose objectness proposals trained in bounding box regression as prior knowledge to provide candidates and background suppression. Finally, scheme KCF as a base tracker and O-BBR are fused to obtain a state of a target object. Extensive experimental comparisons of the developed tracking method with other state-of-the-art trackers are performed on some of the challenging video sequences. Experimental comparison results show that our proposed tracking method outperforms other state-of-the-art tracking methods in terms of effectiveness, accuracy, and robustness.

  8. A coarse-to-fine kernel matching approach for mean-shift based visual tracking

    NASA Astrophysics Data System (ADS)

    Liangfu, L.; Zuren, F.; Weidong, C.; Ming, J.

    2009-03-01

    Mean shift is an efficient pattern match algorithm. It is widely used in visual tracking fields since it need not perform whole search in the image space. It employs gradient optimization method to reduce the time of feature matching and realize rapid object localization, and uses Bhattacharyya coefficient as the similarity measure between object template and candidate template. This thesis presents a mean shift algorithm based on coarse-to-fine search for the best kernel matching. This paper researches for object tracking with large motion area based on mean shift. To realize efficient tracking of such an object, we present a kernel matching method from coarseness to fine. If the motion areas of the object between two frames are very large and they are not overlapped in image space, then the traditional mean shift method can only obtain local optimal value by iterative computing in the old object window area, so the real tracking position cannot be obtained and the object tracking will be disabled. Our proposed algorithm can efficiently use a similarity measure function to realize the rough location of motion object, then use mean shift method to obtain the accurate local optimal value by iterative computing, which successfully realizes object tracking with large motion. Experimental results show its good performance in accuracy and speed when compared with background-weighted histogram algorithm in the literature.

  9. Super-resolution imaging applied to moving object tracking

    NASA Astrophysics Data System (ADS)

    Swalaganata, Galandaru; Ratna Sulistyaningrum, Dwi; Setiyono, Budi

    2017-10-01

    Moving object tracking in a video is a method used to detect and analyze changes that occur in an object that being observed. Visual quality and the precision of the tracked target are highly wished in modern tracking system. The fact that the tracked object does not always seem clear causes the tracking result less precise. The reasons are low quality video, system noise, small object, and other factors. In order to improve the precision of the tracked object especially for small object, we propose a two step solution that integrates a super-resolution technique into tracking approach. First step is super-resolution imaging applied into frame sequences. This step was done by cropping the frame in several frame or all of frame. Second step is tracking the result of super-resolution images. Super-resolution image is a technique to obtain high-resolution images from low-resolution images. In this research single frame super-resolution technique is proposed for tracking approach. Single frame super-resolution was a kind of super-resolution that it has the advantage of fast computation time. The method used for tracking is Camshift. The advantages of Camshift was simple calculation based on HSV color that use its histogram for some condition and color of the object varies. The computational complexity and large memory requirements required for the implementation of super-resolution and tracking were reduced and the precision of the tracked target was good. Experiment showed that integrate a super-resolution imaging into tracking technique can track the object precisely with various background, shape changes of the object, and in a good light conditions.

  10. 3D noise-resistant segmentation and tracking of unknown and occluded objects using integral imaging

    NASA Astrophysics Data System (ADS)

    Aloni, Doron; Jung, Jae-Hyun; Yitzhaky, Yitzhak

    2017-10-01

    Three dimensional (3D) object segmentation and tracking can be useful in various computer vision applications, such as: object surveillance for security uses, robot navigation, etc. We present a method for 3D multiple-object tracking using computational integral imaging, based on accurate 3D object segmentation. The method does not employ object detection by motion analysis in a video as conventionally performed (such as background subtraction or block matching). This means that the movement properties do not significantly affect the detection quality. The object detection is performed by analyzing static 3D image data obtained through computational integral imaging With regard to previous works that used integral imaging data in such a scenario, the proposed method performs the 3D tracking of objects without prior information about the objects in the scene, and it is found efficient under severe noise conditions.

  11. Visual object recognition and tracking

    NASA Technical Reports Server (NTRS)

    Chang, Chu-Yin (Inventor); English, James D. (Inventor); Tardella, Neil M. (Inventor)

    2010-01-01

    This invention describes a method for identifying and tracking an object from two-dimensional data pictorially representing said object by an object-tracking system through processing said two-dimensional data using at least one tracker-identifier belonging to the object-tracking system for providing an output signal containing: a) a type of the object, and/or b) a position or an orientation of the object in three-dimensions, and/or c) an articulation or a shape change of said object in said three dimensions.

  12. Method and apparatus for imaging through 3-dimensional tracking of protons

    NASA Technical Reports Server (NTRS)

    Ryan, James M. (Inventor); Macri, John R. (Inventor); McConnell, Mark L. (Inventor)

    2001-01-01

    A method and apparatus for creating density images of an object through the 3-dimensional tracking of protons that have passed through the object are provided. More specifically, the 3-dimensional tracking of the protons is accomplished by gathering and analyzing images of the ionization tracks of the protons in a closely packed stack of scintillating fibers.

  13. Improved semi-supervised online boosting for object tracking

    NASA Astrophysics Data System (ADS)

    Li, Yicui; Qi, Lin; Tan, Shukun

    2016-10-01

    The advantage of an online semi-supervised boosting method which takes object tracking problem as a classification problem, is training a binary classifier from labeled and unlabeled examples. Appropriate object features are selected based on real time changes in the object. However, the online semi-supervised boosting method faces one key problem: The traditional self-training using the classification results to update the classifier itself, often leads to drifting or tracking failure, due to the accumulated error during each update of the tracker. To overcome the disadvantages of semi-supervised online boosting based on object tracking methods, the contribution of this paper is an improved online semi-supervised boosting method, in which the learning process is guided by positive (P) and negative (N) constraints, termed P-N constraints, which restrict the labeling of the unlabeled samples. First, we train the classification by an online semi-supervised boosting. Then, this classification is used to process the next frame. Finally, the classification is analyzed by the P-N constraints, which are used to verify if the labels of unlabeled data assigned by the classifier are in line with the assumptions made about positive and negative samples. The proposed algorithm can effectively improve the discriminative ability of the classifier and significantly alleviate the drifting problem in tracking applications. In the experiments, we demonstrate real-time tracking of our tracker on several challenging test sequences where our tracker outperforms other related on-line tracking methods and achieves promising tracking performance.

  14. Multiple object tracking using the shortest path faster association algorithm.

    PubMed

    Xi, Zhenghao; Liu, Heping; Liu, Huaping; Yang, Bin

    2014-01-01

    To solve the persistently multiple object tracking in cluttered environments, this paper presents a novel tracking association approach based on the shortest path faster algorithm. First, the multiple object tracking is formulated as an integer programming problem of the flow network. Then we relax the integer programming to a standard linear programming problem. Therefore, the global optimum can be quickly obtained using the shortest path faster algorithm. The proposed method avoids the difficulties of integer programming, and it has a lower worst-case complexity than competing methods but better robustness and tracking accuracy in complex environments. Simulation results show that the proposed algorithm takes less time than other state-of-the-art methods and can operate in real time.

  15. Multiple Object Tracking Using the Shortest Path Faster Association Algorithm

    PubMed Central

    Liu, Heping; Liu, Huaping; Yang, Bin

    2014-01-01

    To solve the persistently multiple object tracking in cluttered environments, this paper presents a novel tracking association approach based on the shortest path faster algorithm. First, the multiple object tracking is formulated as an integer programming problem of the flow network. Then we relax the integer programming to a standard linear programming problem. Therefore, the global optimum can be quickly obtained using the shortest path faster algorithm. The proposed method avoids the difficulties of integer programming, and it has a lower worst-case complexity than competing methods but better robustness and tracking accuracy in complex environments. Simulation results show that the proposed algorithm takes less time than other state-of-the-art methods and can operate in real time. PMID:25215322

  16. Deterministic object tracking using Gaussian ringlet and directional edge features

    NASA Astrophysics Data System (ADS)

    Krieger, Evan W.; Sidike, Paheding; Aspiras, Theus; Asari, Vijayan K.

    2017-10-01

    Challenges currently existing for intensity-based histogram feature tracking methods in wide area motion imagery (WAMI) data include object structural information distortions, background variations, and object scale change. These issues are caused by different pavement or ground types and from changing the sensor or altitude. All of these challenges need to be overcome in order to have a robust object tracker, while attaining a computation time appropriate for real-time processing. To achieve this, we present a novel method, Directional Ringlet Intensity Feature Transform (DRIFT), which employs Kirsch kernel filtering for edge features and a ringlet feature mapping for rotational invariance. The method also includes an automatic scale change component to obtain accurate object boundaries and improvements for lowering computation times. We evaluated the DRIFT algorithm on two challenging WAMI datasets, namely Columbus Large Image Format (CLIF) and Large Area Image Recorder (LAIR), to evaluate its robustness and efficiency. Additional evaluations on general tracking video sequences are performed using the Visual Tracker Benchmark and Visual Object Tracking 2014 databases to demonstrate the algorithms ability with additional challenges in long complex sequences including scale change. Experimental results show that the proposed approach yields competitive results compared to state-of-the-art object tracking methods on the testing datasets.

  17. Memory-Based Multiagent Coevolution Modeling for Robust Moving Object Tracking

    PubMed Central

    Wang, Yanjiang; Qi, Yujuan; Li, Yongping

    2013-01-01

    The three-stage human brain memory model is incorporated into a multiagent coevolutionary process for finding the best match of the appearance of an object, and a memory-based multiagent coevolution algorithm for robust tracking the moving objects is presented in this paper. Each agent can remember, retrieve, or forget the appearance of the object through its own memory system by its own experience. A number of such memory-based agents are randomly distributed nearby the located object region and then mapped onto a 2D lattice-like environment for predicting the new location of the object by their coevolutionary behaviors, such as competition, recombination, and migration. Experimental results show that the proposed method can deal with large appearance changes and heavy occlusions when tracking a moving object. It can locate the correct object after the appearance changed or the occlusion recovered and outperforms the traditional particle filter-based tracking methods. PMID:23843739

  18. Memory-based multiagent coevolution modeling for robust moving object tracking.

    PubMed

    Wang, Yanjiang; Qi, Yujuan; Li, Yongping

    2013-01-01

    The three-stage human brain memory model is incorporated into a multiagent coevolutionary process for finding the best match of the appearance of an object, and a memory-based multiagent coevolution algorithm for robust tracking the moving objects is presented in this paper. Each agent can remember, retrieve, or forget the appearance of the object through its own memory system by its own experience. A number of such memory-based agents are randomly distributed nearby the located object region and then mapped onto a 2D lattice-like environment for predicting the new location of the object by their coevolutionary behaviors, such as competition, recombination, and migration. Experimental results show that the proposed method can deal with large appearance changes and heavy occlusions when tracking a moving object. It can locate the correct object after the appearance changed or the occlusion recovered and outperforms the traditional particle filter-based tracking methods.

  19. An experimental comparison of online object-tracking algorithms

    NASA Astrophysics Data System (ADS)

    Wang, Qing; Chen, Feng; Xu, Wenli; Yang, Ming-Hsuan

    2011-09-01

    This paper reviews and evaluates several state-of-the-art online object tracking algorithms. Notwithstanding decades of efforts, object tracking remains a challenging problem due to factors such as illumination, pose, scale, deformation, motion blur, noise, and occlusion. To account for appearance change, most recent tracking algorithms focus on robust object representations and effective state prediction. In this paper, we analyze the components of each tracking method and identify their key roles in dealing with specific challenges, thereby shedding light on how to choose and design algorithms for different situations. We compare state-of-the-art online tracking methods including the IVT,1 VRT,2 FragT,3 BoostT,4 SemiT,5 BeSemiT,6 L1T,7 MILT,8 VTD9 and TLD10 algorithms on numerous challenging sequences, and evaluate them with different performance metrics. The qualitative and quantitative comparative results demonstrate the strength and weakness of these algorithms.

  20. Fast object reconstruction in block-based compressive low-light-level imaging

    NASA Astrophysics Data System (ADS)

    Ke, Jun; Sui, Dong; Wei, Ping

    2014-11-01

    In this paper we propose a simply yet effective and efficient method for long-term object tracking. Different from traditional visual tracking method which mainly depends on frame-to-frame correspondence, we combine high-level semantic information with low-level correspondences. Our framework is formulated in a confidence selection framework, which allows our system to recover from drift and partly deal with occlusion problem. To summarize, our algorithm can be roughly decomposed in a initialization stage and a tracking stage. In the initialization stage, an offline classifier is trained to get the object appearance information in category level. When the video stream is coming, the pre-trained offline classifier is used for detecting the potential target and initializing the tracking stage. In the tracking stage, it consists of three parts which are online tracking part, offline tracking part and confidence judgment part. Online tracking part captures the specific target appearance information while detection part localizes the object based on the pre-trained offline classifier. Since there is no data dependence between online tracking and offline detection, these two parts are running in parallel to significantly improve the processing speed. A confidence selection mechanism is proposed to optimize the object location. Besides, we also propose a simple mechanism to judge the absence of the object. If the target is lost, the pre-trained offline classifier is utilized to re-initialize the whole algorithm as long as the target is re-located. During experiment, we evaluate our method on several challenging video sequences and demonstrate competitive results.

  1. An object tracking method based on guided filter for night fusion image

    NASA Astrophysics Data System (ADS)

    Qian, Xiaoyan; Wang, Yuedong; Han, Lei

    2016-01-01

    Online object tracking is a challenging problem as it entails learning an effective model to account for appearance change caused by intrinsic and extrinsic factors. In this paper, we propose a novel online object tracking with guided image filter for accurate and robust night fusion image tracking. Firstly, frame difference is applied to produce the coarse target, which helps to generate observation models. Under the restriction of these models and local source image, guided filter generates sufficient and accurate foreground target. Then accurate boundaries of the target can be extracted from detection results. Finally timely updating for observation models help to avoid tracking shift. Both qualitative and quantitative evaluations on challenging image sequences demonstrate that the proposed tracking algorithm performs favorably against several state-of-art methods.

  2. Autonomous space target recognition and tracking approach using star sensors based on a Kalman filter.

    PubMed

    Ye, Tao; Zhou, Fuqiang

    2015-04-10

    When imaged by detectors, space targets (including satellites and debris) and background stars have similar point-spread functions, and both objects appear to change as detectors track targets. Therefore, traditional tracking methods cannot separate targets from stars and cannot directly recognize targets in 2D images. Consequently, we propose an autonomous space target recognition and tracking approach using a star sensor technique and a Kalman filter (KF). A two-step method for subpixel-scale detection of star objects (including stars and targets) is developed, and the combination of the star sensor technique and a KF is used to track targets. The experimental results show that the proposed method is adequate for autonomously recognizing and tracking space targets.

  3. Long-term object tracking combined offline with online learning

    NASA Astrophysics Data System (ADS)

    Hu, Mengjie; Wei, Zhenzhong; Zhang, Guangjun

    2016-04-01

    We propose a simple yet effective method for long-term object tracking. Different from the traditional visual tracking method, which mainly depends on frame-to-frame correspondence, we combine high-level semantic information with low-level correspondences. Our framework is formulated in a confidence selection framework, which allows our system to recover from drift and partly deal with occlusion. To summarize, our algorithm can be roughly decomposed into an initialization stage and a tracking stage. In the initialization stage, an offline detector is trained to get the object appearance information at the category level, which is used for detecting the potential target and initializing the tracking stage. The tracking stage consists of three modules: the online tracking module, detection module, and decision module. A pretrained detector is used for maintaining drift of the online tracker, while the online tracker is used for filtering out false positive detections. A confidence selection mechanism is proposed to optimize the object location based on the online tracker and detection. If the target is lost, the pretrained detector is utilized to reinitialize the whole algorithm when the target is relocated. During experiments, we evaluate our method on several challenging video sequences, and it demonstrates huge improvement compared with detection and online tracking only.

  4. Method for targetless tracking subpixel in-plane movements.

    PubMed

    Espinosa, Julian; Perez, Jorge; Ferrer, Belen; Mas, David

    2015-09-01

    We present a targetless motion tracking method for detecting planar movements with subpixel accuracy. This method is based on the computation and tracking of the intersection of two nonparallel straight-line segments in the image of a moving object in a scene. The method is simple and easy to implement because no complex structures have to be detected. It has been tested and validated using a lab experiment consisting of a vibrating object that was recorded with a high-speed camera working at 1000 fps. We managed to track displacements with an accuracy of hundredths of pixel or even of thousandths of pixel in the case of tracking harmonic vibrations. The method is widely applicable because it can be used for distance measuring amplitude and frequency of vibrations with a vision system.

  5. Tracking and people counting using Particle Filter Method

    NASA Astrophysics Data System (ADS)

    Sulistyaningrum, D. R.; Setiyono, B.; Rizky, M. S.

    2018-03-01

    In recent years, technology has developed quite rapidly, especially in the field of object tracking. Moreover, if the object under study is a person and the number of people a lot. The purpose of this research is to apply Particle Filter method for tracking and counting people in certain area. Tracking people will be rather difficult if there are some obstacles, one of which is occlusion. The stages of tracking and people counting scheme in this study include pre-processing, segmentation using Gaussian Mixture Model (GMM), tracking using particle filter, and counting based on centroid. The Particle Filter method uses the estimated motion included in the model used. The test results show that the tracking and people counting can be done well with an average accuracy of 89.33% and 77.33% respectively from six videos test data. In the process of tracking people, the results are good if there is partial occlusion and no occlusion

  6. A Deep-Structured Conditional Random Field Model for Object Silhouette Tracking

    PubMed Central

    Shafiee, Mohammad Javad; Azimifar, Zohreh; Wong, Alexander

    2015-01-01

    In this work, we introduce a deep-structured conditional random field (DS-CRF) model for the purpose of state-based object silhouette tracking. The proposed DS-CRF model consists of a series of state layers, where each state layer spatially characterizes the object silhouette at a particular point in time. The interactions between adjacent state layers are established by inter-layer connectivity dynamically determined based on inter-frame optical flow. By incorporate both spatial and temporal context in a dynamic fashion within such a deep-structured probabilistic graphical model, the proposed DS-CRF model allows us to develop a framework that can accurately and efficiently track object silhouettes that can change greatly over time, as well as under different situations such as occlusion and multiple targets within the scene. Experiment results using video surveillance datasets containing different scenarios such as occlusion and multiple targets showed that the proposed DS-CRF approach provides strong object silhouette tracking performance when compared to baseline methods such as mean-shift tracking, as well as state-of-the-art methods such as context tracking and boosted particle filtering. PMID:26313943

  7. Tracking of multiple targets using online learning for reference model adaptation.

    PubMed

    Pernkopf, Franz

    2008-12-01

    Recently, much work has been done in multiple object tracking on the one hand and on reference model adaptation for a single-object tracker on the other side. In this paper, we do both tracking of multiple objects (faces of people) in a meeting scenario and online learning to incrementally update the models of the tracked objects to account for appearance changes during tracking. Additionally, we automatically initialize and terminate tracking of individual objects based on low-level features, i.e., face color, face size, and object movement. Many methods unlike our approach assume that the target region has been initialized by hand in the first frame. For tracking, a particle filter is incorporated to propagate sample distributions over time. We discuss the close relationship between our implemented tracker based on particle filters and genetic algorithms. Numerous experiments on meeting data demonstrate the capabilities of our tracking approach. Additionally, we provide an empirical verification of the reference model learning during tracking of indoor and outdoor scenes which supports a more robust tracking. Therefore, we report the average of the standard deviation of the trajectories over numerous tracking runs depending on the learning rate.

  8. Online Hierarchical Sparse Representation of Multifeature for Robust Object Tracking

    PubMed Central

    Qu, Shiru

    2016-01-01

    Object tracking based on sparse representation has given promising tracking results in recent years. However, the trackers under the framework of sparse representation always overemphasize the sparse representation and ignore the correlation of visual information. In addition, the sparse coding methods only encode the local region independently and ignore the spatial neighborhood information of the image. In this paper, we propose a robust tracking algorithm. Firstly, multiple complementary features are used to describe the object appearance; the appearance model of the tracked target is modeled by instantaneous and stable appearance features simultaneously. A two-stage sparse-coded method which takes the spatial neighborhood information of the image patch and the computation burden into consideration is used to compute the reconstructed object appearance. Then, the reliability of each tracker is measured by the tracking likelihood function of transient and reconstructed appearance models. Finally, the most reliable tracker is obtained by a well established particle filter framework; the training set and the template library are incrementally updated based on the current tracking results. Experiment results on different challenging video sequences show that the proposed algorithm performs well with superior tracking accuracy and robustness. PMID:27630710

  9. Nonstationary EO/IR Clutter Suppression and Dim Object Tracking

    DTIC Science & Technology

    2010-01-01

    Brown, A., and Brown, J., Enhanced Algorithms for EO /IR Electronic Stabilization, Clutter Suppression, and Track - Before - Detect for Multiple Low...estimation-suppression and nonlinear filtering-based multiple-object track - before - detect . These algorithms are suitable for integration into...In such cases, it is imperative to develop efficient real or near-real time tracking before detection methods. This paper continues the work started

  10. Wireless sensor networks for heritage object deformation detection and tracking algorithm.

    PubMed

    Xie, Zhijun; Huang, Guangyan; Zarei, Roozbeh; He, Jing; Zhang, Yanchun; Ye, Hongwu

    2014-10-31

    Deformation is the direct cause of heritage object collapse. It is significant to monitor and signal the early warnings of the deformation of heritage objects. However, traditional heritage object monitoring methods only roughly monitor a simple-shaped heritage object as a whole, but cannot monitor complicated heritage objects, which may have a large number of surfaces inside and outside. Wireless sensor networks, comprising many small-sized, low-cost, low-power intelligent sensor nodes, are more useful to detect the deformation of every small part of the heritage objects. Wireless sensor networks need an effective mechanism to reduce both the communication costs and energy consumption in order to monitor the heritage objects in real time. In this paper, we provide an effective heritage object deformation detection and tracking method using wireless sensor networks (EffeHDDT). In EffeHDDT, we discover a connected core set of sensor nodes to reduce the communication cost for transmitting and collecting the data of the sensor networks. Particularly, we propose a heritage object boundary detecting and tracking mechanism. Both theoretical analysis and experimental results demonstrate that our EffeHDDT method outperforms the existing methods in terms of network traffic and the precision of the deformation detection.

  11. Wireless Sensor Networks for Heritage Object Deformation Detection and Tracking Algorithm

    PubMed Central

    Xie, Zhijun; Huang, Guangyan; Zarei, Roozbeh; He, Jing; Zhang, Yanchun; Ye, Hongwu

    2014-01-01

    Deformation is the direct cause of heritage object collapse. It is significant to monitor and signal the early warnings of the deformation of heritage objects. However, traditional heritage object monitoring methods only roughly monitor a simple-shaped heritage object as a whole, but cannot monitor complicated heritage objects, which may have a large number of surfaces inside and outside. Wireless sensor networks, comprising many small-sized, low-cost, low-power intelligent sensor nodes, are more useful to detect the deformation of every small part of the heritage objects. Wireless sensor networks need an effective mechanism to reduce both the communication costs and energy consumption in order to monitor the heritage objects in real time. In this paper, we provide an effective heritage object deformation detection and tracking method using wireless sensor networks (EffeHDDT). In EffeHDDT, we discover a connected core set of sensor nodes to reduce the communication cost for transmitting and collecting the data of the sensor networks. Particularly, we propose a heritage object boundary detecting and tracking mechanism. Both theoretical analysis and experimental results demonstrate that our EffeHDDT method outperforms the existing methods in terms of network traffic and the precision of the deformation detection. PMID:25365458

  12. A theory of phase singularities for image representation and its applications to object tracking and image matching.

    PubMed

    Qiao, Yu; Wang, Wei; Minematsu, Nobuaki; Liu, Jianzhuang; Takeda, Mitsuo; Tang, Xiaoou

    2009-10-01

    This paper studies phase singularities (PSs) for image representation. We show that PSs calculated with Laguerre-Gauss filters contain important information and provide a useful tool for image analysis. PSs are invariant to image translation and rotation. We introduce several invariant features to characterize the core structures around PSs and analyze the stability of PSs to noise addition and scale change. We also study the characteristics of PSs in a scale space, which lead to a method to select key scales along phase singularity curves. We demonstrate two applications of PSs: object tracking and image matching. In object tracking, we use the iterative closest point algorithm to determine the correspondences of PSs between two adjacent frames. The use of PSs allows us to precisely determine the motions of tracked objects. In image matching, we combine PSs and scale-invariant feature transform (SIFT) descriptor to deal with the variations between two images and examine the proposed method on a benchmark database. The results indicate that our method can find more correct matching pairs with higher repeatability rates than some well-known methods.

  13. Feature point based 3D tracking of multiple fish from multi-view images

    PubMed Central

    Qian, Zhi-Ming

    2017-01-01

    A feature point based method is proposed for tracking multiple fish in 3D space. First, a simplified representation of the object is realized through construction of two feature point models based on its appearance characteristics. After feature points are classified into occluded and non-occluded types, matching and association are performed, respectively. Finally, the object's motion trajectory in 3D space is obtained through integrating multi-view tracking results. Experimental results show that the proposed method can simultaneously track 3D motion trajectories for up to 10 fish accurately and robustly. PMID:28665966

  14. Feature point based 3D tracking of multiple fish from multi-view images.

    PubMed

    Qian, Zhi-Ming; Chen, Yan Qiu

    2017-01-01

    A feature point based method is proposed for tracking multiple fish in 3D space. First, a simplified representation of the object is realized through construction of two feature point models based on its appearance characteristics. After feature points are classified into occluded and non-occluded types, matching and association are performed, respectively. Finally, the object's motion trajectory in 3D space is obtained through integrating multi-view tracking results. Experimental results show that the proposed method can simultaneously track 3D motion trajectories for up to 10 fish accurately and robustly.

  15. Correlation and 3D-tracking of objects by pointing sensors

    DOEpatents

    Griesmeyer, J. Michael

    2017-04-04

    A method and system for tracking at least one object using a plurality of pointing sensors and a tracking system are disclosed herein. In a general embodiment, the tracking system is configured to receive a series of observation data relative to the at least one object over a time base for each of the plurality of pointing sensors. The observation data may include sensor position data, pointing vector data and observation error data. The tracking system may further determine a triangulation point using a magnitude of a shortest line connecting a line of sight value from each of the series of observation data from each of the plurality of sensors to the at least one object, and perform correlation processing on the observation data and triangulation point to determine if at least two of the plurality of sensors are tracking the same object. Observation data may also be branched, associated and pruned using new incoming observation data.

  16. An Objective Comparison of Cell Tracking Algorithms

    PubMed Central

    Ulman, Vladimír; Maška, Martin; Magnusson, Klas E. G.; Ronneberger, Olaf; Haubold, Carsten; Harder, Nathalie; Matula, Pavel; Matula, Petr; Svoboda, David; Radojevic, Miroslav; Smal, Ihor; Rohr, Karl; Jaldén, Joakim; Blau, Helen M.; Dzyubachyk, Oleh; Lelieveldt, Boudewijn; Xiao, Pengdong; Li, Yuexiang; Cho, Siu-Yeung; Dufour, Alexandre C.; Olivo-Marin, Jean-Christophe; Reyes-Aldasoro, Constantino C.; Solis-Lemus, Jose A.; Bensch, Robert; Brox, Thomas; Stegmaier, Johannes; Mikut, Ralf; Wolf, Steffen; Hamprecht, Fred. A.; Esteves, Tiago; Quelhas, Pedro; Demirel, Ömer; Malmström, Lars; Jug, Florian; Tomancak, Pavel; Meijering, Erik; Muñoz-Barrutia, Arrate; Kozubek, Michal; Ortiz-de-Solorzano, Carlos

    2017-01-01

    We present a combined report on the results of three editions of the Cell Tracking Challenge, an ongoing initiative aimed at promoting the development and objective evaluation of cell tracking algorithms. With twenty-one participating algorithms and a data repository consisting of thirteen datasets of various microscopy modalities, the challenge displays today’s state of the art in the field. We analyze the results using performance measures for segmentation and tracking that rank all participating methods. We also analyze the performance of all algorithms in terms of biological measures and their practical usability. Even though some methods score high in all technical aspects, not a single one obtains fully correct solutions. We show that methods that either take prior information into account using learning strategies or analyze cells in a global spatio-temporal video context perform better than other methods under the segmentation and tracking scenarios included in the challenge. PMID:29083403

  17. An objective comparison of cell-tracking algorithms.

    PubMed

    Ulman, Vladimír; Maška, Martin; Magnusson, Klas E G; Ronneberger, Olaf; Haubold, Carsten; Harder, Nathalie; Matula, Pavel; Matula, Petr; Svoboda, David; Radojevic, Miroslav; Smal, Ihor; Rohr, Karl; Jaldén, Joakim; Blau, Helen M; Dzyubachyk, Oleh; Lelieveldt, Boudewijn; Xiao, Pengdong; Li, Yuexiang; Cho, Siu-Yeung; Dufour, Alexandre C; Olivo-Marin, Jean-Christophe; Reyes-Aldasoro, Constantino C; Solis-Lemus, Jose A; Bensch, Robert; Brox, Thomas; Stegmaier, Johannes; Mikut, Ralf; Wolf, Steffen; Hamprecht, Fred A; Esteves, Tiago; Quelhas, Pedro; Demirel, Ömer; Malmström, Lars; Jug, Florian; Tomancak, Pavel; Meijering, Erik; Muñoz-Barrutia, Arrate; Kozubek, Michal; Ortiz-de-Solorzano, Carlos

    2017-12-01

    We present a combined report on the results of three editions of the Cell Tracking Challenge, an ongoing initiative aimed at promoting the development and objective evaluation of cell segmentation and tracking algorithms. With 21 participating algorithms and a data repository consisting of 13 data sets from various microscopy modalities, the challenge displays today's state-of-the-art methodology in the field. We analyzed the challenge results using performance measures for segmentation and tracking that rank all participating methods. We also analyzed the performance of all of the algorithms in terms of biological measures and practical usability. Although some methods scored high in all technical aspects, none obtained fully correct solutions. We found that methods that either take prior information into account using learning strategies or analyze cells in a global spatiotemporal video context performed better than other methods under the segmentation and tracking scenarios included in the challenge.

  18. Development of Matched (migratory Analytical Time Change Easy Detection) Method for Satellite-Tracked Migratory Birds

    NASA Astrophysics Data System (ADS)

    Doko, Tomoko; Chen, Wenbo; Higuchi, Hiroyoshi

    2016-06-01

    Satellite tracking technology has been used to reveal the migration patterns and flyways of migratory birds. In general, bird migration can be classified according to migration status. These statuses include the wintering period, spring migration, breeding period, and autumn migration. To determine the migration status, periods of these statuses should be individually determined, but there is no objective method to define 'a threshold date' for when an individual bird changes its status. The research objective is to develop an effective and objective method to determine threshold dates of migration status based on satellite-tracked data. The developed method was named the "MATCHED (Migratory Analytical Time Change Easy Detection) method". In order to demonstrate the method, data acquired from satellite-tracked Tundra Swans were used. MATCHED method is composed by six steps: 1) dataset preparation, 2) time frame creation, 3) automatic identification, 4) visualization of change points, 5) interpretation, and 6) manual correction. Accuracy was tested. In general, MATCHED method was proved powerful to identify the change points between migration status as well as stopovers. Nevertheless, identifying "exact" threshold dates is still challenging. Limitation and application of this method was discussed.

  19. Another Way of Tracking Moving Objects Using Short Video Clips

    ERIC Educational Resources Information Center

    Vera, Francisco; Romanque, Cristian

    2009-01-01

    Physics teachers have long employed video clips to study moving objects in their classrooms and instructional labs. A number of approaches exist, both free and commercial, for tracking the coordinates of a point using video. The main characteristics of the method described in this paper are: it is simple to use; coordinates can be tracked using…

  20. Object Tracking and Target Reacquisition Based on 3-D Range Data for Moving Vehicles

    PubMed Central

    Lee, Jehoon; Lankton, Shawn; Tannenbaum, Allen

    2013-01-01

    In this paper, we propose an approach for tracking an object of interest based on 3-D range data. We employ particle filtering and active contours to simultaneously estimate the global motion of the object and its local deformations. The proposed algorithm takes advantage of range information to deal with the challenging (but common) situation in which the tracked object disappears from the image domain entirely and reappears later. To cope with this problem, a method based on principle component analysis (PCA) of shape information is proposed. In the proposed method, if the target disappears out of frame, shape similarity energy is used to detect target candidates that match a template shape learned online from previously observed frames. Thus, we require no a priori knowledge of the target’s shape. Experimental results show the practical applicability and robustness of the proposed algorithm in realistic tracking scenarios. PMID:21486717

  1. Determination of feature generation methods for PTZ camera object tracking

    NASA Astrophysics Data System (ADS)

    Doyle, Daniel D.; Black, Jonathan T.

    2012-06-01

    Object detection and tracking using computer vision (CV) techniques have been widely applied to sensor fusion applications. Many papers continue to be written that speed up performance and increase learning of artificially intelligent systems through improved algorithms, workload distribution, and information fusion. Military application of real-time tracking systems is becoming more and more complex with an ever increasing need of fusion and CV techniques to actively track and control dynamic systems. Examples include the use of metrology systems for tracking and measuring micro air vehicles (MAVs) and autonomous navigation systems for controlling MAVs. This paper seeks to contribute to the determination of select tracking algorithms that best track a moving object using a pan/tilt/zoom (PTZ) camera applicable to both of the examples presented. The select feature generation algorithms compared in this paper are the trained Scale-Invariant Feature Transform (SIFT) and Speeded Up Robust Features (SURF), the Mixture of Gaussians (MoG) background subtraction method, the Lucas- Kanade optical flow method (2000) and the Farneback optical flow method (2003). The matching algorithm used in this paper for the trained feature generation algorithms is the Fast Library for Approximate Nearest Neighbors (FLANN). The BSD licensed OpenCV library is used extensively to demonstrate the viability of each algorithm and its performance. Initial testing is performed on a sequence of images using a stationary camera. Further testing is performed on a sequence of images such that the PTZ camera is moving in order to capture the moving object. Comparisons are made based upon accuracy, speed and memory.

  2. Extracting 3d Semantic Information from Video Surveillance System Using Deep Learning

    NASA Astrophysics Data System (ADS)

    Zhang, J. S.; Cao, J.; Mao, B.; Shen, D. Q.

    2018-04-01

    At present, intelligent video analysis technology has been widely used in various fields. Object tracking is one of the important part of intelligent video surveillance, but the traditional target tracking technology based on the pixel coordinate system in images still exists some unavoidable problems. Target tracking based on pixel can't reflect the real position information of targets, and it is difficult to track objects across scenes. Based on the analysis of Zhengyou Zhang's camera calibration method, this paper presents a method of target tracking based on the target's space coordinate system after converting the 2-D coordinate of the target into 3-D coordinate. It can be seen from the experimental results: Our method can restore the real position change information of targets well, and can also accurately get the trajectory of the target in space.

  3. A Real-Time Orbit Determination Method for Smooth Transition from Optical Tracking to Laser Ranging of Debris

    PubMed Central

    Li, Bin; Sang, Jizhang; Zhang, Zhongping

    2016-01-01

    A critical requirement to achieve high efficiency of debris laser tracking is to have sufficiently accurate orbit predictions (OP) in both the pointing direction (better than 20 arc seconds) and distance from the tracking station to the debris objects, with the former more important than the latter because of the narrow laser beam. When the two line element (TLE) is used to provide the orbit predictions, the resultant pointing errors are usually on the order of tens to hundreds of arc seconds. In practice, therefore, angular observations of debris objects are first collected using an optical tracking sensor, and then used to guide the laser beam pointing to the objects. The manual guidance may cause interrupts to the laser tracking, and consequently loss of valuable laser tracking data. This paper presents a real-time orbit determination (OD) and prediction method to realize smooth and efficient debris laser tracking. The method uses TLE-computed positions and angles over a short-arc of less than 2 min as observations in an OD process where simplified force models are considered. After the OD convergence, the OP is performed from the last observation epoch to the end of the tracking pass. Simulation and real tracking data processing results show that the pointing prediction errors are usually less than 10″, and the distance errors less than 100 m, therefore, the prediction accuracy is sufficient for the blind laser tracking. PMID:27347958

  4. Measuring Positions of Objects using Two or More Cameras

    NASA Technical Reports Server (NTRS)

    Klinko, Steve; Lane, John; Nelson, Christopher

    2008-01-01

    An improved method of computing positions of objects from digitized images acquired by two or more cameras (see figure) has been developed for use in tracking debris shed by a spacecraft during and shortly after launch. The method is also readily adaptable to such applications as (1) tracking moving and possibly interacting objects in other settings in order to determine causes of accidents and (2) measuring positions of stationary objects, as in surveying. Images acquired by cameras fixed to the ground and/or cameras mounted on tracking telescopes can be used in this method. In this method, processing of image data starts with creation of detailed computer- aided design (CAD) models of the objects to be tracked. By rotating, translating, resizing, and overlaying the models with digitized camera images, parameters that characterize the position and orientation of the camera can be determined. The final position error depends on how well the centroids of the objects in the images are measured; how accurately the centroids are interpolated for synchronization of cameras; and how effectively matches are made to determine rotation, scaling, and translation parameters. The method involves use of the perspective camera model (also denoted the point camera model), which is one of several mathematical models developed over the years to represent the relationships between external coordinates of objects and the coordinates of the objects as they appear on the image plane in a camera. The method also involves extensive use of the affine camera model, in which the distance from the camera to an object (or to a small feature on an object) is assumed to be much greater than the size of the object (or feature), resulting in a truly two-dimensional image. The affine camera model does not require advance knowledge of the positions and orientations of the cameras. This is because ultimately, positions and orientations of the cameras and of all objects are computed in a coordinate system attached to one object as defined in its CAD model.

  5. Multi-view video segmentation and tracking for video surveillance

    NASA Astrophysics Data System (ADS)

    Mohammadi, Gelareh; Dufaux, Frederic; Minh, Thien Ha; Ebrahimi, Touradj

    2009-05-01

    Tracking moving objects is a critical step for smart video surveillance systems. Despite the complexity increase, multiple camera systems exhibit the undoubted advantages of covering wide areas and handling the occurrence of occlusions by exploiting the different viewpoints. The technical problems in multiple camera systems are several: installation, calibration, objects matching, switching, data fusion, and occlusion handling. In this paper, we address the issue of tracking moving objects in an environment covered by multiple un-calibrated cameras with overlapping fields of view, typical of most surveillance setups. Our main objective is to create a framework that can be used to integrate objecttracking information from multiple video sources. Basically, the proposed technique consists of the following steps. We first perform a single-view tracking algorithm on each camera view, and then apply a consistent object labeling algorithm on all views. In the next step, we verify objects in each view separately for inconsistencies. Correspondent objects are extracted through a Homography transform from one view to the other and vice versa. Having found the correspondent objects of different views, we partition each object into homogeneous regions. In the last step, we apply the Homography transform to find the region map of first view in the second view and vice versa. For each region (in the main frame and mapped frame) a set of descriptors are extracted to find the best match between two views based on region descriptors similarity. This method is able to deal with multiple objects. Track management issues such as occlusion, appearance and disappearance of objects are resolved using information from all views. This method is capable of tracking rigid and deformable objects and this versatility lets it to be suitable for different application scenarios.

  6. Infrared tag and track technique

    DOEpatents

    Partin, Judy K.; Stone, Mark L.; Slater, John; Davidson, James R.

    2007-12-04

    A method of covertly tagging an object for later tracking includes providing a material capable of at least one of being applied to the object and being included in the object, which material includes deuterium; and performing at least one of applying the material to the object and including the material in the object in a manner in which in the appearance of the object is not changed, to the naked eye.

  7. Using LabView for real-time monitoring and tracking of multiple biological objects

    NASA Astrophysics Data System (ADS)

    Nikolskyy, Aleksandr I.; Krasilenko, Vladimir G.; Bilynsky, Yosyp Y.; Starovier, Anzhelika

    2017-04-01

    Today real-time studying and tracking of movement dynamics of various biological objects is important and widely researched. Features of objects, conditions of their visualization and model parameters strongly influence the choice of optimal methods and algorithms for a specific task. Therefore, to automate the processes of adaptation of recognition tracking algorithms, several Labview project trackers are considered in the article. Projects allow changing templates for training and retraining the system quickly. They adapt to the speed of objects and statistical characteristics of noise in images. New functions of comparison of images or their features, descriptors and pre-processing methods will be discussed. The experiments carried out to test the trackers on real video files will be presented and analyzed.

  8. Online Object Tracking, Learning and Parsing with And-Or Graphs.

    PubMed

    Wu, Tianfu; Lu, Yang; Zhu, Song-Chun

    2017-12-01

    This paper presents a method, called AOGTracker, for simultaneously tracking, learning and parsing (TLP) of unknown objects in video sequences with a hierarchical and compositional And-Or graph (AOG) representation. The TLP method is formulated in the Bayesian framework with a spatial and a temporal dynamic programming (DP) algorithms inferring object bounding boxes on-the-fly. During online learning, the AOG is discriminatively learned using latent SVM [1] to account for appearance (e.g., lighting and partial occlusion) and structural (e.g., different poses and viewpoints) variations of a tracked object, as well as distractors (e.g., similar objects) in background. Three key issues in online inference and learning are addressed: (i) maintaining purity of positive and negative examples collected online, (ii) controling model complexity in latent structure learning, and (iii) identifying critical moments to re-learn the structure of AOG based on its intrackability. The intrackability measures uncertainty of an AOG based on its score maps in a frame. In experiments, our AOGTracker is tested on two popular tracking benchmarks with the same parameter setting: the TB-100/50/CVPR2013 benchmarks  , [3] , and the VOT benchmarks [4] -VOT 2013, 2014, 2015 and TIR2015 (thermal imagery tracking). In the former, our AOGTracker outperforms state-of-the-art tracking algorithms including two trackers based on deep convolutional network   [5] , [6] . In the latter, our AOGTracker outperforms all other trackers in VOT2013 and is comparable to the state-of-the-art methods in VOT2014, 2015 and TIR2015.

  9. MOLECULAR TRACKING FECAL CONTAMINATION IN SURFACE WATERS: 16S RDNA VERSUS METAGENOMICS APPROACHES

    EPA Science Inventory

    Microbial source tracking methods need to be sensitive and exhibit temporal and geographic stability in order to provide meaningful data in field studies. The objective of this study was to use a combination of PCR-based methods to track cow fecal contamination in two watersheds....

  10. Dual linear structured support vector machine tracking method via scale correlation filter

    NASA Astrophysics Data System (ADS)

    Li, Weisheng; Chen, Yanquan; Xiao, Bin; Feng, Chen

    2018-01-01

    Adaptive tracking-by-detection methods based on structured support vector machine (SVM) performed well on recent visual tracking benchmarks. However, these methods did not adopt an effective strategy of object scale estimation, which limits the overall tracking performance. We present a tracking method based on a dual linear structured support vector machine (DLSSVM) with a discriminative scale correlation filter. The collaborative tracker comprised of a DLSSVM model and a scale correlation filter obtains good results in tracking target position and scale estimation. The fast Fourier transform is applied for detection. Extensive experiments show that our tracking approach outperforms many popular top-ranking trackers. On a benchmark including 100 challenging video sequences, the average precision of the proposed method is 82.8%.

  11. Probabilistic multi-person localisation and tracking in image sequences

    NASA Astrophysics Data System (ADS)

    Klinger, T.; Rottensteiner, F.; Heipke, C.

    2017-05-01

    The localisation and tracking of persons in image sequences in commonly guided by recursive filters. Especially in a multi-object tracking environment, where mutual occlusions are inherent, the predictive model is prone to drift away from the actual target position when not taking context into account. Further, if the image-based observations are imprecise, the trajectory is prone to be updated towards a wrong position. In this work we address both these problems by using a new predictive model on the basis of Gaussian Process Regression, and by using generic object detection, as well as instance-specific classification, for refined localisation. The predictive model takes into account the motion of every tracked pedestrian in the scene and the prediction is executed with respect to the velocities of neighbouring persons. In contrast to existing methods our approach uses a Dynamic Bayesian Network in which the state vector of a recursive Bayes filter, as well as the location of the tracked object in the image, are modelled as unknowns. This allows the detection to be corrected before it is incorporated into the recursive filter. Our method is evaluated on a publicly available benchmark dataset and outperforms related methods in terms of geometric precision and tracking accuracy.

  12. Nonlinear dynamic model for visual object tracking on Grassmann manifolds with partial occlusion handling.

    PubMed

    Khan, Zulfiqar Hasan; Gu, Irene Yu-Hua

    2013-12-01

    This paper proposes a novel Bayesian online learning and tracking scheme for video objects on Grassmann manifolds. Although manifold visual object tracking is promising, large and fast nonplanar (or out-of-plane) pose changes and long-term partial occlusions of deformable objects in video remain a challenge that limits the tracking performance. The proposed method tackles these problems with the main novelties on: 1) online estimation of object appearances on Grassmann manifolds; 2) optimal criterion-based occlusion handling for online updating of object appearances; 3) a nonlinear dynamic model for both the appearance basis matrix and its velocity; and 4) Bayesian formulations, separately for the tracking process and the online learning process, that are realized by employing two particle filters: one is on the manifold for generating appearance particles and another on the linear space for generating affine box particles. Tracking and online updating are performed in an alternating fashion to mitigate the tracking drift. Experiments using the proposed tracker on videos captured by a single dynamic/static camera have shown robust tracking performance, particularly for scenarios when target objects contain significant nonplanar pose changes and long-term partial occlusions. Comparisons with eight existing state-of-the-art/most relevant manifold/nonmanifold trackers with evaluations have provided further support to the proposed scheme.

  13. An efficient sequential approach to tracking multiple objects through crowds for real-time intelligent CCTV systems.

    PubMed

    Li, Liyuan; Huang, Weimin; Gu, Irene Yu-Hua; Luo, Ruijiang; Tian, Qi

    2008-10-01

    Efficiency and robustness are the two most important issues for multiobject tracking algorithms in real-time intelligent video surveillance systems. We propose a novel 2.5-D approach to real-time multiobject tracking in crowds, which is formulated as a maximum a posteriori estimation problem and is approximated through an assignment step and a location step. Observing that the occluding object is usually less affected by the occluded objects, sequential solutions for the assignment and the location are derived. A novel dominant color histogram (DCH) is proposed as an efficient object model. The DCH can be regarded as a generalized color histogram, where dominant colors are selected based on a given distance measure. Comparing with conventional color histograms, the DCH only requires a few color components (31 on average). Furthermore, our theoretical analysis and evaluation on real data have shown that DCHs are robust to illumination changes. Using the DCH, efficient implementations of sequential solutions for the assignment and location steps are proposed. The assignment step includes the estimation of the depth order for the objects in a dispersing group, one-by-one assignment, and feature exclusion from the group representation. The location step includes the depth-order estimation for the objects in a new group, the two-phase mean-shift location, and the exclusion of tracked objects from the new position in the group. Multiobject tracking results and evaluation from public data sets are presented. Experiments on image sequences captured from crowded public environments have shown good tracking results, where about 90% of the objects have been successfully tracked with the correct identification numbers by the proposed method. Our results and evaluation have indicated that the method is efficient and robust for tracking multiple objects (>or= 3) in complex occlusion for real-world surveillance scenarios.

  14. Model predictive control system and method for integrated gasification combined cycle power generation

    DOEpatents

    Kumar, Aditya; Shi, Ruijie; Kumar, Rajeeva; Dokucu, Mustafa

    2013-04-09

    Control system and method for controlling an integrated gasification combined cycle (IGCC) plant are provided. The system may include a controller coupled to a dynamic model of the plant to process a prediction of plant performance and determine a control strategy for the IGCC plant over a time horizon subject to plant constraints. The control strategy may include control functionality to meet a tracking objective and control functionality to meet an optimization objective. The control strategy may be configured to prioritize the tracking objective over the optimization objective based on a coordinate transformation, such as an orthogonal or quasi-orthogonal projection. A plurality of plant control knobs may be set in accordance with the control strategy to generate a sequence of coordinated multivariable control inputs to meet the tracking objective and the optimization objective subject to the prioritization resulting from the coordinate transformation.

  15. Real-time optical multiple object recognition and tracking system and method

    NASA Technical Reports Server (NTRS)

    Chao, Tien-Hsin (Inventor); Liu, Hua Kuang (Inventor)

    1987-01-01

    The invention relates to an apparatus and associated methods for the optical recognition and tracking of multiple objects in real time. Multiple point spatial filters are employed that pre-define the objects to be recognized at run-time. The system takes the basic technology of a Vander Lugt filter and adds a hololens. The technique replaces time, space and cost-intensive digital techniques. In place of multiple objects, the system can also recognize multiple orientations of a single object. This later capability has potential for space applications where space and weight are at a premium.

  16. Robust multiple cue fusion-based high-speed and nonrigid object tracking algorithm for short track speed skating

    NASA Astrophysics Data System (ADS)

    Liu, Chenguang; Cheng, Heng-Da; Zhang, Yingtao; Wang, Yuxuan; Xian, Min

    2016-01-01

    This paper presents a methodology for tracking multiple skaters in short track speed skating competitions. Nonrigid skaters move at high speed with severe occlusions happening frequently among them. The camera is panned quickly in order to capture the skaters in a large and dynamic scene. To automatically track the skaters and precisely output their trajectories becomes a challenging task in object tracking. We employ the global rink information to compensate camera motion and obtain the global spatial information of skaters, utilize random forest to fuse multiple cues and predict the blob of each skater, and finally apply a silhouette- and edge-based template-matching and blob-evolving method to labelling pixels to a skater. The effectiveness and robustness of the proposed method are verified through thorough experiments.

  17. Robust Pedestrian Tracking and Recognition from FLIR Video: A Unified Approach via Sparse Coding

    PubMed Central

    Li, Xin; Guo, Rui; Chen, Chao

    2014-01-01

    Sparse coding is an emerging method that has been successfully applied to both robust object tracking and recognition in the vision literature. In this paper, we propose to explore a sparse coding-based approach toward joint object tracking-and-recognition and explore its potential in the analysis of forward-looking infrared (FLIR) video to support nighttime machine vision systems. A key technical contribution of this work is to unify existing sparse coding-based approaches toward tracking and recognition under the same framework, so that they can benefit from each other in a closed-loop. On the one hand, tracking the same object through temporal frames allows us to achieve improved recognition performance through dynamical updating of template/dictionary and combining multiple recognition results; on the other hand, the recognition of individual objects facilitates the tracking of multiple objects (i.e., walking pedestrians), especially in the presence of occlusion within a crowded environment. We report experimental results on both the CASIAPedestrian Database and our own collected FLIR video database to demonstrate the effectiveness of the proposed joint tracking-and-recognition approach. PMID:24961216

  18. Convolutional Deep Belief Networks for Single-Cell/Object Tracking in Computational Biology and Computer Vision.

    PubMed

    Zhong, Bineng; Pan, Shengnan; Zhang, Hongbo; Wang, Tian; Du, Jixiang; Chen, Duansheng; Cao, Liujuan

    2016-01-01

    In this paper, we propose deep architecture to dynamically learn the most discriminative features from data for both single-cell and object tracking in computational biology and computer vision. Firstly, the discriminative features are automatically learned via a convolutional deep belief network (CDBN). Secondly, we design a simple yet effective method to transfer features learned from CDBNs on the source tasks for generic purpose to the object tracking tasks using only limited amount of training data. Finally, to alleviate the tracker drifting problem caused by model updating, we jointly consider three different types of positive samples. Extensive experiments validate the robustness and effectiveness of the proposed method.

  19. Convolutional Deep Belief Networks for Single-Cell/Object Tracking in Computational Biology and Computer Vision

    PubMed Central

    Pan, Shengnan; Zhang, Hongbo; Wang, Tian; Du, Jixiang; Chen, Duansheng; Cao, Liujuan

    2016-01-01

    In this paper, we propose deep architecture to dynamically learn the most discriminative features from data for both single-cell and object tracking in computational biology and computer vision. Firstly, the discriminative features are automatically learned via a convolutional deep belief network (CDBN). Secondly, we design a simple yet effective method to transfer features learned from CDBNs on the source tasks for generic purpose to the object tracking tasks using only limited amount of training data. Finally, to alleviate the tracker drifting problem caused by model updating, we jointly consider three different types of positive samples. Extensive experiments validate the robustness and effectiveness of the proposed method. PMID:27847827

  20. Parallel computation of level set method for 500 Hz visual servo control

    NASA Astrophysics Data System (ADS)

    Fei, Xianfeng; Igarashi, Yasunobu; Hashimoto, Koichi

    2008-11-01

    We propose a 2D microorganism tracking system using a parallel level set method and a column parallel vision system (CPV). This system keeps a single microorganism in the middle of the visual field under a microscope by visual servoing an automated stage. We propose a new energy function for the level set method. This function constrains an amount of light intensity inside the detected object contour to control the number of the detected objects. This algorithm is implemented in CPV system and computational time for each frame is 2 [ms], approximately. A tracking experiment for about 25 s is demonstrated. Also we demonstrate a single paramecium can be kept tracking even if other paramecia appear in the visual field and contact with the tracked paramecium.

  1. Automatic Tracking Algorithm in Coaxial Near-Infrared Laser Ablation Endoscope for Fetus Surgery

    NASA Astrophysics Data System (ADS)

    Hu, Yan; Yamanaka, Noriaki; Masamune, Ken

    2014-07-01

    This article reports a stable vessel object tracking method for the treatment of twin-to-twin transfusion syndrome based on our previous 2 DOF endoscope. During the treatment of laser coagulation, it is necessary to focus on the exact position of the target object, however it moves by the mother's respiratory motion and still remains a challenge to obtain and track the position precisely. In this article, an algorithm which uses features from accelerated segment test (FAST) to extract the features and optical flow as the object tracking method, is proposed to deal with above problem. Further, we experimentally simulate the movement due to the mother's respiration, and the results of position errors and similarity verify the effectiveness of the proposed tracking algorithm for laser ablation endoscopy in-vitro and under water considering two influential factors. At average, the errors are about 10 pixels and the similarity over 0.92 are obtained in the experiments.

  2. Kernelized correlation tracking with long-term motion cues

    NASA Astrophysics Data System (ADS)

    Lv, Yunqiu; Liu, Kai; Cheng, Fei

    2018-04-01

    Robust object tracking is a challenging task in computer vision due to interruptions such as deformation, fast motion and especially, occlusion of tracked object. When occlusions occur, image data will be unreliable and is insufficient for the tracker to depict the object of interest. Therefore, most trackers are prone to fail under occlusion. In this paper, an occlusion judgement and handling method based on segmentation of the target is proposed. If the target is occluded, the speed and direction of it must be different from the objects occluding it. Hence, the value of motion features are emphasized. Considering the efficiency and robustness of Kernelized Correlation Filter Tracking (KCF), it is adopted as a pre-tracker to obtain a predicted position of the target. By analyzing long-term motion cues of objects around this position, the tracked object is labelled. Hence, occlusion could be detected easily. Experimental results suggest that our tracker achieves a favorable performance and effectively handles occlusion and drifting problems.

  3. Comparison of different detection methods for persistent multiple hypothesis tracking in wide area motion imagery

    NASA Astrophysics Data System (ADS)

    Hartung, Christine; Spraul, Raphael; Schuchert, Tobias

    2017-10-01

    Wide area motion imagery (WAMI) acquired by an airborne multicamera sensor enables continuous monitoring of large urban areas. Each image can cover regions of several square kilometers and contain thousands of vehicles. Reliable vehicle tracking in this imagery is an important prerequisite for surveillance tasks, but remains challenging due to low frame rate and small object size. Most WAMI tracking approaches rely on moving object detections generated by frame differencing or background subtraction. These detection methods fail when objects slow down or stop. Recent approaches for persistent tracking compensate for missing motion detections by combining a detection-based tracker with a second tracker based on appearance or local context. In order to avoid the additional complexity introduced by combining two trackers, we employ an alternative single tracker framework that is based on multiple hypothesis tracking and recovers missing motion detections with a classifierbased detector. We integrate an appearance-based similarity measure, merge handling, vehicle-collision tests, and clutter handling to adapt the approach to the specific context of WAMI tracking. We apply the tracking framework on a region of interest of the publicly available WPAFB 2009 dataset for quantitative evaluation; a comparison to other persistent WAMI trackers demonstrates state of the art performance of the proposed approach. Furthermore, we analyze in detail the impact of different object detection methods and detector settings on the quality of the output tracking results. For this purpose, we choose four different motion-based detection methods that vary in detection performance and computation time to generate the input detections. As detector parameters can be adjusted to achieve different precision and recall performance, we combine each detection method with different detector settings that yield (1) high precision and low recall, (2) high recall and low precision, and (3) best f-score. Comparing the tracking performance achieved with all generated sets of input detections allows us to quantify the sensitivity of the tracker to different types of detector errors and to derive recommendations for detector and parameter choice.

  4. Good Features to Correlate for Visual Tracking

    NASA Astrophysics Data System (ADS)

    Gundogdu, Erhan; Alatan, A. Aydin

    2018-05-01

    During the recent years, correlation filters have shown dominant and spectacular results for visual object tracking. The types of the features that are employed in these family of trackers significantly affect the performance of visual tracking. The ultimate goal is to utilize robust features invariant to any kind of appearance change of the object, while predicting the object location as properly as in the case of no appearance change. As the deep learning based methods have emerged, the study of learning features for specific tasks has accelerated. For instance, discriminative visual tracking methods based on deep architectures have been studied with promising performance. Nevertheless, correlation filter based (CFB) trackers confine themselves to use the pre-trained networks which are trained for object classification problem. To this end, in this manuscript the problem of learning deep fully convolutional features for the CFB visual tracking is formulated. In order to learn the proposed model, a novel and efficient backpropagation algorithm is presented based on the loss function of the network. The proposed learning framework enables the network model to be flexible for a custom design. Moreover, it alleviates the dependency on the network trained for classification. Extensive performance analysis shows the efficacy of the proposed custom design in the CFB tracking framework. By fine-tuning the convolutional parts of a state-of-the-art network and integrating this model to a CFB tracker, which is the top performing one of VOT2016, 18% increase is achieved in terms of expected average overlap, and tracking failures are decreased by 25%, while maintaining the superiority over the state-of-the-art methods in OTB-2013 and OTB-2015 tracking datasets.

  5. Mark Tracking: Position/orientation measurements using 4-circle mark and its tracking experiments

    NASA Technical Reports Server (NTRS)

    Kanda, Shinji; Okabayashi, Keijyu; Maruyama, Tsugito; Uchiyama, Takashi

    1994-01-01

    Future space robots require position and orientation tracking with visual feedback control to track and capture floating objects and satellites. We developed a four-circle mark that is useful for this purpose. With this mark, four geometric center positions as feature points can be extracted from the mark by simple image processing. We also developed a position and orientation measurement method that uses the four feature points in our mark. The mark gave good enough image measurement accuracy to let space robots approach and contact objects. A visual feedback control system using this mark enabled a robot arm to track a target object accurately. The control system was able to tolerate a time delay of 2 seconds.

  6. Visual perception system and method for a humanoid robot

    NASA Technical Reports Server (NTRS)

    Chelian, Suhas E. (Inventor); Linn, Douglas Martin (Inventor); Wampler, II, Charles W. (Inventor); Bridgwater, Lyndon (Inventor); Wells, James W. (Inventor); Mc Kay, Neil David (Inventor)

    2012-01-01

    A robotic system includes a humanoid robot with robotic joints each moveable using an actuator(s), and a distributed controller for controlling the movement of each of the robotic joints. The controller includes a visual perception module (VPM) for visually identifying and tracking an object in the field of view of the robot under threshold lighting conditions. The VPM includes optical devices for collecting an image of the object, a positional extraction device, and a host machine having an algorithm for processing the image and positional information. The algorithm visually identifies and tracks the object, and automatically adapts an exposure time of the optical devices to prevent feature data loss of the image under the threshold lighting conditions. A method of identifying and tracking the object includes collecting the image, extracting positional information of the object, and automatically adapting the exposure time to thereby prevent feature data loss of the image.

  7. Information Measures for Statistical Orbit Determination

    ERIC Educational Resources Information Center

    Mashiku, Alinda K.

    2013-01-01

    The current Situational Space Awareness (SSA) is faced with a huge task of tracking the increasing number of space objects. The tracking of space objects requires frequent and accurate monitoring for orbit maintenance and collision avoidance using methods for statistical orbit determination. Statistical orbit determination enables us to obtain…

  8. Siamese convolutional networks for tracking the spine motion

    NASA Astrophysics Data System (ADS)

    Liu, Yuan; Sui, Xiubao; Sun, Yicheng; Liu, Chengwei; Hu, Yong

    2017-09-01

    Deep learning models have demonstrated great success in various computer vision tasks such as image classification and object tracking. However, tracking the lumbar spine by digitalized video fluoroscopic imaging (DVFI), which can quantitatively analyze the motion mode of spine to diagnose lumbar instability, has not yet been well developed due to the lack of steady and robust tracking method. In this paper, we propose a novel visual tracking algorithm of the lumbar vertebra motion based on a Siamese convolutional neural network (CNN) model. We train a full-convolutional neural network offline to learn generic image features. The network is trained to learn a similarity function that compares the labeled target in the first frame with the candidate patches in the current frame. The similarity function returns a high score if the two images depict the same object. Once learned, the similarity function is used to track a previously unseen object without any adapting online. In the current frame, our tracker is performed by evaluating the candidate rotated patches sampled around the previous frame target position and presents a rotated bounding box to locate the predicted target precisely. Results indicate that the proposed tracking method can detect the lumbar vertebra steadily and robustly. Especially for images with low contrast and cluttered background, the presented tracker can still achieve good tracking performance. Further, the proposed algorithm operates at high speed for real time tracking.

  9. Object-oriented feature-tracking algorithms for SAR images of the marginal ice zone

    NASA Technical Reports Server (NTRS)

    Daida, Jason; Samadani, Ramin; Vesecky, John F.

    1990-01-01

    An unsupervised method that chooses and applies the most appropriate tracking algorithm from among different sea-ice tracking algorithms is reported. In contrast to current unsupervised methods, this method chooses and applies an algorithm by partially examining a sequential image pair to draw inferences about what was examined. Based on these inferences the reported method subsequently chooses which algorithm to apply to specific areas of the image pair where that algorithm should work best.

  10. Application of Multi-Hypothesis Sequential Monte Carlo for Breakup Analysis

    NASA Astrophysics Data System (ADS)

    Faber, W. R.; Zaidi, W.; Hussein, I. I.; Roscoe, C. W. T.; Wilkins, M. P.; Schumacher, P. W., Jr.

    As more objects are launched into space, the potential for breakup events and space object collisions is ever increasing. These events create large clouds of debris that are extremely hazardous to space operations. Providing timely, accurate, and statistically meaningful Space Situational Awareness (SSA) data is crucial in order to protect assets and operations in space. The space object tracking problem, in general, is nonlinear in both state dynamics and observations, making it ill-suited to linear filtering techniques such as the Kalman filter. Additionally, given the multi-object, multi-scenario nature of the problem, space situational awareness requires multi-hypothesis tracking and management that is combinatorially challenging in nature. In practice, it is often seen that assumptions of underlying linearity and/or Gaussianity are used to provide tractable solutions to the multiple space object tracking problem. However, these assumptions are, at times, detrimental to tracking data and provide statistically inconsistent solutions. This paper details a tractable solution to the multiple space object tracking problem applicable to space object breakup events. Within this solution, simplifying assumptions of the underlying probability density function are relaxed and heuristic methods for hypothesis management are avoided. This is done by implementing Sequential Monte Carlo (SMC) methods for both nonlinear filtering as well as hypothesis management. This goal of this paper is to detail the solution and use it as a platform to discuss computational limitations that hinder proper analysis of large breakup events.

  11. Automated segmentation and tracking of non-rigid objects in time-lapse microscopy videos of polymorphonuclear neutrophils.

    PubMed

    Brandes, Susanne; Mokhtari, Zeinab; Essig, Fabian; Hünniger, Kerstin; Kurzai, Oliver; Figge, Marc Thilo

    2015-02-01

    Time-lapse microscopy is an important technique to study the dynamics of various biological processes. The labor-intensive manual analysis of microscopy videos is increasingly replaced by automated segmentation and tracking methods. These methods are often limited to certain cell morphologies and/or cell stainings. In this paper, we present an automated segmentation and tracking framework that does not have these restrictions. In particular, our framework handles highly variable cell shapes and does not rely on any cell stainings. Our segmentation approach is based on a combination of spatial and temporal image variations to detect moving cells in microscopy videos. This method yields a sensitivity of 99% and a precision of 95% in object detection. The tracking of cells consists of different steps, starting from single-cell tracking based on a nearest-neighbor-approach, detection of cell-cell interactions and splitting of cell clusters, and finally combining tracklets using methods from graph theory. The segmentation and tracking framework was applied to synthetic as well as experimental datasets with varying cell densities implying different numbers of cell-cell interactions. We established a validation framework to measure the performance of our tracking technique. The cell tracking accuracy was found to be >99% for all datasets indicating a high accuracy for connecting the detected cells between different time points. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. An object detection and tracking system for unmanned surface vehicles

    NASA Astrophysics Data System (ADS)

    Yang, Jian; Xiao, Yang; Fang, Zhiwen; Zhang, Naiwen; Wang, Li; Li, Tao

    2017-10-01

    Object detection and tracking are critical parts of unmanned surface vehicles(USV) to achieve automatic obstacle avoidance. Off-the-shelf object detection methods have achieved impressive accuracy in public datasets, though they still meet bottlenecks in practice, such as high time consumption and low detection quality. In this paper, we propose a novel system for USV, which is able to locate the object more accurately while being fast and stable simultaneously. Firstly, we employ Faster R-CNN to acquire several initial raw bounding boxes. Secondly, the image is segmented to a few superpixels. For each initial box, the superpixels inside will be grouped into a whole according to a combination strategy, and a new box is thereafter generated as the circumscribed bounding box of the final superpixel. Thirdly, we utilize KCF to track these objects after several frames, Faster-RCNN is again used to re-detect objects inside tracked boxes to prevent tracking failure as well as remove empty boxes. Finally, we utilize Faster R-CNN to detect objects in the next image, and refine object boxes by repeating the second module of our system. The experimental results demonstrate that our system is fast, robust and accurate, which can be applied to USV in practice.

  13. Resolving occlusion and segmentation errors in multiple video object tracking

    NASA Astrophysics Data System (ADS)

    Cheng, Hsu-Yung; Hwang, Jenq-Neng

    2009-02-01

    In this work, we propose a method to integrate the Kalman filter and adaptive particle sampling for multiple video object tracking. The proposed framework is able to detect occlusion and segmentation error cases and perform adaptive particle sampling for accurate measurement selection. Compared with traditional particle filter based tracking methods, the proposed method generates particles only when necessary. With the concept of adaptive particle sampling, we can avoid degeneracy problem because the sampling position and range are dynamically determined by parameters that are updated by Kalman filters. There is no need to spend time on processing particles with very small weights. The adaptive appearance for the occluded object refers to the prediction results of Kalman filters to determine the region that should be updated and avoids the problem of using inadequate information to update the appearance under occlusion cases. The experimental results have shown that a small number of particles are sufficient to achieve high positioning and scaling accuracy. Also, the employment of adaptive appearance substantially improves the positioning and scaling accuracy on the tracking results.

  14. Visual tracking using neuromorphic asynchronous event-based cameras.

    PubMed

    Ni, Zhenjiang; Ieng, Sio-Hoi; Posch, Christoph; Régnier, Stéphane; Benosman, Ryad

    2015-04-01

    This letter presents a novel computationally efficient and robust pattern tracking method based on a time-encoded, frame-free visual data. Recent interdisciplinary developments, combining inputs from engineering and biology, have yielded a novel type of camera that encodes visual information into a continuous stream of asynchronous, temporal events. These events encode temporal contrast and intensity locally in space and time. We show that the sparse yet accurately timed information is well suited as a computational input for object tracking. In this letter, visual data processing is performed for each incoming event at the time it arrives. The method provides a continuous and iterative estimation of the geometric transformation between the model and the events representing the tracked object. It can handle isometry, similarities, and affine distortions and allows for unprecedented real-time performance at equivalent frame rates in the kilohertz range on a standard PC. Furthermore, by using the dimension of time that is currently underexploited by most artificial vision systems, the method we present is able to solve ambiguous cases of object occlusions that classical frame-based techniques handle poorly.

  15. Multiple player tracking in sports video: a dual-mode two-way bayesian inference approach with progressive observation modeling.

    PubMed

    Xing, Junliang; Ai, Haizhou; Liu, Liwei; Lao, Shihong

    2011-06-01

    Multiple object tracking (MOT) is a very challenging task yet of fundamental importance for many practical applications. In this paper, we focus on the problem of tracking multiple players in sports video which is even more difficult due to the abrupt movements of players and their complex interactions. To handle the difficulties in this problem, we present a new MOT algorithm which contributes both in the observation modeling level and in the tracking strategy level. For the observation modeling, we develop a progressive observation modeling process that is able to provide strong tracking observations and greatly facilitate the tracking task. For the tracking strategy, we propose a dual-mode two-way Bayesian inference approach which dynamically switches between an offline general model and an online dedicated model to deal with single isolated object tracking and multiple occluded object tracking integrally by forward filtering and backward smoothing. Extensive experiments on different kinds of sports videos, including football, basketball, as well as hockey, demonstrate the effectiveness and efficiency of the proposed method.

  16. Research on infrared small-target tracking technology under complex background

    NASA Astrophysics Data System (ADS)

    Liu, Lei; Wang, Xin; Chen, Jilu; Pan, Tao

    2012-10-01

    In this paper, some basic principles and the implementing flow charts of a series of algorithms for target tracking are described. On the foundation of above works, a moving target tracking software base on the OpenCV is developed by the software developing platform MFC. Three kinds of tracking algorithms are integrated in this software. These two tracking algorithms are Kalman Filter tracking method and Camshift tracking method. In order to explain the software clearly, the framework and the function are described in this paper. At last, the implementing processes and results are analyzed, and those algorithms for tracking targets are evaluated from the two aspects of subjective and objective. This paper is very significant in the application of the infrared target tracking technology.

  17. Tracking Algorithm of Multiple Pedestrians Based on Particle Filters in Video Sequences

    PubMed Central

    Liu, Yun; Wang, Chuanxu; Zhang, Shujun; Cui, Xuehong

    2016-01-01

    Pedestrian tracking is a critical problem in the field of computer vision. Particle filters have been proven to be very useful in pedestrian tracking for nonlinear and non-Gaussian estimation problems. However, pedestrian tracking in complex environment is still facing many problems due to changes of pedestrian postures and scale, moving background, mutual occlusion, and presence of pedestrian. To surmount these difficulties, this paper presents tracking algorithm of multiple pedestrians based on particle filters in video sequences. The algorithm acquires confidence value of the object and the background through extracting a priori knowledge thus to achieve multipedestrian detection; it adopts color and texture features into particle filter to get better observation results and then automatically adjusts weight value of each feature according to current tracking environment. During the process of tracking, the algorithm processes severe occlusion condition to prevent drift and loss phenomena caused by object occlusion and associates detection results with particle state to propose discriminated method for object disappearance and emergence thus to achieve robust tracking of multiple pedestrians. Experimental verification and analysis in video sequences demonstrate that proposed algorithm improves the tracking performance and has better tracking results. PMID:27847514

  18. Moving object detection and tracking in videos through turbulent medium

    NASA Astrophysics Data System (ADS)

    Halder, Kalyan Kumar; Tahtali, Murat; Anavatti, Sreenatha G.

    2016-06-01

    This paper addresses the problem of identifying and tracking moving objects in a video sequence having a time-varying background. This is a fundamental task in many computer vision applications, though a very challenging one because of turbulence that causes blurring and spatiotemporal movements of the background images. Our proposed approach involves two major steps. First, a moving object detection algorithm that deals with the detection of real motions by separating the turbulence-induced motions using a two-level thresholding technique is used. In the second step, a feature-based generalized regression neural network is applied to track the detected objects throughout the frames in the video sequence. The proposed approach uses the centroid and area features of the moving objects and creates the reference regions instantly by selecting the objects within a circle. Simulation experiments are carried out on several turbulence-degraded video sequences and comparisons with an earlier method confirms that the proposed approach provides a more effective tracking of the targets.

  19. Kalman filter-based tracking of moving objects using linear ultrasonic sensor array for road vehicles

    NASA Astrophysics Data System (ADS)

    Li, Shengbo Eben; Li, Guofa; Yu, Jiaying; Liu, Chang; Cheng, Bo; Wang, Jianqiang; Li, Keqiang

    2018-01-01

    Detection and tracking of objects in the side-near-field has attracted much attention for the development of advanced driver assistance systems. This paper presents a cost-effective approach to track moving objects around vehicles using linearly arrayed ultrasonic sensors. To understand the detection characteristics of a single sensor, an empirical detection model was developed considering the shapes and surface materials of various detected objects. Eight sensors were arrayed linearly to expand the detection range for further application in traffic environment recognition. Two types of tracking algorithms, including an Extended Kalman filter (EKF) and an Unscented Kalman filter (UKF), for the sensor array were designed for dynamic object tracking. The ultrasonic sensor array was designed to have two types of fire sequences: mutual firing or serial firing. The effectiveness of the designed algorithms were verified in two typical driving scenarios: passing intersections with traffic sign poles or street lights, and overtaking another vehicle. Experimental results showed that both EKF and UKF had more precise tracking position and smaller RMSE (root mean square error) than a traditional triangular positioning method. The effectiveness also encourages the application of cost-effective ultrasonic sensors in the near-field environment perception in autonomous driving systems.

  20. Robust feedback zoom tracking for digital video surveillance.

    PubMed

    Zou, Tengyue; Tang, Xiaoqi; Song, Bao; Wang, Jin; Chen, Jihong

    2012-01-01

    Zoom tracking is an important function in video surveillance, particularly in traffic management and security monitoring. It involves keeping an object of interest in focus during the zoom operation. Zoom tracking is typically achieved by moving the zoom and focus motors in lenses following the so-called "trace curve", which shows the in-focus motor positions versus the zoom motor positions for a specific object distance. The main task of a zoom tracking approach is to accurately estimate the trace curve for the specified object. Because a proportional integral derivative (PID) controller has historically been considered to be the best controller in the absence of knowledge of the underlying process and its high-quality performance in motor control, in this paper, we propose a novel feedback zoom tracking (FZT) approach based on the geometric trace curve estimation and PID feedback controller. The performance of this approach is compared with existing zoom tracking methods in digital video surveillance. The real-time implementation results obtained on an actual digital video platform indicate that the developed FZT approach not only solves the traditional one-to-many mapping problem without pre-training but also improves the robustness for tracking moving or switching objects which is the key challenge in video surveillance.

  1. Objective comparison of particle tracking methods.

    PubMed

    Chenouard, Nicolas; Smal, Ihor; de Chaumont, Fabrice; Maška, Martin; Sbalzarini, Ivo F; Gong, Yuanhao; Cardinale, Janick; Carthel, Craig; Coraluppi, Stefano; Winter, Mark; Cohen, Andrew R; Godinez, William J; Rohr, Karl; Kalaidzidis, Yannis; Liang, Liang; Duncan, James; Shen, Hongying; Xu, Yingke; Magnusson, Klas E G; Jaldén, Joakim; Blau, Helen M; Paul-Gilloteaux, Perrine; Roudot, Philippe; Kervrann, Charles; Waharte, François; Tinevez, Jean-Yves; Shorte, Spencer L; Willemse, Joost; Celler, Katherine; van Wezel, Gilles P; Dan, Han-Wei; Tsai, Yuh-Show; Ortiz de Solórzano, Carlos; Olivo-Marin, Jean-Christophe; Meijering, Erik

    2014-03-01

    Particle tracking is of key importance for quantitative analysis of intracellular dynamic processes from time-lapse microscopy image data. Because manually detecting and following large numbers of individual particles is not feasible, automated computational methods have been developed for these tasks by many groups. Aiming to perform an objective comparison of methods, we gathered the community and organized an open competition in which participating teams applied their own methods independently to a commonly defined data set including diverse scenarios. Performance was assessed using commonly defined measures. Although no single method performed best across all scenarios, the results revealed clear differences between the various approaches, leading to notable practical conclusions for users and developers.

  2. Location detection and tracking of moving targets by a 2D IR-UWB radar system.

    PubMed

    Nguyen, Van-Han; Pyun, Jae-Young

    2015-03-19

    In indoor environments, the Global Positioning System (GPS) and long-range tracking radar systems are not optimal, because of signal propagation limitations in the indoor environment. In recent years, the use of ultra-wide band (UWB) technology has become a possible solution for object detection, localization and tracking in indoor environments, because of its high range resolution, compact size and low cost. This paper presents improved target detection and tracking techniques for moving objects with impulse-radio UWB (IR-UWB) radar in a short-range indoor area. This is achieved through signal-processing steps, such as clutter reduction, target detection, target localization and tracking. In this paper, we introduce a new combination consisting of our proposed signal-processing procedures. In the clutter-reduction step, a filtering method that uses a Kalman filter (KF) is proposed. Then, in the target detection step, a modification of the conventional CLEAN algorithm which is used to estimate the impulse response from observation region is applied for the advanced elimination of false alarms. Then, the output is fed into the target localization and tracking step, in which the target location and trajectory are determined and tracked by using unscented KF in two-dimensional coordinates. In each step, the proposed methods are compared to conventional methods to demonstrate the differences in performance. The experiments are carried out using actual IR-UWB radar under different scenarios. The results verify that the proposed methods can improve the probability and efficiency of target detection and tracking.

  3. Discriminative object tracking via sparse representation and online dictionary learning.

    PubMed

    Xie, Yuan; Zhang, Wensheng; Li, Cuihua; Lin, Shuyang; Qu, Yanyun; Zhang, Yinghua

    2014-04-01

    We propose a robust tracking algorithm based on local sparse coding with discriminative dictionary learning and new keypoint matching schema. This algorithm consists of two parts: the local sparse coding with online updated discriminative dictionary for tracking (SOD part), and the keypoint matching refinement for enhancing the tracking performance (KP part). In the SOD part, the local image patches of the target object and background are represented by their sparse codes using an over-complete discriminative dictionary. Such discriminative dictionary, which encodes the information of both the foreground and the background, may provide more discriminative power. Furthermore, in order to adapt the dictionary to the variation of the foreground and background during the tracking, an online learning method is employed to update the dictionary. The KP part utilizes refined keypoint matching schema to improve the performance of the SOD. With the help of sparse representation and online updated discriminative dictionary, the KP part are more robust than the traditional method to reject the incorrect matches and eliminate the outliers. The proposed method is embedded into a Bayesian inference framework for visual tracking. Experimental results on several challenging video sequences demonstrate the effectiveness and robustness of our approach.

  4. Methods and apparatus for extraction and tracking of objects from multi-dimensional sequence data

    NASA Technical Reports Server (NTRS)

    Hill, Matthew L. (Inventor); Chang, Yuan-Chi (Inventor); Li, Chung-Sheng (Inventor); Castelli, Vittorio (Inventor); Bergman, Lawrence David (Inventor)

    2008-01-01

    An object tracking technique is provided which, given: (i) a potentially large data set; (ii) a set of dimensions along which the data has been ordered; and (iii) a set of functions for measuring the similarity between data elements, a set of objects are produced. Each of these objects is defined by a list of data elements. Each of the data elements on this list contains the probability that the data element is part of the object. The method produces these lists via an adaptive, knowledge-based search function which directs the search for high-probability data elements. This serves to reduce the number of data element combinations evaluated while preserving the most flexibility in defining the associations of data elements which comprise an object.

  5. Methods and apparatus for extraction and tracking of objects from multi-dimensional sequence data

    NASA Technical Reports Server (NTRS)

    Hill, Matthew L. (Inventor); Chang, Yuan-Chi (Inventor); Li, Chung-Sheng (Inventor); Castelli, Vittorio (Inventor); Bergman, Lawrence David (Inventor)

    2005-01-01

    An object tracking technique is provided which, given: (i) a potentially large data set; (ii) a set of dimensions along which the data has been ordered; and (iii) a set of functions for measuring the similarity between data elements, a set of objects are produced. Each of these objects is defined by a list of data elements. Each of the data elements on this list contains the probability that the data element is part of the object. The method produces these lists via an adaptive, knowledge-based search function which directs the search for high-probability data elements. This serves to reduce the number of data element combinations evaluated while preserving the most flexibility in defining the associations of data elements which comprise an object.

  6. Tracking with occlusions via graph cuts.

    PubMed

    Papadakis, Nicolas; Bugeau, Aurélie

    2011-01-01

    This work presents a new method for tracking and segmenting along time-interacting objects within an image sequence. One major contribution of the paper is the formalization of the notion of visible and occluded parts. For each object, we aim at tracking these two parts. Assuming that the velocity of each object is driven by a dynamical law, predictions can be used to guide the successive estimations. Separating these predicted areas into good and bad parts with respect to the final segmentation and representing the objects with their visible and occluded parts permit handling partial and complete occlusions. To achieve this tracking, a label is assigned to each object and an energy function representing the multilabel problem is minimized via a graph cuts optimization. This energy contains terms based on image intensities which enable segmenting and regularizing the visible parts of the objects. It also includes terms dedicated to the management of the occluded and disappearing areas, which are defined on the areas of prediction of the objects. The results on several challenging sequences prove the strength of the proposed approach.

  7. Real-time multiple objects tracking on Raspberry-Pi-based smart embedded camera

    NASA Astrophysics Data System (ADS)

    Dziri, Aziz; Duranton, Marc; Chapuis, Roland

    2016-07-01

    Multiple-object tracking constitutes a major step in several computer vision applications, such as surveillance, advanced driver assistance systems, and automatic traffic monitoring. Because of the number of cameras used to cover a large area, these applications are constrained by the cost of each node, the power consumption, the robustness of the tracking, the processing time, and the ease of deployment of the system. To meet these challenges, the use of low-power and low-cost embedded vision platforms to achieve reliable tracking becomes essential in networks of cameras. We propose a tracking pipeline that is designed for fixed smart cameras and which can handle occlusions between objects. We show that the proposed pipeline reaches real-time processing on a low-cost embedded smart camera composed of a Raspberry-Pi board and a RaspiCam camera. The tracking quality and the processing speed obtained with the proposed pipeline are evaluated on publicly available datasets and compared to the state-of-the-art methods.

  8. Simultaneous Detection and Tracking of Pedestrian from Panoramic Laser Scanning Data

    NASA Astrophysics Data System (ADS)

    Xiao, Wen; Vallet, Bruno; Schindler, Konrad; Paparoditis, Nicolas

    2016-06-01

    Pedestrian traffic flow estimation is essential for public place design and construction planning. Traditional data collection by human investigation is tedious, inefficient and expensive. Panoramic laser scanners, e.g. Velodyne HDL-64E, which scan surroundings repetitively at a high frequency, have been increasingly used for 3D object tracking. In this paper, a simultaneous detection and tracking (SDAT) method is proposed for precise and automatic pedestrian trajectory recovery. First, the dynamic environment is detected using two different methods, Nearest-point and Max-distance. Then, all the points on moving objects are transferred into a space-time (x, y, t) coordinate system. The pedestrian detection and tracking amounts to assign the points belonging to pedestrians into continuous trajectories in space-time. We formulate the point assignment task as an energy function which incorporates the point evidence, trajectory number, pedestrian shape and motion. A low energy trajectory will well explain the point observations, and have plausible trajectory trend and length. The method inherently filters out points from other moving objects and false detections. The energy function is solved by a two-step optimization process: tracklet detection in a short temporal window; and global tracklet association through the whole time span. Results demonstrate that the proposed method can automatically recover the pedestrians trajectories with accurate positions and low false detections and mismatches.

  9. Accuracy analysis for triangulation and tracking based on time-multiplexed structured light.

    PubMed

    Wagner, Benjamin; Stüber, Patrick; Wissel, Tobias; Bruder, Ralf; Schweikard, Achim; Ernst, Floris

    2014-08-01

    The authors' research group is currently developing a new optical head tracking system for intracranial radiosurgery. This tracking system utilizes infrared laser light to measure features of the soft tissue on the patient's forehead. These features are intended to offer highly accurate registration with respect to the rigid skull structure by means of compensating for the soft tissue. In this context, the system also has to be able to quickly generate accurate reconstructions of the skin surface. For this purpose, the authors have developed a laser scanning device which uses time-multiplexed structured light to triangulate surface points. The accuracy of the authors' laser scanning device is analyzed and compared for different triangulation methods. These methods are given by the Linear-Eigen method and a nonlinear least squares method. Since Microsoft's Kinect camera represents an alternative for fast surface reconstruction, the authors' results are also compared to the triangulation accuracy of the Kinect device. Moreover, the authors' laser scanning device was used for tracking of a rigid object to determine how this process is influenced by the remaining triangulation errors. For this experiment, the scanning device was mounted to the end-effector of a robot to be able to calculate a ground truth for the tracking. The analysis of the triangulation accuracy of the authors' laser scanning device revealed a root mean square (RMS) error of 0.16 mm. In comparison, the analysis of the triangulation accuracy of the Kinect device revealed a RMS error of 0.89 mm. It turned out that the remaining triangulation errors only cause small inaccuracies for the tracking of a rigid object. Here, the tracking accuracy was given by a RMS translational error of 0.33 mm and a RMS rotational error of 0.12°. This paper shows that time-multiplexed structured light can be used to generate highly accurate reconstructions of surfaces. Furthermore, the reconstructed point sets can be used for high-accuracy tracking of objects, meeting the strict requirements of intracranial radiosurgery.

  10. Conditional Random Field (CRF)-Boosting: Constructing a Robust Online Hybrid Boosting Multiple Object Tracker Facilitated by CRF Learning

    PubMed Central

    Yang, Ehwa; Gwak, Jeonghwan; Jeon, Moongu

    2017-01-01

    Due to the reasonably acceptable performance of state-of-the-art object detectors, tracking-by-detection is a standard strategy for visual multi-object tracking (MOT). In particular, online MOT is more demanding due to its diverse applications in time-critical situations. A main issue of realizing online MOT is how to associate noisy object detection results on a new frame with previously being tracked objects. In this work, we propose a multi-object tracker method called CRF-boosting which utilizes a hybrid data association method based on online hybrid boosting facilitated by a conditional random field (CRF) for establishing online MOT. For data association, learned CRF is used to generate reliable low-level tracklets and then these are used as the input of the hybrid boosting. To do so, while existing data association methods based on boosting algorithms have the necessity of training data having ground truth information to improve robustness, CRF-boosting ensures sufficient robustness without such information due to the synergetic cascaded learning procedure. Further, a hierarchical feature association framework is adopted to further improve MOT accuracy. From experimental results on public datasets, we could conclude that the benefit of proposed hybrid approach compared to the other competitive MOT systems is noticeable. PMID:28304366

  11. Segmentation and tracking in echocardiographic sequences: active contours guided by optical flow estimates

    NASA Technical Reports Server (NTRS)

    Mikic, I.; Krucinski, S.; Thomas, J. D.

    1998-01-01

    This paper presents a method for segmentation and tracking of cardiac structures in ultrasound image sequences. The developed algorithm is based on the active contour framework. This approach requires initial placement of the contour close to the desired position in the image, usually an object outline. Best contour shape and position are then calculated, assuming that at this configuration a global energy function, associated with a contour, attains its minimum. Active contours can be used for tracking by selecting a solution from a previous frame as an initial position in a present frame. Such an approach, however, fails for large displacements of the object of interest. This paper presents a technique that incorporates the information on pixel velocities (optical flow) into the estimate of initial contour to enable tracking of fast-moving objects. The algorithm was tested on several ultrasound image sequences, each covering one complete cardiac cycle. The contour successfully tracked boundaries of mitral valve leaflets, aortic root and endocardial borders of the left ventricle. The algorithm-generated outlines were compared against manual tracings by expert physicians. The automated method resulted in contours that were within the boundaries of intraobserver variability.

  12. Effective real-time vehicle tracking using discriminative sparse coding on local patches

    NASA Astrophysics Data System (ADS)

    Chen, XiangJun; Ye, Feiyue; Ruan, Yaduan; Chen, Qimei

    2016-01-01

    A visual tracking framework that provides an object detector and tracker, which focuses on effective and efficient visual tracking in surveillance of real-world intelligent transport system applications, is proposed. The framework casts the tracking task as problems of object detection, feature representation, and classification, which is different from appearance model-matching approaches. Through a feature representation of discriminative sparse coding on local patches called DSCLP, which trains a dictionary on local clustered patches sampled from both positive and negative datasets, the discriminative power and robustness has been improved remarkably, which makes our method more robust to a complex realistic setting with all kinds of degraded image quality. Moreover, by catching objects through one-time background subtraction, along with offline dictionary training, computation time is dramatically reduced, which enables our framework to achieve real-time tracking performance even in a high-definition sequence with heavy traffic. Experiment results show that our work outperforms some state-of-the-art methods in terms of speed, accuracy, and robustness and exhibits increased robustness in a complex real-world scenario with degraded image quality caused by vehicle occlusion, image blur of rain or fog, and change in viewpoint or scale.

  13. Semi-automated location identification of catheters in digital chest radiographs

    NASA Astrophysics Data System (ADS)

    Keller, Brad M.; Reeves, Anthony P.; Cham, Matthew D.; Henschke, Claudia I.; Yankelevitz, David F.

    2007-03-01

    Localization of catheter tips is the most common task in intensive care unit imaging. In this work, catheters appearing in digital chest radiographs acquired by portable chest x-rays were tracked using a semi-automatic method. Due to the fact that catheters are synthetic objects, its profile does not vary drastically over its length. Therefore, we use forward looking registration with normalized cross-correlation in order to take advantage of a priori information of the catheter profile. The registration is accomplished with a two-dimensional template representative of the catheter to be tracked generated using two seed points given by the user. To validate catheter tracking with this method, we look at two metrics: accuracy and precision. The algorithms results are compared to a ground truth established by catheter midlines marked by expert radiologists. Using 12 objects of interest comprised of naso-gastric, endo-tracheal tubes, and chest tubes, and PICC and central venous catheters, we find that our algorithm can fully track 75% of the objects of interest, with a average tracking accuracy and precision of 85.0%, 93.6% respectively using the above metrics. Such a technique would be useful for physicians wishing to verify the positioning of catheter tips using chest radiographs.

  14. Spatiotemporal motion boundary detection and motion boundary velocity estimation for tracking moving objects with a moving camera: a level sets PDEs approach with concurrent camera motion compensation.

    PubMed

    Feghali, Rosario; Mitiche, Amar

    2004-11-01

    The purpose of this study is to investigate a method of tracking moving objects with a moving camera. This method estimates simultaneously the motion induced by camera movement. The problem is formulated as a Bayesian motion-based partitioning problem in the spatiotemporal domain of the image quence. An energy functional is derived from the Bayesian formulation. The Euler-Lagrange descent equations determine imultaneously an estimate of the image motion field induced by camera motion and an estimate of the spatiotemporal motion undary surface. The Euler-Lagrange equation corresponding to the surface is expressed as a level-set partial differential equation for topology independence and numerically stable implementation. The method can be initialized simply and can track multiple objects with nonsimultaneous motions. Velocities on motion boundaries can be estimated from geometrical properties of the motion boundary. Several examples of experimental verification are given using synthetic and real-image sequences.

  15. Visual Tracking via Sparse and Local Linear Coding.

    PubMed

    Wang, Guofeng; Qin, Xueying; Zhong, Fan; Liu, Yue; Li, Hongbo; Peng, Qunsheng; Yang, Ming-Hsuan

    2015-11-01

    The state search is an important component of any object tracking algorithm. Numerous algorithms have been proposed, but stochastic sampling methods (e.g., particle filters) are arguably one of the most effective approaches. However, the discretization of the state space complicates the search for the precise object location. In this paper, we propose a novel tracking algorithm that extends the state space of particle observations from discrete to continuous. The solution is determined accurately via iterative linear coding between two convex hulls. The algorithm is modeled by an optimal function, which can be efficiently solved by either convex sparse coding or locality constrained linear coding. The algorithm is also very flexible and can be combined with many generic object representations. Thus, we first use sparse representation to achieve an efficient searching mechanism of the algorithm and demonstrate its accuracy. Next, two other object representation models, i.e., least soft-threshold squares and adaptive structural local sparse appearance, are implemented with improved accuracy to demonstrate the flexibility of our algorithm. Qualitative and quantitative experimental results demonstrate that the proposed tracking algorithm performs favorably against the state-of-the-art methods in dynamic scenes.

  16. Real-Time Visual Tracking through Fusion Features

    PubMed Central

    Ruan, Yang; Wei, Zhenzhong

    2016-01-01

    Due to their high-speed, correlation filters for object tracking have begun to receive increasing attention. Traditional object trackers based on correlation filters typically use a single type of feature. In this paper, we attempt to integrate multiple feature types to improve the performance, and we propose a new DD-HOG fusion feature that consists of discriminative descriptors (DDs) and histograms of oriented gradients (HOG). However, fusion features as multi-vector descriptors cannot be directly used in prior correlation filters. To overcome this difficulty, we propose a multi-vector correlation filter (MVCF) that can directly convolve with a multi-vector descriptor to obtain a single-channel response that indicates the location of an object. Experiments on the CVPR2013 tracking benchmark with the evaluation of state-of-the-art trackers show the effectiveness and speed of the proposed method. Moreover, we show that our MVCF tracker, which uses the DD-HOG descriptor, outperforms the structure-preserving object tracker (SPOT) in multi-object tracking because of its high-speed and ability to address heavy occlusion. PMID:27347951

  17. Videogrammetry Using Projected Circular Targets: Proof-of-Concept Test

    NASA Technical Reports Server (NTRS)

    Pappa, Richard S.; Black, Jonathan T.

    2003-01-01

    Videogrammetry is the science of calculating 3D object coordinates as a function of time from image sequences. It expands the method of photogrammetry to multiple time steps enabling the object to be characterized dynamically. Photogrammetry achieves the greatest accuracy with high contrast, solid-colored, circular targets. The high contrast is most often effected using retro-reflective targets attached to the measurement article. Knowledge of the location of each target allows those points to be tracked in a sequence of images, thus yielding dynamic characterization of the overall object. For ultra-lightweight and inflatable gossamer structures (e.g. solar sails, inflatable antennae, sun shields, etc.) where it may be desirable to avoid physically attaching retro-targets, a high-density grid of projected circular targets - called dot projection - is a viable alternative. Over time the object changes shape or position independently of the dots. Dynamic behavior, such as deployment or vibration, can be characterized by tracking the overall 3D shape of the object instead of tracking specific object points. To develop this method, an oscillating rigid object was measured using both retroreflective targets and dot projection. This paper details these tests, compares the results, and discusses the overall accuracy of dot projection videogrammetry.

  18. Videogrammetry Using Projected Circular Targets: Proof-of-Concept Test

    NASA Technical Reports Server (NTRS)

    Black, Jonathan T.; Pappa, Richard S.

    2003-01-01

    Videogrammetry is the science of calculating 3D object coordinates as a function of time from image sequences. It expands the method of photogrammetry to multiple time steps enabling the object to be characterized dynamically. Photogrammetry achieves the greatest accuracy with high contrast, solid-colored circular targets. The high contrast is most often effected using retro-reflective targets attached to the measurement article. Knowledge of the location of each target allows those points to be tracked in a sequence of images, thus yielding dynamic characterization of the overall object. For ultra-lightweight and inflatable gossamer structures (e.g. solar sails, inflatable antennae, sun shields, etc.) where it may be desirable to avoid physically attaching retro-targets, a high-density grid of projected circular targets - called dot projection - is a viable alternative. Over time the object changes shape or position independently of the dots. Dynamic behavior, such as deployment or vibration, can be characterized by tracking the overall 3D shape of the object instead of tracking specific object points. To develop this method, an oscillating rigid object was measured using both retro- reflective targets and dot projection. This paper details these tests, compares the results, and discusses the overall accuracy of dot projection videogrammetry.

  19. Efficient Spatiotemporal Clutter Rejection and Nonlinear Filtering-based Dim Resolved and Unresolved Object Tracking Algorithms

    NASA Astrophysics Data System (ADS)

    Tartakovsky, A.; Tong, M.; Brown, A. P.; Agh, C.

    2013-09-01

    We develop efficient spatiotemporal image processing algorithms for rejection of non-stationary clutter and tracking of multiple dim objects using non-linear track-before-detect methods. For clutter suppression, we include an innovative image alignment (registration) algorithm. The images are assumed to contain elements of the same scene, but taken at different angles, from different locations, and at different times, with substantial clutter non-stationarity. These challenges are typical for space-based and surface-based IR/EO moving sensors, e.g., highly elliptical orbit or low earth orbit scenarios. The algorithm assumes that the images are related via a planar homography, also known as the projective transformation. The parameters are estimated in an iterative manner, at each step adjusting the parameter vector so as to achieve improved alignment of the images. Operating in the parameter space rather than in the coordinate space is a new idea, which makes the algorithm more robust with respect to noise as well as to large inter-frame disturbances, while operating at real-time rates. For dim object tracking, we include new advancements to a particle non-linear filtering-based track-before-detect (TrbD) algorithm. The new TrbD algorithm includes both real-time full image search for resolved objects not yet in track and joint super-resolution and tracking of individual objects in closely spaced object (CSO) clusters. The real-time full image search provides near-optimal detection and tracking of multiple extremely dim, maneuvering objects/clusters. The super-resolution and tracking CSO TrbD algorithm provides efficient near-optimal estimation of the number of unresolved objects in a CSO cluster, as well as the locations, velocities, accelerations, and intensities of the individual objects. We demonstrate that the algorithm is able to accurately estimate the number of CSO objects and their locations when the initial uncertainty on the number of objects is large. We demonstrate performance of the TrbD algorithm both for satellite-based and surface-based EO/IR surveillance scenarios.

  20. Object tracking with adaptive HOG detector and adaptive Rao-Blackwellised particle filter

    NASA Astrophysics Data System (ADS)

    Rosa, Stefano; Paleari, Marco; Ariano, Paolo; Bona, Basilio

    2012-01-01

    Scenarios for a manned mission to the Moon or Mars call for astronaut teams to be accompanied by semiautonomous robots. A prerequisite for human-robot interaction is the capability of successfully tracking humans and objects in the environment. In this paper we present a system for real-time visual object tracking in 2D images for mobile robotic systems. The proposed algorithm is able to specialize to individual objects and to adapt to substantial changes in illumination and object appearance during tracking. The algorithm is composed by two main blocks: a detector based on Histogram of Oriented Gradient (HOG) descriptors and linear Support Vector Machines (SVM), and a tracker which is implemented by an adaptive Rao-Blackwellised particle filter (RBPF). The SVM is re-trained online on new samples taken from previous predicted positions. We use the effective sample size to decide when the classifier needs to be re-trained. Position hypotheses for the tracked object are the result of a clustering procedure applied on the set of particles. The algorithm has been tested on challenging video sequences presenting strong changes in object appearance, illumination, and occlusion. Experimental tests show that the presented method is able to achieve near real-time performances with a precision of about 7 pixels on standard video sequences of dimensions 320 × 240.

  1. Acoustic detection and monitoring for transportation infrastructure security.

    DOT National Transportation Integrated Search

    2009-09-01

    Acoustical methods have been extensively used to locate, identify, and track objects underwater. Some of these applications include detecting and tracking submarines, marine mammal detection and identification, detection of mines and ship wrecks and ...

  2. Significantly improved precision of cell migration analysis in time-lapse video microscopy through use of a fully automated tracking system

    PubMed Central

    2010-01-01

    Background Cell motility is a critical parameter in many physiological as well as pathophysiological processes. In time-lapse video microscopy, manual cell tracking remains the most common method of analyzing migratory behavior of cell populations. In addition to being labor-intensive, this method is susceptible to user-dependent errors regarding the selection of "representative" subsets of cells and manual determination of precise cell positions. Results We have quantitatively analyzed these error sources, demonstrating that manual cell tracking of pancreatic cancer cells lead to mis-calculation of migration rates of up to 410%. In order to provide for objective measurements of cell migration rates, we have employed multi-target tracking technologies commonly used in radar applications to develop fully automated cell identification and tracking system suitable for high throughput screening of video sequences of unstained living cells. Conclusion We demonstrate that our automatic multi target tracking system identifies cell objects, follows individual cells and computes migration rates with high precision, clearly outperforming manual procedures. PMID:20377897

  3. 3-D rigid body tracking using vision and depth sensors.

    PubMed

    Gedik, O Serdar; Alatan, A Aydn

    2013-10-01

    In robotics and augmented reality applications, model-based 3-D tracking of rigid objects is generally required. With the help of accurate pose estimates, it is required to increase reliability and decrease jitter in total. Among many solutions of pose estimation in the literature, pure vision-based 3-D trackers require either manual initializations or offline training stages. On the other hand, trackers relying on pure depth sensors are not suitable for AR applications. An automated 3-D tracking algorithm, which is based on fusion of vision and depth sensors via extended Kalman filter, is proposed in this paper. A novel measurement-tracking scheme, which is based on estimation of optical flow using intensity and shape index map data of 3-D point cloud, increases 2-D, as well as 3-D, tracking performance significantly. The proposed method requires neither manual initialization of pose nor offline training, while enabling highly accurate 3-D tracking. The accuracy of the proposed method is tested against a number of conventional techniques, and a superior performance is clearly observed in terms of both objectively via error metrics and subjectively for the rendered scenes.

  4. Objective comparison of particle tracking methods

    PubMed Central

    Chenouard, Nicolas; Smal, Ihor; de Chaumont, Fabrice; Maška, Martin; Sbalzarini, Ivo F.; Gong, Yuanhao; Cardinale, Janick; Carthel, Craig; Coraluppi, Stefano; Winter, Mark; Cohen, Andrew R.; Godinez, William J.; Rohr, Karl; Kalaidzidis, Yannis; Liang, Liang; Duncan, James; Shen, Hongying; Xu, Yingke; Magnusson, Klas E. G.; Jaldén, Joakim; Blau, Helen M.; Paul-Gilloteaux, Perrine; Roudot, Philippe; Kervrann, Charles; Waharte, François; Tinevez, Jean-Yves; Shorte, Spencer L.; Willemse, Joost; Celler, Katherine; van Wezel, Gilles P.; Dan, Han-Wei; Tsai, Yuh-Show; de Solórzano, Carlos Ortiz; Olivo-Marin, Jean-Christophe; Meijering, Erik

    2014-01-01

    Particle tracking is of key importance for quantitative analysis of intracellular dynamic processes from time-lapse microscopy image data. Since manually detecting and following large numbers of individual particles is not feasible, automated computational methods have been developed for these tasks by many groups. Aiming to perform an objective comparison of methods, we gathered the community and organized, for the first time, an open competition, in which participating teams applied their own methods independently to a commonly defined data set including diverse scenarios. Performance was assessed using commonly defined measures. Although no single method performed best across all scenarios, the results revealed clear differences between the various approaches, leading to important practical conclusions for users and developers. PMID:24441936

  5. Nonlinear Multiobjective MPC-Based Optimal Operation of a High Consistency Refining System in Papermaking

    DOE PAGES

    Li, Mingjie; Zhou, Ping; Wang, Hong; ...

    2017-09-19

    As one of the most important unit in the papermaking industry, the high consistency (HC) refining system is confronted with challenges such as improving pulp quality, energy saving, and emissions reduction in its operation processes. Here in this correspondence, an optimal operation of HC refining system is presented using nonlinear multiobjective model predictive control strategies that aim at set-point tracking objective of pulp quality, economic objective, and specific energy (SE) consumption objective, respectively. First, a set of input and output data at different times are employed to construct the subprocess model of the state process model for the HC refiningmore » system, and then the Wiener-type model can be obtained through combining the mechanism model of Canadian Standard Freeness and the state process model that determines their structures based on Akaike information criterion. Second, the multiobjective optimization strategy that optimizes both the set-point tracking objective of pulp quality and SE consumption is proposed simultaneously, which uses NSGA-II approach to obtain the Pareto optimal set. Furthermore, targeting at the set-point tracking objective of pulp quality, economic objective, and SE consumption objective, the sequential quadratic programming method is utilized to produce the optimal predictive controllers. In conclusion, the simulation results demonstrate that the proposed methods can make the HC refining system provide a better performance of set-point tracking of pulp quality when these predictive controllers are employed. In addition, while the optimal predictive controllers orienting with comprehensive economic objective and SE consumption objective, it has been shown that they have significantly reduced the energy consumption.« less

  6. Nonlinear Multiobjective MPC-Based Optimal Operation of a High Consistency Refining System in Papermaking

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Mingjie; Zhou, Ping; Wang, Hong

    As one of the most important unit in the papermaking industry, the high consistency (HC) refining system is confronted with challenges such as improving pulp quality, energy saving, and emissions reduction in its operation processes. Here in this correspondence, an optimal operation of HC refining system is presented using nonlinear multiobjective model predictive control strategies that aim at set-point tracking objective of pulp quality, economic objective, and specific energy (SE) consumption objective, respectively. First, a set of input and output data at different times are employed to construct the subprocess model of the state process model for the HC refiningmore » system, and then the Wiener-type model can be obtained through combining the mechanism model of Canadian Standard Freeness and the state process model that determines their structures based on Akaike information criterion. Second, the multiobjective optimization strategy that optimizes both the set-point tracking objective of pulp quality and SE consumption is proposed simultaneously, which uses NSGA-II approach to obtain the Pareto optimal set. Furthermore, targeting at the set-point tracking objective of pulp quality, economic objective, and SE consumption objective, the sequential quadratic programming method is utilized to produce the optimal predictive controllers. In conclusion, the simulation results demonstrate that the proposed methods can make the HC refining system provide a better performance of set-point tracking of pulp quality when these predictive controllers are employed. In addition, while the optimal predictive controllers orienting with comprehensive economic objective and SE consumption objective, it has been shown that they have significantly reduced the energy consumption.« less

  7. Real time eye tracking using Kalman extended spatio-temporal context learning

    NASA Astrophysics Data System (ADS)

    Munir, Farzeen; Minhas, Fayyaz ul Amir Asfar; Jalil, Abdul; Jeon, Moongu

    2017-06-01

    Real time eye tracking has numerous applications in human computer interaction such as a mouse cursor control in a computer system. It is useful for persons with muscular or motion impairments. However, tracking the movement of the eye is complicated by occlusion due to blinking, head movement, screen glare, rapid eye movements, etc. In this work, we present the algorithmic and construction details of a real time eye tracking system. Our proposed system is an extension of Spatio-Temporal context learning through Kalman Filtering. Spatio-Temporal Context Learning offers state of the art accuracy in general object tracking but its performance suffers due to object occlusion. Addition of the Kalman filter allows the proposed method to model the dynamics of the motion of the eye and provide robust eye tracking in cases of occlusion. We demonstrate the effectiveness of this tracking technique by controlling the computer cursor in real time by eye movements.

  8. Robust Feedback Zoom Tracking for Digital Video Surveillance

    PubMed Central

    Zou, Tengyue; Tang, Xiaoqi; Song, Bao; Wang, Jin; Chen, Jihong

    2012-01-01

    Zoom tracking is an important function in video surveillance, particularly in traffic management and security monitoring. It involves keeping an object of interest in focus during the zoom operation. Zoom tracking is typically achieved by moving the zoom and focus motors in lenses following the so-called “trace curve”, which shows the in-focus motor positions versus the zoom motor positions for a specific object distance. The main task of a zoom tracking approach is to accurately estimate the trace curve for the specified object. Because a proportional integral derivative (PID) controller has historically been considered to be the best controller in the absence of knowledge of the underlying process and its high-quality performance in motor control, in this paper, we propose a novel feedback zoom tracking (FZT) approach based on the geometric trace curve estimation and PID feedback controller. The performance of this approach is compared with existing zoom tracking methods in digital video surveillance. The real-time implementation results obtained on an actual digital video platform indicate that the developed FZT approach not only solves the traditional one-to-many mapping problem without pre-training but also improves the robustness for tracking moving or switching objects which is the key challenge in video surveillance. PMID:22969388

  9. New color-based tracking algorithm for joints of the upper extremities

    NASA Astrophysics Data System (ADS)

    Wu, Xiangping; Chow, Daniel H. K.; Zheng, Xiaoxiang

    2007-11-01

    To track the joints of the upper limb of stroke sufferers for rehabilitation assessment, a new tracking algorithm which utilizes a developed color-based particle filter and a novel strategy for handling occlusions is proposed in this paper. Objects are represented by their color histogram models and particle filter is introduced to track the objects within a probability framework. Kalman filter, as a local optimizer, is integrated into the sampling stage of the particle filter that steers samples to a region with high likelihood and therefore fewer samples is required. A color clustering method and anatomic constraints are used in dealing with occlusion problem. Compared with the general basic particle filtering method, the experimental results show that the new algorithm has reduced the number of samples and hence the computational consumption, and has achieved better abilities of handling complete occlusion over a few frames.

  10. Study of moving object detecting and tracking algorithm for video surveillance system

    NASA Astrophysics Data System (ADS)

    Wang, Tao; Zhang, Rongfu

    2010-10-01

    This paper describes a specific process of moving target detecting and tracking in the video surveillance.Obtain high-quality background is the key to achieving differential target detecting in the video surveillance.The paper is based on a block segmentation method to build clear background,and using the method of background difference to detecing moving target,after a series of treatment we can be extracted the more comprehensive object from original image,then using the smallest bounding rectangle to locate the object.In the video surveillance system, the delay of camera and other reasons lead to tracking lag,the model of Kalman filter based on template matching was proposed,using deduced and estimated capacity of Kalman,the center of smallest bounding rectangle for predictive value,predicted the position in the next moment may appare,followed by template matching in the region as the center of this position,by calculate the cross-correlation similarity of current image and reference image,can determine the best matching center.As narrowed the scope of searching,thereby reduced the searching time,so there be achieve fast-tracking.

  11. Tracking-Learning-Detection.

    PubMed

    Kalal, Zdenek; Mikolajczyk, Krystian; Matas, Jiri

    2012-07-01

    This paper investigates long-term tracking of unknown objects in a video stream. The object is defined by its location and extent in a single frame. In every frame that follows, the task is to determine the object's location and extent or indicate that the object is not present. We propose a novel tracking framework (TLD) that explicitly decomposes the long-term tracking task into tracking, learning, and detection. The tracker follows the object from frame to frame. The detector localizes all appearances that have been observed so far and corrects the tracker if necessary. The learning estimates the detector's errors and updates it to avoid these errors in the future. We study how to identify the detector's errors and learn from them. We develop a novel learning method (P-N learning) which estimates the errors by a pair of "experts": (1) P-expert estimates missed detections, and (2) N-expert estimates false alarms. The learning process is modeled as a discrete dynamical system and the conditions under which the learning guarantees improvement are found. We describe our real-time implementation of the TLD framework and the P-N learning. We carry out an extensive quantitative evaluation which shows a significant improvement over state-of-the-art approaches.

  12. Optical joint correlator for real-time image tracking and retinal surgery

    NASA Technical Reports Server (NTRS)

    Juday, Richard D. (Inventor)

    1991-01-01

    A method for tracking an object in a sequence of images is described. Such sequence of images may, for example, be a sequence of television frames. The object in the current frame is correlated with the object in the previous frame to obtain the relative location of the object in the two frames. An optical joint transform correlator apparatus is provided to carry out the process. Such joint transform correlator apparatus forms the basis for laser eye surgical apparatus where an image of the fundus of an eyeball is stabilized and forms the basis for the correlator apparatus to track the position of the eyeball caused by involuntary movement. With knowledge of the eyeball position, a surgical laser can be precisely pointed toward a position on the retina.

  13. Multiple Hypothesis Tracking (MHT) for Space Surveillance: Results and Simulation Studies

    NASA Astrophysics Data System (ADS)

    Singh, N.; Poore, A.; Sheaff, C.; Aristoff, J.; Jah, M.

    2013-09-01

    With the anticipated installation of more accurate sensors and the increased probability of future collisions between space objects, the potential number of observable space objects is likely to increase by an order of magnitude within the next decade, thereby placing an ever-increasing burden on current operational systems. Moreover, the need to track closely-spaced objects due, for example, to breakups as illustrated by the recent Chinese ASAT test or the Iridium-Kosmos collision, requires new, robust, and autonomous methods for space surveillance to enable the development and maintenance of the present and future space catalog and to support the overall space surveillance mission. The problem of correctly associating a stream of uncorrelated tracks (UCTs) and uncorrelated optical observations (UCOs) into common objects is critical to mitigating the number of UCTs and is a prerequisite to subsequent space catalog maintenance. Presently, such association operations are mainly performed using non-statistical simple fixed-gate association logic. In this paper, we report on the salient features and the performance of a newly-developed statistically-robust system-level multiple hypothesis tracking (MHT) system for advanced space surveillance. The multiple-frame assignment (MFA) formulation of MHT, together with supporting astrodynamics algorithms, provides a new joint capability for space catalog maintenance, UCT/UCO resolution, and initial orbit determination. The MFA-MHT framework incorporates multiple hypotheses for report to system track data association and uses a multi-arc construction to accommodate recently developed algorithms for multiple hypothesis filtering (e.g., AEGIS, CAR-MHF, UMAP, and MMAE). This MHT framework allows us to evaluate the benefits of many different algorithms ranging from single- and multiple-frame data association to filtering and uncertainty quantification. In this paper, it will be shown that the MHT system can provide superior tracking performance compared to existing methods at a lower computational cost, especially for closely-spaced objects, in realistic multi-sensor multi-object tracking scenarios over multiple regimes of space. Specifically, we demonstrate that the prototype MHT system can accurately and efficiently process tens of thousands of UCTs and angles-only UCOs emanating from thousands of objects in LEO, GEO, MEO and HELO, many of which are closely-spaced, in real-time on a single laptop computer, thereby making it well-suited for large-scale breakup and tracking scenarios. This is possible in part because complexity reduction techniques are used to control the runtime of MHT without sacrificing accuracy. We assess the performance of MHT in relation to other tracking methods in multi-target, multi-sensor scenarios ranging from easy to difficult (i.e., widely-spaced objects to closely-spaced objects), using realistic physics and probabilities of detection less than one. In LEO, it is shown that the MHT system is able to address the challenges of processing breakups by analyzing multiple frames of data simultaneously in order to improve association decisions, reduce cross-tagging, and reduce unassociated UCTs. As a result, the multi-frame MHT system can establish orbits up to ten times faster than single-frame methods. Finally, it is shown that in GEO, MEO and HELO, the MHT system is able to address the challenges of processing angles-only optical observations by providing a unified multi-frame framework.

  14. Model-based registration of multi-rigid-body for augmented reality

    NASA Astrophysics Data System (ADS)

    Ikeda, Sei; Hori, Hajime; Imura, Masataka; Manabe, Yoshitsugu; Chihara, Kunihiro

    2009-02-01

    Geometric registration between a virtual object and the real space is the most basic problem in augmented reality. Model-based tracking methods allow us to estimate three-dimensional (3-D) position and orientation of a real object by using a textured 3-D model instead of visual marker. However, it is difficult to apply existing model-based tracking methods to the objects that have movable parts such as a display of a mobile phone, because these methods suppose a single, rigid-body model. In this research, we propose a novel model-based registration method for multi rigid-body objects. For each frame, the 3-D models of each rigid part of the object are first rendered according to estimated motion and transformation from the previous frame. Second, control points are determined by detecting the edges of the rendered image and sampling pixels on these edges. Motion and transformation are then simultaneously calculated from distances between the edges and the control points. The validity of the proposed method is demonstrated through experiments using synthetic videos.

  15. Gaze Estimation Method Using Analysis of Electrooculogram Signals and Kinect Sensor

    PubMed Central

    Tanno, Koichi

    2017-01-01

    A gaze estimation system is one of the communication methods for severely disabled people who cannot perform gestures and speech. We previously developed an eye tracking method using a compact and light electrooculogram (EOG) signal, but its accuracy is not very high. In the present study, we conducted experiments to investigate the EOG component strongly correlated with the change of eye movements. The experiments in this study are of two types: experiments to see objects only by eye movements and experiments to see objects by face and eye movements. The experimental results show the possibility of an eye tracking method using EOG signals and a Kinect sensor. PMID:28912800

  16. The LEAP™ Gesture Interface Device and Take-Home Laparoscopic Simulators: A Study of Construct and Concurrent Validity.

    PubMed

    Partridge, Roland W; Brown, Fraser S; Brennan, Paul M; Hennessey, Iain A M; Hughes, Mark A

    2016-02-01

    To assess the potential of the LEAP™ infrared motion tracking device to map laparoscopic instrument movement in a simulated environment. Simulator training is optimized when augmented by objective performance feedback. We explore the potential LEAP has to provide this in a way compatible with affordable take-home simulators. LEAP and the previously validated InsTrac visual tracking tool mapped expert and novice performances of a standardized simulated laparoscopic task. Ability to distinguish between the 2 groups (construct validity) and correlation between techniques (concurrent validity) were the primary outcome measures. Forty-three expert and 38 novice performances demonstrated significant differences in LEAP-derived metrics for instrument path distance (P < .001), speed (P = .002), acceleration (P < .001), motion smoothness (P < .001), and distance between the instruments (P = .019). Only instrument path distance demonstrated a correlation between LEAP and InsTrac tracking methods (novices: r = .663, P < .001; experts: r = .536, P < .001). Consistency of LEAP tracking was poor (average % time hands not tracked: 31.9%). The LEAP motion device is able to track the movement of hands using instruments in a laparoscopic box simulator. Construct validity is demonstrated by its ability to distinguish novice from expert performances. Only time and instrument path distance demonstrated concurrent validity with an existing tracking method however. A number of limitations to the tracking method used by LEAP have been identified. These need to be addressed before it can be considered an alternative to visual tracking for the delivery of objective performance metrics in take-home laparoscopic simulators. © The Author(s) 2015.

  17. A new user-assisted segmentation and tracking technique for an object-based video editing system

    NASA Astrophysics Data System (ADS)

    Yu, Hong Y.; Hong, Sung-Hoon; Lee, Mike M.; Choi, Jae-Gark

    2004-03-01

    This paper presents a semi-automatic segmentation method which can be used to generate video object plane (VOP) for object based coding scheme and multimedia authoring environment. Semi-automatic segmentation can be considered as a user-assisted segmentation technique. A user can initially mark objects of interest around the object boundaries and then the user-guided and selected objects are continuously separated from the unselected areas through time evolution in the image sequences. The proposed segmentation method consists of two processing steps: partially manual intra-frame segmentation and fully automatic inter-frame segmentation. The intra-frame segmentation incorporates user-assistance to define the meaningful complete visual object of interest to be segmentation and decides precise object boundary. The inter-frame segmentation involves boundary and region tracking to obtain temporal coherence of moving object based on the object boundary information of previous frame. The proposed method shows stable efficient results that could be suitable for many digital video applications such as multimedia contents authoring, content based coding and indexing. Based on these results, we have developed objects based video editing system with several convenient editing functions.

  18. Associating optical measurements of MEO and GEO objects using Population-Based Meta-Heuristic methods

    NASA Astrophysics Data System (ADS)

    Zittersteijn, M.; Vananti, A.; Schildknecht, T.; Dolado Perez, J. C.; Martinot, V.

    2016-11-01

    Currently several thousands of objects are being tracked in the MEO and GEO regions through optical means. The problem faced in this framework is that of Multiple Target Tracking (MTT). The MTT problem quickly becomes an NP-hard combinatorial optimization problem. This means that the effort required to solve the MTT problem increases exponentially with the number of tracked objects. In an attempt to find an approximate solution of sufficient quality, several Population-Based Meta-Heuristic (PBMH) algorithms are implemented and tested on simulated optical measurements. These first results show that one of the tested algorithms, namely the Elitist Genetic Algorithm (EGA), consistently displays the desired behavior of finding good approximate solutions before reaching the optimum. The results further suggest that the algorithm possesses a polynomial time complexity, as the computation times are consistent with a polynomial model. With the advent of improved sensors and a heightened interest in the problem of space debris, it is expected that the number of tracked objects will grow by an order of magnitude in the near future. This research aims to provide a method that can treat the association and orbit determination problems simultaneously, and is able to efficiently process large data sets with minimal manual intervention.

  19. Catheter tracking via online learning for dynamic motion compensation in transcatheter aortic valve implantation.

    PubMed

    Wang, Peng; Zheng, Yefeng; John, Matthias; Comaniciu, Dorin

    2012-01-01

    Dynamic overlay of 3D models onto 2D X-ray images has important applications in image guided interventions. In this paper, we present a novel catheter tracking for motion compensation in the Transcatheter Aortic Valve Implantation (TAVI). To address such challenges as catheter shape and appearance changes, occlusions, and distractions from cluttered backgrounds, we present an adaptive linear discriminant learning method to build a measurement model online to distinguish catheters from background. An analytic solution is developed to effectively and efficiently update the discriminant model and to minimize the classification errors between the tracking object and backgrounds. The online learned discriminant model is further combined with an offline learned detector and robust template matching in a Bayesian tracking framework. Quantitative evaluations demonstrate the advantages of this method over current state-of-the-art tracking methods in tracking catheters for clinical applications.

  20. Tracking multiple objects is limited only by object spacing, not by speed, time, or capacity.

    PubMed

    Franconeri, S L; Jonathan, S V; Scimeca, J M

    2010-07-01

    In dealing with a dynamic world, people have the ability to maintain selective attention on a subset of moving objects in the environment. Performance in such multiple-object tracking is limited by three primary factors-the number of objects that one can track, the speed at which one can track them, and how close together they can be. We argue that this last limit, of object spacing, is the root cause of all performance constraints in multiple-object tracking. In two experiments, we found that as long as the distribution of object spacing is held constant, tracking performance is unaffected by large changes in object speed and tracking time. These results suggest that barring object-spacing constraints, people could reliably track an unlimited number of objects as fast as they could track a single object.

  1. Tracking moving targets behind a scattering medium via speckle correlation.

    PubMed

    Guo, Chengfei; Liu, Jietao; Wu, Tengfei; Zhu, Lei; Shao, Xiaopeng

    2018-02-01

    Tracking moving targets behind a scattering medium is a challenge, and it has many important applications in various fields. Owing to the multiple scattering, instead of the object image, only a random speckle pattern can be received on the camera when light is passing through highly scattering layers. Significantly, an important feature of a speckle pattern has been found, and it showed the target information can be derived from the speckle correlation. In this work, inspired by the notions used in computer vision and deformation detection, by specific simulations and experiments, we demonstrate a simple object tracking method, in which by using the speckle correlation, the movement of a hidden object can be tracked in the lateral direction and axial direction. In addition, the rotation state of the moving target can also be recognized by utilizing the autocorrelation of a speckle. This work will be beneficial for biomedical applications in the fields of quantitative analysis of the working mechanisms of a micro-object and the acquisition of dynamical information of the micro-object motion.

  2. Active illuminated space object imaging and tracking simulation

    NASA Astrophysics Data System (ADS)

    Yue, Yufang; Xie, Xiaogang; Luo, Wen; Zhang, Feizhou; An, Jianzhu

    2016-10-01

    Optical earth imaging simulation of a space target in orbit and it's extraction in laser illumination condition were discussed. Based on the orbit and corresponding attitude of a satellite, its 3D imaging rendering was built. General simulation platform was researched, which was adaptive to variable 3D satellite models and relative position relationships between satellite and earth detector system. Unified parallel projection technology was proposed in this paper. Furthermore, we denoted that random optical distribution in laser-illuminated condition was a challenge for object discrimination. Great randomicity of laser active illuminating speckles was the primary factor. The conjunction effects of multi-frame accumulation process and some tracking methods such as Meanshift tracking, contour poid, and filter deconvolution were simulated. Comparison of results illustrates that the union of multi-frame accumulation and contour poid was recommendable for laser active illuminated images, which had capacities of high tracking precise and stability for multiple object attitudes.

  3. Extracting More Information from Passive Optical Tracking Observations for Reliable Orbit Element Generation

    NASA Astrophysics Data System (ADS)

    Bennett, J.; Gehly, S.

    2016-09-01

    This paper presents results from a preliminary method for extracting more orbital information from low rate passive optical tracking data. An improvement in the accuracy of the observation data yields more accurate and reliable orbital elements. A comparison between the orbit propagations from the orbital element generated using the new data processing method is compared with the one generated from the raw observation data for several objects. Optical tracking data collected by EOS Space Systems, located on Mount Stromlo, Australia, is fitted to provide a new orbital element. The element accuracy is determined from a comparison between the predicted orbit and subsequent tracking data or reference orbit if available. The new method is shown to result in a better orbit prediction which has important implications in conjunction assessments and the Space Environment Research Centre space object catalogue. The focus is on obtaining reliable orbital solutions from sparse data. This work forms part of the collaborative effort of the Space Environment Management Cooperative Research Centre which is developing new technologies and strategies to preserve the space environment (www.serc.org.au).

  4. MetaTracker: integration and abstraction of 3D motion tracking data from multiple hardware systems

    NASA Astrophysics Data System (ADS)

    Kopecky, Ken; Winer, Eliot

    2014-06-01

    Motion tracking has long been one of the primary challenges in mixed reality (MR), augmented reality (AR), and virtual reality (VR). Military and defense training can provide particularly difficult challenges for motion tracking, such as in the case of Military Operations in Urban Terrain (MOUT) and other dismounted, close quarters simulations. These simulations can take place across multiple rooms, with many fast-moving objects that need to be tracked with a high degree of accuracy and low latency. Many tracking technologies exist, such as optical, inertial, ultrasonic, and magnetic. Some tracking systems even combine these technologies to complement each other. However, there are no systems that provide a high-resolution, flexible, wide-area solution that is resistant to occlusion. While frameworks exist that simplify the use of tracking systems and other input devices, none allow data from multiple tracking systems to be combined, as if from a single system. In this paper, we introduce a method for compensating for the weaknesses of individual tracking systems by combining data from multiple sources and presenting it as a single tracking system. Individual tracked objects are identified by name, and their data is provided to simulation applications through a server program. This allows tracked objects to transition seamlessly from the area of one tracking system to another. Furthermore, it abstracts away the individual drivers, APIs, and data formats for each system, providing a simplified API that can be used to receive data from any of the available tracking systems. Finally, when single-piece tracking systems are used, those systems can themselves be tracked, allowing for real-time adjustment of the trackable area. This allows simulation operators to leverage limited resources in more effective ways, improving the quality of training.

  5. Color Image Processing and Object Tracking System

    NASA Technical Reports Server (NTRS)

    Klimek, Robert B.; Wright, Ted W.; Sielken, Robert S.

    1996-01-01

    This report describes a personal computer based system for automatic and semiautomatic tracking of objects on film or video tape, developed to meet the needs of the Microgravity Combustion and Fluids Science Research Programs at the NASA Lewis Research Center. The system consists of individual hardware components working under computer control to achieve a high degree of automation. The most important hardware components include 16-mm and 35-mm film transports, a high resolution digital camera mounted on a x-y-z micro-positioning stage, an S-VHS tapedeck, an Hi8 tapedeck, video laserdisk, and a framegrabber. All of the image input devices are remotely controlled by a computer. Software was developed to integrate the overall operation of the system including device frame incrementation, grabbing of image frames, image processing of the object's neighborhood, locating the position of the object being tracked, and storing the coordinates in a file. This process is performed repeatedly until the last frame is reached. Several different tracking methods are supported. To illustrate the process, two representative applications of the system are described. These applications represent typical uses of the system and include tracking the propagation of a flame front and tracking the movement of a liquid-gas interface with extremely poor visibility.

  6. Using Eye Trackers for Usability Evaluation of Health Information Technology: A Systematic Literature Review

    PubMed Central

    Yang, Yushi

    2015-01-01

    Background Eye-tracking technology has been used to measure human cognitive processes and has the potential to improve the usability of health information technology (HIT). However, it is still unclear how the eye-tracking method can be integrated with other traditional usability methodologies to achieve its full potential. Objective The objective of this study was to report on HIT evaluation studies that have used eye-tracker technology, and to envision the potential use of eye-tracking technology in future research. Methods We used four reference databases to initially identify 5248 related papers, which resulted in only 9 articles that met our inclusion criteria. Results Eye-tracking technology was useful in finding usability problems in many ways, but is still in its infancy for HIT usability evaluation. Limited types of HITs have been evaluated by eye trackers, and there has been a lack of evaluation research in natural settings. Conclusions More research should be done in natural settings to discover the real contextual-based usability problems of clinical and mobile HITs using eye-tracking technology with more standardized methodologies and guidance. PMID:27026079

  7. Summary of tracking and identification methods

    NASA Astrophysics Data System (ADS)

    Blasch, Erik; Yang, Chun; Kadar, Ivan

    2014-06-01

    Over the last two decades, many solutions have arisen to combine target tracking estimation with classification methods. Target tracking includes developments from linear to non-linear and Gaussian to non-Gaussian processing. Pattern recognition includes detection, classification, recognition, and identification methods. Integrating tracking and pattern recognition has resulted in numerous approaches and this paper seeks to organize the various approaches. We discuss the terminology so as to have a common framework for various standards such as the NATO STANAG 4162 - Identification Data Combining Process. In a use case, we provide a comparative example highlighting that location information (as an example) with additional mission objectives from geographical, human, social, cultural, and behavioral modeling is needed to determine identification as classification alone does not allow determining identification or intent.

  8. Layered data association using graph-theoretic formulation with applications to tennis ball tracking in monocular sequences.

    PubMed

    Yan, Fei; Christmas, William; Kittler, Josef

    2008-10-01

    In this paper, we propose a multilayered data association scheme with graph-theoretic formulation for tracking multiple objects that undergo switching dynamics in clutter. The proposed scheme takes as input object candidates detected in each frame. At the object candidate level, "tracklets'' are "grown'' from sets of candidates that have high probabilities of containing only true positives. At the tracklet level, a directed and weighted graph is constructed, where each node is a tracklet, and the edge weight between two nodes is defined according to the "compatibility'' of the two tracklets. The association problem is then formulated as an all-pairs shortest path (APSP) problem in this graph. Finally, at the path level, by analyzing the APSPs, all object trajectories are identified, and track initiation and track termination are automatically dealt with. By exploiting a special topological property of the graph, we have also developed a more efficient APSP algorithm than the general-purpose ones. The proposed data association scheme is applied to tennis sequences to track tennis balls. Experiments show that it works well on sequences where other data association methods perform poorly or fail completely.

  9. Tri-track: free software for large-scale particle tracking.

    PubMed

    Vallotton, Pascal; Olivier, Sandra

    2013-04-01

    The ability to correctly track objects in time-lapse sequences is important in many applications of microscopy. Individual object motions typically display a level of dynamic regularity reflecting the existence of an underlying physics or biology. Best results are obtained when this local information is exploited. Additionally, if the particle number is known to be approximately constant, a large number of tracking scenarios may be rejected on the basis that they are not compatible with a known maximum particle velocity. This represents information of a global nature, which should ideally be exploited too. Some time ago, we devised an efficient algorithm that exploited both types of information. The tracking task was reduced to a max-flow min-cost problem instance through a novel graph structure that comprised vertices representing objects from three consecutive image frames. The algorithm is explained here for the first time. A user-friendly implementation is provided, and the specific relaxation mechanism responsible for the method's effectiveness is uncovered. The software is particularly competitive for complex dynamics such as dense antiparallel flows, or in situations where object displacements are considerable. As an application, we characterize a remarkable vortex structure formed by bacteria engaged in interstitial motility.

  10. Assessing the Potential Use of Eye-Tracking Triangulation for Evaluating the Usability of an Online Diabetes Exercise System.

    PubMed

    Schaarup, Clara; Hartvigsen, Gunnar; Larsen, Lars Bo; Tan, Zheng-Hua; Årsand, Eirik; Hejlesen, Ole Kristian

    2015-01-01

    The Online Diabetes Exercise System was developed to motivate people with Type 2 diabetes to do a 25 minutes low-volume high-intensity interval training program. In a previous multi-method evaluation of the system, several usability issues were identified and corrected. Despite the thorough testing, it was unclear whether all usability problems had been identified using the multi-method evaluation. Our hypothesis was that adding the eye-tracking triangulation to the multi-method evaluation would increase the accuracy and completeness when testing the usability of the system. The study design was an Eye-tracking Triangulation; conventional eye-tracking with predefined tasks followed by The Post-Experience Eye-Tracked Protocol (PEEP). Six Areas of Interests were the basis for the PEEP-session. The eye-tracking triangulation gave objective and subjective results, which are believed to be highly relevant for designing, implementing, evaluating and optimizing systems in the field of health informatics. Future work should include testing the method on a larger and more representative group of users and apply the method on different system types.

  11. An algorithm to track laboratory zebrafish shoals.

    PubMed

    Feijó, Gregory de Oliveira; Sangalli, Vicenzo Abichequer; da Silva, Isaac Newton Lima; Pinho, Márcio Sarroglia

    2018-05-01

    In this paper, a semi-automatic multi-object tracking method to track a group of unmarked zebrafish is proposed. This method can handle partial occlusion cases, maintaining the correct identity of each individual. For every object, we extracted a set of geometric features to be used in the two main stages of the algorithm. The first stage selected the best candidate, based both on the blobs identified in the image and the estimate generated by a Kalman Filter instance. In the second stage, if the same candidate-blob is selected by two or more instances, a blob-partitioning algorithm takes place in order to split this blob and reestablish the instances' identities. If the algorithm cannot determine the identity of a blob, a manual intervention is required. This procedure was compared against a manual labeled ground truth on four video sequences with different numbers of fish and spatial resolution. The performance of the proposed method is then compared against two well-known zebrafish tracking methods found in the literature: one that treats occlusion scenarios and one that only track fish that are not in occlusion. Based on the data set used, the proposed method outperforms the first method in correctly separating fish in occlusion, increasing its efficiency by at least 8.15% of the cases. As for the second, the proposed method's overall performance outperformed the second in some of the tested videos, especially those with lower image quality, because the second method requires high-spatial resolution images, which is not a requirement for the proposed method. Yet, the proposed method was able to separate fish involved in occlusion and correctly assign its identity in up to 87.85% of the cases, without accounting for user intervention. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Method of center localization for objects containing concentric arcs

    NASA Astrophysics Data System (ADS)

    Kuznetsova, Elena G.; Shvets, Evgeny A.; Nikolaev, Dmitry P.

    2015-02-01

    This paper proposes a method for automatic center location of objects containing concentric arcs. The method utilizes structure tensor analysis and voting scheme optimized with Fast Hough Transform. Two applications of the proposed method are considered: (i) wheel tracking in video-based system for automatic vehicle classification and (ii) tree growth rings analysis on a tree cross cut image.

  13. A novel framework for objective detection and tracking of TC center from noisy satellite imagery

    NASA Astrophysics Data System (ADS)

    Johnson, Bibin; Thomas, Sachin; Rani, J. Sheeba

    2018-07-01

    This paper proposes a novel framework for automatically determining and tracking the center of a tropical cyclone (TC) during its entire life-cycle from the Thermal infrared (TIR) channel data of the geostationary satellite. The proposed method handles meteorological images with noise, missing or partial information due to the seasonal variability and lack of significant spatial or vortex features. To retrieve the cyclone center from these circumstances, a synergistic approach based on objective measures and Numerical Weather Prediction (NWP) model is being proposed. This method employs a spatial gradient scheme to process missing and noisy frames or a spatio-temporal gradient scheme for image sequences that are continuous and contain less noise. The initial estimate of the TC center from the missing imagery is corrected by exploiting a NWP model based post-processing scheme. The validity of the framework is tested on Infrared images of different cyclones obtained from various Geostationary satellites such as the Meteosat-7, INSAT- 3 D , Kalpana-1 etc. The computed track is compared with the actual track data obtained from Joint Typhoon Warning Center (JTWC), and it shows a reduction of mean track error by 11 % as compared to the other state of the art methods in the presence of missing and noisy frames. The proposed method is also successfully tested for simultaneous retrieval of the TC center from images containing multiple non-overlapping cyclones.

  14. Robust multiperson detection and tracking for mobile service and social robots.

    PubMed

    Li, Liyuan; Yan, Shuicheng; Yu, Xinguo; Tan, Yeow Kee; Li, Haizhou

    2012-10-01

    This paper proposes an efficient system which integrates multiple vision models for robust multiperson detection and tracking for mobile service and social robots in public environments. The core technique is a novel maximum likelihood (ML)-based algorithm which combines the multimodel detections in mean-shift tracking. First, a likelihood probability which integrates detections and similarity to local appearance is defined. Then, an expectation-maximization (EM)-like mean-shift algorithm is derived under the ML framework. In each iteration, the E-step estimates the associations to the detections, and the M-step locates the new position according to the ML criterion. To be robust to the complex crowded scenarios for multiperson tracking, an improved sequential strategy to perform the mean-shift tracking is proposed. Under this strategy, human objects are tracked sequentially according to their priority order. To balance the efficiency and robustness for real-time performance, at each stage, the first two objects from the list of the priority order are tested, and the one with the higher score is selected. The proposed method has been successfully implemented on real-world service and social robots. The vision system integrates stereo-based and histograms-of-oriented-gradients-based human detections, occlusion reasoning, and sequential mean-shift tracking. Various examples to show the advantages and robustness of the proposed system for multiperson tracking from mobile robots are presented. Quantitative evaluations on the performance of multiperson tracking are also performed. Experimental results indicate that significant improvements have been achieved by using the proposed method.

  15. The Pulkovo Cooperation for Radar and Optical Observations of Space Objects

    NASA Astrophysics Data System (ADS)

    Molotov, I.; Konovalenko, A. A.; Tuccari, G.; Falkovich, I.; Nechaeva, M.; Kiladze, R.; Titenko, V.; Agapov, V.; Khutorovsky, Z. N.; Sukhov, P. P.; Burtsev, Yu.; Sochilina, A.; Abalakin, V.; et al.

    The Pulkovo observatory is arranging the cooperation of optical and radio telescopes for space debris studies in two main research directions, i.e. the precise tracking of the GEO-objects for development of the dynamical control method and the barrier method study of small fragments produced by GEO-object explosions.Radar experiments are being carried out a few times per year by using the Evpatoria RT-70 transmitter and the receiving radio telescopes in Bear Lakes (Russia), Simeiz (Ukraine), Noto (Italy), and Urumqi (China). The data processing centers are located in N. Novgorod and Noto, and integrated into the Low Frequency VLBI Network (LFVN). The adjustment of the coordinated radar VLBI measurements has been completed, and the technique of beam-track searching has been tested. The program of the LFVN modernizations is in progress The Pulkovo cooperation of optical observers (PULCOO) includes observatories and observation stations of the former Soviet Union around the world, and is to provide the routine tracking of the GEO-objects. The adjustment has been carried out for the method to search for GEO-fragments in the barriers predicted on basis of the Pulkovo "LAPLACE" theory of motion. The refurbishment program for telescopes, which cooperate with the PULCOO, is in progress.

  16. Space debris tracking based on fuzzy running Gaussian average adaptive particle filter track-before-detect algorithm

    NASA Astrophysics Data System (ADS)

    Torteeka, Peerapong; Gao, Peng-Qi; Shen, Ming; Guo, Xiao-Zhang; Yang, Da-Tao; Yu, Huan-Huan; Zhou, Wei-Ping; Zhao, You

    2017-02-01

    Although tracking with a passive optical telescope is a powerful technique for space debris observation, it is limited by its sensitivity to dynamic background noise. Traditionally, in the field of astronomy, static background subtraction based on a median image technique has been used to extract moving space objects prior to the tracking operation, as this is computationally efficient. The main disadvantage of this technique is that it is not robust to variable illumination conditions. In this article, we propose an approach for tracking small and dim space debris in the context of a dynamic background via one of the optical telescopes that is part of the space surveillance network project, named the Asia-Pacific ground-based Optical Space Observation System or APOSOS. The approach combines a fuzzy running Gaussian average for robust moving-object extraction with dim-target tracking using a particle-filter-based track-before-detect method. The performance of the proposed algorithm is experimentally evaluated, and the results show that the scheme achieves a satisfactory level of accuracy for space debris tracking.

  17. Advances in image compression and automatic target recognition; Proceedings of the Meeting, Orlando, FL, Mar. 30, 31, 1989

    NASA Technical Reports Server (NTRS)

    Tescher, Andrew G. (Editor)

    1989-01-01

    Various papers on image compression and automatic target recognition are presented. Individual topics addressed include: target cluster detection in cluttered SAR imagery, model-based target recognition using laser radar imagery, Smart Sensor front-end processor for feature extraction of images, object attitude estimation and tracking from a single video sensor, symmetry detection in human vision, analysis of high resolution aerial images for object detection, obscured object recognition for an ATR application, neural networks for adaptive shape tracking, statistical mechanics and pattern recognition, detection of cylinders in aerial range images, moving object tracking using local windows, new transform method for image data compression, quad-tree product vector quantization of images, predictive trellis encoding of imagery, reduced generalized chain code for contour description, compact architecture for a real-time vision system, use of human visibility functions in segmentation coding, color texture analysis and synthesis using Gibbs random fields.

  18. Self-motion impairs multiple-object tracking.

    PubMed

    Thomas, Laura E; Seiffert, Adriane E

    2010-10-01

    Investigations of multiple-object tracking aim to further our understanding of how people perform common activities such as driving in traffic. However, tracking tasks in the laboratory have overlooked a crucial component of much real-world object tracking: self-motion. We investigated the hypothesis that keeping track of one's own movement impairs the ability to keep track of other moving objects. Participants attempted to track multiple targets while either moving around the tracking area or remaining in a fixed location. Participants' tracking performance was impaired when they moved to a new location during tracking, even when they were passively moved and when they did not see a shift in viewpoint. Self-motion impaired multiple-object tracking in both an immersive virtual environment and a real-world analog, but did not interfere with a difficult non-spatial tracking task. These results suggest that people use a common mechanism to track changes both to the location of moving objects around them and to keep track of their own location. Copyright 2010 Elsevier B.V. All rights reserved.

  19. A software solution to dynamically reduce metallic distortions of electromagnetic tracking systems for image-guided surgery.

    PubMed

    Li, Mengfei; Hansen, Christian; Rose, Georg

    2017-09-01

    Electromagnetic tracking systems (EMTS) have achieved a high level of acceptance in clinical settings, e.g., to support tracking of medical instruments in image-guided interventions. However, tracking errors caused by movable metallic medical instruments and electronic devices are a critical problem which prevents the wider application of EMTS for clinical applications. We plan to introduce a method to dynamically reduce tracking errors caused by metallic objects in proximity to the magnetic sensor coil of the EMTS. We propose a method using ramp waveform excitation based on modeling the conductive distorter as a resistance-inductance circuit. Additionally, a fast data acquisition method is presented to speed up the refresh rate. With the current approach, the sensor's positioning mean error is estimated to be 3.4, 1.3 and 0.7 mm, corresponding to a distance between the sensor and center of the transmitter coils' array of up to 200, 150 and 100 mm, respectively. The sensor pose error caused by different medical instruments placed in proximity was reduced by the proposed method to a level lower than 0.5 mm in position and [Formula: see text] in orientation. By applying the newly developed fast data acquisition method, we achieved a system refresh rate up to approximately 12.7 frames per second. Our software-based approach can be integrated into existing medical EMTS seamlessly with no change in hardware. It improves the tracking accuracy of clinical EMTS when there is a metallic object placed near the sensor coil and has the potential to improve the safety and outcome of image-guided interventions.

  20. Automated multiple target detection and tracking in UAV videos

    NASA Astrophysics Data System (ADS)

    Mao, Hongwei; Yang, Chenhui; Abousleman, Glen P.; Si, Jennie

    2010-04-01

    In this paper, a novel system is presented to detect and track multiple targets in Unmanned Air Vehicles (UAV) video sequences. Since the output of the system is based on target motion, we first segment foreground moving areas from the background in each video frame using background subtraction. To stabilize the video, a multi-point-descriptor-based image registration method is performed where a projective model is employed to describe the global transformation between frames. For each detected foreground blob, an object model is used to describe its appearance and motion information. Rather than immediately classifying the detected objects as targets, we track them for a certain period of time and only those with qualified motion patterns are labeled as targets. In the subsequent tracking process, a Kalman filter is assigned to each tracked target to dynamically estimate its position in each frame. Blobs detected at a later time are used as observations to update the state of the tracked targets to which they are associated. The proposed overlap-rate-based data association method considers the splitting and merging of the observations, and therefore is able to maintain tracks more consistently. Experimental results demonstrate that the system performs well on real-world UAV video sequences. Moreover, careful consideration given to each component in the system has made the proposed system feasible for real-time applications.

  1. Track Everything: Limiting Prior Knowledge in Online Multi-Object Recognition.

    PubMed

    Wong, Sebastien C; Stamatescu, Victor; Gatt, Adam; Kearney, David; Lee, Ivan; McDonnell, Mark D

    2017-10-01

    This paper addresses the problem of online tracking and classification of multiple objects in an image sequence. Our proposed solution is to first track all objects in the scene without relying on object-specific prior knowledge, which in other systems can take the form of hand-crafted features or user-based track initialization. We then classify the tracked objects with a fast-learning image classifier, that is based on a shallow convolutional neural network architecture and demonstrate that object recognition improves when this is combined with object state information from the tracking algorithm. We argue that by transferring the use of prior knowledge from the detection and tracking stages to the classification stage, we can design a robust, general purpose object recognition system with the ability to detect and track a variety of object types. We describe our biologically inspired implementation, which adaptively learns the shape and motion of tracked objects, and apply it to the Neovision2 Tower benchmark data set, which contains multiple object types. An experimental evaluation demonstrates that our approach is competitive with the state-of-the-art video object recognition systems that do make use of object-specific prior knowledge in detection and tracking, while providing additional practical advantages by virtue of its generality.

  2. The Role of Visual Working Memory in Attentive Tracking of Unique Objects

    ERIC Educational Resources Information Center

    Makovski, Tal; Jiang, Yuhong V.

    2009-01-01

    When tracking moving objects in space humans usually attend to the objects' spatial locations and update this information over time. To what extent do surface features assist attentive tracking? In this study we asked participants to track identical or uniquely colored objects. Tracking was enhanced when objects were unique in color. The benefit…

  3. Visual attention is required for multiple object tracking.

    PubMed

    Tran, Annie; Hoffman, James E

    2016-12-01

    In the multiple object tracking task, participants attempt to keep track of a moving set of target objects embedded in an identical set of moving distractors. Depending on several display parameters, observers are usually only able to accurately track 3 to 4 objects. Various proposals attribute this limit to a fixed number of discrete indexes (Pylyshyn, 1989), limits in visual attention (Cavanagh & Alvarez, 2005), or "architectural limits" in visual cortical areas (Franconeri, 2013). The present set of experiments examined the specific role of visual attention in tracking using a dual-task methodology in which participants tracked objects while identifying letter probes appearing on the tracked objects and distractors. As predicted by the visual attention model, probe identification was faster and/or more accurate when probes appeared on tracked objects. This was the case even when probes were more than twice as likely to appear on distractors suggesting that some minimum amount of attention is required to maintain accurate tracking performance. When the need to protect tracking accuracy was relaxed, participants were able to allocate more attention to distractors when probes were likely to appear there but only at the expense of large reductions in tracking accuracy. A final experiment showed that people attend to tracked objects even when letters appearing on them are task-irrelevant, suggesting that allocation of attention to tracked objects is an obligatory process. These results support the claim that visual attention is required for tracking objects. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  4. A Class of Prediction-Correction Methods for Time-Varying Convex Optimization

    NASA Astrophysics Data System (ADS)

    Simonetto, Andrea; Mokhtari, Aryan; Koppel, Alec; Leus, Geert; Ribeiro, Alejandro

    2016-09-01

    This paper considers unconstrained convex optimization problems with time-varying objective functions. We propose algorithms with a discrete time-sampling scheme to find and track the solution trajectory based on prediction and correction steps, while sampling the problem data at a constant rate of $1/h$, where $h$ is the length of the sampling interval. The prediction step is derived by analyzing the iso-residual dynamics of the optimality conditions. The correction step adjusts for the distance between the current prediction and the optimizer at each time step, and consists either of one or multiple gradient steps or Newton steps, which respectively correspond to the gradient trajectory tracking (GTT) or Newton trajectory tracking (NTT) algorithms. Under suitable conditions, we establish that the asymptotic error incurred by both proposed methods behaves as $O(h^2)$, and in some cases as $O(h^4)$, which outperforms the state-of-the-art error bound of $O(h)$ for correction-only methods in the gradient-correction step. Moreover, when the characteristics of the objective function variation are not available, we propose approximate gradient and Newton tracking algorithms (AGT and ANT, respectively) that still attain these asymptotical error bounds. Numerical simulations demonstrate the practical utility of the proposed methods and that they improve upon existing techniques by several orders of magnitude.

  5. Single-camera three-dimensional tracking of natural particulate and zooplankton

    NASA Astrophysics Data System (ADS)

    Troutman, Valerie A.; Dabiri, John O.

    2018-07-01

    We develop and characterize an image processing algorithm to adapt single-camera defocusing digital particle image velocimetry (DDPIV) for three-dimensional (3D) particle tracking velocimetry (PTV) of natural particulates, such as those present in the ocean. The conventional DDPIV technique is extended to facilitate tracking of non-uniform, non-spherical particles within a volume depth an order of magnitude larger than current single-camera applications (i.e. 10 cm  ×  10 cm  ×  24 cm depth) by a dynamic template matching method. This 2D cross-correlation method does not rely on precise determination of the centroid of the tracked objects. To accommodate the broad range of particle number densities found in natural marine environments, the performance of the measurement technique at higher particle densities has been improved by utilizing the time-history of tracked objects to inform 3D reconstruction. The developed processing algorithms were analyzed using synthetically generated images of flow induced by Hill’s spherical vortex, and the capabilities of the measurement technique were demonstrated empirically through volumetric reconstructions of the 3D trajectories of particles and highly non-spherical, 5 mm zooplankton.

  6. Three-dimensional microscope tracking system using the astigmatic lens method and a profile sensor

    NASA Astrophysics Data System (ADS)

    Kibata, Hiroki; Ishii, Katsuhiro

    2018-03-01

    We developed a three-dimensional microscope tracking system using the astigmatic lens method and a profile sensor, which provides three-dimensional position detection over a wide range at the rate of 3.2 kHz. First, we confirmed the range of target detection of the developed system, where the range of target detection was shown to be ± 90 µm in the horizontal plane and ± 9 µm in the vertical plane for a 10× objective lens. Next, we attempted to track a motion-controlled target. The developed system kept the target at the center of the field of view and in focus up to a target speed of 50 µm/s for a 20× objective lens. Finally, we tracked a freely moving target. We successfully demonstrated the tracking of a 10-µm-diameter polystyrene bead suspended in water for 40 min. The target was kept in the range of approximately 4.9 µm around the center of the field of view. In addition, the vertical direction was maintained in the range of ± 0.84 µm, which was sufficiently within the depth of focus.

  7. Real-Time Tracking by Double Templates Matching Based on Timed Motion History Image with HSV Feature

    PubMed Central

    Li, Zhiyong; Li, Pengfei; Yu, Xiaoping; Hashem, Mervat

    2014-01-01

    It is a challenge to represent the target appearance model for moving object tracking under complex environment. This study presents a novel method with appearance model described by double templates based on timed motion history image with HSV color histogram feature (tMHI-HSV). The main components include offline template and online template initialization, tMHI-HSV-based candidate patches feature histograms calculation, double templates matching (DTM) for object location, and templates updating. Firstly, we initialize the target object region and calculate its HSV color histogram feature as offline template and online template. Secondly, the tMHI-HSV is used to segment the motion region and calculate these candidate object patches' color histograms to represent their appearance models. Finally, we utilize the DTM method to trace the target and update the offline template and online template real-timely. The experimental results show that the proposed method can efficiently handle the scale variation and pose change of the rigid and nonrigid objects, even in illumination change and occlusion visual environment. PMID:24592185

  8. Action-Driven Visual Object Tracking With Deep Reinforcement Learning.

    PubMed

    Yun, Sangdoo; Choi, Jongwon; Yoo, Youngjoon; Yun, Kimin; Choi, Jin Young

    2018-06-01

    In this paper, we propose an efficient visual tracker, which directly captures a bounding box containing the target object in a video by means of sequential actions learned using deep neural networks. The proposed deep neural network to control tracking actions is pretrained using various training video sequences and fine-tuned during actual tracking for online adaptation to a change of target and background. The pretraining is done by utilizing deep reinforcement learning (RL) as well as supervised learning. The use of RL enables even partially labeled data to be successfully utilized for semisupervised learning. Through the evaluation of the object tracking benchmark data set, the proposed tracker is validated to achieve a competitive performance at three times the speed of existing deep network-based trackers. The fast version of the proposed method, which operates in real time on graphics processing unit, outperforms the state-of-the-art real-time trackers with an accuracy improvement of more than 8%.

  9. Semi-automatic tracking, smoothing and segmentation of hyoid bone motion from videofluoroscopic swallowing study.

    PubMed

    Kim, Won-Seok; Zeng, Pengcheng; Shi, Jian Qing; Lee, Youngjo; Paik, Nam-Jong

    2017-01-01

    Motion analysis of the hyoid bone via videofluoroscopic study has been used in clinical research, but the classical manual tracking method is generally labor intensive and time consuming. Although some automatic tracking methods have been developed, masked points could not be tracked and smoothing and segmentation, which are necessary for functional motion analysis prior to registration, were not provided by the previous software. We developed software to track the hyoid bone motion semi-automatically. It works even in the situation where the hyoid bone is masked by the mandible and has been validated in dysphagia patients with stroke. In addition, we added the function of semi-automatic smoothing and segmentation. A total of 30 patients' data were used to develop the software, and data collected from 17 patients were used for validation, of which the trajectories of 8 patients were partly masked. Pearson correlation coefficients between the manual and automatic tracking are high and statistically significant (0.942 to 0.991, P-value<0.0001). Relative errors between automatic tracking and manual tracking in terms of the x-axis, y-axis and 2D range of hyoid bone excursion range from 3.3% to 9.2%. We also developed an automatic method to segment each hyoid bone trajectory into four phases (elevation phase, anterior movement phase, descending phase and returning phase). The semi-automatic hyoid bone tracking from VFSS data by our software is valid compared to the conventional manual tracking method. In addition, the ability of automatic indication to switch the automatic mode to manual mode in extreme cases and calibration without attaching the radiopaque object is convenient and useful for users. Semi-automatic smoothing and segmentation provide further information for functional motion analysis which is beneficial to further statistical analysis such as functional classification and prognostication for dysphagia. Therefore, this software could provide the researchers in the field of dysphagia with a convenient, useful, and all-in-one platform for analyzing the hyoid bone motion. Further development of our method to track the other swallowing related structures or objects such as epiglottis and bolus and to carry out the 2D curve registration may be needed for a more comprehensive functional data analysis for dysphagia with big data.

  10. Object tracking with stereo vision

    NASA Technical Reports Server (NTRS)

    Huber, Eric

    1994-01-01

    A real-time active stereo vision system incorporating gaze control and task directed vision is described. Emphasis is placed on object tracking and object size and shape determination. Techniques include motion-centroid tracking, depth tracking, and contour tracking.

  11. Investigation on microfluidic particles manipulation by holographic 3D tracking strategies

    NASA Astrophysics Data System (ADS)

    Cacace, Teresa; Paturzo, Melania; Memmolo, Pasquale; Vassalli, Massimo; Fraldi, Massimiliano; Mensitieri, Giuseppe; Ferraro, Pietro

    2017-06-01

    We demonstrate a 3D holographic tracking method to investigate particles motion in a microfluidic channel while unperturbed while inducing their migration through microfluidic manipulation. Digital holography (DH) in microscopy is a full-field, label-free imaging technique able to provide quantitative phase-contrast. The employed 3D tracking method is articulated in steps. First, the displacements along the optical axis are assessed by numerical refocusing criteria. In particular, an automatic refocusing method to recover the particles axial position is implemented employing a contrast-based refocusing criterion. Then, the transverse position of the in-focus object is evaluated through quantitative phase map segmentation methods and centroid-based 2D tracking strategy. The introduction of DH is thus suggested as a powerful approach for control of particles and biological samples manipulation, as well as a possible aid to precise design and implementation of advanced lab-on-chip microfluidic devices.

  12. Robust infrared target tracking using discriminative and generative approaches

    NASA Astrophysics Data System (ADS)

    Asha, C. S.; Narasimhadhan, A. V.

    2017-09-01

    The process of designing an efficient tracker for thermal infrared imagery is one of the most challenging tasks in computer vision. Although a lot of advancement has been achieved in RGB videos over the decades, textureless and colorless properties of objects in thermal imagery pose hard constraints in the design of an efficient tracker. Tracking of an object using a single feature or a technique often fails to achieve greater accuracy. Here, we propose an effective method to track an object in infrared imagery based on a combination of discriminative and generative approaches. The discriminative technique makes use of two complementary methods such as kernelized correlation filter with spatial feature and AdaBoost classifier with pixel intesity features to operate in parallel. After obtaining optimized locations through discriminative approaches, the generative technique is applied to determine the best target location using a linear search method. Unlike the baseline algorithms, the proposed method estimates the scale of the target by Lucas-Kanade homography estimation. To evaluate the proposed method, extensive experiments are conducted on 17 challenging infrared image sequences obtained from LTIR dataset and a significant improvement of mean distance precision and mean overlap precision is accomplished as compared with the existing trackers. Further, a quantitative and qualitative assessment of the proposed approach with the state-of-the-art trackers is illustrated to clearly demonstrate an overall increase in performance.

  13. Multi-attribute subjective evaluations of manual tracking tasks vs. objective performance of the human operator

    NASA Technical Reports Server (NTRS)

    Siapkaras, A.

    1977-01-01

    A computational method to deal with the multidimensional nature of tracking and/or monitoring tasks is developed. Operator centered variables, including the operator's perception of the task, are considered. Matrix ratings are defined based on multidimensional scaling techniques and multivariate analysis. The method consists of two distinct steps: (1) to determine the mathematical space of subjective judgements of a certain individual (or group of evaluators) for a given set of tasks and experimental conditionings; and (2) to relate this space with respect to both the task variables and the objective performance criteria used. Results for a variety of second-order trackings with smoothed noise-driven inputs indicate that: (1) many of the internally perceived task variables form a nonorthogonal set; and (2) the structure of the subjective space varies among groups of individuals according to the degree of familiarity they have with such tasks.

  14. Tracking Object Existence From an Autonomous Patrol Vehicle

    NASA Technical Reports Server (NTRS)

    Wolf, Michael; Scharenbroich, Lucas

    2011-01-01

    An autonomous vehicle patrols a large region, during which an algorithm receives measurements of detected potential objects within its sensor range. The goal of the algorithm is to track all objects in the region over time. This problem differs from traditional multi-target tracking scenarios because the region of interest is much larger than the sensor range and relies on the movement of the sensor through this region for coverage. The goal is to know whether anything has changed between visits to the same location. In particular, two kinds of alert conditions must be detected: (1) a previously detected object has disappeared and (2) a new object has appeared in a location already checked. For the time an object is within sensor range, the object can be assumed to remain stationary, changing position only between visits. The problem is difficult because the upstream object detection processing is likely to make many errors, resulting in heavy clutter (false positives) and missed detections (false negatives), and because only noisy, bearings-only measurements are available. This work has three main goals: (1) Associate incoming measurements with known objects or mark them as new objects or false positives, as appropriate. For this, a multiple hypothesis tracker was adapted to this scenario. (2) Localize the objects using multiple bearings-only measurements to provide estimates of global position (e.g., latitude and longitude). A nonlinear Kalman filter extension provides these 2D position estimates using the 1D measurements. (3) Calculate the probability that a suspected object truly exists (in the estimated position), and determine whether alert conditions have been triggered (for new objects or disappeared objects). The concept of a probability of existence was created, and a new Bayesian method for updating this probability at each time step was developed. A probabilistic multiple hypothesis approach is chosen because of its superiority in handling the uncertainty arising from errors in sensors and upstream processes. However, traditional target tracking methods typically assume a stationary detection volume of interest, whereas in this case, one must make adjustments for being able to see only a small portion of the region of interest and understand when an alert situation has occurred. To track object existence inside and outside the vehicle's sensor range, a probability of existence was defined for each hypothesized object, and this value was updated at every time step in a Bayesian manner based on expected characteristics of the sensor and object and whether that object has been detected in the most recent time step. Then, this value feeds into a sequential probability ratio test (SPRT) to determine the status of the object (suspected, confirmed, or deleted). Alerts are sent upon selected status transitions. Additionally, in order to track objects that move in and out of sensor range and update the probability of existence appropriately a variable probability detection has been defined and the hypothesis probability equations have been re-derived to accommodate this change. Unsupervised object tracking is a pervasive issue in automated perception systems. This work could apply to any mobile platform (ground vehicle, sea vessel, air vehicle, or orbiter) that intermittently revisits regions of interest and needs to determine whether anything interesting has changed.

  15. Error tracking control for underactuated overhead cranes against arbitrary initial payload swing angles

    NASA Astrophysics Data System (ADS)

    Zhang, Menghua; Ma, Xin; Rong, Xuewen; Tian, Xincheng; Li, Yibin

    2017-02-01

    This paper exploits an error tracking control method for overhead crane systems for which the error trajectories for the trolley and the payload swing can be pre-specified. The proposed method does not require that the initial payload swing angle remains zero, whereas this requirement is usually assumed in conventional methods. The significant feature of the proposed method is its superior control performance as well as its strong robustness over different or uncertain rope lengths, payload masses, desired positions, initial payload swing angles, and external disturbances. Owing to the same attenuation behavior, the desired error trajectory for the trolley for each traveling distance is not needed to be reset, which is easy to implement in practical applications. By converting the error tracking overhead crane dynamics to the objective system, we obtain the error tracking control law for arbitrary initial payload swing angles. Lyapunov techniques and LaSalle's invariance theorem are utilized to prove the convergence and stability of the closed-loop system. Simulation and experimental results are illustrated to validate the superior performance of the proposed error tracking control method.

  16. Adaptive object tracking via both positive and negative models matching

    NASA Astrophysics Data System (ADS)

    Li, Shaomei; Gao, Chao; Wang, Yawen

    2015-03-01

    To improve tracking drift which often occurs in adaptive tracking, an algorithm based on the fusion of tracking and detection is proposed in this paper. Firstly, object tracking is posed as abinary classification problem and is modeled by partial least squares (PLS) analysis. Secondly, tracking object frame by frame via particle filtering. Thirdly, validating the tracking reliability based on both positive and negative models matching. Finally, relocating the object based on SIFT features matching and voting when drift occurs. Object appearance model is updated at the same time. The algorithm can not only sense tracking drift but also relocate the object whenever needed. Experimental results demonstrate that this algorithm outperforms state-of-the-art algorithms on many challenging sequences.

  17. How Many Objects are You Worth? Quantification of the Self-Motion Load on Multiple Object Tracking

    PubMed Central

    Thomas, Laura E.; Seiffert, Adriane E.

    2011-01-01

    Perhaps walking and chewing gum is effortless, but walking and tracking moving objects is not. Multiple object tracking is impaired by walking from one location to another, suggesting that updating location of the self puts demands on object tracking processes. Here, we quantified the cost of self-motion in terms of the tracking load. Participants in a virtual environment tracked a variable number of targets (1–5) among distractors while either staying in one place or moving along a path that was similar to the objects’ motion. At the end of each trial, participants decided whether a probed dot was a target or distractor. As in our previous work, self-motion significantly impaired performance in tracking multiple targets. Quantifying tracking capacity for each individual under move versus stay conditions further revealed that self-motion during tracking produced a cost to capacity of about 0.8 (±0.2) objects. Tracking your own motion is worth about one object, suggesting that updating the location of the self is similar, but perhaps slightly easier, than updating locations of objects. PMID:21991259

  18. Decentralized cooperative TOA/AOA target tracking for hierarchical wireless sensor networks.

    PubMed

    Chen, Ying-Chih; Wen, Chih-Yu

    2012-11-08

    This paper proposes a distributed method for cooperative target tracking in hierarchical wireless sensor networks. The concept of leader-based information processing is conducted to achieve object positioning, considering a cluster-based network topology. Random timers and local information are applied to adaptively select a sub-cluster for the localization task. The proposed energy-efficient tracking algorithm allows each sub-cluster member to locally estimate the target position with a Bayesian filtering framework and a neural networking model, and further performs estimation fusion in the leader node with the covariance intersection algorithm. This paper evaluates the merits and trade-offs of the protocol design towards developing more efficient and practical algorithms for object position estimation.

  19. Object tracking mask-based NLUT on GPUs for real-time generation of holographic videos of three-dimensional scenes.

    PubMed

    Kwon, M-W; Kim, S-C; Yoon, S-E; Ho, Y-S; Kim, E-S

    2015-02-09

    A new object tracking mask-based novel-look-up-table (OTM-NLUT) method is proposed and implemented on graphics-processing-units (GPUs) for real-time generation of holographic videos of three-dimensional (3-D) scenes. Since the proposed method is designed to be matched with software and memory structures of the GPU, the number of compute-unified-device-architecture (CUDA) kernel function calls and the computer-generated hologram (CGH) buffer size of the proposed method have been significantly reduced. It therefore results in a great increase of the computational speed of the proposed method and enables real-time generation of CGH patterns of 3-D scenes. Experimental results show that the proposed method can generate 31.1 frames of Fresnel CGH patterns with 1,920 × 1,080 pixels per second, on average, for three test 3-D video scenarios with 12,666 object points on three GPU boards of NVIDIA GTX TITAN, and confirm the feasibility of the proposed method in the practical application of electro-holographic 3-D displays.

  20. Uncued Low SNR Detection with Likelihood from Image Multi Bernoulli Filter

    NASA Astrophysics Data System (ADS)

    Murphy, T.; Holzinger, M.

    2016-09-01

    Both SSA and SDA necessitate uncued, partially informed detection and orbit determination efforts for small space objects which often produce only low strength electro-optical signatures. General frame to frame detection and tracking of objects includes methods such as moving target indicator, multiple hypothesis testing, direct track-before-detect methods, and random finite set based multiobject tracking. This paper will apply the multi-Bernoilli filter to low signal-to-noise ratio (SNR), uncued detection of space objects for space domain awareness applications. The primary novel innovation in this paper is a detailed analysis of the existing state-of-the-art likelihood functions and a likelihood function, based on a binary hypothesis, previously proposed by the authors. The algorithm is tested on electro-optical imagery obtained from a variety of sensors at Georgia Tech, including the GT-SORT 0.5m Raven-class telescope, and a twenty degree field of view high frame rate CMOS sensor. In particular, a data set of an extended pass of the Hitomi Astro-H satellite approximately 3 days after loss of communication and potential break up is examined.

  1. Tracking reliability for space cabin-borne equipment in development by Crow model.

    PubMed

    Chen, J D; Jiao, S J; Sun, H L

    2001-12-01

    Objective. To study and track the reliability growth of manned spaceflight cabin-borne equipment in the course of its development. Method. A new technique of reliability growth estimation and prediction, which is composed of the Crow model and test data conversion (TDC) method was used. Result. The estimation and prediction value of the reliability growth conformed to its expectations. Conclusion. The method could dynamically estimate and predict the reliability of the equipment by making full use of various test information in the course of its development. It offered not only a possibility of tracking the equipment reliability growth, but also the reference for quality control in manned spaceflight cabin-borne equipment design and development process.

  2. Self-paced model learning for robust visual tracking

    NASA Astrophysics Data System (ADS)

    Huang, Wenhui; Gu, Jason; Ma, Xin; Li, Yibin

    2017-01-01

    In visual tracking, learning a robust and efficient appearance model is a challenging task. Model learning determines both the strategy and the frequency of model updating, which contains many details that could affect the tracking results. Self-paced learning (SPL) has recently been attracting considerable interest in the fields of machine learning and computer vision. SPL is inspired by the learning principle underlying the cognitive process of humans, whose learning process is generally from easier samples to more complex aspects of a task. We propose a tracking method that integrates the learning paradigm of SPL into visual tracking, so reliable samples can be automatically selected for model learning. In contrast to many existing model learning strategies in visual tracking, we discover the missing link between sample selection and model learning, which are combined into a single objective function in our approach. Sample weights and model parameters can be learned by minimizing this single objective function. Additionally, to solve the real-valued learning weight of samples, an error-tolerant self-paced function that considers the characteristics of visual tracking is proposed. We demonstrate the robustness and efficiency of our tracker on a recent tracking benchmark data set with 50 video sequences.

  3. Textual and shape-based feature extraction and neuro-fuzzy classifier for nuclear track recognition

    NASA Astrophysics Data System (ADS)

    Khayat, Omid; Afarideh, Hossein

    2013-04-01

    Track counting algorithms as one of the fundamental principles of nuclear science have been emphasized in the recent years. Accurate measurement of nuclear tracks on solid-state nuclear track detectors is the aim of track counting systems. Commonly track counting systems comprise a hardware system for the task of imaging and software for analysing the track images. In this paper, a track recognition algorithm based on 12 defined textual and shape-based features and a neuro-fuzzy classifier is proposed. Features are defined so as to discern the tracks from the background and small objects. Then, according to the defined features, tracks are detected using a trained neuro-fuzzy system. Features and the classifier are finally validated via 100 Alpha track images and 40 training samples. It is shown that principle textual and shape-based features concomitantly yield a high rate of track detection compared with the single-feature based methods.

  4. The Effects of a Multiyear Universal Social-Emotional Learning Program: The Role of Student and School Characteristics

    ERIC Educational Resources Information Center

    Bierman, Karen L.; Coie, John D.; Dodge, Kenneth A.; Greenberg, Mark T.; Lochman, John E.; McMahon, Robert J.; Pinderhughes, Ellen

    2010-01-01

    Objective: This article examines the impact of a universal social-emotional learning program, the Fast Track PATHS (Promoting Alternative Thinking Strategies) curriculum and teacher consultation, embedded within the Fast Track selective prevention model. Method: The longitudinal analysis involved 2,937 children of multiple ethnicities who remained…

  5. Finite-time tracking control for multiple non-holonomic mobile robots based on visual servoing

    NASA Astrophysics Data System (ADS)

    Ou, Meiying; Li, Shihua; Wang, Chaoli

    2013-12-01

    This paper investigates finite-time tracking control problem of multiple non-holonomic mobile robots via visual servoing. It is assumed that the pinhole camera is fixed to the ceiling, and camera parameters are unknown. The desired reference trajectory is represented by a virtual leader whose states are available to only a subset of the followers, and the followers have only interaction. First, the camera-objective visual kinematic model is introduced by utilising the pinhole camera model for each mobile robot. Second, a unified tracking error system between camera-objective visual servoing model and desired reference trajectory is introduced. Third, based on the neighbour rule and by using finite-time control method, continuous distributed cooperative finite-time tracking control laws are designed for each mobile robot with unknown camera parameters, where the communication topology among the multiple mobile robots is assumed to be a directed graph. Rigorous proof shows that the group of mobile robots converges to the desired reference trajectory in finite time. Simulation example illustrates the effectiveness of our method.

  6. Statistical Track-Before-Detect Methods Applied to Faint Optical Observations of Resident Space Objects

    NASA Astrophysics Data System (ADS)

    Fujimoto, K.; Yanagisawa, T.; Uetsuhara, M.

    Automated detection and tracking of faint objects in optical, or bearing-only, sensor imagery is a topic of immense interest in space surveillance. Robust methods in this realm will lead to better space situational awareness (SSA) while reducing the cost of sensors and optics. They are especially relevant in the search for high area-to-mass ratio (HAMR) objects, as their apparent brightness can change significantly over time. A track-before-detect (TBD) approach has been shown to be suitable for faint, low signal-to-noise ratio (SNR) images of resident space objects (RSOs). TBD does not rely upon the extraction of feature points within the image based on some thresholding criteria, but rather directly takes as input the intensity information from the image file. Not only is all of the available information from the image used, TBD avoids the computational intractability of the conventional feature-based line detection (i.e., "string of pearls") approach to track detection for low SNR data. Implementation of TBD rooted in finite set statistics (FISST) theory has been proposed recently by Vo, et al. Compared to other TBD methods applied so far to SSA, such as the stacking method or multi-pass multi-period denoising, the FISST approach is statistically rigorous and has been shown to be more computationally efficient, thus paving the path toward on-line processing. In this paper, we intend to apply a multi-Bernoulli filter to actual CCD imagery of RSOs. The multi-Bernoulli filter can explicitly account for the birth and death of multiple targets in a measurement arc. TBD is achieved via a sequential Monte Carlo implementation. Preliminary results with simulated single-target data indicate that a Bernoulli filter can successfully track and detect objects with measurement SNR as low as 2.4. Although the advent of fast-cadence scientific CMOS sensors have made the automation of faint object detection a realistic goal, it is nonetheless a difficult goal, as measurements arcs in space surveillance are often both short and sparse. FISST methodologies have been applied to the general problem of SSA by many authors, but they generally focus on tracking scenarios with long arcs or assume that line detection is tractable. We will instead focus this work on estimating sensor-level kinematics of RSOs for low SNR too-short arc observations. Once said estimate is made available, track association and simultaneous initial orbit determination may be achieved via any number of proposed solutions to the too-short arc problem, such as those incorporating the admissible region. We show that the benefit of combining FISST-based TBD with too-short arc association goes both ways; i.e., the former provides consistent statistics regarding bearing-only measurements, whereas the latter makes better use of the precise dynamical models nominally applicable to RSOs in orbit determination.

  7. Tracking planets and moons: mechanisms of object tracking revealed with a new paradigm.

    PubMed

    Tombu, Michael; Seiffert, Adriane E

    2011-04-01

    People can attend to and track multiple moving objects over time. Cognitive theories of this ability emphasize location information and differ on the importance of motion information. Results from several experiments have shown that increasing object speed impairs performance, although speed was confounded with other properties such as proximity of objects to one another. Here, we introduce a new paradigm to study multiple object tracking in which object speed and object proximity were manipulated independently. Like the motion of a planet and moon, each target-distractor pair rotated about both a common local point as well as the center of the screen. Tracking performance was strongly affected by object speed even when proximity was controlled. Additional results suggest that two different mechanisms are used in object tracking--one sensitive to speed and proximity and the other sensitive to the number of distractors. These observations support models of object tracking that include information about object motion and reject models that use location alone.

  8. Tracking and nowcasting convective precipitation cells at European scale for transregional warnings

    NASA Astrophysics Data System (ADS)

    Meyer, Vera; Tüchler, Lukas

    2013-04-01

    A transregional overview of the current weather situation is considered as highly valuable information to assist forecasters as well as official authorities for disaster management in their decision making processes. The development of the European-wide radar composite OPERA enables for the first time a coherent object-oriented tracking and nowcasting of intense precipitation cells in real time at continental scale and at a resolution of 2 x 2 km² and 15 minutes. Recently, the object-oriented cell-tracking tool A-TNT (Austrian Thunderstorm Nowcasting Tool) has been developed at ZAMG. A-TNT utilizes the method of ec-TRAM [1]. It consists of two autonomously operating routines, which identify, track and nowcast radar- and lightning-cells separately. The two independent outputs are combined to a coherent storm monitoring and nowcasting in a final step. Within the framework of HAREN (Hazard Assessment based on Rainfall European Nowcasts), which is a project funded by the EC Directorate General for Humanitarian Aid and Civil Protection, A-TNT has been adapted to OPERA radar data. The objective of HAREN is the support of forecasters and official authorities in their decision-making processes concerning precipitation induced hazards with pan-European information. This study will present (1) the general performance of the object-oriented approach for thunderstorm tracking and nowcasting on continental scale giving insight into its current capabilities and limitations and (2) the utilization of object-oriented cell information for automated precipitation warnings carried out within the framework of HAREN. Data collected from April to October 2012 are used to assess the performance of cell-tracking based on radar data. Furthermore, the benefit of additional lightning information provided by the European Cooperation for Lightning Detection (EUCLID) for thunderstorm tracking and nowcasting will be summarized in selected analyses. REFERENCES: [1] Meyer, V. K., H. Höller, and H. D. Betz 2012: Automated thunderstorm tracking and nowcasting: utilization of three-dimensional lightning and radar data. Manuscript accepted for publication in ACPD.

  9. Upside-down: Perceived space affects object-based attention.

    PubMed

    Papenmeier, Frank; Meyerhoff, Hauke S; Brockhoff, Alisa; Jahn, Georg; Huff, Markus

    2017-07-01

    Object-based attention influences the subjective metrics of surrounding space. However, does perceived space influence object-based attention, as well? We used an attentive tracking task that required sustained object-based attention while objects moved within a tracking space. We manipulated perceived space through the availability of depth cues and varied the orientation of the tracking space. When rich depth cues were available (appearance of a voluminous tracking space), the upside-down orientation of the tracking space (objects appeared to move high on a ceiling) caused a pronounced impairment of tracking performance compared with an upright orientation of the tracking space (objects appeared to move on a floor plane). In contrast, this was not the case when reduced depth cues were available (appearance of a flat tracking space). With a preregistered second experiment, we showed that those effects were driven by scene-based depth cues and not object-based depth cues. We conclude that perceived space affects object-based attention and that object-based attention and perceived space are closely interlinked. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  10. Single and multiple object tracking using log-euclidean Riemannian subspace and block-division appearance model.

    PubMed

    Hu, Weiming; Li, Xi; Luo, Wenhan; Zhang, Xiaoqin; Maybank, Stephen; Zhang, Zhongfei

    2012-12-01

    Object appearance modeling is crucial for tracking objects, especially in videos captured by nonstationary cameras and for reasoning about occlusions between multiple moving objects. Based on the log-euclidean Riemannian metric on symmetric positive definite matrices, we propose an incremental log-euclidean Riemannian subspace learning algorithm in which covariance matrices of image features are mapped into a vector space with the log-euclidean Riemannian metric. Based on the subspace learning algorithm, we develop a log-euclidean block-division appearance model which captures both the global and local spatial layout information about object appearances. Single object tracking and multi-object tracking with occlusion reasoning are then achieved by particle filtering-based Bayesian state inference. During tracking, incremental updating of the log-euclidean block-division appearance model captures changes in object appearance. For multi-object tracking, the appearance models of the objects can be updated even in the presence of occlusions. Experimental results demonstrate that the proposed tracking algorithm obtains more accurate results than six state-of-the-art tracking algorithms.

  11. Multi-Object Tracking with Correlation Filter for Autonomous Vehicle.

    PubMed

    Zhao, Dawei; Fu, Hao; Xiao, Liang; Wu, Tao; Dai, Bin

    2018-06-22

    Multi-object tracking is a crucial problem for autonomous vehicle. Most state-of-the-art approaches adopt the tracking-by-detection strategy, which is a two-step procedure consisting of the detection module and the tracking module. In this paper, we improve both steps. We improve the detection module by incorporating the temporal information, which is beneficial for detecting small objects. For the tracking module, we propose a novel compressed deep Convolutional Neural Network (CNN) feature based Correlation Filter tracker. By carefully integrating these two modules, the proposed multi-object tracking approach has the ability of re-identification (ReID) once the tracked object gets lost. Extensive experiments were performed on the KITTI and MOT2015 tracking benchmarks. Results indicate that our approach outperforms most state-of-the-art tracking approaches.

  12. System and method for tracking a signal source. [employing feedback control

    NASA Technical Reports Server (NTRS)

    Mogavero, L. N.; Johnson, E. G.; Evans, J. M., Jr.; Albus, J. S. (Inventor)

    1978-01-01

    A system for tracking moving signal sources is disclosed which is particularly adaptable for use in tracking stage performers. A miniature transmitter is attached to the person or object to be tracked and emits a detectable signal of a predetermined frequency. A plurality of detectors positioned in a preset pattern sense the signal and supply output information to a phase detector which applies signals representing the angular orientation of the transmitter to a computer. The computer provides command signals to a servo network which drives a device such as a motor driven mirror reflecting the beam of a spotlight, to track the moving transmitter.

  13. Research on target tracking algorithm based on spatio-temporal context

    NASA Astrophysics Data System (ADS)

    Li, Baiping; Xu, Sanmei; Kang, Hongjuan

    2017-07-01

    In this paper, a novel target tracking algorithm based on spatio-temporal context is proposed. During the tracking process, the camera shaking or occlusion may lead to the failure of tracking. The proposed algorithm can solve this problem effectively. The method use the spatio-temporal context algorithm as the main research object. We get the first frame's target region via mouse. Then the spatio-temporal context algorithm is used to get the tracking targets of the sequence of frames. During this process a similarity measure function based on perceptual hash algorithm is used to judge the tracking results. If tracking failed, reset the initial value of Mean Shift algorithm for the subsequent target tracking. Experiment results show that the proposed algorithm can achieve real-time and stable tracking when camera shaking or target occlusion.

  14. Tracker Toolkit

    NASA Technical Reports Server (NTRS)

    Lewis, Steven J.; Palacios, David M.

    2013-01-01

    This software can track multiple moving objects within a video stream simultaneously, use visual features to aid in the tracking, and initiate tracks based on object detection in a subregion. A simple programmatic interface allows plugging into larger image chain modeling suites. It extracts unique visual features for aid in tracking and later analysis, and includes sub-functionality for extracting visual features about an object identified within an image frame. Tracker Toolkit utilizes a feature extraction algorithm to tag each object with metadata features about its size, shape, color, and movement. Its functionality is independent of the scale of objects within a scene. The only assumption made on the tracked objects is that they move. There are no constraints on size within the scene, shape, or type of movement. The Tracker Toolkit is also capable of following an arbitrary number of objects in the same scene, identifying and propagating the track of each object from frame to frame. Target objects may be specified for tracking beforehand, or may be dynamically discovered within a tripwire region. Initialization of the Tracker Toolkit algorithm includes two steps: Initializing the data structures for tracked target objects, including targets preselected for tracking; and initializing the tripwire region. If no tripwire region is desired, this step is skipped. The tripwire region is an area within the frames that is always checked for new objects, and all new objects discovered within the region will be tracked until lost (by leaving the frame, stopping, or blending in to the background).

  15. Automatic Spatio-Temporal Flow Velocity Measurement in Small Rivers Using Thermal Image Sequences

    NASA Astrophysics Data System (ADS)

    Lin, D.; Eltner, A.; Sardemann, H.; Maas, H.-G.

    2018-05-01

    An automatic spatio-temporal flow velocity measurement approach, using an uncooled thermal camera, is proposed in this paper. The basic principle of the method is to track visible thermal features at the water surface in thermal camera image sequences. Radiometric and geometric calibrations are firstly implemented to remove vignetting effects in thermal imagery and to get the interior orientation parameters of the camera. An object-based unsupervised classification approach is then applied to detect the interest regions for data referencing and thermal feature tracking. Subsequently, GCPs are extracted to orient the river image sequences and local hot points are identified as tracking features. Afterwards, accurate dense tracking outputs are obtained using pyramidal Lucas-Kanade method. To validate the accuracy potential of the method, measurements obtained from thermal feature tracking are compared with reference measurements taken by a propeller gauge. Results show a great potential of automatic flow velocity measurement in small rivers using imagery from a thermal camera.

  16. Human-like object tracking and gaze estimation with PKD android

    PubMed Central

    Wijayasinghe, Indika B.; Miller, Haylie L.; Das, Sumit K; Bugnariu, Nicoleta L.; Popa, Dan O.

    2018-01-01

    As the use of robots increases for tasks that require human-robot interactions, it is vital that robots exhibit and understand human-like cues for effective communication. In this paper, we describe the implementation of object tracking capability on Philip K. Dick (PKD) android and a gaze tracking algorithm, both of which further robot capabilities with regard to human communication. PKD's ability to track objects with human-like head postures is achieved with visual feedback from a Kinect system and an eye camera. The goal of object tracking with human-like gestures is twofold : to facilitate better human-robot interactions and to enable PKD as a human gaze emulator for future studies. The gaze tracking system employs a mobile eye tracking system (ETG; SensoMotoric Instruments) and a motion capture system (Cortex; Motion Analysis Corp.) for tracking the head orientations. Objects to be tracked are displayed by a virtual reality system, the Computer Assisted Rehabilitation Environment (CAREN; MotekForce Link). The gaze tracking algorithm converts eye tracking data and head orientations to gaze information facilitating two objectives: to evaluate the performance of the object tracking system for PKD and to use the gaze information to predict the intentions of the user, enabling the robot to understand physical cues by humans. PMID:29416193

  17. Human-like object tracking and gaze estimation with PKD android

    NASA Astrophysics Data System (ADS)

    Wijayasinghe, Indika B.; Miller, Haylie L.; Das, Sumit K.; Bugnariu, Nicoleta L.; Popa, Dan O.

    2016-05-01

    As the use of robots increases for tasks that require human-robot interactions, it is vital that robots exhibit and understand human-like cues for effective communication. In this paper, we describe the implementation of object tracking capability on Philip K. Dick (PKD) android and a gaze tracking algorithm, both of which further robot capabilities with regard to human communication. PKD's ability to track objects with human-like head postures is achieved with visual feedback from a Kinect system and an eye camera. The goal of object tracking with human-like gestures is twofold: to facilitate better human-robot interactions and to enable PKD as a human gaze emulator for future studies. The gaze tracking system employs a mobile eye tracking system (ETG; SensoMotoric Instruments) and a motion capture system (Cortex; Motion Analysis Corp.) for tracking the head orientations. Objects to be tracked are displayed by a virtual reality system, the Computer Assisted Rehabilitation Environment (CAREN; MotekForce Link). The gaze tracking algorithm converts eye tracking data and head orientations to gaze information facilitating two objectives: to evaluate the performance of the object tracking system for PKD and to use the gaze information to predict the intentions of the user, enabling the robot to understand physical cues by humans.

  18. SELENE mission: mathematical model for SST Doppler measurements

    NASA Astrophysics Data System (ADS)

    Ping, J.; Kono, Y.; Kawano, N.; Hanada, H.; Matsumoto, K.

    2001-09-01

    Japanese lunar exploration mission, SELENE, has been planned to be launched into space by using H II-a rocket in the Summer of 2004. This mission is composed of 3 subsatellites, a main lunar orbiter, a relay satellite and a free flying VLBI radio source. One of its main scientific objectives is the estimation of high order and degree spherical harmonic coefficients for the lunar gravity field. Different tracking methods will be employed in SELENE. The key tracking method is 4 way Satellite-to-Satellite Tracking (SST) technique. By this way, the tracking data can be obtained through the relay when the low altitude main orbiter is flying at the far-side of the Moon and can not be "seen" from the Earth. To success the historical tracking data, a complete coverage of Doppler tracking from an orbiter at sufficiently low altitude with high tracking accuracy can be obtained. The 4 way SST has various configurations. For SELENE, the SST tracking mode is introduced here, the mathematical relation between range rate and 4 way Doppler count number is established, and a data processing stream frame by using GEODYN II is suggested.

  19. Robust skin color-based moving object detection for video surveillance

    NASA Astrophysics Data System (ADS)

    Kaliraj, Kalirajan; Manimaran, Sudha

    2016-07-01

    Robust skin color-based moving object detection for video surveillance is proposed. The objective of the proposed algorithm is to detect and track the target under complex situations. The proposed framework comprises four stages, which include preprocessing, skin color-based feature detection, feature classification, and target localization and tracking. In the preprocessing stage, the input image frame is smoothed using averaging filter and transformed into YCrCb color space. In skin color detection, skin color regions are detected using Otsu's method of global thresholding. In the feature classification, histograms of both skin and nonskin regions are constructed and the features are classified into foregrounds and backgrounds based on Bayesian skin color classifier. The foreground skin regions are localized by a connected component labeling process. Finally, the localized foreground skin regions are confirmed as a target by verifying the region properties, and nontarget regions are rejected using the Euler method. At last, the target is tracked by enclosing the bounding box around the target region in all video frames. The experiment was conducted on various publicly available data sets and the performance was evaluated with baseline methods. It evidently shows that the proposed algorithm works well against slowly varying illumination, target rotations, scaling, fast, and abrupt motion changes.

  20. Position estimation and driving of an autonomous vehicle by monocular vision

    NASA Astrophysics Data System (ADS)

    Hanan, Jay C.; Kayathi, Pavan; Hughlett, Casey L.

    2007-04-01

    Automatic adaptive tracking in real-time for target recognition provided autonomous control of a scale model electric truck. The two-wheel drive truck was modified as an autonomous rover test-bed for vision based guidance and navigation. Methods were implemented to monitor tracking error and ensure a safe, accurate arrival at the intended science target. Some methods are situation independent relying only on the confidence error of the target recognition algorithm. Other methods take advantage of the scenario of combined motion and tracking to filter out anomalies. In either case, only a single calibrated camera was needed for position estimation. Results from real-time autonomous driving tests on the JPL simulated Mars yard are presented. Recognition error was often situation dependent. For the rover case, the background was in motion and may be characterized to provide visual cues on rover travel such as rate, pitch, roll, and distance to objects of interest or hazards. Objects in the scene may be used as landmarks, or waypoints, for such estimations. As objects are approached, their scale increases and their orientation may change. In addition, particularly on rough terrain, these orientation and scale changes may be unpredictable. Feature extraction combined with the neural network algorithm was successful in providing visual odometry in the simulated Mars environment.

  1. Bi-Objective Optimal Control Modification Adaptive Control for Systems with Input Uncertainty

    NASA Technical Reports Server (NTRS)

    Nguyen, Nhan T.

    2012-01-01

    This paper presents a new model-reference adaptive control method based on a bi-objective optimal control formulation for systems with input uncertainty. A parallel predictor model is constructed to relate the predictor error to the estimation error of the control effectiveness matrix. In this work, we develop an optimal control modification adaptive control approach that seeks to minimize a bi-objective linear quadratic cost function of both the tracking error norm and predictor error norm simultaneously. The resulting adaptive laws for the parametric uncertainty and control effectiveness uncertainty are dependent on both the tracking error and predictor error, while the adaptive laws for the feedback gain and command feedforward gain are only dependent on the tracking error. The optimal control modification term provides robustness to the adaptive laws naturally from the optimal control framework. Simulations demonstrate the effectiveness of the proposed adaptive control approach.

  2. Adaptive Shape Kernel-Based Mean Shift Tracker in Robot Vision System

    PubMed Central

    2016-01-01

    This paper proposes an adaptive shape kernel-based mean shift tracker using a single static camera for the robot vision system. The question that we address in this paper is how to construct such a kernel shape that is adaptive to the object shape. We perform nonlinear manifold learning technique to obtain the low-dimensional shape space which is trained by training data with the same view as the tracking video. The proposed kernel searches the shape in the low-dimensional shape space obtained by nonlinear manifold learning technique and constructs the adaptive kernel shape in the high-dimensional shape space. It can improve mean shift tracker performance to track object position and object contour and avoid the background clutter. In the experimental part, we take the walking human as example to validate that our method is accurate and robust to track human position and describe human contour. PMID:27379165

  3. Robust Arm and Hand Tracking by Unsupervised Context Learning

    PubMed Central

    Spruyt, Vincent; Ledda, Alessandro; Philips, Wilfried

    2014-01-01

    Hand tracking in video is an increasingly popular research field due to the rise of novel human-computer interaction methods. However, robust and real-time hand tracking in unconstrained environments remains a challenging task due to the high number of degrees of freedom and the non-rigid character of the human hand. In this paper, we propose an unsupervised method to automatically learn the context in which a hand is embedded. This context includes the arm and any other object that coherently moves along with the hand. We introduce two novel methods to incorporate this context information into a probabilistic tracking framework, and introduce a simple yet effective solution to estimate the position of the arm. Finally, we show that our method greatly increases robustness against occlusion and cluttered background, without degrading tracking performance if no contextual information is available. The proposed real-time algorithm is shown to outperform the current state-of-the-art by evaluating it on three publicly available video datasets. Furthermore, a novel dataset is created and made publicly available for the research community. PMID:25004155

  4. A data set for evaluating the performance of multi-class multi-object video tracking

    NASA Astrophysics Data System (ADS)

    Chakraborty, Avishek; Stamatescu, Victor; Wong, Sebastien C.; Wigley, Grant; Kearney, David

    2017-05-01

    One of the challenges in evaluating multi-object video detection, tracking and classification systems is having publically available data sets with which to compare different systems. However, the measures of performance for tracking and classification are different. Data sets that are suitable for evaluating tracking systems may not be appropriate for classification. Tracking video data sets typically only have ground truth track IDs, while classification video data sets only have ground truth class-label IDs. The former identifies the same object over multiple frames, while the latter identifies the type of object in individual frames. This paper describes an advancement of the ground truth meta-data for the DARPA Neovision2 Tower data set to allow both the evaluation of tracking and classification. The ground truth data sets presented in this paper contain unique object IDs across 5 different classes of object (Car, Bus, Truck, Person, Cyclist) for 24 videos of 871 image frames each. In addition to the object IDs and class labels, the ground truth data also contains the original bounding box coordinates together with new bounding boxes in instances where un-annotated objects were present. The unique IDs are maintained during occlusions between multiple objects or when objects re-enter the field of view. This will provide: a solid foundation for evaluating the performance of multi-object tracking of different types of objects, a straightforward comparison of tracking system performance using the standard Multi Object Tracking (MOT) framework, and classification performance using the Neovision2 metrics. These data have been hosted publically.

  5. Real-time object detection, tracking and occlusion reasoning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Divakaran, Ajay; Yu, Qian; Tamrakar, Amir

    A system for object detection and tracking includes technologies to, among other things, detect and track moving objects, such as pedestrians and/or vehicles, in a real-world environment, handle static and dynamic occlusions, and continue tracking moving objects across the fields of view of multiple different cameras.

  6. Fast Track Randomized Controlled Trial to Prevent Externalizing Psychiatric Disorders: Findings from Grades 3 to 9

    ERIC Educational Resources Information Center

    Journal of the American Academy of Child & Adolescent Psychiatry, 2007

    2007-01-01

    Objective: This study tests the efficacy of the Fast Track Program in preventing antisocial behavior and psychiatric disorders among groups varying in initial risk. Method: Schools within four sites (Durham, NC; Nashville, TN; Seattle, WA; and rural central Pennsylvania) were selected as high-risk institutions based on neighborhood crime and…

  7. Reading Mathematics Representations: An Eye-Tracking Study

    ERIC Educational Resources Information Center

    Andrá, Chiara; Lindström, Paulina; Arzarello, Ferdinando; Holmqvist, Kenneth; Robutti, Ornella; Sabena, Cristina

    2015-01-01

    We use eye tracking as a method to examine how different mathematical representations of the same mathematical object are attended to by students. The results of this study show that there is a meaningful difference in the eye movements between formulas and graphs. This difference can be understood in terms of the cultural and social shaping of…

  8. Arc tracking of cables for space applications

    NASA Technical Reports Server (NTRS)

    Koenig, D.; Frontzek, F. R.; Hanson, J.; Reher, H. J.; Judd, M. D.; Bryant, D.

    1995-01-01

    The main objective of this study is to develop a new test method that is suitable for the assessment of the resistance of aerospace cables to arc tracking for different specific environmental and network conditions of spacecrafts. This paper reports the purpose, test conditions, test specimen, test procedure, and test acceptance criteria of seven different (200-250 mm long) cables.

  9. Self-Motion Impairs Multiple-Object Tracking

    ERIC Educational Resources Information Center

    Thomas, Laura E.; Seiffert, Adriane E.

    2010-01-01

    Investigations of multiple-object tracking aim to further our understanding of how people perform common activities such as driving in traffic. However, tracking tasks in the laboratory have overlooked a crucial component of much real-world object tracking: self-motion. We investigated the hypothesis that keeping track of one's own movement…

  10. Structure preserving clustering-object tracking via subgroup motion pattern segmentation

    NASA Astrophysics Data System (ADS)

    Fan, Zheyi; Zhu, Yixuan; Jiang, Jiao; Weng, Shuqin; Liu, Zhiwen

    2018-01-01

    Tracking clustering objects with similar appearances simultaneously in collective scenes is a challenging task in the field of collective motion analysis. Recent work on clustering-object tracking often suffers from poor tracking accuracy and terrible real-time performance due to the neglect or the misjudgment of the motion differences among objects. To address this problem, we propose a subgroup motion pattern segmentation framework based on a multilayer clustering structure and establish spatial constraints only among objects in the same subgroup, which entails having consistent motion direction and close spatial position. In addition, the subgroup segmentation results are updated dynamically because crowd motion patterns are changeable and affected by objects' destinations and scene structures. The spatial structure information combined with the appearance similarity information is used in the structure preserving object tracking framework to track objects. Extensive experiments conducted on several datasets containing multiple real-world crowd scenes validate the accuracy and the robustness of the presented algorithm for tracking objects in collective scenes.

  11. Tracking control of WMRs on loose soil based on mixed H2/H∞ control with longitudinal slip ratio estimation

    NASA Astrophysics Data System (ADS)

    Gao, Haibo; Chen, Chao; Ding, Liang; Li, Weihua; Yu, Haitao; Xia, Kerui; Liu, Zhen

    2017-11-01

    Wheeled mobile robots (WMRs) often suffer from the longitudinal slipping when moving on the loose soil of the surface of the moon during exploration. Longitudinal slip is the main cause of WMRs' delay in trajectory tracking. In this paper, a nonlinear extended state observer (NESO) is introduced to estimate the longitudinal velocity in order to estimate the slip ratio and the derivative of the loss of velocity which are used in modelled disturbance compensation. Owing to the uncertainty and disturbance caused by estimation errors, a multi-objective controller using the mixed H2/H∞ method is employed to ensure the robust stability and performance of the WMR system. The final inputs of the trajectory tracking consist of the feedforward compensation, compensation for the modelled disturbances and designed multi-objective control inputs. Finally, the simulation results demonstrate the effectiveness of the controller, which exhibits a satisfactory tracking performance.

  12. Color Feature-Based Object Tracking through Particle Swarm Optimization with Improved Inertia Weight

    PubMed Central

    Guo, Siqiu; Zhang, Tao; Song, Yulong

    2018-01-01

    This paper presents a particle swarm tracking algorithm with improved inertia weight based on color features. The weighted color histogram is used as the target feature to reduce the contribution of target edge pixels in the target feature, which makes the algorithm insensitive to the target non-rigid deformation, scale variation, and rotation. Meanwhile, the influence of partial obstruction on the description of target features is reduced. The particle swarm optimization algorithm can complete the multi-peak search, which can cope well with the object occlusion tracking problem. This means that the target is located precisely where the similarity function appears multi-peak. When the particle swarm optimization algorithm is applied to the object tracking, the inertia weight adjustment mechanism has some limitations. This paper presents an improved method. The concept of particle maturity is introduced to improve the inertia weight adjustment mechanism, which could adjust the inertia weight in time according to the different states of each particle in each generation. Experimental results show that our algorithm achieves state-of-the-art performance in a wide range of scenarios. PMID:29690610

  13. Color Feature-Based Object Tracking through Particle Swarm Optimization with Improved Inertia Weight.

    PubMed

    Guo, Siqiu; Zhang, Tao; Song, Yulong; Qian, Feng

    2018-04-23

    This paper presents a particle swarm tracking algorithm with improved inertia weight based on color features. The weighted color histogram is used as the target feature to reduce the contribution of target edge pixels in the target feature, which makes the algorithm insensitive to the target non-rigid deformation, scale variation, and rotation. Meanwhile, the influence of partial obstruction on the description of target features is reduced. The particle swarm optimization algorithm can complete the multi-peak search, which can cope well with the object occlusion tracking problem. This means that the target is located precisely where the similarity function appears multi-peak. When the particle swarm optimization algorithm is applied to the object tracking, the inertia weight adjustment mechanism has some limitations. This paper presents an improved method. The concept of particle maturity is introduced to improve the inertia weight adjustment mechanism, which could adjust the inertia weight in time according to the different states of each particle in each generation. Experimental results show that our algorithm achieves state-of-the-art performance in a wide range of scenarios.

  14. Health and Environment Linked for Information Exchange in Atlanta (HELIX-Atlanta): A Pilot Tracking System

    NASA Technical Reports Server (NTRS)

    Rickman, Doug; Shire, J.; Qualters, J.; Mitchell, K.; Pollard, S.; Rao, R.; Kajumba, N.; Quattrochi, D.; Estes, M., Jr.; Meyer, P.; hide

    2009-01-01

    Objectives. To provide an overview of four environmental public health surveillance projects developed by CDC and its partners for the Health and Environment Linked for Information Exchange, Atlanta (HELIX-Atlanta) and to illustrate common issues and challenges encountered in developing an environmental public health tracking system. Methods. HELIX-Atlanta, initiated in October 2003 to develop data linkage and analysis methods that can be used by the National Environmental Public Health Tracking Network (Tracking Network), conducted four projects. We highlight the projects' work, assess attainment of the HELIX-Atlanta goals and discuss three surveillance attributes. Results. Among the major challenges was the complexity of analytic issues which required multidiscipline teams with technical expertise. This expertise and the data resided across multiple organizations. Conclusions:Establishing formal procedures for sharing data, defining data analysis standards and automating analyses, and committing staff with appropriate expertise is needed to support wide implementation of environmental public health tracking.

  15. Enhancement of ELDA Tracker Based on CNN Features and Adaptive Model Update.

    PubMed

    Gao, Changxin; Shi, Huizhang; Yu, Jin-Gang; Sang, Nong

    2016-04-15

    Appearance representation and the observation model are the most important components in designing a robust visual tracking algorithm for video-based sensors. Additionally, the exemplar-based linear discriminant analysis (ELDA) model has shown good performance in object tracking. Based on that, we improve the ELDA tracking algorithm by deep convolutional neural network (CNN) features and adaptive model update. Deep CNN features have been successfully used in various computer vision tasks. Extracting CNN features on all of the candidate windows is time consuming. To address this problem, a two-step CNN feature extraction method is proposed by separately computing convolutional layers and fully-connected layers. Due to the strong discriminative ability of CNN features and the exemplar-based model, we update both object and background models to improve their adaptivity and to deal with the tradeoff between discriminative ability and adaptivity. An object updating method is proposed to select the "good" models (detectors), which are quite discriminative and uncorrelated to other selected models. Meanwhile, we build the background model as a Gaussian mixture model (GMM) to adapt to complex scenes, which is initialized offline and updated online. The proposed tracker is evaluated on a benchmark dataset of 50 video sequences with various challenges. It achieves the best overall performance among the compared state-of-the-art trackers, which demonstrates the effectiveness and robustness of our tracking algorithm.

  16. Enhancement of ELDA Tracker Based on CNN Features and Adaptive Model Update

    PubMed Central

    Gao, Changxin; Shi, Huizhang; Yu, Jin-Gang; Sang, Nong

    2016-01-01

    Appearance representation and the observation model are the most important components in designing a robust visual tracking algorithm for video-based sensors. Additionally, the exemplar-based linear discriminant analysis (ELDA) model has shown good performance in object tracking. Based on that, we improve the ELDA tracking algorithm by deep convolutional neural network (CNN) features and adaptive model update. Deep CNN features have been successfully used in various computer vision tasks. Extracting CNN features on all of the candidate windows is time consuming. To address this problem, a two-step CNN feature extraction method is proposed by separately computing convolutional layers and fully-connected layers. Due to the strong discriminative ability of CNN features and the exemplar-based model, we update both object and background models to improve their adaptivity and to deal with the tradeoff between discriminative ability and adaptivity. An object updating method is proposed to select the “good” models (detectors), which are quite discriminative and uncorrelated to other selected models. Meanwhile, we build the background model as a Gaussian mixture model (GMM) to adapt to complex scenes, which is initialized offline and updated online. The proposed tracker is evaluated on a benchmark dataset of 50 video sequences with various challenges. It achieves the best overall performance among the compared state-of-the-art trackers, which demonstrates the effectiveness and robustness of our tracking algorithm. PMID:27092505

  17. Visual tracking of da Vinci instruments for laparoscopic surgery

    NASA Astrophysics Data System (ADS)

    Speidel, S.; Kuhn, E.; Bodenstedt, S.; Röhl, S.; Kenngott, H.; Müller-Stich, B.; Dillmann, R.

    2014-03-01

    Intraoperative tracking of laparoscopic instruments is a prerequisite to realize further assistance functions. Since endoscopic images are always available, this sensor input can be used to localize the instruments without special devices or robot kinematics. In this paper, we present an image-based markerless 3D tracking of different da Vinci instruments in near real-time without an explicit model. The method is based on different visual cues to segment the instrument tip, calculates a tip point and uses a multiple object particle filter for tracking. The accuracy and robustness is evaluated with in vivo data.

  18. Multi person detection and tracking based on hierarchical level-set method

    NASA Astrophysics Data System (ADS)

    Khraief, Chadia; Benzarti, Faouzi; Amiri, Hamid

    2018-04-01

    In this paper, we propose an efficient unsupervised method for mutli-person tracking based on hierarchical level-set approach. The proposed method uses both edge and region information in order to effectively detect objects. The persons are tracked on each frame of the sequence by minimizing an energy functional that combines color, texture and shape information. These features are enrolled in covariance matrix as region descriptor. The present method is fully automated without the need to manually specify the initial contour of Level-set. It is based on combined person detection and background subtraction methods. The edge-based is employed to maintain a stable evolution, guide the segmentation towards apparent boundaries and inhibit regions fusion. The computational cost of level-set is reduced by using narrow band technique. Many experimental results are performed on challenging video sequences and show the effectiveness of the proposed method.

  19. Machine vision application in animal trajectory tracking.

    PubMed

    Koniar, Dušan; Hargaš, Libor; Loncová, Zuzana; Duchoň, František; Beňo, Peter

    2016-04-01

    This article was motivated by the doctors' demand to make a technical support in pathologies of gastrointestinal tract research [10], which would be based on machine vision tools. Proposed solution should be less expensive alternative to already existing RF (radio frequency) methods. The objective of whole experiment was to evaluate the amount of animal motion dependent on degree of pathology (gastric ulcer). In the theoretical part of the article, several methods of animal trajectory tracking are presented: two differential methods based on background subtraction, the thresholding methods based on global and local threshold and the last method used for animal tracking was the color matching with a chosen template containing a searched spectrum of colors. The methods were tested offline on five video samples. Each sample contained situation with moving guinea pig locked in a cage under various lighting conditions. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  20. Aerial video mosaicking using binary feature tracking

    NASA Astrophysics Data System (ADS)

    Minnehan, Breton; Savakis, Andreas

    2015-05-01

    Unmanned Aerial Vehicles are becoming an increasingly attractive platform for many applications, as their cost decreases and their capabilities increase. Creating detailed maps from aerial data requires fast and accurate video mosaicking methods. Traditional mosaicking techniques rely on inter-frame homography estimations that are cascaded through the video sequence. Computationally expensive keypoint matching algorithms are often used to determine the correspondence of keypoints between frames. This paper presents a video mosaicking method that uses an object tracking approach for matching keypoints between frames to improve both efficiency and robustness. The proposed tracking method matches local binary descriptors between frames and leverages the spatial locality of the keypoints to simplify the matching process. Our method is robust to cascaded errors by determining the homography between each frame and the ground plane rather than the prior frame. The frame-to-ground homography is calculated based on the relationship of each point's image coordinates and its estimated location on the ground plane. Robustness to moving objects is integrated into the homography estimation step through detecting anomalies in the motion of keypoints and eliminating the influence of outliers. The resulting mosaics are of high accuracy and can be computed in real time.

  1. Registration using natural features for augmented reality systems.

    PubMed

    Yuan, M L; Ong, S K; Nee, A Y C

    2006-01-01

    Registration is one of the most difficult problems in augmented reality (AR) systems. In this paper, a simple registration method using natural features based on the projective reconstruction technique is proposed. This method consists of two steps: embedding and rendering. Embedding involves specifying four points to build the world coordinate system on which a virtual object will be superimposed. In rendering, the Kanade-Lucas-Tomasi (KLT) feature tracker is used to track the natural feature correspondences in the live video. The natural features that have been tracked are used to estimate the corresponding projective matrix in the image sequence. Next, the projective reconstruction technique is used to transfer the four specified points to compute the registration matrix for augmentation. This paper also proposes a robust method for estimating the projective matrix, where the natural features that have been tracked are normalized (translation and scaling) and used as the input data. The estimated projective matrix will be used as an initial estimate for a nonlinear optimization method that minimizes the actual residual errors based on the Levenberg-Marquardt (LM) minimization method, thus making the results more robust and stable. The proposed registration method has three major advantages: 1) It is simple, as no predefined fiducials or markers are used for registration for either indoor and outdoor AR applications. 2) It is robust, because it remains effective as long as at least six natural features are tracked during the entire augmentation, and the existence of the corresponding projective matrices in the live video is guaranteed. Meanwhile, the robust method to estimate the projective matrix can obtain stable results even when there are some outliers during the tracking process. 3) Virtual objects can still be superimposed on the specified areas, even if some parts of the areas are occluded during the entire process. Some indoor and outdoor experiments have been conducted to validate the performance of this proposed method.

  2. Multiple object tracking with non-unique data-to-object association via generalized hypothesis testing. [tracking several aircraft near each other or ships at sea

    NASA Technical Reports Server (NTRS)

    Porter, D. W.; Lefler, R. M.

    1979-01-01

    A generalized hypothesis testing approach is applied to the problem of tracking several objects where several different associations of data with objects are possible. Such problems occur, for instance, when attempting to distinctly track several aircraft maneuvering near each other or when tracking ships at sea. Conceptually, the problem is solved by first, associating data with objects in a statistically reasonable fashion and then, tracking with a bank of Kalman filters. The objects are assumed to have motion characterized by a fixed but unknown deterministic portion plus a random process portion modeled by a shaping filter. For example, the object might be assumed to have a mean straight line path about which it maneuvers in a random manner. Several hypothesized associations of data with objects are possible because of ambiguity as to which object the data comes from, false alarm/detection errors, and possible uncertainty in the number of objects being tracked. The statistical likelihood function is computed for each possible hypothesized association of data with objects. Then the generalized likelihood is computed by maximizing the likelihood over parameters that define the deterministic motion of the object.

  3. Tracking planets and moons: mechanisms of object tracking revealed with a new paradigm

    PubMed Central

    Tombu, Michael

    2014-01-01

    People can attend to and track multiple moving objects over time. Cognitive theories of this ability emphasize location information and differ on the importance of motion information. Results from several experiments have shown that increasing object speed impairs performance, although speed was confounded with other properties such as proximity of objects to one another. Here, we introduce a new paradigm to study multiple object tracking in which object speed and object proximity were manipulated independently. Like the motion of a planet and moon, each target–distractor pair rotated about both a common local point as well as the center of the screen. Tracking performance was strongly affected by object speed even when proximity was controlled. Additional results suggest that two different mechanisms are used in object tracking—one sensitive to speed and proximity and the other sensitive to the number of distractors. These observations support models of object tracking that include information about object motion and reject models that use location alone. PMID:21264704

  4. Multiple-object tracking while driving: the multiple-vehicle tracking task.

    PubMed

    Lochner, Martin J; Trick, Lana M

    2014-11-01

    Many contend that driving an automobile involves multiple-object tracking. At this point, no one has tested this idea, and it is unclear how multiple-object tracking would coordinate with the other activities involved in driving. To address some of the initial and most basic questions about multiple-object tracking while driving, we modified the tracking task for use in a driving simulator, creating the multiple-vehicle tracking task. In Experiment 1, we employed a dual-task methodology to determine whether there was interference between tracking and driving. Findings suggest that although it is possible to track multiple vehicles while driving, driving reduces tracking performance, and tracking compromises headway and lane position maintenance while driving. Modified change-detection paradigms were used to assess whether there were change localization advantages for tracked targets in multiple-vehicle tracking. When changes occurred during a blanking interval, drivers were more accurate (Experiment 2a) and ~250 ms faster (Experiment 2b) at locating the vehicle that changed when it was a target rather than a distractor in tracking. In a more realistic driving task where drivers had to brake in response to the sudden onset of brake lights in one of the lead vehicles, drivers were more accurate at localizing the vehicle that braked if it was a tracking target, although there was no advantage in terms of braking response time. Overall, results suggest that multiple-object tracking is possible while driving and perhaps even advantageous in some situations, but further research is required to determine whether multiple-object tracking is actually used in day-to-day driving.

  5. Method for Statically Checking an Object-oriented Computer Program Module

    NASA Technical Reports Server (NTRS)

    Bierhoff, Kevin M. (Inventor); Aldrich, Jonathan (Inventor)

    2012-01-01

    A method for statically checking an object-oriented computer program module includes the step of identifying objects within a computer program module, at least one of the objects having a plurality of references thereto, possibly from multiple clients. A discipline of permissions is imposed on the objects identified within the computer program module. The permissions enable tracking, from among a discrete set of changeable states, a subset of states each object might be in. A determination is made regarding whether the imposed permissions are violated by a potential reference to any of the identified objects. The results of the determination are output to a user.

  6. Robust visual object tracking with interleaved segmentation

    NASA Astrophysics Data System (ADS)

    Abel, Peter; Kieritz, Hilke; Becker, Stefan; Arens, Michael

    2017-10-01

    In this paper we present a new approach for tracking non-rigid, deformable objects by means of merging an on-line boosting-based tracker and a fast foreground background segmentation. We extend an on-line boosting- based tracker, which uses axes-aligned bounding boxes with fixed aspect-ratio as tracking states. By constructing a confidence map from the on-line boosting-based tracker and unifying this map with a confidence map, which is obtained from a foreground background segmentation algorithm, we build a superior confidence map. For constructing a rough confidence map of a new frame based on on-line boosting, we employ the responses of the strong classifier as well as the single weak classifier responses that were built before during the updating step. This confidence map provides a rough estimation of the object's position and dimension. In order to refine this confidence map, we build a fine, pixel-wisely segmented confidence map and merge both maps together. Our segmentation method is color-histogram-based and provides a fine and fast image segmentation. By means of back-projection and the Bayes' rule, we obtain a confidence value for every pixel. The rough and the fine confidence maps are merged together by building an adaptively weighted sum of both maps. The weights are obtained by utilizing the variances of both confidence maps. Further, we apply morphological operators in the merged confidence map in order to reduce the noise. In the resulting map we estimate the object localization and dimension via continuous adaptive mean shift. Our approach provides a rotated rectangle as tracking states, which enables a more precise description of non-rigid, deformable objects than axes-aligned bounding boxes. We evaluate our tracker on the visual object tracking (VOT) benchmark dataset 2016.

  7. Effectiveness of a Program Using a Vehicle Tracking System, Incentives, and Disincentives to Reduce the Speeding Behavior of Drivers with ADHD

    ERIC Educational Resources Information Center

    Markham, Paula T.; Porter, Bryan E.; Ball, J. D.

    2013-01-01

    Objective: In this article, the authors investigated the effectiveness of a behavior modification program using global positioning system (GPS) vehicle tracking devices with contingency incentives and disincentives to reduce the speeding behavior of drivers with ADHD. Method: Using an AB multiple-baseline design, six participants drove a 5-mile…

  8. Tracking Weight Change, Insulin Resistance, Stress, and Aerobic Fitness over 4 Years of College

    ERIC Educational Resources Information Center

    Hopper, Mari K.; Moninger, Shana Lynn

    2017-01-01

    Objective: To determine if weight gain is accompanied by development of insulin resistance (IR) during 4 years in college. Participants: Two cohorts of college students were enrolled in fall semesters 2009 and 2010 and tracked for 4 years. Methods: Following a 12-hour fast, subjects reported for measurement of body mass index (BMI), perceived…

  9. Pilot Trial of a Disclosure Intervention for HIV+ Mothers: The TRACK Program

    ERIC Educational Resources Information Center

    Murphy, Debra A.; Armistead, Lisa; Marelich, William D.; Payne, Diana L.; Herbeck, Diane M.

    2011-01-01

    Objective: The "T"eaching, "R"aising, "A"nd "C"ommunicating with "K"ids (TRACK) program was a longitudinal pilot-trial intervention designed to assist mothers living with HIV (MLHs) to disclose their serostatus to their young children (age 6-12 years). Method: MLH and child dyads (N = 80 dyads) were recruited and randomized to intervention or…

  10. Improvements to Passive Acoustic Tracking Methods for Marine Mammal Monitoring

    DTIC Science & Technology

    2016-05-02

    individual animals . 15. SUBJECT TERMS Marine mammal; Passive acoustic monitoring ; Localization; Tracking ; Multiple source ; Sparse array 16. SECURITY...al. 2004; Thode 2005; Nosal 2007] to localize animals in situations where straight-line propagation assumptions made by conventional marine mammal...Objective 1: Inveti for sound speed profiles. hydrophone position and hydrophone timing offset in addition to animal position Almost all marine mammal

  11. Learned filters for object detection in multi-object visual tracking

    NASA Astrophysics Data System (ADS)

    Stamatescu, Victor; Wong, Sebastien; McDonnell, Mark D.; Kearney, David

    2016-05-01

    We investigate the application of learned convolutional filters in multi-object visual tracking. The filters were learned in both a supervised and unsupervised manner from image data using artificial neural networks. This work follows recent results in the field of machine learning that demonstrate the use learned filters for enhanced object detection and classification. Here we employ a track-before-detect approach to multi-object tracking, where tracking guides the detection process. The object detection provides a probabilistic input image calculated by selecting from features obtained using banks of generative or discriminative learned filters. We present a systematic evaluation of these convolutional filters using a real-world data set that examines their performance as generic object detectors.

  12. Virtual target tracking (VTT) as applied to mobile satellite communication networks

    NASA Astrophysics Data System (ADS)

    Amoozegar, Farid

    1999-08-01

    Traditionally, target tracking has been used for aerospace applications, such as, tracking highly maneuvering targets in a cluttered environment for missile-to-target intercept scenarios. Although the speed and maneuvering capability of current aerospace targets demand more efficient algorithms, many complex techniques have already been proposed in the literature, which primarily cover the defense applications of tracking methods. On the other hand, the rapid growth of Global Communication Systems, Global Information Systems (GIS), and Global Positioning Systems (GPS) is creating new and more diverse challenges for multi-target tracking applications. Mobile communication and computing can very well appreciate a huge market for Cellular Communication and Tracking Devices (CCTD), which will be tracking networked devices at the cellular level. The objective of this paper is to introduce a new concept, i.e., Virtual Target Tracking (VTT) for commercial applications of multi-target tracking algorithms and techniques as applied to mobile satellite communication networks. It would be discussed how Virtual Target Tracking would bring more diversity to target tracking research.

  13. The what-where trade-off in multiple-identity tracking.

    PubMed

    Cohen, Michael A; Pinto, Yair; Howe, Piers D L; Horowitz, Todd S

    2011-07-01

    Observers are poor at reporting the identities of objects that they have successfully tracked (Pylyshyn, Visual Cognition, 11, 801-822, 2004; Scholl & Pylyshyn, Cognitive Psychology, 38, 259-290, 1999). Consequently, it has been claimed that objects are tracked in a manner that does not encode their identities (Pylyshyn, 2004). Here, we present evidence that disputes this claim. In a series of experiments, we show that attempting to track the identities of objects can decrease an observer's ability to track the objects' locations. This indicates that the mechanisms that track, respectively, the locations and identities of objects draw upon a common resource. Furthermore, we show that this common resource can be voluntarily distributed between the two mechanisms. This is clear evidence that the location- and identity-tracking mechanisms are not entirely dissociable.

  14. Can we track holes?

    PubMed Central

    Horowitz, Todd S.; Kuzmova, Yoana

    2011-01-01

    The evidence is mixed as to whether the visual system treats objects and holes differently. We used a multiple object tracking task to test the hypothesis that figural objects are easier to track than holes. Observers tracked four of eight items (holes or objects). We used an adaptive algorithm to estimate the speed allowing 75% tracking accuracy. In Experiments 1–5, the distinction between holes and figures was accomplished by pictorial cues, while red-cyan anaglyphs were used to provide the illusion of depth in Experiment 6. We variously used Gaussian pixel noise, photographic scenes, or synthetic textures as backgrounds. Tracking was more difficult when a complex background was visible, as opposed to a blank background. Tracking was easier when disks carried fixed, unique markings. When these factors were controlled for, tracking holes was no more difficult than tracking figures, suggesting that they are equivalent stimuli for tracking purposes. PMID:21334361

  15. Cortical Circuit for Binding Object Identity and Location During Multiple-Object Tracking

    PubMed Central

    Nummenmaa, Lauri; Oksama, Lauri; Glerean, Erico; Hyönä, Jukka

    2017-01-01

    Abstract Sustained multifocal attention for moving targets requires binding object identities with their locations. The brain mechanisms of identity-location binding during attentive tracking have remained unresolved. In 2 functional magnetic resonance imaging experiments, we measured participants’ hemodynamic activity during attentive tracking of multiple objects with equivalent (multiple-object tracking) versus distinct (multiple identity tracking, MIT) identities. Task load was manipulated parametrically. Both tasks activated large frontoparietal circuits. MIT led to significantly increased activity in frontoparietal and temporal systems subserving object recognition and working memory. These effects were replicated when eye movements were prohibited. MIT was associated with significantly increased functional connectivity between lateral temporal and frontal and parietal regions. We propose that coordinated activity of this network subserves identity-location binding during attentive tracking. PMID:27913430

  16. Long-term scale adaptive tracking with kernel correlation filters

    NASA Astrophysics Data System (ADS)

    Wang, Yueren; Zhang, Hong; Zhang, Lei; Yang, Yifan; Sun, Mingui

    2018-04-01

    Object tracking in video sequences has broad applications in both military and civilian domains. However, as the length of input video sequence increases, a number of problems arise, such as severe object occlusion, object appearance variation, and object out-of-view (some portion or the entire object leaves the image space). To deal with these problems and identify the object being tracked from cluttered background, we present a robust appearance model using Speeded Up Robust Features (SURF) and advanced integrated features consisting of the Felzenszwalb's Histogram of Oriented Gradients (FHOG) and color attributes. Since re-detection is essential in long-term tracking, we develop an effective object re-detection strategy based on moving area detection. We employ the popular kernel correlation filters in our algorithm design, which facilitates high-speed object tracking. Our evaluation using the CVPR2013 Object Tracking Benchmark (OTB2013) dataset illustrates that the proposed algorithm outperforms reference state-of-the-art trackers in various challenging scenarios.

  17. Detection of Ballast Damage by In-Situ Vibration Measurement of Sleepers

    NASA Astrophysics Data System (ADS)

    Lam, H. F.; Wong, M. T.; Keefe, R. M.

    2010-05-01

    Ballasted track is one of the most important elements of railway transportation systems worldwide. Owing to its importance in railway safety, many monitoring and evaluation methods have been developed. Current railway track monitoring systems are comprehensive, fast and efficient in testing railway track level and alignment, rail gauge, rail corrugation, etc. However, the monitoring of ballast condition still relies very much on visual inspection and core tests. Although extensive research has been carried out in the development of non-destructive methods for ballast condition evaluation, a commonly accepted and cost-effective method is still in demand. In Hong Kong practice, if abnormal train vibration is reported by the train operator or passengers, permanent way inspectors will locate the problem area by track geometry measurement. It must be pointed out that visual inspection can only identify ballast damage on the track surface, the track geometry deficiencies and rail twists can be detected using a track gauge. Ballast damage under the sleeper loading area and the ballast shoulder, which are the main factors affecting track stability and ride quality, are extremely difficult if not impossible to be detected by visual inspection. Core test is a destructive test, which is expensive, time consuming and may be disruptive to traffic. A fast real-time ballast damage detection method that can be implemented by permanent way inspectors with simple equipment can certainly provide valuable information for engineers in assessing the safety and riding quality of ballasted track systems. The main objective of this paper is to study the feasibility in using the vibration characteristics of sleepers in quantifying the ballast condition under the sleepers, and so as to explore the possibility in developing a handy method for the detection of ballast damage based on the measured vibration of sleepers.

  18. Eye Tracking Outcomes in Tobacco Control Regulation and Communication: A Systematic Review

    PubMed Central

    Meernik, Clare; Jarman, Kristen; Wright, Sarah Towner; Klein, Elizabeth G.; Goldstein, Adam O.; Ranney, Leah

    2016-01-01

    Objective In this paper we synthesize the evidence from eye tracking research in tobacco control to inform tobacco regulatory strategies and tobacco communication campaigns. Methods We systematically searched 11 databases for studies that reported eye tracking outcomes in regards to tobacco regulation and communication. Two coders independently reviewed studies for inclusion and abstracted study characteristics and findings. Results Eighteen studies met full criteria for inclusion. Eye tracking studies on health warnings consistently showed these warnings often were ignored, though eye tracking demonstrated that novel warnings, graphic warnings, and plain packaging can increase attention toward warnings. Eye tracking also revealed that greater visual attention to warnings on advertisements and packages consistently was associated with cognitive processing as measured by warning recall. Conclusions Eye tracking is a valid indicator of attention, cognitive processing, and memory. The use of this technology in tobacco control research complements existing methods in tobacco regulatory and communication science; it also can be used to examine the effects of health warnings and other tobacco product communications on consumer behavior in experimental settings prior to the implementation of novel health communication policies. However, the utility of eye tracking will be enhanced by the standardization of methodology and reporting metrics. PMID:27668270

  19. Studying visual attention using the multiple object tracking paradigm: A tutorial review.

    PubMed

    Meyerhoff, Hauke S; Papenmeier, Frank; Huff, Markus

    2017-07-01

    Human observers are capable of tracking multiple objects among identical distractors based only on their spatiotemporal information. Since the first report of this ability in the seminal work of Pylyshyn and Storm (1988, Spatial Vision, 3, 179-197), multiple object tracking has attracted many researchers. A reason for this is that it is commonly argued that the attentional processes studied with the multiple object paradigm apparently match the attentional processing during real-world tasks such as driving or team sports. We argue that multiple object tracking provides a good mean to study the broader topic of continuous and dynamic visual attention. Indeed, several (partially contradicting) theories of attentive tracking have been proposed within the almost 30 years since its first report, and a large body of research has been conducted to test these theories. With regard to the richness and diversity of this literature, the aim of this tutorial review is to provide researchers who are new in the field of multiple object tracking with an overview over the multiple object tracking paradigm, its basic manipulations, as well as links to other paradigms investigating visual attention and working memory. Further, we aim at reviewing current theories of tracking as well as their empirical evidence. Finally, we review the state of the art in the most prominent research fields of multiple object tracking and how this research has helped to understand visual attention in dynamic settings.

  20. Object tracking using plenoptic image sequences

    NASA Astrophysics Data System (ADS)

    Kim, Jae Woo; Bae, Seong-Joon; Park, Seongjin; Kim, Do Hyung

    2017-05-01

    Object tracking is a very important problem in computer vision research. Among the difficulties of object tracking, partial occlusion problem is one of the most serious and challenging problems. To address the problem, we proposed novel approaches to object tracking on plenoptic image sequences. Our approaches take advantage of the refocusing capability that plenoptic images provide. Our approaches input the sequences of focal stacks constructed from plenoptic image sequences. The proposed image selection algorithms select the sequence of optimal images that can maximize the tracking accuracy from the sequence of focal stacks. Focus measure approach and confidence measure approach were proposed for image selection and both of the approaches were validated by the experiments using thirteen plenoptic image sequences that include heavily occluded target objects. The experimental results showed that the proposed approaches were satisfactory comparing to the conventional 2D object tracking algorithms.

  1. Accuracy assessment of the Precise Point Positioning method applied for surveys and tracking moving objects in GIS environment

    NASA Astrophysics Data System (ADS)

    Ilieva, Tamara; Gekov, Svetoslav

    2017-04-01

    The Precise Point Positioning (PPP) method gives the users the opportunity to determine point locations using a single GNSS receiver. The accuracy of the determined by PPP point locations is better in comparison to the standard point positioning, due to the precise satellite orbit and clock corrections that are developed and maintained by the International GNSS Service (IGS). The aim of our current research is the accuracy assessment of the PPP method applied for surveys and tracking moving objects in GIS environment. The PPP data is collected by using preliminary developed by us software application that allows different sets of attribute data for the measurements and their accuracy to be used. The results from the PPP measurements are directly compared within the geospatial database to different other sets of terrestrial data - measurements obtained by total stations, real time kinematic and static GNSS.

  2. A Standard-Compliant Virtual Meeting System with Active Video Object Tracking

    NASA Astrophysics Data System (ADS)

    Lin, Chia-Wen; Chang, Yao-Jen; Wang, Chih-Ming; Chen, Yung-Chang; Sun, Ming-Ting

    2002-12-01

    This paper presents an H.323 standard compliant virtual video conferencing system. The proposed system not only serves as a multipoint control unit (MCU) for multipoint connection but also provides a gateway function between the H.323 LAN (local-area network) and the H.324 WAN (wide-area network) users. The proposed virtual video conferencing system provides user-friendly object compositing and manipulation features including 2D video object scaling, repositioning, rotation, and dynamic bit-allocation in a 3D virtual environment. A reliable, and accurate scheme based on background image mosaics is proposed for real-time extracting and tracking foreground video objects from the video captured with an active camera. Chroma-key insertion is used to facilitate video objects extraction and manipulation. We have implemented a prototype of the virtual conference system with an integrated graphical user interface to demonstrate the feasibility of the proposed methods.

  3. Rigid shape matching by segmentation averaging.

    PubMed

    Wang, Hongzhi; Oliensis, John

    2010-04-01

    We use segmentations to match images by shape. The new matching technique does not require point-to-point edge correspondence and is robust to small shape variations and spatial shifts. To address the unreliability of segmentations computed bottom-up, we give a closed form approximation to an average over all segmentations. Our method has many extensions, yielding new algorithms for tracking, object detection, segmentation, and edge-preserving smoothing. For segmentation, instead of a maximum a posteriori approach, we compute the "central" segmentation minimizing the average distance to all segmentations of an image. For smoothing, instead of smoothing images based on local structures, we smooth based on the global optimal image structures. Our methods for segmentation, smoothing, and object detection perform competitively, and we also show promising results in shape-based tracking.

  4. A Mobile Service Oriented Multiple Object Tracking Augmented Reality Architecture for Education and Learning Experiences

    ERIC Educational Resources Information Center

    Rattanarungrot, Sasithorn; White, Martin; Newbury, Paul

    2014-01-01

    This paper describes the design of our service-oriented architecture to support mobile multiple object tracking augmented reality applications applied to education and learning scenarios. The architecture is composed of a mobile multiple object tracking augmented reality client, a web service framework, and dynamic content providers. Tracking of…

  5. Onboard Robust Visual Tracking for UAVs Using a Reliable Global-Local Object Model

    PubMed Central

    Fu, Changhong; Duan, Ran; Kircali, Dogan; Kayacan, Erdal

    2016-01-01

    In this paper, we present a novel onboard robust visual algorithm for long-term arbitrary 2D and 3D object tracking using a reliable global-local object model for unmanned aerial vehicle (UAV) applications, e.g., autonomous tracking and chasing a moving target. The first main approach in this novel algorithm is the use of a global matching and local tracking approach. In other words, the algorithm initially finds feature correspondences in a way that an improved binary descriptor is developed for global feature matching and an iterative Lucas–Kanade optical flow algorithm is employed for local feature tracking. The second main module is the use of an efficient local geometric filter (LGF), which handles outlier feature correspondences based on a new forward-backward pairwise dissimilarity measure, thereby maintaining pairwise geometric consistency. In the proposed LGF module, a hierarchical agglomerative clustering, i.e., bottom-up aggregation, is applied using an effective single-link method. The third proposed module is a heuristic local outlier factor (to the best of our knowledge, it is utilized for the first time to deal with outlier features in a visual tracking application), which further maximizes the representation of the target object in which we formulate outlier feature detection as a binary classification problem with the output features of the LGF module. Extensive UAV flight experiments show that the proposed visual tracker achieves real-time frame rates of more than thirty-five frames per second on an i7 processor with 640 × 512 image resolution and outperforms the most popular state-of-the-art trackers favorably in terms of robustness, efficiency and accuracy. PMID:27589769

  6. Object classification for obstacle avoidance

    NASA Astrophysics Data System (ADS)

    Regensburger, Uwe; Graefe, Volker

    1991-03-01

    Object recognition is necessary for any mobile robot operating autonomously in the real world. This paper discusses an object classifier based on a 2-D object model. Obstacle candidates are tracked and analyzed false alarms generated by the object detector are recognized and rejected. The methods have been implemented on a multi-processor system and tested in real-world experiments. They work reliably under favorable conditions but sometimes problems occur e. g. when objects contain many features (edges) or move in front of structured background.

  7. High-accuracy and real-time 3D positioning, tracking system for medical imaging applications based on 3D digital image correlation

    NASA Astrophysics Data System (ADS)

    Xue, Yuan; Cheng, Teng; Xu, Xiaohai; Gao, Zeren; Li, Qianqian; Liu, Xiaojing; Wang, Xing; Song, Rui; Ju, Xiangyang; Zhang, Qingchuan

    2017-01-01

    This paper presents a system for positioning markers and tracking the pose of a rigid object with 6 degrees of freedom in real-time using 3D digital image correlation, with two examples for medical imaging applications. Traditional DIC method was improved to meet the requirements of the real-time by simplifying the computations of integral pixel search. Experiments were carried out and the results indicated that the new method improved the computational efficiency by about 4-10 times in comparison with the traditional DIC method. The system was aimed for orthognathic surgery navigation in order to track the maxilla segment after LeFort I osteotomy. Experiments showed noise for the static point was at the level of 10-3 mm and the measurement accuracy was 0.009 mm. The system was demonstrated on skin surface shape evaluation of a hand for finger stretching exercises, which indicated a great potential on tracking muscle and skin movements.

  8. A High Performance Computing Study of a Scalable FISST-Based Approach to Multi-Target, Multi-Sensor Tracking

    NASA Astrophysics Data System (ADS)

    Hussein, I.; Wilkins, M.; Roscoe, C.; Faber, W.; Chakravorty, S.; Schumacher, P.

    2016-09-01

    Finite Set Statistics (FISST) is a rigorous Bayesian multi-hypothesis management tool for the joint detection, classification and tracking of multi-sensor, multi-object systems. Implicit within the approach are solutions to the data association and target label-tracking problems. The full FISST filtering equations, however, are intractable. While FISST-based methods such as the PHD and CPHD filters are tractable, they require heavy moment approximations to the full FISST equations that result in a significant loss of information contained in the collected data. In this paper, we review Smart Sampling Markov Chain Monte Carlo (SSMCMC) that enables FISST to be tractable while avoiding moment approximations. We study the effect of tuning key SSMCMC parameters on tracking quality and computation time. The study is performed on a representative space object catalog with varying numbers of RSOs. The solution is implemented in the Scala computing language at the Maui High Performance Computing Center (MHPCC) facility.

  9. A data processing method based on tracking light spot for the laser differential confocal component parameters measurement system

    NASA Astrophysics Data System (ADS)

    Shao, Rongjun; Qiu, Lirong; Yang, Jiamiao; Zhao, Weiqian; Zhang, Xin

    2013-12-01

    We have proposed the component parameters measuring method based on the differential confocal focusing theory. In order to improve the positioning precision of the laser differential confocal component parameters measurement system (LDDCPMS), the paper provides a data processing method based on tracking light spot. To reduce the error caused by the light point moving in collecting the axial intensity signal, the image centroiding algorithm is used to find and track the center of Airy disk of the images collected by the laser differential confocal system. For weakening the influence of higher harmonic noises during the measurement, Gaussian filter is used to process the axial intensity signal. Ultimately the zero point corresponding to the focus of the objective in a differential confocal system is achieved by linear fitting for the differential confocal axial intensity data. Preliminary experiments indicate that the method based on tracking light spot can accurately collect the axial intensity response signal of the virtual pinhole, and improve the anti-interference ability of system. Thus it improves the system positioning accuracy.

  10. MRI-based dynamic tracking of an untethered ferromagnetic microcapsule navigating in liquid

    NASA Astrophysics Data System (ADS)

    Dahmen, Christian; Belharet, Karim; Folio, David; Ferreira, Antoine; Fatikow, Sergej

    2016-04-01

    The propulsion of ferromagnetic objects by means of MRI gradients is a promising approach to enable new forms of therapy. In this work, necessary techniques are presented to make this approach work. This includes path planning algorithms working on MRI data, ferromagnetic artifact imaging and a tracking algorithm which delivers position feedback for the ferromagnetic objects, and a propulsion sequence to enable interleaved magnetic propulsion and imaging. Using a dedicated software environment, integrating path-planning methods and real-time tracking, a clinical MRI system is adapted to provide this new functionality for controlled interventional targeted therapeutic applications. Through MRI-based sensing analysis, this article aims to propose a framework to plan a robust pathway to enhance the navigation ability to reach deep locations in the human body. The proposed approaches are validated with different experiments.

  11. Three-dimensional particle tracking via tunable color-encoded multiplexing.

    PubMed

    Duocastella, Martí; Theriault, Christian; Arnold, Craig B

    2016-03-01

    We present a novel 3D tracking approach capable of locating single particles with nanometric precision over wide axial ranges. Our method uses a fast acousto-optic liquid lens implemented in a bright field microscope to multiplex light based on color into different and selectable focal planes. By separating the red, green, and blue channels from an image captured with a color camera, information from up to three focal planes can be retrieved. Multiplane information from the particle diffraction rings enables precisely locating and tracking individual objects up to an axial range about 5 times larger than conventional single-plane approaches. We apply our method to the 3D visualization of the well-known coffee-stain phenomenon in evaporating water droplets.

  12. Image sequence analysis workstation for multipoint motion analysis

    NASA Astrophysics Data System (ADS)

    Mostafavi, Hassan

    1990-08-01

    This paper describes an application-specific engineering workstation designed and developed to analyze motion of objects from video sequences. The system combines the software and hardware environment of a modem graphic-oriented workstation with the digital image acquisition, processing and display techniques. In addition to automation and Increase In throughput of data reduction tasks, the objective of the system Is to provide less invasive methods of measurement by offering the ability to track objects that are more complex than reflective markers. Grey level Image processing and spatial/temporal adaptation of the processing parameters is used for location and tracking of more complex features of objects under uncontrolled lighting and background conditions. The applications of such an automated and noninvasive measurement tool include analysis of the trajectory and attitude of rigid bodies such as human limbs, robots, aircraft in flight, etc. The system's key features are: 1) Acquisition and storage of Image sequences by digitizing and storing real-time video; 2) computer-controlled movie loop playback, freeze frame display, and digital Image enhancement; 3) multiple leading edge tracking in addition to object centroids at up to 60 fields per second from both live input video or a stored Image sequence; 4) model-based estimation and tracking of the six degrees of freedom of a rigid body: 5) field-of-view and spatial calibration: 6) Image sequence and measurement data base management; and 7) offline analysis software for trajectory plotting and statistical analysis.

  13. Comparison of probabilistic and deterministic fiber tracking of cranial nerves.

    PubMed

    Zolal, Amir; Sobottka, Stephan B; Podlesek, Dino; Linn, Jennifer; Rieger, Bernhard; Juratli, Tareq A; Schackert, Gabriele; Kitzler, Hagen H

    2017-09-01

    OBJECTIVE The depiction of cranial nerves (CNs) using diffusion tensor imaging (DTI) is of great interest in skull base tumor surgery and DTI used with deterministic tracking methods has been reported previously. However, there are still no good methods usable for the elimination of noise from the resulting depictions. The authors have hypothesized that probabilistic tracking could lead to more accurate results, because it more efficiently extracts information from the underlying data. Moreover, the authors have adapted a previously described technique for noise elimination using gradual threshold increases to probabilistic tracking. To evaluate the utility of this new approach, a comparison is provided with this work between the gradual threshold increase method in probabilistic and deterministic tracking of CNs. METHODS Both tracking methods were used to depict CNs II, III, V, and the VII+VIII bundle. Depiction of 240 CNs was attempted with each of the above methods in 30 healthy subjects, which were obtained from 2 public databases: the Kirby repository (KR) and Human Connectome Project (HCP). Elimination of erroneous fibers was attempted by gradually increasing the respective thresholds (fractional anisotropy [FA] and probabilistic index of connectivity [PICo]). The results were compared with predefined ground truth images based on corresponding anatomical scans. Two label overlap measures (false-positive error and Dice similarity coefficient) were used to evaluate the success of both methods in depicting the CN. Moreover, the differences between these parameters obtained from the KR and HCP (with higher angular resolution) databases were evaluated. Additionally, visualization of 10 CNs in 5 clinical cases was attempted with both methods and evaluated by comparing the depictions with intraoperative findings. RESULTS Maximum Dice similarity coefficients were significantly higher with probabilistic tracking (p < 0.001; Wilcoxon signed-rank test). The false-positive error of the last obtained depiction was also significantly lower in probabilistic than in deterministic tracking (p < 0.001). The HCP data yielded significantly better results in terms of the Dice coefficient in probabilistic tracking (p < 0.001, Mann-Whitney U-test) and in deterministic tracking (p = 0.02). The false-positive errors were smaller in HCP data in deterministic tracking (p < 0.001) and showed a strong trend toward significance in probabilistic tracking (p = 0.06). In the clinical cases, the probabilistic method visualized 7 of 10 attempted CNs accurately, compared with 3 correct depictions with deterministic tracking. CONCLUSIONS High angular resolution DTI scans are preferable for the DTI-based depiction of the cranial nerves. Probabilistic tracking with a gradual PICo threshold increase is more effective for this task than the previously described deterministic tracking with a gradual FA threshold increase and might represent a method that is useful for depicting cranial nerves with DTI since it eliminates the erroneous fibers without manual intervention.

  14. Accurate mask-based spatially regularized correlation filter for visual tracking

    NASA Astrophysics Data System (ADS)

    Gu, Xiaodong; Xu, Xinping

    2017-01-01

    Recently, discriminative correlation filter (DCF)-based trackers have achieved extremely successful results in many competitions and benchmarks. These methods utilize a periodic assumption of the training samples to efficiently learn a classifier. However, this assumption will produce unwanted boundary effects, which severely degrade the tracking performance. Correlation filters with limited boundaries and spatially regularized DCFs were proposed to reduce boundary effects. However, their methods used the fixed mask or predesigned weights function, respectively, which was unsuitable for large appearance variation. We propose an accurate mask-based spatially regularized correlation filter for visual tracking. Our augmented objective can reduce the boundary effect even in large appearance variation. In our algorithm, the masking matrix is converted into the regularized function that acts on the correlation filter in frequency domain, which makes the algorithm fast convergence. Our online tracking algorithm performs favorably against state-of-the-art trackers on OTB-2015 Benchmark in terms of efficiency, accuracy, and robustness.

  15. FlyCap: Markerless Motion Capture Using Multiple Autonomous Flying Cameras.

    PubMed

    Xu, Lan; Liu, Yebin; Cheng, Wei; Guo, Kaiwen; Zhou, Guyue; Dai, Qionghai; Fang, Lu

    2017-07-18

    Aiming at automatic, convenient and non-instrusive motion capture, this paper presents a new generation markerless motion capture technique, the FlyCap system, to capture surface motions of moving characters using multiple autonomous flying cameras (autonomous unmanned aerial vehicles(UAVs) each integrated with an RGBD video camera). During data capture, three cooperative flying cameras automatically track and follow the moving target who performs large-scale motions in a wide space. We propose a novel non-rigid surface registration method to track and fuse the depth of the three flying cameras for surface motion tracking of the moving target, and simultaneously calculate the pose of each flying camera. We leverage the using of visual-odometry information provided by the UAV platform, and formulate the surface tracking problem in a non-linear objective function that can be linearized and effectively minimized through a Gaussian-Newton method. Quantitative and qualitative experimental results demonstrate the plausible surface and motion reconstruction results.

  16. Can low-cost motion-tracking systems substitute a Polhemus system when researching social motor coordination in children?

    PubMed

    Romero, Veronica; Amaral, Joseph; Fitzpatrick, Paula; Schmidt, R C; Duncan, Amie W; Richardson, Michael J

    2017-04-01

    Functionally stable and robust interpersonal motor coordination has been found to play an integral role in the effectiveness of social interactions. However, the motion-tracking equipment required to record and objectively measure the dynamic limb and body movements during social interaction has been very costly, cumbersome, and impractical within a non-clinical or non-laboratory setting. Here we examined whether three low-cost motion-tracking options (Microsoft Kinect skeletal tracking of either one limb or whole body and a video-based pixel change method) can be employed to investigate social motor coordination. Of particular interest was the degree to which these low-cost methods of motion tracking could be used to capture and index the coordination dynamics that occurred between a child and an experimenter for three simple social motor coordination tasks in comparison to a more expensive, laboratory-grade motion-tracking system (i.e., a Polhemus Latus system). Overall, the results demonstrated that these low-cost systems cannot substitute the Polhemus system in some tasks. However, the lower-cost Microsoft Kinect skeletal tracking and video pixel change methods were successfully able to index differences in social motor coordination in tasks that involved larger-scale, naturalistic whole body movements, which can be cumbersome and expensive to record with a Polhemus. However, we found the Kinect to be particularly vulnerable to occlusion and the pixel change method to movements that cross the video frame midline. Therefore, particular care needs to be taken in choosing the motion-tracking system that is best suited for the particular research.

  17. Multi-vehicle detection with identity awareness using cascade Adaboost and Adaptive Kalman filter for driver assistant system.

    PubMed

    Wang, Baofeng; Qi, Zhiquan; Chen, Sizhong; Liu, Zhaodu; Ma, Guocheng

    2017-01-01

    Vision-based vehicle detection is an important issue for advanced driver assistance systems. In this paper, we presented an improved multi-vehicle detection and tracking method using cascade Adaboost and Adaptive Kalman filter(AKF) with target identity awareness. A cascade Adaboost classifier using Haar-like features was built for vehicle detection, followed by a more comprehensive verification process which could refine the vehicle hypothesis in terms of both location and dimension. In vehicle tracking, each vehicle was tracked with independent identity by an Adaptive Kalman filter in collaboration with a data association approach. The AKF adaptively adjusted the measurement and process noise covariance through on-line stochastic modelling to compensate the dynamics changes. The data association correctly assigned different detections with tracks using global nearest neighbour(GNN) algorithm while considering the local validation. During tracking, a temporal context based track management was proposed to decide whether to initiate, maintain or terminate the tracks of different objects, thus suppressing the sparse false alarms and compensating the temporary detection failures. Finally, the proposed method was tested on various challenging real roads, and the experimental results showed that the vehicle detection performance was greatly improved with higher accuracy and robustness.

  18. New platform for evaluating ultrasound-guided interventional technologies

    NASA Astrophysics Data System (ADS)

    Kim, Younsu; Guo, Xiaoyu; Boctor, Emad M.

    2016-04-01

    Ultrasound-guided needle tracking systems are frequently used in surgical procedures. Various needle tracking technologies have been developed using ultrasound, electromagnetic sensors, and optical sensors. To evaluate these new needle tracking technologies, 3D volume information is often acquired to compute the actual distance from the needle tip to the target object. The image-guidance conditions for comparison are often inconsistent due to the ultrasound beam-thickness. Since 3D volumes are necessary, there is often some time delay between the surgical procedure and the evaluation. These evaluation methods will generally only measure the final needle location because they interrupt the surgical procedure. The main contribution of this work is a new platform for evaluating needle tracking systems in real-time, resolving the problems stated above. We developed new tools to evaluate the precise distance between the needle tip and the target object. A PZT element transmitting unit is designed as needle introducer shape so that it can be inserted in the needle. We have collected time of flight and amplitude information in real-time. We propose two systems to collect ultrasound signals. We demonstrate this platform on an ultrasound DAQ system and a cost-effective FPGA board. The results of a chicken breast experiment show the feasibility of tracking a time series of needle tip distances. We performed validation experiments with a plastisol phantom and have shown that the preliminary data fits a linear regression model with a RMSE of less than 0.6mm. Our platform can be applied to more general needle tracking methods using other forms of guidance.

  19. Adaptive learning compressive tracking based on Markov location prediction

    NASA Astrophysics Data System (ADS)

    Zhou, Xingyu; Fu, Dongmei; Yang, Tao; Shi, Yanan

    2017-03-01

    Object tracking is an interdisciplinary research topic in image processing, pattern recognition, and computer vision which has theoretical and practical application value in video surveillance, virtual reality, and automatic navigation. Compressive tracking (CT) has many advantages, such as efficiency and accuracy. However, when there are object occlusion, abrupt motion and blur, similar objects, and scale changing, the CT has the problem of tracking drift. We propose the Markov object location prediction to get the initial position of the object. Then CT is used to locate the object accurately, and the classifier parameter adaptive updating strategy is given based on the confidence map. At the same time according to the object location, extract the scale features, which is able to deal with object scale variations effectively. Experimental results show that the proposed algorithm has better tracking accuracy and robustness than current advanced algorithms and achieves real-time performance.

  20. Suppression of fixed pattern noise for infrared image system

    NASA Astrophysics Data System (ADS)

    Park, Changhan; Han, Jungsoo; Bae, Kyung-Hoon

    2008-04-01

    In this paper, we propose suppression of fixed pattern noise (FPN) and compensation of soft defect for improvement of object tracking in cooled staring infrared focal plane array (IRFPA) imaging system. FPN appears an observable image which applies to non-uniformity compensation (NUC) by temperature. Soft defect appears glittering black and white point by characteristics of non-uniformity for IR detector by time. This problem is very important because it happen serious problem for object tracking as well as degradation for image quality. Signal processing architecture in cooled staring IRFPA imaging system consists of three tables: low, normal, high temperature for reference gain and offset values. Proposed method operates two offset tables for each table. This is method which operates six term of temperature on the whole. Proposed method of soft defect compensation consists of three stages: (1) separates sub-image for an image, (2) decides a motion distribution of object between each sub-image, (3) analyzes for statistical characteristic from each stationary fixed pixel. Based on experimental results, the proposed method shows an improved image which suppresses FPN by change of temperature distribution from an observational image in real-time.

  1. A High-Speed Target-Free Vision-Based Sensor for Bus Rapid Transit Viaduct Vibration Measurements Using CMT and ORB Algorithms.

    PubMed

    Hu, Qijun; He, Songsheng; Wang, Shilong; Liu, Yugang; Zhang, Zutao; He, Leping; Wang, Fubin; Cai, Qijie; Shi, Rendan; Yang, Yuan

    2017-06-06

    Bus Rapid Transit (BRT) has become an increasing source of concern for public transportation of modern cities. Traditional contact sensing techniques during the process of health monitoring of BRT viaducts cannot overcome the deficiency that the normal free-flow of traffic would be blocked. Advances in computer vision technology provide a new line of thought for solving this problem. In this study, a high-speed target-free vision-based sensor is proposed to measure the vibration of structures without interrupting traffic. An improved keypoints matching algorithm based on consensus-based matching and tracking (CMT) object tracking algorithm is adopted and further developed together with oriented brief (ORB) keypoints detection algorithm for practicable and effective tracking of objects. Moreover, by synthesizing the existing scaling factor calculation methods, more rational approaches to reducing errors are implemented. The performance of the vision-based sensor is evaluated through a series of laboratory tests. Experimental tests with different target types, frequencies, amplitudes and motion patterns are conducted. The performance of the method is satisfactory, which indicates that the vision sensor can extract accurate structure vibration signals by tracking either artificial or natural targets. Field tests further demonstrate that the vision sensor is both practicable and reliable.

  2. A High-Speed Target-Free Vision-Based Sensor for Bus Rapid Transit Viaduct Vibration Measurements Using CMT and ORB Algorithms

    PubMed Central

    Hu, Qijun; He, Songsheng; Wang, Shilong; Liu, Yugang; Zhang, Zutao; He, Leping; Wang, Fubin; Cai, Qijie; Shi, Rendan; Yang, Yuan

    2017-01-01

    Bus Rapid Transit (BRT) has become an increasing source of concern for public transportation of modern cities. Traditional contact sensing techniques during the process of health monitoring of BRT viaducts cannot overcome the deficiency that the normal free-flow of traffic would be blocked. Advances in computer vision technology provide a new line of thought for solving this problem. In this study, a high-speed target-free vision-based sensor is proposed to measure the vibration of structures without interrupting traffic. An improved keypoints matching algorithm based on consensus-based matching and tracking (CMT) object tracking algorithm is adopted and further developed together with oriented brief (ORB) keypoints detection algorithm for practicable and effective tracking of objects. Moreover, by synthesizing the existing scaling factor calculation methods, more rational approaches to reducing errors are implemented. The performance of the vision-based sensor is evaluated through a series of laboratory tests. Experimental tests with different target types, frequencies, amplitudes and motion patterns are conducted. The performance of the method is satisfactory, which indicates that the vision sensor can extract accurate structure vibration signals by tracking either artificial or natural targets. Field tests further demonstrate that the vision sensor is both practicable and reliable. PMID:28587275

  3. Real-time reliability measure-driven multi-hypothesis tracking using 2D and 3D features

    NASA Astrophysics Data System (ADS)

    Zúñiga, Marcos D.; Brémond, François; Thonnat, Monique

    2011-12-01

    We propose a new multi-target tracking approach, which is able to reliably track multiple objects even with poor segmentation results due to noisy environments. The approach takes advantage of a new dual object model combining 2D and 3D features through reliability measures. In order to obtain these 3D features, a new classifier associates an object class label to each moving region (e.g. person, vehicle), a parallelepiped model and visual reliability measures of its attributes. These reliability measures allow to properly weight the contribution of noisy, erroneous or false data in order to better maintain the integrity of the object dynamics model. Then, a new multi-target tracking algorithm uses these object descriptions to generate tracking hypotheses about the objects moving in the scene. This tracking approach is able to manage many-to-many visual target correspondences. For achieving this characteristic, the algorithm takes advantage of 3D models for merging dissociated visual evidence (moving regions) potentially corresponding to the same real object, according to previously obtained information. The tracking approach has been validated using video surveillance benchmarks publicly accessible. The obtained performance is real time and the results are competitive compared with other tracking algorithms, with minimal (or null) reconfiguration effort between different videos.

  4. Real-time optical multiple object recognition and tracking system and method

    NASA Technical Reports Server (NTRS)

    Chao, Tien-Hsin (Inventor); Liu, Hua-Kuang (Inventor)

    1990-01-01

    System for optically recognizing and tracking a plurality of objects within a field of vision. Laser (46) produces a coherent beam (48). Beam splitter (24) splits the beam into object (26) and reference (28) beams. Beam expanders (50) and collimators (52) transform the beams (26, 28) into coherent collimated light beams (26', 28'). A two-dimensional SLM (54), disposed in the object beam (26'), modulates the object beam with optical information as a function of signals from a first camera (16) which develops X and Y signals reflecting the contents of its field of vision. A hololens (38), positioned in the object beam (26') subsequent to the modulator (54), focuses the object beam at a plurality of focal points (42). A planar transparency-forming film (32), disposed with the focal points on an exposable surface, forms a multiple position interference filter (62) upon exposure of the surface and development processing of the film (32). A reflector (53) directing the reference beam (28') onto the film (32), exposes the surface, with images focused by the hololens (38), to form interference patterns on the surface. There is apparatus (16', 64) for sensing and indicating light passage through respective ones of the positions of the filter (62), whereby recognition of objects corresponding to respective ones of the positions of the filter (62) is affected. For tracking, apparatus (64) focuses light passing through the filter (62) onto a matrix of CCD's in a second camera (16') to form a two-dimensional display of the recognized objects.

  5. 3-D-Gaze-Based Robotic Grasping Through Mimicking Human Visuomotor Function for People With Motion Impairments.

    PubMed

    Li, Songpo; Zhang, Xiaoli; Webb, Jeremy D

    2017-12-01

    The goal of this paper is to achieve a novel 3-D-gaze-based human-robot-interaction modality, with which a user with motion impairment can intuitively express what tasks he/she wants the robot to do by directly looking at the object of interest in the real world. Toward this goal, we investigate 1) the technology to accurately sense where a person is looking in real environments and 2) the method to interpret the human gaze and convert it into an effective interaction modality. Looking at a specific object reflects what a person is thinking related to that object, and the gaze location contains essential information for object manipulation. A novel gaze vector method is developed to accurately estimate the 3-D coordinates of the object being looked at in real environments, and a novel interpretation framework that mimics human visuomotor functions is designed to increase the control capability of gaze in object grasping tasks. High tracking accuracy was achieved using the gaze vector method. Participants successfully controlled a robotic arm for object grasping by directly looking at the target object. Human 3-D gaze can be effectively employed as an intuitive interaction modality for robotic object manipulation. It is the first time that 3-D gaze is utilized in a real environment to command a robot for a practical application. Three-dimensional gaze tracking is promising as an intuitive alternative for human-robot interaction especially for disabled and elderly people who cannot handle the conventional interaction modalities.

  6. Multiple objects tracking in fluorescence microscopy.

    PubMed

    Kalaidzidis, Yannis

    2009-01-01

    Many processes in cell biology are connected to the movement of compact entities: intracellular vesicles and even single molecules. The tracking of individual objects is important for understanding cellular dynamics. Here we describe the tracking algorithms which have been developed in the non-biological fields and successfully applied to object detection and tracking in biological applications. The characteristics features of the different algorithms are compared.

  7. Constraints on Multiple Object Tracking in Williams Syndrome: How Atypical Development Can Inform Theories of Visual Processing

    ERIC Educational Resources Information Center

    Ferrara, Katrina; Hoffman, James E.; O'Hearn, Kirsten; Landau, Barbara

    2016-01-01

    The ability to track moving objects is a crucial skill for performance in everyday spatial tasks. The tracking mechanism depends on representation of moving items as coherent entities, which follow the spatiotemporal constraints of objects in the world. In the present experiment, participants tracked 1 to 4 targets in a display of 8 identical…

  8. Automatic trajectory measurement of large numbers of crowded objects

    NASA Astrophysics Data System (ADS)

    Li, Hui; Liu, Ye; Chen, Yan Qiu

    2013-06-01

    Complex motion patterns of natural systems, such as fish schools, bird flocks, and cell groups, have attracted great attention from scientists for years. Trajectory measurement of individuals is vital for quantitative and high-throughput study of their collective behaviors. However, such data are rare mainly due to the challenges of detection and tracking of large numbers of objects with similar visual features and frequent occlusions. We present an automatic and effective framework to measure trajectories of large numbers of crowded oval-shaped objects, such as fish and cells. We first use a novel dual ellipse locator to detect the coarse position of each individual and then propose a variance minimization active contour method to obtain the optimal segmentation results. For tracking, cost matrix of assignment between consecutive frames is trainable via a random forest classifier with many spatial, texture, and shape features. The optimal trajectories are found for the whole image sequence by solving two linear assignment problems. We evaluate the proposed method on many challenging data sets.

  9. Track-based event recognition in a realistic crowded environment

    NASA Astrophysics Data System (ADS)

    van Huis, Jasper R.; Bouma, Henri; Baan, Jan; Burghouts, Gertjan J.; Eendebak, Pieter T.; den Hollander, Richard J. M.; Dijk, Judith; van Rest, Jeroen H.

    2014-10-01

    Automatic detection of abnormal behavior in CCTV cameras is important to improve the security in crowded environments, such as shopping malls, airports and railway stations. This behavior can be characterized at different time scales, e.g., by small-scale subtle and obvious actions or by large-scale walking patterns and interactions between people. For example, pickpocketing can be recognized by the actual snatch (small scale), when he follows the victim, or when he interacts with an accomplice before and after the incident (longer time scale). This paper focusses on event recognition by detecting large-scale track-based patterns. Our event recognition method consists of several steps: pedestrian detection, object tracking, track-based feature computation and rule-based event classification. In the experiment, we focused on single track actions (walk, run, loiter, stop, turn) and track interactions (pass, meet, merge, split). The experiment includes a controlled setup, where 10 actors perform these actions. The method is also applied to all tracks that are generated in a crowded shopping mall in a selected time frame. The results show that most of the actions can be detected reliably (on average 90%) at a low false positive rate (1.1%), and that the interactions obtain lower detection rates (70% at 0.3% FP). This method may become one of the components that assists operators to find threatening behavior and enrich the selection of videos that are to be observed.

  10. Homography-based multiple-camera person-tracking

    NASA Astrophysics Data System (ADS)

    Turk, Matthew R.

    2009-01-01

    Multiple video cameras are cheaply installed overlooking an area of interest. While computerized single-camera tracking is well-developed, multiple-camera tracking is a relatively new problem. The main multi-camera problem is to give the same tracking label to all projections of a real-world target. This is called the consistent labelling problem. Khan and Shah (2003) introduced a method to use field of view lines to perform multiple-camera tracking. The method creates inter-camera meta-target associations when objects enter at the scene edges. They also said that a plane-induced homography could be used for tracking, but this method was not well described. Their homography-based system would not work if targets use only one side of a camera to enter the scene. This paper overcomes this limitation and fully describes a practical homography-based tracker. A new method to find the feet feature is introduced. The method works especially well if the camera is tilted, when using the bottom centre of the target's bounding-box would produce inaccurate results. The new method is more accurate than the bounding-box method even when the camera is not tilted. Next, a method is presented that uses a series of corresponding point pairs "dropped" by oblivious, live human targets to find a plane-induced homography. The point pairs are created by tracking the feet locations of moving targets that were associated using the field of view line method. Finally, a homography-based multiple-camera tracking algorithm is introduced. Rules governing when to create the homography are specified. The algorithm ensures that homography-based tracking only starts after a non-degenerate homography is found. The method works when not all four field of view lines are discoverable; only one line needs to be found to use the algorithm. To initialize the system, the operator must specify pairs of overlapping cameras. Aside from that, the algorithm is fully automatic and uses the natural movement of live targets for training. No calibration is required. Testing shows that the algorithm performs very well in real-world sequences. The consistent labelling problem is solved, even for targets that appear via in-scene entrances. Full occlusions are handled. Although implemented in Matlab, the multiple-camera tracking system runs at eight frames per second. A faster implementation would be suitable for real-world use at typical video frame rates.

  11. Hardware accelerator design for tracking in smart camera

    NASA Astrophysics Data System (ADS)

    Singh, Sanjay; Dunga, Srinivasa Murali; Saini, Ravi; Mandal, A. S.; Shekhar, Chandra; Vohra, Anil

    2011-10-01

    Smart Cameras are important components in video analysis. For video analysis, smart cameras needs to detect interesting moving objects, track such objects from frame to frame, and perform analysis of object track in real time. Therefore, the use of real-time tracking is prominent in smart cameras. The software implementation of tracking algorithm on a general purpose processor (like PowerPC) could achieve low frame rate far from real-time requirements. This paper presents the SIMD approach based hardware accelerator designed for real-time tracking of objects in a scene. The system is designed and simulated using VHDL and implemented on Xilinx XUP Virtex-IIPro FPGA. Resulted frame rate is 30 frames per second for 250x200 resolution video in gray scale.

  12. Evidence against a speed limit in multiple-object tracking.

    PubMed

    Franconeri, S L; Lin, J Y; Pylyshyn, Z W; Fisher, B; Enns, J T

    2008-08-01

    Everyday tasks often require us to keep track of multiple objects in dynamic scenes. Past studies show that tracking becomes more difficult as objects move faster. In the present study, we show that this trade-off may not be due to increased speed itself but may, instead, be due to the increased crowding that usually accompanies increases in speed. Here, we isolate changes in speed from variations in crowding, by projecting a tracking display either onto a small area at the center of a hemispheric projection dome or onto the entire dome. Use of the larger display increased retinal image size and object speed by a factor of 4 but did not increase interobject crowding. Results showed that tracking accuracy was equally good in the large-display condition, even when the objects traveled far into the visual periphery. Accuracy was also not reduced when we tested object speeds that limited performance in the small-display condition. These results, along with a reinterpretation of past studies, suggest that we might be able to track multiple moving objects as fast as we can a single moving object, once the effect of object crowding is eliminated.

  13. A Comparative Analysis of Three Monocular Passive Ranging Methods on Real Infrared Sequences

    NASA Astrophysics Data System (ADS)

    Bondžulić, Boban P.; Mitrović, Srđan T.; Barbarić, Žarko P.; Andrić, Milenko S.

    2013-09-01

    Three monocular passive ranging methods are analyzed and tested on the real infrared sequences. The first method exploits scale changes of an object in successive frames, while other two use Beer-Lambert's Law. Ranging methods are evaluated by comparing with simultaneously obtained reference data at the test site. Research is addressed on scenarios where multiple sensor views or active measurements are not possible. The results show that these methods for range estimation can provide the fidelity required for object tracking. Maximum values of relative distance estimation errors in near-ideal conditions are less than 8%.

  14. An automated in vitro model for the evaluation of ultrasound modalities measuring myocardial deformation

    PubMed Central

    2010-01-01

    Background Echocardiography is the method of choice when one wishes to examine myocardial function. Qualitative assessment of the 2D grey scale images obtained is subjective, and objective methods are required. Speckle Tracking Ultrasound is an emerging technology, offering an objective mean of quantifying left ventricular wall motion. However, before a new ultrasound technology can be adopted in the clinic, accuracy and reproducibility needs to be investigated. Aim It was hypothesized that the collection of ultrasound sample data from an in vitro model could be automated. The aim was to optimize an in vitro model to allow for efficient collection of sample data. Material & Methods A tissue-mimicking phantom was made from water, gelatin powder, psyllium fibers and a preservative. Sonomicrometry crystals were molded into the phantom. The solid phantom was mounted in a stable stand and cyclically compressed. Peak strain was then measured by Speckle Tracking Ultrasound and sonomicrometry. Results We succeeded in automating the acquisition and analysis of sample data. Sample data was collected at a rate of 200 measurement pairs in 30 minutes. We found good agreement between Speckle Tracking Ultrasound and sonomicrometry in the in vitro model. Best agreement was 0.83 ± 0.70%. Worst agreement was -1.13 ± 6.46%. Conclusions It has been shown possible to automate a model that can be used for evaluating the in vitro accuracy and precision of ultrasound modalities measuring deformation. Sonomicrometry and Speckle Tracking Ultrasound had acceptable agreement. PMID:20822532

  15. Brain Activation during Spatial Updating and Attentive Tracking of Moving Targets

    ERIC Educational Resources Information Center

    Jahn, Georg; Wendt, Julia; Lotze, Martin; Papenmeier, Frank; Huff, Markus

    2012-01-01

    Keeping aware of the locations of objects while one is moving requires the updating of spatial representations. As long as the objects are visible, attentional tracking is sufficient, but knowing where objects out of view went in relation to one's own body involves an updating of spatial working memory. Here, multiple object tracking was employed…

  16. Connected Component Model for Multi-Object Tracking.

    PubMed

    He, Zhenyu; Li, Xin; You, Xinge; Tao, Dacheng; Tang, Yuan Yan

    2016-08-01

    In multi-object tracking, it is critical to explore the data associations by exploiting the temporal information from a sequence of frames rather than the information from the adjacent two frames. Since straightforwardly obtaining data associations from multi-frames is an NP-hard multi-dimensional assignment (MDA) problem, most existing methods solve this MDA problem by either developing complicated approximate algorithms, or simplifying MDA as a 2D assignment problem based upon the information extracted only from adjacent frames. In this paper, we show that the relation between associations of two observations is the equivalence relation in the data association problem, based on the spatial-temporal constraint that the trajectories of different objects must be disjoint. Therefore, the MDA problem can be equivalently divided into independent subproblems by equivalence partitioning. In contrast to existing works for solving the MDA problem, we develop a connected component model (CCM) by exploiting the constraints of the data association and the equivalence relation on the constraints. Based upon CCM, we can efficiently obtain the global solution of the MDA problem for multi-object tracking by optimizing a sequence of independent data association subproblems. Experiments on challenging public data sets demonstrate that our algorithm outperforms the state-of-the-art approaches.

  17. Evaluation of Moving Object Detection Based on Various Input Noise Using Fixed Camera

    NASA Astrophysics Data System (ADS)

    Kiaee, N.; Hashemizadeh, E.; Zarrinpanjeh, N.

    2017-09-01

    Detecting and tracking objects in video has been as a research area of interest in the field of image processing and computer vision. This paper evaluates the performance of a novel method for object detection algorithm in video sequences. This process helps us to know the advantage of this method which is being used. The proposed framework compares the correct and wrong detection percentage of this algorithm. This method was evaluated with the collected data in the field of urban transport which include car and pedestrian in fixed camera situation. The results show that the accuracy of the algorithm will decreases because of image resolution reduction.

  18. A Programmer-Oriented Approach to Safe Concurrency

    DTIC Science & Technology

    2003-05-01

    and leaving a synchronized block additionally has effects on the management of memory values in the JMM. The practical outcome of these effects is...object-oriented effects system; (3) analysis to track the association of locks with regions, (4) policy descriptions for allowable method...Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 4 An Object-Oriented Effects System 45 4.1 Regions Identify State

  19. Cooperative multisensor system for real-time face detection and tracking in uncontrolled conditions

    NASA Astrophysics Data System (ADS)

    Marchesotti, Luca; Piva, Stefano; Turolla, Andrea; Minetti, Deborah; Regazzoni, Carlo S.

    2005-03-01

    The presented work describes an innovative architecture for multi-sensor distributed video surveillance applications. The aim of the system is to track moving objects in outdoor environments with a cooperative strategy exploiting two video cameras. The system also exhibits the capacity of focusing its attention on the faces of detected pedestrians collecting snapshot frames of face images, by segmenting and tracking them over time at different resolution. The system is designed to employ two video cameras in a cooperative client/server structure: the first camera monitors the entire area of interest and detects the moving objects using change detection techniques. The detected objects are tracked over time and their position is indicated on a map representing the monitored area. The objects" coordinates are sent to the server sensor in order to point its zooming optics towards the moving object. The second camera tracks the objects at high resolution. As well as the client camera, this sensor is calibrated and the position of the object detected on the image plane reference system is translated in its coordinates referred to the same area map. In the map common reference system, data fusion techniques are applied to achieve a more precise and robust estimation of the objects" track and to perform face detection and tracking. The work novelties and strength reside in the cooperative multi-sensor approach, in the high resolution long distance tracking and in the automatic collection of biometric data such as a person face clip for recognition purposes.

  20. Killer rocks and the celestial police - The search for near-earth asteroids

    NASA Technical Reports Server (NTRS)

    Yeomans, Donald K.

    1991-01-01

    The discovery of asteroids near the earth as the result of search programs is detailed with attention given to methods for locating, tracking, and identifying asteroids. The concept of 'prediscovery' is discussed in which new asteroids are tracked backward in time through previous celestial observational data. The need for more comprehensive programs is identified in order to locate objects that present a clear danger of colliding with the earth.

  1. The Schisto Track: A System for Gathering and Monitoring Epidemiological Surveys by Connecting Geographical Information Systems in Real Time

    PubMed Central

    2014-01-01

    Background Using the Android platform as a notification instrument for diseases and disorders forms a new alternative for computerization of epidemiological studies. Objective The objective of our study was to construct a tool for gathering epidemiological data on schistosomiasis using the Android platform. Methods The developed application (app), named the Schisto Track, is a tool for data capture and analysis that was designed to meet the needs of a traditional epidemiological survey. An initial version of the app was finished and tested in both real situations and simulations for epidemiological surveys. Results The app proved to be a tool capable of automation of activities, with data organization and standardization, easy data recovery (to enable interfacing with other systems), and totally modular architecture. Conclusions The proposed Schisto Track is in line with worldwide trends toward use of smartphones with the Android platform for modeling epidemiological scenarios. PMID:25099881

  2. Improvement on Gabor order tracking and objective comparison with Vold Kalman filtering order tracking

    NASA Astrophysics Data System (ADS)

    Pan, Min-Chun; Liao, Shiu-Wei; Chiu, Chun-Chin

    2007-02-01

    The waveform-reconstruction schemes of order tracking (OT) such as the Gabor and the Vold-Kalman filtering (VKF) techniques can extract specific order and/or spectral components in addition to characterizing the processed signal in rpm-frequency domain. The study first improves the Gabor OT (GOT) technique to handle the order-crossing problem, and then objectively compares the features of the improved GOT scheme and the angular-displacement VKF OT technique. It is numerically observed the improved method performs less accurately than the VKF_OT scheme at the crossing occurrences, but without end effect in the reconstructed waveform. As OT is not exact science, it may well be that the decrease in computation time can justify the reduced accuracy. The characterisation and discrimination of riding noise with crossing orders emitted by an electrical scooter are conducted as an example of the application.

  3. Multi-Complementary Model for Long-Term Tracking

    PubMed Central

    Zhang, Deng; Zhang, Junchang; Xia, Chenyang

    2018-01-01

    In recent years, video target tracking algorithms have been widely used. However, many tracking algorithms do not achieve satisfactory performance, especially when dealing with problems such as object occlusions, background clutters, motion blur, low illumination color images, and sudden illumination changes in real scenes. In this paper, we incorporate an object model based on contour information into a Staple tracker that combines the correlation filter model and color model to greatly improve the tracking robustness. Since each model is responsible for tracking specific features, the three complementary models combine for more robust tracking. In addition, we propose an efficient object detection model with contour and color histogram features, which has good detection performance and better detection efficiency compared to the traditional target detection algorithm. Finally, we optimize the traditional scale calculation, which greatly improves the tracking execution speed. We evaluate our tracker on the Object Tracking Benchmarks 2013 (OTB-13) and Object Tracking Benchmarks 2015 (OTB-15) benchmark datasets. With the OTB-13 benchmark datasets, our algorithm is improved by 4.8%, 9.6%, and 10.9% on the success plots of OPE, TRE and SRE, respectively, in contrast to another classic LCT (Long-term Correlation Tracking) algorithm. On the OTB-15 benchmark datasets, when compared with the LCT algorithm, our algorithm achieves 10.4%, 12.5%, and 16.1% improvement on the success plots of OPE, TRE, and SRE, respectively. At the same time, it needs to be emphasized that, due to the high computational efficiency of the color model and the object detection model using efficient data structures, and the speed advantage of the correlation filters, our tracking algorithm could still achieve good tracking speed. PMID:29425170

  4. The efficacy of wire and glue hair snares in identifying mesocarnivores

    Treesearch

    William J. Zielinski; Fredrick V. Schlexer; Kristine L. Pilgrim; Michael K. Schwartz

    2006-01-01

    Track plates and cameras are proven methods for detecting and identifying fishers (Martes pennant) and other mesocarnivores. But these methods are inadequate to achieve demographic and population-monitoring objectives that require identifying sex and individuals. Although noninvasive collection of biological material for genetic analysis (i.e.,...

  5. Investigation of kinematic features for dismount detection and tracking

    NASA Astrophysics Data System (ADS)

    Narayanaswami, Ranga; Tyurina, Anastasia; Diel, David; Mehra, Raman K.; Chinn, Janice M.

    2012-05-01

    With recent changes in threats and methods of warfighting and the use of unmanned aircrafts, ISR (Intelligence, Surveillance and Reconnaissance) activities have become critical to the military's efforts to maintain situational awareness and neutralize the enemy's activities. The identification and tracking of dismounts from surveillance video is an important step in this direction. Our approach combines advanced ultra fast registration techniques to identify moving objects with a classification algorithm based on both static and kinematic features of the objects. Our objective was to push the acceptable resolution beyond the capability of industry standard feature extraction methods such as SIFT (Scale Invariant Feature Transform) based features and inspired by it, SURF (Speeded-Up Robust Feature). Both of these methods utilize single frame images. We exploited the temporal component of the video signal to develop kinematic features. Of particular interest were the easily distinguishable frequencies characteristic of bipedal human versus quadrupedal animal motion. We examine limits of performance, frame rates and resolution required for human, animal and vehicles discrimination. A few seconds of video signal with the acceptable frame rate allow us to lower resolution requirements for individual frames as much as by a factor of five, which translates into the corresponding increase of the acceptable standoff distance between the sensor and the object of interest.

  6. Multiple objects tracking with HOGs matching in circular windows

    NASA Astrophysics Data System (ADS)

    Miramontes-Jaramillo, Daniel; Kober, Vitaly; Díaz-Ramírez, Víctor H.

    2014-09-01

    In recent years tracking applications with development of new technologies like smart TVs, Kinect, Google Glass and Oculus Rift become very important. When tracking uses a matching algorithm, a good prediction algorithm is required to reduce the search area for each object to be tracked as well as processing time. In this work, we analyze the performance of different tracking algorithms based on prediction and matching for a real-time tracking multiple objects. The used matching algorithm utilizes histograms of oriented gradients. It carries out matching in circular windows, and possesses rotation invariance and tolerance to viewpoint and scale changes. The proposed algorithm is implemented in a personal computer with GPU, and its performance is analyzed in terms of processing time in real scenarios. Such implementation takes advantage of current technologies and helps to process video sequences in real-time for tracking several objects at the same time.

  7. Multiple Object Tracking Reveals Object-Based Grouping Interference in Children with ASD

    ERIC Educational Resources Information Center

    Van der Hallen, Ruth; Evers, Kris; de-Wit, Lee; Steyaert, Jean; Noens, Ilse; Wagemans, Johan

    2018-01-01

    The multiple object tracking (MOT) paradigm has proven its value in targeting a number of aspects of visual cognition. This study used MOT to investigate the effect of object-based grouping, both in children with and without autism spectrum disorder (ASD). A modified MOT task was administered to both groups, who had to track and distinguish four…

  8. Interplanetary Dust Observations by the Juno MAG Investigation

    NASA Astrophysics Data System (ADS)

    Jørgensen, John; Benn, Mathias; Denver, Troelz; Connerney, Jack; Jørgensen, Peter; Bolton, Scott; Brauer, Peter; Levin, Steven; Oliversen, Ronald

    2017-04-01

    The spin-stabilized and solar powered Juno spacecraft recently concluded a 5-year voyage through the solar system en route to Jupiter, arriving on July 4th, 2016. During the cruise phase from Earth to the Jovian system, the Magnetometer investigation (MAG) operated two magnetic field sensors and four co-located imaging systems designed to provide accurate attitude knowledge for the MAG sensors. One of these four imaging sensors - camera "D" of the Advanced Stellar Compass (ASC) - was operated in a mode designed to detect all luminous objects in its field of view, recording and characterizing those not found in the on-board star catalog. The capability to detect and track such objects ("non-stellar objects", or NSOs) provides a unique opportunity to sense and characterize interplanetary dust particles. The camera's detection threshold was set to MV9 to minimize false detections and discourage tracking of known objects. On-board filtering algorithms selected only those objects tracked through more than 5 consecutive images and moving with an apparent angular rate between 15"/s and 10,000"/s. The coordinates (RA, DEC), intensity, and apparent velocity of such objects were stored for eventual downlink. Direct detection of proximate dust particles is precluded by their large (10-30 km/s) relative velocity and extreme angular rates, but their presence may be inferred using the collecting area of Juno's large ( 55m2) solar arrays. Dust particles impact the spacecraft at high velocity, creating an expanding plasma cloud and ejecta with modest (few m/s) velocities. These excavated particles are revealed in reflected sunlight and tracked moving away from the spacecraft from the point of impact. Application of this novel detection method during Juno's traversal of the solar system provides new information on the distribution of interplanetary (µm-sized) dust.

  9. Detection and Tracking of Dynamic Objects by Using a Multirobot System: Application to Critical Infrastructures Surveillance

    PubMed Central

    Rodríguez-Canosa, Gonzalo; Giner, Jaime del Cerro; Barrientos, Antonio

    2014-01-01

    The detection and tracking of mobile objects (DATMO) is progressively gaining importance for security and surveillance applications. This article proposes a set of new algorithms and procedures for detecting and tracking mobile objects by robots that work collaboratively as part of a multirobot system. These surveillance algorithms are conceived of to work with data provided by long distance range sensors and are intended for highly reliable object detection in wide outdoor environments. Contrary to most common approaches, in which detection and tracking are done by an integrated procedure, the approach proposed here relies on a modular structure, in which detection and tracking are carried out independently, and the latter might accept input data from different detection algorithms. Two movement detection algorithms have been developed for the detection of dynamic objects by using both static and/or mobile robots. The solution to the overall problem is based on the use of a Kalman filter to predict the next state of each tracked object. Additionally, new tracking algorithms capable of combining dynamic objects lists coming from either one or various sources complete the solution. The complementary performance of the separated modular structure for detection and identification is evaluated and, finally, a selection of test examples discussed. PMID:24526305

  10. All eyes on relevance: strategic allocation of attention as a result of feature-based task demands in multiple object tracking.

    PubMed

    Brockhoff, Alisa; Huff, Markus

    2016-10-01

    Multiple object tracking (MOT) plays a fundamental role in processing and interpreting dynamic environments. Regarding the type of information utilized by the observer, recent studies reported evidence for the use of object features in an automatic, low- level manner. By introducing a novel paradigm that allowed us to combine tracking with a noninterfering top-down task, we tested whether a voluntary component can regulate the deployment of attention to task-relevant features in a selective manner. In four experiments we found conclusive evidence for a task-driven selection mechanism that guides attention during tracking: The observers were able to ignore or prioritize distinct objects. They marked the distinct (cued) object (target/distractor) more or less often than other objects of the same type (targets /distractors)-but only when they had received an identification task that required them to actively process object features (cues) during tracking. These effects are discussed with regard to existing theoretical approaches to attentive tracking, gaze-cue usability as well as attentional readiness, a term that originally stems from research on attention capture and visual search. Our findings indicate that existing theories of MOT need to be adjusted to allow for flexible top-down, voluntary processing during tracking.

  11. Nonstationary EO/IR Clutter Suppression and Dim Object Tracking

    NASA Astrophysics Data System (ADS)

    Tartakovsky, A.; Brown, A.; Brown, J.

    2010-09-01

    We develop and evaluate the performance of advanced algorithms which provide significantly improved capabilities for automated detection and tracking of ballistic and flying dim objects in the presence of highly structured intense clutter. Applications include ballistic missile early warning, midcourse tracking, trajectory prediction, and resident space object detection and tracking. The set of algorithms include, in particular, adaptive spatiotemporal clutter estimation-suppression and nonlinear filtering-based multiple-object track-before-detect. These algorithms are suitable for integration into geostationary, highly elliptical, or low earth orbit scanning or staring sensor suites, and are based on data-driven processing that adapts to real-world clutter backgrounds, including celestial, earth limb, or terrestrial clutter. In many scenarios of interest, e.g., for highly elliptic and, especially, low earth orbits, the resulting clutter is highly nonstationary, providing a significant challenge for clutter suppression to or below sensor noise levels, which is essential for dim object detection and tracking. We demonstrate the success of the developed algorithms using semi-synthetic and real data. In particular, our algorithms are shown to be capable of detecting and tracking point objects with signal-to-clutter levels down to 1/1000 and signal-to-noise levels down to 1/4.

  12. Occlusion handling framework for tracking in smart camera networks by per-target assistance task assignment

    NASA Astrophysics Data System (ADS)

    Bo, Nyan Bo; Deboeverie, Francis; Veelaert, Peter; Philips, Wilfried

    2017-09-01

    Occlusion is one of the most difficult challenges in the area of visual tracking. We propose an occlusion handling framework to improve the performance of local tracking in a smart camera view in a multicamera network. We formulate an extensible energy function to quantify the quality of a camera's observation of a particular target by taking into account both person-person and object-person occlusion. Using this energy function, a smart camera assesses the quality of observations over all targets being tracked. When it cannot adequately observe of a target, a smart camera estimates the quality of observation of the target from view points of other assisting cameras. If a camera with better observation of the target is found, the tracking task of the target is carried out with the assistance of that camera. In our framework, only positions of persons being tracked are exchanged between smart cameras. Thus, communication bandwidth requirement is very low. Performance evaluation of our method on challenging video sequences with frequent and severe occlusions shows that the accuracy of a baseline tracker is considerably improved. We also report the performance comparison to the state-of-the-art trackers in which our method outperforms.

  13. Vision-based overlay of a virtual object into real scene for designing room interior

    NASA Astrophysics Data System (ADS)

    Harasaki, Shunsuke; Saito, Hideo

    2001-10-01

    In this paper, we introduce a geometric registration method for augmented reality (AR) and an application system, interior simulator, in which a virtual (CG) object can be overlaid into a real world space. Interior simulator is developed as an example of an AR application of the proposed method. Using interior simulator, users can visually simulate the location of virtual furniture and articles in the living room so that they can easily design the living room interior without placing real furniture and articles, by viewing from many different locations and orientations in real-time. In our system, two base images of a real world space are captured from two different views for defining a projective coordinate of object 3D space. Then each projective view of a virtual object in the base images are registered interactively. After such coordinate determination, an image sequence of a real world space is captured by hand-held camera with tracking non-metric measured feature points for overlaying a virtual object. Virtual objects can be overlaid onto the image sequence by taking each relationship between the images. With the proposed system, 3D position tracking device, such as magnetic trackers, are not required for the overlay of virtual objects. Experimental results demonstrate that 3D virtual furniture can be overlaid into an image sequence of the scene of a living room nearly at video rate (20 frames per second).

  14. [Research on fuzzy proportional-integral-derivative control of master-slave minimally invasive operation robot driver].

    PubMed

    Zhao, Ximei; Ren, Chengyi; Liu, Hao; Li, Haogyi

    2014-12-01

    Robotic catheter minimally invasive operation requires that the driver control system has the advantages of quick response, strong anti-jamming and real-time tracking of target trajectory. Since the catheter parameters of itself and movement environment and other factors continuously change, when the driver is controlled using traditional proportional-integral-derivative (PID), the controller gain becomes fixed once the PID parameters are set. It can not change with the change of the parameters of the object and environmental disturbance so that its change affects the position tracking accuracy, and may bring a large overshoot endangering patients' vessel. Therefore, this paper adopts fuzzy PID control method to adjust PID gain parameters in the tracking process in order to improve the system anti-interference ability, dynamic performance and tracking accuracy. The simulation results showed that the fuzzy PID control method had a fast tracking performance and a strong robustness. Compared with those of traditional PID control, the feasibility and practicability of fuzzy PID control are verified in a robotic catheter minimally invasive operation.

  15. Image-Based Multi-Target Tracking through Multi-Bernoulli Filtering with Interactive Likelihoods.

    PubMed

    Hoak, Anthony; Medeiros, Henry; Povinelli, Richard J

    2017-03-03

    We develop an interactive likelihood (ILH) for sequential Monte Carlo (SMC) methods for image-based multiple target tracking applications. The purpose of the ILH is to improve tracking accuracy by reducing the need for data association. In addition, we integrate a recently developed deep neural network for pedestrian detection along with the ILH with a multi-Bernoulli filter. We evaluate the performance of the multi-Bernoulli filter with the ILH and the pedestrian detector in a number of publicly available datasets (2003 PETS INMOVE, Australian Rules Football League (AFL) and TUD-Stadtmitte) using standard, well-known multi-target tracking metrics (optimal sub-pattern assignment (OSPA) and classification of events, activities and relationships for multi-object trackers (CLEAR MOT)). In all datasets, the ILH term increases the tracking accuracy of the multi-Bernoulli filter.

  16. Image-Based Multi-Target Tracking through Multi-Bernoulli Filtering with Interactive Likelihoods

    PubMed Central

    Hoak, Anthony; Medeiros, Henry; Povinelli, Richard J.

    2017-01-01

    We develop an interactive likelihood (ILH) for sequential Monte Carlo (SMC) methods for image-based multiple target tracking applications. The purpose of the ILH is to improve tracking accuracy by reducing the need for data association. In addition, we integrate a recently developed deep neural network for pedestrian detection along with the ILH with a multi-Bernoulli filter. We evaluate the performance of the multi-Bernoulli filter with the ILH and the pedestrian detector in a number of publicly available datasets (2003 PETS INMOVE, Australian Rules Football League (AFL) and TUD-Stadtmitte) using standard, well-known multi-target tracking metrics (optimal sub-pattern assignment (OSPA) and classification of events, activities and relationships for multi-object trackers (CLEAR MOT)). In all datasets, the ILH term increases the tracking accuracy of the multi-Bernoulli filter. PMID:28273796

  17. Multi-vehicle detection with identity awareness using cascade Adaboost and Adaptive Kalman filter for driver assistant system

    PubMed Central

    Wang, Baofeng; Qi, Zhiquan; Chen, Sizhong; Liu, Zhaodu; Ma, Guocheng

    2017-01-01

    Vision-based vehicle detection is an important issue for advanced driver assistance systems. In this paper, we presented an improved multi-vehicle detection and tracking method using cascade Adaboost and Adaptive Kalman filter(AKF) with target identity awareness. A cascade Adaboost classifier using Haar-like features was built for vehicle detection, followed by a more comprehensive verification process which could refine the vehicle hypothesis in terms of both location and dimension. In vehicle tracking, each vehicle was tracked with independent identity by an Adaptive Kalman filter in collaboration with a data association approach. The AKF adaptively adjusted the measurement and process noise covariance through on-line stochastic modelling to compensate the dynamics changes. The data association correctly assigned different detections with tracks using global nearest neighbour(GNN) algorithm while considering the local validation. During tracking, a temporal context based track management was proposed to decide whether to initiate, maintain or terminate the tracks of different objects, thus suppressing the sparse false alarms and compensating the temporary detection failures. Finally, the proposed method was tested on various challenging real roads, and the experimental results showed that the vehicle detection performance was greatly improved with higher accuracy and robustness. PMID:28296902

  18. Video redaction: a survey and comparison of enabling technologies

    NASA Astrophysics Data System (ADS)

    Sah, Shagan; Shringi, Ameya; Ptucha, Raymond; Burry, Aaron; Loce, Robert

    2017-09-01

    With the prevalence of video recordings from smart phones, dash cams, body cams, and conventional surveillance cameras, privacy protection has become a major concern, especially in light of legislation such as the Freedom of Information Act. Video redaction is used to obfuscate sensitive and personally identifiable information. Today's typical workflow involves simple detection, tracking, and manual intervention. Automated methods rely on accurate detection mechanisms being paired with robust tracking methods across the video sequence to ensure the redaction of all sensitive information while minimizing spurious obfuscations. Recent studies have explored the use of convolution neural networks and recurrent neural networks for object detection and tracking. The present paper reviews the redaction problem and compares a few state-of-the-art detection, tracking, and obfuscation methods as they relate to redaction. The comparison introduces an evaluation metric that is specific to video redaction performance. The metric can be evaluated in a manner that allows balancing the penalty for false negatives and false positives according to the needs of particular application, thereby assisting in the selection of component methods and their associated hyperparameters such that the redacted video has fewer frames that require manual review.

  19. Awareness-based game-theoretic space resource management

    NASA Astrophysics Data System (ADS)

    Chen, Genshe; Chen, Huimin; Pham, Khanh; Blasch, Erik; Cruz, Jose B., Jr.

    2009-05-01

    Over recent decades, the space environment becomes more complex with a significant increase in space debris and a greater density of spacecraft, which poses great difficulties to efficient and reliable space operations. In this paper we present a Hierarchical Sensor Management (HSM) method to space operations by (a) accommodating awareness modeling and updating and (b) collaborative search and tracking space objects. The basic approach is described as follows. Firstly, partition the relevant region of interest into district cells. Second, initialize and model the dynamics of each cell with awareness and object covariance according to prior information. Secondly, explicitly assign sensing resources to objects with user specified requirements. Note that when an object has intelligent response to the sensing event, the sensor assigned to observe an intelligent object may switch from time-to-time between a strong, active signal mode and a passive mode to maximize the total amount of information to be obtained over a multi-step time horizon and avoid risks. Thirdly, if all explicitly specified requirements are satisfied and there are still more sensing resources available, we assign the additional sensing resources to objects without explicitly specified requirements via an information based approach. Finally, sensor scheduling is applied to each sensor-object or sensor-cell pair according to the object type. We demonstrate our method with realistic space resources management scenario using NASA's General Mission Analysis Tool (GMAT) for space object search and track with multiple space borne observers.

  20. Model-based vision for space applications

    NASA Technical Reports Server (NTRS)

    Chaconas, Karen; Nashman, Marilyn; Lumia, Ronald

    1992-01-01

    This paper describes a method for tracking moving image features by combining spatial and temporal edge information with model based feature information. The algorithm updates the two-dimensional position of object features by correlating predicted model features with current image data. The results of the correlation process are used to compute an updated model. The algorithm makes use of a high temporal sampling rate with respect to spatial changes of the image features and operates in a real-time multiprocessing environment. Preliminary results demonstrate successful tracking for image feature velocities between 1.1 and 4.5 pixels every image frame. This work has applications for docking, assembly, retrieval of floating objects and a host of other space-related tasks.

  1. Feature-based interference from unattended visual field during attentional tracking in younger and older adults.

    PubMed

    Störmer, Viola S; Li, Shu-Chen; Heekeren, Hauke R; Lindenberger, Ulman

    2011-02-01

    The ability to attend to multiple objects that move in the visual field is important for many aspects of daily functioning. The attentional capacity for such dynamic tracking, however, is highly limited and undergoes age-related decline. Several aspects of the tracking process can influence performance. Here, we investigated effects of feature-based interference from distractor objects that appear in unattended regions of the visual field with a hemifield-tracking task. Younger and older participants performed an attentional tracking task in one hemifield while distractor objects were concurrently presented in the unattended hemifield. Feature similarity between objects in the attended and unattended hemifields as well as motion speed and the number of to-be-tracked objects were parametrically manipulated. The results show that increasing feature overlap leads to greater interference from the unattended visual field. This effect of feature-based interference was only present in the slow speed condition, indicating that the interference is mainly modulated by perceptual demands. High-performing older adults showed a similar interference effect as younger adults, whereas low-performing adults showed poor tracking performance overall.

  2. The Mesa Arizona Pupil Tracking System

    NASA Technical Reports Server (NTRS)

    Wright, D. L.

    1973-01-01

    A computer-based Pupil Tracking/Teacher Monitoring System was designed for Mesa Public Schools, Mesa, Arizona. The established objectives of the system were to: (1) facilitate the economical collection and storage of student performance data necessary to objectively evaluate the relative effectiveness of teachers, instructional methods, materials, and applied concepts; and (2) identify, on a daily basis, those students requiring special attention in specific subject areas. The system encompasses computer hardware/software and integrated curricula progression/administration devices. It provides daily evaluation and monitoring of performance as students progress at class or individualized rates. In the process, it notifies the student and collects information necessary to validate or invalidate subject presentation devices, methods, materials, and measurement devices in terms of direct benefit to the students. The system utilizes a small-scale computer (e.g., IBM 1130) to assure low-cost replicability, and may be used for many subjects of instruction.

  3. Ego-Motion and Tracking for Continuous Object Learning: A Brief Survey

    DTIC Science & Technology

    2017-09-01

    ARL-TR-8167• SEP 2017 US Army Research Laboratory Ego-motion and Tracking for ContinuousObject Learning: A Brief Survey by Jason Owens and Philip...SEP 2017 US Army Research Laboratory Ego-motion and Tracking for ContinuousObject Learning: A Brief Survey by Jason Owens and Philip OsteenVehicle...

  4. Locator-Checker-Scaler Object Tracking Using Spatially Ordered and Weighted Patch Descriptor.

    PubMed

    Kim, Han-Ul; Kim, Chang-Su

    2017-08-01

    In this paper, we propose a simple yet effective object descriptor and a novel tracking algorithm to track a target object accurately. For the object description, we divide the bounding box of a target object into multiple patches and describe them with color and gradient histograms. Then, we determine the foreground weight of each patch to alleviate the impacts of background information in the bounding box. To this end, we perform random walk with restart (RWR) simulation. We then concatenate the weighted patch descriptors to yield the spatially ordered and weighted patch (SOWP) descriptor. For the object tracking, we incorporate the proposed SOWP descriptor into a novel tracking algorithm, which has three components: locator, checker, and scaler (LCS). The locator and the scaler estimate the center location and the size of a target, respectively. The checker determines whether it is safe to adjust the target scale in a current frame. These three components cooperate with one another to achieve robust tracking. Experimental results demonstrate that the proposed LCS tracker achieves excellent performance on recent benchmarks.

  5. Tutorial on Using LISP Object-Oriented Programming for Blackboards: Solving the Radar Tracking Problem

    DTIC Science & Technology

    1989-08-01

    report demonstrates how flavors (object-oriented programming in Franz is carried out via flavors. can be u>,d for this programming. Different approaches...data structures that are part of Franz LISP. A method is a procedure that is invoked by a message to a flavor instance. The method triggered depends...keywordize is a procedure used to intern the :set-op name into the keyword package so that the flavor features of Franz recognize this operation. An

  6. Object detection and tracking system

    DOEpatents

    Ma, Tian J.

    2017-05-30

    Methods and apparatuses for analyzing a sequence of images for an object are disclosed herein. In a general embodiment, the method identifies a region of interest in the sequence of images. The object is likely to move within the region of interest. The method divides the region of interest in the sequence of images into sections and calculates signal-to-noise ratios for a section in the sections. A signal-to-noise ratio for the section is calculated using the section in the image, a prior section in a prior image to the image, and a subsequent section in a subsequent image to the image. The signal-to-noise ratios are for potential velocities of the object in the section. The method also selects a velocity from the potential velocities for the object in the section using a potential velocity in the potential velocities having a highest signal-to-noise ratio in the signal-to-noise ratios.

  7. Fast Object Motion Estimation Based on Dynamic Stixels.

    PubMed

    Morales, Néstor; Morell, Antonio; Toledo, Jonay; Acosta, Leopoldo

    2016-07-28

    The stixel world is a simplification of the world in which obstacles are represented as vertical instances, called stixels, standing on a surface assumed to be planar. In this paper, previous approaches for stixel tracking are extended using a two-level scheme. In the first level, stixels are tracked by matching them between frames using a bipartite graph in which edges represent a matching cost function. Then, stixels are clustered into sets representing objects in the environment. These objects are matched based on the number of stixels paired inside them. Furthermore, a faster, but less accurate approach is proposed in which only the second level is used. Several configurations of our method are compared to an existing state-of-the-art approach to show how our methodology outperforms it in several areas, including an improvement in the quality of the depth reconstruction.

  8. Obstacle penetrating dynamic radar imaging system

    DOEpatents

    Romero, Carlos E [Livermore, CA; Zumstein, James E [Livermore, CA; Chang, John T [Danville, CA; Leach, Jr Richard R. [Castro Valley, CA

    2006-12-12

    An obstacle penetrating dynamic radar imaging system for the detection, tracking, and imaging of an individual, animal, or object comprising a multiplicity of low power ultra wideband radar units that produce a set of return radar signals from the individual, animal, or object, and a processing system for said set of return radar signals for detection, tracking, and imaging of the individual, animal, or object. The system provides a radar video system for detecting and tracking an individual, animal, or object by producing a set of return radar signals from the individual, animal, or object with a multiplicity of low power ultra wideband radar units, and processing said set of return radar signals for detecting and tracking of the individual, animal, or object.

  9. Attention Modulates Spatial Precision in Multiple-Object Tracking.

    PubMed

    Srivastava, Nisheeth; Vul, Ed

    2016-01-01

    We present a computational model of multiple-object tracking that makes trial-level predictions about the allocation of visual attention and the effect of this allocation on observers' ability to track multiple objects simultaneously. This model follows the intuition that increased attention to a location increases the spatial resolution of its internal representation. Using a combination of empirical and computational experiments, we demonstrate the existence of a tight coupling between cognitive and perceptual resources in this task: Low-level tracking of objects generates bottom-up predictions of error likelihood, and high-level attention allocation selectively reduces error probabilities in attended locations while increasing it at non-attended locations. Whereas earlier models of multiple-object tracking have predicted the big picture relationship between stimulus complexity and response accuracy, our approach makes accurate predictions of both the macro-scale effect of target number and velocity on tracking difficulty and micro-scale variations in difficulty across individual trials and targets arising from the idiosyncratic within-trial interactions of targets and distractors. Copyright © 2016 Cognitive Science Society, Inc.

  10. Fast Compressive Tracking.

    PubMed

    Zhang, Kaihua; Zhang, Lei; Yang, Ming-Hsuan

    2014-10-01

    It is a challenging task to develop effective and efficient appearance models for robust object tracking due to factors such as pose variation, illumination change, occlusion, and motion blur. Existing online tracking algorithms often update models with samples from observations in recent frames. Despite much success has been demonstrated, numerous issues remain to be addressed. First, while these adaptive appearance models are data-dependent, there does not exist sufficient amount of data for online algorithms to learn at the outset. Second, online tracking algorithms often encounter the drift problems. As a result of self-taught learning, misaligned samples are likely to be added and degrade the appearance models. In this paper, we propose a simple yet effective and efficient tracking algorithm with an appearance model based on features extracted from a multiscale image feature space with data-independent basis. The proposed appearance model employs non-adaptive random projections that preserve the structure of the image feature space of objects. A very sparse measurement matrix is constructed to efficiently extract the features for the appearance model. We compress sample images of the foreground target and the background using the same sparse measurement matrix. The tracking task is formulated as a binary classification via a naive Bayes classifier with online update in the compressed domain. A coarse-to-fine search strategy is adopted to further reduce the computational complexity in the detection procedure. The proposed compressive tracking algorithm runs in real-time and performs favorably against state-of-the-art methods on challenging sequences in terms of efficiency, accuracy and robustness.

  11. An improved KCF tracking algorithm based on multi-feature and multi-scale

    NASA Astrophysics Data System (ADS)

    Wu, Wei; Wang, Ding; Luo, Xin; Su, Yang; Tian, Weiye

    2018-02-01

    The purpose of visual tracking is to associate the target object in a continuous video frame. In recent years, the method based on the kernel correlation filter has become the research hotspot. However, the algorithm still has some problems such as video capture equipment fast jitter, tracking scale transformation. In order to improve the ability of scale transformation and feature description, this paper has carried an innovative algorithm based on the multi feature fusion and multi-scale transform. The experimental results show that our method solves the problem that the target model update when is blocked or its scale transforms. The accuracy of the evaluation (OPE) is 77.0%, 75.4% and the success rate is 69.7%, 66.4% on the VOT and OTB datasets. Compared with the optimal one of the existing target-based tracking algorithms, the accuracy of the algorithm is improved by 6.7% and 6.3% respectively. The success rates are improved by 13.7% and 14.2% respectively.

  12. Enhanced online convolutional neural networks for object tracking

    NASA Astrophysics Data System (ADS)

    Zhang, Dengzhuo; Gao, Yun; Zhou, Hao; Li, Tianwen

    2018-04-01

    In recent several years, object tracking based on convolution neural network has gained more and more attention. The initialization and update of convolution filters can directly affect the precision of object tracking effective. In this paper, a novel object tracking via an enhanced online convolution neural network without offline training is proposed, which initializes the convolution filters by a k-means++ algorithm and updates the filters by an error back-propagation. The comparative experiments of 7 trackers on 15 challenging sequences showed that our tracker can perform better than other trackers in terms of AUC and precision.

  13. Computational tools and lattice design for the PEP-II B-Factory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cai, Y.; Irwin, J.; Nosochkov, Y.

    1997-02-01

    Several accelerator codes were used to design the PEP-II lattices, ranging from matrix-based codes, such as MAD and DIMAD, to symplectic-integrator codes, such as TRACY and DESPOT. In addition to element-by-element tracking, we constructed maps to determine aberration strengths. Furthermore, we have developed a fast and reliable method (nPB tracking) to track particles with a one-turn map. This new technique allows us to evaluate performance of the lattices on the entire tune-plane. Recently, we designed and implemented an object-oriented code in C++ called LEGO which integrates and expands upon TRACY and DESPOT. {copyright} {ital 1997 American Institute of Physics.}

  14. Computational tools and lattice design for the PEP-II B-Factory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cai Yunhai; Irwin, John; Nosochkov, Yuri

    1997-02-01

    Several accelerator codes were used to design the PEP-II lattices, ranging from matrix-based codes, such as MAD and DIMAD, to symplectic-integrator codes, such as TRACY and DESPOT. In addition to element-by-element tracking, we constructed maps to determine aberration strengths. Furthermore, we have developed a fast and reliable method (nPB tracking) to track particles with a one-turn map. This new technique allows us to evaluate performance of the lattices on the entire tune-plane. Recently, we designed and implemented an object-oriented code in C++ called LEGO which integrates and expands upon TRACY and DESPOT.

  15. MO-FG-BRD-01: Real-Time Imaging and Tracking Techniques for Intrafractional Motion Management: Introduction and KV Tracking

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fahimian, B.

    2015-06-15

    Intrafraction target motion is a prominent complicating factor in the accurate targeting of radiation within the body. Methods compensating for target motion during treatment, such as gating and dynamic tumor tracking, depend on the delineation of target location as a function of time during delivery. A variety of techniques for target localization have been explored and are under active development; these include beam-level imaging of radio-opaque fiducials, fiducial-less tracking of anatomical landmarks, tracking of electromagnetic transponders, optical imaging of correlated surrogates, and volumetric imaging within treatment delivery. The Joint Imaging and Therapy Symposium will provide an overview of the techniquesmore » for real-time imaging and tracking, with special focus on emerging modes of implementation across different modalities. In particular, the symposium will explore developments in 1) Beam-level kilovoltage X-ray imaging techniques, 2) EPID-based megavoltage X-ray tracking, 3) Dynamic tracking using electromagnetic transponders, and 4) MRI-based soft-tissue tracking during radiation delivery. Learning Objectives: Understand the fundamentals of real-time imaging and tracking techniques Learn about emerging techniques in the field of real-time tracking Distinguish between the advantages and disadvantages of different tracking modalities Understand the role of real-time tracking techniques within the clinical delivery work-flow.« less

  16. MO-FG-BRD-04: Real-Time Imaging and Tracking Techniques for Intrafractional Motion Management: MR Tracking

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Low, D.

    2015-06-15

    Intrafraction target motion is a prominent complicating factor in the accurate targeting of radiation within the body. Methods compensating for target motion during treatment, such as gating and dynamic tumor tracking, depend on the delineation of target location as a function of time during delivery. A variety of techniques for target localization have been explored and are under active development; these include beam-level imaging of radio-opaque fiducials, fiducial-less tracking of anatomical landmarks, tracking of electromagnetic transponders, optical imaging of correlated surrogates, and volumetric imaging within treatment delivery. The Joint Imaging and Therapy Symposium will provide an overview of the techniquesmore » for real-time imaging and tracking, with special focus on emerging modes of implementation across different modalities. In particular, the symposium will explore developments in 1) Beam-level kilovoltage X-ray imaging techniques, 2) EPID-based megavoltage X-ray tracking, 3) Dynamic tracking using electromagnetic transponders, and 4) MRI-based soft-tissue tracking during radiation delivery. Learning Objectives: Understand the fundamentals of real-time imaging and tracking techniques Learn about emerging techniques in the field of real-time tracking Distinguish between the advantages and disadvantages of different tracking modalities Understand the role of real-time tracking techniques within the clinical delivery work-flow.« less

  17. MO-FG-BRD-02: Real-Time Imaging and Tracking Techniques for Intrafractional Motion Management: MV Tracking

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berbeco, R.

    2015-06-15

    Intrafraction target motion is a prominent complicating factor in the accurate targeting of radiation within the body. Methods compensating for target motion during treatment, such as gating and dynamic tumor tracking, depend on the delineation of target location as a function of time during delivery. A variety of techniques for target localization have been explored and are under active development; these include beam-level imaging of radio-opaque fiducials, fiducial-less tracking of anatomical landmarks, tracking of electromagnetic transponders, optical imaging of correlated surrogates, and volumetric imaging within treatment delivery. The Joint Imaging and Therapy Symposium will provide an overview of the techniquesmore » for real-time imaging and tracking, with special focus on emerging modes of implementation across different modalities. In particular, the symposium will explore developments in 1) Beam-level kilovoltage X-ray imaging techniques, 2) EPID-based megavoltage X-ray tracking, 3) Dynamic tracking using electromagnetic transponders, and 4) MRI-based soft-tissue tracking during radiation delivery. Learning Objectives: Understand the fundamentals of real-time imaging and tracking techniques Learn about emerging techniques in the field of real-time tracking Distinguish between the advantages and disadvantages of different tracking modalities Understand the role of real-time tracking techniques within the clinical delivery work-flow.« less

  18. MO-FG-BRD-03: Real-Time Imaging and Tracking Techniques for Intrafractional Motion Management: EM Tracking

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keall, P.

    2015-06-15

    Intrafraction target motion is a prominent complicating factor in the accurate targeting of radiation within the body. Methods compensating for target motion during treatment, such as gating and dynamic tumor tracking, depend on the delineation of target location as a function of time during delivery. A variety of techniques for target localization have been explored and are under active development; these include beam-level imaging of radio-opaque fiducials, fiducial-less tracking of anatomical landmarks, tracking of electromagnetic transponders, optical imaging of correlated surrogates, and volumetric imaging within treatment delivery. The Joint Imaging and Therapy Symposium will provide an overview of the techniquesmore » for real-time imaging and tracking, with special focus on emerging modes of implementation across different modalities. In particular, the symposium will explore developments in 1) Beam-level kilovoltage X-ray imaging techniques, 2) EPID-based megavoltage X-ray tracking, 3) Dynamic tracking using electromagnetic transponders, and 4) MRI-based soft-tissue tracking during radiation delivery. Learning Objectives: Understand the fundamentals of real-time imaging and tracking techniques Learn about emerging techniques in the field of real-time tracking Distinguish between the advantages and disadvantages of different tracking modalities Understand the role of real-time tracking techniques within the clinical delivery work-flow.« less

  19. Adaptive particle filter for robust visual tracking

    NASA Astrophysics Data System (ADS)

    Dai, Jianghua; Yu, Shengsheng; Sun, Weiping; Chen, Xiaoping; Xiang, Jinhai

    2009-10-01

    Object tracking plays a key role in the field of computer vision. Particle filter has been widely used for visual tracking under nonlinear and/or non-Gaussian circumstances. In particle filter, the state transition model for predicting the next location of tracked object assumes the object motion is invariable, which cannot well approximate the varying dynamics of the motion changes. In addition, the state estimate calculated by the mean of all the weighted particles is coarse or inaccurate due to various noise disturbances. Both these two factors may degrade tracking performance greatly. In this work, an adaptive particle filter (APF) with a velocity-updating based transition model (VTM) and an adaptive state estimate approach (ASEA) is proposed to improve object tracking. In APF, the motion velocity embedded into the state transition model is updated continuously by a recursive equation, and the state estimate is obtained adaptively according to the state posterior distribution. The experiment results show that the APF can increase the tracking accuracy and efficiency in complex environments.

  20. Signal processing methods for in-situ creep specimen monitoring

    NASA Astrophysics Data System (ADS)

    Guers, Manton J.; Tittmann, Bernhard R.

    2018-04-01

    Previous work investigated using guided waves for monitoring creep deformation during accelerated life testing. The basic objective was to relate observed changes in the time-of-flight to changes in the environmental temperature and specimen gage length. The work presented in this paper investigated several signal processing strategies for possible application in the in-situ monitoring system. Signal processing methods for both group velocity (wave-packet envelope) and phase velocity (peak tracking) time-of-flight were considered. Although the Analytic Envelope found via the Hilbert transform is commonly applied for group velocity measurements, erratic behavior in the indicated time-of-flight was observed when this technique was applied to the in-situ data. The peak tracking strategies tested had generally linear trends, and tracking local minima in the raw waveform ultimately showed the most consistent results.

  1. Bicycle Guidelines and Crash Rates on Cycle Tracks in the United States

    PubMed Central

    Morency, Patrick; Miranda-Moreno, Luis F.; Willett, Walter C.; Dennerlein, Jack T.

    2013-01-01

    Objectives. We studied state-adopted bicycle guidelines to determine whether cycle tracks (physically separated, bicycle-exclusive paths adjacent to sidewalks) were recommended, whether they were built, and their crash rate. Methods. We analyzed and compared US bicycle facility guidelines published between 1972 and 1999. We identified 19 cycle tracks in the United States and collected extensive data on cycle track design, usage, and crash history from local communities. We used bicycle counts and crash data to estimate crash rates. Results. A bicycle facility guideline written in 1972 endorsed cycle tracks but American Association of State Highway and Transportation Officials (AASHTO) guidelines (1974–1999) discouraged or did not include cycle tracks and did not cite research about crash rates on cycle tracks. For the 19 US cycle tracks we examined, the overall crash rate was 2.3 (95% confidence interval = 1.7, 3.0) per 1 million bicycle kilometers. Conclusions. AASHTO bicycle guidelines are not explicitly based on rigorous or up-to-date research. Our results show that the risk of bicycle–vehicle crashes is lower on US cycle tracks than published crashes rates on roadways. This study and previous investigations support building cycle tracks. PMID:23678920

  2. Ray tracing through a hexahedral mesh in HADES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Henderson, G L; Aufderheide, M B

    In this paper we describe a new ray tracing method targeted for inclusion in HADES. The algorithm tracks rays through three-dimensional tetrakis hexahedral mesh objects, like those used by the ARES code to model inertial confinement experiments.

  3. Lagrangian 3D tracking of fluorescent microscopic objects in motion

    NASA Astrophysics Data System (ADS)

    Darnige, T.; Figueroa-Morales, N.; Bohec, P.; Lindner, A.; Clément, E.

    2017-05-01

    We describe the development of a tracking device, mounted on an epi-fluorescent inverted microscope, suited to obtain time resolved 3D Lagrangian tracks of fluorescent passive or active micro-objects in microfluidic devices. The system is based on real-time image processing, determining the displacement of a x, y mechanical stage to keep the chosen object at a fixed position in the observation frame. The z displacement is based on the refocusing of the fluorescent object determining the displacement of a piezo mover keeping the moving object in focus. Track coordinates of the object with respect to the microfluidic device as well as images of the object are obtained at a frequency of several tenths of Hertz. This device is particularly well adapted to obtain trajectories of motile micro-organisms in microfluidic devices with or without flow.

  4. Lagrangian 3D tracking of fluorescent microscopic objects in motion.

    PubMed

    Darnige, T; Figueroa-Morales, N; Bohec, P; Lindner, A; Clément, E

    2017-05-01

    We describe the development of a tracking device, mounted on an epi-fluorescent inverted microscope, suited to obtain time resolved 3D Lagrangian tracks of fluorescent passive or active micro-objects in microfluidic devices. The system is based on real-time image processing, determining the displacement of a x, y mechanical stage to keep the chosen object at a fixed position in the observation frame. The z displacement is based on the refocusing of the fluorescent object determining the displacement of a piezo mover keeping the moving object in focus. Track coordinates of the object with respect to the microfluidic device as well as images of the object are obtained at a frequency of several tenths of Hertz. This device is particularly well adapted to obtain trajectories of motile micro-organisms in microfluidic devices with or without flow.

  5. LivePhantom: Retrieving Virtual World Light Data to Real Environments.

    PubMed

    Kolivand, Hoshang; Billinghurst, Mark; Sunar, Mohd Shahrizal

    2016-01-01

    To achieve realistic Augmented Reality (AR), shadows play an important role in creating a 3D impression of a scene. Casting virtual shadows on real and virtual objects is one of the topics of research being conducted in this area. In this paper, we propose a new method for creating complex AR indoor scenes using real time depth detection to exert virtual shadows on virtual and real environments. A Kinect camera was used to produce a depth map for the physical scene mixing into a single real-time transparent tacit surface. Once this is created, the camera's position can be tracked from the reconstructed 3D scene. Real objects are represented by virtual object phantoms in the AR scene enabling users holding a webcam and a standard Kinect camera to capture and reconstruct environments simultaneously. The tracking capability of the algorithm is shown and the findings are assessed drawing upon qualitative and quantitative methods making comparisons with previous AR phantom generation applications. The results demonstrate the robustness of the technique for realistic indoor rendering in AR systems.

  6. LivePhantom: Retrieving Virtual World Light Data to Real Environments

    PubMed Central

    2016-01-01

    To achieve realistic Augmented Reality (AR), shadows play an important role in creating a 3D impression of a scene. Casting virtual shadows on real and virtual objects is one of the topics of research being conducted in this area. In this paper, we propose a new method for creating complex AR indoor scenes using real time depth detection to exert virtual shadows on virtual and real environments. A Kinect camera was used to produce a depth map for the physical scene mixing into a single real-time transparent tacit surface. Once this is created, the camera’s position can be tracked from the reconstructed 3D scene. Real objects are represented by virtual object phantoms in the AR scene enabling users holding a webcam and a standard Kinect camera to capture and reconstruct environments simultaneously. The tracking capability of the algorithm is shown and the findings are assessed drawing upon qualitative and quantitative methods making comparisons with previous AR phantom generation applications. The results demonstrate the robustness of the technique for realistic indoor rendering in AR systems. PMID:27930663

  7. The role of "rescue saccades" in tracking objects through occlusions.

    PubMed

    Zelinsky, Gregory J; Todor, Andrei

    2010-12-29

    We hypothesize that our ability to track objects through occlusions is mediated by timely assistance from gaze in the form of "rescue saccades"-eye movements to tracked objects that are in danger of being lost due to impending occlusion. Observers tracked 2-4 target sharks (out of 9) for 20 s as they swam through a rendered 3D underwater scene. Targets were either allowed to enter into occlusions (occlusion trials) or not (no occlusion trials). Tracking accuracy with 2-3 targets was ≥ 92% regardless of target occlusion but dropped to 74% on occlusion trials with four targets (no occlusion trials remained accurate; 83%). This pattern was mirrored in the frequency of rescue saccades. Rescue saccades accompanied approximatlely 50% of the Track 2-3 target occlusions, but only 34% of the Track 4 occlusions. Their frequency also decreased with increasing distance between a target and the nearest other object, suggesting that it is the potential for target confusion that summons a rescue saccade, not occlusion itself. These findings provide evidence for a tracking system that monitors for events that might cause track loss (e.g., occlusions) and requests help from the oculomotor system to resolve these momentary crises. As the number of crises increase with the number of targets, some requests for help go unsatisfied, resulting in degraded tracking.

  8. Multiple Objects Fusion Tracker Using a Matching Network for Adaptively Represented Instance Pairs

    PubMed Central

    Oh, Sang-Il; Kang, Hang-Bong

    2017-01-01

    Multiple-object tracking is affected by various sources of distortion, such as occlusion, illumination variations and motion changes. Overcoming these distortions by tracking on RGB frames, such as shifting, has limitations because of material distortions caused by RGB frames. To overcome these distortions, we propose a multiple-object fusion tracker (MOFT), which uses a combination of 3D point clouds and corresponding RGB frames. The MOFT uses a matching function initialized on large-scale external sequences to determine which candidates in the current frame match with the target object in the previous frame. After conducting tracking on a few frames, the initialized matching function is fine-tuned according to the appearance models of target objects. The fine-tuning process of the matching function is constructed as a structured form with diverse matching function branches. In general multiple object tracking situations, scale variations for a scene occur depending on the distance between the target objects and the sensors. If the target objects in various scales are equally represented with the same strategy, information losses will occur for any representation of the target objects. In this paper, the output map of the convolutional layer obtained from a pre-trained convolutional neural network is used to adaptively represent instances without information loss. In addition, MOFT fuses the tracking results obtained from each modality at the decision level to compensate the tracking failures of each modality using basic belief assignment, rather than fusing modalities by selectively using the features of each modality. Experimental results indicate that the proposed tracker provides state-of-the-art performance considering multiple objects tracking (MOT) and KITTIbenchmarks. PMID:28420194

  9. A system for learning statistical motion patterns.

    PubMed

    Hu, Weiming; Xiao, Xuejuan; Fu, Zhouyu; Xie, Dan; Tan, Tieniu; Maybank, Steve

    2006-09-01

    Analysis of motion patterns is an effective approach for anomaly detection and behavior prediction. Current approaches for the analysis of motion patterns depend on known scenes, where objects move in predefined ways. It is highly desirable to automatically construct object motion patterns which reflect the knowledge of the scene. In this paper, we present a system for automatically learning motion patterns for anomaly detection and behavior prediction based on a proposed algorithm for robustly tracking multiple objects. In the tracking algorithm, foreground pixels are clustered using a fast accurate fuzzy K-means algorithm. Growing and prediction of the cluster centroids of foreground pixels ensure that each cluster centroid is associated with a moving object in the scene. In the algorithm for learning motion patterns, trajectories are clustered hierarchically using spatial and temporal information and then each motion pattern is represented with a chain of Gaussian distributions. Based on the learned statistical motion patterns, statistical methods are used to detect anomalies and predict behaviors. Our system is tested using image sequences acquired, respectively, from a crowded real traffic scene and a model traffic scene. Experimental results show the robustness of the tracking algorithm, the efficiency of the algorithm for learning motion patterns, and the encouraging performance of algorithms for anomaly detection and behavior prediction.

  10. Grouping and trajectory storage in multiple object tracking: impairments due to common item motions.

    PubMed

    Suganuma, Mutsumi; Yokosawa, Kazuhiko

    2006-01-01

    In our natural viewing, we notice that objects change their locations across space and time. However, there has been relatively little consideration of the role of motion information in the construction and maintenance of object representations. We investigated this question in the context of the multiple object tracking (MOT) paradigm, wherein observers must keep track of target objects as they move randomly amid featurally identical distractors. In three experiments, we observed impairments in tracking ability when the motions of the target and distractor items shared particular properties. Specifically, we observed impairments when the target and distractor items were in a chasing relationship or moved in a uniform direction. Surprisingly, tracking ability was impaired by these manipulations even when observers failed to notice them. Our results suggest that differentiable trajectory information is an important factor in successful performance of MOT tasks. More generally, these results suggest that various types of common motion can serve as cues to form more global object representations even in the absence of other grouping cues.

  11. MO-FG-BRD-00: Real-Time Imaging and Tracking Techniques for Intrafractional Motion Management

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    2015-06-15

    Intrafraction target motion is a prominent complicating factor in the accurate targeting of radiation within the body. Methods compensating for target motion during treatment, such as gating and dynamic tumor tracking, depend on the delineation of target location as a function of time during delivery. A variety of techniques for target localization have been explored and are under active development; these include beam-level imaging of radio-opaque fiducials, fiducial-less tracking of anatomical landmarks, tracking of electromagnetic transponders, optical imaging of correlated surrogates, and volumetric imaging within treatment delivery. The Joint Imaging and Therapy Symposium will provide an overview of the techniquesmore » for real-time imaging and tracking, with special focus on emerging modes of implementation across different modalities. In particular, the symposium will explore developments in 1) Beam-level kilovoltage X-ray imaging techniques, 2) EPID-based megavoltage X-ray tracking, 3) Dynamic tracking using electromagnetic transponders, and 4) MRI-based soft-tissue tracking during radiation delivery. Learning Objectives: Understand the fundamentals of real-time imaging and tracking techniques Learn about emerging techniques in the field of real-time tracking Distinguish between the advantages and disadvantages of different tracking modalities Understand the role of real-time tracking techniques within the clinical delivery work-flow.« less

  12. High resolution imaging of a subsonic projectile using automated mirrors with large aperture

    NASA Astrophysics Data System (ADS)

    Tateno, Y.; Ishii, M.; Oku, H.

    2017-02-01

    Visual tracking of high-speed projectiles is required for studying the aerodynamics around the objects. One solution to this problem is a tracking method based on the so-called 1 ms Auto Pan-Tilt (1ms-APT) system that we proposed in previous work, which consists of rotational mirrors and a high-speed image processing system. However, the images obtained with that system did not have high enough resolution to realize detailed measurement of the projectiles because of the size of the mirrors. In this study, we propose a new system consisting of enlarged mirrors for tracking a high-speed projectiles so as to achieve higher-resolution imaging, and we confirmed the effectiveness of the system via an experiment in which a projectile flying at subsonic speed tracked.

  13. Sensor Spatial Distortion, Visual Latency, and Update Rate Effects on 3D Tracking in Virtual Environments

    NASA Technical Reports Server (NTRS)

    Ellis, S. R.; Adelstein, B. D.; Baumeler, S.; Jense, G. J.; Jacoby, R. H.; Trejo, Leonard (Technical Monitor)

    1998-01-01

    Several common defects that we have sought to minimize in immersing virtual environments are: static sensor spatial distortion, visual latency, and low update rates. Human performance within our environments during large amplitude 3D tracking was assessed by objective and subjective methods in the presence and absence of these defects. Results show that 1) removal of our relatively small spatial sensor distortion had minor effects on the tracking activity, 2) an Adapted Cooper-Harper controllability scale proved the most sensitive subjective indicator of the degradation of dynamic fidelity caused by increasing latency and decreasing frame rates, and 3) performance, as measured by normalized RMS tracking error or subjective impressions, was more markedly influenced by changing visual latency than by update rate.

  14. Improved relocatable over-the-horizon radar detection and tracking using the maximum likelihood adaptive neural system algorithm

    NASA Astrophysics Data System (ADS)

    Perlovsky, Leonid I.; Webb, Virgil H.; Bradley, Scott R.; Hansen, Christopher A.

    1998-07-01

    An advanced detection and tracking system is being developed for the U.S. Navy's Relocatable Over-the-Horizon Radar (ROTHR) to provide improved tracking performance against small aircraft typically used in drug-smuggling activities. The development is based on the Maximum Likelihood Adaptive Neural System (MLANS), a model-based neural network that combines advantages of neural network and model-based algorithmic approaches. The objective of the MLANS tracker development effort is to address user requirements for increased detection and tracking capability in clutter and improved track position, heading, and speed accuracy. The MLANS tracker is expected to outperform other approaches to detection and tracking for the following reasons. It incorporates adaptive internal models of target return signals, target tracks and maneuvers, and clutter signals, which leads to concurrent clutter suppression, detection, and tracking (track-before-detect). It is not combinatorial and thus does not require any thresholding or peak picking and can track in low signal-to-noise conditions. It incorporates superresolution spectrum estimation techniques exceeding the performance of conventional maximum likelihood and maximum entropy methods. The unique spectrum estimation method is based on the Einsteinian interpretation of the ROTHR received energy spectrum as a probability density of signal frequency. The MLANS neural architecture and learning mechanism are founded on spectrum models and maximization of the "Einsteinian" likelihood, allowing knowledge of the physical behavior of both targets and clutter to be injected into the tracker algorithms. The paper describes the addressed requirements and expected improvements, theoretical foundations, engineering methodology, and results of the development effort to date.

  15. Nonlinear Motion Tracking by Deep Learning Architecture

    NASA Astrophysics Data System (ADS)

    Verma, Arnav; Samaiya, Devesh; Gupta, Karunesh K.

    2018-03-01

    In the world of Artificial Intelligence, object motion tracking is one of the major problems. The extensive research is being carried out to track people in crowd. This paper presents a unique technique for nonlinear motion tracking in the absence of prior knowledge of nature of nonlinear path that the object being tracked may follow. We achieve this by first obtaining the centroid of the object and then using the centroid as the current example for a recurrent neural network trained using real-time recurrent learning. We have tweaked the standard algorithm slightly and have accumulated the gradient for few previous iterations instead of using just the current iteration as is the norm. We show that for a single object, such a recurrent neural network is highly capable of approximating the nonlinearity of its path.

  16. Developmental Profiles for Multiple Object Tracking and Spatial Memory: Typically Developing Preschoolers and People with Williams Syndrome

    ERIC Educational Resources Information Center

    O'Hearn, Kirsten; Hoffman, James E.; Landau, Barbara

    2010-01-01

    The ability to track moving objects, a crucial skill for mature performance on everyday spatial tasks, has been hypothesized to require a specialized mechanism that may be available in infancy (i.e. indexes). Consistent with the idea of specialization, our previous work showed that object tracking was more impaired than a matched spatial memory…

  17. Assessing Multiple Object Tracking in Young Children Using a Game

    ERIC Educational Resources Information Center

    Ryokai, Kimiko; Farzin, Faraz; Kaltman, Eric; Niemeyer, Greg

    2013-01-01

    Visual tracking of multiple objects in a complex scene is a critical survival skill. When we attempt to safely cross a busy street, follow a ball's position during a sporting event, or monitor children in a busy playground, we rely on our brain's capacity to selectively attend to and track the position of specific objects in a dynamic scene. This…

  18. A Novel Feature-Tracking Echocardiographic Method for the Quantitation of Regional Myocardial Function

    PubMed Central

    Pirat, Bahar; Khoury, Dirar S.; Hartley, Craig J.; Tiller, Les; Rao, Liyun; Schulz, Daryl G.; Nagueh, Sherif F.; Zoghbi, William A.

    2012-01-01

    Objectives The aim of this study was to validate a novel, angle-independent, feature-tracking method for the echocardiographic quantitation of regional function. Background A new echocardiographic method, Velocity Vector Imaging (VVI) (syngo Velocity Vector Imaging technology, Siemens Medical Solutions, Ultrasound Division, Mountain View, California), has been introduced, based on feature tracking—incorporating speckle and endocardial border tracking, that allows the quantitation of endocardial strain, strain rate (SR), and velocity. Methods Seven dogs were studied during baseline, and various interventions causing alterations in regional function: dobutamine, 5-min coronary occlusion with reperfusion up to 1 h, followed by dobutamine and esmolol infusions. Echocardiographic images were acquired from short- and long-axis views of the left ventricle. Segment-length sonomicrometry crystals were used as the reference method. Results Changes in systolic strain in ischemic segments were tracked well with VVI during the different states of regional function. There was a good correlation between circumferential and longitudinal systolic strain by VVI and sonomicrometry (r = 0.88 and r = 0.83, respectively, p < 0.001). Strain measurements in the nonischemic basal segments also demonstrated a significant correlation between the 2 methods (r = 0.65, p < 0.001). Similarly, a significant relation was observed for circumferential and longitudinal SR between the 2 methods (r = 0.94, p < 0.001 and r = 0.90, p < 0.001, respectively). The endocardial velocity relation to changes in strain by sonomicrometry was weaker owing to significant cardiac translation. Conclusions Velocity Vector Imaging, a new feature-tracking method, can accurately assess regional myocardial function at the endocardial level and is a promising clinical tool for the simultaneous quantification of regional and global myocardial function. PMID:18261685

  19. Space Object Query Tool

    NASA Technical Reports Server (NTRS)

    Phillips, Veronica J.

    2017-01-01

    STI is for a fact sheet on the Space Object Query Tool being created by the MDC. When planning launches, NASA must first factor in the tens of thousands of objects already in orbit around the Earth. The number of human-made objects, including nonfunctional spacecraft, abandoned launch vehicle stages, mission-related debris and fragmentation debris orbiting Earth has grown steadily since Sputnik 1 was launched in 1957. Currently, the U.S. Department of Defenses Joint Space Operations Center, or JSpOC, tracks over 15,000 distinct objects and provides data for more than 40,000 objects via its Space-Track program, found at space-track.org.

  20. Motion-Blur-Free High-Speed Video Shooting Using a Resonant Mirror

    PubMed Central

    Inoue, Michiaki; Gu, Qingyi; Takaki, Takeshi; Ishii, Idaku; Tajima, Kenji

    2017-01-01

    This study proposes a novel concept of actuator-driven frame-by-frame intermittent tracking for motion-blur-free video shooting of fast-moving objects. The camera frame and shutter timings are controlled for motion blur reduction in synchronization with a free-vibration-type actuator vibrating with a large amplitude at hundreds of hertz so that motion blur can be significantly reduced in free-viewpoint high-frame-rate video shooting for fast-moving objects by deriving the maximum performance of the actuator. We develop a prototype of a motion-blur-free video shooting system by implementing our frame-by-frame intermittent tracking algorithm on a high-speed video camera system with a resonant mirror vibrating at 750 Hz. It can capture 1024 × 1024 images of fast-moving objects at 750 fps with an exposure time of 0.33 ms without motion blur. Several experimental results for fast-moving objects verify that our proposed method can reduce image degradation from motion blur without decreasing the camera exposure time. PMID:29109385

  1. Sustained multifocal attentional enhancement of stimulus processing in early visual areas predicts tracking performance.

    PubMed

    Störmer, Viola S; Winther, Gesche N; Li, Shu-Chen; Andersen, Søren K

    2013-03-20

    Keeping track of multiple moving objects is an essential ability of visual perception. However, the mechanisms underlying this ability are not well understood. We instructed human observers to track five or seven independent randomly moving target objects amid identical nontargets and recorded steady-state visual evoked potentials (SSVEPs) elicited by these stimuli. Visual processing of moving targets, as assessed by SSVEP amplitudes, was continuously facilitated relative to the processing of identical but irrelevant nontargets. The cortical sources of this enhancement were located to areas including early visual cortex V1-V3 and motion-sensitive area MT, suggesting that the sustained multifocal attentional enhancement during multiple object tracking already operates at hierarchically early stages of visual processing. Consistent with this interpretation, the magnitude of attentional facilitation during tracking in a single trial predicted the speed of target identification at the end of the trial. Together, these findings demonstrate that attention can flexibly and dynamically facilitate the processing of multiple independent object locations in early visual areas and thereby allow for tracking of these objects.

  2. Unsupervised markerless 3-DOF motion tracking in real time using a single low-budget camera.

    PubMed

    Quesada, Luis; León, Alejandro J

    2012-10-01

    Motion tracking is a critical task in many computer vision applications. Existing motion tracking techniques require either a great amount of knowledge on the target object or specific hardware. These requirements discourage the wide spread of commercial applications based on motion tracking. In this paper, we present a novel three degrees of freedom motion tracking system that needs no knowledge on the target object and that only requires a single low-budget camera that can be found installed in most computers and smartphones. Our system estimates, in real time, the three-dimensional position of a nonmodeled unmarked object that may be nonrigid, nonconvex, partially occluded, self-occluded, or motion blurred, given that it is opaque, evenly colored, enough contrasting with the background in each frame, and that it does not rotate. Our system is also able to determine the most relevant object to track in the screen. Our proposal does not impose additional constraints, therefore it allows a market-wide implementation of applications that require the estimation of the three position degrees of freedom of an object.

  3. Method for evaluating compatibility of commercial electromagnetic (EM) microsensor tracking systems with surgical and imaging tables

    NASA Astrophysics Data System (ADS)

    Nafis, Christopher; Jensen, Vern; von Jako, Ron

    2008-03-01

    Electromagnetic (EM) tracking systems have been successfully used for Surgical Navigation in ENT, cranial, and spine applications for several years. Catheter sized micro EM sensors have also been used in tightly controlled cardiac mapping and pulmonary applications. EM systems have the benefit over optical navigation systems of not requiring a line-of-sight between devices. Ferrous metals or conductive materials that are transient within the EM working volume may impact tracking performance. Effective methods for detecting and reporting EM field distortions are generally well known. Distortion compensation can be achieved for objects that have a static spatial relationship to a tracking sensor. New commercially available micro EM tracking systems offer opportunities for expanded image-guided navigation procedures. It is important to know and understand how well these systems perform with different surgical tables and ancillary equipment. By their design and intended use, micro EM sensors will be located at the distal tip of tracked devices and therefore be in closer proximity to the tables. Our goal was to define a simple and portable process that could be used to estimate the EM tracker accuracy, and to vet a large number of popular general surgery and imaging tables that are used in the United States and abroad.

  4. Target tracking and surveillance by fusing stereo and RFID information

    NASA Astrophysics Data System (ADS)

    Raza, Rana H.; Stockman, George C.

    2012-06-01

    Ensuring security in high risk areas such as an airport is an important but complex problem. Effectively tracking personnel, containers, and machines is a crucial task. Moreover, security and safety require understanding the interaction of persons and objects. Computer vision (CV) has been a classic tool; however, variable lighting, imaging, and random occlusions present difficulties for real-time surveillance, resulting in erroneous object detection and trajectories. Determining object ID via CV at any instance of time in a crowded area is computationally prohibitive, yet the trajectories of personnel and objects should be known in real time. Radio Frequency Identification (RFID) can be used to reliably identify target objects and can even locate targets at coarse spatial resolution, while CV provides fuzzy features for target ID at finer resolution. Our research demonstrates benefits obtained when most objects are "cooperative" by being RFID tagged. Fusion provides a method to simplify the correspondence problem in 3D space. A surveillance system can query for unique object ID as well as tag ID information, such as target height, texture, shape and color, which can greatly enhance scene analysis. We extend geometry-based tracking so that intermittent information on ID and location can be used in determining a set of trajectories of N targets over T time steps. We show that partial-targetinformation obtained through RFID can reduce computation time (by 99.9% in some cases) and also increase the likelihood of producing correct trajectories. We conclude that real-time decision-making should be possible if the surveillance system can integrate information effectively between the sensor level and activity understanding level.

  5. MobileFusion: real-time volumetric surface reconstruction and dense tracking on mobile phones.

    PubMed

    Ondrúška, Peter; Kohli, Pushmeet; Izadi, Shahram

    2015-11-01

    We present the first pipeline for real-time volumetric surface reconstruction and dense 6DoF camera tracking running purely on standard, off-the-shelf mobile phones. Using only the embedded RGB camera, our system allows users to scan objects of varying shape, size, and appearance in seconds, with real-time feedback during the capture process. Unlike existing state of the art methods, which produce only point-based 3D models on the phone, or require cloud-based processing, our hybrid GPU/CPU pipeline is unique in that it creates a connected 3D surface model directly on the device at 25Hz. In each frame, we perform dense 6DoF tracking, which continuously registers the RGB input to the incrementally built 3D model, minimizing a noise aware photoconsistency error metric. This is followed by efficient key-frame selection, and dense per-frame stereo matching. These depth maps are fused volumetrically using a method akin to KinectFusion, producing compelling surface models. For each frame, the implicit surface is extracted for live user feedback and pose estimation. We demonstrate scans of a variety of objects, and compare to a Kinect-based baseline, showing on average ∼ 1.5cm error. We qualitatively compare to a state of the art point-based mobile phone method, demonstrating an order of magnitude faster scanning times, and fully connected surface models.

  6. Silhouettes - An automated three-dimensional plume visualization and tracking system for environmental monitoring

    NASA Technical Reports Server (NTRS)

    Cambridge, Vivien J.; Magee, Ronald G.

    1993-01-01

    The method of silhouettes proceeds from the premise that the 3D location and shape of an arbitrary object can be approximated via the cross section of a series of conical volumes whose focal points are arranged at sites surrounding the object; the projection of each conical volume onto a picture plane at each focal point is identical to a projection of the outline of the object onto that picture plane. Attention is presently given to the use of the silhouettes method for gas plume dispersion monitoring through the 3D reconstruction of plumes from imagery acquired at strategically located stations in the plumes' path.

  7. Multi-object detection and tracking technology based on hexagonal opto-electronic detector

    NASA Astrophysics Data System (ADS)

    Song, Yong; Hao, Qun; Li, Xiang

    2008-02-01

    A novel multi-object detection and tracking technology based on hexagonal opto-electronic detector is proposed, in which (1) a new hexagonal detector, which is composed of 6 linear CCDs, has been firstly developed to achieve the field of view of 360 degree, (2) to achieve the detection and tracking of multi-object with high speed, the object recognition criterions of Object Signal Width Criterion (OSWC) and Horizontal Scale Ratio Criterion (HSRC) are proposed. In this paper, Simulated Experiments have been carried out to verify the validity of the proposed technology, which show that the detection and tracking of multi-object can be achieved with high speed by using the proposed hexagonal detector and the criterions of OSWC and HSRC, indicating that the technology offers significant advantages in Photo-electric Detection, Computer Vision, Virtual Reality, Augment Reality, etc.

  8. Comparison of Two Kinds of Endurance Training Programs on the Effects of the Ability to Recover in Amateur Soccer Players

    PubMed Central

    Rogan, Slavko

    2015-01-01

    Background: High intensity intermittent aerobic exercise is an elementary endurance training exercise to build soccer endurance. Many studies exist with professional soccer players. But limited research has been conducted with amateur soccer players. Objectives: The aim of this study was to compare and assess the effects of the shuttle-run method and the Hoff-track method on the ability to recover in amateur soccer players within three weeks. Patients and Methods: Two amateur soccer teams were randomly assigned to shuttle-run group (n = 24; SRG) (SRG: shuttle-run group) or Hoff-track group (n = 18; HTG) (HTG: hoff-track group). They performed 2 times/week over three weeks their program. SRG performed a 20 m high speed shuttle-run until exhaustion and HTG covered at their highest speed level an obstacle track. Before and after training the yo-yo intermittent recovery test level 2 (YYIRTL2) was conducted. Results: Significant differences were observed within (P < 0.05) and between the groups (P = 0.06; ES = 0.50) in distance covering during YYIRTL2. Conclusions: Both training methods seem to improve the ability to recover in amateur soccer players within a short time period during the competition season. PMID:26448831

  9. Reducing the complexity of the software design process with object-oriented design

    NASA Technical Reports Server (NTRS)

    Schuler, M. P.

    1991-01-01

    Designing software is a complex process. How object-oriented design (OOD), coupled with formalized documentation and tailored object diagraming techniques, can reduce the complexity of the software design process is described and illustrated. The described OOD methodology uses a hierarchical decomposition approach in which parent objects are decomposed into layers of lower level child objects. A method of tracking the assignment of requirements to design components is also included. Increases in the reusability, portability, and maintainability of the resulting products are also discussed. This method was built on a combination of existing technology, teaching experience, consulting experience, and feedback from design method users. The discussed concepts are applicable to hierarchal OOD processes in general. Emphasis is placed on improving the design process by documenting the details of the procedures involved and incorporating improvements into those procedures as they are developed.

  10. Image-based tracking system for vibration measurement of a rotating object using a laser scanning vibrometer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Dongkyu, E-mail: akein@gist.ac.kr; Khalil, Hossam; Jo, Youngjoon

    2016-06-28

    An image-based tracking system using laser scanning vibrometer is developed for vibration measurement of a rotating object. The proposed system unlike a conventional one can be used where the position or velocity sensor such as an encoder cannot be attached to an object. An image processing algorithm is introduced to detect a landmark and laser beam based on their colors. Then, through using feedback control system, the laser beam can track a rotating object.

  11. Simultaneous localization and calibration for electromagnetic tracking systems.

    PubMed

    Sadjadi, Hossein; Hashtrudi-Zaad, Keyvan; Fichtinger, Gabor

    2016-06-01

    In clinical environments, field distortion can cause significant electromagnetic tracking errors. Therefore, dynamic calibration of electromagnetic tracking systems is essential to compensate for measurement errors. It is proposed to integrate the motion model of the tracked instrument with redundant EM sensor observations and to apply a simultaneous localization and mapping algorithm in order to accurately estimate the pose of the instrument and create a map of the field distortion in real-time. Experiments were conducted in the presence of ferromagnetic and electrically-conductive field distorting objects and results compared with those of a conventional sensor fusion approach. The proposed method reduced the tracking error from 3.94±1.61 mm to 1.82±0.62 mm in the presence of steel, and from 0.31±0.22 mm to 0.11±0.14 mm in the presence of aluminum. With reduced tracking error and independence from external tracking devices or pre-operative calibrations, the approach is promising for reliable EM navigation in various clinical procedures. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  12. Visual object tracking by correlation filters and online learning

    NASA Astrophysics Data System (ADS)

    Zhang, Xin; Xia, Gui-Song; Lu, Qikai; Shen, Weiming; Zhang, Liangpei

    2018-06-01

    Due to the complexity of background scenarios and the variation of target appearance, it is difficult to achieve high accuracy and fast speed for object tracking. Currently, correlation filters based trackers (CFTs) show promising performance in object tracking. The CFTs estimate the target's position by correlation filters with different kinds of features. However, most of CFTs can hardly re-detect the target in the case of long-term tracking drifts. In this paper, a feature integration object tracker named correlation filters and online learning (CFOL) is proposed. CFOL estimates the target's position and its corresponding correlation score using the same discriminative correlation filter with multi-features. To reduce tracking drifts, a new sampling and updating strategy for online learning is proposed. Experiments conducted on 51 image sequences demonstrate that the proposed algorithm is superior to the state-of-the-art approaches.

  13. Passive RFID Rotation Dimension Reduction via Aggregation

    NASA Astrophysics Data System (ADS)

    Matthews, Eric

    Radio Frequency IDentification (RFID) has applications in object identification, position, and orientation tracking. RFID technology can be applied in hospitals for patient and equipment tracking, stores and warehouses for product tracking, robots for self-localisation, tracking hazardous materials, or locating any other desired object. Efficient and accurate algorithms that perform localisation are required to extract meaningful data beyond simple identification. A Received Signal Strength Indicator (RSSI) is the strength of a received radio frequency signal used to localise passive and active RFID tags. Many factors affect RSSI such as reflections, tag rotation in 3D space, and obstacles blocking line-of-sight. LANDMARC is a statistical method for estimating tag location based on a target tag's similarity to surrounding reference tags. LANDMARC does not take into account the rotation of the target tag. By either aggregating multiple reference tag positions at various rotations, or by determining a rotation value for a newly read tag, we can perform an expected value calculation based on a comparison to the k-most similar training samples via an algorithm called K-Nearest Neighbours (KNN) more accurately. By choosing the average as the aggregation function, we improve the relative accuracy of single-rotation LANDMARC localisation by 10%, and any-rotation localisation by 20%.

  14. A long-term tropical mesoscale convective systems dataset based on a novel objective automatic tracking algorithm

    NASA Astrophysics Data System (ADS)

    Huang, Xiaomeng; Hu, Chenqi; Huang, Xing; Chu, Yang; Tseng, Yu-heng; Zhang, Guang Jun; Lin, Yanluan

    2018-01-01

    Mesoscale convective systems (MCSs) are important components of tropical weather systems and the climate system. Long-term data of MCS are of great significance in weather and climate research. Using long-term (1985-2008) global satellite infrared (IR) data, we developed a novel objective automatic tracking algorithm, which combines a Kalman filter (KF) with the conventional area-overlapping method, to generate a comprehensive MCS dataset. The new algorithm can effectively track small and fast-moving MCSs and thus obtain more realistic and complete tracking results than previous studies. A few examples are provided to illustrate the potential application of the dataset with a focus on the diurnal variations of MCSs over land and ocean regions. We find that the MCSs occurring over land tend to initiate in the afternoon with greater intensity, but the oceanic MCSs are more likely to initiate in the early morning with weaker intensity. A double peak in the maximum spatial coverage is noted over the western Pacific, especially over the southwestern Pacific during the austral summer. Oceanic MCSs also persist for approximately 1 h longer than their continental counterparts.

  15. Designing and Developing Web-Based Administrative Tools for Program Management

    NASA Technical Reports Server (NTRS)

    Gutensohn, Michael

    2017-01-01

    The task assigned for this internship was to develop a new tool for tracking projects, their subsystems, the leads, backups, and other employees assigned to them, as well as all the relevant information related to the employee (WBS (time charge) codes, time distribution, certifications, and assignments). Currently, this data is tracked manually using a number of different spreadsheets and other tools simultaneously by a number of different people; some of these documents are then merged into one large document. This often leads to inconsistencies and loss in data due to human error. By simplifying the process of tracking this data and aggregating it into a single tool, it is possible to significantly decrease the potential for human error and time spent collecting and checking this information. II. Objective The main objective of this internship is to develop a web-based tool using Ruby on Rails to serve as a method of easily tracking projects, subsystems, and points of contact, along with employees, their assignments, time distribution, certifications, and contact information. Additionally, this tool must be capable of generating a number of different reports based on the data collected. It was important that this tool deliver all of this information using a readable and intuitive interface.

  16. APPLICATION OF EYE TRACKING FOR MEASUREMENT AND EVALUATION IN HUMAN FACTORS STUDIES IN CONTROL ROOM MODERNIZATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kovesdi, C.; Spielman, Z.; LeBlanc, K.

    An important element of human factors engineering (HFE) pertains to measurement and evaluation (M&E). The role of HFE-M&E should be integrated throughout the entire control room modernization (CRM) process and be used for human-system performance evaluation and diagnostic purposes with resolving potential human engineering deficiencies (HEDs) and other human machine interface (HMI) design issues. NUREG-0711 describes how HFE in CRM should employ a hierarchical set of measures, particularly during integrated system validation (ISV), including plant performance, personnel task performance, situation awareness, cognitive workload, and anthropometric/ physiological factors. Historically, subjective measures have been primarily used since they are easier to collectmore » and do not require specialized equipment. However, there are pitfalls with relying solely on subjective measures in M&E such that negatively impact reliability, sensitivity, and objectivity. As part of comprehensively capturing a diverse set of measures that strengthen findings and inferences made of the benefits from emerging technologies like advanced displays, this paper discusses the value of using eye tracking as an objective method that can be used in M&E. A brief description of eye tracking technology and relevant eye tracking measures is provided. Additionally, technical considerations and the unique challenges with using eye tracking in full-scaled simulations are addressed. Finally, this paper shares preliminary findings regarding the use of a wearable eye tracking system in a full-scale simulator study. These findings should help guide future full-scale simulator studies using eye tracking as a methodology to evaluate human-system performance.« less

  17. Pedestrian Detection and Tracking from Low-Resolution Unmanned Aerial Vehicle Thermal Imagery

    PubMed Central

    Ma, Yalong; Wu, Xinkai; Yu, Guizhen; Xu, Yongzheng; Wang, Yunpeng

    2016-01-01

    Driven by the prominent thermal signature of humans and following the growing availability of unmanned aerial vehicles (UAVs), more and more research efforts have been focusing on the detection and tracking of pedestrians using thermal infrared images recorded from UAVs. However, pedestrian detection and tracking from the thermal images obtained from UAVs pose many challenges due to the low-resolution of imagery, platform motion, image instability and the relatively small size of the objects. This research tackles these challenges by proposing a pedestrian detection and tracking system. A two-stage blob-based approach is first developed for pedestrian detection. This approach first extracts pedestrian blobs using the regional gradient feature and geometric constraints filtering and then classifies the detected blobs by using a linear Support Vector Machine (SVM) with a hybrid descriptor, which sophisticatedly combines Histogram of Oriented Gradient (HOG) and Discrete Cosine Transform (DCT) features in order to achieve accurate detection. This research further proposes an approach for pedestrian tracking. This approach employs the feature tracker with the update of detected pedestrian location to track pedestrian objects from the registered videos and extracts the motion trajectory data. The proposed detection and tracking approaches have been evaluated by multiple different datasets, and the results illustrate the effectiveness of the proposed methods. This research is expected to significantly benefit many transportation applications, such as the multimodal traffic performance measure, pedestrian behavior study and pedestrian-vehicle crash analysis. Future work will focus on using fused thermal and visual images to further improve the detection efficiency and effectiveness. PMID:27023564

  18. Pedestrian Detection and Tracking from Low-Resolution Unmanned Aerial Vehicle Thermal Imagery.

    PubMed

    Ma, Yalong; Wu, Xinkai; Yu, Guizhen; Xu, Yongzheng; Wang, Yunpeng

    2016-03-26

    Driven by the prominent thermal signature of humans and following the growing availability of unmanned aerial vehicles (UAVs), more and more research efforts have been focusing on the detection and tracking of pedestrians using thermal infrared images recorded from UAVs. However, pedestrian detection and tracking from the thermal images obtained from UAVs pose many challenges due to the low-resolution of imagery, platform motion, image instability and the relatively small size of the objects. This research tackles these challenges by proposing a pedestrian detection and tracking system. A two-stage blob-based approach is first developed for pedestrian detection. This approach first extracts pedestrian blobs using the regional gradient feature and geometric constraints filtering and then classifies the detected blobs by using a linear Support Vector Machine (SVM) with a hybrid descriptor, which sophisticatedly combines Histogram of Oriented Gradient (HOG) and Discrete Cosine Transform (DCT) features in order to achieve accurate detection. This research further proposes an approach for pedestrian tracking. This approach employs the feature tracker with the update of detected pedestrian location to track pedestrian objects from the registered videos and extracts the motion trajectory data. The proposed detection and tracking approaches have been evaluated by multiple different datasets, and the results illustrate the effectiveness of the proposed methods. This research is expected to significantly benefit many transportation applications, such as the multimodal traffic performance measure, pedestrian behavior study and pedestrian-vehicle crash analysis. Future work will focus on using fused thermal and visual images to further improve the detection efficiency and effectiveness.

  19. A-Track: Detecting Moving Objects in FITS images

    NASA Astrophysics Data System (ADS)

    Atay, T.; Kaplan, M.; Kilic, Y.; Karapinar, N.

    2017-04-01

    A-Track is a fast, open-source, cross-platform pipeline for detecting moving objects (asteroids and comets) in sequential telescope images in FITS format. The moving objects are detected using a modified line detection algorithm.

  20. Like a rolling stone: naturalistic visual kinematics facilitate tracking eye movements.

    PubMed

    Souto, David; Kerzel, Dirk

    2013-02-06

    Newtonian physics constrains object kinematics in the real world. We asked whether eye movements towards tracked objects depend on their compliance with those constraints. In particular, the force of gravity constrains round objects to roll on the ground with a particular rotational and translational motion. We measured tracking eye movements towards rolling objects. We found that objects with rotational and translational motion that was congruent with an object rolling on the ground elicited faster tracking eye movements during pursuit initiation than incongruent stimuli. Relative to a condition without rotational component, we compared objects with this motion with a condition in which there was no rotational component, we essentially obtained benefits of congruence, and, to a lesser extent, costs from incongruence. Anticipatory pursuit responses showed no congruence effect, suggesting that the effect is based on visually-driven predictions, not on velocity storage. We suggest that the eye movement system incorporates information about object kinematics acquired by a lifetime of experience with visual stimuli obeying the laws of Newtonian physics.

  1. Electrical localization of weakly electric fish using neural networks

    NASA Astrophysics Data System (ADS)

    Kiar, Greg; Mamatjan, Yasin; Jun, James; Maler, Len; Adler, Andy

    2013-04-01

    Weakly Electric Fish (WEF) emit an Electric Organ Discharge (EOD), which travels through the surrounding water and enables WEF to locate nearby objects or to communicate between individuals. Previous tracking of WEF has been conducted using infrared (IR) cameras and subsequent image processing. The limitation of visual tracking is its relatively low frame-rate and lack of reliability when visually obstructed. Thus, there is a need for reliable monitoring of WEF location and behaviour. The objective of this study is to provide an alternative and non-invasive means of tracking WEF in real-time using neural networks (NN). This study was carried out in three stages. First stage was to recreate voltage distributions by simulating the WEF using EIDORS and finite element method (FEM) modelling. Second stage was to validate the model using phantom data acquired from an Electrical Impedance Tomography (EIT) based system, including a phantom fish and tank. In the third stage, the measurement data was acquired using a restrained WEF within a tank. We trained the NN based on the voltage distributions for different locations of the WEF. With networks trained on the acquired data, we tracked new locations of the WEF and observed the movement patterns. The results showed a strong correlation between expected and calculated values of WEF position in one dimension, yielding a high spatial resolution within 1 cm and 10 times higher temporal resolution than IR cameras. Thus, the developed approach could be used as a practical method to non-invasively monitor the WEF in real-time.

  2. Chemical and biological tracers to determine groundwater flow in karstic aquifer, Yucatan Peninsula

    NASA Astrophysics Data System (ADS)

    Lenczewski, M.; Leal-Bautista, R. M.; McLain, J. E.

    2013-05-01

    Little is known about the extent of pollution in groundwater in the Yucatan Peninsula; however current population growth, both from international tourism and Mexican nationals increases the potential for wastewater release of a vast array of contaminants including personal care products, pharmaceuticals (Rx), and pathogenic microorganisms. Pathogens and Rx in groundwater can persist and can be particularly acute in this region where high permeability of the karst bedrock and the lack of top soil permit the rapid transport of contaminants into groundwater aquifers. The objective of this research is to develop and utilize novel biological and chemical source tracking methods to distinguish between different sources of anthropogenic pollution in degraded groundwater. Although several methods have been used successfully to track fecal contamination sources in small scale studies, little is known about their spatial limitations, as source tracking studies rarely include sample collection over a wide geographical area and with different sources of water. In addition, although source tracking methods to distinguish human from animal fecal contamination are widely available, this work has developed source tracking distinguish between separate human populations is highly unique. To achieve this objective, we collected water samples from a series of drinking wells, cenotes (sinkholes), wastewater treatment plants, and injection wells across the Yucatan Peninsula and examine potential source tracers within the collected water samples. The result suggests that groundwater sources impacted by tourist vs. local populations contain different chemical stressors. This work has developed a more detailed understanding of the presence and persistence of personal care products, pharmaceuticals, and fecal indicators in a karstic system; such understanding will be a vital component for the protection Mexican groundwater and human health. Quantification of different pollution sources within groundwater samples identified point sources of pollution, identify potential remediation strategies, and contribute to an improved understanding of the environmental impact of tourism and tourism-generated waste products on this groundwater-dependent ecosystem.

  3. Three dimensional reconstruction of therapeutic carbon ion beams in phantoms using single secondary ion tracks

    NASA Astrophysics Data System (ADS)

    Reinhart, Anna Merle; Spindeldreier, Claudia Katharina; Jakubek, Jan; Martišíková, Mária

    2017-06-01

    Carbon ion beam radiotherapy enables a very localised dose deposition. However, even small changes in the patient geometry or positioning errors can significantly distort the dose distribution. A live, non-invasive monitoring system of the beam delivery within the patient is therefore highly desirable, and could improve patient treatment. We present a novel three-dimensional method for imaging the beam in the irradiated object, exploiting the measured tracks of single secondary ions emerging under irradiation. The secondary particle tracks are detected with a TimePix stack—a set of parallel pixelated semiconductor detectors. We developed a three-dimensional reconstruction algorithm based on maximum likelihood expectation maximization. We demonstrate the applicability of the new method in the irradiation of a cylindrical PMMA phantom of human head size with a carbon ion pencil beam of {226} MeV u-1. The beam image in the phantom is reconstructed from a set of nine discrete detector positions between {-80}^\\circ and {50}^\\circ from the beam axis. Furthermore, we demonstrate the potential to visualize inhomogeneities by irradiating a PMMA phantom with an air gap as well as bone and adipose tissue surrogate inserts. We successfully reconstructed a three-dimensional image of the treatment beam in the phantom from single secondary ion tracks. The beam image corresponds well to the beam direction and energy. In addition, cylindrical inhomogeneities with a diameter of {2.85} cm and density differences down to {0.3} g cm-3 to the surrounding material are clearly visualized. This novel three-dimensional method to image a therapeutic carbon ion beam in the irradiated object does not interfere with the treatment and requires knowledge only of single secondary ion tracks. Even with detectors with only a small angular coverage, the three-dimensional reconstruction of the fragmentation points presented in this work was found to be feasible.

  4. Three dimensional reconstruction of therapeutic carbon ion beams in phantoms using single secondary ion tracks.

    PubMed

    Reinhart, Anna Merle; Spindeldreier, Claudia Katharina; Jakubek, Jan; Martišíková, Mária

    2017-06-21

    Carbon ion beam radiotherapy enables a very localised dose deposition. However, even small changes in the patient geometry or positioning errors can significantly distort the dose distribution. A live, non-invasive monitoring system of the beam delivery within the patient is therefore highly desirable, and could improve patient treatment. We present a novel three-dimensional method for imaging the beam in the irradiated object, exploiting the measured tracks of single secondary ions emerging under irradiation. The secondary particle tracks are detected with a TimePix stack-a set of parallel pixelated semiconductor detectors. We developed a three-dimensional reconstruction algorithm based on maximum likelihood expectation maximization. We demonstrate the applicability of the new method in the irradiation of a cylindrical PMMA phantom of human head size with a carbon ion pencil beam of [Formula: see text] MeV u -1 . The beam image in the phantom is reconstructed from a set of nine discrete detector positions between [Formula: see text] and [Formula: see text] from the beam axis. Furthermore, we demonstrate the potential to visualize inhomogeneities by irradiating a PMMA phantom with an air gap as well as bone and adipose tissue surrogate inserts. We successfully reconstructed a three-dimensional image of the treatment beam in the phantom from single secondary ion tracks. The beam image corresponds well to the beam direction and energy. In addition, cylindrical inhomogeneities with a diameter of [Formula: see text] cm and density differences down to [Formula: see text] g cm -3 to the surrounding material are clearly visualized. This novel three-dimensional method to image a therapeutic carbon ion beam in the irradiated object does not interfere with the treatment and requires knowledge only of single secondary ion tracks. Even with detectors with only a small angular coverage, the three-dimensional reconstruction of the fragmentation points presented in this work was found to be feasible.

  5. Autonomous Space Object Catalogue Construction and Upkeep Using Sensor Control Theory

    NASA Astrophysics Data System (ADS)

    Moretti, N.; Rutten, M.; Bessell, T.; Morreale, B.

    The capability to track objects in space is critical to safeguard domestic and international space assets. Infrequent measurement opportunities, complex dynamics and partial observability of orbital state makes the tracking of resident space objects nontrivial. It is not uncommon for human operators to intervene with space tracking systems, particularly in scheduling sensors. This paper details the development of a system that maintains a catalogue of geostationary objects through dynamically tasking sensors in real time by managing the uncertainty of object states. As the number of objects in space grows the potential for collision grows exponentially. Being able to provide accurate assessment to operators regarding costly collision avoidance manoeuvres is paramount; the accuracy of which is highly dependent on how object states are estimated. The system represents object state and uncertainty using particles and utilises a particle filter for state estimation. Particle filters capture the model and measurement uncertainty accurately, allowing for a more comprehensive representation of the state’s probability density function. Additionally, the number of objects in space is growing disproportionally to the number of sensors used to track them. Maintaining precise positions for all objects places large loads on sensors, limiting the time available to search for new objects or track high priority objects. Rather than precisely track all objects our system manages the uncertainty in orbital state for each object independently. The uncertainty is allowed to grow and sensor data is only requested when the uncertainty must be reduced. For example when object uncertainties overlap leading to data association issues or if the uncertainty grows to beyond a field of view. These control laws are formulated into a cost function, which is optimised in real time to task sensors. By controlling an optical telescope the system has been able to construct and maintain a catalogue of approximately 100 geostationary objects.

  6. Computational imaging of sperm locomotion.

    PubMed

    Daloglu, Mustafa Ugur; Ozcan, Aydogan

    2017-08-01

    Not only essential for scientific research, but also in the analysis of male fertility and for animal husbandry, sperm tracking and characterization techniques have been greatly benefiting from computational imaging. Digital image sensors, in combination with optical microscopy tools and powerful computers, have enabled the use of advanced detection and tracking algorithms that automatically map sperm trajectories and calculate various motility parameters across large data sets. Computational techniques are driving the field even further, facilitating the development of unconventional sperm imaging and tracking methods that do not rely on standard optical microscopes and objective lenses, which limit the field of view and volume of the semen sample that can be imaged. As an example, a holographic on-chip sperm imaging platform, only composed of a light-emitting diode and an opto-electronic image sensor, has emerged as a high-throughput, low-cost and portable alternative to lens-based traditional sperm imaging and tracking methods. In this approach, the sample is placed very close to the image sensor chip, which captures lensfree holograms generated by the interference of the background illumination with the light scattered from sperm cells. These holographic patterns are then digitally processed to extract both the amplitude and phase information of the spermatozoa, effectively replacing the microscope objective lens with computation. This platform has further enabled high-throughput 3D imaging of spermatozoa with submicron 3D positioning accuracy in large sample volumes, revealing various rare locomotion patterns. We believe that computational chip-scale sperm imaging and 3D tracking techniques will find numerous opportunities in both sperm related research and commercial applications. © The Authors 2017. Published by Oxford University Press on behalf of Society for the Study of Reproduction. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  7. Fast calibration of electromagnetically tracked oblique-viewing rigid endoscopes.

    PubMed

    Liu, Xinyang; Rice, Christina E; Shekhar, Raj

    2017-10-01

    The oblique-viewing (i.e., angled) rigid endoscope is a commonly used tool in conventional endoscopic surgeries. The relative rotation between its two moveable parts, the telescope and the camera head, creates a rotation offset between the actual and the projection of an object in the camera image. A calibration method tailored to compensate such offset is needed. We developed a fast calibration method for oblique-viewing rigid endoscopes suitable for clinical use. In contrast to prior approaches based on optical tracking, we used electromagnetic (EM) tracking as the external tracking hardware to improve compactness and practicality. Two EM sensors were mounted on the telescope and the camera head, respectively, with considerations to minimize EM tracking errors. Single-image calibration was incorporated into the method, and a sterilizable plate, laser-marked with the calibration pattern, was also developed. Furthermore, we proposed a general algorithm to estimate the rotation center in the camera image. Formulas for updating the camera matrix in terms of clockwise and counterclockwise rotations were also developed. The proposed calibration method was validated using a conventional [Formula: see text], 5-mm laparoscope. Freehand calibrations were performed using the proposed method, and the calibration time averaged 2 min and 8 s. The calibration accuracy was evaluated in a simulated clinical setting with several surgical tools present in the magnetic field of EM tracking. The root-mean-square re-projection error averaged 4.9 pixel (range 2.4-8.5 pixel, with image resolution of [Formula: see text] for rotation angles ranged from [Formula: see text] to [Formula: see text]. We developed a method for fast and accurate calibration of oblique-viewing rigid endoscopes. The method was also designed to be performed in the operating room and will therefore support clinical translation of many emerging endoscopic computer-assisted surgical systems.

  8. A mathematical model for computer image tracking.

    PubMed

    Legters, G R; Young, T Y

    1982-06-01

    A mathematical model using an operator formulation for a moving object in a sequence of images is presented. Time-varying translation and rotation operators are derived to describe the motion. A variational estimation algorithm is developed to track the dynamic parameters of the operators. The occlusion problem is alleviated by using a predictive Kalman filter to keep the tracking on course during severe occlusion. The tracking algorithm (variational estimation in conjunction with Kalman filter) is implemented to track moving objects with occasional occlusion in computer-simulated binary images.

  9. Improved GGIW-PHD filter for maneuvering non-ellipsoidal extended targets or group targets tracking based on sub-random matrices.

    PubMed

    Liang, Zhibing; Liu, Fuxian; Gao, Jiale

    2018-01-01

    For non-ellipsoidal extended targets and group targets tracking (NETT and NGTT), using an ellipsoid to approximate the target extension may not be accurate enough because of the lack of shape and orientation information. In consideration of this, we model a non-ellipsoidal extended target or target group as a combination of multiple ellipsoidal sub-objects, each represented by a random matrix. Based on these models, an improved gamma Gaussian inverse Wishart probability hypothesis density (GGIW-PHD) filter is proposed to estimate the measurement rates, kinematic states, and extension states of the sub-objects for each extended target or target group. For maneuvering NETT and NGTT, a multi-model (MM) approach based GGIW-PHD (MM-GGIW-PHD) filter is proposed. The common and the individual dynamics of the sub-objects belonging to the same extended target or target group are described by means of the combination between the overall maneuver model and the sub-object models. For the merging of updating components, an improved merging criterion and a new merging method are derived. A specific implementation of prediction partition with pseudo-likelihood method is presented. Two scenarios for non-maneuvering and maneuvering NETT and NGTT are simulated. The results demonstrate the effectiveness of the proposed algorithms.

  10. Improved GGIW-PHD filter for maneuvering non-ellipsoidal extended targets or group targets tracking based on sub-random matrices

    PubMed Central

    Liu, Fuxian; Gao, Jiale

    2018-01-01

    For non-ellipsoidal extended targets and group targets tracking (NETT and NGTT), using an ellipsoid to approximate the target extension may not be accurate enough because of the lack of shape and orientation information. In consideration of this, we model a non-ellipsoidal extended target or target group as a combination of multiple ellipsoidal sub-objects, each represented by a random matrix. Based on these models, an improved gamma Gaussian inverse Wishart probability hypothesis density (GGIW-PHD) filter is proposed to estimate the measurement rates, kinematic states, and extension states of the sub-objects for each extended target or target group. For maneuvering NETT and NGTT, a multi-model (MM) approach based GGIW-PHD (MM-GGIW-PHD) filter is proposed. The common and the individual dynamics of the sub-objects belonging to the same extended target or target group are described by means of the combination between the overall maneuver model and the sub-object models. For the merging of updating components, an improved merging criterion and a new merging method are derived. A specific implementation of prediction partition with pseudo-likelihood method is presented. Two scenarios for non-maneuvering and maneuvering NETT and NGTT are simulated. The results demonstrate the effectiveness of the proposed algorithms. PMID:29444144

  11. A Novel Video Tracking Method to Evaluate the Effect of Influenza Infection and Antiviral Treatment on Ferret Activity

    PubMed Central

    Oh, Ding Yuan; Barr, Ian G.; Hurt, Aeron C.

    2015-01-01

    Ferrets are the preferred animal model to assess influenza virus infection, virulence and transmission as they display similar clinical symptoms and pathogenesis to those of humans. Measures of disease severity in the ferret include weight loss, temperature rise, sneezing, viral shedding and reduced activity. To date, the only available method for activity measurement has been the assignment of an arbitrary score by a ‘blind’ observer based on pre-defined responsiveness scale. This manual scoring method is subjective and can be prone to bias. In this study, we described a novel video-tracking methodology for determining activity changes in a ferret model of influenza infection. This method eliminates the various limitations of manual scoring, which include the need for a sole ‘blind’ observer and the requirement to recognise the ‘normal’ activity of ferrets in order to assign relative activity scores. In ferrets infected with an A(H1N1)pdm09 virus, video-tracking was more sensitive than manual scoring in detecting ferret activity changes. Using this video-tracking method, oseltamivir treatment was found to ameliorate the effect of influenza infection on activity in ferret. Oseltamivir treatment of animals was associated with an improvement in clinical symptoms, including reduced inflammatory responses in the upper respiratory tract, lower body weight loss and a smaller rise in body temperature, despite there being no significant reduction in viral shedding. In summary, this novel video-tracking is an easy-to-use, objective and sensitive methodology for measuring ferret activity. PMID:25738900

  12. Object tracking using multiple camera video streams

    NASA Astrophysics Data System (ADS)

    Mehrubeoglu, Mehrube; Rojas, Diego; McLauchlan, Lifford

    2010-05-01

    Two synchronized cameras are utilized to obtain independent video streams to detect moving objects from two different viewing angles. The video frames are directly correlated in time. Moving objects in image frames from the two cameras are identified and tagged for tracking. One advantage of such a system involves overcoming effects of occlusions that could result in an object in partial or full view in one camera, when the same object is fully visible in another camera. Object registration is achieved by determining the location of common features in the moving object across simultaneous frames. Perspective differences are adjusted. Combining information from images from multiple cameras increases robustness of the tracking process. Motion tracking is achieved by determining anomalies caused by the objects' movement across frames in time in each and the combined video information. The path of each object is determined heuristically. Accuracy of detection is dependent on the speed of the object as well as variations in direction of motion. Fast cameras increase accuracy but limit the speed and complexity of the algorithm. Such an imaging system has applications in traffic analysis, surveillance and security, as well as object modeling from multi-view images. The system can easily be expanded by increasing the number of cameras such that there is an overlap between the scenes from at least two cameras in proximity. An object can then be tracked long distances or across multiple cameras continuously, applicable, for example, in wireless sensor networks for surveillance or navigation.

  13. Electrically tunable lens speeds up 3D orbital tracking

    PubMed Central

    Annibale, Paolo; Dvornikov, Alexander; Gratton, Enrico

    2015-01-01

    3D orbital particle tracking is a versatile and effective microscopy technique that allows following fast moving fluorescent objects within living cells and reconstructing complex 3D shapes using laser scanning microscopes. We demonstrated notable improvements in the range, speed and accuracy of 3D orbital particle tracking by replacing commonly used piezoelectric stages with Electrically Tunable Lens (ETL) that eliminates mechanical movement of objective lenses. This allowed tracking and reconstructing shape of structures extending 500 microns in the axial direction. Using the ETL, we tracked at high speed fluorescently labeled genomic loci within the nucleus of living cells with unprecedented temporal resolution of 8ms using a 1.42NA oil-immersion objective. The presented technology is cost effective and allows easy upgrade of scanning microscopes for fast 3D orbital tracking. PMID:26114037

  14. Incorporating Target Priorities in the Sensor Tasking Reward Function

    NASA Astrophysics Data System (ADS)

    Gehly, S.; Bennett, J.

    2016-09-01

    Orbital debris tracking poses many challenges, most fundamentally the need to track a large number of objects from a limited number of sensors. The use of information theoretic sensor allocation provides a means to efficiently collect data on the multitarget system. An additional need of the community is the ability to specify target priorities, driven both by user needs and environmental factors such as collision warnings. This research develops a method to incorporate target priorities in the sensor tasking reward function, allowing for several applications in different tasking modes such as catalog maintenance, calibration, and collision monitoring. A set of numerical studies is included to demonstrate the functionality of the method.

  15. H∞ output tracking control of uncertain and disturbed nonlinear systems based on neural network model

    NASA Astrophysics Data System (ADS)

    Li, Chengcheng; Li, Yuefeng; Wang, Guanglin

    2017-07-01

    The work presented in this paper seeks to address the tracking problem for uncertain continuous nonlinear systems with external disturbances. The objective is to obtain a model that uses a reference-based output feedback tracking control law. The control scheme is based on neural networks and a linear difference inclusion (LDI) model, and a PDC structure and H∞ performance criterion are used to attenuate external disturbances. The stability of the whole closed-loop model is investigated using the well-known quadratic Lyapunov function. The key principles of the proposed approach are as follows: neural networks are first used to approximate nonlinearities, to enable a nonlinear system to then be represented as a linearised LDI model. An LMI (linear matrix inequality) formula is obtained for uncertain and disturbed linear systems. This formula enables a solution to be obtained through an interior point optimisation method for some nonlinear output tracking control problems. Finally, simulations and comparisons are provided on two practical examples to illustrate the validity and effectiveness of the proposed method.

  16. Semi-Supervised Tensor-Based Graph Embedding Learning and Its Application to Visual Discriminant Tracking.

    PubMed

    Hu, Weiming; Gao, Jin; Xing, Junliang; Zhang, Chao; Maybank, Stephen

    2017-01-01

    An appearance model adaptable to changes in object appearance is critical in visual object tracking. In this paper, we treat an image patch as a two-order tensor which preserves the original image structure. We design two graphs for characterizing the intrinsic local geometrical structure of the tensor samples of the object and the background. Graph embedding is used to reduce the dimensions of the tensors while preserving the structure of the graphs. Then, a discriminant embedding space is constructed. We prove two propositions for finding the transformation matrices which are used to map the original tensor samples to the tensor-based graph embedding space. In order to encode more discriminant information in the embedding space, we propose a transfer-learning- based semi-supervised strategy to iteratively adjust the embedding space into which discriminative information obtained from earlier times is transferred. We apply the proposed semi-supervised tensor-based graph embedding learning algorithm to visual tracking. The new tracking algorithm captures an object's appearance characteristics during tracking and uses a particle filter to estimate the optimal object state. Experimental results on the CVPR 2013 benchmark dataset demonstrate the effectiveness of the proposed tracking algorithm.

  17. Multiple-Object Tracking in Children: The "Catch the Spies" Task

    ERIC Educational Resources Information Center

    Trick, L.M.; Jaspers-Fayer, F.; Sethi, N.

    2005-01-01

    Multiple-object tracking involves simultaneously tracking positions of a number of target-items as they move among distractors. The standard version of the task poses special challenges for children, demanding extended concentration and the ability to distinguish targets from identical-looking distractors, and may thus underestimate children's…

  18. TEMPORAL VARIABILITY OF ENTEROCOCCI SPECIES IN STREAMS IMPACTED BY CATTLE FECAL CONTAMINATION

    EPA Science Inventory

    Temporal variability in the gastrointestinal flora of animals impacting water resources with fecal material can be one of the factors producing low source identification rates when applying microbial source tracking (MST) methods. Our objective is to identify and compare the temp...

  19. Laser heterodyne surface profiler

    DOEpatents

    Sommargren, Gary E.

    1982-01-01

    A method and apparatus is disclosed for testing the deviation of the face of an object from a flat smooth surface using a beam of coherent light of two plane-polarized components, one of a frequency constantly greater than the other by a fixed amount to produce a difference frequency with a constant phase to be used as a reference. The beam also is split into its two components with the separate components directed onto spaced apart points onthe face of the object to be tested for smoothness. The object is rotated on an axis coincident with one component which is directed to the face of the object at the center which constitutes a virtual fixed point. This component also is used as a reference. The other component follows a circular track on the face of the object as the object is rotated. The two components are recombined after reflection to produce a reflected frequency difference of a phase proportional to the difference in path length which is compared with the reference phase to produce a signal proportional to the deviation of the height of the surface along the circular track with respect to the fixed point at the center.

  20. A benchmark for comparison of cell tracking algorithms

    PubMed Central

    Maška, Martin; Ulman, Vladimír; Svoboda, David; Matula, Pavel; Matula, Petr; Ederra, Cristina; Urbiola, Ainhoa; España, Tomás; Venkatesan, Subramanian; Balak, Deepak M.W.; Karas, Pavel; Bolcková, Tereza; Štreitová, Markéta; Carthel, Craig; Coraluppi, Stefano; Harder, Nathalie; Rohr, Karl; Magnusson, Klas E. G.; Jaldén, Joakim; Blau, Helen M.; Dzyubachyk, Oleh; Křížek, Pavel; Hagen, Guy M.; Pastor-Escuredo, David; Jimenez-Carretero, Daniel; Ledesma-Carbayo, Maria J.; Muñoz-Barrutia, Arrate; Meijering, Erik; Kozubek, Michal; Ortiz-de-Solorzano, Carlos

    2014-01-01

    Motivation: Automatic tracking of cells in multidimensional time-lapse fluorescence microscopy is an important task in many biomedical applications. A novel framework for objective evaluation of cell tracking algorithms has been established under the auspices of the IEEE International Symposium on Biomedical Imaging 2013 Cell Tracking Challenge. In this article, we present the logistics, datasets, methods and results of the challenge and lay down the principles for future uses of this benchmark. Results: The main contributions of the challenge include the creation of a comprehensive video dataset repository and the definition of objective measures for comparison and ranking of the algorithms. With this benchmark, six algorithms covering a variety of segmentation and tracking paradigms have been compared and ranked based on their performance on both synthetic and real datasets. Given the diversity of the datasets, we do not declare a single winner of the challenge. Instead, we present and discuss the results for each individual dataset separately. Availability and implementation: The challenge Web site (http://www.codesolorzano.com/celltrackingchallenge) provides access to the training and competition datasets, along with the ground truth of the training videos. It also provides access to Windows and Linux executable files of the evaluation software and most of the algorithms that competed in the challenge. Contact: codesolorzano@unav.es Supplementary information: Supplementary data are available at Bioinformatics online. PMID:24526711

  1. Compressed multi-block local binary pattern for object tracking

    NASA Astrophysics Data System (ADS)

    Li, Tianwen; Gao, Yun; Zhao, Lei; Zhou, Hao

    2018-04-01

    Both robustness and real-time are very important for the application of object tracking under a real environment. The focused trackers based on deep learning are difficult to satisfy with the real-time of tracking. Compressive sensing provided a technical support for real-time tracking. In this paper, an object can be tracked via a multi-block local binary pattern feature. The feature vector was extracted based on the multi-block local binary pattern feature, which was compressed via a sparse random Gaussian matrix as the measurement matrix. The experiments showed that the proposed tracker ran in real-time and outperformed the existed compressive trackers based on Haar-like feature on many challenging video sequences in terms of accuracy and robustness.

  2. Doublet Pulse Coherent Laser Radar for Tracking of Resident Space Objects

    DTIC Science & Technology

    2014-09-01

    based laser systems can be limited by the effects of tumbling, extremely accurate Doppler measurement is possible using a doublet coherent laser ...Doublet pulse coherent laser radar for tracking of resident space objects Narasimha S. Prasad *1 , Van Rudd 2 , Scott Shald 2 , Stephan...Doublet Pulse Coherent Laser Radar for Tracking of Resident Space Objects 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S

  3. Phenomenal permanence and the development of predictive tracking in infancy.

    PubMed

    Bertenthal, Bennett I; Longo, Matthew R; Kenny, Sarah

    2007-01-01

    The perceived spatiotemporal continuity of objects depends on the way they appear and disappear as they move in the spatial layout. This study investigated whether infants' predictive tracking of a briefly occluded object is sensitive to the manner by which the object disappears and reappears. Five-, 7-, and 9-month-old infants were shown a ball rolling across a visual scene and briefly disappearing via kinetic occlusion, instantaneous disappearance, implosion, or virtual occlusion. Three different measures converged to show that predictive tracking increased with age and that infants were most likely to anticipate the reappearance of the ball following kinetic occlusion. These results suggest that infants' knowledge of the permanence and nonpermanence of objects is embodied in their predictive tracking.

  4. Note: Reliable and non-contact 6D motion tracking system based on 2D laser scanners for cargo transportation.

    PubMed

    Kim, Young-Keun; Kim, Kyung-Soo

    2014-10-01

    Maritime transportation demands an accurate measurement system to track the motion of oscillating container boxes in real time. However, it is a challenge to design a sensor system that can provide both reliable and non-contact methods of 6-DOF motion measurements of a remote object for outdoor applications. In the paper, a sensor system based on two 2D laser scanners is proposed for detecting the relative 6-DOF motion of a crane load in real time. Even without implementing a camera, the proposed system can detect the motion of a remote object using four laser beam points. Because it is a laser-based sensor, the system is expected to be highly robust to sea weather conditions.

  5. Note: Reliable and non-contact 6D motion tracking system based on 2D laser scanners for cargo transportation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Young-Keun, E-mail: ykkim@handong.edu; Kim, Kyung-Soo

    Maritime transportation demands an accurate measurement system to track the motion of oscillating container boxes in real time. However, it is a challenge to design a sensor system that can provide both reliable and non-contact methods of 6-DOF motion measurements of a remote object for outdoor applications. In the paper, a sensor system based on two 2D laser scanners is proposed for detecting the relative 6-DOF motion of a crane load in real time. Even without implementing a camera, the proposed system can detect the motion of a remote object using four laser beam points. Because it is a laser-basedmore » sensor, the system is expected to be highly robust to sea weather conditions.« less

  6. Note: Reliable and non-contact 6D motion tracking system based on 2D laser scanners for cargo transportation

    NASA Astrophysics Data System (ADS)

    Kim, Young-Keun; Kim, Kyung-Soo

    2014-10-01

    Maritime transportation demands an accurate measurement system to track the motion of oscillating container boxes in real time. However, it is a challenge to design a sensor system that can provide both reliable and non-contact methods of 6-DOF motion measurements of a remote object for outdoor applications. In the paper, a sensor system based on two 2D laser scanners is proposed for detecting the relative 6-DOF motion of a crane load in real time. Even without implementing a camera, the proposed system can detect the motion of a remote object using four laser beam points. Because it is a laser-based sensor, the system is expected to be highly robust to sea weather conditions.

  7. Non-invasive studies of multiphase flow in process equipment. Positron emission particle tracking technique

    NASA Astrophysics Data System (ADS)

    Balakin, B. V.; Adamsen, T. C. H.; Chang, Y.-F.; Kosinski, P.; Hoffmann, A. C.

    2017-01-01

    Positron emission particle tracking (PEPT) is a novel experimental technique for non-invasive inspection of industrial fluid/particle flows. The method is based on the dynamic positioning of a positron-emitting, flowing object (particle) performed through the sensing of annihilation events and subsequent numerical treatment to determine the particle position. The present paper shows an integrated overview of PEPT studies which were carried out using a new PET scanner in the Bergen University Hospital to study multiphase flows in different geometric configurations.

  8. [Bio-objects and biological methods of space radiation effects evaluation].

    PubMed

    Kaminskaia, E V; Nevzgodina, L V; Platova, N G

    2009-01-01

    The unique conditions of space experiments place austere requirements to bio-objects and biological methods of radiation effects evaluation. The paper discusses suitability of a number of bio-objects varying in stage of evolution and metabolism for space researches aimed to state common patterns of the radiation damage caused by heavy ions (HI), and character of HI-cell interaction. Physical detectors in space experiments of the BIOBLOCK series make it possible to identify bio-objects hit by space HI and to set correlation between HI track topography and biological effect. The paper provides an all-round description of the bio-objects chosen for two BIOBLOCK experiments (population of hydrophyte Wolffia arrhiza (fam. duckweed) and Lactuca sativa seeds) and the method of evaluating effects from single space radiation HI. Direct effects of heavy ions on cells can be determined by the criteria of chromosomal aberrations and delayed morphologic abnormalities. The evaluation results are compared with the data about human blood lymphocytes. Consideration is being given to the procedures of test-objects' treatment and investigation.

  9. Design, implementation and accuracy of a prototype for medical augmented reality.

    PubMed

    Pandya, Abhilash; Siadat, Mohammad-Reza; Auner, Greg

    2005-01-01

    This paper is focused on prototype development and accuracy evaluation of a medical Augmented Reality (AR) system. The accuracy of such a system is of critical importance for medical use, and is hence considered in detail. We analyze the individual error contributions and the system accuracy of the prototype. A passive articulated arm is used to track a calibrated end-effector-mounted video camera. The live video view is superimposed in real time with the synchronized graphical view of CT-derived segmented object(s) of interest within a phantom skull. The AR accuracy mostly depends on the accuracy of the tracking technology, the registration procedure, the camera calibration, and the image scanning device (e.g., a CT or MRI scanner). The accuracy of the Microscribe arm was measured to be 0.87 mm. After mounting the camera on the tracking device, the AR accuracy was measured to be 2.74 mm on average (standard deviation = 0.81 mm). After using data from a 2-mm-thick CT scan, the AR error remained essentially the same at an average of 2.75 mm (standard deviation = 1.19 mm). For neurosurgery, the acceptable error is approximately 2-3 mm, and our prototype approaches these accuracy requirements. The accuracy could be increased with a higher-fidelity tracking system and improved calibration and object registration. The design and methods of this prototype device can be extrapolated to current medical robotics (due to the kinematic similarity) and neuronavigation systems.

  10. International Space Station Utilization: Tracking Investigations from Objectives to Results

    NASA Technical Reports Server (NTRS)

    Ruttley, T. M.; Mayo, Susan; Robinson, J. A.

    2011-01-01

    Since the first module was assembled on the International Space Station (ISS), on-orbit investigations have been underway across all scientific disciplines. The facilities dedicated to research on ISS have supported over 1100 investigations from over 900 scientists representing over 60 countries. Relatively few of these investigations are tracked through the traditional NASA grants monitoring process and with ISS National Laboratory use growing, the ISS Program Scientist s Office has been tasked with tracking all ISS investigations from objectives to results. Detailed information regarding each investigation is now collected once, at the first point it is proposed for flight, and is kept in an online database that serves as a single source of information on the core objectives of each investigation. Different fields are used to provide the appropriate level of detail for research planning, astronaut training, and public communications. http://www.nasa.gov/iss-science/. With each successive year, publications of ISS scientific results, which are used to measure success of the research program, have shown steady increases in all scientific research areas on the ISS. Accurately identifying, collecting, and assessing the research results publications is a challenge and a priority for the ISS research program, and we will discuss the approaches that the ISS Program Science Office employs to meet this challenge. We will also address the online resources available to support outreach and communication of ISS research to the public. Keywords: International Space Station, Database, Tracking, Methods

  11. Preliminary Assessment of Optimal Longitudinal-Mode Control for Drag Reduction through Distributed Aeroelastic Shaping

    NASA Technical Reports Server (NTRS)

    Ippolito, Corey; Nguyen, Nhan; Lohn, Jason; Dolan, John

    2014-01-01

    The emergence of advanced lightweight materials is resulting in a new generation of lighter, flexible, more-efficient airframes that are enabling concepts for active aeroelastic wing-shape control to achieve greater flight efficiency and increased safety margins. These elastically shaped aircraft concepts require non-traditional methods for large-scale multi-objective flight control that simultaneously seek to gain aerodynamic efficiency in terms of drag reduction while performing traditional command-tracking tasks as part of a complete guidance and navigation solution. This paper presents results from a preliminary study of a notional multi-objective control law for an aeroelastic flexible-wing aircraft controlled through distributed continuous leading and trailing edge control surface actuators. This preliminary study develops and analyzes a multi-objective control law derived from optimal linear quadratic methods on a longitudinal vehicle dynamics model with coupled aeroelastic dynamics. The controller tracks commanded attack-angle while minimizing drag and controlling wing twist and bend. This paper presents an overview of the elastic aircraft concept, outlines the coupled vehicle model, presents the preliminary control law formulation and implementation, presents results from simulation, provides analysis, and concludes by identifying possible future areas for research

  12. Current Characteristics and Trends of the Tracked Satellite Population in the Human Space Flight Regime

    NASA Technical Reports Server (NTRS)

    Johnson, Nicholas L.

    2006-01-01

    Since the end of the Apollo program in 1972, human space flight has been restricted to altitudes below 600 km above the Earth s surface with most missions restricted to a ceiling below 400 km. An investigation of the tracked satellite population transiting and influencing the human space flight regime during the past 11 years (equivalent to a full solar cycle) has recently been completed. The overall effects of satellite breakups and solar activity are typically less pronounced in the human space flight regime than other regions of low Earth orbit. As of January 2006 nearly 1500 tracked objects resided in or traversed the human space flight regime, although two-thirds of these objects were in orbits of moderate to high eccentricity, significantly reducing their effect on human space flight safety. During the period investigated, the spatial density of tracked objects in the 350-400 km altitude regime of the International Space Station demonstrated a steady decline, actually decreasing by 50% by the end of the period. On the other hand, the region immediately above 600 km experienced a significant increase in its population density. This regime is important for future risk assessments, since this region represents the reservoir of debris which will influence human space flight safety in the future. The paper seeks to put into sharper perspective the risks posed to human space flight by the tracked satellite population, as well as the influences of solar activity and the effects of compliance with orbital debris mitigation guidelines on human space flight missions. Finally, the methods and successes of characterizing the population of smaller debris at human space flight regimes are addressed.

  13. A hybrid multi-objective imperialist competitive algorithm and Monte Carlo method for robust safety design of a rail vehicle

    NASA Astrophysics Data System (ADS)

    Nejlaoui, Mohamed; Houidi, Ajmi; Affi, Zouhaier; Romdhane, Lotfi

    2017-10-01

    This paper deals with the robust safety design optimization of a rail vehicle system moving in short radius curved tracks. A combined multi-objective imperialist competitive algorithm and Monte Carlo method is developed and used for the robust multi-objective optimization of the rail vehicle system. This robust optimization of rail vehicle safety considers simultaneously the derailment angle and its standard deviation where the design parameters uncertainties are considered. The obtained results showed that the robust design reduces significantly the sensitivity of the rail vehicle safety to the design parameters uncertainties compared to the determinist one and to the literature results.

  14. CellProfiler Tracer: exploring and validating high-throughput, time-lapse microscopy image data.

    PubMed

    Bray, Mark-Anthony; Carpenter, Anne E

    2015-11-04

    Time-lapse analysis of cellular images is an important and growing need in biology. Algorithms for cell tracking are widely available; what researchers have been missing is a single open-source software package to visualize standard tracking output (from software like CellProfiler) in a way that allows convenient assessment of track quality, especially for researchers tuning tracking parameters for high-content time-lapse experiments. This makes quality assessment and algorithm adjustment a substantial challenge, particularly when dealing with hundreds of time-lapse movies collected in a high-throughput manner. We present CellProfiler Tracer, a free and open-source tool that complements the object tracking functionality of the CellProfiler biological image analysis package. Tracer allows multi-parametric morphological data to be visualized on object tracks, providing visualizations that have already been validated within the scientific community for time-lapse experiments, and combining them with simple graph-based measures for highlighting possible tracking artifacts. CellProfiler Tracer is a useful, free tool for inspection and quality control of object tracking data, available from http://www.cellprofiler.org/tracer/.

  15. Real-time Human Activity Recognition

    NASA Astrophysics Data System (ADS)

    Albukhary, N.; Mustafah, Y. M.

    2017-11-01

    The traditional Closed-circuit Television (CCTV) system requires human to monitor the CCTV for 24/7 which is inefficient and costly. Therefore, there’s a need for a system which can recognize human activity effectively in real-time. This paper concentrates on recognizing simple activity such as walking, running, sitting, standing and landing by using image processing techniques. Firstly, object detection is done by using background subtraction to detect moving object. Then, object tracking and object classification are constructed so that different person can be differentiated by using feature detection. Geometrical attributes of tracked object, which are centroid and aspect ratio of identified tracked are manipulated so that simple activity can be detected.

  16. Detection and Tracking of Moving Objects with Real-Time Onboard Vision System

    NASA Astrophysics Data System (ADS)

    Erokhin, D. Y.; Feldman, A. B.; Korepanov, S. E.

    2017-05-01

    Detection of moving objects in video sequence received from moving video sensor is a one of the most important problem in computer vision. The main purpose of this work is developing set of algorithms, which can detect and track moving objects in real time computer vision system. This set includes three main parts: the algorithm for estimation and compensation of geometric transformations of images, an algorithm for detection of moving objects, an algorithm to tracking of the detected objects and prediction their position. The results can be claimed to create onboard vision systems of aircraft, including those relating to small and unmanned aircraft.

  17. Attentional Signatures of Perception: Multiple Object Tracking Reveals the Automaticity of Contour Interpolation

    ERIC Educational Resources Information Center

    Keane, Brian P.; Mettler, Everett; Tsoi, Vicky; Kellman, Philip J.

    2011-01-01

    Multiple object tracking (MOT) is an attentional task wherein observers attempt to track multiple targets among moving distractors. Contour interpolation is a perceptual process that fills-in nonvisible edges on the basis of how surrounding edges (inducers) are spatiotemporally related. In five experiments, we explored the automaticity of…

  18. Moving Particles Through a Finite Element Mesh

    PubMed Central

    Peskin, Adele P.; Hardin, Gary R.

    1998-01-01

    We present a new numerical technique for modeling the flow around multiple objects moving in a fluid. The method tracks the dynamic interaction between each particle and the fluid. The movements of the fluid and the object are directly coupled. A background mesh is designed to fit the geometry of the overall domain. The mesh is designed independently of the presence of the particles except in terms of how fine it must be to track particles of a given size. Each particle is represented by a geometric figure that describes its boundary. This figure overlies the mesh. Nodes are added to the mesh where the particle boundaries intersect the background mesh, increasing the number of nodes contained in each element whose boundary is intersected. These additional nodes are then used to describe and track the particle in the numerical scheme. Appropriate element shape functions are defined to approximate the solution on the elements with extra nodes. The particles are moved through the mesh by moving only the overlying nodes defining the particles. The regular finite element grid remains unchanged. In this method, the mesh does not distort as the particles move. Instead, only the placement of particle-defining nodes changes as the particles move. Element shape functions are updated as the nodes move through the elements. This method is especially suited for models of moderate numbers of moderate-size particles, where the details of the fluid-particle coupling are important. Both the complications of creating finite element meshes around appreciable numbers of particles, and extensive remeshing upon movement of the particles are simplified in this method. PMID:28009377

  19. Alcohol Warning Label Awareness and Attention: A Multi-method Study.

    PubMed

    Pham, Cuong; Rundle-Thiele, Sharyn; Parkinson, Joy; Li, Shanshi

    2018-01-01

    Evaluation of alcohol warning labels requires careful consideration ensuring that research captures more than awareness given that labels may not be prominent enough to attract attention. This study investigates attention of current in market alcohol warning labels and examines whether attention can be enhanced through theoretically informed design. Attention scores obtained through self-report methods are compared to objective measures (eye-tracking). A multi-method experimental design was used delivering four conditions, namely control, colour, size and colour and size. The first study (n = 559) involved a self-report survey to measure attention. The second study (n = 87) utilized eye-tracking to measure fixation count and duration and time to first fixation. Analysis of Variance (ANOVA) was utilized. Eye-tracking identified that 60% of participants looked at the current in market alcohol warning label while 81% looked at the optimized design (larger and red). In line with observed attention self-reported attention increased for the optimized design. The current study casts doubt on dominant practices (largely self-report), which have been used to evaluate alcohol warning labels. Awareness cannot be used to assess warning label effectiveness in isolation in cases where attention does not occur 100% of the time. Mixed methods permit objective data collection methodologies to be triangulated with surveys to assess warning label effectiveness. Attention should be incorporated as a measure in warning label effectiveness evaluations. Colour and size changes to the existing Australian warning labels aided by theoretically informed design increased attention. © The Author 2017. Medical Council on Alcohol and Oxford University Press. All rights reserved.

  20. Space debris tracking at San Fernando laser station

    NASA Astrophysics Data System (ADS)

    Catalán, M.; Quijano, M.; Pazos, A.; Martín Davila, J.; Cortina, L. M.

    2016-12-01

    For years to come space debris will be a major issue for society. It has a negative impact on active artificial satellites, having implications for future missions. Tracking space debris as accurately as possible is the first step towards controlling this problem, yet it presents a challenge for science. The main limitation is the relatively low accuracy of the methods used to date for tracking these objects. Clearly, improving the predicted orbit accuracy is crucial (avoiding unnecessary anti-collision maneuvers). A new field of research was recently instituted by our satellite laser ranging station: tracking decommissioned artificial satellites equipped with retroreflectors. To this end we work in conjunction with international space agencies which provide increasing attention to this problem. We thus proposed to share our time-schedule of use of the satellite laser ranging station for obtaining data that would make orbital element predictions far more accurate (meter accuracy), whilst maintaining our tracking routines for active satellites. This manuscript reports on the actions carried out so far.

  1. Predicting Boat-Generated Wave Heights: A Quantitative Analysis through Video Observations of Vessel Wakes

    DTIC Science & Technology

    2012-05-18

    by the AWAC. It is a surface- penetrating device that measures continuous changes in the water elevations over time at much higher sampling rates of...background subtraction, a technique based on detecting change from a background scene. Their study highlights the difficulty in object detection and tracking...movements (Zhang et al. 2009) Alternatively, another common object detection method , known as Optical Flow Analysis , may be utilized for vessel

  2. Objective Methods to Test Visual Dysfunction in the Presence of Cognitive Impairment

    DTIC Science & Technology

    2015-12-01

    the eye and 3) purposeful eye movements to track targets that are resolved. Major Findings: Three major objective tests of vision were successfully...developed and optimized to detect disease. These were 1) the pupil light reflex (either comparing the two eyes or independently evaluating each eye ...separately for retina or optic nerve damage, 2) eye movement based analysis of target acquisition, fixation, and eccentric viewing as a means of

  3. Registration of 3D and Multispectral Data for the Study of Cultural Heritage Surfaces

    PubMed Central

    Chane, Camille Simon; Schütze, Rainer; Boochs, Frank; Marzani, Franck S.

    2013-01-01

    We present a technique for the multi-sensor registration of featureless datasets based on the photogrammetric tracking of the acquisition systems in use. This method is developed for the in situ study of cultural heritage objects and is tested by digitizing a small canvas successively with a 3D digitization system and a multispectral camera while simultaneously tracking the acquisition systems with four cameras and using a cubic target frame with a side length of 500 mm. The achieved tracking accuracy is better than 0.03 mm spatially and 0.150 mrad angularly. This allows us to seamlessly register the 3D acquisitions and to project the multispectral acquisitions on the 3D model. PMID:23322103

  4. A complete system for head tracking using motion-based particle filter and randomly perturbed active contour

    NASA Astrophysics Data System (ADS)

    Bouaynaya, N.; Schonfeld, Dan

    2005-03-01

    Many real world applications in computer and multimedia such as augmented reality and environmental imaging require an elastic accurate contour around a tracked object. In the first part of the paper we introduce a novel tracking algorithm that combines a motion estimation technique with the Bayesian Importance Sampling framework. We use Adaptive Block Matching (ABM) as the motion estimation technique. We construct the proposal density from the estimated motion vector. The resulting algorithm requires a small number of particles for efficient tracking. The tracking is adaptive to different categories of motion even with a poor a priori knowledge of the system dynamics. Particulary off-line learning is not needed. A parametric representation of the object is used for tracking purposes. In the second part of the paper, we refine the tracking output from a parametric sample to an elastic contour around the object. We use a 1D active contour model based on a dynamic programming scheme to refine the output of the tracker. To improve the convergence of the active contour, we perform the optimization over a set of randomly perturbed initial conditions. Our experiments are applied to head tracking. We report promising tracking results in complex environments.

  5. Orbital State Uncertainty Realism

    NASA Astrophysics Data System (ADS)

    Horwood, J.; Poore, A. B.

    2012-09-01

    Fundamental to the success of the space situational awareness (SSA) mission is the rigorous inclusion of uncertainty in the space surveillance network. The *proper characterization of uncertainty* in the orbital state of a space object is a common requirement to many SSA functions including tracking and data association, resolution of uncorrelated tracks (UCTs), conjunction analysis and probability of collision, sensor resource management, and anomaly detection. While tracking environments, such as air and missile defense, make extensive use of Gaussian and local linearity assumptions within algorithms for uncertainty management, space surveillance is inherently different due to long time gaps between updates, high misdetection rates, nonlinear and non-conservative dynamics, and non-Gaussian phenomena. The latter implies that "covariance realism" is not always sufficient. SSA also requires "uncertainty realism"; the proper characterization of both the state and covariance and all non-zero higher-order cumulants. In other words, a proper characterization of a space object's full state *probability density function (PDF)* is required. In order to provide a more statistically rigorous treatment of uncertainty in the space surveillance tracking environment and to better support the aforementioned SSA functions, a new class of multivariate PDFs are formulated which more accurately characterize the uncertainty of a space object's state or orbit. The new distribution contains a parameter set controlling the higher-order cumulants which gives the level sets a distinctive "banana" or "boomerang" shape and degenerates to a Gaussian in a suitable limit. Using the new class of PDFs within the general Bayesian nonlinear filter, the resulting filter prediction step (i.e., uncertainty propagation) is shown to have the *same computational cost as the traditional unscented Kalman filter* with the former able to maintain a proper characterization of the uncertainty for up to *ten times as long* as the latter. The filter correction step also furnishes a statistically rigorous *prediction error* which appears in the likelihood ratios for scoring the association of one report or observation to another. Thus, the new filter can be used to support multi-target tracking within a general multiple hypothesis tracking framework. Additionally, the new distribution admits a distance metric which extends the classical Mahalanobis distance (chi^2 statistic). This metric provides a test for statistical significance and facilitates single-frame data association methods with the potential to easily extend the covariance-based track association algorithm of Hill, Sabol, and Alfriend. The filtering, data fusion, and association methods using the new class of orbital state PDFs are shown to be mathematically tractable and operationally viable.

  6. Clinical Track Program Expansion Increases Rotation Capacity for Experiential Program.

    PubMed

    Tofade, Toyin S; Brueckl, Mark; Ross, Patricia A

    2017-10-01

    Objective. To evaluate the rotation capacity at the University of Maryland School of Pharmacy and see if the implementation of clinical track programs across the state correlates to an increase in rotation capacity for the school. Methods. The following information was collected: number of preceptors over the years in the school's experiential learning program, number of clinical track programs from 2012 to 2015, rotation type, availability submissions per rotation type per year, and availability submissions per hospital participant in the clinical track program per year. The rotation capacity and rotation types from 2012 to 2015 academic years were assessed and compared to see if there was any impact on the clinical track programs implemented. Results. There was no statistically significant difference in the frequency distribution of rotation types among all sites from 2012 through 2015 academic years. However, there was a statistically significant difference in the total number/capacity of rotations from 2012 to 2015 academic years. There were also statistically significant differences in the rotation capacity in all sites except for three sites. Conclusion. Adding clinical track programs can help increase the capacity of a school's clinical rotations.

  7. Joint Multi-Leaf Segmentation, Alignment, and Tracking for Fluorescence Plant Videos.

    PubMed

    Yin, Xi; Liu, Xiaoming; Chen, Jin; Kramer, David M

    2018-06-01

    This paper proposes a novel framework for fluorescence plant video processing. The plant research community is interested in the leaf-level photosynthetic analysis within a plant. A prerequisite for such analysis is to segment all leaves, estimate their structures, and track them over time. We identify this as a joint multi-leaf segmentation, alignment, and tracking problem. First, leaf segmentation and alignment are applied on the last frame of a plant video to find a number of well-aligned leaf candidates. Second, leaf tracking is applied on the remaining frames with leaf candidate transformation from the previous frame. We form two optimization problems with shared terms in their objective functions for leaf alignment and tracking respectively. A quantitative evaluation framework is formulated to evaluate the performance of our algorithm with four metrics. Two models are learned to predict the alignment accuracy and detect tracking failure respectively in order to provide guidance for subsequent plant biology analysis. The limitation of our algorithm is also studied. Experimental results show the effectiveness, efficiency, and robustness of the proposed method.

  8. Sensor and tracking data integration into a common operating picture

    NASA Astrophysics Data System (ADS)

    Bailey, Mark E.

    2003-09-01

    With rapid technological developments, a new innovative range of possibilities can be actualized in mainstreaming a network with checks and balances to provide sensor and tracking data integration/information to a wider Department of Defense (DoD) audience or group of agencies. As technologies are developed, methods to display the data are required. Multiple diverse tracking devices and sensors need to be displayed on a common operating picture. Sensors and tracking devices are used to monitor an area or object for movement or boundary penetration. Tracking devices in turn determine transit patterns of humans, animals and/or vehicles. In consortium these devices can have dual applications for military requirements and for other general purposes. The DoD Counterdrug Technology Development Program Office (CDTDPO) has designed a system to distribute sensor and tracking data to multiple users in separate agencies. This information can be displayed in whole or in part as to the specific needs of the user. It is with this purpose that the Data Distribution Network (DDN) was created to disseminate information to a collective group or to a select audience.

  9. Joint Target Detection and Tracking Filter for Chilbolton Advanced Meteorological Radar Data Processing

    NASA Astrophysics Data System (ADS)

    Pak, A.; Correa, J.; Adams, M.; Clark, D.; Delande, E.; Houssineau, J.; Franco, J.; Frueh, C.

    2016-09-01

    Recently, the growing number of inactive Resident Space Objects (RSOs), or space debris, has provoked increased interest in the field of Space Situational Awareness (SSA) and various investigations of new methods for orbital object tracking. In comparison with conventional tracking scenarios, state estimation of an orbiting object entails additional challenges, such as orbit determination and orbital state and covariance propagation in the presence of highly nonlinear system dynamics. The sensors which are available for detecting and tracking space debris are prone to multiple clutter measurements. Added to this problem, is the fact that it is unknown whether or not a space debris type target is present within such sensor measurements. Under these circumstances, traditional single-target filtering solutions such as Kalman Filters fail to produce useful trajectory estimates. The recent Random Finite Set (RFS) based Finite Set Statistical (FISST) framework has yielded filters which are more appropriate for such situations. The RFS based Joint Target Detection and Tracking (JoTT) filter, also known as the Bernoulli filter, is a single target, multiple measurements filter capable of dealing with cluttered and time-varying backgrounds as well as modeling target appearance and disappearance in the scene. Therefore, this paper presents the application of the Gaussian mixture-based JoTT filter for processing measurements from Chilbolton Advanced Meteorological Radar (CAMRa) which contain both defunct and operational satellites. The CAMRa is a fully-steerable radar located in southern England, which was recently modified to be used as a tracking asset in the European Space Agency SSA program. The experiments conducted show promising results regarding the capability of such filters in processing cluttered radar data. The work carried out in this paper was funded by the USAF Grant No. FA9550-15-1-0069, Chilean Conicyt - Fondecyt grant number 1150930, EU Erasmus Mundus MSc Scholarship, Defense Science and Technology Laboratory (DSTL), U. K., and the Chilean Conicyt, Fondecyt project grant number 1150930.

  10. Real-time tracking of visually attended objects in virtual environments and its application to LOD.

    PubMed

    Lee, Sungkil; Kim, Gerard Jounghyun; Choi, Seungmoon

    2009-01-01

    This paper presents a real-time framework for computationally tracking objects visually attended by the user while navigating in interactive virtual environments. In addition to the conventional bottom-up (stimulus-driven) saliency map, the proposed framework uses top-down (goal-directed) contexts inferred from the user's spatial and temporal behaviors, and identifies the most plausibly attended objects among candidates in the object saliency map. The computational framework was implemented using GPU, exhibiting high computational performance adequate for interactive virtual environments. A user experiment was also conducted to evaluate the prediction accuracy of the tracking framework by comparing objects regarded as visually attended by the framework to actual human gaze collected with an eye tracker. The results indicated that the accuracy was in the level well supported by the theory of human cognition for visually identifying single and multiple attentive targets, especially owing to the addition of top-down contextual information. Finally, we demonstrate how the visual attention tracking framework can be applied to managing the level of details in virtual environments, without any hardware for head or eye tracking.

  11. Robust multiperson tracking from a mobile platform.

    PubMed

    Ess, Andreas; Leibe, Bastian; Schindler, Konrad; van Gool, Luc

    2009-10-01

    In this paper, we address the problem of multiperson tracking in busy pedestrian zones using a stereo rig mounted on a mobile platform. The complexity of the problem calls for an integrated solution that extracts as much visual information as possible and combines it through cognitive feedback cycles. We propose such an approach, which jointly estimates camera position, stereo depth, object detection, and tracking. The interplay between those components is represented by a graphical model. Since the model has to incorporate object-object interactions and temporal links to past frames, direct inference is intractable. We, therefore, propose a two-stage procedure: for each frame, we first solve a simplified version of the model (disregarding interactions and temporal continuity) to estimate the scene geometry and an overcomplete set of object detections. Conditioned on these results, we then address object interactions, tracking, and prediction in a second step. The approach is experimentally evaluated on several long and difficult video sequences from busy inner-city locations. Our results show that the proposed integration makes it possible to deliver robust tracking performance in scenes of realistic complexity.

  12. Accurate object tracking system by integrating texture and depth cues

    NASA Astrophysics Data System (ADS)

    Chen, Ju-Chin; Lin, Yu-Hang

    2016-03-01

    A robust object tracking system that is invariant to object appearance variations and background clutter is proposed. Multiple instance learning with a boosting algorithm is applied to select discriminant texture information between the object and background data. Additionally, depth information, which is important to distinguish the object from a complicated background, is integrated. We propose two depth-based models that can compensate texture information to cope with both appearance variants and background clutter. Moreover, in order to reduce the risk of drifting problem increased for the textureless depth templates, an update mechanism is proposed to select more precise tracking results to avoid incorrect model updates. In the experiments, the robustness of the proposed system is evaluated and quantitative results are provided for performance analysis. Experimental results show that the proposed system can provide the best success rate and has more accurate tracking results than other well-known algorithms.

  13. Tracking target objects orbiting earth using satellite-based telescopes

    DOEpatents

    De Vries, Willem H; Olivier, Scot S; Pertica, Alexander J

    2014-10-14

    A system for tracking objects that are in earth orbit via a constellation or network of satellites having imaging devices is provided. An object tracking system includes a ground controller and, for each satellite in the constellation, an onboard controller. The ground controller receives ephemeris information for a target object and directs that ephemeris information be transmitted to the satellites. Each onboard controller receives ephemeris information for a target object, collects images of the target object based on the expected location of the target object at an expected time, identifies actual locations of the target object from the collected images, and identifies a next expected location at a next expected time based on the identified actual locations of the target object. The onboard controller processes the collected image to identify the actual location of the target object and transmits the actual location information to the ground controller.

  14. Multilevel Space-Time Aggregation for Bright Field Cell Microscopy Segmentation and Tracking

    PubMed Central

    Inglis, Tiffany; De Sterck, Hans; Sanders, Geoffrey; Djambazian, Haig; Sladek, Robert; Sundararajan, Saravanan; Hudson, Thomas J.

    2010-01-01

    A multilevel aggregation method is applied to the problem of segmenting live cell bright field microscope images. The method employed is a variant of the so-called “Segmentation by Weighted Aggregation” technique, which itself is based on Algebraic Multigrid methods. The variant of the method used is described in detail, and it is explained how it is tailored to the application at hand. In particular, a new scale-invariant “saliency measure” is proposed for deciding when aggregates of pixels constitute salient segments that should not be grouped further. It is shown how segmentation based on multilevel intensity similarity alone does not lead to satisfactory results for bright field cells. However, the addition of multilevel intensity variance (as a measure of texture) to the feature vector of each aggregate leads to correct cell segmentation. Preliminary results are presented for applying the multilevel aggregation algorithm in space time to temporal sequences of microscope images, with the goal of obtaining space-time segments (“object tunnels”) that track individual cells. The advantages and drawbacks of the space-time aggregation approach for segmentation and tracking of live cells in sequences of bright field microscope images are presented, along with a discussion on how this approach may be used in the future work as a building block in a complete and robust segmentation and tracking system. PMID:20467468

  15. Dual Use of Image Based Tracking Techniques: Laser Eye Surgery and Low Vision Prosthesis

    NASA Technical Reports Server (NTRS)

    Juday, Richard D.; Barton, R. Shane

    1994-01-01

    With a concentration on Fourier optics pattern recognition, we have developed several methods of tracking objects in dynamic imagery to automate certain space applications such as orbital rendezvous and spacecraft capture, or planetary landing. We are developing two of these techniques for Earth applications in real-time medical image processing. The first is warping of a video image, developed to evoke shift invariance to scale and rotation in correlation pattern recognition. The technology is being applied to compensation for certain field defects in low vision humans. The second is using the optical joint Fourier transform to track the translation of unmodeled scenes. Developed as an image fixation tool to assist in calculating shape from motion, it is being applied to tracking motions of the eyeball quickly enough to keep a laser photocoagulation spot fixed on the retina, thus avoiding collateral damage.

  16. Dual use of image based tracking techniques: Laser eye surgery and low vision prosthesis

    NASA Technical Reports Server (NTRS)

    Juday, Richard D.

    1994-01-01

    With a concentration on Fourier optics pattern recognition, we have developed several methods of tracking objects in dynamic imagery to automate certain space applications such as orbital rendezvous and spacecraft capture, or planetary landing. We are developing two of these techniques for Earth applications in real-time medical image processing. The first is warping of a video image, developed to evoke shift invariance to scale and rotation in correlation pattern recognition. The technology is being applied to compensation for certain field defects in low vision humans. The second is using the optical joint Fourier transform to track the translation of unmodeled scenes. Developed as an image fixation tool to assist in calculating shape from motion, it is being applied to tracking motions of the eyeball quickly enough to keep a laser photocoagulation spot fixed on the retina, thus avoiding collateral damage.

  17. A novel vehicle tracking algorithm based on mean shift and active contour model in complex environment

    NASA Astrophysics Data System (ADS)

    Cai, Lei; Wang, Lin; Li, Bo; Zhang, Libao; Lv, Wen

    2017-06-01

    Vehicle tracking technology is currently one of the most active research topics in machine vision. It is an important part of intelligent transportation system. However, in theory and technology, it still faces many challenges including real-time and robustness. In video surveillance, the targets need to be detected in real-time and to be calculated accurate position for judging the motives. The contents of video sequence images and the target motion are complex, so the objects can't be expressed by a unified mathematical model. Object-tracking is defined as locating the interest moving target in each frame of a piece of video. The current tracking technology can achieve reliable results in simple environment over the target with easy identified characteristics. However, in more complex environment, it is easy to lose the target because of the mismatch between the target appearance and its dynamic model. Moreover, the target usually has a complex shape, but the tradition target tracking algorithm usually represents the tracking results by simple geometric such as rectangle or circle, so it cannot provide accurate information for the subsequent upper application. This paper combines a traditional object-tracking technology, Mean-Shift algorithm, with a kind of image segmentation algorithm, Active-Contour model, to get the outlines of objects while the tracking process and automatically handle topology changes. Meanwhile, the outline information is used to aid tracking algorithm to improve it.

  18. Improvements to Passive Acoustic Tracking Methods for Marine Mammal Monitoring

    DTIC Science & Technology

    2014-09-30

    species of interest in these datasets are sperm whales , beaked whales , minke whales , and humpback whales . Most methods developed will be...datasets, automated detectors for fin and sei whales were developed, implemented and quantified. For the “stereotypical” calls produced by these animals...Objective 4: The matched filter detectors implemented for fin and sei whale calls are sufficient for the purposes of this project, with

  19. Developing and validating a method for monitoring and tracking changes in southern pine beetle hazard at the landscape level

    Treesearch

    Ronald Billings; L. Allen Smith; Jin Zhu; Shailu Verma; Nick Kouchoukos; Joon Heo

    2010-01-01

    The objective of this research project is to develop and validate a method for using satellite images and digital geospatial data to map the distribution of southern pine beetle (SPB) habitats across the pinelands of east Texas. Our approach builds on a work that used photo interpretation and discriminant analysis to identify and evaluate environmental conditions...

  20. Detection of unknown targets from aerial camera and extraction of simple object fingerprints for the purpose of target reacquisition

    NASA Astrophysics Data System (ADS)

    Mundhenk, T. Nathan; Ni, Kang-Yu; Chen, Yang; Kim, Kyungnam; Owechko, Yuri

    2012-01-01

    An aerial multiple camera tracking paradigm needs to not only spot unknown targets and track them, but also needs to know how to handle target reacquisition as well as target handoff to other cameras in the operating theater. Here we discuss such a system which is designed to spot unknown targets, track them, segment the useful features and then create a signature fingerprint for the object so that it can be reacquired or handed off to another camera. The tracking system spots unknown objects by subtracting background motion from observed motion allowing it to find targets in motion, even if the camera platform itself is moving. The area of motion is then matched to segmented regions returned by the EDISON mean shift segmentation tool. Whole segments which have common motion and which are contiguous to each other are grouped into a master object. Once master objects are formed, we have a tight bound on which to extract features for the purpose of forming a fingerprint. This is done using color and simple entropy features. These can be placed into a myriad of different fingerprints. To keep data transmission and storage size low for camera handoff of targets, we try several different simple techniques. These include Histogram, Spatiogram and Single Gaussian Model. These are tested by simulating a very large number of target losses in six videos over an interval of 1000 frames each from the DARPA VIVID video set. Since the fingerprints are very simple, they are not expected to be valid for long periods of time. As such, we test the shelf life of fingerprints. This is how long a fingerprint is good for when stored away between target appearances. Shelf life gives us a second metric of goodness and tells us if a fingerprint method has better accuracy over longer periods. In videos which contain multiple vehicle occlusions and vehicles of highly similar appearance we obtain a reacquisition rate for automobiles of over 80% using the simple single Gaussian model compared with the null hypothesis of <20%. Additionally, the performance for fingerprints stays well above the null hypothesis for as much as 800 frames. Thus, a simple and highly compact single Gaussian model is useful for target reacquisition. Since the model is agnostic to view point and object size, it is expected to perform as well on a test of target handoff. Since some of the performance degradation is due to problems with the initial target acquisition and tracking, the simple Gaussian model may perform even better with an improved initial acquisition technique. Also, since the model makes no assumption about the object to be tracked, it should be possible to use it to fingerprint a multitude of objects, not just cars. Further accuracy may be obtained by creating manifolds of objects from multiple samples.

  1. Human tracking in thermal images using adaptive particle filters with online random forest learning

    NASA Astrophysics Data System (ADS)

    Ko, Byoung Chul; Kwak, Joon-Young; Nam, Jae-Yeal

    2013-11-01

    This paper presents a fast and robust human tracking method to use in a moving long-wave infrared thermal camera under poor illumination with the existence of shadows and cluttered backgrounds. To improve the human tracking performance while minimizing the computation time, this study proposes an online learning of classifiers based on particle filters and combination of a local intensity distribution (LID) with oriented center-symmetric local binary patterns (OCS-LBP). Specifically, we design a real-time random forest (RF), which is the ensemble of decision trees for confidence estimation, and confidences of the RF are converted into a likelihood function of the target state. First, the target model is selected by the user and particles are sampled. Then, RFs are generated using the positive and negative examples with LID and OCS-LBP features by online learning. The learned RF classifiers are used to detect the most likely target position in the subsequent frame in the next stage. Then, the RFs are learned again by means of fast retraining with the tracked object and background appearance in the new frame. The proposed algorithm is successfully applied to various thermal videos as tests and its tracking performance is better than those of other methods.

  2. An anti-disturbing real time pose estimation method and system

    NASA Astrophysics Data System (ADS)

    Zhou, Jian; Zhang, Xiao-hu

    2011-08-01

    Pose estimation relating two-dimensional (2D) images to three-dimensional (3D) rigid object need some known features to track. In practice, there are many algorithms which perform this task in high accuracy, but all of these algorithms suffer from features lost. This paper investigated the pose estimation when numbers of known features or even all of them were invisible. Firstly, known features were tracked to calculate pose in the current and the next image. Secondly, some unknown but good features to track were automatically detected in the current and the next image. Thirdly, those unknown features which were on the rigid and could match each other in the two images were retained. Because of the motion characteristic of the rigid object, the 3D information of those unknown features on the rigid could be solved by the rigid object's pose at the two moment and their 2D information in the two images except only two case: the first one was that both camera and object have no relative motion and camera parameter such as focus length, principle point, and etc. have no change at the two moment; the second one was that there was no shared scene or no matched feature in the two image. Finally, because those unknown features at the first time were known now, pose estimation could go on in the followed images in spite of the missing of known features in the beginning by repeating the process mentioned above. The robustness of pose estimation by different features detection algorithms such as Kanade-Lucas-Tomasi (KLT) feature, Scale Invariant Feature Transform (SIFT) and Speed Up Robust Feature (SURF) were compared and the compact of the different relative motion between camera and the rigid object were discussed in this paper. Graphic Processing Unit (GPU) parallel computing was also used to extract and to match hundreds of features for real time pose estimation which was hard to work on Central Processing Unit (CPU). Compared with other pose estimation methods, this new method can estimate pose between camera and object when part even all known features are lost, and has a quick response time benefit from GPU parallel computing. The method present here can be used widely in vision-guide techniques to strengthen its intelligence and generalization, which can also play an important role in autonomous navigation and positioning, robots fields at unknown environment. The results of simulation and experiments demonstrate that proposed method could suppress noise effectively, extracted features robustly, and achieve the real time need. Theory analysis and experiment shows the method is reasonable and efficient.

  3. Associating optical measurements and estimating orbits of geocentric objects with a Genetic Algorithm: performance limitations.

    NASA Astrophysics Data System (ADS)

    Zittersteijn, Michiel; Schildknecht, Thomas; Vananti, Alessandro; Dolado Perez, Juan Carlos; Martinot, Vincent

    2016-07-01

    Currently several thousands of objects are being tracked in the MEO and GEO regions through optical means. With the advent of improved sensors and a heightened interest in the problem of space debris, it is expected that the number of tracked objects will grow by an order of magnitude in the near future. This research aims to provide a method that can treat the correlation and orbit determination problems simultaneously, and is able to efficiently process large data sets with minimal manual intervention. This problem is also known as the Multiple Target Tracking (MTT) problem. The complexity of the MTT problem is defined by its dimension S. Current research tends to focus on the S = 2 MTT problem. The reason for this is that for S = 2 the problem has a P-complexity. However, with S = 2 the decision to associate a set of observations is based on the minimum amount of information, in ambiguous situations (e.g. satellite clusters) this will lead to incorrect associations. The S > 2 MTT problem is an NP-hard combinatorial optimization problem. In previous work an Elitist Genetic Algorithm (EGA) was proposed as a method to approximately solve this problem. It was shown that the EGA is able to find a good approximate solution with a polynomial time complexity. The EGA relies on solving the Lambert problem in order to perform the necessary orbit determinations. This means that the algorithm is restricted to orbits that are described by Keplerian motion. The work presented in this paper focuses on the impact that this restriction has on the algorithm performance.

  4. Why do people appear not to extrapolate trajectories during multiple object tracking? A computational investigation

    PubMed Central

    Zhong, Sheng-hua; Ma, Zheng; Wilson, Colin; Liu, Yan; Flombaum, Jonathan I

    2014-01-01

    Intuitively, extrapolating object trajectories should make visual tracking more accurate. This has proven to be true in many contexts that involve tracking a single item. But surprisingly, when tracking multiple identical items in what is known as “multiple object tracking,” observers often appear to ignore direction of motion, relying instead on basic spatial memory. We investigated potential reasons for this behavior through probabilistic models that were endowed with perceptual limitations in the range of typical human observers, including noisy spatial perception. When we compared a model that weights its extrapolations relative to other sources of information about object position, and one that does not extrapolate at all, we found no reliable difference in performance, belying the intuition that extrapolation always benefits tracking. In follow-up experiments we found this to be true for a variety of models that weight observations and predictions in different ways; in some cases we even observed worse performance for models that use extrapolations compared to a model that does not at all. Ultimately, the best performing models either did not extrapolate, or extrapolated very conservatively, relying heavily on observations. These results illustrate the difficulty and attendant hazards of using noisy inputs to extrapolate the trajectories of multiple objects simultaneously in situations with targets and featurally confusable nontargets. PMID:25311300

  5. Prediction processes during multiple object tracking (MOT): involvement of dorsal and ventral premotor cortices

    PubMed Central

    Atmaca, Silke; Stadler, Waltraud; Keitel, Anne; Ott, Derek V M; Lepsien, Jöran; Prinz, Wolfgang

    2013-01-01

    Background The multiple object tracking (MOT) paradigm is a cognitive task that requires parallel tracking of several identical, moving objects following nongoal-directed, arbitrary motion trajectories. Aims The current study aimed to investigate the employment of prediction processes during MOT. As an indicator for the involvement of prediction processes, we targeted the human premotor cortex (PM). The PM has been repeatedly implicated to serve the internal modeling of future actions and action effects, as well as purely perceptual events, by means of predictive feedforward functions. Materials and methods Using functional magnetic resonance imaging (fMRI), BOLD activations recorded during MOT were contrasted with those recorded during the execution of a cognitive control task that used an identical stimulus display and demanded similar attentional load. A particular effort was made to identify and exclude previously found activation in the PM-adjacent frontal eye fields (FEF). Results We replicated prior results, revealing occipitotemporal, parietal, and frontal areas to be engaged in MOT. Discussion The activation in frontal areas is interpreted to originate from dorsal and ventral premotor cortices. The results are discussed in light of our assumption that MOT engages prediction processes. Conclusion We propose that our results provide first clues that MOT does not only involve visuospatial perception and attention processes, but prediction processes as well. PMID:24363971

  6. Connection-based and object-based grouping in multiple-object tracking: A developmental study.

    PubMed

    Van der Hallen, Ruth; Reusens, Julie; Evers, Kris; de-Wit, Lee; Wagemans, Johan

    2018-03-30

    Developmental research on Gestalt laws has previously revealed that, even as young as infancy, we are bound to group visual elements into unitary structures in accordance with a variety of organizational principles. Here, we focus on the developmental trajectory of both connection-based and object-based grouping, and investigate their impact on object formation in participants, aged 9-21 years old (N = 113), using a multiple-object tracking paradigm. Results reveal a main effect of both age and grouping type, indicating that 9- to 21-year-olds are sensitive to both connection-based and object-based grouping interference, and tracking ability increases with age. In addition to its importance for typical development, these results provide an informative baseline to understand clinical aberrations in this regard. Statement of contribution What is already known on this subject? The origin of the Gestalt principles is still an ongoing debate: Are they innate, learned over time, or both? Developmental research has revealed how each Gestalt principle has its own trajectory and unique relationship to visual experience. Both connectedness and object-based grouping play an important role in object formation during childhood. What does this study add? The study identifies how sensitivity to connectedness and object-based grouping evolves in individuals, aged 9-21 years old. Using multiple-object tracking, results reveal that the ability to track multiple objects increases with age. These results provide an informative baseline to understand clinical aberrations in different types of grouping. © 2018 The Authors. British Journal of Developmental Psychology published by John Wiley & Sons Ltd on behalf of British Psychological Society.

  7. Eye Movements during Multiple Object Tracking: Where Do Participants Look?

    ERIC Educational Resources Information Center

    Fehd, Hilda M.; Seiffert, Adriane E.

    2008-01-01

    Similar to the eye movements you might make when viewing a sports game, this experiment investigated where participants tend to look while keeping track of multiple objects. While eye movements were recorded, participants tracked either 1 or 3 of 8 red dots that moved randomly within a square box on a black background. Results indicated that…

  8. Implementing Interpersonal Psychotherapy in a Psychiatry Residency Training Program

    ERIC Educational Resources Information Center

    Lichtmacher, Jonathan; Eisendrath, Stuart J.; Haller, Ellen

    2006-01-01

    Objective: Interpersonal psychotherapy (IPT) for depression is a brief, well researched treatment for acute major depression. This article describes the implementation of IPT as an evidence-based treatment for depression in a psychiatry residency program. Method: The authors tracked the implementation process over 5 years as interpersonal…

  9. Dietary Adherence Monitoring Tool for Free-living, Controlled Feeding Studies

    USDA-ARS?s Scientific Manuscript database

    Objective: To devise a dietary adherence monitoring tool for use in controlled human feeding trials involving free-living study participants. Methods: A scoring tool was devised to measure and track dietary adherence for an 8-wk randomized trial evaluating the effects of two different dietary patter...

  10. Content Validation of Athletic Therapy Clinical Presentations in Canada

    ERIC Educational Resources Information Center

    Lafave, Mark R.; Yeo, Michelle; Westbrook, Khatija; Valdez, Dennis; Eubank, Breda; McAllister, Jenelle

    2016-01-01

    Context: Competency-based education requires strong planning and a vehicle to deliver and track students' progress across their undergraduate programs. Clinical presentations (CPs) are proposed as 1 method to deliver a competency-based curriculum in a Canadian undergraduate athletic therapy program. Objective: Validation of 253 CPs. Setting:…

  11. Single and Multiple Object Tracking Using a Multi-Feature Joint Sparse Representation.

    PubMed

    Hu, Weiming; Li, Wei; Zhang, Xiaoqin; Maybank, Stephen

    2015-04-01

    In this paper, we propose a tracking algorithm based on a multi-feature joint sparse representation. The templates for the sparse representation can include pixel values, textures, and edges. In the multi-feature joint optimization, noise or occlusion is dealt with using a set of trivial templates. A sparse weight constraint is introduced to dynamically select the relevant templates from the full set of templates. A variance ratio measure is adopted to adaptively adjust the weights of different features. The multi-feature template set is updated adaptively. We further propose an algorithm for tracking multi-objects with occlusion handling based on the multi-feature joint sparse reconstruction. The observation model based on sparse reconstruction automatically focuses on the visible parts of an occluded object by using the information in the trivial templates. The multi-object tracking is simplified into a joint Bayesian inference. The experimental results show the superiority of our algorithm over several state-of-the-art tracking algorithms.

  12. Refined gravity determination at small bodies through landing probes

    NASA Astrophysics Data System (ADS)

    Bellerose, J.

    2012-02-01

    Very small objects of the near-Earth population have not been visited to date, and may be among the next targets for human exploration. As density is a strong indication of the body origin and intrinsic properties, determining the mass is one of the most important goals. The past missions to Eros and Itokawa resulted in mass and density estimates to less than five percent error, allowing precise mission planning while giving new insights on the body structure. Current mass determination techniques have limitations in the low gravity regime, and spacecraft tracking at very small asteroids is challenging. We investigate the constraints on measuring the mass at very small near-Earth objects, and their consequences on proximity operation planning. An alternative option to spacecraft radio tracking is to use surface probes. The near-surface and landing dynamics can be observed and tracked by the host spacecraft, providing higher resolution measurements of the NEA gravity pull. We show analytical methods to estimate the performance of given proximity operations, and simulations of spacecraft and probe dynamics at NEAs less than 100 m in diameter.

  13. An Unscented Kalman-Particle Hybrid Filter for Space Object Tracking

    NASA Astrophysics Data System (ADS)

    Raihan A. V, Dilshad; Chakravorty, Suman

    2018-03-01

    Optimal and consistent estimation of the state of space objects is pivotal to surveillance and tracking applications. However, probabilistic estimation of space objects is made difficult by the non-Gaussianity and nonlinearity associated with orbital mechanics. In this paper, we present an unscented Kalman-particle hybrid filtering framework for recursive Bayesian estimation of space objects. The hybrid filtering scheme is designed to provide accurate and consistent estimates when measurements are sparse without incurring a large computational cost. It employs an unscented Kalman filter (UKF) for estimation when measurements are available. When the target is outside the field of view (FOV) of the sensor, it updates the state probability density function (PDF) via a sequential Monte Carlo method. The hybrid filter addresses the problem of particle depletion through a suitably designed filter transition scheme. To assess the performance of the hybrid filtering approach, we consider two test cases of space objects that are assumed to undergo full three dimensional orbital motion under the effects of J 2 and atmospheric drag perturbations. It is demonstrated that the hybrid filters can furnish fast, accurate and consistent estimates outperforming standard UKF and particle filter (PF) implementations.

  14. Automated tracking, segmentation and trajectory classification of pelvic organs on dynamic MRI.

    PubMed

    Nekooeimehr, Iman; Lai-Yuen, Susana; Bao, Paul; Weitzenfeld, Alfredo; Hart, Stuart

    2016-08-01

    Pelvic organ prolapse is a major health problem in women where pelvic floor organs (bladder, uterus, small bowel, and rectum) fall from their normal position and bulge into the vagina. Dynamic Magnetic Resonance Imaging (DMRI) is presently used to analyze the organs' movements from rest to maximum strain providing complementary support for diagnosis. However, there is currently no automated or quantitative approach to measure the movement of the pelvic organs and their correlation with the severity of prolapse. In this paper, a two-stage method is presented to automatically track and segment pelvic organs on DMRI followed by a multiple-object trajectory classification method to improve the diagnosis of pelvic organ prolapse. Organs are first tracked using particle filters and K-means clustering with prior information. Then, they are segmented using the convex hull of the cluster of particles. Finally, the trajectories of the pelvic organs are modeled using a new Coupled Switched Hidden Markov Model (CSHMM) to classify the severity of pelvic organ prolapse. The tracking and segmentation results are validated using Dice Similarity Index (DSI) whereas the classification results are compared with two manual clinical measurements. Results demonstrate that the presented method is able to automatically track and segment pelvic organs with a DSI above 82% for 26 out of 46 cases and DSI above 75% for all 46 tested cases. The accuracy of the trajectory classification model is also better than current manual measurements.

  15. Object detection via eye tracking and fringe restraint

    NASA Astrophysics Data System (ADS)

    Pan, Fei; Zhang, Hanming; Zeng, Ying; Tong, Li; Yan, Bin

    2017-07-01

    Object detection is a computer vision problem which caught a large amount of attention. But the candidate boundingboxes extracted from only image features may end up with false-detection due to the semantic gap between the top-down and the bottom up information. In this paper, we propose a novel method for generating object bounding-boxes proposals using the combination of eye fixation point, saliency detection and edges. The new method obtains a fixation orientated Gaussian map, optimizes the map through single-layer cellular automata, and derives bounding-boxes from the optimized map on three levels. Then we score the boxes by combining all the information above, and choose the box with the highest score to be the final box. We perform an evaluation of our method by comparing with previous state-ofthe art approaches on the challenging POET datasets, the images of which are chosen from PASCAL VOC 2012. Our method outperforms them on small scale objects while comparable to them in general.

  16. Normal aging delays and compromises early multifocal visual attention during object tracking.

    PubMed

    Störmer, Viola S; Li, Shu-Chen; Heekeren, Hauke R; Lindenberger, Ulman

    2013-02-01

    Declines in selective attention are one of the sources contributing to age-related impairments in a broad range of cognitive functions. Most previous research on mechanisms underlying older adults' selection deficits has studied the deployment of visual attention to static objects and features. Here we investigate neural correlates of age-related differences in spatial attention to multiple objects as they move. We used a multiple object tracking task, in which younger and older adults were asked to keep track of moving target objects that moved randomly in the visual field among irrelevant distractor objects. By recording the brain's electrophysiological responses during the tracking period, we were able to delineate neural processing for targets and distractors at early stages of visual processing (~100-300 msec). Older adults showed less selective attentional modulation in the early phase of the visual P1 component (100-125 msec) than younger adults, indicating that early selection is compromised in old age. However, with a 25-msec delay relative to younger adults, older adults showed distinct processing of targets (125-150 msec), that is, a delayed yet intact attentional modulation. The magnitude of this delayed attentional modulation was related to tracking performance in older adults. The amplitude of the N1 component (175-210 msec) was smaller in older adults than in younger adults, and the target amplification effect of this component was also smaller in older relative to younger adults. Overall, these results indicate that normal aging affects the efficiency and timing of early visual processing during multiple object tracking.

  17. Kaizen newspaper

    NASA Technical Reports Server (NTRS)

    Shearer, Scott C. (Inventor); Proferes, John Nicholas (Inventor); Baker, Sr., Mitchell D. (Inventor); Reilly, Kenneth B. (Inventor); Tiwari, Vijai K. (Inventor)

    2013-01-01

    Systems, computer program products, and methods are disclosed for tracking an improvement event. An embodiment includes an event interface configured to receive a plurality of entries related to each of a plurality of improvement events. The plurality of entries includes a project identifier for the improvement event, a creation date, an objective, an action related to reaching the objective, and a first deadline related to the improvement event. A database interface is configured to store the plurality of entries in an event database.

  18. Real-time edge tracking using a tactile sensor

    NASA Technical Reports Server (NTRS)

    Berger, Alan D.; Volpe, Richard; Khosla, Pradeep K.

    1989-01-01

    Object recognition through the use of input from multiple sensors is an important aspect of an autonomous manipulation system. In tactile object recognition, it is necessary to determine the location and orientation of object edges and surfaces. A controller is proposed that utilizes a tactile sensor in the feedback loop of a manipulator to track along edges. In the control system, the data from the tactile sensor is first processed to find edges. The parameters of these edges are then used to generate a control signal to a hybrid controller. Theory is presented for tactile edge detection and an edge tracking controller. In addition, experimental verification of the edge tracking controller is presented.

  19. Detecting multiple moving objects in crowded environments with coherent motion regions

    DOEpatents

    Cheriyadat, Anil M.; Radke, Richard J.

    2013-06-11

    Coherent motion regions extend in time as well as space, enforcing consistency in detected objects over long time periods and making the algorithm robust to noisy or short point tracks. As a result of enforcing the constraint that selected coherent motion regions contain disjoint sets of tracks defined in a three-dimensional space including a time dimension. An algorithm operates directly on raw, unconditioned low-level feature point tracks, and minimizes a global measure of the coherent motion regions. At least one discrete moving object is identified in a time series of video images based on the trajectory similarity factors, which is a measure of a maximum distance between a pair of feature point tracks.

  20. Real-time model-based vision system for object acquisition and tracking

    NASA Technical Reports Server (NTRS)

    Wilcox, Brian; Gennery, Donald B.; Bon, Bruce; Litwin, Todd

    1987-01-01

    A machine vision system is described which is designed to acquire and track polyhedral objects moving and rotating in space by means of two or more cameras, programmable image-processing hardware, and a general-purpose computer for high-level functions. The image-processing hardware is capable of performing a large variety of operations on images and on image-like arrays of data. Acquisition utilizes image locations and velocities of the features extracted by the image-processing hardware to determine the three-dimensional position, orientation, velocity, and angular velocity of the object. Tracking correlates edges detected in the current image with edge locations predicted from an internal model of the object and its motion, continually updating velocity information to predict where edges should appear in future frames. With some 10 frames processed per second, real-time tracking is possible.

  1. Color image processing and object tracking workstation

    NASA Technical Reports Server (NTRS)

    Klimek, Robert B.; Paulick, Michael J.

    1992-01-01

    A system is described for automatic and semiautomatic tracking of objects on film or video tape which was developed to meet the needs of the microgravity combustion and fluid science experiments at NASA Lewis. The system consists of individual hardware parts working under computer control to achieve a high degree of automation. The most important hardware parts include 16 mm film projector, a lens system, a video camera, an S-VHS tapedeck, a frame grabber, and some storage and output devices. Both the projector and tapedeck have a computer interface enabling remote control. Tracking software was developed to control the overall operation. In the automatic mode, the main tracking program controls the projector or the tapedeck frame incrementation, grabs a frame, processes it, locates the edge of the objects being tracked, and stores the coordinates in a file. This process is performed repeatedly until the last frame is reached. Three representative applications are described. These applications represent typical uses and include tracking the propagation of a flame front, tracking the movement of a liquid-gas interface with extremely poor visibility, and characterizing a diffusion flame according to color and shape.

  2. Transfer of Learning between Hemifields in Multiple Object Tracking: Memory Reduces Constraints of Attention

    PubMed Central

    Lapierre, Mark; Howe, Piers D. L.; Cropper, Simon J.

    2013-01-01

    Many tasks involve tracking multiple moving objects, or stimuli. Some require that individuals adapt to changing or unfamiliar conditions to be able to track well. This study explores processes involved in such adaptation through an investigation of the interaction of attention and memory during tracking. Previous research has shown that during tracking, attention operates independently to some degree in the left and right visual hemifields, due to putative anatomical constraints. It has been suggested that the degree of independence is related to the relative dominance of processes of attention versus processes of memory. Here we show that when individuals are trained to track a unique pattern of movement in one hemifield, that learning can be transferred to the opposite hemifield, without any evidence of hemifield independence. However, learning is not influenced by an explicit strategy of memorisation of brief periods of recognisable movement. The findings lend support to a role for implicit memory in overcoming putative anatomical constraints on the dynamic, distributed spatial allocation of attention involved in tracking multiple objects. PMID:24349555

  3. Exhausting Attentional Tracking Resources with a Single Fast-Moving Object

    ERIC Educational Resources Information Center

    Holcombe, Alex O.; Chen, Wei-Ying

    2012-01-01

    Driving on a busy road, eluding a group of predators, or playing a team sport involves keeping track of multiple moving objects. In typical laboratory tasks, the number of visual targets that humans can track is about four. Three types of theories have been advanced to explain this limit. The fixed-limit theory posits a set number of attentional…

  4. Generation of synthetic image sequences for the verification of matching and tracking algorithms for deformation analysis

    NASA Astrophysics Data System (ADS)

    Bethmann, F.; Jepping, C.; Luhmann, T.

    2013-04-01

    This paper reports on a method for the generation of synthetic image data for almost arbitrary static or dynamic 3D scenarios. Image data generation is based on pre-defined 3D objects, object textures, camera orientation data and their imaging properties. The procedure does not focus on the creation of photo-realistic images under consideration of complex imaging and reflection models as they are used by common computer graphics programs. In contrast, the method is designed with main emphasis on geometrically correct synthetic images without radiometric impact. The calculation process includes photogrammetric distortion models, hence cameras with arbitrary geometric imaging characteristics can be applied. Consequently, image sets can be created that are consistent to mathematical photogrammetric models to be used as sup-pixel accurate data for the assessment of high-precision photogrammetric processing methods. In the first instance the paper describes the process of image simulation under consideration of colour value interpolation, MTF/PSF and so on. Subsequently the geometric quality of the synthetic images is evaluated with ellipse operators. Finally, simulated image sets are used to investigate matching and tracking algorithms as they have been developed at IAPG for deformation measurement in car safety testing.

  5. Active retroreflector with in situ beam analysis to measure the rotational orientation in conjunction with a laser tracker

    NASA Astrophysics Data System (ADS)

    Hofherr, O.; Wachten, C.; Müller, C.; Reinecke, H.

    2013-04-01

    High precision optical non-contact position measurement is a key technology in modern engineering. Laser trackers (LT) can determine accurately x-y-z coordinates of passive retroreflectors. Next-generation systems answer the additional need to measure an object`s rotational orientation (pitch, yaw, roll). These devices are based either on photogrammetry or on enhanced retroreflectors. However, photogrammetry relies on costly camera systems and time-consuming image processing. Enhanced retroreflectors analyze the LT`s beam but are restricted in roll angle measurements. In the past we have presented a new method [1][2] to measure all six degrees of freedom in conjunction with a LT. Now we dramatically optimized the method and designed a new prototype, e.g. taking into consideration optical alignment, reduced power loss, highly optimized measuring signals and higher resolution. A method is described that allows compensating the influence of the LT's beam offset during tracking the active retroreflector. We prove the functionality of the active retroreflector with the LT and, furthermore, demonstrate the capability of the system to characterize the tracking behavior of a LT. The measurement range for the incident laser beam is +/-12° with a resolution of 0.6".

  6. Evaluation of Simulated Clinical Breast Exam Motion Patterns Using Marker-Less Video Tracking

    PubMed Central

    Azari, David P.; Pugh, Carla M.; Laufer, Shlomi; Kwan, Calvin; Chen, Chia-Hsiung; Yen, Thomas Y.; Hu, Yu Hen; Radwin, Robert G.

    2016-01-01

    Objective This study investigates using marker-less video tracking to evaluate hands-on clinical skills during simulated clinical breast examinations (CBEs). Background There are currently no standardized and widely accepted CBE screening techniques. Methods Experienced physicians attending a national conference conducted simulated CBEs presenting different pathologies with distinct tumorous lesions. Single hand exam motion was recorded and analyzed using marker-less video tracking. Four kinematic measures were developed to describe temporal (time pressing and time searching) and spatial (area covered and distance explored) patterns. Results Mean differences between time pressing, area covered, and distance explored varied across the simulated lesions. Exams were objectively categorized as either sporadic, localized, thorough, or efficient for both temporal and spatial categories based on spatiotemporal characteristics. The majority of trials were temporally or spatially thorough (78% and 91%), exhibiting proportionally greater time pressing and time searching (temporally thorough) and greater area probed with greater distance explored (spatially thorough). More efficient exams exhibited proportionally more time pressing with less time searching (temporally efficient) and greater area probed with less distance explored (spatially efficient). Just two (5.9 %) of the trials exhibited both high temporal and spatial efficiency. Conclusions Marker-less video tracking was used to discriminate different examination techniques and measure when an exam changes from general searching to specific probing. The majority of participants exhibited more thorough than efficient patterns. Application Marker-less video kinematic tracking may be useful for quantifying clinical skills for training and assessment. PMID:26546381

  7. A Globally Optimal Particle Tracking Technique for Stereo Imaging Velocimetry Experiments

    NASA Technical Reports Server (NTRS)

    McDowell, Mark

    2008-01-01

    An important phase of any Stereo Imaging Velocimetry experiment is particle tracking. Particle tracking seeks to identify and characterize the motion of individual particles entrained in a fluid or air experiment. We analyze a cylindrical chamber filled with water and seeded with density-matched particles. In every four-frame sequence, we identify a particle track by assigning a unique track label for each camera image. The conventional approach to particle tracking is to use an exhaustive tree-search method utilizing greedy algorithms to reduce search times. However, these types of algorithms are not optimal due to a cascade effect of incorrect decisions upon adjacent tracks. We examine the use of a guided evolutionary neural net with simulated annealing to arrive at a globally optimal assignment of tracks. The net is guided both by the minimization of the search space through the use of prior limiting assumptions about valid tracks and by a strategy which seeks to avoid high-energy intermediate states which can trap the net in a local minimum. A stochastic search algorithm is used in place of back-propagation of error to further reduce the chance of being trapped in an energy well. Global optimization is achieved by minimizing an objective function, which includes both track smoothness and particle-image utilization parameters. In this paper we describe our model and present our experimental results. We compare our results with a nonoptimizing, predictive tracker and obtain an average increase in valid track yield of 27 percent

  8. Lineage mapper: A versatile cell and particle tracker

    NASA Astrophysics Data System (ADS)

    Chalfoun, Joe; Majurski, Michael; Dima, Alden; Halter, Michael; Bhadriraju, Kiran; Brady, Mary

    2016-11-01

    The ability to accurately track cells and particles from images is critical to many biomedical problems. To address this, we developed Lineage Mapper, an open-source tracker for time-lapse images of biological cells, colonies, and particles. Lineage Mapper tracks objects independently of the segmentation method, detects mitosis in confluence, separates cell clumps mistakenly segmented as a single cell, provides accuracy and scalability even on terabyte-sized datasets, and creates division and/or fusion lineages. Lineage Mapper has been tested and validated on multiple biological and simulated problems. The software is available in ImageJ and Matlab at isg.nist.gov.

  9. Detection and laser ranging of orbital objects using optical methods

    NASA Astrophysics Data System (ADS)

    Wagner, P.; Hampf, D.; Sproll, F.; Hasenohr, T.; Humbert, L.; Rodmann, J.; Riede, W.

    2016-09-01

    Laser ranging to satellites (SLR) in earth orbit is an established technology used for geodesy, fundamental science and precise orbit determination. A combined active and passive optical measurement system using a single telescope mount is presented which performs precise ranging measurements of retro reflector equipped objects in low earth orbit (LEO). The German Aerospace Center (DLR) runs an observatory in Stuttgart where a system has been assembled completely from commercial off-the-shelf (COTS) components. The visible light directed to the tracking camera is used to perform angular measurements of objects under investigation. This is done astrometrically by comparing the apparent target position with cataloged star positions. First successful satellite laser ranging was demonstrated recently using an optical fiber directing laser pulses onto the astronomical mount. The transmitter operates at a wavelength of 1064 nm with a repetition rate of 3 kHz and pulse energy of 25 μJ. A motorized tip/tilt mount allows beam steering of the collimated beam with μrad accuracy. The returning photons reflected from the object in space are captured with the tracking telescope. A special low aberration beam splitter unit was designed to separate the infrared from visible light. This allows passive optical closed loop tracking and operation of a single photon detector for time of flight measurements at a single telescope simultaneously. The presented innovative design yields to a compact and cost effective but very precise ranging system which allows orbit determination.

  10. Simplified stereo-optical ultrasound plane calibration

    NASA Astrophysics Data System (ADS)

    Hoßbach, Martin; Noll, Matthias; Wesarg, Stefan

    2013-03-01

    Image guided therapy is a natural concept and commonly used in medicine. In anesthesia, a common task is the injection of an anesthetic close to a nerve under freehand ultrasound guidance. Several guidance systems exist using electromagnetic tracking of the ultrasound probe as well as the needle, providing the physician with a precise projection of the needle into the ultrasound image. This, however, requires additional expensive devices. We suggest using optical tracking with miniature cameras attached to a 2D ultrasound probe to achieve a higher acceptance among physicians. The purpose of this paper is to present an intuitive method to calibrate freehand ultrasound needle guidance systems employing a rigid stereo camera system. State of the art methods are based on a complex series of error prone coordinate system transformations which makes them susceptible to error accumulation. By reducing the amount of calibration steps to a single calibration procedure we provide a calibration method that is equivalent, yet not prone to error accumulation. It requires a linear calibration object and is validated on three datasets utilizing di erent calibration objects: a 6mm metal bar and a 1:25mm biopsy needle were used for experiments. Compared to existing calibration methods for freehand ultrasound needle guidance systems, we are able to achieve higher accuracy results while additionally reducing the overall calibration complexity. Ke

  11. Fault-tolerant feature-based estimation of space debris rotational motion during active removal missions

    NASA Astrophysics Data System (ADS)

    Biondi, Gabriele; Mauro, Stefano; Pastorelli, Stefano; Sorli, Massimo

    2018-05-01

    One of the key functionalities required by an Active Debris Removal mission is the assessment of the target kinematics and inertial properties. Passive sensors, such as stereo cameras, are often included in the onboard instrumentation of a chaser spacecraft for capturing sequential photographs and for tracking features of the target surface. A plenty of methods, based on Kalman filtering, are available for the estimation of the target's state from feature positions; however, to guarantee the filter convergence, they typically require continuity of measurements and the capability of tracking a fixed set of pre-defined features of the object. These requirements clash with the actual tracking conditions: failures in feature detection often occur and the assumption of having some a-priori knowledge about the shape of the target could be restrictive in certain cases. The aim of the presented work is to propose a fault-tolerant alternative method for estimating the angular velocity and the relative magnitudes of the principal moments of inertia of the target. Raw data regarding the positions of the tracked features are processed to evaluate corrupted values of a 3-dimentional parameter which entirely describes the finite screw motion of the debris and which primarily is invariant on the particular set of considered features of the object. Missing values of the parameter are completely restored exploiting the typical periodicity of the rotational motion of an uncontrolled satellite: compressed sensing techniques, typically adopted for recovering images or for prognostic applications, are herein used in a completely original fashion for retrieving a kinematic signal that appears sparse in the frequency domain. Due to its invariance about the features, no assumptions are needed about the target's shape and continuity of the tracking. The obtained signal is useful for the indirect evaluation of an attitude signal that feeds an unscented Kalman filter for the estimation of the global rotational state of the target. The results of the computer simulations showed a good robustness of the method and its potential applicability for general motion conditions of the target.

  12. Multi-object tracking of human spermatozoa

    NASA Astrophysics Data System (ADS)

    Sørensen, Lauge; Østergaard, Jakob; Johansen, Peter; de Bruijne, Marleen

    2008-03-01

    We propose a system for tracking of human spermatozoa in phase-contrast microscopy image sequences. One of the main aims of a computer-aided sperm analysis (CASA) system is to automatically assess sperm quality based on spermatozoa motility variables. In our case, the problem of assessing sperm quality is cast as a multi-object tracking problem, where the objects being tracked are the spermatozoa. The system combines a particle filter and Kalman filters for robust motion estimation of the spermatozoa tracks. Further, the combinatorial aspect of assigning observations to labels in the particle filter is formulated as a linear assignment problem solved using the Hungarian algorithm on a rectangular cost matrix, making the algorithm capable of handling missing or spurious observations. The costs are calculated using hidden Markov models that express the plausibility of an observation being the next position in the track history of the particle labels. Observations are extracted using a scale-space blob detector utilizing the fact that the spermatozoa appear as bright blobs in a phase-contrast microscope. The output of the system is the complete motion track of each of the spermatozoa. Based on these tracks, different CASA motility variables can be computed, for example curvilinear velocity or straight-line velocity. The performance of the system is tested on three different phase-contrast image sequences of varying complexity, both by visual inspection of the estimated spermatozoa tracks and by measuring the mean squared error (MSE) between the estimated spermatozoa tracks and manually annotated tracks, showing good agreement.

  13. Low Earth Orbit Satellite Tracking Telescope Network: Collaborative Optical Tracking for Enhanced Space Situational Awareness

    DTIC Science & Technology

    2015-03-27

    i.e., temporarily focusing on one object instead of wide area survey) or SOI collection on high interest objects (e.g., unidentified objects ...The Air Force Institute of Technology has spent the last seven years conducting research on orbit identification and object characterization of space... objects through the use of commercial-off-the-shelf hardware systems controlled via custom software routines, referred to simply as TeleTrak. Year

  14. Robot Grasps Rotating Object

    NASA Technical Reports Server (NTRS)

    Wilcox, Brian H.; Tso, Kam S.; Litwin, Todd E.; Hayati, Samad A.; Bon, Bruce B.

    1991-01-01

    Experimental robotic system semiautomatically grasps rotating object, stops rotation, and pulls object to rest in fixture. Based on combination of advanced techniques for sensing and control, constructed to test concepts for robotic recapture of spinning artificial satellites. Potential terrestrial applications for technology developed with help of system includes tracking and grasping of industrial parts on conveyor belts, tracking of vehicles and animals, and soft grasping of moving objects in general.

  15. The role of visual attention in multiple object tracking: evidence from ERPs.

    PubMed

    Doran, Matthew M; Hoffman, James E

    2010-01-01

    We examined the role of visual attention in the multiple object tracking (MOT) task by measuring the amplitude of the N1 component of the event-related potential (ERP) to probe flashes presented on targets, distractors, or empty background areas. We found evidence that visual attention enhances targets and suppresses distractors (Experiment 1 & 3). However, we also found that when tracking load was light (two targets and two distractors), accurate tracking could be carried out without any apparent contribution from the visual attention system (Experiment 2). Our results suggest that attentional selection during MOT is flexibly determined by task demands as well as tracking load and that visual attention may not always be necessary for accurate tracking.

  16. Position and Orientation Tracking in a Ubiquitous Monitoring System for Parkinson Disease Patients With Freezing of Gait Symptom

    PubMed Central

    Català, Andreu; Rodríguez Martín, Daniel; van der Aa, Nico; Chen, Wei; Rauterberg, Matthias

    2013-01-01

    Background Freezing of gait (FoG) is one of the most disturbing and least understood symptoms in Parkinson disease (PD). Although the majority of existing assistive systems assume accurate detections of FoG episodes, the detection itself is still an open problem. The specificity of FoG is its dependency on the context of a patient, such as the current location or activity. Knowing the patient's context might improve FoG detection. One of the main technical challenges that needs to be solved in order to start using contextual information for FoG detection is accurate estimation of the patient's position and orientation toward key elements of his or her indoor environment. Objective The objectives of this paper are to (1) present the concept of the monitoring system, based on wearable and ambient sensors, which is designed to detect FoG using the spatial context of the user, (2) establish a set of requirements for the application of position and orientation tracking in FoG detection, (3) evaluate the accuracy of the position estimation for the tracking system, and (4) evaluate two different methods for human orientation estimation. Methods We developed a prototype system to localize humans and track their orientation, as an important prerequisite for a context-based FoG monitoring system. To setup the system for experiments with real PD patients, the accuracy of the position and orientation tracking was assessed under laboratory conditions in 12 participants. To collect the data, the participants were asked to wear a smartphone, with and without known orientation around the waist, while walking over a predefined path in the marked area captured by two Kinect cameras with non-overlapping fields of view. Results We used the root mean square error (RMSE) as the main performance measure. The vision based position tracking algorithm achieved RMSE = 0.16 m in position estimation for upright standing people. The experimental results for the proposed human orientation estimation methods demonstrated the adaptivity and robustness to changes in the smartphone attachment position, when the fusion of both vision and inertial information was used. Conclusions The system achieves satisfactory accuracy on indoor position tracking for the use in the FoG detection application with spatial context. The combination of inertial and vision information has the potential for correct patient heading estimation even when the inertial wearable sensor device is put into an a priori unknown position. PMID:25098265

  17. Work-Family Balance and Academic Advancement in Medical Schools

    ERIC Educational Resources Information Center

    Fox, Geri; Schwartz, Alan; Hart, Katherine M.

    2006-01-01

    Objective: This study examines various options that a faculty member might exercise to achieve work-family balance in academic medicine and their consequences for academic advancement. Method: Three data sets were analyzed: an anonymous web-administered survey of part-time tenure track-eligible University of Illinois College of Medicine (UI-COM)…

  18. Using Reading Times and Eye-Movements to Measure Cognitive Engagement

    ERIC Educational Resources Information Center

    Miller, Brian W.

    2015-01-01

    Self-paced reading and eye-tracking can be used to measure microlevel student engagement during science instruction. These methods imply a definition of engagement as the quantity and quality of mental resources directed at an object and the emotions and behaviors entailed. This definition is theoretically supported by models of reading…

  19. Selection and application of microbial source tracking tools for water-quality investigations

    USGS Publications Warehouse

    Stoeckel, Donald M.

    2005-01-01

    Microbial source tracking (MST) is a complex process that includes many decision-making steps. Once a contamination problem has been defined, the potential user of MST tools must thoroughly consider study objectives before deciding upon a source identifier, a detection method, and an analytical approach to apply to the problem. Regardless of which MST protocol is chosen, underlying assumptions can affect the results and interpretation. It is crucial to incorporate tests of those assumptions in the study quality-control plan to help validate results and facilitate interpretation. Detailed descriptions of MST objectives, protocols, and assumptions are provided in this report to assist in selection and application of MST tools for water-quality investigations. Several case studies illustrate real-world applications of MST protocols over a range of settings, spatial scales, and types of contamination. Technical details of many available source identifiers and detection methods are included as appendixes. By use of this information, researchers should be able to formulate realistic expectations for the information that MST tools can provide and, where possible, successfully execute investigations to characterize sources of fecal contamination to resource waters.

  20. Real-time visual tracking of less textured three-dimensional objects on mobile platforms

    NASA Astrophysics Data System (ADS)

    Seo, Byung-Kuk; Park, Jungsik; Park, Hanhoon; Park, Jong-Il

    2012-12-01

    Natural feature-based approaches are still challenging for mobile applications (e.g., mobile augmented reality), because they are feasible only in limited environments such as highly textured and planar scenes/objects, and they need powerful mobile hardware for fast and reliable tracking. In many cases where conventional approaches are not effective, three-dimensional (3-D) knowledge of target scenes would be beneficial. We present a well-established framework for real-time visual tracking of less textured 3-D objects on mobile platforms. Our framework is based on model-based tracking that efficiently exploits partially known 3-D scene knowledge such as object models and a background's distinctive geometric or photometric knowledge. Moreover, we elaborate on implementation in order to make it suitable for real-time vision processing on mobile hardware. The performance of the framework is tested and evaluated on recent commercially available smartphones, and its feasibility is shown by real-time demonstrations.

  1. Creating objective and measurable postgraduate year 1 residency graduation requirements.

    PubMed

    Starosta, Kaitlin; Davis, Susan L; Kenney, Rachel M; Peters, Michael; To, Long; Kalus, James S

    2017-03-15

    The process of developing objective and measurable postgraduate year 1 (PGY1) residency graduation requirements and a progress tracking system is described. The PGY1 residency accreditation standard requires that programs establish criteria that must be met by residents for successful completion of the program (i.e., graduation requirements), which should presumably be aligned with helping residents to achieve the purpose of residency training. In addition, programs must track a resident's progress toward fulfillment of residency goals and objectives. Defining graduation requirements and establishing the process for tracking residents' progress are left up to the discretion of the residency program. To help standardize resident performance assessments, leaders of an academic medical center-based PGY1 residency program developed graduation requirement criteria that are objective, measurable, and linked back to residency goals and objectives. A system for tracking resident progress relative to quarterly progress targets was instituted. Leaders also developed a focused, on-the-spot skills assessment termed "the Thunderdome," which was designed for objective evaluation of direct patient care skills. Quarterly data on residents' progress are used to update and customize each resident's training plan. Implementation of this system allowed seamless linkage of the training plan, the progress tracking system, and the specified graduation requirement criteria. PGY1 residency requirements that are objective, that are measurable, and that attempt to identify what skills the resident must demonstrate in order to graduate from the program were developed for use in our residency program. A system for tracking the residents' progress by comparing residents' performance to predetermined quarterly benchmarks was developed. Copyright © 2017 by the American Society of Health-System Pharmacists, Inc. All rights reserved.

  2. A Track Initiation Method for the Underwater Target Tracking Environment

    NASA Astrophysics Data System (ADS)

    Li, Dong-dong; Lin, Yang; Zhang, Yao

    2018-04-01

    A novel efficient track initiation method is proposed for the harsh underwater target tracking environment (heavy clutter and large measurement errors): track splitting, evaluating, pruning and merging method (TSEPM). Track initiation demands that the method should determine the existence and initial state of a target quickly and correctly. Heavy clutter and large measurement errors certainly pose additional difficulties and challenges, which deteriorate and complicate the track initiation in the harsh underwater target tracking environment. There are three primary shortcomings for the current track initiation methods to initialize a target: (a) they cannot eliminate the turbulences of clutter effectively; (b) there may be a high false alarm probability and low detection probability of a track; (c) they cannot estimate the initial state for a new confirmed track correctly. Based on the multiple hypotheses tracking principle and modified logic-based track initiation method, in order to increase the detection probability of a track, track splitting creates a large number of tracks which include the true track originated from the target. And in order to decrease the false alarm probability, based on the evaluation mechanism, track pruning and track merging are proposed to reduce the false tracks. TSEPM method can deal with the track initiation problems derived from heavy clutter and large measurement errors, determine the target's existence and estimate its initial state with the least squares method. What's more, our method is fully automatic and does not require any kind manual input for initializing and tuning any parameter. Simulation results indicate that our new method improves significantly the performance of the track initiation in the harsh underwater target tracking environment.

  3. Real-time moving objects detection and tracking from airborne infrared camera

    NASA Astrophysics Data System (ADS)

    Zingoni, Andrea; Diani, Marco; Corsini, Giovanni

    2017-10-01

    Detecting and tracking moving objects in real-time from an airborne infrared (IR) camera offers interesting possibilities in video surveillance, remote sensing and computer vision applications, such as monitoring large areas simultaneously, quickly changing the point of view on the scene and pursuing objects of interest. To fully exploit such a potential, versatile solutions are needed, but, in the literature, the majority of them works only under specific conditions about the considered scenario, the characteristics of the moving objects or the aircraft movements. In order to overcome these limitations, we propose a novel approach to the problem, based on the use of a cheap inertial navigation system (INS), mounted on the aircraft. To exploit jointly the information contained in the acquired video sequence and the data provided by the INS, a specific detection and tracking algorithm has been developed. It consists of three main stages performed iteratively on each acquired frame. The detection stage, in which a coarse detection map is computed, using a local statistic both fast to calculate and robust to noise and self-deletion of the targeted objects. The registration stage, in which the position of the detected objects is coherently reported on a common reference frame, by exploiting the INS data. The tracking stage, in which the steady objects are rejected, the moving objects are tracked, and an estimation of their future position is computed, to be used in the subsequent iteration. The algorithm has been tested on a large dataset of simulated IR video sequences, recreating different environments and different movements of the aircraft. Promising results have been obtained, both in terms of detection and false alarm rate, and in terms of accuracy in the estimation of position and velocity of the objects. In addition, for each frame, the detection and tracking map has been generated by the algorithm, before the acquisition of the subsequent frame, proving its capability to work in real-time.

  4. Real-time automatic fiducial marker tracking in low contrast cine-MV images

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Wei-Yang; Lin, Shu-Fang; Yang, Sheng-Chang

    2013-01-15

    Purpose: To develop a real-time automatic method for tracking implanted radiographic markers in low-contrast cine-MV patient images used in image-guided radiation therapy (IGRT). Methods: Intrafraction motion tracking using radiotherapy beam-line MV images have gained some attention recently in IGRT because no additional imaging dose is introduced. However, MV images have much lower contrast than kV images, therefore a robust and automatic algorithm for marker detection in MV images is a prerequisite. Previous marker detection methods are all based on template matching or its derivatives. Template matching needs to match object shape that changes significantly for different implantation and projection angle.more » While these methods require a large number of templates to cover various situations, they are often forced to use a smaller number of templates to reduce the computation load because their methods all require exhaustive search in the region of interest. The authors solve this problem by synergetic use of modern but well-tested computer vision and artificial intelligence techniques; specifically the authors detect implanted markers utilizing discriminant analysis for initialization and use mean-shift feature space analysis for sequential tracking. This novel approach avoids exhaustive search by exploiting the temporal correlation between consecutive frames and makes it possible to perform more sophisticated detection at the beginning to improve the accuracy, followed by ultrafast sequential tracking after the initialization. The method was evaluated and validated using 1149 cine-MV images from two prostate IGRT patients and compared with manual marker detection results from six researchers. The average of the manual detection results is considered as the ground truth for comparisons. Results: The average root-mean-square errors of our real-time automatic tracking method from the ground truth are 1.9 and 2.1 pixels for the two patients (0.26 mm/pixel). The standard deviations of the results from the 6 researchers are 2.3 and 2.6 pixels. The proposed framework takes about 128 ms to detect four markers in the first MV images and about 23 ms to track these markers in each of the subsequent images. Conclusions: The unified framework for tracking of multiple markers presented here can achieve marker detection accuracy similar to manual detection even in low-contrast cine-MV images. It can cope with shape deformations of fiducial markers at different gantry angles. The fast processing speed reduces the image processing portion of the system latency, therefore can improve the performance of real-time motion compensation.« less

  5. Delayed visual feedback affects both manual tracking and grip force control when transporting a handheld object.

    PubMed

    Sarlegna, Fabrice R; Baud-Bovy, Gabriel; Danion, Frédéric

    2010-08-01

    When we manipulate an object, grip force is adjusted in anticipation of the mechanical consequences of hand motion (i.e., load force) to prevent the object from slipping. This predictive behavior is assumed to rely on an internal representation of the object dynamic properties, which would be elaborated via visual information before the object is grasped and via somatosensory feedback once the object is grasped. Here we examined this view by investigating the effect of delayed visual feedback during dextrous object manipulation. Adult participants manually tracked a sinusoidal target by oscillating a handheld object whose current position was displayed as a cursor on a screen along with the visual target. A delay was introduced between actual object displacement and cursor motion. This delay was linearly increased (from 0 to 300 ms) and decreased within 2-min trials. As previously reported, delayed visual feedback altered performance in manual tracking. Importantly, although the physical properties of the object remained unchanged, delayed visual feedback altered the timing of grip force relative to load force by about 50 ms. Additional experiments showed that this effect was not due to task complexity nor to manual tracking. A model inspired by the behavior of mass-spring systems suggests that delayed visual feedback may have biased the representation of object dynamics. Overall, our findings support the idea that visual feedback of object motion can influence the predictive control of grip force even when the object is grasped.

  6. AN/FSY-3 Space Fence System Support of Conjunction Assessment

    NASA Astrophysics Data System (ADS)

    Koltiska, M.; Du, H.; Prochoda, D.; Kelly, K.

    2016-09-01

    The Space Fence System is a ground-based space surveillance radar system designed to detect and track all objects in Low Earth Orbit the size of a softball or larger. The system detects many objects that are not currently in the catalog of satellites and space debris that is maintained by the US Air Force. In addition, it will also be capable of tracking many of the deep space objects in the catalog. By providing daily updates of the orbits of these new objects along with updates of most of the objects in the catalog, it will enhance Space Situational Awareness and significantly improve our ability to predict close approaches, aka conjunctions, of objects in space. With this additional capacity for tracking objects in space the Space Surveillance Network has significantly more resources for monitoring orbital debris, especially for debris that could collide with active satellites and other debris.

  7. An Aggregated Method for Determining Railway Defects and Obstacle Parameters

    NASA Astrophysics Data System (ADS)

    Loktev, Daniil; Loktev, Alexey; Stepanov, Roman; Pevzner, Viktor; Alenov, Kanat

    2018-03-01

    The method of combining algorithms of image blur analysis and stereo vision to determine the distance to objects (including external defects of railway tracks) and the speed of moving objects-obstacles is proposed. To estimate the deviation of the distance depending on the blur a statistical approach, logarithmic, exponential and linear standard functions are used. The statistical approach includes a method of estimating least squares and the method of least modules. The accuracy of determining the distance to the object, its speed and direction of movement is obtained. The paper develops a method of determining distances to objects by analyzing a series of images and assessment of depth using defocusing using its aggregation with stereoscopic vision. This method is based on a physical effect of dependence on the determined distance to the object on the obtained image from the focal length or aperture of the lens. In the calculation of the blur spot diameter it is assumed that blur occurs at the point equally in all directions. According to the proposed approach, it is possible to determine the distance to the studied object and its blur by analyzing a series of images obtained using the video detector with different settings. The article proposes and scientifically substantiates new and improved existing methods for detecting the parameters of static and moving objects of control, and also compares the results of the use of various methods and the results of experiments. It is shown that the aggregate method gives the best approximation to the real distances.

  8. Laser vision seam tracking system based on image processing and continuous convolution operator tracker

    NASA Astrophysics Data System (ADS)

    Zou, Yanbiao; Chen, Tao

    2018-06-01

    To address the problem of low welding precision caused by the poor real-time tracking performance of common welding robots, a novel seam tracking system with excellent real-time tracking performance and high accuracy is designed based on the morphological image processing method and continuous convolution operator tracker (CCOT) object tracking algorithm. The system consists of a six-axis welding robot, a line laser sensor, and an industrial computer. This work also studies the measurement principle involved in the designed system. Through the CCOT algorithm, the weld feature points are determined in real time from the noise image during the welding process, and the 3D coordinate values of these points are obtained according to the measurement principle to control the movement of the robot and the torch in real time. Experimental results show that the sensor has a frequency of 50 Hz. The welding torch runs smoothly with a strong arc light and splash interference. Tracking error can reach ±0.2 mm, and the minimal distance between the laser stripe and the welding molten pool can reach 15 mm, which can significantly fulfill actual welding requirements.

  9. Large scale tracking algorithms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hansen, Ross L.; Love, Joshua Alan; Melgaard, David Kennett

    2015-01-01

    Low signal-to-noise data processing algorithms for improved detection, tracking, discrimination and situational threat assessment are a key research challenge. As sensor technologies progress, the number of pixels will increase signi cantly. This will result in increased resolution, which could improve object discrimination, but unfortunately, will also result in a significant increase in the number of potential targets to track. Many tracking techniques, like multi-hypothesis trackers, suffer from a combinatorial explosion as the number of potential targets increase. As the resolution increases, the phenomenology applied towards detection algorithms also changes. For low resolution sensors, "blob" tracking is the norm. For highermore » resolution data, additional information may be employed in the detection and classfication steps. The most challenging scenarios are those where the targets cannot be fully resolved, yet must be tracked and distinguished for neighboring closely spaced objects. Tracking vehicles in an urban environment is an example of such a challenging scenario. This report evaluates several potential tracking algorithms for large-scale tracking in an urban environment.« less

  10. Error analysis of motion correction method for laser scanning of moving objects

    NASA Astrophysics Data System (ADS)

    Goel, S.; Lohani, B.

    2014-05-01

    The limitation of conventional laser scanning methods is that the objects being scanned should be static. The need of scanning moving objects has resulted in the development of new methods capable of generating correct 3D geometry of moving objects. Limited literature is available showing development of very few methods capable of catering to the problem of object motion during scanning. All the existing methods utilize their own models or sensors. Any studies on error modelling or analysis of any of the motion correction methods are found to be lacking in literature. In this paper, we develop the error budget and present the analysis of one such `motion correction' method. This method assumes availability of position and orientation information of the moving object which in general can be obtained by installing a POS system on board or by use of some tracking devices. It then uses this information along with laser scanner data to apply correction to laser data, thus resulting in correct geometry despite the object being mobile during scanning. The major application of this method lie in the shipping industry to scan ships either moving or parked in the sea and to scan other objects like hot air balloons or aerostats. It is to be noted that the other methods of "motion correction" explained in literature can not be applied to scan the objects mentioned here making the chosen method quite unique. This paper presents some interesting insights in to the functioning of "motion correction" method as well as a detailed account of the behavior and variation of the error due to different sensor components alone and in combination with each other. The analysis can be used to obtain insights in to optimal utilization of available components for achieving the best results.

  11. Estimating the number of people in crowded scenes

    NASA Astrophysics Data System (ADS)

    Kim, Minjin; Kim, Wonjun; Kim, Changick

    2011-01-01

    This paper presents a method to estimate the number of people in crowded scenes without using explicit object segmentation or tracking. The proposed method consists of three steps as follows: (1) extracting space-time interest points using eigenvalues of the local spatio-temporal gradient matrix, (2) generating crowd regions based on space-time interest points, and (3) estimating the crowd density based on the multiple regression. In experimental results, the efficiency and robustness of our proposed method are demonstrated by using PETS 2009 dataset.

  12. Probabilistic Multi-Person Tracking Using Dynamic Bayes Networks

    NASA Astrophysics Data System (ADS)

    Klinger, T.; Rottensteiner, F.; Heipke, C.

    2015-08-01

    Tracking-by-detection is a widely used practice in recent tracking systems. These usually rely on independent single frame detections that are handled as observations in a recursive estimation framework. If these observations are imprecise the generated trajectory is prone to be updated towards a wrong position. In contrary to existing methods our novel approach uses a Dynamic Bayes Network in which the state vector of a recursive Bayes filter, as well as the location of the tracked object in the image are modelled as unknowns. These unknowns are estimated in a probabilistic framework taking into account a dynamic model, and a state-of-the-art pedestrian detector and classifier. The classifier is based on the Random Forest-algorithm and is capable of being trained incrementally so that new training samples can be incorporated at runtime. This allows the classifier to adapt to the changing appearance of a target and to unlearn outdated features. The approach is evaluated on a publicly available benchmark. The results confirm that our approach is well suited for tracking pedestrians over long distances while at the same time achieving comparatively good geometric accuracy.

  13. Monocular Stereo Measurement Using High-Speed Catadioptric Tracking

    PubMed Central

    Hu, Shaopeng; Matsumoto, Yuji; Takaki, Takeshi; Ishii, Idaku

    2017-01-01

    This paper presents a novel concept of real-time catadioptric stereo tracking using a single ultrafast mirror-drive pan-tilt active vision system that can simultaneously switch between hundreds of different views in a second. By accelerating video-shooting, computation, and actuation at the millisecond-granularity level for time-division multithreaded processing in ultrafast gaze control, the active vision system can function virtually as two or more tracking cameras with different views. It enables a single active vision system to act as virtual left and right pan-tilt cameras that can simultaneously shoot a pair of stereo images for the same object to be observed at arbitrary viewpoints by switching the direction of the mirrors of the active vision system frame by frame. We developed a monocular galvano-mirror-based stereo tracking system that can switch between 500 different views in a second, and it functions as a catadioptric active stereo with left and right pan-tilt tracking cameras that can virtually capture 8-bit color 512×512 images each operating at 250 fps to mechanically track a fast-moving object with a sufficient parallax for accurate 3D measurement. Several tracking experiments for moving objects in 3D space are described to demonstrate the performance of our monocular stereo tracking system. PMID:28792483

  14. Methods to Improve the Maintenance of the Earth Catalog of Satellites During Severe Solar Storms

    NASA Technical Reports Server (NTRS)

    Wilkin, Paul G.; Tolson, Robert H.

    1998-01-01

    The objective of this thesis is to investigate methods to improve the ability to maintain the inventory of orbital elements of Earth satellites during periods of atmospheric disturbance brought on by severe solar activity. Existing techniques do not account for such atmospheric dynamics, resulting in tracking errors of several seconds in predicted crossing time. Two techniques are examined to reduce of these tracking errors. First, density predicted from various atmospheric models is fit to the orbital decay rate for a number of satellites. An orbital decay model is then developed that could be used to reduce tracking errors by accounting for atmospheric changes. The second approach utilizes a Kalman filter to estimate the orbital decay rate of a satellite after every observation. The new information is used to predict the next observation. Results from the first approach demonstrated the feasibility of building an orbital decay model based on predicted atmospheric density. Correlation of atmospheric density to orbital decay was as high as 0.88. However, it is clear that contemporary: atmospheric models need further improvement in modeling density perturbations polar region brought on by solar activity. The second approach resulted in a dramatic reduction in tracking errors for certain satellites during severe solar Storms. For example, in the limited cases studied, the reduction in tracking errors ranged from 79 to 25 percent.

  15. Response of CR-39 to 0.9-2.5 MeV protons for KOH and NaOH etching solutions

    NASA Astrophysics Data System (ADS)

    Bahrami, F.; Mianji, F.; Faghihi, R.; Taheri, M.; Ansarinejad, A.

    2016-03-01

    In some circumstances passive detecting methods are the only or preferable measuring approaches. For instance, defining particles' energy profile inside the objects being irradiated with heavy ions and measuring fluence of neutrons or heavy particles in space missions are the cases covered by these methods. In this paper the ability of polyallyl diglycol carbonate (PADC) track detector (commercially known as CR-39) for passive spectrometry of proton particles is studied. Furthermore, the effect of KOH and NaOH as commonly used chemical etching solutions on the response of the detector is investigated. The experiments were carried out with protons in the energy range of 0.94-2.5 MeV generated by a Van de Graaff accelerator. Then, the exposed track dosimeters were etched in the two aforementioned etchants through similar procedure with the same normality of 6.25 N and the same temperature of 85 °C. Formation of the tracks was precisely investigated and the track diameters were recorded following every etching step for each solution using a multistage etching process. The results showed that the proposed method can be efficiently used for the spectrometry of protons over a wider dynamic range and with a reasonable accuracy. Moreover, NaOH and KOH outperformed each other over different regions of the proton energy range. The detection efficiency of both etchants was approximately 100%.

  16. Robust online tracking via adaptive samples selection with saliency detection

    NASA Astrophysics Data System (ADS)

    Yan, Jia; Chen, Xi; Zhu, QiuPing

    2013-12-01

    Online tracking has shown to be successful in tracking of previously unknown objects. However, there are two important factors which lead to drift problem of online tracking, the one is how to select the exact labeled samples even when the target locations are inaccurate, and the other is how to handle the confusors which have similar features with the target. In this article, we propose a robust online tracking algorithm with adaptive samples selection based on saliency detection to overcome the drift problem. To deal with the problem of degrading the classifiers using mis-aligned samples, we introduce the saliency detection method to our tracking problem. Saliency maps and the strong classifiers are combined to extract the most correct positive samples. Our approach employs a simple yet saliency detection algorithm based on image spectral residual analysis. Furthermore, instead of using the random patches as the negative samples, we propose a reasonable selection criterion, in which both the saliency confidence and similarity are considered with the benefits that confusors in the surrounding background are incorporated into the classifiers update process before the drift occurs. The tracking task is formulated as a binary classification via online boosting framework. Experiment results in several challenging video sequences demonstrate the accuracy and stability of our tracker.

  17. A high-speed tracking algorithm for dense granular media

    NASA Astrophysics Data System (ADS)

    Cerda, Mauricio; Navarro, Cristóbal A.; Silva, Juan; Waitukaitis, Scott R.; Mujica, Nicolás; Hitschfeld, Nancy

    2018-06-01

    Many fields of study, including medical imaging, granular physics, colloidal physics, and active matter, require the precise identification and tracking of particle-like objects in images. While many algorithms exist to track particles in diffuse conditions, these often perform poorly when particles are densely packed together-as in, for example, solid-like systems of granular materials. Incorrect particle identification can have significant effects on the calculation of physical quantities, which makes the development of more precise and faster tracking algorithms a worthwhile endeavor. In this work, we present a new tracking algorithm to identify particles in dense systems that is both highly accurate and fast. We demonstrate the efficacy of our approach by analyzing images of dense, solid-state granular media, where we achieve an identification error of 5% in the worst evaluated cases. Going further, we propose a parallelization strategy for our algorithm using a GPU, which results in a speedup of up to 10 × when compared to a sequential CPU implementation in C and up to 40 × when compared to the reference MATLAB library widely used for particle tracking. Our results extend the capabilities of state-of-the-art particle tracking methods by allowing fast, high-fidelity detection in dense media at high resolutions.

  18. 3D gaze tracking system for NVidia 3D Vision®.

    PubMed

    Wibirama, Sunu; Hamamoto, Kazuhiko

    2013-01-01

    Inappropriate parallax setting in stereoscopic content generally causes visual fatigue and visual discomfort. To optimize three dimensional (3D) effects in stereoscopic content by taking into account health issue, understanding how user gazes at 3D direction in virtual space is currently an important research topic. In this paper, we report the study of developing a novel 3D gaze tracking system for Nvidia 3D Vision(®) to be used in desktop stereoscopic display. We suggest an optimized geometric method to accurately measure the position of virtual 3D object. Our experimental result shows that the proposed system achieved better accuracy compared to conventional geometric method by average errors 0.83 cm, 0.87 cm, and 1.06 cm in X, Y, and Z dimensions, respectively.

  19. Tracks detection from high-orbit space objects

    NASA Astrophysics Data System (ADS)

    Shumilov, Yu. P.; Vygon, V. G.; Grishin, E. A.; Konoplev, A. O.; Semichev, O. P.; Shargorodskii, V. D.

    2017-05-01

    The paper presents studies results of a complex algorithm for the detection of highly orbital space objects. Before the implementation of the algorithm, a series of frames with weak tracks of space objects, which can be discrete, is recorded. The algorithm includes pre-processing, classical for astronomy, consistent filtering of each frame and its threshold processing, shear transformation, median filtering of the transformed series of frames, repeated threshold processing and detection decision making. Modeling of space objects weak tracks on of the night starry sky real frames obtained in the regime of a stationary telescope was carried out. It is shown that the permeability of an optoelectronic device has increased by almost 2m.

  20. Phenomenal Permanence and the Development of Predictive Tracking in Infancy

    ERIC Educational Resources Information Center

    Bertenthal, Bennett I.; Longo, Matthew R.; Kenny, Sarah

    2007-01-01

    The perceived spatiotemporal continuity of objects depends on the way they appear and disappear as they move in the spatial layout. This study investigated whether infants' predictive tracking of a briefly occluded object is sensitive to the manner by which the object disappears and reappears. Five-, 7-, and 9-month-old infants were shown a ball…

  1. SU-F-303-11: Implementation and Applications of Rapid, SIFT-Based Cine MR Image Binning and Region Tracking

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mazur, T; Wang, Y; Fischer-Valuck, B

    2015-06-15

    Purpose: To develop a novel and rapid, SIFT-based algorithm for assessing feature motion on cine MR images acquired during MRI-guided radiotherapy treatments. In particular, we apply SIFT descriptors toward both partitioning cine images into respiratory states and tracking regions across frames. Methods: Among a training set of images acquired during a fraction, we densely assign SIFT descriptors to pixels within the images. We cluster these descriptors across all frames in order to produce a dictionary of trackable features. Associating the best-matching descriptors at every frame among the training images to these features, we construct motion traces for the features. Wemore » use these traces to define respiratory bins for sorting images in order to facilitate robust pixel-by-pixel tracking. Instead of applying conventional methods for identifying pixel correspondences across frames we utilize a recently-developed algorithm that derives correspondences via a matching objective for SIFT descriptors. Results: We apply these methods to a collection of lung, abdominal, and breast patients. We evaluate the procedure for respiratory binning using target sites exhibiting high-amplitude motion among 20 lung and abdominal patients. In particular, we investigate whether these methods yield minimal variation between images within a bin by perturbing the resulting image distributions among bins. Moreover, we compare the motion between averaged images across respiratory states to 4DCT data for these patients. We evaluate the algorithm for obtaining pixel correspondences between frames by tracking contours among a set of breast patients. As an initial case, we track easily-identifiable edges of lumpectomy cavities that show minimal motion over treatment. Conclusions: These SIFT-based methods reliably extract motion information from cine MR images acquired during patient treatments. While we performed our analysis retrospectively, the algorithm lends itself to prospective motion assessment. Applications of these methods include motion assessment, identifying treatment windows for gating, and determining optimal margins for treatment.« less

  2. Indoor Trajectory Tracking Scheme Based on Delaunay Triangulation and Heuristic Information in Wireless Sensor Networks.

    PubMed

    Qin, Junping; Sun, Shiwen; Deng, Qingxu; Liu, Limin; Tian, Yonghong

    2017-06-02

    Object tracking and detection is one of the most significant research areas for wireless sensor networks. Existing indoor trajectory tracking schemes in wireless sensor networks are based on continuous localization and moving object data mining. Indoor trajectory tracking based on the received signal strength indicator ( RSSI ) has received increased attention because it has low cost and requires no special infrastructure. However, RSSI tracking introduces uncertainty because of the inaccuracies of measurement instruments and the irregularities (unstable, multipath, diffraction) of wireless signal transmissions in indoor environments. Heuristic information includes some key factors for trajectory tracking procedures. This paper proposes a novel trajectory tracking scheme based on Delaunay triangulation and heuristic information (TTDH). In this scheme, the entire field is divided into a series of triangular regions. The common side of adjacent triangular regions is regarded as a regional boundary. Our scheme detects heuristic information related to a moving object's trajectory, including boundaries and triangular regions. Then, the trajectory is formed by means of a dynamic time-warping position-fingerprint-matching algorithm with heuristic information constraints. Field experiments show that the average error distance of our scheme is less than 1.5 m, and that error does not accumulate among the regions.

  3. Jet energy calibration at the LHC

    DOE PAGES

    Schwartzman, Ariel

    2015-11-10

    In this study, jets are one of the most prominent physics signatures of high energy proton–proton (p–p) collisions at the Large Hadron Collider (LHC). They are key physics objects for precision measurements and searches for new phenomena. This review provides an overview of the reconstruction and calibration of jets at the LHC during its first Run. ATLAS and CMS developed different approaches for the reconstruction of jets, but use similar methods for the energy calibration. ATLAS reconstructs jets utilizing input signals from their calorimeters and use charged particle tracks to refine their energy measurement and suppress the effects of multiplemore » p–p interactions ( pileup). CMS, instead, combines calorimeter and tracking information to build jets from particle flow objects. Jets are calibrated using Monte Carlo (MC) simulations and a residual in situ calibration derived from collision data is applied to correct for the differences in jet response between data and Monte Carlo.« less

  4. Optical derotator alignment using image-processing algorithm for tracking laser vibrometer measurements of rotating objects.

    PubMed

    Khalil, Hossam; Kim, Dongkyu; Jo, Youngjoon; Park, Kyihwan

    2017-06-01

    An optical component called a Dove prism is used to rotate the laser beam of a laser-scanning vibrometer (LSV). This is called a derotator and is used for measuring the vibration of rotating objects. The main advantage of a derotator is that it works independently from an LSV. However, this device requires very specific alignment, in which the axis of the Dove prism must coincide with the rotational axis of the object. If the derotator is misaligned with the rotating object, the results of the vibration measurement are imprecise, owing to the alteration of the laser beam on the surface of the rotating object. In this study, a method is proposed for aligning a derotator with a rotating object through an image-processing algorithm that obtains the trajectory of a landmark attached to the object. After the trajectory of the landmark is mathematically modeled, the amount of derotator misalignment with respect to the object is calculated. The accuracy of the proposed method for aligning the derotator with the rotating object is experimentally tested.

  5. A Tactical Database for the Low Cost Combat Direction System

    DTIC Science & Technology

    1990-12-01

    another object. Track is a representation of some environmental phenomena converted into accurate estimates of geographical position with respect to...by the method CALCULATE RELATIVE POSITION. In order to obtain a better similarity of mehods , the methods OWNSHIP DISTANCE TO PIM, ESTIMATED TIME OF...this mechanism entails the risk that the user will lose all of the work that was done if conflicts are detected and the transaction cannot be committed

  6. Path synthesis of four-bar mechanisms using synergy of polynomial neural network and Stackelberg game theory

    NASA Astrophysics Data System (ADS)

    Ahmadi, Bahman; Nariman-zadeh, Nader; Jamali, Ali

    2017-06-01

    In this article, a novel approach based on game theory is presented for multi-objective optimal synthesis of four-bar mechanisms. The multi-objective optimization problem is modelled as a Stackelberg game. The more important objective function, tracking error, is considered as the leader, and the other objective function, deviation of the transmission angle from 90° (TA), is considered as the follower. In a new approach, a group method of data handling (GMDH)-type neural network is also utilized to construct an approximate model for the rational reaction set (RRS) of the follower. Using the proposed game-theoretic approach, the multi-objective optimal synthesis of a four-bar mechanism is then cast into a single-objective optimal synthesis using the leader variables and the obtained RRS of the follower. The superiority of using the synergy game-theoretic method of Stackelberg with a GMDH-type neural network is demonstrated for two case studies on the synthesis of four-bar mechanisms.

  7. Getting Inside the Expert's Head: An Analysis of Physician Cognitive Processes During Trauma Resuscitations.

    PubMed

    White, Matthew R; Braund, Heather; Howes, Daniel; Egan, Rylan; Gegenfurtner, Andreas; van Merrienboer, Jeroen J G; Szulewski, Adam

    2018-04-23

    Crisis resource management skills are integral to leading the resuscitation of a critically ill patient. Despite their importance, crisis resource management skills (and their associated cognitive processes) have traditionally been difficult to study in the real world. The objective of this study was to derive key cognitive processes underpinning expert performance in resuscitation medicine, using a new eye-tracking-based video capture method during clinical cases. During an 18-month period, a sample of 10 trauma resuscitations led by 4 expert trauma team leaders was analyzed. The physician team leaders were outfitted with mobile eye-tracking glasses for each case. After each resuscitation, participants were debriefed with a modified cognitive task analysis, based on a cued-recall protocol, augmented by viewing their own first-person perspective eye-tracking video from the clinical encounter. Eye-tracking technology was successfully applied as a tool to aid in the qualitative analysis of expert performance in a clinical setting. All participants stated that using these methods helped uncover previously unconscious aspects of their cognition. Overall, 5 major themes were derived from the interviews: logistic awareness, managing uncertainty, visual fixation behaviors, selective attendance to information, and anticipatory behaviors. The novel approach of cognitive task analysis augmented by eye tracking allowed the derivation of 5 unique cognitive processes underpinning expert performance in leading a resuscitation. An understanding of these cognitive processes has the potential to enhance educational methods and to create new assessment modalities of these previously tacit aspects of expertise in this field. Copyright © 2018 American College of Emergency Physicians. Published by Elsevier Inc. All rights reserved.

  8. Implementation of an object oriented track reconstruction model into multiple LHC experiments*

    NASA Astrophysics Data System (ADS)

    Gaines, Irwin; Gonzalez, Saul; Qian, Sijin

    2001-10-01

    An Object Oriented (OO) model (Gaines et al., 1996; 1997; Gaines and Qian, 1998; 1999) for track reconstruction by the Kalman filtering method has been designed for high energy physics experiments at high luminosity hadron colliders. The model has been coded in the C++ programming language and has been successfully implemented into the OO computing environments of both the CMS (1994) and ATLAS (1994) experiments at the future Large Hadron Collider (LHC) at CERN. We shall report: how the OO model was adapted, with largely the same code, to different scenarios and serves the different reconstruction aims in different experiments (i.e. the level-2 trigger software for ATLAS and the offline software for CMS); how the OO model has been incorporated into different OO environments with a similar integration structure (demonstrating the ease of re-use of OO program); what are the OO model's performance, including execution time, memory usage, track finding efficiency and ghost rate, etc.; and additional physics performance based on use of the OO tracking model. We shall also mention the experience and lessons learned from the implementation of the OO model into the general OO software framework of the experiments. In summary, our practice shows that the OO technology really makes the software development and the integration issues straightforward and convenient; this may be particularly beneficial for the general non-computer-professional physicists.

  9. Delineating the Neural Signatures of Tracking Spatial Position and Working Memory during Attentive Tracking

    PubMed Central

    Drew, Trafton; Horowitz, Todd S.; Wolfe, Jeremy M.; Vogel, Edward K.

    2015-01-01

    In the attentive tracking task, observers track multiple objects as they move independently and unpredictably among visually identical distractors. Although a number of models of attentive tracking implicate visual working memory as the mechanism responsible for representing target locations, no study has ever directly compared the neural mechanisms of the two tasks. In the current set of experiments, we used electrophysiological recordings to delineate similarities and differences between the neural processing involved in working memory and attentive tracking. We found that the contralateral electrophysiological response to the two tasks was similarly sensitive to the number of items attended in both tasks but that there was also a unique contralateral negativity related to the process of monitoring target position during tracking. This signal was absent for periods of time during tracking tasks when objects briefly stopped moving. These results provide evidence that, during attentive tracking, the process of tracking target locations elicits an electrophysiological response that is distinct and dissociable from neural measures of the number of items being attended. PMID:21228175

  10. Object motion computation for the initiation of smooth pursuit eye movements in humans.

    PubMed

    Wallace, Julian M; Stone, Leland S; Masson, Guillaume S

    2005-04-01

    Pursuing an object with smooth eye movements requires an accurate estimate of its two-dimensional (2D) trajectory. This 2D motion computation requires that different local motion measurements are extracted and combined to recover the global object-motion direction and speed. Several combination rules have been proposed such as vector averaging (VA), intersection of constraints (IOC), or 2D feature tracking (2DFT). To examine this computation, we investigated the time course of smooth pursuit eye movements driven by simple objects of different shapes. For type II diamond (where the direction of true object motion is dramatically different from the vector average of the 1-dimensional edge motions, i.e., VA not equal IOC = 2DFT), the ocular tracking is initiated in the vector average direction. Over a period of less than 300 ms, the eye-tracking direction converges on the true object motion. The reduction of the tracking error starts before the closing of the oculomotor loop. For type I diamonds (where the direction of true object motion is identical to the vector average direction, i.e., VA = IOC = 2DFT), there is no such bias. We quantified this effect by calculating the direction error between responses to types I and II and measuring its maximum value and time constant. At low contrast and high speeds, the initial bias in tracking direction is larger and takes longer to converge onto the actual object-motion direction. This effect is attenuated with the introduction of more 2D information to the extent that it was totally obliterated with a texture-filled type II diamond. These results suggest a flexible 2D computation for motion integration, which combines all available one-dimensional (edge) and 2D (feature) motion information to refine the estimate of object-motion direction over time.

  11. Online Sentence Reading in People With Aphasia: Evidence From Eye Tracking

    PubMed Central

    Knilans, Jessica

    2015-01-01

    Purpose There is a lot of evidence that people with aphasia have more difficulty understanding structurally complex sentences (e.g., object clefts) than simpler sentences (subject clefts). However, subject clefts also occur more frequently in English than object clefts. Thus, it is possible that both structural complexity and frequency affect how people with aphasia understand these structures. Method Nine people with aphasia and 8 age-matched controls participated in the study. The stimuli consisted of 24 object cleft and 24 subject cleft sentences. The task was eye tracking during reading, which permits a more fine-grained analysis of reading performance than measures such as self-paced reading. Results As expected, controls had longer reading times for critical regions in object cleft sentences compared with subject cleft sentences. People with aphasia showed the predicted effects of structural frequency. Effects of structural complexity in people with aphasia did not emerge on their first pass through the sentence but were observed when they were rereading critical regions of complex sentences. Conclusions People with aphasia are sensitive to both structural complexity and structural frequency when reading. However, people with aphasia may use different reading strategies than controls when confronted with relatively infrequent and complex sentence structures. PMID:26383779

  12. A-Track: A new approach for detection of moving objects in FITS images

    NASA Astrophysics Data System (ADS)

    Atay, T.; Kaplan, M.; Kilic, Y.; Karapinar, N.

    2016-10-01

    We have developed a fast, open-source, cross-platform pipeline, called A-Track, for detecting the moving objects (asteroids and comets) in sequential telescope images in FITS format. The pipeline is coded in Python 3. The moving objects are detected using a modified line detection algorithm, called MILD. We tested the pipeline on astronomical data acquired by an SI-1100 CCD with a 1-meter telescope. We found that A-Track performs very well in terms of detection efficiency, stability, and processing time. The code is hosted on GitHub under the GNU GPL v3 license.

  13. High-performance object tracking and fixation with an online neural estimator.

    PubMed

    Kumarawadu, Sisil; Watanabe, Keigo; Lee, Tsu-Tian

    2007-02-01

    Vision-based target tracking and fixation to keep objects that move in three dimensions in view is important for many tasks in several fields including intelligent transportation systems and robotics. Much of the visual control literature has focused on the kinematics of visual control and ignored a number of significant dynamic control issues that limit performance. In line with this, this paper presents a neural network (NN)-based binocular tracking scheme for high-performance target tracking and fixation with minimum sensory information. The procedure allows the designer to take into account the physical (Lagrangian dynamics) properties of the vision system in the control law. The design objective is to synthesize a binocular tracking controller that explicitly takes the systems dynamics into account, yet needs no knowledge of dynamic nonlinearities and joint velocity sensory information. The combined neurocontroller-observer scheme can guarantee the uniform ultimate bounds of the tracking, observer, and NN weight estimation errors under fairly general conditions on the controller-observer gains. The controller is tested and verified via simulation tests in the presence of severe target motion changes.

  14. A Scalable Distributed Approach to Mobile Robot Vision

    NASA Technical Reports Server (NTRS)

    Kuipers, Benjamin; Browning, Robert L.; Gribble, William S.

    1997-01-01

    This paper documents our progress during the first year of work on our original proposal entitled 'A Scalable Distributed Approach to Mobile Robot Vision'. We are pursuing a strategy for real-time visual identification and tracking of complex objects which does not rely on specialized image-processing hardware. In this system perceptual schemas represent objects as a graph of primitive features. Distributed software agents identify and track these features, using variable-geometry image subwindows of limited size. Active control of imaging parameters and selective processing makes simultaneous real-time tracking of many primitive features tractable. Perceptual schemas operate independently from the tracking of primitive features, so that real-time tracking of a set of image features is not hurt by latency in recognition of the object that those features make up. The architecture allows semantically significant features to be tracked with limited expenditure of computational resources, and allows the visual computation to be distributed across a network of processors. Early experiments are described which demonstrate the usefulness of this formulation, followed by a brief overview of our more recent progress (after the first year).

  15. Catalogue Creation for Space Situational Awareness with Optical Sensors

    NASA Astrophysics Data System (ADS)

    Hobson, T.; Clarkson, I.; Bessell, T.; Rutten, M.; Gordon, N.; Moretti, N.; Morreale, B.

    2016-09-01

    In order to safeguard the continued use of space-based technologies, effective monitoring and tracking of man-made resident space objects (RSOs) is paramount. The diverse characteristics, behaviours and trajectories of RSOs make space surveillance a challenging application of the discipline that is tracking and surveillance. When surveillance systems are faced with non-canonical scenarios, it is common for human operators to intervene while researchers adapt and extend traditional tracking techniques in search of a solution. A complementary strategy for improving the robustness of space surveillance systems is to place greater emphasis on the anticipation of uncertainty. Namely, give the system the intelligence necessary to autonomously react to unforeseen events and to intelligently and appropriately act on tenuous information rather than discard it. In this paper we build from our 2015 campaign and describe the progression of a low-cost intelligent space surveillance system capable of autonomously cataloguing and maintaining track of RSOs. It currently exploits robotic electro-optical sensors, high-fidelity state-estimation and propagation as well as constrained initial orbit determination (IOD) to intelligently and adaptively manage its sensors in order to maintain an accurate catalogue of RSOs. In a step towards fully autonomous cataloguing, the system has been tasked with maintaining surveillance of a portion of the geosynchronous (GEO) belt. Using a combination of survey and track-refinement modes, the system is capable of maintaining a track of known RSOs and initiating tracks on previously unknown objects. Uniquely, due to the use of high-fidelity representations of a target's state uncertainty, as few as two images of previously unknown RSOs may be used to subsequently initiate autonomous search and reacquisition. To achieve this capability, particularly within the congested environment of the GEO-belt, we use a constrained admissible region (CAR) to generate a plausible estimate of the unknown RSO's state probability density function and disambiguate measurements using a particle-based joint probability data association (JPDA) method. Additionally, the use of alternative CAR generation methods, incorporating catalogue-based priors, is explored and tested. We also present the findings of two field trials of an experimental system that incorporates these techniques. The results demonstrate that such a system is capable of autonomously searching for an RSO that was briefly observed days prior in a GEO-survey and discriminating it from the measurements of other previously catalogued RSOs.

  16. Bit of History and Some Lessons Learned in Using NASA Remote Sensing Data in Public Health Applications

    NASA Technical Reports Server (NTRS)

    Quattrochi, Dale A.; Estes, Sue

    2011-01-01

    The NASA Applied Sciences Program's public health initiative began in 2004 to illustratethe potential benefits for using remote sensing in public health applications. Objectives/Purpose: The CDC initiated a st udy with NASA through the National Center for Environmental Health (NCEH) to establish a pilot effort to use remote sensing data as part of its Environmental Public Health Tracking Network (EPHTN). As a consequence, the NCEH and NASA developed a project called HELIX-Atlanta (Health and Environment Linkage for Information Exchange) to demonstrate a process for developing a local environmental public health tracking and surveillance network that integrates non-infectious health and environment systems for the Atlanta metropolitan area. Methods: As an ongo ing, systematic integration, analysis and interpretation of data, an EPHTN focuses on: 1 -- environmental hazards; 2 -- human exposure to environmental hazards; and 3 -- health effects potentially related to exposure to environmental hazards. To satisfy the definition of a surveillance system the data must be disseminated to plan, implement, and evaluate environmental public health action. Results: A close working r elationship developed with NCEH where information was exchanged to assist in the development of an EPHTN that incorporated NASA remote sensing data into a surveillance network for disseminating public health tracking information to users. This project?s success provided NASA with the opportunity to work with other public health entities such as the University of Mississippi Medical Center, the University of New Mexico and the University of Arizona. Conclusions: HELIX-Atlanta became a functioning part of the national EPHTN for tracking environmental hazards and exposure, particularly as related to air quality over Atlanta. Learning Objectives: 1 -- remote sensing data can be integral to an EPHTN; 2 -- public tracking objectives can be enhanced through remote sensing data; 3 -- NASA's involvement in public health applications can have wider benefits in the future.

  17. Detection and tracking of drones using advanced acoustic cameras

    NASA Astrophysics Data System (ADS)

    Busset, Joël.; Perrodin, Florian; Wellig, Peter; Ott, Beat; Heutschi, Kurt; Rühl, Torben; Nussbaumer, Thomas

    2015-10-01

    Recent events of drones flying over city centers, official buildings and nuclear installations stressed the growing threat of uncontrolled drone proliferation and the lack of real countermeasure. Indeed, detecting and tracking them can be difficult with traditional techniques. A system to acoustically detect and track small moving objects, such as drones or ground robots, using acoustic cameras is presented. The described sensor, is completely passive, and composed of a 120-element microphone array and a video camera. The acoustic imaging algorithm determines in real-time the sound power level coming from all directions, using the phase of the sound signals. A tracking algorithm is then able to follow the sound sources. Additionally, a beamforming algorithm selectively extracts the sound coming from each tracked sound source. This extracted sound signal can be used to identify sound signatures and determine the type of object. The described techniques can detect and track any object that produces noise (engines, propellers, tires, etc). It is a good complementary approach to more traditional techniques such as (i) optical and infrared cameras, for which the object may only represent few pixels and may be hidden by the blooming of a bright background, and (ii) radar or other echo-localization techniques, suffering from the weakness of the echo signal coming back to the sensor. The distance of detection depends on the type (frequency range) and volume of the noise emitted by the object, and on the background noise of the environment. Detection range and resilience to background noise were tested in both, laboratory environments and outdoor conditions. It was determined that drones can be tracked up to 160 to 250 meters, depending on their type. Speech extraction was also experimentally investigated: the speech signal of a person being 80 to 100 meters away can be captured with acceptable speech intelligibility.

  18. Application of Template Matching for Improving Classification of Urban Railroad Point Clouds

    PubMed Central

    Arastounia, Mostafa; Oude Elberink, Sander

    2016-01-01

    This study develops an integrated data-driven and model-driven approach (template matching) that clusters the urban railroad point clouds into three classes of rail track, contact cable, and catenary cable. The employed dataset covers 630 m of the Dutch urban railroad corridors in which there are four rail tracks, two contact cables, and two catenary cables. The dataset includes only geometrical information (three dimensional (3D) coordinates of the points) with no intensity data and no RGB data. The obtained results indicate that all objects of interest are successfully classified at the object level with no false positives and no false negatives. The results also show that an average 97.3% precision and an average 97.7% accuracy at the point cloud level are achieved. The high precision and high accuracy of the rail track classification (both greater than 96%) at the point cloud level stems from the great impact of the employed template matching method on excluding the false positives. The cables also achieve quite high average precision (96.8%) and accuracy (98.4%) due to their high sampling and isolated position in the railroad corridor. PMID:27973452

  19. A software-based tool for video motion tracking in the surgical skills assessment landscape.

    PubMed

    Ganni, Sandeep; Botden, Sanne M B I; Chmarra, Magdalena; Goossens, Richard H M; Jakimowicz, Jack J

    2018-01-16

    The use of motion tracking has been proved to provide an objective assessment in surgical skills training. Current systems, however, require the use of additional equipment or specialised laparoscopic instruments and cameras to extract the data. The aim of this study was to determine the possibility of using a software-based solution to extract the data. 6 expert and 23 novice participants performed a basic laparoscopic cholecystectomy procedure in the operating room. The recorded videos were analysed using Kinovea 0.8.15 and the following parameters calculated the path length, average instrument movement and number of sudden or extreme movements. The analysed data showed that experts had significantly shorter path length (median 127 cm vs. 187 cm, p = 0.01), smaller average movements (median 0.40 cm vs. 0.32 cm, p = 0.002) and fewer sudden movements (median 14.00 vs. 21.61, p = 0.001) than their novice counterparts. The use of software-based video motion tracking of laparoscopic cholecystectomy is a simple and viable method enabling objective assessment of surgical performance. It provides clear discrimination between expert and novice performance.

  20. Face landmark point tracking using LK pyramid optical flow

    NASA Astrophysics Data System (ADS)

    Zhang, Gang; Tang, Sikan; Li, Jiaquan

    2018-04-01

    LK pyramid optical flow is an effective method to implement object tracking in a video. It is used for face landmark point tracking in a video in the paper. The landmark points, i.e. outer corner of left eye, inner corner of left eye, inner corner of right eye, outer corner of right eye, tip of a nose, left corner of mouth, right corner of mouth, are considered. It is in the first frame that the landmark points are marked by hand. For subsequent frames, performance of tracking is analyzed. Two kinds of conditions are considered, i.e. single factors such as normalized case, pose variation and slowly moving, expression variation, illumination variation, occlusion, front face and rapidly moving, pose face and rapidly moving, and combination of the factors such as pose and illumination variation, pose and expression variation, pose variation and occlusion, illumination and expression variation, expression variation and occlusion. Global measures and local ones are introduced to evaluate performance of tracking under different factors or combination of the factors. The global measures contain the number of images aligned successfully, average alignment error, the number of images aligned before failure, and the local ones contain the number of images aligned successfully for components of a face, average alignment error for the components. To testify performance of tracking for face landmark points under different cases, tests are carried out for image sequences gathered by us. Results show that the LK pyramid optical flow method can implement face landmark point tracking under normalized case, expression variation, illumination variation which does not affect facial details, pose variation, and that different factors or combination of the factors have different effect on performance of alignment for different landmark points.

  1. Growth in the Number of SSN Tracked Orbital Objects

    NASA Technical Reports Server (NTRS)

    Stansbery, Eugene G.

    2004-01-01

    The number of objects in earth orbit tracked by the US Space Surveillance Network (SSN) has experienced unprecedented growth since March, 2003. Approximately 2000 orbiting objects have been added to the "Analyst list" of tracked objects. This growth is primarily due to the resumption of full power/full time operation of the AN/FPS-108 Cobra Dane radar located on Shemya Island, AK. Cobra Dane is an L-band (23-cm wavelength) phased array radar which first became operational in 1977. Cobra Dane was a "Collateral Sensor" in the SSN until 1994 when its communication link with the Space Control Center (SCC) was closed. NASA and the Air Force conducted tests in 1999 using Cobra Dane to detect and track small debris. These tests confirmed that the radar was capable of detecting and maintaining orbits on objects as small as 5-cm diameter. Subsequently, Cobra Dane was reconnected to the SSN and resumed full power/full time space surveillance operations on March 4, 2003. This paper will examine the new data and its implications to the understanding of the orbital debris environment and orbital safety.

  2. Reading between the Lines: Implicit Assessment of the Association of Parental Attributions and Empathy with Abuse Risk

    ERIC Educational Resources Information Center

    Rodriguez, Christina M.; Cook, Anne E.; Jedrziewski, Chezlie T.

    2012-01-01

    Objective: Researchers in the child maltreatment field have traditionally relied on explicit self-reports to study factors that may exacerbate physical child abuse risk. The current investigation evaluated an implicit analog task utilizing eye tracking technology to assess both parental attributions of child misbehavior and empathy. Method: Based…

  3. Tourniquet Syndrome: Interest of a Systematic Analysis of Families' Social Conditions to Detect Neglect Situations

    ERIC Educational Resources Information Center

    Claudet, Isabelle; Pasian, Nicolas; Debuisson, Cecile; Salanne, Sophie; Rekhroukh, Hocine

    2009-01-01

    Objective: Describe the correlates of tourniquet syndromes, analyze family social situation to detect neglectful behaviors and analyze the tracking of subsequent Pediatric Emergency Department (PED) admissions to identify at risk families. Material and methods: From January 1, 2003 to December 31, 2007 all patients admitted to the PED for…

  4. Parsing Heterogeneity in Autism Spectrum Disorders: Visual Scanning of Dynamic Social Scenes in School-Aged Children

    ERIC Educational Resources Information Center

    Rice, Katherine; Moriuchi, Jennifer M.; Jones, Warren; Klin, Ami

    2012-01-01

    Objective: To examine patterns of variability in social visual engagement and their relationship to standardized measures of social disability in a heterogeneous sample of school-aged children with autism spectrum disorders (ASD). Method: Eye-tracking measures of visual fixation during free-viewing of dynamic social scenes were obtained for 109…

  5. Externalizing Behavior Problems and Cigarette Smoking as Predictors of Cannabis Use: The TRAILS Study

    ERIC Educational Resources Information Center

    Korhonen, Tellervo; van Leeuwen, Andrea Prince; Reijneveld, Sijmen A.; Ormel, Johan; Verhulst, Frank C.; Huizink, Anja C.

    2010-01-01

    Objective: To examine externalizing behavior problems and cigarette smoking as predictors of subsequent cannabis use. Method: Dutch adolescents (N = 1,606; 854 girls and 752 boys) from the TRacking Adolescents' Individual Lives Survey (TRAILS) ongoing longitudinal study were examined at baseline (ages 10-12 [T1]) and at two follow-up assessments…

  6. Individual Monitoring of Vocal Effort with Relative Fundamental Frequency: Relationships with Aerodynamics and Listener Perception

    ERIC Educational Resources Information Center

    Lien, Yu-An S.; Michener, Carolyn M.; Eadie, Tanya L.; Stepp, Cara E.

    2015-01-01

    Purpose: The acoustic measure relative fundamental frequency (RFF) was investigated as a potential objective measure to track variations in vocal effort within and across individuals. Method: Twelve speakers with healthy voices created purposeful modulations in their vocal effort during speech tasks. RFF and an aerodynamic measure of vocal effort,…

  7. Image Edge Tracking via Ant Colony Optimization

    NASA Astrophysics Data System (ADS)

    Li, Ruowei; Wu, Hongkun; Liu, Shilong; Rahman, M. A.; Liu, Sanchi; Kwok, Ngai Ming

    2018-04-01

    A good edge plot should use continuous thin lines to describe the complete contour of the captured object. However, the detection of weak edges is a challenging task because of the associated low pixel intensities. Ant Colony Optimization (ACO) has been employed by many researchers to address this problem. The algorithm is a meta-heuristic method developed by mimicking the natural behaviour of ants. It uses iterative searches to find the optimal solution that cannot be found via traditional optimization approaches. In this work, ACO is employed to track and repair broken edges obtained via conventional Sobel edge detector to produced a result with more connected edges.

  8. Early results of the ionospheric experiment of the Apollo-Soyuz Test Project

    NASA Technical Reports Server (NTRS)

    Grossi, M. D.; Gay, R. H.

    1976-01-01

    A description is presented of a spacecraft-to-spacecraft Doppler-tracking experiment which was performed by the Smithsonian Astrophysical Observatory on the occasion of the Apollo-Soyuz Test Project (ASTP). The experiment involved the measurement of the relative velocity between the ASTP docking module and the Apollo command service module by a Doppler-tracking method. The objectives of the ionospheric experiment include the measurement of the time changes of the columnar electron content between the two spacecraft. The obtained data can provide a basis for the determination of the horizontal gradients of electron density at the height of 220 km.

  9. Zebrafish tracking using convolutional neural networks.

    PubMed

    Xu, Zhiping; Cheng, Xi En

    2017-02-17

    Keeping identity for a long term after occlusion is still an open problem in the video tracking of zebrafish-like model animals, and accurate animal trajectories are the foundation of behaviour analysis. We utilize the highly accurate object recognition capability of a convolutional neural network (CNN) to distinguish fish of the same congener, even though these animals are indistinguishable to the human eye. We used data augmentation and an iterative CNN training method to optimize the accuracy for our classification task, achieving surprisingly accurate trajectories of zebrafish of different size and age zebrafish groups over different time spans. This work will make further behaviour analysis more reliable.

  10. Zebrafish tracking using convolutional neural networks

    NASA Astrophysics Data System (ADS)

    Xu, Zhiping; Cheng, Xi En

    2017-02-01

    Keeping identity for a long term after occlusion is still an open problem in the video tracking of zebrafish-like model animals, and accurate animal trajectories are the foundation of behaviour analysis. We utilize the highly accurate object recognition capability of a convolutional neural network (CNN) to distinguish fish of the same congener, even though these animals are indistinguishable to the human eye. We used data augmentation and an iterative CNN training method to optimize the accuracy for our classification task, achieving surprisingly accurate trajectories of zebrafish of different size and age zebrafish groups over different time spans. This work will make further behaviour analysis more reliable.

  11. Intraoperative visualization and assessment of electromagnetic tracking error

    NASA Astrophysics Data System (ADS)

    Harish, Vinyas; Ungi, Tamas; Lasso, Andras; MacDonald, Andrew; Nanji, Sulaiman; Fichtinger, Gabor

    2015-03-01

    Electromagnetic tracking allows for increased flexibility in designing image-guided interventions, however it is well understood that electromagnetic tracking is prone to error. Visualization and assessment of the tracking error should take place in the operating room with minimal interference with the clinical procedure. The goal was to achieve this ideal in an open-source software implementation in a plug and play manner, without requiring programming from the user. We use optical tracking as a ground truth. An electromagnetic sensor and optical markers are mounted onto a stylus device, pivot calibrated for both trackers. Electromagnetic tracking error is defined as difference of tool tip position between electromagnetic and optical readings. Multiple measurements are interpolated into the thin-plate B-spline transform visualized in real time using 3D Slicer. All tracked devices are used in a plug and play manner through the open-source SlicerIGT and PLUS extensions of the 3D Slicer platform. Tracking error was measured multiple times to assess reproducibility of the method, both with and without placing ferromagnetic objects in the workspace. Results from exhaustive grid sampling and freehand sampling were similar, indicating that a quick freehand sampling is sufficient to detect unexpected or excessive field distortion in the operating room. The software is available as a plug-in for the 3D Slicer platforms. Results demonstrate potential for visualizing electromagnetic tracking error in real time for intraoperative environments in feasibility clinical trials in image-guided interventions.

  12. Real-time particle tracking for studying intracellular trafficking of pharmaceutical nanocarriers.

    PubMed

    Huang, Feiran; Watson, Erin; Dempsey, Christopher; Suh, Junghae

    2013-01-01

    Real-time particle tracking is a technique that combines fluorescence microscopy with object tracking and computing and can be used to extract quantitative transport parameters for small particles inside cells. Since the success of a nanocarrier can often be determined by how effectively it delivers cargo to the target organelle, understanding the complex intracellular transport of pharmaceutical nanocarriers is critical. Real-time particle tracking provides insight into the dynamics of the intracellular behavior of nanoparticles, which may lead to significant improvements in the design and development of novel delivery systems. Unfortunately, this technique is not often fully understood, limiting its implementation by researchers in the field of nanomedicine. In this chapter, one of the most complicated aspects of particle tracking, the mean square displacement (MSD) calculation, is explained in a simple manner designed for the novice particle tracker. Pseudo code for performing the MSD calculation in MATLAB is also provided. This chapter contains clear and comprehensive instructions for a series of basic procedures in the technique of particle tracking. Instructions for performing confocal microscopy of nanoparticle samples are provided, and two methods of determining particle trajectories that do not require commercial particle-tracking software are provided. Trajectory analysis and determination of the tracking resolution are also explained. By providing comprehensive instructions needed to perform particle-tracking experiments, this chapter will enable researchers to gain new insight into the intracellular dynamics of nanocarriers, potentially leading to the development of more effective and intelligent therapeutic delivery vectors.

  13. Toward automating Hammersmith pulled-to-sit examination of infants using feature point based video object tracking.

    PubMed

    Dogra, Debi P; Majumdar, Arun K; Sural, Shamik; Mukherjee, Jayanta; Mukherjee, Suchandra; Singh, Arun

    2012-01-01

    Hammersmith Infant Neurological Examination (HINE) is a set of tests used for grading neurological development of infants on a scale of 0 to 3. These tests help in assessing neurophysiological development of babies, especially preterm infants who are born before (the fetus reaches) the gestational age of 36 weeks. Such tests are often conducted in the follow-up clinics of hospitals for grading infants with suspected disabilities. Assessment based on HINE depends on the expertise of the physicians involved in conducting the examinations. It has been noted that some of these tests, especially pulled-to-sit and lateral tilting, are difficult to assess solely based on visual observation. For example, during the pulled-to-sit examination, the examiner needs to observe the relative movement of the head with respect to torso while pulling the infant by holding wrists. The examiner may find it difficult to follow the head movement from the coronal view. Video object tracking based automatic or semi-automatic analysis can be helpful in this case. In this paper, we present a video based method to automate the analysis of pulled-to-sit examination. In this context, a dynamic programming and node pruning based efficient video object tracking algorithm has been proposed. Pulled-to-sit event detection is handled by the proposed tracking algorithm that uses a 2-D geometric model of the scene. The algorithm has been tested with normal as well as marker based videos of the examination recorded at the neuro-development clinic of the SSKM Hospital, Kolkata, India. It is found that the proposed algorithm is capable of estimating the pulled-to-sit score with sensitivity (80%-92%) and specificity (89%-96%).

  14. Dynamic Trajectory Extraction from Stereo Vision Using Fuzzy Clustering

    NASA Astrophysics Data System (ADS)

    Onishi, Masaki; Yoda, Ikushi

    In recent years, many human tracking researches have been proposed in order to analyze human dynamic trajectory. These researches are general technology applicable to various fields, such as customer purchase analysis in a shopping environment and safety control in a (railroad) crossing. In this paper, we present a new approach for tracking human positions by stereo image. We use the framework of two-stepped clustering with k-means method and fuzzy clustering to detect human regions. In the initial clustering, k-means method makes middle clusters from objective features extracted by stereo vision at high speed. In the last clustering, c-means fuzzy method cluster middle clusters based on attributes into human regions. Our proposed method can be correctly clustered by expressing ambiguity using fuzzy clustering, even when many people are close to each other. The validity of our technique was evaluated with the experiment of trajectories extraction of doctors and nurses in an emergency room of a hospital.

  15. A new 3D tracking method for cell mechanics investigation exploiting the capabilities of digital holography in microscopy

    NASA Astrophysics Data System (ADS)

    Miccio, L.; Memmolo, P.; Merola, F.; Fusco, S.; Netti, P. A.; Ferraro, P.

    2014-03-01

    A method for 3D tracking has been developed exploiting Digital Holography features in Microscopy (DHM). In the framework of self-consistent platform for manipulation and measurement of biological specimen we use DHM for quantitative and completely label free analysis of samples with low amplitude contrast. Tracking capability extend the potentiality of DHM allowing to monitor the motion of appropriate probes and correlate it with sample properties. Complete 3D tracking has been obtained for the probes avoiding the amplitude refocusing in traditional tracking processes. Moreover, in biology and biomedical research fields one of the main topic is the understanding of morphology and mechanics of cells and microorganisms. Biological samples present low amplitude contrast that limits the information that can be retrieved through optical bright-field microscope measurements. The main effect on light propagating in such objects is in phase. This is known as phase-retardation or phase-shift. DHM is an innovative and alternative approach in microscopy, it's a good candidate for no-invasive and complete specimen analysis because its main characteristic is the possibility to discern between intensity and phase information performing quantitative mapping of the Optical Path Length. In this paper, the flexibility of DH is employed to analyze cell mechanics of unstained cells subjected to appropriate stimuli. DHM is used to measure all the parameters useful to understand the deformations induced by external and controlled stresses on in-vitro cells. Our configuration allows 3D tracking of micro-particles and, simultaneously, furnish quantitative phase-contrast maps. Experimental results are presented and discussed for in vitro cells.

  16. Image Tracking for the High Similarity Drug Tablets Based on Light Intensity Reflective Energy and Artificial Neural Network

    PubMed Central

    Liang, Zhongwei; Zhou, Liang; Liu, Xiaochu; Wang, Xiaogang

    2014-01-01

    It is obvious that tablet image tracking exerts a notable influence on the efficiency and reliability of high-speed drug mass production, and, simultaneously, it also emerges as a big difficult problem and targeted focus during production monitoring in recent years, due to the high similarity shape and random position distribution of those objectives to be searched for. For the purpose of tracking tablets accurately in random distribution, through using surface fitting approach and transitional vector determination, the calibrated surface of light intensity reflective energy can be established, describing the shape topology and topography details of objective tablet. On this basis, the mathematical properties of these established surfaces have been proposed, and thereafter artificial neural network (ANN) has been employed for classifying those moving targeted tablets by recognizing their different surface properties; therefore, the instantaneous coordinate positions of those drug tablets on one image frame can then be determined. By repeating identical pattern recognition on the next image frame, the real-time movements of objective tablet templates were successfully tracked in sequence. This paper provides reliable references and new research ideas for the real-time objective tracking in the case of drug production practices. PMID:25143781

  17. Cross-Modal Attention Effects in the Vestibular Cortex during Attentive Tracking of Moving Objects.

    PubMed

    Frank, Sebastian M; Sun, Liwei; Forster, Lisa; Tse, Peter U; Greenlee, Mark W

    2016-12-14

    The midposterior fundus of the Sylvian fissure in the human brain is central to the cortical processing of vestibular cues. At least two vestibular areas are located at this site: the parietoinsular vestibular cortex (PIVC) and the posterior insular cortex (PIC). It is now well established that activity in sensory systems is subject to cross-modal attention effects. Attending to a stimulus in one sensory modality enhances activity in the corresponding cortical sensory system, but simultaneously suppresses activity in other sensory systems. Here, we wanted to probe whether such cross-modal attention effects also target the vestibular system. To this end, we used a visual multiple-object tracking task. By parametrically varying the number of tracked targets, we could measure the effect of attentional load on the PIVC and the PIC while holding the perceptual load constant. Participants performed the tracking task during functional magnetic resonance imaging. Results show that, compared with passive viewing of object motion, activity during object tracking was suppressed in the PIVC and enhanced in the PIC. Greater attentional load, induced by increasing the number of tracked targets, was associated with a corresponding increase in the suppression of activity in the PIVC. Activity in the anterior part of the PIC decreased with increasing load, whereas load effects were absent in the posterior PIC. Results of a control experiment show that attention-induced suppression in the PIVC is stronger than any suppression evoked by the visual stimulus per se. Overall, our results suggest that attention has a cross-modal modulatory effect on the vestibular cortex during visual object tracking. In this study we investigate cross-modal attention effects in the human vestibular cortex. We applied the visual multiple-object tracking task because it is known to evoke attentional load effects on neural activity in visual motion-processing and attention-processing areas. Here we demonstrate a load-dependent effect of attention on the activation in the vestibular cortex, despite constant visual motion stimulation. We find that activity in the parietoinsular vestibular cortex is more strongly suppressed the greater the attentional load on the visual tracking task. These findings suggest cross-modal attentional modulation in the vestibular cortex. Copyright © 2016 the authors 0270-6474/16/3612720-09$15.00/0.

  18. Citation Analysis of Iranian Journal of Basic Medical Sciences in ISI Web of Knowledge, Scopus, and Google Scholar

    PubMed Central

    Zarifmahmoudi, Leili; Kianifar, Hamid Reza; Sadeghi, Ramin

    2013-01-01

    Objective(s): Citation tracking is an important method to analyze the scientific impact of journal articles and can be done through Scopus (SC), Google Scholar (GS), or ISI web of knowledge (WOS). In the current study, we analyzed the citations to 2011-2012 articles of Iranian Journal of Basic Medical Sciences (IJBMS) in these three resources. Material and Methods: The relevant data from SC, GS, and WOS official websites. Total number of citations, their overlap and unique citations of these three recourses were evaluated. Results: WOS and SC covered 100% and GS covered 97% of the IJBMS items. Totally, 37 articles were cited at least once in one of the studied resources. Total number of citations were 20, 30, and 59 in WOS, SC, and GS respectively. Forty citations of GS, 6 citation of SC, and 2 citations of WOS were unique. Conclusion: Every scientific resource has its own inaccuracies in providing citation analysis information. Citation analysis studies are better to be done each year to correct any inaccuracy as soon as possible. IJBMS has gained considerable scientific attention from wide range of high impact journals and through citation tracking method; this visibility can be traced more thoroughly. PMID:24379959

  19. Tracking a Non-Cooperative Target Using Real-Time Stereovision-Based Control: An Experimental Study.

    PubMed

    Shtark, Tomer; Gurfil, Pini

    2017-03-31

    Tracking a non-cooperative target is a challenge, because in unfamiliar environments most targets are unknown and unspecified. Stereovision is suited to deal with this issue, because it allows to passively scan large areas and estimate the relative position, velocity and shape of objects. This research is an experimental effort aimed at developing, implementing and evaluating a real-time non-cooperative target tracking methods using stereovision measurements only. A computer-vision feature detection and matching algorithm was developed in order to identify and locate the target in the captured images. Three different filters were designed for estimating the relative position and velocity, and their performance was compared. A line-of-sight control algorithm was used for the purpose of keeping the target within the field-of-view. Extensive analytical and numerical investigations were conducted on the multi-view stereo projection equations and their solutions, which were used to initialize the different filters. This research shows, using an experimental and numerical evaluation, the benefits of using the unscented Kalman filter and the total least squares technique in the stereovision-based tracking problem. These findings offer a general and more accurate method for solving the static and dynamic stereovision triangulation problems and the concomitant line-of-sight control.

  20. Tracking a Non-Cooperative Target Using Real-Time Stereovision-Based Control: An Experimental Study

    PubMed Central

    Shtark, Tomer; Gurfil, Pini

    2017-01-01

    Tracking a non-cooperative target is a challenge, because in unfamiliar environments most targets are unknown and unspecified. Stereovision is suited to deal with this issue, because it allows to passively scan large areas and estimate the relative position, velocity and shape of objects. This research is an experimental effort aimed at developing, implementing and evaluating a real-time non-cooperative target tracking methods using stereovision measurements only. A computer-vision feature detection and matching algorithm was developed in order to identify and locate the target in the captured images. Three different filters were designed for estimating the relative position and velocity, and their performance was compared. A line-of-sight control algorithm was used for the purpose of keeping the target within the field-of-view. Extensive analytical and numerical investigations were conducted on the multi-view stereo projection equations and their solutions, which were used to initialize the different filters. This research shows, using an experimental and numerical evaluation, the benefits of using the unscented Kalman filter and the total least squares technique in the stereovision-based tracking problem. These findings offer a general and more accurate method for solving the static and dynamic stereovision triangulation problems and the concomitant line-of-sight control. PMID:28362338

Top