A standardized set of 3-D objects for virtual reality research and applications.
Peeters, David
2018-06-01
The use of immersive virtual reality as a research tool is rapidly increasing in numerous scientific disciplines. By combining ecological validity with strict experimental control, immersive virtual reality provides the potential to develop and test scientific theories in rich environments that closely resemble everyday settings. This article introduces the first standardized database of colored three-dimensional (3-D) objects that can be used in virtual reality and augmented reality research and applications. The 147 objects have been normed for name agreement, image agreement, familiarity, visual complexity, and corresponding lexical characteristics of the modal object names. The availability of standardized 3-D objects for virtual reality research is important, because reaching valid theoretical conclusions hinges critically on the use of well-controlled experimental stimuli. Sharing standardized 3-D objects across different virtual reality labs will allow for science to move forward more quickly.
ERIC Educational Resources Information Center
Auld, Lawrence W. S.; Pantelidis, Veronica S.
1994-01-01
Describes the Virtual Reality and Education Lab (VREL) established at East Carolina University to study the implications of virtual reality for elementary and secondary education. Highlights include virtual reality software evaluation; hardware evaluation; computer-based curriculum objectives which could use virtual reality; and keeping current…
Hybrid Reality Lab Capabilities - Video 2
NASA Technical Reports Server (NTRS)
Delgado, Francisco J.; Noyes, Matthew
2016-01-01
Our Hybrid Reality and Advanced Operations Lab is developing incredibly realistic and immersive systems that could be used to provide training, support engineering analysis, and augment data collection for various human performance metrics at NASA. To get a better understanding of what Hybrid Reality is, let's go through the two most commonly known types of immersive realities: Virtual Reality, and Augmented Reality. Virtual Reality creates immersive scenes that are completely made up of digital information. This technology has been used to train astronauts at NASA, used during teleoperation of remote assets (arms, rovers, robots, etc.) and other activities. One challenge with Virtual Reality is that if you are using it for real time-applications (like landing an airplane) then the information used to create the virtual scenes can be old (i.e. visualized long after physical objects moved in the scene) and not accurate enough to land the airplane safely. This is where Augmented Reality comes in. Augmented Reality takes real-time environment information (from a camera, or see through window, and places digitally created information into the scene so that it matches with the video/glass information). Augmented Reality enhances real environment information collected with a live sensor or viewport (e.g. camera, window, etc.) with the information-rich visualization provided by Virtual Reality. Hybrid Reality takes Augmented Reality even further, by creating a higher level of immersion where interactivity can take place. Hybrid Reality takes Virtual Reality objects and a trackable, physical representation of those objects, places them in the same coordinate system, and allows people to interact with both objects' representations (virtual and physical) simultaneously. After a short period of adjustment, the individuals begin to interact with all the objects in the scene as if they were real-life objects. The ability to physically touch and interact with digitally created objects that have the same shape, size, location to their physical object counterpart in virtual reality environment can be a game changer when it comes to training, planning, engineering analysis, science, entertainment, etc. Our Project is developing such capabilities for various types of environments. The video outlined with this abstract is a representation of an ISS Hybrid Reality experience. In the video you can see various Hybrid Reality elements that provide immersion beyond just standard Virtual Reality or Augmented Reality.
Education about Hallucinations Using an Internet Virtual Reality System: A Qualitative Survey
ERIC Educational Resources Information Center
Yellowlees, Peter M.; Cook, James N.
2006-01-01
Objective: The authors evaluate an Internet virtual reality technology as an education tool about the hallucinations of psychosis. Method: This is a pilot project using Second Life, an Internet-based virtual reality system, in which a virtual reality environment was constructed to simulate the auditory and visual hallucinations of two patients…
AR Feels "Softer" than VR: Haptic Perception of Stiffness in Augmented versus Virtual Reality.
Gaffary, Yoren; Le Gouis, Benoit; Marchal, Maud; Argelaguet, Ferran; Arnaldi, Bruno; Lecuyer, Anatole
2017-11-01
Does it feel the same when you touch an object in Augmented Reality (AR) or in Virtual Reality (VR)? In this paper we study and compare the haptic perception of stiffness of a virtual object in two situations: (1) a purely virtual environment versus (2) a real and augmented environment. We have designed an experimental setup based on a Microsoft HoloLens and a haptic force-feedback device, enabling to press a virtual piston, and compare its stiffness successively in either Augmented Reality (the virtual piston is surrounded by several real objects all located inside a cardboard box) or in Virtual Reality (the same virtual piston is displayed in a fully virtual scene composed of the same other objects). We have conducted a psychophysical experiment with 12 participants. Our results show a surprising bias in perception between the two conditions. The virtual piston is on average perceived stiffer in the VR condition compared to the AR condition. For instance, when the piston had the same stiffness in AR and VR, participants would select the VR piston as the stiffer one in 60% of cases. This suggests a psychological effect as if objects in AR would feel "softer" than in pure VR. Taken together, our results open new perspectives on perception in AR versus VR, and pave the way to future studies aiming at characterizing potential perceptual biases.
Simulators and virtual reality in surgical education.
Chou, Betty; Handa, Victoria L
2006-06-01
This article explores the pros and cons of virtual reality simulators, their abilities to train and assess surgical skills, and their potential future applications. Computer-based virtual reality simulators and more conventional box trainers are compared and contrasted. The virtual reality simulator provides objective assessment of surgical skills and immediate feedback further to enhance training. With this ability to provide standardized, unbiased assessment of surgical skills, the virtual reality trainer has the potential to be a tool for selecting, instructing, certifying, and recertifying gynecologists.
ERIC Educational Resources Information Center
Chang, Hsin-Yi; Wu, Hsin-Kai; Hsu, Ying-Shao
2013-01-01
virtual objects or information overlaying physical objects or environments, resulting in a mixed reality in which virtual objects and real environments coexist in a meaningful way to augment learning…
Role of virtual reality for cerebral palsy management.
Weiss, Patrice L Tamar; Tirosh, Emanuel; Fehlings, Darcy
2014-08-01
Virtual reality is the use of interactive simulations to present users with opportunities to perform in virtual environments that appear, sound, and less frequently, feel similar to real-world objects and events. Interactive computer play refers to the use of a game where a child interacts and plays with virtual objects in a computer-generated environment. Because of their distinctive attributes that provide ecologically realistic and motivating opportunities for active learning, these technologies have been used in pediatric rehabilitation over the past 15 years. The ability of virtual reality to create opportunities for active repetitive motor/sensory practice adds to their potential for neuroplasticity and learning in individuals with neurologic disorders. The objectives of this article is to provide an overview of how virtual reality and gaming are used clinically, to present the results of several example studies that demonstrate their use in research, and to briefly remark on future developments. © The Author(s) 2014.
Evaluating Remapped Physical Reach for Hand Interactions with Passive Haptics in Virtual Reality.
Han, Dustin T; Suhail, Mohamed; Ragan, Eric D
2018-04-01
Virtual reality often uses motion tracking to incorporate physical hand movements into interaction techniques for selection and manipulation of virtual objects. To increase realism and allow direct hand interaction, real-world physical objects can be aligned with virtual objects to provide tactile feedback and physical grasping. However, unless a physical space is custom configured to match a specific virtual reality experience, the ability to perfectly match the physical and virtual objects is limited. Our research addresses this challenge by studying methods that allow one physical object to be mapped to multiple virtual objects that can exist at different virtual locations in an egocentric reference frame. We study two such techniques: one that introduces a static translational offset between the virtual and physical hand before a reaching action, and one that dynamically interpolates the position of the virtual hand during a reaching motion. We conducted two experiments to assess how the two methods affect reaching effectiveness, comfort, and ability to adapt to the remapping techniques when reaching for objects with different types of mismatches between physical and virtual locations. We also present a case study to demonstrate how the hand remapping techniques could be used in an immersive game application to support realistic hand interaction while optimizing usability. Overall, the translational technique performed better than the interpolated reach technique and was more robust for situations with larger mismatches between virtual and physical objects.
Visuo-Haptic Mixed Reality with Unobstructed Tool-Hand Integration.
Cosco, Francesco; Garre, Carlos; Bruno, Fabio; Muzzupappa, Maurizio; Otaduy, Miguel A
2013-01-01
Visuo-haptic mixed reality consists of adding to a real scene the ability to see and touch virtual objects. It requires the use of see-through display technology for visually mixing real and virtual objects, and haptic devices for adding haptic interaction with the virtual objects. Unfortunately, the use of commodity haptic devices poses obstruction and misalignment issues that complicate the correct integration of a virtual tool and the user's real hand in the mixed reality scene. In this work, we propose a novel mixed reality paradigm where it is possible to touch and see virtual objects in combination with a real scene, using commodity haptic devices, and with a visually consistent integration of the user's hand and the virtual tool. We discuss the visual obstruction and misalignment issues introduced by commodity haptic devices, and then propose a solution that relies on four simple technical steps: color-based segmentation of the hand, tracking-based segmentation of the haptic device, background repainting using image-based models, and misalignment-free compositing of the user's hand. We have developed a successful proof-of-concept implementation, where a user can touch virtual objects and interact with them in the context of a real scene, and we have evaluated the impact on user performance of obstruction and misalignment correction.
E-Learning Application of Tarsier with Virtual Reality using Android Platform
NASA Astrophysics Data System (ADS)
Oroh, H. N.; Munir, R.; Paseru, D.
2017-01-01
Spectral Tarsier is a primitive primate that can only be found in the province of North Sulawesi. To study these primates can be used an e-learning application with Augmented Reality technology that uses a marker to confronted the camera computer to interact with three dimensions Tarsier object. But that application only shows tarsier object in three dimensions without habitat and requires a lot of resources because it runs on a Personal Computer. The same technology can be shown three dimensions’ objects is Virtual Reality to excess can make the user like venturing into the virtual world with Android platform that requires fewer resources. So, put on Virtual Reality technology using the Android platform that can make users not only to view and interact with the tarsiers but also the habitat. The results of this research indicate that the user can learn the Tarsier and habitat with good. Thus, the use of Virtual Reality technology in the e-learning application of tarsiers can help people to see, know, and learn about Spectral Tarsier.
Virtual reality training improves balance function.
Mao, Yurong; Chen, Peiming; Li, Le; Huang, Dongfeng
2014-09-01
Virtual reality is a new technology that simulates a three-dimensional virtual world on a computer and enables the generation of visual, audio, and haptic feedback for the full immersion of users. Users can interact with and observe objects in three-dimensional visual space without limitation. At present, virtual reality training has been widely used in rehabilitation therapy for balance dysfunction. This paper summarizes related articles and other articles suggesting that virtual reality training can improve balance dysfunction in patients after neurological diseases. When patients perform virtual reality training, the prefrontal, parietal cortical areas and other motor cortical networks are activated. These activations may be involved in the reconstruction of neurons in the cerebral cortex. Growing evidence from clinical studies reveals that virtual reality training improves the neurological function of patients with spinal cord injury, cerebral palsy and other neurological impairments. These findings suggest that virtual reality training can activate the cerebral cortex and improve the spatial orientation capacity of patients, thus facilitating the cortex to control balance and increase motion function.
Virtual reality training improves balance function
Mao, Yurong; Chen, Peiming; Li, Le; Huang, Dongfeng
2014-01-01
Virtual reality is a new technology that simulates a three-dimensional virtual world on a computer and enables the generation of visual, audio, and haptic feedback for the full immersion of users. Users can interact with and observe objects in three-dimensional visual space without limitation. At present, virtual reality training has been widely used in rehabilitation therapy for balance dysfunction. This paper summarizes related articles and other articles suggesting that virtual reality training can improve balance dysfunction in patients after neurological diseases. When patients perform virtual reality training, the prefrontal, parietal cortical areas and other motor cortical networks are activated. These activations may be involved in the reconstruction of neurons in the cerebral cortex. Growing evidence from clinical studies reveals that virtual reality training improves the neurological function of patients with spinal cord injury, cerebral palsy and other neurological impairments. These findings suggest that virtual reality training can activate the cerebral cortex and improve the spatial orientation capacity of patients, thus facilitating the cortex to control balance and increase motion function. PMID:25368651
The RoboCup Mixed Reality League - A Case Study
NASA Astrophysics Data System (ADS)
Gerndt, Reinhard; Bohnen, Matthias; da Silva Guerra, Rodrigo; Asada, Minoru
In typical mixed reality systems there is only a one-way interaction from real to virtual. A human user or the physics of a real object may influence the behavior of virtual objects, but real objects usually cannot be influenced by the virtual world. By introducing real robots into the mixed reality system, we allow a true two-way interaction between virtual and real worlds. Our system has been used since 2007 to implement the RoboCup mixed reality soccer games and other applications for research and edutainment. Our framework system is freely programmable to generate any virtual environment, which may then be further supplemented with virtual and real objects. The system allows for control of any real object based on differential drive robots. The robots may be adapted for different applications, e.g., with markers for identification or with covers to change shape and appearance. They may also be “equipped” with virtual tools. In this chapter we present the hardware and software architecture of our system and some applications. The authors believe this can be seen as a first implementation of Ivan Sutherland’s 1965 idea of the ultimate display: “The ultimate display would, of course, be a room within which the computer can control the existence of matter …” (Sutherland, 1965, Proceedings of IFIPS Congress 2:506-508).
Transforming Clinical Imaging Data for Virtual Reality Learning Objects
ERIC Educational Resources Information Center
Trelease, Robert B.; Rosset, Antoine
2008-01-01
Advances in anatomical informatics, three-dimensional (3D) modeling, and virtual reality (VR) methods have made computer-based structural visualization a practical tool for education. In this article, the authors describe streamlined methods for producing VR "learning objects," standardized interactive software modules for anatomical sciences…
Virtual Reality at the PC Level
NASA Technical Reports Server (NTRS)
Dean, John
1998-01-01
The main objective of my research has been to incorporate virtual reality at the desktop level; i.e., create virtual reality software that can be run fairly inexpensively on standard PC's. The standard language used for virtual reality on PC's is VRML (Virtual Reality Modeling Language). It is a new language so it is still undergoing a lot of changes. VRML 1.0 came out only a couple years ago and VRML 2.0 came out around last September. VRML is an interpreted language that is run by a web browser plug-in. It is fairly flexible in terms of allowing you to create different shapes and animations. Before this summer, I knew very little about virtual reality and I did not know VRML at all. I learned the VRML language by reading two books and experimenting on a PC. The following topics are presented: CAD to VRML, VRML 1.0 to VRML 2.0, VRML authoring tools, VRML browsers, finding virtual reality applications, the AXAF project, the VRML generator program, web communities and future plans.
Practical system for generating digital mixed reality video holograms.
Song, Joongseok; Kim, Changseob; Park, Hanhoon; Park, Jong-Il
2016-07-10
We propose a practical system that can effectively mix the depth data of real and virtual objects by using a Z buffer and can quickly generate digital mixed reality video holograms by using multiple graphic processing units (GPUs). In an experiment, we verify that real objects and virtual objects can be merged naturally in free viewing angles, and the occlusion problem is well handled. Furthermore, we demonstrate that the proposed system can generate mixed reality video holograms at 7.6 frames per second. Finally, the system performance is objectively verified by users' subjective evaluations.
Intercepting real and simulated falling objects: what is the difference?
Baurès, Robin; Benguigui, Nicolas; Amorim, Michel-Ange; Hecht, Heiko
2009-10-30
The use of virtual reality is nowadays common in many studies in the field of human perception and movement control, particularly in interceptive actions. However, the ecological validity of the simulation is often taken for granted without having been formally established. If participants were to perceive the real situation and its virtual equivalent in a different fashion, the generalization of the results obtained in virtual reality to real life would be highly questionable. We tested the ecological validity of virtual reality in this context by comparing the timing of interceptive actions based upon actually falling objects and their simulated counterparts. The results show very limited differences as a function of whether participants were confronted with a real ball or a simulation thereof. And when present, such differences were limited to the first trial only. This result validates the use of virtual reality when studying interceptive actions of accelerated stimuli.
Challenges to the development of complex virtual reality surgical simulations.
Seymour, N E; Røtnes, J S
2006-11-01
Virtual reality simulation in surgical training has become more widely used and intensely investigated in an effort to develop safer, more efficient, measurable training processes. The development of virtual reality simulation of surgical procedures has begun, but well-described technical obstacles must be overcome to permit varied training in a clinically realistic computer-generated environment. These challenges include development of realistic surgical interfaces and physical objects within the computer-generated environment, modeling of realistic interactions between objects, rendering of the surgical field, and development of signal processing for complex events associated with surgery. Of these, the realistic modeling of tissue objects that are fully responsive to surgical manipulations is the most challenging. Threats to early success include relatively limited resources for development and procurement, as well as smaller potential for return on investment than in other simulation industries that face similar problems. Despite these difficulties, steady progress continues to be made in these areas. If executed properly, virtual reality offers inherent advantages over other training systems in creating a realistic surgical environment and facilitating measurement of surgeon performance. Once developed, complex new virtual reality training devices must be validated for their usefulness in formative training and assessment of skill to be established.
Rodrigues-Baroni, Juliana M.; Nascimento, Lucas R.; Ada, Louise; Teixeira-Salmela, Luci F.
2014-01-01
OBJECTIVE: To systematically review the available evidence on the efficacy of walking training associated with virtual reality-based training in patients with stroke. The specific questions were: Is walking training associated with virtual reality-based training effective in increasing walking speed after stroke? Is this type of intervention more effective in increasing walking speed, than non-virtual reality-based walking interventions? METHOD: A systematic review with meta-analysis of randomized clinical trials was conducted. Participants were adults with chronic stroke and the experimental intervention was walking training associated with virtual reality-based training to increase walking speed. The outcome data regarding walking speed were extracted from the eligible trials and were combined using a meta-analysis approach. RESULTS: Seven trials representing eight comparisons were included in this systematic review. Overall, the virtual reality-based training increased walking speed by 0.17 m/s (IC 95% 0.08 to 0.26), compared with placebo/nothing or non-walking interventions. In addition, the virtual reality-based training increased walking speed by 0.15 m/s (IC 95% 0.05 to 0.24), compared with non-virtual reality walking interventions. CONCLUSIONS: This review provided evidence that walking training associated with virtual reality-based training was effective in increasing walking speed after stroke, and resulted in better results than non-virtual reality interventions. PMID:25590442
[Application of virtual reality in surgical treatment of complex head and neck carcinoma].
Zhou, Y Q; Li, C; Shui, C Y; Cai, Y C; Sun, R H; Zeng, D F; Wang, W; Li, Q L; Huang, L; Tu, J; Jiang, J
2018-01-07
Objective: To investigate the application of virtual reality technology in the preoperative evaluation of complex head and neck carcinoma and he value of virtual reality technology in surgical treatment of head and neck carcinoma. Methods: The image data of eight patients with complex head and neck carcinoma treated from December 2016 to May 2017 was acquired. The data were put into virtual reality system to built the three-dimensional anatomical model of carcinoma and to created the surgical scene. The process of surgery was stimulated by recognizing the relationship between tumor and surrounding important structures. Finally all patients were treated with surgery. And two typical cases were reported. Results: With the help of virtual reality, surgeons could adequately assess the condition of carcinoma and the security of operation and ensured the safety of operations. Conclusions: Virtual reality can provide the surgeons with the sensory experience in virtual surgery scenes and achieve the man-computer cooperation and stereoscopic assessment, which will ensure the safety of surgery. Virtual reality has a huge impact on guiding the traditional surgical procedure of head and neck carcinoma.
Use of Virtual Reality Tools for Vestibular Disorders Rehabilitation: A Comprehensive Analysis.
Bergeron, Mathieu; Lortie, Catherine L; Guitton, Matthieu J
2015-01-01
Classical peripheral vestibular disorders rehabilitation is a long and costly process. While virtual reality settings have been repeatedly suggested to represent possible tools to help the rehabilitation process, no systematic study had been conducted so far. We systematically reviewed the current literature to analyze the published protocols documenting the use of virtual reality settings for peripheral vestibular disorders rehabilitation. There is an important diversity of settings and protocols involving virtual reality settings for the treatment of this pathology. Evaluation of the symptoms is often not standardized. However, our results unveil a clear effect of virtual reality settings-based rehabilitation of the patients' symptoms, assessed by objectives tools such as the DHI (mean decrease of 27 points), changing symptoms handicap perception from moderate to mild impact on life. Furthermore, we detected a relationship between the duration of the exposure to virtual reality environments and the magnitude of the therapeutic effects, suggesting that virtual reality treatments should last at least 150 minutes of cumulated exposure to ensure positive outcomes. Virtual reality offers a pleasant and safe environment for the patient. Future studies should standardize evaluation tools, document putative side effects further, compare virtual reality to conventional physical therapy, and evaluate economical costs/benefits of such strategies.
Use of Virtual Reality Tools for Vestibular Disorders Rehabilitation: A Comprehensive Analysis
Bergeron, Mathieu; Lortie, Catherine L.; Guitton, Matthieu J.
2015-01-01
Classical peripheral vestibular disorders rehabilitation is a long and costly process. While virtual reality settings have been repeatedly suggested to represent possible tools to help the rehabilitation process, no systematic study had been conducted so far. We systematically reviewed the current literature to analyze the published protocols documenting the use of virtual reality settings for peripheral vestibular disorders rehabilitation. There is an important diversity of settings and protocols involving virtual reality settings for the treatment of this pathology. Evaluation of the symptoms is often not standardized. However, our results unveil a clear effect of virtual reality settings-based rehabilitation of the patients' symptoms, assessed by objectives tools such as the DHI (mean decrease of 27 points), changing symptoms handicap perception from moderate to mild impact on life. Furthermore, we detected a relationship between the duration of the exposure to virtual reality environments and the magnitude of the therapeutic effects, suggesting that virtual reality treatments should last at least 150 minutes of cumulated exposure to ensure positive outcomes. Virtual reality offers a pleasant and safe environment for the patient. Future studies should standardize evaluation tools, document putative side effects further, compare virtual reality to conventional physical therapy, and evaluate economical costs/benefits of such strategies. PMID:26556560
Testing the continuum of delusional beliefs: an experimental study using virtual reality.
Freeman, Daniel; Pugh, Katherine; Vorontsova, Natasha; Antley, Angus; Slater, Mel
2010-02-01
A key problem in studying a hypothesized spectrum of severity of delusional ideation is determining that ideas are unfounded. The first objective was to use virtual reality to validate groups of individuals with low, moderate, and high levels of unfounded persecutory ideation. The second objective was to investigate, drawing upon a cognitive model of persecutory delusions, whether clinical and nonclinical paranoia are associated with similar causal factors. Three groups (low paranoia, high nonclinical paranoia, persecutory delusions) of 30 participants were recruited. Levels of paranoia were tested using virtual reality. The groups were compared on assessments of anxiety, worry, interpersonal sensitivity, depression, anomalous perceptual experiences, reasoning, and history of traumatic events. Virtual reality was found to cause no side effects. Persecutory ideation in virtual reality significantly differed across the groups. For the clear majority of the theoretical factors there were dose-response relationships with levels of paranoia. This is consistent with the idea of a spectrum of paranoia in the general population. Persecutory ideation is clearly present outside of clinical groups and there is consistency across the paranoia spectrum in associations with important theoretical variables.
NASA Astrophysics Data System (ADS)
Starodubtsev, Illya
2017-09-01
The paper describes the implementation of the system of interaction with virtual objects based on gestures. The paper describes the common problems of interaction with virtual objects, specific requirements for the interfaces for virtual and augmented reality.
ERIC Educational Resources Information Center
Trelease, Robert B.; Nieder, Gary L.
2013-01-01
Web deployable anatomical simulations or "virtual reality learning objects" can easily be produced with QuickTime VR software, but their use for online and mobile learning is being limited by the declining support for web browser plug-ins for personal computers and unavailability on popular mobile devices like Apple iPad and Android…
Virtual Reality Website of Indonesia National Monument and Its Environment
NASA Astrophysics Data System (ADS)
Wardijono, B. A.; Hendajani, F.; Sudiro, S. A.
2017-02-01
National Monument (Monumen Nasional) is an Indonesia National Monument building where located in Jakarta. This monument is a symbol of Jakarta and it is a pride monument of the people in Jakarta and Indonesia country. This National Monument also has a museum about the history of the Indonesian country. To provide information to the general public, in this research we created and developed models of 3D graphics from the National Monument and the surrounding environment. Virtual Reality technology was used to display the visualization of the National Monument and the surrounding environment in 3D graphics form. Latest programming technology makes it possible to display 3D objects via the internet browser. This research used Unity3D and WebGL to make virtual reality models that can be implemented and showed on a Website. The result from this research is the development of 3-dimensional Website of the National Monument and its objects surrounding the environment that can be displayed through the Web browser. The virtual reality of whole objects was divided into a number of scenes, so that it can be displayed in real time visualization.
Object Creation and Human Factors Evaluation for Virtual Environments
NASA Technical Reports Server (NTRS)
Lindsey, Patricia F.
1998-01-01
The main objective of this project is to provide test objects for simulated environments utilized by the recently established Army/NASA Virtual Innovations Lab (ANVIL) at Marshall Space Flight Center, Huntsville, Al. The objective of the ANVIL lab is to provide virtual reality (VR) models and environments and to provide visualization and manipulation methods for the purpose of training and testing. Visualization equipment used in the ANVIL lab includes head-mounted and boom-mounted immersive virtual reality display devices. Objects in the environment are manipulated using data glove, hand controller, or mouse. These simulated objects are solid or surfaced three dimensional models. They may be viewed or manipulated from any location within the environment and may be viewed on-screen or via immersive VR. The objects are created using various CAD modeling packages and are converted into the virtual environment using dVise. This enables the object or environment to be viewed from any angle or distance for training or testing purposes.
Ma, Hui-Ing; Hwang, Wen-Juh; Fang, Jing-Jing; Kuo, Jui-Kun; Wang, Ching-Yi; Leong, Iat-Fai; Wang, Tsui-Ying
2011-10-01
To investigate whether practising reaching for virtual moving targets would improve motor performance in people with Parkinson's disease. Randomized pretest-posttest control group design. A virtual reality laboratory in a university setting. Thirty-three adults with Parkinson's disease. The virtual reality training required 60 trials of reaching for fast-moving virtual balls with the dominant hand. The control group had 60 practice trials turning pegs with their non-dominant hand. Pretest and posttest required reaching with the dominant hand to grasp real stationary balls and balls moving at different speeds down a ramp. Success rates and kinematic data (movement time, peak velocity and percentage of movement time for acceleration phase) from pretest and posttest were recorded to determine the immediate transfer effects. Compared with the control group, the virtual reality training group became faster (F = 9.08, P = 0.005) and more forceful (F = 9.36, P = 0.005) when reaching for real stationary balls. However, there was no significant difference in success rate or movement kinematics between the two groups when reaching for real moving balls. A short virtual reality training programme improved the movement speed of discrete aiming tasks when participants reached for real stationary objects. However, the transfer effect was minimal when reaching for real moving objects.
[Virtual reality simulation training in gynecology: review and perspectives].
Ricard-Gauthier, Dominique; Popescu, Silvia; Benmohamed, Naida; Petignat, Patrick; Dubuisson, Jean
2016-10-26
Laparoscopic simulation has rapidly become an important tool for learning and acquiring technical skills in surgery. It is based on two different complementary pedagogic tools : the box model trainer and the virtual reality simulator. The virtual reality simulator has shown its efficiency by improving surgical skills, decreasing operating time, improving economy of movements and improving self-confidence. The main objective of this tool is the opportunity to easily organize a regular, structured and uniformed training program enabling an automated individualized feedback.
NASA Astrophysics Data System (ADS)
Beckhaus, Steffi
Virtual Reality aims at creating an artificial environment that can be perceived as a substitute to a real setting. Much effort in research and development goes into the creation of virtual environments that in their majority are perceivable only by eyes and hands. The multisensory nature of our perception, however, allows and, arguably, also expects more than that. As long as we are not able to simulate and deliver a fully sensory believable virtual environment to a user, we could make use of the fully sensory, multi-modal nature of real objects to fill in for this deficiency. The idea is to purposefully integrate real artifacts into the application and interaction, instead of dismissing anything real as hindering the virtual experience. The term virtual reality - denoting the goal, not the technology - shifts from a core virtual reality to an “enriched” reality, technologically encompassing both the computer generated and the real, physical artifacts. Together, either simultaneously or in a hybrid way, real and virtual jointly provide stimuli that are perceived by users through their senses and are later formed into an experience by the user's mind.
Thomsen, Ann Sofia Skou; Bach-Holm, Daniella; Kjærbo, Hadi; Højgaard-Olsen, Klavs; Subhi, Yousif; Saleh, George M; Park, Yoon Soo; la Cour, Morten; Konge, Lars
2017-04-01
To investigate the effect of virtual reality proficiency-based training on actual cataract surgery performance. The secondary purpose of the study was to define which surgeons benefit from virtual reality training. Multicenter masked clinical trial. Eighteen cataract surgeons with different levels of experience. Cataract surgical training on a virtual reality simulator (EyeSi) until a proficiency-based test was passed. Technical performance in the operating room (OR) assessed by 3 independent, masked raters using a previously validated task-specific assessment tool for cataract surgery (Objective Structured Assessment of Cataract Surgical Skill). Three surgeries before and 3 surgeries after the virtual reality training were video-recorded, anonymized, and presented to the raters in random order. Novices (non-independently operating surgeons) and surgeons having performed fewer than 75 independent cataract surgeries showed significant improvements in the OR-32% and 38%, respectively-after virtual reality training (P = 0.008 and P = 0.018). More experienced cataract surgeons did not benefit from simulator training. The reliability of the assessments was high with a generalizability coefficient of 0.92 and 0.86 before and after the virtual reality training, respectively. Clinically relevant cataract surgical skills can be improved by proficiency-based training on a virtual reality simulator. Novices as well as surgeons with an intermediate level of experience showed improvement in OR performance score. Copyright © 2017 American Academy of Ophthalmology. Published by Elsevier Inc. All rights reserved.
Augmenting the thermal flux experiment: A mixed reality approach with the HoloLens
NASA Astrophysics Data System (ADS)
Strzys, M. P.; Kapp, S.; Thees, M.; Kuhn, J.; Lukowicz, P.; Knierim, P.; Schmidt, A.
2017-09-01
In the field of Virtual Reality (VR) and Augmented Reality (AR), technologies have made huge progress during the last years and also reached the field of education. The virtuality continuum, ranging from pure virtuality on one side to the real world on the other, has been successfully covered by the use of immersive technologies like head-mounted displays, which allow one to embed virtual objects into the real surroundings, leading to a Mixed Reality (MR) experience. In such an environment, digital and real objects do not only coexist, but moreover are also able to interact with each other in real time. These concepts can be used to merge human perception of reality with digitally visualized sensor data, thereby making the invisible visible. As a first example, in this paper we introduce alongside the basic idea of this column an MR experiment in thermodynamics for a laboratory course for freshman students in physics or other science and engineering subjects that uses physical data from mobile devices for analyzing and displaying physical phenomena to students.
Meyer, Georg F.; Shao, Fei; White, Mark D.; Hopkins, Carl; Robotham, Antony J.
2013-01-01
Externally generated visual motion signals can cause the illusion of self-motion in space (vection) and corresponding visually evoked postural responses (VEPR). These VEPRs are not simple responses to optokinetic stimulation, but are modulated by the configuration of the environment. The aim of this paper is to explore what factors modulate VEPRs in a high quality virtual reality (VR) environment where real and virtual foreground objects served as static visual, auditory and haptic reference points. Data from four experiments on visually evoked postural responses show that: 1) visually evoked postural sway in the lateral direction is modulated by the presence of static anchor points that can be haptic, visual and auditory reference signals; 2) real objects and their matching virtual reality representations as visual anchors have different effects on postural sway; 3) visual motion in the anterior-posterior plane induces robust postural responses that are not modulated by the presence of reference signals or the reality of objects that can serve as visual anchors in the scene. We conclude that automatic postural responses for laterally moving visual stimuli are strongly influenced by the configuration and interpretation of the environment and draw on multisensory representations. Different postural responses were observed for real and virtual visual reference objects. On the basis that automatic visually evoked postural responses in high fidelity virtual environments should mimic those seen in real situations we propose to use the observed effect as a robust objective test for presence and fidelity in VR. PMID:23840760
Fransson, Boel A; Chen, Chi-Ya; Noyes, Julie A; Ragle, Claude A
2016-11-01
To determine the construct and concurrent validity of instrument motion metrics for laparoscopic skills assessment in virtual reality and augmented reality simulators. Evaluation study. Veterinarian students (novice, n = 14) and veterinarians (experienced, n = 11) with no or variable laparoscopic experience. Participants' minimally invasive surgery (MIS) experience was determined by hospital records of MIS procedures performed in the Teaching Hospital. Basic laparoscopic skills were assessed by 5 tasks using a physical box trainer. Each participant completed 2 tasks for assessments in each type of simulator (virtual reality: bowel handling and cutting; augmented reality: object positioning and a pericardial window model). Motion metrics such as instrument path length, angle or drift, and economy of motion of each simulator were recorded. None of the motion metrics in a virtual reality simulator showed correlation with experience, or to the basic laparoscopic skills score. All metrics in augmented reality were significantly correlated with experience (time, instrument path, and economy of movement), except for the hand dominance metric. The basic laparoscopic skills score was correlated to all performance metrics in augmented reality. The augmented reality motion metrics differed between American College of Veterinary Surgeons diplomates and residents, whereas basic laparoscopic skills score and virtual reality metrics did not. Our results provide construct validity and concurrent validity for motion analysis metrics for an augmented reality system, whereas a virtual reality system was validated only for the time score. © Copyright 2016 by The American College of Veterinary Surgeons.
Virtual reality for mobility devices: training applications and clinical results: a review.
Erren-Wolters, Catelijne Victorien; van Dijk, Henk; de Kort, Alexander C; Ijzerman, Maarten J; Jannink, Michiel J
2007-06-01
Virtual reality technology is an emerging technology that possibly can address the problems encountered in training (elderly) people to handle a mobility device. The objective of this review was to study different virtual reality training applications as well as their clinical implication for patients with mobility problems. Computerized literature searches were performed using the MEDLINE, Cochrane, CIRRIE and REHABDATA databases. This resulted in eight peer reviewed journal articles. The included studies could be divided into three categories, on the basis of their study objective. Five studies were related to training driving skills, two to physical exercise training and one to leisure activity. This review suggests that virtual reality is a potentially useful means to improve the use of a mobility device, in training one's driving skills, for keeping up the physical condition and also in a way of leisure time activity. Although this field of research appears to be in its early stages, the included studies pointed out a promising transfer of training in a virtual environment to the real-life use of mobility devices.
Nomura, Tsutomu; Mamada, Yasuhiro; Nakamura, Yoshiharu; Matsutani, Takeshi; Hagiwara, Nobutoshi; Fujita, Isturo; Mizuguchi, Yoshiaki; Fujikura, Terumichi; Miyashita, Masao; Uchida, Eiji
2015-11-01
Definitive assessment of laparoscopic skill improvement after virtual reality simulator training is best obtained during an actual operation. However, this is impossible in medical students. Therefore, we developed an alternative assessment technique using an augmented reality simulator. Nineteen medical students completed a 6-week training program using a virtual reality simulator (LapSim). The pretest and post-test were performed using an object-positioning module and cholecystectomy on an augmented reality simulator(ProMIS). The mean performance measures between pre- and post-training on the LapSim were compared with a paired t-test. In the object-positioning module, the execution time of the task (P < 0.001), left and right instrument path length (P = 0.001), and left and right instrument economy of movement (P < 0.001) were significantly shorter after than before the LapSim training. With respect to improvement in laparoscopic cholecystectomy using a gallbladder model, the execution time to identify, clip, and cut the cystic duct and cystic artery as well as the execution time to dissect the gallbladder away from the liver bed were both significantly shorter after than before the LapSim training (P = 0.01). Our training curriculum using a virtual reality simulator improved the operative skills of medical students as objectively evaluated by assessment using an augmented reality simulator instead of an actual operation. We hope that these findings help to establish an effective training program for medical students. © 2015 Japan Society for Endoscopic Surgery, Asia Endosurgery Task Force and Wiley Publishing Asia Pty Ltd.
Virtual Reality and Medical Inpatients: A Systematic Review of Randomized, Controlled Trials
Dascal, Julieta; Reid, Mark; IsHak, Waguih William; Spiegel, Brennan; Recacho, Jennifer; Rosen, Bradley
2017-01-01
Objective: We evaluated the evidence supporting the use of virtual reality among patients in acute inpatient medical settings. Method: We conducted a systematic review of randomized controlled trials conducted that examined virtual reality applications in inpatient medical settings between 2005 and 2015. We used PsycINFO, PubMed, and Medline databases to identify studies using the keywords virtual reality, VR therapy, treatment, and inpatient. Results: We identified 2,024 citations, among which 11 met criteria for inclusion. Studies addressed three general areas: pain management, eating disorders, and cognitive and motor rehabilitation. Studies were small and heterogeneous and utilized different designs and measures. Virtual reality was generally well tolerated by patients, and a majority of studies demonstrated clinical efficacy. Studies varied in quality, as measured by an evaluation metric developed by Reisch, Tyson, and Mize (average quality score=0.87; range=0.78–0.96). Conclusion: Virtual reality is a promising intervention with several potential applications in the inpatient medical setting. Studies to date demonstrate some efficacy, but there is a need for larger, well-controlled studies to show clinical and cost-effectiveness. PMID:28386517
Virtual Reality and Medical Inpatients: A Systematic Review of Randomized, Controlled Trials.
Dascal, Julieta; Reid, Mark; IsHak, Waguih William; Spiegel, Brennan; Recacho, Jennifer; Rosen, Bradley; Danovitch, Itai
2017-01-01
Objective: We evaluated the evidence supporting the use of virtual reality among patients in acute inpatient medical settings. Method: We conducted a systematic review of randomized controlled trials conducted that examined virtual reality applications in inpatient medical settings between 2005 and 2015. We used PsycINFO, PubMed, and Medline databases to identify studies using the keywords virtual reality , VR therapy , treatment , and inpatient. Results: We identified 2,024 citations, among which 11 met criteria for inclusion. Studies addressed three general areas: pain management, eating disorders, and cognitive and motor rehabilitation. Studies were small and heterogeneous and utilized different designs and measures. Virtual reality was generally well tolerated by patients, and a majority of studies demonstrated clinical efficacy. Studies varied in quality, as measured by an evaluation metric developed by Reisch, Tyson, and Mize (average quality score=0.87; range=0.78-0.96). Conclusion: Virtual reality is a promising intervention with several potential applications in the inpatient medical setting. Studies to date demonstrate some efficacy, but there is a need for larger, well-controlled studies to show clinical and cost-effectiveness.
Manually locating physical and virtual reality objects.
Chen, Karen B; Kimmel, Ryan A; Bartholomew, Aaron; Ponto, Kevin; Gleicher, Michael L; Radwin, Robert G
2014-09-01
In this study, we compared how users locate physical and equivalent three-dimensional images of virtual objects in a cave automatic virtual environment (CAVE) using the hand to examine how human performance (accuracy, time, and approach) is affected by object size, location, and distance. Virtual reality (VR) offers the promise to flexibly simulate arbitrary environments for studying human performance. Previously, VR researchers primarily considered differences between virtual and physical distance estimation rather than reaching for close-up objects. Fourteen participants completed manual targeting tasks that involved reaching for corners on equivalent physical and virtual boxes of three different sizes. Predicted errors were calculated from a geometric model based on user interpupillary distance, eye location, distance from the eyes to the projector screen, and object. Users were 1.64 times less accurate (p < .001) and spent 1.49 times more time (p = .01) targeting virtual versus physical box corners using the hands. Predicted virtual targeting errors were on average 1.53 times (p < .05) greater than the observed errors for farther virtual targets but not significantly different for close-up virtual targets. Target size, location, and distance, in addition to binocular disparity, affected virtual object targeting inaccuracy. Observed virtual box inaccuracy was less than predicted for farther locations, suggesting possible influence of cues other than binocular vision. Human physical interaction with objects in VR for simulation, training, and prototyping involving reaching and manually handling virtual objects in a CAVE are more accurate than predicted when locating farther objects.
NASA employee utilizes Virtual Reality (VR) equipment
NASA Technical Reports Server (NTRS)
1991-01-01
Bebe Ly of the Information Systems Directorate's Software Technology Branch at JSC gives virtual reality a try. The stero video goggles and headphones allow her to see and hear in a computer-generated world and the gloves allow her to move around and grasp objects.
Baus, Oliver; Bouchard, Stéphane
2014-01-01
This paper reviews the move from virtual reality exposure-based therapy to augmented reality exposure-based therapy (ARET). Unlike virtual reality (VR), which entails a complete virtual environment (VE), augmented reality (AR) limits itself to producing certain virtual elements to then merge them into the view of the physical world. Although, the general public may only have become aware of AR in the last few years, AR type applications have been around since beginning of the twentieth century. Since, then, technological developments have enabled an ever increasing level of seamless integration of virtual and physical elements into one view. Like VR, AR allows the exposure to stimuli which, due to various reasons, may not be suitable for real-life scenarios. As such, AR has proven itself to be a medium through which individuals suffering from specific phobia can be exposed “safely” to the object(s) of their fear, without the costs associated with programing complete VEs. Thus, ARET can offer an efficacious alternative to some less advantageous exposure-based therapies. Above and beyond presenting what has been accomplished in ARET, this paper covers some less well-known aspects of the history of AR, raises some ARET related issues, and proposes potential avenues to be followed. These include the type of measures to be used to qualify the user’s experience in an augmented reality environment, the exclusion of certain AR-type functionalities from the definition of AR, as well as the potential use of ARET to treat non-small animal phobias, such as social phobia. PMID:24624073
Baus, Oliver; Bouchard, Stéphane
2014-01-01
This paper reviews the move from virtual reality exposure-based therapy to augmented reality exposure-based therapy (ARET). Unlike virtual reality (VR), which entails a complete virtual environment (VE), augmented reality (AR) limits itself to producing certain virtual elements to then merge them into the view of the physical world. Although, the general public may only have become aware of AR in the last few years, AR type applications have been around since beginning of the twentieth century. Since, then, technological developments have enabled an ever increasing level of seamless integration of virtual and physical elements into one view. Like VR, AR allows the exposure to stimuli which, due to various reasons, may not be suitable for real-life scenarios. As such, AR has proven itself to be a medium through which individuals suffering from specific phobia can be exposed "safely" to the object(s) of their fear, without the costs associated with programing complete VEs. Thus, ARET can offer an efficacious alternative to some less advantageous exposure-based therapies. Above and beyond presenting what has been accomplished in ARET, this paper covers some less well-known aspects of the history of AR, raises some ARET related issues, and proposes potential avenues to be followed. These include the type of measures to be used to qualify the user's experience in an augmented reality environment, the exclusion of certain AR-type functionalities from the definition of AR, as well as the potential use of ARET to treat non-small animal phobias, such as social phobia.
Chen, T N; Yin, X T; Li, X G; Zhao, J; Wang, L; Mu, N; Ma, K; Huo, K; Liu, D; Gao, B Y; Feng, H; Li, F
2018-05-08
Objective: To explore the clinical and teaching application value of virtual reality technology in preoperative planning and intraoperative guide of glioma located in central sulcus region. Method: Ten patients with glioma in the central sulcus region were proposed to surgical treatment. The neuro-imaging data, including CT, CTA, DSA, MRI, fMRI were input to 3dgo sczhry workstation for image fusion and 3D reconstruction. Spatial relationships between the lesions and the surrounding structures on the virtual reality image were obtained. These images were applied to the operative approach design, operation process simulation, intraoperative auxiliary decision and the training of specialist physician. Results: Intraoperative founding of 10 patients were highly consistent with preoperative simulation with virtual reality technology. Preoperative 3D reconstruction virtual reality images improved the feasibility of operation planning and operation accuracy. This technology had not only shown the advantages for neurological function protection and lesion resection during surgery, but also improved the training efficiency and effectiveness of dedicated physician by turning the abstract comprehension to virtual reality. Conclusion: Image fusion and 3D reconstruction based virtual reality technology in glioma resection is helpful for formulating the operation plan, improving the operation safety, increasing the total resection rate, and facilitating the teaching and training of the specialist physician.
Virtual reality interventions for rehabilitation: considerations for developing protocols.
Boechler, Patricia; Krol, Andrea; Raso, Jim; Blois, Terry
2009-01-01
This paper is a preliminary report on a work in progress that explores the existence of practice effects in early use of virtual reality environments for rehabilitation purposes and the effects of increases in level of difficulty as defined by rate of on-screen objects.
Generating Contextual Descriptions of Virtual Reality (VR) Spaces
NASA Astrophysics Data System (ADS)
Olson, D. M.; Zaman, C. H.; Sutherland, A.
2017-12-01
Virtual reality holds great potential for science communication, education, and research. However, interfaces for manipulating data and environments in virtual worlds are limited and idiosyncratic. Furthermore, speech and vision are the primary modalities by which humans collect information about the world, but the linking of visual and natural language domains is a relatively new pursuit in computer vision. Machine learning techniques have been shown to be effective at image and speech classification, as well as at describing images with language (Karpathy 2016), but have not yet been used to describe potential actions. We propose a technique for creating a library of possible context-specific actions associated with 3D objects in immersive virtual worlds based on a novel dataset generated natively in virtual reality containing speech, image, gaze, and acceleration data. We will discuss the design and execution of a user study in virtual reality that enabled the collection and the development of this dataset. We will also discuss the development of a hybrid machine learning algorithm linking vision data with environmental affordances in natural language. Our findings demonstrate that it is possible to develop a model which can generate interpretable verbal descriptions of possible actions associated with recognized 3D objects within immersive VR environments. This suggests promising applications for more intuitive user interfaces through voice interaction within 3D environments. It also demonstrates the potential to apply vast bodies of embodied and semantic knowledge to enrich user interaction within VR environments. This technology would allow for applications such as expert knowledge annotation of 3D environments, complex verbal data querying and object manipulation in virtual spaces, and computer-generated, dynamic 3D object affordances and functionality during simulations.
Vision-based augmented reality system
NASA Astrophysics Data System (ADS)
Chen, Jing; Wang, Yongtian; Shi, Qi; Yan, Dayuan
2003-04-01
The most promising aspect of augmented reality lies in its ability to integrate the virtual world of the computer with the real world of the user. Namely, users can interact with the real world subjects and objects directly. This paper presents an experimental augmented reality system with a video see-through head-mounted device to display visual objects, as if they were lying on the table together with real objects. In order to overlay virtual objects on the real world at the right position and orientation, the accurate calibration and registration are most important. A vision-based method is used to estimate CCD external parameters by tracking 4 known points with different colors. It achieves sufficient accuracy for non-critical applications such as gaming, annotation and so on.
Perpiñá, Conxa; Roncero, María
2016-05-01
Virtual reality has demonstrated promising results in the treatment of eating disorders (ED); however, few studies have examined its usefulness in treating obesity. The aim of this study was to compare ED and obese patients on their reality judgment of a virtual environment (VE) designed to normalize their eating pattern. A second objective was to study which variables predicted the reality of the experience of eating a virtual forbidden-fattening food. ED patients, obese patients, and a non-clinical group (N=62) experienced a non-immersive VE, and then completed reality judgment and presence measures. All participants rated the VE with similar scores for quality, interaction, engagement, and ecological validity; however, ED patients obtained the highest scores on emotional involvement, attention, reality judgment/presence, and negative effects. The obese group gave the lowest scores to reality judgment/presence, satisfaction and sense of physical space, and they held an intermediate position in the attribution of reality to virtually eating a "fattening" food. The palatability of a virtual food was predicted by attention capturing and belonging to the obese group, while the attribution of reality to the virtual eating was predicted by engagement and belonging to the ED group. This study offers preliminary results about the differential impact on ED and obese patients of the exposure to virtual food, and about the need to implement a VE that can be useful as a virtual lab for studying eating behavior and treating obesity. Copyright © 2016 Elsevier Inc. All rights reserved.
Applied virtual reality at the Research Triangle Institute
NASA Technical Reports Server (NTRS)
Montoya, R. Jorge
1994-01-01
Virtual Reality (VR) is a way for humans to use computers in visualizing, manipulating and interacting with large geometric data bases. This paper describes a VR infrastructure and its application to marketing, modeling, architectural walk through, and training problems. VR integration techniques used in these applications are based on a uniform approach which promotes portability and reusability of developed modules. For each problem, a 3D object data base is created using data captured by hand or electronically. The object's realism is enhanced through either procedural or photo textures. The virtual environment is created and populated with the data base using software tools which also support interactions with and immersivity in the environment. These capabilities are augmented by other sensory channels such as voice recognition, 3D sound, and tracking. Four applications are presented: a virtual furniture showroom, virtual reality models of the North Carolina Global TransPark, a walk through the Dresden Fraunenkirche, and the maintenance training simulator for the National Guard.
Investigation of virtual reality concept based on system analysis of conceptual series
NASA Astrophysics Data System (ADS)
Romanova, A.; Shuklin, D. A.; Kalinkina, M. E.; Gotskaya, I. B.; Ponomarev, Y. E.
2018-05-01
The paper covers approaches to the definition of virtual reality from the point of view of the humanitarian sciences and technology. Each approach analyzing problems of concept perception of methods interpreted by representatives of philosophy, psychology and sociology is singled out. Terminological analysis of the basic concepts is carried out and their refinement is constructed in the process of comparing the concepts of virtuality and virtual reality. Using the analysis of selected sources, a number of singularity characteristics of the given concept are singled out and its definition is specified. Results consist in combining the interpretation of all approaches to determine the concept of virtual reality. Due to the use of a comprehensive approach to the definition of the investigated concept, which allows us to consider the object of research as a set of elements that are subject to study with the help of a corresponding set of methods, one can conclude that the concept under study is complex and multifaceted. The authors noted that virtual reality technologies have a flexible concept depending on the field of application.
Goh, Rachel L Z; Kong, Yu Xiang George; McAlinden, Colm; Liu, John; Crowston, Jonathan G; Skalicky, Simon E
2018-01-01
To evaluate the use of smartphone-based virtual reality to objectively assess activity limitation in glaucoma. Cross-sectional study of 93 patients (54 mild, 22 moderate, 17 severe glaucoma). Sociodemographics, visual parameters, Glaucoma Activity Limitation-9 and Visual Function Questionnaire - Utility Index (VFQ-UI) were collected. Mean age was 67.4 ± 13.2 years; 52.7% were male; 65.6% were driving. A smartphone placed inside virtual reality goggles was used to administer the Virtual Reality Glaucoma Visual Function Test (VR-GVFT) to participants, consisting of three parts: stationary, moving ball, driving. Rasch analysis and classical validity tests were conducted to assess performance of VR-GVFT. Twenty-four of 28 stationary test items showed acceptable fit to the Rasch model (person separation 3.02, targeting 0). Eleven of 12 moving ball test items showed acceptable fit (person separation 3.05, targeting 0). No driving test items showed acceptable fit. Stationary test person scores showed good criterion validity, differentiating between glaucoma severity groups ( P = 0.014); modest convergence validity, with mild to moderate correlation with VFQ-UI, better eye (BE) mean deviation, BE pattern deviation, BE central scotoma, worse eye (WE) visual acuity, and contrast sensitivity (CS) in both eyes ( R = 0.243-0.381); and suboptimal divergent validity. Multivariate analysis showed that lower WE CS ( P = 0.044) and greater age ( P = 0.009) were associated with worse stationary test person scores. Smartphone-based virtual reality may be a portable objective simulation test of activity limitation related to glaucomatous visual loss. The use of simulated virtual environments could help better understand the activity limitations that affect patients with glaucoma.
Goh, Rachel L. Z.; McAlinden, Colm; Liu, John; Crowston, Jonathan G.; Skalicky, Simon E.
2018-01-01
Purpose To evaluate the use of smartphone-based virtual reality to objectively assess activity limitation in glaucoma. Methods Cross-sectional study of 93 patients (54 mild, 22 moderate, 17 severe glaucoma). Sociodemographics, visual parameters, Glaucoma Activity Limitation-9 and Visual Function Questionnaire – Utility Index (VFQ-UI) were collected. Mean age was 67.4 ± 13.2 years; 52.7% were male; 65.6% were driving. A smartphone placed inside virtual reality goggles was used to administer the Virtual Reality Glaucoma Visual Function Test (VR-GVFT) to participants, consisting of three parts: stationary, moving ball, driving. Rasch analysis and classical validity tests were conducted to assess performance of VR-GVFT. Results Twenty-four of 28 stationary test items showed acceptable fit to the Rasch model (person separation 3.02, targeting 0). Eleven of 12 moving ball test items showed acceptable fit (person separation 3.05, targeting 0). No driving test items showed acceptable fit. Stationary test person scores showed good criterion validity, differentiating between glaucoma severity groups (P = 0.014); modest convergence validity, with mild to moderate correlation with VFQ-UI, better eye (BE) mean deviation, BE pattern deviation, BE central scotoma, worse eye (WE) visual acuity, and contrast sensitivity (CS) in both eyes (R = 0.243–0.381); and suboptimal divergent validity. Multivariate analysis showed that lower WE CS (P = 0.044) and greater age (P = 0.009) were associated with worse stationary test person scores. Conclusions Smartphone-based virtual reality may be a portable objective simulation test of activity limitation related to glaucomatous visual loss. Translational Relevance The use of simulated virtual environments could help better understand the activity limitations that affect patients with glaucoma. PMID:29372112
Assessment of individual hand performance in box trainers compared to virtual reality trainers.
Madan, Atul K; Frantzides, Constantine T; Shervin, Nina; Tebbit, Christopher L
2003-12-01
Training residents in laparoscopic skills is ideally initiated in an inanimate laboratory with both box trainers and virtual reality trainers. Virtual reality trainers have the ability to score individual hand performance although they are expensive. Here we compared the ability to assess dominant and nondominant hand performance in box trainers with virtual reality trainers. Medical students without laparoscopic experience were utilized in this study (n = 16). Each student performed tasks on the LTS 2000, an inanimate box trainer (placing pegs with both hands and transferring pegs from one hand to another), as well as a task on the MIST-VR, a virtual reality trainer (grasping a virtual object and placing it in a virtual receptable with alternating hands). A surgeon scored students for the inanimate box trainer exercises (time and errors) while the MIST-VR scored students (time, economy of movements, and errors for each hand). Statistical analysis included Pearson correlations. Errors and time for the one-handed tasks on the box trainer did not correlate with errors, time, or economy measured for each hand by the MIST-VR (r = 0.01 to 0.30; P = NS). Total errors on the virtual reality trainer did correlate with errors on transferring pege (r = 0.61; P < 0.05). Economy and time of both dominant and nondominant hand from the MIST-VR correlated with time of transferring pegs in the box trainer (r = 0.53 to 0.77; P < 0.05). While individual hand assessment by the box trainer during 2-handed tasks was related to assessment by the virtual reality trainer, individual hand assessment during 1-handed tasks did not correlate with the virtual reality trainer. Virtual reality trainers, such as the MIST-VR, allow assessment of individual hand skills which may lead to improved laparoscopic skill acquisition. It is difficult to assess individual hand performance with box trainers alone.
ERIC Educational Resources Information Center
Bordnick, Patrick S.; Yoon, Jin H.; Kaganoff, Eili; Carter, Brian
2013-01-01
Objectives: The cue-reactivity paradigm has been widely used to assess craving among cigarette smokers. Seeking to replicate and expand on previous virtual reality (VR) nicotine cue-reactivity research on nontreatment-seeking smokers, the current study compared subjective reports of craving for cigarettes when exposed to smoking (proximal and…
A Feasibility Study of Virtual Reality-Based Coping Skills Training for Nicotine Dependence
ERIC Educational Resources Information Center
Bordnick, Patrick S.; Traylor, Amy C.; Carter, Brian L.; Graap, Ken M.
2012-01-01
Objective: Virtual reality (VR)-based cue reactivity has been successfully used for the assessment of drug craving. Going beyond assessment of cue reactivity, a novel VR-based treatment approach for smoking cessation was developed and tested for feasibility. Method: In a randomized experiment, 10-week treatment feasibility trial, 46…
Virtual reality training in laparoscopic surgery: A systematic review & meta-analysis.
Alaker, Medhat; Wynn, Greg R; Arulampalam, Tan
2016-05-01
Laparoscopic surgery requires a different and sometimes more complex skill set than does open surgery. Shortened working hours, less training times, and patient safety issues necessitates that these skills need to be acquired outside the operating room. Virtual reality simulation in laparoscopic surgery is a growing field, and many studies have been published to determine its effectiveness. This systematic review and meta-analysis aims to evaluate virtual reality simulation in laparoscopic abdominal surgery in comparison to other simulation models and to no training. A systematic literature search was carried out until January 2014 in full adherence to PRISMA guidelines. All randomised controlled studies comparing virtual reality training to other models of training or to no training were included. Only studies utilizing objective and validated assessment tools were included. Thirty one randomised controlled trials that compare virtual reality training to other models of training or to no training were included. The results of the meta-analysis showed that virtual reality simulation is significantly more effective than video trainers, and at least as good as box trainers. The use of Proficiency-based VR training, under supervision with prompt instructions and feedback, and the use of haptic feedback, has proven to be the most effective way of delivering the virtual reality training. The incorporation of virtual reality training into surgical training curricula is now necessary. A unified platform of training needs to be established. Further studies to assess the impact on patient outcomes and on hospital costs are necessary. (PROSPERO Registration number: CRD42014010030). Copyright © 2016 IJS Publishing Group Ltd. Published by Elsevier Ltd. All rights reserved.
Subjective visual vertical assessment with mobile virtual reality system.
Ulozienė, Ingrida; Totilienė, Milda; Paulauskas, Andrius; Blažauskas, Tomas; Marozas, Vaidotas; Kaski, Diego; Ulozas, Virgilijus
2017-01-01
The subjective visual vertical (SVV) is a measure of a subject's perceived verticality, and a sensitive test of vestibular dysfunction. Despite this, and consequent upon technical and logistical limitations, SVV has not entered mainstream clinical practice. The aim of the study was to develop a mobile virtual reality based system for SVV test, evaluate the suitability of different controllers and assess the system's usability in practical settings. In this study, we describe a novel virtual reality based system that has been developed to test SVV using integrated software and hardware, and report normative values across healthy population. Participants wore a mobile virtual reality headset in order to observe a 3D stimulus presented across separate conditions - static, dynamic and an immersive real-world ("boat in the sea") SVV tests. The virtual reality environment was controlled by the tester using a Bluetooth connected controllers. Participants controlled the movement of a vertical arrow using either a gesture control armband or a general-purpose gamepad, to indicate perceived verticality. We wanted to compare 2 different methods for object control in the system, determine normal values and compare them with literature data, to evaluate the developed system with the help of the system usability scale questionnaire and evaluate possible virtually induced dizziness with the help of subjective visual analog scale. There were no statistically significant differences in SVV values during static, dynamic and virtual reality stimulus conditions, obtained using the two different controllers and the results are compared to those previously reported in the literature using alternative methodologies. The SUS scores for the system were high, with a median of 82.5 for the Myo controller and of 95.0 for the Gamepad controller, representing a statistically significant difference between the two controllers (P<0.01). The median of virtual reality-induced dizziness for both devices was 0.7. The mobile virtual reality based system for implementation of subjective visual vertical test, is accurate and applicable in the clinical environment. The gamepad-based virtual object control method was preferred by the users. The tests were well tolerated with low dizziness scores in the majority of patients. Copyright © 2018 The Lithuanian University of Health Sciences. Production and hosting by Elsevier Sp. z o.o. All rights reserved.
NASA Astrophysics Data System (ADS)
Barrile, V.; Bilotta, G.; Meduri, G. M.; De Carlo, D.; Nunnari, A.
2017-11-01
In this study, using technologies such as laser scanner and GPR it was desired to see their potential in the cultural heritage. Also with regard to the processing part we are compared the results obtained by the various commercial software and algorithms developed and implemented in Matlab. Moreover, Virtual Reality and Augmented Reality allow integrating the real world with historical-artistic information, laser scanners and georadar (GPR) data and virtual objects, virtually enriching it with multimedia elements, graphic and textual information accessible through smartphones and tablets.
Côté, Sophie; Bouchard, Stéphane
2005-09-01
Many outcome studies have been conducted to assess the efficacy of virtual reality in the treatment of specific phobias. However, most studies used self-report data. The addition of objective measures of arousal and information processing mechanisms would be a valuable contribution in order to validate the usefulness of virtual reality in the treatment of anxiety disorders. The goal of this study was to document the impact of virtual reality exposure (VRE) on cardiac response and automatic processing of threatening stimuli. Twenty-eight adults suffering from arachnophobia were assessed and received an exposure-based treatment using virtual reality. General outcome and specific processes measures included a battery of standardized questionnaires, a pictorial emotional Stroop task, a behavioral avoidance test and a measure of participants' inter-beat intervals (IBI) while they were looking at a live tarantula. Assessment was conducted before and after treatment. Repeated measures ANOVAs revealed that therapy had a positive impact on questionnaire data, as well as on the behavioral avoidance test. Analyses made on the pictorial Stroop task showed that information processing of spider-related stimuli changed after treatment, which also indicates therapeutic success. Psychophysiological data also showed a positive change after treatment, suggesting a decrease in anxiety. In sum, VRE led to significant therapeutic improvements on objective measures as well as on self-report instruments.
Milella, Ferdinando; Pinto, Carlo; Cant, Iain; White, Mark; Meyer, Georg
2018-01-01
Objective and subjective measures of performance in virtual reality environments increase as more sensory cues are delivered and as simulation fidelity increases. Some cues (colour or sound) are easier to present than others (object weight, vestibular cues) so that substitute cues can be used to enhance informational content in a simulation at the expense of simulation fidelity. This study evaluates how substituting cues in one modality by alternative cues in another modality affects subjective and objective performance measures in a highly immersive virtual reality environment. Participants performed a wheel change in a virtual reality (VR) environment. Auditory, haptic and visual cues, signalling critical events in the simulation, were manipulated in a factorial design. Subjective ratings were recorded via questionnaires. The time taken to complete the task was used as an objective performance measure. The results show that participants performed best and felt an increased sense of immersion and involvement, collectively referred to as ‘presence’, when substitute multimodal sensory feedback was provided. Significant main effects of audio and tactile cues on task performance and on participants' subjective ratings were found. A significant negative relationship was found between the objective (overall completion times) and subjective (ratings of presence) performance measures. We conclude that increasing informational content, even if it disrupts fidelity, enhances performance and user’s overall experience. On this basis we advocate the use of substitute cues in VR environments as an efficient method to enhance performance and user experience. PMID:29390023
Cooper, Natalia; Milella, Ferdinando; Pinto, Carlo; Cant, Iain; White, Mark; Meyer, Georg
2018-01-01
Objective and subjective measures of performance in virtual reality environments increase as more sensory cues are delivered and as simulation fidelity increases. Some cues (colour or sound) are easier to present than others (object weight, vestibular cues) so that substitute cues can be used to enhance informational content in a simulation at the expense of simulation fidelity. This study evaluates how substituting cues in one modality by alternative cues in another modality affects subjective and objective performance measures in a highly immersive virtual reality environment. Participants performed a wheel change in a virtual reality (VR) environment. Auditory, haptic and visual cues, signalling critical events in the simulation, were manipulated in a factorial design. Subjective ratings were recorded via questionnaires. The time taken to complete the task was used as an objective performance measure. The results show that participants performed best and felt an increased sense of immersion and involvement, collectively referred to as 'presence', when substitute multimodal sensory feedback was provided. Significant main effects of audio and tactile cues on task performance and on participants' subjective ratings were found. A significant negative relationship was found between the objective (overall completion times) and subjective (ratings of presence) performance measures. We conclude that increasing informational content, even if it disrupts fidelity, enhances performance and user's overall experience. On this basis we advocate the use of substitute cues in VR environments as an efficient method to enhance performance and user experience.
ERIC Educational Resources Information Center
Johnston, Elizabeth; Olivas, Gerald; Steele, Patricia; Smith, Cassandra; Bailey, Liston
2018-01-01
New virtual reality (VR) applications for education appear frequently in the marketplace but rarely contain explicit pedagogies. The research objective of this study was to identify and categorize principles and practices of pedagogy that are evident but not articulated in selected VR applications for education. Analysis of public content for the…
From Vesalius to Virtual Reality: How Embodied Cognition Facilitates the Visualization of Anatomy
ERIC Educational Resources Information Center
Jang, Susan
2010-01-01
This study examines the facilitative effects of embodiment of a complex internal anatomical structure through three-dimensional ("3-D") interactivity in a virtual reality ("VR") program. Since Shepard and Metzler's influential 1971 study, it has been known that 3-D objects (e.g., multiple-armed cube or external body parts) are visually and…
Improving Weight Maintenance Using Virtual Reality (Second Life)
ERIC Educational Resources Information Center
Sullivan, Debra K.; Goetz, Jeannine R.; Gibson, Cheryl A.; Washburn, Richard A.; Smith, Bryan K.; Lee, Jaehoon; Gerald, Stephanie; Fincham, Tennille; Donnelly, Joseph E.
2013-01-01
Objective: Compare weight loss and maintenance between a face-to-face (FTF) weight management clinic and a clinic delivered via virtual reality (VR). Methods: Participants were randomized to 3 months of weight loss with a weekly clinic delivered via FTF or VR and then 6 months' weight maintenance delivered with VR. Data were collected at baseline…
ERIC Educational Resources Information Center
Yang, Mau-Tsuen; Liao, Wan-Che
2014-01-01
The physical-virtual immersion and real-time interaction play an essential role in cultural and language learning. Augmented reality (AR) technology can be used to seamlessly merge virtual objects with real-world images to realize immersions. Additionally, computer vision (CV) technology can recognize free-hand gestures from live images to enable…
Zenner, Andre; Kruger, Antonio
2017-04-01
We define the concept of Dynamic Passive Haptic Feedback (DPHF) for virtual reality by introducing the weight-shifting physical DPHF proxy object Shifty. This concept combines actuators known from active haptics and physical proxies known from passive haptics to construct proxies that automatically adapt their passive haptic feedback. We describe the concept behind our ungrounded weight-shifting DPHF proxy Shifty and the implementation of our prototype. We then investigate how Shifty can, by automatically changing its internal weight distribution, enhance the user's perception of virtual objects interacted with in two experiments. In a first experiment, we show that Shifty can enhance the perception of virtual objects changing in shape, especially in length and thickness. Here, Shifty was shown to increase the user's fun and perceived realism significantly, compared to an equivalent passive haptic proxy. In a second experiment, Shifty is used to pick up virtual objects of different virtual weights. The results show that Shifty enhances the perception of weight and thus the perceived realism by adapting its kinesthetic feedback to the picked-up virtual object. In the same experiment, we additionally show that specific combinations of haptic, visual and auditory feedback during the pick-up interaction help to compensate for visual-haptic mismatch perceived during the shifting process.
Vaccaro, Christine M; Crisp, Catrina C; Fellner, Angela N; Jackson, Christopher; Kleeman, Steven D; Pavelka, James
2013-01-01
The objective of this study was to compare the effect of virtual reality simulation training plus robotic orientation versus robotic orientation alone on performance of surgical tasks using an inanimate model. Surgical resident physicians were enrolled in this assessor-blinded randomized controlled trial. Residents were randomized to receive either (1) robotic virtual reality simulation training plus standard robotic orientation or (2) standard robotic orientation alone. Performance of surgical tasks was assessed at baseline and after the intervention. Nine of 33 modules from the da Vinci Skills Simulator were chosen. Experts in robotic surgery evaluated each resident's videotaped performance of the inanimate model using the Global Rating Scale (GRS) and Objective Structured Assessment of Technical Skills-modified for robotic-assisted surgery (rOSATS). Nine resident physicians were enrolled in the simulation group and 9 in the control group. As a whole, participants improved their total time, time to incision, and suture time from baseline to repeat testing on the inanimate model (P = 0.001, 0.003, <0.001, respectively). Both groups improved their GRS and rOSATS scores significantly (both P < 0.001); however, the GRS overall pass rate was higher in the simulation group compared with the control group (89% vs 44%, P = 0.066). Standard robotic orientation and/or robotic virtual reality simulation improve surgical skills on an inanimate model, although this may be a function of the initial "practice" on the inanimate model and repeat testing of a known task. However, robotic virtual reality simulation training increases GRS pass rates consistent with improved robotic technical skills learned in a virtual reality environment.
Cochrane review: virtual reality for stroke rehabilitation.
Laver, K; George, S; Thomas, S; Deutsch, J E; Crotty, M
2012-09-01
Virtual reality and interactive video gaming are innovative therapy approaches in the field of stroke rehabilitation. The primary objective of this review was to determine the effectiveness of virtual reality on motor function after stroke. The impact on secondary outcomes including activities of daily living was also assessed. Randomised and quasi-randomised controlled trials that compared virtual reality with an alternative or no intervention were included in the review. The authors searched the Cochrane Stroke Group Trials Register, the Cochrane Central Register of Controlled Trials, electronic databases, trial registers, reference lists, Dissertation Abstracts, conference proceedings and contacted key researchers and virtual reality manufacturers. Search results were independently examined by two review authors to identify studies meeting the inclusion criteria. Nineteen studies with a total of 565 participants were included in the review. Variation in intervention approaches and outcome data collected limited the extent to which studies could be compared. Virtual reality was found to be significantly more effective than conventional therapy in improving upper limb function (standardised mean difference, SMD) 0.53, 95% confidence intervals [CI] 0.25 to 0.81)) based on seven studies, and activities of daily living (ADL) function (SMD 0.81, 95% CI 0.39 to 1.22) based on three studies. No statistically significant effects were found for grip strength (based on two studies) or gait speed (based on three studies). Virtual reality appears to be a promising approach however, further studies are required to confirm these findings.
Integrated Data Visualization and Virtual Reality Tool
NASA Technical Reports Server (NTRS)
Dryer, David A.
1998-01-01
The Integrated Data Visualization and Virtual Reality Tool (IDVVRT) Phase II effort was for the design and development of an innovative Data Visualization Environment Tool (DVET) for NASA engineers and scientists, enabling them to visualize complex multidimensional and multivariate data in a virtual environment. The objectives of the project were to: (1) demonstrate the transfer and manipulation of standard engineering data in a virtual world; (2) demonstrate the effects of design and changes using finite element analysis tools; and (3) determine the training and engineering design and analysis effectiveness of the visualization system.
Tactile feedback for relief of deafferentation pain using virtual reality system: a pilot study.
Sano, Yuko; Wake, Naoki; Ichinose, Akimichi; Osumi, Michihiro; Oya, Reishi; Sumitani, Masahiko; Kumagaya, Shin-Ichiro; Kuniyoshi, Yasuo
2016-06-28
Previous studies have tried to relieve deafferentation pain (DP) by using virtual reality rehabilitation systems. However, the effectiveness of multimodal sensory feedback was not validated. The objective of this study is to relieve DP by neurorehabilitation using a virtual reality system with multimodal sensory feedback and to validate the efficacy of tactile feedback on immediate pain reduction. We have developed a virtual reality rehabilitation system with multimodal sensory feedback and applied it to seven patients with DP caused by brachial plexus avulsion or arm amputation. The patients executed a reaching task using the virtual phantom limb manipulated by their real intact limb. The reaching task was conducted under two conditions: one with tactile feedback on the intact hand and one without. The pain intensity was evaluated through a questionnaire. We found that the task with the tactile feedback reduced DP more (41.8 ± 19.8 %) than the task without the tactile feedback (28.2 ± 29.5 %), which was supported by a Wilcoxon signed-rank test result (p < 0.05). Overall, our findings indicate that the tactile feedback improves the immediate pain intensity through rehabilitation using our virtual reality system.
Direct Manipulation in Virtual Reality
NASA Technical Reports Server (NTRS)
Bryson, Steve
2003-01-01
Virtual Reality interfaces offer several advantages for scientific visualization such as the ability to perceive three-dimensional data structures in a natural way. The focus of this chapter is direct manipulation, the ability for a user in virtual reality to control objects in the virtual environment in a direct and natural way, much as objects are manipulated in the real world. Direct manipulation provides many advantages for the exploration of complex, multi-dimensional data sets, by allowing the investigator the ability to intuitively explore the data environment. Because direct manipulation is essentially a control interface, it is better suited for the exploration and analysis of a data set than for the publishing or communication of features found in that data set. Thus direct manipulation is most relevant to the analysis of complex data that fills a volume of three-dimensional space, such as a fluid flow data set. Direct manipulation allows the intuitive exploration of that data, which facilitates the discovery of data features that would be difficult to find using more conventional visualization methods. Using a direct manipulation interface in virtual reality, an investigator can, for example, move a data probe about in space, watching the results and getting a sense of how the data varies within its spatial volume.
Sounds of silence: How to animate virtual worlds with sound
NASA Technical Reports Server (NTRS)
Astheimer, Peter
1993-01-01
Sounds are an integral and sometimes annoying part of our daily life. Virtual worlds which imitate natural environments gain a lot of authenticity from fast, high quality visualization combined with sound effects. Sounds help to increase the degree of immersion for human dwellers in imaginary worlds significantly. The virtual reality toolkit of IGD (Institute for Computer Graphics) features a broad range of standard visual and advanced real-time audio components which interpret an object-oriented definition of the scene. The virtual reality system 'Virtual Design' realized with the toolkit enables the designer of virtual worlds to create a true audiovisual environment. Several examples on video demonstrate the usage of the audio features in Virtual Design.
The Input-Interface of Webcam Applied in 3D Virtual Reality Systems
ERIC Educational Resources Information Center
Sun, Huey-Min; Cheng, Wen-Lin
2009-01-01
Our research explores a virtual reality application based on Web camera (Webcam) input-interface. The interface can replace with the mouse to control direction intention of a user by the method of frame difference. We divide a frame into nine grids from Webcam and make use of the background registration to compute the moving object. In order to…
Magnetosensitive e-skins with directional perception for augmented reality
Cañón Bermúdez, Gilbert Santiago; Karnaushenko, Dmitriy D.; Karnaushenko, Daniil; Lebanov, Ana; Bischoff, Lothar; Kaltenbrunner, Martin; Fassbender, Jürgen; Schmidt, Oliver G.; Makarov, Denys
2018-01-01
Electronic skins equipped with artificial receptors are able to extend our perception beyond the modalities that have naturally evolved. These synthetic receptors offer complimentary information on our surroundings and endow us with novel means of manipulating physical or even virtual objects. We realize highly compliant magnetosensitive skins with directional perception that enable magnetic cognition, body position tracking, and touchless object manipulation. Transfer printing of eight high-performance spin valve sensors arranged into two Wheatstone bridges onto 1.7-μm-thick polyimide foils ensures mechanical imperceptibility. This resembles a new class of interactive devices extracting information from the surroundings through magnetic tags. We demonstrate this concept in augmented reality systems with virtual knob-turning functions and the operation of virtual dialing pads, based on the interaction with magnetic fields. This technology will enable a cornucopia of applications from navigation, motion tracking in robotics, regenerative medicine, and sports and gaming to interaction in supplemented reality. PMID:29376121
Brundage, Shelley B; Brinton, James M; Hancock, Adrienne B
2016-12-01
Virtual reality environments (VREs) allow for immersion in speaking environments that mimic real-life interactions while maintaining researcher control. VREs have been used successfully to engender arousal in other disorders. The purpose of this study was to investigate the utility of virtual reality environments to examine physiological reactivity and subjective ratings of distress in persons who stutter (PWS). Subjective and objective measures of arousal were collected from 10PWS during four-minute speeches to a virtual audience and to a virtual empty room. Stuttering frequency and physiological measures (skin conductance level and heart rate) did not differ across speaking conditions, but subjective ratings of distress were significantly higher in the virtual audience condition compared to the virtual empty room. VREs have utility in elevating subjective ratings of distress in PWS. VREs have the potential to be useful tools for practicing treatment targets in a safe, controlled, and systematic manner. Copyright © 2016 Elsevier Inc. All rights reserved.
Inertial Motion-Tracking Technology for Virtual 3-D
NASA Technical Reports Server (NTRS)
2005-01-01
In the 1990s, NASA pioneered virtual reality research. The concept was present long before, but, prior to this, the technology did not exist to make a viable virtual reality system. Scientists had theories and ideas they knew that the concept had potential, but the computers of the 1970s and 1980s were not fast enough, sensors were heavy and cumbersome, and people had difficulty blending fluidly with the machines. Scientists at Ames Research Center built upon the research of previous decades and put the necessary technology behind them, making the theories of virtual reality a reality. Virtual reality systems depend on complex motion-tracking sensors to convey information between the user and the computer to give the user the feeling that he is operating in the real world. These motion-tracking sensors measure and report an object s position and orientation as it changes. A simple example of motion tracking would be the cursor on a computer screen moving in correspondence to the shifting of the mouse. Tracking in 3-D, necessary to create virtual reality, however, is much more complex. To be successful, the perspective of the virtual image seen on the computer must be an accurate representation of what is seen in the real world. As the user s head or camera moves, turns, or tilts, the computer-generated environment must change accordingly with no noticeable lag, jitter, or distortion. Historically, the lack of smooth and rapid tracking of the user s motion has thwarted the widespread use of immersive 3-D computer graphics. NASA uses virtual reality technology for a variety of purposes, mostly training of astronauts. The actual missions are costly and dangerous, so any opportunity the crews have to practice their maneuvering in accurate situations before the mission is valuable and instructive. For that purpose, NASA has funded a great deal of virtual reality research, and benefited from the results.
Research on 3D virtual campus scene modeling based on 3ds Max and VRML
NASA Astrophysics Data System (ADS)
Kang, Chuanli; Zhou, Yanliu; Liang, Xianyue
2015-12-01
With the rapid development of modem technology, the digital information management and the virtual reality simulation technology has become a research hotspot. Virtual campus 3D model can not only express the real world objects of natural, real and vivid, and can expand the campus of the reality of time and space dimension, the combination of school environment and information. This paper mainly uses 3ds Max technology to create three-dimensional model of building and on campus buildings, special land etc. And then, the dynamic interactive function is realized by programming the object model in 3ds Max by VRML .This research focus on virtual campus scene modeling technology and VRML Scene Design, and the scene design process in a variety of real-time processing technology optimization strategy. This paper guarantees texture map image quality and improve the running speed of image texture mapping. According to the features and architecture of Guilin University of Technology, 3ds Max, AutoCAD and VRML were used to model the different objects of the virtual campus. Finally, the result of virtual campus scene is summarized.
Magic cards: a new augmented-reality approach.
Demuynck, Olivier; Menendez, José Manuel
2013-01-01
Augmented reality (AR) commonly uses markers for detection and tracking. Such multimedia applications associate each marker with a virtual 3D model stored in the memory of the camera-equipped device running the application. Application users are limited in their interactions, which require knowing how to design and program 3D objects. This generally prevents them from developing their own entertainment AR applications. The Magic Cards application solves this problem by offering an easy way to create and manage an unlimited number of virtual objects that are encoded on special markers.
Kanumuri, Prathima; Ganai, Sabha; Wohaibi, Eyad M.; Bush, Ronald W.; Grow, Daniel R.
2008-01-01
Background: The study aim was to compare the effectiveness of virtual reality and computer-enhanced video-scopic training devices for training novice surgeons in complex laparoscopic skills. Methods: Third-year medical students received instruction on laparoscopic intracorporeal suturing and knot tying and then underwent a pretraining assessment of the task using a live porcine model. Students were then randomized to objectives-based training on either the virtual reality (n=8) or computer-enhanced (n=8) training devices for 4 weeks, after which the assessment was repeated. Results: Posttraining performance had improved compared with pretraining performance in both task completion rate (94% versus 18%; P<0.001*) and time [181±58 (SD) versus 292±24*]. Performance of the 2 groups was comparable before and after training. Of the subjects, 88% thought that haptic cues were important in simulators. Both groups agreed that their respective training systems were effective teaching tools, but computer-enhanced device trainees were more likely to rate their training as representative of reality (P<0.01). Conclusions: Training on virtual reality and computer-enhanced devices had equivalent effects on skills improvement in novices. Despite the perception that haptic feedback is important in laparoscopic simulation training, its absence in the virtual reality device did not impede acquisition of skill. PMID:18765042
Zhu, Ming; Liu, Fei; Chai, Gang; Pan, Jun J.; Jiang, Taoran; Lin, Li; Xin, Yu; Zhang, Yan; Li, Qingfeng
2017-01-01
Augmented reality systems can combine virtual images with a real environment to ensure accurate surgery with lower risk. This study aimed to develop a novel registration and tracking technique to establish a navigation system based on augmented reality for maxillofacial surgery. Specifically, a virtual image is reconstructed from CT data using 3D software. The real environment is tracked by the augmented reality (AR) software. The novel registration strategy that we created uses an occlusal splint compounded with a fiducial marker (OSM) to establish a relationship between the virtual image and the real object. After the fiducial marker is recognized, the virtual image is superimposed onto the real environment, forming the “integrated image” on semi-transparent glass. Via the registration process, the integral image, which combines the virtual image with the real scene, is successfully presented on the semi-transparent helmet. The position error of this navigation system is 0.96 ± 0.51 mm. This augmented reality system was applied in the clinic and good surgical outcomes were obtained. The augmented reality system that we established for maxillofacial surgery has the advantages of easy manipulation and high accuracy, which can improve surgical outcomes. Thus, this system exhibits significant potential in clinical applications. PMID:28198442
Zhu, Ming; Liu, Fei; Chai, Gang; Pan, Jun J; Jiang, Taoran; Lin, Li; Xin, Yu; Zhang, Yan; Li, Qingfeng
2017-02-15
Augmented reality systems can combine virtual images with a real environment to ensure accurate surgery with lower risk. This study aimed to develop a novel registration and tracking technique to establish a navigation system based on augmented reality for maxillofacial surgery. Specifically, a virtual image is reconstructed from CT data using 3D software. The real environment is tracked by the augmented reality (AR) software. The novel registration strategy that we created uses an occlusal splint compounded with a fiducial marker (OSM) to establish a relationship between the virtual image and the real object. After the fiducial marker is recognized, the virtual image is superimposed onto the real environment, forming the "integrated image" on semi-transparent glass. Via the registration process, the integral image, which combines the virtual image with the real scene, is successfully presented on the semi-transparent helmet. The position error of this navigation system is 0.96 ± 0.51 mm. This augmented reality system was applied in the clinic and good surgical outcomes were obtained. The augmented reality system that we established for maxillofacial surgery has the advantages of easy manipulation and high accuracy, which can improve surgical outcomes. Thus, this system exhibits significant potential in clinical applications.
Zhang, Melvyn W B; Ho, Roger C M
2017-01-01
There have been rapid advances in technologies over the past decade and virtual reality technology is an area which is increasingly utilized as a healthcare intervention in many disciplines including that of Medicine, Surgery and Psychiatry. In Psychiatry, most of the current interventions involving the usage of virtual reality technology is limited to its application for anxiety disorders. With the advances in technology, Internet addiction and Internet gaming disorders are increasingly prevalent. To date, these disorders are still being treated using conventional psychotherapy methods such as cognitive behavioural therapy. However, there is an increasing number of research combining various other therapies alongside with cognitive behavioural therapy, as an attempt possibly to reduce the drop-out rates and to make such interventions more relevant to the targeted group of addicts, who are mostly adolescents. To date, there has been a prior study done in Korea that has demonstrated the comparable efficacy of virtual reality therapy with that of cognitive behavioural therapy. However, the intervention requires the usage of specialized screens and devices. It is thus the objective of the current article to highlight how smartphone applications could be designed and be utilized for immersive virtual reality treatment, alongside low cost wearables.
Virtual reality exposure therapy in anxiety disorders: a quantitative meta-analysis.
Opriş, David; Pintea, Sebastian; García-Palacios, Azucena; Botella, Cristina; Szamosközi, Ştefan; David, Daniel
2012-02-01
Virtual reality exposure therapy (VRET) is a promising intervention for the treatment of the anxiety disorders. The main objective of this meta-analysis is to compare the efficacy of VRET, used in a behavioral or cognitive-behavioral framework, with that of the classical evidence-based treatments, in anxiety disorders. A comprehensive search of the literature identified 23 studies (n = 608) that were included in the final analysis. The results show that in the case of anxiety disorders, (1) VRET does far better than the waitlist control; (2) the post-treatment results show similar efficacy between the behavioral and the cognitive behavioral interventions incorporating a virtual reality exposure component and the classical evidence-based interventions, with no virtual reality exposure component; (3) VRET has a powerful real-life impact, similar to that of the classical evidence-based treatments; (4) VRET has a good stability of results over time, similar to that of the classical evidence-based treatments; (5) there is a dose-response relationship for VRET; and (6) there is no difference in the dropout rate between the virtual reality exposure and the in vivo exposure. Implications are discussed. © 2011 Wiley Periodicals, Inc.
Performance Of The IEEE 802.15.4 Protocol As The Marker Of Augmented Reality In Museum
NASA Astrophysics Data System (ADS)
Kurniawan Saputro, Adi; Sumpeno, Surya; Hariadi, Mochamad
2018-04-01
Museum is a place to keep the historic objects and historical education center to introduce the nation’s culture. Utilizing technology in a museum to become a smart city is a challenge. Internet of thing (IOT) is a technological advance in Information and communication (ICT) that can be applied in the museum The current ICT development is not only a transmission medium, but Augmented Reality technology is also being developed. Currently, Augmented Reality technology creates virtual objects into the real world using markers or images. In this study, researcher used signals to make virtual objects appear in the real world using the IEEE 802.14.5 protocol replacing the Augmented Reality marker. RSSI and triangulation are used as a substitute microlocation for AR objects. The result is the performance of Wireless Sensor Network could be used for data transmission in the museum. LOS research at a distance of 15 meters with 1000 ms delay found 1.4% error rate and NLOS with 2.3% error rate. So it can be concluded that utilization technology (IOT) using signal wireless sensor network as a replace for marker augmented reality can be used in museum
The Use of Virtual Reality in Patients with Eating Disorders: Systematic Review
Clus, Damien; Larsen, Mark Erik; Lemey, Christophe
2018-01-01
Background Patients with eating disorders are characterized by pathological eating habits and a tendency to overestimate their weight and body shape. Virtual reality shows promise for the evaluation and management of patients with eating disorders. This technology, when accepted by this population, allows immersion in virtual environments, assessment, and therapeutic approaches, by exposing users to high-calorie foods or changes in body shape. Objective To better understand the value of virtual reality, we conducted a review of the literature, including clinical studies proposing the use of virtual reality for the evaluation and management of patients with eating disorders. Methods We searched PubMed, PsycINFO, ScienceDirect, the Cochrane Library, Scopus, and Web of Science up to April 2017. We created the list of keywords based on two domains: virtual reality and eating disorders. We used the Preferred Reporting Items for Systematic Reviews and Meta-Analyses to identify, select, and critically appraise relevant research while minimizing bias. Results The initial database searches identified 311 articles, 149 of which we removed as duplicates. We analyzed the resulting set of 26 unique studies that met the inclusion criteria. Of these, 8 studies were randomized controlled trials, 13 were nonrandomized studies, and 5 were clinical trials with only 1 participant. Most articles focused on clinical populations (19/26, 73%), with the remainder reporting case-control studies (7/26, 27%). Most of the studies used visual immersive equipment (16/26, 62%) with a head-mounted display (15/16, 94%). Two main areas of interest emerged from these studies: virtual work on patients’ body image (7/26, 27%) and exposure to virtual food stimuli (10/26, 38%). Conclusions We conducted a broad analysis of studies on the use of virtual reality in patients with eating disorders. This review of the literature showed that virtual reality is an acceptable and promising therapeutic tool for patients with eating disorders. PMID:29703715
Qian, Zeng-Hui; Feng, Xu; Li, Yang; Tang, Ke
2018-01-01
Studying the three-dimensional (3D) anatomy of the cavernous sinus is essential for treating lesions in this region with skull base surgeries. Cadaver dissection is a conventional method that has insurmountable flaws with regard to understanding spatial anatomy. The authors' research aimed to build an image model of the cavernous sinus region in a virtual reality system to precisely, individually and objectively elucidate the complete and local stereo-anatomy. Computed tomography and magnetic resonance imaging scans were performed on 5 adult cadaver heads. Latex mixed with contrast agent was injected into the arterial system and then into the venous system. Computed tomography scans were performed again following the 2 injections. Magnetic resonance imaging scans were performed again after the cranial nerves were exposed. Image data were input into a virtual reality system to establish a model of the cavernous sinus. Observation results of the image models were compared with those of the cadaver heads. Visualization of the cavernous sinus region models built using the virtual reality system was good for all the cadavers. High resolutions were achieved for the images of different tissues. The observed results were consistent with those of the cadaver head. The spatial architecture and modality of the cavernous sinus were clearly displayed in the 3D model by rotating the model and conveniently changing its transparency. A 3D virtual reality model of the cavernous sinus region is helpful for globally and objectively understanding anatomy. The observation procedure was accurate, convenient, noninvasive, and time and specimen saving.
NASA Technical Reports Server (NTRS)
Johnson, David W.
1992-01-01
Virtual realities are a type of human-computer interface (HCI) and as such may be understood from a historical perspective. In the earliest era, the computer was a very simple, straightforward machine. Interaction was human manipulation of an inanimate object, little more than the provision of an explicit instruction set to be carried out without deviation. In short, control resided with the user. In the second era of HCI, some level of intelligence and control was imparted to the system to enable a dialogue with the user. Simple context sensitive help systems are early examples, while more sophisticated expert system designs typify this era. Control was shared more equally. In this, the third era of the HCI, the constructed system emulates a particular environment, constructed with rules and knowledge about 'reality'. Control is, in part, outside the realm of the human-computer dialogue. Virtual reality systems are discussed.
Chau, Brian; Phelan, Ivan; Ta, Phillip; Humbert, Sarah; Hata, Justin; Tran, Duc
2017-01-01
Objective: Phantom limb pain is a condition frequently experienced after amputation. One treatment for phantom limb pain is traditional mirror therapy, yet some patients do not respond to this intervention, and immersive virtual reality mirror therapy offers some potential advantages. We report the case of a patient with severe phantom limb pain following an upper limb amputation and successful treatment with therapy in a custom virtual reality environment. Methods: An interactive 3-D kitchen environment was developed based on the principles of mirror therapy to allow for control of virtual hands while wearing a motion-tracked, head-mounted virtual reality display. The patient used myoelectric control of a virtual hand as well as motion-tracking control in this setting for five therapy sessions. Pain scale measurements and subjective feedback was elicited at each session. Results: Analysis of the measured pain scales showed statistically significant decreases per session [Visual Analog Scale, Short Form McGill Pain Questionnaire, and Wong-Baker FACES pain scores decreased by 55 percent (p=0.0143), 60 percent (p=0.023), and 90 percent (p=0.0024), respectively]. Significant subjective pain relief persisting between sessions was also reported, as well as marked immersion within the virtual environments. On followup at six weeks, the patient noted continued decrease in phantom limb pain symptoms. Conclusions: Currently available immersive virtual reality technology with myolectric and motion tracking control may represent a possible therapy option for treatment-resistant phantom limb pain.
Phelan, Ivan; Ta, Phillip; Humbert, Sarah; Hata, Justin; Tran, Duc
2017-01-01
Objective: Phantom limb pain is a condition frequently experienced after amputation. One treatment for phantom limb pain is traditional mirror therapy, yet some patients do not respond to this intervention, and immersive virtual reality mirror therapy offers some potential advantages. We report the case of a patient with severe phantom limb pain following an upper limb amputation and successful treatment with therapy in a custom virtual reality environment. Methods: An interactive 3-D kitchen environment was developed based on the principles of mirror therapy to allow for control of virtual hands while wearing a motion-tracked, head-mounted virtual reality display. The patient used myoelectric control of a virtual hand as well as motion-tracking control in this setting for five therapy sessions. Pain scale measurements and subjective feedback was elicited at each session. Results: Analysis of the measured pain scales showed statistically significant decreases per session [Visual Analog Scale, Short Form McGill Pain Questionnaire, and Wong-Baker FACES pain scores decreased by 55 percent (p=0.0143), 60 percent (p=0.023), and 90 percent (p=0.0024), respectively]. Significant subjective pain relief persisting between sessions was also reported, as well as marked immersion within the virtual environments. On followup at six weeks, the patient noted continued decrease in phantom limb pain symptoms. Conclusions: Currently available immersive virtual reality technology with myolectric and motion tracking control may represent a possible therapy option for treatment-resistant phantom limb pain. PMID:29616149
Virtual reality for stroke rehabilitation: an abridged version of a Cochrane review.
Laver, K; George, S; Thomas, S; Deutsch, J E; Crotty, M
2015-08-01
Virtual reality and interactive video gaming have emerged as new treatment approaches in stroke rehabilitation settings over the last ten years. The primary objective of this review was to determine the effectiveness of virtual reality on upper limb function and activity after stroke. The impact on secondary outcomes including gait, cognitive function and activities of daily living was also assessed. Randomized and quasi-randomized controlled trials comparing virtual reality with an alternative intervention or no intervention were eligible to be included in the review. The authors searched a number of electronic databases including: the Cochrane Stroke Group Trials Register, the Cochrane Central Register of Controlled Trials, MEDLINE, EMBASE, AMED, CINAHL, PsycINFO, clinical trial registers, reference lists, Dissertation Abstracts and contacted key researchers in the field. Search results were independently examined by two review authors to identify studies meeting the inclusion criteria. A total of 37 randomized or quasi randomized controlled trials with a total of 1019 participants were included in the review. Virtual reality was found to be significantly more effective than conventional therapy in improving upper limb function (standardized mean difference [SMD] 0.28, 95% confidence intervals [CI] 0.08 to 0.49) based on 12 studies and significantly more effective than no therapy in improving upper limber function (SMD 0.44 [95% CI 0.15 to 0.73]) based on nine studies. The use of virtual reality also significantly improved activities of daily living function when compared to more conventional therapy approaches (SMD 0.43 [95% CI 0.18 to 0.69]) based on eight studies. While there are a large number of studies assessing the efficacy of virtual reality they tend to be small and many are at risk of bias. While there is evidence to support the use of virtual reality intervention as part of upper limb training programs, more research is required to determine whether it is beneficial in terms of improving lower limb function and gait and cognitive function.
Chen, Karen B; Ponto, Kevin; Tredinnick, Ross D; Radwin, Robert G
2015-06-01
This study was a proof of concept for virtual exertions, a novel method that involves the use of body tracking and electromyography for grasping and moving projections of objects in virtual reality (VR). The user views objects in his or her hands during rehearsed co-contractions of the same agonist-antagonist muscles normally used for the desired activities to suggest exerting forces. Unlike physical objects, virtual objects are images and lack mass. There is currently no practical physically demanding way to interact with virtual objects to simulate strenuous activities. Eleven participants grasped and lifted similar physical and virtual objects of various weights in an immersive 3-D Cave Automatic Virtual Environment. Muscle activity, localized muscle fatigue, ratings of perceived exertions, and NASA Task Load Index were measured. Additionally, the relationship between levels of immersion (2-D vs. 3-D) was studied. Although the overall magnitude of biceps activity and workload were greater in VR, muscle activity trends and fatigue patterns for varying weights within VR and physical conditions were the same. Perceived exertions for varying weights were not significantly different between VR and physical conditions. Perceived exertion levels and muscle activity patterns corresponded to the assigned virtual loads, which supported the hypothesis that the method evoked the perception of physical exertions and showed that the method was promising. Ultimately this approach may offer opportunities for research and training individuals to perform strenuous activities under potentially safer conditions that mimic situations while seeing their own body and hands relative to the scene. © 2014, Human Factors and Ergonomics Society.
Designing 3 Dimensional Virtual Reality Using Panoramic Image
NASA Astrophysics Data System (ADS)
Wan Abd Arif, Wan Norazlinawati; Wan Ahmad, Wan Fatimah; Nordin, Shahrina Md.; Abdullah, Azrai; Sivapalan, Subarna
The high demand to improve the quality of the presentation in the knowledge sharing field is to compete with rapidly growing technology. The needs for development of technology based learning and training lead to an idea to develop an Oil and Gas Plant Virtual Environment (OGPVE) for the benefit of our future. Panoramic Virtual Reality learning based environment is essential in order to help educators overcome the limitations in traditional technical writing lesson. Virtual reality will help users to understand better by providing the simulations of real-world and hard to reach environment with high degree of realistic experience and interactivity. Thus, in order to create a courseware which will achieve the objective, accurate images of intended scenarios must be acquired. The panorama shows the OGPVE and helps to generate ideas to users on what they have learnt. This paper discusses part of the development in panoramic virtual reality. The important phases for developing successful panoramic image are image acquisition and image stitching or mosaicing. In this paper, the combination of wide field-of-view (FOV) and close up image used in this panoramic development are also discussed.
Levy
1996-08-01
New interactive computer technologies are having a significant influence on medical education, training, and practice. The newest innovation in computer technology, virtual reality, allows an individual to be immersed in a dynamic computer-generated, three-dimensional environment and can provide realistic simulations of surgical procedures. A new virtual reality hysteroscope passes through a sensing device that synchronizes movements with a three-dimensional model of a uterus. Force feedback is incorporated into this model, so the user actually experiences the collision of an instrument against the uterine wall or the sensation of the resistance or drag of a resectoscope as it cuts through a myoma in a virtual environment. A variety of intrauterine pathologies and procedures are simulated, including hyperplasia, cancer, resection of a uterine septum, polyp, or myoma, and endometrial ablation. This technology will be incorporated into comprehensive training programs that will objectively assess hand-eye coordination and procedural skills. It is possible that by incorporating virtual reality into hysteroscopic training programs, a decrease in the learning curve and the number of complications presently associated with the procedures may be realized. Prospective studies are required to assess these potential benefits.
Virtual Application of Darul Arif Palace from Serdang Sultanate using Virtual Reality
NASA Astrophysics Data System (ADS)
Syahputra, M. F.; Annisa, T.; Rahmat, R. F.; Muchtar, M. A.
2017-01-01
Serdang Sultanate is one of Malay Sultanate in Sumatera Utara. In the 18th century, many Malay Aristocrats have developed in Sumatera Utara. Social revolution has happened in 1946, many sultanates were overthrown and member of PKI (Communist Party of Indonesia) did mass killing on members of the sultanate families. As the results of this incident, many cultural and historical heritage destroyed. The integration of heritage preservation and the digital technology has become recent trend. The digital technology is not only able to record, preserve detailed documents and information of heritage completely, but also effectively bring the value-added. In this research, polygonal modelling techniques from 3D modelling technology is used to reconstruct Darul Arif Palace of Serdang Sultanate. After modelling the palace, it will be combined with virtual reality technology to allow user to explore the palace and the environment around the palace. Virtual technology is simulation of real objects in virtual world. The results in this research is that virtual reality application can run using Head-Mounted Display.
Evaluation of Wearable Haptic Systems for the Fingers in Augmented Reality Applications.
Maisto, Maurizio; Pacchierotti, Claudio; Chinello, Francesco; Salvietti, Gionata; De Luca, Alessandro; Prattichizzo, Domenico
2017-01-01
Although Augmented Reality (AR) has been around for almost five decades, only recently we have witnessed AR systems and applications entering in our everyday life. Representative examples of this technological revolution are the smartphone games "Pokémon GO" and "Ingress" or the Google Translate real-time sign interpretation app. Even if AR applications are already quite compelling and widespread, users are still not able to physically interact with the computer-generated reality. In this respect, wearable haptics can provide the compelling illusion of touching the superimposed virtual objects without constraining the motion or the workspace of the user. In this paper, we present the experimental evaluation of two wearable haptic interfaces for the fingers in three AR scenarios, enrolling 38 participants. In the first experiment, subjects were requested to write on a virtual board using a real chalk. The haptic devices provided the interaction forces between the chalk and the board. In the second experiment, subjects were asked to pick and place virtual and real objects. The haptic devices provided the interaction forces due to the weight of the virtual objects. In the third experiment, subjects were asked to balance a virtual sphere on a real cardboard. The haptic devices provided the interaction forces due to the weight of the virtual sphere rolling on the cardboard. Providing haptic feedback through the considered wearable device significantly improved the performance of all the considered tasks. Moreover, subjects significantly preferred conditions providing wearable haptic feedback.
El-Shamy, Shamekh; Alsharif, Rabab
2017-01-01
Objectives: The objective was to evaluate the effects of virtual reality versus conventional physiotherapy on upper extremity function in children with obstetric brachial plexus injury. Methods: Forty children with Erb’s palsy were selected for this randomized controlled study. They were assigned randomly to either group A (conventional physiotherapy program) or group B (virtual reality program using Armeo® spring for 45 min three times/week for 12 successive weeks). Mallet system scores for shoulder function and shoulder abduction, and external rotation range of motion (ROM) were obtained; shoulder abductor, and external rotators isometric strength were evaluated pre-and post-treatment using Mallet scoring system, standard universal goniometer, and handheld dynamometer. Results: The results of this study indicate that the children in both groups showed improvement in shoulder functions post-treatment with greater improvements in group B. The abduction muscle strength after treatment was 8.53 and 11.3 Nm for group A and group B, respectively. The external rotation muscle strength after treatment was 5.88 and 7.45 Nm for group A and group B, respectively. Conclusions: The virtual reality program is a significantly more effective than conventional physiotherapy program in improving the upper extremity functions in children with obstetric brachial plexus injury. PMID:29199193
ARSC: Augmented Reality Student Card--An Augmented Reality Solution for the Education Field
ERIC Educational Resources Information Center
El Sayed, Neven A. M.; Zayed, Hala H.; Sharawy, Mohamed I.
2011-01-01
Augmented Reality (AR) is the technology of adding virtual objects to real scenes through enabling the addition of missing information in real life. As the lack of resources is a problem that can be solved through AR, this paper presents and explains the usage of AR technology we introduce Augmented Reality Student Card (ARSC) as an application of…
Virtual reality enhanced mannequin (VREM) that is well received by resuscitation experts.
Semeraro, Federico; Frisoli, Antonio; Bergamasco, Massimo; Cerchiari, Erga L
2009-04-01
The objective of this study was to test acceptance of, and interest in, a newly developed prototype of virtual reality enhanced mannequin (VREM) on a sample of congress attendees who volunteered to participate in the evaluation session and to respond to a specifically designed questionnaire. A commercial Laerdal HeartSim 4000 mannequin was developed to integrate virtual reality (VR) technologies with specially developed virtual reality software to increase the immersive perception of emergency scenarios. To evaluate the acceptance of a virtual reality enhanced mannequin (VREM), we presented it to a sample of 39 possible users. Each evaluation session involved one trainee and two instructors with a standardized procedure and scenario: the operator was invited by the instructor to wear the data-gloves and the head mounted display and was briefly introduced to the scope of the simulation. The instructor helped the operator familiarize himself with the environment. After the patient's collapse, the operator was asked to check the patient's clinical conditions and start CPR. Finally, the patient started to recover signs of circulation and the evaluation session was concluded. Each participant was then asked to respond to a questionnaire designed to explore the trainee's perception in the areas of user-friendliness, realism, and interaction/immersion. Overall, the evaluation of the system was very positive, as was the feeling of immersion and realism of the environment and simulation. Overall, 84.6% of the participants judged the virtual reality experience as interesting and believed that its development could be very useful for healthcare training. The prototype of the virtual reality enhanced mannequin was well-liked, without interfence by interaction devices, and deserves full technological development and validation in emergency medical training.
Augmented Reality versus Virtual Reality for 3D Object Manipulation.
Krichenbauer, Max; Yamamoto, Goshiro; Taketom, Takafumi; Sandor, Christian; Kato, Hirokazu
2018-02-01
Virtual Reality (VR) Head-Mounted Displays (HMDs) are on the verge of becoming commodity hardware available to the average user and feasible to use as a tool for 3D work. Some HMDs include front-facing cameras, enabling Augmented Reality (AR) functionality. Apart from avoiding collisions with the environment, interaction with virtual objects may also be affected by seeing the real environment. However, whether these effects are positive or negative has not yet been studied extensively. For most tasks it is unknown whether AR has any advantage over VR. In this work we present the results of a user study in which we compared user performance measured in task completion time on a 9 degrees of freedom object selection and transformation task performed either in AR or VR, both with a 3D input device and a mouse. Our results show faster task completion time in AR over VR. When using a 3D input device, a purely VR environment increased task completion time by 22.5 percent on average compared to AR ( ). Surprisingly, a similar effect occurred when using a mouse: users were about 17.3 percent slower in VR than in AR ( ). Mouse and 3D input device produced similar task completion times in each condition (AR or VR) respectively. We further found no differences in reported comfort.
Augmented reality glass-free three-dimensional display with the stereo camera
NASA Astrophysics Data System (ADS)
Pang, Bo; Sang, Xinzhu; Chen, Duo; Xing, Shujun; Yu, Xunbo; Yan, Binbin; Wang, Kuiru; Yu, Chongxiu
2017-10-01
An improved method for Augmented Reality (AR) glass-free three-dimensional (3D) display based on stereo camera used for presenting parallax contents from different angle with lenticular lens array is proposed. Compared with the previous implementation method of AR techniques based on two-dimensional (2D) panel display with only one viewpoint, the proposed method can realize glass-free 3D display of virtual objects and real scene with 32 virtual viewpoints. Accordingly, viewers can get abundant 3D stereo information from different viewing angles based on binocular parallax. Experimental results show that this improved method based on stereo camera can realize AR glass-free 3D display, and both of virtual objects and real scene have realistic and obvious stereo performance.
Kin, Taichi; Nakatomi, Hirofumi; Shono, Naoyuki; Nomura, Seiji; Saito, Toki; Oyama, Hiroshi; Saito, Nobuhito
2017-10-15
Simulation and planning of surgery using a virtual reality model is becoming common with advances in computer technology. In this study, we conducted a literature search to find trends in virtual simulation of surgery for brain tumors. A MEDLINE search for "neurosurgery AND (simulation OR virtual reality)" retrieved a total of 1,298 articles published in the past 10 years. After eliminating studies designed solely for education and training purposes, 28 articles about the clinical application remained. The finding that the vast majority of the articles were about education and training rather than clinical applications suggests that several issues need be addressed for clinical application of surgical simulation. In addition, 10 of the 28 articles were from Japanese groups. In general, the 28 articles demonstrated clinical benefits of virtual surgical simulation. Simulation was particularly useful in better understanding complicated spatial relations of anatomical landmarks and in examining surgical approaches. In some studies, Virtual reality models were used on either surgical navigation system or augmented reality technology, which projects virtual reality images onto the operating field. Reported problems were difficulties in standardized, objective evaluation of surgical simulation systems; inability to respond to tissue deformation caused by surgical maneuvers; absence of the system functionality to reflect features of tissue (e.g., hardness and adhesion); and many problems with image processing. The amount of description about image processing tended to be insufficient, indicating that the level of evidence, risk of bias, precision, and reproducibility need to be addressed for further advances and ultimately for full clinical application.
Virtual Reality as a Distraction Technique in Chronic Pain Patients
Gao, Kenneth; Sulea, Camelia; Wiederhold, Mark D.
2014-01-01
Abstract We explored the use of virtual reality distraction techniques for use as adjunctive therapy to treat chronic pain. Virtual environments were specifically created to provide pleasant and engaging experiences where patients navigated on their own through rich and varied simulated worlds. Real-time physiological monitoring was used as a guide to determine the effectiveness and sustainability of this intervention. Human factors studies showed that virtual navigation is a safe and effective method for use with chronic pain patients. Chronic pain patients demonstrated significant relief in subjective ratings of pain that corresponded to objective measurements in peripheral, noninvasive physiological measures. PMID:24892196
Applying Virtual Reality to commercial Edutainment
NASA Technical Reports Server (NTRS)
Grissom, F.; Goza, Sharon P.; Goza, S. Michael
1994-01-01
Virtual reality (VR) when defined as a computer generated, immersive, three dimensional graphics environment which provides varying degrees of interactivity, remains an expensive, highly specialized application, yet to find its way into the school, home, or business. As a novel approach to a theme park-type attraction, though, its use can be justified. This paper describes how a virtual reality 'tour of the human digestive system' was created for the Omniplex Science Museum of Oklahoma City, Oklahoma. The customers main objectives were: (1) to educate; (2) to entertain; (3) to draw visitors; and (4) to generate revenue. The 'Edutainment' system ultimately delivered met these goals. As more such systems come into existence the resulting library of licensable programs will greatly reduce development costs to individual institutions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Drouhard, Margaret MEG G; Steed, Chad A; Hahn, Steven E
In this paper, we propose strategies and objectives for immersive data visualization with applications in materials science using the Oculus Rift virtual reality headset. We provide background on currently available analysis tools for neutron scattering data and other large-scale materials science projects. In the context of the current challenges facing scientists, we discuss immersive virtual reality visualization as a potentially powerful solution. We introduce a prototype immersive visual- ization system, developed in conjunction with materials scientists at the Spallation Neutron Source, which we have used to explore large crystal structures and neutron scattering data. Finally, we offer our perspective onmore » the greatest challenges that must be addressed to build effective and intuitive virtual reality analysis tools that will be useful for scientists in a wide range of fields.« less
ERIC Educational Resources Information Center
Jacob, Laura Beth
2012-01-01
Virtual world environments have evolved from object-oriented, text-based online games to complex three-dimensional immersive social spaces where the lines between reality and computer-generated begin to blur. Educators use virtual worlds to create engaging three-dimensional learning spaces for students, but the impact of virtual worlds in…
Studies of the field-of-view resolution tradeoff in virtual-reality systems
NASA Technical Reports Server (NTRS)
Piantanida, Thomas P.; Boman, Duane; Larimer, James; Gille, Jennifer; Reed, Charles
1992-01-01
Most virtual-reality systems use LCD-based displays that achieve a large field-of-view at the expense of resolution. A typical display will consist of approximately 86,000 pixels uniformly distributed over an 80-degree by 60-degree image. Thus, each pixel subtends about 13 minutes of arc at the retina; about the same as the resolvable features of the 20/200 line of a Snellen Eye Chart. The low resolution of LCD-based systems limits task performance in some applications. We have examined target-detection performance in a low-resolution virtual world. Our synthesized three-dimensional virtual worlds consisted of target objects that could be positioned at a fixed distance from the viewer, but at random azimuth and constrained elevation. A virtual world could be bounded by chromatic walls or by wire-frame, or it could be unbounded. Viewers scanned these worlds and indicated by appropriate gestures when they had detected the target object. By manipulating the viewer's field size and the chromatic and luminance contrast of annuli surrounding the field-of-view, we were able to assess the effect of field size on the detection of virtual objects in low-resolution synthetic worlds.
Schuster-Amft, Corina; Eng, Kynan; Lehmann, Isabelle; Schmid, Ludwig; Kobashi, Nagisa; Thaler, Irène; Verra, Martin L; Henneke, Andrea; Signer, Sandra; McCaskey, Michael; Kiper, Daniel
2014-09-06
In recent years, virtual reality has been introduced to neurorehabilitation, in particular with the intention of improving upper-limb training options and facilitating motor function recovery. The proposed study incorporates a quantitative part and a qualitative part, termed a mixed-methods approach: (1) a quantitative investigation of the efficacy of virtual reality training compared to conventional therapy in upper-limb motor function are investigated, (2a) a qualitative investigation of patients' experiences and expectations of virtual reality training and (2b) a qualitative investigation of therapists' experiences using the virtual reality training system in the therapy setting. At three participating clinics, 60 patients at least 6 months after stroke onset will be randomly allocated to an experimental virtual reality group (EG) or to a control group that will receive conventional physiotherapy or occupational therapy (16 sessions, 45 minutes each, over the course of 4 weeks). Using custom data gloves, patients' finger and arm movements will be displayed in real time on a monitor, and they will move and manipulate objects in various virtual environments. A blinded assessor will test patients' motor and cognitive performance twice before, once during, and twice after the 4-week intervention. The primary outcome measure is the Box and Block Test. Secondary outcome measures are the Chedoke-McMaster Stroke Assessments (hand, arm and shoulder pain subscales), the Chedoke-McMaster Arm and Hand Activity Inventory, the Line Bisection Test, the Stroke Impact Scale, the MiniMentalState Examination and the Extended Barthel Index. Semistructured face-to-face interviews will be conducted with patients in the EG after intervention finalization with a focus on the patients' expectations and experiences regarding the virtual reality training. Therapists' perspectives on virtual reality training will be reviewed in three focus groups comprising four to six occupational therapists and physiotherapists. The interviews will help to gain a deeper understanding of the phenomena under investigation to provide sound recommendations for the implementation of the virtual reality training system for routine use in neurorehabilitation complementing the quantitative clinical assessments. Cliniclatrials.gov Identifier: NCT01774669 (15 January 2013).
Fear of falling: efficacy of virtual reality associated with serious games in elderly people
Levy, Fanny; Leboucher, Pierre; Rautureau, Gilles; Komano, Odile; Millet, Bruno; Jouvent, Roland
2016-01-01
Objective Fear of falling is defined as an ongoing concern about falling that is not explained by physical examination. Focusing on the psychological dimension of this pathology (phobic reaction to walking), we looked at how virtual reality associated with serious games can be used to treat this pathology. Methods Participants with fear of falling were randomly assigned to either a treatment group or a waiting list. The therapy consisted of 12 weekly sessions of virtual reality exposure therapy associated with serious games. Results Sixteen participants were included. The mean age of the treatment group was 72 years and that of the control group was 69 years. Participants’ scores on the fear of falling measure improved after treatment with virtual reality associated with serious games, leading to a significant difference between the two groups. Conclusion Virtual reality exposure therapy associated with serious games can be used in the treatment of fear of falling. The two techniques are complementary (top-down and bottom-up processes). To our knowledge, this is the first time that a combination of the two has been assessed. There was a specific effect of this therapy on the phobic reaction. Further studies are needed to confirm its efficacy and identify its underlying mechanism. PMID:27143889
Novel interactive virtual showcase based on 3D multitouch technology
NASA Astrophysics Data System (ADS)
Yang, Tao; Liu, Yue; Lu, You; Wang, Yongtian
2009-11-01
A new interactive virtual showcase is proposed in this paper. With the help of virtual reality technology, the user of the proposed system can watch the virtual objects floating in the air from all four sides and interact with the virtual objects by touching the four surfaces of the virtual showcase. Unlike traditional multitouch system, this system cannot only realize multi-touch on a plane to implement 2D translation, 2D scaling, and 2D rotation of the objects; it can also realize the 3D interaction of the virtual objects by recognizing and analyzing the multi-touch that can be simultaneously captured from the four planes. Experimental results show the potential of the proposed system to be applied in the exhibition of historical relics and other precious goods.
Real-Time Occlusion Handling in Augmented Reality Based on an Object Tracking Approach
Tian, Yuan; Guan, Tao; Wang, Cheng
2010-01-01
To produce a realistic augmentation in Augmented Reality, the correct relative positions of real objects and virtual objects are very important. In this paper, we propose a novel real-time occlusion handling method based on an object tracking approach. Our method is divided into three steps: selection of the occluding object, object tracking and occlusion handling. The user selects the occluding object using an interactive segmentation method. The contour of the selected object is then tracked in the subsequent frames in real-time. In the occlusion handling step, all the pixels on the tracked object are redrawn on the unprocessed augmented image to produce a new synthesized image in which the relative position between the real and virtual object is correct. The proposed method has several advantages. First, it is robust and stable, since it remains effective when the camera is moved through large changes of viewing angles and volumes or when the object and the background have similar colors. Second, it is fast, since the real object can be tracked in real-time. Last, a smoothing technique provides seamless merging between the augmented and virtual object. Several experiments are provided to validate the performance of the proposed method. PMID:22319278
The assessment of virtual reality for human anatomy instruction
NASA Technical Reports Server (NTRS)
Benn, Karen P.
1994-01-01
This research project seeks to meet the objective of science training by developing, assessing, and validating virtual reality as a human anatomy training medium. In ideal situations, anatomic models, computer-based instruction, and cadaver dissection are utilized to augment the traditional methods of instruction. At many institutions, lack of financial resources limits anatomy instruction to textbooks and lectures. However, human anatomy is three dimensional, unlike the one dimensional depiction found in textbooks and the two dimensional depiction found on the computer. Virtual reality is a breakthrough technology that allows one to step through the computer screen into a three dimensional world. This technology offers many opportunities to enhance science education. Therefore, a virtual testing environment of the abdominopelvic region of a human cadaver was created to study the placement of body parts within the nine anatomical divisions of the abdominopelvic region and the four abdominal quadrants.
Efficacy of virtual reality in pedestrian safety research.
Deb, Shuchisnigdha; Carruth, Daniel W; Sween, Richard; Strawderman, Lesley; Garrison, Teena M
2017-11-01
Advances in virtual reality technology present new opportunities for human factors research in areas that are dangerous, difficult, or expensive to study in the real world. The authors developed a new pedestrian simulator using the HTC Vive head mounted display and Unity software. Pedestrian head position and orientation were tracked as participants attempted to safely cross a virtual signalized intersection (5.5 m). In 10% of 60 trials, a vehicle violated the traffic signal and in 10.84% of these trials, a collision between the vehicle and the pedestrian was observed. Approximately 11% of the participants experienced simulator sickness and withdrew from the study. Objective measures, including the average walking speed, indicate that participant behavior in VR matches published real world norms. Subjective responses indicate that the virtual environment was realistic and engaging. Overall, the study results confirm the effectiveness of the new virtual reality technology for research on full motion tasks. Copyright © 2017 Elsevier Ltd. All rights reserved.
Learning Anatomy via Mobile Augmented Reality: Effects on Achievement and Cognitive Load
ERIC Educational Resources Information Center
Küçük, Sevda; Kapakin, Samet; Göktas, Yüksel
2016-01-01
Augmented reality (AR), a new generation of technology, has attracted the attention of educators in recent years. In this study, a MagicBook was developed for a neuroanatomy topic by using mobile augmented reality (mAR) technology. This technology integrates virtual learning objects into the real world and allow users to interact with the…
Integrating Augmented Reality in Higher Education: A Multidisciplinary Study of Student Perceptions
ERIC Educational Resources Information Center
Delello, Julie A.; McWhorter, Rochell R.; Camp, Kerri M.
2015-01-01
Augmented reality (AR) is an emerging technology that blends physical objects with virtual reality. Through the integration of digital and print media, a gap between the "on and offline" worlds are merged, radically shifting student-computer interaction in the classroom. This research examined the results of a multiple case study on the…
The Virtual Tablet: Virtual Reality as a Control System
NASA Technical Reports Server (NTRS)
Chronister, Andrew
2016-01-01
In the field of human-computer interaction, Augmented Reality (AR) and Virtual Reality (VR) have been rapidly growing areas of interest and concerted development effort thanks to both private and public research. At NASA, a number of groups have explored the possibilities afforded by AR and VR technology, among which is the IT Advanced Concepts Lab (ITACL). Within ITACL, the AVR (Augmented/Virtual Reality) Lab focuses on VR technology specifically for its use in command and control. Previous work in the AVR lab includes the Natural User Interface (NUI) project and the Virtual Control Panel (VCP) project, which created virtual three-dimensional interfaces that users could interact with while wearing a VR headset thanks to body- and hand-tracking technology. The Virtual Tablet (VT) project attempts to improve on these previous efforts by incorporating a physical surrogate which is mirrored in the virtual environment, mitigating issues with difficulty of visually determining the interface location and lack of tactile feedback discovered in the development of previous efforts. The physical surrogate takes the form of a handheld sheet of acrylic glass with several infrared-range reflective markers and a sensor package attached. Using the sensor package to track orientation and a motion-capture system to track the marker positions, a model of the surrogate is placed in the virtual environment at a position which corresponds with the real-world location relative to the user's VR Head Mounted Display (HMD). A set of control mechanisms is then projected onto the surface of the surrogate such that to the user, immersed in VR, the control interface appears to be attached to the object they are holding. The VT project was taken from an early stage where the sensor package, motion-capture system, and physical surrogate had been constructed or tested individually but not yet combined or incorporated into the virtual environment. My contribution was to combine the pieces of hardware, write software to incorporate each piece of position or orientation data into a coherent description of the object's location in space, place the virtual analogue accordingly, and project the control interface onto it, resulting in a functioning object which has both a physical and a virtual presence. Additionally, the virtual environment was enhanced with two live video feeds from cameras mounted on the robotic device being used as an example target of the virtual interface. The working VT allows users to naturally interact with a control interface with little to no training and without the issues found in previous efforts.
Ng, Ivan; Hwang, Peter Y K; Kumar, Dinesh; Lee, Cheng Kiang; Kockro, Ralf A; Sitoh, Y Y
2009-05-01
To evaluate the feasibility of surgical planning using a virtual reality platform workstation in the treatment of cerebral arterio-venous malformations (AVMs) Patient-specific data of multiple imaging modalities were co-registered, fused and displayed as a 3D stereoscopic object on the Dextroscope, a virtual reality surgical planning platform. This system allows for manipulation of 3D data and for the user to evaluate and appreciate the angio-architecture of the nidus with regards to position and spatial relationships of critical feeders and draining veins. We evaluated the ability of the Dextroscope to influence surgical planning by providing a better understanding of the angio-architecture as well as its impact on the surgeon's pre- and intra-operative confidence and ability to tackle these lesions. Twenty four patients were studied. The mean age was 29.65 years. Following pre-surgical planning on the Dextroscope, 23 patients underwent microsurgical resection after pre-surgical virtual reality planning, during which all had documented complete resection of the AVM. Planning on the virtual reality platform allowed for identification of critical feeders and draining vessels in all patients. The appreciation of the complex patient specific angio-architecture to establish a surgical plan was found to be invaluable in the conduct of the procedure and was found to enhance the surgeon's confidence significantly. Surgical planning of resection of an AVM with a virtual reality system allowed detailed and comprehensive analysis of 3D multi-modality imaging data and, in our experience, proved very helpful in establishing a good surgical strategy, enhancing intra-operative spatial orientation and increasing surgeon's confidence.
Virtual reality applied to teletesting
NASA Astrophysics Data System (ADS)
van den Berg, Thomas J.; Smeenk, Roland J. M.; Mazy, Alain; Jacques, Patrick; Arguello, Luis; Mills, Simon
2003-05-01
The activity "Virtual Reality applied to Teletesting" is related to a wider European Space Agency (ESA) initiative of cost reduction, in particular the reduction of test costs. Reduction of costs of space related projects have to be performed on test centre operating costs and customer company costs. This can accomplished by increasing the automation and remote testing ("teletesting") capabilities of the test centre. Main problems related to teletesting are a lack of situational awareness and the separation of control over the test environment. The objective of the activity is to evaluate the use of distributed computing and Virtual Reality technology to support the teletesting of a payload under vacuum conditions, and to provide a unified man-machine interface for the monitoring and control of payload, vacuum chamber and robotics equipment. The activity includes the development and testing of a "Virtual Reality Teletesting System" (VRTS). The VRTS is deployed at one of the ESA certified test centres to perform an evaluation and test campaign using a real payload. The VRTS is entirely written in the Java programming language, using the J2EE application model. The Graphical User Interface runs as an applet in a Web browser, enabling easy access from virtually any place.
Innovative application of virtual display technique in virtual museum
NASA Astrophysics Data System (ADS)
Zhang, Jiankang
2017-09-01
Virtual museum refers to display and simulate the functions of real museum on the Internet in the form of 3 Dimensions virtual reality by applying interactive programs. Based on Virtual Reality Modeling Language, virtual museum building and its effective interaction with the offline museum lie in making full use of 3 Dimensions panorama technique, virtual reality technique and augmented reality technique, and innovatively taking advantages of dynamic environment modeling technique, real-time 3 Dimensions graphics generating technique, system integration technique and other key virtual reality techniques to make sure the overall design of virtual museum.3 Dimensions panorama technique, also known as panoramic photography or virtual reality, is a technique based on static images of the reality. Virtual reality technique is a kind of computer simulation system which can create and experience the interactive 3 Dimensions dynamic visual world. Augmented reality, also known as mixed reality, is a technique which simulates and mixes the information (visual, sound, taste, touch, etc.) that is difficult for human to experience in reality. These technologies make virtual museum come true. It will not only bring better experience and convenience to the public, but also be conducive to improve the influence and cultural functions of the real museum.
Low cost heads-up virtual reality (HUVR) with optical tracking and haptic feedback
NASA Astrophysics Data System (ADS)
Margolis, Todd; DeFanti, Thomas A.; Dawe, Greg; Prudhomme, Andrew; Schulze, Jurgen P.; Cutchin, Steve
2011-03-01
Researchers at the University of California, San Diego, have created a new, relatively low-cost augmented reality system that enables users to touch the virtual environment they are immersed in. The Heads-Up Virtual Reality device (HUVR) couples a consumer 3D HD flat screen TV with a half-silvered mirror to project any graphic image onto the user's hands and into the space surrounding them. With his or her head position optically tracked to generate the correct perspective view, the user maneuvers a force-feedback (haptic) device to interact with the 3D image, literally 'touching' the object's angles and contours as if it was a tangible physical object. HUVR can be used for training and education in structural and mechanical engineering, archaeology and medicine as well as other tasks that require hand-eye coordination. One of the most unique characteristics of HUVR is that a user can place their hands inside of the virtual environment without occluding the 3D image. Built using open-source software and consumer level hardware, HUVR offers users a tactile experience in an immersive environment that is functional, affordable and scalable.
ERIC Educational Resources Information Center
Pantelidis, Veronica S.
2009-01-01
Many studies have been conducted on the use of virtual reality in education and training. This article lists examples of such research. Reasons to use virtual reality are discussed. Advantages and disadvantages of using virtual reality are presented, as well as suggestions on when to use and when not to use virtual reality. A model that can be…
Declarative Knowledge Acquisition in Immersive Virtual Learning Environments
ERIC Educational Resources Information Center
Webster, Rustin
2016-01-01
The author investigated the interaction effect of immersive virtual reality (VR) in the classroom. The objective of the project was to develop and provide a low-cost, scalable, and portable VR system containing purposely designed and developed immersive virtual learning environments for the US Army. The purpose of the mixed design experiment was…
The Development of a Virtual Marine Museum for Educational Applications
ERIC Educational Resources Information Center
Tarng, Wermhuar; Change, Mei-Yu; Ou, Kuo-Liang; Chang, Ya-Wen; Liou, Hsin-Hun
2009-01-01
The objective of this article is to investigate the computer animation and virtual reality technologies for developing a virtual marine museum. The museum consists of three exhibition areas. The first area displays fishes in freshwater, including creeks, rivers, and dams in Taiwan. The second area exhibits marine ecology and creatures of different…
Active Learning through the Use of Virtual Environments
ERIC Educational Resources Information Center
Mayrose, James
2012-01-01
Immersive Virtual Reality (VR) has seen explosive growth over the last decade. Immersive VR attempts to give users the sensation of being fully immersed in a synthetic environment by providing them with 3D hardware, and allowing them to interact with objects in virtual worlds. The technology is extremely effective for learning and exploration, and…
Virtual Environments Supporting Learning and Communication in Special Needs Education
ERIC Educational Resources Information Center
Cobb, Sue V. G.
2007-01-01
Virtual reality (VR) describes a set of technologies that allow users to explore and experience 3-dimensional computer-generated "worlds" or "environments." These virtual environments can contain representations of real or imaginary objects on a small or large scale (from modeling of molecular structures to buildings, streets, and scenery of a…
Clinical use of virtual reality distraction system to reduce anxiety and pain in dental procedures.
Wiederhold, Mark D; Gao, Kenneth; Wiederhold, Brenda K
2014-06-01
Virtual reality (VR) has been used by clinicians to manage pain in clinical populations. This study examines the use of VR as a form of distraction for dental patients using both subjective and objective measures to determine how a VR system affects patients' reported anxiety level, pain level, and physiological factors. As predicted, results of self-evaluation questionnaires showed that patients experienced less anxiety and pain after undergoing VR treatment. Physiological data reported similar trends in decreased anxiety. Overall, the favorable subjective and objective responses suggest that VR distraction systems can reduce discomfort and pain for patients with mild to moderate fear and anxiety.
Virtual reality for stroke rehabilitation.
Laver, Kate E; Lange, Belinda; George, Stacey; Deutsch, Judith E; Saposnik, Gustavo; Crotty, Maria
2017-11-20
Virtual reality and interactive video gaming have emerged as recent treatment approaches in stroke rehabilitation with commercial gaming consoles in particular, being rapidly adopted in clinical settings. This is an update of a Cochrane Review published first in 2011 and then again in 2015. Primary objective: to determine the efficacy of virtual reality compared with an alternative intervention or no intervention on upper limb function and activity.Secondary objectives: to determine the efficacy of virtual reality compared with an alternative intervention or no intervention on: gait and balance, global motor function, cognitive function, activity limitation, participation restriction, quality of life, and adverse events. We searched the Cochrane Stroke Group Trials Register (April 2017), CENTRAL, MEDLINE, Embase, and seven additional databases. We also searched trials registries and reference lists. Randomised and quasi-randomised trials of virtual reality ("an advanced form of human-computer interface that allows the user to 'interact' with and become 'immersed' in a computer-generated environment in a naturalistic fashion") in adults after stroke. The primary outcome of interest was upper limb function and activity. Secondary outcomes included gait and balance and global motor function. Two review authors independently selected trials based on pre-defined inclusion criteria, extracted data, and assessed risk of bias. A third review author moderated disagreements when required. The review authors contacted investigators to obtain missing information. We included 72 trials that involved 2470 participants. This review includes 35 new studies in addition to the studies included in the previous version of this review. Study sample sizes were generally small and interventions varied in terms of both the goals of treatment and the virtual reality devices used. The risk of bias present in many studies was unclear due to poor reporting. Thus, while there are a large number of randomised controlled trials, the evidence remains mostly low quality when rated using the GRADE system. Control groups usually received no intervention or therapy based on a standard-care approach. results were not statistically significant for upper limb function (standardised mean difference (SMD) 0.07, 95% confidence intervals (CI) -0.05 to 0.20, 22 studies, 1038 participants, low-quality evidence) when comparing virtual reality to conventional therapy. However, when virtual reality was used in addition to usual care (providing a higher dose of therapy for those in the intervention group) there was a statistically significant difference between groups (SMD 0.49, 0.21 to 0.77, 10 studies, 210 participants, low-quality evidence). when compared to conventional therapy approaches there were no statistically significant effects for gait speed or balance. Results were statistically significant for the activities of daily living (ADL) outcome (SMD 0.25, 95% CI 0.06 to 0.43, 10 studies, 466 participants, moderate-quality evidence); however, we were unable to pool results for cognitive function, participation restriction, or quality of life. Twenty-three studies reported that they monitored for adverse events; across these studies there were few adverse events and those reported were relatively mild. We found evidence that the use of virtual reality and interactive video gaming was not more beneficial than conventional therapy approaches in improving upper limb function. Virtual reality may be beneficial in improving upper limb function and activities of daily living function when used as an adjunct to usual care (to increase overall therapy time). There was insufficient evidence to reach conclusions about the effect of virtual reality and interactive video gaming on gait speed, balance, participation, or quality of life. This review found that time since onset of stroke, severity of impairment, and the type of device (commercial or customised) were not strong influencers of outcome. There was a trend suggesting that higher dose (more than 15 hours of total intervention) was preferable as were customised virtual reality programs; however, these findings were not statistically significant.
Quadrado, Virgínia Helena; Silva, Talita Dias da; Favero, Francis Meire; Tonks, James; Massetti, Thais; Monteiro, Carlos Bandeira de Mello
2017-11-10
To examine whether performance improvements in the virtual environment generalize to the natural environment. we had 64 individuals, 32 of which were individuals with DMD and 32 were typically developing individuals. The groups practiced two coincidence timing tasks. In the more tangible button-press task, the individuals were required to 'intercept' a falling virtual object at the moment it reached the interception point by pressing a key on the computer. In the more abstract task, they were instructed to 'intercept' the virtual object by making a hand movement in a virtual environment using a webcam. For individuals with DMD, conducting a coincidence timing task in a virtual environment facilitated transfer to the real environment. However, we emphasize that a task practiced in a virtual environment should have higher rates of difficulties than a task practiced in a real environment. IMPLICATIONS FOR REHABILITATION Virtual environments can be used to promote improved performance in ?real-world? environments. Virtual environments offer the opportunity to create paradigms similar ?real-life? tasks, however task complexity and difficulty levels can be manipulated, graded and enhanced to increase likelihood of success in transfer of learning and performance. Individuals with DMD, in particular, showed immediate performance benefits after using virtual reality.
Modulation of thermal pain-related brain activity with virtual reality: evidence from fMRI.
Hoffman, Hunter G; Richards, Todd L; Coda, Barbara; Bills, Aric R; Blough, David; Richards, Anne L; Sharar, Sam R
2004-06-07
This study investigated the neural correlates of virtual reality analgesia. Virtual reality significantly reduced subjective pain ratings (i.e. analgesia). Using fMRI, pain-related brain activity was measured for each participant during conditions of no virtual reality and during virtual reality (order randomized). As predicted, virtual reality significantly reduced pain-related brain activity in all five regions of interest; the anterior cingulate cortex, primary and secondary somatosensory cortex, insula, and thalamus (p<0.002, corrected). Results showed direct modulation of human brain pain responses by virtual reality distraction. Copyright 2004 Lippincott Williams and Wilkins
Direct manipulation of virtual objects
NASA Astrophysics Data System (ADS)
Nguyen, Long K.
Interacting with a Virtual Environment (VE) generally requires the user to correctly perceive the relative position and orientation of virtual objects. For applications requiring interaction in personal space, the user may also need to accurately judge the position of the virtual object relative to that of a real object, for example, a virtual button and the user's real hand. This is difficult since VEs generally only provide a subset of the cues experienced in the real world. Complicating matters further, VEs presented by currently available visual displays may be inaccurate or distorted due to technological limitations. Fundamental physiological and psychological aspects of vision as they pertain to the task of object manipulation were thoroughly reviewed. Other sensory modalities -- proprioception, haptics, and audition -- and their cross-interactions with each other and with vision are briefly discussed. Visual display technologies, the primary component of any VE, were canvassed and compared. Current applications and research were gathered and categorized by different VE types and object interaction techniques. While object interaction research abounds in the literature, pockets of research gaps remain. Direct, dexterous, manual interaction with virtual objects in Mixed Reality (MR), where the real, seen hand accurately and effectively interacts with virtual objects, has not yet been fully quantified. An experimental test bed was designed to provide the highest accuracy attainable for salient visual cues in personal space. Optical alignment and user calibration were carefully performed. The test bed accommodated the full continuum of VE types and sensory modalities for comprehensive comparison studies. Experimental designs included two sets, each measuring depth perception and object interaction. The first set addressed the extreme end points of the Reality-Virtuality (R-V) continuum -- Immersive Virtual Environment (IVE) and Reality Environment (RE). This validated, linked, and extended several previous research findings, using one common test bed and participant pool. The results provided a proven method and solid reference points for further research. The second set of experiments leveraged the first to explore the full R-V spectrum and included additional, relevant sensory modalities. It consisted of two full-factorial experiments providing for rich data and key insights into the effect of each type of environment and each modality on accuracy and timeliness of virtual object interaction. The empirical results clearly showed that mean depth perception error in personal space was less than four millimeters whether the stimuli presented were real, virtual, or mixed. Likewise, mean error for the simple task of pushing a button was less than four millimeters whether the button was real or virtual. Mean task completion time was less than one second. Key to the high accuracy and quick task performance time observed was the correct presentation of the visual cues, including occlusion, stereoscopy, accommodation, and convergence. With performance results already near optimal level with accurate visual cues presented, adding proprioception, audio, and haptic cues did not significantly improve performance. Recommendations for future research include enhancement of the visual display and further experiments with more complex tasks and additional control variables.
Combining virtual reality and multimedia techniques for effective maintenance training
NASA Astrophysics Data System (ADS)
McLin, David M.; Chung, James C.
1996-02-01
This paper describes a virtual reality (VR) system developed for use as part of an integrated, low-cost, stand-alone, multimedia trainer. The trainer is used to train National Guard personnel in maintenance and trouble-shooting tasks for the M1A1 Abrams tank, the M2A2 Bradley fighting vehicle and the TOW II missile system. The VR system features a modular, extensible, object-oriented design which consists of a training monitor component, a VR run time component, a model loader component, and a set of domain-specific object behaviors which mimic the behavior of objects encountered in the actual vehicles. The VR system is built from a combination of off-the-shelf commercial software and custom software developed at RTI.
ERIC Educational Resources Information Center
Ong, Alex
2010-01-01
The use of augmented reality (AR) tools, where virtual objects such as tables and graphs can be displayed and be interacted with in real scenes created from imaging devices, in mainstream school curriculum is uncommon, as they are potentially costly and sometimes bulky. Thus, such learning tools are mainly applied in tertiary institutions, such as…
Does virtual reality simulation have a role in training trauma and orthopaedic surgeons?
Bartlett, J D; Lawrence, J E; Stewart, M E; Nakano, N; Khanduja, V
2018-05-01
Aims The aim of this study was to assess the current evidence relating to the benefits of virtual reality (VR) simulation in orthopaedic surgical training, and to identify areas of future research. Materials and Methods A literature search using the MEDLINE, Embase, and Google Scholar databases was performed. The results' titles, abstracts, and references were examined for relevance. Results A total of 31 articles published between 2004 and 2016 and relating to the objective validity and efficacy of specific virtual reality orthopaedic surgical simulators were identified. We found 18 studies demonstrating the construct validity of 16 different orthopaedic virtual reality simulators by comparing expert and novice performance. Eight studies have demonstrated skill acquisition on a simulator by showing improvements in performance with repeated use. A further five studies have demonstrated measurable improvements in operating theatre performance following a period of virtual reality simulator training. Conclusion The demonstration of 'real-world' benefits from the use of VR simulation in knee and shoulder arthroscopy is promising. However, evidence supporting its utility in other forms of orthopaedic surgery is lacking. Further studies of validity and utility should be combined with robust analyses of the cost efficiency of validated simulators to justify the financial investment required for their use in orthopaedic training. Cite this article: Bone Joint J 2018;100-B:559-65.
Freeman, Daniel; Bradley, Jonathan; Antley, Angus; Bourke, Emilie; DeWeever, Natalie; Evans, Nicole; Černis, Emma; Sheaves, Bryony; Waite, Felicity; Dunn, Graham; Slater, Mel; Clark, David M
2016-07-01
Persecutory delusions may be unfounded threat beliefs maintained by safety-seeking behaviours that prevent disconfirmatory evidence being successfully processed. Use of virtual reality could facilitate new learning. To test the hypothesis that enabling patients to test the threat predictions of persecutory delusions in virtual reality social environments with the dropping of safety-seeking behaviours (virtual reality cognitive therapy) would lead to greater delusion reduction than exposure alone (virtual reality exposure). Conviction in delusions and distress in a real-world situation were assessed in 30 patients with persecutory delusions. Patients were then randomised to virtual reality cognitive therapy or virtual reality exposure, both with 30 min in graded virtual reality social environments. Delusion conviction and real-world distress were then reassessed. In comparison with exposure, virtual reality cognitive therapy led to large reductions in delusional conviction (reduction 22.0%, P = 0.024, Cohen's d = 1.3) and real-world distress (reduction 19.6%, P = 0.020, Cohen's d = 0.8). Cognitive therapy using virtual reality could prove highly effective in treating delusions. © The Royal College of Psychiatrists 2016.
Freeman, Daniel; Bradley, Jonathan; Antley, Angus; Bourke, Emilie; DeWeever, Natalie; Evans, Nicole; Černis, Emma; Sheaves, Bryony; Waite, Felicity; Dunn, Graham; Slater, Mel; Clark, David M.
2016-01-01
Background Persecutory delusions may be unfounded threat beliefs maintained by safety-seeking behaviours that prevent disconfirmatory evidence being successfully processed. Use of virtual reality could facilitate new learning. Aims To test the hypothesis that enabling patients to test the threat predictions of persecutory delusions in virtual reality social environments with the dropping of safety-seeking behaviours (virtual reality cognitive therapy) would lead to greater delusion reduction than exposure alone (virtual reality exposure). Method Conviction in delusions and distress in a real-world situation were assessed in 30 patients with persecutory delusions. Patients were then randomised to virtual reality cognitive therapy or virtual reality exposure, both with 30 min in graded virtual reality social environments. Delusion conviction and real-world distress were then reassessed. Results In comparison with exposure, virtual reality cognitive therapy led to large reductions in delusional conviction (reduction 22.0%, P = 0.024, Cohen's d = 1.3) and real-world distress (reduction 19.6%, P = 0.020, Cohen's d = 0.8). Conclusion Cognitive therapy using virtual reality could prove highly effective in treating delusions. PMID:27151071
Virtual reality and paranoid ideations in people with an 'at-risk mental state' for psychosis.
Valmaggia, Lucia R; Freeman, Daniel; Green, Catherine; Garety, Philippa; Swapp, David; Antley, Angus; Prescott, Corinne; Fowler, David; Kuipers, Elizabeth; Bebbington, Paul; Slater, Mel; Broome, Matthew; McGuire, Philip K
2007-12-01
Virtual reality provides a means of studying paranoid thinking in controlled laboratory conditions. However, this method has not been used with a clinical group. To establish the feasibility and safety of using virtual reality methodology in people with an at-risk mental state and to investigate the applicability of a cognitive model of paranoia to this group. Twenty-one participants with an at-risk mental state were assessed before and after entering a virtual reality environment depicting the inside of an underground train. Virtual reality did not raise levels of distress at the time of testing or cause adverse experiences over the subsequent week. Individuals attributed mental states to virtual reality characters including hostile intent. Persecutory ideation in virtual reality was predicted by higher levels of trait paranoia, anxiety, stress, immersion in virtual reality, perseveration and interpersonal sensitivity. Virtual reality is an acceptable experimental technique for use with individuals with at-risk mental states. Paranoia in virtual reality was understandable in terms of the cognitive model of persecutory delusions.
Berryman, Donna R
2012-01-01
Augmented reality is a technology that overlays digital information on objects or places in the real world for the purpose of enhancing the user experience. It is not virtual reality, that is, the technology that creates a totally digital or computer created environment. Augmented reality, with its ability to combine reality and digital information, is being studied and implemented in medicine, marketing, museums, fashion, and numerous other areas. This article presents an overview of augmented reality, discussing what it is, how it works, its current implementations, and its potential impact on libraries.
Virtual reality simulators and training in laparoscopic surgery.
Yiannakopoulou, Eugenia; Nikiteas, Nikolaos; Perrea, Despina; Tsigris, Christos
2015-01-01
Virtual reality simulators provide basic skills training without supervision in a controlled environment, free of pressure of operating on patients. Skills obtained through virtual reality simulation training can be transferred on the operating room. However, relative evidence is limited with data available only for basic surgical skills and for laparoscopic cholecystectomy. No data exist on the effect of virtual reality simulation on performance on advanced surgical procedures. Evidence suggests that performance on virtual reality simulators reliably distinguishes experienced from novice surgeons Limited available data suggest that independent approach on virtual reality simulation training is not different from proctored approach. The effect of virtual reality simulators training on acquisition of basic surgical skills does not seem to be different from the effect the physical simulators. Limited data exist on the effect of virtual reality simulation training on the acquisition of visual spatial perception and stress coping skills. Undoubtedly, virtual reality simulation training provides an alternative means of improving performance in laparoscopic surgery. However, future research efforts should focus on the effect of virtual reality simulation on performance in the context of advanced surgical procedure, on standardization of training, on the possibility of synergistic effect of virtual reality simulation training combined with mental training, on personalized training. Copyright © 2014 Surgical Associates Ltd. Published by Elsevier Ltd. All rights reserved.
The Development of a Virtual Dinosaur Museum
ERIC Educational Resources Information Center
Tarng, Wernhuar; Liou, Hsin-Hun
2007-01-01
The objective of this article is to study the network and virtual reality technologies for developing a virtual dinosaur museum, which provides a Web-learning environment for students of all ages and the general public to know more about dinosaurs. We first investigate the method for building the 3D dynamic models of dinosaurs, and then describe…
Learning Rationales and Virtual Reality Technology in Education.
ERIC Educational Resources Information Center
Chiou, Guey-Fa
1995-01-01
Defines and describes virtual reality technology and differentiates between virtual learning environment, learning material, and learning tools. Links learning rationales to virtual reality technology to pave conceptual foundations for application of virtual reality technology education. Constructivism, case-based learning, problem-based learning,…
The development, assessment and validation of virtual reality for human anatomy instruction
NASA Technical Reports Server (NTRS)
Marshall, Karen Benn
1996-01-01
This research project seeks to meet the objective of science training by developing, assessing, validating and utilizing VR as a human anatomy training medium. Current anatomy instruction is primarily in the form of lectures and usage of textbooks. In ideal situations, anatomic models, computer-based instruction, and cadaver dissection are utilized to augment traditional methods of instruction. At many institutions, lack of financial resources limits anatomy instruction to textbooks and lectures. However, human anatomy is three-dimensional, unlike the one-dimensional depiction found in textbooks and the two-dimensional depiction found on the computer. Virtual reality allows one to step through the computer screen into a 3-D artificial world. The primary objective of this project is to produce a virtual reality application of the abdominopelvic region of a human cadaver that can be taken back to the classroom. The hypothesis is that an immersive learning environment affords quicker anatomic recognition and orientation and a greater level of retention in human anatomy instruction. The goal is to augment not replace traditional modes of instruction.
Virtual reality as a method for evaluation and therapy after traumatic hand surgery.
Nica, Adriana Sarah; Brailescu, Consuela Monica; Scarlet, Rodica Gabriela
2013-01-01
In the last decade, Virtual Reality has encountered a continuous development concerning medical purposes and there are a lot of devices based on the classic "cyberglove" concept that are used as new therapeutic method for upper limb pathology, especially neurologic problems [1;2;3]. One of the VR devices is Pablo (Tyromotion), with very sensitive sensors that can measure the hand grip strenght and the pinch force, also the ROM (range of motion) for all the joints of the upper limb (shoulder, elbow, wrist) and offering the possibility of interactive games based on Virtual Reality concept with application in occupational therapy programs. We used Pablo in our study on patients with hand surgery as an objective tool for assessment and as additional therapeutic method to the classic Rehabilitation program [4;5]. The results of the study proved that Pablo represents a modern option for evaluation of hand deficits and dysfunctions, with objective measurement replacement of classic goniometry and dynamometry, with computerized data base of patients with monitoring of parameters during the recovery program and with better muscular and neuro-cognitive feedback during the interactive therapeutic modules.
Virtual reality for emergency training
DOE Office of Scientific and Technical Information (OSTI.GOV)
Altinkemer, K.
1995-12-31
Virtual reality is a sequence of scenes generated by a computer as a response to the five different senses. These senses are sight, sound, taste, touch, smell. Other senses that can be used in virtual reality include balance, pheromonal, and immunological senses. Many application areas include: leisure and entertainment, medicine, architecture, engineering, manufacturing, and training. Virtual reality is especially important when it is used for emergency training and management of natural disasters including earthquakes, floods, tornados and other situations which are hard to emulate. Classical training methods for these extraordinary environments lack the realistic surroundings that virtual reality can provide.more » In order for virtual reality to be a successful training tool the design needs to include certain aspects; such as how real virtual reality should be and how much fixed cost is entailed in setting up the virtual reality trainer. There are also pricing questions regarding the price per training session on virtual reality trainer, and the appropriate training time length(s).« less
An Interactive Augmented Reality Implementation of Hijaiyah Alphabet for Children Education
NASA Astrophysics Data System (ADS)
Rahmat, R. F.; Akbar, F.; Syahputra, M. F.; Budiman, M. A.; Hizriadi, A.
2018-03-01
Hijaiyah alphabet is letters used in the Qur’an. An attractive and exciting learning process of Hijaiyah alphabet is necessary for the children. One of the alternatives to create attractive and interesting learning process of Hijaiyah alphabet is to develop it into a mobile application using augmented reality technology. Augmented reality is a technology that combines two-dimensional or three-dimensional virtual objects into actual three-dimensional circles and projects them in real time. The purpose of application aims to foster the children interest in learning Hijaiyah alphabet. This application is using Smartphone and marker as the medium. It was built using Unity and augmented reality library, namely Vuforia, then using Blender as the 3D object modeling software. The output generated from this research is the learning application of Hijaiyah letters using augmented reality. How to use it is as follows: first, place marker that has been registered and printed; second, the smartphone camera will track the marker. If the marker is invalid, the user should repeat the tracking process. If the marker is valid and identified, the marker will have projected the objects of Hijaiyah alphabet in three-dimensional form. Lastly, the user can learn and understand the shape and pronunciation of Hijaiyah alphabet by touching the virtual button on the marker
Virtual Reality and the Virtual Library.
ERIC Educational Resources Information Center
Oppenheim, Charles
1993-01-01
Explains virtual reality, including proper and improper uses of the term, and suggests ways that libraries might be affected by it. Highlights include elements of virtual reality systems; possible virtual reality applications, including architecture, the chemical industry, transport planning, armed forces, and entertainment; and the virtual…
Chuah, Joon Hao; Lok, Benjamin; Black, Erik
2013-04-01
Health sciences students often practice and are evaluated on interview and exam skills by working with standardized patients (people that role play having a disease or condition). However, standardized patients do not exist for certain vulnerable populations such as children and the intellectually disabled. As a result, students receive little to no exposure to vulnerable populations before becoming working professionals. To address this problem and thereby increase exposure to vulnerable populations, we propose using virtual humans to simulate members of vulnerable populations. We created a mixed reality pediatric patient that allowed students to practice pediatric developmental exams. Practicing several exams is necessary for students to understand how to properly interact with and correctly assess a variety of children. Practice also increases a student's confidence in performing the exam. Effective practice requires students to treat the virtual child realistically. Treating the child realistically might be affected by how the student and virtual child physically interact, so we created two object interaction interfaces - a natural interface and a mouse-based interface. We tested the complete mixed reality exam and also compared the two object interaction interfaces in a within-subjects user study with 22 participants. Our results showed that the participants accepted the virtual child as a child and treated it realistically. Participants also preferred the natural interface, but the interface did not affect how realistically participants treated the virtual child.
1993-04-01
until exhausted. SECURITY CLASSIFICATION OF THIS PAGE All other editions are obsolete. UNCLASSIFIED " VIRTUAL REALITY JAMES F. DAILEY, LIEUTENANT COLONEL...US" This paper reviews the exciting field of virtual reality . The author describes the basic concepts of virtual reality and finds that its numerous...potential benefits to society could revolutionize everyday life. The various components that make up a virtual reality system are described in detail
Ambient Intelligence in Multimeda and Virtual Reality Environments for the rehabilitation
NASA Astrophysics Data System (ADS)
Benko, Attila; Cecilia, Sik Lanyi
This chapter presents a general overview about the use of multimedia and virtual reality in rehabilitation and assistive and preventive healthcare. This chapter deals with multimedia, virtual reality applications based AI intended for use by medical doctors, nurses, special teachers and further interested persons. It describes methods how multimedia and virtual reality is able to assist their work. These include the areas how multimedia and virtual reality can help the patients everyday life and their rehabilitation. In the second part of the chapter we present the Virtual Therapy Room (VTR) a realized application for aphasic patients that was created for practicing communication and expressing emotions in a group therapy setting. The VTR shows a room that contains a virtual therapist and four virtual patients (avatars). The avatars are utilizing their knowledge base in order to answer the questions of the user providing an AI environment for the rehabilitation. The user of the VTR is the aphasic patient who has to solve the exercises. The picture that is relevant for the actual task appears on the virtual blackboard. Patient answers questions of the virtual therapist. Questions are about pictures describing an activity or an object in different levels. Patient can ask an avatar for answer. If the avatar knows the answer the avatars emotion changes to happy instead of sad. The avatar expresses its emotions in different dimensions. Its behavior, face-mimic, voice-tone and response also changes. The emotion system can be described as a deterministic finite automaton where places are emotion-states and the transition function of the automaton is derived from the input-response reaction of an avatar. Natural language processing techniques were also implemented in order to establish highquality human-computer interface windows for each of the avatars. Aphasic patients are able to interact with avatars via these interfaces. At the end of the chapter we visualize the possible future research field.
Virtual Reality Educational Tool for Human Anatomy.
Izard, Santiago González; Juanes Méndez, Juan A; Palomera, Pablo Ruisoto
2017-05-01
Virtual Reality is becoming widespread in our society within very different areas, from industry to entertainment. It has many advantages in education as well, since it allows visualizing almost any object or going anywhere in a unique way. We will be focusing on medical education, and more specifically anatomy, where its use is especially interesting because it allows studying any structure of the human body by placing the user inside each one. By allowing virtual immersion in a body structure such as the interior of the cranium, stereoscopic vision goggles make these innovative teaching technologies a powerful tool for training in all areas of health sciences. The aim of this study is to illustrate the teaching potential of applying Virtual Reality in the field of human anatomy, where it can be used as a tool for education in medicine. A Virtual Reality Software was developed as an educational tool. This technological procedure is based entirely on software which will run in stereoscopic goggles to give users the sensation of being in a virtual environment, clearly showing the different bones and foramina which make up the cranium, and accompanied by audio explanations. Throughout the results the structure of the cranium is described in detailed from both inside and out. Importance of an exhaustive morphological knowledge of cranial fossae is further discussed. Application for the design of microsurgery is also commented.
Mohammadi, Alireza; Hesami, Ehsan; Kargar, Mahmoud; Shams, Jamal
2018-04-01
Present evidence suggests that the use of virtual reality has great advantages in evaluating visuospatial navigation and memory for the diagnosis of psychiatric or other neurological disorders. There are a few virtual reality studies on allocentric and egocentric memories in schizophrenia, but studies on both memories in bipolar disorder are lacking. The objective of this study was to compare the performance of allocentric and egocentric memories in patients with schizophrenia and bipolar disorder. For this resolve, an advanced virtual reality navigation task (VRNT) was presented to distinguish the navigational performances of these patients. Twenty subjects with schizophrenia and 20 bipolar disorder patients were compared with 20 healthy-matched controls on the newly developed VRNT consisting of a virtual neighbourhood (allocentric memory) and a virtual maze (egocentric memory). The results demonstrated that schizophrenia patients were significantly impaired on all allocentric, egocentric, visual, and verbal memory tasks compared with patients with bipolar disorder and normal subjects. Dissimilarly, the performance of patients with bipolar disorder was slightly lower than that of control subjects in all these abilities, but no significant differences were observed. It was concluded that allocentric and egocentric navigation deficits are detectable in patients with schizophrenia and bipolar disorder using VRNT, and this task along with RAVLT and ROCFT can be used as a valid clinical tool for distinguishing these patients from normal subjects.
Pavão, Silvia Leticia; Arnoni, Joice Luiza Bruno; de Oliveira, Alyne Kalyane Câmara; Rocha, Nelci Adriana Cicuto Ferreira
2014-01-01
OBJECTIVE: To verify the effect of an intervention protocol using virtual reality (VR) on the motor performance and balance of a child with cerebral palsy (CP). CASE DESCRIPTION: To comply with the proposed objectives, a 7-year old child with spastic hemiplegic cerebral palsy (CP), GMFCS level I, was submitted to a physiotherapy intervention protocol of 12 45-minute sessions, twice a week, using virtual reality-based therapy. The protocol used a commercially-available console (XBOX(r)360 Kinect(r)) able to track and reproduce body movements on a screen. Prior to the intervention protocol, the child was evaluated using the Motor Development Scale (MDS) and the Pediatric Balance Scale (PBS) in order to assess motor development and balance, respectively. Two baseline assessments with a 2-week interval between each other were carried out for each tool. Then, the child was re-evaluated after the twelfth session. The results showed no changes in the two baseline scores. After the intervention protocol, the child improved his scores in both tools used: the PBS score increased by 3 points, reaching the maximal score, and the MDS increased from a much inferior motor performance to just an inferior motor performance. COMMENTS: The evidence presented in this case supports the use of virtual reality as a promising tool to be incorporated into the rehabilitation process of patients with neuromotor dysfunction. PMID:25511004
The Importance of Postural Cues for Determining Eye Height in Immersive Virtual Reality
Leyrer, Markus; Linkenauger, Sally A.; Bülthoff, Heinrich H.; Mohler, Betty J.
2015-01-01
In human perception, the ability to determine eye height is essential, because eye height is used to scale heights of objects, velocities, affordances and distances, all of which allow for successful environmental interaction. It is well understood that eye height is fundamental to determine many of these percepts. Yet, how eye height itself is provided is still largely unknown. While the information potentially specifying eye height in the real world is naturally coincident in an environment with a regular ground surface, these sources of information can be easily divergent in similar and common virtual reality scenarios. Thus, we conducted virtual reality experiments where we manipulated the virtual eye height in a distance perception task to investigate how eye height might be determined in such a scenario. We found that humans rely more on their postural cues for determining their eye height if there is a conflict between visual and postural information and little opportunity for perceptual-motor calibration is provided. This is demonstrated by the predictable variations in their distance estimates. Our results suggest that the eye height in such circumstances is informed by postural cues when estimating egocentric distances in virtual reality and consequently, does not depend on an internalized value for eye height. PMID:25993274
The importance of postural cues for determining eye height in immersive virtual reality.
Leyrer, Markus; Linkenauger, Sally A; Bülthoff, Heinrich H; Mohler, Betty J
2015-01-01
In human perception, the ability to determine eye height is essential, because eye height is used to scale heights of objects, velocities, affordances and distances, all of which allow for successful environmental interaction. It is well understood that eye height is fundamental to determine many of these percepts. Yet, how eye height itself is provided is still largely unknown. While the information potentially specifying eye height in the real world is naturally coincident in an environment with a regular ground surface, these sources of information can be easily divergent in similar and common virtual reality scenarios. Thus, we conducted virtual reality experiments where we manipulated the virtual eye height in a distance perception task to investigate how eye height might be determined in such a scenario. We found that humans rely more on their postural cues for determining their eye height if there is a conflict between visual and postural information and little opportunity for perceptual-motor calibration is provided. This is demonstrated by the predictable variations in their distance estimates. Our results suggest that the eye height in such circumstances is informed by postural cues when estimating egocentric distances in virtual reality and consequently, does not depend on an internalized value for eye height.
Clinical Use of Virtual Reality Distraction System to Reduce Anxiety and Pain in Dental Procedures
Gao, Kenneth; Wiederhold, Brenda K.
2014-01-01
Abstract Virtual reality (VR) has been used by clinicians to manage pain in clinical populations. This study examines the use of VR as a form of distraction for dental patients using both subjective and objective measures to determine how a VR system affects patients' reported anxiety level, pain level, and physiological factors. As predicted, results of self-evaluation questionnaires showed that patients experienced less anxiety and pain after undergoing VR treatment. Physiological data reported similar trends in decreased anxiety. Overall, the favorable subjective and objective responses suggest that VR distraction systems can reduce discomfort and pain for patients with mild to moderate fear and anxiety. PMID:24892198
NASA's Hybrid Reality Lab: One Giant Leap for Full Dive
NASA Technical Reports Server (NTRS)
Delgado, Francisco J.; Noyes, Matthew
2017-01-01
This presentation demonstrates how NASA is using consumer VR headsets, game engine technology and NVIDIA's GPUs to create highly immersive future training systems augmented with extremely realistic haptic feedback, sound, additional sensory information, and how these can be used to improve the engineering workflow. Include in this presentation is an environment simulation of the ISS, where users can interact with virtual objects, handrails, and tracked physical objects while inside VR, integration of consumer VR headsets with the Active Response Gravity Offload System, and a space habitat architectural evaluation tool. Attendees will learn how the best elements of real and virtual worlds can be combined into a hybrid reality environment with tangible engineering and scientific applications.
Frames of Reference in Mobile Augmented Reality Displays
ERIC Educational Resources Information Center
Mou, Weimin; Biocca, Frank; Owen, Charles B.; Tang, Arthur; Xiao, Fan; Lim, Lynette
2004-01-01
In 3 experiments, the authors investigated spatial updating in augmented reality environments. Participants learned locations of virtual objects on the physical floor. They were turned to appropriate facing directions while blindfolded before making pointing judgments (e.g., "Imagine you are facing X. Point to Y"). Experiments manipulated the…
A Context-Aware Method for Authentically Simulating Outdoors Shadows for Mobile Augmented Reality.
Barreira, Joao; Bessa, Maximino; Barbosa, Luis; Magalhaes, Luis
2018-03-01
Visual coherence between virtual and real objects is a major issue in creating convincing augmented reality (AR) applications. To achieve this seamless integration, actual light conditions must be determined in real time to ensure that virtual objects are correctly illuminated and cast consistent shadows. In this paper, we propose a novel method to estimate daylight illumination and use this information in outdoor AR applications to render virtual objects with coherent shadows. The illumination parameters are acquired in real time from context-aware live sensor data. The method works under unprepared natural conditions. We also present a novel and rapid implementation of a state-of-the-art skylight model, from which the illumination parameters are derived. The Sun's position is calculated based on the user location and time of day, with the relative rotational differences estimated from a gyroscope, compass and accelerometer. The results illustrated that our method can generate visually credible AR scenes with consistent shadows rendered from recovered illumination.
Language-driven anticipatory eye movements in virtual reality.
Eichert, Nicole; Peeters, David; Hagoort, Peter
2018-06-01
Predictive language processing is often studied by measuring eye movements as participants look at objects on a computer screen while they listen to spoken sentences. This variant of the visual-world paradigm has revealed that information encountered by a listener at a spoken verb can give rise to anticipatory eye movements to a target object, which is taken to indicate that people predict upcoming words. The ecological validity of such findings remains questionable, however, because these computer experiments used two-dimensional stimuli that were mere abstractions of real-world objects. Here we present a visual-world paradigm study in a three-dimensional (3-D) immersive virtual reality environment. Despite significant changes in the stimulus materials and the different mode of stimulus presentation, language-mediated anticipatory eye movements were still observed. These findings thus indicate that people do predict upcoming words during language comprehension in a more naturalistic setting where natural depth cues are preserved. Moreover, the results confirm the feasibility of using eyetracking in rich and multimodal 3-D virtual environments.
A pilot study of surgical training using a virtual robotic surgery simulator.
Tergas, Ana I; Sheth, Sangini B; Green, Isabel C; Giuntoli, Robert L; Winder, Abigail D; Fader, Amanda N
2013-01-01
Our objectives were to compare the utility of learning a suturing task on the virtual reality da Vinci Skills Simulator versus the da Vinci Surgical System dry laboratory platform and to assess user satisfaction among novice robotic surgeons. Medical trainees were enrolled prospectively; one group trained on the virtual reality simulator, and the other group trained on the da Vinci dry laboratory platform. Trainees received pretesting and post-testing on the dry laboratory platform. Participants then completed an anonymous online user experience and satisfaction survey. We enrolled 20 participants. Mean pretest completion times did not significantly differ between the 2 groups. Training with either platform was associated with a similar decrease in mean time to completion (simulator platform group, 64.9 seconds [P = .04]; dry laboratory platform group, 63.9 seconds [P < .01]). Most participants (58%) preferred the virtual reality platform. The majority found the training "definitely useful" in improving robotic surgical skills (mean, 4.6) and would attend future training sessions (mean, 4.5). Training on the virtual reality robotic simulator or the dry laboratory robotic surgery platform resulted in significant improvements in time to completion and economy of motion for novice robotic surgeons. Although there was a perception that both simulators improved performance, there was a preference for the virtual reality simulator. Benefits unique to the simulator platform include autonomy of use, computerized performance feedback, and ease of setup. These features may facilitate more efficient and sophisticated simulation training above that of the conventional dry laboratory platform, without loss of efficacy.
NASA Technical Reports Server (NTRS)
1990-01-01
While a new technology called 'virtual reality' is still at the 'ground floor' level, one of its basic components, 3D computer graphics is already in wide commercial use and expanding. Other components that permit a human operator to 'virtually' explore an artificial environment and to interact with it are being demonstrated routinely at Ames and elsewhere. Virtual reality might be defined as an environment capable of being virtually entered - telepresence, it is called - or interacted with by a human. The Virtual Interface Environment Workstation (VIEW) is a head-mounted stereoscopic display system in which the display may be an artificial computer-generated environment or a real environment relayed from remote video cameras. Operator can 'step into' this environment and interact with it. The DataGlove has a series of fiber optic cables and sensors that detect any movement of the wearer's fingers and transmit the information to a host computer; a computer generated image of the hand will move exactly as the operator is moving his gloved hand. With appropriate software, the operator can use the glove to interact with the computer scene by grasping an object. The DataSuit is a sensor equipped full body garment that greatly increases the sphere of performance for virtual reality simulations.
Virtual Reality and Its Potential Application in Education and Training.
ERIC Educational Resources Information Center
Milheim, William D.
1995-01-01
An overview is provided of current trends in virtual reality research and development, including discussion of hardware, types of virtual reality, and potential problems with virtual reality. Implications for education and training are explored. (Author/JKP)
Lee, Daehee; Lee, Sangyong; Park, Jungseo
2014-01-01
[Purpose] The objective of this study was to determine the effect of indoor horseback riding and virtual reality exercises on the dynamic balance ability of normal adults. [Subjects] This study enrolled 24 normal adults and divided them into two groups: an indoor horseback riding exercise group (IHREG, n = 12) and a virtual reality exercise group (VREG, n = 12). [Methods] IHREG exercised on indoor horseback riding equipment and VREG exercised using the Nintendo Wii Fit three times a week for six weeks. The Biodex Balance System was used to analyze dynamic balance as measured by the overall stability index (OSI), anteroposterior stability index (APSI), and mediolateral stability index (MLSI). [Results] In the within-group comparison, IHREG and VERG both showed significant decreases in the dynamic balance indexes of OSI, APSI, and MLSI after the intervention, but no significant difference was found between the groups. [Conclusion] Both indoor horseback riding and virtual reality exercises were effective at improving the subjects’ dynamic balance ability as measured by OSI, APSI, and MLSI, and can be used as additional exercises for patients with conditions affecting postural control. PMID:25540494
EMG and Kinematic Responses to Unexpected Slips After Slip Training in Virtual Reality
Parijat, Prakriti; Lockhart, Thurmon E.
2015-01-01
The objective of the study was to design a virtual reality (VR) training to induce perturbation in older adults similar to a slip and examine the effect of the training on kinematic and muscular responses in older adults. Twenty-four older adults were involved in a laboratory study and randomly assigned to two groups (virtual reality training and control). Both groups went through three sessions including baseline slip, training, and transfer of training on slippery surface. The training group experienced twelve simulated slips using a visual perturbation induced by tilting a virtual reality scene while walking on the treadmill and the control group completed normal walking during the training session. Kinematic, kinetic, and EMG data were collected during all the sessions. Results demonstrated the proactive adjustments such as increased trunk flexion at heel contact after training. Reactive adjustments included reduced time to peak activations of knee flexors, reduced knee coactivation, reduced time to trunk flexion, and reduced trunk angular velocity after training. In conclusion, the study findings indicate that the VR training was able to generate a perturbation in older adults that evoked recovery reactions and such motor skill can be transferred to the actual slip trials. PMID:25296401
Krysta, Krzysztof; Krzystanek, Marek; Cubała, Wiesław J; Wiglusz, Mariusz S; Jakuszkowiak-Wojten, Katarzyna; Gałuszko-Węgielnik, Maria; Czarnowska-Cubała, Monika; Szarmach, Joanna; Włodarczyk, Adam; Janas-Kozik, Małgorzata
2017-09-01
Treatment and rehabilitation of people with intellectual and developmental disabilities is a multidisciplinary challenge, which require implementing new attitudes. The use of modern technology solutions like telepsychiatry or virtual reality may be a valuable addition to the traditional methods. The objective of this review was to explore the usability of new technological solutions in this special population of patients. The search in the PubMed was conducted using the following terms: (intellectual disability (Title/Abstract) OR developmental disability OR learning disorder (Title/Abstract)) AND virtual reality (Title/Abstract) OR telepsychiatry OR telemedicine OR e-mental health AND English (lang) AND (1995/01/01(PDAT): 2017/07/31(PDAT)). Telepsychiatry may be a useful tool in situations, when the direct access to professional assistance is limited, in solving particular problems like e.g. managing challenging behavior, also to support patients' parents and for diagnostic and educational purposes. Virtual reality can be a safe and effective method of improving different skills, developing physical fitness, and enriching the ways of spending the leisure time. Using modern technology is a relatively new and promising field in which new ideas may develop to support the already existing services for patients with intellectual and developmental disabilities.
Validation of a Novel Virtual Reality Simulator for Robotic Surgery
Schreuder, Henk W. R.; Persson, Jan E. U.; Wolswijk, Richard G. H.; Ihse, Ingmar; Schijven, Marlies P.; Verheijen, René H. M.
2014-01-01
Objective. With the increase in robotic-assisted laparoscopic surgery there is a concomitant rising demand for training methods. The objective was to establish face and construct validity of a novel virtual reality simulator (dV-Trainer, Mimic Technologies, Seattle, WA) for the use in training of robot-assisted surgery. Methods. A comparative cohort study was performed. Participants (n = 42) were divided into three groups according to their robotic experience. To determine construct validity, participants performed three different exercises twice. Performance parameters were measured. To determine face validity, participants filled in a questionnaire after completion of the exercises. Results. Experts outperformed novices in most of the measured parameters. The most discriminative parameters were “time to complete” and “economy of motion” (P < 0.001). The training capacity of the simulator was rated 4.6 ± 0.5 SD on a 5-point Likert scale. The realism of the simulator in general, visual graphics, movements of instruments, interaction with objects, and the depth perception were all rated as being realistic. The simulator is considered to be a very useful training tool for residents and medical specialist starting with robotic surgery. Conclusions. Face and construct validity for the dV-Trainer could be established. The virtual reality simulator is a useful tool for training robotic surgery. PMID:24600328
A Virtual Reality-Based Simulation of Abdominal Surgery
1994-06-30
415) 591-7881 In! IhNiI 1 SHORT TITLE: A Virtual Reality -Based Simulation of Abdominal Surgery REPORTING PERIOD: October 31, 1993-June 30, 1994 The...Report - A Virtual Reality -Based Simulation Of Abdominal Surgery Page 2 June 21, 1994 TECHNICAL REPORT SUMMARY Virtual Reality is a marriage between...applications of this technology. Virtual reality systems can be used to teach surgical anatomy, diagnose surgical problems, plan operations. simulate and
Ventura, Joseph; Welikson, Tamara; Subotnik, Kenneth L; Ered, Arielle; Keefe, Richard; Hellemann, Gerhard H; Nuechterlein, Keith H
2018-01-01
Abstract Background Research using virtual reality assessment of functional capacity has shown promise as a reliable and valid way to assess treatment response in patients with established schizophrenia. There has been little work on virtual reality based assessments of functional capacity for patients in the early phase of schizophrenia. We examined whether virtual reality based assessment methods reveal functional capacity deficits in young patients and relevant relationships with established measures of neurocognition, functional capacity performance, and daily functioning. Methods The sample consisted of UCLA Aftercare Research Program patients (n=42) who were diagnosed by trained raters administering the SCID and who met criteria for schizophrenia, schizoaffective disorder, or schizophreniform disorder, and screened normal control subjects (n=13). Patients were within 2 years of their first psychotic episode upon clinic entry, were an average of 23.2 years old, and had an average of 12.9 years of education. The Virtual Reality Functional Capacity Assessment Tool (VRFCAT) was the computer-based measure of functional capacity. We used the MATRICS Consensus Cognitive Battery (MCCB) as an objective measure of neurocognition and the UCSD Performance-Based Skills Assessment (UPSA) to assess functional capacity performance. The Global Functioning Scale: Role and Social, and the Role Functioning Scale were used to assess work and school performance, familial interactions, and social functioning. Results We were able to confirm that the deficit in functional capacity performance measured using VRFCAT is present in the early course of schizophrenia in that the patients were slower and committed more errors (M=830.41) as compared with normal controls (M=716.84; t=3.0, p<.01). Virtual reality based assessment of functional capacity was correlated with objective measures of neurocognition (MCCB Overall Composite), r=-.71, p=<.01, standard approaches to functional capacity assessment (UPSA), r=-.66, p=<.01, work and school functioning (r=-.52, p<.01), and level of social relationships (r=-.43, p=<.03), but not familial relationships (r=-.03, p=.87). Interestingly, neither neurocognition (MCCB) nor functional capacity performance (UPSA) were correlated with the level of familial relationships. Discussion We extend previous findings in that even patients in the early course of schizophrenia showed virtual reality based functional capacity performance deficits when compared with normal control subjects. Virtual reality based performance was correlated with neurocognition, suggesting that it may be sensitive to changes in cognition. Furthermore, correlations with everyday work/school and social functioning indicate promise as a co-primary measure to index change in functioning in response to treatment. Interestingly, none of our measures of functional capacity or neurocognition were correlated with familial relationships indicating that the determinates of family interactions might be driven by factors other than cognitive capacities.
Virtual Reality Simulation of the International Space Welding Experiment
NASA Technical Reports Server (NTRS)
Phillips, James A.
1996-01-01
Virtual Reality (VR) is a set of breakthrough technologies that allow a human being to enter and fully experience a 3-dimensional, computer simulated environment. A true virtual reality experience meets three criteria: (1) It involves 3-dimensional computer graphics; (2) It includes real-time feedback and response to user actions; and (3) It must provide a sense of immersion. Good examples of a virtual reality simulator are the flight simulators used by all branches of the military to train pilots for combat in high performance jet fighters. The fidelity of such simulators is extremely high -- but so is the price tag, typically millions of dollars. Virtual reality teaching and training methods are manifestly effective, and we have therefore implemented a VR trainer for the International Space Welding Experiment. My role in the development of the ISWE trainer consisted of the following: (1) created texture-mapped models of the ISWE's rotating sample drum, technology block, tool stowage assembly, sliding foot restraint, and control panel; (2) developed C code for control panel button selection and rotation of the sample drum; (3) In collaboration with Tim Clark (Antares Virtual Reality Systems), developed a serial interface box for the PC and the SGI Indigo so that external control devices, similar to ones actually used on the ISWE, could be used to control virtual objects in the ISWE simulation; (4) In collaboration with Peter Wang (SFFP) and Mark Blasingame (Boeing), established the interference characteristics of the VIM 1000 head-mounted-display and tested software filters to correct the problem; (5) In collaboration with Peter Wang and Mark Blasingame, established software and procedures for interfacing the VPL DataGlove and the Polhemus 6DOF position sensors to the SGI Indigo serial ports. The majority of the ISWE modeling effort was conducted on a PC-based VR Workstation, described below.
Ferrer-García, Marta; García-Rodríguez, Olaya; Gutiérrez-Maldonado, José; Pericot-Valverde, Irene; Secades-Villa, Roberto
2010-01-01
Virtual Reality environments that reproduce typical contexts associated with tobacco use may be useful for aiding smoking cessation. The main objective of this study was to assess the capacity of eight environments to produce the craving to smoke and determine the relation of craving to nicotine dependence and level of presence. The results show that all the environments were able to generate the desire to smoke; a direct relation was found between sense of presence and craving.
NASA employee utilizes Virtual Reality (VR) equipment
1991-10-28
S91-50404 (1 Nov 1991) --- Bebe Ly of the Information Systems Directorate's (ISD) Software Technology Branch at the Johnson Space Center (JSC) gives virtual reality a try. The stereo video goggles and head[phones allow her to see and hear in a computer-generated world and the gloves allow her to move around and grasp objects. Ly is a member of the team that developed the C Language Integrated production System (CLIPS) which has been instrumental in developing several of the systems to be demonstrated in an upcoming Software Technology Exposition at JSC.
Stroke rehabilitation at home using virtual reality, haptics and telemedicine.
Rydmark, Martin; Broeren, Jörgen; Pascher, Ragnar
2002-01-01
The objective of this pilot study is to identify the level of difficulty in which subjects with left hemisphere damage in the acute phase after stroke can start practicing in a virtual environment. Second, to test an application of Virtual Reality technology to existing occupational treatment methods in stroke rehabilitation and develop a platform for home rehabilitation controlled telemedically. The findings indicate that the system shows potential as an assessment and training device. The feasibility study setup is working well likewise the assessment method. Developing and increasing the complexity of the tasks must be based on the patient individual neurology, and that the cinematic motion patterns of the patient's are the basis for exercise design.
Virtual Reality as Innovative Approach to the Interior Designing
NASA Astrophysics Data System (ADS)
Kaleja, Pavol; Kozlovská, Mária
2017-06-01
We can observe significant potential of information and communication technologies (ICT) in interior designing field, by development of software and hardware virtual reality tools. Using ICT tools offer realistic perception of proposal in its initial idea (the study). A group of real-time visualization, supported by hardware tools like Oculus Rift HTC Vive, provides free walkthrough and movement in virtual interior with the possibility of virtual designing. By improving of ICT software tools for designing in virtual reality we can achieve still more realistic virtual environment. The contribution presented proposal of an innovative approach of interior designing in virtual reality, using the latest software and hardware ICT virtual reality technologies
The virtues of virtual reality in exposure therapy.
Gega, Lina
2017-04-01
Virtual reality can be more effective and less burdensome than real-life exposure. Optimal virtual reality delivery should incorporate in situ direct dialogues with a therapist, discourage safety behaviours, allow for a mismatch between virtual and real exposure tasks, and encourage self-directed real-life practice between and beyond virtual reality sessions. © The Royal College of Psychiatrists 2017.
Virtual Reality in the Classroom.
ERIC Educational Resources Information Center
Pantelidis, Veronica S.
1993-01-01
Considers the concept of virtual reality; reviews its history; describes general uses of virtual reality, including entertainment, medicine, and design applications; discusses classroom uses of virtual reality, including a software program called Virtus WalkThrough for use with a computer monitor; and suggests future possibilities. (34 references)…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gonzalez Anez, Francisco
This paper presents two development projects (STARMATE and VIRMAN) focused on supporting training on maintenance. Both projects aim at specifying, designing, developing, and demonstrating prototypes allowing computer guided maintenance of complex mechanical elements using Augmented and Virtual Reality techniques. VIRMAN is a Spanish development project. The objective is to create a computer tool for maintenance training course elaborations and training delivery based on 3D virtual reality models of complex components. The training delivery includes 3D record displays on maintenance procedures with all complementary information for intervention understanding. Users are requested to perform the maintenance intervention trying to follow up themore » procedure. Users can be evaluated about the level of knowledge achieved. Instructors can check the evaluation records left during the training sessions. VIRMAN is simple software supported by a regular computer and can be used in an Internet framework. STARMATE is a forward step in the area of virtual reality. STARMATE is a European Commission project in the frame of 'Information Societies Technologies'. A consortium of five companies and one research institute shares their expertise in this new technology. STARMATE provides two main functionalities (1) user assistance for achieving assembly/de-assembly and following maintenance procedures, and (2) workforce training. The project relies on Augmented Reality techniques, which is a growing area in Virtual Reality research. The idea of Augmented Reality is to combine a real scene, viewed by the user, with a virtual scene, generated by a computer, augmenting the reality with additional information. The user interface is see-through goggles, headphones, microphone and an optical tracking system. All these devices are integrated in a helmet connected with two regular computers. The user has his hands free for performing the maintenance intervention and he can navigate in the virtual world thanks to a voice recognition system and a virtual pointing device. The maintenance work is guided with audio instructions, 2D and 3D information are directly displayed into the user's goggles: There is a position-tracking system that allows 3D virtual models to be displayed in the real counterpart positions independently of the user allocation. The user can create his own virtual environment, placing the information required wherever he wants. The STARMATE system is applicable to a large variety of real work situations. (author)« less
Building Online Communities. Take Your Site beyond Content: Construct a Society on the Web.
ERIC Educational Resources Information Center
Glaser, Mark
1997-01-01
Discusses the establishment of online, or virtual, communities on the World Wide Web. Topics include corporate sites; community planning; virtual reality; games; America Online projects; MUDs (multiuser dungeons) and MOOs (multiuser object oriented); and a list of contacts for online community resources. (LRW)
EduMOOs: Virtual Learning Centers.
ERIC Educational Resources Information Center
Woods, Judy C.
1998-01-01
Multi-user Object Oriented Internet activities (MOOs) permit real time interaction in a text-based virtual reality via the Internet. This article explains EduMOOs (educational MOOs) and provides brief descriptions, World Wide Web addresses, and telnet addresses for selected EduMOOs. Instructions for connecting to a MOO and a list of related Web…
NASA Astrophysics Data System (ADS)
Herbuś, K.; Ociepka, P.
2016-08-01
The development of methods of computer aided design and engineering allows conducting virtual tests, among others concerning motion simulation of technical means. The paper presents a method of integrating an object in the form of a virtual model of a Stewart platform with an avatar of a vehicle moving in a virtual environment. The area of the problem includes issues related to the problem of fidelity of mapping the work of the analyzed technical mean. The main object of investigations is a 3D model of a Stewart platform, which is a subsystem of the simulator designated for driving learning for disabled persons. The analyzed model of the platform, prepared for motion simulation, was created in the “Motion Simulation” module of a CAD/CAE class system Siemens PLM NX. Whereas the virtual environment, in which the moves the avatar of the passenger car, was elaborated in a VR class system EON Studio. The element integrating both of the mentioned software environments is a developed application that reads information from the virtual reality (VR) concerning the current position of the car avatar. Then, basing on the accepted algorithm, it sends control signals to respective joints of the model of the Stewart platform (CAD).
The Design of Immersive English Learning Environment Using Augmented Reality
ERIC Educational Resources Information Center
Li, Kuo-Chen; Chen, Cheng-Ting; Cheng, Shein-Yung; Tsai, Chung-Wei
2016-01-01
The study uses augmented reality (AR) technology to integrate virtual objects into the real learning environment for language learning. The English AR classroom is constructed using the system prototyping method and evaluated by semi-structured in-depth interviews. According to the flow theory by Csikszenmihalyi in 1975 along with the immersive…
Enhancing and Transforming Global Learning Communities with Augmented Reality
ERIC Educational Resources Information Center
Frydenberg, Mark; Andone, Diana
2018-01-01
Augmented and virtual reality applications bring new insights to real world objects and scenarios. This paper shares research results of the TalkTech project, an ongoing study investigating the impact of learning about new technologies as members of global communities. This study shares results of a collaborative learning project about augmented…
Embedding Mixed-Reality Laboratories into E-Learning Systems for Engineering Education
ERIC Educational Resources Information Center
Al-Tikriti, Munther N.; Al-Aubidy, Kasim M.
2013-01-01
E-learning, virtual learning and mixed reality techniques are now a global integral part of the academic and educational systems. They provide easier access to educational opportunities to a very wide spectrum of individuals to pursue their educational and qualification objectives. These modern techniques have the potentials to improve the quality…
Understanding the Conics through Augmented Reality
ERIC Educational Resources Information Center
Salinas, Patricia; Pulido, Ricardo
2017-01-01
This paper discusses the production of a digital environment to foster the learning of conics through augmented reality. The name conic refers to curves obtained by the intersection of a plane with a right circular conical surface. The environment gives students the opportunity to interact with the cone and the plane as virtual objects in real…
Khademi, Maryam; Hondori, Hossein Mousavi; Dodakian, Lucy; Cramer, Steve; Lopes, Cristina V
2013-01-01
Introducing computer games to the rehabilitation market led to development of numerous Virtual Reality (VR) training applications. Although VR has provided tremendous benefit to the patients and caregivers, it has inherent limitations, some of which might be solved by replacing it with Augmented Reality (AR). The task of pick-and-place, which is part of many activities of daily living (ADL's), is one of the major affected functions stroke patients mainly expect to recover. We developed an exercise consisting of moving an object between various points, following a flash light that indicates the next target. The results show superior performance of subjects in spatial AR versus non-immersive VR setting. This could be due to the extraneous hand-eye coordination which exists in VR whereas it is eliminated in spatial AR.
Development of a virtual reality training system for endoscope-assisted submandibular gland removal.
Miki, Takehiro; Iwai, Toshinori; Kotani, Kazunori; Dang, Jianwu; Sawada, Hideyuki; Miyake, Minoru
2016-11-01
Endoscope-assisted surgery has widely been adopted as a basic surgical procedure, with various training systems using virtual reality developed for this procedure. In the present study, a basic training system comprising virtual reality for the removal of submandibular glands under endoscope assistance was developed. The efficacy of the training system was verified in novice oral surgeons. A virtual reality training system was developed using existing haptic devices. Virtual reality models were constructed from computed tomography data to ensure anatomical accuracy. Novice oral surgeons were trained using the developed virtual reality training system. The developed virtual reality training system included models of the submandibular gland and surrounding connective tissues and blood vessels entering the submandibular gland. Cutting or abrasion of the connective tissue and manipulations, such as elevation of blood vessels, were reproduced by the virtual reality system. A training program using the developed system was devised. Novice oral surgeons were trained in accordance with the devised training program. Our virtual reality training system for endoscope-assisted removal of the submandibular gland is effective in the training of novice oral surgeons in endoscope-assisted surgery. Copyright © 2016 The Author(s). Published by Elsevier Ltd.. All rights reserved.
Virtual reality: past, present and future.
Gobbetti, E; Scateni, R
1998-01-01
This report provides a short survey of the field of virtual reality, highlighting application domains, technological requirements, and currently available solutions. The report is organized as follows: section 1 presents the background and motivation of virtual environment research and identifies typical application domain, section 2 discusses the characteristics a virtual reality system must have in order to exploit the perceptual and spatial skills of users, section 3 surveys current input/output devices for virtual reality, section 4 surveys current software approaches to support the creation of virtual reality systems, and section 5 summarizes the report.
Virtual Reality: Toward Fundamental Improvements in Simulation-Based Training.
ERIC Educational Resources Information Center
Thurman, Richard A.; Mattoon, Joseph S.
1994-01-01
Considers the role and effectiveness of virtual reality in simulation-based training. The theoretical and practical implications of verity, integration, and natural versus artificial interface are discussed; a three-dimensional classification scheme for virtual reality is described; and the relationship between virtual reality and other…
Virtual Reality in Schools: The Ultimate Educational Technology.
ERIC Educational Resources Information Center
Reid, Robert D.; Sykes, Wylmarie
1999-01-01
Discusses the use of virtual reality as an educational tool. Highlights include examples of virtual reality in public schools that lead to a more active learning process, simulated environments, integrating virtual reality into any curriculum, benefits to teachers and students, and overcoming barriers to implementation. (LRW)
The need for virtual reality simulators in dental education: A review.
Roy, Elby; Bakr, Mahmoud M; George, Roy
2017-04-01
Virtual reality simulators are becoming an essential part of modern education. The benefits of Virtual reality in dentistry is constantly being assessed as a method or an adjunct to improve fine motor skills, hand-eye coordination in pre-clinical settings and overcome the monetary and intellectual challenges involved with such training. This article, while providing an overview of the virtual reality dental simulators, also looks at the link between virtual reality simulation and current pedagogical knowledge.
Rodrigues-Baroni, Juliana M; Nascimento, Lucas R; Ada, Louise; Teixeira-Salmela, Luci F
2014-01-01
To systematically review the available evidence on the efficacy of walking training associated with virtual reality-based training in patients with stroke. The specific questions were: Is walking training associated with virtual reality-based training effective in increasing walking speed after stroke? Is this type of intervention more effective in increasing walking speed, than non-virtual reality-based walking interventions? A systematic review with meta-analysis of randomized clinical trials was conducted. Participants were adults with chronic stroke and the experimental intervention was walking training associated with virtual reality-based training to increase walking speed. The outcome data regarding walking speed were extracted from the eligible trials and were combined using a meta-analysis approach. Seven trials representing eight comparisons were included in this systematic review. Overall, the virtual reality-based training increased walking speed by 0.17 m/s (IC 95% 0.08 to 0.26), compared with placebo/nothing or non-walking interventions. In addition, the virtual reality-based training increased walking speed by 0.15 m/s (IC 95% 0.05 to 0.24), compared with non-virtual reality walking interventions. This review provided evidence that walking training associated with virtual reality-based training was effective in increasing walking speed after stroke, and resulted in better results than non-virtual reality interventions.
Virtual Reality: An Emerging Tool to Treat Pain
2010-04-01
burn patients, physical therapy stretching of the newly healing skin helps to counteract the healing skin’s natural contraction as it scars...room, and substitute more calming music and sound effects. The patient interacts with the virtual world, throwing snowballs at objects in the virtual...care (Hoffman, Patterson et al, 2008) and physical therapy (Hoffman, Patterson, Carrougher, 2000; Hoffman, Patterson, Carrougher, Sharar, 2001; Sharar
Therapists' perception of benefits and costs of using virtual reality treatments.
Segal, Robert; Bhatia, Maneet; Drapeau, Martin
2011-01-01
Research indicates that virtual reality is effective in the treatment of many psychological difficulties and is being used more frequently. However, little is known about therapists' perception of the benefits and costs related to the use of virtual therapy in treatment delivery. In the present study, 271 therapists completed an online questionnaire that assessed their perceptions about the potential benefits and costs of using virtual reality in psychotherapy. Results indicated that therapists perceived the potential benefits as outweighing the potential costs. Therapists' self-reported knowledge of virtual reality, theoretical orientation, and interest in using virtual reality were found to be associated with perceptual measures. These findings contribute to the current knowledge of the perception of virtual reality amongst psychotherapists.
NASA Astrophysics Data System (ADS)
Kersten, T. P.; Büyüksalih, G.; Tschirschwitz, F.; Kan, T.; Deggim, S.; Kaya, Y.; Baskaraca, A. P.
2017-05-01
Recent advances in contemporary Virtual Reality (VR) technologies are going to have a significant impact on veryday life. Through VR it is possible to virtually explore a computer-generated environment as a different reality, and to immerse oneself into the past or in a virtual museum without leaving the current real-life situation. For such the ultimate VR experience, the user should only see the virtual world. Currently, the user must wear a VR headset which fits around the head and over the eyes to visually separate themselves from the physical world. Via the headset images are fed to the eyes through two small lenses. Cultural heritage monuments are ideally suited both for thorough multi-dimensional geometric documentation and for realistic interactive visualisation in immersive VR applications. Additionally, the game industry offers tools for interactive visualisation of objects to motivate users to virtually visit objects and places. In this paper the generation of a virtual 3D model of the Selimiye mosque in the city of Edirne, Turkey and its processing for data integration into the game engine Unity is presented. The project has been carried out as a co-operation between BİMTAŞ, a company of the Greater Municipality of Istanbul, Turkey and the Photogrammetry & Laser Scanning Lab of the HafenCity University Hamburg, Germany to demonstrate an immersive and interactive visualisation using the new VR system HTC Vive. The workflow from data acquisition to VR visualisation, including the necessary programming for navigation, is described. Furthermore, the possible use (including simultaneous multiple users environments) of such a VR visualisation for a CH monument is discussed in this contribution.
True 3D digital holographic tomography for virtual reality applications
NASA Astrophysics Data System (ADS)
Downham, A.; Abeywickrema, U.; Banerjee, P. P.
2017-09-01
Previously, a single CCD camera has been used to record holograms of an object while the object is rotated about a single axis to reconstruct a pseudo-3D image, which does not show detailed depth information from all perspectives. To generate a true 3D image, the object has to be rotated through multiple angles and along multiple axes. In this work, to reconstruct a true 3D image including depth information, a die is rotated along two orthogonal axes, and holograms are recorded using a Mach-Zehnder setup, which are subsequently numerically reconstructed. This allows for the generation of multiple images containing phase (i.e., depth) information. These images, when combined, create a true 3D image with depth information which can be exported to a Microsoft® HoloLens for true 3D virtual reality.
ERIC Educational Resources Information Center
Taçgin, Zeynep; Arslan, Ahmet
2017-01-01
The purpose of this study is to determine perception of postgraduate Computer Education and Instructional Technologies (CEIT) students regarding the concepts of Augmented Reality (AR), Virtual Reality (VR), Mixed Reality (MR), Augmented Virtuality (AV) and Mirror Reality; and to offer a table that includes differences and similarities between…
Augmented reality on poster presentations, in the field and in the classroom
NASA Astrophysics Data System (ADS)
Hawemann, Friedrich; Kolawole, Folarin
2017-04-01
Augmented reality (AR) is the direct addition of virtual information through an interface to a real-world environment. In practice, through a mobile device such as a tablet or smartphone, information can be projected onto a target- for example, an image on a poster. Mobile devices are widely distributed today such that augmented reality is easily accessible to almost everyone. Numerous studies have shown that multi-dimensional visualization is essential for efficient perception of the spatial, temporal and geometrical configuration of geological structures and processes. Print media, such as posters and handouts lack the ability to display content in the third and fourth dimensions, which might be in space-domain as seen in three-dimensional (3-D) objects, or time-domain (four-dimensional, 4-D) expressible in the form of videos. Here, we show that augmented reality content can be complimentary to geoscience poster presentations, hands-on material and in the field. In the latter example, location based data is loaded and for example, a virtual geological profile can be draped over a real-world landscape. In object based AR, the application is trained to recognize an image or object through the camera of the user's mobile device, such that specific content is automatically downloaded and displayed on the screen of the device, and positioned relative to the trained image or object. We used ZapWorks, a commercially-available software application to create and present examples of content that is poster-based, in which important supplementary information is presented as interactive virtual images, videos and 3-D models. We suggest that the flexibility and real-time interactivity offered by AR makes it an invaluable tool for effective geoscience poster presentation, class-room and field geoscience learning.
Teaching and assessing competence in cataract surgery.
Henderson, Bonnie An; Ali, Rasha
2007-02-01
To review recent literature regarding innovative techniques, methods of teaching and assessing competence and skill in cataract surgery. The need for assessment of surgical competency and the requirement of wet lab facilities in ophthalmic training programs are being increasingly emphasized. Authors have proposed the use of standardized forms to collect objective and subjective data regarding the residents' surgical performance. Investigators have reported methods to improve visualization of cadaver and animal eyes for the wet lab, including the use of capsular dyes. The discussion of virtual reality as a teaching tool for surgical programs continues. Studies have proven that residents trained on a laparoscopic simulator outperformed nontrained residents during actual surgery for both surgical times and numbers of errors. Besides virtual reality systems, a program is being developed to separate the cognitive portion from the physical aspects of surgery. Another program couples surgical videos with three-dimensional animation to enhance the trainees' topographical understanding. Proper assessment of surgical competency is becoming an important focus of training programs. The use of surgical data forms may assist in standardizing objective assessments. Virtual reality, cognitive curriculum and animation video programs can be helpful in improving residents' surgical performance.
Webb, Andrea K; Vincent, Ashley L; Jin, Alvin B; Pollack, Mark H
2015-02-01
Post-traumatic stress disorder (PTSD) currently is diagnosed via clinical interview in which subjective self reports of traumatic events and associated experiences are discussed with a mental health professional. The reliability and validity of diagnoses can be improved with the use of objective physiological measures. In this study, physiological activity was recorded from 58 male veterans (PTSD Diagnosis n = 16; Trauma Exposed/No PTSD Diagnosis: n = 23; No Trauma/No PTSD Diagnosis: n = 19) with and without PTSD and combat trauma exposure in response to emotionally evocative non-idiographic virtual reality stimuli. Statistically significant differences among the Control, Trauma, and PTSD groups were present during the viewing of two virtual reality videos. Skin conductance and interbeat interval features were extracted for each of ten video events (five events of increasing severity per video). These features were submitted to three stepwise discriminant function analyses to assess classification accuracy for Control versus Trauma, Control versus PTSD, and Trauma versus PTSD pairings of participant groups. Leave-one-out cross-validation classification accuracy was between 71 and 94%. These results are promising and suggest the utility of objective physiological measures in assisting with PTSD diagnosis.
de Mello Monteiro, Carlos Bandeira; da Silva, Talita Dias; de Abreu, Luiz Carlos; Fregni, Felipe; de Araujo, Luciano Vieira; Ferreira, Fernando Henrique Inocêncio Borba; Leone, Claudio
2017-04-14
Down syndrome (DS) has unique physical, motor and cognitive characteristics. Despite cognitive and motor difficulties, there is a possibility of intervention based on the knowledge of motor learning. However, it is important to study the motor learning process in individuals with DS during a virtual reality task to justify the use of virtual reality to organize intervention programs. The aim of this study was to analyze the motor learning process in individuals with DS during a virtual reality task. A total of 40 individuals participated in this study, 20 of whom had DS (24 males and 8 females, mean age of 19 years, ranging between 14 and 30 yrs.) and 20 typically developing individuals (TD) who were matched by age and gender to the individuals with DS. To examine this issue, we used software that uses 3D images and reproduced a coincidence-timing task. The results showed that all individuals improved performance in the virtual task, but the individuals with DS that started the task with worse performance showed higher difference from the beginning. Besides that, they were able to retain and transfer the performance with increase of speed of the task. Individuals with DS are able to learn movements from virtual tasks, even though the movement time was higher compared to the TD individuals. The results showed that individuals with DS who started with low performance improved coincidence- timing task with virtual objects, but were less accurate than typically developing individuals. ClinicalTrials.gov Identifier: NCT02719600 .
Will Anything Useful Come Out of Virtual Reality? Examination of a Naval Application
1993-05-01
The term virtual reality can encompass varying meanings, but some generally accepted attributes of a virtual environment are that it is immersive...technology, but at present there are few practical applications which are utilizing the broad range of virtual reality technology. This paper will discuss an...Operability, operator functions, Virtual reality , Man-machine interface, Decision aids/decision making, Decision support. ASW.
Cognitive training on stroke patients via virtual reality-based serious games.
Gamito, Pedro; Oliveira, Jorge; Coelho, Carla; Morais, Diogo; Lopes, Paulo; Pacheco, José; Brito, Rodrigo; Soares, Fabio; Santos, Nuno; Barata, Ana Filipa
2017-02-01
Use of virtual reality environments in cognitive rehabilitation offers cost benefits and other advantages. In order to test the effectiveness of a virtual reality application for neuropsychological rehabilitation, a cognitive training program using virtual reality was applied to stroke patients. A virtual reality-based serious games application for cognitive training was developed, with attention and memory tasks consisting of daily life activities. Twenty stroke patients were randomly assigned to two conditions: exposure to the intervention, and waiting list control. The results showed significant improvements in attention and memory functions in the intervention group, but not in the controls. Overall findings provide further support for the use of VR cognitive training applications in neuropsychological rehabilitation. Implications for Rehabilitation Improvements in memory and attention functions following a virtual reality-based serious games intervention. Training of daily-life activities using a virtual reality application. Accessibility to training contents.
Can hazard risk be communicated through a virtual experience?
Mitchell, J T
1997-09-01
Cyberspace, defined by William Gibson as a consensual hallucination, now refers to all computer-generated interactive environments. Virtual reality, one of a class of interactive cyberspaces, allows us to create and interact directly with objects not available in the everyday world. Despite successes in the entertainment and aviation industries, this technology has been called a 'solution in search of a problem'. The purpose of this commentary is to suggest such a problem: the inability to acquire experience with a hazard to motivate mitigation. Direct experience with a hazard has been demonstrated as a powerful incentive to adopt mitigation measures. While we lack the ability to summon hazard events at will in order to gain access to that experience, a virtual environment can provide an arena where potential victims are exposed to a hazard's effects. Immersion as an active participant within the hazard event through virtual reality may stimulate users to undertake mitigation steps that might otherwise remain undone. This paper details the possible direction in which virtual reality may be applied to hazards mitigation through a discussion of the technology, the role of hazard experience, the creation of a hazard stimulation and the issues constraining implementation.
The Potential of Using Virtual Reality Technology in Physical Activity Settings
ERIC Educational Resources Information Center
Pasco, Denis
2013-01-01
In recent years, virtual reality technology has been successfully used for learning purposes. The purposes of the article are to examine current research on the role of virtual reality in physical activity settings and discuss potential application of using virtual reality technology to enhance learning in physical education. The article starts…
Virtual reality measures in neuropsychological assessment: a meta-analytic review.
Neguț, Alexandra; Matu, Silviu-Andrei; Sava, Florin Alin; David, Daniel
2016-02-01
Virtual reality-based assessment is a new paradigm for neuropsychological evaluation, that might provide an ecological assessment, compared to paper-and-pencil or computerized neuropsychological assessment. Previous research has focused on the use of virtual reality in neuropsychological assessment, but no meta-analysis focused on the sensitivity of virtual reality-based measures of cognitive processes in measuring cognitive processes in various populations. We found eighteen studies that compared the cognitive performance between clinical and healthy controls on virtual reality measures. Based on a random effects model, the results indicated a large effect size in favor of healthy controls (g = .95). For executive functions, memory and visuospatial analysis, subgroup analysis revealed moderate to large effect sizes, with superior performance in the case of healthy controls. Participants' mean age, type of clinical condition, type of exploration within virtual reality environments, and the presence of distractors were significant moderators. Our findings support the sensitivity of virtual reality-based measures in detecting cognitive impairment. They highlight the possibility of using virtual reality measures for neuropsychological assessment in research applications, as well as in clinical practice.
Lee, Su-Hyun; Kim, Yu-Mi; Lee, Byoung-Hee
2015-07-01
[Purpose] This study investigated the therapeutic effects of virtual reality-based bilateral upper-extremity training on brain activity in patients with stroke. [Subjects and Methods] Eighteen chronic stroke patients were divided into two groups: the virtual reality-based bilateral upper-extremity training group (n = 10) and the bilateral upper-limb training group (n = 8). The virtual reality-based bilateral upper-extremity training group performed bilateral upper-extremity exercises in a virtual reality environment, while the bilateral upper-limb training group performed only bilateral upper-extremity exercise. All training was conducted 30 minutes per day, three times per week for six weeks, followed by brain activity evaluation. [Results] Electroencephalography showed significant increases in concentration in the frontopolar 2 and frontal 4 areas, and significant increases in brain activity in the frontopolar 1 and frontal 3 areas in the virtual reality-based bilateral upper-extremity training group. [Conclusion] Virtual reality-based bilateral upper-extremity training can improve the brain activity of stroke patients. Thus, virtual reality-based bilateral upper-extremity training is feasible and beneficial for improving brain activation in stroke patients.
NASA Technical Reports Server (NTRS)
Hale, Joseph P.
1994-01-01
A virtual reality (VR) Applications Program has been under development at MSFC since 1989. Its objectives are to develop, assess, validate, and utilize VR in hardware development, operations development and support, missions operations training, and science training. A variety of activities are under way within many of these areas. One ongoing macro-ergonomic application of VR relates to the design of the Space Station Freedom Payload Control Area (PCA), the control room from which onboard payload operations are managed. Several preliminary conceptual PCA layouts have been developed and modeled in VR. Various managers and potential end users have virtually 'entered' these rooms and provided valuable feedback. Before VR can be used with confidence in a particular application, it must be validated, or calibrated, for that class of applications. Two associated validation studies for macro-ergonomic applications are under way to help characterize possible distortions of filtering of relevant perceptions in a virtual world. In both studies, existing control rooms and their 'virtual counterparts will be empirically compared using distance and heading estimations to objects and subjective assessments. Approaches and findings of the PCA activities and details of the studies are presented.
Man, mind, and machine: the past and future of virtual reality simulation in neurologic surgery.
Robison, R Aaron; Liu, Charles Y; Apuzzo, Michael L J
2011-11-01
To review virtual reality in neurosurgery, including the history of simulation and virtual reality and some of the current implementations; to examine some of the technical challenges involved; and to propose a potential paradigm for the development of virtual reality in neurosurgery going forward. A search was made on PubMed using key words surgical simulation, virtual reality, haptics, collision detection, and volumetric modeling to assess the current status of virtual reality in neurosurgery. Based on previous results, investigators extrapolated the possible integration of existing efforts and potential future directions. Simulation has a rich history in surgical training, and there are numerous currently existing applications and systems that involve virtual reality. All existing applications are limited to specific task-oriented functions and typically sacrifice visual realism for real-time interactivity or vice versa, owing to numerous technical challenges in rendering a virtual space in real time, including graphic and tissue modeling, collision detection, and direction of the haptic interface. With ongoing technical advancements in computer hardware and graphic and physical rendering, incremental or modular development of a fully immersive, multipurpose virtual reality neurosurgical simulator is feasible. The use of virtual reality in neurosurgery is predicted to change the nature of neurosurgical education, and to play an increased role in surgical rehearsal and the continuing education and credentialing of surgical practitioners. Copyright © 2011 Elsevier Inc. All rights reserved.
Virtual reality as a new trend in mechanical and electrical engineering education
NASA Astrophysics Data System (ADS)
Kamińska, Dorota; Sapiński, Tomasz; Aitken, Nicola; Rocca, Andreas Della; Barańska, Maja; Wietsma, Remco
2017-12-01
In their daily practice, academics frequently face lack of access to modern equipment and devices, which are currently in use on the market. Moreover, many students have problems with understanding issues connected to mechanical and electrical engineering due to the complexity, necessity of abstract thinking and the fact that those concepts are not fully tangible. Many studies indicate that virtual reality can be successfully used as a training tool in various domains, such as development, health-care, the military or school education. In this paper, an interactive training strategy for mechanical and electrical engineering education shall be proposed. The prototype of the software consists of a simple interface, meaning it is easy for comprehension and use. Additionally, the main part of the prototype allows the user to virtually manipulate a 3D object that should be analyzed and studied. Initial studies indicate that the use of virtual reality can contribute to improving the quality and efficiency of higher education, as well as qualifications, competencies and the skills of graduates, and increase their competitiveness in the labour market.
Visual Stability of Objects and Environments Viewed through Head-Mounted Displays
NASA Technical Reports Server (NTRS)
Ellis, Stephen R.; Adelstein, Bernard D.
2015-01-01
Virtual Environments (aka Virtual Reality) is again catching the public imagination and a number of startups (e.g. Oculus) and even not-so-startup companies (e.g. Microsoft) are trying to develop display systems to capitalize on this renewed interest. All acknowledge that this time they will get it right by providing the required dynamic fidelity, visual quality, and interesting content for the concept of VR to take off and change the world in ways it failed to do so in past incarnations. Some of the surprisingly long historical background of the technology that the form of direct simulation that underlies virtual environment and augmented reality displays will be briefly reviewed. An example of a mid 1990's augmented reality display system with good dynamic performance from our lab will be used to illustrate some of the underlying phenomena and technology concerning visual stability of virtual environments and objects during movement. In conclusion some idealized performance characteristics for a reference system will be proposed. Interestingly, many systems more or less on the market now may actually meet many of these proposed technical requirements. This observation leads to the conclusion that the current success of the IT firms trying to commercialize the technology will depend on the hidden costs of using the systems as well as the development of interesting and compelling content.
Educational MOO: Text-Based Virtual Reality for Learning in Community. ERIC Digest.
ERIC Educational Resources Information Center
Turbee, Lonnie
MOO stands for "Multi-user domain, Object-Oriented." Early multi-user domains, or "MUDs," began as net-based dungeons-and-dragons type games, but MOOs have evolved from these origins to become some of cyberspace's most fascinating and engaging online communities. MOOs are social environments in a text-based virtual reality…
Proposal for Implementing Multi-User Database (MUD) Technology in an Academic Library.
ERIC Educational Resources Information Center
Filby, A. M. Iliana
1996-01-01
Explores the use of MOO (multi-user object oriented) virtual environments in academic libraries to enhance reference services. Highlights include the development of multi-user database (MUD) technology from gaming to non-recreational settings; programming issues; collaborative MOOs; MOOs as distinguished from other types of virtual reality; audio…
Virtual Realities and the Future of Text.
ERIC Educational Resources Information Center
Marcus, Stephen
1992-01-01
Discusses issues surrounding virtual reality and "virtual books." Suggests that those who are exploring the territory of virtual realities are already helping to expand and enrich expectations and visions for integrating technology into reading and writing. (RS)
von Dadelszen, Peter; Allaire, Catherine
2011-01-01
Background: Concern regarding the quality of surgical training in obstetrics and gynecology residency programs is focusing attention on competency based education. Because open surgical skills cannot necessarily be translated into laparoscopic skills and with minimally invasive surgery becoming standard in operative gynecology, the discrepancy in training between obstetrics and gynecology will widen. Training on surgical simulators with virtual reality may improve surgical skills. However, before incorporation into training programs for gynecology residents the validity of such instruments needs to first be established. We sought to prove the construct validity of a virtual reality laparoscopic simulator, the SurgicalSimTM, by showing its ability to distinguish between surgeons with different laparoscopic experience. Methods: Eleven gynecologic surgeons (experts) and 11 perinatologists (controls) completed 3 tasks on the simulator, and 10 performance parameters were compared. Results: The experts performed faster, more efficiently, and with fewer errors, proving the construct validity of the SurgicalSim. Conclusions: Laparoscopic virtual reality simulators can measure relevant surgical skills and so distinguish between subjects having different skill levels. Hence, these simulators could be integrated into gynecology resident endoscopic training and utilized for objective assessment. Second, the skills required for competency in obstetrics cannot necessarily be utilized for better performance in laparoscopic gynecology. PMID:21985726
Martinho, Natalia M.; Silva, Valéria R.; Marques, Joseane; Carvalho, Leonardo C.; Iunes, Denise H.; Botelho, Simone
2016-01-01
ABSTRACT Objective To evaluate the effectiveness of abdominopelvic training by virtual reality compared to pelvic floor muscle training (PFMT) using a gym ball (a previously tested and efficient protocol) on postmenopausal women’s pelvic floor muscle (PFM) strength. Method A randomized controlled trial was conducted with 60 postmenopausal women, randomly allocated into two groups: Abdominopelvic training by virtual reality – APT_VR (n=30) and PFMT using a gym ball – PFMT_GB (n=30). Both types of training were supervised by the same physical therapist, during 10 sessions each, for 30 minutes. The participants’ PFM strength was evaluated by digital palpation and vaginal dynamometry, considering three different parameters: maximum strength, average strength and endurance. An intention-to-treat approach was used to analyze the participants according to original groups. Results No significant between-group differences were observed in most analyzed parameters. The outcome endurance was higher in the APT_VR group (p=0.003; effect size=0.89; mean difference=1.37; 95% CI=0.46 to 2.28). Conclusion Both protocols have improved the overall PFM strength, suggesting that both are equally beneficial and can be used in clinical practice. Muscle endurance was higher in patients who trained using virtual reality. PMID:27437716
Chen, Ling; Lo, Wai Leung Ambrose; Mao, Yu Rong; Ding, Ming Hui; Lin, Qiang; Li, Hai; Zhao, Jiang Li; Xu, Zhi Qin; Bian, Rui Hao; Huang, Dong Feng
2016-01-01
Objective . To critically evaluate the studies that were conducted over the past 10 years and to assess the impact of virtual reality on static and dynamic balance control in the stroke population. Method . A systematic review of randomized controlled trials published between January 2006 and December 2015 was conducted. Databases searched were PubMed, Scopus, and Web of Science. Studies must have involved adult patients with stroke during acute, subacute, or chronic phase. All included studies must have assessed the impact of virtual reality programme on either static or dynamic balance ability and compared it with a control group. The Physiotherapy Evidence Database (PEDro) scale was used to assess the methodological quality of the included studies. Results . Nine studies were included in this systematic review. The PEDro scores ranged from 4 to 9 points. All studies, except one, showed significant improvement in static or dynamic balance outcomes group. Conclusions . This review provided moderate evidence to support the fact that virtual reality training is an effective adjunct to standard rehabilitation programme to improve balance for patients with chronic stroke. The effect of VR training in balance recovery is less clear in patients with acute or subacute stroke. Further research is required to investigate the optimum training intensity and frequency to achieve the desired outcome.
What is going on in augmented reality simulation in laparoscopic surgery?
Botden, Sanne M B I; Jakimowicz, Jack J
2009-08-01
To prevent unnecessary errors and adverse results of laparoscopic surgery, proper training is of paramount importance. A safe way to train surgeons for laparoscopic skills is simulation. For this purpose traditional box trainers are often used, however they lack objective assessment of performance. Virtual reality laparoscopic simulators assess performance, but lack realistic haptic feedback. Augmented reality (AR) combines a virtual reality (VR) setting with real physical materials, instruments, and feedback. This article presents the current developments in augmented reality laparoscopic simulation. Pubmed searches were performed to identify articles regarding surgical simulation and augmented reality. Identified companies manufacturing an AR laparoscopic simulator received the same questionnaire referring to the features of the simulator. Seven simulators that fitted the definition of augmented reality were identified during the literature search. Five of the approached manufacturers returned a completed questionnaire, of which one simulator appeared to be VR and was therefore not applicable for this review. Several augmented reality simulators have been developed over the past few years and they are improving rapidly. We recommend the development of AR laparoscopic simulators for component tasks of procedural training. AR simulators should be implemented in current laparoscopic training curricula, in particular for laparoscopic suturing training.
ERIC Educational Resources Information Center
Cheng, Yufang; Huang, Ruowen
2012-01-01
The focus of this study is using data glove to practice Joint attention skill in virtual reality environment for people with pervasive developmental disorder (PDD). The virtual reality environment provides a safe environment for PDD people. Especially, when they made errors during practice in virtual reality environment, there is no suffering or…
Naval Applications of Virtual Reality,
1993-01-01
Expert Virtual Reality Special Report , pp. 67- 72. 14. SUBJECT TERMS 15 NUMBER o0 PAGES man-machine interface virtual reality decision support...collective and individual performance. -" Virtual reality projects could help *y by Mark Gembicki Av-t-abilty CodesA Avafllat Idt Iofe and David Rousseau...alt- 67 VIRTUAL . REALITY SPECIAl, REPORT r-OPY avcriaikxb to DD)C qg .- 154,41X~~~~~~~~~~~~j 1411 iI..:41 T a].’ 1,1 4 1111 I 4 1 * .11 ~ 4 l.~w111511 I
Magical Stories: Blending Virtual Reality and Artificial Intelligence.
ERIC Educational Resources Information Center
McLellan, Hilary
Artificial intelligence (AI) techniques and virtual reality (VR) make possible powerful interactive stories, and this paper focuses on examples of virtual characters in three dimensional (3-D) worlds. Waldern, a virtual reality game designer, has theorized about and implemented software design of virtual teammates and opponents that incorporate AI…
ERIC Educational Resources Information Center
Franchi, Jorge
1994-01-01
Highlights of this overview of virtual reality include optics; interface devices; virtual worlds; potential applications, including medicine and archaeology; problems, including costs; current research and development; future possibilities; and a listing of vendors and suppliers of virtual reality products. (Contains 11 references.) (LRW)
Psychological benefits of virtual reality for patients in rehabilitation therapy.
Chen, Chih-Hung; Jeng, Ming-Chang; Fung, Chin-Ping; Doong, Ji-Liang; Chuang, Tien-Yow
2009-05-01
Whether virtual rehabilitation is beneficial has not been determined. To investigate the psychological benefits of virtual reality in rehabilitation. An experimental group underwent therapy with a virtual-reality-based exercise bike, and a control group underwent the therapy without virtual-reality equipment. Hospital laboratory. 30 patients suffering from spinal-cord injury. A designed rehabilitation therapy. Endurance, Borg's rating-of-perceived-exertion scale, the Activation-Deactivation Adjective Check List (AD-ACL), and the Simulator Sickness Questionnaire. The differences between the experimental and control groups were significant for AD-ACL calmness and tension. A virtual-reality-based rehabilitation program can ease patients' tension and induce calm.
Virtual Reality for Pediatric Sedation: A Randomized Controlled Trial Using Simulation.
Zaveri, Pavan P; Davis, Aisha B; O'Connell, Karen J; Willner, Emily; Aronson Schinasi, Dana A; Ottolini, Mary
2016-02-09
Team training for procedural sedation for pediatric residents has traditionally consisted of didactic presentations and simulated scenarios using high-fidelity mannequins. We assessed the effectiveness of a virtual reality module in teaching preparation for and management of sedation for procedures. After developing a virtual reality environment in Second Life® (Linden Lab, San Francisco, CA) where providers perform and recover patients from procedural sedation, we conducted a randomized controlled trial to assess the effectiveness of the virtual reality module versus a traditional web-based educational module. A 20 question pre- and post-test was administered to assess knowledge change. All subjects participated in a simulated pediatric procedural sedation scenario that was video recorded for review and assessed using a 32-point checklist. A brief survey elicited feedback on the virtual reality module and the simulation scenario. The median score on the assessment checklist was 75% for the intervention group and 70% for the control group (P = 0.32). For the knowledge tests, there was no statistically significant difference between the groups (P = 0.14). Users had excellent reviews of the virtual reality module and reported that the module added to their education. Pediatric residents performed similarly in simulation and on a knowledge test after a virtual reality module compared with a traditional web-based module on procedural sedation. Although users enjoyed the virtual reality experience, these results question the value virtual reality adds in improving the performance of trainees. Further inquiry is needed into how virtual reality provides true value in simulation-based education.
Virtual Reality for Pediatric Sedation: A Randomized Controlled Trial Using Simulation
Davis, Aisha B; O'Connell, Karen J; Willner, Emily; Aronson Schinasi, Dana A; Ottolini, Mary
2016-01-01
Introduction: Team training for procedural sedation for pediatric residents has traditionally consisted of didactic presentations and simulated scenarios using high-fidelity mannequins. We assessed the effectiveness of a virtual reality module in teaching preparation for and management of sedation for procedures. Methods: After developing a virtual reality environment in Second Life® (Linden Lab, San Francisco, CA) where providers perform and recover patients from procedural sedation, we conducted a randomized controlled trial to assess the effectiveness of the virtual reality module versus a traditional web-based educational module. A 20 question pre- and post-test was administered to assess knowledge change. All subjects participated in a simulated pediatric procedural sedation scenario that was video recorded for review and assessed using a 32-point checklist. A brief survey elicited feedback on the virtual reality module and the simulation scenario. Results: The median score on the assessment checklist was 75% for the intervention group and 70% for the control group (P = 0.32). For the knowledge tests, there was no statistically significant difference between the groups (P = 0.14). Users had excellent reviews of the virtual reality module and reported that the module added to their education. Conclusions: Pediatric residents performed similarly in simulation and on a knowledge test after a virtual reality module compared with a traditional web-based module on procedural sedation. Although users enjoyed the virtual reality experience, these results question the value virtual reality adds in improving the performance of trainees. Further inquiry is needed into how virtual reality provides true value in simulation-based education. PMID:27014520
Valdés, Julio J; Barton, Alan J
2007-05-01
A method for the construction of virtual reality spaces for visual data mining using multi-objective optimization with genetic algorithms on nonlinear discriminant (NDA) neural networks is presented. Two neural network layers (the output and the last hidden) are used for the construction of simultaneous solutions for: (i) a supervised classification of data patterns and (ii) an unsupervised similarity structure preservation between the original data matrix and its image in the new space. A set of spaces are constructed from selected solutions along the Pareto front. This strategy represents a conceptual improvement over spaces computed by single-objective optimization. In addition, genetic programming (in particular gene expression programming) is used for finding analytic representations of the complex mappings generating the spaces (a composition of NDA and orthogonal principal components). The presented approach is domain independent and is illustrated via application to the geophysical prospecting of caves.
Applying Augmented Reality in practical classes for engineering students
NASA Astrophysics Data System (ADS)
Bazarov, S. E.; Kholodilin, I. Yu; Nesterov, A. S.; Sokhina, A. V.
2017-10-01
In this article the Augmented Reality application for teaching engineering students of electrical and technological specialties is introduced. In order to increase the motivation for learning and the independence of students, new practical guidelines on Augmented Reality were developed in the application to practical classes. During the application development, the authors used software such as Unity 3D and Vuforia. The Augmented Reality content consists of 3D-models, images and animations, which are superimposed on real objects, helping students to study specific tasks. A user who has a smartphone, a tablet PC, or Augmented Reality glasses can visualize on-screen virtual objects added to a real environment. Having analyzed the current situation in higher education: the learner’s interest in studying, their satisfaction with the educational process, and the impact of the Augmented Reality application on students, a questionnaire was developed and offered to students; the study involved 24 learners.
ERIC Educational Resources Information Center
Allison, John
2008-01-01
This paper will undertake a critical review of the impact of virtual reality tools on the teaching of history. Virtual reality is useful in several different ways. History educators, elementary and secondary school teachers and professors, can all profit from the digital environment. Challenges arise quickly however. Virtual reality technologies…
Immersive virtual reality simulations in nursing education.
Kilmon, Carol A; Brown, Leonard; Ghosh, Sumit; Mikitiuk, Artur
2010-01-01
This article explores immersive virtual reality as a potential educational strategy for nursing education and describes an immersive learning experience now being developed for nurses. This pioneering project is a virtual reality application targeting speed and accuracy of nurse response in emergency situations requiring cardiopulmonary resuscitation. Other potential uses and implications for the development of virtual reality learning programs are discussed.
Virtual reality simulation: using three-dimensional technology to teach nursing students.
Jenson, Carole E; Forsyth, Diane McNally
2012-06-01
The use of computerized technology is rapidly growing in the classroom and in healthcare. An emerging computer technology strategy for nursing education is the use of virtual reality simulation. This computer-based three-dimensional educational tool simulates real-life patient experiences in a risk-free environment, allows for repeated practice sessions, requires clinical decision making, exposes students to diverse patient conditions, provides immediate feedback, and is portable. The purpose of this article was to review the importance of virtual reality simulation as a computerized teaching strategy. In addition, a project to explore readiness of nursing faculty at one major Midwestern university for the use of virtual reality simulation as a computerized teaching strategy is described where faculty thought virtual reality simulation would increase students' knowledge of an intravenous line insertion procedure. Faculty who practiced intravenous catheter insertion via virtual reality simulation expressed a wide range of learning experiences from using virtual reality simulation that is congruent with the literature regarding the barriers to student learning. Innovative teaching strategies, such as virtual reality simulation, address barriers of increasing patient acuity, high student-to-faculty ratio, patient safety concerns from faculty, and student anxiety and can offer rapid feedback to students.
Reid, Denise
2013-01-01
Background. This pilot study investigated the efficacy of a novel virtual reality-cognitive rehabilitation (VR-CR) intervention to improve contextual processing of objects in children with autism. Previous research supports that children with autism show deficits in contextual processing, as well as deficits in its elementary components: abstraction and cognitive flexibility. Methods. Four children with autism participated in a multiple-baseline, single-subject study. The children were taught how to see objects in context by reinforcing attention to pivotal contextual information. Results. All children demonstrated statistically significant improvements in contextual processing and cognitive flexibility. Mixed results were found on the control test and changes in context-related behaviours. Conclusions. Larger-scale studies are warranted to determine the effectiveness and usability in comprehensive educational programs. PMID:24324379
Interpretations of virtual reality.
Voiskounsky, Alexander
2011-01-01
University students were surveyed to learn what they know about virtual realities. The two studies were administered with a half-year interval in which the students (N=90, specializing either in mathematics and science, or in social science and humanities) were asked to name particular examples of virtual realities. The second, but not the first study, was administered after the participants had the chance to see the movie "Avatar" (no investigation was held into whether they really saw it). While the students in both studies widely believed that activities such as social networking and online gaming represent virtual realities, some other examples provided by the students in the two studies differ: in the second study the participants expressed a better understanding of the items related to virtual realities. At the same time, not a single participant reported particular psychological states (either regular or altered) as examples of virtual realities. Profound popularization efforts need to be done to acquaint the public, including college students, with virtual realities and let the public adequately understand how such systems work.
Nesaratnam, N; Thomas, P; Vivian, A
2017-10-01
IntroductionDissociated tests of strabismus provide valuable information for diagnosis and monitoring of ocular misalignment in patients with normal retinal correspondence. However, they are vulnerable to operator error and rely on a fixed head position. Virtual reality headsets obviate the need for head fixation, while providing other clear theoretical advantages, including complete control over the illumination and targets presented for the patient's interaction.PurposeWe compared the performance of a virtual reality-based test of ocular misalignment to that of the traditional Lees screen, to establish the feasibility of using virtual reality technology in ophthalmic settings in the future.MethodsThree patients underwent a traditional Lees screen test, and a virtual reality headset-based test of ocular motility. The virtual reality headset-based programme consisted of an initial test to measure horizontal and vertical deviation, followed by a test for torsion.ResultsThe pattern of deviation obtained using the virtual reality-based test showed agreement with that obtained from the Lees screen for patients with a fourth nerve palsy, comitant esotropia, and restrictive thyroid eye disease.ConclusionsThis study reports the first use of a virtual reality headset in assessing ocular misalignment, and demonstrates that it is a feasible dissociative test of strabismus.
Corrêa, Ana Grasielle Dionísio; de Assis, Gilda Aparecida; do Nascimento, Marilena; de Deus Lopes, Roseli
2017-04-01
Augmented Reality musical software (GenVirtual) is a technology, which primarily allows users to develop music activities for rehabilitation. This study aimed to analyse the perceptions of health care professionals regarding the clinical utility of GenVirtual. A second objective was to identify improvements to GenVirtual software and similar technologies. Music therapists, occupational therapists, physiotherapists and speech and language therapist who assist people with physical and cognitive disabilities were enrolled in three focus groups. The quantitative and qualitative data were collected through inductive thematic analysis. Three main themes were identified: the use of GenVirtual in health care areas; opportunities for realistic application of GenVirtual; and limitations in the use of GenVirtual. The registration units identified were: motor stimulation, cognitive stimulation, verbal learning, recreation activity, musicality, accessibility, motivation, sonic accuracy, interference of lighting, poor sound, children and adults. This research suggested that the GenVirtual is a complementary tool to conventional clinical practice and has great potential to motor and cognitive rehabilitation of children and adults. Implications for Rehabilitation Gaining health professional' perceptions of the Augmented Reality musical game (GenVirtual) give valuable information as to the clinical utility of the software. GenVirtual was perceived as a tool that could be used as enhancing the motor and cognitive rehabilitation process. GenVirtual was viewed as a tool that could enhance clinical practice and communication among various agencies, but it was suggested that it should be used with caution to avoid confusion and replacement of important services.
Evaluation of robotic cardiac surgery simulation training: A randomized controlled trial.
Valdis, Matthew; Chu, Michael W A; Schlachta, Christopher; Kiaii, Bob
2016-06-01
To compare the currently available simulation training modalities used to teach robotic surgery. Forty surgical trainees completed a standardized robotic 10-cm dissection of the internal thoracic artery and placed 3 sutures of a mitral valve annuloplasty in porcine models and were then randomized to a wet lab, a dry lab, a virtual reality lab, or a control group that received no additional training. All groups trained to a level of proficiency determined by 2 expert robotic cardiac surgeons. All assessments were evaluated using the Global Evaluative Assessment of Robotic Skills in a blinded fashion. Wet lab trainees showed the greatest improvement in time-based scoring and the objective scoring tool compared with the experts (mean, 24.9 ± 1.7 vs 24.9 ± 2.6; P = .704). The virtual reality lab improved their scores and met the level of proficiency set by our experts for all primary outcomes (mean, 24.9 ± 1.7 vs 22.8 ± 3.7; P = .103). Only the control group trainees were not able to meet the expert level of proficiency for both time-based scores and the objective scoring tool (mean, 24.9 ± 1.7 vs 11.0 ± 4.5; P < .001). The average duration of training was shortest for the dry lab and longest for the virtual reality simulation (1.6 hours vs 9.3 hours; P < .001). We have completed the first randomized controlled trial to objectively compare the different training modalities of robotic surgery. Our data demonstrate the significant benefits of wet lab and virtual reality robotic simulation training and highlight key differences in current training methods. This study can help guide training programs in investing resources in cost-effective, high-yield simulation exercises. Copyright © 2016 The American Association for Thoracic Surgery. All rights reserved.
Role of virtual reality simulation in endoscopy training
Harpham-Lockyer, Louis; Laskaratos, Faidon-Marios; Berlingieri, Pasquale; Epstein, Owen
2015-01-01
Recent advancements in virtual reality graphics and models have allowed virtual reality simulators to be incorporated into a variety of endoscopic training programmes. Use of virtual reality simulators in training programmes is thought to improve skill acquisition amongst trainees which is reflected in improved patient comfort and safety. Several studies have already been carried out to ascertain the impact that usage of virtual reality simulators may have upon trainee learning curves and how this may translate to patient comfort. This article reviews the available literature in this area of medical education which is particularly relevant to all parties involved in endoscopy training and curriculum development. Assessment of the available evidence for an optimal exposure time with virtual reality simulators and the long-term benefits of their use are also discussed. PMID:26675895
Role of virtual reality simulation in endoscopy training.
Harpham-Lockyer, Louis; Laskaratos, Faidon-Marios; Berlingieri, Pasquale; Epstein, Owen
2015-12-10
Recent advancements in virtual reality graphics and models have allowed virtual reality simulators to be incorporated into a variety of endoscopic training programmes. Use of virtual reality simulators in training programmes is thought to improve skill acquisition amongst trainees which is reflected in improved patient comfort and safety. Several studies have already been carried out to ascertain the impact that usage of virtual reality simulators may have upon trainee learning curves and how this may translate to patient comfort. This article reviews the available literature in this area of medical education which is particularly relevant to all parties involved in endoscopy training and curriculum development. Assessment of the available evidence for an optimal exposure time with virtual reality simulators and the long-term benefits of their use are also discussed.
Besnard, Jeremy; Richard, Paul; Banville, Frederic; Nolin, Pierre; Aubin, Ghislaine; Le Gall, Didier; Richard, Isabelle; Allain, Phillippe
2016-01-01
Traumatic brain injury (TBI) causes impairments affecting instrumental activities of daily living (IADL). However, few studies have considered virtual reality as an ecologically valid tool for the assessment of IADL in patients who have sustained a TBI. The main objective of the present study was to examine the use of the Nonimmersive Virtual Coffee Task (NI-VCT) for IADL assessment in patients with TBI. We analyzed the performance of 19 adults suffering from TBI and 19 healthy controls (HCs) in the real and virtual tasks of making coffee with a coffee machine, as well as in global IQ and executive functions. Patients performed worse than HCs on both real and virtual tasks and on all tests of executive functions. Correlation analyses revealed that NI-VCT scores were related to scores on the real task. Moreover, regression analyses demonstrated that performance on NI-VCT matched real-task performance. Our results support the idea that the virtual kitchen is a valid tool for IADL assessment in patients who have sustained a TBI.
Validation of smoking-related virtual environments for cue exposure therapy.
García-Rodríguez, Olaya; Pericot-Valverde, Irene; Gutiérrez-Maldonado, José; Ferrer-García, Marta; Secades-Villa, Roberto
2012-06-01
Craving is considered one of the main factors responsible for relapse after smoking cessation. Cue exposure therapy (CET) consists of controlled and repeated exposure to drug-related stimuli in order to extinguish associated responses. The main objective of this study was to assess the validity of 7 virtual reality environments for producing craving in smokers that can be used within the CET paradigm. Forty-six smokers and 44 never-smokers were exposed to 7 complex virtual environments with smoking-related cues that reproduce typical situations in which people smoke, and to a neutral virtual environment without smoking cues. Self-reported subjective craving and psychophysiological measures were recorded during the exposure. All virtual environments with smoking-related cues were able to generate subjective craving in smokers, while no increase was observed for the neutral environment. The most sensitive psychophysiological variable to craving increases was heart rate. The findings provide evidence of the utility of virtual reality for simulating real situations capable of eliciting craving. We also discuss how CET for smoking cessation can be improved through these virtual tools. Copyright © 2012 Elsevier Ltd. All rights reserved.
Virtual reality triage training provides a viable solution for disaster-preparedness.
Andreatta, Pamela B; Maslowski, Eric; Petty, Sean; Shim, Woojin; Marsh, Michael; Hall, Theodore; Stern, Susan; Frankel, Jen
2010-08-01
The objective of this study was to compare the relative impact of two simulation-based methods for training emergency medicine (EM) residents in disaster triage using the Simple Triage and Rapid Treatment (START) algorithm, full-immersion virtual reality (VR), and standardized patient (SP) drill. Specifically, are there differences between the triage performances and posttest results of the two groups, and do both methods differentiate between learners of variable experience levels? Fifteen Postgraduate Year 1 (PGY1) to PGY4 EM residents were randomly assigned to two groups: VR or SP. In the VR group, the learners were effectively surrounded by a virtual mass disaster environment projected on four walls, ceiling, and floor and performed triage by interacting with virtual patients in avatar form. The second group performed likewise in a live disaster drill using SP victims. Setting and patient presentations were identical between the two modalities. Resident performance of triage during the drills and knowledge of the START triage algorithm pre/post drill completion were assessed. Analyses included descriptive statistics and measures of association (effect size). The mean pretest scores were similar between the SP and VR groups. There were no significant differences between the triage performances of the VR and SP groups, but the data showed an effect in favor of the SP group performance on the posttest. Virtual reality can provide a feasible alternative for training EM personnel in mass disaster triage, comparing favorably to SP drills. Virtual reality provides flexible, consistent, on-demand training options, using a stable, repeatable platform essential for the development of assessment protocols and performance standards.
Virtual Reality Exploration and Planning for Precision Colorectal Surgery.
Guerriero, Ludovica; Quero, Giuseppe; Diana, Michele; Soler, Luc; Agnus, Vincent; Marescaux, Jacques; Corcione, Francesco
2018-06-01
Medical software can build a digital clone of the patient with 3-dimensional reconstruction of Digital Imaging and Communication in Medicine images. The virtual clone can be manipulated (rotations, zooms, etc), and the various organs can be selectively displayed or hidden to facilitate a virtual reality preoperative surgical exploration and planning. We present preliminary cases showing the potential interest of virtual reality in colorectal surgery for both cases of diverticular disease and colonic neoplasms. This was a single-center feasibility study. The study was conducted at a tertiary care institution. Two patients underwent a laparoscopic left hemicolectomy for diverticular disease, and 1 patient underwent a laparoscopic right hemicolectomy for cancer. The 3-dimensional virtual models were obtained from preoperative CT scans. The virtual model was used to perform preoperative exploration and planning. Intraoperatively, one of the surgeons was manipulating the virtual reality model, using the touch screen of a tablet, which was interactively displayed to the surgical team. The main outcome was evaluation of the precision of virtual reality in colorectal surgery planning and exploration. In 1 patient undergoing laparoscopic left hemicolectomy, an abnormal origin of the left colic artery beginning as an extremely short common trunk from the inferior mesenteric artery was clearly seen in the virtual reality model. This finding was missed by the radiologist on CT scan. The precise identification of this vascular variant granted a safe and adequate surgery. In the remaining cases, the virtual reality model helped to precisely estimate the vascular anatomy, providing key landmarks for a safer dissection. A larger sample size would be necessary to definitively assess the efficacy of virtual reality in colorectal surgery. Virtual reality can provide an enhanced understanding of crucial anatomical details, both preoperatively and intraoperatively, which could contribute to improve safety in colorectal surgery.
A Feasibility Study of Virtual Reality-Based Coping Skills Training for Nicotine Dependence
Bordnick, Patrick S.; Traylor, Amy C.; Carter, Brian L.; Graap, Ken M.
2014-01-01
Objective Virtual reality (VR)-based cue reactivity has been successfully used for the assessment of drug craving. Going beyond assessment of cue reactivity, a novel VR-based treatment approach for smoking cessation was developed and tested for feasibility. Method In a randomized experiment, 10-week treatment feasibility trial, 46 nicotine-dependent adults, completed the10-week program. Virtual reality skills training (VRST) combined with nicotine replacement therapy (NRT) was compared to NRT alone. Participants were assessed for smoking behavior and coping skills during, at end of treatment, and at posttreatment follow-up. Results Smoking rates and craving for nicotine were significantly lower for the VRST group compared to NRT-only group at the end of treatment. Self-confidence and coping skills were also significantly higher for the VRST group, and number of cigarettes smoked was significantly lower, compared to the control group at follow-up. Conclusions Feasibility of VRST was supported in the current study. PMID:25484549
Gallagher, A G; Satava, R M
2002-12-01
The objective assessment of the psychomotor skills of surgeons is now a priority; however, this is a difficult task because of measurement difficulties associated with the assessment of surgery in vivo. In this study, virtual reality (VR) was used to overcome these problems. Twelve experienced (>50 minimal-access procedures), 12 inexperienced laparoscopic surgeons (<10 minimal-access procedures), and 12 laparoscopic novices participated in the study. Each subject completed 10 trials on the Minimally Invasive Surgical Trainer; Virtual Reality (MIST VR). Experienced laparoscopic surgeons performed the tasks significantly (p < 0.01) faster, with less error, more economy in the movement of instruments and the use of diathermy, and with greater consistency in performance. The standardized coefficient alpha for performance measures ranged from a = 0.89 to 0.98, showing high internal measurement consistency. Test-retest reliability ranged from r = 0.96 to r = 0.5. VR is a useful tool for evaluating the psychomotor skills needed to perform laparoscopic surgery.
NASA Astrophysics Data System (ADS)
Lin, Chien-Liang; Su, Yu-Zheng; Hung, Min-Wei; Huang, Kuo-Cheng
2010-08-01
In recent years, Augmented Reality (AR)[1][2][3] is very popular in universities and research organizations. The AR technology has been widely used in Virtual Reality (VR) fields, such as sophisticated weapons, flight vehicle development, data model visualization, virtual training, entertainment and arts. AR has characteristics to enhance the display output as a real environment with specific user interactive functions or specific object recognitions. It can be use in medical treatment, anatomy training, precision instrument casting, warplane guidance, engineering and distance robot control. AR has a lot of vantages than VR. This system developed combines sensors, software and imaging algorithms to make users feel real, actual and existing. Imaging algorithms include gray level method, image binarization method, and white balance method in order to make accurate image recognition and overcome the effects of light.
NASA Astrophysics Data System (ADS)
Krum, David M.; Sadek, Ramy; Kohli, Luv; Olson, Logan; Bolas, Mark
2010-01-01
As part of the Institute for Creative Technologies and the School of Cinematic Arts at the University of Southern California, the Mixed Reality lab develops technologies and techniques for presenting realistic immersive training experiences. Such experiences typically place users within a complex ecology of social actors, physical objects, and collections of intents, motivations, relationships, and other psychological constructs. Currently, it remains infeasible to completely synthesize the interactivity and sensory signatures of such ecologies. For this reason, the lab advocates mixed reality methods for training and conducts experiments exploring such methods. Currently, the lab focuses on understanding and exploiting the elasticity of human perception with respect to representational differences between real and virtual environments. This paper presents an overview of three projects: techniques for redirected walking, displays for the representation of virtual humans, and audio processing to increase stress.
France, Christopher R; Thomas, James S
2018-06-01
The virtual immersive gaming to optimize recovery (VIGOR) study is a randomized controlled trial of the effects of virtual reality games to encourage lumbar spine flexion among individuals with chronic low back pain and fear of movement. Whereas traditional graded activity or graded exposure therapies for chronic low back pain have high attrition and poor long-term efficacy, we believe that virtual reality games have distinct advantages that can enhance adherence and clinical outcomes. First, they are engaging and enjoyable activities that can distract from pain and fear of harm. In addition, because they gradually reinforce increases in lumbar spine flexion to achieve game objectives, continued engagement over time is expected to promote recovery through restoration of normal spinal motion. The study design includes two treatment groups which differ in the amount of lumbar flexion required to achieve the game objectives. All participants will play the games for nine weeks, and pre-treatment to 1-week post-treatment changes in pain and disability will serve as the co-primary clinical outcomes. In addition, changes in lumbar flexion and expectations of pain/harm will be examined as potential treatment outcome mediators. Maintenance of treatment outcomes will also be assessed for up to 48-weeks post-treatment. In brief, we hypothesize that the virtual reality games will reduce pain and disability by promoting spinal motion and allowing participants to develop an implicit understanding that they are capable of engaging in significant lumbar spine motion in their daily lives without a risk of injury to their back. Copyright © 2018 Elsevier Inc. All rights reserved.
Virtual reality in surgical training.
Lange, T; Indelicato, D J; Rosen, J M
2000-01-01
Virtual reality in surgery and, more specifically, in surgical training, faces a number of challenges in the future. These challenges are building realistic models of the human body, creating interface tools to view, hear, touch, feel, and manipulate these human body models, and integrating virtual reality systems into medical education and treatment. A final system would encompass simulators specifically for surgery, performance machines, telemedicine, and telesurgery. Each of these areas will need significant improvement for virtual reality to impact medicine successfully in the next century. This article gives an overview of, and the challenges faced by, current systems in the fast-changing field of virtual reality technology, and provides a set of specific milestones for a truly realistic virtual human body.
Active tactile exploration using a brain-machine-brain interface.
O'Doherty, Joseph E; Lebedev, Mikhail A; Ifft, Peter J; Zhuang, Katie Z; Shokur, Solaiman; Bleuler, Hannes; Nicolelis, Miguel A L
2011-10-05
Brain-machine interfaces use neuronal activity recorded from the brain to establish direct communication with external actuators, such as prosthetic arms. It is hoped that brain-machine interfaces can be used to restore the normal sensorimotor functions of the limbs, but so far they have lacked tactile sensation. Here we report the operation of a brain-machine-brain interface (BMBI) that both controls the exploratory reaching movements of an actuator and allows signalling of artificial tactile feedback through intracortical microstimulation (ICMS) of the primary somatosensory cortex. Monkeys performed an active exploration task in which an actuator (a computer cursor or a virtual-reality arm) was moved using a BMBI that derived motor commands from neuronal ensemble activity recorded in the primary motor cortex. ICMS feedback occurred whenever the actuator touched virtual objects. Temporal patterns of ICMS encoded the artificial tactile properties of each object. Neuronal recordings and ICMS epochs were temporally multiplexed to avoid interference. Two monkeys operated this BMBI to search for and distinguish one of three visually identical objects, using the virtual-reality arm to identify the unique artificial texture associated with each. These results suggest that clinical motor neuroprostheses might benefit from the addition of ICMS feedback to generate artificial somatic perceptions associated with mechanical, robotic or even virtual prostheses.
Casap, Nardy; Nadel, Sahar; Tarazi, Eyal; Weiss, Ervin I
2011-10-01
This study evaluated the benefits of a virtual reality navigation system for teaching the surgical stage of dental implantation to final-year dental students. The study aimed to assess the students' performance in dental implantation assignments by comparing freehand protocols with virtual reality navigation. Forty final-year dentistry students without previous experience in dental implantation surgery were given an implantation assignment comprising 3 tasks. Marking, drilling, and widening of implant holes were executed by a freehand protocol on the 2 mandibular sides by 1 group and by virtual reality navigation on 1 side and contralaterally with the freehand protocol by the other group. Subjective and objective assessments of the students' performance were graded. Marking with the navigation system was more accurate than with the standard protocol. The 2 groups performed similarly in the 2-mm drilling on the 2 mandibular sides. Widening of the 2 mesial holes to 3 mm was significantly better with the second execution in the standard protocol group, but not in the navigation group. The navigation group's second-site freehand drilling of the molar was significantly worse than the first. The execution of all assignments was significantly faster in the freehand group than in the navigation group (60.75 vs 77.25 minutes, P = .02). Self-assessment only partly matched the objective measurements and was more realistic in the standard protocol group. Despite the improved performance with the navigation system, the added value of training in dental implantation surgery with virtual reality navigation was minimal. Copyright © 2011 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.
Immersive Education, an Annotated Webliography
ERIC Educational Resources Information Center
Pricer, Wayne F.
2011-01-01
In this second installment of a two-part feature on immersive education a webliography will provide resources discussing the use of various types of computer simulations including: (a) augmented reality, (b) virtual reality programs, (c) gaming resources for teaching with technology, (d) virtual reality lab resources, (e) virtual reality standards…
A Virtual Reality Simulator Prototype for Learning and Assessing Phaco-sculpting Skills
NASA Astrophysics Data System (ADS)
Choi, Kup-Sze
This paper presents a virtual reality based simulator prototype for learning phacoemulsification in cataract surgery, with focus on the skills required for making a cross-shape trench in cataractous lens by an ultrasound probe during the phaco-sculpting procedure. An immersive virtual environment is created with 3D models of the lens and surgical tools. Haptic device is also used as 3D user interface. Phaco-sculpting is simulated by interactively deleting the constituting tetrahedrons of the lens model. Collisions between the virtual probe and the lens are effectively identified by partitioning the space containing the lens hierarchically with an octree. The simulator can be programmed to collect real-time quantitative user data for reviewing and assessing trainee's performance in an objective manner. A game-based learning environment can be created on top of the simulator by incorporating gaming elements based on the quantifiable performance metrics.
A review of haptic simulator for oral and maxillofacial surgery based on virtual reality.
Chen, Xiaojun; Hu, Junlei
2018-06-01
Traditional medical training in oral and maxillofacial surgery (OMFS) may be limited by its low efficiency and high price due to the shortage of cadaver resources. With the combination of visual rendering and feedback force, surgery simulators become increasingly popular in hospitals and medical schools as an alternative to the traditional training. Areas covered: The major goal of this review is to provide a comprehensive reference source of current and future developments of haptic OMFS simulators based on virtual reality (VR) for relevant researchers. Expert commentary: Visual rendering, haptic rendering, tissue deformation, and evaluation are key components of haptic surgery simulator based on VR. Compared with traditional medical training, virtual and tactical fusion of virtual environment in surgery simulator enables considerably vivid sensation, and the operators have more opportunities to practice surgical skills and receive objective evaluation as reference.
Envisioning the future of home care: applications of immersive virtual reality.
Brennan, Patricia Flatley; Arnott Smith, Catherine; Ponto, Kevin; Radwin, Robert; Kreutz, Kendra
2013-01-01
Accelerating the design of technologies to support health in the home requires 1) better understanding of how the household context shapes consumer health behaviors and (2) the opportunity to afford engineers, designers, and health professionals the chance to systematically study the home environment. We developed the Living Environments Laboratory (LEL) with a fully immersive, six-sided virtual reality CAVE to enable recreation of a broad range of household environments. We have successfully developed a virtual apartment, including a kitchen, living space, and bathroom. Over 2000 people have visited the LEL CAVE. Participants use an electronic wand to activate common household affordances such as opening a refrigerator door or lifting a cup. Challenges currently being explored include creating natural gesture to interface with virtual objects, developing robust, simple procedures to capture actual living environments and rendering them in a 3D visualization, and devising systematic stable terminologies to characterize home environments.
Samosky, Joseph T; Allen, Pete; Boronyak, Steve; Branstetter, Barton; Hein, Steven; Juhas, Mark; Nelson, Douglas A; Orebaugh, Steven; Pinto, Rohan; Smelko, Adam; Thompson, Mitch; Weaver, Robert A
2011-01-01
We are developing a simulator of peripheral nerve block utilizing a mixed-reality approach: the combination of a physical model, an MRI-derived virtual model, mechatronics and spatial tracking. Our design uses tangible (physical) interfaces to simulate surface anatomy, haptic feedback during needle insertion, mechatronic display of muscle twitch corresponding to the specific nerve stimulated, and visual and haptic feedback for the injection syringe. The twitch response is calculated incorporating the sensed output of a real neurostimulator. The virtual model is isomorphic with the physical model and is derived from segmented MRI data. This model provides the subsurface anatomy and, combined with electromagnetic tracking of a sham ultrasound probe and a standard nerve block needle, supports simulated ultrasound display and measurement of needle location and proximity to nerves and vessels. The needle tracking and virtual model also support objective performance metrics of needle targeting technique.
Virtual reality, disability and rehabilitation.
Wilson, P N; Foreman, N; Stanton, D
1997-06-01
Virtual reality, or virtual environment computer technology, generates simulated objects and events with which people can interact. Existing and potential applications for this technology in the field of disability and rehabilitation are discussed. The main benefits identified for disabled people are that they can engage in a range of activities in a simulator relatively free from the limitations imposed by their disability, and they can do so in safety. Evidence that the knowledge and skills acquired by disabled individuals in simulated environments can transfer to the real world is presented. In particular, spatial information and life skills learned in a virtual environment have been shown to transfer to the real world. Applications for visually impaired people are discussed, and the potential for medical interventions and the assessment and treatment of neurological damage are considered. Finally some current limitations of the technology, and ethical concerns in relation to disability, are discussed.
Liu, Yong-Kuo; Chao, Nan; Xia, Hong; Peng, Min-Jun; Ayodeji, Abiodun
2018-05-17
This paper presents an improved and efficient virtual reality-based adaptive dose assessment method (VRBAM) applicable to the cutting and dismantling tasks in nuclear facility decommissioning. The method combines the modeling strength of virtual reality with the flexibility of adaptive technology. The initial geometry is designed with the three-dimensional computer-aided design tools, and a hybrid model composed of cuboids and a point-cloud is generated automatically according to the virtual model of the object. In order to improve the efficiency of dose calculation while retaining accuracy, the hybrid model is converted to a weighted point-cloud model, and the point kernels are generated by adaptively simplifying the weighted point-cloud model according to the detector position, an approach that is suitable for arbitrary geometries. The dose rates are calculated with the Point-Kernel method. To account for radiation scattering effects, buildup factors are calculated with the Geometric-Progression formula in the fitting function. The geometric modeling capability of VRBAM was verified by simulating basic geometries, which included a convex surface, a concave surface, a flat surface and their combination. The simulation results show that the VRBAM is more flexible and superior to other approaches in modeling complex geometries. In this paper, the computation time and dose rate results obtained from the proposed method were also compared with those obtained using the MCNP code and an earlier virtual reality-based method (VRBM) developed by the same authors. © 2018 IOP Publishing Ltd.
Cheng, Yufang; Huang, Ruowen
2012-01-01
The focus of this study is using data glove to practice Joint attention skill in virtual reality environment for people with pervasive developmental disorder (PDD). The virtual reality environment provides a safe environment for PDD people. Especially, when they made errors during practice in virtual reality environment, there is no suffering or dangerous consequences to deal with. Joint attention is a critical skill in the disorder characteristics of children with PDD. The absence of joint attention is a deficit frequently affects their social relationship in daily life. Therefore, this study designed the Joint Attention Skills Learning (JASL) systems with data glove tool to help children with PDD to practice joint attention behavior skills. The JASL specifically focus the skills of pointing, showing, sharing things and behavior interaction with other children with PDD. The system is designed in playroom-scene and presented in the first-person perspectives for users. The functions contain pointing and showing, moving virtual objects, 3D animation, text, speaking sounds, and feedback. The method was employed single subject multiple-probe design across subjects' designs, and analysis of visual inspection in this study. It took 3 months to finish the experimental section. Surprisingly, the experiment results reveal that the participants have further extension in improving the joint attention skills in their daily life after using the JASL system. The significant potential in this particular treatment of joint attention for each participant will be discussed in details in this paper. Copyright © 2012 Elsevier Ltd. All rights reserved.
Nawrotek, Joanna; Deschenes, Emilie; Giguere, Tia; Serafin, Julie; Bilodeau, Martin; Sveistrup, Heidi
2016-01-01
Background Virtual reality active video games are increasingly popular physical therapy interventions for children with cerebral palsy. However, physical therapists require educational resources to support decision making about game selection to match individual patient goals. Quantifying the movements elicited during virtual reality active video game play can inform individualized game selection in pediatric rehabilitation. Objective The objectives of this study were to develop and evaluate the feasibility and reliability of the Movement Rating Instrument for Virtual Reality Game Play (MRI-VRGP). Methods Item generation occurred through an iterative process of literature review and sample videotape viewing. The MRI-VRGP includes 25 items quantifying upper extremity, lower extremity, and total body movements. A total of 176 videotaped 90-second game play sessions involving 7 typically developing children and 4 children with cerebral palsy were rated by 3 raters trained in MRI-VRGP use. Children played 8 games on 2 virtual reality and active video game systems. Intraclass correlation coefficients (ICCs) determined intra-rater and interrater reliability. Results Excellent intrarater reliability was evidenced by ICCs of >0.75 for 17 of the 25 items across the 3 raters. Interrater reliability estimates were less precise. Excellent interrater reliability was achieved for far reach upper extremity movements (ICC=0.92 [for right and ICC=0.90 for left) and for squat (ICC=0.80) and jump items (ICC=0.99), with 9 items achieving ICCs of >0.70, 12 items achieving ICCs of between 0.40 and 0.70, and 4 items achieving poor reliability (close-reach upper extremity-ICC=0.14 for right and ICC=0.07 for left) and single-leg stance (ICC=0.55 for right and ICC=0.27 for left). Conclusions Poor video quality, differing item interpretations between raters, and difficulty quantifying the high-speed movements involved in game play affected reliability. With item definition clarification and further psychometric property evaluation, the MRI-VRGP could inform the content of educational resources for therapists by ranking games according to frequency and type of elicited body movements. PMID:27251029
Fully Three-Dimensional Virtual-Reality System
NASA Technical Reports Server (NTRS)
Beckman, Brian C.
1994-01-01
Proposed virtual-reality system presents visual displays to simulate free flight in three-dimensional space. System, virtual space pod, is testbed for control and navigation schemes. Unlike most virtual-reality systems, virtual space pod would not depend for orientation on ground plane, which hinders free flight in three dimensions. Space pod provides comfortable seating, convenient controls, and dynamic virtual-space images for virtual traveler. Controls include buttons plus joysticks with six degrees of freedom.
Transduction between worlds: using virtual and mixed reality for earth and planetary science
NASA Astrophysics Data System (ADS)
Hedley, N.; Lochhead, I.; Aagesen, S.; Lonergan, C. D.; Benoy, N.
2017-12-01
Virtual reality (VR) and augmented reality (AR) have the potential to transform the way we visualize multidimensional geospatial datasets in support of geoscience research, exploration and analysis. The beauty of virtual environments is that they can be built at any scale, users can view them at many levels of abstraction, move through them in unconventional ways, and experience spatial phenomena as if they had superpowers. Similarly, augmented reality allows you to bring the power of virtual 3D data visualizations into everyday spaces. Spliced together, these interface technologies hold incredible potential to support 21st-century geoscience. In my ongoing research, my team and I have made significant advances to connect data and virtual simulations with real geographic spaces, using virtual environments, geospatial augmented reality and mixed reality. These research efforts have yielded new capabilities to connect users with spatial data and phenomena. These innovations include: geospatial x-ray vision; flexible mixed reality; augmented 3D GIS; situated augmented reality 3D simulations of tsunamis and other phenomena interacting with real geomorphology; augmented visual analytics; and immersive GIS. These new modalities redefine the ways in which we can connect digital spaces of spatial analysis, simulation and geovisualization, with geographic spaces of data collection, fieldwork, interpretation and communication. In a way, we are talking about transduction between real and virtual worlds. Taking a mixed reality approach to this, we can link real and virtual worlds. This paper presents a selection of our 3D geovisual interface projects in terrestrial, coastal, underwater and other environments. Using rigorous applied geoscience data, analyses and simulations, our research aims to transform the novelty of virtual and augmented reality interface technologies into game-changing mixed reality geoscience.
Simulating 3D deformation using connected polygons
NASA Astrophysics Data System (ADS)
Tarigan, J. T.; Jaya, I.; Hardi, S. M.; Zamzami, E. M.
2018-03-01
In modern 3D application, interaction between user and the virtual world is one of an important factor to increase the realism. This interaction can be visualized in many forms; one of them is object deformation. There are many ways to simulate object deformation in virtual 3D world; each comes with different level of realism and performance. Our objective is to present a new method to simulate object deformation by using a graph-connected polygon. In this solution, each object contains multiple level of polygons in different level of volume. The proposed solution focusses on performance rather while maintaining the acceptable level of realism. In this paper, we present the design and implementation of our solution and show that this solution is usable in performance sensitive 3D application such as games and virtual reality.
The Virtual Reality Roving Vehicle Project.
ERIC Educational Resources Information Center
Winn, William
1995-01-01
Describes the Virtual Reality Roving Vehicle project developed at the University of Washington to teach students in grades 4 through 12 about virtual reality. Topics include teacher workshops; virtual worlds created by students; learning outcomes compared with traditional instruction; and the effect of student characteristics, including gender, on…
World Reaction to Virtual Space
NASA Technical Reports Server (NTRS)
1999-01-01
DRaW Computing developed virtual reality software for the International Space Station. Open Worlds, as the software has been named, can be made to support Java scripting and virtual reality hardware devices. Open Worlds permits the use of VRML script nodes to add virtual reality capabilities to the user's applications.
Virtual Reality: An Instructional Medium for Visual-Spatial Tasks.
ERIC Educational Resources Information Center
Regian, J. Wesley; And Others
1992-01-01
Describes an empirical exploration of the instructional potential of virtual reality as an interface for simulation-based training. Shows that subjects learned spatial-procedural and spatial-navigational skills in virtual reality. (SR)
Mixed Reality with HoloLens: Where Virtual Reality Meets Augmented Reality in the Operating Room.
Tepper, Oren M; Rudy, Hayeem L; Lefkowitz, Aaron; Weimer, Katie A; Marks, Shelby M; Stern, Carrie S; Garfein, Evan S
2017-11-01
Virtual reality and augmented reality devices have recently been described in the surgical literature. The authors have previously explored various iterations of these devices, and although they show promise, it has become clear that virtual reality and/or augmented reality devices alone do not adequately meet the demands of surgeons. The solution may lie in a hybrid technology known as mixed reality, which merges many virtual reality and augmented realty features. Microsoft's HoloLens, the first commercially available mixed reality device, provides surgeons intraoperative hands-free access to complex data, the real environment, and bidirectional communication. This report describes the use of HoloLens in the operating room to improve decision-making and surgical workflow. The pace of mixed reality-related technological development will undoubtedly be rapid in the coming years, and plastic surgeons are ideally suited to both lead and benefit from this advance.
Muralha, Nuno; Oliveira, Manuel; Ferreira, Maria Amélia; Costa-Maia, José
2017-05-31
Virtual reality simulation is a topic of discussion as a complementary tool to traditional laparoscopic surgical training in the operating room. However, it is unclear whether virtual reality training can have an impact on the surgical performance of advanced laparoscopic procedures. Our objective was to assess the ability of the virtual reality simulator LAP Mentor to identify and quantify changes in surgical performance indicators, after LAP Mentor training for digestive anastomosis. Twelve surgeons from Centro Hospitalar de São João in Porto (Portugal) performed two sessions of advanced task 5: anastomosis in LAP Mentor, before and after completing the tutorial, and were evaluated on 34 surgical performance indicators. The results show that six surgical performance indicators significantly changed after LAP Mentor training. The surgeons performed the task significantly faster as the median 'total time' significantly reduced (p < 0.05) from 759.5 to 523.5 seconds. Significant decreases (p < 0.05) were also found in median 'total needle loading time' (303.3 to 107.8 seconds), 'average needle loading time' (38.5 to 31.0 seconds), 'number of passages in which the needle passed precisely through the entrance dots' (2.5 to 1.0), 'time the needle was held outside the visible field' (20.9 to 2.4 seconds), and 'total time the needle-holders' ends are kept outside the predefined operative field' (88.2 to 49.6 seconds). This study raises the possibility of using virtual reality training simulation as a benchmark tool to assess the surgical performance of Portuguese surgeons. LAP Mentor is able to identify variations in surgical performance indicators of digestive anastomosis.
From stereoscopic recording to virtual reality headsets: Designing a new way to learn surgery.
Ros, M; Trives, J-V; Lonjon, N
2017-03-01
To improve surgical practice, there are several different approaches to simulation. Due to wearable technologies, recording 3D movies is now easy. The development of a virtual reality headset allows imagining a different way of watching these videos: using dedicated software to increase interactivity in a 3D immersive experience. The objective was to record 3D movies via a main surgeon's perspective, to watch files using virtual reality headsets and to validate pedagogic interest. Surgical procedures were recorded using a system combining two side-by-side cameras placed on a helmet. We added two LEDs just below the cameras to enhance luminosity. Two files were obtained in mp4 format and edited using dedicated software to create 3D movies. Files obtained were then played using a virtual reality headset. Surgeons who tried the immersive experience completed a questionnaire to evaluate the interest of this procedure for surgical learning. Twenty surgical procedures were recorded. The movies capture a scene which is extended 180° horizontally and 90° vertically. The immersive experience created by the device conveys a genuine feeling of being in the operating room and seeing the procedure first-hand through the eyes of the main surgeon. All surgeons indicated that they believe in pedagogical interest of this method. We succeeded in recording the main surgeon's point of view in 3D and watch it on a virtual reality headset. This new approach enhances the understanding of surgery; most of the surgeons appreciated its pedagogic value. This method could be an effective learning tool in the future. Copyright © 2016. Published by Elsevier Masson SAS.
Effect of Virtual Reality on Cognition in Stroke Patients
Kim, Bo Ryun; Kim, Lee Suk; Park, Ji Young
2011-01-01
Objective To investigate the effect of virtual reality on the recovery of cognitive impairment in stroke patients. Method Twenty-eight patients (11 males and 17 females, mean age 64.2) with cognitive impairment following stroke were recruited for this study. All patients were randomly assigned to one of two groups, the virtual reality (VR) group (n=15) or the control group (n=13). The VR group received both virtual reality training and computer-based cognitive rehabilitation, whereas the control group received only computer-based cognitive rehabilitation. To measure, activity of daily living cognitive and motor functions, the following assessment tools were used: computerized neuropsychological test and the Tower of London (TOL) test for cognitive function assessment, Korean-Modified Barthel index (K-MBI) for functional status evaluation, and the motricity index (MI) for motor function assessment. All recruited patients underwent these evaluations before rehabilitation and four weeks after rehabilitation. Results The VR group showed significant improvement in the K-MMSE, visual and auditory continuous performance tests (CPT), forward digit span test (DST), forward and backward visual span tests (VST), visual and verbal learning tests, TOL, K-MBI, and MI scores, while the control group showed significant improvement in the K-MMSE, forward DST, visual and verbal learning tests, trail-making test-type A, TOL, K-MBI, and MI scores after rehabilitation. The changes in the visual CPT and backward VST in the VR group after rehabilitation were significantly higher than those in the control group. Conclusion Our findings suggest that virtual reality training combined with computer-based cognitive rehabilitation may be of additional benefit for treating cognitive impairment in stroke patients. PMID:22506159
Validation of a novel virtual reality simulator for robotic surgery.
Schreuder, Henk W R; Persson, Jan E U; Wolswijk, Richard G H; Ihse, Ingmar; Schijven, Marlies P; Verheijen, René H M
2014-01-01
With the increase in robotic-assisted laparoscopic surgery there is a concomitant rising demand for training methods. The objective was to establish face and construct validity of a novel virtual reality simulator (dV-Trainer, Mimic Technologies, Seattle, WA) for the use in training of robot-assisted surgery. A comparative cohort study was performed. Participants (n = 42) were divided into three groups according to their robotic experience. To determine construct validity, participants performed three different exercises twice. Performance parameters were measured. To determine face validity, participants filled in a questionnaire after completion of the exercises. Experts outperformed novices in most of the measured parameters. The most discriminative parameters were "time to complete" and "economy of motion" (P < 0.001). The training capacity of the simulator was rated 4.6 ± 0.5 SD on a 5-point Likert scale. The realism of the simulator in general, visual graphics, movements of instruments, interaction with objects, and the depth perception were all rated as being realistic. The simulator is considered to be a very useful training tool for residents and medical specialist starting with robotic surgery. Face and construct validity for the dV-Trainer could be established. The virtual reality simulator is a useful tool for training robotic surgery.
Physiological reactivity to nonideographic virtual reality stimuli in veterans with and without PTSD
Webb, Andrea K; Vincent, Ashley L; Jin, Alvin B; Pollack, Mark H
2015-01-01
Background Post-traumatic stress disorder (PTSD) currently is diagnosed via clinical interview in which subjective self reports of traumatic events and associated experiences are discussed with a mental health professional. The reliability and validity of diagnoses can be improved with the use of objective physiological measures. Methods In this study, physiological activity was recorded from 58 male veterans (PTSD Diagnosis n = 16; Trauma Exposed/No PTSD Diagnosis: n = 23; No Trauma/No PTSD Diagnosis: n = 19) with and without PTSD and combat trauma exposure in response to emotionally evocative non-idiographic virtual reality stimuli. Results Statistically significant differences among the Control, Trauma, and PTSD groups were present during the viewing of two virtual reality videos. Skin conductance and interbeat interval features were extracted for each of ten video events (five events of increasing severity per video). These features were submitted to three stepwise discriminant function analyses to assess classification accuracy for Control versus Trauma, Control versus PTSD, and Trauma versus PTSD pairings of participant groups. Leave-one-out cross-validation classification accuracy was between 71 and 94%. Conclusions These results are promising and suggest the utility of objective physiological measures in assisting with PTSD diagnosis. PMID:25642387
Rosa, Pedro J; Morais, Diogo; Gamito, Pedro; Oliveira, Jorge; Saraiva, Tomaz
2016-03-01
Immersive virtual reality is thought to be advantageous by leading to higher levels of presence. However, and despite users getting actively involved in immersive three-dimensional virtual environments that incorporate sound and motion, there are individual factors, such as age, video game knowledge, and the predisposition to immersion, that may be associated with the quality of virtual reality experience. Moreover, one particular concern for users engaged in immersive virtual reality environments (VREs) is the possibility of side effects, such as cybersickness. The literature suggests that at least 60% of virtual reality users report having felt symptoms of cybersickness, which reduces the quality of the virtual reality experience. The aim of this study was thus to profile the right user to be involved in a VRE through head-mounted display. To examine which user characteristics are associated with the most effective virtual reality experience (lower cybersickness), a multiple correspondence analysis combined with cluster analysis technique was performed. Results revealed three distinct profiles, showing that the PC gamer profile is more associated with higher levels of virtual reality effectiveness, that is, higher predisposition to be immersed and reduced cybersickness symptoms in the VRE than console gamer and nongamer. These findings can be a useful orientation in clinical practice and future research as they help identify which users are more predisposed to benefit from immersive VREs.
Virtual Reality: Emerging Applications and Future Directions
ERIC Educational Resources Information Center
Ludlow, Barbara L.
2015-01-01
Virtual reality is an emerging technology that has resulted in rapid expansion in the development of virtual immersive environments for use as educational simulations in schools, colleges and universities. This article presents an overview of virtual reality, describes a number of applications currently being used by special educators for…
Virtual Reality: A Dream Come True or a Nightmare.
ERIC Educational Resources Information Center
Cornell, Richard; Bailey, Dan
Virtual Reality (VR) is a new medium which allows total stimulation of one's senses through human/computer interfaces. VR has applications in training simulators, nano-science, medicine, entertainment, electronic technology, and manufacturing. This paper focuses on some current and potential problems of virtual reality and virtual environments…
Virtual reality in surgical skills training.
Palter, Vanessa N; Grantcharov, Teodor P
2010-06-01
With recent concerns regarding patient safety, and legislation regarding resident work hours, it is accepted that a certain amount of surgical skills training will transition to the surgical skills laboratory. Virtual reality offers enormous potential to enhance technical and non-technical skills training outside the operating room. Virtual-reality systems range from basic low-fidelity devices to highly complex virtual environments. These systems can act as training and assessment tools, with the learned skills effectively transferring to an analogous clinical situation. Recent developments include expanding the role of virtual reality to allow for holistic, multidisciplinary team training in simulated operating rooms, and focusing on the role of virtual reality in evidence-based surgical curriculum design. Copyright 2010 Elsevier Inc. All rights reserved.
ERIC Educational Resources Information Center
Cooper, Rory A.; Ding, Dan; Simpson, Richard; Fitzgerald, Shirley G.; Spaeth, Donald M.; Guo, Songfeng; Koontz, Alicia M.; Cooper, Rosemarie; Kim, Jongbae; Boninger, Michael L.
2005-01-01
Some aspects of assistive technology can be enhanced by the application of virtual reality. Although virtual simulation offers a range of new possibilities, learning to navigate in a virtual environment is not equivalent to learning to navigate in the real world. Therefore, virtual reality simulation is advocated as a useful preparation for…
The benefits of virtual reality simulator training for laparoscopic surgery.
Hart, Roger; Karthigasu, Krishnan
2007-08-01
Virtual reality is a computer-generated system that provides a representation of an environment. This review will analyse the literature with regard to any benefit to be derived from training with virtual reality equipment and to describe the current equipment available. Virtual reality systems are not currently realistic of the live operating environment because they lack tactile sensation, and do not represent a complete operation. The literature suggests that virtual reality training is a valuable learning tool for gynaecologists in training, particularly those in the early stages of their careers. Furthermore, it may be of benefit for the ongoing audit of surgical skills and for the early identification of a surgeon's deficiencies before operative incidents occur. It is only a matter of time before realistic virtual reality models of most complete gynaecological operations are available, with improved haptics as a result of improved computer technology. It is inevitable that in the modern climate of litigation virtual reality training will become an essential part of clinical training, as evidence for its effectiveness as a training tool exists, and in many countries training by operating on live animals is not possible.
Learning Application of Astronomy Based Augmented Reality using Android Platform
NASA Astrophysics Data System (ADS)
Maleke, B.; Paseru, D.; Padang, R.
2018-02-01
Astronomy is a branch of science involving observations of celestial bodies such as stars, planets, nebular comets, star clusters, and galaxies as well as natural phenomena occurring outside the Earth’s atmosphere. The way of learning of Astronomy is quite varied, such as by using a book or observe directly with a telescope. But both ways of learning have shortcomings, for example learning through books is only presented in the form of interesting 2D drawings. While learning with a telescope requires a fairly expensive cost to buy the equipment. This study will present a more interesting way of learning from the previous one, namely through Augmented Reality (AR) application using Android platform. Augmented Reality is a combination of virtual world (virtual) and real world (real) made by computer. Virtual objects can be text, animation, 3D models or videos that are combined with the actual environment so that the user feels the virtual object is in his environment. With the use of the Android platform, this application makes the learning method more interesting because it can be used on various Android smartphones so that learning can be done anytime and anywhere. The methodology used in making applications is Multimedia Lifecycle, along with C # language for AR programming and flowchart as a modelling tool. The results of research on some users stated that this application can run well and can be used as an alternative way of learning Astronomy with more interesting.
3D augmented reality with integral imaging display
NASA Astrophysics Data System (ADS)
Shen, Xin; Hua, Hong; Javidi, Bahram
2016-06-01
In this paper, a three-dimensional (3D) integral imaging display for augmented reality is presented. By implementing the pseudoscopic-to-orthoscopic conversion method, elemental image arrays with different capturing parameters can be transferred into the identical format for 3D display. With the proposed merging algorithm, a new set of elemental images for augmented reality display is generated. The newly generated elemental images contain both the virtual objects and real world scene with desired depth information and transparency parameters. The experimental results indicate the feasibility of the proposed 3D augmented reality with integral imaging.
Khurana, Meetika; Walia, Shefali
2017-01-01
Objective: To determine whether there is any difference between virtual reality game–based balance training and real-world task-specific balance training in improving sitting balance and functional performance in individuals with paraplegia. Methods: The study was a pre test–post test experimental design. There were 30 participants (28 males, 2 females) with traumatic spinal cord injury randomly assigned to 2 groups (group A and B). The levels of spinal injury of the participants were between T6 and T12. The virtual reality game–based balance training and real-world task-specific balance training were used as interventions in groups A and B, respectively. The total duration of the intervention was 4 weeks, with a frequency of 5 times a week; each training session lasted 45 minutes. The outcome measures were modified Functional Reach Test (mFRT), t-shirt test, and the self-care component of the Spinal Cord Independence Measure–III (SCIM-III). Results: There was a significant difference for time (p = .001) and Time × Group effect (p = .001) in mFRT scores, group effect (p = .05) in t-shirt test scores, and time effect (p = .001) in the self-care component of SCIM-III. Conclusions: Virtual reality game–based training is better in improving balance and functional performance in individuals with paraplegia than real-world task-specific balance training. PMID:29339902
Chen, Ling; Ding, Ming Hui; Lin, Qiang; Li, Hai; Zhao, Jiang Li; Xu, Zhi Qin; Bian, Rui Hao
2016-01-01
Objective. To critically evaluate the studies that were conducted over the past 10 years and to assess the impact of virtual reality on static and dynamic balance control in the stroke population. Method. A systematic review of randomized controlled trials published between January 2006 and December 2015 was conducted. Databases searched were PubMed, Scopus, and Web of Science. Studies must have involved adult patients with stroke during acute, subacute, or chronic phase. All included studies must have assessed the impact of virtual reality programme on either static or dynamic balance ability and compared it with a control group. The Physiotherapy Evidence Database (PEDro) scale was used to assess the methodological quality of the included studies. Results. Nine studies were included in this systematic review. The PEDro scores ranged from 4 to 9 points. All studies, except one, showed significant improvement in static or dynamic balance outcomes group. Conclusions. This review provided moderate evidence to support the fact that virtual reality training is an effective adjunct to standard rehabilitation programme to improve balance for patients with chronic stroke. The effect of VR training in balance recovery is less clear in patients with acute or subacute stroke. Further research is required to investigate the optimum training intensity and frequency to achieve the desired outcome. PMID:28053988
Brain-computer interface: changes in performance using virtual reality techniques.
Ron-Angevin, Ricardo; Díaz-Estrella, Antonio
2009-01-09
The ability to control electroencephalographic (EEG) signals when different mental tasks are carried out would provide a method of communication for people with serious motor function problems. This system is known as a brain-computer interface (BCI). Due to the difficulty of controlling one's own EEG signals, a suitable training protocol is required to motivate subjects, as it is necessary to provide some type of visual feedback allowing subjects to see their progress. Conventional systems of feedback are based on simple visual presentations, such as a horizontal bar extension. However, virtual reality is a powerful tool with graphical possibilities to improve BCI-feedback presentation. The objective of the study is to explore the advantages of the use of feedback based on virtual reality techniques compared to conventional systems of feedback. Sixteen untrained subjects, divided into two groups, participated in the experiment. A group of subjects was trained using a BCI system, which uses conventional feedback (bar extension), and another group was trained using a BCI system, which submits subjects to a more familiar environment, such as controlling a car to avoid obstacles. The obtained results suggest that EEG behaviour can be modified via feedback presentation. Significant differences in classification error rates between both interfaces were obtained during the feedback period, confirming that an interface based on virtual reality techniques can improve the feedback control, specifically for untrained subjects.
Khurana, Meetika; Walia, Shefali; Noohu, Majumi M
2017-01-01
Objective: To determine whether there is any difference between virtual reality game-based balance training and real-world task-specific balance training in improving sitting balance and functional performance in individuals with paraplegia. Methods: The study was a pre test-post test experimental design. There were 30 participants (28 males, 2 females) with traumatic spinal cord injury randomly assigned to 2 groups (group A and B). The levels of spinal injury of the participants were between T6 and T12. The virtual reality game-based balance training and real-world task-specific balance training were used as interventions in groups A and B, respectively. The total duration of the intervention was 4 weeks, with a frequency of 5 times a week; each training session lasted 45 minutes. The outcome measures were modified Functional Reach Test (mFRT), t-shirt test, and the self-care component of the Spinal Cord Independence Measure-III (SCIM-III). Results: There was a significant difference for time ( p = .001) and Time × Group effect ( p = .001) in mFRT scores, group effect ( p = .05) in t-shirt test scores, and time effect ( p = .001) in the self-care component of SCIM-III. Conclusions: Virtual reality game-based training is better in improving balance and functional performance in individuals with paraplegia than real-world task-specific balance training.
The Effect of Virtual Reality Training on Unilateral Spatial Neglect in Stroke Patients
Kim, Yong Mi; Yun, Gi Jeong; Song, Young Jin; Young, Han Eun
2011-01-01
Objective To investigate the effect of virtual reality training on unilateral spatial neglect in stroke patients. Method Twenty-four stroke patients (14 males and 10 females, mean age=64.7) who had unilateral spatial neglect as a result of right hemisphere stroke were recruited. All patients were randomly assigned to either the virtual reality (VR) group (n=12) or the control group (n=12). The VR group received VR training, which stimulated the left side of their bodies. The control group received conventional neglect therapy such as visual scanning training. Both groups received therapy for 30 minutes a day, five days per week for three weeks. Outcome measurements included star cancellation test, line bisection test, Catherine Bergego scale (CBS), and the Korean version of modified Barthel index (K-MBI). These measurements were taken before and after treatment. Results There were no significant differences in the baseline characteristics and initial values between the two groups. The changes in star cancellation test results and CBS in the VR group were significantly higher than those of the control group after treatment. The changes in line bisection test score and the K-MBI in the VR group were not statistically significant. Conclusion This study suggests that virtual reality training may be a beneficial therapeutic technique on unilateral spatial neglect in stroke patients. PMID:22506138
[What do virtual reality tools bring to child and adolescent psychiatry?
Bioulac, S; de Sevin, E; Sagaspe, P; Claret, A; Philip, P; Micoulaud-Franchi, J A; Bouvard, M P
2018-06-01
Virtual reality is a relatively new technology that enables individuals to immerse themselves in a virtual world. It offers several advantages including a more realistic, lifelike environment that may allow subjects to "forget" they are being assessed, allow a better participation and an increased generalization of learning. Moreover, the virtual reality system can provide multimodal stimuli, such as visual and auditory stimuli, and can also be used to evaluate the patient's multimodal integration and to aid rehabilitation of cognitive abilities. The use of virtual reality to treat various psychiatric disorders in adults (phobic anxiety disorders, post-traumatic stress disorder, eating disorders, addictions…) and its efficacy is supported by numerous studies. Similar research for children and adolescents is lagging behind. This may be particularly beneficial to children who often show great interest and considerable success on computer, console or videogame tasks. This article will expose the main studies that have used virtual reality with children and adolescents suffering from psychiatric disorders. The use of virtual reality to treat anxiety disorders in adults is gaining popularity and its efficacy is supported by various studies. Most of the studies attest to the significant efficacy of the virtual reality exposure therapy (or in virtuo exposure). In children, studies have covered arachnophobia social anxiety and school refusal phobia. Despite the limited number of studies, results are very encouraging for treatment in anxiety disorders. Several studies have reported the clinical use of virtual reality technology for children and adolescents with autistic spectrum disorders (ASD). Extensive research has proven the efficiency of technologies as support tools for therapy. Researches are found to be focused on communication and on learning and social imitation skills. Virtual reality is also well accepted by subjects with ASD. The virtual environment offers the opportunity to administer controlled tasks such as the typical neuropsychological tools, but in an environment much more like a standard classroom. The virtual reality classroom offers several advantages compared to classical tools such as more realistic and lifelike environment but also records various measures in standardized conditions. Most of the studies using a virtual classroom have found that children with Attention Deficit/Hyperactivity Disorder make significantly fewer correct hits and more commission errors compared with controls. The virtual classroom has proven to be a good clinical tool for evaluation of attention in ADHD. For eating disorders, cognitive behavioural therapy (CBT) program enhanced by a body image specific component using virtual reality techniques was shown to be more efficient than cognitive behavioural therapy alone. The body image-specific component using virtual reality techniques boots efficiency and accelerates the CBT change process for eating disorders. Virtual reality is a relatively new technology and its application in child and adolescent psychiatry is recent. However, this technique is still in its infancy and much work is needed including controlled trials before it can be introduced in routine clinical use. Virtual reality interventions should also investigate how newly acquired skills are transferred to the real world. At present virtual reality can be considered a useful tool in evaluation and treatment for child and adolescent disorders. Copyright © 2017 L'Encéphale, Paris. Published by Elsevier Masson SAS. All rights reserved.
Improving Balance in TBI Using a Low-Cost Customized Virtual Reality Rehabilitation Tool
2016-10-01
AWARD NUMBER: W81XWH-14-2-0150 TITLE: Improving Balance in TBI Using a Low-Cost Customized Virtual Reality Rehabilitation Tool PRINCIPAL...AND SUBTITLE Improving Balance in TBI Using a Low-Cost Customized Virtual Reality Rehabilitation Tool 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH...Distribution Unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT The proposed study will implement and evaluate a novel, low-cost, Virtual Reality (VR
Review of virtual reality treatment for mental health.
Gourlay, D; Lun, K C; Liya, G
2001-01-01
This paper describes recent research that proposes virtual reality techniques as a therapy for patients with cognitive and psychological problems. Specifically this applies to victims of conditions such as traumatic brain injury, Alzheimers and Parkinsons. Additionally virtual reality therapy offers an alternative to current desensitization techniques for the treatment of phobias Some important issues are examined including means of user interaction, skills transfer to the real world, and side-effects of virtual reality exposure.
Virtual reality for dermatologic surgery: virtually a reality in the 21st century.
Gladstone, H B; Raugi, G J; Berg, D; Berkley, J; Weghorst, S; Ganter, M
2000-01-01
In the 20th century, virtual reality has predominantly played a role in training pilots and in the entertainment industry. Despite much publicity, virtual reality did not live up to its perceived potential. During the past decade, it has also been applied for medical uses, particularly as training simulators, for minimally invasive surgery. Because of advances in computer technology, virtual reality is on the cusp of becoming an effective medical educational tool. At the University of Washington, we are developing a virtual reality soft tissue surgery simulator. Based on fast finite element modeling and using a personal computer, this device can simulate three-dimensional human skin deformations with real-time tactile feedback. Although there are many cutaneous biomechanical challenges to solve, it will eventually provide more realistic dermatologic surgery training for medical students and residents than the currently used models.
Lui, Justin T; Hoy, Monica Y
2017-06-01
Background The increasing prevalence of virtual reality simulation in temporal bone surgery warrants an investigation to assess training effectiveness. Objectives To determine if temporal bone simulator use improves mastoidectomy performance. Data Sources Ovid Medline, Embase, and PubMed databases were systematically searched per the PRISMA guidelines. Review Methods Inclusion criteria were peer-reviewed publications that utilized quantitative data of mastoidectomy performance following the use of a temporal bone simulator. The search was restricted to human studies published in English. Studies were excluded if they were in non-peer-reviewed format, were descriptive in nature, or failed to provide surgical performance outcomes. Meta-analysis calculations were then performed. Results A meta-analysis based on the random-effects model revealed an improvement in overall mastoidectomy performance following training on the temporal bone simulator. A standardized mean difference of 0.87 (95% CI, 0.38-1.35) was generated in the setting of a heterogeneous study population ( I 2 = 64.3%, P < .006). Conclusion In the context of a diverse population of virtual reality simulation temporal bone surgery studies, meta-analysis calculations demonstrate an improvement in trainee mastoidectomy performance with virtual simulation training.
An Intelligent Virtual Human System For Providing Healthcare Information And Support
2011-01-01
for clinical purposes. Shifts in the social and scientific landscape have now set the stage for the next major movement in Clinical Virtual Reality ...College; dMadigan Army Medical Center Army Abstract. Over the last 15 years, a virtual revolution has taken place in the use of Virtual Reality ... Virtual Reality with the “birth” of intelligent virtual humans. Seminal research and development has appeared in the creation of highly interactive
Tieri, Gaetano; Gioia, Annamaria; Scandola, Michele; Pavone, Enea F; Aglioti, Salvatore M
2017-05-01
To explore the link between Sense of Embodiment (SoE) over a virtual hand and physiological regulation of skin temperature, 24 healthy participants were immersed in virtual reality through a Head Mounted Display and had their real limb temperature recorded by means of a high-sensitivity infrared camera. Participants observed a virtual right upper limb (appearing either normally, or with the hand detached from the forearm) or limb-shaped non-corporeal control objects (continuous or discontinuous wooden blocks) from a first-person perspective. Subjective ratings of SoE were collected in each observation condition, as well as temperatures of the right and left hand, wrist and forearm. The observation of these complex, body and body-related virtual scenes resulted in increased real hand temperature when compared to a baseline condition in which a 3d virtual ball was presented. Crucially, observation of non-natural appearances of the virtual limb (discontinuous limb) and limb-shaped non-corporeal objects elicited high increase in real hand temperature and low SoE. In contrast, observation of the full virtual limb caused high SoE and low temperature changes in the real hand with respect to the other conditions. Interestingly, the temperature difference across the different conditions occurred according to a topographic rule that included both hands. Our study sheds new light on the role of an external hand's visual appearance and suggests a tight link between higher-order bodily self-representations and topographic regulation of skin temperature. © 2017 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
Virtual reality as a tool for improving spatial rotation among deaf and hard-of-hearing children.
Passig, D; Eden, S
2001-12-01
The aim of this study was to investigate whether the practice of rotating Virtual Reality (VR) three-dimensional (3D) objects will enhance the spatial rotation thinking of deaf and hard-of-hearing children compared to the practice of rotating two-dimensional (2D) objects. Two groups were involved in this study: an experimental group, which included 21 deaf and hardof-hearing children, who played a VR 3D game, and a control group of 23 deaf and hard-of-hearing children, who played a similar 2D (not VR) game. The results clearly indicate that practicing with VR 3D spatial rotations significantly improved the children's performance of spatial rotation, which enhanced their ability to perform better in other intellectual skills as well as in their sign language skills.
Reality Check: Basics of Augmented, Virtual, and Mixed Reality.
Brigham, Tara J
2017-01-01
Augmented, virtual, and mixed reality applications all aim to enhance a user's current experience or reality. While variations of this technology are not new, within the last few years there has been a significant increase in the number of artificial reality devices or applications available to the general public. This column will explain the difference between augmented, virtual, and mixed reality and how each application might be useful in libraries. It will also provide an overview of the concerns surrounding these different reality applications and describe how and where they are currently being used.
Countering Violent Extremism (CVE) Literature Review
2011-03-01
state similar to hypnosis , and this state enables them to relinquish their general reality orientation and have their conscious, critical faculties...terrorist beliefs and perceptions or appreciate the adversary’s construction of reality . He also argues that research should focus on how governments...modern’ style of Islam and its objectives. In many cases this newly aspired form of Islam is communicated virtually and is shaped through the
ERIC Educational Resources Information Center
Chen, Judy F.; Warden, Clyde A.; Tai, David Wen-Shung; Chen, Farn-Shing; Chao, Chich-Yang
2011-01-01
Virtual spaces allow abstract representations of reality that not only encourage student self-directed learning but also reinforce core content of the learning objective through visual metaphors not reproducible in the physical world. One of the advantages of such a space is the ability to escape the restrictions of the physical classroom, yet…
A Pilot and Feasibility Study of Virtual Reality as a Distraction for Children with Cancer
ERIC Educational Resources Information Center
Gershon, Jonathan; Zimand, Elana; Pickering, Melissa; Rothbaum, Barbara Olasov; Hodges, Larry
2004-01-01
Objective: To pilot and test the feasibility of a novel technology to reduce anxiety and pain associated with an invasive medical procedure in children with cancer. Method: Children with cancer (ages 7-19) whose treatment protocols required access of their subcutaneous venous port device (port access) were randomly assigned to a virtual reality…
An artificial reality environment for remote factory control and monitoring
NASA Technical Reports Server (NTRS)
Kosta, Charles Paul; Krolak, Patrick D.
1993-01-01
Work has begun on the merger of two well known systems, VEOS (HITLab) and CLIPS (NASA). In the recent past, the University of Massachusetts Lowell developed a parallel version of NASA CLIPS, called P-CLIPS. This modification allows users to create smaller expert systems which are able to communicate with each other to jointly solve problems. With the merger of a VEOS message system, PCLIPS-V can now act as a group of entities working within VEOS. To display the 3D virtual world we have been using a graphics package called HOOPS, from Ithaca Software. The artificial reality environment we have set up contains actors and objects as found in our Lincoln Logs Factory of the Future project. The environment allows us to view and control the objects within the virtual world. All communication between the separate CLIPS expert systems is done through VEOS. A graphical renderer generates camera views on X-Windows devices; Head Mounted Devices are not required. This allows more people to make use of this technology. We are experimenting with different types of virtual vehicles to give the user a sense that he or she is actually moving around inside the factory looking ahead through windows and virtual monitors.
The CAVE (TM) automatic virtual environment: Characteristics and applications
NASA Technical Reports Server (NTRS)
Kenyon, Robert V.
1995-01-01
Virtual reality may best be defined as the wide-field presentation of computer-generated, multi-sensory information that tracks a user in real time. In addition to the more well-known modes of virtual reality -- head-mounted displays and boom-mounted displays -- the Electronic Visualization Laboratory at the University of Illinois at Chicago recently introduced a third mode: a room constructed from large screens on which the graphics are projected on to three walls and the floor. The CAVE is a multi-person, room sized, high resolution, 3D video and audio environment. Graphics are rear projected in stereo onto three walls and the floor, and viewed with stereo glasses. As a viewer wearing a location sensor moves within its display boundaries, the correct perspective and stereo projections of the environment are updated, and the image moves with and surrounds the viewer. The other viewers in the CAVE are like passengers in a bus, along for the ride. 'CAVE,' the name selected for the virtual reality theater, is both a recursive acronym (Cave Automatic Virtual Environment) and a reference to 'The Simile of the Cave' found in Plato's 'Republic,' in which the philosopher explores the ideas of perception, reality, and illusion. Plato used the analogy of a person facing the back of a cave alive with shadows that are his/her only basis for ideas of what real objects are. Rather than having evolved from video games or flight simulation, the CAVE has its motivation rooted in scientific visualization and the SIGGRAPH 92 Showcase effort. The CAVE was designed to be a useful tool for scientific visualization. The Showcase event was an experiment; the Showcase chair and committee advocated an environment for computational scientists to interactively present their research at a major professional conference in a one-to-many format on high-end workstations attached to large projection screens. The CAVE was developed as a 'virtual reality theater' with scientific content and projection that met the criteria of Showcase.
Schmitt, Yuko S; Hoffman, Hunter G; Blough, David K; Patterson, David R; Jensen, Mark P; Soltani, Maryam; Carrougher, Gretchen J; Nakamura, Dana; Sharar, Sam R
2011-02-01
This randomized, controlled, within-subjects (crossover design) study examined the effects of immersive virtual reality as an adjunctive analgesic technique for hospitalized pediatric burn inpatients undergoing painful physical therapy. Fifty-four subjects (6-19 years old) performed range-of-motion exercises under a therapist's direction for 1-5 days. During each session, subjects spent equivalent time in both the virtual reality and the control conditions (treatment order randomized and counterbalanced). Graphic rating scale scores assessing the sensory, affective, and cognitive components of pain were obtained for each treatment condition. Secondary outcomes assessed subjects' perception of the virtual reality experience and maximum range-of-motion. Results showed that on study day one, subjects reported significant decreases (27-44%) in pain ratings during virtual reality. They also reported improved affect ("fun") during virtual reality. The analgesia and affect improvements were maintained with repeated virtual reality use over multiple therapy sessions. Maximum range-of-motion was not different between treatment conditions, but was significantly greater after the second treatment condition (regardless of treatment order). These results suggest that immersive virtual reality is an effective nonpharmacologic, adjunctive pain reduction technique in the pediatric burn population undergoing painful rehabilitation therapy. The magnitude of the analgesic effect is clinically meaningful and is maintained with repeated use. Copyright © 2010 Elsevier Ltd and ISBI. All rights reserved.
Schmitt, Yuko S.; Hoffman, Hunter G.; Blough, David K.; Patterson, David R.; Jensen, Mark P.; Soltani, Maryam; Carrougher, Gretchen J.; Nakamura, Dana; Sharar, Sam R.
2010-01-01
This randomized, controlled, within-subjects (crossover design) study examined the effects of immersive virtual reality as an adjunctive analgesic technique for hospitalized pediatric burn inpatients undergoing painful physical therapy. Fifty-four subjects (6–19 years old) performed range-of-motion exercises under a therapist’s direction for one to five days. During each session, subjects spent equivalent time in both the virtual reality and the control conditions (treatment order randomized and counterbalanced). Graphic rating scale scores assessing the sensory, affective, and cognitive components of pain were obtained for each treatment condition. Secondary outcomes assessed subjects’ perception of the virtual reality experience and maximum range-of-motion. Results showed that on study day one, subjects reported significant decreases (27–44%) in pain ratings during virtual reality. They also reported improved affect (“fun”) during virtual reality. The analgesia and affect improvements were maintained with repeated virtual reality use over multiple therapy sessions. Maximum range-of-motion was not different between treatment conditions, but was significantly greater after the second treatment condition (regardless of treatment order). These results suggest that immersive virtual reality is an effective nonpharmacologic, adjunctive pain reduction technique in the pediatric burn population undergoing painful rehabilitation therapy. The magnitude of the analgesic effect is clinically meaningful and is maintained with repeated use. PMID:20692769
Virtual reality in rhinology-a new dimension of clinical experience.
Klapan, Ivica; Raos, Pero; Galeta, Tomislav; Kubat, Goranka
2016-07-01
There is often a need to more precisely identify the extent of pathology and the fine elements of intracranial anatomic features during the diagnostic process and during many operations in the nose, sinus, orbit, and skull base region. In two case reports, we describe the methods used in the diagnostic workup and surgical therapy in the nose and paranasal sinus region. Besides baseline x-ray, multislice computed tomography, and magnetic resonance imaging, operative field imaging was performed via a rapid prototyping model, virtual endoscopy, and 3-D imaging. Different head tissues were visualized in different colors, showing their anatomic interrelations and the extent of pathologic tissue within the operative field. This approach has not yet been used as a standard preoperative or intraoperative procedure in otorhinolaryngology. In this way, we tried to understand the new, visualized "world of anatomic relations within the patient's head" by creating an impression of perception (virtual perception) of the given position of all elements in a particular anatomic region of the head, which does not exist in the real world (virtual world). This approach was aimed at upgrading the diagnostic workup and surgical therapy by ensuring a faster, safer and, above all, simpler operative procedure. In conclusion, any ENT specialist can provide virtual reality support in implementing surgical procedures, with additional control of risks and within the limits of normal tissue, without additional trauma to the surrounding tissue in the anatomic region. At the same time, the virtual reality support provides an impression of the virtual world as the specialist navigates through it and manipulates virtual objects.
Surgery applications of virtual reality
NASA Technical Reports Server (NTRS)
Rosen, Joseph
1994-01-01
Virtual reality is a computer-generated technology which allows information to be displayed in a simulated, bus lifelike, environment. In this simulated 'world', users can move and interact as if they were actually a part of that world. This new technology will be useful in many different fields, including the field of surgery. Virtual reality systems can be used to teach surgical anatomy, diagnose surgical problems, plan operations, simulate and perform surgical procedures (telesurgery), and predict the outcomes of surgery. The authors of this paper describe the basic components of a virtual reality surgical system. These components include: the virtual world, the virtual tools, the anatomical model, the software platform, the host computer, the interface, and the head-coupled display. In the chapter they also review the progress towards using virtual reality for surgical training, planning, telesurgery, and predicting outcomes. Finally, the authors present a training system being developed for the practice of new procedures in abdominal surgery.
[Virtual reality in neurosurgery].
Tronnier, V M; Staubert, A; Bonsanto, M M; Wirtz, C R; Kunze, S
2000-03-01
Virtual reality enables users to immerse themselves in a virtual three-dimensional world and to interact in this world. The simulation is different from the kind in computer games, in which the viewer is active but acts in a nonrealistic world, or on the TV screen, where we are passively driven in an active world. In virtual reality elements look realistic, they change their characteristics and have almost real-world unpredictability. Virtual reality is not only implemented in gambling dens and the entertainment industry but also in manufacturing processes (cars, furniture etc.), military applications and medicine. Especially the last two areas are strongly correlated, because telemedicine or telesurgery was originated for military reasons to operate on war victims from a secure distance or to perform surgery on astronauts in an orbiting space station. In medicine and especially neurosurgery virtual-reality methods are used for education, surgical planning and simulation on a virtual patient.
Realistic Real-Time Outdoor Rendering in Augmented Reality
Kolivand, Hoshang; Sunar, Mohd Shahrizal
2014-01-01
Realistic rendering techniques of outdoor Augmented Reality (AR) has been an attractive topic since the last two decades considering the sizeable amount of publications in computer graphics. Realistic virtual objects in outdoor rendering AR systems require sophisticated effects such as: shadows, daylight and interactions between sky colours and virtual as well as real objects. A few realistic rendering techniques have been designed to overcome this obstacle, most of which are related to non real-time rendering. However, the problem still remains, especially in outdoor rendering. This paper proposed a much newer, unique technique to achieve realistic real-time outdoor rendering, while taking into account the interaction between sky colours and objects in AR systems with respect to shadows in any specific location, date and time. This approach involves three main phases, which cover different outdoor AR rendering requirements. Firstly, sky colour was generated with respect to the position of the sun. Second step involves the shadow generation algorithm, Z-Partitioning: Gaussian and Fog Shadow Maps (Z-GaF Shadow Maps). Lastly, a technique to integrate sky colours and shadows through its effects on virtual objects in the AR system, is introduced. The experimental results reveal that the proposed technique has significantly improved the realism of real-time outdoor AR rendering, thus solving the problem of realistic AR systems. PMID:25268480
Realistic real-time outdoor rendering in augmented reality.
Kolivand, Hoshang; Sunar, Mohd Shahrizal
2014-01-01
Realistic rendering techniques of outdoor Augmented Reality (AR) has been an attractive topic since the last two decades considering the sizeable amount of publications in computer graphics. Realistic virtual objects in outdoor rendering AR systems require sophisticated effects such as: shadows, daylight and interactions between sky colours and virtual as well as real objects. A few realistic rendering techniques have been designed to overcome this obstacle, most of which are related to non real-time rendering. However, the problem still remains, especially in outdoor rendering. This paper proposed a much newer, unique technique to achieve realistic real-time outdoor rendering, while taking into account the interaction between sky colours and objects in AR systems with respect to shadows in any specific location, date and time. This approach involves three main phases, which cover different outdoor AR rendering requirements. Firstly, sky colour was generated with respect to the position of the sun. Second step involves the shadow generation algorithm, Z-Partitioning: Gaussian and Fog Shadow Maps (Z-GaF Shadow Maps). Lastly, a technique to integrate sky colours and shadows through its effects on virtual objects in the AR system, is introduced. The experimental results reveal that the proposed technique has significantly improved the realism of real-time outdoor AR rendering, thus solving the problem of realistic AR systems.
Banaszek, Daniel; You, Daniel; Chang, Justues; Pickell, Michael; Hesse, Daniel; Hopman, Wilma M; Borschneck, Daniel; Bardana, Davide
2017-04-05
Work-hour restrictions as set forth by the Accreditation Council for Graduate Medical Education (ACGME) and other governing bodies have forced training programs to seek out new learning tools to accelerate acquisition of both medical skills and knowledge. As a result, competency-based training has become an important part of residency training. The purpose of this study was to directly compare arthroscopic skill acquisition in both high-fidelity and low-fidelity simulator models and to assess skill transfer from either modality to a cadaveric specimen, simulating intraoperative conditions. Forty surgical novices (pre-clerkship-level medical students) voluntarily participated in this trial. Baseline demographic data, as well as data on arthroscopic knowledge and skill, were collected prior to training. Subjects were randomized to 5-week independent training sessions on a high-fidelity virtual reality arthroscopic simulator or on a bench-top arthroscopic setup, or to an untrained control group. Post-training, subjects were asked to perform a diagnostic arthroscopy on both simulators and in a simulated intraoperative environment on a cadaveric knee. A more difficult surprise task was also incorporated to evaluate skill transfer. Subjects were evaluated using the Global Rating Scale (GRS), the 14-point arthroscopic checklist, and a timer to determine procedural efficiency (time per task). Secondary outcomes focused on objective measures of virtual reality simulator motion analysis. Trainees on both simulators demonstrated a significant improvement (p < 0.05) in arthroscopic skills compared with baseline scores and untrained controls, both in and ex vivo. The virtual reality simulation group consistently outperformed the bench-top model group in the diagnostic arthroscopy crossover tests and in the simulated cadaveric setup. Furthermore, the virtual reality group demonstrated superior skill transfer in the surprise skill transfer task. Both high-fidelity and low-fidelity simulation trainings were effective in arthroscopic skill acquisition. High-fidelity virtual reality simulation was superior to bench-top simulation in the acquisition of arthroscopic skills, both in the laboratory and in vivo. Further clinical investigation is needed to interpret the importance of these results.
Speksnijder, L; Oom, D M J; Koning, A H J; Biesmeijer, C S; Steegers, E A P; Steensma, A B
2016-08-01
Imaging of the levator ani hiatus provides valuable information for the diagnosis and follow-up of patients with pelvic organ prolapse (POP). This study compared measurements of levator ani hiatal volume during rest and on maximum Valsalva, obtained using conventional three-dimensional (3D) translabial ultrasound and virtual reality imaging. Our objectives were to establish their agreement and reliability, and their relationship with prolapse symptoms and POP quantification (POP-Q) stage. One hundred women with an intact levator ani were selected from our tertiary clinic database. Information on clinical symptoms were obtained using standardized questionnaires. Ultrasound datasets were analyzed using a rendered volume with a slice thickness of 1.5 cm, at the level of minimal hiatal dimensions, during rest and on maximum Valsalva. The levator area (in cm(2) ) was measured and multiplied by 1.5 to obtain the levator ani hiatal volume (in cm(3) ) on conventional 3D ultrasound. Levator ani hiatal volume (in cm(3) ) was measured semi-automatically by virtual reality imaging using a segmentation algorithm. Twenty patients were chosen randomly to analyze intra- and interobserver agreement. The mean difference between levator hiatal volume measurements on 3D ultrasound and by virtual reality was 1.52 cm(3) (95% CI, 1.00-2.04 cm(3) ) at rest and 1.16 cm(3) (95% CI, 0.56-1.76 cm(3) ) during maximum Valsalva (P < 0.001). Both intra- and interobserver intraclass correlation coefficients were ≥ 0.96 for conventional 3D ultrasound and > 0.99 for virtual reality. Patients with prolapse symptoms or POP-Q Stage ≥ 2 had significantly larger hiatal measurements than those without symptoms or POP-Q Stage < 2. Levator ani hiatal volume at rest and on maximum Valsalva is significantly smaller when using virtual reality compared with conventional 3D ultrasound; however, this difference does not seem clinically important. Copyright © 2015 ISUOG. Published by John Wiley & Sons Ltd. Copyright © 2015 ISUOG. Published by John Wiley & Sons Ltd.
Proof-of-Concept Part Task Trainer for Close Air Support Procedures
2016-06-01
TVDL Tactical Video Down Link VE Virtual Environment VR Virtual Reality WTI Weapons and Tactics Instructor xvii ACKNOWLEDGMENTS I would first...in training of USMC pilots for close air support operations? • What is the feasibility of developing a prototype virtual reality (VR) system that...Chapter IV provides a review of virtual reality (VR)/ virtual environment (VE) and part-task trainers currently used in military training
Vision-based overlay of a virtual object into real scene for designing room interior
NASA Astrophysics Data System (ADS)
Harasaki, Shunsuke; Saito, Hideo
2001-10-01
In this paper, we introduce a geometric registration method for augmented reality (AR) and an application system, interior simulator, in which a virtual (CG) object can be overlaid into a real world space. Interior simulator is developed as an example of an AR application of the proposed method. Using interior simulator, users can visually simulate the location of virtual furniture and articles in the living room so that they can easily design the living room interior without placing real furniture and articles, by viewing from many different locations and orientations in real-time. In our system, two base images of a real world space are captured from two different views for defining a projective coordinate of object 3D space. Then each projective view of a virtual object in the base images are registered interactively. After such coordinate determination, an image sequence of a real world space is captured by hand-held camera with tracking non-metric measured feature points for overlaying a virtual object. Virtual objects can be overlaid onto the image sequence by taking each relationship between the images. With the proposed system, 3D position tracking device, such as magnetic trackers, are not required for the overlay of virtual objects. Experimental results demonstrate that 3D virtual furniture can be overlaid into an image sequence of the scene of a living room nearly at video rate (20 frames per second).
Virtual reality training for surgical trainees in laparoscopic surgery.
Nagendran, Myura; Gurusamy, Kurinchi Selvan; Aggarwal, Rajesh; Loizidou, Marilena; Davidson, Brian R
2013-08-27
Standard surgical training has traditionally been one of apprenticeship, where the surgical trainee learns to perform surgery under the supervision of a trained surgeon. This is time-consuming, costly, and of variable effectiveness. Training using a virtual reality simulator is an option to supplement standard training. Virtual reality training improves the technical skills of surgical trainees such as decreased time for suturing and improved accuracy. The clinical impact of virtual reality training is not known. To assess the benefits (increased surgical proficiency and improved patient outcomes) and harms (potentially worse patient outcomes) of supplementary virtual reality training of surgical trainees with limited laparoscopic experience. We searched the Cochrane Central Register of Controlled Trials (CENTRAL) in The Cochrane Library, MEDLINE, EMBASE and Science Citation Index Expanded until July 2012. We included all randomised clinical trials comparing virtual reality training versus other forms of training including box-trainer training, no training, or standard laparoscopic training in surgical trainees with little laparoscopic experience. We also planned to include trials comparing different methods of virtual reality training. We included only trials that assessed the outcomes in people undergoing laparoscopic surgery. Two authors independently identified trials and collected data. We analysed the data with both the fixed-effect and the random-effects models using Review Manager 5 analysis. For each outcome we calculated the mean difference (MD) or standardised mean difference (SMD) with 95% confidence intervals based on intention-to-treat analysis. We included eight trials covering 109 surgical trainees with limited laparoscopic experience. Of the eight trials, six compared virtual reality versus no supplementary training. One trial compared virtual reality training versus box-trainer training and versus no supplementary training, and one trial compared virtual reality training versus box-trainer training. There were no trials that compared different forms of virtual reality training. All the trials were at high risk of bias. Operating time and operative performance were the only outcomes reported in the trials. The remaining outcomes such as mortality, morbidity, quality of life (the primary outcomes of this review) and hospital stay (a secondary outcome) were not reported. Virtual reality training versus no supplementary training: The operating time was significantly shorter in the virtual reality group than in the no supplementary training group (3 trials; 49 participants; MD -11.76 minutes; 95% CI -15.23 to -8.30). Two trials that could not be included in the meta-analysis also showed a reduction in operating time (statistically significant in one trial). The numerical values for operating time were not reported in these two trials. The operative performance was significantly better in the virtual reality group than the no supplementary training group using the fixed-effect model (2 trials; 33 participants; SMD 1.65; 95% CI 0.72 to 2.58). The results became non-significant when the random-effects model was used (2 trials; 33 participants; SMD 2.14; 95% CI -1.29 to 5.57). One trial could not be included in the meta-analysis as it did not report the numerical values. The authors stated that the operative performance of virtual reality group was significantly better than the control group. Virtual reality training versus box-trainer training: The only trial that reported operating time did not report the numerical values. In this trial, the operating time in the virtual reality group was significantly shorter than in the box-trainer group. Of the two trials that reported operative performance, only one trial reported the numerical values. The operative performance was significantly better in the virtual reality group than in the box-trainer group (1 trial; 19 participants; SMD 1.46; 95% CI 0.42 to 2.50). In the other trial that did not report the numerical values, the authors stated that the operative performance in the virtual reality group was significantly better than the box-trainer group. Virtual reality training appears to decrease the operating time and improve the operative performance of surgical trainees with limited laparoscopic experience when compared with no training or with box-trainer training. However, the impact of this decreased operating time and improvement in operative performance on patients and healthcare funders in terms of improved outcomes or decreased costs is not known. Further well-designed trials at low risk of bias and random errors are necessary. Such trials should assess the impact of virtual reality training on clinical outcomes.
Can virtual reality be used to conduct mass prophylaxis clinic training? A pilot program.
Yellowlees, Peter; Cook, James N; Marks, Shayna L; Wolfe, Daniel; Mangin, Elanor
2008-03-01
To create and evaluate a pilot bioterrorism defense training environment using virtual reality technology. The present pilot project used Second Life, an internet-based virtual world system, to construct a virtual reality environment to mimic an actual setting that might be used as a Strategic National Stockpile (SNS) distribution site for northern California in the event of a bioterrorist attack. Scripted characters were integrated into the system as mock patients to analyze various clinic workflow scenarios. Users tested the virtual environment over two sessions. Thirteen users who toured the environment were asked to complete an evaluation survey. Respondents reported that the virtual reality system was relevant to their practice and had potential as a method of bioterrorism defense training. Computer simulations of bioterrorism defense training scenarios are feasible with existing personal computer technology. The use of internet-connected virtual environments holds promise for bioterrorism defense training. Recommendations are made for public health agencies regarding the implementation and benefits of using virtual reality for mass prophylaxis clinic training.
Fisher, J Brian; Porter, Susan M
2002-01-01
This paper describes an application of a display approach which uses chromakey techniques to composite real and computer-generated images allowing a user to see his hands and medical instruments collocated with the display of virtual objects during a medical training simulation. Haptic feedback is provided through the use of a PHANTOM force feedback device in addition to tactile augmentation, which allows the user to touch virtual objects by introducing corresponding real objects in the workspace. A simplified catheter introducer insertion simulation was developed to demonstrate the capabilities of this approach.
2017-08-01
ARL-TN-0839 ● AUG 2017 US Army Research Laboratory User Guide: How to Use and Operate Virtual Reality Equipment in the Systems...ARL-TN-0839 ● AUG 2017 US Army Research Laboratory User Guide: How to Use and Operate Virtual Reality Equipment in the Systems...September 2017 4. TITLE AND SUBTITLE User Guide: How to Use and Operate Virtual Reality Equipment in the Systems Assessment and Usability Laboratory
The Application of Modeling and Simulation to the Behavioral Deficit of Autism
NASA Technical Reports Server (NTRS)
Anton, John J.
2010-01-01
This abstract describes a research effort to apply technological advances in virtual reality simulation and computer-based games to create behavioral modification programs for individuals with Autism Spectrum Disorder (ASD). The research investigates virtual social skills training within a 3D game environment to diminish the impact of ASD social impairments and to increase learning capacity for optimal intellectual capability. Individuals with autism will encounter prototypical social contexts via computer interface and will interact with 3D avatars with predefined roles within a game-like environment. Incremental learning objectives will combine to form a collaborative social environment. A secondary goal of the effort is to begin the research and development of virtual reality exercises aimed at triggering the release of neurotransmitters to promote critical aspects of synaptic maturation at an early age to change the course of the disease.
Linkenauger, Sally A.; Leyrer, Markus; Bülthoff, Heinrich H.; Mohler, Betty J.
2013-01-01
The notion of body-based scaling suggests that our body and its action capabilities are used to scale the spatial layout of the environment. Here we present four studies supporting this perspective by showing that the hand acts as a metric which individuals use to scale the apparent sizes of objects in the environment. However to test this, one must be able to manipulate the size and/or dimensions of the perceiver’s hand which is difficult in the real world due to impliability of hand dimensions. To overcome this limitation, we used virtual reality to manipulate dimensions of participants’ fully-tracked, virtual hands to investigate its influence on the perceived size and shape of virtual objects. In a series of experiments, using several measures, we show that individuals’ estimations of the sizes of virtual objects differ depending on the size of their virtual hand in the direction consistent with the body-based scaling hypothesis. Additionally, we found that these effects were specific to participants’ virtual hands rather than another avatar’s hands or a salient familiar-sized object. While these studies provide support for a body-based approach to the scaling of the spatial layout, they also demonstrate the influence of virtual bodies on perception of virtual environments. PMID:23874681
The Reality of Virtual Reality Product Development
NASA Astrophysics Data System (ADS)
Dever, Clark
Virtual Reality and Augmented Reality are emerging areas of research and product development in enterprise companies. This talk will discuss industry standard tools and current areas of application in the commercial market. Attendees will gain insights into how to research, design, and (most importantly) ship, world class products. The presentation will recount the lessons learned to date developing a Virtual Reality tool to solve physics problems resulting from trying to perform aircraft maintenance on ships at sea.
NASA Technical Reports Server (NTRS)
1994-01-01
This symposium on measurement and control in robotics included sessions on: (1) rendering, including tactile perception and applied virtual reality; (2) applications in simulated medical procedures and telerobotics; (3) tracking sensors in a virtual environment; (4) displays for virtual reality applications; (5) sensory feedback including a virtual environment application with partial gravity simulation; and (6) applications in education, entertainment, technical writing, and animation.
Virtual Reality Simulation for the Operating Room
Gallagher, Anthony G.; Ritter, E Matt; Champion, Howard; Higgins, Gerald; Fried, Marvin P.; Moses, Gerald; Smith, C Daniel; Satava, Richard M.
2005-01-01
Summary Background Data: To inform surgeons about the practical issues to be considered for successful integration of virtual reality simulation into a surgical training program. The learning and practice of minimally invasive surgery (MIS) makes unique demands on surgical training programs. A decade ago Satava proposed virtual reality (VR) surgical simulation as a solution for this problem. Only recently have robust scientific studies supported that vision Methods: A review of the surgical education, human-factor, and psychology literature to identify important factors which will impinge on the successful integration of VR training into a surgical training program. Results: VR is more likely to be successful if it is systematically integrated into a well-thought-out education and training program which objectively assesses technical skills improvement proximate to the learning experience. Validated performance metrics should be relevant to the surgical task being trained but in general will require trainees to reach an objectively determined proficiency criterion, based on tightly defined metrics and perform at this level consistently. VR training is more likely to be successful if the training schedule takes place on an interval basis rather than massed into a short period of extensive practice. High-fidelity VR simulations will confer the greatest skills transfer to the in vivo surgical situation, but less expensive VR trainers will also lead to considerably improved skills generalizations. Conclusions: VR for improved performance of MIS is now a reality. However, VR is only a training tool that must be thoughtfully introduced into a surgical training curriculum for it to successfully improve surgical technical skills. PMID:15650649
Virtual Reality: A Strategy for Training in Cross-Cultural Communication.
ERIC Educational Resources Information Center
Meyer, Catherine; Dunn-Roberts, Richard
1992-01-01
Defines virtual reality and explains terminology, theoretical concepts, and enabling technologies. Research and applications are described; limitations of current technology are considered; and future possibilities are discussed, including the use of virtual reality in training for cross-cultural communication. (22 references) (LRW)
1998-03-01
Research Laboratory’s Virtual Reality Responsive Workbench (VRRWB) and Dragon software system which together address the problem of battle space...and describe the lessons which have been learned. Interactive graphics, workbench, battle space visualization, virtual reality , user interface.
[Virtual reality in medical education].
Edvardsen, O; Steensrud, T
1998-02-28
Virtual reality technology has found new applications in industry over the last few years. Medical literature has for several years predicted a break-through in this technology for medical education. Although there is a great potential for this technology in medical education, there seems to be a wide gap between expectations and actual possibilities at present. State of the technology was explored by participation at the conference "Medicine meets virtual reality V" (San Diego Jan. 22-25 1997) and a visit to one of the leading laboratories on virtual reality in medical education. In this paper we introduce some of the basic terminology and technology, review some of the topics covered by the conference, and describe projects running in one of the leading laboratories on virtual reality technology for medical education. With this information in mind, we discuss potential applications of the current technology in medical education. Current virtual reality systems are judged to be too costly and their usefulness in education too limited for routine use in medical education.
Tal, Aner; Wansink, Brian
2011-01-01
Virtual reality (VR) provides a potentially powerful tool for researchers seeking to investigate eating and physical activity. Some unique conditions are necessary to ensure that the psychological processes that influence real eating behavior also influence behavior in VR environments. Accounting for these conditions is critical if VR-assisted research is to accurately reflect real-world situations. The current work discusses key considerations VR researchers must take into account to ensure similar psychological functioning in virtual and actual reality and does so by focusing on the process of spontaneous mental simulation. Spontaneous mental simulation is prevalent under real-world conditions but may be absent under VR conditions, potentially leading to differences in judgment and behavior between virtual and actual reality. For simulation to occur, the virtual environment must be perceived as being available for action. A useful chart is supplied as a reference to help researchers to investigate eating and physical activity more effectively. PMID:21527088
Tal, Aner; Wansink, Brian
2011-03-01
Virtual reality (VR) provides a potentially powerful tool for researchers seeking to investigate eating and physical activity. Some unique conditions are necessary to ensure that the psychological processes that influence real eating behavior also influence behavior in VR environments. Accounting for these conditions is critical if VR-assisted research is to accurately reflect real-world situations. The current work discusses key considerations VR researchers must take into account to ensure similar psychological functioning in virtual and actual reality and does so by focusing on the process of spontaneous mental simulation. Spontaneous mental simulation is prevalent under real-world conditions but may be absent under VR conditions, potentially leading to differences in judgment and behavior between virtual and actual reality. For simulation to occur, the virtual environment must be perceived as being available for action. A useful chart is supplied as a reference to help researchers to investigate eating and physical activity more effectively. © 2011 Diabetes Technology Society.
ERIC Educational Resources Information Center
Huang, Hsiu-Mei; Liaw, Shu-Sheng; Lai, Chung-Min
2016-01-01
Advanced technologies have been widely applied in medical education, including human-patient simulators, immersive virtual reality Cave Automatic Virtual Environment systems, and video conferencing. Evaluating learner acceptance of such virtual reality (VR) learning environments is a critical issue for ensuring that such technologies are used to…
French Military Applications of Virtual Reality
2000-11-01
UNCLASSIFIED Defense Technical Information Center Compilation Part Notice ADPO10631 TITLE: French Military Applications of Virtual Reality...numbers comprise the compilation report: ADPO10609 thru ADP010633 UNCLASSIFIED 23-1 FRENCH MILITARY APPLICATIONS OF VIRTUAL REALITY Jean Paul Papin* and...Pascal Hue DGA/DCE/ETC4/ETAS Etablissement Technique d’ Angers BP 36 49460 MONTREUIL JUIGNE, France INTRODUCTION France is now applying virtual
3D Flow visualization in virtual reality
NASA Astrophysics Data System (ADS)
Pietraszewski, Noah; Dhillon, Ranbir; Green, Melissa
2017-11-01
By viewing fluid dynamic isosurfaces in virtual reality (VR), many of the issues associated with the rendering of three-dimensional objects on a two-dimensional screen can be addressed. In addition, viewing a variety of unsteady 3D data sets in VR opens up novel opportunities for education and community outreach. In this work, the vortex wake of a bio-inspired pitching panel was visualized using a three-dimensional structural model of Q-criterion isosurfaces rendered in virtual reality using the HTC Vive. Utilizing the Unity cross-platform gaming engine, a program was developed to allow the user to control and change this model's position and orientation in three-dimensional space. In addition to controlling the model's position and orientation, the user can ``scroll'' forward and backward in time to analyze the formation and shedding of vortices in the wake. Finally, the user can toggle between different quantities, while keeping the time step constant, to analyze flow parameter relationships at specific times during flow development. The information, data, or work presented herein was funded in part by an award from NYS Department of Economic Development (DED) through the Syracuse Center of Excellence.
Computer-Based Technologies in Dentistry: Types and Applications
Albuha Al-Mussawi, Raja’a M.; Farid, Farzaneh
2016-01-01
During dental education, dental students learn how to examine patients, make diagnosis, plan treatment and perform dental procedures perfectly and efficiently. However, progresses in computer-based technologies including virtual reality (VR) simulators, augmented reality (AR) and computer aided design/computer aided manufacturing (CAD/CAM) systems have resulted in new modalities for instruction and practice of dentistry. Virtual reality dental simulators enable repeated, objective and assessable practice in various controlled situations. Superimposition of three-dimensional (3D) virtual images on actual images in AR allows surgeons to simultaneously visualize the surgical site and superimpose informative 3D images of invisible regions on the surgical site to serve as a guide. The use of CAD/CAM systems for designing and manufacturing of dental appliances and prostheses has been well established. This article reviews computer-based technologies, their application in dentistry and their potentials and limitations in promoting dental education, training and practice. Practitioners will be able to choose from a broader spectrum of options in their field of practice by becoming familiar with new modalities of training and practice. PMID:28392819
An augmented reality system validation for the treatment of cockroach phobia.
Bretón-López, Juani; Quero, Soledad; Botella, Cristina; García-Palacios, Azucena; Baños, Rosa Maria; Alcañiz, Mariano
2010-12-01
Augmented reality (AR) is a new technology in which various virtual elements are incorporated into the user's perception of the real world. The most significant aspect of AR is that the virtual elements add relevant and helpful information to the real scene. AR shares some important characteristics with virtual reality as applied in clinical psychology. However, AR offers additional features that might be crucial for treating certain problems. An AR system designed to treat insect phobia has been used for treating phobia of small animals, and positive preliminary data about the global efficacy of the system have been obtained. However, it is necessary to determine the capacity of similar AR systems and their elements that are designed to evoke anxiety in participants; this is achieved by testing the correspondence between the inclusion of feared stimuli and the induction of anxiety. The objective of the present work is to validate whether the stimuli included in the AR-Insect Phobia system are capable of inducing anxiety in six participants diagnosed with cockroach phobia. Results support the adequacy of each element of the system in inducing anxiety in all participants.
Computer-Based Technologies in Dentistry: Types and Applications.
Albuha Al-Mussawi, Raja'a M; Farid, Farzaneh
2016-06-01
During dental education, dental students learn how to examine patients, make diagnosis, plan treatment and perform dental procedures perfectly and efficiently. However, progresses in computer-based technologies including virtual reality (VR) simulators, augmented reality (AR) and computer aided design/computer aided manufacturing (CAD/CAM) systems have resulted in new modalities for instruction and practice of dentistry. Virtual reality dental simulators enable repeated, objective and assessable practice in various controlled situations. Superimposition of three-dimensional (3D) virtual images on actual images in AR allows surgeons to simultaneously visualize the surgical site and superimpose informative 3D images of invisible regions on the surgical site to serve as a guide. The use of CAD/CAM systems for designing and manufacturing of dental appliances and prostheses has been well established. This article reviews computer-based technologies, their application in dentistry and their potentials and limitations in promoting dental education, training and practice. Practitioners will be able to choose from a broader spectrum of options in their field of practice by becoming familiar with new modalities of training and practice.
NASA Astrophysics Data System (ADS)
Machet, Tania; Lowe, David; Gütl, Christian
2012-12-01
This paper explores the hypothesis that embedding a laboratory activity into a virtual environment can provide a richer experimental context and hence improve the understanding of the relationship between a theoretical model and the real world, particularly in terms of the model's strengths and weaknesses. While an identified learning objective of laboratories is to support the understanding of the relationship between models and reality, the paper illustrates that this understanding is hindered by inherently limited experiments and that there is scope for improvement. Despite the contextualisation of learning activities having been shown to support learning objectives in many fields, there is traditionally little contextual information presented during laboratory experimentation. The paper argues that the enhancing laboratory activity with contextual information affords an opportunity to improve students' understanding of the relationship between the theoretical model and the experiment (which is effectively a proxy for the complex real world), thereby improving their understanding of the relationship between the model and reality. The authors propose that these improvements can be achieved by setting remote laboratories within context-rich virtual worlds.
A Discussion of Virtual Reality As a New Tool for Training Healthcare Professionals.
Fertleman, Caroline; Aubugeau-Williams, Phoebe; Sher, Carmel; Lim, Ai-Nee; Lumley, Sophie; Delacroix, Sylvie; Pan, Xueni
2018-01-01
Virtual reality technology is an exciting and emerging field with vast applications. Our study sets out the viewpoint that virtual reality software could be a new focus of direction in the development of training tools in medical education. We carried out a panel discussion at the Center for Behavior Change 3rd Annual Conference, prompted by the study, "The Responses of Medical General Practitioners to Unreasonable Patient Demand for Antibiotics--A Study of Medical Ethics Using Immersive Virtual Reality" (1). In Pan et al.'s study, 21 general practitioners (GPs) and GP trainees took part in a videoed, 15-min virtual reality scenario involving unnecessary patient demands for antibiotics. This paper was discussed in-depth at the Center for Behavior Change 3rd Annual Conference; the content of this paper is a culmination of findings and feedback from the panel discussion. The experts involved have backgrounds in virtual reality, general practice, medicines management, medical education and training, ethics, and philosophy. Virtual reality is an unexplored methodology to instigate positive behavioral change among clinicians where other methods have been unsuccessful, such as antimicrobial stewardship. There are several arguments in favor of use of virtual reality in medical education: it can be used for "difficult to simulate" scenarios and to standardize a scenario, for example, for use in exams. However, there are limitations to its usefulness because of the cost implications and the lack of evidence that it results in demonstrable behavior change.
Stereoscopic virtual reality models for planning tumor resection in the sellar region.
Wang, Shou-sen; Zhang, Shang-ming; Jing, Jun-jie
2012-11-28
It is difficult for neurosurgeons to perceive the complex three-dimensional anatomical relationships in the sellar region. To investigate the value of using a virtual reality system for planning resection of sellar region tumors. The study included 60 patients with sellar tumors. All patients underwent computed tomography angiography, MRI-T1W1, and contrast enhanced MRI-T1W1 image sequence scanning. The CT and MRI scanning data were collected and then imported into a Dextroscope imaging workstation, a virtual reality system that allows structures to be viewed stereoscopically. During preoperative assessment, typical images for each patient were chosen and printed out for use by the surgeons as references during surgery. All sellar tumor models clearly displayed bone, the internal carotid artery, circle of Willis and its branches, the optic nerve and chiasm, ventricular system, tumor, brain, soft tissue and adjacent structures. Depending on the location of the tumors, we simulated the transmononasal sphenoid sinus approach, transpterional approach, and other approaches. Eleven surgeons who used virtual reality models completed a survey questionnaire. Nine of the participants said that the virtual reality images were superior to other images but that other images needed to be used in combination with the virtual reality images. The three-dimensional virtual reality models were helpful for individualized planning of surgery in the sellar region. Virtual reality appears to be promising as a valuable tool for sellar region surgery in the future.
Shiri, Shimon; Feintuch, Uri; Lorber-Haddad, Adi; Moreh, Elior; Twito, Dvora; Tuchner-Arieli, Maya; Meiner, Zeev
2012-01-01
To introduce the rationale of a novel virtual reality system based on self-face viewing and mirror visual feedback, and to examine its feasibility as a rehabilitation tool for poststroke patients. A novel motion capture virtual reality system integrating online self-face viewing and mirror visual feedback has been developed for stroke rehabilitation.The system allows the replacement of the impaired arm by a virtual arm. Upon making small movements of the paretic arm, patients view themselves virtually performing healthy full-range movements. A sample of 6 patients in the acute poststroke phase received the virtual reality treatment concomitantly with conservative rehabilitation treatment. Feasibility was assessed during 10 sessions for each participant. All participants succeeded in operating the system, demonstrating its feasibility in terms of adherence and improvement in task performance. Patients' performance within the virtual environment and a set of clinical-functional measures recorded before the virtual reality treatment, at 1 week, and after 3 months indicated neurological status and general functioning improvement. These preliminary results indicate that this newly developed virtual reality system is safe and feasible. Future randomized controlled studies are required to assess whether this system has beneficial effects in terms of enhancing upper limb function and quality of life in poststroke patients.
Virtual Reality, Combat, and Communication.
ERIC Educational Resources Information Center
Thrush, Emily Austin; Bodary, Michael
2000-01-01
Presents a brief examination of the evolution of virtual reality devices that illustrates how the development of this new medium is influenced by emerging technologies and by marketing pressures. Notes that understanding these influences may help prepare for the role of technical communicators in building virtual reality applications for education…
Systematic distortions of perceptual stability investigated using immersive virtual reality
Tcheang, Lili; Gilson, Stuart J.; Glennerster, Andrew
2010-01-01
Using an immersive virtual reality system, we measured the ability of observers to detect the rotation of an object when its movement was yoked to the observer's own translation. Most subjects had a large bias such that a static object appeared to rotate away from them as they moved. Thresholds for detecting target rotation were similar to those for an equivalent speed discrimination task carried out by static observers, suggesting that visual discrimination is the predominant limiting factor in detecting target rotation. Adding a stable visual reference frame almost eliminated the bias. Varying the viewing distance of the target had little effect, consistent with observers under-estimating distance walked. However, accuracy of walking to a briefly presented visual target was high and not consistent with an under-estimation of distance walked. We discuss implications for theories of a task-independent representation of visual space. PMID:15845248
NASA Technical Reports Server (NTRS)
Schulte, Erin
2017-01-01
As augmented and virtual reality grows in popularity, and more researchers focus on its development, other fields of technology have grown in the hopes of integrating with the up-and-coming hardware currently on the market. Namely, there has been a focus on how to make an intuitive, hands-free human-computer interaction (HCI) utilizing AR and VR that allows users to control their technology with little to no physical interaction with hardware. Computer vision, which is utilized in devices such as the Microsoft Kinect, webcams and other similar hardware has shown potential in assisting with the development of a HCI system that requires next to no human interaction with computing hardware and software. Object and facial recognition are two subsets of computer vision, both of which can be applied to HCI systems in the fields of medicine, security, industrial development and other similar areas.
Virtual reality computer simulation.
Grantcharov, T P; Rosenberg, J; Pahle, E; Funch-Jensen, P
2001-03-01
Objective assessment of psychomotor skills should be an essential component of a modern surgical training program. There are computer systems that can be used for this purpose, but their wide application is not yet generally accepted. The aim of this study was to validate the role of virtual reality computer simulation as a method for evaluating surgical laparoscopic skills. The study included 14 surgical residents. On day 1, they performed two runs of all six tasks on the Minimally Invasive Surgical Trainer, Virtual Reality (MIST VR). On day 2, they performed a laparoscopic cholecystectomy on living pigs; afterward, they were tested again on the MIST VR. A group of experienced surgeons evaluated the trainees' performance on the animal operation, giving scores for total performance error and economy of motion. During the tasks on the MIST VR, errors and noneconomy of movements for the left and right hand were also recorded. There were significant correlations between error scores in vivo and three of the six in vitro tasks (p < 0.05). In vivo economy scores correlated significantly with non-economy right-hand scores for five of the six tasks and with non-economy left-hand scores for one of the six tasks (p < 0.05). In this study, laparoscopic performance in the animal model correlated significantly with performance on the computer simulator. Thus, the computer model seems to be a promising objective method for the assessment of laparoscopic psychomotor skills.
Bashford, Luke; Mehring, Carsten
2016-01-01
To study body ownership and control, illusions that elicit these feelings in non-body objects are widely used. Classically introduced with the Rubber Hand Illusion, these illusions have been replicated more recently in virtual reality and by using brain-computer interfaces. Traditionally these illusions investigate the replacement of a body part by an artificial counterpart, however as brain-computer interface research develops it offers us the possibility to explore the case where non-body objects are controlled in addition to movements of our own limbs. Therefore we propose a new illusion designed to test the feeling of ownership and control of an independent supernumerary hand. Subjects are under the impression they control a virtual reality hand via a brain-computer interface, but in reality there is no causal connection between brain activity and virtual hand movement but correct movements are observed with 80% probability. These imitation brain-computer interface trials are interspersed with movements in both the subjects' real hands, which are in view throughout the experiment. We show that subjects develop strong feelings of ownership and control over the third hand, despite only receiving visual feedback with no causal link to the actual brain signals. Our illusion is crucially different from previously reported studies as we demonstrate independent ownership and control of the third hand without loss of ownership in the real hands.
Virtual reality for intelligent and interactive operating, training, and visualization systems
NASA Astrophysics Data System (ADS)
Freund, Eckhard; Rossmann, Juergen; Schluse, Michael
2000-10-01
Virtual Reality Methods allow a new and intuitive way of communication between man and machine. The basic idea of Virtual Reality (VR) is the generation of artificial computer simulated worlds, which the user not only can look at but also can interact with actively using data glove and data helmet. The main emphasis for the use of such techniques at the IRF is the development of a new generation of operator interfaces for the control of robots and other automation components and for intelligent training systems for complex tasks. The basic idea of the methods developed at the IRF for the realization of Projective Virtual Reality is to let the user work in the virtual world as he would act in reality. The user actions are recognized by the Virtual reality System and by means of new and intelligent control software projected onto the automation components like robots which afterwards perform the necessary actions in reality to execute the users task. In this operation mode the user no longer has to be a robot expert to generate tasks for robots or to program them, because intelligent control software recognizes the users intention and generated automatically the commands for nearly every automation component. Now, Virtual Reality Methods are ideally suited for universal man-machine-interfaces for the control and supervision of a big class of automation components, interactive training and visualization systems. The Virtual Reality System of the IRF-COSIMIR/VR- forms the basis for different projects starting with the control of space automation systems in the projects CIROS, VITAL and GETEX, the realization of a comprehensive development tool for the International Space Station and last but not least with the realistic simulation fire extinguishing, forest machines and excavators which will be presented in the final paper in addition to the key ideas of this Virtual Reality System.
[Virtual reality therapy in anxiety disorders].
Mitrousia, V; Giotakos, O
2016-01-01
During the last decade a number of studies have been conducted in order to examine if virtual reality exposure therapy can be an alternative form of therapy for the treatment of mental disorders and particularly for the treatment of anxiety disorders. Imaginal exposure therapy, which is one of the components of Cognitive Behavioral Therapy, cannot be easily applied to all patients and in cases like those virtual reality can be used as an alternative or a supportive psychotherapeutic technique. Most studies using virtual reality have focused on anxiety disorders, mainly in specific phobias, but some extend to other disorders such as eating disorders, drug dependence, pain control and palliative care and rehabilitation. Main characteristics of virtual reality therapy are: "interaction", "immersion", and "presence". High levels of "immersion" and "presence" are associated with increased response to exposure therapy in virtual environments, as well as better therapeutic outcomes and sustained therapeutic gains. Typical devices that are used in order patient's immersion to be achieved are the Head-Mounted Displays (HMD), which are only for individual use, and the computer automatic virtual environment (CAVE), which is a multiuser. Virtual reality therapy's disadvantages lie in the difficulties that arise due to the demanded specialized technology skills, devices' cost and side effects. Therapists' training is necessary in order for them to be able to manipulate the software and the hardware and to adjust it to each case's needs. Devices' cost is high but as technology continuously improves it constantly decreases. Immersion during virtual reality therapy can induce mild and temporary side effects such as nausea, dizziness or headache. Until today, however, experience shows that virtual reality offers several advantages. Patient's avoidance to be exposed in phobic stimuli is reduced via the use of virtual reality since the patient is exposed to them as many times as he wishes and under the supervision of the therapist. The technique takes place in the therapist's office which ensures confidentiality and privacy. The therapist is able to control unpredicted events that can occur during patient's exposure in real environments. Mainly the therapist can control the intensity of exposure and adapt it to the patient's needs. Virtual reality can be proven particularly useful in some specific psychological states. For instance, patients with post-traumatic stress disorder (PTSD) who prone to avoid the reminders of the traumatic events. Exposure in virtual reality can solve this problem providing to the patient a large number of stimuli that activate the senses causing the necessary physiological and psychological anxiety reactions, regardless of his willingness or ability to recall in his imagination the traumatic event.
Augmenting breath regulation using a mobile driven virtual reality therapy framework.
Abushakra, Ahmad; Faezipour, Miad
2014-05-01
This paper presents a conceptual framework of a virtual reality therapy to assist individuals, especially lung cancer patients or those with breathing disorders to regulate their breath through real-time analysis of respiration movements using a smartphone. Virtual reality technology is an attractive means for medical simulations and treatment, particularly for patients with cancer. The theories, methodologies and approaches, and real-world dynamic contents for all the components of this virtual reality therapy (VRT) via a conceptual framework using the smartphone will be discussed. The architecture and technical aspects of the offshore platform of the virtual environment will also be presented.
ERIC Educational Resources Information Center
Neubauer, Aljoscha C.; Bergner, Sabine; Schatz, Martina
2010-01-01
The well-documented sex difference in mental rotation favoring males has been shown to emerge only for 2-dimensional presentations of 3-dimensional objects, but not with actual 3-dimensional objects or with virtual reality presentations of 3-dimensional objects. Training studies using computer games with mental rotation-related content have…
Combining 3D structure of real video and synthetic objects
NASA Astrophysics Data System (ADS)
Kim, Man-Bae; Song, Mun-Sup; Kim, Do-Kyoon
1998-04-01
This paper presents a new approach of combining real video and synthetic objects. The purpose of this work is to use the proposed technology in the fields of advanced animation, virtual reality, games, and so forth. Computer graphics has been used in the fields previously mentioned. Recently, some applications have added real video to graphic scenes for the purpose of augmenting the realism that the computer graphics lacks in. This approach called augmented or mixed reality can produce more realistic environment that the entire use of computer graphics. Our approach differs from the virtual reality and augmented reality in the manner that computer- generated graphic objects are combined to 3D structure extracted from monocular image sequences. The extraction of the 3D structure requires the estimation of 3D depth followed by the construction of a height map. Graphic objects are then combined to the height map. The realization of our proposed approach is carried out in the following steps: (1) We derive 3D structure from test image sequences. The extraction of the 3D structure requires the estimation of depth and the construction of a height map. Due to the contents of the test sequence, the height map represents the 3D structure. (2) The height map is modeled by Delaunay triangulation or Bezier surface and each planar surface is texture-mapped. (3) Finally, graphic objects are combined to the height map. Because 3D structure of the height map is already known, Step (3) is easily manipulated. Following this procedure, we produced an animation video demonstrating the combination of the 3D structure and graphic models. Users can navigate the realistic 3D world whose associated image is rendered on the display monitor.
Trelease, Robert B; Nieder, Gary L
2013-01-01
Web deployable anatomical simulations or "virtual reality learning objects" can easily be produced with QuickTime VR software, but their use for online and mobile learning is being limited by the declining support for web browser plug-ins for personal computers and unavailability on popular mobile devices like Apple iPad and Android tablets. This article describes complementary methods for creating comparable, multiplatform VR learning objects in the new HTML5 standard format, circumventing platform-specific limitations imposed by the QuickTime VR multimedia file format. Multiple types or "dimensions" of anatomical information can be embedded in such learning objects, supporting different kinds of online learning applications, including interactive atlases, examination questions, and complex, multi-structure presentations. Such HTML5 VR learning objects are usable on new mobile devices that do not support QuickTime VR, as well as on personal computers. Furthermore, HTML5 VR learning objects can be embedded in "ebook" document files, supporting the development of new types of electronic textbooks on mobile devices that are increasingly popular and self-adopted for mobile learning. © 2012 American Association of Anatomists.
Intelligent virtual reality in the setting of fuzzy sets
NASA Technical Reports Server (NTRS)
Dockery, John; Littman, David
1992-01-01
The authors have previously introduced the concept of virtual reality worlds governed by artificial intelligence. Creation of an intelligent virtual reality was further proposed as a universal interface for the handicapped. This paper extends consideration of intelligent virtual realty to a context in which fuzzy set principles are explored as a major tool for implementing theory in the domain of applications to the disabled.
Virtual reality in surgery and medicine.
Chinnock, C
1994-01-01
This report documents the state of development of enhanced and virtual reality-based systems in medicine. Virtual reality systems seek to simulate a surgical procedure in a computer-generated world in order to improve training. Enhanced reality systems seek to augment or enhance reality by providing improved imaging alternatives for specific patient data. Virtual reality represents a paradigm shift in the way we teach and evaluate the skills of medical personnel. Driving the development of virtual reality-based simulators is laparoscopic abdominal surgery, where there is a perceived need for better training techniques; within a year, systems will be fielded for second-year residency students. Further refinements over perhaps the next five years should allow surgeons to evaluate and practice new techniques in a simulator before using them on patients. Technical developments are rapidly improving the realism of these machines to an amazing degree, as well as bringing the price down to affordable levels. In the next five years, many new anatomical models, procedures, and skills are likely to become available on simulators. Enhanced reality systems are generally being developed to improve visualization of specific patient data. Three-dimensional (3-D) stereovision systems for endoscopic applications, head-mounted displays, and stereotactic image navigation systems are being fielded now, with neurosurgery and laparoscopic surgery being major driving influences. Over perhaps the next five years, enhanced and virtual reality systems are likely to merge. This will permit patient-specific images to be used on virtual reality simulators or computer-generated landscapes to be input into surgical visualization instruments. Percolating all around these activities are developments in robotics and telesurgery. An advanced information infrastructure eventually will permit remote physicians to share video, audio, medical records, and imaging data with local physicians in real time. Surgical robots are likely to be deployed for specific tasks in the operating room (OR) and to support telesurgery applications. Technical developments in robotics and motion control are key components of many virtual reality systems. Since almost all of the virtual reality and enhanced reality systems will be digitally based, they are also capable of being put "on-line" for tele-training, consulting, and even surgery. Advancements in virtual and enhanced reality systems will be driven in part by consumer applications of this technology. Many of the companies that will supply systems for medical applications are also working on commercial products. A big consumer hit can benefit the entire industry by increasing volumes and bringing down costs.(ABSTRACT TRUNCATED AT 400 WORDS)
Faber, Albertus W.; Patterson, David R.; Bremer, Marco
2012-01-01
Objective The current study explored whether immersive virtual reality continues to reduce pain (via distraction) during more than one wound care session per patient. Patients: Thirty six patients aged 8 to 57 years (mean age of 27.7 years), with an average of 8.4% total body surface area burned (range .25 to 25.5 TBSA) received bandage changes, and wound cleaning. Methods Each patient received one baseline wound cleaning/debridement session with no-VR (control condition) followed by one or more (up to seven) subsequent wound care sessions during VR. After each wound care session (one session per day), worst pain intensity was measured using a Visual Analogue Thermometer (VAT), the dependent variable. Using a within subjects design, worst pain intensity VAT during wound care with no-VR (baseline, Day 0) was compared to pain during wound care while using immersive virtual reality (up to seven days of wound care during VR). Results Compared to pain during no-VR Baseline (Day 0), pain ratings during wound debridement were statistically lower when patients were in virtual reality on Days 1, 2 and 3, and although not significant beyond day 3, the pattern of results from Days 4, 5, and 6 are consistent with the notion that VR continues to reduce pain when used repeatedly. Conclusions Results from the present study suggest that VR continues to be effective when used for three (or possibly more) treatments during severe burn wound debridement. PMID:23970314
Real-time recording and classification of eye movements in an immersive virtual environment.
Diaz, Gabriel; Cooper, Joseph; Kit, Dmitry; Hayhoe, Mary
2013-10-10
Despite the growing popularity of virtual reality environments, few laboratories are equipped to investigate eye movements within these environments. This primer is intended to reduce the time and effort required to incorporate eye-tracking equipment into a virtual reality environment. We discuss issues related to the initial startup and provide algorithms necessary for basic analysis. Algorithms are provided for the calculation of gaze angle within a virtual world using a monocular eye-tracker in a three-dimensional environment. In addition, we provide algorithms for the calculation of the angular distance between the gaze and a relevant virtual object and for the identification of fixations, saccades, and pursuit eye movements. Finally, we provide tools that temporally synchronize gaze data and the visual stimulus and enable real-time assembly of a video-based record of the experiment using the Quicktime MOV format, available at http://sourceforge.net/p/utdvrlibraries/. This record contains the visual stimulus, the gaze cursor, and associated numerical data and can be used for data exportation, visual inspection, and validation of calculated gaze movements.
Real-time recording and classification of eye movements in an immersive virtual environment
Diaz, Gabriel; Cooper, Joseph; Kit, Dmitry; Hayhoe, Mary
2013-01-01
Despite the growing popularity of virtual reality environments, few laboratories are equipped to investigate eye movements within these environments. This primer is intended to reduce the time and effort required to incorporate eye-tracking equipment into a virtual reality environment. We discuss issues related to the initial startup and provide algorithms necessary for basic analysis. Algorithms are provided for the calculation of gaze angle within a virtual world using a monocular eye-tracker in a three-dimensional environment. In addition, we provide algorithms for the calculation of the angular distance between the gaze and a relevant virtual object and for the identification of fixations, saccades, and pursuit eye movements. Finally, we provide tools that temporally synchronize gaze data and the visual stimulus and enable real-time assembly of a video-based record of the experiment using the Quicktime MOV format, available at http://sourceforge.net/p/utdvrlibraries/. This record contains the visual stimulus, the gaze cursor, and associated numerical data and can be used for data exportation, visual inspection, and validation of calculated gaze movements. PMID:24113087
The Impact of Virtual Reality Programs in Career and Technical Education
ERIC Educational Resources Information Center
Catterson, Anna J.
2013-01-01
Instructional technology has evolved from blackboards with chalk to in some cases three-dimensional virtual reality environments in which students are interacting and engaging with other students worldwide. The use of this new instructional methodology, known as "virtual reality," has experienced substantial growth in higher education…
When Rural Reality Goes Virtual.
ERIC Educational Resources Information Center
Husain, Dilshad D.
1998-01-01
In rural towns where sparse population and few business are barriers, virtual reality may be the only way to bring work-based learning to students. A partnership between a small-town high school, the Ohio Supercomputer Center, and a high-tech business will enable students to explore the workplace using virtual reality. (JOW)
Designing a Virtual-Reality-Based, Gamelike Math Learning Environment
ERIC Educational Resources Information Center
Xu, Xinhao; Ke, Fengfeng
2016-01-01
This exploratory study examined the design issues related to a virtual-reality-based, gamelike learning environment (VRGLE) developed via OpenSimulator, an open-source virtual reality server. The researchers collected qualitative data to examine the VRGLE's usability, playability, and content integration for math learning. They found it important…
Sweaty Palms! Virtual Reality Applied to Training.
ERIC Educational Resources Information Center
Treiber, Karin
A qualitative case study approach was used to identify the psychosocial effects of the high-fidelity, virtual reality simulation provided in the college-level air traffic control (ATC) training program offered at the Minnesota Air Traffic Control Training Center and to evaluate the applicability of virtual reality to academic/training situations.…
ERIC Educational Resources Information Center
Miller, Erez Cedric
This paper discusses some of the potential benefits and hazards that virtual reality holds for exceptional children in the special education system. Topics addressed include (1) applications of virtual reality, including developing academic skills via cyberspace, vocational training, and social learning in cyberspace; (2) telepresence and distance…
Assessment method of digital Chinese dance movements based on virtual reality technology
NASA Astrophysics Data System (ADS)
Feng, Wei; Shao, Shuyuan; Wang, Shumin
2008-03-01
Virtual reality has played an increasing role in such areas as medicine, architecture, aviation, engineering science and advertising. However, in the art fields, virtual reality is still in its infancy in the representation of human movements. Based on the techniques of motion capture and reuse of motion capture data in virtual reality environment, this paper presents an assessment method in order to evaluate the quantification of dancers' basic Arm Position movements in Chinese traditional dance. In this paper, the data for quantifying traits of dance motions are defined and measured on dancing which performed by an expert and two beginners, with results indicating that they are beneficial for evaluating dance skills and distinctiveness, and the assessment method of digital Chinese dance movements based on virtual reality technology is validity and feasibility.
Virtual reality in ophthalmology training.
Khalifa, Yousuf M; Bogorad, David; Gibson, Vincent; Peifer, John; Nussbaum, Julian
2006-01-01
Current training models are limited by an unstructured curriculum, financial costs, human costs, and time constraints. With the newly mandated resident surgical competency, training programs are struggling to find viable methods of assessing and documenting the surgical skills of trainees. Virtual-reality technologies have been used for decades in flight simulation to train and assess competency, and there has been a recent push in surgical specialties to incorporate virtual-reality simulation into residency programs. These efforts have culminated in an FDA-approved carotid stenting simulator. What role virtual reality will play in the evolution of ophthalmology surgical curriculum is uncertain. The current apprentice system has served the art of surgery for over 100 years, and we foresee virtual reality working synergistically with our current curriculum modalities to streamline and enhance the resident's learning experience.
E-virtual reality exposure therapy in acrophobia: A pilot study.
Levy, Fanny; Leboucher, Pierre; Rautureau, Gilles; Jouvent, Roland
2016-06-01
Virtual reality therapy is already used for anxiety disorders as an alternative to in vivo and in imagino exposure. To our knowledge, however, no one has yet proposed using remote virtual reality (e-virtual reality). The aim of the present study was to assess e-virtual reality in an acrophobic population. Six individuals with acrophobia each underwent six sessions (two sessions per week) of virtual reality exposure therapy. The first three were remote sessions, while the last three were traditional sessions in the physical presence of the therapist. Anxiety (STAI form Y-A, visual analog scale, heart rate), presence, technical difficulties and therapeutic alliance (Working Alliance Inventory) were measured. In order to control the conditions in which these measures were made, all the sessions were conducted in hospital. None of the participants dropped out. The remote sessions were well accepted. None of the participants verbalized reluctance. No major technical problems were reported. None of the sessions were cancelled or interrupted because of software incidents. Measures (anxiety, presence, therapeutic alliance) were comparable across the two conditions. e-Virtual reality can therefore be used to treat acrophobic disorders. However, control studies are needed to assess online feasibility, therapeutic effects and the mechanisms behind online presence. © The Author(s) 2015.
The effect of virtual reality during dental treatment on child anxiety and behavior.
Sullivan, C; Schneider, P E; Musselman, R J; Dummett, C O; Gardiner, D
2000-01-01
Virtual reality, a three-dimensional computer generated world, has been shown to relax adults during dental treatment. The purpose of this study was to investigate the effect of virtual reality on the behavior and anxiety of children during dental treatment. The behavior, anxiety and heart rate of twenty-six children, ages five to seven years were evaluated for the first five minutes of two restorative treatment visits. Thirteen children viewed virtual reality at their first restorative visit and not the second, and thirteen children viewed virtual reality at the second restorative visit and not the first. Before and immediately following the restorative visits, each child was instructed to draw a human figure. The restorative appointments were video recorded and heart rate monitored. The drawings and videotapes were rated independently by two examiners. The Koppitz method of evaluating drawings was used to measure anxiety. The Frankl behavior rating scale was used to evaluate behavior. Differences (ANOVA) in behavior (p < or = 0.50) and anxiety (p < or = 0.65) were not significant. The overall pulse rate was significantly lower (ANOVA p < or = 0.001) when the child was wearing glasses and viewing virtual reality. In conclusion, virtual reality during dental treatment had no significant effect on the behavior or anxiety but significantly reduced the pulse.
Assessing Arthroscopic Skills Using Wireless Elbow-Worn Motion Sensors.
Kirby, Georgina S J; Guyver, Paul; Strickland, Louise; Alvand, Abtin; Yang, Guang-Zhong; Hargrove, Caroline; Lo, Benny P L; Rees, Jonathan L
2015-07-01
Assessment of surgical skill is a critical component of surgical training. Approaches to assessment remain predominantly subjective, although more objective measures such as Global Rating Scales are in use. This study aimed to validate the use of elbow-worn, wireless, miniaturized motion sensors to assess the technical skill of trainees performing arthroscopic procedures in a simulated environment. Thirty participants were divided into three groups on the basis of their surgical experience: novices (n = 15), intermediates (n = 10), and experts (n = 5). All participants performed three standardized tasks on an arthroscopic virtual reality simulator while wearing wireless wrist and elbow motion sensors. Video output was recorded and a validated Global Rating Scale was used to assess performance; dexterity metrics were recorded from the simulator. Finally, live motion data were recorded via Bluetooth from the wireless wrist and elbow motion sensors and custom algorithms produced an arthroscopic performance score. Construct validity was demonstrated for all tasks, with Global Rating Scale scores and virtual reality output metrics showing significant differences between novices, intermediates, and experts (p < 0.001). The correlation of the virtual reality path length to the number of hand movements calculated from the wireless sensors was very high (p < 0.001). A comparison of the arthroscopic performance score levels with virtual reality output metrics also showed highly significant differences (p < 0.01). Comparisons of the arthroscopic performance score levels with the Global Rating Scale scores showed strong and highly significant correlations (p < 0.001) for both sensor locations, but those of the elbow-worn sensors were stronger and more significant (p < 0.001) than those of the wrist-worn sensors. A new wireless assessment of surgical performance system for objective assessment of surgical skills has proven valid for assessing arthroscopic skills. The elbow-worn sensors were shown to achieve an accurate assessment of surgical dexterity and performance. The validation of an entirely objective assessment of arthroscopic skill with wireless elbow-worn motion sensors introduces, for the first time, a feasible assessment system for the live operating theater with the added potential to be applied to other surgical and interventional specialties. Copyright © 2015 by The Journal of Bone and Joint Surgery, Incorporated.
Hung, Andrew J; Shah, Swar H; Dalag, Leonard; Shin, Daniel; Gill, Inderbir S
2015-08-01
We developed a novel procedure specific simulation platform for robotic partial nephrectomy. In this study we prospectively evaluate its face, content, construct and concurrent validity. This hybrid platform features augmented reality and virtual reality. Augmented reality involves 3-dimensional robotic partial nephrectomy surgical videos overlaid with virtual instruments to teach surgical anatomy, technical skills and operative steps. Advanced technical skills are assessed with an embedded full virtual reality renorrhaphy task. Participants were classified as novice (no surgical training, 15), intermediate (less than 100 robotic cases, 13) or expert (100 or more robotic cases, 14) and prospectively assessed. Cohort performance was compared with the Kruskal-Wallis test (construct validity). Post-study questionnaire was used to assess the realism of simulation (face validity) and usefulness for training (content validity). Concurrent validity evaluated correlation between virtual reality renorrhaphy task and a live porcine robotic partial nephrectomy performance (Spearman's analysis). Experts rated the augmented reality content as realistic (median 8/10) and helpful for resident/fellow training (8.0-8.2/10). Experts rated the platform highly for teaching anatomy (9/10) and operative steps (8.5/10) but moderately for technical skills (7.5/10). Experts and intermediates outperformed novices (construct validity) in efficiency (p=0.0002) and accuracy (p=0.002). For virtual reality renorrhaphy, experts outperformed intermediates on GEARS metrics (p=0.002). Virtual reality renorrhaphy and in vivo porcine robotic partial nephrectomy performance correlated significantly (r=0.8, p <0.0001) (concurrent validity). This augmented reality simulation platform displayed face, content and construct validity. Performance in the procedure specific virtual reality task correlated highly with a porcine model (concurrent validity). Future efforts will integrate procedure specific virtual reality tasks and their global assessment. Copyright © 2015 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.
van Herpen, Erica; van den Broek, Eva; van Trijp, Hans C M; Yu, Tian
2016-12-01
Immersive virtual reality techniques present new opportunities for research into consumer behavior. The current study examines whether the increased realism of a virtual store compared to pictorial (2D) stimuli elicits consumer behavior that is more in line with behavior in a physical store. We examine the number, variety, and type of products selected, amount of money spent, and responses to price promotions and shelf display, in three product categories (fruit & vegetables, milk, and biscuits). We find that virtual reality elicits behavior that is more similar to behavior in the physical store compared to the picture condition for the number of products selected (Milk: M store = 1.19, M virtual = 1.53, M pictures = 2.58) and amount of money spent (Milk: M store = 1.27, M virtual = 1.53, M pictures = 2.60 Euro), and for the selection of products from different areas of the shelf, both vertically (purchases from top shelves, milk and biscuits: P store = 21.6%, P virtual = 33.4%, P pictures = 50.0%) and horizontally (purchase from left shelf, biscuits: P store = 35.5%, P virtual = 53.3%, P pictures = 66.7%). This indicates that virtual reality can improve realism in responses to shelf allocation. Virtual reality was not able to diminish other differences between lab and physical store: participants bought more products and spent more money (for biscuits and fruit & vegetables), bought more national brands, and responded more strongly to price promotions in both virtual reality and pictorial representations than in the physical store. Implications for the use of virtual reality in studies of consumer food choice behavior as well as for future improvement of virtual reality techniques are discussed. Copyright © 2016 Elsevier Ltd. All rights reserved.
Bosc, R; Fitoussi, A; Pigneur, F; Tacher, V; Hersant, B; Meningaud, J-P
2017-08-01
The augmented reality on smart glasses allows the surgeon to visualize three-dimensional virtual objects during surgery, superimposed in real time to the anatomy of the patient. This makes it possible to preserve the vision of the surgical field and to dispose of added computerized information without the need to use a physical surgical guide or a deported screen. The three-dimensional objects that we used and visualized in augmented reality came from the reconstructions made from the CT-scans of the patients. These objects have been transferred through a dedicated application on stereoscopic smart glasses. The positioning and the stabilization of the virtual layers on the anatomy of the patients were obtained thanks to the recognition, by the glasses, of a tracker placed on the skin. We used this technology, in addition to the usual locating methods for preoperative planning and the selection of perforating vessels for 12 patients operated on a breast reconstruction, by perforating flap of deep lower epigastric artery. The "hands-free" smart glasses with two stereoscopic screens make it possible to provide the reconstructive surgeon with binocular visualization in the operative field of the vessels identified with the CT-scan. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Tomson, Tanja; Zary, Nabil
2014-01-01
Introduction. Antimicrobial resistance is a global health issue. Studies have shown that improved antibiotic prescription education among healthcare professionals reduces mistakes during the antibiotic prescription process. The aim of this study was to investigate novel educational approaches that through the use of Augmented Reality technology could make use of the real physical context and thereby enrich the educational process of antibiotics prescription. The objective is to investigate which type of information related to antibiotics could be used in an augmented reality application for antibiotics education. Methods. This study followed the Design-Based Research Methodology composed of the following main steps: problem analysis, investigation of information that should be visualized for the training session, and finally the involvement of the end users the development and evaluation processes of the prototype. Results. Two of the most important aspects in the antibiotic prescription process, to represent in an augmented reality application, are the antibiotic guidelines and the side effects. Moreover, this study showed how this information could be visualized from a mobile device using an Augmented Reality scanner and antibiotic drug boxes as markers. Discussion. In this study we investigated the usage of objects from a real physical context such as drug boxes and how they could be used as educational resources. The logical next steps are to examine how this approach of combining physical and virtual contexts through Augmented Reality applications could contribute to the improvement of competencies among healthcare professionals and its impact on the decrease of antibiotics resistance. PMID:25548733
Nifakos, Sokratis; Tomson, Tanja; Zary, Nabil
2014-01-01
Introduction. Antimicrobial resistance is a global health issue. Studies have shown that improved antibiotic prescription education among healthcare professionals reduces mistakes during the antibiotic prescription process. The aim of this study was to investigate novel educational approaches that through the use of Augmented Reality technology could make use of the real physical context and thereby enrich the educational process of antibiotics prescription. The objective is to investigate which type of information related to antibiotics could be used in an augmented reality application for antibiotics education. Methods. This study followed the Design-Based Research Methodology composed of the following main steps: problem analysis, investigation of information that should be visualized for the training session, and finally the involvement of the end users the development and evaluation processes of the prototype. Results. Two of the most important aspects in the antibiotic prescription process, to represent in an augmented reality application, are the antibiotic guidelines and the side effects. Moreover, this study showed how this information could be visualized from a mobile device using an Augmented Reality scanner and antibiotic drug boxes as markers. Discussion. In this study we investigated the usage of objects from a real physical context such as drug boxes and how they could be used as educational resources. The logical next steps are to examine how this approach of combining physical and virtual contexts through Augmented Reality applications could contribute to the improvement of competencies among healthcare professionals and its impact on the decrease of antibiotics resistance.
Virtual Reality Cue Refusal Video Game for Alcohol and Cigarette Recovery Support: Summative Study
Rossie, Karen; Stokes, Katie; Tallman, Christina; Tanner, Bradley
2018-01-01
Background New technologies such as virtual reality, augmented reality, and video games hold promise to support and enhance individuals in addiction treatment and recovery. Quitting or decreasing cigarette or alcohol use can lead to significant health improvements for individuals, decreasing heart disease risk and cancer risks (for both nicotine and alcohol use), among others. However, remaining in recovery from use is a significant challenge for most individuals. Objective We developed and assessed the Take Control game, a partially immersive Kinect for Windows platform game that allows users to counter substance cues through active movements (hitting, kicking, etc). Methods Formative analysis during phase I and phase II guided development. We conducted a small wait-list control trial using a quasi-random sampling technique (systematic) with 61 participants in recovery from addiction to alcohol or tobacco. Participants used the game 3 times and reported on substance use, cravings, satisfaction with the game experience, self-efficacy related to recovery, and side effects from exposure to a virtual reality intervention and substance cues. Results Participants found the game engaging and fun and felt playing the game would support recovery efforts. On average, reported substance use decreased for participants during the intervention period. Participants in recovery for alcohol use saw more benefit than those in recovery for tobacco use, with a statistically significant increase in self-efficacy, attitude, and behavior during the intervention. Side effects from the use of a virtual reality intervention were minor and decreased over time; cravings and side effects also decreased during the study. Conclusions The preliminary results suggest the intervention holds promise as an adjunct to standard treatment for those in recovery, particularly from alcohol use. PMID:29661748
Cybersickness and Anxiety During Simulated Motion: Implications for VRET.
Bruck, Susan; Watters, Paul
2009-01-01
Some clinicians have suggested using virtual reality environments to deliver psychological interventions to treat anxiety disorders. However, given a significant body of work on cybersickness symptoms which may arise in virtual environments - especially those involving simulated motion - we tested (a) whether being exposed to a virtual reality environment alone causes anxiety to increase, and (b) whether exposure to simulated motion in a virtual reality environment increases anxiety. Using a repeated measures design, we used Kim's Anxiety Scale questionnaire to compare baseline anxiety, anxiety after virtual environment exposure, and anxiety after simulated motion. While there was no significant effect on anxiety for being in a virtual environment with no simulated motion, the introduction of simulated motion caused anxiety to significantly increase, but not to a severe or extreme level. The implications of this work for virtual reality exposure therapy (VRET) are discussed.
Virtual Reality as an Educational and Training Tool for Medicine.
Izard, Santiago González; Juanes, Juan A; García Peñalvo, Francisco J; Estella, Jesús Mª Gonçalvez; Ledesma, Mª José Sánchez; Ruisoto, Pablo
2018-02-01
Until very recently, we considered Virtual Reality as something that was very close, but it was still science fiction. However, today Virtual Reality is being integrated into many different areas of our lives, from videogames to different industrial use cases and, of course, it is starting to be used in medicine. There are two great general classifications for Virtual Reality. Firstly, we find a Virtual Reality in which we visualize a world completely created by computer, three-dimensional and where we can appreciate that the world we are visualizing is not real, at least for the moment as rendered images are improving very fast. Secondly, there is a Virtual Reality that basically consists of a reflection of our reality. This type of Virtual Reality is created using spherical or 360 images and videos, so we lose three-dimensional visualization capacity (until the 3D cameras are more developed), but on the other hand we gain in terms of realism in the images. We could also mention a third classification that merges the previous two, where virtual elements created by computer coexist with 360 images and videos. In this article we will show two systems that we have developed where each of them can be framed within one of the previous classifications, identifying the technologies used for their implementation as well as the advantages of each one. We will also analize how these systems can improve the current methodologies used for medical training. The implications of these developments as tools for teaching, learning and training are discussed.
Gokeler, Alli; Bisschop, Marsha; Myer, Gregory D; Benjaminse, Anne; Dijkstra, Pieter U; van Keeken, Helco G; van Raay, Jos J A M; Burgerhof, Johannes G M; Otten, Egbert
2016-07-01
The purpose of this study was to evaluate the influence of immersion in a virtual reality environment on knee biomechanics in patients after ACL reconstruction (ACLR). It was hypothesized that virtual reality techniques aimed to change attentional focus would influence altered knee flexion angle, knee extension moment and peak vertical ground reaction force (vGRF) in patients following ACLR. Twenty athletes following ACLR and 20 healthy controls (CTRL) performed a step-down task in both a non-virtual reality environment and a virtual reality environment displaying a pedestrian traffic scene. A motion analysis system and force plates were used to measure kinematics and kinetics during a step-down task to analyse each single-leg landing. A significant main effect was found for environment for knee flexion excursion (P = n.s.). Significant interaction differences were found between environment and groups for vGRF (P = 0.004), knee moment (P < 0.001), knee angle at peak vGRF (P = 0.01) and knee flexion excursion (P = 0.03). There was larger effect of virtual reality environment on knee biomechanics in patients after ACLR compared with controls. Patients after ACLR immersed in virtual reality environment demonstrated knee joint biomechanics that approximate those of CTRL. The results of this study indicate that a realistic virtual reality scenario may distract patients after ACLR from conscious motor control. Application of clinically available technology may aid in current rehabilitation programmes to target altered movement patterns after ACLR. Diagnostic study, Level III.
Telemanipulation, telepresence, and virtual reality for surgery in the year 2000
NASA Astrophysics Data System (ADS)
Satava, Richard M.
1995-12-01
The new technologic revolution in medicine is based upon information technologies, and telemanipulation, telepresence and virtual reality are essential components. Telepresence surgery returns the look and feel of `open surgery' to the surgeon and promises enhancement of physical capabilities above normal human performance. Virtual reality provides basic medical education, simulation of surgical procedures, medical forces and disaster medicine practice, and virtual prototyping of medical equipment.
Robotic and Virtual Reality BCIs Using Spatial Tactile and Auditory Oddball Paradigms.
Rutkowski, Tomasz M
2016-01-01
The paper reviews nine robotic and virtual reality (VR) brain-computer interface (BCI) projects developed by the author, in collaboration with his graduate students, within the BCI-lab research group during its association with University of Tsukuba, Japan. The nine novel approaches are discussed in applications to direct brain-robot and brain-virtual-reality-agent control interfaces using tactile and auditory BCI technologies. The BCI user intentions are decoded from the brainwaves in realtime using a non-invasive electroencephalography (EEG) and they are translated to a symbiotic robot or virtual reality agent thought-based only control. A communication protocol between the BCI output and the robot or the virtual environment is realized in a symbiotic communication scenario using an user datagram protocol (UDP), which constitutes an internet of things (IoT) control scenario. Results obtained from healthy users reproducing simple brain-robot and brain-virtual-agent control tasks in online experiments support the research goal of a possibility to interact with robotic devices and virtual reality agents using symbiotic thought-based BCI technologies. An offline BCI classification accuracy boosting method, using a previously proposed information geometry derived approach, is also discussed in order to further support the reviewed robotic and virtual reality thought-based control paradigms.
Robotic and Virtual Reality BCIs Using Spatial Tactile and Auditory Oddball Paradigms
Rutkowski, Tomasz M.
2016-01-01
The paper reviews nine robotic and virtual reality (VR) brain–computer interface (BCI) projects developed by the author, in collaboration with his graduate students, within the BCI–lab research group during its association with University of Tsukuba, Japan. The nine novel approaches are discussed in applications to direct brain-robot and brain-virtual-reality-agent control interfaces using tactile and auditory BCI technologies. The BCI user intentions are decoded from the brainwaves in realtime using a non-invasive electroencephalography (EEG) and they are translated to a symbiotic robot or virtual reality agent thought-based only control. A communication protocol between the BCI output and the robot or the virtual environment is realized in a symbiotic communication scenario using an user datagram protocol (UDP), which constitutes an internet of things (IoT) control scenario. Results obtained from healthy users reproducing simple brain-robot and brain-virtual-agent control tasks in online experiments support the research goal of a possibility to interact with robotic devices and virtual reality agents using symbiotic thought-based BCI technologies. An offline BCI classification accuracy boosting method, using a previously proposed information geometry derived approach, is also discussed in order to further support the reviewed robotic and virtual reality thought-based control paradigms. PMID:27999538
Architecture and Key Techniques of Augmented Reality Maintenance Guiding System for Civil Aircrafts
NASA Astrophysics Data System (ADS)
hong, Zhou; Wenhua, Lu
2017-01-01
Augmented reality technology is introduced into the maintenance related field for strengthened information in real-world scenarios through integration of virtual assistant maintenance information with real-world scenarios. This can lower the difficulty of maintenance, reduce maintenance errors, and improve the maintenance efficiency and quality of civil aviation crews. Architecture of augmented reality virtual maintenance guiding system is proposed on the basis of introducing the definition of augmented reality and analyzing the characteristics of augmented reality virtual maintenance. Key techniques involved, such as standardization and organization of maintenance data, 3D registration, modeling of maintenance guidance information and virtual maintenance man-machine interaction, are elaborated emphatically, and solutions are given.
JPRS Report, Soviet Union, Military Affairs
1988-09-08
war. This is an objective reality . By laying emphasis on land forces only, in particular on tanks and artillery, in solving the issues of removing...for the realities of army life in a friendly country, but nonethe- less on foreign territory. ...A few months ago, during the visit of the Soviet...victori- ous, were available in time. Nevertheless, there were virtually no offensive air units. The majority of pilots had not been trained for the
Brun, G; Verdoux, H; Couhet, G; Quiles, C
2018-02-28
Video games and virtual reality have recently become used by clinicians for training or information media or as therapeutic tools. The purpose is to review the use of these technologies for therapy destined for schizophrenia patients. We conducted a review in October 2016 using Pubmed, Scopus and PsychInfo using the following Medical Subject Headings (MESH): "video games", "virtual reality" and "therapy, computer-assisted/methods", each associated with "schizophrenia". Papers were included in the review if: (a) they were published in an English, Spanish or French-language peer-reviewed journal, (b) the study enrolled patients with schizophrenia or schizo-affective disorder, (c) the patients used a therapeutic video game or therapeutic virtual reality device. Eighteen publications were included. The devices studied are mainly therapeutic software developed specifically for therapeutic care. They can be classified according to their therapeutic objectives. These targets corresponded to objectives of psychosocial rehabilitation: improvement of residual symptomatology, cognitive remediation, remediation of cognition and social skills, improvement of everyday life activities, support for occupational integration. Very different devices were proposed. Some researchers analysed programs developed specifically for patients with schizophrenia, while others were interested in the impact of commercial games. Most of the studies were recent, preliminary and European. The impact of these devices was globally positive, particularly concerning cognitive functions. Computer-assisted therapy, video games and virtual reality cannot replace usual care but could be used as adjunctive therapy. However, recommending their use seems premature because of the recent and preliminary character of most studies. Moreover, a link is still lacking between this field of research in psychiatry and other fields of research, particularly game studies. Finally, it might be interesting to analyse more precisely the neuropsychological impact of existing commercial games which could potentially be useful for psychosocial rehabilitation. Copyright © 2018 L'Encéphale, Paris. Published by Elsevier Masson SAS. All rights reserved.
Knight, Sophie; Aggarwal, Rajesh; Agostini, Aubert; Loundou, Anderson; Berdah, Stéphane; Crochet, Patrice
2018-01-01
Total Laparoscopic hysterectomy (LH) requires an advanced level of operative skills and training. The aim of this study was to develop an objective scale specific for the assessment of technical skills for LH (H-OSATS) and to demonstrate feasibility of use and validity in a virtual reality setting. The scale was developed using a hierarchical task analysis and a panel of international experts. A Delphi method obtained consensus among experts on relevant steps that should be included into the H-OSATS scale for assessment of operative performances. Feasibility of use and validity of the scale were evaluated by reviewing video recordings of LH performed on a virtual reality laparoscopic simulator. Three groups of operators of different levels of experience were assessed in a Marseille teaching hospital (10 novices, 8 intermediates and 8 experienced surgeons). Correlations with scores obtained using a recognised generic global rating tool (OSATS) were calculated. A total of 76 discrete steps were identified by the hierarchical task analysis. 14 experts completed the two rounds of the Delphi questionnaire. 64 steps reached consensus and were integrated in the scale. During the validation process, median time to rate each video recording was 25 minutes. There was a significant difference between the novice, intermediate and experienced group for total H-OSATS scores (133, 155.9 and 178.25 respectively; p = 0.002). H-OSATS scale demonstrated high inter-rater reliability (intraclass correlation coefficient [ICC] = 0.930; p<0.001) and test retest reliability (ICC = 0.877; p<0.001). High correlations were found between total H-OSATS scores and OSATS scores (rho = 0.928; p<0.001). The H-OSATS scale displayed evidence of validity for assessment of technical performances for LH performed on a virtual reality simulator. The implementation of this scale is expected to facilitate deliberate practice. Next steps should focus on evaluating the validity of the scale in the operating room.
NASA Astrophysics Data System (ADS)
Cheok, Adrian David
This chapter details the Human Pacman system to illuminate entertainment computing which ventures to embed the natural physical world seamlessly with a fantasy virtual playground by capitalizing on infrastructure provided by mobile computing, wireless LAN, and ubiquitous computing. With Human Pacman, we have a physical role-playing computer fantasy together with real human-social and mobile-gaming that emphasizes on collaboration and competition between players in a wide outdoor physical area that allows natural wide-area human-physical movements. Pacmen and Ghosts are now real human players in the real world experiencing mixed computer graphics fantasy-reality provided by using the wearable computers on them. Virtual cookies and actual tangible physical objects are incorporated into the game play to provide novel experiences of seamless transitions between the real and virtual worlds. This is an example of a new form of gaming that anchors on physicality, mobility, social interaction, and ubiquitous computing.
Virtual Reality as Treatment for Fear of Flying: A Review of Recent Research
ERIC Educational Resources Information Center
Price, Matthew; Anderson, Page; Rothbaum, Barbara O.
2008-01-01
Virtual reality exposure has recently emerged as an important tool for exposure therapy in the treatment of fear of flying. There have been numerous empirical studies that have evaluated the effectiveness of virtual reality exposure as compared to other treatments including in vivo exposure, progressive muscle relaxation, cognitive therapy,…
Integrating Music into Math in a Virtual Reality Game: Learning Fractions
ERIC Educational Resources Information Center
Lim, Taehyeong; Lee, Sungwoong; Ke, Fengfeng
2016-01-01
The purpose of this study was to investigate future teachers' experiences and perceptions of using a virtual reality game for elementary math education. The virtual reality game was designed and developed to integrate a musical activity (beat-making) into the math learning of fractions. Five math education major students participated in this…
Visualizing Compound Rotations with Virtual Reality
ERIC Educational Resources Information Center
Flanders, Megan; Kavanagh, Richard C.
2013-01-01
Mental rotations are among the most difficult of all spatial tasks to perform, and even those with high levels of spatial ability can struggle to visualize the result of compound rotations. This pilot study investigates the use of the virtual reality-based Rotation Tool, created using the Virtual Reality Modeling Language (VRML) together with…
PTSD in Limb Trauma and Recovery
2011-10-01
Virtual reality and Motion Analysis to Characterize Disabilities in Lower...Program 4: “ Virtual reality and Motion Analysis to Characterize Disabilities in Lower Limb Injury” (Christopher Rhea, Ph.D., lead investigator). This...ANSI Std. Z39.18 ANNUAL REPORT 10/16/2011 VIRTUAL REALITY AND MOTION ANALYSIS TO CHARACTERIZE DISABILITIES IN LOWER LIMB INJURY PI: SUSAN
Treatment of Complicated Grief Using Virtual Reality: A Case Report
ERIC Educational Resources Information Center
Botella, C.; Osma, J.; Palacios, A. Garcia; Guillen, V.; Banos, R.
2008-01-01
This is the first work exploring the application of new technologies, concretely virtual reality, to facilitate emotional processing in the treatment of Complicated Grief. Our research team has designed a virtual reality environment (EMMA's World) to foster the expression and processing of emotions. In this study the authors present a description…
ERIC Educational Resources Information Center
Patera, Marianne; Draper, Steve; Naef, Martin
2008-01-01
This paper presents an exploratory study that created a virtual reality environment (VRE) to stimulate motivation and creativity in imaginative writing at primary school level. The main aim of the study was to investigate if an interactive, semi-immersive virtual reality world could increase motivation and stimulate pupils' imagination in the…
Lin, Cheng-Shih; Jeng, Mei-Yuan; Yeh, Tsu-Ming
2018-04-03
This study uses means-end chain (MEC) techniques to examine the awareness, decision-making procedure, and personal values of the elderly with regard to virtual reality leisure activities. The results of the study show that elderly respondents value virtual reality leisure activities that are fun, safe, and easy. In terms of outcome benefits, elderly respondents value feeling physically and mentally healthy, firsthand experience, and satisfied curiosity. In value terms, elderly respondents hope that their chosen virtual reality leisure activities improve not only their relationships with others, but also their enjoyment, quality of life, and sense of belonging. The results show that, while consumers with different awarenesses of virtual reality leisure activities have different decision-making processes, they share creating "good memories" as the terminal value with the most significant effect. This presents a potential opportunity to promote virtual reality leisure activities. Relevant bodies or enterprises can seek to create good memories in consumers by developing activities that are safe and fun, promote good health, and provide good service, thereby attracting the interest of elderly consumers.
Lin, Cheng-Shih; Jeng, Mei-Yuan
2018-01-01
This study uses means-end chain (MEC) techniques to examine the awareness, decision-making procedure, and personal values of the elderly with regard to virtual reality leisure activities. The results of the study show that elderly respondents value virtual reality leisure activities that are fun, safe, and easy. In terms of outcome benefits, elderly respondents value feeling physically and mentally healthy, firsthand experience, and satisfied curiosity. In value terms, elderly respondents hope that their chosen virtual reality leisure activities improve not only their relationships with others, but also their enjoyment, quality of life, and sense of belonging. The results show that, while consumers with different awarenesses of virtual reality leisure activities have different decision-making processes, they share creating “good memories” as the terminal value with the most significant effect. This presents a potential opportunity to promote virtual reality leisure activities. Relevant bodies or enterprises can seek to create good memories in consumers by developing activities that are safe and fun, promote good health, and provide good service, thereby attracting the interest of elderly consumers. PMID:29614012
Shin, Ji-Won; Song, Gui-Bin; Hwangbo, Gak
2015-07-01
[Purpose] The purpose of the study was to evaluate the effects of conventional neurological treatment and a virtual reality training program on eye-hand coordination in children with cerebral palsy. [Subjects] Sixteen children (9 males, 7 females) with spastic diplegic cerebral palsy were recruited and randomly assigned to the conventional neurological physical therapy group (CG) and virtual reality training group (VRG). [Methods] Eight children in the control group performed 45 minutes of therapeutic exercise twice a week for eight weeks. In the experimental group, the other eight children performed 30 minutes of therapeutic exercise and 15 minutes of a training program using virtual reality twice a week during the experimental period. [Results] After eight weeks of the training program, there were significant differences in eye-hand coordination and visual motor speed in the comparison of the virtual reality training group with the conventional neurological physical therapy group. [Conclusion] We conclude that a well-designed training program using virtual reality can improve eye-hand coordination in children with cerebral palsy.
Webizing mobile augmented reality content
NASA Astrophysics Data System (ADS)
Ahn, Sangchul; Ko, Heedong; Yoo, Byounghyun
2014-01-01
This paper presents a content structure for building mobile augmented reality (AR) applications in HTML5 to achieve a clean separation of the mobile AR content and the application logic for scaling as on the Web. We propose that the content structure contains the physical world as well as virtual assets for mobile AR applications as document object model (DOM) elements and that their behaviour and user interactions are controlled through DOM events by representing objects and places with a uniform resource identifier. Our content structure enables mobile AR applications to be seamlessly developed as normal HTML documents under the current Web eco-system.
NASA Astrophysics Data System (ADS)
Prusten, Mark J.; McIntyre, Michelle; Landis, Marvin
2006-02-01
A 3D workflow pipeline is presented for High Dynamic Range (HDR) image capture of projected scenes or objects for presentation in CAVE virtual environments. The methods of HDR digital photography of environments vs. objects are reviewed. Samples of both types of virtual authoring being the actual CAVE environment and a sculpture are shown. A series of software tools are incorporated into a pipeline called CAVEPIPE, allowing for high-resolution objects and scenes to be composited together in natural illumination environments [1] and presented in our CAVE virtual reality environment. We also present a way to enhance the user interface for CAVE environments. The traditional methods of controlling the navigation through virtual environments include: glove, HUD's and 3D mouse devices. By integrating a wireless network that includes both WiFi (IEEE 802.11b/g) and Bluetooth (IEEE 802.15.1) protocols the non-graphical input control device can be eliminated. Therefore wireless devices can be added that would include: PDA's, Smart Phones, TabletPC's, Portable Gaming consoles, and PocketPC's.
Telerobotic surgery: applications on human patients and training with virtual reality.
Rovetta, A; Bejczy, A K; Sala, R
1997-01-01
This paper deals with the developed researches and applications on telerobotic surgery, devoted to human patients and with training by virtual reality. The researches have been developed in cooperation between Telerobotics Laboratory, Department of Mechanics, Politecnico di Milano, Italy, and Automation and Control Section, Jet Propulsion Laboratory, Pasadena, USA. The researches carried to a telesurgery robotic operation on a dummy on 7th July 1993, by means of satellites communications, to a prostatic biopsy on a human patient on 1st September 1995 with optical fibers, to results on time delay effects, to results on virtual reality applications for training on laparoscopy and surgery. The search implied time delay when the control input originated in Politecnico di Milano, Italy. The results were satisfactory, but also pointed out the need for specific new control transformations to ease the operator's or surgeon's visual/mental workload for hand-eye coordination. In the same research, dummy force commands from JPL to Milan were sent, and were echoed immediately back to JPL, measuring the round-trip time of the command signal. This, to some degree, simulates a contact force feedback situation. The results were very surprising; despite the fact that the ISDN calls are closed and "private" calls, the round-trip time exhibited great variations not only between calls but also within the same call. The results proved that telerobotics and telecontrol may be applied to surgery. Time latency variations are caused by features of communication network, of sending and receiving end computer software. The problem and its solution is also an architectural issue, and considerable improvements are possible. Virtual reality in the application of the research is a strong support to training on virtual objects and not on living beings.
Training for percutaneous renal access on a virtual reality simulator.
Zhang, Yi; Yu, Cheng-fan; Liu, Jin-shun; Wang, Gang; Zhu, He; Na, Yan-qun
2013-01-01
The need to develop new methods of surgical training combined with advances in computing has led to the development of virtual reality surgical simulators. The PERC Mentor(TM) is designed to train the user in percutaneous renal collecting system access puncture. This study aimed to validate the use of this kind of simulator, in percutaneous renal access training. Twenty-one urologists were enrolled as trainees to learn a fluoroscopy-guided percutaneous renal accessing technique. An assigned percutaneous renal access procedure was immediately performed on the PERC Mentor(TM) after watching instruction video and an analog operation. Objective parameters were recorded by the simulator and subjective global rating scale (GRS) score were determined. Simulation training followed and consisted of 2 hours daily training sessions for 2 consecutive days. Twenty-four hours after the training session, trainees were evaluated performing the same procedure. The post-training evaluation was compared to the evaluation of the initial attempt. During the initial attempt, none of the trainees could complete the appointed procedure due to the lack of experience in fluoroscopy-guided percutaneous renal access. After the short-term training, all trainees were able to independently complete the procedure. Of the 21 trainees, 10 had primitive experience in ultrasound-guided percutaneous nephrolithotomy. Trainees were thus categorized into the group of primitive experience and inexperience. The total operating time and amount of contrast material used were significantly lower in the group of primitive experience versus the inexperience group (P = 0.03 and 0.02, respectively). The training on the virtual reality simulator, PERC Mentor(TM), can help trainees with no previous experience of fluoroscopy-guided percutaneous renal access to complete the virtual manipulation of the procedure independently. This virtual reality simulator may become an important training and evaluation tool in teaching fluoroscopy-guided percutaneous renal access.
Virtual rehabilitation: What are the practical barriers for home-based research?
Threapleton, Kate; Drummond, Avril; Standen, Penny
2016-01-01
Virtual reality technologies are becoming increasingly accessible and affordable to deliver, and consequently the interest in applying virtual reality within rehabilitation is growing. This has resulted in the emergence of research exploring the utility of virtual reality and interactive video gaming interventions for home use by patients. The aim of this paper is to highlight the practical factors and difficulties that may be encountered in research in this area, and to make recommendations for addressing these. Whilst this paper focuses on examples drawn mainly from stroke rehabilitation research, many of the issues raised are relevant to other conditions where virtual reality approaches have the potential to be applied to home-based rehabilitation. PMID:29942551
The role of virtual articulator in prosthetic and restorative dentistry.
Koralakunte, Pavankumar Ravi; Aljanakh, Mohammad
2014-07-01
Virtual reality is a computer based technology linked with the future of dentistry and dental practice. The virtual articulator is one such application in prosthetic and restorative dentistry based on virtual reality that will significantly reduce the limitations of the mechanical articulator, and by simulation of real patient data, allow analyses with regard to static and dynamic occlusion as well as to jaw relation. It is the purpose of this article to present the concepts and strategies for a future replacement of the mechanical articulator by a virtual one. Also, a brief note on virtual reality haptic system has been highlighted along with newly developed touch enabled virtual articulator.
Liu, Xiujuan; Tao, Haiquan; Xiao, Xigang; Guo, Binbin; Xu, Shangcai; Sun, Na; Li, Maotong; Xie, Li; Wu, Changjun
2018-07-01
This study aimed to compare the diagnostic performance of the stereoscopic virtual reality display system with the conventional computed tomography (CT) workstation and three-dimensional rotational angiography (3DRA) for intracranial aneurysm detection and characterization, with a focus on small aneurysms and those near the bone. First, 42 patients with suspected intracranial aneurysms underwent both 256-row CT angiography (CTA) and 3DRA. Volume rendering (VR) images were captured using the conventional CT workstation. Next, VR images were transferred to the stereoscopic virtual reality display system. Two radiologists independently assessed the results that were obtained using the conventional CT workstation and stereoscopic virtual reality display system. The 3DRA results were considered as the ultimate reference standard. Based on 3DRA images, 38 aneurysms were confirmed in 42 patients. Two cases were misdiagnosed and 1 was missed when the traditional CT workstation was used. The sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and accuracy of the conventional CT workstation were 94.7%, 85.7%, 97.3%, 75%, and99.3%, respectively, on a per-aneurysm basis. The stereoscopic virtual reality display system missed a case. The sensitivity, specificity, PPV, NPV, and accuracy of the stereoscopic virtual reality display system were 100%, 85.7%, 97.4%, 100%, and 97.8%, respectively. No difference was observed in the accuracy of the traditional CT workstation, stereoscopic virtual reality display system, and 3DRA in detecting aneurysms. The stereoscopic virtual reality display system has some advantages in detecting small aneurysms and those near the bone. The virtual reality stereoscopic vision obtained through the system was found as a useful tool in intracranial aneurysm diagnosis and pre-operative 3D imaging. Copyright © 2018 Elsevier B.V. All rights reserved.
Virtual reality for spherical images
NASA Astrophysics Data System (ADS)
Pilarczyk, Rafal; Skarbek, Władysław
2017-08-01
Paper presents virtual reality application framework and application concept for mobile devices. Framework uses Google Cardboard library for Android operating system. Framework allows to create virtual reality 360 video player using standard OpenGL ES rendering methods. Framework provides network methods in order to connect to web server as application resource provider. Resources are delivered using JSON response as result of HTTP requests. Web server also uses Socket.IO library for synchronous communication between application and server. Framework implements methods to create event driven process of rendering additional content based on video timestamp and virtual reality head point of view.
McLay, Robert N; Baird, Alicia; Murphy, Jennifer; Deal, William; Tran, Lily; Anson, Heather; Klam, Warren; Johnston, Scott
2015-01-01
Post Traumatic Stress Disorder (PTSD) can be a debilitating problem in service members who have served in Iraq or Afghanistan. Virtual Reality Exposure Therapy (VRET) is one of the few interventions demonstrated in randomized controlled trials to be effective for PTSD in this population. There are theoretical reasons to expect that Virtual Reality (VR) adds to the effectiveness of exposure therapy, but there is also added expense and difficulty in using VR. Described is a trial comparing outcomes from VRET and a control exposure therapy (CET) protocol in service members with PTSD.
LivePhantom: Retrieving Virtual World Light Data to Real Environments.
Kolivand, Hoshang; Billinghurst, Mark; Sunar, Mohd Shahrizal
2016-01-01
To achieve realistic Augmented Reality (AR), shadows play an important role in creating a 3D impression of a scene. Casting virtual shadows on real and virtual objects is one of the topics of research being conducted in this area. In this paper, we propose a new method for creating complex AR indoor scenes using real time depth detection to exert virtual shadows on virtual and real environments. A Kinect camera was used to produce a depth map for the physical scene mixing into a single real-time transparent tacit surface. Once this is created, the camera's position can be tracked from the reconstructed 3D scene. Real objects are represented by virtual object phantoms in the AR scene enabling users holding a webcam and a standard Kinect camera to capture and reconstruct environments simultaneously. The tracking capability of the algorithm is shown and the findings are assessed drawing upon qualitative and quantitative methods making comparisons with previous AR phantom generation applications. The results demonstrate the robustness of the technique for realistic indoor rendering in AR systems.
LivePhantom: Retrieving Virtual World Light Data to Real Environments
2016-01-01
To achieve realistic Augmented Reality (AR), shadows play an important role in creating a 3D impression of a scene. Casting virtual shadows on real and virtual objects is one of the topics of research being conducted in this area. In this paper, we propose a new method for creating complex AR indoor scenes using real time depth detection to exert virtual shadows on virtual and real environments. A Kinect camera was used to produce a depth map for the physical scene mixing into a single real-time transparent tacit surface. Once this is created, the camera’s position can be tracked from the reconstructed 3D scene. Real objects are represented by virtual object phantoms in the AR scene enabling users holding a webcam and a standard Kinect camera to capture and reconstruct environments simultaneously. The tracking capability of the algorithm is shown and the findings are assessed drawing upon qualitative and quantitative methods making comparisons with previous AR phantom generation applications. The results demonstrate the robustness of the technique for realistic indoor rendering in AR systems. PMID:27930663
A kickball game for ankle rehabilitation by JAVA, JNI, and VRML
NASA Astrophysics Data System (ADS)
Choi, Hyungjeen; Ryu, Jeha; Lee, Chansu
2004-03-01
This paper presents development of a virtual environment that can be applied to the ankle rehabilitation procedure. We developed a virtual football stadium to intrigue a patient, where two degree of freedom (DOF) plate-shaped object is oriented to kick a ball falling from the sky in accordance with the data from the ankle's dorisflexion/plantarflexion and inversion/eversion motion on the moving platform of the K-Platform. This Kickball Game is implemented by Virtual Reality Modeling Language (VRML). To control virtual objects, data from the K-Platform are transmitted through the communication module implemented in C++. Java, Java Native Interface (JNI) and VRML plug-in are combined together so as to interface the communication module with the virtual environment by VRML. This game may be applied to the Active Range of Motion (AROM) exercise procedure that is one of the ankle rehabilitation procedures.
Virtual reality as a tool for cross-cultural communication: an example from military team training
NASA Astrophysics Data System (ADS)
Downes-Martin, Stephen; Long, Mark; Alexander, Joanna R.
1992-06-01
A major problem with communication across cultures, whether professional or national, is that simple language translation if often insufficient to communicate the concepts. This is especially true when the communicators come from highly specialized fields of knowledge or from national cultures with long histories of divergence. This problem becomes critical when the goal of the communication is national negotiation dealing with such high risk items as arms negotiation or trade wars. Virtual Reality technology has considerable potential for facilitating communication across cultures, by immersing the communicators within multiple visual representations of the concepts, and providing control over those representations. Military distributed team training provides a model for virtual reality suitable for cross cultural communication such as negotiation. In both team training and negotiation, the participants must cooperate, agree on a set of goals, and achieve mastery over the concepts being negotiated. Team training technologies suitable for supporting cross cultural negotiation exist (branch wargaming, computer image generation and visualization, distributed simulation), and have developed along different lines than traditional virtual reality technology. Team training de-emphasizes the realism of physiological interfaces between the human and the virtual reality, and emphasizes the interaction of humans with each other and with intelligent simulated agents within the virtual reality. This approach to virtual reality is suggested as being more fruitful for future work.
Development of a low-cost virtual reality workstation for training and education
NASA Technical Reports Server (NTRS)
Phillips, James A.
1996-01-01
Virtual Reality (VR) is a set of breakthrough technologies that allow a human being to enter and fully experience a 3-dimensional, computer simulated environment. A true virtual reality experience meets three criteria: (1) it involves 3-dimensional computer graphics; (2) it includes real-time feedback and response to user actions; and (3) it must provide a sense of immersion. Good examples of a virtual reality simulator are the flight simulators used by all branches of the military to train pilots for combat in high performance jet fighters. The fidelity of such simulators is extremely high -- but so is the price tag, typically millions of dollars. Virtual reality teaching and training methods are manifestly effective, but the high cost of VR technology has limited its practical application to fields with big budgets, such as military combat simulation, commercial pilot training, and certain projects within the space program. However, in the last year there has been a revolution in the cost of VR technology. The speed of inexpensive personal computers has increased dramatically, especially with the introduction of the Pentium processor and the PCI bus for IBM-compatibles, and the cost of high-quality virtual reality peripherals has plummeted. The result is that many public schools, colleges, and universities can afford a PC-based workstation capable of running immersive virtual reality applications. My goal this summer was to assemble and evaluate such a system.
Learning Protein Structure with Peers in an AR-Enhanced Learning Environment
ERIC Educational Resources Information Center
Chen, Yu-Chien
2013-01-01
Augmented reality (AR) is an interactive system that allows users to interact with virtual objects and the real world at the same time. The purpose of this dissertation was to explore how AR, as a new visualization tool, that can demonstrate spatial relationships by representing three dimensional objects and animations, facilitates students to…
Grasping trajectories in a virtual environment adhere to Weber's law.
Ozana, Aviad; Berman, Sigal; Ganel, Tzvi
2018-06-01
Virtual-reality and telerobotic devices simulate local motor control of virtual objects within computerized environments. Here, we explored grasping kinematics within a virtual environment and tested whether, as in normal 3D grasping, trajectories in the virtual environment are performed analytically, violating Weber's law with respect to object's size. Participants were asked to grasp a series of 2D objects using a haptic system, which projected their movements to a virtual space presented on a computer screen. The apparatus also provided object-specific haptic information upon "touching" the edges of the virtual targets. The results showed that grasping movements performed within the virtual environment did not produce the typical analytical trajectory pattern obtained during 3D grasping. Unlike as in 3D grasping, grasping trajectories in the virtual environment adhered to Weber's law, which indicates relative resolution in size processing. In addition, the trajectory patterns differed from typical trajectories obtained during 3D grasping, with longer times to complete the movement, and with maximum grip apertures appearing relatively early in the movement. The results suggest that grasping movements within a virtual environment could differ from those performed in real space, and are subjected to irrelevant effects of perceptual information. Such atypical pattern of visuomotor control may be mediated by the lack of complete transparency between the interface and the virtual environment in terms of the provided visual and haptic feedback. Possible implications of the findings to movement control within robotic and virtual environments are further discussed.
Psychology Student Opinion of Virtual Reality as a Tool to Educate about Schizophrenia
ERIC Educational Resources Information Center
Tichon, Jennifer; Loh, Jennifer; King, Robert
2004-01-01
Virtual Reality (VR) techniques are increasingly being used in e-health education, training and in trial clinical programs in the treatment of certain types of mental illness. Undergraduate psychology student opinion of the use of Virtual Reality (VR) to teach them about schizophrenia at the University of Queensland, was determined with reference…
The Effects of Virtual Reality Learning Environment on Student Cognitive and Linguistic Development
ERIC Educational Resources Information Center
Chen, Yu-Li
2016-01-01
Virtual reality (VR) has brought about numerous alternative learning opportunities in the last decade, and with modern products such as Oculus Rift and other wearable Virtual Reality technologies being introduced into society, VR will promisingly continue to provide yet unseen opportunities in the next few decades and therefore is a technology…
Naval Science and Technology Future Force Magazine
Issues Contact Us Links RSS Feed Facebook IT'S EASY TO SEE THE COST SAVINGS OF VIRTUAL REALITY TRAINING THE [...] Not Just a Fad: Virtual Reality Really Does Benefit the Military IT'S EASY TO SEE THE COST SAVINGS OF VIRTUAL REALITY TRAINING-BUT IS IT AS EFFECTIVE AS, OR EVEN BETTER THAN, OTHER TYPES OF
ERIC Educational Resources Information Center
Yeh, Shih-Ching; Hwang, Wu-Yuin; Wang, Jin-Liang; Zhan, Shi-Yi
2013-01-01
This study intends to investigate how multi-symbolic representations (text, digits, and colors) could effectively enhance the completion of co-located/distant collaborative work in a virtual reality context. Participants' perceptions and behaviors were also studied. A haptics-enhanced virtual reality task was developed to conduct…
ERIC Educational Resources Information Center
Huang, Hsiu-Mei; Liaw, Shu-Sheng
2018-01-01
Within a constructivist paradigm, the virtual reality technology focuses on the learner's actively interactive learning processes and attempts to reduce the gap between the learner's knowledge and a real-life experience. Recently, virtual reality technologies have been developed for a wide range of applications in education, but further research…
A Desktop Virtual Reality Earth Motion System in Astronomy Education
ERIC Educational Resources Information Center
Chen, Chih Hung; Yang, Jie Chi; Shen, Sarah; Jeng, Ming Chang
2007-01-01
In this study, a desktop virtual reality earth motion system (DVREMS) is designed and developed to be applied in the classroom. The system is implemented to assist elementary school students to clarify earth motion concepts using virtual reality principles. A study was conducted to observe the influences of the proposed system in learning.…
The Use of Virtual Reality Tools in the Reading-Language Arts Classroom
ERIC Educational Resources Information Center
Pilgrim, J. Michael; Pilgrim, Jodi
2016-01-01
This article presents virtual reality as a tool for classroom literacy instruction. Building on the traditional use of images as a way to scaffold prior knowledge, we extend this idea to share ways virtual reality enables experiential learning through field trip-like experiences. The use of technology tools such Google Street view, Google…
Using virtual reality to test the regularity priors used by the human visual system
NASA Astrophysics Data System (ADS)
Palmer, Eric; Kwon, TaeKyu; Pizlo, Zygmunt
2017-09-01
Virtual reality applications provide an opportunity to test human vision in well-controlled scenarios that would be difficult to generate in real physical spaces. This paper presents a study intended to evaluate the importance of the regularity priors used by the human visual system. Using a CAVE simulation, subjects viewed virtual objects in a variety of experimental manipulations. In the first experiment, the subject was asked to count the objects in a scene that was viewed either right-side-up or upside-down for 4 seconds. The subject counted more accurately in the right-side-up condition regardless of the presence of binocular disparity or color. In the second experiment, the subject was asked to reconstruct the scene from a different viewpoint. Reconstructions were accurate, but the position and orientation error was twice as high when the scene was rotated by 45°, compared to 22.5°. Similarly to the first experiment, there was little difference between monocular and binocular viewing. In the third experiment, the subject was asked to adjust the position of one object to match the depth extent to the frontal extent among three objects. Performance was best with symmetrical objects and became poorer with asymmetrical objects and poorest with only small circular markers on the floor. Finally, in the fourth experiment, we demonstrated reliable performance in monocular and binocular recovery of 3D shapes of objects standing naturally on the simulated horizontal floor. Based on these results, we conclude that gravity, horizontal ground, and symmetry priors play an important role in veridical perception of scenes.
Borrel, Alexandre; Fourches, Denis
2017-12-01
There is a growing interest for the broad use of Augmented Reality (AR) and Virtual Reality (VR) in the fields of bioinformatics and cheminformatics to visualize complex biological and chemical structures. AR and VR technologies allow for stunning and immersive experiences, offering untapped opportunities for both research and education purposes. However, preparing 3D models ready to use for AR and VR is time-consuming and requires a technical expertise that severely limits the development of new contents of potential interest for structural biologists, medicinal chemists, molecular modellers and teachers. Herein we present the RealityConvert software tool and associated website, which allow users to easily convert molecular objects to high quality 3D models directly compatible for AR and VR applications. For chemical structures, in addition to the 3D model generation, RealityConvert also generates image trackers, useful to universally call and anchor that particular 3D model when used in AR applications. The ultimate goal of RealityConvert is to facilitate and boost the development and accessibility of AR and VR contents for bioinformatics and cheminformatics applications. http://www.realityconvert.com. dfourch@ncsu.edu. Supplementary data are available at Bioinformatics online. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com
Applied virtual reality in aerospace design
NASA Technical Reports Server (NTRS)
Hale, Joseph P.
1995-01-01
A virtual reality (VR) applications program has been under development at the Marshall Space Flight Center (MSFC) since 1989. The objectives of the MSFC VR Applications Program are to develop, assess, validate, and utilize VR in hardware development, operations development and support, mission operations training and science training. Before VR can be used with confidence in a particular application, VR must be validated for that class of applications. For that reason, specific validation studies for selected classes of applications have been proposed and are currently underway. These include macro-ergonomic 'control room class' design analysis, Spacelab stowage reconfiguration training, a full-body microgravity functional reach simulator, a gross anatomy teaching simulator, and micro-ergonomic design analysis. This paper describes the MSFC VR Applications Program and the validation studies.
Speksnijder, L; Rousian, M; Steegers, E A P; Van Der Spek, P J; Koning, A H J; Steensma, A B
2012-07-01
Virtual reality is a novel method of visualizing ultrasound data with the perception of depth and offers possibilities for measuring non-planar structures. The levator ani hiatus has both convex and concave aspects. The aim of this study was to compare levator ani hiatus volume measurements obtained with conventional three-dimensional (3D) ultrasound and with a virtual reality measurement technique and to establish their reliability and agreement. 100 symptomatic patients visiting a tertiary pelvic floor clinic with a normal intact levator ani muscle diagnosed on translabial ultrasound were selected. Datasets were analyzed using a rendered volume with a slice thickness of 1.5 cm at the level of minimal hiatal dimensions during contraction. The levator area (in cm(2)) was measured and multiplied by 1.5 to get the levator ani hiatus volume in conventional 3D ultrasound (in cm(3)). Levator ani hiatus volume measurements were then measured semi-automatically in virtual reality (cm(3) ) using a segmentation algorithm. An intra- and interobserver analysis of reliability and agreement was performed in 20 randomly chosen patients. The mean difference between levator ani hiatus volume measurements performed using conventional 3D ultrasound and virtual reality was 0.10 (95% CI, - 0.15 to 0.35) cm(3). The intraclass correlation coefficient (ICC) comparing conventional 3D ultrasound with virtual reality measurements was > 0.96. Intra- and interobserver ICCs for conventional 3D ultrasound measurements were > 0.94 and for virtual reality measurements were > 0.97, indicating good reliability for both. Levator ani hiatus volume measurements performed using virtual reality were reliable and the results were similar to those obtained with conventional 3D ultrasonography. Copyright © 2012 ISUOG. Published by John Wiley & Sons, Ltd.
Pietrzak, Eva; Pullman, Stephen; McGuire, Annabel
2014-08-01
This article reviews the available literature about the use of novel methods of rehabilitation using virtual reality interventions for people living with posttraumatic brain injuries. The MEDLINE, EMBASE, SCOPUS, and Cochrane Library databases were searched using the terms "virtual reality" OR "video games" AND "traumatic brain injury." Included studies investigated therapeutic use of virtual reality in adults with a brain trauma resulting from acquired closed head injury, reported outcomes that included measures of motor or cognitive functionality, and were published in a peer-reviewed journal written in English. Eighteen articles fulfilled inclusion criteria. Eight were case studies, five studies had a quasi-experimental design with a pre-post comparison, and five were pilot randomized control trials or comparative studies. The virtual reality systems used were commercial or custom designed for the study and ranged from expensive, fully immersive systems to cheap online games or videogames. In before-after comparisons, improvements in balance were seen in four case studies and two small randomized control trials. Between-group comparisons in these randomized control trials showed no difference between virtual reality and traditional therapy. Post-training improvements were also seen for upper extremity functions (five small studies) and for various cognitive function measures (four case studies and one pilot randomized control trial). Attitudes of participants toward virtual reality interventions was more positive than for traditional therapy (three studies). The evidence that the use of virtual reality in rehabilitation of traumatic brain injury improves motor and cognitive functionality is currently very limited. However, this approach has the potential to provide alternative, possibly more affordable and available rehabilitation therapy for traumatic brain injury in settings where access to therapy is limited by geographical or financial constraints.
A virtual tour of virtual reality
NASA Astrophysics Data System (ADS)
Harris, Margaret
2018-03-01
Virtual-reality glasses might still be on the starting blocks, but plenty of companies are working on the technology. Margaret Harris tries on some examples at the Photonics West show in San Francisco
The effects of virtual reality game exercise on balance and gait of the elderly
Park, Eun-Cho; Kim, Seong-Gil; Lee, Chae-Woo
2015-01-01
[Purpose] The aim of this study was to examine the effects of ball exercise as a general exercise on the balance abilities of elderly individuals by comparing ball exercise with virtual reality exercise. [Subjects and Methods] Thirty elderly individuals residing in communities were randomly divided into a virtual reality game group and a ball exercise group and conducted exercise for 30 min 3 times a week for 8 weeks. [Results] Step length increased significantly, and the average sway speed and Timed Up and Go time significantly decreased in both groups. A comparison of sway length after the intervention between the two groups revealed that the virtual reality game exercise resulted in a reduction than the ball exercise. [Conclusion] The results of this study indicated that the virtual reality game exercise may improve balance and gait of elderly individuals in communities. PMID:25995578
Rosenthal, Rachel; Hamel, Christian; Oertli, Daniel; Demartines, Nicolas; Gantert, Walter A
2010-08-01
The aim of the present study was to investigate whether trainees' performance on a virtual reality angled laparoscope navigation task correlates with scores obtained on a validated conventional test of spatial ability. 56 participants of a surgery workshop performed an angled laparoscope navigation task on the Xitact LS 500 virtual reality Simulator. Performance parameters were correlated with the score of a validated paper-and-pencil test of spatial ability. Performance at the conventional spatial ability test significantly correlated with performance at the virtual reality task for overall task score (p < 0.001), task completion time (p < 0.001) and economy of movement (p = 0.035), not for endoscope travel speed (p = 0.947). In conclusion, trainees' performance in a standardized virtual reality camera navigation task correlates with their innate spatial ability. This VR session holds potential to serve as an assessment tool for trainees.
NASA Astrophysics Data System (ADS)
Rengganis, Y. A.; Safrodin, M.; Sukaridhoto, S.
2018-01-01
Virtual Reality Laboratory (VR Lab) is an innovation for conventional learning media which show us whole learning process in laboratory. There are many tools and materials are needed by user for doing practical in it, so user could feel new learning atmosphere by using this innovation. Nowadays, technologies more sophisticated than before. So it would carry in education and it will be more effective, efficient. The Supported technologies are needed us for making VR Lab such as head mounted display device and hand motion gesture device. The integration among them will be used us for making this research. Head mounted display device for viewing 3D environment of virtual reality laboratory. Hand motion gesture device for catching user real hand and it will be visualized in virtual reality laboratory. Virtual Reality will show us, if using the newest technologies in learning process it could make more interesting and easy to understand.
Visual field examination method using virtual reality glasses compared with the Humphrey perimeter.
Tsapakis, Stylianos; Papaconstantinou, Dimitrios; Diagourtas, Andreas; Droutsas, Konstantinos; Andreanos, Konstantinos; Moschos, Marilita M; Brouzas, Dimitrios
2017-01-01
To present a visual field examination method using virtual reality glasses and evaluate the reliability of the method by comparing the results with those of the Humphrey perimeter. Virtual reality glasses, a smartphone with a 6 inch display, and software that implements a fast-threshold 3 dB step staircase algorithm for the central 24° of visual field (52 points) were used to test 20 eyes of 10 patients, who were tested in a random and consecutive order as they appeared in our glaucoma department. The results were compared with those obtained from the same patients using the Humphrey perimeter. High correlation coefficient ( r =0.808, P <0.0001) was found between the virtual reality visual field test and the Humphrey perimeter visual field. Visual field examination results using virtual reality glasses have a high correlation with the Humphrey perimeter allowing the method to be suitable for probable clinical use.
[Real patients in virtual reality: the link between phantom heads and clinical dentistry].
Serrano, C M; Wesselink, P R; Vervoorn, J M
2018-05-01
Preclinical training in phantom heads has until now been considered the 'gold standard' for restorative dental education, but the transition from preclinic to the treatment of real patients has remained a challenge. With the introduction of the latest generation of virtual reality simulators, students and dental practitioners can make digital impressions of their patients in virtual reality models and practice procedures in virtual reality before clinically performing them. In this way, clinical decisions can be investigated and practiced prior to actual treatment, enhancing the safety of the treatment and the self-confidence to perform it. With the 3M™ True Definition Scanner and the Moog Simodont Dental Trainer, 3 masters students and a general dental practitioner practiced their procedures in virtual reality prior to performing them on real patients. They were very satisfied with this preparation and the result of the treatment.
Virtual reality, augmented reality…I call it i-Reality.
Grossmann, Rafael J
2015-01-01
The new term improved reality (i-Reality) is suggested to include virtual reality (VR) and augmented reality (AR). It refers to a real world that includes improved, enhanced and digitally created features that would offer an advantage on a particular occasion (i.e., a medical act). I-Reality may help us bridge the gap between the high demand for medical providers and the low supply of them by improving the interaction between providers and patients.
Research on three-dimensional visualization based on virtual reality and Internet
NASA Astrophysics Data System (ADS)
Wang, Zongmin; Yang, Haibo; Zhao, Hongling; Li, Jiren; Zhu, Qiang; Zhang, Xiaohong; Sun, Kai
2007-06-01
To disclose and display water information, a three-dimensional visualization system based on Virtual Reality (VR) and Internet is researched for demonstrating "digital water conservancy" application and also for routine management of reservoir. To explore and mine in-depth information, after completion of modeling high resolution DEM with reliable quality, topographical analysis, visibility analysis and reservoir volume computation are studied. And also, some parameters including slope, water level and NDVI are selected to classify easy-landslide zone in water-level-fluctuating zone of reservoir area. To establish virtual reservoir scene, two kinds of methods are used respectively for experiencing immersion, interaction and imagination (3I). First virtual scene contains more detailed textures to increase reality on graphical workstation with virtual reality engine Open Scene Graph (OSG). Second virtual scene is for internet users with fewer details for assuring fluent speed.
ViRPET--combination of virtual reality and PET brain imaging
Majewski, Stanislaw; Brefczynski-Lewis, Julie
2017-05-23
Various methods, systems and apparatus are provided for brain imaging during virtual reality stimulation. In one example, among others, a system for virtual ambulatory environment brain imaging includes a mobile brain imager configured to obtain positron emission tomography (PET) scans of a subject in motion, and a virtual reality (VR) system configured to provide one or more stimuli to the subject during the PET scans. In another example, a method for virtual ambulatory environment brain imaging includes providing stimulation to a subject through a virtual reality (VR) system; and obtaining a positron emission tomography (PET) scan of the subject while moving in response to the stimulation from the VR system. The mobile brain imager can be positioned on the subject with an array of imaging photodetector modules distributed about the head of the subject.
Multisensory Integration in the Virtual Hand Illusion with Active Movement
Satoh, Satoru; Hachimura, Kozaburo
2016-01-01
Improving the sense of immersion is one of the core issues in virtual reality. Perceptual illusions of ownership can be perceived over a virtual body in a multisensory virtual reality environment. Rubber Hand and Virtual Hand Illusions showed that body ownership can be manipulated by applying suitable visual and tactile stimulation. In this study, we investigate the effects of multisensory integration in the Virtual Hand Illusion with active movement. A virtual xylophone playing system which can interactively provide synchronous visual, tactile, and auditory stimulation was constructed. We conducted two experiments regarding different movement conditions and different sensory stimulations. Our results demonstrate that multisensory integration with free active movement can improve the sense of immersion in virtual reality. PMID:27847822
The Role of Virtual Articulator in Prosthetic and Restorative Dentistry
Aljanakh, Mohammad
2014-01-01
Virtual reality is a computer based technology linked with the future of dentistry and dental practice. The virtual articulator is one such application in prosthetic and restorative dentistry based on virtual reality that will significantly reduce the limitations of the mechanical articulator, and by simulation of real patient data, allow analyses with regard to static and dynamic occlusion as well as to jaw relation. It is the purpose of this article to present the concepts and strategies for a future replacement of the mechanical articulator by a virtual one. Also, a brief note on virtual reality haptic system has been highlighted along with newly developed touch enabled virtual articulator. PMID:25177664
Measurement Tools for the Immersive Visualization Environment: Steps Toward the Virtual Laboratory.
Hagedorn, John G; Dunkers, Joy P; Satterfield, Steven G; Peskin, Adele P; Kelso, John T; Terrill, Judith E
2007-01-01
This paper describes a set of tools for performing measurements of objects in a virtual reality based immersive visualization environment. These tools enable the use of the immersive environment as an instrument for extracting quantitative information from data representations that hitherto had be used solely for qualitative examination. We provide, within the virtual environment, ways for the user to analyze and interact with the quantitative data generated. We describe results generated by these methods to obtain dimensional descriptors of tissue engineered medical products. We regard this toolbox as our first step in the implementation of a virtual measurement laboratory within an immersive visualization environment.
Effect of virtual reality training on laparoscopic surgery: randomised controlled trial
Soerensen, Jette L; Grantcharov, Teodor P; Dalsgaard, Torur; Schouenborg, Lars; Ottosen, Christian; Schroeder, Torben V; Ottesen, Bent S
2009-01-01
Objective To assess the effect of virtual reality training on an actual laparoscopic operation. Design Prospective randomised controlled and blinded trial. Setting Seven gynaecological departments in the Zeeland region of Denmark. Participants 24 first and second year registrars specialising in gynaecology and obstetrics. Interventions Proficiency based virtual reality simulator training in laparoscopic salpingectomy and standard clinical education (controls). Main outcome measure The main outcome measure was technical performance assessed by two independent observers blinded to trainee and training status using a previously validated general and task specific rating scale. The secondary outcome measure was operation time in minutes. Results The simulator trained group (n=11) reached a median total score of 33 points (interquartile range 32-36 points), equivalent to the experience gained after 20-50 laparoscopic procedures, whereas the control group (n=10) reached a median total score of 23 (22-27) points, equivalent to the experience gained from fewer than five procedures (P<0.001). The median total operation time in the simulator trained group was 12 minutes (interquartile range 10-14 minutes) and in the control group was 24 (20-29) minutes (P<0.001). The observers’ inter-rater agreement was 0.79. Conclusion Skills in laparoscopic surgery can be increased in a clinically relevant manner using proficiency based virtual reality simulator training. The performance level of novices was increased to that of intermediately experienced laparoscopists and operation time was halved. Simulator training should be considered before trainees carry out laparoscopic procedures. Trial registration ClinicalTrials.gov NCT00311792. PMID:19443914
Spatial perception predicts laparoscopic skills on virtual reality laparoscopy simulator.
Hassan, I; Gerdes, B; Koller, M; Dick, B; Hellwig, D; Rothmund, M; Zielke, A
2007-06-01
This study evaluates the influence of visual-spatial perception on laparoscopic performance of novices with a virtual reality simulator (LapSim(R)). Twenty-four novices completed standardized tests of visual-spatial perception (Lameris Toegepaste Natuurwetenschappelijk Onderzoek [TNO] Test(R) and Stumpf-Fay Cube Perspectives Test(R)) and laparoscopic skills were assessed objectively, while performing 1-h practice sessions on the LapSim(R), comprising of coordination, cutting, and clip application tasks. Outcome variables included time to complete the tasks, economy of motion as well as total error scores, respectively. The degree of visual-spatial perception correlated significantly with laparoscopic performance on the LapSim(R) scores. Participants with a high degree of spatial perception (Group A) performed the tasks faster than those (Group B) who had a low degree of spatial perception (p = 0.001). Individuals with a high degree of spatial perception also scored better for economy of motion (p = 0.021), tissue damage (p = 0.009), and total error (p = 0.007). Among novices, visual-spatial perception is associated with manual skills performed on a virtual reality simulator. This result may be important for educators to develop adequate training programs that can be individually adapted.
Kawaguchi, Koji; Egi, Hiroyuki; Hattori, Minoru; Sawada, Hiroyuki; Suzuki, Takahisa; Ohdan, Hideki
2014-10-01
Virtual reality surgical simulators are becoming popular as a means of providing trainees with an opportunity to practice laparoscopic skills. The Lap-X (Epona Medical, Rotterdam, the Netherlands) is a novel VR simulator for training basic skills in laparoscopic surgery. The objective of this study was to validate the LAP-X laparoscopic virtual reality simulator by assessing the face and construct validity in order to determine whether the simulator is adequate for basic skills training. The face and content validity were evaluated using a structured questionnaire. To assess the construct validity, the participants, nine expert surgeons (median age: 40 (32-45)) (>100 laparoscopic procedures) and 11 novices performed three basic laparoscopic tasks using the Lap-X. The participants reported a high level of content validity. No significant differences were found between the expert surgeons and the novices (Ps > 0.246). The performance of the expert surgeons on the three tasks was significantly better than that of the novices in all parameters (Ps < 0.05). This study demonstrated the face, content and construct validity of the Lap-X. The Lap-X holds real potential as a home and hospital training device.
Virtual reality and the unfolding of higher dimensions
NASA Astrophysics Data System (ADS)
Aguilera, Julieta C.
2006-02-01
As virtual/augmented reality evolves, the need for spaces that are responsive to structures independent from three dimensional spatial constraints, become apparent. The visual medium of computer graphics may also challenge these self imposed constraints. If one can get used to how projections affect 3D objects in two dimensions, it may also be possible to compose a situation in which to get used to the variations that occur while moving through higher dimensions. The presented application is an enveloping landscape of concave and convex forms, which are determined by the orientation and displacement of the user in relation to a grid made of tesseracts (cubes in four dimensions). The interface accepts input from tridimensional and four-dimensional transformations, and smoothly displays such interactions in real-time. The motion of the user becomes the graphic element whereas the higher dimensional grid references to his/her position relative to it. The user learns how motion inputs affect the grid, recognizing a correlation between the input and the transformations. Mapping information to complex grids in virtual reality is valuable for engineers, artists and users in general because navigation can be internalized like a dance pattern, and further engage us to maneuver space in order to know and experience.
Research on Collaborative Technology in Distributed Virtual Reality System
NASA Astrophysics Data System (ADS)
Lei, ZhenJiang; Huang, JiJie; Li, Zhao; Wang, Lei; Cui, JiSheng; Tang, Zhi
2018-01-01
Distributed virtual reality technology applied to the joint training simulation needs the CSCW (Computer Supported Cooperative Work) terminal multicast technology to display and the HLA (high-level architecture) technology to ensure the temporal and spatial consistency of the simulation, in order to achieve collaborative display and collaborative computing. In this paper, the CSCW’s terminal multicast technology has been used to modify and expand the implementation framework of HLA. During the simulation initialization period, this paper has used the HLA statement and object management service interface to establish and manage the CSCW network topology, and used the HLA data filtering mechanism for each federal member to establish the corresponding Mesh tree. During the simulation running period, this paper has added a new thread for the RTI and the CSCW real-time multicast interactive technology into the RTI, so that the RTI can also use the window message mechanism to notify the application update the display screen. Through many applications of submerged simulation training in substation under the operation of large power grid, it is shown that this paper has achieved satisfactory training effect on the collaborative technology used in distributed virtual reality simulation.
NASA Astrophysics Data System (ADS)
Chao, Nan; Liu, Yong-kuo; Xia, Hong; Ayodeji, Abiodun; Bai, Lu
2018-03-01
During the decommissioning of nuclear facilities, a large number of cutting and demolition activities are performed, which results in a frequent change in the structure and produce many irregular objects. In order to assess dose rates during the cutting and demolition process, a flexible dose assessment method for arbitrary geometries and radiation sources was proposed based on virtual reality technology and Point-Kernel method. The initial geometry is designed with the three-dimensional computer-aided design tools. An approximate model is built automatically in the process of geometric modeling via three procedures namely: space division, rough modeling of the body and fine modeling of the surface, all in combination with collision detection of virtual reality technology. Then point kernels are generated by sampling within the approximate model, and when the material and radiometric attributes are inputted, dose rates can be calculated with the Point-Kernel method. To account for radiation scattering effects, buildup factors are calculated with the Geometric-Progression formula in the fitting function. The effectiveness and accuracy of the proposed method was verified by means of simulations using different geometries and the dose rate results were compared with that derived from CIDEC code, MCNP code and experimental measurements.
Virtual reality exposure therapy for combat-related posttraumatic stress disorder.
Rothbaum, Barbara O; Rizzo, Albert Skip; Difede, JoAnn
2010-10-01
Posttraumatic stress disorder (PTSD) is a chronic, debilitating, psychological condition that occurs in a subset of individuals who experience or witness life-threatening traumatic events. PTSD is highly prevalent in those who served in the military. In this paper, we present the underlying theoretical foundations and existing research on virtual reality exposure therapy, a recently emerging treatment for PTSD. Three virtual reality scenarios used to treat PTSD in active duty military and combat veterans and survivors of terrorism are presented: Virtual Vietnam, Virtual Iraq, and Virtual World Trade Center. Preliminary results of ongoing trials are presented. © 2010 Association for Research in Nervous and Mental Disease.
Augmenting the Thermal Flux Experiment: A Mixed Reality Approach with the HoloLens
ERIC Educational Resources Information Center
Strzys, M. P.; Kapp, S.; Thees, M.; Kuhn, J.; Lukowicz, P.; Knierim, P.; Schmidt, A.
2017-01-01
In the field of Virtual Reality (VR) and Augmented Reality (AR), technologies have made huge progress during the last years and also reached the field of education. The virtuality continuum, ranging from pure virtuality on one side to the real world on the other, has been successfully covered by the use of immersive technologies like head-mounted…
Physical Models and Virtual Reality Simulators in Otolaryngology.
Javia, Luv; Sardesai, Maya G
2017-10-01
The increasing role of simulation in the medical education of future otolaryngologists has followed suit with other surgical disciplines. Simulators make it possible for the resident to explore and learn in a safe and less stressful environment. The various subspecialties in otolaryngology use physical simulators and virtual-reality simulators. Although physical simulators allow the operator to make direct contact with its components, virtual-reality simulators allow the operator to interact with an environment that is computer generated. This article gives an overview of the various types of physical simulators and virtual-reality simulators used in otolaryngology that have been reported in the literature. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
De Mauro, Alessandro; Ardanza, Aitor; Monge, Esther; Molina Rueda, Francisco
2013-03-01
Several studies have shown that both virtual and augmented reality are technologies suitable for rehabilitation therapy due to the inherent ability of simulating real daily life activities while improving patient motivation. In this paper we will first present the state of the art in the use of virtual and augmented reality applications for rehabilitation of motor disorders and second we will focus on the analysis of the results of our project. In particular, requirements of patients with cerebrovascular accidents, spinal cord injuries and cerebral palsy to the use of virtual and augmented reality systems will be detailed.
Alleviating travel anxiety through virtual reality and narrated video technology.
Ahn, J C; Lee, O
2013-01-01
This study presents an empirical evidence of benefit of narrative video clips in embedded virtual reality websites of hotels for relieving travel anxiety. Even though it was proven that virtual reality functions do provide some relief in travel anxiety, a stronger virtual reality website can be built when narrative video clips that show video clips with narration about important aspects of the hotel. We posit that these important aspects are 1. Escape route and 2. Surrounding neighborhood information, which are derived from the existing research on anxiety disorder as well as travel anxiety. Thus we created a video clip that showed and narrated about the escape route from the hotel room, another video clip that showed and narrated about surrounding neighborhood. We then conducted experiments with this enhanced virtual reality website of a hotel by having human subjects play with the website and fill out a questionnaire. The result confirms our hypothesis that there is a statistically significant relationship between the degree of travel anxiety and psychological relief caused by the use of embedded virtual reality functions with narrative video clips of a hotel website (Tab. 2, Fig. 3, Ref. 26).
Towards Gesture-Based Multi-User Interactions in Collaborative Virtual Environments
NASA Astrophysics Data System (ADS)
Pretto, N.; Poiesi, F.
2017-11-01
We present a virtual reality (VR) setup that enables multiple users to participate in collaborative virtual environments and interact via gestures. A collaborative VR session is established through a network of users that is composed of a server and a set of clients. The server manages the communication amongst clients and is created by one of the users. Each user's VR setup consists of a Head Mounted Display (HMD) for immersive visualisation, a hand tracking system to interact with virtual objects and a single-hand joypad to move in the virtual environment. We use Google Cardboard as a HMD for the VR experience and a Leap Motion for hand tracking, thus making our solution low cost. We evaluate our VR setup though a forensics use case, where real-world objects pertaining to a simulated crime scene are included in a VR environment, acquired using a smartphone-based 3D reconstruction pipeline. Users can interact using virtual gesture-based tools such as pointers and rulers.
Virtual-reality-based system for controlled study of cataplexy
NASA Astrophysics Data System (ADS)
Augustine, Kurt E.; Cameron, Bruce M.; Camp, Jon J.; Krahn, Lois E.; Robb, Richard A.
2002-05-01
Cataplexy is a sudden loss of voluntary muscle control experienced by narcolepsy patients. It is usually triggered by strong, spontaneous emotions and is more common in times of stress. The Sleep Disorders Unit and the Biomedical Imaging Resource at Mayo Clinic are developing interactive display technology for reliably inducing cataplexy during clinical monitoring. The project is referred to as the Cataplexy/Narcolepsy Activation Program, or CatNAP. We have developed an automobile driving simulation that introduces humorous, surprising, and stress-inducing events and objects as the patient attempts to navigate a vehicle through a virtual town. The patient wears a head-mounted display and controls the vehicle via a driving simulator steering wheel and pedal cluster. As the patient attempts to drive through the town, various objects, sounds or conditions occur that distract, startle, frustrate or amuse. These responses may trigger a cataplectic episode, which can then be clinically evaluated. We believe CatNAP is a novel and innovative example of the effective application of virtual reality technology to study an important clinical problem that has resisted previous approaches. An evaluation phase with volunteer patients previously diagnosed with cataplexy has been completed. The prototype system is being prepared for a full clinical study.
The 'mad scientists': psychoanalysis, dream and virtual reality.
Leclaire, Marie
2003-04-01
The author explores the concept of reality-testing as a means of assessing the relationship with reality that prevails in dream and in virtual reality. Based on a model developed by Jean Laplanche, she compares these activities in detail in order to determine their respective independence from the function of reality-testing. By carefully examining the concept of hallucination in the writings of Freud and Daniel Dennett, the author seeks to pinpoint the specific modalities of interaction between perceptions, ideas, wishes and actions that converge in the 'belief' and in the 'sense of reality'. The paper's main thesis consists of the distinction that it draws between immediacy-testing and reality-testing, with the further argument that this distinction not only dissipates the conceptual vagueness that generally surrounds the latter of the two concepts but also that it promotes a more precise analysis of the function of reality in dream and in virtual reality.
Multi-object detection and tracking technology based on hexagonal opto-electronic detector
NASA Astrophysics Data System (ADS)
Song, Yong; Hao, Qun; Li, Xiang
2008-02-01
A novel multi-object detection and tracking technology based on hexagonal opto-electronic detector is proposed, in which (1) a new hexagonal detector, which is composed of 6 linear CCDs, has been firstly developed to achieve the field of view of 360 degree, (2) to achieve the detection and tracking of multi-object with high speed, the object recognition criterions of Object Signal Width Criterion (OSWC) and Horizontal Scale Ratio Criterion (HSRC) are proposed. In this paper, Simulated Experiments have been carried out to verify the validity of the proposed technology, which show that the detection and tracking of multi-object can be achieved with high speed by using the proposed hexagonal detector and the criterions of OSWC and HSRC, indicating that the technology offers significant advantages in Photo-electric Detection, Computer Vision, Virtual Reality, Augment Reality, etc.
Rus-Calafell, M; Garety, P; Sason, E; Craig, T J K; Valmaggia, L R
2018-02-01
Over the last two decades, there has been a rapid increase of studies testing the efficacy and acceptability of virtual reality in the assessment and treatment of mental health problems. This systematic review was carried out to investigate the use of virtual reality in the assessment and the treatment of psychosis. Web of Science, PsychInfo, EMBASE, Scopus, ProQuest and PubMed databases were searched, resulting in the identification of 638 articles potentially eligible for inclusion; of these, 50 studies were included in the review. The main fields of research in virtual reality and psychosis are: safety and acceptability of the technology; neurocognitive evaluation; functional capacity and performance evaluation; assessment of paranoid ideation and auditory hallucinations; and interventions. The studies reviewed indicate that virtual reality offers a valuable method of assessing the presence of symptoms in ecologically valid environments, with the potential to facilitate learning new emotional and behavioural responses. Virtual reality is a promising method to be used in the assessment of neurocognitive deficits and the study of relevant clinical symptoms. Furthermore, preliminary findings suggest that it can be applied to the delivery of cognitive rehabilitation, social skills training interventions and virtual reality-assisted therapies for psychosis. The potential benefits for enhancing treatment are highlighted. Recommendations for future research include demonstrating generalisability to real-life settings, examining potential negative effects, larger sample sizes and long-term follow-up studies. The present review has been registered in the PROSPERO register: CDR 4201507776.
Fang, Te-Yung; Wang, Pa-Chun; Liu, Chih-Hsien; Su, Mu-Chun; Yeh, Shih-Ching
2014-02-01
Virtual reality simulation training may improve knowledge of anatomy and surgical skills. We evaluated a 3-dimensional, haptic, virtual reality temporal bone simulator for dissection training. The subjects were 7 otolaryngology residents (3 training sessions each) and 7 medical students (1 training session each). The virtual reality temporal bone simulation station included a computer with software that was linked to a force-feedback hand stylus, and the system recorded performance and collisions with vital anatomic structures. Subjects performed virtual reality dissections and completed questionnaires after the training sessions. Residents and students had favorable responses to most questions of the technology acceptance model (TAM) questionnaire. The average TAM scores were above neutral for residents and medical students in all domains, and the average TAM score for residents was significantly higher for the usefulness domain and lower for the playful domain than students. The average satisfaction questionnaire for residents showed that residents had greater overall satisfaction with cadaver temporal bone dissection training than training with the virtual reality simulator or plastic temporal bone. For medical students, the average comprehension score was significantly increased from before to after training for all anatomic structures. Medical students had significantly more collisions with the dura than residents. The residents had similar mean performance scores after the first and third training sessions for all dissection procedures. The virtual reality temporal bone simulator provided satisfactory training for otolaryngology residents and medical students. Copyright © 2013. Published by Elsevier Ireland Ltd.
Validation of virtual reality as a tool to understand and prevent child pedestrian injury.
Schwebel, David C; Gaines, Joanna; Severson, Joan
2008-07-01
In recent years, virtual reality has emerged as an innovative tool for health-related education and training. Among the many benefits of virtual reality is the opportunity for novice users to engage unsupervised in a safe environment when the real environment might be dangerous. Virtual environments are only useful for health-related research, however, if behavior in the virtual world validly matches behavior in the real world. This study was designed to test the validity of an immersive, interactive virtual pedestrian environment. A sample of 102 children and 74 adults was recruited to complete simulated road-crossings in both the virtual environment and the identical real environment. In both the child and adult samples, construct validity was demonstrated via significant correlations between behavior in the virtual and real worlds. Results also indicate construct validity through developmental differences in behavior; convergent validity by showing correlations between parent-reported child temperament and behavior in the virtual world; internal reliability of various measures of pedestrian safety in the virtual world; and face validity, as measured by users' self-reported perception of realism in the virtual world. We discuss issues of generalizability to other virtual environments, and the implications for application of virtual reality to understanding and preventing pediatric pedestrian injuries.
ERIC Educational Resources Information Center
O'Connor, Eileen A.; Domingo, Jelia
2017-01-01
With the advent of open source virtual environments, the associated cost reductions, and the more flexible options, avatar-based virtual reality environments are within reach of educators. By using and repurposing readily available virtual environments, instructors can bring engaging, community-building, and immersive learning opportunities to…
Computer Vision Assisted Virtual Reality Calibration
NASA Technical Reports Server (NTRS)
Kim, W.
1999-01-01
A computer vision assisted semi-automatic virtual reality (VR) calibration technology has been developed that can accurately match a virtual environment of graphically simulated three-dimensional (3-D) models to the video images of the real task environment.
Embodying compassion: a virtual reality paradigm for overcoming excessive self-criticism.
Falconer, Caroline J; Slater, Mel; Rovira, Aitor; King, John A; Gilbert, Paul; Antley, Angus; Brewin, Chris R
2014-01-01
Virtual reality has been successfully used to study and treat psychological disorders such as phobias and posttraumatic stress disorder but has rarely been applied to clinically-relevant emotions other than fear and anxiety. Self-criticism is a ubiquitous feature of psychopathology and can be treated by increasing levels of self-compassion. We exploited the known effects of identification with a virtual body to arrange for healthy female volunteers high in self-criticism to experience self-compassion from an embodied first-person perspective within immersive virtual reality. Whereas observation and practice of compassionate responses reduced self-criticism, the additional experience of embodiment also increased self-compassion and feelings of being safe. The results suggest potential new uses for immersive virtual reality in a range of clinical conditions.
Embodying Compassion: A Virtual Reality Paradigm for Overcoming Excessive Self-Criticism
Falconer, Caroline J.; Slater, Mel; Rovira, Aitor; King, John A.; Gilbert, Paul; Antley, Angus; Brewin, Chris R.
2014-01-01
Virtual reality has been successfully used to study and treat psychological disorders such as phobias and posttraumatic stress disorder but has rarely been applied to clinically-relevant emotions other than fear and anxiety. Self-criticism is a ubiquitous feature of psychopathology and can be treated by increasing levels of self-compassion. We exploited the known effects of identification with a virtual body to arrange for healthy female volunteers high in self-criticism to experience self-compassion from an embodied first-person perspective within immersive virtual reality. Whereas observation and practice of compassionate responses reduced self-criticism, the additional experience of embodiment also increased self-compassion and feelings of being safe. The results suggest potential new uses for immersive virtual reality in a range of clinical conditions. PMID:25389766
Kiryu, Tohru; So, Richard H Y
2007-09-25
Around three years ago, in the special issue on augmented and virtual reality in rehabilitation, the topics of simulator sickness was briefly discussed in relation to vestibular rehabilitation. Simulator sickness with virtual reality applications have also been referred to as visually induced motion sickness or cybersickness. Recently, study on cybersickness has been reported in entertainment, training, game, and medical environment in several journals. Virtual stimuli can enlarge sensation of presence, but they sometimes also evoke unpleasant sensation. In order to safely apply augmented and virtual reality for long-term rehabilitation treatment, sensation of presence and cybersickness should be appropriately controlled. This issue presents the results of five studies conducted to evaluate visually-induced effects and speculate influences of virtual rehabilitation. In particular, the influence of visual and vestibular stimuli on cardiovascular responses are reported in terms of academic contribution.
Kiryu, Tohru; So, Richard HY
2007-01-01
Around three years ago, in the special issue on augmented and virtual reality in rehabilitation, the topics of simulator sickness was briefly discussed in relation to vestibular rehabilitation. Simulator sickness with virtual reality applications have also been referred to as visually induced motion sickness or cybersickness. Recently, study on cybersickness has been reported in entertainment, training, game, and medical environment in several journals. Virtual stimuli can enlarge sensation of presence, but they sometimes also evoke unpleasant sensation. In order to safely apply augmented and virtual reality for long-term rehabilitation treatment, sensation of presence and cybersickness should be appropriately controlled. This issue presents the results of five studies conducted to evaluate visually-induced effects and speculate influences of virtual rehabilitation. In particular, the influence of visual and vestibular stimuli on cardiovascular responses are reported in terms of academic contribution. PMID:17894857
The Virtual Pelvic Floor, a tele-immersive educational environment.
Pearl, R. K.; Evenhouse, R.; Rasmussen, M.; Dech, F.; Silverstein, J. C.; Prokasy, S.; Panko, W. B.
1999-01-01
This paper describes the development of the Virtual Pelvic Floor, a new method of teaching the complex anatomy of the pelvic region utilizing virtual reality and advanced networking technology. Virtual reality technology allows improved visualization of three-dimensional structures over conventional media because it supports stereo vision, viewer-centered perspective, large angles of view, and interactivity. Two or more ImmersaDesk systems, drafting table format virtual reality displays, are networked together providing an environment where teacher and students share a high quality three-dimensional anatomical model, and are able to converse, see each other, and to point in three dimensions to indicate areas of interest. This project was realized by the teamwork of surgeons, medical artists and sculptors, computer scientists, and computer visualization experts. It demonstrates the future of virtual reality for surgical education and applications for the Next Generation Internet. Images Figure 1 Figure 2 Figure 3 PMID:10566378
A Neural Model of Visually Guided Steering, Obstacle Avoidance, and Route Selection
ERIC Educational Resources Information Center
Elder, David M.; Grossberg, Stephen; Mingolla, Ennio
2009-01-01
A neural model is developed to explain how humans can approach a goal object on foot while steering around obstacles to avoid collisions in a cluttered environment. The model uses optic flow from a 3-dimensional virtual reality environment to determine the position of objects on the basis of motion discontinuities and computes heading direction,…
Haptic, Virtual Interaction and Motor Imagery: Entertainment Tools and Psychophysiological Testing
Invitto, Sara; Faggiano, Chiara; Sammarco, Silvia; De Luca, Valerio; De Paolis, Lucio T.
2016-01-01
In this work, the perception of affordances was analysed in terms of cognitive neuroscience during an interactive experience in a virtual reality environment. In particular, we chose a virtual reality scenario based on the Leap Motion controller: this sensor device captures the movements of the user’s hand and fingers, which are reproduced on a computer screen by the proper software applications. For our experiment, we employed a sample of 10 subjects matched by age and sex and chosen among university students. The subjects took part in motor imagery training and immersive affordance condition (a virtual training with Leap Motion and a haptic training with real objects). After each training sessions the subject performed a recognition task, in order to investigate event-related potential (ERP) components. The results revealed significant differences in the attentional components during the Leap Motion training. During Leap Motion session, latencies increased in the occipital lobes, which are entrusted to visual sensory; in contrast, latencies decreased in the frontal lobe, where the brain is mainly activated for attention and action planning. PMID:26999151
Haptic, Virtual Interaction and Motor Imagery: Entertainment Tools and Psychophysiological Testing.
Invitto, Sara; Faggiano, Chiara; Sammarco, Silvia; De Luca, Valerio; De Paolis, Lucio T
2016-03-18
In this work, the perception of affordances was analysed in terms of cognitive neuroscience during an interactive experience in a virtual reality environment. In particular, we chose a virtual reality scenario based on the Leap Motion controller: this sensor device captures the movements of the user's hand and fingers, which are reproduced on a computer screen by the proper software applications. For our experiment, we employed a sample of 10 subjects matched by age and sex and chosen among university students. The subjects took part in motor imagery training and immersive affordance condition (a virtual training with Leap Motion and a haptic training with real objects). After each training sessions the subject performed a recognition task, in order to investigate event-related potential (ERP) components. The results revealed significant differences in the attentional components during the Leap Motion training. During Leap Motion session, latencies increased in the occipital lobes, which are entrusted to visual sensory; in contrast, latencies decreased in the frontal lobe, where the brain is mainly activated for attention and action planning.
A Study on Immersion and Presence of a Portable Hand Haptic System for Immersive Virtual Reality
Kim, Mingyu; Jeon, Changyu; Kim, Jinmo
2017-01-01
This paper proposes a portable hand haptic system using Leap Motion as a haptic interface that can be used in various virtual reality (VR) applications. The proposed hand haptic system was designed as an Arduino-based sensor architecture to enable a variety of tactile senses at low cost, and is also equipped with a portable wristband. As a haptic system designed for tactile feedback, the proposed system first identifies the left and right hands and then sends tactile senses (vibration and heat) to each fingertip (thumb and index finger). It is incorporated into a wearable band-type system, making its use easy and convenient. Next, hand motion is accurately captured using the sensor of the hand tracking system and is used for virtual object control, thus achieving interaction that enhances immersion. A VR application was designed with the purpose of testing the immersion and presence aspects of the proposed system. Lastly, technical and statistical tests were carried out to assess whether the proposed haptic system can provide a new immersive presence to users. According to the results of the presence questionnaire and the simulator sickness questionnaire, we confirmed that the proposed hand haptic system, in comparison to the existing interaction that uses only the hand tracking system, provided greater presence and a more immersive environment in the virtual reality. PMID:28513545
A Study on Immersion and Presence of a Portable Hand Haptic System for Immersive Virtual Reality.
Kim, Mingyu; Jeon, Changyu; Kim, Jinmo
2017-05-17
This paper proposes a portable hand haptic system using Leap Motion as a haptic interface that can be used in various virtual reality (VR) applications. The proposed hand haptic system was designed as an Arduino-based sensor architecture to enable a variety of tactile senses at low cost, and is also equipped with a portable wristband. As a haptic system designed for tactile feedback, the proposed system first identifies the left and right hands and then sends tactile senses (vibration and heat) to each fingertip (thumb and index finger). It is incorporated into a wearable band-type system, making its use easy and convenient. Next, hand motion is accurately captured using the sensor of the hand tracking system and is used for virtual object control, thus achieving interaction that enhances immersion. A VR application was designed with the purpose of testing the immersion and presence aspects of the proposed system. Lastly, technical and statistical tests were carried out to assess whether the proposed haptic system can provide a new immersive presence to users. According to the results of the presence questionnaire and the simulator sickness questionnaire, we confirmed that the proposed hand haptic system, in comparison to the existing interaction that uses only the hand tracking system, provided greater presence and a more immersive environment in the virtual reality.
Booth, Vicky; Masud, Tahir; Bath-Hextall, Fiona
Balance impairment can result in falls and reduced activities of daily living and function. Virtual reality and interactive gaming systems provide a novel and potentially environmentally flexible treatment option to improve postural stability and reduce falls in balance impaired populations. There are no existing systematic reviews in this topic area. To search, critically appraise and synthesise the best available evidence on whether virtual reality interventions, including interactive gaming systems, are effective at improving balance in adults with impaired balance. Adults with impaired, altered or reduced balance identified either through reduced balance outcome measure score or increased risk or incidence of falls.Types of interventions:Any virtual reality or interactive gaming systems used within a rehabilitative setting.The primary outcome was an objective measure of balance (i.e. balance outcome measure such as Berg Balance Score) or number and/or incidence of falls. Secondary outcome measures of interest included any adverse effects experienced, an outcome measure indicating functional balance (i.e. walking speed), quality of life (through use of an objective measure i.e. EuroQOL), and number of days in hospital due to falls.Types of studies:Randomised controlled trials (RCT). A three-stage strategy searched the following electronic databases: The Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE, EMBASE, AMED, CINAHL, PsycINFO, PsycBITE, OTseeker, Ei Compendex, Inspec, Current Controlled Trials, and the National Institute of Health Clinical Trials Database. The methodological quality of each included study was independently assessed using the Joanna Briggs Institute Meta Analysis of Statistics Assessment and Review Instrument (JBI-MAStARI) to systematically comment on influence of bias. Data was individually extracted from the included studies using the standardised JBI data extraction tool from JBI-MAStARI. Data was analysed using Review Manager 5 software. Results were expressed as mean difference (MD) with 95% confidence intervals for continuous outcomes. Meta-analysis was not possible due to the variation of the interventions given and small number of included trials; hence, a description of the results was given. Four studies were included in the systematic review. All the included studies used different types of virtual reality or interactive gaming interventions. Two of the included studies used the same balance outcome measure. There was a notable inconsistency of balance outcome measurement between all the included studies. No data was given regarding falls in any of the studies. A secondary outcome, the 10m walk test, was recorded in two of the studies. The four included studies had small sample sizes and poor methodological quality. Despite the presentation of statistically significant results, the clinical significance is questionable. The review can not recommend the inclusion of virtual reality or interactive gaming systems into the rehabilitation of balance impairment based on the results of the four included studies. Further investigation in this topic area is required.
ERIC Educational Resources Information Center
Orman, Evelyn K.
2016-01-01
This study examined the effects of virtual reality immersion with audio on eye contact, directional focus and focus of attention for novice wind band conductors. Participants (N = 34) included a control group (n = 12) and two virtual reality groups with (n = 10) and without (n = 12) head tracking. Participants completed conducting/score study…
ERIC Educational Resources Information Center
Merchant, Zahira; Goetz, Ernest T.; Keeney-Kennicutt, Wendy; Kwok, Oi-man; Cifuentes, Lauren; Davis, Trina J.
2012-01-01
We examined a model of the impact of a 3D desktop virtual reality environment on the learner characteristics (i.e. perceptual and psychological variables) that can enhance chemistry-related learning achievements in an introductory college chemistry class. The relationships between the 3D virtual reality features and the chemistry learning test as…
Future Cyborgs: Human-Machine Interface for Virtual Reality Applications
2007-04-01
FUTURE CYBORGS : HUMAN-MACHINE INTERFACE FOR VIRTUAL REALITY APPLICATIONS Robert R. Powell, Major, USAF April 2007 Blue Horizons...SUBTITLE Future Cyborgs : Human-Machine Interface for Virtual Reality Applications 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER...Nicholas Negroponte, Being Digital (New York: Alfred A Knopf, Inc, 1995), 123. 23 Ibid. 24 Andy Clark, Natural-Born Cyborgs (New York: Oxford
ERIC Educational Resources Information Center
Woodward, John
As part of a 3-year study to identify emerging issues and trends in technology for special education, this paper addresses the possible contributions of virtual reality technology to educational services for students with disabilities. An example of the use of virtual reality in medical imaging introduces the paper and leads to a brief review of…
ERIC Educational Resources Information Center
Bricken, Meredith; Byrne, Chris M.
The goal of this study was to take a first step in evaluating the potential of virtual reality (VR) as a learning environment. The context of the study was The Technology Academy, a technology-oriented summer day camp for students ages 5-18, where student activities center around hands-on exploration of new technology (e.g., robotics, MIDI digital…
Integrated Eye Tracking and Neural Monitoring for Enhanced Assessment of Mild TBI
2015-04-01
virtual reality driving simulator data acquisition. Data collection for the pilot study is nearly complete and data analyses are currently under way...Training for primary study procedures including neuropsychological testing, eye- tracking, virtual reality driving simulator, and EEG data acquisition is...the virtual reality driving simulator. Participants are instructed to drive along a coastal highway while performing the target detection task
Virtual reality and hallucination: a technoetic perspective
NASA Astrophysics Data System (ADS)
Slattery, Diana R.
2008-02-01
Virtual Reality (VR), especially in a technologically focused discourse, is defined by a class of hardware and software, among them head-mounted displays (HMDs), navigation and pointing devices; and stereoscopic imaging. This presentation examines the experiential aspect of VR. Putting "virtual" in front of "reality" modifies the ontological status of a class of experience-that of "reality." Reality has also been modified [by artists, new media theorists, technologists and philosophers] as augmented, mixed, simulated, artificial, layered, and enhanced. Modifications of reality are closely tied to modifications of perception. Media theorist Roy Ascott creates a model of three "VR's": Verifiable Reality, Virtual Reality, and Vegetal (entheogenically induced) Reality. The ways in which we shift our perceptual assumptions, create and verify illusions, and enter "the willing suspension of disbelief" that allows us entry into imaginal worlds is central to the experience of VR worlds, whether those worlds are explicitly representational (robotic manipulations by VR) or explicitly imaginal (VR artistic creations). The early rhetoric surrounding VR was interwoven with psychedelics, a perception amplified by Timothy Leary's presence on the historic SIGGRAPH panel, and the Wall Street Journal's tag of VR as "electronic LSD." This paper discusses the connections-philosophical, social-historical, and psychological-perceptual between these two domains.
HTC Vive MeVisLab integration via OpenVR for medical applications
Egger, Jan; Gall, Markus; Wallner, Jürgen; Boechat, Pedro; Hann, Alexander; Li, Xing; Chen, Xiaojun; Schmalstieg, Dieter
2017-01-01
Virtual Reality, an immersive technology that replicates an environment via computer-simulated reality, gets a lot of attention in the entertainment industry. However, VR has also great potential in other areas, like the medical domain, Examples are intervention planning, training and simulation. This is especially of use in medical operations, where an aesthetic outcome is important, like for facial surgeries. Alas, importing medical data into Virtual Reality devices is not necessarily trivial, in particular, when a direct connection to a proprietary application is desired. Moreover, most researcher do not build their medical applications from scratch, but rather leverage platforms like MeVisLab, MITK, OsiriX or 3D Slicer. These platforms have in common that they use libraries like ITK and VTK, and provide a convenient graphical interface. However, ITK and VTK do not support Virtual Reality directly. In this study, the usage of a Virtual Reality device for medical data under the MeVisLab platform is presented. The OpenVR library is integrated into the MeVisLab platform, allowing a direct and uncomplicated usage of the head mounted display HTC Vive inside the MeVisLab platform. Medical data coming from other MeVisLab modules can directly be connected per drag-and-drop to the Virtual Reality module, rendering the data inside the HTC Vive for immersive virtual reality inspection. PMID:28323840
HTC Vive MeVisLab integration via OpenVR for medical applications.
Egger, Jan; Gall, Markus; Wallner, Jürgen; Boechat, Pedro; Hann, Alexander; Li, Xing; Chen, Xiaojun; Schmalstieg, Dieter
2017-01-01
Virtual Reality, an immersive technology that replicates an environment via computer-simulated reality, gets a lot of attention in the entertainment industry. However, VR has also great potential in other areas, like the medical domain, Examples are intervention planning, training and simulation. This is especially of use in medical operations, where an aesthetic outcome is important, like for facial surgeries. Alas, importing medical data into Virtual Reality devices is not necessarily trivial, in particular, when a direct connection to a proprietary application is desired. Moreover, most researcher do not build their medical applications from scratch, but rather leverage platforms like MeVisLab, MITK, OsiriX or 3D Slicer. These platforms have in common that they use libraries like ITK and VTK, and provide a convenient graphical interface. However, ITK and VTK do not support Virtual Reality directly. In this study, the usage of a Virtual Reality device for medical data under the MeVisLab platform is presented. The OpenVR library is integrated into the MeVisLab platform, allowing a direct and uncomplicated usage of the head mounted display HTC Vive inside the MeVisLab platform. Medical data coming from other MeVisLab modules can directly be connected per drag-and-drop to the Virtual Reality module, rendering the data inside the HTC Vive for immersive virtual reality inspection.
Phé, Véronique; Cattarino, Susanna; Parra, Jérôme; Bitker, Marc-Olivier; Ambrogi, Vanina; Vaessen, Christophe; Rouprêt, Morgan
2017-06-01
The utility of the virtual-reality robotic simulator in training programmes has not been clearly evaluated. Our aim was to evaluate the impact of a virtual-reality robotic simulator-training programme on basic surgical skills. A simulator-training programme in robotic surgery, using the da Vinci Skills Simulator, was evaluated in a population including junior and seasoned surgeons, and non-physicians. Their performances on robotic dots and suturing-skin pod platforms before and after virtual-simulation training were rated anonymously by surgeons experienced in robotics. 39 participants were enrolled: 14 medical students and residents in surgery, 14 seasoned surgeons, 11 non-physicians. Junior and seasoned surgeons' performances on platforms were not significantly improved after virtual-reality robotic simulation in any of the skill domains, in contrast to non-physicians. The benefits of virtual-reality simulator training on several tasks to basic skills in robotic surgery were not obvious among surgeons in our initial and early experience with the simulator. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Virtual reality simulation: basic concepts and use in endoscopic neurosurgery training.
Cohen, Alan R; Lohani, Subash; Manjila, Sunil; Natsupakpong, Suriya; Brown, Nathan; Cavusoglu, M Cenk
2013-08-01
Virtual reality simulation is a promising alternative to training surgical residents outside the operating room. It is also a useful aide to anatomic study, residency training, surgical rehearsal, credentialing, and recertification. Surgical simulation is based on a virtual reality with varying degrees of immersion and realism. Simulators provide a no-risk environment for harmless and repeatable practice. Virtual reality has three main components of simulation: graphics/volume rendering, model behavior/tissue deformation, and haptic feedback. The challenge of accurately simulating the forces and tactile sensations experienced in neurosurgery limits the sophistication of a virtual simulator. The limited haptic feedback available in minimally invasive neurosurgery makes it a favorable subject for simulation. Virtual simulators with realistic graphics and force feedback have been developed for ventriculostomy, intraventricular surgery, and transsphenoidal pituitary surgery, thus allowing preoperative study of the individual anatomy and increasing the safety of the procedure. The authors also present experiences with their own virtual simulation of endoscopic third ventriculostomy.
So Wide a Web, So Little Time.
ERIC Educational Resources Information Center
McConville, David; And Others
1996-01-01
Discusses new trends in the World Wide Web. Highlights include multimedia; digitized audio-visual files; compression technology; telephony; virtual reality modeling language (VRML); open architecture; and advantages of Java, an object-oriented programming language, including platform independence, distributed development, and pay-per-use software.…
Simulation and Gaming: Directions, Issues, Ponderables.
ERIC Educational Resources Information Center
Uretsky, Michael
1995-01-01
Discusses the current use of simulation and gaming in a variety of settings. Describes advances in technology that facilitate the use of simulation and gaming, including computer power, computer networks, software, object-oriented programming, video, multimedia, virtual reality, and artificial intelligence. Considers the future use of simulation…
Ioannou, Ioanna; Kazmierczak, Edmund; Stern, Linda
2015-01-01
The use of virtual reality (VR) simulation for surgical training has gathered much interest in recent years. Despite increasing popularity and usage, limited work has been carried out in the use of automated objective measures to quantify the extent to which performance in a simulator resembles performance in the operating theatre, and the effects of simulator training on real world performance. To this end, we present a study exploring the effects of VR training on the performance of dentistry students learning a novel oral surgery task. We compare the performance of trainees in a VR simulator and in a physical setting involving ovine jaws, using a range of automated metrics derived by motion analysis. Our results suggest that simulator training improved the motion economy of trainees without adverse effects on task outcome. Comparison of surgical technique on the simulator with the ovine setting indicates that simulator technique is similar, but not identical to real world technique.
Application of virtual reality GIS in urban planning: an example in Huangdao district
NASA Astrophysics Data System (ADS)
Han, Yong; Qiao, Xin; Sun, Weichen; Zhang, Litao
2007-06-01
As an important development direction of GIS, Virtual Reality GIS was founded in 1950s. After 1990s, due to the fast development of its theory and the computer technology, Virtual Reality has been applied to many fields: military, aerospace, design, manufactory, information management, business, construction, city management, medical, education, etc.. The most famous project is the Virtual Los Angeles implemented by the Urban Simulation Team (UST) of UCLA. The main focus of the UST is a long-term effort to build a real-time Virtual Reality model of the entire Los Angeles basin for use by architects, urban planners, emergency response teams, and the government entities. When completed, the entire Virtual L.A. model will cover an area well in excess of 10000 square miles and will elegantly scale from satellite images to street level views accurate enough to allow the signs in the window of the shops and the graffiti on the walls to be legible. Till now, the virtual L.A. has been applied to urban environments and design analysis, transportation studies, historic reconstruction and education, etc. Compared to the early development abroad, the development of Virtual Reality GIS in China is relatively late. It is researched in some universities in early years. But recently, it has been attended by the populace and been used in many social fields: urban planning, environmental protection, historic protection and recovery, real estate, tourism, education etc.. The application of Virtual Reality in urban planning of Huangdao District, Qingdao City is introduced in this paper.
Virtual Reality: Real Promises and False Expectations.
ERIC Educational Resources Information Center
Homan, Willem J.
1994-01-01
Examines virtual reality (VR), and discusses the dilemma of defining VR, the limitations of the current technology, and the implications of VR for education. Highlights include a VR experience; human factors and the interface; and altered reality versus VR. (Author/AEF)
Assessment of wheelchair driving performance in a virtual reality-based simulator
Mahajan, Harshal P.; Dicianno, Brad E.; Cooper, Rory A.; Ding, Dan
2013-01-01
Objective To develop a virtual reality (VR)-based simulator that can assist clinicians in performing standardized wheelchair driving assessments. Design A completely within-subjects repeated measures design. Methods Participants drove their wheelchairs along a virtual driving circuit modeled after the Power Mobility Road Test (PMRT) and in a hallway with decreasing width. The virtual simulator was displayed on computer screen and VR screens and participants interacted with it using a set of instrumented rollers and a wheelchair joystick. Driving performances of participants were estimated and compared using quantitative metrics from the simulator. Qualitative ratings from two experienced clinicians were used to estimate intra- and inter-rater reliability. Results Ten regular wheelchair users (seven men, three women; mean age ± SD, 39.5 ± 15.39 years) participated. The virtual PMRT scores from the two clinicians show high inter-rater reliability (78–90%) and high intra-rater reliability (71–90%) for all test conditions. More research is required to explore user preferences and effectiveness of the two control methods (rollers and mathematical model) and the display screens. Conclusions The virtual driving simulator seems to be a promising tool for wheelchair driving assessment that clinicians can use to supplement their real-world evaluations. PMID:23820148
Jones, Jake S.
1999-01-01
An apparatus and method of issuing commands to a computer by a user interfacing with a virtual reality environment. To issue a command, the user directs gaze at a virtual button within the virtual reality environment, causing a perceptible change in the virtual button, which then sends a command corresponding to the virtual button to the computer, optionally after a confirming action is performed by the user, such as depressing a thumb switch.
ERIC Educational Resources Information Center
Jiman, Juhanita
This paper discusses the use of Virtual Reality (VR) in e-learning environments where an intelligent three-dimensional (3D) virtual person plays the role of an instructor. With the existence of this virtual instructor, it is hoped that the teaching and learning in the e-environment will be more effective and productive. This virtual 3D animated…
Mobile devices, Virtual Reality, Augmented Reality, and Digital Geoscience Education.
NASA Astrophysics Data System (ADS)
Crompton, H.; De Paor, D. G.; Whitmeyer, S. J.; Bentley, C.
2016-12-01
Mobile devices are playing an increasing role in geoscience education. Affordances include instructor-student communication and class management in large classrooms, virtual and augmented reality applications, digital mapping, and crowd-sourcing. Mobile technologies have spawned the sub field of mobile learning or m-learning, which is defined as learning across multiple contexts, through social and content interactions. Geoscientists have traditionally engaged in non-digital mobile learning via fieldwork, but digital devices are greatly extending the possibilities, especially for non-traditional students. Smartphones and tablets are the most common devices but smart glasses such as Pivothead enable live streaming of a first-person view (see for example, https://youtu.be/gWrDaYP5w58). Virtual reality headsets such as Google Cardboard create an immersive virtual field experience and digital imagery such as GigaPan and Structure from Motion enables instructors and/or students to create virtual specimens and outcrops that are sharable across the globe. Whereas virtual reality (VR) replaces the real world with a virtual representation, augmented reality (AR) overlays digital data on the live scene visible to the user in real time. We have previously reported on our use of the AR application called FreshAiR for geoscientific "egg hunts." The popularity of Pokémon Go demonstrates the potential of AR for mobile learning in the geosciences.
Vidal, Victoria L; Ohaeri, Beatrice M; John, Pamela; Helen, Delles
2013-01-01
This quasi-experimental study, with a control group and experimental group, compares the effectiveness of virtual reality simulators on developing phlebotomy skills of nursing students with the effectiveness of traditional methods of teaching. Performance of actual phlebotomy on a live client was assessed after training, using a standardized form. Findings showed that students who were exposed to the virtual reality simulator performed better in the following performance metrics: pain factor, hematoma formation, and number of reinsertions. This study confirms that the use of the virtual reality-based system to supplement the traditional method may be the optimal program for training.
2D virtual texture on 3D real object with coded structured light
NASA Astrophysics Data System (ADS)
Molinier, Thierry; Fofi, David; Salvi, Joaquim; Gorria, Patrick
2008-02-01
Augmented reality is used to improve color segmentation on human body or on precious no touch artifacts. We propose a technique to project a synthesized texture on real object without contact. Our technique can be used in medical or archaeological application. By projecting a suitable set of light patterns onto the surface of a 3D real object and by capturing images with a camera, a large number of correspondences can be found and the 3D points can be reconstructed. We aim to determine these points of correspondence between cameras and projector from a scene without explicit points and normals. We then project an adjusted texture onto the real object surface. We propose a global and automatic method to virtually texture a 3D real object.
The Influences of the 2D Image-Based Augmented Reality and Virtual Reality on Student Learning
ERIC Educational Resources Information Center
Liou, Hsin-Hun; Yang, Stephen J. H.; Chen, Sherry Y.; Tarng, Wernhuar
2017-01-01
Virtual reality (VR) learning environments can provide students with concepts of the simulated phenomena, but users are not allowed to interact with real elements. Conversely, augmented reality (AR) learning environments blend real-world environments so AR could enhance the effects of computer simulation and promote students' realistic experience.…
ERIC Educational Resources Information Center
Gavish, Nirit; Gutiérrez, Teresa; Webel, Sabine; Rodríguez, Jorge; Peveri, Matteo; Bockholt, Uli; Tecchia, Franco
2015-01-01
The current study evaluated the use of virtual reality (VR) and augmented reality (AR) platforms, developed within the scope of the SKILLS Integrated Project, for industrial maintenance and assembly (IMA) tasks training. VR and AR systems are now widely regarded as promising training platforms for complex and highly demanding IMA tasks. However,…
Virtual reality and planetary exploration
NASA Technical Reports Server (NTRS)
Mcgreevy, Michael W.
1992-01-01
Exploring planetary environments is central to NASA's missions and goals. A new computing technology called Virtual Reality has much to offer in support of planetary exploration. This technology augments and extends human presence within computer-generated and remote spatial environments. Historically, NASA has been a leader in many of the fundamental concepts and technologies that comprise Virtual Reality. Indeed, Ames Research Center has a central role in the development of this rapidly emerging approach to using computers. This ground breaking work has inspired researchers in academia, industry, and the military. Further, NASA's leadership in this technology has spun off new businesses, has caught the attention of the international business community, and has generated several years of positive international media coverage. In the future, Virtual Reality technology will enable greatly improved human-machine interactions for more productive planetary surface exploration. Perhaps more importantly, Virtual Reality technology will democratize the experience of planetary exploration and thereby broaden understanding of, and support for, this historic enterprise.
Virtual reality and planetary exploration
NASA Astrophysics Data System (ADS)
McGreevy, Michael W.
Exploring planetary environments is central to NASA's missions and goals. A new computing technology called Virtual Reality has much to offer in support of planetary exploration. This technology augments and extends human presence within computer-generated and remote spatial environments. Historically, NASA has been a leader in many of the fundamental concepts and technologies that comprise Virtual Reality. Indeed, Ames Research Center has a central role in the development of this rapidly emerging approach to using computers. This ground breaking work has inspired researchers in academia, industry, and the military. Further, NASA's leadership in this technology has spun off new businesses, has caught the attention of the international business community, and has generated several years of positive international media coverage. In the future, Virtual Reality technology will enable greatly improved human-machine interactions for more productive planetary surface exploration. Perhaps more importantly, Virtual Reality technology will democratize the experience of planetary exploration and thereby broaden understanding of, and support for, this historic enterprise.
Clinician perceptions of virtual reality to assess and treat returning veterans.
Kramer, Teresa L; Pyne, Jeffrey M; Kimbrell, Timothy A; Savary, Patricia E; Smith, Jeffrey L; Jegley, Susan M
2010-11-01
Implementation of evidence-based, innovative treatments is necessary to address posttraumatic stress disorder (PTSD) and related mental health problems of Operation Enduring Freedom and Operation Iraqi Freedom (OEF-OIF) military service personnel. The purpose of this study was to characterize mental health clinicians' perceptions of virtual reality as an assessment tool or adjunct to exposure therapy. Focus groups were conducted with 18 prescribing and nonprescribing mental health clinicians within the Veterans Health Administration. Group discussion was digitally recorded, downloaded into Ethnograph software, and coded to arrive at primary, secondary, and tertiary themes. Most frequently mentioned barriers pertained to aspects of virtual reality, followed by veteran characteristics. Organizational barriers were more relevant when implementing virtual reality as a treatment adjunct. Although the study demonstrated that use of virtual reality as a therapy was feasible and acceptable to clinicians, successful implementation of the technology as an assessment and treatment tool will depend on consideration of the facilitators and barriers that were identified.
Digital fabrication of multi-material biomedical objects.
Cheung, H H; Choi, S H
2009-12-01
This paper describes a multi-material virtual prototyping (MMVP) system for modelling and digital fabrication of discrete and functionally graded multi-material objects for biomedical applications. The MMVP system consists of a DMMVP module, an FGMVP module and a virtual reality (VR) simulation module. The DMMVP module is used to model discrete multi-material (DMM) objects, while the FGMVP module is for functionally graded multi-material (FGM) objects. The VR simulation module integrates these two modules to perform digital fabrication of multi-material objects, which can be subsequently visualized and analysed in a virtual environment to optimize MMLM processes for fabrication of product prototypes. Using the MMVP system, two biomedical objects, including a DMM human spine and an FGM intervertebral disc spacer are modelled and digitally fabricated for visualization and analysis in a VR environment. These studies show that the MMVP system is a practical tool for modelling, visualization, and subsequent fabrication of biomedical objects of discrete and functionally graded multi-materials for biomedical applications. The system may be adapted to control MMLM machines with appropriate hardware for physical fabrication of biomedical objects.
Video capture virtual reality as a flexible and effective rehabilitation tool
Weiss, Patrice L; Rand, Debbie; Katz, Noomi; Kizony, Rachel
2004-01-01
Video capture virtual reality (VR) uses a video camera and software to track movement in a single plane without the need to place markers on specific bodily locations. The user's image is thereby embedded within a simulated environment such that it is possible to interact with animated graphics in a completely natural manner. Although this technology first became available more than 25 years ago, it is only within the past five years that it has been applied in rehabilitation. The objective of this article is to describe the way this technology works, to review its assets relative to other VR platforms, and to provide an overview of some of the major studies that have evaluated the use of video capture technologies for rehabilitation. PMID:15679949
Virtual reality laparoscopic simulator for assessment in gynaecology.
Gor, Mounna; McCloy, Rory; Stone, Robert; Smith, Anthony
2003-02-01
A validated virtual reality laparoscopic simulator minimally invasive surgical trainer (MIST) 2 was used to assess the psychomotor skills of 21 gynaecologists (2 consultants, 8 registrars and 11 senior house officers). Nine gynaecologists failed to complete the VR tasks at the first attempt and were excluded for sequential evaluation. Each of the remaining 12 gynaecologists were tested on MIST 2 on four occasions within four weeks. The MIST 2 simulator provided quantitative data on time to complete tasks, errors, economy of movement and economy of diathermy use--for both right and left hand performance. The results show a significant early learning curve for the majority of tasks which plateaued by the third session. This suggests a high quality surgeon-computer interface. MIST 2 provides objective assessment of laparoscopic skills in gynaecologists.
Virtual Reality and Simulation in Neurosurgical Training.
Bernardo, Antonio
2017-10-01
Recent biotechnological advances, including three-dimensional microscopy and endoscopy, virtual reality, surgical simulation, surgical robotics, and advanced neuroimaging, have continued to mold the surgeon-computer relationship. For developing neurosurgeons, such tools can reduce the learning curve, improve conceptual understanding of complex anatomy, and enhance visuospatial skills. We explore the current and future roles and application of virtual reality and simulation in neurosurgical training. Copyright © 2017 Elsevier Inc. All rights reserved.
Lee, Hyung Young; Kim, You Lim; Lee, Suk Min
2015-06-01
[Purpose] This study aimed to investigate the clinical effects of virtual reality-based training and task-oriented training on balance performance in stroke patients. [Subjects and Methods] The subjects were randomly allocated to 2 groups: virtual reality-based training group (n = 12) and task-oriented training group (n = 12). The patients in the virtual reality-based training group used the Nintendo Wii Fit Plus, which provided visual and auditory feedback as well as the movements that enabled shifting of weight to the right and left sides, for 30 min/day, 3 times/week for 6 weeks. The patients in the task-oriented training group practiced additional task-oriented programs for 30 min/day, 3 times/week for 6 weeks. Patients in both groups also underwent conventional physical therapy for 60 min/day, 5 times/week for 6 weeks. [Results] Balance and functional reach test outcomes were examined in both groups. The results showed that the static balance and functional reach test outcomes were significantly higher in the virtual reality-based training group than in the task-oriented training group. [Conclusion] This study suggested that virtual reality-based training might be a more feasible and suitable therapeutic intervention for dynamic balance in stroke patients compared to task-oriented training.
Laparoscopic baseline ability assessment by virtual reality.
Madan, Atul K; Frantzides, Constantine T; Sasso, Lisa M
2005-02-01
Assessment of any surgical skill is time-consuming and difficult. Currently, there are no accepted metrics for most surgical skills, especially laparoscopic skills. Virtual reality has been utilized for laparoscopic training of surgical residents. Our hypothesis is that this technology can be utilized for laparoscopic ability metrics. This study involved medical students with no previous laparoscopic experience. All students were taken into a porcine laboratory in order to assess two operative tasks (measuring a piece of bowel and placing a piece of bowel into a laparoscopic bag). Then they were taken into an inanimate lab with a Minimally Invasive Surgery Trainer-Virtual Reality (MIST-VR). Each student repeatedly performed one task (placing a virtual reality ball into a receptacle). The students' scores and times from the animate lab were compared with average economy of movement and times from the MIST-VR. The MIST-VR scored both hands individually. Thirty-two first- and second-year medical students were included in the study. There was statistically significant (P < 0.05) correlation between 11 of 16 possible relationships between the virtual reality trainer and operative tasks. While not all of the possible relationships demonstrated statistically significant correlation, the majority of the possible relationships demonstrated statistically significant correlation. Virtual reality may be an avenue for measuring laparoscopic surgical ability.
Lee, Hyung Young; Kim, You Lim; Lee, Suk Min
2015-01-01
[Purpose] This study aimed to investigate the clinical effects of virtual reality-based training and task-oriented training on balance performance in stroke patients. [Subjects and Methods] The subjects were randomly allocated to 2 groups: virtual reality-based training group (n = 12) and task-oriented training group (n = 12). The patients in the virtual reality-based training group used the Nintendo Wii Fit Plus, which provided visual and auditory feedback as well as the movements that enabled shifting of weight to the right and left sides, for 30 min/day, 3 times/week for 6 weeks. The patients in the task-oriented training group practiced additional task-oriented programs for 30 min/day, 3 times/week for 6 weeks. Patients in both groups also underwent conventional physical therapy for 60 min/day, 5 times/week for 6 weeks. [Results] Balance and functional reach test outcomes were examined in both groups. The results showed that the static balance and functional reach test outcomes were significantly higher in the virtual reality-based training group than in the task-oriented training group. [Conclusion] This study suggested that virtual reality-based training might be a more feasible and suitable therapeutic intervention for dynamic balance in stroke patients compared to task-oriented training. PMID:26180341
Bang, Yo-Soon; Son, Kyung Hyun; Kim, Hyun Jin
2016-11-01
[Purpose] The purpose of this study is to investigate the effects of virtual reality training using Nintendo Wii on balance and walking for stroke patients. [Subjects and Methods] Forty stroke patients with stroke were randomly divided into two exercise program groups: virtual reality training (n=20) and treadmill (n=20). The subjects underwent their 40-minute exercise program three times a week for eight weeks. Their balance and walking were measured before and after the complete program. We measured the left/right weight-bearing and the anterior/posterior weight-bearing for balance, as well as stance phase, swing phase, and cadence for walking. [Results] For balance, both groups showed significant differences in the left/right and anterior/posterior weight-bearing, with significant post-program differences between the groups. For walking, there were significant differences in the stance phase, swing phase, and cadence of the virtual reality training group. [Conclusion] The results of this study suggest that virtual reality training providing visual feedback may enable stroke patients to directly adjust their incorrect weight center and shift visually. Virtual reality training may be appropriate for patients who need improved balance and walking ability by inducing their interest for them to perform planned exercises on a consistent basis.
Bang, Yo-Soon; Son, Kyung Hyun; Kim, Hyun Jin
2016-01-01
[Purpose] The purpose of this study is to investigate the effects of virtual reality training using Nintendo Wii on balance and walking for stroke patients. [Subjects and Methods] Forty stroke patients with stroke were randomly divided into two exercise program groups: virtual reality training (n=20) and treadmill (n=20). The subjects underwent their 40-minute exercise program three times a week for eight weeks. Their balance and walking were measured before and after the complete program. We measured the left/right weight-bearing and the anterior/posterior weight-bearing for balance, as well as stance phase, swing phase, and cadence for walking. [Results] For balance, both groups showed significant differences in the left/right and anterior/posterior weight-bearing, with significant post-program differences between the groups. For walking, there were significant differences in the stance phase, swing phase, and cadence of the virtual reality training group. [Conclusion] The results of this study suggest that virtual reality training providing visual feedback may enable stroke patients to directly adjust their incorrect weight center and shift visually. Virtual reality training may be appropriate for patients who need improved balance and walking ability by inducing their interest for them to perform planned exercises on a consistent basis. PMID:27942130
Use of virtual reality gaming systems for children who are critically ill.
Salem, Yasser; Elokda, Ahmed
2014-01-01
Children who are critically ill are frequently viewed as "too sick" to tolerate physical activity. As a result, these children often fail to develop strength or cardiovascular endurance as compared to typically developing children. Previous reports have shown that early participation in physical activity in is safe and feasible for patients who are critically ill and may result in a shorter length of stay and improved functional outcomes. The use of the virtual reality gaming systems has become a popular form of therapy for children with disabilities and has been supported by a growing body of evidence substantiating its effectiveness with this population. The use of the virtual reality gaming systems in pediatric rehabilitation provides the children with opportunity to participate in an exercise program that is fun, enjoyable, playful, and at the same time beneficial. The integration of those systems in rehabilitation of children who are critically ill is appealing and has the potential to offer the possibility of enhancing physical activities. The lack of training studies involving children who are critically ill makes it difficult to set guidelines on the recommended physical activities and virtual reality gaming systems that is needed to confer health benefits. Several considerations should be taken into account before recommended virtual reality gaming systems as a training program for children who are critically ill. This article highlighted guidelines, limitations and challenges that need to be considered when designing exercise program using virtual reality gaming systems for critically ill children. This information is helpful given the popular use of virtual reality gaming systems in rehabilitation, particularly in children who are critically ill.
Controlled interaction: strategies for using virtual reality to study perception.
Durgin, Frank H; Li, Zhi
2010-05-01
Immersive virtual reality systems employing head-mounted displays offer great promise for the investigation of perception and action, but there are well-documented limitations to most virtual reality systems. In the present article, we suggest strategies for studying perception/action interactions that try to depend on both scale-invariant metrics (such as power function exponents) and careful consideration of the requirements of the interactions under investigation. New data concerning the effect of pincushion distortion on the perception of surface orientation are presented, as well as data documenting the perception of dynamic distortions associated with head movements with uncorrected optics. A review of several successful uses of virtual reality to study the interaction of perception and action emphasizes scale-free analysis strategies that can achieve theoretical goals while minimizing assumptions about the accuracy of virtual simulations.
Heart rate response to fear conditioning and virtual reality in subthreshold PTSD.
Roy, Michael J; Costanzo, Michelle E; Jovanovic, Tanja; Leaman, Suzanne; Taylor, Patricia; Norrholm, Seth D; Rizzo, Albert A
2013-01-01
Posttraumatic stress disorder (PTSD) is a significant health concern for U.S. military service members (SMs) returning from Afghanistan and Iraq. Early intervention to prevent chronic disability requires greater understanding of subthreshold PTSD symptoms, which are associated with impaired physical health, mental health, and risk for delayed onset PTSD. We report a comparison of physiologic responses for recently deployed SMs with high and low subthreshold PTSD symptoms, respectively, to a fear conditioning task and novel virtual reality paradigm (Virtual Iraq). The high symptom group demonstrated elevated heart rate (HR) response during fear conditioning. Virtual reality sequences evoked significant HR responses which predicted variance of the PTSD Checklist-Military Version self-report. Our results support the value of physiologic assessment during fear conditioning and combat-related virtual reality exposure as complementary tools in detecting subthreshold PTSD symptoms in Veterans.
Jones, J.S.
1999-01-12
An apparatus and method of issuing commands to a computer by a user interfacing with a virtual reality environment are disclosed. To issue a command, the user directs gaze at a virtual button within the virtual reality environment, causing a perceptible change in the virtual button, which then sends a command corresponding to the virtual button to the computer, optionally after a confirming action is performed by the user, such as depressing a thumb switch. 4 figs.
Intelligent Motion and Interaction Within Virtual Environments
NASA Technical Reports Server (NTRS)
Ellis, Stephen R. (Editor); Slater, Mel (Editor); Alexander, Thomas (Editor)
2007-01-01
What makes virtual actors and objects in virtual environments seem real? How can the illusion of their reality be supported? What sorts of training or user-interface applications benefit from realistic user-environment interactions? These are some of the central questions that designers of virtual environments face. To be sure simulation realism is not necessarily the major, or even a required goal, of a virtual environment intended to communicate specific information. But for some applications in entertainment, marketing, or aspects of vehicle simulation training, realism is essential. The following chapters will examine how a sense of truly interacting with dynamic, intelligent agents may arise in users of virtual environments. These chapters are based on presentations at the London conference on Intelligent Motion and Interaction within a Virtual Environments which was held at University College, London, U.K., 15-17 September 2003.
Virtual reality for treatment compliance for people with serious mental illness.
Välimäki, Maritta; Hätönen, Heli M; Lahti, Mari E; Kurki, Marjo; Hottinen, Anja; Metsäranta, Kiki; Riihimäki, Tanja; Adams, Clive E
2014-10-08
Virtual reality (VR) is computerised real-time technology, which can be used an alternative assessment and treatment tool in the mental health field. Virtual reality may take different forms to simulate real-life activities and support treatment. To investigate the effects of virtual reality to support treatment compliance in people with serious mental illness. We searched the Cochrane Schizophrenia Group Trials Register (most recent, 17th September 2013) and relevant reference lists. All relevant randomised studies comparing virtual reality with standard care for those with serious mental illnesses. We defined virtual reality as a computerised real-time technology using graphics, sound and other sensory input, which creates the interactive computer-mediated world as a therapeutic tool. All review authors independently selected studies and extracted data. For homogeneous dichotomous data the risk difference (RD) and the 95% confidence intervals (CI) were calculated on an intention-to-treat basis. For continuous data, we calculated mean differences (MD). We assessed risk of bias and created a 'Summary of findings' table using the GRADE approach. We identified three short-term trials (total of 156 participants, duration five to 12 weeks). Outcomes were prone to at least a moderate risk of overestimating positive effects. We found that virtual reality had little effects regarding compliance (3 RCTs, n = 156, RD loss to follow-up 0.02 CI -0.08 to 0.12, low quality evidence), cognitive functioning (1 RCT, n = 27, MD average score on Cognistat 4.67 CI -1.76 to 11.10, low quality evidence), social skills (1 RCT, n = 64, MD average score on social problem solving SPSI-R (Social Problem Solving Inventory - Revised) -2.30 CI -8.13 to 3.53, low quality evidence), or acceptability of intervention (2 RCTs, n = 92, RD 0.05 CI -0.09 to 0.19, low quality evidence). There were no data reported on mental state, insight, behaviour, quality of life, costs, service utilisation, or adverse effects. Satisfaction with treatment - measured using an un-referenced scale - and reported as "interest in training" was better for the virtual reality group (1 RCT, n = 64, MD 6.00 CI 1.39 to 10.61,low quality evidence). There is no clear good quality evidence for or against using virtual reality for treatment compliance among people with serious mental illness. If virtual reality is used, the experimental nature of the intervention should be clearly explained. High-quality studies should be undertaken in this area to explore any effects of this novel intervention and variations of approach.
Improving flexible thinking in deaf and hard of hearing children with virtual reality technology.
Passig, D; Eden, S
2000-07-01
The study investigated whether rotating three-dimensional (3-D) objects using virtual reality (VR) will affect flexible thinking in deaf and hard of hearing children. Deaf and hard of hearing subjects were distributed into experimental and control groups. The experimental group played virtual 3-D Tetris (a game using VR technology) individually, 15 minutes once weekly over 3 months. The control group played conventional two-dimensional (2-D) Tetris over the same period. Children with normal hearing participated as a second control group in order to establish whether deaf and hard of hearing children really are disadvantaged in flexible thinking. Before-and-after testing showed significantly improved flexible thinking in the experimental group; the deaf and hard of hearing control group showed no significant improvement. Also, before the experiment, the deaf and hard of hearing children scored lower in flexible thinking than the children with normal hearing. After the experiment, the difference between the experimental group and the control group of children with normal hearing was smaller.
a New ER Fluid Based Haptic Actuator System for Virtual Reality
NASA Astrophysics Data System (ADS)
Böse, H.; Baumann, M.; Monkman, G. J.; Egersdörfer, S.; Tunayar, A.; Freimuth, H.; Ermert, H.; Khaled, W.
The concept and some steps in the development of a new actuator system which enables the haptic perception of mechanically inhomogeneous virtual objects are introduced. The system consists of a two-dimensional planar array of actuator elements containing an electrorheological (ER) fluid. When a user presses his fingers onto the surface of the actuator array, he perceives locally variable resistance forces generated by vertical pistons which slide in the ER fluid through the gaps between electrode pairs. The voltage in each actuator element can be individually controlled by a novel sophisticated switching technology based on optoelectric gallium arsenide elements. The haptic information which is represented at the actuator array can be transferred from a corresponding sensor system based on ultrasonic elastography. The combined sensor-actuator system may serve as a technology platform for various applications in virtual reality, like telemedicine where the information on the consistency of tissue of a real patient is detected by the sensor part and recorded by the actuator part at a remote location.
Adamovich, S.V.; August, K.; Merians, A.; Tunik, E.
2017-01-01
Purpose Emerging evidence shows that interactive virtual environments (VEs) may be a promising tool for studying sensorimotor processes and for rehabilitation. However, the potential of VEs to recruit action observation-execution neural networks is largely unknown. For the first time, a functional MRI-compatible virtual reality system (VR) has been developed to provide a window into studying brain-behavior interactions. This system is capable of measuring the complex span of hand-finger movements and simultaneously streaming this kinematic data to control the motion of representations of human hands in virtual reality. Methods In a blocked fMRI design, thirteen healthy subjects observed, with the intent to imitate (OTI), finger sequences performed by the virtual hand avatar seen in 1st person perspective and animated by pre-recorded kinematic data. Following this, subjects imitated the observed sequence while viewing the virtual hand avatar animated by their own movement in real-time. These blocks were interleaved with rest periods during which subjects viewed static virtual hand avatars and control trials in which the avatars were replaced with moving non-anthropomorphic objects. Results We show three main findings. First, both observation with intent to imitate and imitation with real-time virtual avatar feedback, were associated with activation in a distributed frontoparietal network typically recruited for observation and execution of real-world actions. Second, we noted a time-variant increase in activation in the left insular cortex for observation with intent to imitate actions performed by the virtual avatar. Third, imitation with virtual avatar feedback (relative to the control condition) was associated with a localized recruitment of the angular gyrus, precuneus, and extrastriate body area, regions which are (along with insular cortex) associated with the sense of agency. Conclusions Our data suggest that the virtual hand avatars may have served as disembodied training tools in the observation condition and as embodied “extensions” of the subject’s own body (pseudo-tools) in the imitation. These data advance our understanding of the brain-behavior interactions when performing actions in VE and have implications in the development of observation- and imitation-based VR rehabilitation paradigms. PMID:19531876
A collaborative molecular modeling environment using a virtual tunneling service.
Lee, Jun; Kim, Jee-In; Kang, Lin-Woo
2012-01-01
Collaborative researches of three-dimensional molecular modeling can be limited by different time zones and locations. A networked virtual environment can be utilized to overcome the problem caused by the temporal and spatial differences. However, traditional approaches did not sufficiently consider integration of different computing environments, which were characterized by types of applications, roles of users, and so on. We propose a collaborative molecular modeling environment to integrate different molecule modeling systems using a virtual tunneling service. We integrated Co-Coot, which is a collaborative crystallographic object-oriented toolkit, with VRMMS, which is a virtual reality molecular modeling system, through a collaborative tunneling system. The proposed system showed reliable quantitative and qualitative results through pilot experiments.
ERIC Educational Resources Information Center
Kartiko, Iwan; Kavakli, Manolya; Cheng, Ken
2010-01-01
As the technology in computer graphics advances, Animated-Virtual Actors (AVAs) in Virtual Reality (VR) applications become increasingly rich and complex. Cognitive Theory of Multimedia Learning (CTML) suggests that complex visual materials could hinder novice learners from attending to the lesson properly. On the other hand, previous studies have…
ERIC Educational Resources Information Center
Honebein, Peter C.; Goldsworthy, Richard
2012-01-01
Virtual classrooms and virtual activities have waxed and waned, with most focusing on fostering learning in the cognitive domain and, realistically, most becoming rapidly discontinued. But social virtual realities (SVR) are uniquely "social," so what about interpersonal skills? This article describes the authors' experiences exploring SVR as a…
ERIC Educational Resources Information Center
O'Connor, Eileen A.
2015-01-01
Opening with the history, recent advances, and emerging ways to use avatar-based virtual reality, an instructor who has used virtual environments since 2007 shares how these environments bring more options to community building, teaching, and education. With the open-source movement, where the source code for virtual environments was made…