Non-visual spatial tasks reveal increased interactions with stance postural control.
Woollacott, Marjorie; Vander Velde, Timothy
2008-05-07
The current investigation aimed to contrast the level and quality of dual-task interactions resulting from the combined performance of a challenging primary postural task and three specific, yet categorically dissociated, secondary central executive tasks. Experiments determined the extent to which modality (visual vs. auditory) and code (non-spatial vs. spatial) specific cognitive resources contributed to postural interference in young adults (n=9) in a dual-task setting. We hypothesized that the different forms of executive n-back task processing employed (visual-object, auditory-object and auditory-spatial) would display contrasting levels of interactions with tandem Romberg stance postural control, and that interactions within the spatial domain would be revealed as most vulnerable to dual-task interactions. Across all cognitive tasks employed, including auditory-object (aOBJ), auditory-spatial (aSPA), and visual-object (vOBJ) tasks, increasing n-back task complexity produced correlated increases in verbal reaction time measures. Increasing cognitive task complexity also resulted in consistent decreases in judgment accuracy. Postural performance was significantly influenced by the type of cognitive loading delivered. At comparable levels of cognitive task difficulty (n-back demands and accuracy judgments) the performance of challenging auditory-spatial tasks produced significantly greater levels of postural sway than either the auditory-object or visual-object based tasks. These results suggest that it is the employment of limited non-visual spatially based coding resources that may underlie previously observed visual dual-task interference effects with stance postural control in healthy young adults.
Elevated audiovisual temporal interaction in patients with migraine without aura
2014-01-01
Background Photophobia and phonophobia are the most prominent symptoms in patients with migraine without aura. Hypersensitivity to visual stimuli can lead to greater hypersensitivity to auditory stimuli, which suggests that the interaction between visual and auditory stimuli may play an important role in the pathogenesis of migraine. However, audiovisual temporal interactions in migraine have not been well studied. Therefore, our aim was to examine auditory and visual interactions in migraine. Methods In this study, visual, auditory, and audiovisual stimuli with different temporal intervals between the visual and auditory stimuli were randomly presented to the left or right hemispace. During this time, the participants were asked to respond promptly to target stimuli. We used cumulative distribution functions to analyze the response times as a measure of audiovisual integration. Results Our results showed that audiovisual integration was significantly elevated in the migraineurs compared with the normal controls (p < 0.05); however, audiovisual suppression was weaker in the migraineurs compared with the normal controls (p < 0.05). Conclusions Our findings further objectively support the notion that migraineurs without aura are hypersensitive to external visual and auditory stimuli. Our study offers a new quantitative and objective method to evaluate hypersensitivity to audio-visual stimuli in patients with migraine. PMID:24961903
Mahr, Angela; Wentura, Dirk
2014-02-01
Findings from three experiments support the conclusion that auditory primes facilitate the processing of related targets. In Experiments 1 and 2, we employed a crossmodal Stroop color identification task with auditory color words (as primes) and visual color patches (as targets). Responses were faster for congruent priming, in comparison to neutral or incongruent priming. This effect also emerged for different levels of time compression of the auditory primes (to 30 % and 10 % of the original length; i.e., 120 and 40 ms) and turned out to be even more pronounced under high-perceptual-load conditions (Exps. 1 and 2). In Experiment 3, target-present or -absent decisions for brief target displays had to be made, thereby ruling out response-priming processes as a cause of the congruency effects. Nevertheless, target detection (d') was increased by congruent primes (30 % compression) in comparison to incongruent or neutral primes. Our results suggest semantic object-based auditory-visual interactions, which rapidly increase the denoted target object's salience. This would apply, in particular, to complex visual scenes.
Filling-in visual motion with sounds.
Väljamäe, A; Soto-Faraco, S
2008-10-01
Information about the motion of objects can be extracted by multiple sensory modalities, and, as a consequence, object motion perception typically involves the integration of multi-sensory information. Often, in naturalistic settings, the flow of such information can be rather discontinuous (e.g. a cat racing through the furniture in a cluttered room is partly seen and partly heard). This study addressed audio-visual interactions in the perception of time-sampled object motion by measuring adaptation after-effects. We found significant auditory after-effects following adaptation to unisensory auditory and visual motion in depth, sampled at 12.5 Hz. The visually induced (cross-modal) auditory motion after-effect was eliminated if visual adaptors flashed at half of the rate (6.25 Hz). Remarkably, the addition of the high-rate acoustic flutter (12.5 Hz) to this ineffective, sparsely time-sampled, visual adaptor restored the auditory after-effect to a level comparable to what was seen with high-rate bimodal adaptors (flashes and beeps). Our results suggest that this auditory-induced reinstatement of the motion after-effect from the poor visual signals resulted from the occurrence of sound-induced illusory flashes. This effect was found to be dependent both on the directional congruency between modalities and on the rate of auditory flutter. The auditory filling-in of time-sampled visual motion supports the feasibility of using reduced frame rate visual content in multisensory broadcasting and virtual reality applications.
Hertrich, Ingo; Dietrich, Susanne; Ackermann, Hermann
2011-01-01
During speech communication, visual information may interact with the auditory system at various processing stages. Most noteworthy, recent magnetoencephalography (MEG) data provided first evidence for early and preattentive phonetic/phonological encoding of the visual data stream--prior to its fusion with auditory phonological features [Hertrich, I., Mathiak, K., Lutzenberger, W., & Ackermann, H. Time course of early audiovisual interactions during speech and non-speech central-auditory processing: An MEG study. Journal of Cognitive Neuroscience, 21, 259-274, 2009]. Using functional magnetic resonance imaging, the present follow-up study aims to further elucidate the topographic distribution of visual-phonological operations and audiovisual (AV) interactions during speech perception. Ambiguous acoustic syllables--disambiguated to /pa/ or /ta/ by the visual channel (speaking face)--served as test materials, concomitant with various control conditions (nonspeech AV signals, visual-only and acoustic-only speech, and nonspeech stimuli). (i) Visual speech yielded an AV-subadditive activation of primary auditory cortex and the anterior superior temporal gyrus (STG), whereas the posterior STG responded both to speech and nonspeech motion. (ii) The inferior frontal and the fusiform gyrus of the right hemisphere showed a strong phonetic/phonological impact (differential effects of visual /pa/ vs. /ta/) upon hemodynamic activation during presentation of speaking faces. Taken together with the previous MEG data, these results point at a dual-pathway model of visual speech information processing: On the one hand, access to the auditory system via the anterior supratemporal “what" path may give rise to direct activation of "auditory objects." On the other hand, visual speech information seems to be represented in a right-hemisphere visual working memory, providing a potential basis for later interactions with auditory information such as the McGurk effect.
Age-Related Deficits in Auditory Confrontation Naming
Hanna-Pladdy, Brenda; Choi, Hyun
2015-01-01
The naming of manipulable objects in older and younger adults was evaluated across auditory, visual, and multisensory conditions. Older adults were less accurate and slower in naming across conditions, and all subjects were more impaired and slower to name action sounds than pictures or audiovisual combinations. Moreover, there was a sensory by age group interaction, revealing lower accuracy and increased latencies in auditory naming for older adults unrelated to hearing insensitivity but modest improvement to multisensory cues. These findings support age-related deficits in object action naming and suggest that auditory confrontation naming may be more sensitive than visual naming. PMID:20677880
Early multisensory interactions affect the competition among multiple visual objects.
Van der Burg, Erik; Talsma, Durk; Olivers, Christian N L; Hickey, Clayton; Theeuwes, Jan
2011-04-01
In dynamic cluttered environments, audition and vision may benefit from each other in determining what deserves further attention and what does not. We investigated the underlying neural mechanisms responsible for attentional guidance by audiovisual stimuli in such an environment. Event-related potentials (ERPs) were measured during visual search through dynamic displays consisting of line elements that randomly changed orientation. Search accuracy improved when a target orientation change was synchronized with an auditory signal as compared to when the auditory signal was absent or synchronized with a distractor orientation change. The ERP data show that behavioral benefits were related to an early multisensory interaction over left parieto-occipital cortex (50-60 ms post-stimulus onset), which was followed by an early positive modulation (80-100 ms) over occipital and temporal areas contralateral to the audiovisual event, an enhanced N2pc (210-250 ms), and a contralateral negative slow wave (CNSW). The early multisensory interaction was correlated with behavioral search benefits, indicating that participants with a strong multisensory interaction benefited the most from the synchronized auditory signal. We suggest that an auditory signal enhances the neural response to a synchronized visual event, which increases the chances of selection in a multiple object environment. Copyright © 2010 Elsevier Inc. All rights reserved.
Cognitive/emotional models for human behavior representation in 3D avatar simulations
NASA Astrophysics Data System (ADS)
Peterson, James K.
2004-08-01
Simplified models of human cognition and emotional response are presented which are based on models of auditory/ visual polymodal fusion. At the core of these models is a computational model of Area 37 of the temporal cortex which is based on new isocortex models presented recently by Grossberg. These models are trained using carefully chosen auditory (musical sequences), visual (paintings) and higher level abstract (meta level) data obtained from studies of how optimization strategies are chosen in response to outside managerial inputs. The software modules developed are then used as inputs to character generation codes in standard 3D virtual world simulations. The auditory and visual training data also enable the development of simple music and painting composition generators which significantly enhance one's ability to validate the cognitive model. The cognitive models are handled as interacting software agents implemented as CORBA objects to allow the use of multiple language coding choices (C++, Java, Python etc) and efficient use of legacy code.
Werner, Sebastian; Noppeney, Uta
2010-02-17
Multisensory interactions have been demonstrated in a distributed neural system encompassing primary sensory and higher-order association areas. However, their distinct functional roles in multisensory integration remain unclear. This functional magnetic resonance imaging study dissociated the functional contributions of three cortical levels to multisensory integration in object categorization. Subjects actively categorized or passively perceived noisy auditory and visual signals emanating from everyday actions with objects. The experiment included two 2 x 2 factorial designs that manipulated either (1) the presence/absence or (2) the informativeness of the sensory inputs. These experimental manipulations revealed three patterns of audiovisual interactions. (1) In primary auditory cortices (PACs), a concurrent visual input increased the stimulus salience by amplifying the auditory response regardless of task-context. Effective connectivity analyses demonstrated that this automatic response amplification is mediated via both direct and indirect [via superior temporal sulcus (STS)] connectivity to visual cortices. (2) In STS and intraparietal sulcus (IPS), audiovisual interactions sustained the integration of higher-order object features and predicted subjects' audiovisual benefits in object categorization. (3) In the left ventrolateral prefrontal cortex (vlPFC), explicit semantic categorization resulted in suppressive audiovisual interactions as an index for multisensory facilitation of semantic retrieval and response selection. In conclusion, multisensory integration emerges at multiple processing stages within the cortical hierarchy. The distinct profiles of audiovisual interactions dissociate audiovisual salience effects in PACs, formation of object representations in STS/IPS and audiovisual facilitation of semantic categorization in vlPFC. Furthermore, in STS/IPS, the profiles of audiovisual interactions were behaviorally relevant and predicted subjects' multisensory benefits in performance accuracy.
Auditory memory can be object based.
Dyson, Benjamin J; Ishfaq, Feraz
2008-04-01
Identifying how memories are organized remains a fundamental issue in psychology. Previous work has shown that visual short-term memory is organized according to the object of origin, with participants being better at retrieving multiple pieces of information from the same object than from different objects. However, it is not yet clear whether similar memory structures are employed for other modalities, such as audition. Under analogous conditions in the auditory domain, we found that short-term memories for sound can also be organized according to object, with a same-object advantage being demonstrated for the retrieval of information in an auditory scene defined by two complex sounds overlapping in both space and time. Our results provide support for the notion of an auditory object, in addition to the continued identification of similar processing constraints across visual and auditory domains. The identification of modality-independent organizational principles of memory, such as object-based coding, suggests possible mechanisms by which the human processing system remembers multimodal experiences.
Acoustic facilitation of object movement detection during self-motion
Calabro, F. J.; Soto-Faraco, S.; Vaina, L. M.
2011-01-01
In humans, as well as most animal species, perception of object motion is critical to successful interaction with the surrounding environment. Yet, as the observer also moves, the retinal projections of the various motion components add to each other and extracting accurate object motion becomes computationally challenging. Recent psychophysical studies have demonstrated that observers use a flow-parsing mechanism to estimate and subtract self-motion from the optic flow field. We investigated whether concurrent acoustic cues for motion can facilitate visual flow parsing, thereby enhancing the detection of moving objects during simulated self-motion. Participants identified an object (the target) that moved either forward or backward within a visual scene containing nine identical textured objects simulating forward observer translation. We found that spatially co-localized, directionally congruent, moving auditory stimuli enhanced object motion detection. Interestingly, subjects who performed poorly on the visual-only task benefited more from the addition of moving auditory stimuli. When auditory stimuli were not co-localized to the visual target, improvements in detection rates were weak. Taken together, these results suggest that parsing object motion from self-motion-induced optic flow can operate on multisensory object representations. PMID:21307050
Audio–visual interactions for motion perception in depth modulate activity in visual area V3A
Ogawa, Akitoshi; Macaluso, Emiliano
2013-01-01
Multisensory signals can enhance the spatial perception of objects and events in the environment. Changes of visual size and auditory intensity provide us with the main cues about motion direction in depth. However, frequency changes in audition and binocular disparity in vision also contribute to the perception of motion in depth. Here, we presented subjects with several combinations of auditory and visual depth-cues to investigate multisensory interactions during processing of motion in depth. The task was to discriminate the direction of auditory motion in depth according to increasing or decreasing intensity. Rising or falling auditory frequency provided an additional within-audition cue that matched or did not match the intensity change (i.e. intensity-frequency (IF) “matched vs. unmatched” conditions). In two-thirds of the trials, a task-irrelevant visual stimulus moved either in the same or opposite direction of the auditory target, leading to audio–visual “congruent vs. incongruent” between-modalities depth-cues. Furthermore, these conditions were presented either with or without binocular disparity. Behavioral data showed that the best performance was observed in the audio–visual congruent condition with IF matched. Brain imaging results revealed maximal response in visual area V3A when all cues provided congruent and reliable depth information (i.e. audio–visual congruent, IF-matched condition including disparity cues). Analyses of effective connectivity revealed increased coupling from auditory cortex to V3A specifically in audio–visual congruent trials. We conclude that within- and between-modalities cues jointly contribute to the processing of motion direction in depth, and that they do so via dynamic changes of connectivity between visual and auditory cortices. PMID:23333414
Methods and Apparatus for Autonomous Robotic Control
NASA Technical Reports Server (NTRS)
Gorshechnikov, Anatoly (Inventor); Livitz, Gennady (Inventor); Versace, Massimiliano (Inventor); Palma, Jesse (Inventor)
2017-01-01
Sensory processing of visual, auditory, and other sensor information (e.g., visual imagery, LIDAR, RADAR) is conventionally based on "stovepiped," or isolated processing, with little interactions between modules. Biological systems, on the other hand, fuse multi-sensory information to identify nearby objects of interest more quickly, more efficiently, and with higher signal-to-noise ratios. Similarly, examples of the OpenSense technology disclosed herein use neurally inspired processing to identify and locate objects in a robot's environment. This enables the robot to navigate its environment more quickly and with lower computational and power requirements.
Sugihara, Tadashi; Diltz, Mark D; Averbeck, Bruno B; Romanski, Lizabeth M
2006-10-25
The integration of auditory and visual stimuli is crucial for recognizing objects, communicating effectively, and navigating through our complex world. Although the frontal lobes are involved in memory, communication, and language, there has been no evidence that the integration of communication information occurs at the single-cell level in the frontal lobes. Here, we show that neurons in the macaque ventrolateral prefrontal cortex (VLPFC) integrate audiovisual communication stimuli. The multisensory interactions included both enhancement and suppression of a predominantly auditory or a predominantly visual response, although multisensory suppression was the more common mode of response. The multisensory neurons were distributed across the VLPFC and within previously identified unimodal auditory and visual regions (O'Scalaidhe et al., 1997; Romanski and Goldman-Rakic, 2002). Thus, our study demonstrates, for the first time, that single prefrontal neurons integrate communication information from the auditory and visual domains, suggesting that these neurons are an important node in the cortical network responsible for communication.
Sugihara, Tadashi; Diltz, Mark D.; Averbeck, Bruno B.; Romanski, Lizabeth M.
2009-01-01
The integration of auditory and visual stimuli is crucial for recognizing objects, communicating effectively, and navigating through our complex world. Although the frontal lobes are involved in memory, communication, and language, there has been no evidence that the integration of communication information occurs at the single-cell level in the frontal lobes. Here, we show that neurons in the macaque ventrolateral prefrontal cortex (VLPFC) integrate audiovisual communication stimuli. The multisensory interactions included both enhancement and suppression of a predominantly auditory or a predominantly visual response, although multisensory suppression was the more common mode of response. The multisensory neurons were distributed across the VLPFC and within previously identified unimodal auditory and visual regions (O’Scalaidhe et al., 1997; Romanski and Goldman-Rakic, 2002). Thus, our study demonstrates, for the first time, that single prefrontal neurons integrate communication information from the auditory and visual domains, suggesting that these neurons are an important node in the cortical network responsible for communication. PMID:17065454
Enhanced audio-visual interactions in the auditory cortex of elderly cochlear-implant users.
Schierholz, Irina; Finke, Mareike; Schulte, Svenja; Hauthal, Nadine; Kantzke, Christoph; Rach, Stefan; Büchner, Andreas; Dengler, Reinhard; Sandmann, Pascale
2015-10-01
Auditory deprivation and the restoration of hearing via a cochlear implant (CI) can induce functional plasticity in auditory cortical areas. How these plastic changes affect the ability to integrate combined auditory (A) and visual (V) information is not yet well understood. In the present study, we used electroencephalography (EEG) to examine whether age, temporary deafness and altered sensory experience with a CI can affect audio-visual (AV) interactions in post-lingually deafened CI users. Young and elderly CI users and age-matched NH listeners performed a speeded response task on basic auditory, visual and audio-visual stimuli. Regarding the behavioral results, a redundant signals effect, that is, faster response times to cross-modal (AV) than to both of the two modality-specific stimuli (A, V), was revealed for all groups of participants. Moreover, in all four groups, we found evidence for audio-visual integration. Regarding event-related responses (ERPs), we observed a more pronounced visual modulation of the cortical auditory response at N1 latency (approximately 100 ms after stimulus onset) in the elderly CI users when compared with young CI users and elderly NH listeners. Thus, elderly CI users showed enhanced audio-visual binding which may be a consequence of compensatory strategies developed due to temporary deafness and/or degraded sensory input after implantation. These results indicate that the combination of aging, sensory deprivation and CI facilitates the coupling between the auditory and the visual modality. We suggest that this enhancement in multisensory interactions could be used to optimize auditory rehabilitation, especially in elderly CI users, by the application of strong audio-visually based rehabilitation strategies after implant switch-on. Copyright © 2015 Elsevier B.V. All rights reserved.
Nie, Min; Ren, Jie; Li, Zhengjun; Niu, Jinhai; Qiu, Yihong; Zhu, Yisheng; Tong, Shanbao
2009-01-01
Without visual information, the blind people live in various hardships with shopping, reading, finding objects and etc. Therefore, we developed a portable auditory guide system, called SoundView, for visually impaired people. This prototype system consists of a mini-CCD camera, a digital signal processing unit and an earphone, working with built-in customizable auditory coding algorithms. Employing environment understanding techniques, SoundView processes the images from a camera and detects objects tagged with barcodes. The recognized objects in the environment are then encoded into stereo speech signals for the blind though an earphone. The user would be able to recognize the type, motion state and location of the interested objects with the help of SoundView. Compared with other visual assistant techniques, SoundView is object-oriented and has the advantages of cheap cost, smaller size, light weight, low power consumption and easy customization.
Barone, Pascal; Chambaudie, Laure; Strelnikov, Kuzma; Fraysse, Bernard; Marx, Mathieu; Belin, Pascal; Deguine, Olivier
2016-10-01
Due to signal distortion, speech comprehension in cochlear-implanted (CI) patients relies strongly on visual information, a compensatory strategy supported by important cortical crossmodal reorganisations. Though crossmodal interactions are evident for speech processing, it is unclear whether a visual influence is observed in CI patients during non-linguistic visual-auditory processing, such as face-voice interactions, which are important in social communication. We analyse and compare visual-auditory interactions in CI patients and normal-hearing subjects (NHS) at equivalent auditory performance levels. Proficient CI patients and NHS performed a voice-gender categorisation in the visual-auditory modality from a morphing-generated voice continuum between male and female speakers, while ignoring the presentation of a male or female visual face. Our data show that during the face-voice interaction, CI deaf patients are strongly influenced by visual information when performing an auditory gender categorisation task, in spite of maximum recovery of auditory speech. No such effect is observed in NHS, even in situations of CI simulation. Our hypothesis is that the functional crossmodal reorganisation that occurs in deafness could influence nonverbal processing, such as face-voice interaction; this is important for patient internal supramodal representation. Copyright © 2016 Elsevier Ltd. All rights reserved.
Mishra, Jyoti; Zanto, Theodore; Nilakantan, Aneesha; Gazzaley, Adam
2013-01-01
Intrasensory interference during visual working memory (WM) maintenance by object stimuli (such as faces and scenes), has been shown to negatively impact WM performance, with greater detrimental impacts of interference observed in aging. Here we assessed age-related impacts by intrasensory WM interference from lower-level stimulus features such as visual and auditory motion stimuli. We consistently found that interference in the form of ignored distractions and secondary task i nterruptions presented during a WM maintenance period, degraded memory accuracy in both the visual and auditory domain. However, in contrast to prior studies assessing WM for visual object stimuli, feature-based interference effects were not observed to be significantly greater in older adults. Analyses of neural oscillations in the alpha frequency band further revealed preserved mechanisms of interference processing in terms of post-stimulus alpha suppression, which was observed maximally for secondary task interruptions in visual and auditory modalities in both younger and older adults. These results suggest that age-related sensitivity of WM to interference may be limited to complex object stimuli, at least at low WM loads. PMID:23791629
Magosso, Elisa; Bertini, Caterina; Cuppini, Cristiano; Ursino, Mauro
2016-10-01
Hemianopic patients retain some abilities to integrate audiovisual stimuli in the blind hemifield, showing both modulation of visual perception by auditory stimuli and modulation of auditory perception by visual stimuli. Indeed, conscious detection of a visual target in the blind hemifield can be improved by a spatially coincident auditory stimulus (auditory enhancement of visual detection), while a visual stimulus in the blind hemifield can improve localization of a spatially coincident auditory stimulus (visual enhancement of auditory localization). To gain more insight into the neural mechanisms underlying these two perceptual phenomena, we propose a neural network model including areas of neurons representing the retina, primary visual cortex (V1), extrastriate visual cortex, auditory cortex and the Superior Colliculus (SC). The visual and auditory modalities in the network interact via both direct cortical-cortical connections and subcortical-cortical connections involving the SC; the latter, in particular, integrates visual and auditory information and projects back to the cortices. Hemianopic patients were simulated by unilaterally lesioning V1, and preserving spared islands of V1 tissue within the lesion, to analyze the role of residual V1 neurons in mediating audiovisual integration. The network is able to reproduce the audiovisual phenomena in hemianopic patients, linking perceptions to neural activations, and disentangles the individual contribution of specific neural circuits and areas via sensitivity analyses. The study suggests i) a common key role of SC-cortical connections in mediating the two audiovisual phenomena; ii) a different role of visual cortices in the two phenomena: auditory enhancement of conscious visual detection being conditional on surviving V1 islands, while visual enhancement of auditory localization persisting even after complete V1 damage. The present study may contribute to advance understanding of the audiovisual dialogue between cortical and subcortical structures in healthy and unisensory deficit conditions. Copyright © 2016 Elsevier Ltd. All rights reserved.
The what, where and how of auditory-object perception.
Bizley, Jennifer K; Cohen, Yale E
2013-10-01
The fundamental perceptual unit in hearing is the 'auditory object'. Similar to visual objects, auditory objects are the computational result of the auditory system's capacity to detect, extract, segregate and group spectrotemporal regularities in the acoustic environment; the multitude of acoustic stimuli around us together form the auditory scene. However, unlike the visual scene, resolving the component objects within the auditory scene crucially depends on their temporal structure. Neural correlates of auditory objects are found throughout the auditory system. However, neural responses do not become correlated with a listener's perceptual reports until the level of the cortex. The roles of different neural structures and the contribution of different cognitive states to the perception of auditory objects are not yet fully understood.
The what, where and how of auditory-object perception
Bizley, Jennifer K.; Cohen, Yale E.
2014-01-01
The fundamental perceptual unit in hearing is the ‘auditory object’. Similar to visual objects, auditory objects are the computational result of the auditory system's capacity to detect, extract, segregate and group spectrotemporal regularities in the acoustic environment; the multitude of acoustic stimuli around us together form the auditory scene. However, unlike the visual scene, resolving the component objects within the auditory scene crucially depends on their temporal structure. Neural correlates of auditory objects are found throughout the auditory system. However, neural responses do not become correlated with a listener's perceptual reports until the level of the cortex. The roles of different neural structures and the contribution of different cognitive states to the perception of auditory objects are not yet fully understood. PMID:24052177
Schierholz, Irina; Finke, Mareike; Kral, Andrej; Büchner, Andreas; Rach, Stefan; Lenarz, Thomas; Dengler, Reinhard; Sandmann, Pascale
2017-04-01
There is substantial variability in speech recognition ability across patients with cochlear implants (CIs), auditory brainstem implants (ABIs), and auditory midbrain implants (AMIs). To better understand how this variability is related to central processing differences, the current electroencephalography (EEG) study compared hearing abilities and auditory-cortex activation in patients with electrical stimulation at different sites of the auditory pathway. Three different groups of patients with auditory implants (Hannover Medical School; ABI: n = 6, CI: n = 6; AMI: n = 2) performed a speeded response task and a speech recognition test with auditory, visual, and audio-visual stimuli. Behavioral performance and cortical processing of auditory and audio-visual stimuli were compared between groups. ABI and AMI patients showed prolonged response times on auditory and audio-visual stimuli compared with NH listeners and CI patients. This was confirmed by prolonged N1 latencies and reduced N1 amplitudes in ABI and AMI patients. However, patients with central auditory implants showed a remarkable gain in performance when visual and auditory input was combined, in both speech and non-speech conditions, which was reflected by a strong visual modulation of auditory-cortex activation in these individuals. In sum, the results suggest that the behavioral improvement for audio-visual conditions in central auditory implant patients is based on enhanced audio-visual interactions in the auditory cortex. Their findings may provide important implications for the optimization of electrical stimulation and rehabilitation strategies in patients with central auditory prostheses. Hum Brain Mapp 38:2206-2225, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Keshavarz, Behrang; Campos, Jennifer L; DeLucia, Patricia R; Oberfeld, Daniel
2017-04-01
Estimating time to contact (TTC) involves multiple sensory systems, including vision and audition. Previous findings suggested that the ratio of an object's instantaneous optical size/sound intensity to its instantaneous rate of change in optical size/sound intensity (τ) drives TTC judgments. Other evidence has shown that heuristic-based cues are used, including final optical size or final sound pressure level. Most previous studies have used decontextualized and unfamiliar stimuli (e.g., geometric shapes on a blank background). Here we evaluated TTC estimates by using a traffic scene with an approaching vehicle to evaluate the weights of visual and auditory TTC cues under more realistic conditions. Younger (18-39 years) and older (65+ years) participants made TTC estimates in three sensory conditions: visual-only, auditory-only, and audio-visual. Stimuli were presented within an immersive virtual-reality environment, and cue weights were calculated for both visual cues (e.g., visual τ, final optical size) and auditory cues (e.g., auditory τ, final sound pressure level). The results demonstrated the use of visual τ as well as heuristic cues in the visual-only condition. TTC estimates in the auditory-only condition, however, were primarily based on an auditory heuristic cue (final sound pressure level), rather than on auditory τ. In the audio-visual condition, the visual cues dominated overall, with the highest weight being assigned to visual τ by younger adults, and a more equal weighting of visual τ and heuristic cues in older adults. Overall, better characterizing the effects of combined sensory inputs, stimulus characteristics, and age on the cues used to estimate TTC will provide important insights into how these factors may affect everyday behavior.
Headphone and Head-Mounted Visual Displays for Virtual Environments
NASA Technical Reports Server (NTRS)
Begault, Duran R.; Ellis, Stephen R.; Wenzel, Elizabeth M.; Trejo, Leonard J. (Technical Monitor)
1998-01-01
A realistic auditory environment can contribute to both the overall subjective sense of presence in a virtual display, and to a quantitative metric predicting human performance. Here, the role of audio in a virtual display and the importance of auditory-visual interaction are examined. Conjectures are proposed regarding the effectiveness of audio compared to visual information for creating a sensation of immersion, the frame of reference within a virtual display, and the compensation of visual fidelity by supplying auditory information. Future areas of research are outlined for improving simulations of virtual visual and acoustic spaces. This paper will describe some of the intersensory phenomena that arise during operator interaction within combined visual and auditory virtual environments. Conjectures regarding audio-visual interaction will be proposed.
The impact of visual gaze direction on auditory object tracking.
Pomper, Ulrich; Chait, Maria
2017-07-05
Subjective experience suggests that we are able to direct our auditory attention independent of our visual gaze, e.g when shadowing a nearby conversation at a cocktail party. But what are the consequences at the behavioural and neural level? While numerous studies have investigated both auditory attention and visual gaze independently, little is known about their interaction during selective listening. In the present EEG study, we manipulated visual gaze independently of auditory attention while participants detected targets presented from one of three loudspeakers. We observed increased response times when gaze was directed away from the locus of auditory attention. Further, we found an increase in occipital alpha-band power contralateral to the direction of gaze, indicative of a suppression of distracting input. Finally, this condition also led to stronger central theta-band power, which correlated with the observed effect in response times, indicative of differences in top-down processing. Our data suggest that a misalignment between gaze and auditory attention both reduce behavioural performance and modulate underlying neural processes. The involvement of central theta-band and occipital alpha-band effects are in line with compensatory neural mechanisms such as increased cognitive control and the suppression of task irrelevant inputs.
Li, Yuanqing; Wang, Fangyi; Chen, Yongbin; Cichocki, Andrzej; Sejnowski, Terrence
2017-09-25
At cocktail parties, our brains often simultaneously receive visual and auditory information. Although the cocktail party problem has been widely investigated under auditory-only settings, the effects of audiovisual inputs have not. This study explored the effects of audiovisual inputs in a simulated cocktail party. In our fMRI experiment, each congruent audiovisual stimulus was a synthesis of 2 facial movie clips, each of which could be classified into 1 of 2 emotion categories (crying and laughing). Visual-only (faces) and auditory-only stimuli (voices) were created by extracting the visual and auditory contents from the synthesized audiovisual stimuli. Subjects were instructed to selectively attend to 1 of the 2 objects contained in each stimulus and to judge its emotion category in the visual-only, auditory-only, and audiovisual conditions. The neural representations of the emotion features were assessed by calculating decoding accuracy and brain pattern-related reproducibility index based on the fMRI data. We compared the audiovisual condition with the visual-only and auditory-only conditions and found that audiovisual inputs enhanced the neural representations of emotion features of the attended objects instead of the unattended objects. This enhancement might partially explain the benefits of audiovisual inputs for the brain to solve the cocktail party problem. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Kostopoulos, Penelope; Petrides, Michael
2016-02-16
There is evidence from the visual, verbal, and tactile memory domains that the midventrolateral prefrontal cortex plays a critical role in the top-down modulation of activity within posterior cortical areas for the selective retrieval of specific aspects of a memorized experience, a functional process often referred to as active controlled retrieval. In the present functional neuroimaging study, we explore the neural bases of active retrieval for auditory nonverbal information, about which almost nothing is known. Human participants were scanned with functional magnetic resonance imaging (fMRI) in a task in which they were presented with short melodies from different locations in a simulated virtual acoustic environment within the scanner and were then instructed to retrieve selectively either the particular melody presented or its location. There were significant activity increases specifically within the midventrolateral prefrontal region during the selective retrieval of nonverbal auditory information. During the selective retrieval of information from auditory memory, the right midventrolateral prefrontal region increased its interaction with the auditory temporal region and the inferior parietal lobule in the right hemisphere. These findings provide evidence that the midventrolateral prefrontal cortical region interacts with specific posterior cortical areas in the human cerebral cortex for the selective retrieval of object and location features of an auditory memory experience.
Learning to Look for Language: Development of Joint Attention in Young Deaf Children
ERIC Educational Resources Information Center
Lieberman, Amy M.; Hatrak, Marla; Mayberry, Rachel I.
2014-01-01
Joint attention between hearing children and their caregivers is typically achieved when the adult provides spoken, auditory linguistic input that relates to the child's current visual focus of attention. Deaf children interacting through sign language must learn to continually switch visual attention between people and objects in order to achieve…
The neural basis of visual dominance in the context of audio-visual object processing.
Schmid, Carmen; Büchel, Christian; Rose, Michael
2011-03-01
Visual dominance refers to the observation that in bimodal environments vision often has an advantage over other senses in human. Therefore, a better memory performance for visual compared to, e.g., auditory material is assumed. However, the reason for this preferential processing and the relation to the memory formation is largely unknown. In this fMRI experiment, we manipulated cross-modal competition and attention, two factors that both modulate bimodal stimulus processing and can affect memory formation. Pictures and sounds of objects were presented simultaneously in two levels of recognisability, thus manipulating the amount of cross-modal competition. Attention was manipulated via task instruction and directed either to the visual or the auditory modality. The factorial design allowed a direct comparison of the effects between both modalities. The resulting memory performance showed that visual dominance was limited to a distinct task setting. Visual was superior to auditory object memory only when allocating attention towards the competing modality. During encoding, cross-modal competition and attention towards the opponent domain reduced fMRI signals in both neural systems, but cross-modal competition was more pronounced in the auditory system and only in auditory cortex this competition was further modulated by attention. Furthermore, neural activity reduction in auditory cortex during encoding was closely related to the behavioural auditory memory impairment. These results indicate that visual dominance emerges from a less pronounced vulnerability of the visual system against competition from the auditory domain. Copyright © 2010 Elsevier Inc. All rights reserved.
Memory as embodiment: The case of modality and serial short-term memory.
Macken, Bill; Taylor, John C; Kozlov, Michail D; Hughes, Robert W; Jones, Dylan M
2016-10-01
Classical explanations for the modality effect-superior short-term serial recall of auditory compared to visual sequences-typically recur to privileged processing of information derived from auditory sources. Here we critically appraise such accounts, and re-evaluate the nature of the canonical empirical phenomena that have motivated them. Three experiments show that the standard account of modality in memory is untenable, since auditory superiority in recency is often accompanied by visual superiority in mid-list serial positions. We explain this simultaneous auditory and visual superiority by reference to the way in which perceptual objects are formed in the two modalities and how those objects are mapped to speech motor forms to support sequence maintenance and reproduction. Specifically, stronger obligatory object formation operating in the standard auditory form of sequence presentation compared to that for visual sequences leads both to enhanced addressability of information at the object boundaries and reduced addressability for that in the interior. Because standard visual presentation does not lead to such object formation, such sequences do not show the boundary advantage observed for auditory presentation, but neither do they suffer loss of addressability associated with object information, thereby affording more ready mapping of that information into a rehearsal cohort to support recall. We show that a range of factors that impede this perceptual-motor mapping eliminate visual superiority while leaving auditory superiority unaffected. We make a general case for viewing short-term memory as an embodied, perceptual-motor process. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.
Alais, David; Cass, John
2010-06-23
An outstanding question in sensory neuroscience is whether the perceived timing of events is mediated by a central supra-modal timing mechanism, or multiple modality-specific systems. We use a perceptual learning paradigm to address this question. Three groups were trained daily for 10 sessions on an auditory, a visual or a combined audiovisual temporal order judgment (TOJ). Groups were pre-tested on a range TOJ tasks within and between their group modality prior to learning so that transfer of any learning from the trained task could be measured by post-testing other tasks. Robust TOJ learning (reduced temporal order discrimination thresholds) occurred for all groups, although auditory learning (dichotic 500/2000 Hz tones) was slightly weaker than visual learning (lateralised grating patches). Crossmodal TOJs also displayed robust learning. Post-testing revealed that improvements in temporal resolution acquired during visual learning transferred within modality to other retinotopic locations and orientations, but not to auditory or crossmodal tasks. Auditory learning did not transfer to visual or crossmodal tasks, and neither did it transfer within audition to another frequency pair. In an interesting asymmetry, crossmodal learning transferred to all visual tasks but not to auditory tasks. Finally, in all conditions, learning to make TOJs for stimulus onsets did not transfer at all to discriminating temporal offsets. These data present a complex picture of timing processes. The lack of transfer between unimodal groups indicates no central supramodal timing process for this task; however, the audiovisual-to-visual transfer cannot be explained without some form of sensory interaction. We propose that auditory learning occurred in frequency-tuned processes in the periphery, precluding interactions with more central visual and audiovisual timing processes. Functionally the patterns of featural transfer suggest that perceptual learning of temporal order may be optimised to object-centered rather than viewer-centered constraints.
Werner, Sebastian; Noppeney, Uta
2010-08-01
Merging information from multiple senses provides a more reliable percept of our environment. Yet, little is known about where and how various sensory features are combined within the cortical hierarchy. Combining functional magnetic resonance imaging and psychophysics, we investigated the neural mechanisms underlying integration of audiovisual object features. Subjects categorized or passively perceived audiovisual object stimuli with the informativeness (i.e., degradation) of the auditory and visual modalities being manipulated factorially. Controlling for low-level integration processes, we show higher level audiovisual integration selectively in the superior temporal sulci (STS) bilaterally. The multisensory interactions were primarily subadditive and even suppressive for intact stimuli but turned into additive effects for degraded stimuli. Consistent with the inverse effectiveness principle, auditory and visual informativeness determine the profile of audiovisual integration in STS similarly to the influence of physical stimulus intensity in the superior colliculus. Importantly, when holding stimulus degradation constant, subjects' audiovisual behavioral benefit predicts their multisensory integration profile in STS: only subjects that benefit from multisensory integration exhibit superadditive interactions, while those that do not benefit show suppressive interactions. In conclusion, superadditive and subadditive integration profiles in STS are functionally relevant and related to behavioral indices of multisensory integration with superadditive interactions mediating successful audiovisual object categorization.
Gonzalez, Jose; Soma, Hirokazu; Sekine, Masashi; Yu, Wenwei
2012-06-09
Prosthetic hand users have to rely extensively on visual feedback, which seems to lead to a high conscious burden for the users, in order to manipulate their prosthetic devices. Indirect methods (electro-cutaneous, vibrotactile, auditory cues) have been used to convey information from the artificial limb to the amputee, but the usability and advantages of these feedback methods were explored mainly by looking at the performance results, not taking into account measurements of the user's mental effort, attention, and emotions. The main objective of this study was to explore the feasibility of using psycho-physiological measurements to assess cognitive effort when manipulating a robot hand with and without the usage of a sensory substitution system based on auditory feedback, and how these psycho-physiological recordings relate to temporal and grasping performance in a static setting. 10 male subjects (26+/-years old), participated in this study and were asked to come for 2 consecutive days. On the first day the experiment objective, tasks, and experiment setting was explained. Then, they completed a 30 minutes guided training. On the second day each subject was tested in 3 different modalities: Auditory Feedback only control (AF), Visual Feedback only control (VF), and Audiovisual Feedback control (AVF). For each modality they were asked to perform 10 trials. At the end of each test, the subject had to answer the NASA TLX questionnaire. Also, during the test the subject's EEG, ECG, electro-dermal activity (EDA), and respiration rate were measured. The results show that a higher mental effort is needed when the subjects rely only on their vision, and that this effort seems to be reduced when auditory feedback is added to the human-machine interaction (multimodal feedback). Furthermore, better temporal performance and better grasping performance was obtained in the audiovisual modality. The performance improvements when using auditory cues, along with vision (multimodal feedback), can be attributed to a reduced attentional demand during the task, which can be attributed to a visual "pop-out" or enhance effect. Also, the NASA TLX, the EEG's Alpha and Beta band, and the Heart Rate could be used to further evaluate sensory feedback systems in prosthetic applications.
Asad, Mohammad Rehan; Amir, Khwaja; Tadvi, Naser Ashraf; Afzal, Kamran; Sami, Waqas; Irfan, Abdul
2017-01-01
OBJECTIVE: The objective of this study is to explore the student's perspectives toward the interactive lectures as a teaching and learning method in an integrated curriculum. MATERIALS AND METHODS: This cross-sectional study was conducted among 1st, 2nd and 3rd year male medical students (n = 121). A self-administered questionnaire based on the Visual, Auditory, Reader, Kinesthetic learning styles, learning theories, and role of feedback in teaching and learning on five-point Likert rating scale was used. The questionnaire was constructed after extensive literature review. RESULTS: There was an 80% response rate in this study. The total number of undergraduate medical students responded in the study were n = 97, 34 students of 1st year, n = 30 students of 2nd year and n = 33 student were in 3rd year, the mean scores of the student responses were calculated using Independent samples Kruskal–Wallis. There was no significant difference in the responses of the students of different years except for the question “The Interactive lectures facilitate effective use of learning resources.” Which showed significant difference in the responses of the 3 years students by Independent samples Kruskal–Wallis test. No significant association was found between the year of study and items of the questionnaire except for the same item, “ The Interactive lectures facilitates effective use of learning resources” by Spearman rank correlation test. CONCLUSION: The students perceive interactive lecture as an effective tool for facilitating visual and auditory learning modes, and for achieving curricular strategies. The student find the feedback given during the interactive lectures is effective in modifying learning attitude and enhancing motivation toward learning. PMID:29296601
Rendering visual events as sounds: Spatial attention capture by auditory augmented reality.
Stone, Scott A; Tata, Matthew S
2017-01-01
Many salient visual events tend to coincide with auditory events, such as seeing and hearing a car pass by. Information from the visual and auditory senses can be used to create a stable percept of the stimulus. Having access to related coincident visual and auditory information can help for spatial tasks such as localization. However not all visual information has analogous auditory percepts, such as viewing a computer monitor. Here, we describe a system capable of detecting and augmenting visual salient events into localizable auditory events. The system uses a neuromorphic camera (DAVIS 240B) to detect logarithmic changes of brightness intensity in the scene, which can be interpreted as salient visual events. Participants were blindfolded and asked to use the device to detect new objects in the scene, as well as determine direction of motion for a moving visual object. Results suggest the system is robust enough to allow for the simple detection of new salient stimuli, as well accurately encoding direction of visual motion. Future successes are probable as neuromorphic devices are likely to become faster and smaller in the future, making this system much more feasible.
Rendering visual events as sounds: Spatial attention capture by auditory augmented reality
Tata, Matthew S.
2017-01-01
Many salient visual events tend to coincide with auditory events, such as seeing and hearing a car pass by. Information from the visual and auditory senses can be used to create a stable percept of the stimulus. Having access to related coincident visual and auditory information can help for spatial tasks such as localization. However not all visual information has analogous auditory percepts, such as viewing a computer monitor. Here, we describe a system capable of detecting and augmenting visual salient events into localizable auditory events. The system uses a neuromorphic camera (DAVIS 240B) to detect logarithmic changes of brightness intensity in the scene, which can be interpreted as salient visual events. Participants were blindfolded and asked to use the device to detect new objects in the scene, as well as determine direction of motion for a moving visual object. Results suggest the system is robust enough to allow for the simple detection of new salient stimuli, as well accurately encoding direction of visual motion. Future successes are probable as neuromorphic devices are likely to become faster and smaller in the future, making this system much more feasible. PMID:28792518
A. Smith, Nicholas; A. Folland, Nicholas; Martinez, Diana M.; Trainor, Laurel J.
2017-01-01
Infants learn to use auditory and visual information to organize the sensory world into identifiable objects with particular locations. Here we use a behavioural method to examine infants' use of harmonicity cues to auditory object perception in a multisensory context. Sounds emitted by different objects sum in the air and the auditory system must figure out which parts of the complex waveform belong to different sources (auditory objects). One important cue to this source separation is that complex tones with pitch typically contain a fundamental frequency and harmonics at integer multiples of the fundamental. Consequently, adults hear a mistuned harmonic in a complex sound as a distinct auditory object (Alain et al., 2003). Previous work by our group demonstrated that 4-month-old infants are also sensitive to this cue. They behaviourally discriminate a complex tone with a mistuned harmonic from the same complex with in-tune harmonics, and show an object-related event-related potential (ERP) electrophysiological (EEG) response to the stimulus with mistuned harmonics. In the present study we use an audiovisual procedure to investigate whether infants perceive a complex tone with an 8% mistuned harmonic as emanating from two objects, rather than merely detecting the mistuned cue. We paired in-tune and mistuned complex tones with visual displays that contained either one or two bouncing balls. Four-month-old infants showed surprise at the incongruous pairings, looking longer at the display of two balls when paired with the in-tune complex and at the display of one ball when paired with the mistuned harmonic complex. We conclude that infants use harmonicity as a cue for source separation when integrating auditory and visual information in object perception. PMID:28346869
Cecere, Roberto; Gross, Joachim; Thut, Gregor
2016-06-01
The ability to integrate auditory and visual information is critical for effective perception and interaction with the environment, and is thought to be abnormal in some clinical populations. Several studies have investigated the time window over which audiovisual events are integrated, also called the temporal binding window, and revealed asymmetries depending on the order of audiovisual input (i.e. the leading sense). When judging audiovisual simultaneity, the binding window appears narrower and non-malleable for auditory-leading stimulus pairs and wider and trainable for visual-leading pairs. Here we specifically examined the level of independence of binding mechanisms when auditory-before-visual vs. visual-before-auditory input is bound. Three groups of healthy participants practiced audiovisual simultaneity detection with feedback, selectively training on auditory-leading stimulus pairs (group 1), visual-leading stimulus pairs (group 2) or both (group 3). Subsequently, we tested for learning transfer (crossover) from trained stimulus pairs to non-trained pairs with opposite audiovisual input. Our data confirmed the known asymmetry in size and trainability for auditory-visual vs. visual-auditory binding windows. More importantly, practicing one type of audiovisual integration (e.g. auditory-visual) did not affect the other type (e.g. visual-auditory), even if trainable by within-condition practice. Together, these results provide crucial evidence that audiovisual temporal binding for auditory-leading vs. visual-leading stimulus pairs are independent, possibly tapping into different circuits for audiovisual integration due to engagement of different multisensory sampling mechanisms depending on leading sense. Our results have implications for informing the study of multisensory interactions in healthy participants and clinical populations with dysfunctional multisensory integration. © 2016 The Authors. European Journal of Neuroscience published by Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
Visual processing affects the neural basis of auditory discrimination.
Kislyuk, Daniel S; Möttönen, Riikka; Sams, Mikko
2008-12-01
The interaction between auditory and visual speech streams is a seamless and surprisingly effective process. An intriguing example is the "McGurk effect": The acoustic syllable /ba/ presented simultaneously with a mouth articulating /ga/ is typically heard as /da/ [McGurk, H., & MacDonald, J. Hearing lips and seeing voices. Nature, 264, 746-748, 1976]. Previous studies have demonstrated the interaction of auditory and visual streams at the auditory cortex level, but the importance of these interactions for the qualitative perception change remained unclear because the change could result from interactions at higher processing levels as well. In our electroencephalogram experiment, we combined the McGurk effect with mismatch negativity (MMN), a response that is elicited in the auditory cortex at a latency of 100-250 msec by any above-threshold change in a sequence of repetitive sounds. An "odd-ball" sequence of acoustic stimuli consisting of frequent /va/ syllables (standards) and infrequent /ba/ syllables (deviants) was presented to 11 participants. Deviant stimuli in the unisensory acoustic stimulus sequence elicited a typical MMN, reflecting discrimination of acoustic features in the auditory cortex. When the acoustic stimuli were dubbed onto a video of a mouth constantly articulating /va/, the deviant acoustic /ba/ was heard as /va/ due to the McGurk effect and was indistinguishable from the standards. Importantly, such deviants did not elicit MMN, indicating that the auditory cortex failed to discriminate between the acoustic stimuli. Our findings show that visual stream can qualitatively change the auditory percept at the auditory cortex level, profoundly influencing the auditory cortex mechanisms underlying early sound discrimination.
Gallagher, Rosemary; Damodaran, Harish; Werner, William G; Powell, Wendy; Deutsch, Judith E
2016-08-19
Evidence based virtual environments (VEs) that incorporate compensatory strategies such as cueing may change motor behavior and increase exercise intensity while also being engaging and motivating. The purpose of this study was to determine if persons with Parkinson's disease and aged matched healthy adults responded to auditory and visual cueing embedded in a bicycling VE as a method to increase exercise intensity. We tested two groups of participants, persons with Parkinson's disease (PD) (n = 15) and age-matched healthy adults (n = 13) as they cycled on a stationary bicycle while interacting with a VE. Participants cycled under two conditions: auditory cueing (provided by a metronome) and visual cueing (represented as central road markers in the VE). The auditory condition had four trials in which auditory cues or the VE were presented alone or in combination. The visual condition had five trials in which the VE and visual cue rate presentation was manipulated. Data were analyzed by condition using factorial RMANOVAs with planned t-tests corrected for multiple comparisons. There were no differences in pedaling rates between groups for both the auditory and visual cueing conditions. Persons with PD increased their pedaling rate in the auditory (F 4.78, p = 0.029) and visual cueing (F 26.48, p < 0.000) conditions. Age-matched healthy adults also increased their pedaling rate in the auditory (F = 24.72, p < 0.000) and visual cueing (F = 40.69, p < 0.000) conditions. Trial-to-trial comparisons in the visual condition in age-matched healthy adults showed a step-wise increase in pedaling rate (p = 0.003 to p < 0.000). In contrast, persons with PD increased their pedaling rate only when explicitly instructed to attend to the visual cues (p < 0.000). An evidenced based cycling VE can modify pedaling rate in persons with PD and age-matched healthy adults. Persons with PD required attention directed to the visual cues in order to obtain an increase in cycling intensity. The combination of the VE and auditory cues was neither additive nor interfering. These data serve as preliminary evidence that embedding auditory and visual cues to alter cycling speed in a VE as method to increase exercise intensity that may promote fitness.
Visual form predictions facilitate auditory processing at the N1.
Paris, Tim; Kim, Jeesun; Davis, Chris
2017-02-20
Auditory-visual (AV) events often involve a leading visual cue (e.g. auditory-visual speech) that allows the perceiver to generate predictions about the upcoming auditory event. Electrophysiological evidence suggests that when an auditory event is predicted, processing is sped up, i.e., the N1 component of the ERP occurs earlier (N1 facilitation). However, it is not clear (1) whether N1 facilitation is based specifically on predictive rather than multisensory integration and (2) which particular properties of the visual cue it is based on. The current experiment used artificial AV stimuli in which visual cues predicted but did not co-occur with auditory cues. Visual form cues (high and low salience) and the auditory-visual pairing were manipulated so that auditory predictions could be based on form and timing or on timing only. The results showed that N1 facilitation occurred only for combined form and temporal predictions. These results suggest that faster auditory processing (as indicated by N1 facilitation) is based on predictive processing generated by a visual cue that clearly predicts both what and when the auditory stimulus will occur. Copyright © 2016. Published by Elsevier Ltd.
Puffe, Lydia; Dittrich, Kerstin; Klauer, Karl Christoph
2017-01-01
In a joint go/no-go Simon task, each of two participants is to respond to one of two non-spatial stimulus features by means of a spatially lateralized response. Stimulus position varies horizontally and responses are faster and more accurate when response side and stimulus position match (compatible trial) than when they mismatch (incompatible trial), defining the social Simon effect or joint spatial compatibility effect. This effect was originally explained in terms of action/task co-representation, assuming that the co-actor's action is automatically co-represented. Recent research by Dolk, Hommel, Prinz, and Liepelt (2013) challenged this account by demonstrating joint spatial compatibility effects in a task-setting in which non-social objects like a Japanese waving cat were present, but no real co-actor. They postulated that every sufficiently salient object induces joint spatial compatibility effects. However, what makes an object sufficiently salient is so far not well defined. To scrutinize this open question, the current study manipulated auditory and/or visual attention-attracting cues of a Japanese waving cat within an auditory (Experiment 1) and a visual joint go/no-go Simon task (Experiment 2). Results revealed that joint spatial compatibility effects only occurred in an auditory Simon task when the cat provided auditory cues while no joint spatial compatibility effects were found in a visual Simon task. This demonstrates that it is not the sufficiently salient object alone that leads to joint spatial compatibility effects but instead, a complex interaction between features of the object and the stimulus material of the joint go/no-go Simon task.
Neural correlates of auditory recognition memory in the primate dorsal temporal pole
Ng, Chi-Wing; Plakke, Bethany
2013-01-01
Temporal pole (TP) cortex is associated with higher-order sensory perception and/or recognition memory, as human patients with damage in this region show impaired performance during some tasks requiring recognition memory (Olson et al. 2007). The underlying mechanisms of TP processing are largely based on examination of the visual nervous system in humans and monkeys, while little is known about neuronal activity patterns in the auditory portion of this region, dorsal TP (dTP; Poremba et al. 2003). The present study examines single-unit activity of dTP in rhesus monkeys performing a delayed matching-to-sample task utilizing auditory stimuli, wherein two sounds are determined to be the same or different. Neurons of dTP encode several task-relevant events during the delayed matching-to-sample task, and encoding of auditory cues in this region is associated with accurate recognition performance. Population activity in dTP shows a match suppression mechanism to identical, repeated sound stimuli similar to that observed in the visual object identification pathway located ventral to dTP (Desimone 1996; Nakamura and Kubota 1996). However, in contrast to sustained visual delay-related activity in nearby analogous regions, auditory delay-related activity in dTP is transient and limited. Neurons in dTP respond selectively to different sound stimuli and often change their sound response preferences between experimental contexts. Current findings suggest a significant role for dTP in auditory recognition memory similar in many respects to the visual nervous system, while delay memory firing patterns are not prominent, which may relate to monkeys' shorter forgetting thresholds for auditory vs. visual objects. PMID:24198324
Auditory-visual object recognition time suggests specific processing for animal sounds.
Suied, Clara; Viaud-Delmon, Isabelle
2009-01-01
Recognizing an object requires binding together several cues, which may be distributed across different sensory modalities, and ignoring competing information originating from other objects. In addition, knowledge of the semantic category of an object is fundamental to determine how we should react to it. Here we investigate the role of semantic categories in the processing of auditory-visual objects. We used an auditory-visual object-recognition task (go/no-go paradigm). We compared recognition times for two categories: a biologically relevant one (animals) and a non-biologically relevant one (means of transport). Participants were asked to react as fast as possible to target objects, presented in the visual and/or the auditory modality, and to withhold their response for distractor objects. A first main finding was that, when participants were presented with unimodal or bimodal congruent stimuli (an image and a sound from the same object), similar reaction times were observed for all object categories. Thus, there was no advantage in the speed of recognition for biologically relevant compared to non-biologically relevant objects. A second finding was that, in the presence of a biologically relevant auditory distractor, the processing of a target object was slowed down, whether or not it was itself biologically relevant. It seems impossible to effectively ignore an animal sound, even when it is irrelevant to the task. These results suggest a specific and mandatory processing of animal sounds, possibly due to phylogenetic memory and consistent with the idea that hearing is particularly efficient as an alerting sense. They also highlight the importance of taking into account the auditory modality when investigating the way object concepts of biologically relevant categories are stored and retrieved.
Potts, Geoffrey F; Wood, Susan M; Kothmann, Delia; Martin, Laura E
2008-10-21
Attention directs limited-capacity information processing resources to a subset of available perceptual representations. The mechanisms by which attention selects task-relevant representations for preferential processing are not fully known. Triesman and Gelade's [Triesman, A., Gelade, G., 1980. A feature integration theory of attention. Cognit. Psychol. 12, 97-136.] influential attention model posits that simple features are processed preattentively, in parallel, but that attention is required to serially conjoin multiple features into an object representation. Event-related potentials have provided evidence for this model showing parallel processing of perceptual features in the posterior Selection Negativity (SN) and serial, hierarchic processing of feature conjunctions in the Frontal Selection Positivity (FSP). Most prior studies have been done on conjunctions within one sensory modality while many real-world objects have multimodal features. It is not known if the same neural systems of posterior parallel processing of simple features and frontal serial processing of feature conjunctions seen within a sensory modality also operate on conjunctions between modalities. The current study used ERPs and simultaneously presented auditory and visual stimuli in three task conditions: Attend Auditory (auditory feature determines the target, visual features are irrelevant), Attend Visual (visual features relevant, auditory irrelevant), and Attend Conjunction (target defined by the co-occurrence of an auditory and a visual feature). In the Attend Conjunction condition when the auditory but not the visual feature was a target there was an SN over auditory cortex, when the visual but not auditory stimulus was a target there was an SN over visual cortex, and when both auditory and visual stimuli were targets (i.e. conjunction target) there were SNs over both auditory and visual cortex, indicating parallel processing of the simple features within each modality. In contrast, an FSP was present when either the visual only or both auditory and visual features were targets, but not when only the auditory stimulus was a target, indicating that the conjunction target determination was evaluated serially and hierarchically with visual information taking precedence. This indicates that the detection of a target defined by audio-visual conjunction is achieved via the same mechanism as within a single perceptual modality, through separate, parallel processing of the auditory and visual features and serial processing of the feature conjunction elements, rather than by evaluation of a fused multimodal percept.
Auditory and visual interactions between the superior and inferior colliculi in the ferret.
Stitt, Iain; Galindo-Leon, Edgar; Pieper, Florian; Hollensteiner, Karl J; Engler, Gerhard; Engel, Andreas K
2015-05-01
The integration of visual and auditory spatial information is important for building an accurate perception of the external world, but the fundamental mechanisms governing such audiovisual interaction have only partially been resolved. The earliest interface between auditory and visual processing pathways is in the midbrain, where the superior (SC) and inferior colliculi (IC) are reciprocally connected in an audiovisual loop. Here, we investigate the mechanisms of audiovisual interaction in the midbrain by recording neural signals from the SC and IC simultaneously in anesthetized ferrets. Visual stimuli reliably produced band-limited phase locking of IC local field potentials (LFPs) in two distinct frequency bands: 6-10 and 15-30 Hz. These visual LFP responses co-localized with robust auditory responses that were characteristic of the IC. Imaginary coherence analysis confirmed that visual responses in the IC were not volume-conducted signals from the neighboring SC. Visual responses in the IC occurred later than retinally driven superficial SC layers and earlier than deep SC layers that receive indirect visual inputs, suggesting that retinal inputs do not drive visually evoked responses in the IC. In addition, SC and IC recording sites with overlapping visual spatial receptive fields displayed stronger functional connectivity than sites with separate receptive fields, indicating that visual spatial maps are aligned across both midbrain structures. Reciprocal coupling between the IC and SC therefore probably serves the dynamic integration of visual and auditory representations of space. © 2015 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
ERIC Educational Resources Information Center
Zupan, Barbra; Sussman, Joan E.
2009-01-01
Experiment 1 examined modality preferences in children and adults with normal hearing to combined auditory-visual stimuli. Experiment 2 compared modality preferences in children using cochlear implants participating in an auditory emphasized therapy approach to the children with normal hearing from Experiment 1. A second objective in both…
Mossbridge, Julia; Zweig, Jacob; Grabowecky, Marcia; Suzuki, Satoru
2016-01-01
The perceptual system integrates synchronized auditory-visual signals in part to promote individuation of objects in cluttered environments. The processing of auditory-visual synchrony may more generally contribute to cognition by synchronizing internally generated multimodal signals. Reading is a prime example because the ability to synchronize internal phonological and/or lexical processing with visual orthographic processing may facilitate encoding of words and meanings. Consistent with this possibility, developmental and clinical research has suggested a link between reading performance and the ability to compare visual spatial/temporal patterns with auditory temporal patterns. Here, we provide converging behavioral and electrophysiological evidence suggesting that greater behavioral ability to judge auditory-visual synchrony (Experiment 1) and greater sensitivity of an electrophysiological marker of auditory-visual synchrony processing (Experiment 2) both predict superior reading comprehension performance, accounting for 16% and 25% of the variance, respectively. These results support the idea that the mechanisms that detect auditory-visual synchrony contribute to reading comprehension. PMID:28129060
Mossbridge, Julia; Zweig, Jacob; Grabowecky, Marcia; Suzuki, Satoru
2017-03-01
The perceptual system integrates synchronized auditory-visual signals in part to promote individuation of objects in cluttered environments. The processing of auditory-visual synchrony may more generally contribute to cognition by synchronizing internally generated multimodal signals. Reading is a prime example because the ability to synchronize internal phonological and/or lexical processing with visual orthographic processing may facilitate encoding of words and meanings. Consistent with this possibility, developmental and clinical research has suggested a link between reading performance and the ability to compare visual spatial/temporal patterns with auditory temporal patterns. Here, we provide converging behavioral and electrophysiological evidence suggesting that greater behavioral ability to judge auditory-visual synchrony (Experiment 1) and greater sensitivity of an electrophysiological marker of auditory-visual synchrony processing (Experiment 2) both predict superior reading comprehension performance, accounting for 16% and 25% of the variance, respectively. These results support the idea that the mechanisms that detect auditory-visual synchrony contribute to reading comprehension.
Balconi, Michela; Vanutelli, Maria Elide
2016-01-01
The present research explored the effect of cross-modal integration of emotional cues (auditory and visual (AV)) compared with only visual (V) emotional cues in observing interspecies interactions. The brain activity was monitored when subjects processed AV and V situations, which represented an emotional (positive or negative), interspecies (human-animal) interaction. Congruence (emotionally congruous or incongruous visual and auditory patterns) was also modulated. electroencephalography brain oscillations (from delta to beta) were analyzed and the cortical source localization (by standardized Low Resolution Brain Electromagnetic Tomography) was applied to the data. Frequency band (mainly low-frequency delta and theta) showed a significant brain activity increasing in response to negative compared to positive interactions within the right hemisphere. Moreover, differences were found based on stimulation type, with an increased effect for AV compared with V. Finally, delta band supported a lateralized right dorsolateral prefrontal cortex (DLPFC) activity in response to negative and incongruous interspecies interactions, mainly for AV. The contribution of cross-modality, congruence (incongruous patterns), and lateralization (right DLPFC) in response to interspecies emotional interactions was discussed at light of a "negative lateralized effect."
Effect of attentional load on audiovisual speech perception: evidence from ERPs.
Alsius, Agnès; Möttönen, Riikka; Sams, Mikko E; Soto-Faraco, Salvador; Tiippana, Kaisa
2014-01-01
Seeing articulatory movements influences perception of auditory speech. This is often reflected in a shortened latency of auditory event-related potentials (ERPs) generated in the auditory cortex. The present study addressed whether this early neural correlate of audiovisual interaction is modulated by attention. We recorded ERPs in 15 subjects while they were presented with auditory, visual, and audiovisual spoken syllables. Audiovisual stimuli consisted of incongruent auditory and visual components known to elicit a McGurk effect, i.e., a visually driven alteration in the auditory speech percept. In a Dual task condition, participants were asked to identify spoken syllables whilst monitoring a rapid visual stream of pictures for targets, i.e., they had to divide their attention. In a Single task condition, participants identified the syllables without any other tasks, i.e., they were asked to ignore the pictures and focus their attention fully on the spoken syllables. The McGurk effect was weaker in the Dual task than in the Single task condition, indicating an effect of attentional load on audiovisual speech perception. Early auditory ERP components, N1 and P2, peaked earlier to audiovisual stimuli than to auditory stimuli when attention was fully focused on syllables, indicating neurophysiological audiovisual interaction. This latency decrement was reduced when attention was loaded, suggesting that attention influences early neural processing of audiovisual speech. We conclude that reduced attention weakens the interaction between vision and audition in speech.
2012-01-01
Background Prosthetic hand users have to rely extensively on visual feedback, which seems to lead to a high conscious burden for the users, in order to manipulate their prosthetic devices. Indirect methods (electro-cutaneous, vibrotactile, auditory cues) have been used to convey information from the artificial limb to the amputee, but the usability and advantages of these feedback methods were explored mainly by looking at the performance results, not taking into account measurements of the user’s mental effort, attention, and emotions. The main objective of this study was to explore the feasibility of using psycho-physiological measurements to assess cognitive effort when manipulating a robot hand with and without the usage of a sensory substitution system based on auditory feedback, and how these psycho-physiological recordings relate to temporal and grasping performance in a static setting. Methods 10 male subjects (26+/-years old), participated in this study and were asked to come for 2 consecutive days. On the first day the experiment objective, tasks, and experiment setting was explained. Then, they completed a 30 minutes guided training. On the second day each subject was tested in 3 different modalities: Auditory Feedback only control (AF), Visual Feedback only control (VF), and Audiovisual Feedback control (AVF). For each modality they were asked to perform 10 trials. At the end of each test, the subject had to answer the NASA TLX questionnaire. Also, during the test the subject’s EEG, ECG, electro-dermal activity (EDA), and respiration rate were measured. Results The results show that a higher mental effort is needed when the subjects rely only on their vision, and that this effort seems to be reduced when auditory feedback is added to the human-machine interaction (multimodal feedback). Furthermore, better temporal performance and better grasping performance was obtained in the audiovisual modality. Conclusions The performance improvements when using auditory cues, along with vision (multimodal feedback), can be attributed to a reduced attentional demand during the task, which can be attributed to a visual “pop-out” or enhance effect. Also, the NASA TLX, the EEG’s Alpha and Beta band, and the Heart Rate could be used to further evaluate sensory feedback systems in prosthetic applications. PMID:22682425
Teten, Amy F; Dagenais, Paul A; Friehe, Mary J
2015-01-01
This study compared the effectiveness of auditory and visual redirections in facilitating topic coherence for persons with Dementia of Alzheimer's Type (DAT). Five persons with moderate stage DAT engaged in conversation with the first author. Three topics related to activities of daily living, recreational activities, food, and grooming, were broached. Each topic was presented three times to each participant: once as a baseline condition, once with auditory redirection to topic, and once with visual redirection to topic. Transcripts of the interactions were scored for overall coherence. Condition was a significant factor in that the DAT participants exhibited better topic maintenance under visual and auditory conditions as opposed to baseline. In general, the performance of the participants was not affected by the topic, except for significantly higher overall coherence ratings for the visually redirected interactions dealing with the topic of food.
Auditory and Visual Cues for Topic Maintenance with Persons Who Exhibit Dementia of Alzheimer's Type
Teten, Amy F.; Dagenais, Paul A.; Friehe, Mary J.
2015-01-01
This study compared the effectiveness of auditory and visual redirections in facilitating topic coherence for persons with Dementia of Alzheimer's Type (DAT). Five persons with moderate stage DAT engaged in conversation with the first author. Three topics related to activities of daily living, recreational activities, food, and grooming, were broached. Each topic was presented three times to each participant: once as a baseline condition, once with auditory redirection to topic, and once with visual redirection to topic. Transcripts of the interactions were scored for overall coherence. Condition was a significant factor in that the DAT participants exhibited better topic maintenance under visual and auditory conditions as opposed to baseline. In general, the performance of the participants was not affected by the topic, except for significantly higher overall coherence ratings for the visually redirected interactions dealing with the topic of food. PMID:26171273
Bertelson, Paul; Aschersleben, Gisa
2003-10-01
In the well-known visual bias of auditory location (alias the ventriloquist effect), auditory and visual events presented in separate locations appear closer together, provided the presentations are synchronized. Here, we consider the possibility of the converse phenomenon: crossmodal attraction on the time dimension conditional on spatial proximity. Participants judged the order of occurrence of sound bursts and light flashes, respectively, separated in time by varying stimulus onset asynchronies (SOAs) and delivered either in the same or in different locations. Presentation was organized using randomly mixed psychophysical staircases, by which the SOA was reduced progressively until a point of uncertainty was reached. This point was reached at longer SOAs with the sounds in the same frontal location as the flashes than in different places, showing that apparent temporal separation is effectively longer in the first condition. Together with a similar one obtained recently in a case of tactile-visual discrepancy, this result supports a view in which timing and spatial layout of the inputs play to some extent inter-changeable roles in the pairing operation at the base of crossmodal interaction.
Holmes, Nicholas P; Dakwar, Azar R
2015-12-01
Movements aimed towards objects occasionally have to be adjusted when the object moves. These online adjustments can be very rapid, occurring in as little as 100ms. More is known about the latency and neural basis of online control of movements to visual than to auditory target objects. We examined the latency of online corrections in reaching-to-point movements to visual and auditory targets that could change side and/or modality at movement onset. Visual or auditory targets were presented on the left or right sides, and participants were instructed to reach and point to them as quickly and as accurately as possible. On half of the trials, the targets changed side at movement onset, and participants had to correct their movements to point to the new target location as quickly as possible. Given different published approaches to measuring the latency for initiating movement corrections, we examined several different methods systematically. What we describe here as the optimal methods involved fitting a straight-line model to the velocity of the correction movement, rather than using a statistical criterion to determine correction onset. In the multimodal experiment, these model-fitting methods produced significantly lower latencies for correcting movements away from the auditory targets than away from the visual targets. Our results confirm that rapid online correction is possible for auditory targets, but further work is required to determine whether the underlying control system for reaching and pointing movements is the same for auditory and visual targets. Copyright © 2015 Elsevier Ltd. All rights reserved.
Speech comprehension aided by multiple modalities: behavioural and neural interactions
McGettigan, Carolyn; Faulkner, Andrew; Altarelli, Irene; Obleser, Jonas; Baverstock, Harriet; Scott, Sophie K.
2014-01-01
Speech comprehension is a complex human skill, the performance of which requires the perceiver to combine information from several sources – e.g. voice, face, gesture, linguistic context – to achieve an intelligible and interpretable percept. We describe a functional imaging investigation of how auditory, visual and linguistic information interact to facilitate comprehension. Our specific aims were to investigate the neural responses to these different information sources, alone and in interaction, and further to use behavioural speech comprehension scores to address sites of intelligibility-related activation in multifactorial speech comprehension. In fMRI, participants passively watched videos of spoken sentences, in which we varied Auditory Clarity (with noise-vocoding), Visual Clarity (with Gaussian blurring) and Linguistic Predictability. Main effects of enhanced signal with increased auditory and visual clarity were observed in overlapping regions of posterior STS. Two-way interactions of the factors (auditory × visual, auditory × predictability) in the neural data were observed outside temporal cortex, where positive signal change in response to clearer facial information and greater semantic predictability was greatest at intermediate levels of auditory clarity. Overall changes in stimulus intelligibility by condition (as determined using an independent behavioural experiment) were reflected in the neural data by increased activation predominantly in bilateral dorsolateral temporal cortex, as well as inferior frontal cortex and left fusiform gyrus. Specific investigation of intelligibility changes at intermediate auditory clarity revealed a set of regions, including posterior STS and fusiform gyrus, showing enhanced responses to both visual and linguistic information. Finally, an individual differences analysis showed that greater comprehension performance in the scanning participants (measured in a post-scan behavioural test) were associated with increased activation in left inferior frontal gyrus and left posterior STS. The current multimodal speech comprehension paradigm demonstrates recruitment of a wide comprehension network in the brain, in which posterior STS and fusiform gyrus form sites for convergence of auditory, visual and linguistic information, while left-dominant sites in temporal and frontal cortex support successful comprehension. PMID:22266262
Speech comprehension aided by multiple modalities: behavioural and neural interactions.
McGettigan, Carolyn; Faulkner, Andrew; Altarelli, Irene; Obleser, Jonas; Baverstock, Harriet; Scott, Sophie K
2012-04-01
Speech comprehension is a complex human skill, the performance of which requires the perceiver to combine information from several sources - e.g. voice, face, gesture, linguistic context - to achieve an intelligible and interpretable percept. We describe a functional imaging investigation of how auditory, visual and linguistic information interact to facilitate comprehension. Our specific aims were to investigate the neural responses to these different information sources, alone and in interaction, and further to use behavioural speech comprehension scores to address sites of intelligibility-related activation in multifactorial speech comprehension. In fMRI, participants passively watched videos of spoken sentences, in which we varied Auditory Clarity (with noise-vocoding), Visual Clarity (with Gaussian blurring) and Linguistic Predictability. Main effects of enhanced signal with increased auditory and visual clarity were observed in overlapping regions of posterior STS. Two-way interactions of the factors (auditory × visual, auditory × predictability) in the neural data were observed outside temporal cortex, where positive signal change in response to clearer facial information and greater semantic predictability was greatest at intermediate levels of auditory clarity. Overall changes in stimulus intelligibility by condition (as determined using an independent behavioural experiment) were reflected in the neural data by increased activation predominantly in bilateral dorsolateral temporal cortex, as well as inferior frontal cortex and left fusiform gyrus. Specific investigation of intelligibility changes at intermediate auditory clarity revealed a set of regions, including posterior STS and fusiform gyrus, showing enhanced responses to both visual and linguistic information. Finally, an individual differences analysis showed that greater comprehension performance in the scanning participants (measured in a post-scan behavioural test) were associated with increased activation in left inferior frontal gyrus and left posterior STS. The current multimodal speech comprehension paradigm demonstrates recruitment of a wide comprehension network in the brain, in which posterior STS and fusiform gyrus form sites for convergence of auditory, visual and linguistic information, while left-dominant sites in temporal and frontal cortex support successful comprehension. Copyright © 2012 Elsevier Ltd. All rights reserved.
Demonstrations of simple and complex auditory psychophysics for multiple platforms and environments
NASA Astrophysics Data System (ADS)
Horowitz, Seth S.; Simmons, Andrea M.; Blue, China
2005-09-01
Sound is arguably the most widely perceived and pervasive form of energy in our world, and among the least understood, in part due to the complexity of its underlying principles. A series of interactive displays has been developed which demonstrates that the nature of sound involves the propagation of energy through space, and illustrates the definition of psychoacoustics, which is how listeners map the physical aspects of sound and vibration onto their brains. These displays use auditory illusions and commonly experienced music and sound in novel presentations (using interactive computer algorithms) to show that what you hear is not always what you get. The areas covered in these demonstrations range from simple and complex auditory localization, which illustrate why humans are bad at echolocation but excellent at determining the contents of auditory space, to auditory illusions that manipulate fine phase information and make the listener think their head is changing size. Another demonstration shows how auditory and visual localization coincide and sound can be used to change visual tracking. These demonstrations are designed to run on a wide variety of student accessible platforms including web pages, stand-alone presentations, or even hardware-based systems for museum displays.
ERIC Educational Resources Information Center
Hertrich, Ingo; Dietrich, Susanne; Ackermann, Hermann
2011-01-01
During speech communication, visual information may interact with the auditory system at various processing stages. Most noteworthy, recent magnetoencephalography (MEG) data provided first evidence for early and preattentive phonetic/phonological encoding of the visual data stream--prior to its fusion with auditory phonological features [Hertrich,…
Nawroth, Christian; von Borell, Eberhard
2015-05-01
Recently, foraging strategies have been linked to the ability to use indirect visual information. More selective feeders should express a higher aversion against losses compared to non-selective feeders and should therefore be more prone to avoid empty food locations. To extend these findings, in this study, we present a series of studies investigating the use of direct and indirect visual and auditory information by an omnivorous but selective feeder-the domestic pig. Subjects had to choose between two buckets, with only one containing a reward. Before making a choice, the subjects in Experiment 1 (N = 8) received full information regarding both the baited and non-baited location, either in a visual or auditory domain. In this experiment, the subjects were able to use visual but not auditory cues to infer the location of the reward spontaneously. Additionally, four individuals learned to use auditory cues after a period of training. In Experiment 2 (N = 8), the pigs were given different amounts of visual information about the content of the buckets-lifting either both of the buckets (full information), the baited bucket (direct information), the empty bucket (indirect information) or no bucket at all (no information). The subjects as a group were able to use direct and indirect visual cues. However, over the course of the experiment, the performance dropped to chance level when indirect information was provided. A final experiment (N = 3) provided preliminary results for pigs' use of indirect auditory information to infer the location of a reward. We conclude that pigs at a very young age are able to make decisions based on indirect information in the visual domain, whereas their performance in the use of indirect auditory information warrants further investigation.
Auditory display as feedback for a novel eye-tracking system for sterile operating room interaction.
Black, David; Unger, Michael; Fischer, Nele; Kikinis, Ron; Hahn, Horst; Neumuth, Thomas; Glaser, Bernhard
2018-01-01
The growing number of technical systems in the operating room has increased attention on developing touchless interaction methods for sterile conditions. However, touchless interaction paradigms lack the tactile feedback found in common input devices such as mice and keyboards. We propose a novel touchless eye-tracking interaction system with auditory display as a feedback method for completing typical operating room tasks. Auditory display provides feedback concerning the selected input into the eye-tracking system as well as a confirmation of the system response. An eye-tracking system with a novel auditory display using both earcons and parameter-mapping sonification was developed to allow touchless interaction for six typical scrub nurse tasks. An evaluation with novice participants compared auditory display with visual display with respect to reaction time and a series of subjective measures. When using auditory display to substitute for the lost tactile feedback during eye-tracking interaction, participants exhibit reduced reaction time compared to using visual-only display. In addition, the auditory feedback led to lower subjective workload and higher usefulness and system acceptance ratings. Due to the absence of tactile feedback for eye-tracking and other touchless interaction methods, auditory display is shown to be a useful and necessary addition to new interaction concepts for the sterile operating room, reducing reaction times while improving subjective measures, including usefulness, user satisfaction, and cognitive workload.
Effect of attentional load on audiovisual speech perception: evidence from ERPs
Alsius, Agnès; Möttönen, Riikka; Sams, Mikko E.; Soto-Faraco, Salvador; Tiippana, Kaisa
2014-01-01
Seeing articulatory movements influences perception of auditory speech. This is often reflected in a shortened latency of auditory event-related potentials (ERPs) generated in the auditory cortex. The present study addressed whether this early neural correlate of audiovisual interaction is modulated by attention. We recorded ERPs in 15 subjects while they were presented with auditory, visual, and audiovisual spoken syllables. Audiovisual stimuli consisted of incongruent auditory and visual components known to elicit a McGurk effect, i.e., a visually driven alteration in the auditory speech percept. In a Dual task condition, participants were asked to identify spoken syllables whilst monitoring a rapid visual stream of pictures for targets, i.e., they had to divide their attention. In a Single task condition, participants identified the syllables without any other tasks, i.e., they were asked to ignore the pictures and focus their attention fully on the spoken syllables. The McGurk effect was weaker in the Dual task than in the Single task condition, indicating an effect of attentional load on audiovisual speech perception. Early auditory ERP components, N1 and P2, peaked earlier to audiovisual stimuli than to auditory stimuli when attention was fully focused on syllables, indicating neurophysiological audiovisual interaction. This latency decrement was reduced when attention was loaded, suggesting that attention influences early neural processing of audiovisual speech. We conclude that reduced attention weakens the interaction between vision and audition in speech. PMID:25076922
Multisensory guidance of orienting behavior.
Maier, Joost X; Groh, Jennifer M
2009-12-01
We use both vision and audition when localizing objects and events in our environment. However, these sensory systems receive spatial information in different coordinate systems: sounds are localized using inter-aural and spectral cues, yielding a head-centered representation of space, whereas the visual system uses an eye-centered representation of space, based on the site of activation on the retina. In addition, the visual system employs a place-coded, retinotopic map of space, whereas the auditory system's representational format is characterized by broad spatial tuning and a lack of topographical organization. A common view is that the brain needs to reconcile these differences in order to control behavior, such as orienting gaze to the location of a sound source. To accomplish this, it seems that either auditory spatial information must be transformed from a head-centered rate code to an eye-centered map to match the frame of reference used by the visual system, or vice versa. Here, we review a number of studies that have focused on the neural basis underlying such transformations in the primate auditory system. Although, these studies have found some evidence for such transformations, many differences in the way the auditory and visual system encode space exist throughout the auditory pathway. We will review these differences at the neural level, and will discuss them in relation to differences in the way auditory and visual information is used in guiding orienting movements.
Meyerhoff, Hauke S; Huff, Markus
2016-04-01
Human long-term memory for visual objects and scenes is tremendous. Here, we test how auditory information contributes to long-term memory performance for realistic scenes. In a total of six experiments, we manipulated the presentation modality (auditory, visual, audio-visual) as well as semantic congruency and temporal synchrony between auditory and visual information of brief filmic clips. Our results show that audio-visual clips generally elicit more accurate memory performance than unimodal clips. This advantage even increases with congruent visual and auditory information. However, violations of audio-visual synchrony hardly have any influence on memory performance. Memory performance remained intact even with a sequential presentation of auditory and visual information, but finally declined when the matching tracks of one scene were presented separately with intervening tracks during learning. With respect to memory performance, our results therefore show that audio-visual integration is sensitive to semantic congruency but remarkably robust against asymmetries between different modalities.
van den Hurk, Job; Van Baelen, Marc; Op de Beeck, Hans P.
2017-01-01
To what extent does functional brain organization rely on sensory input? Here, we show that for the penultimate visual-processing region, ventral-temporal cortex (VTC), visual experience is not the origin of its fundamental organizational property, category selectivity. In the fMRI study reported here, we presented 14 congenitally blind participants with face-, body-, scene-, and object-related natural sounds and presented 20 healthy controls with both auditory and visual stimuli from these categories. Using macroanatomical alignment, response mapping, and surface-based multivoxel pattern analysis, we demonstrated that VTC in blind individuals shows robust discriminatory responses elicited by the four categories and that these patterns of activity in blind subjects could successfully predict the visual categories in sighted controls. These findings were confirmed in a subset of blind participants born without eyes and thus deprived from all light perception since conception. The sounds also could be decoded in primary visual and primary auditory cortex, but these regions did not sustain generalization across modalities. Surprisingly, although not as strong as visual responses, selectivity for auditory stimulation in visual cortex was stronger in blind individuals than in controls. The opposite was observed in primary auditory cortex. Overall, we demonstrated a striking similarity in the cortical response layout of VTC in blind individuals and sighted controls, demonstrating that the overall category-selective map in extrastriate cortex develops independently from visual experience. PMID:28507127
Visual influences on auditory spatial learning
King, Andrew J.
2008-01-01
The visual and auditory systems frequently work together to facilitate the identification and localization of objects and events in the external world. Experience plays a critical role in establishing and maintaining congruent visual–auditory associations, so that the different sensory cues associated with targets that can be both seen and heard are synthesized appropriately. For stimulus location, visual information is normally more accurate and reliable and provides a reference for calibrating the perception of auditory space. During development, vision plays a key role in aligning neural representations of space in the brain, as revealed by the dramatic changes produced in auditory responses when visual inputs are altered, and is used throughout life to resolve short-term spatial conflicts between these modalities. However, accurate, and even supra-normal, auditory localization abilities can be achieved in the absence of vision, and the capacity of the mature brain to relearn to localize sound in the presence of substantially altered auditory spatial cues does not require visuomotor feedback. Thus, while vision is normally used to coordinate information across the senses, the neural circuits responsible for spatial hearing can be recalibrated in a vision-independent fashion. Nevertheless, early multisensory experience appears to be crucial for the emergence of an ability to match signals from different sensory modalities and therefore for the outcome of audiovisual-based rehabilitation of deaf patients in whom hearing has been restored by cochlear implantation. PMID:18986967
Bharadwaj, Sneha V; Maricle, Denise; Green, Laura; Allman, Tamby
2015-10-01
The objective of the study was to examine short-term memory and working memory through both visual and auditory tasks in school-age children with cochlear implants. The relationship between the performance on these cognitive skills and reading as well as language outcomes were examined in these children. Ten children between the ages of 7 and 11 years with early-onset bilateral severe-profound hearing loss participated in the study. Auditory and visual short-term memory, auditory and visual working memory subtests and verbal knowledge measures were assessed using the Woodcock Johnson III Tests of Cognitive Abilities, the Wechsler Intelligence Scale for Children-IV Integrated and the Kaufman Assessment Battery for Children II. Reading outcomes were assessed using the Woodcock Reading Mastery Test III. Performance on visual short-term memory and visual working memory measures in children with cochlear implants was within the average range when compared to the normative mean. However, auditory short-term memory and auditory working memory measures were below average when compared to the normative mean. Performance was also below average on all verbal knowledge measures. Regarding reading outcomes, children with cochlear implants scored below average for listening and passage comprehension tasks and these measures were positively correlated to visual short-term memory, visual working memory and auditory short-term memory. Performance on auditory working memory subtests was not related to reading or language outcomes. The children with cochlear implants in this study demonstrated better performance in visual (spatial) working memory and short-term memory skills than in auditory working memory and auditory short-term memory skills. Significant positive relationships were found between visual working memory and reading outcomes. The results of the study provide support for the idea that WM capacity is modality specific in children with hearing loss. Based on these findings, reading instruction that capitalizes on the strengths in visual short-term memory and working memory is suggested for young children with early-onset hearing loss. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Listeners' expectation of room acoustical parameters based on visual cues
NASA Astrophysics Data System (ADS)
Valente, Daniel L.
Despite many studies investigating auditory spatial impressions in rooms, few have addressed the impact of simultaneous visual cues on localization and the perception of spaciousness. The current research presents an immersive audio-visual study, in which participants are instructed to make spatial congruency and quantity judgments in dynamic cross-modal environments. The results of these psychophysical tests suggest the importance of consilient audio-visual presentation to the legibility of an auditory scene. Several studies have looked into audio-visual interaction in room perception in recent years, but these studies rely on static images, speech signals, or photographs alone to represent the visual scene. Building on these studies, the aim is to propose a testing method that uses monochromatic compositing (blue-screen technique) to position a studio recording of a musical performance in a number of virtual acoustical environments and ask subjects to assess these environments. In the first experiment of the study, video footage was taken from five rooms varying in physical size from a small studio to a small performance hall. Participants were asked to perceptually align two distinct acoustical parameters---early-to-late reverberant energy ratio and reverberation time---of two solo musical performances in five contrasting visual environments according to their expectations of how the room should sound given its visual appearance. In the second experiment in the study, video footage shot from four different listening positions within a general-purpose space was coupled with sounds derived from measured binaural impulse responses (IRs). The relationship between the presented image, sound, and virtual receiver position was examined. It was found that many visual cues caused different perceived events of the acoustic environment. This included the visual attributes of the space in which the performance was located as well as the visual attributes of the performer. The addressed visual makeup of the performer included: (1) an actual video of the performance, (2) a surrogate image of the performance, for example a loudspeaker's image reproducing the performance, (3) no visual image of the performance (empty room), or (4) a multi-source visual stimulus (actual video of the performance coupled with two images of loudspeakers positioned to the left and right of the performer). For this experiment, perceived auditory events of sound were measured in terms of two subjective spatial metrics: Listener Envelopment (LEV) and Apparent Source Width (ASW) These metrics were hypothesized to be dependent on the visual imagery of the presented performance. Data was also collected by participants matching direct and reverberant sound levels for the presented audio-visual scenes. In the final experiment, participants judged spatial expectations of an ensemble of musicians presented in the five physical spaces from Experiment 1. Supporting data was accumulated in two stages. First, participants were given an audio-visual matching test, in which they were instructed to align the auditory width of a performing ensemble to a varying set of audio and visual cues. In the second stage, a conjoint analysis design paradigm was explored to extrapolate the relative magnitude of explored audio-visual factors in affecting three assessed response criteria: Congruency (the perceived match-up of the auditory and visual cues in the assessed performance), ASW and LEV. Results show that both auditory and visual factors affect the collected responses, and that the two sensory modalities coincide in distinct interactions. This study reveals participant resiliency in the presence of forced auditory-visual mismatch: Participants are able to adjust the acoustic component of the cross-modal environment in a statistically similar way despite randomized starting values for the monitored parameters. Subjective results of the experiments are presented along with objective measurements for verification.
Grahn, Jessica A.; Henry, Molly J.; McAuley, J. Devin
2011-01-01
How we measure time and integrate temporal cues from different sensory modalities are fundamental questions in neuroscience. Sensitivity to a “beat” (such as that routinely perceived in music) differs substantially between auditory and visual modalities. Here we examined beat sensitivity in each modality, and examined cross-modal influences, using functional magnetic resonance imaging (fMRI) to characterize brain activity during perception of auditory and visual rhythms. In separate fMRI sessions, participants listened to auditory sequences or watched visual sequences. The order of auditory and visual sequence presentation was counterbalanced so that cross-modal order effects could be investigated. Participants judged whether sequences were speeding up or slowing down, and the pattern of tempo judgments was used to derive a measure of sensitivity to an implied beat. As expected, participants were less sensitive to an implied beat in visual sequences than in auditory sequences. However, visual sequences produced a stronger sense of beat when preceded by auditory sequences with identical temporal structure. Moreover, increases in brain activity were observed in the bilateral putamen for visual sequences preceded by auditory sequences when compared to visual sequences without prior auditory exposure. No such order-dependent differences (behavioral or neural) were found for the auditory sequences. The results provide further evidence for the role of the basal ganglia in internal generation of the beat and suggest that an internal auditory rhythm representation may be activated during visual rhythm perception. PMID:20858544
Auditory presentation and synchronization in Adobe Flash and HTML5/JavaScript Web experiments.
Reimers, Stian; Stewart, Neil
2016-09-01
Substantial recent research has examined the accuracy of presentation durations and response time measurements for visually presented stimuli in Web-based experiments, with a general conclusion that accuracy is acceptable for most kinds of experiments. However, many areas of behavioral research use auditory stimuli instead of, or in addition to, visual stimuli. Much less is known about auditory accuracy using standard Web-based testing procedures. We used a millisecond-accurate Black Box Toolkit to measure the actual durations of auditory stimuli and the synchronization of auditory and visual presentation onsets. We examined the distribution of timings for 100 presentations of auditory and visual stimuli across two computers with difference specs, three commonly used browsers, and code written in either Adobe Flash or JavaScript. We also examined different coding options for attempting to synchronize the auditory and visual onsets. Overall, we found that auditory durations were very consistent, but that the lags between visual and auditory onsets varied substantially across browsers and computer systems.
Kolarik, Andrew J; Moore, Brian C J; Zahorik, Pavel; Cirstea, Silvia; Pardhan, Shahina
2016-02-01
Auditory distance perception plays a major role in spatial awareness, enabling location of objects and avoidance of obstacles in the environment. However, it remains under-researched relative to studies of the directional aspect of sound localization. This review focuses on the following four aspects of auditory distance perception: cue processing, development, consequences of visual and auditory loss, and neurological bases. The several auditory distance cues vary in their effective ranges in peripersonal and extrapersonal space. The primary cues are sound level, reverberation, and frequency. Nonperceptual factors, including the importance of the auditory event to the listener, also can affect perceived distance. Basic internal representations of auditory distance emerge at approximately 6 months of age in humans. Although visual information plays an important role in calibrating auditory space, sensorimotor contingencies can be used for calibration when vision is unavailable. Blind individuals often manifest supranormal abilities to judge relative distance but show a deficit in absolute distance judgments. Following hearing loss, the use of auditory level as a distance cue remains robust, while the reverberation cue becomes less effective. Previous studies have not found evidence that hearing-aid processing affects perceived auditory distance. Studies investigating the brain areas involved in processing different acoustic distance cues are described. Finally, suggestions are given for further research on auditory distance perception, including broader investigation of how background noise and multiple sound sources affect perceived auditory distance for those with sensory loss.
Zimmermann, Jacqueline F; Moscovitch, Morris; Alain, Claude
2016-06-01
Attention to memory describes the process of attending to memory traces when the object is no longer present. It has been studied primarily for representations of visual stimuli with only few studies examining attention to sound object representations in short-term memory. Here, we review the interplay of attention and auditory memory with an emphasis on 1) attending to auditory memory in the absence of related external stimuli (i.e., reflective attention) and 2) effects of existing memory on guiding attention. Attention to auditory memory is discussed in the context of change deafness, and we argue that failures to detect changes in our auditory environments are most likely the result of a faulty comparison system of incoming and stored information. Also, objects are the primary building blocks of auditory attention, but attention can also be directed to individual features (e.g., pitch). We review short-term and long-term memory guided modulation of attention based on characteristic features, location, and/or semantic properties of auditory objects, and propose that auditory attention to memory pathways emerge after sensory memory. A neural model for auditory attention to memory is developed, which comprises two separate pathways in the parietal cortex, one involved in attention to higher-order features and the other involved in attention to sensory information. This article is part of a Special Issue entitled SI: Auditory working memory. Copyright © 2015 Elsevier B.V. All rights reserved.
Skill dependent audiovisual integration in the fusiform induces repetition suppression.
McNorgan, Chris; Booth, James R
2015-02-01
Learning to read entails mapping existing phonological representations to novel orthographic representations and is thus an ideal context for investigating experience driven audiovisual integration. Because two dominant brain-based theories of reading development hinge on the sensitivity of the visual-object processing stream to phonological information, we were interested in how reading skill relates to audiovisual integration in this area. Thirty-two children between 8 and 13 years of age spanning a range of reading skill participated in a functional magnetic resonance imaging experiment. Participants completed a rhyme judgment task to word pairs presented unimodally (auditory- or visual-only) and cross-modally (auditory followed by visual). Skill-dependent sub-additive audiovisual modulation was found in left fusiform gyrus, extending into the putative visual word form area, and was correlated with behavioral orthographic priming. These results suggest learning to read promotes facilitatory audiovisual integration in the ventral visual-object processing stream and may optimize this region for orthographic processing. Copyright © 2014 Elsevier Inc. All rights reserved.
Skill Dependent Audiovisual Integration in the Fusiform Induces Repetition Suppression
McNorgan, Chris; Booth, James R.
2015-01-01
Learning to read entails mapping existing phonological representations to novel orthographic representations and is thus an ideal context for investigating experience driven audiovisual integration. Because two dominant brain-based theories of reading development hinge on the sensitivity of the visual-object processing stream to phonological information, we were interested in how reading skill relates to audiovisual integration in this area. Thirty-two children between 8 and 13 years of age spanning a range of reading skill participated in a functional magnetic resonance imaging experiment. Participants completed a rhyme judgment task to word pairs presented unimodally (auditory- or visual-only) and cross-modally (auditory followed by visual). Skill-dependent sub-additive audiovisual modulation was found in left fusiform gyrus, extending into the putative visual word form area, and was correlated with behavioral orthographic priming. These results suggest learning to read promotes facilitatory audiovisual integration in the ventral visual-object processing stream and may optimize this region for orthographic processing. PMID:25585276
Asad, Mohammad Rehan; Amir, Khwaja; Tadvi, Naser Ashraf; Afzal, Kamran; Sami, Waqas; Irfan, Abdul
2017-01-01
The objective of this study is to explore the student's perspectives toward the interactive lectures as a teaching and learning method in an integrated curriculum. This cross-sectional study was conducted among 1 st , 2 nd and 3 rd year male medical students ( n = 121). A self-administered questionnaire based on the Visual, Auditory, Reader, Kinesthetic learning styles, learning theories, and role of feedback in teaching and learning on five-point Likert rating scale was used. The questionnaire was constructed after extensive literature review. There was an 80% response rate in this study. The total number of undergraduate medical students responded in the study were n = 97, 34 students of 1 st year, n = 30 students of 2 nd year and n = 33 student were in 3 rd year, the mean scores of the student responses were calculated using Independent samples Kruskal-Wallis. There was no significant difference in the responses of the students of different years except for the question "The Interactive lectures facilitate effective use of learning resources." Which showed significant difference in the responses of the 3 years students by Independent samples Kruskal-Wallis test. No significant association was found between the year of study and items of the questionnaire except for the same item, " The Interactive lectures facilitates effective use of learning resources" by Spearman rank correlation test. The students perceive interactive lecture as an effective tool for facilitating visual and auditory learning modes, and for achieving curricular strategies. The student find the feedback given during the interactive lectures is effective in modifying learning attitude and enhancing motivation toward learning.
Multisensory and Modality-Specific Influences on Adaptation to Optical Prisms
Calzolari, Elena; Albini, Federica; Bolognini, Nadia; Vallar, Giuseppe
2017-01-01
Visuo-motor adaptation to optical prisms displacing the visual scene (prism adaptation, PA) is a method used for investigating visuo-motor plasticity in healthy individuals and, in clinical settings, for the rehabilitation of unilateral spatial neglect. In the standard paradigm, the adaptation phase involves repeated pointings to visual targets, while wearing optical prisms displacing the visual scene laterally. Here we explored differences in PA, and its aftereffects (AEs), as related to the sensory modality of the target. Visual, auditory, and multisensory – audio-visual – targets in the adaptation phase were used, while participants wore prisms displacing the visual field rightward by 10°. Proprioceptive, visual, visual-proprioceptive, auditory-proprioceptive straight-ahead shifts were measured. Pointing to auditory and to audio-visual targets in the adaptation phase produces proprioceptive, visual-proprioceptive, and auditory-proprioceptive AEs, as the typical visual targets did. This finding reveals that cross-modal plasticity effects involve both the auditory and the visual modality, and their interactions (Experiment 1). Even a shortened PA phase, requiring only 24 pointings to visual and audio-visual targets (Experiment 2), is sufficient to bring about AEs, as compared to the standard 92-pointings procedure. Finally, pointings to auditory targets cause AEs, although PA with a reduced number of pointings (24) to auditory targets brings about smaller AEs, as compared to the 92-pointings procedure (Experiment 3). Together, results from the three experiments extend to the auditory modality the sensorimotor plasticity underlying the typical AEs produced by PA to visual targets. Importantly, PA to auditory targets appears characterized by less accurate pointings and error correction, suggesting that the auditory component of the PA process may be less central to the building up of the AEs, than the sensorimotor pointing activity per se. These findings highlight both the effectiveness of a reduced number of pointings for bringing about AEs, and the possibility of inducing PA with auditory targets, which may be used as a compensatory route in patients with visual deficits. PMID:29213233
Electrophysiological evidence for Audio-visuo-lingual speech integration.
Treille, Avril; Vilain, Coriandre; Schwartz, Jean-Luc; Hueber, Thomas; Sato, Marc
2018-01-31
Recent neurophysiological studies demonstrate that audio-visual speech integration partly operates through temporal expectations and speech-specific predictions. From these results, one common view is that the binding of auditory and visual, lipread, speech cues relies on their joint probability and prior associative audio-visual experience. The present EEG study examined whether visual tongue movements integrate with relevant speech sounds, despite little associative audio-visual experience between the two modalities. A second objective was to determine possible similarities and differences of audio-visual speech integration between unusual audio-visuo-lingual and classical audio-visuo-labial modalities. To this aim, participants were presented with auditory, visual, and audio-visual isolated syllables, with the visual presentation related to either a sagittal view of the tongue movements or a facial view of the lip movements of a speaker, with lingual and facial movements previously recorded by an ultrasound imaging system and a video camera. In line with previous EEG studies, our results revealed an amplitude decrease and a latency facilitation of P2 auditory evoked potentials in both audio-visual-lingual and audio-visuo-labial conditions compared to the sum of unimodal conditions. These results argue against the view that auditory and visual speech cues solely integrate based on prior associative audio-visual perceptual experience. Rather, they suggest that dynamic and phonetic informational cues are sharable across sensory modalities, possibly through a cross-modal transfer of implicit articulatory motor knowledge. Copyright © 2017 Elsevier Ltd. All rights reserved.
Modality-specificity of Selective Attention Networks
Stewart, Hannah J.; Amitay, Sygal
2015-01-01
Objective: To establish the modality specificity and generality of selective attention networks. Method: Forty-eight young adults completed a battery of four auditory and visual selective attention tests based upon the Attention Network framework: the visual and auditory Attention Network Tests (vANT, aANT), the Test of Everyday Attention (TEA), and the Test of Attention in Listening (TAiL). These provided independent measures for auditory and visual alerting, orienting, and conflict resolution networks. The measures were subjected to an exploratory factor analysis to assess underlying attention constructs. Results: The analysis yielded a four-component solution. The first component comprised of a range of measures from the TEA and was labeled “general attention.” The third component was labeled “auditory attention,” as it only contained measures from the TAiL using pitch as the attended stimulus feature. The second and fourth components were labeled as “spatial orienting” and “spatial conflict,” respectively—they were comprised of orienting and conflict resolution measures from the vANT, aANT, and TAiL attend-location task—all tasks based upon spatial judgments (e.g., the direction of a target arrow or sound location). Conclusions: These results do not support our a-priori hypothesis that attention networks are either modality specific or supramodal. Auditory attention separated into selectively attending to spatial and non-spatial features, with the auditory spatial attention loading onto the same factor as visual spatial attention, suggesting spatial attention is supramodal. However, since our study did not include a non-spatial measure of visual attention, further research will be required to ascertain whether non-spatial attention is modality-specific. PMID:26635709
Zupan, Barbra; Sussman, Joan E
2009-01-01
Experiment 1 examined modality preferences in children and adults with normal hearing to combined auditory-visual stimuli. Experiment 2 compared modality preferences in children using cochlear implants participating in an auditory emphasized therapy approach to the children with normal hearing from Experiment 1. A second objective in both experiments was to evaluate the role of familiarity in these preferences. Participants were exposed to randomized blocks of photographs and sounds of ten familiar and ten unfamiliar animals in auditory-only, visual-only and auditory-visual trials. Results indicated an overall auditory preference in children, regardless of hearing status, and a visual preference in adults. Familiarity only affected modality preferences in adults who showed a strong visual preference to unfamiliar stimuli only. The similar degree of auditory responses in children with hearing loss to those from children with normal hearing is an original finding and lends support to an auditory emphasis for habilitation. Readers will be able to (1) Describe the pattern of modality preferences reported in young children without hearing loss; (2) Recognize that differences in communication mode may affect modality preferences in young children with hearing loss; and (3) Understand the role of familiarity in modality preferences in children with and without hearing loss.
Schall, Sonja; von Kriegstein, Katharina
2014-01-01
It has been proposed that internal simulation of the talking face of visually-known speakers facilitates auditory speech recognition. One prediction of this view is that brain areas involved in auditory-only speech comprehension interact with visual face-movement sensitive areas, even under auditory-only listening conditions. Here, we test this hypothesis using connectivity analyses of functional magnetic resonance imaging (fMRI) data. Participants (17 normal participants, 17 developmental prosopagnosics) first learned six speakers via brief voice-face or voice-occupation training (<2 min/speaker). This was followed by an auditory-only speech recognition task and a control task (voice recognition) involving the learned speakers' voices in the MRI scanner. As hypothesized, we found that, during speech recognition, familiarity with the speaker's face increased the functional connectivity between the face-movement sensitive posterior superior temporal sulcus (STS) and an anterior STS region that supports auditory speech intelligibility. There was no difference between normal participants and prosopagnosics. This was expected because previous findings have shown that both groups use the face-movement sensitive STS to optimize auditory-only speech comprehension. Overall, the present findings indicate that learned visual information is integrated into the analysis of auditory-only speech and that this integration results from the interaction of task-relevant face-movement and auditory speech-sensitive areas.
Brain activity during auditory and visual phonological, spatial and simple discrimination tasks.
Salo, Emma; Rinne, Teemu; Salonen, Oili; Alho, Kimmo
2013-02-16
We used functional magnetic resonance imaging to measure human brain activity during tasks demanding selective attention to auditory or visual stimuli delivered in concurrent streams. Auditory stimuli were syllables spoken by different voices and occurring in central or peripheral space. Visual stimuli were centrally or more peripherally presented letters in darker or lighter fonts. The participants performed a phonological, spatial or "simple" (speaker-gender or font-shade) discrimination task in either modality. Within each modality, we expected a clear distinction between brain activations related to nonspatial and spatial processing, as reported in previous studies. However, within each modality, different tasks activated largely overlapping areas in modality-specific (auditory and visual) cortices, as well as in the parietal and frontal brain regions. These overlaps may be due to effects of attention common for all three tasks within each modality or interaction of processing task-relevant features and varying task-irrelevant features in the attended-modality stimuli. Nevertheless, brain activations caused by auditory and visual phonological tasks overlapped in the left mid-lateral prefrontal cortex, while those caused by the auditory and visual spatial tasks overlapped in the inferior parietal cortex. These overlapping activations reveal areas of multimodal phonological and spatial processing. There was also some evidence for intermodal attention-related interaction. Most importantly, activity in the superior temporal sulcus elicited by unattended speech sounds was attenuated during the visual phonological task in comparison with the other visual tasks. This effect might be related to suppression of processing irrelevant speech presumably distracting the phonological task involving the letters. Copyright © 2012 Elsevier B.V. All rights reserved.
Meyer, Georg F.; Shao, Fei; White, Mark D.; Hopkins, Carl; Robotham, Antony J.
2013-01-01
Externally generated visual motion signals can cause the illusion of self-motion in space (vection) and corresponding visually evoked postural responses (VEPR). These VEPRs are not simple responses to optokinetic stimulation, but are modulated by the configuration of the environment. The aim of this paper is to explore what factors modulate VEPRs in a high quality virtual reality (VR) environment where real and virtual foreground objects served as static visual, auditory and haptic reference points. Data from four experiments on visually evoked postural responses show that: 1) visually evoked postural sway in the lateral direction is modulated by the presence of static anchor points that can be haptic, visual and auditory reference signals; 2) real objects and their matching virtual reality representations as visual anchors have different effects on postural sway; 3) visual motion in the anterior-posterior plane induces robust postural responses that are not modulated by the presence of reference signals or the reality of objects that can serve as visual anchors in the scene. We conclude that automatic postural responses for laterally moving visual stimuli are strongly influenced by the configuration and interpretation of the environment and draw on multisensory representations. Different postural responses were observed for real and virtual visual reference objects. On the basis that automatic visually evoked postural responses in high fidelity virtual environments should mimic those seen in real situations we propose to use the observed effect as a robust objective test for presence and fidelity in VR. PMID:23840760
Auditory enhancement of visual perception at threshold depends on visual abilities.
Caclin, Anne; Bouchet, Patrick; Djoulah, Farida; Pirat, Elodie; Pernier, Jacques; Giard, Marie-Hélène
2011-06-17
Whether or not multisensory interactions can improve detection thresholds, and thus widen the range of perceptible events is a long-standing debate. Here we revisit this question, by testing the influence of auditory stimuli on visual detection threshold, in subjects exhibiting a wide range of visual-only performance. Above the perceptual threshold, crossmodal interactions have indeed been reported to depend on the subject's performance when the modalities are presented in isolation. We thus tested normal-seeing subjects and short-sighted subjects wearing their usual glasses. We used a paradigm limiting potential shortcomings of previous studies: we chose a criterion-free threshold measurement procedure and precluded exogenous cueing effects by systematically presenting a visual cue whenever a visual target (a faint Gabor patch) might occur. Using this carefully controlled procedure, we found that concurrent sounds only improved visual detection thresholds in the sub-group of subjects exhibiting the poorest performance in the visual-only conditions. In these subjects, for oblique orientations of the visual stimuli (but not for vertical or horizontal targets), the auditory improvement was still present when visual detection was already helped with flanking visual stimuli generating a collinear facilitation effect. These findings highlight that crossmodal interactions are most efficient to improve perceptual performance when an isolated modality is deficient. Copyright © 2011 Elsevier B.V. All rights reserved.
Ard, Tyler; Carver, Frederick W; Holroyd, Tom; Horwitz, Barry; Coppola, Richard
2015-08-01
In typical magnetoencephalography and/or electroencephalography functional connectivity analysis, researchers select one of several methods that measure a relationship between regions to determine connectivity, such as coherence, power correlations, and others. However, it is largely unknown if some are more suited than others for various types of investigations. In this study, the authors investigate seven connectivity metrics to evaluate which, if any, are sensitive to audiovisual integration by contrasting connectivity when tracking an audiovisual object versus connectivity when tracking a visual object uncorrelated with the auditory stimulus. The authors are able to assess the metrics' performances at detecting audiovisual integration by investigating connectivity between auditory and visual areas. Critically, the authors perform their investigation on a whole-cortex all-to-all mapping, avoiding confounds introduced in seed selection. The authors find that amplitude-based connectivity measures in the beta band detect strong connections between visual and auditory areas during audiovisual integration, specifically between V4/V5 and auditory cortices in the right hemisphere. Conversely, phase-based connectivity measures in the beta band as well as phase and power measures in alpha, gamma, and theta do not show connectivity between audiovisual areas. The authors postulate that while beta power correlations detect audiovisual integration in the current experimental context, it may not always be the best measure to detect connectivity. Instead, it is likely that the brain utilizes a variety of mechanisms in neuronal communication that may produce differential types of temporal relationships.
ERIC Educational Resources Information Center
Lahav, Orly; Schloerb, David W.; Srinivasan, Mandayam A.
2015-01-01
Introduction: The BlindAid, a virtual system developed for orientation and mobility (O&M) training of people who are blind or have low vision, allows interaction with different virtual components (structures and objects) via auditory and haptic feedback. This research examined if and how the BlindAid that was integrated within an O&M…
Valente, Daniel L.; Braasch, Jonas; Myrbeck, Shane A.
2012-01-01
Despite many studies investigating auditory spatial impressions in rooms, few have addressed the impact of simultaneous visual cues on localization and the perception of spaciousness. The current research presents an immersive audiovisual environment in which participants were instructed to make auditory width judgments in dynamic bi-modal settings. The results of these psychophysical tests suggest the importance of congruent audio visual presentation to the ecological interpretation of an auditory scene. Supporting data were accumulated in five rooms of ascending volumes and varying reverberation times. Participants were given an audiovisual matching test in which they were instructed to pan the auditory width of a performing ensemble to a varying set of audio and visual cues in rooms. Results show that both auditory and visual factors affect the collected responses and that the two sensory modalities coincide in distinct interactions. The greatest differences between the panned audio stimuli given a fixed visual width were found in the physical space with the largest volume and the greatest source distance. These results suggest, in this specific instance, a predominance of auditory cues in the spatial analysis of the bi-modal scene. PMID:22280585
Bellis, Teri James; Ross, Jody
2011-09-01
It has been suggested that, in order to validate a diagnosis of (C)APD (central auditory processing disorder), testing using direct cross-modal analogs should be performed to demonstrate that deficits exist solely or primarily in the auditory modality (McFarland and Cacace, 1995; Cacace and McFarland, 2005). This modality-specific viewpoint is controversial and not universally accepted (American Speech-Language-Hearing Association [ASHA], 2005; Musiek et al, 2005). Further, no such analogs have been developed to date, and neither the feasibility of such testing in normally functioning individuals nor the concurrent validity of cross-modal analogs has been established. The purpose of this study was to investigate the feasibility of cross-modal testing by examining the performance of normal adults and children on four tests of central auditory function and their corresponding visual analogs. In addition, this study investigated the degree to which concurrent validity of auditory and visual versions of these tests could be demonstrated. An experimental repeated measures design was employed. Participants consisted of two groups (adults, n=10; children, n=10) with normal and symmetrical hearing sensitivity, normal or corrected-to-normal visual acuity, and no family or personal history of auditory/otologic, language, learning, neurologic, or related disorders. Visual analogs of four tests in common clinical use for the diagnosis of (C)APD were developed (Dichotic Digits [Musiek, 1983]; Frequency Patterns [Pinheiro and Ptacek, 1971]; Duration Patterns [Pinheiro and Musiek, 1985]; and the Random Gap Detection Test [RGDT; Keith, 2000]). Participants underwent two 1 hr test sessions separated by at least 1 wk. Order of sessions (auditory, visual) and tests within each session were counterbalanced across participants. ANOVAs (analyses of variance) were used to examine effects of group, modality, and laterality (for the Dichotic/Dichoptic Digits tests) or response condition (for the auditory and visual Frequency Patterns and Duration Patterns tests). Pearson product-moment correlations were used to investigate relationships between auditory and visual performance. Adults performed significantly better than children on the Dichotic/Dichoptic Digits tests. Results also revealed a significant effect of modality, with auditory better than visual, and a significant modality×laterality interaction, with a right-ear advantage seen for the auditory task and a left-visual-field advantage seen for the visual task. For the Frequency Patterns test and its visual analog, results revealed a significant modality×response condition interaction, with humming better than labeling for the auditory version but the reversed effect for the visual version. For Duration Patterns testing, visual performance was significantly poorer than auditory performance. Due to poor test-retest reliability and ceiling effects for the auditory and visual gap-detection tasks, analyses could not be performed. No cross-modal correlations were observed for any test. Results demonstrated that cross-modal testing is at least feasible using easily accessible computer hardware and software. The lack of any cross-modal correlations suggests independent processing mechanisms for auditory and visual versions of each task. Examination of performance in individuals with central auditory and pan-sensory disorders is needed to determine the utility of cross-modal analogs in the differential diagnosis of (C)APD. American Academy of Audiology.
Neural mechanisms underlying sound-induced visual motion perception: An fMRI study.
Hidaka, Souta; Higuchi, Satomi; Teramoto, Wataru; Sugita, Yoichi
2017-07-01
Studies of crossmodal interactions in motion perception have reported activation in several brain areas, including those related to motion processing and/or sensory association, in response to multimodal (e.g., visual and auditory) stimuli that were both in motion. Recent studies have demonstrated that sounds can trigger illusory visual apparent motion to static visual stimuli (sound-induced visual motion: SIVM): A visual stimulus blinking at a fixed location is perceived to be moving laterally when an alternating left-right sound is also present. Here, we investigated brain activity related to the perception of SIVM using a 7T functional magnetic resonance imaging technique. Specifically, we focused on the patterns of neural activities in SIVM and visually induced visual apparent motion (VIVM). We observed shared activations in the middle occipital area (V5/hMT), which is thought to be involved in visual motion processing, for SIVM and VIVM. Moreover, as compared to VIVM, SIVM resulted in greater activation in the superior temporal area and dominant functional connectivity between the V5/hMT area and the areas related to auditory and crossmodal motion processing. These findings indicate that similar but partially different neural mechanisms could be involved in auditory-induced and visually-induced motion perception, and neural signals in auditory, visual, and, crossmodal motion processing areas closely and directly interact in the perception of SIVM. Copyright © 2017 Elsevier B.V. All rights reserved.
Task-specific reorganization of the auditory cortex in deaf humans
Bola, Łukasz; Zimmermann, Maria; Mostowski, Piotr; Jednoróg, Katarzyna; Marchewka, Artur; Rutkowski, Paweł; Szwed, Marcin
2017-01-01
The principles that guide large-scale cortical reorganization remain unclear. In the blind, several visual regions preserve their task specificity; ventral visual areas, for example, become engaged in auditory and tactile object-recognition tasks. It remains open whether task-specific reorganization is unique to the visual cortex or, alternatively, whether this kind of plasticity is a general principle applying to other cortical areas. Auditory areas can become recruited for visual and tactile input in the deaf. Although nonhuman data suggest that this reorganization might be task specific, human evidence has been lacking. Here we enrolled 15 deaf and 15 hearing adults into an functional MRI experiment during which they discriminated between temporally complex sequences of stimuli (rhythms). Both deaf and hearing subjects performed the task visually, in the central visual field. In addition, hearing subjects performed the same task in the auditory modality. We found that the visual task robustly activated the auditory cortex in deaf subjects, peaking in the posterior–lateral part of high-level auditory areas. This activation pattern was strikingly similar to the pattern found in hearing subjects performing the auditory version of the task. Although performing the visual task in deaf subjects induced an increase in functional connectivity between the auditory cortex and the dorsal visual cortex, no such effect was found in hearing subjects. We conclude that in deaf humans the high-level auditory cortex switches its input modality from sound to vision but preserves its task-specific activation pattern independent of input modality. Task-specific reorganization thus might be a general principle that guides cortical plasticity in the brain. PMID:28069964
Task-specific reorganization of the auditory cortex in deaf humans.
Bola, Łukasz; Zimmermann, Maria; Mostowski, Piotr; Jednoróg, Katarzyna; Marchewka, Artur; Rutkowski, Paweł; Szwed, Marcin
2017-01-24
The principles that guide large-scale cortical reorganization remain unclear. In the blind, several visual regions preserve their task specificity; ventral visual areas, for example, become engaged in auditory and tactile object-recognition tasks. It remains open whether task-specific reorganization is unique to the visual cortex or, alternatively, whether this kind of plasticity is a general principle applying to other cortical areas. Auditory areas can become recruited for visual and tactile input in the deaf. Although nonhuman data suggest that this reorganization might be task specific, human evidence has been lacking. Here we enrolled 15 deaf and 15 hearing adults into an functional MRI experiment during which they discriminated between temporally complex sequences of stimuli (rhythms). Both deaf and hearing subjects performed the task visually, in the central visual field. In addition, hearing subjects performed the same task in the auditory modality. We found that the visual task robustly activated the auditory cortex in deaf subjects, peaking in the posterior-lateral part of high-level auditory areas. This activation pattern was strikingly similar to the pattern found in hearing subjects performing the auditory version of the task. Although performing the visual task in deaf subjects induced an increase in functional connectivity between the auditory cortex and the dorsal visual cortex, no such effect was found in hearing subjects. We conclude that in deaf humans the high-level auditory cortex switches its input modality from sound to vision but preserves its task-specific activation pattern independent of input modality. Task-specific reorganization thus might be a general principle that guides cortical plasticity in the brain.
Sound effects: Multimodal input helps infants find displaced objects.
Shinskey, Jeanne L
2017-09-01
Before 9 months, infants use sound to retrieve a stationary object hidden by darkness but not one hidden by occlusion, suggesting auditory input is more salient in the absence of visual input. This article addresses how audiovisual input affects 10-month-olds' search for displaced objects. In AB tasks, infants who previously retrieved an object at A subsequently fail to find it after it is displaced to B, especially following a delay between hiding and retrieval. Experiment 1 manipulated auditory input by keeping the hidden object audible versus silent, and visual input by presenting the delay in the light versus dark. Infants succeeded more at B with audible than silent objects and, unexpectedly, more after delays in the light than dark. Experiment 2 presented both the delay and search phases in darkness. The unexpected light-dark difference disappeared. Across experiments, the presence of auditory input helped infants find displaced objects, whereas the absence of visual input did not. Sound might help by strengthening object representation, reducing memory load, or focusing attention. This work provides new evidence on when bimodal input aids object processing, corroborates claims that audiovisual processing improves over the first year of life, and contributes to multisensory approaches to studying cognition. Statement of contribution What is already known on this subject Before 9 months, infants use sound to retrieve a stationary object hidden by darkness but not one hidden by occlusion. This suggests they find auditory input more salient in the absence of visual input in simple search tasks. After 9 months, infants' object processing appears more sensitive to multimodal (e.g., audiovisual) input. What does this study add? This study tested how audiovisual input affects 10-month-olds' search for an object displaced in an AB task. Sound helped infants find displaced objects in both the presence and absence of visual input. Object processing becomes more sensitive to bimodal input as multisensory functions develop across the first year. © 2016 The British Psychological Society.
Scarfe, Amy C.; Moore, Brian C. J.; Pardhan, Shahina
2017-01-01
Performance for an obstacle circumvention task was assessed under conditions of visual, auditory only (using echolocation) and tactile (using a sensory substitution device, SSD) guidance. A Vicon motion capture system was used to measure human movement kinematics objectively. Ten normally sighted participants, 8 blind non-echolocators, and 1 blind expert echolocator navigated around a 0.6 x 2 m obstacle that was varied in position across trials, at the midline of the participant or 25 cm to the right or left. Although visual guidance was the most effective, participants successfully circumvented the obstacle in the majority of trials under auditory or SSD guidance. Using audition, blind non-echolocators navigated more effectively than blindfolded sighted individuals with fewer collisions, lower movement times, fewer velocity corrections and greater obstacle detection ranges. The blind expert echolocator displayed performance similar to or better than that for the other groups using audition, but was comparable to that for the other groups using the SSD. The generally better performance of blind than of sighted participants is consistent with the perceptual enhancement hypothesis that individuals with severe visual deficits develop improved auditory abilities to compensate for visual loss, here shown by faster, more fluid, and more accurate navigation around obstacles using sound. PMID:28407000
Kolarik, Andrew J; Scarfe, Amy C; Moore, Brian C J; Pardhan, Shahina
2017-01-01
Performance for an obstacle circumvention task was assessed under conditions of visual, auditory only (using echolocation) and tactile (using a sensory substitution device, SSD) guidance. A Vicon motion capture system was used to measure human movement kinematics objectively. Ten normally sighted participants, 8 blind non-echolocators, and 1 blind expert echolocator navigated around a 0.6 x 2 m obstacle that was varied in position across trials, at the midline of the participant or 25 cm to the right or left. Although visual guidance was the most effective, participants successfully circumvented the obstacle in the majority of trials under auditory or SSD guidance. Using audition, blind non-echolocators navigated more effectively than blindfolded sighted individuals with fewer collisions, lower movement times, fewer velocity corrections and greater obstacle detection ranges. The blind expert echolocator displayed performance similar to or better than that for the other groups using audition, but was comparable to that for the other groups using the SSD. The generally better performance of blind than of sighted participants is consistent with the perceptual enhancement hypothesis that individuals with severe visual deficits develop improved auditory abilities to compensate for visual loss, here shown by faster, more fluid, and more accurate navigation around obstacles using sound.
Schall, Sonja; von Kriegstein, Katharina
2014-01-01
It has been proposed that internal simulation of the talking face of visually-known speakers facilitates auditory speech recognition. One prediction of this view is that brain areas involved in auditory-only speech comprehension interact with visual face-movement sensitive areas, even under auditory-only listening conditions. Here, we test this hypothesis using connectivity analyses of functional magnetic resonance imaging (fMRI) data. Participants (17 normal participants, 17 developmental prosopagnosics) first learned six speakers via brief voice-face or voice-occupation training (<2 min/speaker). This was followed by an auditory-only speech recognition task and a control task (voice recognition) involving the learned speakers’ voices in the MRI scanner. As hypothesized, we found that, during speech recognition, familiarity with the speaker’s face increased the functional connectivity between the face-movement sensitive posterior superior temporal sulcus (STS) and an anterior STS region that supports auditory speech intelligibility. There was no difference between normal participants and prosopagnosics. This was expected because previous findings have shown that both groups use the face-movement sensitive STS to optimize auditory-only speech comprehension. Overall, the present findings indicate that learned visual information is integrated into the analysis of auditory-only speech and that this integration results from the interaction of task-relevant face-movement and auditory speech-sensitive areas. PMID:24466026
Fort, Alexandra; Delpuech, Claude; Pernier, Jacques; Giard, Marie-Hélène
2002-10-01
Very recently, a number of neuroimaging studies in humans have begun to investigate the question of how the brain integrates information from different sensory modalities to form unified percepts. Already, intermodal neural processing appears to depend on the modalities of inputs or the nature (speech/non-speech) of information to be combined. Yet, the variety of paradigms, stimuli and technics used make it difficult to understand the relationships between the factors operating at the perceptual level and the underlying physiological processes. In a previous experiment, we used event-related potentials to describe the spatio-temporal organization of audio-visual interactions during a bimodal object recognition task. Here we examined the network of cross-modal interactions involved in simple detection of the same objects. The objects were defined either by unimodal auditory or visual features alone, or by the combination of the two features. As expected, subjects detected bimodal stimuli more rapidly than either unimodal stimuli. Combined analysis of potentials, scalp current densities and dipole modeling revealed several interaction patterns within the first 200 micro s post-stimulus: in occipito-parietal visual areas (45-85 micro s), in deep brain structures, possibly the superior colliculus (105-140 micro s), and in right temporo-frontal regions (170-185 micro s). These interactions differed from those found during object identification in sensory-specific areas and possibly in the superior colliculus, indicating that the neural operations governing multisensory integration depend crucially on the nature of the perceptual processes involved.
Prediction of Auditory and Visual P300 Brain-Computer Interface Aptitude
Halder, Sebastian; Hammer, Eva Maria; Kleih, Sonja Claudia; Bogdan, Martin; Rosenstiel, Wolfgang; Birbaumer, Niels; Kübler, Andrea
2013-01-01
Objective Brain-computer interfaces (BCIs) provide a non-muscular communication channel for patients with late-stage motoneuron disease (e.g., amyotrophic lateral sclerosis (ALS)) or otherwise motor impaired people and are also used for motor rehabilitation in chronic stroke. Differences in the ability to use a BCI vary from person to person and from session to session. A reliable predictor of aptitude would allow for the selection of suitable BCI paradigms. For this reason, we investigated whether P300 BCI aptitude could be predicted from a short experiment with a standard auditory oddball. Methods Forty healthy participants performed an electroencephalography (EEG) based visual and auditory P300-BCI spelling task in a single session. In addition, prior to each session an auditory oddball was presented. Features extracted from the auditory oddball were analyzed with respect to predictive power for BCI aptitude. Results Correlation between auditory oddball response and P300 BCI accuracy revealed a strong relationship between accuracy and N2 amplitude and the amplitude of a late ERP component between 400 and 600 ms. Interestingly, the P3 amplitude of the auditory oddball response was not correlated with accuracy. Conclusions Event-related potentials recorded during a standard auditory oddball session moderately predict aptitude in an audiory and highly in a visual P300 BCI. The predictor will allow for faster paradigm selection. Significance Our method will reduce strain on patients because unsuccessful training may be avoided, provided the results can be generalized to the patient population. PMID:23457444
Visual Timing of Structured Dance Movements Resembles Auditory Rhythm Perception
Su, Yi-Huang; Salazar-López, Elvira
2016-01-01
Temporal mechanisms for processing auditory musical rhythms are well established, in which a perceived beat is beneficial for timing purposes. It is yet unknown whether such beat-based timing would also underlie visual perception of temporally structured, ecological stimuli connected to music: dance. In this study, we investigated whether observers extracted a visual beat when watching dance movements to assist visual timing of these movements. Participants watched silent videos of dance sequences and reproduced the movement duration by mental recall. We found better visual timing for limb movements with regular patterns in the trajectories than without, similar to the beat advantage for auditory rhythms. When movements involved both the arms and the legs, the benefit of a visual beat relied only on the latter. The beat-based advantage persisted despite auditory interferences that were temporally incongruent with the visual beat, arguing for the visual nature of these mechanisms. Our results suggest that visual timing principles for dance parallel their auditory counterparts for music, which may be based on common sensorimotor coupling. These processes likely yield multimodal rhythm representations in the scenario of music and dance. PMID:27313900
Visual Timing of Structured Dance Movements Resembles Auditory Rhythm Perception.
Su, Yi-Huang; Salazar-López, Elvira
2016-01-01
Temporal mechanisms for processing auditory musical rhythms are well established, in which a perceived beat is beneficial for timing purposes. It is yet unknown whether such beat-based timing would also underlie visual perception of temporally structured, ecological stimuli connected to music: dance. In this study, we investigated whether observers extracted a visual beat when watching dance movements to assist visual timing of these movements. Participants watched silent videos of dance sequences and reproduced the movement duration by mental recall. We found better visual timing for limb movements with regular patterns in the trajectories than without, similar to the beat advantage for auditory rhythms. When movements involved both the arms and the legs, the benefit of a visual beat relied only on the latter. The beat-based advantage persisted despite auditory interferences that were temporally incongruent with the visual beat, arguing for the visual nature of these mechanisms. Our results suggest that visual timing principles for dance parallel their auditory counterparts for music, which may be based on common sensorimotor coupling. These processes likely yield multimodal rhythm representations in the scenario of music and dance.
Stekelenburg, Jeroen J; Vroomen, Jean
2012-01-01
In many natural audiovisual events (e.g., a clap of the two hands), the visual signal precedes the sound and thus allows observers to predict when, where, and which sound will occur. Previous studies have reported that there are distinct neural correlates of temporal (when) versus phonetic/semantic (which) content on audiovisual integration. Here we examined the effect of visual prediction of auditory location (where) in audiovisual biological motion stimuli by varying the spatial congruency between the auditory and visual parts. Visual stimuli were presented centrally, whereas auditory stimuli were presented either centrally or at 90° azimuth. Typical sub-additive amplitude reductions (AV - V < A) were found for the auditory N1 and P2 for spatially congruent and incongruent conditions. The new finding is that this N1 suppression was greater for the spatially congruent stimuli. A very early audiovisual interaction was also found at 40-60 ms (P50) in the spatially congruent condition, while no effect of congruency was found on the suppression of the P2. This indicates that visual prediction of auditory location can be coded very early in auditory processing.
Auditory Confrontation Naming in Alzheimer’s Disease
Brandt, Jason; Bakker, Arnold; Maroof, David Aaron
2010-01-01
Naming is a fundamental aspect of language and is virtually always assessed with visual confrontation tests. Tests of the ability to name objects by their characteristic sounds would be particularly useful in the assessment of visually impaired patients, and may be particularly sensitive in Alzheimer’s disease (AD). We developed an Auditory Naming Task, requiring the identification of the source of environmental sounds (i.e., animal calls, musical instruments, vehicles) and multiple-choice recognition of those not identified. In two separate studies, mild-to-moderate AD patients performed more poorly than cognitively normal elderly on the Auditory Naming Task. This task was also more difficult than two versions of a comparable Visual Naming Task, and correlated more highly with Mini-Mental State Exam score. Internal consistency reliability was acceptable, although ROC analysis revealed auditory naming to be slightly less successful than visual confrontation naming in discriminating AD patients from normal subjects. Nonetheless, our Auditory Naming Test may prove useful in research and clinical practice, especially with visually-impaired patients. PMID:20981630
Multisensory connections of monkey auditory cerebral cortex
Smiley, John F.; Falchier, Arnaud
2009-01-01
Functional studies have demonstrated multisensory responses in auditory cortex, even in the primary and early auditory association areas. The features of somatosensory and visual responses in auditory cortex suggest that they are involved in multiple processes including spatial, temporal and object-related perception. Tract tracing studies in monkeys have demonstrated several potential sources of somatosensory and visual inputs to auditory cortex. These include potential somatosensory inputs from the retroinsular (RI) and granular insula (Ig) cortical areas, and from the thalamic posterior (PO) nucleus. Potential sources of visual responses include peripheral field representations of areas V2 and prostriata, as well as the superior temporal polysensory area (STP) in the superior temporal sulcus, and the magnocellular medial geniculate thalamic nucleus (MGm). Besides these sources, there are several other thalamic, limbic and cortical association structures that have multisensory responses and may contribute cross-modal inputs to auditory cortex. These connections demonstrated by tract tracing provide a list of potential inputs, but in most cases their significance has not been confirmed by functional experiments. It is possible that the somatosensory and visual modulation of auditory cortex are each mediated by multiple extrinsic sources. PMID:19619628
Distortions of Subjective Time Perception Within and Across Senses
van Wassenhove, Virginie; Buonomano, Dean V.; Shimojo, Shinsuke; Shams, Ladan
2008-01-01
Background The ability to estimate the passage of time is of fundamental importance for perceptual and cognitive processes. One experience of time is the perception of duration, which is not isomorphic to physical duration and can be distorted by a number of factors. Yet, the critical features generating these perceptual shifts in subjective duration are not understood. Methodology/Findings We used prospective duration judgments within and across sensory modalities to examine the effect of stimulus predictability and feature change on the perception of duration. First, we found robust distortions of perceived duration in auditory, visual and auditory-visual presentations despite the predictability of the feature changes in the stimuli. For example, a looming disc embedded in a series of steady discs led to time dilation, whereas a steady disc embedded in a series of looming discs led to time compression. Second, we addressed whether visual (auditory) inputs could alter the perception of duration of auditory (visual) inputs. When participants were presented with incongruent audio-visual stimuli, the perceived duration of auditory events could be shortened or lengthened by the presence of conflicting visual information; however, the perceived duration of visual events was seldom distorted by the presence of auditory information and was never perceived shorter than their actual durations. Conclusions/Significance These results support the existence of multisensory interactions in the perception of duration and, importantly, suggest that vision can modify auditory temporal perception in a pure timing task. Insofar as distortions in subjective duration can neither be accounted for by the unpredictability of an auditory, visual or auditory-visual event, we propose that it is the intrinsic features of the stimulus that critically affect subjective time distortions. PMID:18197248
Hertz, Uri; Amedi, Amir
2015-01-01
The classical view of sensory processing involves independent processing in sensory cortices and multisensory integration in associative areas. This hierarchical structure has been challenged by evidence of multisensory responses in sensory areas, and dynamic weighting of sensory inputs in associative areas, thus far reported independently. Here, we used a visual-to-auditory sensory substitution algorithm (SSA) to manipulate the information conveyed by sensory inputs while keeping the stimuli intact. During scan sessions before and after SSA learning, subjects were presented with visual images and auditory soundscapes. The findings reveal 2 dynamic processes. First, crossmodal attenuation of sensory cortices changed direction after SSA learning from visual attenuations of the auditory cortex to auditory attenuations of the visual cortex. Secondly, associative areas changed their sensory response profile from strongest response for visual to that for auditory. The interaction between these phenomena may play an important role in multisensory processing. Consistent features were also found in the sensory dominance in sensory areas and audiovisual convergence in associative area Middle Temporal Gyrus. These 2 factors allow for both stability and a fast, dynamic tuning of the system when required. PMID:24518756
Hertz, Uri; Amedi, Amir
2015-08-01
The classical view of sensory processing involves independent processing in sensory cortices and multisensory integration in associative areas. This hierarchical structure has been challenged by evidence of multisensory responses in sensory areas, and dynamic weighting of sensory inputs in associative areas, thus far reported independently. Here, we used a visual-to-auditory sensory substitution algorithm (SSA) to manipulate the information conveyed by sensory inputs while keeping the stimuli intact. During scan sessions before and after SSA learning, subjects were presented with visual images and auditory soundscapes. The findings reveal 2 dynamic processes. First, crossmodal attenuation of sensory cortices changed direction after SSA learning from visual attenuations of the auditory cortex to auditory attenuations of the visual cortex. Secondly, associative areas changed their sensory response profile from strongest response for visual to that for auditory. The interaction between these phenomena may play an important role in multisensory processing. Consistent features were also found in the sensory dominance in sensory areas and audiovisual convergence in associative area Middle Temporal Gyrus. These 2 factors allow for both stability and a fast, dynamic tuning of the system when required. © The Author 2014. Published by Oxford University Press.
Visually induced plasticity of auditory spatial perception in macaques.
Woods, Timothy M; Recanzone, Gregg H
2004-09-07
When experiencing spatially disparate visual and auditory stimuli, a common percept is that the sound originates from the location of the visual stimulus, an illusion known as the ventriloquism effect. This illusion can persist for tens of minutes, a phenomenon termed the ventriloquism aftereffect. The underlying neuronal mechanisms of this rapidly induced plasticity remain unclear; indeed, it remains untested whether similar multimodal interactions occur in other species. We therefore tested whether macaque monkeys experience the ventriloquism aftereffect similar to the way humans do. The ability of two monkeys to determine which side of the midline a sound was presented from was tested before and after a period of 20-60 min in which the monkeys experienced either spatially identical or spatially disparate auditory and visual stimuli. In agreement with human studies, the monkeys did experience a shift in their auditory spatial perception in the direction of the spatially disparate visual stimulus, and the aftereffect did not transfer across sounds that differed in frequency by two octaves. These results show that macaque monkeys experience the ventriloquism aftereffect similar to the way humans do in all tested respects, indicating that these multimodal interactions are a basic phenomenon of the central nervous system.
Brown, David; Macpherson, Tom; Ward, Jamie
2011-01-01
Sensory substitution devices convert live visual images into auditory signals, for example with a web camera (to record the images), a computer (to perform the conversion) and headphones (to listen to the sounds). In a series of three experiments, the performance of one such device ('The vOICe') was assessed under various conditions on blindfolded sighted participants. The main task that we used involved identifying and locating objects placed on a table by holding a webcam (like a flashlight) or wearing it on the head (like a miner's light). Identifying objects on a table was easier with a hand-held device, but locating the objects was easier with a head-mounted device. Brightness converted into loudness was less effective than the reverse contrast (dark being loud), suggesting that performance under these conditions (natural indoor lighting, novice users) is related more to the properties of the auditory signal (ie the amount of noise in it) than the cross-modal association between loudness and brightness. Individual differences in musical memory (detecting pitch changes in two sequences of notes) was related to the time taken to identify or recognise objects, but individual differences in self-reported vividness of visual imagery did not reliably predict performance across the experiments. In general, the results suggest that the auditory characteristics of the device may be more important for initial learning than visual associations.
Text as a Supplement to Speech in Young and Older Adults a)
Krull, Vidya; Humes, Larry E.
2015-01-01
Objective The purpose of this experiment was to quantify the contribution of visual text to auditory speech recognition in background noise. Specifically, we tested the hypothesis that partially accurate visual text from an automatic speech recognizer could be used successfully to supplement speech understanding in difficult listening conditions in older adults, with normal or impaired hearing. Our working hypotheses were based on what is known regarding audiovisual speech perception in the elderly from speechreading literature. We hypothesized that: 1) combining auditory and visual text information will result in improved recognition accuracy compared to auditory or visual text information alone; 2) benefit from supplementing speech with visual text (auditory and visual enhancement) in young adults will be greater than that in older adults; and 3) individual differences in performance on perceptual measures would be associated with cognitive abilities. Design Fifteen young adults with normal hearing, fifteen older adults with normal hearing, and fifteen older adults with hearing loss participated in this study. All participants completed sentence recognition tasks in auditory-only, text-only, and combined auditory-text conditions. The auditory sentence stimuli were spectrally shaped to restore audibility for the older participants with impaired hearing. All participants also completed various cognitive measures, including measures of working memory, processing speed, verbal comprehension, perceptual and cognitive speed, processing efficiency, inhibition, and the ability to form wholes from parts. Group effects were examined for each of the perceptual and cognitive measures. Audiovisual benefit was calculated relative to performance on auditory-only and visual-text only conditions. Finally, the relationship between perceptual measures and other independent measures were examined using principal-component factor analyses, followed by regression analyses. Results Both young and older adults performed similarly on nine out of ten perceptual measures (auditory, visual, and combined measures). Combining degraded speech with partially correct text from an automatic speech recognizer improved the understanding of speech in both young and older adults, relative to both auditory- and text-only performance. In all subjects, cognition emerged as a key predictor for a general speech-text integration ability. Conclusions These results suggest that neither age nor hearing loss affected the ability of subjects to benefit from text when used to support speech, after ensuring audibility through spectral shaping. These results also suggest that the benefit obtained by supplementing auditory input with partially accurate text is modulated by cognitive ability, specifically lexical and verbal skills. PMID:26458131
Superior voice recognition in a patient with acquired prosopagnosia and object agnosia.
Hoover, Adria E N; Démonet, Jean-François; Steeves, Jennifer K E
2010-11-01
Anecdotally, it has been reported that individuals with acquired prosopagnosia compensate for their inability to recognize faces by using other person identity cues such as hair, gait or the voice. Are they therefore superior at the use of non-face cues, specifically voices, to person identity? Here, we empirically measure person and object identity recognition in a patient with acquired prosopagnosia and object agnosia. We quantify person identity (face and voice) and object identity (car and horn) recognition for visual, auditory, and bimodal (visual and auditory) stimuli. The patient is unable to recognize faces or cars, consistent with his prosopagnosia and object agnosia, respectively. He is perfectly able to recognize people's voices and car horns and bimodal stimuli. These data show a reverse shift in the typical weighting of visual over auditory information for audiovisual stimuli in a compromised visual recognition system. Moreover, the patient shows selectively superior voice recognition compared to the controls revealing that two different stimulus domains, persons and objects, may not be equally affected by sensory adaptation effects. This also implies that person and object identity recognition are processed in separate pathways. These data demonstrate that an individual with acquired prosopagnosia and object agnosia can compensate for the visual impairment and become quite skilled at using spared aspects of sensory processing. In the case of acquired prosopagnosia it is advantageous to develop a superior use of voices for person identity recognition in everyday life. Copyright © 2010 Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
Wong, Jason H.; Peterson, Matthew S.; Thompson, James C.
2008-01-01
The capacity of visual working memory was examined when complex objects from different categories were remembered. Previous studies have not examined how visual similarity affects object memory, though it has long been known that similar-sounding phonological information interferes with rehearsal in auditory working memory. Here, experiments…
Yang, Weiping; Li, Qi; Ochi, Tatsuya; Yang, Jingjing; Gao, Yulin; Tang, Xiaoyu; Takahashi, Satoshi; Wu, Jinglong
2013-01-01
This article aims to investigate whether auditory stimuli in the horizontal plane, particularly originating from behind the participant, affect audiovisual integration by using behavioral and event-related potential (ERP) measurements. In this study, visual stimuli were presented directly in front of the participants, auditory stimuli were presented at one location in an equidistant horizontal plane at the front (0°, the fixation point), right (90°), back (180°), or left (270°) of the participants, and audiovisual stimuli that include both visual stimuli and auditory stimuli originating from one of the four locations were simultaneously presented. These stimuli were presented randomly with equal probability; during this time, participants were asked to attend to the visual stimulus and respond promptly only to visual target stimuli (a unimodal visual target stimulus and the visual target of the audiovisual stimulus). A significant facilitation of reaction times and hit rates was obtained following audiovisual stimulation, irrespective of whether the auditory stimuli were presented in the front or back of the participant. However, no significant interactions were found between visual stimuli and auditory stimuli from the right or left. Two main ERP components related to audiovisual integration were found: first, auditory stimuli from the front location produced an ERP reaction over the right temporal area and right occipital area at approximately 160-200 milliseconds; second, auditory stimuli from the back produced a reaction over the parietal and occipital areas at approximately 360-400 milliseconds. Our results confirmed that audiovisual integration was also elicited, even though auditory stimuli were presented behind the participant, but no integration occurred when auditory stimuli were presented in the right or left spaces, suggesting that the human brain might be particularly sensitive to information received from behind than both sides.
Yang, Weiping; Li, Qi; Ochi, Tatsuya; Yang, Jingjing; Gao, Yulin; Tang, Xiaoyu; Takahashi, Satoshi; Wu, Jinglong
2013-01-01
This article aims to investigate whether auditory stimuli in the horizontal plane, particularly originating from behind the participant, affect audiovisual integration by using behavioral and event-related potential (ERP) measurements. In this study, visual stimuli were presented directly in front of the participants, auditory stimuli were presented at one location in an equidistant horizontal plane at the front (0°, the fixation point), right (90°), back (180°), or left (270°) of the participants, and audiovisual stimuli that include both visual stimuli and auditory stimuli originating from one of the four locations were simultaneously presented. These stimuli were presented randomly with equal probability; during this time, participants were asked to attend to the visual stimulus and respond promptly only to visual target stimuli (a unimodal visual target stimulus and the visual target of the audiovisual stimulus). A significant facilitation of reaction times and hit rates was obtained following audiovisual stimulation, irrespective of whether the auditory stimuli were presented in the front or back of the participant. However, no significant interactions were found between visual stimuli and auditory stimuli from the right or left. Two main ERP components related to audiovisual integration were found: first, auditory stimuli from the front location produced an ERP reaction over the right temporal area and right occipital area at approximately 160–200 milliseconds; second, auditory stimuli from the back produced a reaction over the parietal and occipital areas at approximately 360–400 milliseconds. Our results confirmed that audiovisual integration was also elicited, even though auditory stimuli were presented behind the participant, but no integration occurred when auditory stimuli were presented in the right or left spaces, suggesting that the human brain might be particularly sensitive to information received from behind than both sides. PMID:23799097
Emergence of neural encoding of auditory objects while listening to competing speakers
Ding, Nai; Simon, Jonathan Z.
2012-01-01
A visual scene is perceived in terms of visual objects. Similar ideas have been proposed for the analogous case of auditory scene analysis, although their hypothesized neural underpinnings have not yet been established. Here, we address this question by recording from subjects selectively listening to one of two competing speakers, either of different or the same sex, using magnetoencephalography. Individual neural representations are seen for the speech of the two speakers, with each being selectively phase locked to the rhythm of the corresponding speech stream and from which can be exclusively reconstructed the temporal envelope of that speech stream. The neural representation of the attended speech dominates responses (with latency near 100 ms) in posterior auditory cortex. Furthermore, when the intensity of the attended and background speakers is separately varied over an 8-dB range, the neural representation of the attended speech adapts only to the intensity of that speaker but not to the intensity of the background speaker, suggesting an object-level intensity gain control. In summary, these results indicate that concurrent auditory objects, even if spectrotemporally overlapping and not resolvable at the auditory periphery, are neurally encoded individually in auditory cortex and emerge as fundamental representational units for top-down attentional modulation and bottom-up neural adaptation. PMID:22753470
Visual activity predicts auditory recovery from deafness after adult cochlear implantation.
Strelnikov, Kuzma; Rouger, Julien; Demonet, Jean-François; Lagleyre, Sebastien; Fraysse, Bernard; Deguine, Olivier; Barone, Pascal
2013-12-01
Modern cochlear implantation technologies allow deaf patients to understand auditory speech; however, the implants deliver only a coarse auditory input and patients must use long-term adaptive processes to achieve coherent percepts. In adults with post-lingual deafness, the high progress of speech recovery is observed during the first year after cochlear implantation, but there is a large range of variability in the level of cochlear implant outcomes and the temporal evolution of recovery. It has been proposed that when profoundly deaf subjects receive a cochlear implant, the visual cross-modal reorganization of the brain is deleterious for auditory speech recovery. We tested this hypothesis in post-lingually deaf adults by analysing whether brain activity shortly after implantation correlated with the level of auditory recovery 6 months later. Based on brain activity induced by a speech-processing task, we found strong positive correlations in areas outside the auditory cortex. The highest positive correlations were found in the occipital cortex involved in visual processing, as well as in the posterior-temporal cortex known for audio-visual integration. The other area, which positively correlated with auditory speech recovery, was localized in the left inferior frontal area known for speech processing. Our results demonstrate that the visual modality's functional level is related to the proficiency level of auditory recovery. Based on the positive correlation of visual activity with auditory speech recovery, we suggest that visual modality may facilitate the perception of the word's auditory counterpart in communicative situations. The link demonstrated between visual activity and auditory speech perception indicates that visuoauditory synergy is crucial for cross-modal plasticity and fostering speech-comprehension recovery in adult cochlear-implanted deaf patients.
The role of vision in auditory distance perception.
Calcagno, Esteban R; Abregú, Ezequiel L; Eguía, Manuel C; Vergara, Ramiro
2012-01-01
In humans, multisensory interaction is an important strategy for improving the detection of stimuli of different nature and reducing the variability of response. It is known that the presence of visual information affects the auditory perception in the horizontal plane (azimuth), but there are few researches that study the influence of vision in the auditory distance perception. In general, the data obtained from these studies are contradictory and do not completely define the way in which visual cues affect the apparent distance of a sound source. Here psychophysical experiments on auditory distance perception in humans are performed, including and excluding visual cues. The results show that the apparent distance from the source is affected by the presence of visual information and that subjects can store in their memory a representation of the environment that later improves the perception of distance.
EFFECTS AND INTERACTIONS OF AUDITORY AND VISUAL CUES IN ORAL COMMUNICATION.
ERIC Educational Resources Information Center
KEYS, JOHN W.; AND OTHERS
VISUAL AND AUDITORY CUES WERE TESTED, SEPARATELY AND JOINTLY, TO DETERMINE THE DEGREE OF THEIR CONTRIBUTION TO IMPROVING OVERALL SPEECH SKILLS OF THE AURALLY HANDICAPPED. EIGHT SOUND INTENSITY LEVELS (FROM 6 TO 15 DECIBELS) WERE USED IN PRESENTING PHONETICALLY BALANCED WORD LISTS AND MULTIPLE-CHOICE INTELLIGIBILITY LISTS TO A SAMPLE OF 24…
Auditory and visual interhemispheric communication in musicians and non-musicians.
Woelfle, Rebecca; Grahn, Jessica A
2013-01-01
The corpus callosum (CC) is a brain structure composed of axon fibres linking the right and left hemispheres. Musical training is associated with larger midsagittal cross-sectional area of the CC, suggesting that interhemispheric communication may be faster in musicians. Here we compared interhemispheric transmission times (ITTs) for musicians and non-musicians. ITT was measured by comparing simple reaction times to stimuli presented to the same hemisphere that controlled a button-press response (uncrossed reaction time), or to the contralateral hemisphere (crossed reaction time). Both visual and auditory stimuli were tested. We predicted that the crossed-uncrossed difference (CUD) for musicians would be smaller than for non-musicians as a result of faster interhemispheric transfer times. We did not expect a difference in CUDs between the visual and auditory modalities for either musicians or non-musicians, as previous work indicates that interhemispheric transfer may happen through the genu of the CC, which contains motor fibres rather than sensory fibres. There were no significant differences in CUDs between musicians and non-musicians. However, auditory CUDs were significantly smaller than visual CUDs. Although this auditory-visual difference was larger in musicians than non-musicians, the interaction between modality and musical training was not significant. Therefore, although musical training does not significantly affect ITT, the crossing of auditory information between hemispheres appears to be faster than visual information, perhaps because subcortical pathways play a greater role for auditory interhemispheric transfer.
The Effect of Early Visual Deprivation on the Neural Bases of Auditory Processing.
Guerreiro, Maria J S; Putzar, Lisa; Röder, Brigitte
2016-02-03
Transient congenital visual deprivation affects visual and multisensory processing. In contrast, the extent to which it affects auditory processing has not been investigated systematically. Research in permanently blind individuals has revealed brain reorganization during auditory processing, involving both intramodal and crossmodal plasticity. The present study investigated the effect of transient congenital visual deprivation on the neural bases of auditory processing in humans. Cataract-reversal individuals and normally sighted controls performed a speech-in-noise task while undergoing functional magnetic resonance imaging. Although there were no behavioral group differences, groups differed in auditory cortical responses: in the normally sighted group, auditory cortex activation increased with increasing noise level, whereas in the cataract-reversal group, no activation difference was observed across noise levels. An auditory activation of visual cortex was not observed at the group level in cataract-reversal individuals. The present data suggest prevailing auditory processing advantages after transient congenital visual deprivation, even many years after sight restoration. The present study demonstrates that people whose sight was restored after a transient period of congenital blindness show more efficient cortical processing of auditory stimuli (here speech), similarly to what has been observed in congenitally permanently blind individuals. These results underscore the importance of early sensory experience in permanently shaping brain function. Copyright © 2016 the authors 0270-6474/16/361620-11$15.00/0.
Semantic-based crossmodal processing during visual suppression.
Cox, Dustin; Hong, Sang Wook
2015-01-01
To reveal the mechanisms underpinning the influence of auditory input on visual awareness, we examine, (1) whether purely semantic-based multisensory integration facilitates the access to visual awareness for familiar visual events, and (2) whether crossmodal semantic priming is the mechanism responsible for the semantic auditory influence on visual awareness. Using continuous flash suppression, we rendered dynamic and familiar visual events (e.g., a video clip of an approaching train) inaccessible to visual awareness. We manipulated the semantic auditory context of the videos by concurrently pairing them with a semantically matching soundtrack (congruent audiovisual condition), a semantically non-matching soundtrack (incongruent audiovisual condition), or with no soundtrack (neutral video-only condition). We found that participants identified the suppressed visual events significantly faster (an earlier breakup of suppression) in the congruent audiovisual condition compared to the incongruent audiovisual condition and video-only condition. However, this facilitatory influence of semantic auditory input was only observed when audiovisual stimulation co-occurred. Our results suggest that the enhanced visual processing with a semantically congruent auditory input occurs due to audiovisual crossmodal processing rather than semantic priming, which may occur even when visual information is not available to visual awareness.
Vestibular-visual interactions in flight simulators
NASA Technical Reports Server (NTRS)
Clark, B.
1977-01-01
The following research work is reported: (1) vestibular-visual interactions; (2) flight management and crew system interactions; (3) peripheral cue utilization in simulation technology; (4) control of signs and symptoms of motion sickness; (5) auditory cue utilization in flight simulators, and (6) vestibular function: Animal experiments.
Interactions across Multiple Stimulus Dimensions in Primary Auditory Cortex.
Sloas, David C; Zhuo, Ran; Xue, Hongbo; Chambers, Anna R; Kolaczyk, Eric; Polley, Daniel B; Sen, Kamal
2016-01-01
Although sensory cortex is thought to be important for the perception of complex objects, its specific role in representing complex stimuli remains unknown. Complex objects are rich in information along multiple stimulus dimensions. The position of cortex in the sensory hierarchy suggests that cortical neurons may integrate across these dimensions to form a more gestalt representation of auditory objects. Yet, studies of cortical neurons typically explore single or few dimensions due to the difficulty of determining optimal stimuli in a high dimensional stimulus space. Evolutionary algorithms (EAs) provide a potentially powerful approach for exploring multidimensional stimulus spaces based on real-time spike feedback, but two important issues arise in their application. First, it is unclear whether it is necessary to characterize cortical responses to multidimensional stimuli or whether it suffices to characterize cortical responses to a single dimension at a time. Second, quantitative methods for analyzing complex multidimensional data from an EA are lacking. Here, we apply a statistical method for nonlinear regression, the generalized additive model (GAM), to address these issues. The GAM quantitatively describes the dependence between neural response and all stimulus dimensions. We find that auditory cortical neurons in mice are sensitive to interactions across dimensions. These interactions are diverse across the population, indicating significant integration across stimulus dimensions in auditory cortex. This result strongly motivates using multidimensional stimuli in auditory cortex. Together, the EA and the GAM provide a novel quantitative paradigm for investigating neural coding of complex multidimensional stimuli in auditory and other sensory cortices.
Opposite brain laterality in analogous auditory and visual tests.
Oltedal, Leif; Hugdahl, Kenneth
2017-11-01
Laterality for language processing can be assessed by auditory and visual tasks. Typically, a right ear/right visual half-field (VHF) advantage is observed, reflecting left-hemispheric lateralization for language. Historically, auditory tasks have shown more consistent and reliable results when compared to VHF tasks. While few studies have compared analogous tasks applied to both sensory modalities for the same participants, one such study by Voyer and Boudreau [(2003). Cross-modal correlation of auditory and visual language laterality tasks: a serendipitous finding. Brain Cogn, 53(2), 393-397] found opposite laterality for visual and auditory language tasks. We adapted an experimental paradigm based on a dichotic listening and VHF approach, and applied the combined language paradigm in two separate experiments, including fMRI in the second experiment to measure brain activation in addition to behavioural data. The first experiment showed a right-ear advantage for the auditory task, but a left half-field advantage for the visual task. The second experiment, confirmed the findings, with opposite laterality effects for the visual and auditory tasks. In conclusion, we replicate the finding by Voyer and Boudreau (2003) and support their interpretation that these visual and auditory language tasks measure different cognitive processes.
Wahn, Basil; König, Peter
2015-01-01
Humans continuously receive and integrate information from several sensory modalities. However, attentional resources limit the amount of information that can be processed. It is not yet clear how attentional resources and multisensory processing are interrelated. Specifically, the following questions arise: (1) Are there distinct spatial attentional resources for each sensory modality? and (2) Does attentional load affect multisensory integration? We investigated these questions using a dual task paradigm: participants performed two spatial tasks (a multiple object tracking task and a localization task), either separately (single task condition) or simultaneously (dual task condition). In the multiple object tracking task, participants visually tracked a small subset of several randomly moving objects. In the localization task, participants received either visual, auditory, or redundant visual and auditory location cues. In the dual task condition, we found a substantial decrease in participants' performance relative to the results of the single task condition. Importantly, participants performed equally well in the dual task condition regardless of the location cues' modality. This result suggests that having spatial information coming from different modalities does not facilitate performance, thereby indicating shared spatial attentional resources for the auditory and visual modality. Furthermore, we found that participants integrated redundant multisensory information similarly even when they experienced additional attentional load in the dual task condition. Overall, findings suggest that (1) visual and auditory spatial attentional resources are shared and that (2) audiovisual integration of spatial information occurs in an pre-attentive processing stage.
ERIC Educational Resources Information Center
Behrmann, Polly; Millman, Joan
The activities collected in this handbook are planned for parents to use with their children in a learning experience. They can also be used in the classroom. Sections contain games designed to develop visual discrimination, auditory discrimination, motor coordination and oral expression. An objective is given for each game, and directions for…
Is sensorimotor BCI performance influenced differently by mono, stereo, or 3-D auditory feedback?
McCreadie, Karl A; Coyle, Damien H; Prasad, Girijesh
2014-05-01
Imagination of movement can be used as a control method for a brain-computer interface (BCI) allowing communication for the physically impaired. Visual feedback within such a closed loop system excludes those with visual problems and hence there is a need for alternative sensory feedback pathways. In the context of substituting the visual channel for the auditory channel, this study aims to add to the limited evidence that it is possible to substitute visual feedback for its auditory equivalent and assess the impact this has on BCI performance. Secondly, the study aims to determine for the first time if the type of auditory feedback method influences motor imagery performance significantly. Auditory feedback is presented using a stepped approach of single (mono), double (stereo), and multiple (vector base amplitude panning as an audio game) loudspeaker arrangements. Visual feedback involves a ball-basket paradigm and a spaceship game. Each session consists of either auditory or visual feedback only with runs of each type of feedback presentation method applied in each session. Results from seven subjects across five sessions of each feedback type (visual, auditory) (10 sessions in total) show that auditory feedback is a suitable substitute for the visual equivalent and that there are no statistical differences in the type of auditory feedback presented across five sessions.
Coherent emotional perception from body expressions and the voice.
Yeh, Pei-Wen; Geangu, Elena; Reid, Vincent
2016-10-01
Perceiving emotion from multiple modalities enhances the perceptual sensitivity of an individual. This allows more accurate judgments of others' emotional states, which is crucial to appropriate social interactions. It is known that body expressions effectively convey emotional messages, although fewer studies have examined how this information is combined with the auditory cues. The present study used event-related potentials (ERP) to investigate the interaction between emotional body expressions and vocalizations. We also examined emotional congruency between auditory and visual information to determine how preceding visual context influences later auditory processing. Consistent with prior findings, a reduced N1 amplitude was observed in the audiovisual condition compared to an auditory-only condition. While this component was not sensitive to the modality congruency, the P2 was sensitive to the emotionally incompatible audiovisual pairs. Further, the direction of these congruency effects was different in terms of facilitation or suppression based on the preceding contexts. Overall, the results indicate a functionally dissociated mechanism underlying two stages of emotional processing whereby N1 is involved in cross-modal processing, whereas P2 is related to assessing a unifying perceptual content. These data also indicate that emotion integration can be affected by the specific emotion that is presented. Copyright © 2016 Elsevier Ltd. All rights reserved.
Petrini, Karin; Remark, Alicia; Smith, Louise; Nardini, Marko
2014-05-01
When visual information is available, human adults, but not children, have been shown to reduce sensory uncertainty by taking a weighted average of sensory cues. In the absence of reliable visual information (e.g. extremely dark environment, visual disorders), the use of other information is vital. Here we ask how humans combine haptic and auditory information from childhood. In the first experiment, adults and children aged 5 to 11 years judged the relative sizes of two objects in auditory, haptic, and non-conflicting bimodal conditions. In , different groups of adults and children were tested in non-conflicting and conflicting bimodal conditions. In , adults reduced sensory uncertainty by integrating the cues optimally, while children did not. In , adults and children used similar weighting strategies to solve audio-haptic conflict. These results suggest that, in the absence of visual information, optimal integration of cues for discrimination of object size develops late in childhood. © 2014 The Authors. Developmental Science Published by John Wiley & Sons Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Di Pinto, Marcos; Conklin, Heather M.; Li Chenghong
Purpose: The primary objective of this study was to determine whether children with localized ependymoma experience a decline in verbal or visual-auditory learning after conformal radiation therapy (CRT). The secondary objective was to investigate the impact of age and select clinical factors on learning before and after treatment. Methods and Materials: Learning in a sample of 71 patients with localized ependymoma was assessed with the California Verbal Learning Test (CVLT-C) and the Visual-Auditory Learning Test (VAL). Learning measures were administered before CRT, at 6 months, and then yearly for a total of 5 years. Results: There was no significant declinemore » on measures of verbal or visual-auditory learning after CRT; however, younger age, more surgeries, and cerebrospinal fluid shunting did predict lower scores at baseline. There were significant longitudinal effects (improved learning scores after treatment) among older children on the CVLT-C and children that did not receive pre-CRT chemotherapy on the VAL. Conclusion: There was no evidence of global decline in learning after CRT in children with localized ependymoma. Several important implications from the findings include the following: (1) identification of and differentiation among variables with transient vs. long-term effects on learning, (2) demonstration that children treated with chemotherapy before CRT had greater risk of adverse visual-auditory learning performance, and (3) establishment of baseline and serial assessment as critical in ascertaining necessary sensitivity and specificity for the detection of modest effects.« less
Kim, Sujin; Blake, Randolph; Lee, Minyoung; Kim, Chai-Youn
2017-01-01
Individuals possessing absolute pitch (AP) are able to identify a given musical tone or to reproduce it without reference to another tone. The present study sought to learn whether this exceptional auditory ability impacts visual perception under stimulus conditions that provoke visual competition in the form of binocular rivalry. Nineteen adult participants with 3-19 years of musical training were divided into two groups according to their performance on a task involving identification of the specific note associated with hearing a given musical pitch. During test trials lasting just over half a minute, participants dichoptically viewed a scrolling musical score presented to one eye and a drifting sinusoidal grating presented to the other eye; throughout the trial they pressed buttons to track the alternations in visual awareness produced by these dissimilar monocular stimuli. On "pitch-congruent" trials, participants heard an auditory melody that was congruent in pitch with the visual score, on "pitch-incongruent" trials they heard a transposed auditory melody that was congruent with the score in melody but not in pitch, and on "melody-incongruent" trials they heard an auditory melody completely different from the visual score. For both groups, the visual musical scores predominated over the gratings when the auditory melody was congruent compared to when it was incongruent. Moreover, the AP participants experienced greater predominance of the visual score when it was accompanied by the pitch-congruent melody compared to the same melody transposed in pitch; for non-AP musicians, pitch-congruent and pitch-incongruent trials yielded equivalent predominance. Analysis of individual durations of dominance revealed differential effects on dominance and suppression durations for AP and non-AP participants. These results reveal that AP is accompanied by a robust form of bisensory interaction between tonal frequencies and musical notation that boosts the salience of a visual score.
Kim, Sujin; Blake, Randolph; Lee, Minyoung; Kim, Chai-Youn
2017-01-01
Individuals possessing absolute pitch (AP) are able to identify a given musical tone or to reproduce it without reference to another tone. The present study sought to learn whether this exceptional auditory ability impacts visual perception under stimulus conditions that provoke visual competition in the form of binocular rivalry. Nineteen adult participants with 3–19 years of musical training were divided into two groups according to their performance on a task involving identification of the specific note associated with hearing a given musical pitch. During test trials lasting just over half a minute, participants dichoptically viewed a scrolling musical score presented to one eye and a drifting sinusoidal grating presented to the other eye; throughout the trial they pressed buttons to track the alternations in visual awareness produced by these dissimilar monocular stimuli. On “pitch-congruent” trials, participants heard an auditory melody that was congruent in pitch with the visual score, on “pitch-incongruent” trials they heard a transposed auditory melody that was congruent with the score in melody but not in pitch, and on “melody-incongruent” trials they heard an auditory melody completely different from the visual score. For both groups, the visual musical scores predominated over the gratings when the auditory melody was congruent compared to when it was incongruent. Moreover, the AP participants experienced greater predominance of the visual score when it was accompanied by the pitch-congruent melody compared to the same melody transposed in pitch; for non-AP musicians, pitch-congruent and pitch-incongruent trials yielded equivalent predominance. Analysis of individual durations of dominance revealed differential effects on dominance and suppression durations for AP and non-AP participants. These results reveal that AP is accompanied by a robust form of bisensory interaction between tonal frequencies and musical notation that boosts the salience of a visual score. PMID:28380058
Auditory and Visual Interhemispheric Communication in Musicians and Non-Musicians
Woelfle, Rebecca; Grahn, Jessica A.
2013-01-01
The corpus callosum (CC) is a brain structure composed of axon fibres linking the right and left hemispheres. Musical training is associated with larger midsagittal cross-sectional area of the CC, suggesting that interhemispheric communication may be faster in musicians. Here we compared interhemispheric transmission times (ITTs) for musicians and non-musicians. ITT was measured by comparing simple reaction times to stimuli presented to the same hemisphere that controlled a button-press response (uncrossed reaction time), or to the contralateral hemisphere (crossed reaction time). Both visual and auditory stimuli were tested. We predicted that the crossed-uncrossed difference (CUD) for musicians would be smaller than for non-musicians as a result of faster interhemispheric transfer times. We did not expect a difference in CUDs between the visual and auditory modalities for either musicians or non-musicians, as previous work indicates that interhemispheric transfer may happen through the genu of the CC, which contains motor fibres rather than sensory fibres. There were no significant differences in CUDs between musicians and non-musicians. However, auditory CUDs were significantly smaller than visual CUDs. Although this auditory-visual difference was larger in musicians than non-musicians, the interaction between modality and musical training was not significant. Therefore, although musical training does not significantly affect ITT, the crossing of auditory information between hemispheres appears to be faster than visual information, perhaps because subcortical pathways play a greater role for auditory interhemispheric transfer. PMID:24386382
Motor (but not auditory) attention affects syntactic choice.
Pokhoday, Mikhail; Scheepers, Christoph; Shtyrov, Yury; Myachykov, Andriy
2018-01-01
Understanding the determinants of syntactic choice in sentence production is a salient topic in psycholinguistics. Existing evidence suggests that syntactic choice results from an interplay between linguistic and non-linguistic factors, and a speaker's attention to the elements of a described event represents one such factor. Whereas multimodal accounts of attention suggest a role for different modalities in this process, existing studies examining attention effects in syntactic choice are primarily based on visual cueing paradigms. Hence, it remains unclear whether attentional effects on syntactic choice are limited to the visual modality or are indeed more general. This issue is addressed by the current study. Native English participants viewed and described line drawings of simple transitive events while their attention was directed to the location of the agent or the patient of the depicted event by means of either an auditory (monaural beep) or a motor (unilateral key press) lateral cue. Our results show an effect of cue location, with participants producing more passive-voice descriptions in the patient-cued conditions. Crucially, this cue location effect emerged in the motor-cue but not (or substantially less so) in the auditory-cue condition, as confirmed by a reliable interaction between cue location (agent vs. patient) and cue type (auditory vs. motor). Our data suggest that attentional effects on the speaker's syntactic choices are modality-specific and limited to the visual and motor, but not the auditory, domain.
Beer, Anton L.; Plank, Tina; Meyer, Georg; Greenlee, Mark W.
2013-01-01
Functional magnetic resonance imaging (MRI) showed that the superior temporal and occipital cortex are involved in multisensory integration. Probabilistic fiber tracking based on diffusion-weighted MRI suggests that multisensory processing is supported by white matter connections between auditory cortex and the temporal and occipital lobe. Here, we present a combined functional MRI and probabilistic fiber tracking study that reveals multisensory processing mechanisms that remained undetected by either technique alone. Ten healthy participants passively observed visually presented lip or body movements, heard speech or body action sounds, or were exposed to a combination of both. Bimodal stimulation engaged a temporal-occipital brain network including the multisensory superior temporal sulcus (msSTS), the lateral superior temporal gyrus (lSTG), and the extrastriate body area (EBA). A region-of-interest (ROI) analysis showed multisensory interactions (e.g., subadditive responses to bimodal compared to unimodal stimuli) in the msSTS, the lSTG, and the EBA region. Moreover, sounds elicited responses in the medial occipital cortex. Probabilistic tracking revealed white matter tracts between the auditory cortex and the medial occipital cortex, the inferior occipital cortex (IOC), and the superior temporal sulcus (STS). However, STS terminations of auditory cortex tracts showed limited overlap with the msSTS region. Instead, msSTS was connected to primary sensory regions via intermediate nodes in the temporal and occipital cortex. Similarly, the lSTG and EBA regions showed limited direct white matter connections but instead were connected via intermediate nodes. Our results suggest that multisensory processing in the STS is mediated by separate brain areas that form a distinct network in the lateral temporal and inferior occipital cortex. PMID:23407860
Structured Activities in Perceptual Training to Aid Retention of Visual and Auditory Images.
ERIC Educational Resources Information Center
Graves, James W.; And Others
The experimental program in structured activities in perceptual training was said to have two main objectives: to train children in retention of visual and auditory images and to increase the children's motivation to learn. Eight boys and girls participated in the program for two hours daily for a 10-week period. The age range was 7.0 to 12.10…
Wang, Wuyi; Viswanathan, Shivakumar; Lee, Taraz; Grafton, Scott T
2016-01-01
Cortical theta band oscillations (4-8 Hz) in EEG signals have been shown to be important for a variety of different cognitive control operations in visual attention paradigms. However the synchronization source of these signals as defined by fMRI BOLD activity and the extent to which theta oscillations play a role in multimodal attention remains unknown. Here we investigated the extent to which cross-modal visual and auditory attention impacts theta oscillations. Using a simultaneous EEG-fMRI paradigm, healthy human participants performed an attentional vigilance task with six cross-modal conditions using naturalistic stimuli. To assess supramodal mechanisms, modulation of theta oscillation amplitude for attention to either visual or auditory stimuli was correlated with BOLD activity by conjunction analysis. Negative correlation was localized to cortical regions associated with the default mode network and positively with ventral premotor areas. Modality-associated attention to visual stimuli was marked by a positive correlation of theta and BOLD activity in fronto-parietal area that was not observed in the auditory condition. A positive correlation of theta and BOLD activity was observed in auditory cortex, while a negative correlation of theta and BOLD activity was observed in visual cortex during auditory attention. The data support a supramodal interaction of theta activity with of DMN function, and modality-associated processes within fronto-parietal networks related to top-down theta related cognitive control in cross-modal visual attention. On the other hand, in sensory cortices there are opposing effects of theta activity during cross-modal auditory attention.
Misperception of exocentric directions in auditory space
Arthur, Joeanna C.; Philbeck, John W.; Sargent, Jesse; Dopkins, Stephen
2008-01-01
Previous studies have demonstrated large errors (over 30°) in visually perceived exocentric directions (the direction between two objects that are both displaced from the observer’s location; e.g., Philbeck et al., in press). Here, we investigated whether a similar pattern occurs in auditory space. Blindfolded participants either attempted to aim a pointer at auditory targets (an exocentric task) or gave a verbal estimate of the egocentric target azimuth. Targets were located at 20° to 160° azimuth in the right hemispace. For comparison, we also collected pointing and verbal judgments for visual targets. We found that exocentric pointing responses exhibited sizeable undershooting errors, for both auditory and visual targets, that tended to become more strongly negative as azimuth increased (up to −19° for visual targets at 160°). Verbal estimates of the auditory and visual target azimuths, however, showed a dramatically different pattern, with relatively small overestimations of azimuths in the rear hemispace. At least some of the differences between verbal and pointing responses appear to be due to the frames of reference underlying the responses; when participants used the pointer to reproduce the egocentric target azimuth rather than the exocentric target direction relative to the pointer, the pattern of pointing errors more closely resembled that seen in verbal reports. These results show that there are similar distortions in perceiving exocentric directions in visual and auditory space. PMID:18555205
Tsunoda, Naoko; Hashimoto, Mamoru; Ishikawa, Tomohisa; Fukuhara, Ryuji; Yuki, Seiji; Tanaka, Hibiki; Hatada, Yutaka; Miyagawa, Yusuke; Ikeda, Manabu
2018-05-08
Auditory hallucinations are an important symptom for diagnosing dementia with Lewy bodies (DLB), yet they have received less attention than visual hallucinations. We investigated the clinical features of auditory hallucinations and the possible mechanisms by which they arise in patients with DLB. We recruited 124 consecutive patients with probable DLB (diagnosis based on the DLB International Workshop 2005 criteria; study period: June 2007-January 2015) from the dementia referral center of Kumamoto University Hospital. We used the Neuropsychiatric Inventory to assess the presence of auditory hallucinations, visual hallucinations, and other neuropsychiatric symptoms. We reviewed all available clinical records of patients with auditory hallucinations to assess their clinical features. We performed multiple logistic regression analysis to identify significant independent predictors of auditory hallucinations. Of the 124 patients, 44 (35.5%) had auditory hallucinations and 75 (60.5%) had visual hallucinations. The majority of patients (90.9%) with auditory hallucinations also had visual hallucinations. Auditory hallucinations consisted mostly of human voices, and 90% of patients described them as like hearing a soundtrack of the scene. Multiple logistic regression showed that the presence of auditory hallucinations was significantly associated with female sex (P = .04) and hearing impairment (P = .004). The analysis also revealed independent correlations between the presence of auditory hallucinations and visual hallucinations (P < .001), phantom boarder delusions (P = .001), and depression (P = .038). Auditory hallucinations are common neuropsychiatric symptoms in DLB and usually appear as a background soundtrack accompanying visual hallucinations. Auditory hallucinations in patients with DLB are more likely to occur in women and those with impaired hearing, depression, delusions, or visual hallucinations. © Copyright 2018 Physicians Postgraduate Press, Inc.
Visual face-movement sensitive cortex is relevant for auditory-only speech recognition.
Riedel, Philipp; Ragert, Patrick; Schelinski, Stefanie; Kiebel, Stefan J; von Kriegstein, Katharina
2015-07-01
It is commonly assumed that the recruitment of visual areas during audition is not relevant for performing auditory tasks ('auditory-only view'). According to an alternative view, however, the recruitment of visual cortices is thought to optimize auditory-only task performance ('auditory-visual view'). This alternative view is based on functional magnetic resonance imaging (fMRI) studies. These studies have shown, for example, that even if there is only auditory input available, face-movement sensitive areas within the posterior superior temporal sulcus (pSTS) are involved in understanding what is said (auditory-only speech recognition). This is particularly the case when speakers are known audio-visually, that is, after brief voice-face learning. Here we tested whether the left pSTS involvement is causally related to performance in auditory-only speech recognition when speakers are known by face. To test this hypothesis, we applied cathodal transcranial direct current stimulation (tDCS) to the pSTS during (i) visual-only speech recognition of a speaker known only visually to participants and (ii) auditory-only speech recognition of speakers they learned by voice and face. We defined the cathode as active electrode to down-regulate cortical excitability by hyperpolarization of neurons. tDCS to the pSTS interfered with visual-only speech recognition performance compared to a control group without pSTS stimulation (tDCS to BA6/44 or sham). Critically, compared to controls, pSTS stimulation additionally decreased auditory-only speech recognition performance selectively for voice-face learned speakers. These results are important in two ways. First, they provide direct evidence that the pSTS is causally involved in visual-only speech recognition; this confirms a long-standing prediction of current face-processing models. Secondly, they show that visual face-sensitive pSTS is causally involved in optimizing auditory-only speech recognition. These results are in line with the 'auditory-visual view' of auditory speech perception, which assumes that auditory speech recognition is optimized by using predictions from previously encoded speaker-specific audio-visual internal models. Copyright © 2015 Elsevier Ltd. All rights reserved.
The Haptic Paradigm in Education: Challenges and Case Studies
ERIC Educational Resources Information Center
Hamza-Lup, Felix G.; Stanescu, Ioana A.
2010-01-01
The process of learning involves interaction with the learning environment through our five senses (sight, hearing, touch, smell, and taste). Until recently, distance education focused only on the first two of those senses, sight and sound. Internet-based learning environments are predominantly visual with auditory components. With the advent of…
Simone, Ashley N; Bédard, Anne-Claude V; Marks, David J; Halperin, Jeffrey M
2016-01-01
The aim of this study was to examine working memory (WM) modalities (visual-spatial and auditory-verbal) and processes (maintenance and manipulation) in children with and without attention-deficit/hyperactivity disorder (ADHD). The sample consisted of 63 8-year-old children with ADHD and an age- and sex-matched non-ADHD comparison group (N=51). Auditory-verbal and visual-spatial WM were assessed using the Digit Span and Spatial Span subtests from the Wechsler Intelligence Scale for Children Integrated - Fourth Edition. WM maintenance and manipulation were assessed via forward and backward span indices, respectively. Data were analyzed using a 3-way Group (ADHD vs. non-ADHD)×Modality (Auditory-Verbal vs. Visual-Spatial)×Condition (Forward vs. Backward) Analysis of Variance (ANOVA). Secondary analyses examined differences between Combined and Predominantly Inattentive ADHD presentations. Significant Group×Condition (p=.02) and Group×Modality (p=.03) interactions indicated differentially poorer performance by those with ADHD on backward relative to forward and visual-spatial relative to auditory-verbal tasks, respectively. The 3-way interaction was not significant. Analyses targeting ADHD presentations yielded a significant Group×Condition interaction (p=.009) such that children with ADHD-Predominantly Inattentive Presentation performed differentially poorer on backward relative to forward tasks compared to the children with ADHD-Combined Presentation. Findings indicate a specific pattern of WM weaknesses (i.e., WM manipulation and visual-spatial tasks) for children with ADHD. Furthermore, differential patterns of WM performance were found for children with ADHD-Predominantly Inattentive versus Combined Presentations. (JINS, 2016, 22, 1-11).
Acoustic-tactile rendering of visual information
NASA Astrophysics Data System (ADS)
Silva, Pubudu Madhawa; Pappas, Thrasyvoulos N.; Atkins, Joshua; West, James E.; Hartmann, William M.
2012-03-01
In previous work, we have proposed a dynamic, interactive system for conveying visual information via hearing and touch. The system is implemented with a touch screen that allows the user to interrogate a two-dimensional (2-D) object layout by active finger scanning while listening to spatialized auditory feedback. Sound is used as the primary source of information for object localization and identification, while touch is used both for pointing and for kinesthetic feedback. Our previous work considered shape and size perception of simple objects via hearing and touch. The focus of this paper is on the perception of a 2-D layout of simple objects with identical size and shape. We consider the selection and rendition of sounds for object identification and localization. We rely on the head-related transfer function for rendering sound directionality, and consider variations of sound intensity and tempo as two alternative approaches for rendering proximity. Subjective experiments with visually-blocked subjects are used to evaluate the effectiveness of the proposed approaches. Our results indicate that intensity outperforms tempo as a proximity cue, and that the overall system for conveying a 2-D layout is quite promising.
The Influence of Selective and Divided Attention on Audiovisual Integration in Children.
Yang, Weiping; Ren, Yanna; Yang, Dan Ou; Yuan, Xue; Wu, Jinglong
2016-01-24
This article aims to investigate whether there is a difference in audiovisual integration in school-aged children (aged 6 to 13 years; mean age = 9.9 years) between the selective attention condition and divided attention condition. We designed a visual and/or auditory detection task that included three blocks (divided attention, visual-selective attention, and auditory-selective attention). The results showed that the response to bimodal audiovisual stimuli was faster than to unimodal auditory or visual stimuli under both divided attention and auditory-selective attention conditions. However, in the visual-selective attention condition, no significant difference was found between the unimodal visual and bimodal audiovisual stimuli in response speed. Moreover, audiovisual behavioral facilitation effects were compared between divided attention and selective attention (auditory or visual attention). In doing so, we found that audiovisual behavioral facilitation was significantly difference between divided attention and selective attention. The results indicated that audiovisual integration was stronger in the divided attention condition than that in the selective attention condition in children. Our findings objectively support the notion that attention can modulate audiovisual integration in school-aged children. Our study might offer a new perspective for identifying children with conditions that are associated with sustained attention deficit, such as attention-deficit hyperactivity disorder. © The Author(s) 2016.
2017-01-01
Cortex in and around the human posterior superior temporal sulcus (pSTS) is known to be critical for speech perception. The pSTS responds to both the visual modality (especially biological motion) and the auditory modality (especially human voices). Using fMRI in single subjects with no spatial smoothing, we show that visual and auditory selectivity are linked. Regions of the pSTS were identified that preferred visually presented moving mouths (presented in isolation or as part of a whole face) or moving eyes. Mouth-preferring regions responded strongly to voices and showed a significant preference for vocal compared with nonvocal sounds. In contrast, eye-preferring regions did not respond to either vocal or nonvocal sounds. The converse was also true: regions of the pSTS that showed a significant response to speech or preferred vocal to nonvocal sounds responded more strongly to visually presented mouths than eyes. These findings can be explained by environmental statistics. In natural environments, humans see visual mouth movements at the same time as they hear voices, while there is no auditory accompaniment to visual eye movements. The strength of a voxel's preference for visual mouth movements was strongly correlated with the magnitude of its auditory speech response and its preference for vocal sounds, suggesting that visual and auditory speech features are coded together in small populations of neurons within the pSTS. SIGNIFICANCE STATEMENT Humans interacting face to face make use of auditory cues from the talker's voice and visual cues from the talker's mouth to understand speech. The human posterior superior temporal sulcus (pSTS), a brain region known to be important for speech perception, is complex, with some regions responding to specific visual stimuli and others to specific auditory stimuli. Using BOLD fMRI, we show that the natural statistics of human speech, in which voices co-occur with mouth movements, are reflected in the neural architecture of the pSTS. Different pSTS regions prefer visually presented faces containing either a moving mouth or moving eyes, but only mouth-preferring regions respond strongly to voices. PMID:28179553
Zhu, Lin L; Beauchamp, Michael S
2017-03-08
Cortex in and around the human posterior superior temporal sulcus (pSTS) is known to be critical for speech perception. The pSTS responds to both the visual modality (especially biological motion) and the auditory modality (especially human voices). Using fMRI in single subjects with no spatial smoothing, we show that visual and auditory selectivity are linked. Regions of the pSTS were identified that preferred visually presented moving mouths (presented in isolation or as part of a whole face) or moving eyes. Mouth-preferring regions responded strongly to voices and showed a significant preference for vocal compared with nonvocal sounds. In contrast, eye-preferring regions did not respond to either vocal or nonvocal sounds. The converse was also true: regions of the pSTS that showed a significant response to speech or preferred vocal to nonvocal sounds responded more strongly to visually presented mouths than eyes. These findings can be explained by environmental statistics. In natural environments, humans see visual mouth movements at the same time as they hear voices, while there is no auditory accompaniment to visual eye movements. The strength of a voxel's preference for visual mouth movements was strongly correlated with the magnitude of its auditory speech response and its preference for vocal sounds, suggesting that visual and auditory speech features are coded together in small populations of neurons within the pSTS. SIGNIFICANCE STATEMENT Humans interacting face to face make use of auditory cues from the talker's voice and visual cues from the talker's mouth to understand speech. The human posterior superior temporal sulcus (pSTS), a brain region known to be important for speech perception, is complex, with some regions responding to specific visual stimuli and others to specific auditory stimuli. Using BOLD fMRI, we show that the natural statistics of human speech, in which voices co-occur with mouth movements, are reflected in the neural architecture of the pSTS. Different pSTS regions prefer visually presented faces containing either a moving mouth or moving eyes, but only mouth-preferring regions respond strongly to voices. Copyright © 2017 the authors 0270-6474/17/372697-12$15.00/0.
Simulation of talking faces in the human brain improves auditory speech recognition
von Kriegstein, Katharina; Dogan, Özgür; Grüter, Martina; Giraud, Anne-Lise; Kell, Christian A.; Grüter, Thomas; Kleinschmidt, Andreas; Kiebel, Stefan J.
2008-01-01
Human face-to-face communication is essentially audiovisual. Typically, people talk to us face-to-face, providing concurrent auditory and visual input. Understanding someone is easier when there is visual input, because visual cues like mouth and tongue movements provide complementary information about speech content. Here, we hypothesized that, even in the absence of visual input, the brain optimizes both auditory-only speech and speaker recognition by harvesting speaker-specific predictions and constraints from distinct visual face-processing areas. To test this hypothesis, we performed behavioral and neuroimaging experiments in two groups: subjects with a face recognition deficit (prosopagnosia) and matched controls. The results show that observing a specific person talking for 2 min improves subsequent auditory-only speech and speaker recognition for this person. In both prosopagnosics and controls, behavioral improvement in auditory-only speech recognition was based on an area typically involved in face-movement processing. Improvement in speaker recognition was only present in controls and was based on an area involved in face-identity processing. These findings challenge current unisensory models of speech processing, because they show that, in auditory-only speech, the brain exploits previously encoded audiovisual correlations to optimize communication. We suggest that this optimization is based on speaker-specific audiovisual internal models, which are used to simulate a talking face. PMID:18436648
Nilakantan, Aneesha S; Voss, Joel L; Weintraub, Sandra; Mesulam, M-Marsel; Rogalski, Emily J
2017-06-01
Primary progressive aphasia (PPA) is clinically defined by an initial loss of language function and preservation of other cognitive abilities, including episodic memory. While PPA primarily affects the left-lateralized perisylvian language network, some clinical neuropsychological tests suggest concurrent initial memory loss. The goal of this study was to test recognition memory of objects and words in the visual and auditory modality to separate language-processing impairments from retentive memory in PPA. Individuals with non-semantic PPA had longer reaction times and higher false alarms for auditory word stimuli compared to visual object stimuli. Moreover, false alarms for auditory word recognition memory were related to cortical thickness within the left inferior frontal gyrus and left temporal pole, while false alarms for visual object recognition memory was related to cortical thickness within the right-temporal pole. This pattern of results suggests that specific vulnerability in processing verbal stimuli can hinder episodic memory in PPA, and provides evidence for differential contributions of the left and right temporal poles in word and object recognition memory. Copyright © 2017 Elsevier Ltd. All rights reserved.
Modeling the Perception of Audiovisual Distance: Bayesian Causal Inference and Other Models
2016-01-01
Studies of audiovisual perception of distance are rare. Here, visual and auditory cue interactions in distance are tested against several multisensory models, including a modified causal inference model. In this causal inference model predictions of estimate distributions are included. In our study, the audiovisual perception of distance was overall better explained by Bayesian causal inference than by other traditional models, such as sensory dominance and mandatory integration, and no interaction. Causal inference resolved with probability matching yielded the best fit to the data. Finally, we propose that sensory weights can also be estimated from causal inference. The analysis of the sensory weights allows us to obtain windows within which there is an interaction between the audiovisual stimuli. We find that the visual stimulus always contributes by more than 80% to the perception of visual distance. The visual stimulus also contributes by more than 50% to the perception of auditory distance, but only within a mobile window of interaction, which ranges from 1 to 4 m. PMID:27959919
Wang, Qingcui; Guo, Lu; Bao, Ming; Chen, Lihan
2015-01-01
Auditory and visual events often happen concurrently, and how they group together can have a strong effect on what is perceived. We investigated whether/how intra- or cross-modal temporal grouping influenced the perceptual decision of otherwise ambiguous visual apparent motion. To achieve this, we juxtaposed auditory gap transfer illusion with visual Ternus display. The Ternus display involves a multi-element stimulus that can induce either of two different percepts of apparent motion: ‘element motion’ (EM) or ‘group motion’ (GM). In “EM,” the endmost disk is seen as moving back and forth while the middle disk at the central position remains stationary; while in “GM,” both disks appear to move laterally as a whole. The gap transfer illusion refers to the illusory subjective transfer of a short gap (around 100 ms) from the long glide to the short continuous glide when the two glides intercede at the temporal middle point. In our experiments, observers were required to make a perceptual discrimination of Ternus motion in the presence of concurrent auditory glides (with or without a gap inside). Results showed that a gap within a short glide imposed a remarkable effect on separating visual events, and led to a dominant perception of GM as well. The auditory configuration with gap transfer illusion triggered the same auditory capture effect. Further investigations showed that visual interval which coincided with the gap interval (50–230 ms) in the long glide was perceived to be shorter than that within both the short glide and the ‘gap-transfer’ auditory configurations in the same physical intervals (gaps). The results indicated that auditory temporal perceptual grouping takes priority over the cross-modal interaction in determining the final readout of the visual perception, and the mechanism of selective attention on auditory events also plays a role. PMID:26042055
Wang, Qingcui; Guo, Lu; Bao, Ming; Chen, Lihan
2015-01-01
Auditory and visual events often happen concurrently, and how they group together can have a strong effect on what is perceived. We investigated whether/how intra- or cross-modal temporal grouping influenced the perceptual decision of otherwise ambiguous visual apparent motion. To achieve this, we juxtaposed auditory gap transfer illusion with visual Ternus display. The Ternus display involves a multi-element stimulus that can induce either of two different percepts of apparent motion: 'element motion' (EM) or 'group motion' (GM). In "EM," the endmost disk is seen as moving back and forth while the middle disk at the central position remains stationary; while in "GM," both disks appear to move laterally as a whole. The gap transfer illusion refers to the illusory subjective transfer of a short gap (around 100 ms) from the long glide to the short continuous glide when the two glides intercede at the temporal middle point. In our experiments, observers were required to make a perceptual discrimination of Ternus motion in the presence of concurrent auditory glides (with or without a gap inside). Results showed that a gap within a short glide imposed a remarkable effect on separating visual events, and led to a dominant perception of GM as well. The auditory configuration with gap transfer illusion triggered the same auditory capture effect. Further investigations showed that visual interval which coincided with the gap interval (50-230 ms) in the long glide was perceived to be shorter than that within both the short glide and the 'gap-transfer' auditory configurations in the same physical intervals (gaps). The results indicated that auditory temporal perceptual grouping takes priority over the cross-modal interaction in determining the final readout of the visual perception, and the mechanism of selective attention on auditory events also plays a role.
Neural Mechanisms Underlying Cross-Modal Phonetic Encoding.
Shahin, Antoine J; Backer, Kristina C; Rosenblum, Lawrence D; Kerlin, Jess R
2018-02-14
Audiovisual (AV) integration is essential for speech comprehension, especially in adverse listening situations. Divergent, but not mutually exclusive, theories have been proposed to explain the neural mechanisms underlying AV integration. One theory advocates that this process occurs via interactions between the auditory and visual cortices, as opposed to fusion of AV percepts in a multisensory integrator. Building upon this idea, we proposed that AV integration in spoken language reflects visually induced weighting of phonetic representations at the auditory cortex. EEG was recorded while male and female human subjects watched and listened to videos of a speaker uttering consonant vowel (CV) syllables /ba/ and /fa/, presented in Auditory-only, AV congruent or incongruent contexts. Subjects reported whether they heard /ba/ or /fa/. We hypothesized that vision alters phonetic encoding by dynamically weighting which phonetic representation in the auditory cortex is strengthened or weakened. That is, when subjects are presented with visual /fa/ and acoustic /ba/ and hear /fa/ ( illusion-fa ), the visual input strengthens the weighting of the phone /f/ representation. When subjects are presented with visual /ba/ and acoustic /fa/ and hear /ba/ ( illusion-ba ), the visual input weakens the weighting of the phone /f/ representation. Indeed, we found an enlarged N1 auditory evoked potential when subjects perceived illusion-ba , and a reduced N1 when they perceived illusion-fa , mirroring the N1 behavior for /ba/ and /fa/ in Auditory-only settings. These effects were especially pronounced in individuals with more robust illusory perception. These findings provide evidence that visual speech modifies phonetic encoding at the auditory cortex. SIGNIFICANCE STATEMENT The current study presents evidence that audiovisual integration in spoken language occurs when one modality (vision) acts on representations of a second modality (audition). Using the McGurk illusion, we show that visual context primes phonetic representations at the auditory cortex, altering the auditory percept, evidenced by changes in the N1 auditory evoked potential. This finding reinforces the theory that audiovisual integration occurs via visual networks influencing phonetic representations in the auditory cortex. We believe that this will lead to the generation of new hypotheses regarding cross-modal mapping, particularly whether it occurs via direct or indirect routes (e.g., via a multisensory mediator). Copyright © 2018 the authors 0270-6474/18/381835-15$15.00/0.
NASA Technical Reports Server (NTRS)
Phillips, Rachel; Madhavan, Poornima
2010-01-01
The purpose of this research was to examine the impact of environmental distractions on human trust and utilization of automation during the process of visual search. Participants performed a computer-simulated airline luggage screening task with the assistance of a 70% reliable automated decision aid (called DETECTOR) both with and without environmental distractions. The distraction was implemented as a secondary task in either a competing modality (visual) or non-competing modality (auditory). The secondary task processing code either competed with the luggage screening task (spatial code) or with the automation's textual directives (verbal code). We measured participants' system trust, perceived reliability of the system (when a target weapon was present and absent), compliance, reliance, and confidence when agreeing and disagreeing with the system under both distracted and undistracted conditions. Results revealed that system trust was lower in the visual-spatial and auditory-verbal conditions than in the visual-verbal and auditory-spatial conditions. Perceived reliability of the system (when the target was present) was significantly higher when the secondary task was visual rather than auditory. Compliance with the aid increased in all conditions except for the auditory-verbal condition, where it decreased. Similar to the pattern for trust, reliance on the automation was lower in the visual-spatial and auditory-verbal conditions than in the visual-verbal and auditory-spatial conditions. Confidence when agreeing with the system decreased with the addition of any kind of distraction; however, confidence when disagreeing increased with the addition of an auditory secondary task but decreased with the addition of a visual task. A model was developed to represent the research findings and demonstrate the relationship between secondary task modality, processing code, and automation use. Results suggest that the nature of environmental distractions influence interaction with automation via significant effects on trust and system utilization. These findings have implications for both automation design and operator training.
Tidoni, Emmanuele; Gergondet, Pierre; Fusco, Gabriele; Kheddar, Abderrahmane; Aglioti, Salvatore M
2017-06-01
The efficient control of our body and successful interaction with the environment are possible through the integration of multisensory information. Brain-computer interface (BCI) may allow people with sensorimotor disorders to actively interact in the world. In this study, visual information was paired with auditory feedback to improve the BCI control of a humanoid surrogate. Healthy and spinal cord injured (SCI) people were asked to embody a humanoid robot and complete a pick-and-place task by means of a visual evoked potentials BCI system. Participants observed the remote environment from the robot's perspective through a head mounted display. Human-footsteps and computer-beep sounds were used as synchronous/asynchronous auditory feedback. Healthy participants achieved better placing accuracy when listening to human footstep sounds relative to a computer-generated sound. SCI people demonstrated more difficulty in steering the robot during asynchronous auditory feedback conditions. Importantly, subjective reports highlighted that the BCI mask overlaying the display did not limit the observation of the scenario and the feeling of being in control of the robot. Overall, the data seem to suggest that sensorimotor-related information may improve the control of external devices. Further studies are required to understand how the contribution of residual sensory channels could improve the reliability of BCI systems.
Direction of Auditory Pitch-Change Influences Visual Search for Slope From Graphs.
Parrott, Stacey; Guzman-Martinez, Emmanuel; Orte, Laura; Grabowecky, Marcia; Huntington, Mark D; Suzuki, Satoru
2015-01-01
Linear trend (slope) is important information conveyed by graphs. We investigated how sounds influenced slope detection in a visual search paradigm. Four bar graphs or scatter plots were presented on each trial. Participants looked for a positive-slope or a negative-slope target (in blocked trials), and responded to targets in a go or no-go fashion. For example, in a positive-slope-target block, the target graph displayed a positive slope while other graphs displayed negative slopes (a go trial), or all graphs displayed negative slopes (a no-go trial). When an ascending or descending sound was presented concurrently, ascending sounds slowed detection of negative-slope targets whereas descending sounds slowed detection of positive-slope targets. The sounds had no effect when they immediately preceded the visual search displays, suggesting that the results were due to crossmodal interaction rather than priming. The sounds also had no effect when targets were words describing slopes, such as "positive," "negative," "increasing," or "decreasing," suggesting that the results were unlikely due to semantic-level interactions. Manipulations of spatiotemporal similarity between sounds and graphs had little effect. These results suggest that ascending and descending sounds influence visual search for slope based on a general association between the direction of auditory pitch-change and visual linear trend.
Dynamic reconfiguration of human brain functional networks through neurofeedback.
Haller, Sven; Kopel, Rotem; Jhooti, Permi; Haas, Tanja; Scharnowski, Frank; Lovblad, Karl-Olof; Scheffler, Klaus; Van De Ville, Dimitri
2013-11-01
Recent fMRI studies demonstrated that functional connectivity is altered following cognitive tasks (e.g., learning) or due to various neurological disorders. We tested whether real-time fMRI-based neurofeedback can be a tool to voluntarily reconfigure brain network interactions. To disentangle learning-related from regulation-related effects, we first trained participants to voluntarily regulate activity in the auditory cortex (training phase) and subsequently asked participants to exert learned voluntary self-regulation in the absence of feedback (transfer phase without learning). Using independent component analysis (ICA), we found network reconfigurations (increases in functional network connectivity) during the neurofeedback training phase between the auditory target region and (1) the auditory pathway; (2) visual regions related to visual feedback processing; (3) insula related to introspection and self-regulation and (4) working memory and high-level visual attention areas related to cognitive effort. Interestingly, the auditory target region was identified as the hub of the reconfigured functional networks without a-priori assumptions. During the transfer phase, we again found specific functional connectivity reconfiguration between auditory and attention network confirming the specific effect of self-regulation on functional connectivity. Functional connectivity to working memory related networks was no longer altered consistent with the absent demand on working memory. We demonstrate that neurofeedback learning is mediated by widespread changes in functional connectivity. In contrast, applying learned self-regulation involves more limited and specific network changes in an auditory setup intended as a model for tinnitus. Hence, neurofeedback training might be used to promote recovery from neurological disorders that are linked to abnormal patterns of brain connectivity. Copyright © 2013 Elsevier Inc. All rights reserved.
Novel design of interactive multimodal biofeedback system for neurorehabilitation.
Huang, He; Chen, Y; Xu, W; Sundaram, H; Olson, L; Ingalls, T; Rikakis, T; He, Jiping
2006-01-01
A previous design of a biofeedback system for Neurorehabilitation in an interactive multimodal environment has demonstrated the potential of engaging stroke patients in task-oriented neuromotor rehabilitation. This report explores the new concept and alternative designs of multimedia based biofeedback systems. In this system, the new interactive multimodal environment was constructed with abstract presentation of movement parameters. Scenery images or pictures and their clarity and orientation are used to reflect the arm movement and relative position to the target instead of the animated arm. The multiple biofeedback parameters were classified into different hierarchical levels w.r.t. importance of each movement parameter to performance. A new quantified measurement for these parameters were developed to assess the patient's performance both real-time and offline. These parameters were represented by combined visual and auditory presentations with various distinct music instruments. Overall, the objective of newly designed system is to explore what information and how to feedback information in interactive virtual environment could enhance the sensorimotor integration that may facilitate the efficient design and application of virtual environment based therapeutic intervention.
Premotor cortex is sensitive to auditory-visual congruence for biological motion.
Wuerger, Sophie M; Parkes, Laura; Lewis, Penelope A; Crocker-Buque, Alex; Rutschmann, Roland; Meyer, Georg F
2012-03-01
The auditory and visual perception systems have developed special processing strategies for ecologically valid motion stimuli, utilizing some of the statistical properties of the real world. A well-known example is the perception of biological motion, for example, the perception of a human walker. The aim of the current study was to identify the cortical network involved in the integration of auditory and visual biological motion signals. We first determined the cortical regions of auditory and visual coactivation (Experiment 1); a conjunction analysis based on unimodal brain activations identified four regions: middle temporal area, inferior parietal lobule, ventral premotor cortex, and cerebellum. The brain activations arising from bimodal motion stimuli (Experiment 2) were then analyzed within these regions of coactivation. Auditory footsteps were presented concurrently with either an intact visual point-light walker (biological motion) or a scrambled point-light walker; auditory and visual motion in depth (walking direction) could either be congruent or incongruent. Our main finding is that motion incongruency (across modalities) increases the activity in the ventral premotor cortex, but only if the visual point-light walker is intact. Our results extend our current knowledge by providing new evidence consistent with the idea that the premotor area assimilates information across the auditory and visual modalities by comparing the incoming sensory input with an internal representation.
NASA Astrophysics Data System (ADS)
West, Ruth G.; Margolis, Todd; Prudhomme, Andrew; Schulze, Jürgen P.; Mostafavi, Iman; Lewis, J. P.; Gossmann, Joachim; Singh, Rajvikram
2014-02-01
Scalable Metadata Environments (MDEs) are an artistic approach for designing immersive environments for large scale data exploration in which users interact with data by forming multiscale patterns that they alternatively disrupt and reform. Developed and prototyped as part of an art-science research collaboration, we define an MDE as a 4D virtual environment structured by quantitative and qualitative metadata describing multidimensional data collections. Entire data sets (e.g.10s of millions of records) can be visualized and sonified at multiple scales and at different levels of detail so they can be explored interactively in real-time within MDEs. They are designed to reflect similarities and differences in the underlying data or metadata such that patterns can be visually/aurally sorted in an exploratory fashion by an observer who is not familiar with the details of the mapping from data to visual, auditory or dynamic attributes. While many approaches for visual and auditory data mining exist, MDEs are distinct in that they utilize qualitative and quantitative data and metadata to construct multiple interrelated conceptual coordinate systems. These "regions" function as conceptual lattices for scalable auditory and visual representations within virtual environments computationally driven by multi-GPU CUDA-enabled fluid dyamics systems.
Behavioural benefits of multisensory processing in ferrets.
Hammond-Kenny, Amy; Bajo, Victoria M; King, Andrew J; Nodal, Fernando R
2017-01-01
Enhanced detection and discrimination, along with faster reaction times, are the most typical behavioural manifestations of the brain's capacity to integrate multisensory signals arising from the same object. In this study, we examined whether multisensory behavioural gains are observable across different components of the localization response that are potentially under the command of distinct brain regions. We measured the ability of ferrets to localize unisensory (auditory or visual) and spatiotemporally coincident auditory-visual stimuli of different durations that were presented from one of seven locations spanning the frontal hemifield. During the localization task, we recorded the head movements made following stimulus presentation, as a metric for assessing the initial orienting response of the ferrets, as well as the subsequent choice of which target location to approach to receive a reward. Head-orienting responses to auditory-visual stimuli were more accurate and faster than those made to visual but not auditory targets, suggesting that these movements were guided principally by sound alone. In contrast, approach-to-target localization responses were more accurate and faster to spatially congruent auditory-visual stimuli throughout the frontal hemifield than to either visual or auditory stimuli alone. Race model inequality analysis of head-orienting reaction times and approach-to-target response times indicates that different processes, probability summation and neural integration, respectively, are likely to be responsible for the effects of multisensory stimulation on these two measures of localization behaviour. © 2016 The Authors. European Journal of Neuroscience published by Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
Olivetti Belardinelli, Marta; Santangelo, Valerio
2005-07-08
This paper examines the characteristics of spatial attention orienting in situations of visual impairment. Two groups of subjects, respectively schizophrenic and blind, with different degrees of visual spatial information impairment, were tested. In Experiment 1, the schizophrenic subjects were instructed to detect an auditory target, which was preceded by a visual cue. The cue could appear in the same location as the target, separated from it respectively by the vertical visual meridian (VM), the vertical head-centered meridian (HCM) or another meridian. Similarly to normal subjects tested with the same paradigm (Ferlazzo, Couyoumdjian, Padovani, and Olivetti Belardinelli, 2002), schizophrenic subjects showed slower reactions times (RTs) when cued, and when the target locations were on the opposite sides of the HCM. This HCM effect strengthens the assumption that different auditory and visual spatial maps underlie the representation of attention orienting mechanisms. In Experiment 2, blind subjects were asked to detect an auditory target, which had been preceded by an auditory cue, while staring at an imaginary point. The point was located either to the left or to the right, in order to control for ocular movements and maintain the dissociation between the HCM and the VM. Differences between crossing and no-crossing conditions of HCM were not found. Therefore it is possible to consider the HCM effect as a consequence of the interaction between visual and auditory modalities. Related theoretical issues are also discussed.
Education about Hallucinations Using an Internet Virtual Reality System: A Qualitative Survey
ERIC Educational Resources Information Center
Yellowlees, Peter M.; Cook, James N.
2006-01-01
Objective: The authors evaluate an Internet virtual reality technology as an education tool about the hallucinations of psychosis. Method: This is a pilot project using Second Life, an Internet-based virtual reality system, in which a virtual reality environment was constructed to simulate the auditory and visual hallucinations of two patients…
Defense applications of the CAVE (CAVE automatic virtual environment)
NASA Astrophysics Data System (ADS)
Isabelle, Scott K.; Gilkey, Robert H.; Kenyon, Robert V.; Valentino, George; Flach, John M.; Spenny, Curtis H.; Anderson, Timothy R.
1997-07-01
The CAVE is a multi-person, room-sized, high-resolution, 3D video and auditory environment, which can be used to present very immersive virtual environment experiences. This paper describes the CAVE technology and the capability of the CAVE system as originally developed at the Electronics Visualization Laboratory of the University of Illinois- Chicago and as more recently implemented by Wright State University (WSU) in the Armstrong Laboratory at Wright- Patterson Air Force Base (WPAFB). One planned use of the WSU/WPAFB CAVE is research addressing the appropriate design of display and control interfaces for controlling uninhabited aerial vehicles. The WSU/WPAFB CAVE has a number of features that make it well-suited to this work: (1) 360 degrees surround, plus floor, high resolution visual displays, (2) virtual spatialized audio, (3) the ability to integrate real and virtual objects, and (4) rapid and flexible reconfiguration. However, even though the CAVE is likely to have broad utility for military applications, it does have certain limitations that may make it less well- suited to applications that require 'natural' haptic feedback, vestibular stimulation, or an ability to interact with close detailed objects.
Pulay, Márk Ágoston
2015-01-01
Letting children with severe physical disabilities (like Tetraparesis spastica) to get relevant motional experiences of appropriate quality and quantity is now the greatest challenge for us in the field of neurorehabilitation. These motional experiences may establish many cognitive processes, but may also cause additional secondary cognitive dysfunctions such as disorders in body image, figure invariance, visual perception, auditory differentiation, concentration, analytic and synthetic ways of thinking, visual memory etc. Virtual Reality is a technology that provides a sense of presence in a real environment with the help of 3D pictures and animations formed in a computer environment and enable the person to interact with the objects in that environment. One of our biggest challenges is to find a well suited input device (hardware) to let the children with severe physical disabilities to interact with the computer. Based on our own experiences and a thorough literature review we have come to the conclusion that an effective combination of eye-tracking and EMG devices should work well.
Interhemispheric interaction expands attentional capacity in an auditory selective attention task.
Scalf, Paige E; Banich, Marie T; Erickson, Andrew B
2009-04-01
Previous work from our laboratory indicates that interhemispheric interaction (IHI) functionally increases the attentional capacity available to support performance on visual tasks (Banich in The asymmetrical brain, pp 261-302, 2003). Because manipulations of both computational complexity and selection demand alter the benefits of IHI to task performance, we argue that IHI may be a general strategy for meeting increases in attentional demand. Other researchers, however, have suggested that the apparent benefits of IHI to attentional capacity are an epiphenomenon of the organization of the visual system (Fecteau and Enns in Neuropsychologia 43:1412-1428, 2005; Marsolek et al. in Neuropsychologia 40:1983-1999, 2002). In the current experiment, we investigate whether IHI increases attentional capacity outside the visual system by manipulating the selection demands of an auditory temporal pattern-matching task. We find that IHI expands attentional capacity in the auditory system. This suggests that the benefits of requiring IHI derive from a functional increase in attentional capacity rather than the organization of a specific sensory modality.
1991-09-01
just one modality (e.g. visual or auditory agnosia ) or impaired manipulation of objects with specific uses, despite intact recognition of them (apraxia...Neurosurgery and itbiatzy, 51, 1201-1207. Farah, M. J. (1991) Patterns of co-occurence among the associative agnosias : Implications for visual object
Distributed neural signatures of natural audiovisual speech and music in the human auditory cortex.
Salmi, Juha; Koistinen, Olli-Pekka; Glerean, Enrico; Jylänki, Pasi; Vehtari, Aki; Jääskeläinen, Iiro P; Mäkelä, Sasu; Nummenmaa, Lauri; Nummi-Kuisma, Katarina; Nummi, Ilari; Sams, Mikko
2017-08-15
During a conversation or when listening to music, auditory and visual information are combined automatically into audiovisual objects. However, it is still poorly understood how specific type of visual information shapes neural processing of sounds in lifelike stimulus environments. Here we applied multi-voxel pattern analysis to investigate how naturally matching visual input modulates supratemporal cortex activity during processing of naturalistic acoustic speech, singing and instrumental music. Bayesian logistic regression classifiers with sparsity-promoting priors were trained to predict whether the stimulus was audiovisual or auditory, and whether it contained piano playing, speech, or singing. The predictive performances of the classifiers were tested by leaving one participant at a time for testing and training the model using the remaining 15 participants. The signature patterns associated with unimodal auditory stimuli encompassed distributed locations mostly in the middle and superior temporal gyrus (STG/MTG). A pattern regression analysis, based on a continuous acoustic model, revealed that activity in some of these MTG and STG areas were associated with acoustic features present in speech and music stimuli. Concurrent visual stimulus modulated activity in bilateral MTG (speech), lateral aspect of right anterior STG (singing), and bilateral parietal opercular cortex (piano). Our results suggest that specific supratemporal brain areas are involved in processing complex natural speech, singing, and piano playing, and other brain areas located in anterior (facial speech) and posterior (music-related hand actions) supratemporal cortex are influenced by related visual information. Those anterior and posterior supratemporal areas have been linked to stimulus identification and sensory-motor integration, respectively. Copyright © 2017 Elsevier Inc. All rights reserved.
Absence of modulatory action on haptic height perception with musical pitch
Geronazzo, Michele; Avanzini, Federico; Grassi, Massimo
2015-01-01
Although acoustic frequency is not a spatial property of physical objects, in common language, pitch, i.e., the psychological correlated of frequency, is often labeled spatially (i.e., “high in pitch” or “low in pitch”). Pitch-height is known to modulate (and interact with) the response of participants when they are asked to judge spatial properties of non-auditory stimuli (e.g., visual) in a variety of behavioral tasks. In the current study we investigated whether the modulatory action of pitch-height extended to the haptic estimation of height of a virtual step. We implemented a HW/SW setup which is able to render virtual 3D objects (stair-steps) haptically through a PHANTOM device, and to provide real-time continuous auditory feedback depending on the user interaction with the object. The haptic exploration was associated with a sinusoidal tone whose pitch varied as a function of the interaction point's height within (i) a narrower and (ii) a wider pitch range, or (iii) a random pitch variation acting as a control audio condition. Explorations were also performed with no sound (haptic only). Participants were instructed to explore the virtual step freely, and to communicate height estimation by opening their thumb and index finger to mimic the step riser height, or verbally by reporting the height in centimeters of the step riser. We analyzed the role of musical expertise by dividing participants into non-musicians and musicians. Results showed no effects of musical pitch on high-realistic haptic feedback. Overall there is no difference between the two groups in the proposed multimodal conditions. Additionally, we observed a different haptic response distribution between musicians and non-musicians when estimations of the auditory conditions are matched with estimations in the no sound condition. PMID:26441745
Stevenson, Ryan A; Fister, Juliane Krueger; Barnett, Zachary P; Nidiffer, Aaron R; Wallace, Mark T
2012-05-01
In natural environments, human sensory systems work in a coordinated and integrated manner to perceive and respond to external events. Previous research has shown that the spatial and temporal relationships of sensory signals are paramount in determining how information is integrated across sensory modalities, but in ecologically plausible settings, these factors are not independent. In the current study, we provide a novel exploration of the impact on behavioral performance for systematic manipulations of the spatial location and temporal synchrony of a visual-auditory stimulus pair. Simple auditory and visual stimuli were presented across a range of spatial locations and stimulus onset asynchronies (SOAs), and participants performed both a spatial localization and simultaneity judgment task. Response times in localizing paired visual-auditory stimuli were slower in the periphery and at larger SOAs, but most importantly, an interaction was found between the two factors, in which the effect of SOA was greater in peripheral as opposed to central locations. Simultaneity judgments also revealed a novel interaction between space and time: individuals were more likely to judge stimuli as synchronous when occurring in the periphery at large SOAs. The results of this study provide novel insights into (a) how the speed of spatial localization of an audiovisual stimulus is affected by location and temporal coincidence and the interaction between these two factors and (b) how the location of a multisensory stimulus impacts judgments concerning the temporal relationship of the paired stimuli. These findings provide strong evidence for a complex interdependency between spatial location and temporal structure in determining the ultimate behavioral and perceptual outcome associated with a paired multisensory (i.e., visual-auditory) stimulus.
Lower pitch is larger, yet falling pitches shrink.
Eitan, Zohar; Schupak, Asi; Gotler, Alex; Marks, Lawrence E
2014-01-01
Experiments using diverse paradigms, including speeded discrimination, indicate that pitch and visually-perceived size interact perceptually, and that higher pitch is congruent with smaller size. While nearly all of these studies used static stimuli, here we examine the interaction of dynamic pitch and dynamic size, using Garner's speeded discrimination paradigm. Experiment 1 examined the interaction of continuous rise/fall in pitch and increase/decrease in object size. Experiment 2 examined the interaction of static pitch and size (steady high/low pitches and large/small visual objects), using an identical procedure. Results indicate that static and dynamic auditory and visual stimuli interact in opposite ways. While for static stimuli (Experiment 2), higher pitch is congruent with smaller size (as suggested by earlier work), for dynamic stimuli (Experiment 1), ascending pitch is congruent with growing size, and descending pitch with shrinking size. In addition, while static stimuli (Experiment 2) exhibit both congruence and Garner effects, dynamic stimuli (Experiment 1) present congruence effects without Garner interference, a pattern that is not consistent with prevalent interpretations of Garner's paradigm. Our interpretation of these results focuses on effects of within-trial changes on processing in dynamic tasks and on the association of changes in apparent size with implied changes in distance. Results suggest that static and dynamic stimuli can differ substantially in their cross-modal mappings, and may rely on different processing mechanisms.
Jao Keehn, R Joanne; Sanchez, Sandra S; Stewart, Claire R; Zhao, Weiqi; Grenesko-Stevens, Emily L; Keehn, Brandon; Müller, Ralph-Axel
2017-01-01
Autism spectrum disorders (ASD) are pervasive developmental disorders characterized by impairments in language development and social interaction, along with restricted and stereotyped behaviors. These behaviors often include atypical responses to sensory stimuli; some children with ASD are easily overwhelmed by sensory stimuli, while others may seem unaware of their environment. Vision and audition are two sensory modalities important for social interactions and language, and are differentially affected in ASD. In the present study, 16 children and adolescents with ASD and 16 typically developing (TD) participants matched for age, gender, nonverbal IQ, and handedness were tested using a mixed event-related/blocked functional magnetic resonance imaging paradigm to examine basic perceptual processes that may form the foundation for later-developing cognitive abilities. Auditory (high or low pitch) and visual conditions (dot located high or low in the display) were presented, and participants indicated whether the stimuli were "high" or "low." Results for the auditory condition showed downregulated activity of the visual cortex in the TD group, but upregulation in the ASD group. This atypical activity in visual cortex was associated with autism symptomatology. These findings suggest atypical crossmodal (auditory-visual) modulation linked to sociocommunicative deficits in ASD, in agreement with the general hypothesis of low-level sensorimotor impairments affecting core symptomatology. Autism Res 2017, 10: 130-143. © 2016 International Society for Autism Research, Wiley Periodicals, Inc. © 2016 International Society for Autism Research, Wiley Periodicals, Inc.
Two-and 3-Year-Olds Know What Others Have and Have Not Heard
ERIC Educational Resources Information Center
Moll, Henrike; Carpenter, Malinda; Tomasello, Michael
2014-01-01
Recent studies have established that even infants can determine what others know based on previous visual experience. In the current study, we investigated whether 2-and 3-year-olds know what others know based on previous auditory experience. A child and an adult heard the sound of one object together, but only the child heard the sound of another…
Bensoussan, Sandy; Cornil, Maude; Meunier-Salaün, Marie-Christine; Tallet, Céline
2016-01-01
Although animals rarely use only one sense to communicate, few studies have investigated the use of combinations of different signals between animals and humans. This study assessed for the first time the spontaneous reactions of piglets to human pointing gestures and voice in an object-choice task with a reward. Piglets (Sus scrofa domestica) mainly use auditory signals–individually or in combination with other signals—to communicate with their conspecifics. Their wide hearing range (42 Hz to 40.5 kHz) fits the range of human vocalisations (40 Hz to 1.5 kHz), which may induce sensitivity to the human voice. However, only their ability to use visual signals from humans, especially pointing gestures, has been assessed to date. The current study investigated the effects of signal type (visual, auditory and combined visual and auditory) and piglet experience on the piglets’ ability to locate a hidden food reward over successive tests. Piglets did not find the hidden reward at first presentation, regardless of the signal type given. However, they subsequently learned to use a combination of auditory and visual signals (human voice and static or dynamic pointing gestures) to successfully locate the reward in later tests. This learning process may result either from repeated presentations of the combination of static gestures and auditory signals over successive tests, or from transitioning from static to dynamic pointing gestures, again over successive tests. Furthermore, piglets increased their chance of locating the reward either if they did not go straight to a bowl after entering the test area or if they stared at the experimenter before visiting it. Piglets were not able to use the voice direction alone, indicating that a combination of signals (pointing and voice direction) is necessary. Improving our communication with animals requires adapting to their individual sensitivity to human-given signals. PMID:27792731
Bensoussan, Sandy; Cornil, Maude; Meunier-Salaün, Marie-Christine; Tallet, Céline
2016-01-01
Although animals rarely use only one sense to communicate, few studies have investigated the use of combinations of different signals between animals and humans. This study assessed for the first time the spontaneous reactions of piglets to human pointing gestures and voice in an object-choice task with a reward. Piglets (Sus scrofa domestica) mainly use auditory signals-individually or in combination with other signals-to communicate with their conspecifics. Their wide hearing range (42 Hz to 40.5 kHz) fits the range of human vocalisations (40 Hz to 1.5 kHz), which may induce sensitivity to the human voice. However, only their ability to use visual signals from humans, especially pointing gestures, has been assessed to date. The current study investigated the effects of signal type (visual, auditory and combined visual and auditory) and piglet experience on the piglets' ability to locate a hidden food reward over successive tests. Piglets did not find the hidden reward at first presentation, regardless of the signal type given. However, they subsequently learned to use a combination of auditory and visual signals (human voice and static or dynamic pointing gestures) to successfully locate the reward in later tests. This learning process may result either from repeated presentations of the combination of static gestures and auditory signals over successive tests, or from transitioning from static to dynamic pointing gestures, again over successive tests. Furthermore, piglets increased their chance of locating the reward either if they did not go straight to a bowl after entering the test area or if they stared at the experimenter before visiting it. Piglets were not able to use the voice direction alone, indicating that a combination of signals (pointing and voice direction) is necessary. Improving our communication with animals requires adapting to their individual sensitivity to human-given signals.
Experience and information loss in auditory and visual memory.
Gloede, Michele E; Paulauskas, Emily E; Gregg, Melissa K
2017-07-01
Recent studies show that recognition memory for sounds is inferior to memory for pictures. Four experiments were conducted to examine the nature of auditory and visual memory. Experiments 1-3 were conducted to evaluate the role of experience in auditory and visual memory. Participants received a study phase with pictures/sounds, followed by a recognition memory test. Participants then completed auditory training with each of the sounds, followed by a second memory test. Despite auditory training in Experiments 1 and 2, visual memory was superior to auditory memory. In Experiment 3, we found that it is possible to improve auditory memory, but only after 3 days of specific auditory training and 3 days of visual memory decay. We examined the time course of information loss in auditory and visual memory in Experiment 4 and found a trade-off between visual and auditory recognition memory: Visual memory appears to have a larger capacity, while auditory memory is more enduring. Our results indicate that visual and auditory memory are inherently different memory systems and that differences in visual and auditory recognition memory performance may be due to the different amounts of experience with visual and auditory information, as well as structurally different neural circuitry specialized for information retention.
Bidelman, Gavin M
2016-10-01
Musical training is associated with behavioral and neurophysiological enhancements in auditory processing for both musical and nonmusical sounds (e.g., speech). Yet, whether the benefits of musicianship extend beyond enhancements to auditory-specific skills and impact multisensory (e.g., audiovisual) processing has yet to be fully validated. Here, we investigated multisensory integration of auditory and visual information in musicians and nonmusicians using a double-flash illusion, whereby the presentation of multiple auditory stimuli (beeps) concurrent with a single visual object (flash) induces an illusory perception of multiple flashes. We parametrically varied the onset asynchrony between auditory and visual events (leads and lags of ±300 ms) to quantify participants' "temporal window" of integration, i.e., stimuli in which auditory and visual cues were fused into a single percept. Results show that musically trained individuals were both faster and more accurate at processing concurrent audiovisual cues than their nonmusician peers; nonmusicians had a higher susceptibility for responding to audiovisual illusions and perceived double flashes over an extended range of onset asynchronies compared to trained musicians. Moreover, temporal window estimates indicated that musicians' windows (<100 ms) were ~2-3× shorter than nonmusicians' (~200 ms), suggesting more refined multisensory integration and audiovisual binding. Collectively, findings indicate a more refined binding of auditory and visual cues in musically trained individuals. We conclude that experience-dependent plasticity of intensive musical experience extends beyond simple listening skills, improving multimodal processing and the integration of multiple sensory systems in a domain-general manner.
Pillai, Roshni; Yathiraj, Asha
2017-09-01
The study evaluated whether there exists a difference/relation in the way four different memory skills (memory score, sequencing score, memory span, & sequencing span) are processed through the auditory modality, visual modality and combined modalities. Four memory skills were evaluated on 30 typically developing children aged 7 years and 8 years across three modality conditions (auditory, visual, & auditory-visual). Analogous auditory and visual stimuli were presented to evaluate the three modality conditions across the two age groups. The children obtained significantly higher memory scores through the auditory modality compared to the visual modality. Likewise, their memory scores were significantly higher through the auditory-visual modality condition than through the visual modality. However, no effect of modality was observed on the sequencing scores as well as for the memory and the sequencing span. A good agreement was seen between the different modality conditions that were studied (auditory, visual, & auditory-visual) for the different memory skills measures (memory scores, sequencing scores, memory span, & sequencing span). A relatively lower agreement was noted only between the auditory and visual modalities as well as between the visual and auditory-visual modality conditions for the memory scores, measured using Bland-Altman plots. The study highlights the efficacy of using analogous stimuli to assess the auditory, visual as well as combined modalities. The study supports the view that the performance of children on different memory skills was better through the auditory modality compared to the visual modality. Copyright © 2017 Elsevier B.V. All rights reserved.
Tone Series and the Nature of Working Memory Capacity Development
ERIC Educational Resources Information Center
Clark, Katherine M.; Hardman, Kyle O.; Schachtman, Todd R.; Saults, J. Scott; Glass, Bret A.; Cowan, Nelson
2018-01-01
Recent advances in understanding visual working memory, the limited information held in mind for use in ongoing processing, are extended here to examine auditory working memory development. Research with arrays of visual objects has shown how to distinguish the capacity, in terms of the "number" of objects retained, from the…
Takegata, Rika; Brattico, Elvira; Tervaniemi, Mari; Varyagina, Olga; Näätänen, Risto; Winkler, István
2005-09-01
The role of attention in conjoining features of an object has been a topic of much debate. Studies using the mismatch negativity (MMN), an index of detecting acoustic deviance, suggested that the conjunctions of auditory features are preattentively represented in the brain. These studies, however, used sequentially presented sounds and thus are not directly comparable with visual studies of feature integration. Therefore, the current study presented an array of spatially distributed sounds to determine whether the auditory features of concurrent sounds are correctly conjoined without focal attention directed to the sounds. Two types of sounds differing from each other in timbre and pitch were repeatedly presented together while subjects were engaged in a visual n-back working-memory task and ignored the sounds. Occasional reversals of the frequent pitch-timbre combinations elicited MMNs of a very similar amplitude and latency irrespective of the task load. This result suggested preattentive integration of auditory features. However, performance in a subsequent target-search task with the same stimuli indicated the occurrence of illusory conjunctions. The discrepancy between the results obtained with and without focal attention suggests that illusory conjunctions may occur during voluntary access to the preattentively encoded object representations.
Hearing gestures, seeing music: vision influences perceived tone duration.
Schutz, Michael; Lipscomb, Scott
2007-01-01
Percussionists inadvertently use visual information to strategically manipulate audience perception of note duration. Videos of long (L) and short (S) notes performed by a world-renowned percussionist were separated into visual (Lv, Sv) and auditory (La, Sa) components. Visual components contained only the gesture used to perform the note, auditory components the acoustic note itself. Audio and visual components were then crossed to create realistic musical stimuli. Participants were informed of the mismatch, and asked to rate note duration of these audio-visual pairs based on sound alone. Ratings varied based on visual (Lv versus Sv), but not auditory (La versus Sa) components. Therefore while longer gestures do not make longer notes, longer gestures make longer sounding notes through the integration of sensory information. This finding contradicts previous research showing that audition dominates temporal tasks such as duration judgment.
Perceptual Learning Style and Learning Proficiency: A Test of the Hypothesis
ERIC Educational Resources Information Center
Kratzig, Gregory P.; Arbuthnott, Katherine D.
2006-01-01
Given the potential importance of using modality preference with instruction, the authors tested whether learning style preference correlated with memory performance in each of 3 sensory modalities: visual, auditory, and kinesthetic. In Study 1, participants completed objective measures of pictorial, auditory, and tactile learning and learning…
Toward a reliable gaze-independent hybrid BCI combining visual and natural auditory stimuli.
Barbosa, Sara; Pires, Gabriel; Nunes, Urbano
2016-03-01
Brain computer interfaces (BCIs) are one of the last communication options for patients in the locked-in state (LIS). For complete LIS patients, interfaces must be gaze-independent due to their eye impairment. However, unimodal gaze-independent approaches typically present levels of performance substantially lower than gaze-dependent approaches. The combination of multimodal stimuli has been pointed as a viable way to increase users' performance. A hybrid visual and auditory (HVA) P300-based BCI combining simultaneously visual and auditory stimulation is proposed. Auditory stimuli are based on natural meaningful spoken words, increasing stimuli discrimination and decreasing user's mental effort in associating stimuli to the symbols. The visual part of the interface is covertly controlled ensuring gaze-independency. Four conditions were experimentally tested by 10 healthy participants: visual overt (VO), visual covert (VC), auditory (AU) and covert HVA. Average online accuracy for the hybrid approach was 85.3%, which is more than 32% over VC and AU approaches. Questionnaires' results indicate that the HVA approach was the less demanding gaze-independent interface. Interestingly, the P300 grand average for HVA approach coincides with an almost perfect sum of P300 evoked separately by VC and AU tasks. The proposed HVA-BCI is the first solution simultaneously embedding natural spoken words and visual words to provide a communication lexicon. Online accuracy and task demand of the approach compare favorably with state-of-the-art. The proposed approach shows that the simultaneous combination of visual covert control and auditory modalities can effectively improve the performance of gaze-independent BCIs. Copyright © 2015 Elsevier B.V. All rights reserved.
Seeing the Song: Left Auditory Structures May Track Auditory-Visual Dynamic Alignment
Mossbridge, Julia A.; Grabowecky, Marcia; Suzuki, Satoru
2013-01-01
Auditory and visual signals generated by a single source tend to be temporally correlated, such as the synchronous sounds of footsteps and the limb movements of a walker. Continuous tracking and comparison of the dynamics of auditory-visual streams is thus useful for the perceptual binding of information arising from a common source. Although language-related mechanisms have been implicated in the tracking of speech-related auditory-visual signals (e.g., speech sounds and lip movements), it is not well known what sensory mechanisms generally track ongoing auditory-visual synchrony for non-speech signals in a complex auditory-visual environment. To begin to address this question, we used music and visual displays that varied in the dynamics of multiple features (e.g., auditory loudness and pitch; visual luminance, color, size, motion, and organization) across multiple time scales. Auditory activity (monitored using auditory steady-state responses, ASSR) was selectively reduced in the left hemisphere when the music and dynamic visual displays were temporally misaligned. Importantly, ASSR was not affected when attentional engagement with the music was reduced, or when visual displays presented dynamics clearly dissimilar to the music. These results appear to suggest that left-lateralized auditory mechanisms are sensitive to auditory-visual temporal alignment, but perhaps only when the dynamics of auditory and visual streams are similar. These mechanisms may contribute to correct auditory-visual binding in a busy sensory environment. PMID:24194873
The Role of Age and Executive Function in Auditory Category Learning
Reetzke, Rachel; Maddox, W. Todd; Chandrasekaran, Bharath
2015-01-01
Auditory categorization is a natural and adaptive process that allows for the organization of high-dimensional, continuous acoustic information into discrete representations. Studies in the visual domain have identified a rule-based learning system that learns and reasons via a hypothesis-testing process that requires working memory and executive attention. The rule-based learning system in vision shows a protracted development, reflecting the influence of maturing prefrontal function on visual categorization. The aim of the current study is two-fold: (a) to examine the developmental trajectory of rule-based auditory category learning from childhood through adolescence, into early adulthood; and (b) to examine the extent to which individual differences in rule-based category learning relate to individual differences in executive function. Sixty participants with normal hearing, 20 children (age range, 7–12), 21 adolescents (age range, 13–19), and 19 young adults (age range, 20–23), learned to categorize novel dynamic ripple sounds using trial-by-trial feedback. The spectrotemporally modulated ripple sounds are considered the auditory equivalent of the well-studied Gabor patches in the visual domain. Results revealed that auditory categorization accuracy improved with age, with young adults outperforming children and adolescents. Computational modeling analyses indicated that the use of the task-optimal strategy (i.e. a conjunctive rule-based learning strategy) improved with age. Notably, individual differences in executive flexibility significantly predicted auditory category learning success. The current findings demonstrate a protracted development of rule-based auditory categorization. The results further suggest that executive flexibility coupled with perceptual processes play important roles in successful rule-based auditory category learning. PMID:26491987
Prentice, Jennifer R; Blackwell, Christopher S; Raoof, Naz; Bacon, Paul; Ray, Jaydip; Hickman, Simon J; Wilkinson, J Mark
2014-01-01
Case reports of patients with mal-functioning metal-on-metal hip replacement (MoMHR) prostheses suggest an association of elevated circulating metal levels with visual and auditory dysfunction. However, it is unknown if this is a cumulative exposure effect and the impact of prolonged low level exposure, relevant to the majority of patients with a well-functioning prosthesis, has not been studied. Twenty four male patients with a well-functioning MoMHR and an age and time since surgery matched group of 24 male patients with conventional total hip arthroplasty (THA) underwent clinical and electrophysiological assessment of their visual and auditory health at a mean of ten years after surgery. Median circulating cobalt and chromium concentrations were higher in patients after MoMHR versus those with THA (P<0.0001), but were within the Medicines and Healthcare Products Regulatory Agency (UK) investigation threshold. Subjective auditory tests including pure tone audiometric and speech discrimination findings were similar between groups (P>0.05). Objective assessments, including amplitude and signal-to-noise ratio of transient evoked and distortion product oto-acoustic emissions (TEOAE and DPOAE, respectively), were similar for all the frequencies tested (P>0.05). Auditory brainstem responses (ABR) and cortical evoked response audiometry (ACR) were also similar between groups (P>0.05). Ophthalmological evaluations, including self-reported visual function by visual functioning questionnaire, as well as binocular low contrast visual acuity and colour vision were similar between groups (P>0.05). Retinal nerve fibre layer thickness and macular volume measured by optical coherence tomography were also similar between groups (P>0.05). In the presence of moderately elevated metal levels associated with well-functioning implants, MoMHR exposure does not associate with clinically demonstrable visual or auditory dysfunction.
1983-11-04
visual acuity in amblyopia , using steady-state visual evoked potentials. In J. E. Desmedt (Ed.), Visual evoked potentials in man: new developments... amblyopia by the evoked potential method. Ophthalmologica, 1977s 175, 159-164. 61. Regan, D. & Spekreijse, H. Auditory-visual interactions and the
Heimbauer, Lisa A; Antworth, Rebecca L; Owren, Michael J
2012-01-01
Nonhuman primates appear to capitalize more effectively on visual cues than corresponding auditory versions. For example, studies of inferential reasoning have shown that monkeys and apes readily respond to seeing that food is present ("positive" cuing) or absent ("negative" cuing). Performance is markedly less effective with auditory cues, with many subjects failing to use this input. Extending recent work, we tested eight captive tufted capuchins (Cebus apella) in locating food using positive and negative cues in visual and auditory domains. The monkeys chose between two opaque cups to receive food contained in one of them. Cup contents were either shown or shaken, providing location cues from both cups, positive cues only from the baited cup, or negative cues from the empty cup. As in previous work, subjects readily used both positive and negative visual cues to secure reward. However, auditory outcomes were both similar to and different from those of earlier studies. Specifically, all subjects came to exploit positive auditory cues, but none responded to negative versions. The animals were also clearly different in visual versus auditory performance. Results indicate that a significant proportion of capuchins may be able to use positive auditory cues, with experience and learning likely playing a critical role. These findings raise the possibility that experience may be significant in visually based performance in this task as well, and highlight that coming to grips with evident differences between visual versus auditory processing may be important for understanding primate cognition more generally.
Zenner, Andre; Kruger, Antonio
2017-04-01
We define the concept of Dynamic Passive Haptic Feedback (DPHF) for virtual reality by introducing the weight-shifting physical DPHF proxy object Shifty. This concept combines actuators known from active haptics and physical proxies known from passive haptics to construct proxies that automatically adapt their passive haptic feedback. We describe the concept behind our ungrounded weight-shifting DPHF proxy Shifty and the implementation of our prototype. We then investigate how Shifty can, by automatically changing its internal weight distribution, enhance the user's perception of virtual objects interacted with in two experiments. In a first experiment, we show that Shifty can enhance the perception of virtual objects changing in shape, especially in length and thickness. Here, Shifty was shown to increase the user's fun and perceived realism significantly, compared to an equivalent passive haptic proxy. In a second experiment, Shifty is used to pick up virtual objects of different virtual weights. The results show that Shifty enhances the perception of weight and thus the perceived realism by adapting its kinesthetic feedback to the picked-up virtual object. In the same experiment, we additionally show that specific combinations of haptic, visual and auditory feedback during the pick-up interaction help to compensate for visual-haptic mismatch perceived during the shifting process.
Audio-Visual, Visuo-Tactile and Audio-Tactile Correspondences in Preschoolers.
Nava, Elena; Grassi, Massimo; Turati, Chiara
2016-01-01
Interest in crossmodal correspondences has recently seen a renaissance thanks to numerous studies in human adults. Yet, still very little is known about crossmodal correspondences in children, particularly in sensory pairings other than audition and vision. In the current study, we investigated whether 4-5-year-old children match auditory pitch to the spatial motion of visual objects (audio-visual condition). In addition, we investigated whether this correspondence extends to touch, i.e., whether children also match auditory pitch to the spatial motion of touch (audio-tactile condition) and the spatial motion of visual objects to touch (visuo-tactile condition). In two experiments, two different groups of children were asked to indicate which of two stimuli fitted best with a centrally located third stimulus (Experiment 1), or to report whether two presented stimuli fitted together well (Experiment 2). We found sensitivity to the congruency of all of the sensory pairings only in Experiment 2, suggesting that only under specific circumstances can these correspondences be observed. Our results suggest that pitch-height correspondences for audio-visual and audio-tactile combinations may still be weak in preschool children, and speculate that this could be due to immature linguistic and auditory cues that are still developing at age five.
Constantinidou, Fofi; Evripidou, Christiana
2012-01-01
This study investigated the effects of stimulus presentation modality on working memory performance in children with reading disabilities (RD) and in typically developing children (TDC), all native speakers of Greek. It was hypothesized that the visual presentation of common objects would result in improved learning and recall performance as compared to the auditory presentation of stimuli. Twenty children, ages 10-12, diagnosed with RD were matched to 20 TDC age peers. The experimental tasks implemented a multitrial verbal learning paradigm incorporating three modalities: auditory, visual, and auditory plus visual. Significant group differences were noted on language, verbal and nonverbal memory, and measures of executive abilities. A mixed-model MANOVA indicated that children with RD had a slower learning curve and recalled fewer words than TDC across experimental modalities. Both groups of participants benefited from the visual presentation of objects; however, children with RD showed the greatest gains during this condition. In conclusion, working memory for common verbal items is impaired in children with RD; however, performance can be facilitated, and learning efficiency maximized, when information is presented visually. The results provide further evidence for the pictorial superiority hypothesis and the theory that pictorial presentation of verbal stimuli is adequate for dual coding.
Integrated trimodal SSEP experimental setup for visual, auditory and tactile stimulation
NASA Astrophysics Data System (ADS)
Kuś, Rafał; Spustek, Tomasz; Zieleniewska, Magdalena; Duszyk, Anna; Rogowski, Piotr; Suffczyński, Piotr
2017-12-01
Objective. Steady-state evoked potentials (SSEPs), the brain responses to repetitive stimulation, are commonly used in both clinical practice and scientific research. Particular brain mechanisms underlying SSEPs in different modalities (i.e. visual, auditory and tactile) are very complex and still not completely understood. Each response has distinct resonant frequencies and exhibits a particular brain topography. Moreover, the topography can be frequency-dependent, as in case of auditory potentials. However, to study each modality separately and also to investigate multisensory interactions through multimodal experiments, a proper experimental setup appears to be of critical importance. The aim of this study was to design and evaluate a novel SSEP experimental setup providing a repetitive stimulation in three different modalities (visual, tactile and auditory) with a precise control of stimuli parameters. Results from a pilot study with a stimulation in a particular modality and in two modalities simultaneously prove the feasibility of the device to study SSEP phenomenon. Approach. We developed a setup of three separate stimulators that allows for a precise generation of repetitive stimuli. Besides sequential stimulation in a particular modality, parallel stimulation in up to three different modalities can be delivered. Stimulus in each modality is characterized by a stimulation frequency and a waveform (sine or square wave). We also present a novel methodology for the analysis of SSEPs. Main results. Apart from constructing the experimental setup, we conducted a pilot study with both sequential and simultaneous stimulation paradigms. EEG signals recorded during this study were analyzed with advanced methodology based on spatial filtering and adaptive approximation, followed by statistical evaluation. Significance. We developed a novel experimental setup for performing SSEP experiments. In this sense our study continues the ongoing research in this field. On the other hand, the described setup along with the presented methodology is a considerable improvement and an extension of methods constituting the state-of-the-art in the related field. Device flexibility both with developed analysis methodology can lead to further development of diagnostic methods and provide deeper insight into information processing in the human brain.
de Borst, Aline W; de Gelder, Beatrice
2017-08-01
Previous studies have shown that the early visual cortex contains content-specific representations of stimuli during visual imagery, and that these representational patterns of imagery content have a perceptual basis. To date, there is little evidence for the presence of a similar organization in the auditory and tactile domains. Using fMRI-based multivariate pattern analyses we showed that primary somatosensory, auditory, motor, and visual cortices are discriminative for imagery of touch versus sound. In the somatosensory, motor and visual cortices the imagery modality discriminative patterns were similar to perception modality discriminative patterns, suggesting that top-down modulations in these regions rely on similar neural representations as bottom-up perceptual processes. Moreover, we found evidence for content-specific representations of the stimuli during auditory imagery in the primary somatosensory and primary motor cortices. Both the imagined emotions and the imagined identities of the auditory stimuli could be successfully classified in these regions. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Harrison, Neil R; Witheridge, Sian; Makin, Alexis; Wuerger, Sophie M; Pegna, Alan J; Meyer, Georg F
2015-11-01
Motion is represented by low-level signals, such as size-expansion in vision or loudness changes in the auditory modality. The visual and auditory signals from the same object or event may be integrated and facilitate detection. We explored behavioural and electrophysiological correlates of congruent and incongruent audio-visual depth motion in conditions where auditory level changes, visual expansion, and visual disparity cues were manipulated. In Experiment 1 participants discriminated auditory motion direction whilst viewing looming or receding, 2D or 3D, visual stimuli. Responses were faster and more accurate for congruent than for incongruent audio-visual cues, and the congruency effect (i.e., difference between incongruent and congruent conditions) was larger for visual 3D cues compared to 2D cues. In Experiment 2, event-related potentials (ERPs) were collected during presentation of the 2D and 3D, looming and receding, audio-visual stimuli, while participants detected an infrequent deviant sound. Our main finding was that audio-visual congruity was affected by retinal disparity at an early processing stage (135-160ms) over occipito-parietal scalp. Topographic analyses suggested that similar brain networks were activated for the 2D and 3D congruity effects, but that cortical responses were stronger in the 3D condition. Differences between congruent and incongruent conditions were observed between 140-200ms, 220-280ms, and 350-500ms after stimulus onset. Copyright © 2015 Elsevier Ltd. All rights reserved.
Emotion modulates activity in the 'what' but not 'where' auditory processing pathway.
Kryklywy, James H; Macpherson, Ewan A; Greening, Steven G; Mitchell, Derek G V
2013-11-15
Auditory cortices can be separated into dissociable processing pathways similar to those observed in the visual domain. Emotional stimuli elicit enhanced neural activation within sensory cortices when compared to neutral stimuli. This effect is particularly notable in the ventral visual stream. Little is known, however, about how emotion interacts with dorsal processing streams, and essentially nothing is known about the impact of emotion on auditory stimulus localization. In the current study, we used fMRI in concert with individualized auditory virtual environments to investigate the effect of emotion during an auditory stimulus localization task. Surprisingly, participants were significantly slower to localize emotional relative to neutral sounds. A separate localizer scan was performed to isolate neural regions sensitive to stimulus location independent of emotion. When applied to the main experimental task, a significant main effect of location, but not emotion, was found in this ROI. A whole-brain analysis of the data revealed that posterior-medial regions of auditory cortex were modulated by sound location; however, additional anterior-lateral areas of auditory cortex demonstrated enhanced neural activity to emotional compared to neutral stimuli. The latter region resembled areas described in dual pathway models of auditory processing as the 'what' processing stream, prompting a follow-up task to generate an identity-sensitive ROI (the 'what' pathway) independent of location and emotion. Within this region, significant main effects of location and emotion were identified, as well as a significant interaction. These results suggest that emotion modulates activity in the 'what,' but not the 'where,' auditory processing pathway. Copyright © 2013 Elsevier Inc. All rights reserved.
Buchan, Julie N; Munhall, Kevin G
2011-01-01
Conflicting visual speech information can influence the perception of acoustic speech, causing an illusory percept of a sound not present in the actual acoustic speech (the McGurk effect). We examined whether participants can voluntarily selectively attend to either the auditory or visual modality by instructing participants to pay attention to the information in one modality and to ignore competing information from the other modality. We also examined how performance under these instructions was affected by weakening the influence of the visual information by manipulating the temporal offset between the audio and video channels (experiment 1), and the spatial frequency information present in the video (experiment 2). Gaze behaviour was also monitored to examine whether attentional instructions influenced the gathering of visual information. While task instructions did have an influence on the observed integration of auditory and visual speech information, participants were unable to completely ignore conflicting information, particularly information from the visual stream. Manipulating temporal offset had a more pronounced interaction with task instructions than manipulating the amount of visual information. Participants' gaze behaviour suggests that the attended modality influences the gathering of visual information in audiovisual speech perception.
Short-term memory stores organized by information domain.
Noyce, Abigail L; Cestero, Nishmar; Shinn-Cunningham, Barbara G; Somers, David C
2016-04-01
Vision and audition have complementary affinities, with vision excelling in spatial resolution and audition excelling in temporal resolution. Here, we investigated the relationships among the visual and auditory modalities and spatial and temporal short-term memory (STM) using change detection tasks. We created short sequences of visual or auditory items, such that each item within a sequence arose at a unique spatial location at a unique time. On each trial, two successive sequences were presented; subjects attended to either space (the sequence of locations) or time (the sequence of inter item intervals) and reported whether the patterns of locations or intervals were identical. Each subject completed blocks of unimodal trials (both sequences presented in the same modality) and crossmodal trials (Sequence 1 visual, Sequence 2 auditory, or vice versa) for both spatial and temporal tasks. We found a strong interaction between modality and task: Spatial performance was best on unimodal visual trials, whereas temporal performance was best on unimodal auditory trials. The order of modalities on crossmodal trials also mattered, suggesting that perceptual fidelity at encoding is critical to STM. Critically, no cost was attributable to crossmodal comparison: In both tasks, performance on crossmodal trials was as good as or better than on the weaker unimodal trials. STM representations of space and time can guide change detection in either the visual or the auditory modality, suggesting that the temporal or spatial organization of STM may supersede sensory-specific organization.
Research on Multimedia Access to Microcomputers for Visually Impaired Youth.
ERIC Educational Resources Information Center
Ashcroft, S. C.
This final report discusses the outcomes of a federally funded project that studied visual, auditory, and tactual methods designed to give youth with visual impairments access to microcomputers for curricular, prevocational, and avocational purposes. The objectives of the project were: (1) to research microcomputer systems that could be made…
Differential Effects of Music and Video Gaming During Breaks on Auditory and Visual Learning.
Liu, Shuyan; Kuschpel, Maxim S; Schad, Daniel J; Heinz, Andreas; Rapp, Michael A
2015-11-01
The interruption of learning processes by breaks filled with diverse activities is common in everyday life. This study investigated the effects of active computer gaming and passive relaxation (rest and music) breaks on auditory versus visual memory performance. Young adults were exposed to breaks involving (a) open eyes resting, (b) listening to music, and (c) playing a video game, immediately after memorizing auditory versus visual stimuli. To assess learning performance, words were recalled directly after the break (an 8:30 minute delay) and were recalled and recognized again after 7 days. Based on linear mixed-effects modeling, it was found that playing the Angry Birds video game during a short learning break impaired long-term retrieval in auditory learning but enhanced long-term retrieval in visual learning compared with the music and rest conditions. These differential effects of video games on visual versus auditory learning suggest specific interference of common break activities on learning.
Yahata, Izumi; Kawase, Tetsuaki; Kanno, Akitake; Hidaka, Hiroshi; Sakamoto, Shuichi; Nakasato, Nobukazu; Kawashima, Ryuta; Katori, Yukio
2017-01-01
The effects of visual speech (the moving image of the speaker's face uttering speech sound) on early auditory evoked fields (AEFs) were examined using a helmet-shaped magnetoencephalography system in 12 healthy volunteers (9 males, mean age 35.5 years). AEFs (N100m) in response to the monosyllabic sound /be/ were recorded and analyzed under three different visual stimulus conditions, the moving image of the same speaker's face uttering /be/ (congruent visual stimuli) or uttering /ge/ (incongruent visual stimuli), and visual noise (still image processed from speaker's face using a strong Gaussian filter: control condition). On average, latency of N100m was significantly shortened in the bilateral hemispheres for both congruent and incongruent auditory/visual (A/V) stimuli, compared to the control A/V condition. However, the degree of N100m shortening was not significantly different between the congruent and incongruent A/V conditions, despite the significant differences in psychophysical responses between these two A/V conditions. Moreover, analysis of the magnitudes of these visual effects on AEFs in individuals showed that the lip-reading effects on AEFs tended to be well correlated between the two different audio-visual conditions (congruent vs. incongruent visual stimuli) in the bilateral hemispheres but were not significantly correlated between right and left hemisphere. On the other hand, no significant correlation was observed between the magnitudes of visual speech effects and psychophysical responses. These results may indicate that the auditory-visual interaction observed on the N100m is a fundamental process which does not depend on the congruency of the visual information.
2009-06-01
mote interactions among K12 school systems; 2- and 4-year colleges and universities; informal science education organizations; . . . to promote... Science Center Proposal As ‘ informal ’ education centers i.e., Science and Technology Centers provide learn- ing outside the classroom that enhances...and complements ‘formal’ (classroom-based) learning. Informal science education uses visual, auditory, physical interactions, and ac- tivities to
Independence between implicit and explicit processing as revealed by the Simon effect.
Lo, Shih-Yu; Yeh, Su-Ling
2011-09-01
Studies showing human behavior influenced by subliminal stimuli mainly focus on implicit processing per se, and little is known about its interaction with explicit processing. We examined this by using the Simon effect, wherein a task-irrelevant spatial distracter interferes with lateralized response. Lo and Yeh (2008) found that the visual Simon effect, although it occurred when participants were aware of the visual distracters, did not occur with subliminal visual distracters. We used the same paradigm and examined whether subliminal and supra-threshold stimuli are processed independently by adding a supra-threshold auditory distracter to ascertain whether it would interact with the subliminal visual distracter. Results showed auditory Simon effect, but there was still no visual Simon effect, indicating that supra-threshold and subliminal stimuli are processed separately in independent streams. In contrast to the traditional view that implicit processing precedes explicit processing, our results suggest that they operate independently in a parallel fashion. Copyright © 2010 Elsevier Inc. All rights reserved.
Evidence for multisensory spatial-to-motor transformations in aiming movements of children.
King, Bradley R; Kagerer, Florian A; Contreras-Vidal, Jose L; Clark, Jane E
2009-01-01
The extant developmental literature investigating age-related differences in the execution of aiming movements has predominantly focused on visuomotor coordination, despite the fact that additional sensory modalities, such as audition and somatosensation, may contribute to motor planning, execution, and learning. The current study investigated the execution of aiming movements toward both visual and acoustic stimuli. In addition, we examined the interaction between visuomotor and auditory-motor coordination as 5- to 10-yr-old participants executed aiming movements to visual and acoustic stimuli before and after exposure to a visuomotor rotation. Children in all age groups demonstrated significant improvement in performance under the visuomotor perturbation, as indicated by decreased initial directional and root mean squared errors. Moreover, children in all age groups demonstrated significant visual aftereffects during the postexposure phase, suggesting a successful update of their spatial-to-motor transformations. Interestingly, these updated spatial-to-motor transformations also influenced auditory-motor performance, as indicated by distorted movement trajectories during the auditory postexposure phase. The distorted trajectories were present during auditory postexposure even though the auditory-motor relationship was not manipulated. Results suggest that by the age of 5 yr, children have developed a multisensory spatial-to-motor transformation for the execution of aiming movements toward both visual and acoustic targets.
Multisensory emotion perception in congenitally, early, and late deaf CI users
Nava, Elena; Villwock, Agnes K.; Büchner, Andreas; Lenarz, Thomas; Röder, Brigitte
2017-01-01
Emotions are commonly recognized by combining auditory and visual signals (i.e., vocal and facial expressions). Yet it is unknown whether the ability to link emotional signals across modalities depends on early experience with audio-visual stimuli. In the present study, we investigated the role of auditory experience at different stages of development for auditory, visual, and multisensory emotion recognition abilities in three groups of adolescent and adult cochlear implant (CI) users. CI users had a different deafness onset and were compared to three groups of age- and gender-matched hearing control participants. We hypothesized that congenitally deaf (CD) but not early deaf (ED) and late deaf (LD) CI users would show reduced multisensory interactions and a higher visual dominance in emotion perception than their hearing controls. The CD (n = 7), ED (deafness onset: <3 years of age; n = 7), and LD (deafness onset: >3 years; n = 13) CI users and the control participants performed an emotion recognition task with auditory, visual, and audio-visual emotionally congruent and incongruent nonsense speech stimuli. In different blocks, participants judged either the vocal (Voice task) or the facial expressions (Face task). In the Voice task, all three CI groups performed overall less efficiently than their respective controls and experienced higher interference from incongruent facial information. Furthermore, the ED CI users benefitted more than their controls from congruent faces and the CD CI users showed an analogous trend. In the Face task, recognition efficiency of the CI users and controls did not differ. Our results suggest that CI users acquire multisensory interactions to some degree, even after congenital deafness. When judging affective prosody they appear impaired and more strongly biased by concurrent facial information than typically hearing individuals. We speculate that limitations inherent to the CI contribute to these group differences. PMID:29023525
Multisensory emotion perception in congenitally, early, and late deaf CI users.
Fengler, Ineke; Nava, Elena; Villwock, Agnes K; Büchner, Andreas; Lenarz, Thomas; Röder, Brigitte
2017-01-01
Emotions are commonly recognized by combining auditory and visual signals (i.e., vocal and facial expressions). Yet it is unknown whether the ability to link emotional signals across modalities depends on early experience with audio-visual stimuli. In the present study, we investigated the role of auditory experience at different stages of development for auditory, visual, and multisensory emotion recognition abilities in three groups of adolescent and adult cochlear implant (CI) users. CI users had a different deafness onset and were compared to three groups of age- and gender-matched hearing control participants. We hypothesized that congenitally deaf (CD) but not early deaf (ED) and late deaf (LD) CI users would show reduced multisensory interactions and a higher visual dominance in emotion perception than their hearing controls. The CD (n = 7), ED (deafness onset: <3 years of age; n = 7), and LD (deafness onset: >3 years; n = 13) CI users and the control participants performed an emotion recognition task with auditory, visual, and audio-visual emotionally congruent and incongruent nonsense speech stimuli. In different blocks, participants judged either the vocal (Voice task) or the facial expressions (Face task). In the Voice task, all three CI groups performed overall less efficiently than their respective controls and experienced higher interference from incongruent facial information. Furthermore, the ED CI users benefitted more than their controls from congruent faces and the CD CI users showed an analogous trend. In the Face task, recognition efficiency of the CI users and controls did not differ. Our results suggest that CI users acquire multisensory interactions to some degree, even after congenital deafness. When judging affective prosody they appear impaired and more strongly biased by concurrent facial information than typically hearing individuals. We speculate that limitations inherent to the CI contribute to these group differences.
Jerger, Susan; Damian, Markus F.; McAlpine, Rachel P.; Abdi, Hervé
2017-01-01
Objectives Understanding spoken language is an audiovisual event that depends critically on the ability to discriminate and identify phonemes yet we have little evidence about the role of early auditory experience and visual speech on the development of these fundamental perceptual skills. Objectives of this research were to determine 1) how visual speech influences phoneme discrimination and identification; 2) whether visual speech influences these two processes in a like manner, such that discrimination predicts identification; and 3) how the degree of hearing loss affects this relationship. Such evidence is crucial for developing effective intervention strategies to mitigate the effects of hearing loss on language development. Methods Participants were 58 children with early-onset sensorineural hearing loss (CHL, 53% girls, M = 9;4 yrs) and 58 children with normal hearing (CNH, 53% girls, M = 9;4 yrs). Test items were consonant-vowel (CV) syllables and nonwords with intact visual speech coupled to non-intact auditory speech (excised onsets) as, for example, an intact consonant/rhyme in the visual track (Baa or Baz) coupled to non-intact onset/rhyme in the auditory track (/–B/aa or /–B/az). The items started with an easy-to-speechread /B/ or difficult-to-speechread /G/ onset and were presented in the auditory (static face) vs. audiovisual (dynamic face) modes. We assessed discrimination for intact vs. non-intact different pairs (e.g., Baa:/–B/aa). We predicted that visual speech would cause the non-intact onset to be perceived as intact and would therefore generate more same—as opposed to different—responses in the audiovisual than auditory mode. We assessed identification by repetition of nonwords with non-intact onsets (e.g., /–B/az). We predicted that visual speech would cause the non-intact onset to be perceived as intact and would therefore generate more Baz—as opposed to az— responses in the audiovisual than auditory mode. Results Performance in the audiovisual mode showed more same responses for the intact vs. non-intact different pairs (e.g., Baa:/–B/aa) and more intact onset responses for nonword repetition (Baz for/–B/az). Thus visual speech altered both discrimination and identification in the CHL—to a large extent for the /B/ onsets but only minimally for the /G/ onsets. The CHL identified the stimuli similarly to the CNH but did not discriminate the stimuli similarly. A bias-free measure of the children’s discrimination skills (i.e., d’ analysis) revealed that the CHL had greater difficulty discriminating intact from non-intact speech in both modes. As the degree of HL worsened, the ability to discriminate the intact vs. non-intact onsets in the auditory mode worsened. Discrimination ability in CHL significantly predicted their identification of the onsets—even after variation due to the other variables was controlled. Conclusions These results clearly established that visual speech can fill in non-intact auditory speech, and this effect, in turn, made the non-intact onsets more difficult to discriminate from intact speech and more likely to be perceived as intact. Such results 1) demonstrate the value of visual speech at multiple levels of linguistic processing and 2) support intervention programs that view visual speech as a powerful asset for developing spoken language in CHL. PMID:28167003
Temporal Influence on Awareness
1995-12-01
43 38. Test Setup Timing: Measured vs Expected Modal Delays (in ms) ............. 46 39. Experiment I: visual and auditory stimuli...presented simultaneously; visual- auditory delay=Oms, visual-visual delay=0ms ....... .......................... 47 40. Experiment II: visual and auditory ...stimuli presented in order; visual- auditory de- lay=Oms, visual-visual delay=variable ................................ 48 41. Experiment II: visual and
Ortega, Laura; Guzman-Martinez, Emmanuel; Grabowecky, Marcia; Suzuki, Satoru
2014-01-01
Whereas the visual modality tends to dominate over the auditory modality in bimodal spatial perception, the auditory modality tends to dominate over the visual modality in bimodal temporal perception. Recent results suggest that the visual modality dominates bimodal spatial perception because spatial discriminability is typically greater for the visual than auditory modality; accordingly, visual dominance is eliminated or reversed when visual-spatial discriminability is reduced by degrading visual stimuli to be equivalent or inferior to auditory spatial discriminability. Thus, for spatial perception, the modality that provides greater discriminability dominates. Here we ask whether auditory dominance in duration perception is similarly explained by factors that influence the relative quality of auditory and visual signals. In contrast to the spatial results, the auditory modality dominated over the visual modality in bimodal duration perception even when the auditory signal was clearly weaker, when the auditory signal was ignored (i.e., the visual signal was selectively attended), and when the temporal discriminability was equivalent for the auditory and visual signals. Thus, unlike spatial perception where the modality carrying more discriminable signals dominates, duration perception seems to be mandatorily linked to auditory processing under most circumstances. PMID:24806403
Crossmodal association of auditory and visual material properties in infants.
Ujiie, Yuta; Yamashita, Wakayo; Fujisaki, Waka; Kanazawa, So; Yamaguchi, Masami K
2018-06-18
The human perceptual system enables us to extract visual properties of an object's material from auditory information. In monkeys, the neural basis underlying such multisensory association develops through experience of exposure to a material; material information could be processed in the posterior inferior temporal cortex, progressively from the high-order visual areas. In humans, however, the development of this neural representation remains poorly understood. Here, we demonstrated for the first time the presence of a mapping of the auditory material property with visual material ("Metal" and "Wood") in the right temporal region in preverbal 4- to 8-month-old infants, using near-infrared spectroscopy (NIRS). Furthermore, we found that infants acquired the audio-visual mapping for a property of the "Metal" material later than for the "Wood" material, since infants form the visual property of "Metal" material after approximately 6 months of age. These findings indicate that multisensory processing of material information induces the activation of brain areas related to sound symbolism. Our findings also indicate that the material's familiarity might facilitate the development of multisensory processing during the first year of life.
Stochastic correlative firing for figure-ground segregation.
Chen, Zhe
2005-03-01
Segregation of sensory inputs into separate objects is a central aspect of perception and arises in all sensory modalities. The figure-ground segregation problem requires identifying an object of interest in a complex scene, in many cases given binaural auditory or binocular visual observations. The computations required for visual and auditory figure-ground segregation share many common features and can be cast within a unified framework. Sensory perception can be viewed as a problem of optimizing information transmission. Here we suggest a stochastic correlative firing mechanism and an associative learning rule for figure-ground segregation in several classic sensory perception tasks, including the cocktail party problem in binaural hearing, binocular fusion of stereo images, and Gestalt grouping in motion perception.
A device for human ultrasonic echolocation
Gaub, Benjamin M.; Rodgers, Chris C.; Li, Crystal; DeWeese, Michael R.; Harper, Nicol S.
2015-01-01
Objective We present a device that combines principles of ultrasonic echolocation and spatial hearing to provide human users with environmental cues that are 1) not otherwise available to the human auditory system and 2) richer in object, and spatial information than the more heavily processed sonar cues of other assistive devices. The device consists of a wearable headset with an ultrasonic emitter and stereo microphones with affixed artificial pinnae. The goal of this study is to describe the device and evaluate the utility of the echoic information it provides. Methods The echoes of ultrasonic pulses were recorded and time-stretched to lower their frequencies into the human auditory range, then played back to the user. We tested performance among naive and experienced sighted volunteers using a set of localization experiments in which the locations of echo-reflective surfaces were judged using these time stretched echoes. Results Naive subjects were able to make laterality and distance judgments, suggesting that the echoes provide innately useful information without prior training. Naive subjects were generally unable to make elevation judgments from recorded echoes. However trained subjects demonstrated an ability to judge elevation as well. Conclusion This suggests that the device can be used effectively to examine the environment and that the human auditory system can rapidly adapt to these artificial echolocation cues. Significance Interpreting and interacting with the external world constitutes a major challenge for persons who are blind or visually impaired. This device has the potential to aid blind people in interacting with their environment. PMID:25608301
Making the invisible visible: verbal but not visual cues enhance visual detection.
Lupyan, Gary; Spivey, Michael J
2010-07-07
Can hearing a word change what one sees? Although visual sensitivity is known to be enhanced by attending to the location of the target, perceptual enhancements of following cues to the identity of an object have been difficult to find. Here, we show that perceptual sensitivity is enhanced by verbal, but not visual cues. Participants completed an object detection task in which they made an object-presence or -absence decision to briefly-presented letters. Hearing the letter name prior to the detection task increased perceptual sensitivity (d'). A visual cue in the form of a preview of the to-be-detected letter did not. Follow-up experiments found that the auditory cuing effect was specific to validly cued stimuli. The magnitude of the cuing effect positively correlated with an individual measure of vividness of mental imagery; introducing uncertainty into the position of the stimulus did not reduce the magnitude of the cuing effect, but eliminated the correlation with mental imagery. Hearing a word made otherwise invisible objects visible. Interestingly, seeing a preview of the target stimulus did not similarly enhance detection of the target. These results are compatible with an account in which auditory verbal labels modulate lower-level visual processing. The findings show that a verbal cue in the form of hearing a word can influence even the most elementary visual processing and inform our understanding of how language affects perception.
ERIC Educational Resources Information Center
Ferati, Mexhid Adem
2012-01-01
To access interactive systems, blind and visually impaired users can leverage their auditory senses by using non-speech sounds. The current structure of non-speech sounds, however, is geared toward conveying user interface operations (e.g., opening a file) rather than large theme-based information (e.g., a history passage) and, thus, is ill-suited…
ERIC Educational Resources Information Center
Howard, A. M.; Park, Chung Hyuk; Remy, S.
2012-01-01
The robotics field represents the integration of multiple facets of computer science and engineering. Robotics-based activities have been shown to encourage K-12 students to consider careers in computing and have even been adopted as part of core computer-science curriculum at a number of universities. Unfortunately, for students with visual…
Association of blood antioxidants status with visual and auditory sustained attention.
Shiraseb, Farideh; Siassi, Fereydoun; Sotoudeh, Gity; Qorbani, Mostafa; Rostami, Reza; Sadeghi-Firoozabadi, Vahid; Narmaki, Elham
2015-01-01
A low antioxidants status has been shown to result in oxidative stress and cognitive impairment. Because antioxidants can protect the nervous system, it is expected that a better blood antioxidant status might be related to sustained attention. However, the relationship between the blood antioxidant status and visual and auditory sustained attention has not been investigated. The aim of this study was to evaluate the association of fruits and vegetables intake and the blood antioxidant status with visual and auditory sustained attention in women. This cross-sectional study was performed on 400 healthy women (20-50 years) who attended the sports clubs of Tehran Municipality. Sustained attention was evaluated based on the Integrated Visual and Auditory Continuous Performance Test using the Integrated Visual and Auditory (IVA) software. The 24-hour food recall questionnaire was used for estimating fruits and vegetables intake. Serum total antioxidant capacity (TAC), and erythrocyte superoxide dismutase (SOD) and glutathione peroxidase (GPx) activities were measured in 90 participants. After adjusting for energy intake, age, body mass index (BMI), years of education and physical activity, higher reported fruits, and vegetables intake was associated with better visual and auditory sustained attention (P < 0.001). A high intake of some subgroups of fruits and vegetables (i.e. berries, cruciferous vegetables, green leafy vegetables, and other vegetables) was also associated with better sustained attention (P < 0.02). Serum TAC, and erythrocyte SOD and GPx activities increased with the increase in the tertiles of visual and auditory sustained attention after adjusting for age, years of education, physical activity, energy, BMI, and caffeine intake (P < 0.05). Improved visual and auditory sustained attention is associated with a better blood antioxidant status. Therefore, improvement of the antioxidant status through an appropriate dietary intake can possibly enhance sustained attention.
Delogu, Franco; Lilla, Christopher C
2017-11-01
Contrasting results in visual and auditory spatial memory stimulate the debate over the role of sensory modality and attention in identity-to-location binding. We investigated the role of sensory modality in the incidental/deliberate encoding of the location of a sequence of items. In 4 separated blocks, 88 participants memorised sequences of environmental sounds, spoken words, pictures and written words, respectively. After memorisation, participants were asked to recognise old from new items in a new sequence of stimuli. They were also asked to indicate from which side of the screen (visual stimuli) or headphone channel (sounds) the old stimuli were presented in encoding. In the first block, participants were not aware of the spatial requirement while, in blocks 2, 3 and 4 they knew that their memory for item location was going to be tested. Results show significantly lower accuracy of object location memory for the auditory stimuli (environmental sounds and spoken words) than for images (pictures and written words). Awareness of spatial requirement did not influence localisation accuracy. We conclude that: (a) object location memory is more effective for visual objects; (b) object location is implicitly associated with item identity during encoding and (c) visual supremacy in spatial memory does not depend on the automaticity of object location binding.
Auditory, Visual, and Auditory-Visual Perception of Vowels by Hearing-Impaired Children.
ERIC Educational Resources Information Center
Hack, Zarita Caplan; Erber, Norman P.
1982-01-01
Vowels were presented through auditory, visual, and auditory-visual modalities to 18 hearing impaired children (12 to 15 years old) having good, intermediate, and poor auditory word recognition skills. All the groups had difficulty with acoustic information and visual information alone. The first two groups had only moderate difficulty identifying…
Colin, C; Radeau, M; Soquet, A; Demolin, D; Colin, F; Deltenre, P
2002-04-01
The McGurk-MacDonald illusory percept is obtained by dubbing an incongruent articulatory movement on an auditory phoneme. This type of audiovisual speech perception contributes to the assessment of theories of speech perception. The mismatch negativity (MMN) reflects the detection of a deviant stimulus within the auditory short-term memory and besides an acoustic component, possesses, under certain conditions, a phonetic one. The present study assessed the existence of an MMN evoked by McGurk-MacDonald percepts elicited by audiovisual stimuli with constant auditory components. Cortical evoked potentials were recorded using the oddball paradigm on 8 adults in 3 experimental conditions: auditory alone, visual alone and audiovisual stimulation. Obtaining illusory percepts was confirmed in an additional psychophysical condition. The auditory deviant syllables and the audiovisual incongruent syllables elicited a significant MMN at Fz. In the visual condition, no negativity was observed either at Fz, or at O(z). An MMN can be evoked by visual articulatory deviants, provided they are presented in a suitable auditory context leading to a phonetically significant interaction. The recording of an MMN elicited by illusory McGurk percepts suggests that audiovisual integration mechanisms in speech take place rather early during the perceptual processes.
Lewis, James W.; Talkington, William J.; Tallaksen, Katherine C.; Frum, Chris A.
2012-01-01
Whether viewed or heard, an object in action can be segmented as a distinct salient event based on a number of different sensory cues. In the visual system, several low-level attributes of an image are processed along parallel hierarchies, involving intermediate stages wherein gross-level object form and/or motion features are extracted prior to stages that show greater specificity for different object categories (e.g., people, buildings, or tools). In the auditory system, though relying on a rather different set of low-level signal attributes, meaningful real-world acoustic events and “auditory objects” can also be readily distinguished from background scenes. However, the nature of the acoustic signal attributes or gross-level perceptual features that may be explicitly processed along intermediate cortical processing stages remain poorly understood. Examining mechanical and environmental action sounds, representing two distinct non-biological categories of action sources, we had participants assess the degree to which each sound was perceived as object-like versus scene-like. We re-analyzed data from two of our earlier functional magnetic resonance imaging (fMRI) task paradigms (Engel et al., 2009) and found that scene-like action sounds preferentially led to activation along several midline cortical structures, but with strong dependence on listening task demands. In contrast, bilateral foci along the superior temporal gyri (STG) showed parametrically increasing activation to action sounds rated as more “object-like,” independent of sound category or task demands. Moreover, these STG regions also showed parametric sensitivity to spectral structure variations (SSVs) of the action sounds—a quantitative measure of change in entropy of the acoustic signals over time—and the right STG additionally showed parametric sensitivity to measures of mean entropy and harmonic content of the environmental sounds. Analogous to the visual system, intermediate stages of the auditory system appear to process or extract a number of quantifiable low-order signal attributes that are characteristic of action events perceived as being object-like, representing stages that may begin to dissociate different perceptual dimensions and categories of every-day, real-world action sounds. PMID:22582038
Eye-gaze independent EEG-based brain-computer interfaces for communication.
Riccio, A; Mattia, D; Simione, L; Olivetti, M; Cincotti, F
2012-08-01
The present review systematically examines the literature reporting gaze independent interaction modalities in non-invasive brain-computer interfaces (BCIs) for communication. BCIs measure signals related to specific brain activity and translate them into device control signals. This technology can be used to provide users with severe motor disability (e.g. late stage amyotrophic lateral sclerosis (ALS); acquired brain injury) with an assistive device that does not rely on muscular contraction. Most of the studies on BCIs explored mental tasks and paradigms using visual modality. Considering that in ALS patients the oculomotor control can deteriorate and also other potential users could have impaired visual function, tactile and auditory modalities have been investigated over the past years to seek alternative BCI systems which are independent from vision. In addition, various attentional mechanisms, such as covert attention and feature-directed attention, have been investigated to develop gaze independent visual-based BCI paradigms. Three areas of research were considered in the present review: (i) auditory BCIs, (ii) tactile BCIs and (iii) independent visual BCIs. Out of a total of 130 search results, 34 articles were selected on the basis of pre-defined exclusion criteria. Thirteen articles dealt with independent visual BCIs, 15 reported on auditory BCIs and the last six on tactile BCIs, respectively. From the review of the available literature, it can be concluded that a crucial point is represented by the trade-off between BCI systems/paradigms with high accuracy and speed, but highly demanding in terms of attention and memory load, and systems requiring lower cognitive effort but with a limited amount of communicable information. These issues should be considered as priorities to be explored in future studies to meet users' requirements in a real-life scenario.
Eye-gaze independent EEG-based brain-computer interfaces for communication
NASA Astrophysics Data System (ADS)
Riccio, A.; Mattia, D.; Simione, L.; Olivetti, M.; Cincotti, F.
2012-08-01
The present review systematically examines the literature reporting gaze independent interaction modalities in non-invasive brain-computer interfaces (BCIs) for communication. BCIs measure signals related to specific brain activity and translate them into device control signals. This technology can be used to provide users with severe motor disability (e.g. late stage amyotrophic lateral sclerosis (ALS); acquired brain injury) with an assistive device that does not rely on muscular contraction. Most of the studies on BCIs explored mental tasks and paradigms using visual modality. Considering that in ALS patients the oculomotor control can deteriorate and also other potential users could have impaired visual function, tactile and auditory modalities have been investigated over the past years to seek alternative BCI systems which are independent from vision. In addition, various attentional mechanisms, such as covert attention and feature-directed attention, have been investigated to develop gaze independent visual-based BCI paradigms. Three areas of research were considered in the present review: (i) auditory BCIs, (ii) tactile BCIs and (iii) independent visual BCIs. Out of a total of 130 search results, 34 articles were selected on the basis of pre-defined exclusion criteria. Thirteen articles dealt with independent visual BCIs, 15 reported on auditory BCIs and the last six on tactile BCIs, respectively. From the review of the available literature, it can be concluded that a crucial point is represented by the trade-off between BCI systems/paradigms with high accuracy and speed, but highly demanding in terms of attention and memory load, and systems requiring lower cognitive effort but with a limited amount of communicable information. These issues should be considered as priorities to be explored in future studies to meet users’ requirements in a real-life scenario.
Wegrzyn, Martin; Herbert, Cornelia; Ethofer, Thomas; Flaisch, Tobias; Kissler, Johanna
2017-11-01
Visually presented emotional words are processed preferentially and effects of emotional content are similar to those of explicit attention deployment in that both amplify visual processing. However, auditory processing of emotional words is less well characterized and interactions between emotional content and task-induced attention have not been fully understood. Here, we investigate auditory processing of emotional words, focussing on how auditory attention to positive and negative words impacts their cerebral processing. A Functional magnetic resonance imaging (fMRI) study manipulating word valence and attention allocation was performed. Participants heard negative, positive and neutral words to which they either listened passively or attended by counting negative or positive words, respectively. Regardless of valence, active processing compared to passive listening increased activity in primary auditory cortex, left intraparietal sulcus, and right superior frontal gyrus (SFG). The attended valence elicited stronger activity in left inferior frontal gyrus (IFG) and left SFG, in line with these regions' role in semantic retrieval and evaluative processing. No evidence for valence-specific attentional modulation in auditory regions or distinct valence-specific regional activations (i.e., negative > positive or positive > negative) was obtained. Thus, allocation of auditory attention to positive and negative words can substantially increase their processing in higher-order language and evaluative brain areas without modulating early stages of auditory processing. Inferior and superior frontal brain structures mediate interactions between emotional content, attention, and working memory when prosodically neutral speech is processed. Copyright © 2017 Elsevier Ltd. All rights reserved.
Feature-based and object-based attention orientation during short-term memory maintenance.
Ku, Yixuan
2015-12-01
Top-down attention biases the short-term memory (STM) processing at multiple stages. Orienting attention during the maintenance period of STM by a retrospective cue (retro-cue) strengthens the representation of the cued item and improves the subsequent STM performance. In a recent article, Backer et al. (Backer KC, Binns MA, Alain C. J Neurosci 35: 1307-1318, 2015) extended these findings from the visual to the auditory domain and combined electroencephalography to dissociate neural mechanisms underlying feature-based and object-based attention orientation. Both event-related potentials and neural oscillations explained the behavioral benefits of retro-cues and favored the theory that feature-based and object-based attention orientation were independent. Copyright © 2015 the American Physiological Society.
Crossmodal semantic priming by naturalistic sounds and spoken words enhances visual sensitivity.
Chen, Yi-Chuan; Spence, Charles
2011-10-01
We propose a multisensory framework based on Glaser and Glaser's (1989) general reading-naming interference model to account for the semantic priming effect by naturalistic sounds and spoken words on visual picture sensitivity. Four experiments were designed to investigate two key issues: First, can auditory stimuli enhance visual sensitivity when the sound leads the picture as well as when they are presented simultaneously? And, second, do naturalistic sounds (e.g., a dog's "woofing") and spoken words (e.g., /dɔg/) elicit similar semantic priming effects? Here, we estimated participants' sensitivity and response criterion using signal detection theory in a picture detection task. The results demonstrate that naturalistic sounds enhanced visual sensitivity when the onset of the sounds led that of the picture by 346 ms (but not when the sounds led the pictures by 173 ms, nor when they were presented simultaneously, Experiments 1-3A). At the same SOA, however, spoken words did not induce semantic priming effects on visual detection sensitivity (Experiments 3B and 4A). When using a dual picture detection/identification task, both kinds of auditory stimulus induced a similar semantic priming effect (Experiment 4B). Therefore, we suggest that there needs to be sufficient processing time for the auditory stimulus to access its associated meaning to modulate visual perception. Besides, the interactions between pictures and the two types of sounds depend not only on their processing route to access semantic representations, but also on the response to be made to fulfill the requirements of the task.
Electrophysiological evidence for a self-processing advantage during audiovisual speech integration.
Treille, Avril; Vilain, Coriandre; Kandel, Sonia; Sato, Marc
2017-09-01
Previous electrophysiological studies have provided strong evidence for early multisensory integrative mechanisms during audiovisual speech perception. From these studies, one unanswered issue is whether hearing our own voice and seeing our own articulatory gestures facilitate speech perception, possibly through a better processing and integration of sensory inputs with our own sensory-motor knowledge. The present EEG study examined the impact of self-knowledge during the perception of auditory (A), visual (V) and audiovisual (AV) speech stimuli that were previously recorded from the participant or from a speaker he/she had never met. Audiovisual interactions were estimated by comparing N1 and P2 auditory evoked potentials during the bimodal condition (AV) with the sum of those observed in the unimodal conditions (A + V). In line with previous EEG studies, our results revealed an amplitude decrease of P2 auditory evoked potentials in AV compared to A + V conditions. Crucially, a temporal facilitation of N1 responses was observed during the visual perception of self speech movements compared to those of another speaker. This facilitation was negatively correlated with the saliency of visual stimuli. These results provide evidence for a temporal facilitation of the integration of auditory and visual speech signals when the visual situation involves our own speech gestures.
Binding and unbinding the auditory and visual streams in the McGurk effect.
Nahorna, Olha; Berthommier, Frédéric; Schwartz, Jean-Luc
2012-08-01
Subjects presented with coherent auditory and visual streams generally fuse them into a single percept. This results in enhanced intelligibility in noise, or in visual modification of the auditory percept in the McGurk effect. It is classically considered that processing is done independently in the auditory and visual systems before interaction occurs at a certain representational stage, resulting in an integrated percept. However, some behavioral and neurophysiological data suggest the existence of a two-stage process. A first stage would involve binding together the appropriate pieces of audio and video information before fusion per se in a second stage. Then it should be possible to design experiments leading to unbinding. It is shown here that if a given McGurk stimulus is preceded by an incoherent audiovisual context, the amount of McGurk effect is largely reduced. Various kinds of incoherent contexts (acoustic syllables dubbed on video sentences or phonetic or temporal modifications of the acoustic content of a regular sequence of audiovisual syllables) can significantly reduce the McGurk effect even when they are short (less than 4 s). The data are interpreted in the framework of a two-stage "binding and fusion" model for audiovisual speech perception.
Visual Task Demands and the Auditory Mismatch Negativity: An Empirical Study and a Meta-Analysis
Wiens, Stefan; Szychowska, Malina; Nilsson, Mats E.
2016-01-01
Because the auditory system is particularly useful in monitoring the environment, previous research has examined whether task-irrelevant, auditory distracters are processed even if subjects focus their attention on visual stimuli. This research suggests that attentionally demanding visual tasks decrease the auditory mismatch negativity (MMN) to simultaneously presented auditory distractors. Because a recent behavioral study found that high visual perceptual load decreased detection sensitivity of simultaneous tones, we used a similar task (n = 28) to determine if high visual perceptual load would reduce the auditory MMN. Results suggested that perceptual load did not decrease the MMN. At face value, these nonsignificant findings may suggest that effects of perceptual load on the MMN are smaller than those of other demanding visual tasks. If so, effect sizes should differ systematically between the present and previous studies. We conducted a selective meta-analysis of published studies in which the MMN was derived from the EEG, the visual task demands were continuous and varied between high and low within the same task, and the task-irrelevant tones were presented in a typical oddball paradigm simultaneously with the visual stimuli. Because the meta-analysis suggested that the present (null) findings did not differ systematically from previous findings, the available evidence was combined. Results of this meta-analysis confirmed that demanding visual tasks reduce the MMN to auditory distracters. However, because the meta-analysis was based on small studies and because of the risk for publication biases, future studies should be preregistered with large samples (n > 150) to provide confirmatory evidence for the results of the present meta-analysis. These future studies should also use control conditions that reduce confounding effects of neural adaptation, and use load manipulations that are defined independently from their effects on the MMN. PMID:26741815
Effects of Visual Speech on Early Auditory Evoked Fields - From the Viewpoint of Individual Variance
Yahata, Izumi; Kanno, Akitake; Hidaka, Hiroshi; Sakamoto, Shuichi; Nakasato, Nobukazu; Kawashima, Ryuta; Katori, Yukio
2017-01-01
The effects of visual speech (the moving image of the speaker’s face uttering speech sound) on early auditory evoked fields (AEFs) were examined using a helmet-shaped magnetoencephalography system in 12 healthy volunteers (9 males, mean age 35.5 years). AEFs (N100m) in response to the monosyllabic sound /be/ were recorded and analyzed under three different visual stimulus conditions, the moving image of the same speaker’s face uttering /be/ (congruent visual stimuli) or uttering /ge/ (incongruent visual stimuli), and visual noise (still image processed from speaker’s face using a strong Gaussian filter: control condition). On average, latency of N100m was significantly shortened in the bilateral hemispheres for both congruent and incongruent auditory/visual (A/V) stimuli, compared to the control A/V condition. However, the degree of N100m shortening was not significantly different between the congruent and incongruent A/V conditions, despite the significant differences in psychophysical responses between these two A/V conditions. Moreover, analysis of the magnitudes of these visual effects on AEFs in individuals showed that the lip-reading effects on AEFs tended to be well correlated between the two different audio-visual conditions (congruent vs. incongruent visual stimuli) in the bilateral hemispheres but were not significantly correlated between right and left hemisphere. On the other hand, no significant correlation was observed between the magnitudes of visual speech effects and psychophysical responses. These results may indicate that the auditory-visual interaction observed on the N100m is a fundamental process which does not depend on the congruency of the visual information. PMID:28141836
Visual motion disambiguation by a subliminal sound.
Dufour, Andre; Touzalin, Pascale; Moessinger, Michèle; Brochard, Renaud; Després, Olivier
2008-09-01
There is growing interest in the effect of sound on visual motion perception. One model involves the illusion created when two identical objects moving towards each other on a two-dimensional visual display can be seen to either bounce off or stream through each other. Previous studies show that the large bias normally seen toward the streaming percept can be modulated by the presentation of an auditory event at the moment of coincidence. However, no reports to date provide sufficient evidence to indicate whether the sound bounce-inducing effect is due to a perceptual binding process or merely to an explicit inference resulting from the transient auditory stimulus resembling a physical collision of two objects. In the present study, we used a novel experimental design in which a subliminal sound was presented either 150 ms before, at, or 150 ms after the moment of coincidence of two disks moving towards each other. The results showed that there was an increased perception of bouncing (rather than streaming) when the subliminal sound was presented at or 150 ms after the moment of coincidence compared to when no sound was presented. These findings provide the first empirical demonstration that activation of the human auditory system without reaching consciousness affects the perception of an ambiguous visual motion display.
Auditory and visual cortex of primates: a comparison of two sensory systems
Rauschecker, Josef P.
2014-01-01
A comparative view of the brain, comparing related functions across species and sensory systems, offers a number of advantages. In particular, it allows separating the formal purpose of a model structure from its implementation in specific brains. Models of auditory cortical processing can be conceived by analogy to the visual cortex, incorporating neural mechanisms that are found in both the visual and auditory systems. Examples of such canonical features on the columnar level are direction selectivity, size/bandwidth selectivity, as well as receptive fields with segregated versus overlapping on- and off-sub-regions. On a larger scale, parallel processing pathways have been envisioned that represent the two main facets of sensory perception: 1) identification of objects and 2) processing of space. Expanding this model in terms of sensorimotor integration and control offers an overarching view of cortical function independent of sensory modality. PMID:25728177
Lebib, Riadh; Papo, David; de Bode, Stella; Baudonnière, Pierre Marie
2003-05-08
We investigated the existence of a cross-modal sensory gating reflected by the modulation of an early electrophysiological index, the P50 component. We analyzed event-related brain potentials elicited by audiovisual speech stimuli manipulated along two dimensions: congruency and discriminability. The results showed that the P50 was attenuated when visual and auditory speech information were redundant (i.e. congruent), in comparison with this same event-related potential component elicited with discrepant audiovisual dubbing. When hard to discriminate, however, bimodal incongruent speech stimuli elicited a similar pattern of P50 attenuation. We concluded to the existence of a visual-to-auditory cross-modal sensory gating phenomenon. These results corroborate previous findings revealing a very early audiovisual interaction during speech perception. Finally, we postulated that the sensory gating system included a cross-modal dimension.
Neural Dynamics of Audiovisual Synchrony and Asynchrony Perception in 6-Month-Old Infants
Kopp, Franziska; Dietrich, Claudia
2013-01-01
Young infants are sensitive to multisensory temporal synchrony relations, but the neural dynamics of temporal interactions between vision and audition in infancy are not well understood. We investigated audiovisual synchrony and asynchrony perception in 6-month-old infants using event-related brain potentials (ERP). In a prior behavioral experiment (n = 45), infants were habituated to an audiovisual synchronous stimulus and tested for recovery of interest by presenting an asynchronous test stimulus in which the visual stream was delayed with respect to the auditory stream by 400 ms. Infants who behaviorally discriminated the change in temporal alignment were included in further analyses. In the EEG experiment (final sample: n = 15), synchronous and asynchronous stimuli (visual delay of 400 ms) were presented in random order. Results show latency shifts in the auditory ERP components N1 and P2 as well as the infant ERP component Nc. Latencies in the asynchronous condition were significantly longer than in the synchronous condition. After video onset but preceding the auditory onset, amplitude modulations propagating from posterior to anterior sites and related to the Pb component of infants’ ERP were observed. Results suggest temporal interactions between the two modalities. Specifically, they point to the significance of anticipatory visual motion for auditory processing, and indicate young infants’ predictive capacities for audiovisual temporal synchrony relations. PMID:23346071
Jordan, Timothy R; Abedipour, Lily
2010-01-01
Hearing the sound of laughter is important for social communication, but processes contributing to the audibility of laughter remain to be determined. Production of laughter resembles production of speech in that both involve visible facial movements accompanying socially significant auditory signals. However, while it is known that speech is more audible when the facial movements producing the speech sound can be seen, similar visual enhancement of the audibility of laughter remains unknown. To address this issue, spontaneously occurring laughter was edited to produce stimuli comprising visual laughter, auditory laughter, visual and auditory laughter combined, and no laughter at all (either visual or auditory), all presented in four levels of background noise. Visual laughter and no-laughter stimuli produced very few reports of auditory laughter. However, visual laughter consistently made auditory laughter more audible, compared to the same auditory signal presented without visual laughter, resembling findings reported previously for speech.
Balconi, Michela; Vanutelli, Maria Elide
2016-01-01
The brain activity, considered in its hemodynamic (optical imaging: functional Near-Infrared Spectroscopy, fNIRS) and electrophysiological components (event-related potentials, ERPs, N200) was monitored when subjects observed (visual stimulation, V) or observed and heard (visual + auditory stimulation, VU) situations which represented inter-species (human-animal) interactions, with an emotional positive (cooperative) or negative (uncooperative) content. In addition, the cortical lateralization effect (more left or right dorsolateral prefrontal cortex, DLPFC) was explored. Both ERP and fNIRS showed significant effects due to emotional interactions which were discussed at light of cross-modal integration effects. The significance of inter-species effect for the emotional behavior was considered. In addition, hemodynamic and EEG consonant results and their value as integrated measures were discussed at light of valence effect. PMID:26976052
Hertrich, Ingo; Dietrich, Susanne; Ackermann, Hermann
2013-01-01
In blind people, the visual channel cannot assist face-to-face communication via lipreading or visual prosody. Nevertheless, the visual system may enhance the evaluation of auditory information due to its cross-links to (1) the auditory system, (2) supramodal representations, and (3) frontal action-related areas. Apart from feedback or top-down support of, for example, the processing of spatial or phonological representations, experimental data have shown that the visual system can impact auditory perception at more basic computational stages such as temporal signal resolution. For example, blind as compared to sighted subjects are more resistant against backward masking, and this ability appears to be associated with activity in visual cortex. Regarding the comprehension of continuous speech, blind subjects can learn to use accelerated text-to-speech systems for "reading" texts at ultra-fast speaking rates (>16 syllables/s), exceeding by far the normal range of 6 syllables/s. A functional magnetic resonance imaging study has shown that this ability, among other brain regions, significantly covaries with BOLD responses in bilateral pulvinar, right visual cortex, and left supplementary motor area. Furthermore, magnetoencephalographic measurements revealed a particular component in right occipital cortex phase-locked to the syllable onsets of accelerated speech. In sighted people, the "bottleneck" for understanding time-compressed speech seems related to higher demands for buffering phonological material and is, presumably, linked to frontal brain structures. On the other hand, the neurophysiological correlates of functions overcoming this bottleneck, seem to depend upon early visual cortex activity. The present Hypothesis and Theory paper outlines a model that aims at binding these data together, based on early cross-modal pathways that are already known from various audiovisual experiments on cross-modal adjustments during space, time, and object recognition.
Hertrich, Ingo; Dietrich, Susanne; Ackermann, Hermann
2013-01-01
In blind people, the visual channel cannot assist face-to-face communication via lipreading or visual prosody. Nevertheless, the visual system may enhance the evaluation of auditory information due to its cross-links to (1) the auditory system, (2) supramodal representations, and (3) frontal action-related areas. Apart from feedback or top-down support of, for example, the processing of spatial or phonological representations, experimental data have shown that the visual system can impact auditory perception at more basic computational stages such as temporal signal resolution. For example, blind as compared to sighted subjects are more resistant against backward masking, and this ability appears to be associated with activity in visual cortex. Regarding the comprehension of continuous speech, blind subjects can learn to use accelerated text-to-speech systems for “reading” texts at ultra-fast speaking rates (>16 syllables/s), exceeding by far the normal range of 6 syllables/s. A functional magnetic resonance imaging study has shown that this ability, among other brain regions, significantly covaries with BOLD responses in bilateral pulvinar, right visual cortex, and left supplementary motor area. Furthermore, magnetoencephalographic measurements revealed a particular component in right occipital cortex phase-locked to the syllable onsets of accelerated speech. In sighted people, the “bottleneck” for understanding time-compressed speech seems related to higher demands for buffering phonological material and is, presumably, linked to frontal brain structures. On the other hand, the neurophysiological correlates of functions overcoming this bottleneck, seem to depend upon early visual cortex activity. The present Hypothesis and Theory paper outlines a model that aims at binding these data together, based on early cross-modal pathways that are already known from various audiovisual experiments on cross-modal adjustments during space, time, and object recognition. PMID:23966968
D'Imperio, Daniela; Scandola, Michele; Gobbetto, Valeria; Bulgarelli, Cristina; Salgarello, Matteo; Avesani, Renato; Moro, Valentina
2017-10-01
Cross-modal interactions improve the processing of external stimuli, particularly when an isolated sensory modality is impaired. When information from different modalities is integrated, object recognition is facilitated probably as a result of bottom-up and top-down processes. The aim of this study was to investigate the potential effects of cross-modal stimulation in a case of simultanagnosia. We report a detailed analysis of clinical symptoms and an 18 F-fluorodeoxyglucose (FDG) brain positron emission tomography/computed tomography (PET/CT) study of a patient affected by Balint's syndrome, a rare and invasive visual-spatial disorder following bilateral parieto-occipital lesions. An experiment was conducted to investigate the effects of visual and nonvisual cues on performance in tasks involving the recognition of overlapping pictures. Four modalities of sensory cues were used: visual, tactile, olfactory, and auditory. Data from neuropsychological tests showed the presence of ocular apraxia, optic ataxia, and simultanagnosia. The results of the experiment indicate a positive effect of the cues on the recognition of overlapping pictures, not only in the identification of the congruent valid-cued stimulus (target) but also in the identification of the other, noncued stimuli. All the sensory modalities analyzed (except the auditory stimulus) were efficacious in terms of increasing visual recognition. Cross-modal integration improved the patient's ability to recognize overlapping figures. However, while in the visual unimodal modality both bottom-up (priming, familiarity effect, disengagement of attention) and top-down processes (mental representation and short-term memory, the endogenous orientation of attention) are involved, in the cross-modal integration it is semantic representations that mainly activate visual recognition processes. These results are potentially useful for the design of rehabilitation training for attentional and visual-perceptual deficits.
Altieri, Nicholas; Wenger, Michael J.
2013-01-01
Speech perception engages both auditory and visual modalities. Limitations of traditional accuracy-only approaches in the investigation of audiovisual speech perception have motivated the use of new methodologies. In an audiovisual speech identification task, we utilized capacity (Townsend and Nozawa, 1995), a dynamic measure of efficiency, to quantify audiovisual integration. Capacity was used to compare RT distributions from audiovisual trials to RT distributions from auditory-only and visual-only trials across three listening conditions: clear auditory signal, S/N ratio of −12 dB, and S/N ratio of −18 dB. The purpose was to obtain EEG recordings in conjunction with capacity to investigate how a late ERP co-varies with integration efficiency. Results showed efficient audiovisual integration for low auditory S/N ratios, but inefficient audiovisual integration when the auditory signal was clear. The ERP analyses showed evidence for greater audiovisual amplitude compared to the unisensory signals for lower auditory S/N ratios (higher capacity/efficiency) compared to the high S/N ratio (low capacity/inefficient integration). The data are consistent with an interactive framework of integration, where auditory recognition is influenced by speech-reading as a function of signal clarity. PMID:24058358
Altieri, Nicholas; Wenger, Michael J
2013-01-01
Speech perception engages both auditory and visual modalities. Limitations of traditional accuracy-only approaches in the investigation of audiovisual speech perception have motivated the use of new methodologies. In an audiovisual speech identification task, we utilized capacity (Townsend and Nozawa, 1995), a dynamic measure of efficiency, to quantify audiovisual integration. Capacity was used to compare RT distributions from audiovisual trials to RT distributions from auditory-only and visual-only trials across three listening conditions: clear auditory signal, S/N ratio of -12 dB, and S/N ratio of -18 dB. The purpose was to obtain EEG recordings in conjunction with capacity to investigate how a late ERP co-varies with integration efficiency. Results showed efficient audiovisual integration for low auditory S/N ratios, but inefficient audiovisual integration when the auditory signal was clear. The ERP analyses showed evidence for greater audiovisual amplitude compared to the unisensory signals for lower auditory S/N ratios (higher capacity/efficiency) compared to the high S/N ratio (low capacity/inefficient integration). The data are consistent with an interactive framework of integration, where auditory recognition is influenced by speech-reading as a function of signal clarity.
Odors Bias Time Perception in Visual and Auditory Modalities
Yue, Zhenzhu; Gao, Tianyu; Chen, Lihan; Wu, Jiashuang
2016-01-01
Previous studies have shown that emotional states alter our perception of time. However, attention, which is modulated by a number of factors, such as emotional events, also influences time perception. To exclude potential attentional effects associated with emotional events, various types of odors (inducing different levels of emotional arousal) were used to explore whether olfactory events modulated time perception differently in visual and auditory modalities. Participants were shown either a visual dot or heard a continuous tone for 1000 or 4000 ms while they were exposed to odors of jasmine, lavender, or garlic. Participants then reproduced the temporal durations of the preceding visual or auditory stimuli by pressing the spacebar twice. Their reproduced durations were compared to those in the control condition (without odor). The results showed that participants produced significantly longer time intervals in the lavender condition than in the jasmine or garlic conditions. The overall influence of odor on time perception was equivalent for both visual and auditory modalities. The analysis of the interaction effect showed that participants produced longer durations than the actual duration in the short interval condition, but they produced shorter durations in the long interval condition. The effect sizes were larger for the auditory modality than those for the visual modality. Moreover, by comparing performance across the initial and the final blocks of the experiment, we found odor adaptation effects were mainly manifested as longer reproductions for the short time interval later in the adaptation phase, and there was a larger effect size in the auditory modality. In summary, the present results indicate that odors imposed differential impacts on reproduced time durations, and they were constrained by different sensory modalities, valence of the emotional events, and target durations. Biases in time perception could be accounted for by a framework of attentional deployment between the inducers (odors) and emotionally neutral stimuli (visual dots and sound beeps). PMID:27148143
Prediction and constraint in audiovisual speech perception
Peelle, Jonathan E.; Sommers, Mitchell S.
2015-01-01
During face-to-face conversational speech listeners must efficiently process a rapid and complex stream of multisensory information. Visual speech can serve as a critical complement to auditory information because it provides cues to both the timing of the incoming acoustic signal (the amplitude envelope, influencing attention and perceptual sensitivity) and its content (place and manner of articulation, constraining lexical selection). Here we review behavioral and neurophysiological evidence regarding listeners' use of visual speech information. Multisensory integration of audiovisual speech cues improves recognition accuracy, particularly for speech in noise. Even when speech is intelligible based solely on auditory information, adding visual information may reduce the cognitive demands placed on listeners through increasing precision of prediction. Electrophysiological studies demonstrate oscillatory cortical entrainment to speech in auditory cortex is enhanced when visual speech is present, increasing sensitivity to important acoustic cues. Neuroimaging studies also suggest increased activity in auditory cortex when congruent visual information is available, but additionally emphasize the involvement of heteromodal regions of posterior superior temporal sulcus as playing a role in integrative processing. We interpret these findings in a framework of temporally-focused lexical competition in which visual speech information affects auditory processing to increase sensitivity to auditory information through an early integration mechanism, and a late integration stage that incorporates specific information about a speaker's articulators to constrain the number of possible candidates in a spoken utterance. Ultimately it is words compatible with both auditory and visual information that most strongly determine successful speech perception during everyday listening. Thus, audiovisual speech perception is accomplished through multiple stages of integration, supported by distinct neuroanatomical mechanisms. PMID:25890390
Altvater-Mackensen, Nicole; Grossmann, Tobias
2015-01-01
Infants' language exposure largely involves face-to-face interactions providing acoustic and visual speech cues but also social cues that might foster language learning. Yet, both audiovisual speech information and social information have so far received little attention in research on infants' early language development. Using a preferential looking paradigm, 44 German 6-month olds' ability to detect mismatches between concurrently presented auditory and visual native vowels was tested. Outcomes were related to mothers' speech style and interactive behavior assessed during free play with their infant, and to infant-specific factors assessed through a questionnaire. Results show that mothers' and infants' social behavior modulated infants' preference for matching audiovisual speech. Moreover, infants' audiovisual speech perception correlated with later vocabulary size, suggesting a lasting effect on language development. © 2014 The Authors. Child Development © 2014 Society for Research in Child Development, Inc.
Cue-recruitment for extrinsic signals after training with low information stimuli.
Jain, Anshul; Fuller, Stuart; Backus, Benjamin T
2014-01-01
Cue-recruitment occurs when a previously ineffective signal comes to affect the perceptual appearance of a target object, in a manner similar to the trusted cues with which the signal was put into correlation during training. Jain, Fuller and Backus reported that extrinsic signals, those not carried by the target object itself, were not recruited even after extensive training. However, recent studies have shown that training using weakened trusted cues can facilitate recruitment of intrinsic signals. The current study was designed to examine whether extrinsic signals can be recruited by putting them in correlation with weakened trusted cues. Specifically, we tested whether an extrinsic visual signal, the rotary motion direction of an annulus of random dots, and an extrinsic auditory signal, direction of an auditory pitch glide, can be recruited as cues for the rotation direction of a Necker cube. We found learning, albeit weak, for visual but not for auditory signals. These results extend the generality of the cue-recruitment phenomenon to an extrinsic signal and provide further evidence that the visual system learns to use new signals most quickly when other, long-trusted cues are unavailable or unreliable.
Making the Invisible Visible: Verbal but Not Visual Cues Enhance Visual Detection
Lupyan, Gary; Spivey, Michael J.
2010-01-01
Background Can hearing a word change what one sees? Although visual sensitivity is known to be enhanced by attending to the location of the target, perceptual enhancements of following cues to the identity of an object have been difficult to find. Here, we show that perceptual sensitivity is enhanced by verbal, but not visual cues. Methodology/Principal Findings Participants completed an object detection task in which they made an object-presence or -absence decision to briefly-presented letters. Hearing the letter name prior to the detection task increased perceptual sensitivity (d′). A visual cue in the form of a preview of the to-be-detected letter did not. Follow-up experiments found that the auditory cuing effect was specific to validly cued stimuli. The magnitude of the cuing effect positively correlated with an individual measure of vividness of mental imagery; introducing uncertainty into the position of the stimulus did not reduce the magnitude of the cuing effect, but eliminated the correlation with mental imagery. Conclusions/Significance Hearing a word made otherwise invisible objects visible. Interestingly, seeing a preview of the target stimulus did not similarly enhance detection of the target. These results are compatible with an account in which auditory verbal labels modulate lower-level visual processing. The findings show that a verbal cue in the form of hearing a word can influence even the most elementary visual processing and inform our understanding of how language affects perception. PMID:20628646
Li, Wenjing; Li, Jianhong; Wang, Zhenchang; Li, Yong; Liu, Zhaohui; Yan, Fei; Xian, Junfang; He, Huiguang
2015-01-01
Previous studies have shown brain reorganizations after early deprivation of auditory sensory. However, changes of grey matter connectivity have not been investigated in prelingually deaf adolescents yet. In the present study, we aimed to investigate changes of grey matter connectivity within and between auditory, language and visual systems in prelingually deaf adolescents. We recruited 16 prelingually deaf adolescents and 16 age-and gender-matched normal controls, and extracted the grey matter volume as the structural characteristic from 14 regions of interest involved in auditory, language or visual processing to investigate the changes of grey matter connectivity within and between auditory, language and visual systems. Sparse inverse covariance estimation (SICE) was utilized to construct grey matter connectivity between these brain regions. The results show that prelingually deaf adolescents present weaker grey matter connectivity within auditory and visual systems, and connectivity between language and visual systems declined. Notably, significantly increased brain connectivity was found between auditory and visual systems in prelingually deaf adolescents. Our results indicate "cross-modal" plasticity after deprivation of the auditory input in prelingually deaf adolescents, especially between auditory and visual systems. Besides, auditory deprivation and visual deficits might affect the connectivity pattern within language and visual systems in prelingually deaf adolescents.
Perceptual load interacts with stimulus processing across sensory modalities.
Klemen, J; Büchel, C; Rose, M
2009-06-01
According to perceptual load theory, processing of task-irrelevant stimuli is limited by the perceptual load of a parallel attended task if both the task and the irrelevant stimuli are presented to the same sensory modality. However, it remains a matter of debate whether the same principles apply to cross-sensory perceptual load and, more generally, what form cross-sensory attentional modulation in early perceptual areas takes in humans. Here we addressed these questions using functional magnetic resonance imaging. Participants undertook an auditory one-back working memory task of low or high perceptual load, while concurrently viewing task-irrelevant images at one of three object visibility levels. The processing of the visual and auditory stimuli was measured in the lateral occipital cortex (LOC) and auditory cortex (AC), respectively. Cross-sensory interference with sensory processing was observed in both the LOC and AC, in accordance with previous results of unisensory perceptual load studies. The present neuroimaging results therefore warrant the extension of perceptual load theory from a unisensory to a cross-sensory context: a validation of this cross-sensory interference effect through behavioural measures would consolidate the findings.
Tanahashi, Shigehito; Ashihara, Kaoru; Ujike, Hiroyasu
2015-01-01
Recent studies have found that self-motion perception induced by simultaneous presentation of visual and auditory motion is facilitated when the directions of visual and auditory motion stimuli are identical. They did not, however, examine possible contributions of auditory motion information for determining direction of self-motion perception. To examine this, a visual stimulus projected on a hemisphere screen and an auditory stimulus presented through headphones were presented separately or simultaneously, depending on experimental conditions. The participant continuously indicated the direction and strength of self-motion during the 130-s experimental trial. When the visual stimulus with a horizontal shearing rotation and the auditory stimulus with a horizontal one-directional rotation were presented simultaneously, the duration and strength of self-motion perceived in the opposite direction of the auditory rotation stimulus were significantly longer and stronger than those perceived in the same direction of the auditory rotation stimulus. However, the auditory stimulus alone could not sufficiently induce self-motion perception, and if it did, its direction was not consistent within each experimental trial. We concluded that auditory motion information can determine perceived direction of self-motion during simultaneous presentation of visual and auditory motion information, at least when visual stimuli moved in opposing directions (around the yaw-axis). We speculate that the contribution of auditory information depends on the plausibility and information balance of visual and auditory information. PMID:26113828
Auditory and visual spatial impression: Recent studies of three auditoria
NASA Astrophysics Data System (ADS)
Nguyen, Andy; Cabrera, Densil
2004-10-01
Auditory spatial impression is widely studied for its contribution to auditorium acoustical quality. By contrast, visual spatial impression in auditoria has received relatively little attention in formal studies. This paper reports results from a series of experiments investigating the auditory and visual spatial impression of concert auditoria. For auditory stimuli, a fragment of an anechoic recording of orchestral music was convolved with calibrated binaural impulse responses, which had been made with the dummy head microphone at a wide range of positions in three auditoria and the sound source on the stage. For visual stimuli, greyscale photographs were used, taken at the same positions in the three auditoria, with a visual target on the stage. Subjective experiments were conducted with auditory stimuli alone, visual stimuli alone, and visual and auditory stimuli combined. In these experiments, subjects rated apparent source width, listener envelopment, intimacy and source distance (auditory stimuli), and spaciousness, envelopment, stage dominance, intimacy and target distance (visual stimuli). Results show target distance to be of primary importance in auditory and visual spatial impression-thereby providing a basis for covariance between some attributes of auditory and visual spatial impression. Nevertheless, some attributes of spatial impression diverge between the senses.
Visual cues and listening effort: individual variability.
Picou, Erin M; Ricketts, Todd A; Hornsby, Benjamin W Y
2011-10-01
To investigate the effect of visual cues on listening effort as well as whether predictive variables such as working memory capacity (WMC) and lipreading ability affect the magnitude of listening effort. Twenty participants with normal hearing were tested using a paired-associates recall task in 2 conditions (quiet and noise) and 2 presentation modalities (audio only [AO] and auditory-visual [AV]). Signal-to-noise ratios were adjusted to provide matched speech recognition across audio-only and AV noise conditions. Also measured were subjective perceptions of listening effort and 2 predictive variables: (a) lipreading ability and (b) WMC. Objective and subjective results indicated that listening effort increased in the presence of noise, but on average the addition of visual cues did not significantly affect the magnitude of listening effort. Although there was substantial individual variability, on average participants who were better lipreaders or had larger WMCs demonstrated reduced listening effort in noise in AV conditions. Overall, the results support the hypothesis that integrating auditory and visual cues requires cognitive resources in some participants. The data indicate that low lipreading ability or low WMC is associated with relatively effortful integration of auditory and visual information in noise.
NASA Technical Reports Server (NTRS)
Wenzel, Elizabeth M.; Fisher, Scott S.; Stone, Philip K.; Foster, Scott H.
1991-01-01
The real time acoustic display capabilities are described which were developed for the Virtual Environment Workstation (VIEW) Project at NASA-Ames. The acoustic display is capable of generating localized acoustic cues in real time over headphones. An auditory symbology, a related collection of representational auditory 'objects' or 'icons', can be designed using ACE (Auditory Cue Editor), which links both discrete and continuously varying acoustic parameters with information or events in the display. During a given display scenario, the symbology can be dynamically coordinated in real time with 3-D visual objects, speech, and gestural displays. The types of displays feasible with the system range from simple warnings and alarms to the acoustic representation of multidimensional data or events.
NASA Astrophysics Data System (ADS)
Wenzel, Elizabeth M.; Fisher, Scott S.; Stone, Philip K.; Foster, Scott H.
1991-03-01
The real time acoustic display capabilities are described which were developed for the Virtual Environment Workstation (VIEW) Project at NASA-Ames. The acoustic display is capable of generating localized acoustic cues in real time over headphones. An auditory symbology, a related collection of representational auditory 'objects' or 'icons', can be designed using ACE (Auditory Cue Editor), which links both discrete and continuously varying acoustic parameters with information or events in the display. During a given display scenario, the symbology can be dynamically coordinated in real time with 3-D visual objects, speech, and gestural displays. The types of displays feasible with the system range from simple warnings and alarms to the acoustic representation of multidimensional data or events.
NASA Astrophysics Data System (ADS)
Lee, Wendy
The advent of multisensory display systems, such as virtual and augmented reality, has fostered a new relationship between humans and space. Not only can these systems mimic real-world environments, they have the ability to create a new space typology made solely of data. In these spaces, two-dimensional information is displayed in three dimensions, requiring human senses to be used to understand virtual, attention-based elements. Studies in the field of big data have predominately focused on visual representations and extractions of information with little focus on sounds. The goal of this research is to evaluate the most efficient methods of perceptually extracting visual data using auditory stimuli in immersive environments. Using Rensselaer's CRAIVE-Lab, a virtual reality space with 360-degree panorama visuals and an array of 128 loudspeakers, participants were asked questions based on complex visual displays using a variety of auditory cues ranging from sine tones to camera shutter sounds. Analysis of the speed and accuracy of participant responses revealed that auditory cues that were more favorable for localization and were positively perceived were best for data extraction and could help create more user-friendly systems in the future.
Development of Embodied Word Meanings: Sensorimotor Effects in Children's Lexical Processing.
Inkster, Michelle; Wellsby, Michele; Lloyd, Ellen; Pexman, Penny M
2016-01-01
Previous research showed an effect of words' rated body-object interaction (BOI) in children's visual word naming performance, but only in children 8 years of age or older (Wellsby and Pexman, 2014a). In that study, however, BOI was established using adult ratings. Here we collected ratings from a group of parents for children's BOI experience (child-BOI). We examined effects of words' child-BOI and also words' imageability on children's responses in an auditory word naming task, which is suited to the lexical processing skills of younger children. We tested a group of 54 children aged 6-7 years and a comparison group of 25 adults. Results showed significant effects of both imageability and child-BOI on children's auditory naming latencies. These results provide evidence that children younger than 8 years of age have richer semantic representations for high imageability and high child-BOI words, consistent with an embodied account of word meaning.
A P300 event related potential technique for assessment of sexually oriented interest.
Vardi, Yoram; Volos, Michal; Sprecher, Elliot; Granovsky, Yelena; Gruenwald, Ilan; Yarnitsky, David
2006-12-01
Despite all of the modern, sophisticated tests that exist for diagnosing and assessing male and female sexual disorders, to our knowledge there is no objective psychophysiological test to evaluate sexual arousal and interest. We provide preliminary data showing a decrease in auditory P300 wave amplitude during exposure to sexually explicit video clips and a significant correlation between the auditory P300 amplitude decrease and self-reported scores of sexual arousal and interest in the clips. A total of 30 healthy subjects were exposed to several blocks of auditory stimuli administered using an oddball paradigm. Baseline auditory P300 amplitudes were obtained and auditory stimuli were then delivered while viewing visual clips with 3 types of content, including sport, scenery and sex. Auditory P300 amplitude significantly decreased during viewing clips of all contents. Viewing sexual content clips caused a maximal decrease in P300 amplitude (p <0.0001). In addition, a high correlation was found between the amplitude decrease and scores on the sexual arousal questionnaire regarding the viewed clips (r = 0.61, p <0.001). In addition, the P300 amplitude decrease was significantly related to the sexual interest score (r = 0.37, p = 0.042) but not to interest in clips of nonsexual content. The change in auditory P300 amplitude during exposure to visual stimuli with sexual context seems to be an objective measure of subject sexual interest. This method might be applied to assess therapeutic intervention and as a diagnostic tool for assessing disorders of impaired libido or psychogenic sexual dysfunction.
Effects of Background Music on Objective and Subjective Performance Measures in an Auditory BCI.
Zhou, Sijie; Allison, Brendan Z; Kübler, Andrea; Cichocki, Andrzej; Wang, Xingyu; Jin, Jing
2016-01-01
Several studies have explored brain computer interface (BCI) systems based on auditory stimuli, which could help patients with visual impairments. Usability and user satisfaction are important considerations in any BCI. Although background music can influence emotion and performance in other task environments, and many users may wish to listen to music while using a BCI, auditory, and other BCIs are typically studied without background music. Some work has explored the possibility of using polyphonic music in auditory BCI systems. However, this approach requires users with good musical skills, and has not been explored in online experiments. Our hypothesis was that an auditory BCI with background music would be preferred by subjects over a similar BCI without background music, without any difference in BCI performance. We introduce a simple paradigm (which does not require musical skill) using percussion instrument sound stimuli and background music, and evaluated it in both offline and online experiments. The result showed that subjects preferred the auditory BCI with background music. Different performance measures did not reveal any significant performance effect when comparing background music vs. no background. Since the addition of background music does not impair BCI performance but is preferred by users, auditory (and perhaps other) BCIs should consider including it. Our study also indicates that auditory BCIs can be effective even if the auditory channel is simultaneously otherwise engaged.
Comparing Auditory-Only and Audiovisual Word Learning for Children with Hearing Loss.
McDaniel, Jena; Camarata, Stephen; Yoder, Paul
2018-05-15
Although reducing visual input to emphasize auditory cues is a common practice in pediatric auditory (re)habilitation, the extant literature offers minimal empirical evidence for whether unisensory auditory-only (AO) or multisensory audiovisual (AV) input is more beneficial to children with hearing loss for developing spoken language skills. Using an adapted alternating treatments single case research design, we evaluated the effectiveness and efficiency of a receptive word learning intervention with and without access to visual speechreading cues. Four preschool children with prelingual hearing loss participated. Based on probes without visual cues, three participants demonstrated strong evidence for learning in the AO and AV conditions relative to a control (no-teaching) condition. No participants demonstrated a differential rate of learning between AO and AV conditions. Neither an inhibitory effect predicted by a unisensory theory nor a beneficial effect predicted by a multisensory theory for providing visual cues was identified. Clinical implications are discussed.
Links between an Owner’s Adult Attachment Style and the Support-Seeking Behavior of Their Dog
Rehn, Therese; Beetz, Andrea; Keeling, Linda J.
2017-01-01
The aim of this study was to investigate if an owner’s adult attachment style (AAS) influences how their dog interacts and obtains support from them during challenging events. A person’s AAS describes how they perceive their relationship to other people, but it may also reflect their caregiving behavior, and so their behavior toward the dog. We measured the AAS of 51 female Golden retriever owners, using the Adult Attachment Style Questionnaire (ASQ), and observed the reactions of the dog-owner dyads in response to different challenging situations [visual surprise, auditory stressor and social stressors like a person approaching dressed as ghost or in coat, hat and sunglasses]. In addition, the dog was left alone in a novel environment for 3 min. Interactions between the dog and owner were observed both before and after separation. Spearman rank correlation tests were made (between owner AAS and dog behavior) and where correlations were found, Mann–Whitney U-tests were made on the dogs’ behavioral response between high and low scoring groups of owners of the different subscales of the ASQ. The more secure the owner (ASQ subscale ‘Confidence’), the longer the dog was oriented to the two sudden stressors (the visual and auditory stressor). The more anxious the owner (ASQ subscale ‘Attachment anxiety’), the longer the dog oriented toward the owner during the approach of the strange-looking person and the dog showed less lip licking during separation from the owner. The more avoidant the owner (ASQ subscale ‘Avoidant attachment’), the longer the dog oriented toward the owner during the visual stressor, the less it was located behind the owner during the auditory stressor and the less it was oriented toward the auditory stressor. These links between owner attachment style and dog behavior imply that dogs may develop different strategies to handle challenging situations, based on the type of support they get from their owner. PMID:29250009
Basirat, Anahita; Schwartz, Jean-Luc; Sato, Marc
2012-01-01
The verbal transformation effect (VTE) refers to perceptual switches while listening to a speech sound repeated rapidly and continuously. It is a specific case of perceptual multistability providing a rich paradigm for studying the processes underlying the perceptual organization of speech. While the VTE has been mainly considered as a purely auditory effect, this paper presents a review of recent behavioural and neuroimaging studies investigating the role of perceptuo-motor interactions in the effect. Behavioural data show that articulatory constraints and visual information from the speaker's articulatory gestures can influence verbal transformations. In line with these data, functional magnetic resonance imaging and intracranial electroencephalography studies demonstrate that articulatory-based representations play a key role in the emergence and the stabilization of speech percepts during a verbal transformation task. Overall, these results suggest that perceptuo (multisensory)-motor processes are involved in the perceptual organization of speech and the formation of speech perceptual objects. PMID:22371618
Aging-related changes in auditory and visual integration measured with MEG
Stephen, Julia M.; Knoefel, Janice E.; Adair, John; Hart, Blaine; Aine, Cheryl J.
2010-01-01
As noted in the aging literature, processing delays often occur in the central nervous system with increasing age, which is often attributable in part to demyelination. In addition, differential slowing between sensory systems has been shown to be most discrepant between visual (up to 20 ms) and auditory systems (< 5 ms). Therefore, we used MEG to measure the multisensory integration response in auditory association cortex in young and elderly participants to better understand the effects of aging on multisensory integration abilities. Results show a main effect for reaction times (RTs); the mean RTs of the elderly were significantly slower than the young. In addition, in the young we found significant facilitation of RTs to the multisensory stimuli relative to both unisensory stimuli, when comparing the cumulative distribution functions, which was not evident for the elderly. We also identified a significant interaction between age and condition in the superior temporal gyrus. In particular, the elderly had larger amplitude responses (~100 ms) to auditory stimuli relative to the young when auditory stimuli alone were presented, whereas the amplitude of responses to the multisensory stimuli was reduced in the elderly, relative to the young. This suppressed cortical multisensory integration response in the elderly, which corresponded with slower RTs and reduced RT facilitation effects in the elderly, has not been reported previously and may be related to poor cortical integration based on timing changes in unisensory processing in the elderly. PMID:20713130
Aging-related changes in auditory and visual integration measured with MEG.
Stephen, Julia M; Knoefel, Janice E; Adair, John; Hart, Blaine; Aine, Cheryl J
2010-10-22
As noted in the aging literature, processing delays often occur in the central nervous system with increasing age, which is often attributable in part to demyelination. In addition, differential slowing between sensory systems has been shown to be most discrepant between visual (up to 20ms) and auditory systems (<5ms). Therefore, we used MEG to measure the multisensory integration response in auditory association cortex in young and elderly participants to better understand the effects of aging on multisensory integration abilities. Results show a main effect for reaction times (RTs); the mean RTs of the elderly were significantly slower than the young. In addition, in the young we found significant facilitation of RTs to the multisensory stimuli relative to both unisensory stimuli, when comparing the cumulative distribution functions, which was not evident for the elderly. We also identified a significant interaction between age and condition in the superior temporal gyrus. In particular, the elderly had larger amplitude responses (∼100ms) to auditory stimuli relative to the young when auditory stimuli alone were presented, whereas the amplitude of responses to the multisensory stimuli was reduced in the elderly, relative to the young. This suppressed cortical multisensory integration response in the elderly, which corresponded with slower RTs and reduced RT facilitation effects, has not been reported previously and may be related to poor cortical integration based on timing changes in unisensory processing in the elderly. Copyright 2010 Elsevier Ireland Ltd. All rights reserved.
Dichotic and dichoptic digit perception in normal adults.
Lawfield, Angela; McFarland, Dennis J; Cacace, Anthony T
2011-06-01
Verbally based dichotic-listening experiments and reproduction-mediated response-selection strategies have been used for over four decades to study perceptual/cognitive aspects of auditory information processing and make inferences about hemispheric asymmetries and language lateralization in the brain. Test procedures using dichotic digits have also been used to assess for disorders of auditory processing. However, with this application, limitations exist and paradigms need to be developed to improve specificity of the diagnosis. Use of matched tasks in multiple sensory modalities is a logical approach to address this issue. Herein, we use dichotic listening and dichoptic viewing of visually presented digits for making this comparison. To evaluate methodological issues involved in using matched tasks of dichotic listening and dichoptic viewing in normal adults. A multivariate assessment of the effects of modality (auditory vs. visual), digit-span length (1-3 pairs), response selection (recognition vs. reproduction), and ear/visual hemifield of presentation (left vs. right) on dichotic and dichoptic digit perception. Thirty adults (12 males, 18 females) ranging in age from 18 to 30 yr with normal hearing sensitivity and normal or corrected-to-normal visual acuity. A computerized, custom-designed program was used for all data collection and analysis. A four-way repeated measures analysis of variance (ANOVA) evaluated the effects of modality, digit-span length, response selection, and ear/visual field of presentation. The ANOVA revealed that performances on dichotic listening and dichoptic viewing tasks were dependent on complex interactions between modality, digit-span length, response selection, and ear/visual hemifield of presentation. Correlation analysis suggested a common effect on overall accuracy of performance but isolated only an auditory factor for a laterality index. The variables used in this experiment affected performances in the auditory modality to a greater extent than in the visual modality. The right-ear advantage observed in the dichotic-digits task was most evident when reproduction mediated response selection was used in conjunction with three-digit pairs. This effect implies that factors such as "speech related output mechanisms" and digit-span length (working memory) contribute to laterality effects in dichotic listening performance with traditional paradigms. Thus, the use of multiple-digit pairs to avoid ceiling effects and the application of verbal reproduction as a means of response selection may accentuate the role of nonperceptual factors in performance. Ideally, tests of perceptual abilities should be relatively free of such effects. American Academy of Audiology.
Educators Prescriptive Handbook: A Developmental Sequence of Learning Skills.
ERIC Educational Resources Information Center
Santa Ana Unified School District, CA.
The handbook lists 141 developmental objectives with instructions for remediation to aid children with learning problems in the areas of sensory motor development, auditory perception, language, visual perception, and academic achievement. Objectives are listed in chart format with each objective associated with one or more skill examples,…
Explaining the Colavita visual dominance effect.
Spence, Charles
2009-01-01
The last couple of years have seen a resurgence of interest in the Colavita visual dominance effect. In the basic experimental paradigm, a random series of auditory, visual, and audiovisual stimuli are presented to participants who are instructed to make one response whenever they see a visual target and another response whenever they hear an auditory target. Many studies have now shown that participants sometimes fail to respond to auditory targets when they are presented at the same time as visual targets (i.e., on the bimodal trials), despite the fact that they have no problems in responding to the auditory and visual stimuli when they are presented individually. The existence of the Colavita visual dominance effect provides an intriguing contrast with the results of the many other recent studies showing the superiority of multisensory (over unisensory) information processing in humans. Various accounts have been put forward over the years in order to try and explain the effect, including the suggestion that it reflects nothing more than an underlying bias to attend to the visual modality. Here, the empirical literature on the Colavita visual dominance effect is reviewed and some of the key factors modulating the effect highlighted. The available research has now provided evidence against all previous accounts of the Colavita effect. A novel explanation of the Colavita effect is therefore put forward here, one that is based on the latest findings highlighting the asymmetrical effect that auditory and visual stimuli exert on people's responses to stimuli presented in the other modality.
ERIC Educational Resources Information Center
Teepe, R. C.; Molenaar, I.; Verhoeven, L.
2017-01-01
Preschool children's vocabulary mainly develops verbal through interaction. Therefore, the technology-enhanced storytelling (TES) activity Jeffy's Journey is developed to support parent-child interaction and vocabulary in preschool children. TES entails shared verbal storytelling supported by a story structure and real-time visual, auditory and…
On the role of crossmodal prediction in audiovisual emotion perception.
Jessen, Sarah; Kotz, Sonja A
2013-01-01
Humans rely on multiple sensory modalities to determine the emotional state of others. In fact, such multisensory perception may be one of the mechanisms explaining the ease and efficiency by which others' emotions are recognized. But how and when exactly do the different modalities interact? One aspect in multisensory perception that has received increasing interest in recent years is the concept of cross-modal prediction. In emotion perception, as in most other settings, visual information precedes the auditory information. Thereby, leading in visual information can facilitate subsequent auditory processing. While this mechanism has often been described in audiovisual speech perception, so far it has not been addressed in audiovisual emotion perception. Based on the current state of the art in (a) cross-modal prediction and (b) multisensory emotion perception research, we propose that it is essential to consider the former in order to fully understand the latter. Focusing on electroencephalographic (EEG) and magnetoencephalographic (MEG) studies, we provide a brief overview of the current research in both fields. In discussing these findings, we suggest that emotional visual information may allow more reliable predicting of auditory information compared to non-emotional visual information. In support of this hypothesis, we present a re-analysis of a previous data set that shows an inverse correlation between the N1 EEG response and the duration of visual emotional, but not non-emotional information. If the assumption that emotional content allows more reliable predicting can be corroborated in future studies, cross-modal prediction is a crucial factor in our understanding of multisensory emotion perception.
Preattentive binding of auditory and visual stimulus features.
Winkler, István; Czigler, István; Sussman, Elyse; Horváth, János; Balázs, Lászlo
2005-02-01
We investigated the role of attention in feature binding in the auditory and the visual modality. One auditory and one visual experiment used the mismatch negativity (MMN and vMMN, respectively) event-related potential to index the memory representations created from stimulus sequences, which were either task-relevant and, therefore, attended or task-irrelevant and ignored. In the latter case, the primary task was a continuous demanding within-modality task. The test sequences were composed of two frequently occurring stimuli, which differed from each other in two stimulus features (standard stimuli) and two infrequently occurring stimuli (deviants), which combined one feature from one standard stimulus with the other feature of the other standard stimulus. Deviant stimuli elicited MMN responses of similar parameters across the different attentional conditions. These results suggest that the memory representations involved in the MMN deviance detection response encoded the frequently occurring feature combinations whether or not the test sequences were attended. A possible alternative to the memory-based interpretation of the visual results, the elicitation of the McCollough color-contingent aftereffect, was ruled out by the results of our third experiment. The current results are compared with those supporting the attentive feature integration theory. We conclude that (1) with comparable stimulus paradigms, similar results have been obtained in the two modalities, (2) there exist preattentive processes of feature binding, however, (3) conjoining features within rich arrays of objects under time pressure and/or longterm retention of the feature-conjoined memory representations may require attentive processes.
Electrostimulation mapping of comprehension of auditory and visual words.
Roux, Franck-Emmanuel; Miskin, Krasimir; Durand, Jean-Baptiste; Sacko, Oumar; Réhault, Emilie; Tanova, Rositsa; Démonet, Jean-François
2015-10-01
In order to spare functional areas during the removal of brain tumours, electrical stimulation mapping was used in 90 patients (77 in the left hemisphere and 13 in the right; 2754 cortical sites tested). Language functions were studied with a special focus on comprehension of auditory and visual words and the semantic system. In addition to naming, patients were asked to perform pointing tasks from auditory and visual stimuli (using sets of 4 different images controlled for familiarity), and also auditory object (sound recognition) and Token test tasks. Ninety-two auditory comprehension interference sites were observed. We found that the process of auditory comprehension involved a few, fine-grained, sub-centimetre cortical territories. Early stages of speech comprehension seem to relate to two posterior regions in the left superior temporal gyrus. Downstream lexical-semantic speech processing and sound analysis involved 2 pathways, along the anterior part of the left superior temporal gyrus, and posteriorly around the supramarginal and middle temporal gyri. Electrostimulation experimentally dissociated perceptual consciousness attached to speech comprehension. The initial word discrimination process can be considered as an "automatic" stage, the attention feedback not being impaired by stimulation as would be the case at the lexical-semantic stage. Multimodal organization of the superior temporal gyrus was also detected since some neurones could be involved in comprehension of visual material and naming. These findings demonstrate a fine graded, sub-centimetre, cortical representation of speech comprehension processing mainly in the left superior temporal gyrus and are in line with those described in dual stream models of language comprehension processing. Copyright © 2015 Elsevier Ltd. All rights reserved.
Should visual speech cues (speechreading) be considered when fitting hearing aids?
NASA Astrophysics Data System (ADS)
Grant, Ken
2002-05-01
When talker and listener are face-to-face, visual speech cues become an important part of the communication environment, and yet, these cues are seldom considered when designing hearing aids. Models of auditory-visual speech recognition highlight the importance of complementary versus redundant speech information for predicting auditory-visual recognition performance. Thus, for hearing aids to work optimally when visual speech cues are present, it is important to know whether the cues provided by amplification and the cues provided by speechreading complement each other. In this talk, data will be reviewed that show nonmonotonicity between auditory-alone speech recognition and auditory-visual speech recognition, suggesting that efforts designed solely to improve auditory-alone recognition may not always result in improved auditory-visual recognition. Data will also be presented showing that one of the most important speech cues for enhancing auditory-visual speech recognition performance, voicing, is often the cue that benefits least from amplification.
Modality-specificity of Selective Attention Networks.
Stewart, Hannah J; Amitay, Sygal
2015-01-01
To establish the modality specificity and generality of selective attention networks. Forty-eight young adults completed a battery of four auditory and visual selective attention tests based upon the Attention Network framework: the visual and auditory Attention Network Tests (vANT, aANT), the Test of Everyday Attention (TEA), and the Test of Attention in Listening (TAiL). These provided independent measures for auditory and visual alerting, orienting, and conflict resolution networks. The measures were subjected to an exploratory factor analysis to assess underlying attention constructs. The analysis yielded a four-component solution. The first component comprised of a range of measures from the TEA and was labeled "general attention." The third component was labeled "auditory attention," as it only contained measures from the TAiL using pitch as the attended stimulus feature. The second and fourth components were labeled as "spatial orienting" and "spatial conflict," respectively-they were comprised of orienting and conflict resolution measures from the vANT, aANT, and TAiL attend-location task-all tasks based upon spatial judgments (e.g., the direction of a target arrow or sound location). These results do not support our a-priori hypothesis that attention networks are either modality specific or supramodal. Auditory attention separated into selectively attending to spatial and non-spatial features, with the auditory spatial attention loading onto the same factor as visual spatial attention, suggesting spatial attention is supramodal. However, since our study did not include a non-spatial measure of visual attention, further research will be required to ascertain whether non-spatial attention is modality-specific.
Cortical Representations of Speech in a Multitalker Auditory Scene.
Puvvada, Krishna C; Simon, Jonathan Z
2017-09-20
The ability to parse a complex auditory scene into perceptual objects is facilitated by a hierarchical auditory system. Successive stages in the hierarchy transform an auditory scene of multiple overlapping sources, from peripheral tonotopically based representations in the auditory nerve, into perceptually distinct auditory-object-based representations in the auditory cortex. Here, using magnetoencephalography recordings from men and women, we investigate how a complex acoustic scene consisting of multiple speech sources is represented in distinct hierarchical stages of the auditory cortex. Using systems-theoretic methods of stimulus reconstruction, we show that the primary-like areas in the auditory cortex contain dominantly spectrotemporal-based representations of the entire auditory scene. Here, both attended and ignored speech streams are represented with almost equal fidelity, and a global representation of the full auditory scene with all its streams is a better candidate neural representation than that of individual streams being represented separately. We also show that higher-order auditory cortical areas, by contrast, represent the attended stream separately and with significantly higher fidelity than unattended streams. Furthermore, the unattended background streams are more faithfully represented as a single unsegregated background object rather than as separated objects. Together, these findings demonstrate the progression of the representations and processing of a complex acoustic scene up through the hierarchy of the human auditory cortex. SIGNIFICANCE STATEMENT Using magnetoencephalography recordings from human listeners in a simulated cocktail party environment, we investigate how a complex acoustic scene consisting of multiple speech sources is represented in separate hierarchical stages of the auditory cortex. We show that the primary-like areas in the auditory cortex use a dominantly spectrotemporal-based representation of the entire auditory scene, with both attended and unattended speech streams represented with almost equal fidelity. We also show that higher-order auditory cortical areas, by contrast, represent an attended speech stream separately from, and with significantly higher fidelity than, unattended speech streams. Furthermore, the unattended background streams are represented as a single undivided background object rather than as distinct background objects. Copyright © 2017 the authors 0270-6474/17/379189-08$15.00/0.
The effect of early visual deprivation on the neural bases of multisensory processing.
Guerreiro, Maria J S; Putzar, Lisa; Röder, Brigitte
2015-06-01
Developmental vision is deemed to be necessary for the maturation of multisensory cortical circuits. Thus far, this has only been investigated in animal studies, which have shown that congenital visual deprivation markedly reduces the capability of neurons to integrate cross-modal inputs. The present study investigated the effect of transient congenital visual deprivation on the neural mechanisms of multisensory processing in humans. We used functional magnetic resonance imaging to compare responses of visual and auditory cortical areas to visual, auditory and audio-visual stimulation in cataract-reversal patients and normally sighted controls. The results showed that cataract-reversal patients, unlike normally sighted controls, did not exhibit multisensory integration in auditory areas. Furthermore, cataract-reversal patients, but not normally sighted controls, exhibited lower visual cortical processing within visual cortex during audio-visual stimulation than during visual stimulation. These results indicate that congenital visual deprivation affects the capability of cortical areas to integrate cross-modal inputs in humans, possibly because visual processing is suppressed during cross-modal stimulation. Arguably, the lack of vision in the first months after birth may result in a reorganization of visual cortex, including the suppression of noisy visual input from the deprived retina in order to reduce interference during auditory processing. © The Author (2015). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Ciaramitaro, Vivian M; Chow, Hiu Mei; Eglington, Luke G
2017-03-01
We used a cross-modal dual task to examine how changing visual-task demands influenced auditory processing, namely auditory thresholds for amplitude- and frequency-modulated sounds. Observers had to attend to two consecutive intervals of sounds and report which interval contained the auditory stimulus that was modulated in amplitude (Experiment 1) or frequency (Experiment 2). During auditory-stimulus presentation, observers simultaneously attended to a rapid sequential visual presentation-two consecutive intervals of streams of visual letters-and had to report which interval contained a particular color (low load, demanding less attentional resources) or, in separate blocks of trials, which interval contained more of a target letter (high load, demanding more attentional resources). We hypothesized that if attention is a shared resource across vision and audition, an easier visual task should free up more attentional resources for auditory processing on an unrelated task, hence improving auditory thresholds. Auditory detection thresholds were lower-that is, auditory sensitivity was improved-for both amplitude- and frequency-modulated sounds when observers engaged in a less demanding (compared to a more demanding) visual task. In accord with previous work, our findings suggest that visual-task demands can influence the processing of auditory information on an unrelated concurrent task, providing support for shared attentional resources. More importantly, our results suggest that attending to information in a different modality, cross-modal attention, can influence basic auditory contrast sensitivity functions, highlighting potential similarities between basic mechanisms for visual and auditory attention.
Childhood Onset Schizophrenia: High Rate of Visual Hallucinations
ERIC Educational Resources Information Center
David, Christopher N.; Greenstein, Deanna; Clasen, Liv; Gochman, Pete; Miller, Rachel; Tossell, Julia W.; Mattai, Anand A.; Gogtay, Nitin; Rapoport, Judith L.
2011-01-01
Objective: To document high rates and clinical correlates of nonauditory hallucinations in childhood onset schizophrenia (COS). Method: Within a sample of 117 pediatric patients (mean age 13.6 years), diagnosed with COS, the presence of auditory, visual, somatic/tactile, and olfactory hallucinations was examined using the Scale for the Assessment…
Senkowski, Daniel; Saint-Amour, Dave; Kelly, Simon P; Foxe, John J
2007-07-01
In everyday life, we continuously and effortlessly integrate the multiple sensory inputs from objects in motion. For instance, the sound and the visual percept of vehicles in traffic provide us with complementary information about the location and motion of vehicles. Here, we used high-density electrical mapping and local auto-regressive average (LAURA) source estimation to study the integration of multisensory objects in motion as reflected in event-related potentials (ERPs). A randomized stream of naturalistic multisensory-audiovisual (AV), unisensory-auditory (A), and unisensory-visual (V) "splash" clips (i.e., a drop falling and hitting a water surface) was presented among non-naturalistic abstract motion stimuli. The visual clip onset preceded the "splash" onset by 100 ms for multisensory stimuli. For naturalistic objects early multisensory integration effects beginning 120-140 ms after sound onset were observed over posterior scalp, with distributed sources localized to occipital cortex, temporal lobule, insular, and medial frontal gyrus (MFG). These effects, together with longer latency interactions (210-250 and 300-350 ms) found in a widespread network of occipital, temporal, and frontal areas, suggest that naturalistic objects in motion are processed at multiple stages of multisensory integration. The pattern of integration effects differed considerably for non-naturalistic stimuli. Unlike naturalistic objects, no early interactions were found for non-naturalistic objects. The earliest integration effects for non-naturalistic stimuli were observed 210-250 ms after sound onset including large portions of the inferior parietal cortex (IPC). As such, there were clear differences in the cortical networks activated by multisensory motion stimuli as a consequence of the semantic relatedness (or lack thereof) of the constituent sensory elements.
Miceli, Luca; Bednarova, Rym; Rizzardo, Alessandro; Samogin, Valentina; Della Rocca, Giorgio
2015-01-01
Objective Italian Road Law limits driving while undergoing treatment with certain kinds of medication. Here, we report the results of a test, run as a smartphone application (app), assessing auditory and visual reflexes in a sample of 300 drivers. The scope of the test is to provide both the police force and medication-taking drivers with a tool that can evaluate the individual’s capacity to drive safely. Methods The test is run as an app for Apple iOS and Android mobile operating systems and facilitates four different reaction times to be assessed: simple visual and auditory reaction times and complex visual and auditory reaction times. Reference deciles were created for the test results obtained from a sample of 300 Italian subjects. Results lying within the first three deciles were considered as incompatible with safe driving capabilities. Results Performance is both age-related (r>0.5) and sex-related (female reaction times were significantly slower than those recorded for male subjects, P<0.05). Only 21% of the subjects were able to perform all four tests correctly. Conclusion We developed and fine-tuned a test called Safedrive that measures visual and auditory reaction times through a smartphone mobile device; the scope of the test is two-fold: to provide a clinical tool for the assessment of the driving capacity of individuals taking pain relief medication; to promote the sense of social responsibility in drivers who are on medication and provide these individuals with a means of testing their own capacity to drive safely. PMID:25709406
Jerger, Susan; Tye-Murray, Nancy; Damian, Markus F.; Abdi, Hervé
2016-01-01
Objectives Our research determined 1) how phonological priming of picture naming was affected by the mode (auditory-visual [AV] vs auditory), fidelity (intact vs non-intact auditory onsets), and lexical status (words vs nonwords) of speech stimuli in children with prelingual sensorineural hearing impairment (CHI) vs. children with normal hearing (CNH); and 2) how the degree of hearing impairment (HI), auditory word recognition, and age influenced results in CHI. Note that some of our AV stimuli were not the traditional bimodal input but instead they consisted of an intact consonant/rhyme in the visual track coupled to a non-intact onset/rhyme in the auditory track. Example stimuli for the word bag are: 1) AV: intact visual (b/ag) coupled to non-intact auditory (−b/ag) and 2) Auditory: static face coupled to the same non-intact auditory (−b/ag). Our question was whether the intact visual speech would “restore or fill-in” the non-intact auditory speech in which case performance for the same auditory stimulus would differ depending upon the presence/absence of visual speech. Design Participants were 62 CHI and 62 CNH whose ages had a group-mean and -distribution akin to that in the CHI group. Ages ranged from 4 to 14 years. All participants met the following criteria: 1) spoke English as a native language, 2) communicated successfully aurally/orally, and 3) had no diagnosed or suspected disabilities other than HI and its accompanying verbal problems. The phonological priming of picture naming was assessed with the multi-modal picture word task. Results Both CHI and CNH showed greater phonological priming from high than low fidelity stimuli and from AV than auditory speech. These overall fidelity and mode effects did not differ in the CHI vs. CNH—thus these CHI appeared to have sufficiently well specified phonological onset representations to support priming and visual speech did not appear to be a disproportionately important source of the CHI’s phonological knowledge. Two exceptions occurred, however. First—with regard to lexical status—both the CHI and CNH showed significantly greater phonological priming from the nonwords than words, a pattern consistent with the prediction that children are more aware of phonetics-phonology content for nonwords. This overall pattern of similarity between the groups was qualified by the finding that CHI showed more nearly equal priming by the high vs. low fidelity nonwords than the CNH; in other words, the CHI were less affected by the fidelity of the auditory input for nonwords. Second, auditory word recognition—but not degree of HI or age—uniquely influenced phonological priming by the nonwords presented AV. Conclusions With minor exceptions, phonological priming in CHI and CNH showed more similarities than differences. Importantly, we documented that the addition of visual speech significantly increased phonological priming in both groups. Clinically these data support intervention programs that view visual speech as a powerful asset for developing spoken language in CHI. PMID:27438867
Visual and brainstem auditory evoked potentials in infants with severe vitamin B12 deficiency.
Demir, Nihat; Koç, Ahmet; Abuhandan, Mahmut; Calik, Mustafa; Işcan, Akin
2015-01-01
Vitamin B12 plays an important role in the development of mental, motor, cognitive, and social functions via its role in DNA synthesis and nerve myelination. Its deficiency in infants might cause neuromotor retardation as well as megaloblastic anemia. The objective of this study was to investigate the effects of infantile vitamin B12 deficiency on evoked brain potentials and determine whether improvement could be obtained with vitamin B12 replacement at appropriate dosages. Thirty patients with vitamin B12 deficiency and 30 age-matched healthy controls were included in the study. Hematological parameters, visual evoked potentials, and brainstem auditory evoked potentials tests were performed prior to treatment, 1 week after treatment, and 3 months after treatment. Visual evoked potentials (VEPs) and brainstem auditory evoked potentials (BAEPs) were found to be prolonged in 16 (53.3%) and 15 (50%) patients, respectively. Statistically significant improvements in VEP and BAEP examinations were determined 3 months after treatment. Three months after treatment, VEP and BAEP examinations returned to normal in 81.3% and 53.3% of subjects with prolonged VEPs and BAEPs, respectively. These results demonstrate that vitamin B12 deficiency in infants causes significant impairment in the auditory and visual functioning tests of the brain, such as VEP and BAEP.
An auditory brain-computer interface evoked by natural speech
NASA Astrophysics Data System (ADS)
Lopez-Gordo, M. A.; Fernandez, E.; Romero, S.; Pelayo, F.; Prieto, Alberto
2012-06-01
Brain-computer interfaces (BCIs) are mainly intended for people unable to perform any muscular movement, such as patients in a complete locked-in state. The majority of BCIs interact visually with the user, either in the form of stimulation or biofeedback. However, visual BCIs challenge their ultimate use because they require the subjects to gaze, explore and shift eye-gaze using their muscles, thus excluding patients in a complete locked-in state or under the condition of the unresponsive wakefulness syndrome. In this study, we present a novel fully auditory EEG-BCI based on a dichotic listening paradigm using human voice for stimulation. This interface has been evaluated with healthy volunteers, achieving an average information transmission rate of 1.5 bits min-1 in full-length trials and 2.7 bits min-1 using the optimal length of trials, recorded with only one channel and without formal training. This novel technique opens the door to a more natural communication with users unable to use visual BCIs, with promising results in terms of performance, usability, training and cognitive effort.
The effects of auditory and visual cues on timing synchronicity for robotic rehabilitation.
English, Brittney A; Howard, Ayanna M
2017-07-01
In this paper, we explore how the integration of auditory and visual cues can help teach the timing of motor skills for the purpose of motor function rehabilitation. We conducted a study using Amazon's Mechanical Turk in which 106 participants played a virtual therapy game requiring wrist movements. To validate that our results would translate to trends that could also be observed during robotic rehabilitation sessions, we recreated this experiment with 11 participants using a robotic wrist rehabilitation system as means to control the therapy game. During interaction with the therapy game, users were asked to learn and reconstruct a tapping sequence as defined by musical notes flashing on the screen. Participants were divided into 2 test groups: (1) control: participants only received visual cues to prompt them on the timing sequence, and (2) experimental: participants received both visual and auditory cues to prompt them on the timing sequence. To evaluate performance, the timing and length of the sequence were measured. Performance was determined by calculating the number of trials needed before the participant was able to master the specific aspect of the timing task. In the virtual experiment, the group that received visual and auditory cues was able to master all aspects of the timing task faster than the visual cue only group with p-values < 0.05. This trend was also verified for participants using the robotic arm exoskeleton in the physical experiment.
Gender differences in identifying emotions from auditory and visual stimuli.
Waaramaa, Teija
2017-12-01
The present study focused on gender differences in emotion identification from auditory and visual stimuli produced by two male and two female actors. Differences in emotion identification from nonsense samples, language samples and prolonged vowels were investigated. It was also studied whether auditory stimuli can convey the emotional content of speech without visual stimuli, and whether visual stimuli can convey the emotional content of speech without auditory stimuli. The aim was to get a better knowledge of vocal attributes and a more holistic understanding of the nonverbal communication of emotion. Females tended to be more accurate in emotion identification than males. Voice quality parameters played a role in emotion identification in both genders. The emotional content of the samples was best conveyed by nonsense sentences, better than by prolonged vowels or shared native language of the speakers and participants. Thus, vocal non-verbal communication tends to affect the interpretation of emotion even in the absence of language. The emotional stimuli were better recognized from visual stimuli than auditory stimuli by both genders. Visual information about speech may not be connected to the language; instead, it may be based on the human ability to understand the kinetic movements in speech production more readily than the characteristics of the acoustic cues.
Binding in visual working memory: the role of the episodic buffer.
Baddeley, Alan D; Allen, Richard J; Hitch, Graham J
2011-05-01
The episodic buffer component of working memory is assumed to play a central role in the binding of features into objects, a process that was initially assumed to depend upon executive resources. Here, we review a program of work in which we specifically tested this assumption by studying the effects of a range of attentionally demanding concurrent tasks on the capacity to encode and retain both individual features and bound objects. We found no differential effect of concurrent load, even when the process of binding was made more demanding by separating the shape and color features spatially, temporally or across visual and auditory modalities. Bound features were however more readily disrupted by subsequent stimuli, a process we studied using a suffix paradigm. This suggested a need to assume a feature-based attentional filter followed by an object based storage process. Our results are interpreted within a modified version of the multicomponent working memory model. We also discuss work examining the role of the hippocampus in visual feature binding. Copyright © 2011 Elsevier Ltd. All rights reserved.
Bosen, Adam K.; Fleming, Justin T.; Brown, Sarah E.; Allen, Paul D.; O'Neill, William E.; Paige, Gary D.
2016-01-01
Vision typically has better spatial accuracy and precision than audition, and as a result often captures auditory spatial perception when visual and auditory cues are presented together. One determinant of visual capture is the amount of spatial disparity between auditory and visual cues: when disparity is small visual capture is likely to occur, and when disparity is large visual capture is unlikely. Previous experiments have used two methods to probe how visual capture varies with spatial disparity. First, congruence judgment assesses perceived unity between cues by having subjects report whether or not auditory and visual targets came from the same location. Second, auditory localization assesses the graded influence of vision on auditory spatial perception by having subjects point to the remembered location of an auditory target presented with a visual target. Previous research has shown that when both tasks are performed concurrently they produce similar measures of visual capture, but this may not hold when tasks are performed independently. Here, subjects alternated between tasks independently across three sessions. A Bayesian inference model of visual capture was used to estimate perceptual parameters for each session, which were compared across tasks. Results demonstrated that the range of audio-visual disparities over which visual capture was likely to occur were narrower in auditory localization than in congruence judgment, which the model indicates was caused by subjects adjusting their prior expectation that targets originated from the same location in a task-dependent manner. PMID:27815630
Attention is required for maintenance of feature binding in visual working memory
Heider, Maike; Husain, Masud
2013-01-01
Working memory and attention are intimately connected. However, understanding the relationship between the two is challenging. Currently, there is an important controversy about whether objects in working memory are maintained automatically or require resources that are also deployed for visual or auditory attention. Here we investigated the effects of loading attention resources on precision of visual working memory, specifically on correct maintenance of feature-bound objects, using a dual-task paradigm. Participants were presented with a memory array and were asked to remember either direction of motion of random dot kinematograms of different colour, or orientation of coloured bars. During the maintenance period, they performed a secondary visual or auditory task, with varying levels of load. Following a retention period, they adjusted a coloured probe to match either the motion direction or orientation of stimuli with the same colour in the memory array. This allowed us to examine the effects of an attention-demanding task performed during maintenance on precision of recall on the concurrent working memory task. Systematic increase in attention load during maintenance resulted in a significant decrease in overall working memory performance. Changes in overall performance were specifically accompanied by an increase in feature misbinding errors: erroneous reporting of nontarget motion or orientation. Thus in trials where attention resources were taxed, participants were more likely to respond with nontarget values rather than simply making random responses. Our findings suggest that resources used during attention-demanding visual or auditory tasks also contribute to maintaining feature-bound representations in visual working memory—but not necessarily other aspects of working memory. PMID:24266343
Attention is required for maintenance of feature binding in visual working memory.
Zokaei, Nahid; Heider, Maike; Husain, Masud
2014-01-01
Working memory and attention are intimately connected. However, understanding the relationship between the two is challenging. Currently, there is an important controversy about whether objects in working memory are maintained automatically or require resources that are also deployed for visual or auditory attention. Here we investigated the effects of loading attention resources on precision of visual working memory, specifically on correct maintenance of feature-bound objects, using a dual-task paradigm. Participants were presented with a memory array and were asked to remember either direction of motion of random dot kinematograms of different colour, or orientation of coloured bars. During the maintenance period, they performed a secondary visual or auditory task, with varying levels of load. Following a retention period, they adjusted a coloured probe to match either the motion direction or orientation of stimuli with the same colour in the memory array. This allowed us to examine the effects of an attention-demanding task performed during maintenance on precision of recall on the concurrent working memory task. Systematic increase in attention load during maintenance resulted in a significant decrease in overall working memory performance. Changes in overall performance were specifically accompanied by an increase in feature misbinding errors: erroneous reporting of nontarget motion or orientation. Thus in trials where attention resources were taxed, participants were more likely to respond with nontarget values rather than simply making random responses. Our findings suggest that resources used during attention-demanding visual or auditory tasks also contribute to maintaining feature-bound representations in visual working memory-but not necessarily other aspects of working memory.
Bell, Sherry Mee; McCallum, R Steve; Cox, Elizabeth A
2003-01-01
One hundred five participants from a random sample of elementary and middle school children completed measures of reading achievement and cognitive abilities presumed, based on a synthesis of current dyslexia research, to underlie reading. Factor analyses of these cognitive variables (including auditory processing, phonological awareness, short-term auditory memory, visual memory, rapid automatized naming, and visual processing speed) produced three empirically and theoretically derived factors (auditory processing, visual processing/speed, and memory), each of which contributed to the prediction of reading and spelling skills. Factor scores from the three factors combined predicted 85% of the variance associated with letter/sight word naming, 70% of the variance associated with reading comprehension, 73% for spelling, and 61% for phonetic decoding. The auditory processing factor was the strongest predictor, accounting for 27% to 43% of the variance across the different achievement areas. The results provide practitioner and researcher with theoretical and empirical support for the inclusion of measures of the three factors, in addition to specific measures of reading achievement, in a standardized assessment of dyslexia. Guidelines for a thorough, research-based assessment are provided.
Attention to memory: orienting attention to sound object representations.
Backer, Kristina C; Alain, Claude
2014-01-01
Despite a growing acceptance that attention and memory interact, and that attention can be focused on an active internal mental representation (i.e., reflective attention), there has been a paucity of work focusing on reflective attention to 'sound objects' (i.e., mental representations of actual sound sources in the environment). Further research on the dynamic interactions between auditory attention and memory, as well as its degree of neuroplasticity, is important for understanding how sound objects are represented, maintained, and accessed in the brain. This knowledge can then guide the development of training programs to help individuals with attention and memory problems. This review article focuses on attention to memory with an emphasis on behavioral and neuroimaging studies that have begun to explore the mechanisms that mediate reflective attentional orienting in vision and more recently, in audition. Reflective attention refers to situations in which attention is oriented toward internal representations rather than focused on external stimuli. We propose four general principles underlying attention to short-term memory. Furthermore, we suggest that mechanisms involved in orienting attention to visual object representations may also apply for orienting attention to sound object representations.
Perceptual asymmetries in greyscales: object-based versus space-based influences.
Thomas, Nicole A; Elias, Lorin J
2012-05-01
Neurologically normal individuals exhibit leftward spatial biases, resulting from object- and space-based biases; however their relative contributions to the overall bias remain unknown. Relative position within the display has not often been considered, with similar spatial conditions being collapsed across. Study 1 used the greyscales task to investigate the influence of relative position and object- and space-based contributions. One image in each greyscale pair was shifted towards the left or the right. A leftward object-based bias moderated by a bias to the centre was expected. Results confirmed this as a left object-based bias occurred in the right visual field, where the left side of the greyscale pairs was located in the centre visual field. Further, only lower visual field images exhibited a significant left bias in the left visual field. The left bias was also stronger when images were partially overlapping in the right visual field, demonstrating the importance of examining proximity. The second study examined whether object-based biases were stronger when actual objects, with directional lighting biases, were used. Direction of luminosity was congruent or incongruent with spatial location. A stronger object-based bias emerged overall; however a leftward bias was seen in congruent conditions and a rightward bias was seen in incongruent conditions. In conditions with significant biases, the lower visual field image was chosen most often. Results show that object- and space-based biases both contribute; however stimulus type allows either space- or object-based biases to be stronger. A lower visual field bias also interacts with these biases, leading the left bias to be eliminated under certain conditions. The complex interaction occurring between frame of reference and visual field makes spatial location extremely important in determining the strength of the leftward bias. Copyright © 2010 Elsevier Srl. All rights reserved.
Auditory perception and the control of spatially coordinated action of deaf and hearing children.
Savelsbergh, G J; Netelenbos, J B; Whiting, H T
1991-03-01
From birth onwards, auditory stimulation directs and intensifies visual orientation behaviour. In deaf children, by definition, auditory perception cannot take place and cannot, therefore, make a contribution to visual orientation to objects approaching from outside the initial field of view. In experiment 1, a difference in catching ability is demonstrated between deaf and hearing children (10-13 years of age) when the ball approached from the periphery or from outside the field of view. No differences in catching ability between the two groups occurred when the ball approached from within the field of view. A second experiment was conducted in order to determine if differences in catching ability between deaf and hearing children could be attributed to execution of slow orientating movements and/or slow reaction time as a result of the auditory loss. The deaf children showed slower reaction times. No differences were found in movement times between deaf and hearing children. Overall, the findings suggest that a lack of auditory stimulation during development can lead to deficiencies in the coordination of actions such as catching which are both spatially and temporally constrained.
A biologically plausible computational model for auditory object recognition.
Larson, Eric; Billimoria, Cyrus P; Sen, Kamal
2009-01-01
Object recognition is a task of fundamental importance for sensory systems. Although this problem has been intensively investigated in the visual system, relatively little is known about the recognition of complex auditory objects. Recent work has shown that spike trains from individual sensory neurons can be used to discriminate between and recognize stimuli. Multiple groups have developed spike similarity or dissimilarity metrics to quantify the differences between spike trains. Using a nearest-neighbor approach the spike similarity metrics can be used to classify the stimuli into groups used to evoke the spike trains. The nearest prototype spike train to the tested spike train can then be used to identify the stimulus. However, how biological circuits might perform such computations remains unclear. Elucidating this question would facilitate the experimental search for such circuits in biological systems, as well as the design of artificial circuits that can perform such computations. Here we present a biologically plausible model for discrimination inspired by a spike distance metric using a network of integrate-and-fire model neurons coupled to a decision network. We then apply this model to the birdsong system in the context of song discrimination and recognition. We show that the model circuit is effective at recognizing individual songs, based on experimental input data from field L, the avian primary auditory cortex analog. We also compare the performance and robustness of this model to two alternative models of song discrimination: a model based on coincidence detection and a model based on firing rate.
Maturation of Visual and Auditory Temporal Processing in School-Aged Children
ERIC Educational Resources Information Center
Dawes, Piers; Bishop, Dorothy V. M.
2008-01-01
Purpose: To examine development of sensitivity to auditory and visual temporal processes in children and the association with standardized measures of auditory processing and communication. Methods: Normative data on tests of visual and auditory processing were collected on 18 adults and 98 children aged 6-10 years of age. Auditory processes…
Auditory-Visual Speech Integration by Adults with and without Language-Learning Disabilities
ERIC Educational Resources Information Center
Norrix, Linda W.; Plante, Elena; Vance, Rebecca
2006-01-01
Auditory and auditory-visual (AV) speech perception skills were examined in adults with and without language-learning disabilities (LLD). The AV stimuli consisted of congruent consonant-vowel syllables (auditory and visual syllables matched in terms of syllable being produced) and incongruent McGurk syllables (auditory syllable differed from…
Gender difference in the theta/alpha ratio during the induction of peaceful audiovisual modalities.
Yang, Chia-Yen; Lin, Ching-Po
2015-09-01
Gender differences in emotional perception have been found in numerous psychological and psychophysiological studies. The conducting modalities in diverse characteristics of different sensory systems make it interesting to determine how cooperation and competition contribute to emotional experiences. We have previously estimated the bias from the match attributes of auditory and visual modalities and revealed specific brain activity frequency patterns related to a peaceful mood. In that multimodality experiment, we focused on how inner-quiet information is processed in the human brain, and found evidence of auditory domination from the theta-band activity. However, a simple quantitative description of these three frequency bands is lacking, and no studies have assessed the effects of peacefulness on the emotional state. Therefore, the aim of this study was to use magnetoencephalography to determine if gender differences exist (and when and where) in the frequency interactions underpinning the perception of peacefulness. This study provides evidence of auditory and visual domination in perceptual bias during multimodality processing of peaceful consciousness. The results of power ratio analyses suggest that the values of the theta/alpha ratio are associated with a modality as well as hemispheric asymmetries in the anterior-to-posterior direction, which shift from right to left with the auditory to visual stimulations in a peaceful mood. This means that the theta/alpha ratio might be useful for evaluating emotion. Moreover, the difference was found to be most pronounced for auditory domination and visual sensitivity in the female group.
Impairing the useful field of view in natural scenes: Tunnel vision versus general interference.
Ringer, Ryan V; Throneburg, Zachary; Johnson, Aaron P; Kramer, Arthur F; Loschky, Lester C
2016-01-01
A fundamental issue in visual attention is the relationship between the useful field of view (UFOV), the region of visual space where information is encoded within a single fixation, and eccentricity. A common assumption is that impairing attentional resources reduces the size of the UFOV (i.e., tunnel vision). However, most research has not accounted for eccentricity-dependent changes in spatial resolution, potentially conflating fixed visual properties with flexible changes in visual attention. Williams (1988, 1989) argued that foveal loads are necessary to reduce the size of the UFOV, producing tunnel vision. Without a foveal load, it is argued that the attentional decrement is constant across the visual field (i.e., general interference). However, other research asserts that auditory working memory (WM) loads produce tunnel vision. To date, foveal versus auditory WM loads have not been compared to determine if they differentially change the size of the UFOV. In two experiments, we tested the effects of a foveal (rotated L vs. T discrimination) task and an auditory WM (N-back) task on an extrafoveal (Gabor) discrimination task. Gabor patches were scaled for size and processing time to produce equal performance across the visual field under single-task conditions, thus removing the confound of eccentricity-dependent differences in visual sensitivity. The results showed that although both foveal and auditory loads reduced Gabor orientation sensitivity, only the foveal load interacted with retinal eccentricity to produce tunnel vision, clearly demonstrating task-specific changes to the form of the UFOV. This has theoretical implications for understanding the UFOV.
Speed on the dance floor: Auditory and visual cues for musical tempo.
London, Justin; Burger, Birgitta; Thompson, Marc; Toiviainen, Petri
2016-02-01
Musical tempo is most strongly associated with the rate of the beat or "tactus," which may be defined as the most prominent rhythmic periodicity present in the music, typically in a range of 1.67-2 Hz. However, other factors such as rhythmic density, mean rhythmic inter-onset interval, metrical (accentual) structure, and rhythmic complexity can affect perceived tempo (Drake, Gros, & Penel, 1999; London, 2011 Drake, Gros, & Penel, 1999; London, 2011). Visual information can also give rise to a perceived beat/tempo (Iversen, et al., 2015), and auditory and visual temporal cues can interact and mutually influence each other (Soto-Faraco & Kingstone, 2004; Spence, 2015). A five-part experiment was performed to assess the integration of auditory and visual information in judgments of musical tempo. Participants rated the speed of six classic R&B songs on a seven point scale while observing an animated figure dancing to them. Participants were presented with original and time-stretched (±5%) versions of each song in audio-only, audio+video (A+V), and video-only conditions. In some videos the animations were of spontaneous movements to the different time-stretched versions of each song, and in other videos the animations were of "vigorous" versus "relaxed" interpretations of the same auditory stimulus. Two main results were observed. First, in all conditions with audio, even though participants were able to correctly rank the original vs. time-stretched versions of each song, a song-specific tempo-anchoring effect was observed, such that sped-up versions of slower songs were judged to be faster than slowed-down versions of faster songs, even when their objective beat rates were the same. Second, when viewing a vigorous dancing figure in the A+V condition, participants gave faster tempo ratings than from the audio alone or when viewing the same audio with a relaxed dancing figure. The implications of this illusory tempo percept for cross-modal sensory integration and working memory are discussed, and an "energistic" account of tempo perception is proposed. Copyright © 2015 Elsevier B.V. All rights reserved.
Educational Testing of an Auditory Display of Mars Gamma Ray Spectrometer Data
NASA Astrophysics Data System (ADS)
Keller, J. M.; Pompea, S. M.; Prather, E. E.; Slater, T. F.; Boynton, W. V.; Enos, H. L.; Quinn, M.
2003-12-01
A unique, alternative educational and public outreach product was created to investigate the use and effectiveness of auditory displays in science education. The product, which allows students to both visualize and hear seasonal variations in data detected by the Gamma Ray Spectrometer (GRS) aboard the Mars Odyssey spacecraft, consists of an animation of false-color maps of hydrogen concentrations on Mars along with a musical presentation, or sonification, of the same data. Learners can access this data using the visual false-color animation, the auditory false-pitch sonification, or both. Central to the development of this product is the question of its educational effectiveness and implementation. During the spring 2003 semester, three sections of an introductory astronomy course, each with ˜100 non-science undergraduates, were presented with one of three different exposures to GRS hydrogen data: one auditory, one visual, and one both auditory and visual. Student achievement data was collected through use of multiple-choice and open-ended surveys administered before, immediately following, and three and six weeks following the experiment. It was found that the three student groups performed equally well in their ability to perceive and interpret the data presented. Additionally, student groups exposed to the auditory display reported a higher interest and engagement level than the student group exposed to the visual data alone. Based upon this preliminary testing,we have made improvements to both the educational product and our evaluation protocol. This fall, we will conduct further testing with ˜100 additional students, half receiving auditory data and half receiving visual data, and we will conduct interviews with individual students as they interface with the auditory display. Through this process, we hope to further assess both learning and engagement gains associated with alternative and multi-modal representations of scientific data that extend beyond traditional visualization approaches. This work has been supported by the GRS Education and Public Outreach Program and the NASA Spacegrant Graduate Fellowship Program.
Lu, Sara A; Wickens, Christopher D; Prinet, Julie C; Hutchins, Shaun D; Sarter, Nadine; Sebok, Angelia
2013-08-01
The aim of this study was to integrate empirical data showing the effects of interrupting task modality on the performance of an ongoing visual-manual task and the interrupting task itself. The goal is to support interruption management and the design of multimodal interfaces. Multimodal interfaces have been proposed as a promising means to support interruption management.To ensure the effectiveness of this approach, their design needs to be based on an analysis of empirical data concerning the effectiveness of individual and redundant channels of information presentation. Three meta-analyses were conducted to contrast performance on an ongoing visual task and interrupting tasks as a function of interrupting task modality (auditory vs. tactile, auditory vs. visual, and single modality vs. redundant auditory-visual). In total, 68 studies were included and six moderator variables were considered. The main findings from the meta-analyses are that response times are faster for tactile interrupting tasks in case of low-urgency messages.Accuracy is higher with tactile interrupting tasks for low-complexity signals but higher with auditory interrupting tasks for high-complexity signals. Redundant auditory-visual combinations are preferable for communication tasks during high workload and with a small visual angle of separation. The three meta-analyses contribute to the knowledge base in multimodal information processing and design. They highlight the importance of moderator variables in predicting the effects of interruption task modality on ongoing and interrupting task performance. The findings from this research will help inform the design of multimodal interfaces in data-rich, event-driven domains.
1981-07-10
Pohlmann, L. D. Some models of observer behavior in two-channel auditory signal detection. Perception and Psychophy- sics, 1973, 14, 101-109. Spelke...spatial), and processing modalities ( auditory versus visual input, vocal versus manual response). If validated, this configuration has both theoretical...conclusion that auditory and visual processes will compete, as will spatial and verbal (albeit to a lesser extent than auditory - auditory , visual-visual
Attention distributed across sensory modalities enhances perceptual performance
Mishra, Jyoti; Gazzaley, Adam
2012-01-01
This study investigated the interaction between top-down attentional control and multisensory processing in humans. Using semantically congruent and incongruent audiovisual stimulus streams, we found target detection to be consistently improved in the setting of distributed audiovisual attention versus focused visual attention. This performance benefit was manifested as faster reaction times for congruent audiovisual stimuli, and as accuracy improvements for incongruent stimuli, resulting in a resolution of stimulus interference. Electrophysiological recordings revealed that these behavioral enhancements were associated with reduced neural processing of both auditory and visual components of the audiovisual stimuli under distributed vs. focused visual attention. These neural changes were observed at early processing latencies, within 100–300 ms post-stimulus onset, and localized to auditory, visual, and polysensory temporal cortices. These results highlight a novel neural mechanism for top-down driven performance benefits via enhanced efficacy of sensory neural processing during distributed audiovisual attention relative to focused visual attention. PMID:22933811
Age-equivalent top-down modulation during cross-modal selective attention.
Guerreiro, Maria J S; Anguera, Joaquin A; Mishra, Jyoti; Van Gerven, Pascal W M; Gazzaley, Adam
2014-12-01
Selective attention involves top-down modulation of sensory cortical areas, such that responses to relevant information are enhanced whereas responses to irrelevant information are suppressed. Suppression of irrelevant information, unlike enhancement of relevant information, has been shown to be deficient in aging. Although these attentional mechanisms have been well characterized within the visual modality, little is known about these mechanisms when attention is selectively allocated across sensory modalities. The present EEG study addressed this issue by testing younger and older participants in three different tasks: Participants attended to the visual modality and ignored the auditory modality, attended to the auditory modality and ignored the visual modality, or passively perceived information presented through either modality. We found overall modulation of visual and auditory processing during cross-modal selective attention in both age groups. Top-down modulation of visual processing was observed as a trend toward enhancement of visual information in the setting of auditory distraction, but no significant suppression of visual distraction when auditory information was relevant. Top-down modulation of auditory processing, on the other hand, was observed as suppression of auditory distraction when visual stimuli were relevant, but no significant enhancement of auditory information in the setting of visual distraction. In addition, greater visual enhancement was associated with better recognition of relevant visual information, and greater auditory distractor suppression was associated with a better ability to ignore auditory distraction. There were no age differences in these effects, suggesting that when relevant and irrelevant information are presented through different sensory modalities, selective attention remains intact in older age.
Domain-specific impairment of source memory following a right posterior medial temporal lobe lesion.
Peters, Jan; Koch, Benno; Schwarz, Michael; Daum, Irene
2007-01-01
This single case analysis of memory performance in a patient with an ischemic lesion affecting posterior but not anterior right medial temporal lobe (MTL) indicates that source memory can be disrupted in a domain-specific manner. The patient showed normal recognition memory for gray-scale photos of objects (visual condition) and spoken words (auditory condition). While memory for visual source (texture/color of the background against which pictures appeared) was within the normal range, auditory source memory (male/female speaker voice) was at chance level, a performance pattern significantly different from the control group. This dissociation is consistent with recent fMRI evidence of anterior/posterior MTL dissociations depending upon the nature of source information (visual texture/color vs. auditory speaker voice). The findings are in good agreement with the view of dissociable memory processing by the perirhinal cortex (anterior MTL) and parahippocampal cortex (posterior MTL), depending upon the neocortical input that these regions receive. (c) 2007 Wiley-Liss, Inc.
The effects of aging on the working memory processes of multimodal information.
Solesio-Jofre, Elena; López-Frutos, José María; Cashdollar, Nathan; Aurtenetxe, Sara; de Ramón, Ignacio; Maestú, Fernando
2017-05-01
Normal aging is associated with deficits in working memory processes. However, the majority of research has focused on storage or inhibitory processes using unimodal paradigms, without addressing their relationships using different sensory modalities. Hence, we pursued two objectives. First, was to examine the effects of aging on storage and inhibitory processes. Second, was to evaluate aging effects on multisensory integration of visual and auditory stimuli. To this end, young and older participants performed a multimodal task for visual and auditory pairs of stimuli with increasing memory load at encoding and interference during retention. Our results showed an age-related increased vulnerability to interrupting and distracting interference reflecting inhibitory deficits related to the off-line reactivation and on-line suppression of relevant and irrelevant information, respectively. Storage capacity was impaired with increasing task demands in both age groups. Additionally, older adults showed a deficit in multisensory integration, with poorer performance for new visual compared to new auditory information.
Sheffield, Benjamin M; Schuchman, Gerald; Bernstein, Joshua G W
2015-01-01
As cochlear implant (CI) acceptance increases and candidacy criteria are expanded, these devices are increasingly recommended for individuals with less than profound hearing loss. As a result, many individuals who receive a CI also retain acoustic hearing, often in the low frequencies, in the nonimplanted ear (i.e., bimodal hearing) and in some cases in the implanted ear (i.e., hybrid hearing) which can enhance the performance achieved by the CI alone. However, guidelines for clinical decisions pertaining to cochlear implantation are largely based on expectations for postsurgical speech-reception performance with the CI alone in auditory-only conditions. A more comprehensive prediction of postimplant performance would include the expected effects of residual acoustic hearing and visual cues on speech understanding. An evaluation of auditory-visual performance might be particularly important because of the complementary interaction between the speech information relayed by visual cues and that contained in the low-frequency auditory signal. The goal of this study was to characterize the benefit provided by residual acoustic hearing to consonant identification under auditory-alone and auditory-visual conditions for CI users. Additional information regarding the expected role of residual hearing in overall communication performance by a CI listener could potentially lead to more informed decisions regarding cochlear implantation, particularly with respect to recommendations for or against bilateral implantation for an individual who is functioning bimodally. Eleven adults 23 to 75 years old with a unilateral CI and air-conduction thresholds in the nonimplanted ear equal to or better than 80 dB HL for at least one octave frequency between 250 and 1000 Hz participated in this study. Consonant identification was measured for conditions involving combinations of electric hearing (via the CI), acoustic hearing (via the nonimplanted ear), and speechreading (visual cues). The results suggest that the benefit to CI consonant-identification performance provided by the residual acoustic hearing is even greater when visual cues are also present. An analysis of consonant confusions suggests that this is because the voicing cues provided by the residual acoustic hearing are highly complementary with the mainly place-of-articulation cues provided by the visual stimulus. These findings highlight the need for a comprehensive prediction of trimodal (acoustic, electric, and visual) postimplant speech-reception performance to inform implantation decisions. The increased influence of residual acoustic hearing under auditory-visual conditions should be taken into account when considering surgical procedures or devices that are intended to preserve acoustic hearing in the implanted ear. This is particularly relevant when evaluating the candidacy of a current bimodal CI user for a second CI (i.e., bilateral implantation). Although recent developments in CI technology and surgical techniques have increased the likelihood of preserving residual acoustic hearing, preservation cannot be guaranteed in each individual case. Therefore, the potential gain to be derived from bilateral implantation needs to be weighed against the possible loss of the benefit provided by residual acoustic hearing.
The perception of coherent and non-coherent auditory objects: a signature in gamma frequency band.
Knief, A; Schulte, M; Bertran, O; Pantev, C
2000-07-01
The pertinence of gamma band activity in magnetoencephalographic and electroencephalographic recordings for the performance of a gestalt recognition process is a question at issue. We investigated the functional relevance of gamma band activity for the perception of auditory objects. An auditory experiment was performed as an analog to the Kanizsa experiment in the visual modality, comprising four different coherent and non-coherent stimuli. For the first time functional differences of evoked gamma band activity due to the perception of these stimuli were demonstrated by various methods (localization of sources, wavelet analysis and independent component analysis, ICA). Responses to coherent stimuli were found to have more features in common compared to non-coherent stimuli (e.g. closer located sources and smaller number of ICA components). The results point to the existence of a pitch processor in the auditory pathway.
Implications of differences of echoic and iconic memory for the design of multimodal displays
NASA Astrophysics Data System (ADS)
Glaser, Daniel Shields
It has been well documented that dual-task performance is more accurate when each task is based on a different sensory modality. It is also well documented that the memory for each sense has unequal durations, particularly visual (iconic) and auditory (echoic) sensory memory. In this dissertation I address whether differences in sensory memory (e.g. iconic vs. echoic) duration have implications for the design of a multimodal display. Since echoic memory persists for seconds in contrast to iconic memory which persists only for milliseconds, one of my hypotheses was that in a visual-auditory dual task condition, performance will be better if the visual task is completed before the auditory task than vice versa. In Experiment 1 I investigated whether the ability to recall multi-modal stimuli is affected by recall order, with each mode being responded to separately. In Experiment 2, I investigated the effects of stimulus order and recall order on the ability to recall information from a multi-modal presentation. In Experiment 3 I investigated the effect of presentation order using a more realistic task. In Experiment 4 I investigated whether manipulating the presentation order of stimuli of different modalities improves humans' ability to combine the information from the two modalities in order to make decision based on pre-learned rules. As hypothesized, accuracy was greater when visual stimuli were responded to first and auditory stimuli second. Also as hypothesized, performance was improved by not presenting both sequences at the same time, limiting the perceptual load. Contrary to my expectations, overall performance was better when a visual sequence was presented before the audio sequence. Though presenting a visual sequence prior to an auditory sequence lengthens the visual retention interval, it also provides time for visual information to be recoded to a more robust form without disruption. Experiment 4 demonstrated that decision making requiring the integration of visual and auditory information is enhanced by reducing workload and promoting a strategic use of echoic memory. A framework for predicting Experiment 1-4 results is proposed and evaluated.
Overview of EVE - the event visualization environment of ROOT
NASA Astrophysics Data System (ADS)
Tadel, Matevž
2010-04-01
EVE is a high-level visualization library using ROOT's data-processing, GUI and OpenGL interfaces. It is designed as a framework for object management offering hierarchical data organization, object interaction and visualization via GUI and OpenGL representations. Automatic creation of 2D projected views is also supported. On the other hand, it can serve as an event visualization toolkit satisfying most HEP requirements: visualization of geometry, simulated and reconstructed data such as hits, clusters, tracks and calorimeter information. Special classes are available for visualization of raw-data. Object-interaction layer allows for easy selection and highlighting of objects and their derived representations (projections) across several views (3D, Rho-Z, R-Phi). Object-specific tooltips are provided in both GUI and GL views. The visual-configuration layer of EVE is built around a data-base of template objects that can be applied to specific instances of visualization objects to ensure consistent object presentation. The data-base can be retrieved from a file, edited during the framework operation and stored to file. EVE prototype was developed within the ALICE collaboration and has been included into ROOT in December 2007. Since then all EVE components have reached maturity. EVE is used as the base of AliEve visualization framework in ALICE, Firework physics-oriented event-display in CMS, and as the visualization engine of FairRoot in FAIR.
Altieri, Nicholas; Pisoni, David B.; Townsend, James T.
2012-01-01
Summerfield (1987) proposed several accounts of audiovisual speech perception, a field of research that has burgeoned in recent years. The proposed accounts included the integration of discrete phonetic features, vectors describing the values of independent acoustical and optical parameters, the filter function of the vocal tract, and articulatory dynamics of the vocal tract. The latter two accounts assume that the representations of audiovisual speech perception are based on abstract gestures, while the former two assume that the representations consist of symbolic or featural information obtained from visual and auditory modalities. Recent converging evidence from several different disciplines reveals that the general framework of Summerfield’s feature-based theories should be expanded. An updated framework building upon the feature-based theories is presented. We propose a processing model arguing that auditory and visual brain circuits provide facilitatory information when the inputs are correctly timed, and that auditory and visual speech representations do not necessarily undergo translation into a common code during information processing. Future research on multisensory processing in speech perception should investigate the connections between auditory and visual brain regions, and utilize dynamic modeling tools to further understand the timing and information processing mechanisms involved in audiovisual speech integration. PMID:21968081
Altieri, Nicholas; Pisoni, David B; Townsend, James T
2011-01-01
Summerfield (1987) proposed several accounts of audiovisual speech perception, a field of research that has burgeoned in recent years. The proposed accounts included the integration of discrete phonetic features, vectors describing the values of independent acoustical and optical parameters, the filter function of the vocal tract, and articulatory dynamics of the vocal tract. The latter two accounts assume that the representations of audiovisual speech perception are based on abstract gestures, while the former two assume that the representations consist of symbolic or featural information obtained from visual and auditory modalities. Recent converging evidence from several different disciplines reveals that the general framework of Summerfield's feature-based theories should be expanded. An updated framework building upon the feature-based theories is presented. We propose a processing model arguing that auditory and visual brain circuits provide facilitatory information when the inputs are correctly timed, and that auditory and visual speech representations do not necessarily undergo translation into a common code during information processing. Future research on multisensory processing in speech perception should investigate the connections between auditory and visual brain regions, and utilize dynamic modeling tools to further understand the timing and information processing mechanisms involved in audiovisual speech integration.
Statistical learning and auditory processing in children with music training: An ERP study.
Mandikal Vasuki, Pragati Rao; Sharma, Mridula; Ibrahim, Ronny; Arciuli, Joanne
2017-07-01
The question whether musical training is associated with enhanced auditory and cognitive abilities in children is of considerable interest. In the present study, we compared children with music training versus those without music training across a range of auditory and cognitive measures, including the ability to detect implicitly statistical regularities in input (statistical learning). Statistical learning of regularities embedded in auditory and visual stimuli was measured in musically trained and age-matched untrained children between the ages of 9-11years. In addition to collecting behavioural measures, we recorded electrophysiological measures to obtain an online measure of segmentation during the statistical learning tasks. Musically trained children showed better performance on melody discrimination, rhythm discrimination, frequency discrimination, and auditory statistical learning. Furthermore, grand-averaged ERPs showed that triplet onset (initial stimulus) elicited larger responses in the musically trained children during both auditory and visual statistical learning tasks. In addition, children's music skills were associated with performance on auditory and visual behavioural statistical learning tasks. Our data suggests that individual differences in musical skills are associated with children's ability to detect regularities. The ERP data suggest that musical training is associated with better encoding of both auditory and visual stimuli. Although causality must be explored in further research, these results may have implications for developing music-based remediation strategies for children with learning impairments. Copyright © 2017 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.
Why Do Pictures, but Not Visual Words, Reduce Older Adults’ False Memories?
Smith, Rebekah E.; Hunt, R. Reed; Dunlap, Kathryn R.
2015-01-01
Prior work shows that false memories resulting from the study of associatively related lists are reduced for both young and older adults when the auditory presentation of study list words is accompanied by related pictures relative to when auditory word presentation is combined with visual presentation of the word. In contrast, young adults, but not older adults, show a reduction in false memories when presented with the visual word along with the auditory word relative to hearing the word only. In both the case of pictures relative to visual words and visual words relative to auditory words alone, the benefit of picture and visual words in reducing false memories has been explained in terms of monitoring for perceptual information. In our first experiment we provide the first simultaneous comparison of all three study presentation modalities (auditory only, auditory plus visual word, and auditory plus picture). Young and older adults show a reduction in false memories in the auditory plus picture condition, but only young adults show a reduction in the visual word condition relative to the auditory only condition. A second experiment investigates whether older adults fail to show a reduction in false memory in the visual word condition because they do not encode perceptual information in the visual word condition. In addition, the second experiment provides evidence that the failure of older adults to show the benefits of visual word presentation is related to reduced cognitive resources. PMID:26213799
Why do pictures, but not visual words, reduce older adults' false memories?
Smith, Rebekah E; Hunt, R Reed; Dunlap, Kathryn R
2015-09-01
Prior work shows that false memories resulting from the study of associatively related lists are reduced for both young and older adults when the auditory presentation of study list words is accompanied by related pictures relative to when auditory word presentation is combined with visual presentation of the word. In contrast, young adults, but not older adults, show a reduction in false memories when presented with the visual word along with the auditory word relative to hearing the word only. In both cases of pictures relative to visual words and visual words relative to auditory words alone, the benefit of picture and visual words in reducing false memories has been explained in terms of monitoring for perceptual information. In our first experiment, we provide the first simultaneous comparison of all 3 study presentation modalities (auditory only, auditory plus visual word, and auditory plus picture). Young and older adults show a reduction in false memories in the auditory plus picture condition, but only young adults show a reduction in the visual word condition relative to the auditory only condition. A second experiment investigates whether older adults fail to show a reduction in false memory in the visual word condition because they do not encode perceptual information in the visual word condition. In addition, the second experiment provides evidence that the failure of older adults to show the benefits of visual word presentation is related to reduced cognitive resources. (PsycINFO Database Record (c) 2015 APA, all rights reserved).
Policing Fish at Boston's Museum of Science: Studying Audiovisual Interaction in the Wild
Sun, Yile; Hickey, Timothy J.; Shinn-Cunningham, Barbara; Sekuler, Robert
2015-01-01
Boston's Museum of Science supports researchers whose projects advance science and provide educational opportunities to the Museum's visitors. For our project, 60 visitors to the Museum played “Fish Police!!,” a video game that examines audiovisual integration, including the ability to ignore irrelevant sensory information. Players, who ranged in age from 6 to 82 years, made speeded responses to computer-generated fish that swam rapidly across a tablet display. Responses were to be based solely on the rate (6 or 8 Hz) at which a fish's size modulated, sinusoidally growing and shrinking. Accompanying each fish was a task-irrelevant broadband sound, amplitude modulated at either 6 or 8 Hz. The rates of visual and auditory modulation were either Congruent (both 6 Hz or 8 Hz) or Incongruent (6 and 8 or 8 and 6 Hz). Despite being instructed to ignore the sound, players of all ages responded more accurately and faster when a fish's auditory and visual signatures were Congruent. In a controlled laboratory setting, a related task produced comparable results, demonstrating the robustness of the audiovisual interaction reported here. Some suggestions are made for conducting research in public settings. PMID:27433321
Policing Fish at Boston's Museum of Science: Studying Audiovisual Interaction in the Wild.
Goldberg, Hannah; Sun, Yile; Hickey, Timothy J; Shinn-Cunningham, Barbara; Sekuler, Robert
2015-08-01
Boston's Museum of Science supports researchers whose projects advance science and provide educational opportunities to the Museum's visitors. For our project, 60 visitors to the Museum played "Fish Police!!," a video game that examines audiovisual integration, including the ability to ignore irrelevant sensory information. Players, who ranged in age from 6 to 82 years, made speeded responses to computer-generated fish that swam rapidly across a tablet display. Responses were to be based solely on the rate (6 or 8 Hz) at which a fish's size modulated, sinusoidally growing and shrinking. Accompanying each fish was a task-irrelevant broadband sound, amplitude modulated at either 6 or 8 Hz. The rates of visual and auditory modulation were either Congruent (both 6 Hz or 8 Hz) or Incongruent (6 and 8 or 8 and 6 Hz). Despite being instructed to ignore the sound, players of all ages responded more accurately and faster when a fish's auditory and visual signatures were Congruent. In a controlled laboratory setting, a related task produced comparable results, demonstrating the robustness of the audiovisual interaction reported here. Some suggestions are made for conducting research in public settings.
Auditory Sensory Substitution is Intuitive and Automatic with Texture Stimuli
Stiles, Noelle R. B.; Shimojo, Shinsuke
2015-01-01
Millions of people are blind worldwide. Sensory substitution (SS) devices (e.g., vOICe) can assist the blind by encoding a video stream into a sound pattern, recruiting visual brain areas for auditory analysis via crossmodal interactions and plasticity. SS devices often require extensive training to attain limited functionality. In contrast to conventional attention-intensive SS training that starts with visual primitives (e.g., geometrical shapes), we argue that sensory substitution can be engaged efficiently by using stimuli (such as textures) associated with intrinsic crossmodal mappings. Crossmodal mappings link images with sounds and tactile patterns. We show that intuitive SS sounds can be matched to the correct images by naive sighted participants just as well as by intensively-trained participants. This result indicates that existing crossmodal interactions and amodal sensory cortical processing may be as important in the interpretation of patterns by SS as crossmodal plasticity (e.g., the strengthening of existing connections or the formation of new ones), especially at the earlier stages of SS usage. An SS training procedure based on crossmodal mappings could both considerably improve participant performance and shorten training times, thereby enabling SS devices to significantly expand blind capabilities. PMID:26490260
Audiovisual Perception of Congruent and Incongruent Dutch Front Vowels
ERIC Educational Resources Information Center
Valkenier, Bea; Duyne, Jurriaan Y.; Andringa, Tjeerd C.; Baskent, Deniz
2012-01-01
Purpose: Auditory perception of vowels in background noise is enhanced when combined with visually perceived speech features. The objective of this study was to investigate whether the influence of visual cues on vowel perception extends to incongruent vowels, in a manner similar to the McGurk effect observed with consonants. Method:…
Visual and auditory perception in preschool children at risk for dyslexia.
Ortiz, Rosario; Estévez, Adelina; Muñetón, Mercedes; Domínguez, Carolina
2014-11-01
Recently, there has been renewed interest in perceptive problems of dyslexics. A polemic research issue in this area has been the nature of the perception deficit. Another issue is the causal role of this deficit in dyslexia. Most studies have been carried out in adult and child literates; consequently, the observed deficits may be the result rather than the cause of dyslexia. This study addresses these issues by examining visual and auditory perception in children at risk for dyslexia. We compared children from preschool with and without risk for dyslexia in auditory and visual temporal order judgment tasks and same-different discrimination tasks. Identical visual and auditory, linguistic and nonlinguistic stimuli were presented in both tasks. The results revealed that the visual as well as the auditory perception of children at risk for dyslexia is impaired. The comparison between groups in auditory and visual perception shows that the achievement of children at risk was lower than children without risk for dyslexia in the temporal tasks. There were no differences between groups in auditory discrimination tasks. The difficulties of children at risk in visual and auditory perceptive processing affected both linguistic and nonlinguistic stimuli. Our conclusions are that children at risk for dyslexia show auditory and visual perceptive deficits for linguistic and nonlinguistic stimuli. The auditory impairment may be explained by temporal processing problems and these problems are more serious for processing language than for processing other auditory stimuli. These visual and auditory perceptive deficits are not the consequence of failing to learn to read, thus, these findings support the theory of temporal processing deficit. Copyright © 2014 Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
Altvater-Mackensen, Nicole; Grossmann, Tobias
2015-01-01
Infants' language exposure largely involves face-to-face interactions providing acoustic and visual speech cues but also social cues that might foster language learning. Yet, both audiovisual speech information and social information have so far received little attention in research on infants' early language development. Using a preferential…
Superior Temporal Activation in Response to Dynamic Audio-Visual Emotional Cues
ERIC Educational Resources Information Center
Robins, Diana L.; Hunyadi, Elinora; Schultz, Robert T.
2009-01-01
Perception of emotion is critical for successful social interaction, yet the neural mechanisms underlying the perception of dynamic, audio-visual emotional cues are poorly understood. Evidence from language and sensory paradigms suggests that the superior temporal sulcus and gyrus (STS/STG) play a key role in the integration of auditory and visual…
Vitality Forms Expressed by Others Modulate Our Own Motor Response: A Kinematic Study
Di Cesare, Giuseppe; De Stefani, Elisa; Gentilucci, Maurizio; De Marco, Doriana
2017-01-01
During social interaction, actions, and words may be expressed in different ways, for example, gently or rudely. A handshake can be gentle or vigorous and, similarly, tone of voice can be pleasant or rude. These aspects of social communication have been named vitality forms by Daniel Stern. Vitality forms represent how an action is performed and characterize all human interactions. In spite of their importance in social life, to date it is not clear whether the vitality forms expressed by the agent can influence the execution of a subsequent action performed by the receiver. To shed light on this matter, in the present study we carried out a kinematic study aiming to assess whether and how visual and auditory properties of vitality forms expressed by others influenced the motor response of participants. In particular, participants were presented with video-clips showing a male and a female actor performing a “giving request” (give me) or a “taking request” (take it) in visual, auditory, and mixed modalities (visual and auditory). Most importantly, requests were expressed with rude or gentle vitality forms. After the actor's request, participants performed a subsequent action. Results showed that vitality forms expressed by the actors influenced the kinematic parameters of the participants' actions regardless to the modality by which they are conveyed. PMID:29204114
ERIC Educational Resources Information Center
Erdener, Dogu
2016-01-01
Traditionally, second language (L2) instruction has emphasised auditory-based instruction methods. However, this approach is restrictive in the sense that speech perception by humans is not just an auditory phenomenon but a multimodal one, and specifically, a visual one as well. In the past decade, experimental studies have shown that the…
Acquisition of L2 Japanese Geminates: Training with Waveform Displays
ERIC Educational Resources Information Center
Motohashi-Saigo, Miki; Hardison, Debra M.
2009-01-01
The value of waveform displays as visual feedback was explored in a training study involving perception and production of L2 Japanese by beginning-level L1 English learners. A pretest-posttest design compared auditory-visual (AV) and auditory-only (A-only) Web-based training. Stimuli were singleton and geminate /t,k,s/ followed by /a,u/ in two…
Melodic sound enhances visual awareness of congruent musical notes, but only if you can read music.
Lee, Minyoung; Blake, Randolph; Kim, Sujin; Kim, Chai-Youn
2015-07-07
Predictive influences of auditory information on resolution of visual competition were investigated using music, whose visual symbolic notation is familiar only to those with musical training. Results from two experiments using different experimental paradigms revealed that melodic congruence between what is seen and what is heard impacts perceptual dynamics during binocular rivalry. This bisensory interaction was observed only when the musical score was perceptually dominant, not when it was suppressed from awareness, and it was observed only in people who could read music. Results from two ancillary experiments showed that this effect of congruence cannot be explained by differential patterns of eye movements or by differential response sluggishness associated with congruent score/melody combinations. Taken together, these results demonstrate robust audiovisual interaction based on high-level, symbolic representations and its predictive influence on perceptual dynamics during binocular rivalry.
Most, Tova; Michaelis, Hilit
2012-08-01
This study aimed to investigate the effect of hearing loss (HL) on emotion-perception ability among young children with and without HL. A total of 26 children 4.0-6.6 years of age with prelingual sensory-neural HL ranging from moderate to profound and 14 children with normal hearing (NH) participated. They were asked to identify happiness, anger, sadness, and fear expressed by an actress when uttering the same neutral nonsense sentence. Their auditory, visual, and auditory-visual perceptions of the emotional content were assessed. The accuracy of emotion perception among children with HL was lower than that of the NH children in all 3 conditions: auditory, visual, and auditory-visual. Perception through the combined auditory-visual mode significantly surpassed the auditory or visual modes alone in both groups, indicating that children with HL utilized the auditory information for emotion perception. No significant differences in perception emerged according to degree of HL. In addition, children with profound HL and cochlear implants did not perform differently from children with less severe HL who used hearing aids. The relatively high accuracy of emotion perception by children with HL may be explained by their intensive rehabilitation, which emphasizes suprasegmental and paralinguistic aspects of verbal communication.
Synchronization with competing visual and auditory rhythms: bouncing ball meets metronome.
Hove, Michael J; Iversen, John R; Zhang, Allen; Repp, Bruno H
2013-07-01
Synchronization of finger taps with periodically flashing visual stimuli is known to be much more variable than synchronization with an auditory metronome. When one of these rhythms is the synchronization target and the other serves as a distracter at various temporal offsets, strong auditory dominance is observed. However, it has recently been shown that visuomotor synchronization improves substantially with moving stimuli such as a continuously bouncing ball. The present study pitted a bouncing ball against an auditory metronome in a target-distracter synchronization paradigm, with the participants being auditory experts (musicians) and visual experts (video gamers and ball players). Synchronization was still less variable with auditory than with visual target stimuli in both groups. For musicians, auditory stimuli tended to be more distracting than visual stimuli, whereas the opposite was the case for the visual experts. Overall, there was no main effect of distracter modality. Thus, a distracting spatiotemporal visual rhythm can be as effective as a distracting auditory rhythm in its capacity to perturb synchronous movement, but its effectiveness also depends on modality-specific expertise.
Systems and Methods for Data Visualization Using Three-Dimensional Displays
NASA Technical Reports Server (NTRS)
Davidoff, Scott (Inventor); Djorgovski, Stanislav G. (Inventor); Estrada, Vicente (Inventor); Donalek, Ciro (Inventor)
2017-01-01
Data visualization systems and methods for generating 3D visualizations of a multidimensional data space are described. In one embodiment a 3D data visualization application directs a processing system to: load a set of multidimensional data points into a visualization table; create representations of a set of 3D objects corresponding to the set of data points; receive mappings of data dimensions to visualization attributes; determine the visualization attributes of the set of 3D objects based upon the selected mappings of data dimensions to 3D object attributes; update a visibility dimension in the visualization table for each of the plurality of 3D object to reflect the visibility of each 3D object based upon the selected mappings of data dimensions to visualization attributes; and interactively render 3D data visualizations of the 3D objects within the virtual space from viewpoints determined based upon received user input.
ERIC Educational Resources Information Center
Aleman, Cheryl; And Others
1990-01-01
Compares auditory/visual practice to visual/motor practice in spelling with seven elementary school learning-disabled students enrolled in a resource room setting. Finds that the auditory/visual practice was superior to the visual/motor practice on the weekly spelling performance for all seven students. (MG)
ERIC Educational Resources Information Center
Ikeda, Kohei; Higashi, Toshio; Sugawara, Kenichi; Tomori, Kounosuke; Kinoshita, Hiroshi; Kasai, Tatsuya
2012-01-01
The effect of visual and auditory enhancements of finger movement on corticospinal excitability during motor imagery (MI) was investigated using the transcranial magnetic stimulation technique. Motor-evoked potentials were elicited from the abductor digit minimi muscle during MI with auditory, visual and, auditory and visual information, and no…
Teng, Santani
2017-01-01
In natural environments, visual and auditory stimulation elicit responses across a large set of brain regions in a fraction of a second, yielding representations of the multimodal scene and its properties. The rapid and complex neural dynamics underlying visual and auditory information processing pose major challenges to human cognitive neuroscience. Brain signals measured non-invasively are inherently noisy, the format of neural representations is unknown, and transformations between representations are complex and often nonlinear. Further, no single non-invasive brain measurement technique provides a spatio-temporally integrated view. In this opinion piece, we argue that progress can be made by a concerted effort based on three pillars of recent methodological development: (i) sensitive analysis techniques such as decoding and cross-classification, (ii) complex computational modelling using models such as deep neural networks, and (iii) integration across imaging methods (magnetoencephalography/electroencephalography, functional magnetic resonance imaging) and models, e.g. using representational similarity analysis. We showcase two recent efforts that have been undertaken in this spirit and provide novel results about visual and auditory scene analysis. Finally, we discuss the limits of this perspective and sketch a concrete roadmap for future research. This article is part of the themed issue ‘Auditory and visual scene analysis’. PMID:28044019
Cichy, Radoslaw Martin; Teng, Santani
2017-02-19
In natural environments, visual and auditory stimulation elicit responses across a large set of brain regions in a fraction of a second, yielding representations of the multimodal scene and its properties. The rapid and complex neural dynamics underlying visual and auditory information processing pose major challenges to human cognitive neuroscience. Brain signals measured non-invasively are inherently noisy, the format of neural representations is unknown, and transformations between representations are complex and often nonlinear. Further, no single non-invasive brain measurement technique provides a spatio-temporally integrated view. In this opinion piece, we argue that progress can be made by a concerted effort based on three pillars of recent methodological development: (i) sensitive analysis techniques such as decoding and cross-classification, (ii) complex computational modelling using models such as deep neural networks, and (iii) integration across imaging methods (magnetoencephalography/electroencephalography, functional magnetic resonance imaging) and models, e.g. using representational similarity analysis. We showcase two recent efforts that have been undertaken in this spirit and provide novel results about visual and auditory scene analysis. Finally, we discuss the limits of this perspective and sketch a concrete roadmap for future research.This article is part of the themed issue 'Auditory and visual scene analysis'. © 2017 The Authors.
Newborn infants perceive abstract numbers
Izard, Véronique; Sann, Coralie; Spelke, Elizabeth S.; Streri, Arlette
2009-01-01
Although infants and animals respond to the approximate number of elements in visual, auditory, and tactile arrays, only human children and adults have been shown to possess abstract numerical representations that apply to entities of all kinds (e.g., 7 samurai, seas, or sins). Do abstract numerical concepts depend on language or culture, or do they form a part of humans' innate, core knowledge? Here we show that newborn infants spontaneously associate stationary, visual-spatial arrays of 4–18 objects with auditory sequences of events on the basis of number. Their performance provides evidence for abstract numerical representations at the start of postnatal experience. PMID:19520833
Lawton, Teri
2016-01-01
There is an ongoing debate about whether the cause of dyslexia is based on linguistic, auditory, or visual timing deficits. To investigate this issue three interventions were compared in 58 dyslexics in second grade (7 years on average), two targeting the temporal dynamics (timing) of either the auditory or visual pathways with a third reading intervention (control group) targeting linguistic word building. Visual pathway training in dyslexics to improve direction-discrimination of moving test patterns relative to a stationary background (figure/ground discrimination) significantly improved attention, reading fluency, both speed and comprehension, phonological processing, and both auditory and visual working memory relative to controls, whereas auditory training to improve phonological processing did not improve these academic skills significantly more than found for controls. This study supports the hypothesis that faulty timing in synchronizing the activity of magnocellular with parvocellular visual pathways is a fundamental cause of dyslexia, and argues against the assumption that reading deficiencies in dyslexia are caused by phonological deficits. This study demonstrates that visual movement direction-discrimination can be used to not only detect dyslexia early, but also for its successful treatment, so that reading problems do not prevent children from readily learning.
Is More Better? - Night Vision Enhancement System's Pedestrian Warning Modes and Older Drivers.
Brown, Timothy; He, Yefei; Roe, Cheryl; Schnell, Thomas
2010-01-01
Pedestrian fatalities as a result of vehicle collisions are much more likely to happen at night than during day time. Poor visibility due to darkness is believed to be one of the causes for the higher vehicle collision rate at night. Existing studies have shown that night vision enhancement systems (NVES) may improve recognition distance, but may increase drivers' workload. The use of automatic warnings (AW) may help minimize workload, improve performance, and increase safety. In this study, we used a driving simulator to examine performance differences of a NVES with six different configurations of warning cues, including: visual, auditory, tactile, auditory and visual, tactile and visual, and no warning. Older drivers between the ages of 65 and 74 participated in the study. An analysis based on the distance to pedestrian threat at the onset of braking response revealed that tactile and auditory warnings performed the best, while visual warnings performed the worst. When tactile or auditory warnings were presented in combination with visual warning, their effectiveness decreased. This result demonstrated that, contrary to general sense regarding warning systems, multi-modal warnings involving visual cues degraded the effectiveness of NVES for older drivers.
Is More Better? — Night Vision Enhancement System’s Pedestrian Warning Modes and Older Drivers
Brown, Timothy; He, Yefei; Roe, Cheryl; Schnell, Thomas
2010-01-01
Pedestrian fatalities as a result of vehicle collisions are much more likely to happen at night than during day time. Poor visibility due to darkness is believed to be one of the causes for the higher vehicle collision rate at night. Existing studies have shown that night vision enhancement systems (NVES) may improve recognition distance, but may increase drivers’ workload. The use of automatic warnings (AW) may help minimize workload, improve performance, and increase safety. In this study, we used a driving simulator to examine performance differences of a NVES with six different configurations of warning cues, including: visual, auditory, tactile, auditory and visual, tactile and visual, and no warning. Older drivers between the ages of 65 and 74 participated in the study. An analysis based on the distance to pedestrian threat at the onset of braking response revealed that tactile and auditory warnings performed the best, while visual warnings performed the worst. When tactile or auditory warnings were presented in combination with visual warning, their effectiveness decreased. This result demonstrated that, contrary to general sense regarding warning systems, multi-modal warnings involving visual cues degraded the effectiveness of NVES for older drivers. PMID:21050616
Using an auditory sensory substitution device to augment vision: evidence from eye movements.
Wright, Thomas D; Margolis, Aaron; Ward, Jamie
2015-03-01
Sensory substitution devices convert information normally associated with one sense into another sense (e.g. converting vision into sound). This is often done to compensate for an impaired sense. The present research uses a multimodal approach in which both natural vision and sound-from-vision ('soundscapes') are simultaneously presented. Although there is a systematic correspondence between what is seen and what is heard, we introduce a local discrepancy between the signals (the presence of a target object that is heard but not seen) that the participant is required to locate. In addition to behavioural responses, the participants' gaze is monitored with eye-tracking. Although the target object is only presented in the auditory channel, behavioural performance is enhanced when visual information relating to the non-target background is presented. In this instance, vision may be used to generate predictions about the soundscape that enhances the ability to detect the hidden auditory object. The eye-tracking data reveal that participants look for longer in the quadrant containing the auditory target even when they subsequently judge it to be located elsewhere. As such, eye movements generated by soundscapes reveal the knowledge of the target location that does not necessarily correspond to the actual judgment made. The results provide a proof of principle that multimodal sensory substitution may be of benefit to visually impaired people with some residual vision and, in normally sighted participants, for guiding search within complex scenes.
An assessment of auditory-guided locomotion in an obstacle circumvention task.
Kolarik, Andrew J; Scarfe, Amy C; Moore, Brian C J; Pardhan, Shahina
2016-06-01
This study investigated how effectively audition can be used to guide navigation around an obstacle. Ten blindfolded normally sighted participants navigated around a 0.6 × 2 m obstacle while producing self-generated mouth click sounds. Objective movement performance was measured using a Vicon motion capture system. Performance with full vision without generating sound was used as a baseline for comparison. The obstacle's location was varied randomly from trial to trial: it was either straight ahead or 25 cm to the left or right relative to the participant. Although audition provided sufficient information to detect the obstacle and guide participants around it without collision in the majority of trials, buffer space (clearance between the shoulder and obstacle), overall movement times, and number of velocity corrections were significantly (p < 0.05) greater with auditory guidance than visual guidance. Collisions sometime occurred under auditory guidance, suggesting that audition did not always provide an accurate estimate of the space between the participant and obstacle. Unlike visual guidance, participants did not always walk around the side that afforded the most space during auditory guidance. Mean buffer space was 1.8 times higher under auditory than under visual guidance. Results suggest that sound can be used to generate buffer space when vision is unavailable, allowing navigation around an obstacle without collision in the majority of trials.
Brain activity associated with selective attention, divided attention and distraction.
Salo, Emma; Salmela, Viljami; Salmi, Juha; Numminen, Jussi; Alho, Kimmo
2017-06-01
Top-down controlled selective or divided attention to sounds and visual objects, as well as bottom-up triggered attention to auditory and visual distractors, has been widely investigated. However, no study has systematically compared brain activations related to all these types of attention. To this end, we used functional magnetic resonance imaging (fMRI) to measure brain activity in participants performing a tone pitch or a foveal grating orientation discrimination task, or both, distracted by novel sounds not sharing frequencies with the tones or by extrafoveal visual textures. To force focusing of attention to tones or gratings, or both, task difficulty was kept constantly high with an adaptive staircase method. A whole brain analysis of variance (ANOVA) revealed fronto-parietal attention networks for both selective auditory and visual attention. A subsequent conjunction analysis indicated partial overlaps of these networks. However, like some previous studies, the present results also suggest segregation of prefrontal areas involved in the control of auditory and visual attention. The ANOVA also suggested, and another conjunction analysis confirmed, an additional activity enhancement in the left middle frontal gyrus related to divided attention supporting the role of this area in top-down integration of dual task performance. Distractors expectedly disrupted task performance. However, contrary to our expectations, activations specifically related to the distractors were found only in the auditory and visual cortices. This suggests gating of the distractors from further processing perhaps due to strictly focused attention in the current demanding discrimination tasks. Copyright © 2017 Elsevier B.V. All rights reserved.
ERIC Educational Resources Information Center
Chen, Chi-hsin; Gershkoff-Stowe, Lisa; Wu, Chih-Yi; Cheung, Hintat; Yu, Chen
2017-01-01
Two experiments were conducted to examine adult learners' ability to extract multiple statistics in simultaneously presented visual and auditory input. Experiment 1 used a cross-situational learning paradigm to test whether English speakers were able to use co-occurrences to learn word-to-object mappings and concurrently form object categories…
An interactive visualization tool for mobile objects
NASA Astrophysics Data System (ADS)
Kobayashi, Tetsuo
Recent advancements in mobile devices---such as Global Positioning System (GPS), cellular phones, car navigation system, and radio-frequency identification (RFID)---have greatly influenced the nature and volume of data about individual-based movement in space and time. Due to the prevalence of mobile devices, vast amounts of mobile objects data are being produced and stored in databases, overwhelming the capacity of traditional spatial analytical methods. There is a growing need for discovering unexpected patterns, trends, and relationships that are hidden in the massive mobile objects data. Geographic visualization (GVis) and knowledge discovery in databases (KDD) are two major research fields that are associated with knowledge discovery and construction. Their major research challenges are the integration of GVis and KDD, enhancing the ability to handle large volume mobile objects data, and high interactivity between the computer and users of GVis and KDD tools. This dissertation proposes a visualization toolkit to enable highly interactive visual data exploration for mobile objects datasets. Vector algebraic representation and online analytical processing (OLAP) are utilized for managing and querying the mobile object data to accomplish high interactivity of the visualization tool. In addition, reconstructing trajectories at user-defined levels of temporal granularity with time aggregation methods allows exploration of the individual objects at different levels of movement generality. At a given level of generality, individual paths can be combined into synthetic summary paths based on three similarity measures, namely, locational similarity, directional similarity, and geometric similarity functions. A visualization toolkit based on the space-time cube concept exploits these functionalities to create a user-interactive environment for exploring mobile objects data. Furthermore, the characteristics of visualized trajectories are exported to be utilized for data mining, which leads to the integration of GVis and KDD. Case studies using three movement datasets (personal travel data survey in Lexington, Kentucky, wild chicken movement data in Thailand, and self-tracking data in Utah) demonstrate the potential of the system to extract meaningful patterns from the otherwise difficult to comprehend collections of space-time trajectories.
Spatial Attention and Audiovisual Interactions in Apparent Motion
ERIC Educational Resources Information Center
Sanabria, Daniel; Soto-Faraco, Salvador; Spence, Charles
2007-01-01
In this study, the authors combined the cross-modal dynamic capture task (involving the horizontal apparent movement of visual and auditory stimuli) with spatial cuing in the vertical dimension to investigate the role of spatial attention in cross-modal interactions during motion perception. Spatial attention was manipulated endogenously, either…
Brain Network Interactions in Auditory, Visual and Linguistic Processing
ERIC Educational Resources Information Center
Horwitz, Barry; Braun, Allen R.
2004-01-01
In the paper, we discuss the importance of network interactions between brain regions in mediating performance of sensorimotor and cognitive tasks, including those associated with language processing. Functional neuroimaging, especially PET and fMRI, provide data that are obtained essentially simultaneously from much of the brain, and thus are…
Prediction and constraint in audiovisual speech perception.
Peelle, Jonathan E; Sommers, Mitchell S
2015-07-01
During face-to-face conversational speech listeners must efficiently process a rapid and complex stream of multisensory information. Visual speech can serve as a critical complement to auditory information because it provides cues to both the timing of the incoming acoustic signal (the amplitude envelope, influencing attention and perceptual sensitivity) and its content (place and manner of articulation, constraining lexical selection). Here we review behavioral and neurophysiological evidence regarding listeners' use of visual speech information. Multisensory integration of audiovisual speech cues improves recognition accuracy, particularly for speech in noise. Even when speech is intelligible based solely on auditory information, adding visual information may reduce the cognitive demands placed on listeners through increasing the precision of prediction. Electrophysiological studies demonstrate that oscillatory cortical entrainment to speech in auditory cortex is enhanced when visual speech is present, increasing sensitivity to important acoustic cues. Neuroimaging studies also suggest increased activity in auditory cortex when congruent visual information is available, but additionally emphasize the involvement of heteromodal regions of posterior superior temporal sulcus as playing a role in integrative processing. We interpret these findings in a framework of temporally-focused lexical competition in which visual speech information affects auditory processing to increase sensitivity to acoustic information through an early integration mechanism, and a late integration stage that incorporates specific information about a speaker's articulators to constrain the number of possible candidates in a spoken utterance. Ultimately it is words compatible with both auditory and visual information that most strongly determine successful speech perception during everyday listening. Thus, audiovisual speech perception is accomplished through multiple stages of integration, supported by distinct neuroanatomical mechanisms. Copyright © 2015 Elsevier Ltd. All rights reserved.
Scarbel, Lucie; Beautemps, Denis; Schwartz, Jean-Luc; Sato, Marc
2014-01-01
One classical argument in favor of a functional role of the motor system in speech perception comes from the close-shadowing task in which a subject has to identify and to repeat as quickly as possible an auditory speech stimulus. The fact that close-shadowing can occur very rapidly and much faster than manual identification of the speech target is taken to suggest that perceptually induced speech representations are already shaped in a motor-compatible format. Another argument is provided by audiovisual interactions often interpreted as referring to a multisensory-motor framework. In this study, we attempted to combine these two paradigms by testing whether the visual modality could speed motor response in a close-shadowing task. To this aim, both oral and manual responses were evaluated during the perception of auditory and audiovisual speech stimuli, clear or embedded in white noise. Overall, oral responses were faster than manual ones, but it also appeared that they were less accurate in noise, which suggests that motor representations evoked by the speech input could be rough at a first processing stage. In the presence of acoustic noise, the audiovisual modality led to both faster and more accurate responses than the auditory modality. No interaction was however, observed between modality and response. Altogether, these results are interpreted within a two-stage sensory-motor framework, in which the auditory and visual streams are integrated together and with internally generated motor representations before a final decision may be available. PMID:25009512
Stekelenburg, Jeroen J; Keetels, Mirjam; Vroomen, Jean
2018-05-01
Numerous studies have demonstrated that the vision of lip movements can alter the perception of auditory speech syllables (McGurk effect). While there is ample evidence for integration of text and auditory speech, there are only a few studies on the orthographic equivalent of the McGurk effect. Here, we examined whether written text, like visual speech, can induce an illusory change in the perception of speech sounds on both the behavioural and neural levels. In a sound categorization task, we found that both text and visual speech changed the identity of speech sounds from an /aba/-/ada/ continuum, but the size of this audiovisual effect was considerably smaller for text than visual speech. To examine at which level in the information processing hierarchy these multisensory interactions occur, we recorded electroencephalography in an audiovisual mismatch negativity (MMN, a component of the event-related potential reflecting preattentive auditory change detection) paradigm in which deviant text or visual speech was used to induce an illusory change in a sequence of ambiguous sounds halfway between /aba/ and /ada/. We found that only deviant visual speech induced an MMN, but not deviant text, which induced a late P3-like positive potential. These results demonstrate that text has much weaker effects on sound processing than visual speech does, possibly because text has different biological roots than visual speech. © 2018 The Authors. European Journal of Neuroscience published by Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
Aging and the interaction of sensory cortical function and structure.
Peiffer, Ann M; Hugenschmidt, Christina E; Maldjian, Joseph A; Casanova, Ramon; Srikanth, Ryali; Hayasaka, Satoru; Burdette, Jonathan H; Kraft, Robert A; Laurienti, Paul J
2009-01-01
Even the healthiest older adults experience changes in cognitive and sensory function. Studies show that older adults have reduced neural responses to sensory information. However, it is well known that sensory systems do not act in isolation but function cooperatively to either enhance or suppress neural responses to individual environmental stimuli. Very little research has been dedicated to understanding how aging affects the interactions between sensory systems, especially cross-modal deactivations or the ability of one sensory system (e.g., audition) to suppress the neural responses in another sensory system cortex (e.g., vision). Such cross-modal interactions have been implicated in attentional shifts between sensory modalities and could account for increased distractibility in older adults. To assess age-related changes in cross-modal deactivations, functional MRI studies were performed in 61 adults between 18 and 80 years old during simple auditory and visual discrimination tasks. Results within visual cortex confirmed previous findings of decreased responses to visual stimuli for older adults. Age-related changes in the visual cortical response to auditory stimuli were, however, much more complex and suggested an alteration with age in the functional interactions between the senses. Ventral visual cortical regions exhibited cross-modal deactivations in younger but not older adults, whereas more dorsal aspects of visual cortex were suppressed in older but not younger adults. These differences in deactivation also remained after adjusting for age-related reductions in brain volume of sensory cortex. Thus, functional differences in cortical activity between older and younger adults cannot solely be accounted for by differences in gray matter volume. (c) 2007 Wiley-Liss, Inc.
Crossmodal attention switching: auditory dominance in temporal discrimination tasks.
Lukas, Sarah; Philipp, Andrea M; Koch, Iring
2014-11-01
Visual stimuli are often processed more efficiently than accompanying stimuli in another modality. In line with this "visual dominance", earlier studies on attentional switching showed a clear benefit for visual stimuli in a bimodal visual-auditory modality-switch paradigm that required spatial stimulus localization in the relevant modality. The present study aimed to examine the generality of this visual dominance effect. The modality appropriateness hypothesis proposes that stimuli in different modalities are differentially effectively processed depending on the task dimension, so that processing of visual stimuli is favored in the dimension of space, whereas processing auditory stimuli is favored in the dimension of time. In the present study, we examined this proposition by using a temporal duration judgment in a bimodal visual-auditory switching paradigm. Two experiments demonstrated that crossmodal interference (i.e., temporal stimulus congruence) was larger for visual stimuli than for auditory stimuli, suggesting auditory dominance when performing temporal judgment tasks. However, attention switch costs were larger for the auditory modality than for visual modality, indicating a dissociation of the mechanisms underlying crossmodal competition in stimulus processing and modality-specific biasing of attentional set. Copyright © 2014 Elsevier B.V. All rights reserved.
ten Oever, Sanne; Sack, Alexander T.; Wheat, Katherine L.; Bien, Nina; van Atteveldt, Nienke
2013-01-01
Content and temporal cues have been shown to interact during audio-visual (AV) speech identification. Typically, the most reliable unimodal cue is used more strongly to identify specific speech features; however, visual cues are only used if the AV stimuli are presented within a certain temporal window of integration (TWI). This suggests that temporal cues denote whether unimodal stimuli belong together, that is, whether they should be integrated. It is not known whether temporal cues also provide information about the identity of a syllable. Since spoken syllables have naturally varying AV onset asynchronies, we hypothesize that for suboptimal AV cues presented within the TWI, information about the natural AV onset differences can aid in speech identification. To test this, we presented low-intensity auditory syllables concurrently with visual speech signals, and varied the stimulus onset asynchronies (SOA) of the AV pair, while participants were instructed to identify the auditory syllables. We revealed that specific speech features (e.g., voicing) were identified by relying primarily on one modality (e.g., auditory). Additionally, we showed a wide window in which visual information influenced auditory perception, that seemed even wider for congruent stimulus pairs. Finally, we found a specific response pattern across the SOA range for syllables that were not reliably identified by the unimodal cues, which we explained as the result of the use of natural onset differences between AV speech signals. This indicates that temporal cues not only provide information about the temporal integration of AV stimuli, but additionally convey information about the identity of AV pairs. These results provide a detailed behavioral basis for further neuro-imaging and stimulation studies to unravel the neurofunctional mechanisms of the audio-visual-temporal interplay within speech perception. PMID:23805110
Ten Oever, Sanne; Sack, Alexander T; Wheat, Katherine L; Bien, Nina; van Atteveldt, Nienke
2013-01-01
Content and temporal cues have been shown to interact during audio-visual (AV) speech identification. Typically, the most reliable unimodal cue is used more strongly to identify specific speech features; however, visual cues are only used if the AV stimuli are presented within a certain temporal window of integration (TWI). This suggests that temporal cues denote whether unimodal stimuli belong together, that is, whether they should be integrated. It is not known whether temporal cues also provide information about the identity of a syllable. Since spoken syllables have naturally varying AV onset asynchronies, we hypothesize that for suboptimal AV cues presented within the TWI, information about the natural AV onset differences can aid in speech identification. To test this, we presented low-intensity auditory syllables concurrently with visual speech signals, and varied the stimulus onset asynchronies (SOA) of the AV pair, while participants were instructed to identify the auditory syllables. We revealed that specific speech features (e.g., voicing) were identified by relying primarily on one modality (e.g., auditory). Additionally, we showed a wide window in which visual information influenced auditory perception, that seemed even wider for congruent stimulus pairs. Finally, we found a specific response pattern across the SOA range for syllables that were not reliably identified by the unimodal cues, which we explained as the result of the use of natural onset differences between AV speech signals. This indicates that temporal cues not only provide information about the temporal integration of AV stimuli, but additionally convey information about the identity of AV pairs. These results provide a detailed behavioral basis for further neuro-imaging and stimulation studies to unravel the neurofunctional mechanisms of the audio-visual-temporal interplay within speech perception.
Perceptual Plasticity for Auditory Object Recognition
Heald, Shannon L. M.; Van Hedger, Stephen C.; Nusbaum, Howard C.
2017-01-01
In our auditory environment, we rarely experience the exact acoustic waveform twice. This is especially true for communicative signals that have meaning for listeners. In speech and music, the acoustic signal changes as a function of the talker (or instrument), speaking (or playing) rate, and room acoustics, to name a few factors. Yet, despite this acoustic variability, we are able to recognize a sentence or melody as the same across various kinds of acoustic inputs and determine meaning based on listening goals, expectations, context, and experience. The recognition process relates acoustic signals to prior experience despite variability in signal-relevant and signal-irrelevant acoustic properties, some of which could be considered as “noise” in service of a recognition goal. However, some acoustic variability, if systematic, is lawful and can be exploited by listeners to aid in recognition. Perceivable changes in systematic variability can herald a need for listeners to reorganize perception and reorient their attention to more immediately signal-relevant cues. This view is not incorporated currently in many extant theories of auditory perception, which traditionally reduce psychological or neural representations of perceptual objects and the processes that act on them to static entities. While this reduction is likely done for the sake of empirical tractability, such a reduction may seriously distort the perceptual process to be modeled. We argue that perceptual representations, as well as the processes underlying perception, are dynamically determined by an interaction between the uncertainty of the auditory signal and constraints of context. This suggests that the process of auditory recognition is highly context-dependent in that the identity of a given auditory object may be intrinsically tied to its preceding context. To argue for the flexible neural and psychological updating of sound-to-meaning mappings across speech and music, we draw upon examples of perceptual categories that are thought to be highly stable. This framework suggests that the process of auditory recognition cannot be divorced from the short-term context in which an auditory object is presented. Implications for auditory category acquisition and extant models of auditory perception, both cognitive and neural, are discussed. PMID:28588524
Tone series and the nature of working memory capacity development.
Clark, Katherine M; Hardman, Kyle O; Schachtman, Todd R; Saults, J Scott; Glass, Bret A; Cowan, Nelson
2018-04-01
Recent advances in understanding visual working memory, the limited information held in mind for use in ongoing processing, are extended here to examine auditory working memory development. Research with arrays of visual objects has shown how to distinguish the capacity, in terms of the number of objects retained, from the precision of the object representations. We adapt the technique to sequences of nonmusical tones, in an investigation including children (6-13 years, N = 84) and adults (26-50 years, N = 31). For each series of 1 to 4 tones, the participant responded by using an 80-choice scale to try to reproduce the tone at a queried serial position. Despite the much longer-lasting usefulness of sensory memory for tones compared with visual objects, the observed tone capacity was similar to previous findings for visual capacity. The results also constrain theories of childhood working memory development, indicating increases with age in both the capacity and the precision of the tone representations, similar to the visual studies, rather than age differences in time-based memory decay. The findings, including patterns of correlations between capacity, precision, and some auxiliary tasks and questionnaires, establish capacity and precision as dissociable processes and place important constraints on various hypotheses of working memory development. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
Higher dietary diversity is related to better visual and auditory sustained attention.
Shiraseb, Farideh; Siassi, Fereydoun; Qorbani, Mostafa; Sotoudeh, Gity; Rostami, Reza; Narmaki, Elham; Yavari, Parvaneh; Aghasi, Mohadeseh; Shaibu, Osman Mohammed
2016-04-01
Attention is a complex cognitive function that is necessary for learning, for following social norms of behaviour and for effective performance of responsibilities and duties. It is especially important in sensitive occupations requiring sustained attention. Improvement of dietary diversity (DD) is recognised as an important factor in health promotion, but its association with sustained attention is unknown. The aim of this study was to determine the association between auditory and visual sustained attention and DD. A cross-sectional study was carried out on 400 women aged 20-50 years who attended sports clubs at Tehran Municipality. Sustained attention was evaluated on the basis of the Integrated Visual and Auditory Continuous Performance Test using Integrated Visual and Auditory software. A single 24-h dietary recall questionnaire was used for DD assessment. Dietary diversity scores (DDS) were determined using the FAO guidelines. The mean visual and auditory sustained attention scores were 40·2 (sd 35·2) and 42·5 (sd 38), respectively. The mean DDS was 4·7 (sd 1·5). After adjusting for age, education years, physical activity, energy intake and BMI, mean visual and auditory sustained attention showed a significant increase as the quartiles of DDS increased (P=0·001). In addition, the mean subscales of attention, including auditory consistency and vigilance, visual persistence, visual and auditory focus, speed, comprehension and full attention, increased significantly with increasing DDS (P<0·05). In conclusion, higher DDS is associated with better visual and auditory sustained attention.
ERIC Educational Resources Information Center
de Melo Roiz, Roberta; Azevedo Cacho, Enio Walker; Cliquet, Alberto, Jr.; Barasnevicius Quagliato, Elizabeth Maria Aparecida
2011-01-01
Idiopathic Parkinson's disease (IPD) has been defined as a chronic progressive neurological disorder with characteristics that generate changes in gait pattern. Several studies have reported that appropriate external influences, such as visual or auditory cues may improve the gait pattern of patients with IPD. Therefore, the objective of this…
ERIC Educational Resources Information Center
Pieretti, Robert A.; Kaul, Sandra D.; Zarchy, Razi M.; O'Hanlon, Laureen M.
2015-01-01
The primary focus of this research study was to examine the benefit of a using a multimodal approach to speech sound correction with preschool children. The approach uses the auditory, tactile, and kinesthetic modalities and includes a unique, interactive visual focus that attempts to provide a visual representation of a phonemic category. The…
Aytemür, Ali; Almeida, Nathalia; Lee, Kwang-Hyuk
2017-02-01
Adaptation to delayed sensory feedback following an action produces a subjective time compression between the action and the feedback (temporal recalibration effect, TRE). TRE is important for sensory delay compensation to maintain a relationship between causally related events. It is unclear whether TRE is a sensory modality-specific phenomenon. In 3 experiments employing a sensorimotor synchronization task, we investigated this question using cathodal transcranial direct-current stimulation (tDCS). We found that cathodal tDCS over the visual cortex, and to a lesser extent over the auditory cortex, produced decreased visual TRE. However, both auditory and visual cortex tDCS did not produce any measurable effects on auditory TRE. Our study revealed different nature of TRE in auditory and visual domains. Visual-motor TRE, which is more variable than auditory TRE, is a sensory modality-specific phenomenon, modulated by the auditory cortex. The robustness of auditory-motor TRE, unaffected by tDCS, suggests the dominance of the auditory system in temporal processing, by providing a frame of reference in the realignment of sensorimotor timing signals. Copyright © 2017 Elsevier Ltd. All rights reserved.
Burnham, Denis; Dodd, Barbara
2004-12-01
The McGurk effect, in which auditory [ba] dubbed onto [ga] lip movements is perceived as "da" or "tha," was employed in a real-time task to investigate auditory-visual speech perception in prelingual infants. Experiments 1A and 1B established the validity of real-time dubbing for producing the effect. In Experiment 2, 4 1/2-month-olds were tested in a habituation-test paradigm, in which an auditory-visual stimulus was presented contingent upon visual fixation of a live face. The experimental group was habituated to a McGurk stimulus (auditory [ba] visual [ga]), and the control group to matching auditory-visual [ba]. Each group was then presented with three auditory-only test trials, [ba], [da], and [(delta)a] (as in then). Visual-fixation durations in test trials showed that the experimental group treated the emergent percept in the McGurk effect, [da] or [(delta)a], as familiar (even though they had not heard these sounds previously) and [ba] as novel. For control group infants [da] and [(delta)a] were no more familiar than [ba]. These results are consistent with infants' perception of the McGurk effect, and support the conclusion that prelinguistic infants integrate auditory and visual speech information. Copyright 2004 Wiley Periodicals, Inc.
Contextual modulation of primary visual cortex by auditory signals.
Petro, L S; Paton, A T; Muckli, L
2017-02-19
Early visual cortex receives non-feedforward input from lateral and top-down connections (Muckli & Petro 2013 Curr. Opin. Neurobiol. 23, 195-201. (doi:10.1016/j.conb.2013.01.020)), including long-range projections from auditory areas. Early visual cortex can code for high-level auditory information, with neural patterns representing natural sound stimulation (Vetter et al. 2014 Curr. Biol. 24, 1256-1262. (doi:10.1016/j.cub.2014.04.020)). We discuss a number of questions arising from these findings. What is the adaptive function of bimodal representations in visual cortex? What type of information projects from auditory to visual cortex? What are the anatomical constraints of auditory information in V1, for example, periphery versus fovea, superficial versus deep cortical layers? Is there a putative neural mechanism we can infer from human neuroimaging data and recent theoretical accounts of cortex? We also present data showing we can read out high-level auditory information from the activation patterns of early visual cortex even when visual cortex receives simple visual stimulation, suggesting independent channels for visual and auditory signals in V1. We speculate which cellular mechanisms allow V1 to be contextually modulated by auditory input to facilitate perception, cognition and behaviour. Beyond cortical feedback that facilitates perception, we argue that there is also feedback serving counterfactual processing during imagery, dreaming and mind wandering, which is not relevant for immediate perception but for behaviour and cognition over a longer time frame.This article is part of the themed issue 'Auditory and visual scene analysis'. © 2017 The Authors.
Contextual modulation of primary visual cortex by auditory signals
Paton, A. T.
2017-01-01
Early visual cortex receives non-feedforward input from lateral and top-down connections (Muckli & Petro 2013 Curr. Opin. Neurobiol. 23, 195–201. (doi:10.1016/j.conb.2013.01.020)), including long-range projections from auditory areas. Early visual cortex can code for high-level auditory information, with neural patterns representing natural sound stimulation (Vetter et al. 2014 Curr. Biol. 24, 1256–1262. (doi:10.1016/j.cub.2014.04.020)). We discuss a number of questions arising from these findings. What is the adaptive function of bimodal representations in visual cortex? What type of information projects from auditory to visual cortex? What are the anatomical constraints of auditory information in V1, for example, periphery versus fovea, superficial versus deep cortical layers? Is there a putative neural mechanism we can infer from human neuroimaging data and recent theoretical accounts of cortex? We also present data showing we can read out high-level auditory information from the activation patterns of early visual cortex even when visual cortex receives simple visual stimulation, suggesting independent channels for visual and auditory signals in V1. We speculate which cellular mechanisms allow V1 to be contextually modulated by auditory input to facilitate perception, cognition and behaviour. Beyond cortical feedback that facilitates perception, we argue that there is also feedback serving counterfactual processing during imagery, dreaming and mind wandering, which is not relevant for immediate perception but for behaviour and cognition over a longer time frame. This article is part of the themed issue ‘Auditory and visual scene analysis’. PMID:28044015
D Modelling and Interactive Web-Based Visualization of Cultural Heritage Objects
NASA Astrophysics Data System (ADS)
Koeva, M. N.
2016-06-01
Nowadays, there are rapid developments in the fields of photogrammetry, laser scanning, computer vision and robotics, together aiming to provide highly accurate 3D data that is useful for various applications. In recent years, various LiDAR and image-based techniques have been investigated for 3D modelling because of their opportunities for fast and accurate model generation. For cultural heritage preservation and the representation of objects that are important for tourism and their interactive visualization, 3D models are highly effective and intuitive for present-day users who have stringent requirements and high expectations. Depending on the complexity of the objects for the specific case, various technological methods can be applied. The selected objects in this particular research are located in Bulgaria - a country with thousands of years of history and cultural heritage dating back to ancient civilizations. This motivates the preservation, visualisation and recreation of undoubtedly valuable historical and architectural objects and places, which has always been a serious challenge for specialists in the field of cultural heritage. In the present research, comparative analyses regarding principles and technological processes needed for 3D modelling and visualization are presented. The recent problems, efforts and developments in interactive representation of precious objects and places in Bulgaria are presented. Three technologies based on real projects are described: (1) image-based modelling using a non-metric hand-held camera; (2) 3D visualization based on spherical panoramic images; (3) and 3D geometric and photorealistic modelling based on architectural CAD drawings. Their suitability for web-based visualization are demonstrated and compared. Moreover the possibilities for integration with additional information such as interactive maps, satellite imagery, sound, video and specific information for the objects are described. This comparative study discusses the advantages and disadvantages of these three approaches and their integration in multiple domains, such as web-based 3D city modelling, tourism and architectural 3D visualization. It was concluded that image-based modelling and panoramic visualisation are simple, fast and effective techniques suitable for simultaneous virtual representation of many objects. However, additional measurements or CAD information will be beneficial for obtaining higher accuracy.
Cross-modal versus within-modal recall: differences in behavioral and brain responses.
Butler, Andrew J; James, Karin H
2011-10-31
Although human experience is multisensory in nature, previous research has focused predominantly on memory for unisensory as opposed to multisensory information. In this work, we sought to investigate behavioral and neural differences between the cued recall of cross-modal audiovisual associations versus within-modal visual or auditory associations. Participants were presented with cue-target associations comprised of pairs of nonsense objects, pairs of nonsense sounds, objects paired with sounds, and sounds paired with objects. Subsequently, they were required to recall the modality of the target given the cue while behavioral accuracy, reaction time, and blood oxygenation level dependent (BOLD) activation were measured. Successful within-modal recall was associated with modality-specific reactivation in primary perceptual regions, and was more accurate than cross-modal retrieval. When auditory targets were correctly or incorrectly recalled using a cross-modal visual cue, there was re-activation in auditory association cortex, and recall of information from cross-modal associations activated the hippocampus to a greater degree than within-modal associations. Findings support theories that propose an overlap between regions active during perception and memory, and show that behavioral and neural differences exist between within- and cross-modal associations. Overall the current study highlights the importance of the role of multisensory information in memory. Copyright © 2011 Elsevier B.V. All rights reserved.
ERIC Educational Resources Information Center
Gao, Tao; Gao, Zaifeng; Li, Jie; Sun, Zhongqiang; Shen, Mowei
2011-01-01
Mainstream theories of visual perception assume that visual working memory (VWM) is critical for integrating online perceptual information and constructing coherent visual experiences in changing environments. Given the dynamic interaction between online perception and VWM, we propose that how visual information is processed during visual…
Gold, Rinat; Butler, Pamela; Revheim, Nadine; Leitman, David; Hansen, John A.; Gur, Ruben; Kantrowitz, Joshua T.; Laukka, Petri; Juslin, Patrik N.; Silipo, Gail S.; Javitt, Daniel C.
2013-01-01
Objective Schizophrenia is associated with deficits in ability to perceive emotion based upon tone of voice. The basis for this deficit, however, remains unclear and assessment batteries remain limited. We evaluated performance in schizophrenia on a novel voice emotion recognition battery with well characterized physical features, relative to impairments in more general emotional and cognitive function. Methods We studied in a primary sample of 92 patients relative to 73 controls. Stimuli were characterized according to both intended emotion and physical features (e.g., pitch, intensity) that contributed to the emotional percept. Parallel measures of visual emotion recognition, pitch perception, general cognition, and overall outcome were obtained. More limited measures were obtained in an independent replication sample of 36 patients, 31 age-matched controls, and 188 general comparison subjects. Results Patients showed significant, large effect size deficits in voice emotion recognition (F=25.4, p<.00001, d=1.1), and were preferentially impaired in recognition of emotion based upon pitch-, but not intensity-features (group X feature interaction: F=7.79, p=.006). Emotion recognition deficits were significantly correlated with pitch perception impairments both across (r=56, p<.0001) and within (r=.47, p<.0001) group. Path analysis showed both sensory-specific and general cognitive contributions to auditory emotion recognition deficits in schizophrenia. Similar patterns of results were observed in the replication sample. Conclusions The present study demonstrates impairments in auditory emotion recognition in schizophrenia relative to acoustic features of underlying stimuli. Furthermore, it provides tools and highlights the need for greater attention to physical features of stimuli used for study of social cognition in neuropsychiatric disorders. PMID:22362394
Attention, Awareness, and the Perception of Auditory Scenes
Snyder, Joel S.; Gregg, Melissa K.; Weintraub, David M.; Alain, Claude
2011-01-01
Auditory perception and cognition entails both low-level and high-level processes, which are likely to interact with each other to create our rich conscious experience of soundscapes. Recent research that we review has revealed numerous influences of high-level factors, such as attention, intention, and prior experience, on conscious auditory perception. And recently, studies have shown that auditory scene analysis tasks can exhibit multistability in a manner very similar to ambiguous visual stimuli, presenting a unique opportunity to study neural correlates of auditory awareness and the extent to which mechanisms of perception are shared across sensory modalities. Research has also led to a growing number of techniques through which auditory perception can be manipulated and even completely suppressed. Such findings have important consequences for our understanding of the mechanisms of perception and also should allow scientists to precisely distinguish the influences of different higher-level influences. PMID:22347201
The role of emotion in dynamic audiovisual integration of faces and voices
Kotz, Sonja A.; Tavano, Alessandro; Schröger, Erich
2015-01-01
We used human electroencephalogram to study early audiovisual integration of dynamic angry and neutral expressions. An auditory-only condition served as a baseline for the interpretation of integration effects. In the audiovisual conditions, the validity of visual information was manipulated using facial expressions that were either emotionally congruent or incongruent with the vocal expressions. First, we report an N1 suppression effect for angry compared with neutral vocalizations in the auditory-only condition. Second, we confirm early integration of congruent visual and auditory information as indexed by a suppression of the auditory N1 and P2 components in the audiovisual compared with the auditory-only condition. Third, audiovisual N1 suppression was modulated by audiovisual congruency in interaction with emotion: for neutral vocalizations, there was N1 suppression in both the congruent and the incongruent audiovisual conditions. For angry vocalizations, there was N1 suppression only in the congruent but not in the incongruent condition. Extending previous findings of dynamic audiovisual integration, the current results suggest that audiovisual N1 suppression is congruency- and emotion-specific and indicate that dynamic emotional expressions compared with non-emotional expressions are preferentially processed in early audiovisual integration. PMID:25147273
The Perception of Cooperativeness Without Any Visual or Auditory Communication.
Chang, Dong-Seon; Burger, Franziska; Bülthoff, Heinrich H; de la Rosa, Stephan
2015-12-01
Perceiving social information such as the cooperativeness of another person is an important part of human interaction. But can people perceive the cooperativeness of others even without any visual or auditory information? In a novel experimental setup, we connected two people with a rope and made them accomplish a point-collecting task together while they could not see or hear each other. We observed a consistently emerging turn-taking behavior in the interactions and installed a confederate in a subsequent experiment who either minimized or maximized this behavior. Participants experienced this only through the haptic force-feedback of the rope and made evaluations about the confederate after each interaction. We found that perception of cooperativeness was significantly affected only by the manipulation of this turn-taking behavior. Gender- and size-related judgments also significantly differed. Our results suggest that people can perceive social information such as the cooperativeness of other people even in situations where possibilities for communication are minimal.
The Perception of Cooperativeness Without Any Visual or Auditory Communication
Chang, Dong-Seon; Burger, Franziska; de la Rosa, Stephan
2015-01-01
Perceiving social information such as the cooperativeness of another person is an important part of human interaction. But can people perceive the cooperativeness of others even without any visual or auditory information? In a novel experimental setup, we connected two people with a rope and made them accomplish a point-collecting task together while they could not see or hear each other. We observed a consistently emerging turn-taking behavior in the interactions and installed a confederate in a subsequent experiment who either minimized or maximized this behavior. Participants experienced this only through the haptic force-feedback of the rope and made evaluations about the confederate after each interaction. We found that perception of cooperativeness was significantly affected only by the manipulation of this turn-taking behavior. Gender- and size-related judgments also significantly differed. Our results suggest that people can perceive social information such as the cooperativeness of other people even in situations where possibilities for communication are minimal. PMID:27551362
Dynamic sound localization in cats
Ruhland, Janet L.; Jones, Amy E.
2015-01-01
Sound localization in cats and humans relies on head-centered acoustic cues. Studies have shown that humans are able to localize sounds during rapid head movements that are directed toward the target or other objects of interest. We studied whether cats are able to utilize similar dynamic acoustic cues to localize acoustic targets delivered during rapid eye-head gaze shifts. We trained cats with visual-auditory two-step tasks in which we presented a brief sound burst during saccadic eye-head gaze shifts toward a prior visual target. No consistent or significant differences in accuracy or precision were found between this dynamic task (2-step saccade) and the comparable static task (single saccade when the head is stable) in either horizontal or vertical direction. Cats appear to be able to process dynamic auditory cues and execute complex motor adjustments to accurately localize auditory targets during rapid eye-head gaze shifts. PMID:26063772
The effects of divided attention on auditory priming.
Mulligan, Neil W; Duke, Marquinn; Cooper, Angela W
2007-09-01
Traditional theorizing stresses the importance of attentional state during encoding for later memory, based primarily on research with explicit memory. Recent research has begun to investigate the role of attention in implicit memory but has focused almost exclusively on priming in the visual modality. The present experiments examined the effect of divided attention on auditory implicit memory, using auditory perceptual identification, word-stem completion and word-fragment completion. Participants heard study words under full attention conditions or while simultaneously carrying out a distractor task (the divided attention condition). In Experiment 1, a distractor task with low response frequency failed to disrupt later auditory priming (but diminished explicit memory as assessed with auditory recognition). In Experiment 2, a distractor task with greater response frequency disrupted priming on all three of the auditory priming tasks as well as the explicit test. These results imply that although auditory priming is less reliant on attention than explicit memory, it is still greatly affected by at least some divided-attention manipulations. These results are consistent with research using visual priming tasks and have relevance for hypotheses regarding attention and auditory priming.
A Perceptuo-Cognitive-Motor Approach to the Special Child.
ERIC Educational Resources Information Center
Kornblum, Rena Beth
A movement therapist reviews ways in which a perceptuo-cognitive approach can help handicapped children in learning and in social adjustment. She identifies specific auditory problems (hearing loss, sound-ground confusion, auditory discrimination, auditory localization, auditory memory, auditory sequencing), visual problems (visual acuity,…
Bellis, Teri James; Billiet, Cassie; Ross, Jody
2011-09-01
Cacace and McFarland (2005) have suggested that the addition of cross-modal analogs will improve the diagnostic specificity of (C)APD (central auditory processing disorder) by ensuring that deficits observed are due to the auditory nature of the stimulus and not to supra-modal or other confounds. Others (e.g., Musiek et al, 2005) have expressed concern about the use of such analogs in diagnosing (C)APD given the uncertainty as to the degree to which cross-modal measures truly are analogous and emphasize the nonmodularity of the CANs (central auditory nervous system) and its function, which precludes modality specificity of (C)APD. To date, no studies have examined the clinical utility of cross-modal (e.g., visual) analogs of central auditory tests in the differential diagnosis of (C)APD. This study investigated performance of children diagnosed with (C)APD, children diagnosed with ADHD (attention deficit hyperactivity disorder), and typically developing children on three diagnostic tests of central auditory function and their corresponding visual analogs. The study sought to determine whether deficits observed in the (C)APD group were restricted to the auditory modality and the degree to which the addition of visual analogs aids in the ability to differentiate among groups. An experimental repeated measures design was employed. Participants consisted of three groups of right-handed children (normal control, n=10; ADHD, n=10; (C)APD, n=7) with normal and symmetrical hearing sensitivity, normal or corrected-to-normal visual acuity, and no family or personal history of disorders unrelated to their primary diagnosis. Participants in Groups 2 and 3 met current diagnostic criteria for ADHD and (C)APD. Visual analogs of three tests in common clinical use for the diagnosis of (C)APD were used (Dichotic Digits [Musiek, 1983]; Frequency Patterns [Pinheiro and Ptacek, 1971]; and Duration Patterns [Pinheiro and Musiek, 1985]). Participants underwent two 1 hr test sessions separated by at least 1 wk. Order of sessions (auditory, visual) and tests within each session were counterbalanced across participants. ANCOVAs (analyses of covariance) were used to examine effects of group, modality, and laterality (Dichotic/Dichoptic Digits) or response condition (auditory and visual patterning). In addition, planned univariate ANCOVAs were used to examine effects of group on intratest comparison measures (REA, HLD [Humming-Labeling Differential]). Children with both ADHD and (C)APD performed more poorly overall than typically developing children on all tasks, with the (C)APD group exhibiting the poorest performance on the auditory and visual patterns tests but the ADHD and (C)APD group performing similarly on the Dichotic/Dichoptic Digits task. However, each of the auditory and visual intratest comparison measures, when taken individually, was able to distinguish the (C)APD group from both the normal control and ADHD groups, whose performance did not differ from one another. Results underscore the importance of intratest comparison measures in the interpretation of central auditory tests (American Speech-Language-Hearing Association [ASHA], 2005 ; American Academy of Audiology [AAA], 2010). Results also support the "non-modular" view of (C)APD in which cross-modal deficits would be predicted based on shared neuroanatomical substrates. Finally, this study demonstrates that auditory tests alone are sufficient to distinguish (C)APD from supra-modal disorders, with cross-modal analogs adding little if anything to the differential diagnostic process. American Academy of Audiology.
Lin, Hung-Yu; Hsieh, Hsieh-Chun; Lee, Posen; Hong, Fu-Yuan; Chang, Wen-Dien; Liu, Kuo-Cheng
2017-08-01
This study explored auditory and visual attention in children with ADHD. In a randomized, two-period crossover design, 50 children with ADHD and 50 age- and sex-matched typically developing peers were measured with the Test of Various Attention (TOVA). The deficiency of visual attention is more serious than that of auditory attention in children with ADHD. On the auditory modality, only the deficit of attentional inconsistency is sufficient to explain most cases of ADHD; however, most of the children with ADHD suffered from deficits of sustained attention, response inhibition, and attentional inconsistency on the visual modality. Our results also showed that the deficit of attentional inconsistency is the most important indicator in diagnosing and intervening in ADHD when both auditory and visual modalities are considered. The findings provide strong evidence that the deficits of auditory attention are different from those of visual attention in children with ADHD.
Increased Early Processing of Task-Irrelevant Auditory Stimuli in Older Adults
Tusch, Erich S.; Alperin, Brittany R.; Holcomb, Phillip J.; Daffner, Kirk R.
2016-01-01
The inhibitory deficit hypothesis of cognitive aging posits that older adults’ inability to adequately suppress processing of irrelevant information is a major source of cognitive decline. Prior research has demonstrated that in response to task-irrelevant auditory stimuli there is an age-associated increase in the amplitude of the N1 wave, an ERP marker of early perceptual processing. Here, we tested predictions derived from the inhibitory deficit hypothesis that the age-related increase in N1 would be 1) observed under an auditory-ignore, but not auditory-attend condition, 2) attenuated in individuals with high executive capacity (EC), and 3) augmented by increasing cognitive load of the primary visual task. ERPs were measured in 114 well-matched young, middle-aged, young-old, and old-old adults, designated as having high or average EC based on neuropsychological testing. Under the auditory-ignore (visual-attend) task, participants ignored auditory stimuli and responded to rare target letters under low and high load. Under the auditory-attend task, participants ignored visual stimuli and responded to rare target tones. Results confirmed an age-associated increase in N1 amplitude to auditory stimuli under the auditory-ignore but not auditory-attend task. Contrary to predictions, EC did not modulate the N1 response. The load effect was the opposite of expectation: the N1 to task-irrelevant auditory events was smaller under high load. Finally, older adults did not simply fail to suppress the N1 to auditory stimuli in the task-irrelevant modality; they generated a larger response than to identical stimuli in the task-relevant modality. In summary, several of the study’s findings do not fit the inhibitory-deficit hypothesis of cognitive aging, which may need to be refined or supplemented by alternative accounts. PMID:27806081
Jerger, Susan; Damian, Markus F; McAlpine, Rachel P; Abdi, Hervé
2017-03-01
Understanding spoken language is an audiovisual event that depends critically on the ability to discriminate and identify phonemes yet we have little evidence about the role of early auditory experience and visual speech on the development of these fundamental perceptual skills. Objectives of this research were to determine 1) how visual speech influences phoneme discrimination and identification; 2) whether visual speech influences these two processes in a like manner, such that discrimination predicts identification; and 3) how the degree of hearing loss affects this relationship. Such evidence is crucial for developing effective intervention strategies to mitigate the effects of hearing loss on language development. Participants were 58 children with early-onset sensorineural hearing loss (CHL, 53% girls, M = 9;4 yrs) and 58 children with normal hearing (CNH, 53% girls, M = 9;4 yrs). Test items were consonant-vowel (CV) syllables and nonwords with intact visual speech coupled to non-intact auditory speech (excised onsets) as, for example, an intact consonant/rhyme in the visual track (Baa or Baz) coupled to non-intact onset/rhyme in the auditory track (/-B/aa or/-B/az). The items started with an easy-to-speechread/B/or difficult-to-speechread/G/onset and were presented in the auditory (static face) vs. audiovisual (dynamic face) modes. We assessed discrimination for intact vs. non-intact different pairs (e.g., Baa:/-B/aa). We predicted that visual speech would cause the non-intact onset to be perceived as intact and would therefore generate more same-as opposed to different-responses in the audiovisual than auditory mode. We assessed identification by repetition of nonwords with non-intact onsets (e.g.,/-B/az). We predicted that visual speech would cause the non-intact onset to be perceived as intact and would therefore generate more Baz-as opposed to az- responses in the audiovisual than auditory mode. Performance in the audiovisual mode showed more same responses for the intact vs. non-intact different pairs (e.g., Baa:/-B/aa) and more intact onset responses for nonword repetition (Baz for/-B/az). Thus visual speech altered both discrimination and identification in the CHL-to a large extent for the/B/onsets but only minimally for the/G/onsets. The CHL identified the stimuli similarly to the CNH but did not discriminate the stimuli similarly. A bias-free measure of the children's discrimination skills (i.e., d' analysis) revealed that the CHL had greater difficulty discriminating intact from non-intact speech in both modes. As the degree of HL worsened, the ability to discriminate the intact vs. non-intact onsets in the auditory mode worsened. Discrimination ability in CHL significantly predicted their identification of the onsets-even after variation due to the other variables was controlled. These results clearly established that visual speech can fill in non-intact auditory speech, and this effect, in turn, made the non-intact onsets more difficult to discriminate from intact speech and more likely to be perceived as intact. Such results 1) demonstrate the value of visual speech at multiple levels of linguistic processing and 2) support intervention programs that view visual speech as a powerful asset for developing spoken language in CHL. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
Development of Embodied Word Meanings: Sensorimotor Effects in Children’s Lexical Processing
Inkster, Michelle; Wellsby, Michele; Lloyd, Ellen; Pexman, Penny M.
2016-01-01
Previous research showed an effect of words’ rated body–object interaction (BOI) in children’s visual word naming performance, but only in children 8 years of age or older (Wellsby and Pexman, 2014a). In that study, however, BOI was established using adult ratings. Here we collected ratings from a group of parents for children’s BOI experience (child-BOI). We examined effects of words’ child-BOI and also words’ imageability on children’s responses in an auditory word naming task, which is suited to the lexical processing skills of younger children. We tested a group of 54 children aged 6–7 years and a comparison group of 25 adults. Results showed significant effects of both imageability and child-BOI on children’s auditory naming latencies. These results provide evidence that children younger than 8 years of age have richer semantic representations for high imageability and high child-BOI words, consistent with an embodied account of word meaning. PMID:27014129
An evaluation of unisensory and multisensory adaptive flight-path navigation displays
NASA Astrophysics Data System (ADS)
Moroney, Brian W.
1999-11-01
The present study assessed the use of unimodal (auditory or visual) and multimodal (audio-visual) adaptive interfaces to aid military pilots in the performance of a precision-navigation flight task when they were confronted with additional information-processing loads. A standard navigation interface was supplemented by adaptive interfaces consisting of either a head-up display based flight director, a 3D virtual audio interface, or a combination of the two. The adaptive interfaces provided information about how to return to the pathway when off course. Using an advanced flight simulator, pilots attempted two navigation scenarios: (A) maintain proper course under normal flight conditions and (B) return to course after their aircraft's position has been perturbed. Pilots flew in the presence or absence of an additional information-processing task presented in either the visual or auditory modality. The additional information-processing tasks were equated in terms of perceived mental workload as indexed by the NASA-TLX. Twelve experienced military pilots (11 men and 1 woman), naive to the purpose of the experiment, participated in the study. They were recruited from Wright-Patterson Air Force Base and had a mean of 2812 hrs. of flight experience. Four navigational interface configurations, the standard visual navigation interface alone (SV), SV plus adaptive visual, SV plus adaptive auditory, and SV plus adaptive visual-auditory composite were combined factorially with three concurrent tasks (CT), the no CT, the visual CT, and the auditory CT, a completely repeated measures design. The adaptive navigation displays were activated whenever the aircraft was more than 450 ft off course. In the normal flight scenario, the adaptive interfaces did not bolster navigation performance in comparison to the standard interface. It is conceivable that the pilots performed quite adequately using the familiar generic interface under normal flight conditions and hence showed no added benefit of the adaptive interfaces. In the return-to-course scenario, the relative advantages of the three adaptive interfaces were dependent upon the nature of the CT in a complex way. In the absence of a CT, recovery heading performance was superior with the adaptive visual and adaptive composite interfaces compared to the adaptive auditory interface. In the context of a visual CT, recovery when using the adaptive composite interface was superior to that when using the adaptive visual interface. Post-experimental inquiry indicated that when faced with a visual CT, the pilots used the auditory component of the multimodal guidance display to detect gross heading errors and the visual component to make more fine-grained heading adjustments. In the context of the auditory CT, navigation performance using the adaptive visual interface tended to be superior to that when using the adaptive auditory interface. Neither CT performance nor NASA-TLX workload level was influenced differentially by the interface configurations. Thus, the potential benefits associated with the proposed interfaces appear to be unaccompanied by negative side effects involving CT interference and workload. The adaptive interface configurations were altered without any direct input from the pilot. Thus, it was feared that pilots might reject the activation of interfaces independent of their control. However, pilots' debriefing comments about the efficacy of the adaptive interface approach were very positive. (Abstract shortened by UMI.)
Demonstrating the Potential for Dynamic Auditory Stimulation to Contribute to Motion Sickness
Keshavarz, Behrang; Hettinger, Lawrence J.; Kennedy, Robert S.; Campos, Jennifer L.
2014-01-01
Auditory cues can create the illusion of self-motion (vection) in the absence of visual or physical stimulation. The present study aimed to determine whether auditory cues alone can also elicit motion sickness and how auditory cues contribute to motion sickness when added to visual motion stimuli. Twenty participants were seated in front of a curved projection display and were exposed to a virtual scene that constantly rotated around the participant's vertical axis. The virtual scene contained either visual-only, auditory-only, or a combination of corresponding visual and auditory cues. All participants performed all three conditions in a counterbalanced order. Participants tilted their heads alternately towards the right or left shoulder in all conditions during stimulus exposure in order to create pseudo-Coriolis effects and to maximize the likelihood for motion sickness. Measurements of motion sickness (onset, severity), vection (latency, strength, duration), and postural steadiness (center of pressure) were recorded. Results showed that adding auditory cues to the visual stimuli did not, on average, affect motion sickness and postural steadiness, but it did reduce vection onset times and increased vection strength compared to pure visual or pure auditory stimulation. Eighteen of the 20 participants reported at least slight motion sickness in the two conditions including visual stimuli. More interestingly, six participants also reported slight motion sickness during pure auditory stimulation and two of the six participants stopped the pure auditory test session due to motion sickness. The present study is the first to demonstrate that motion sickness may be caused by pure auditory stimulation, which we refer to as “auditorily induced motion sickness”. PMID:24983752
1994-07-01
psychological refractory period 15. Two-flash threshold 16. Critical flicker fusion (CFF) 17. Steady state visually evoked response 18. Auditory brain stem...States of awareness I: Subliminal erceoption relationships to situational awareness (AL-TR-1992-0085). Brooks Air Force BaSe, TX: Armstrong...the signals required different inputs (e.g., visual versus auditory ) (Colley & Beech, 1989). Despite support of this theory from such experiments
Kaiser, Daniel; Stein, Timo; Peelen, Marius V.
2014-01-01
In virtually every real-life situation humans are confronted with complex and cluttered visual environments that contain a multitude of objects. Because of the limited capacity of the visual system, objects compete for neural representation and cognitive processing resources. Previous work has shown that such attentional competition is partly object based, such that competition among elements is reduced when these elements perceptually group into an object based on low-level cues. Here, using functional MRI (fMRI) and behavioral measures, we show that the attentional benefit of grouping extends to higher-level grouping based on the relative position of objects as experienced in the real world. An fMRI study designed to measure competitive interactions among objects in human visual cortex revealed reduced neural competition between objects when these were presented in commonly experienced configurations, such as a lamp above a table, relative to the same objects presented in other configurations. In behavioral visual search studies, we then related this reduced neural competition to improved target detection when distracter objects were shown in regular configurations. Control studies showed that low-level grouping could not account for these results. We interpret these findings as reflecting the grouping of objects based on higher-level spatial-relational knowledge acquired through a lifetime of seeing objects in specific configurations. This interobject grouping effectively reduces the number of objects that compete for representation and thereby contributes to the efficiency of real-world perception. PMID:25024190
Caruso, Valeria C; Pages, Daniel S; Sommer, Marc A; Groh, Jennifer M
2016-06-01
Saccadic eye movements can be elicited by more than one type of sensory stimulus. This implies substantial transformations of signals originating in different sense organs as they reach a common motor output pathway. In this study, we compared the prevalence and magnitude of auditory- and visually evoked activity in a structure implicated in oculomotor processing, the primate frontal eye fields (FEF). We recorded from 324 single neurons while 2 monkeys performed delayed saccades to visual or auditory targets. We found that 64% of FEF neurons were active on presentation of auditory targets and 87% were active during auditory-guided saccades, compared with 75 and 84% for visual targets and saccades. As saccade onset approached, the average level of population activity in the FEF became indistinguishable on visual and auditory trials. FEF activity was better correlated with the movement vector than with the target location for both modalities. In summary, the large proportion of auditory-responsive neurons in the FEF, the similarity between visual and auditory activity levels at the time of the saccade, and the strong correlation between the activity and the saccade vector suggest that auditory signals undergo tailoring to match roughly the strength of visual signals present in the FEF, facilitating accessing of a common motor output pathway. Copyright © 2016 the American Physiological Society.
Using multisensory cues to facilitate air traffic management.
Ngo, Mary K; Pierce, Russell S; Spence, Charles
2012-12-01
In the present study, we sought to investigate whether auditory and tactile cuing could be used to facilitate a complex, real-world air traffic management scenario. Auditory and tactile cuing provides an effective means of improving both the speed and accuracy of participants' performance in a variety of laboratory-based visual target detection and identification tasks. A low-fidelity air traffic simulation task was used in which participants monitored and controlled aircraft.The participants had to ensure that the aircraft landed or exited at the correct altitude, speed, and direction and that they maintained a safe separation from all other aircraft and boundaries. The performance measures recorded included en route time, handoff delay, and conflict resolution delay (the performance measure of interest). In a baseline condition, the aircraft in conflict was highlighted in red (visual cue), and in the experimental conditions, this standard visual cue was accompanied by a simultaneously presented auditory, vibrotactile, or audiotactile cue. Participants responded significantly more rapidly, but no less accurately, to conflicts when presented with an additional auditory or audiotactile cue than with either a vibrotactile or visual cue alone. Auditory and audiotactile cues have the potential for improving operator performance by reducing the time it takes to detect and respond to potential visual target events. These results have important implications for the design and use of multisensory cues in air traffic management.
Realigning thunder and lightning: temporal adaptation to spatiotemporally distant events.
Navarra, Jordi; Fernández-Prieto, Irune; Garcia-Morera, Joel
2013-01-01
The brain is able to realign asynchronous signals that approximately coincide in both space and time. Given that many experience-based links between visual and auditory stimuli are established in the absence of spatiotemporal proximity, we investigated whether or not temporal realignment arises in these conditions. Participants received a 3-min exposure to visual and auditory stimuli that were separated by 706 ms and appeared either from the same (Experiment 1) or from different spatial positions (Experiment 2). A simultaneity judgment task (SJ) was administered right afterwards. Temporal realignment between vision and audition was observed, in both Experiment 1 and 2, when comparing the participants' SJs after this exposure phase with those obtained after a baseline exposure to audiovisual synchrony. However, this effect was present only when the visual stimuli preceded the auditory stimuli during the exposure to asynchrony. A similar pattern of results (temporal realignment after exposure to visual-leading asynchrony but not after exposure to auditory-leading asynchrony) was obtained using temporal order judgments (TOJs) instead of SJs (Experiment 3). Taken together, these results suggest that temporal recalibration still occurs for visual and auditory stimuli that fall clearly outside the so-called temporal window for multisensory integration and appear from different spatial positions. This temporal realignment may be modulated by long-term experience with the kind of asynchrony (vision-leading) that we most frequently encounter in the outside world (e.g., while perceiving distant events).
Infants' Visual Localization of Visual and Auditory Targets.
ERIC Educational Resources Information Center
Bechtold, A. Gordon; And Others
This study is an investigation of 2-month-old infants' abilities to visually localize visual and auditory peripheral stimuli. Each subject (N=40) was presented with 50 trials; 25 of these visual and 25 auditory. The infant was placed in a semi-upright infant seat positioned 122 cm from the center speaker of an arc formed by five loudspeakers. At…
Tinnitus Intensity Dependent Gamma Oscillations of the Contralateral Auditory Cortex
van der Loo, Elsa; Gais, Steffen; Congedo, Marco; Vanneste, Sven; Plazier, Mark; Menovsky, Tomas; Van de Heyning, Paul; De Ridder, Dirk
2009-01-01
Background Non-pulsatile tinnitus is considered a subjective auditory phantom phenomenon present in 10 to 15% of the population. Tinnitus as a phantom phenomenon is related to hyperactivity and reorganization of the auditory cortex. Magnetoencephalography studies demonstrate a correlation between gamma band activity in the contralateral auditory cortex and the presence of tinnitus. The present study aims to investigate the relation between objective gamma-band activity in the contralateral auditory cortex and subjective tinnitus loudness scores. Methods and Findings In unilateral tinnitus patients (N = 15; 10 right, 5 left) source analysis of resting state electroencephalographic gamma band oscillations shows a strong positive correlation with Visual Analogue Scale loudness scores in the contralateral auditory cortex (max r = 0.73, p<0.05). Conclusion Auditory phantom percepts thus show similar sound level dependent activation of the contralateral auditory cortex as observed in normal audition. In view of recent consciousness models and tinnitus network models these results suggest tinnitus loudness is coded by gamma band activity in the contralateral auditory cortex but might not, by itself, be responsible for tinnitus perception. PMID:19816597
Saunders, Gabrielle H; Echt, Katharina V
2012-01-01
Combat exposures to blast can result in both peripheral damage to the ears and eyes and central damage to the auditory and visual processing areas in the brain. The functional effects of the latter include visual, auditory, and cognitive processing difficulties that manifest as deficits in attention, memory, and problem solving--symptoms similar to those seen in individuals with visual and auditory processing disorders. Coexisting damage to the auditory and visual system is referred to as dual sensory impairment (DSI). The number of Operation Iraqi Freedom/Operation Enduring Freedom Veterans with DSI is vast; yet currently no established models or guidelines exist for assessment, rehabilitation, or service-delivery practice. In this article, we review the current state of knowledge regarding blast exposure and DSI and outline the many unknowns in this area. Further, we propose a model for clinical assessment and rehabilitation of blast-related DSI that includes development of a coordinated team-based approach to target activity limitations and participation restrictions in order to enhance reintegration, recovery, and quality of life.
Liew, Kongmeng; Lindborg, PerMagnus; Rodrigues, Ruth; Styles, Suzy J.
2018-01-01
Noise has become integral to electroacoustic music aesthetics. In this paper, we define noise as sound that is high in auditory roughness, and examine its effect on cross-modal mapping between sound and visual shape in participants. In order to preserve the ecological validity of contemporary music aesthetics, we developed Rama, a novel interface, for presenting experimentally controlled blocks of electronically generated sounds that varied systematically in roughness, and actively collected data from audience interaction. These sounds were then embedded as musical drones within the overall sound design of a multimedia performance with live musicians, Audience members listened to these sounds, and collectively voted to create the shape of a visual graphic, presented as part of the audio–visual performance. The results of the concert setting were replicated in a controlled laboratory environment to corroborate the findings. Results show a consistent effect of auditory roughness on shape design, with rougher sounds corresponding to spikier shapes. We discuss the implications, as well as evaluate the audience interface. PMID:29515494
Liew, Kongmeng; Lindborg, PerMagnus; Rodrigues, Ruth; Styles, Suzy J
2018-01-01
Noise has become integral to electroacoustic music aesthetics. In this paper, we define noise as sound that is high in auditory roughness, and examine its effect on cross-modal mapping between sound and visual shape in participants. In order to preserve the ecological validity of contemporary music aesthetics, we developed Rama , a novel interface, for presenting experimentally controlled blocks of electronically generated sounds that varied systematically in roughness, and actively collected data from audience interaction. These sounds were then embedded as musical drones within the overall sound design of a multimedia performance with live musicians, Audience members listened to these sounds, and collectively voted to create the shape of a visual graphic, presented as part of the audio-visual performance. The results of the concert setting were replicated in a controlled laboratory environment to corroborate the findings. Results show a consistent effect of auditory roughness on shape design, with rougher sounds corresponding to spikier shapes. We discuss the implications, as well as evaluate the audience interface.
Modality-dependent effect of motion information in sensory-motor synchronised tapping.
Ono, Kentaro
2018-05-14
Synchronised action is important for everyday life. Generally, the auditory domain is more sensitive for coding temporal information, and previous studies have shown that auditory-motor synchronisation is much more precise than visuo-motor synchronisation. Interestingly, adding motion information improves synchronisation with visual stimuli and the advantage of the auditory modality seems to diminish. However, whether adding motion information also improves auditory-motor synchronisation remains unknown. This study compared tapping accuracy with a stationary or moving stimulus in both auditory and visual modalities. Participants were instructed to tap in synchrony with the onset of a sound or flash in the stationary condition, while these stimuli were perceived as moving from side to side in the motion condition. The results demonstrated that synchronised tapping with a moving visual stimulus was significantly more accurate than tapping with a stationary visual stimulus, as previous studies have shown. However, tapping with a moving auditory stimulus was significantly poorer than tapping with a stationary auditory stimulus. Although motion information impaired audio-motor synchronisation, an advantage of auditory modality compared to visual modality still existed. These findings are likely the result of higher temporal resolution in the auditory domain, which is likely due to the physiological and structural differences in the auditory and visual pathways in the brain. Copyright © 2018 Elsevier B.V. All rights reserved.
Improving visual spatial working memory in younger and older adults: effects of cross-modal cues.
Curtis, Ashley F; Turner, Gary R; Park, Norman W; Murtha, Susan J E
2017-11-06
Spatially informative auditory and vibrotactile (cross-modal) cues can facilitate attention but little is known about how similar cues influence visual spatial working memory (WM) across the adult lifespan. We investigated the effects of cues (spatially informative or alerting pre-cues vs. no cues), cue modality (auditory vs. vibrotactile vs. visual), memory array size (four vs. six items), and maintenance delay (900 vs. 1800 ms) on visual spatial location WM recognition accuracy in younger adults (YA) and older adults (OA). We observed a significant interaction between spatially informative pre-cue type, array size, and delay. OA and YA benefitted equally from spatially informative pre-cues, suggesting that attentional orienting prior to WM encoding, regardless of cue modality, is preserved with age. Contrary to predictions, alerting pre-cues generally impaired performance in both age groups, suggesting that maintaining a vigilant state of arousal by facilitating the alerting attention system does not help visual spatial location WM.
Lammert-Siepmann, Nils; Bestgen, Anne-Kathrin; Edler, Dennis; Kuchinke, Lars; Dickmann, Frank
2017-01-01
Knowing the correct location of a specific object learned from a (topographic) map is fundamental for orientation and navigation tasks. Spatial reference systems, such as coordinates or cardinal directions, are helpful tools for any geometric localization of positions that aims to be as exact as possible. Considering modern visualization techniques of multimedia cartography, map elements transferred through the auditory channel can be added easily. Audiovisual approaches have been discussed in the cartographic community for many years. However, the effectiveness of audiovisual map elements for map use has hardly been explored so far. Within an interdisciplinary (cartography-cognitive psychology) research project, it is examined whether map users remember object-locations better if they do not just read the corresponding place names, but also listen to them as voice recordings. This approach is based on the idea that learning object-identities influences learning object-locations, which is crucial for map-reading tasks. The results of an empirical study show that the additional auditory communication of object names not only improves memory for the names (object-identities), but also for the spatial accuracy of their corresponding object-locations. The audiovisual communication of semantic attribute information of a spatial object seems to improve the binding of object-identity and object-location, which enhances the spatial accuracy of object-location memory.
Bestgen, Anne-Kathrin; Edler, Dennis; Kuchinke, Lars; Dickmann, Frank
2017-01-01
Knowing the correct location of a specific object learned from a (topographic) map is fundamental for orientation and navigation tasks. Spatial reference systems, such as coordinates or cardinal directions, are helpful tools for any geometric localization of positions that aims to be as exact as possible. Considering modern visualization techniques of multimedia cartography, map elements transferred through the auditory channel can be added easily. Audiovisual approaches have been discussed in the cartographic community for many years. However, the effectiveness of audiovisual map elements for map use has hardly been explored so far. Within an interdisciplinary (cartography-cognitive psychology) research project, it is examined whether map users remember object-locations better if they do not just read the corresponding place names, but also listen to them as voice recordings. This approach is based on the idea that learning object-identities influences learning object-locations, which is crucial for map-reading tasks. The results of an empirical study show that the additional auditory communication of object names not only improves memory for the names (object-identities), but also for the spatial accuracy of their corresponding object-locations. The audiovisual communication of semantic attribute information of a spatial object seems to improve the binding of object-identity and object-location, which enhances the spatial accuracy of object-location memory. PMID:29059237
Lawton, Teri
2016-01-01
There is an ongoing debate about whether the cause of dyslexia is based on linguistic, auditory, or visual timing deficits. To investigate this issue three interventions were compared in 58 dyslexics in second grade (7 years on average), two targeting the temporal dynamics (timing) of either the auditory or visual pathways with a third reading intervention (control group) targeting linguistic word building. Visual pathway training in dyslexics to improve direction-discrimination of moving test patterns relative to a stationary background (figure/ground discrimination) significantly improved attention, reading fluency, both speed and comprehension, phonological processing, and both auditory and visual working memory relative to controls, whereas auditory training to improve phonological processing did not improve these academic skills significantly more than found for controls. This study supports the hypothesis that faulty timing in synchronizing the activity of magnocellular with parvocellular visual pathways is a fundamental cause of dyslexia, and argues against the assumption that reading deficiencies in dyslexia are caused by phonological deficits. This study demonstrates that visual movement direction-discrimination can be used to not only detect dyslexia early, but also for its successful treatment, so that reading problems do not prevent children from readily learning. PMID:27551263
Ronald, Kelly L; Fernández-Juricic, Esteban; Lucas, Jeffrey R
2018-05-16
A common assumption in sexual selection studies is that receivers decode signal information similarly. However, receivers may vary in how they rank signallers if signal perception varies with an individual's sensory configuration. Furthermore, receivers may vary in their weighting of different elements of multimodal signals based on their sensory configuration. This could lead to complex levels of selection on signalling traits. We tested whether multimodal sensory configuration could affect preferences for multimodal signals. We used brown-headed cowbird ( Molothrus ater ) females to examine how auditory sensitivity and auditory filters, which influence auditory spectral and temporal resolution, affect song preferences, and how visual spatial resolution and visual temporal resolution, which influence resolution of a moving visual signal, affect visual display preferences. Our results show that multimodal sensory configuration significantly affects preferences for male displays: females with better auditory temporal resolution preferred songs that were shorter, with lower Wiener entropy, and higher frequency; and females with better visual temporal resolution preferred males with less intense visual displays. Our findings provide new insights into mate-choice decisions and receiver signal processing. Furthermore, our results challenge a long-standing assumption in animal communication which can affect how we address honest signalling, assortative mating and sensory drive. © 2018 The Author(s).
Music supported therapy promotes motor plasticity in individuals with chronic stroke.
Ripollés, P; Rojo, N; Grau-Sánchez, J; Amengual, J L; Càmara, E; Marco-Pallarés, J; Juncadella, M; Vaquero, L; Rubio, F; Duarte, E; Garrido, C; Altenmüller, E; Münte, T F; Rodríguez-Fornells, A
2016-12-01
Novel rehabilitation interventions have improved motor recovery by induction of neural plasticity in individuals with stroke. Of these, Music-supported therapy (MST) is based on music training designed to restore motor deficits. Music training requires multimodal processing, involving the integration and co-operation of visual, motor, auditory, affective and cognitive systems. The main objective of this study was to assess, in a group of 20 individuals suffering from chronic stroke, the motor, cognitive, emotional and neuroplastic effects of MST. Using functional magnetic resonance imaging (fMRI) we observed a clear restitution of both activity and connectivity among auditory-motor regions of the affected hemisphere. Importantly, no differences were observed in this functional network in a healthy control group, ruling out possible confounds such as repeated imaging testing. Moreover, this increase in activity and connectivity between auditory and motor regions was accompanied by a functional improvement of the paretic hand. The present results confirm MST as a viable intervention to improve motor function in chronic stroke individuals.
Strategy in short-term memory for pictures in childhood: a near-infrared spectroscopy study.
Sanefuji, Masafumi; Takada, Yui; Kimura, Naoko; Torisu, Hiroyuki; Kira, Ryutaro; Ishizaki, Yoshito; Hara, Toshiro
2011-02-01
In Baddeley's working memory model, verbalizable visual material such as pictures are recoded into a phonological form and then rehearsed, while auditory material is rehearsed directly. The recoding and rehearsal processes are mediated by articulatory control process in the left ventrolateral prefrontal cortex (VLPFC). Developmentally, the phonological strategy for serially-presented visual material emerges around 7 years of age, while that for auditory material is consistently present by 4 years of age. However, the strategy change may actually be correlated with memory ability as this usually increases with age. To investigate the relationship between the strategy for pictures and memory ability, we monitored the left VLPFC activation in 5 to 11 year-old children during free recall of visually- or auditorily-presented familiar objects using event-related near-infrared spectroscopy. We hypothesized that the phonological strategy of rehearsal and recoding for visual material would provoke greater activation than only rehearsal for auditory material in the left VLPFC. Therefore, we presumed that the activation difference for visual material compared with auditory material in the left VLPFC may represent the tendency to use a phonological strategy. We found that the activation difference in the left VLPFC showed a significant positive correlation with memory ability but not with age, suggesting that children with high memory ability make more use of phonological strategy for pictures. The present study provides functional evidence that the strategy in short-term memory for pictures shifts gradually from non-phonological to phonological as memory ability increases in childhood. Copyright © 2010 Elsevier Inc. All rights reserved.
Working memory resources are shared across sensory modalities.
Salmela, V R; Moisala, M; Alho, K
2014-10-01
A common assumption in the working memory literature is that the visual and auditory modalities have separate and independent memory stores. Recent evidence on visual working memory has suggested that resources are shared between representations, and that the precision of representations sets the limit for memory performance. We tested whether memory resources are also shared across sensory modalities. Memory precision for two visual (spatial frequency and orientation) and two auditory (pitch and tone duration) features was measured separately for each feature and for all possible feature combinations. Thus, only the memory load was varied, from one to four features, while keeping the stimuli similar. In Experiment 1, two gratings and two tones-both containing two varying features-were presented simultaneously. In Experiment 2, two gratings and two tones-each containing only one varying feature-were presented sequentially. The memory precision (delayed discrimination threshold) for a single feature was close to the perceptual threshold. However, as the number of features to be remembered was increased, the discrimination thresholds increased more than twofold. Importantly, the decrease in memory precision did not depend on the modality of the other feature(s), or on whether the features were in the same or in separate objects. Hence, simultaneously storing one visual and one auditory feature had an effect on memory precision equal to those of simultaneously storing two visual or two auditory features. The results show that working memory is limited by the precision of the stored representations, and that working memory can be described as a resource pool that is shared across modalities.
Jemel, Boutheina; Achenbach, Christiane; Müller, Bernhard W; Röpcke, Bernd; Oades, Robert D
2002-01-01
The event-related potential (ERP) reflecting auditory change detection (mismatch negativity, MMN) registers automatic selective processing of a deviant sound with respect to a working memory template resulting from a series of standard sounds. Controversy remains whether MMN can be generated in the frontal as well as the temporal cortex. Our aim was to see if frontal as well as temporal lobe dipoles could explain MMN recorded after pitch-deviants (Pd-MMN) and duration deviants (Dd-MMN). EEG recordings were taken from 32 sites in 14 healthy subjects during a passive 3-tone oddball presented during a simple visual discrimination and an active auditory discrimination condition. Both conditions were repeated after one month. The Pd-MMN was larger, peaked earlier and correlated better between sessions than the Dd-MMN. Two dipoles in the auditory cortex and two in the frontal lobe (left cingulate and right inferior frontal cortex) were found to be similarly placed for Pd- and Dd-MMN, and were well replicated on retest. This study confirms interactions between activity generated in the frontal and auditory temporal cortices in automatic attention-like processes that resemble initial brain imaging reports of unconscious visual change detection. The lack of interference between sessions shows that the situation is likely to be sensitive to treatment or illness effects on fronto-temporal interactions involving repeated measures.
Xie, Zilong; Reetzke, Rachel; Chandrasekaran, Bharath
2018-05-24
Increasing visual perceptual load can reduce pre-attentive auditory cortical activity to sounds, a reflection of the limited and shared attentional resources for sensory processing across modalities. Here, we demonstrate that modulating visual perceptual load can impact the early sensory encoding of speech sounds, and that the impact of visual load is highly dependent on the predictability of the incoming speech stream. Participants (n = 20, 9 females) performed a visual search task of high (target similar to distractors) and low (target dissimilar to distractors) perceptual load, while early auditory electrophysiological responses were recorded to native speech sounds. Speech sounds were presented either in a 'repetitive context', or a less predictable 'variable context'. Independent of auditory stimulus context, pre-attentive auditory cortical activity was reduced during high visual load, relative to low visual load. We applied a data-driven machine learning approach to decode speech sounds from the early auditory electrophysiological responses. Decoding performance was found to be poorer under conditions of high (relative to low) visual load, when the incoming acoustic stream was predictable. When the auditory stimulus context was less predictable, decoding performance was substantially greater for the high (relative to low) visual load conditions. Our results provide support for shared attentional resources between visual and auditory modalities that substantially influence the early sensory encoding of speech signals in a context-dependent manner. Copyright © 2018 IBRO. Published by Elsevier Ltd. All rights reserved.
de Heering, Adélaïde; Dormal, Giulia; Pelland, Maxime; Lewis, Terri; Maurer, Daphne; Collignon, Olivier
2016-11-21
Is a short and transient period of visual deprivation early in life sufficient to induce lifelong changes in how we attend to, and integrate, simple visual and auditory information [1, 2]? This question is of crucial importance given the recent demonstration in both animals and humans that a period of blindness early in life permanently affects the brain networks dedicated to visual, auditory, and multisensory processing [1-16]. To address this issue, we compared a group of adults who had been treated for congenital bilateral cataracts during early infancy with a group of normally sighted controls on a task requiring simple detection of lateralized visual and auditory targets, presented alone or in combination. Redundancy gains obtained from the audiovisual conditions were similar between groups and surpassed the reaction time distribution predicted by Miller's race model. However, in comparison to controls, cataract-reversal patients were faster at processing simple auditory targets and showed differences in how they shifted attention across modalities. Specifically, they were faster at switching attention from visual to auditory inputs than in the reverse situation, while an opposite pattern was observed for controls. Overall, these results reveal that the absence of visual input during the first months of life does not prevent the development of audiovisual integration but enhances the salience of simple auditory inputs, leading to a different crossmodal distribution of attentional resources between auditory and visual stimuli. Copyright © 2016 Elsevier Ltd. All rights reserved.
Inferring Interaction Force from Visual Information without Using Physical Force Sensors.
Hwang, Wonjun; Lim, Soo-Chul
2017-10-26
In this paper, we present an interaction force estimation method that uses visual information rather than that of a force sensor. Specifically, we propose a novel deep learning-based method utilizing only sequential images for estimating the interaction force against a target object, where the shape of the object is changed by an external force. The force applied to the target can be estimated by means of the visual shape changes. However, the shape differences in the images are not very clear. To address this problem, we formulate a recurrent neural network-based deep model with fully-connected layers, which models complex temporal dynamics from the visual representations. Extensive evaluations show that the proposed learning models successfully estimate the interaction forces using only the corresponding sequential images, in particular in the case of three objects made of different materials, a sponge, a PET bottle, a human arm, and a tube. The forces predicted by the proposed method are very similar to those measured by force sensors.
Focused and shifting attention in children with heavy prenatal alcohol exposure.
Mattson, Sarah N; Calarco, Katherine E; Lang, Aimée R
2006-05-01
Attention deficits are a hallmark of the teratogenic effects of alcohol. However, characterization of these deficits remains inconclusive. Children with heavy prenatal alcohol exposure and nonexposed controls were evaluated using a paradigm consisting of three conditions: visual focus, auditory focus, and auditory-visual shift of attention. For the focus conditions, participants responded manually to visual or auditory targets. For the shift condition, participants alternated responses between visual targets and auditory targets. For the visual focus condition, alcohol-exposed children had lower accuracy and slower reaction time for all intertarget intervals (ITIs), while on the auditory focus condition, alcohol-exposed children were less accurate but displayed slower reaction time only on the longest ITI. Finally, for the shift condition, the alcohol-exposed group was accurate but had slowed reaction times. These results indicate that children with heavy prenatal alcohol exposure have pervasive deficits in visual focused attention and deficits in maintaining auditory attention over time. However, no deficits were noted in the ability to disengage and reengage attention when required to shift attention between visual and auditory stimuli, although reaction times to shift were slower. Copyright (c) 2006 APA, all rights reserved.
Neural Entrainment to Rhythmically Presented Auditory, Visual, and Audio-Visual Speech in Children
Power, Alan James; Mead, Natasha; Barnes, Lisa; Goswami, Usha
2012-01-01
Auditory cortical oscillations have been proposed to play an important role in speech perception. It is suggested that the brain may take temporal “samples” of information from the speech stream at different rates, phase resetting ongoing oscillations so that they are aligned with similar frequency bands in the input (“phase locking”). Information from these frequency bands is then bound together for speech perception. To date, there are no explorations of neural phase locking and entrainment to speech input in children. However, it is clear from studies of language acquisition that infants use both visual speech information and auditory speech information in learning. In order to study neural entrainment to speech in typically developing children, we use a rhythmic entrainment paradigm (underlying 2 Hz or delta rate) based on repetition of the syllable “ba,” presented in either the auditory modality alone, the visual modality alone, or as auditory-visual speech (via a “talking head”). To ensure attention to the task, children aged 13 years were asked to press a button as fast as possible when the “ba” stimulus violated the rhythm for each stream type. Rhythmic violation depended on delaying the occurrence of a “ba” in the isochronous stream. Neural entrainment was demonstrated for all stream types, and individual differences in standardized measures of language processing were related to auditory entrainment at the theta rate. Further, there was significant modulation of the preferred phase of auditory entrainment in the theta band when visual speech cues were present, indicating cross-modal phase resetting. The rhythmic entrainment paradigm developed here offers a method for exploring individual differences in oscillatory phase locking during development. In particular, a method for assessing neural entrainment and cross-modal phase resetting would be useful for exploring developmental learning difficulties thought to involve temporal sampling, such as dyslexia. PMID:22833726
A Device for Human Ultrasonic Echolocation.
Sohl-Dickstein, Jascha; Teng, Santani; Gaub, Benjamin M; Rodgers, Chris C; Li, Crystal; DeWeese, Michael R; Harper, Nicol S
2015-06-01
We present a device that combines principles of ultrasonic echolocation and spatial hearing to provide human users with environmental cues that are 1) not otherwise available to the human auditory system, and 2) richer in object and spatial information than the more heavily processed sonar cues of other assistive devices. The device consists of a wearable headset with an ultrasonic emitter and stereo microphones with affixed artificial pinnae. The goal of this study is to describe the device and evaluate the utility of the echoic information it provides. The echoes of ultrasonic pulses were recorded and time stretched to lower their frequencies into the human auditory range, then played back to the user. We tested performance among naive and experienced sighted volunteers using a set of localization experiments, in which the locations of echo-reflective surfaces were judged using these time-stretched echoes. Naive subjects were able to make laterality and distance judgments, suggesting that the echoes provide innately useful information without prior training. Naive subjects were generally unable to make elevation judgments from recorded echoes. However, trained subjects demonstrated an ability to judge elevation as well. This suggests that the device can be used effectively to examine the environment and that the human auditory system can rapidly adapt to these artificial echolocation cues. Interpreting and interacting with the external world constitutes a major challenge for persons who are blind or visually impaired. This device has the potential to aid blind people in interacting with their environment.
NASA Astrophysics Data System (ADS)
Farihah, Umi
2018-04-01
The purpose of this study was to analyze students’ thinking preferences in solving mathematics problems using paper pencil comparing to geogebra based on their learning styles. This research employed a qualitative descriptive study. The subjects of this research was six of eighth grade students of Madrasah Tsanawiyah Negeri 2 Trenggalek, East Java Indonesia academic year 2015-2016 with their difference learning styles; two visual students, two auditory students, and two kinesthetic students.. During the interview, the students presented the Paper and Pencil-based Task (PBTs) and the Geogebra-based Task (GBTs). By investigating students’ solution methods and the representation in solving the problems, the researcher compared their visual and non-visual thinking preferences in solving mathematics problems while they were using Geogebra and without Geogebra. Based on the result of research analysis, it was shown that the comparison between students’ PBTs and GBTs solution either visual, auditory, or kinesthetic represented how Geogebra can influence their solution method. By using Geogebra, they prefer using visual method while presenting GBTs to using non-visual method.
Processing of voices in deafness rehabilitation by auditory brainstem implant.
Coez, Arnaud; Zilbovicius, Monica; Ferrary, Evelyne; Bouccara, Didier; Mosnier, Isabelle; Ambert-Dahan, Emmanuèle; Kalamarides, Michel; Bizaguet, Eric; Syrota, André; Samson, Yves; Sterkers, Olivier
2009-10-01
The superior temporal sulcus (STS) is specifically involved in processing the human voice. Profound acquired deafness by post-meningitis ossified cochlea and by bilateral vestibular schwannoma in neurofibromatosis type 2 patients are two indications for auditory brainstem implantation (ABI). In order to objectively measure the cortical voice processing of a group of ABI patients, we studied the activation of the human temporal voice areas (TVA) by PET H(2)(15)O, performed in a group of implanted deaf adults (n=7) with more than two years of auditory brainstem implant experience, with an intelligibility score average of 17%+/-17 [mean+/-SD]. Relative cerebral blood flow (rCBF) was measured in the three following conditions: during silence, while passive listening to human voice, and to non-voice stimuli. Compared to silence, the activations induced by voice and non-voice stimuli were bilaterally located in the superior temporal regions. However, compared to non-voice stimuli, the voice stimuli did not induce specific supplementary activation of the TVA along the STS. The comparison of ABI group with a normal-hearing controls group (n=7) showed that TVA activations were significantly enhanced among controls group. ABI allowed the transmission of sound stimuli to temporal brain regions but lacked transmitting the specific cues of the human voice to the TVA. Moreover, among groups, during silent condition, brain visual regions showed higher rCBF in ABI group, although temporal brain regions had higher rCBF in the controls group. ABI patients had consequently developed enhanced visual strategies to keep interacting with their environment.
Giraud, Anne Lise; Truy, Eric
2002-01-01
Early visual cortex can be recruited by meaningful sounds in the absence of visual information. This occurs in particular in cochlear implant (CI) patients whose dependency on visual cues in speech comprehension is increased. Such cross-modal interaction mirrors the response of early auditory cortex to mouth movements (speech reading) and may reflect the natural expectancy of the visual counterpart of sounds, lip movements. Here we pursue the hypothesis that visual activations occur specifically in response to meaningful sounds. We performed PET in both CI patients and controls, while subjects listened either to their native language or to a completely unknown language. A recruitment of early visual cortex, the left posterior inferior temporal gyrus (ITG) and the left superior parietal cortex was observed in both groups. While no further activation occurred in the group of normal-hearing subjects, CI patients additionally recruited the right perirhinal/fusiform and mid-fusiform, the right temporo-occipito-parietal (TOP) junction and the left inferior prefrontal cortex (LIPF, Broca's area). This study confirms a participation of visual cortical areas in semantic processing of speech sounds. Observation of early visual activation in normal-hearing subjects shows that auditory-to-visual cross-modal effects can also be recruited under natural hearing conditions. In cochlear implant patients, speech activates the mid-fusiform gyrus in the vicinity of the so-called face area. This suggests that specific cross-modal interaction involving advanced stages in the visual processing hierarchy develops after cochlear implantation and may be the correlate of increased usage of lip-reading.
Tang, Xiaoyu; Li, Chunlin; Li, Qi; Gao, Yulin; Yang, Weiping; Yang, Jingjing; Ishikawa, Soushirou; Wu, Jinglong
2013-10-11
Utilizing the high temporal resolution of event-related potentials (ERPs), we examined how visual spatial or temporal cues modulated the auditory stimulus processing. The visual spatial cue (VSC) induces orienting of attention to spatial locations; the visual temporal cue (VTC) induces orienting of attention to temporal intervals. Participants were instructed to respond to auditory targets. Behavioral responses to auditory stimuli following VSC were faster and more accurate than those following VTC. VSC and VTC had the same effect on the auditory N1 (150-170 ms after stimulus onset). The mean amplitude of the auditory P1 (90-110 ms) in VSC condition was larger than that in VTC condition, and the mean amplitude of late positivity (300-420 ms) in VTC condition was larger than that in VSC condition. These findings suggest that modulation of auditory stimulus processing by visually induced spatial or temporal orienting of attention were different, but partially overlapping. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Ostrand, Rachel; Blumstein, Sheila E.; Ferreira, Victor S.; Morgan, James L.
2016-01-01
Human speech perception often includes both an auditory and visual component. A conflict in these signals can result in the McGurk illusion, in which the listener perceives a fusion of the two streams, implying that information from both has been integrated. We report two experiments investigating whether auditory-visual integration of speech occurs before or after lexical access, and whether the visual signal influences lexical access at all. Subjects were presented with McGurk or Congruent primes and performed a lexical decision task on related or unrelated targets. Although subjects perceived the McGurk illusion, McGurk and Congruent primes with matching real-word auditory signals equivalently primed targets that were semantically related to the auditory signal, but not targets related to the McGurk percept. We conclude that the time course of auditory-visual integration is dependent on the lexicality of the auditory and visual input signals, and that listeners can lexically access one word and yet consciously perceive another. PMID:27011021
2011-01-01
Background The electrical signals measuring method is recommended to examine the relationship between neuronal activities and measure with the event related potentials (ERPs) during an auditory and a visual oddball paradigm between schizophrenic patients and normal subjects. The aim of this study is to discriminate the activation changes of different stimulations evoked by auditory and visual ERPs between schizophrenic patients and normal subjects. Methods Forty-three schizophrenic patients were selected as experimental group patients, and 40 healthy subjects with no medical history of any kind of psychiatric diseases, neurological diseases, or drug abuse, were recruited as a control group. Auditory and visual ERPs were studied with an oddball paradigm. All the data were analyzed by SPSS statistical software version 10.0. Results In the comparative study of auditory and visual ERPs between the schizophrenic and healthy patients, P300 amplitude at Fz, Cz, and Pz and N100, N200, and P200 latencies at Fz, Cz, and Pz were shown significantly different. The cognitive processing reflected by the auditory and the visual P300 latency to rare target stimuli was probably an indicator of the cognitive function in schizophrenic patients. Conclusions This study shows the methodology of application of auditory and visual oddball paradigm identifies task-relevant sources of activity and allows separation of regions that have different response properties. Our study indicates that there may be slowness of automatic cognitive processing and controlled cognitive processing of visual ERPs compared to auditory ERPs in schizophrenic patients. The activation changes of visual evoked potentials are more regionally specific than auditory evoked potentials. PMID:21542917
Visual Information Present in Infragranular Layers of Mouse Auditory Cortex.
Morrill, Ryan J; Hasenstaub, Andrea R
2018-03-14
The cerebral cortex is a major hub for the convergence and integration of signals from across the sensory modalities; sensory cortices, including primary regions, are no exception. Here we show that visual stimuli influence neural firing in the auditory cortex of awake male and female mice, using multisite probes to sample single units across multiple cortical layers. We demonstrate that visual stimuli influence firing in both primary and secondary auditory cortex. We then determine the laminar location of recording sites through electrode track tracing with fluorescent dye and optogenetic identification using layer-specific markers. Spiking responses to visual stimulation occur deep in auditory cortex and are particularly prominent in layer 6. Visual modulation of firing rate occurs more frequently at areas with secondary-like auditory responses than those with primary-like responses. Auditory cortical responses to drifting visual gratings are not orientation-tuned, unlike visual cortex responses. The deepest cortical layers thus appear to be an important locus for cross-modal integration in auditory cortex. SIGNIFICANCE STATEMENT The deepest layers of the auditory cortex are often considered its most enigmatic, possessing a wide range of cell morphologies and atypical sensory responses. Here we show that, in mouse auditory cortex, these layers represent a locus of cross-modal convergence, containing many units responsive to visual stimuli. Our results suggest that this visual signal conveys the presence and timing of a stimulus rather than specifics about that stimulus, such as its orientation. These results shed light on both how and what types of cross-modal information is integrated at the earliest stages of sensory cortical processing. Copyright © 2018 the authors 0270-6474/18/382854-09$15.00/0.
The singular nature of auditory and visual scene analysis in autism
Lin, I.-Fan; Shirama, Aya; Kato, Nobumasa
2017-01-01
Individuals with autism spectrum disorder often have difficulty acquiring relevant auditory and visual information in daily environments, despite not being diagnosed as hearing impaired or having low vision. Resent psychophysical and neurophysiological studies have shown that autistic individuals have highly specific individual differences at various levels of information processing, including feature extraction, automatic grouping and top-down modulation in auditory and visual scene analysis. Comparison of the characteristics of scene analysis between auditory and visual modalities reveals some essential commonalities, which could provide clues about the underlying neural mechanisms. Further progress in this line of research may suggest effective methods for diagnosing and supporting autistic individuals. This article is part of the themed issue ‘Auditory and visual scene analysis'. PMID:28044025
Entrainment to an auditory signal: Is attention involved?
Kunert, Richard; Jongman, Suzanne R
2017-01-01
Many natural auditory signals, including music and language, change periodically. The effect of such auditory rhythms on the brain is unclear however. One widely held view, dynamic attending theory, proposes that the attentional system entrains to the rhythm and increases attention at moments of rhythmic salience. In support, 2 experiments reported here show reduced response times to visual letter strings shown at auditory rhythm peaks, compared with rhythm troughs. However, we argue that an account invoking the entrainment of general attention should further predict rhythm entrainment to also influence memory for visual stimuli. In 2 pseudoword memory experiments we find evidence against this prediction. Whether a pseudoword is shown during an auditory rhythm peak or not is irrelevant for its later recognition memory in silence. Other attention manipulations, dividing attention and focusing attention, did result in a memory effect. This raises doubts about the suggested attentional nature of rhythm entrainment. We interpret our findings as support for auditory rhythm perception being based on auditory-motor entrainment, not general attention entrainment. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Chiang, Hsueh-Sheng; Eroh, Justin; Spence, Jeffrey S; Motes, Michael A; Maguire, Mandy J; Krawczyk, Daniel C; Brier, Matthew R; Hart, John; Kraut, Michael A
2016-08-01
How the brain combines the neural representations of features that comprise an object in order to activate a coherent object memory is poorly understood, especially when the features are presented in different modalities (visual vs. auditory) and domains (verbal vs. nonverbal). We examined this question using three versions of a modified Semantic Object Retrieval Test, where object memory was probed by a feature presented as a written word, a spoken word, or a picture, followed by a second feature always presented as a visual word. Participants indicated whether each feature pair elicited retrieval of the memory of a particular object. Sixteen subjects completed one of the three versions (N=48 in total) while their EEG were recorded simultaneously. We analyzed EEG data in four separate frequency bands (delta: 1-4Hz, theta: 4-7Hz; alpha: 8-12Hz; beta: 13-19Hz) using a multivariate data-driven approach. We found that alpha power time-locked to response was modulated by both cross-modality (visual vs. auditory) and cross-domain (verbal vs. nonverbal) probing of semantic object memory. In addition, retrieval trials showed greater changes in all frequency bands compared to non-retrieval trials across all stimulus types in both response-locked and stimulus-locked analyses, suggesting dissociable neural subcomponents involved in binding object features to retrieve a memory. We conclude that these findings support both modality/domain-dependent and modality/domain-independent mechanisms during semantic object memory retrieval. Copyright © 2016 Elsevier B.V. All rights reserved.
Sight and sound converge to form modality-invariant representations in temporo-parietal cortex
Man, Kingson; Kaplan, Jonas T.; Damasio, Antonio; Meyer, Kaspar
2013-01-01
People can identify objects in the environment with remarkable accuracy, irrespective of the sensory modality they use to perceive them. This suggests that information from different sensory channels converges somewhere in the brain to form modality-invariant representations, i.e., representations that reflect an object independently of the modality through which it has been apprehended. In this functional magnetic resonance imaging study of human subjects, we first identified brain areas that responded to both visual and auditory stimuli and then used crossmodal multivariate pattern analysis to evaluate the neural representations in these regions for content-specificity (i.e., do different objects evoke different representations?) and modality-invariance (i.e., do the sight and the sound of the same object evoke a similar representation?). While several areas became activated in response to both auditory and visual stimulation, only the neural patterns recorded in a region around the posterior part of the superior temporal sulcus displayed both content-specificity and modality-invariance. This region thus appears to play an important role in our ability to recognize objects in our surroundings through multiple sensory channels and to process them at a supra-modal (i.e., conceptual) level. PMID:23175818
Most, Tova; Aviner, Chen
2009-01-01
This study evaluated the benefits of cochlear implant (CI) with regard to emotion perception of participants differing in their age of implantation, in comparison to hearing aid users and adolescents with normal hearing (NH). Emotion perception was examined by having the participants identify happiness, anger, surprise, sadness, fear, and disgust. The emotional content was placed upon the same neutral sentence. The stimuli were presented in auditory, visual, and combined auditory-visual modes. The results revealed better auditory identification by the participants with NH in comparison to all groups of participants with hearing loss (HL). No differences were found among the groups with HL in each of the 3 modes. Although auditory-visual perception was better than visual-only perception for the participants with NH, no such differentiation was found among the participants with HL. The results question the efficiency of some currently used CIs in providing the acoustic cues required to identify the speaker's emotional state.
Cross-modal metaphorical mapping of spoken emotion words onto vertical space.
Montoro, Pedro R; Contreras, María José; Elosúa, María Rosa; Marmolejo-Ramos, Fernando
2015-01-01
From the field of embodied cognition, previous studies have reported evidence of metaphorical mapping of emotion concepts onto a vertical spatial axis. Most of the work on this topic has used visual words as the typical experimental stimuli. However, to our knowledge, no previous study has examined the association between affect and vertical space using a cross-modal procedure. The current research is a first step toward the study of the metaphorical mapping of emotions onto vertical space by means of an auditory to visual cross-modal paradigm. In the present study, we examined whether auditory words with an emotional valence can interact with the vertical visual space according to a 'positive-up/negative-down' embodied metaphor. The general method consisted in the presentation of a spoken word denoting a positive/negative emotion prior to the spatial localization of a visual target in an upper or lower position. In Experiment 1, the spoken words were passively heard by the participants and no reliable interaction between emotion concepts and bodily simulated space was found. In contrast, Experiment 2 required more active listening of the auditory stimuli. A metaphorical mapping of affect and space was evident but limited to the participants engaged in an emotion-focused task. Our results suggest that the association of affective valence and vertical space is not activated automatically during speech processing since an explicit semantic and/or emotional evaluation of the emotionally valenced stimuli was necessary to obtain an embodied effect. The results are discussed within the framework of the embodiment hypothesis.
Cross-modal metaphorical mapping of spoken emotion words onto vertical space
Montoro, Pedro R.; Contreras, María José; Elosúa, María Rosa; Marmolejo-Ramos, Fernando
2015-01-01
From the field of embodied cognition, previous studies have reported evidence of metaphorical mapping of emotion concepts onto a vertical spatial axis. Most of the work on this topic has used visual words as the typical experimental stimuli. However, to our knowledge, no previous study has examined the association between affect and vertical space using a cross-modal procedure. The current research is a first step toward the study of the metaphorical mapping of emotions onto vertical space by means of an auditory to visual cross-modal paradigm. In the present study, we examined whether auditory words with an emotional valence can interact with the vertical visual space according to a ‘positive-up/negative-down’ embodied metaphor. The general method consisted in the presentation of a spoken word denoting a positive/negative emotion prior to the spatial localization of a visual target in an upper or lower position. In Experiment 1, the spoken words were passively heard by the participants and no reliable interaction between emotion concepts and bodily simulated space was found. In contrast, Experiment 2 required more active listening of the auditory stimuli. A metaphorical mapping of affect and space was evident but limited to the participants engaged in an emotion-focused task. Our results suggest that the association of affective valence and vertical space is not activated automatically during speech processing since an explicit semantic and/or emotional evaluation of the emotionally valenced stimuli was necessary to obtain an embodied effect. The results are discussed within the framework of the embodiment hypothesis. PMID:26322007
Information processing capacity while wearing personal protective eyewear.
Wade, Chip; Davis, Jerry; Marzilli, Thomas S; Weimar, Wendi H
2006-08-15
It is difficult to overemphasize the function vision plays in information processing, specifically in maintaining postural control. Vision appears to be an immediate, effortless event; suggesting that eyes need only to be open to employ the visual information provided by the environment. This study is focused on investigating the effect of Occupational Safety and Health Administration regulated personal protective eyewear (29 CFR 1910.133) on physiological and cognitive factors associated with information processing capabilities. Twenty-one college students between the ages of 19 and 25 years were randomly tested in each of three eyewear conditions (control, new and artificially aged) on an inclined and horizontal support surface for auditory and visual stimulus reaction time. Data collection trials consisted of 50 randomly selected (25 auditory, 25 visual) stimuli over a 10-min surface-eyewear condition trial. Auditory stimulus reaction time was significantly affected by the surface by eyewear interaction (F2,40 = 7.4; p < 0.05). Similarly, analysis revealed a significant surface by eyewear interaction in reaction time following the visual stimulus (F2,40 = 21.7; p < 0.05). The current findings do not trivialize the importance of personal protective eyewear usage in an occupational setting; rather, they suggest the value of future research focused on the effect that personal protective eyewear has on the physiological, cognitive and biomechanical contributions to postural control. These findings suggest that while personal protective eyewear may serve to protect an individual from eye injury, an individual's use of such personal protective eyewear may have deleterious effects on sensory information associated with information processing and postural control.
Auditory and visual modulation of temporal lobe neurons in voice-sensitive and association cortices.
Perrodin, Catherine; Kayser, Christoph; Logothetis, Nikos K; Petkov, Christopher I
2014-02-12
Effective interactions between conspecific individuals can depend upon the receiver forming a coherent multisensory representation of communication signals, such as merging voice and face content. Neuroimaging studies have identified face- or voice-sensitive areas (Belin et al., 2000; Petkov et al., 2008; Tsao et al., 2008), some of which have been proposed as candidate regions for face and voice integration (von Kriegstein et al., 2005). However, it was unclear how multisensory influences occur at the neuronal level within voice- or face-sensitive regions, especially compared with classically defined multisensory regions in temporal association cortex (Stein and Stanford, 2008). Here, we characterize auditory (voice) and visual (face) influences on neuronal responses in a right-hemisphere voice-sensitive region in the anterior supratemporal plane (STP) of Rhesus macaques. These results were compared with those in the neighboring superior temporal sulcus (STS). Within the STP, our results show auditory sensitivity to several vocal features, which was not evident in STS units. We also newly identify a functionally distinct neuronal subpopulation in the STP that appears to carry the area's sensitivity to voice identity related features. Audiovisual interactions were prominent in both the STP and STS. However, visual influences modulated the responses of STS neurons with greater specificity and were more often associated with congruent voice-face stimulus pairings than STP neurons. Together, the results reveal the neuronal processes subserving voice-sensitive fMRI activity patterns in primates, generate hypotheses for testing in the visual modality, and clarify the position of voice-sensitive areas within the unisensory and multisensory processing hierarchies.
Auditory and Visual Modulation of Temporal Lobe Neurons in Voice-Sensitive and Association Cortices
Perrodin, Catherine; Kayser, Christoph; Logothetis, Nikos K.
2014-01-01
Effective interactions between conspecific individuals can depend upon the receiver forming a coherent multisensory representation of communication signals, such as merging voice and face content. Neuroimaging studies have identified face- or voice-sensitive areas (Belin et al., 2000; Petkov et al., 2008; Tsao et al., 2008), some of which have been proposed as candidate regions for face and voice integration (von Kriegstein et al., 2005). However, it was unclear how multisensory influences occur at the neuronal level within voice- or face-sensitive regions, especially compared with classically defined multisensory regions in temporal association cortex (Stein and Stanford, 2008). Here, we characterize auditory (voice) and visual (face) influences on neuronal responses in a right-hemisphere voice-sensitive region in the anterior supratemporal plane (STP) of Rhesus macaques. These results were compared with those in the neighboring superior temporal sulcus (STS). Within the STP, our results show auditory sensitivity to several vocal features, which was not evident in STS units. We also newly identify a functionally distinct neuronal subpopulation in the STP that appears to carry the area's sensitivity to voice identity related features. Audiovisual interactions were prominent in both the STP and STS. However, visual influences modulated the responses of STS neurons with greater specificity and were more often associated with congruent voice-face stimulus pairings than STP neurons. Together, the results reveal the neuronal processes subserving voice-sensitive fMRI activity patterns in primates, generate hypotheses for testing in the visual modality, and clarify the position of voice-sensitive areas within the unisensory and multisensory processing hierarchies. PMID:24523543
Auditory, visual, and bimodal data link displays and how they support pilot performance.
Steelman, Kelly S; Talleur, Donald; Carbonari, Ronald; Yamani, Yusuke; Nunes, Ashley; McCarley, Jason S
2013-06-01
The design of data link messaging systems to ensure optimal pilot performance requires empirical guidance. The current study examined the effects of display format (auditory, visual, or bimodal) and visual display position (adjacent to instrument panel or mounted on console) on pilot performance. Subjects performed five 20-min simulated single-pilot flights. During each flight, subjects received messages from a simulated air traffic controller. Messages were delivered visually, auditorily, or bimodally. Subjects were asked to read back each message aloud and then perform the instructed maneuver. Visual and bimodal displays engendered lower subjective workload and better altitude tracking than auditory displays. Readback times were shorter with the two unimodal visual formats than with any of the other three formats. Advantages for the unimodal visual format ranged in size from 2.8 s to 3.8 s relative to the bimodal upper left and auditory formats, respectively. Auditory displays allowed slightly more head-up time (3 to 3.5 seconds per minute) than either visual or bimodal displays. Position of the visual display had only modest effects on any measure. Combined with the results from previous studies by Helleberg and Wickens and Lancaster and Casali the current data favor visual and bimodal displays over auditory displays; unimodal auditory displays were favored by only one measure, head-up time, and only very modestly. Data evinced no statistically significant effects of visual display position on performance, suggesting that, contrary to expectations, the placement of a visual data link display may be of relatively little consequence to performance.
Real-time lexical comprehension in young children learning American Sign Language.
MacDonald, Kyle; LaMarr, Todd; Corina, David; Marchman, Virginia A; Fernald, Anne
2018-04-16
When children interpret spoken language in real time, linguistic information drives rapid shifts in visual attention to objects in the visual world. This language-vision interaction can provide insights into children's developing efficiency in language comprehension. But how does language influence visual attention when the linguistic signal and the visual world are both processed via the visual channel? Here, we measured eye movements during real-time comprehension of a visual-manual language, American Sign Language (ASL), by 29 native ASL-learning children (16-53 mos, 16 deaf, 13 hearing) and 16 fluent deaf adult signers. All signers showed evidence of rapid, incremental language comprehension, tending to initiate an eye movement before sign offset. Deaf and hearing ASL-learners showed similar gaze patterns, suggesting that the in-the-moment dynamics of eye movements during ASL processing are shaped by the constraints of processing a visual language in real time and not by differential access to auditory information in day-to-day life. Finally, variation in children's ASL processing was positively correlated with age and vocabulary size. Thus, despite competition for attention within a single modality, the timing and accuracy of visual fixations during ASL comprehension reflect information processing skills that are important for language acquisition regardless of language modality. © 2018 John Wiley & Sons Ltd.
Harris, Jill; Kamke, Marc R
2014-11-01
Selective attention fundamentally alters sensory perception, but little is known about the functioning of attention in individuals who use a cochlear implant. This study aimed to investigate visual and auditory attention in adolescent cochlear implant users. Event related potentials were used to investigate the influence of attention on visual and auditory evoked potentials in six cochlear implant users and age-matched normally-hearing children. Participants were presented with streams of alternating visual and auditory stimuli in an oddball paradigm: each modality contained frequently presented 'standard' and infrequent 'deviant' stimuli. Across different blocks attention was directed to either the visual or auditory modality. For the visual stimuli attention boosted the early N1 potential, but this effect was larger for cochlear implant users. Attention was also associated with a later P3 component for the visual deviant stimulus, but there was no difference between groups in the later attention effects. For the auditory stimuli, attention was associated with a decrease in N1 latency as well as a robust P3 for the deviant tone. Importantly, there was no difference between groups in these auditory attention effects. The results suggest that basic mechanisms of auditory attention are largely normal in children who are proficient cochlear implant users, but that visual attention may be altered. Ultimately, a better understanding of how selective attention influences sensory perception in cochlear implant users will be important for optimising habilitation strategies. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Hasegawa, Naoya; Takeda, Kenta; Sakuma, Moe; Mani, Hiroki; Maejima, Hiroshi; Asaka, Tadayoshi
2017-10-01
Augmented sensory biofeedback (BF) for postural control is widely used to improve postural stability. However, the effective sensory information in BF systems of motor learning for postural control is still unknown. The purpose of this study was to investigate the learning effects of visual versus auditory BF training in dynamic postural control. Eighteen healthy young adults were randomly divided into two groups (visual BF and auditory BF). In test sessions, participants were asked to bring the real-time center of pressure (COP) in line with a hidden target by body sway in the sagittal plane. The target moved in seven cycles of sine curves at 0.23Hz in the vertical direction on a monitor. In training sessions, the visual and auditory BF groups were required to change the magnitude of a visual circle and a sound, respectively, according to the distance between the COP and target in order to reach the target. The perceptual magnitudes of visual and auditory BF were equalized according to Stevens' power law. At the retention test, the auditory but not visual BF group demonstrated decreased postural performance errors in both the spatial and temporal parameters under the no-feedback condition. These findings suggest that visual BF increases the dependence on visual information to control postural performance, while auditory BF may enhance the integration of the proprioceptive sensory system, which contributes to motor learning without BF. These results suggest that auditory BF training improves motor learning of dynamic postural control. Copyright © 2017 Elsevier B.V. All rights reserved.
Decoding Visual Location From Neural Patterns in the Auditory Cortex of the Congenitally Deaf
Almeida, Jorge; He, Dongjun; Chen, Quanjing; Mahon, Bradford Z.; Zhang, Fan; Gonçalves, Óscar F.; Fang, Fang; Bi, Yanchao
2016-01-01
Sensory cortices of individuals who are congenitally deprived of a sense can exhibit considerable plasticity and be recruited to process information from the senses that remain intact. Here, we explored whether the auditory cortex of congenitally deaf individuals represents visual field location of a stimulus—a dimension that is represented in early visual areas. We used functional MRI to measure neural activity in auditory and visual cortices of congenitally deaf and hearing humans while they observed stimuli typically used for mapping visual field preferences in visual cortex. We found that the location of a visual stimulus can be successfully decoded from the patterns of neural activity in auditory cortex of congenitally deaf but not hearing individuals. This is particularly true for locations within the horizontal plane and within peripheral vision. These data show that the representations stored within neuroplastically changed auditory cortex can align with dimensions that are typically represented in visual cortex. PMID:26423461
A new method for text detection and recognition in indoor scene for assisting blind people
NASA Astrophysics Data System (ADS)
Jabnoun, Hanen; Benzarti, Faouzi; Amiri, Hamid
2017-03-01
Developing assisting system of handicapped persons become a challenging ask in research projects. Recently, a variety of tools are designed to help visually impaired or blind people object as a visual substitution system. The majority of these tools are based on the conversion of input information into auditory or tactile sensory information. Furthermore, object recognition and text retrieval are exploited in the visual substitution systems. Text detection and recognition provides the description of the surrounding environments, so that the blind person can readily recognize the scene. In this work, we aim to introduce a method for detecting and recognizing text in indoor scene. The process consists on the detection of the regions of interest that should contain the text using the connected component. Then, the text detection is provided by employing the images correlation. This component of an assistive blind person should be simple, so that the users are able to obtain the most informative feedback within the shortest time.
Exploring the simulation requirements for virtual regional anesthesia training
NASA Astrophysics Data System (ADS)
Charissis, V.; Zimmer, C. R.; Sakellariou, S.; Chan, W.
2010-01-01
This paper presents an investigation towards the simulation requirements for virtual regional anaesthesia training. To this end we have developed a prototype human-computer interface designed to facilitate Virtual Reality (VR) augmenting educational tactics for regional anaesthesia training. The proposed interface system, aims to compliment nerve blocking techniques methods. The system is designed to operate in real-time 3D environment presenting anatomical information and enabling the user to explore the spatial relation of different human parts without any physical constrains. Furthermore the proposed system aims to assist the trainee anaesthetists so as to build a mental, three-dimensional map of the anatomical elements and their depictive relationship to the Ultra-Sound imaging which is used for navigation of the anaesthetic needle. Opting for a sophisticated approach of interaction, the interface elements are based on simplified visual representation of real objects, and can be operated through haptic devices and surround auditory cues. This paper discusses the challenges involved in the HCI design, introduces the visual components of the interface and presents a tentative plan of future work which involves the development of realistic haptic feedback and various regional anaesthesia training scenarios.
Audience gaze while appreciating a multipart musical performance.
Kawase, Satoshi; Obata, Satoshi
2016-11-01
Visual information has been observed to be crucial for audience members during musical performances. The present study used an eye tracker to investigate audience members' gazes while appreciating an audiovisual musical ensemble performance, based on evidence of the dominance of musical part in auditory attention when listening to multipart music that contains different melody lines and the joint-attention theory of gaze. We presented singing performances, by a female duo. The main findings were as follows: (1) the melody part (soprano) attracted more visual attention than the accompaniment part (alto) throughout the piece, (2) joint attention emerged when the singers shifted their gazes toward their co-performer, suggesting that inter-performer gazing interactions that play a spotlight role mediated performer-audience visual interaction, and (3) musical part (melody or accompaniment) strongly influenced the total duration of gazes among audiences, while the spotlight effect of gaze was limited to just after the singers' gaze shifts. Copyright © 2016. Published by Elsevier Inc.
Sex differences in the representation of call stimuli in a songbird secondary auditory area
Giret, Nicolas; Menardy, Fabien; Del Negro, Catherine
2015-01-01
Understanding how communication sounds are encoded in the central auditory system is critical to deciphering the neural bases of acoustic communication. Songbirds use learned or unlearned vocalizations in a variety of social interactions. They have telencephalic auditory areas specialized for processing natural sounds and considered as playing a critical role in the discrimination of behaviorally relevant vocal sounds. The zebra finch, a highly social songbird species, forms lifelong pair bonds. Only male zebra finches sing. However, both sexes produce the distance call when placed in visual isolation. This call is sexually dimorphic, is learned only in males and provides support for individual recognition in both sexes. Here, we assessed whether auditory processing of distance calls differs between paired males and females by recording spiking activity in a secondary auditory area, the caudolateral mesopallium (CLM), while presenting the distance calls of a variety of individuals, including the bird itself, the mate, familiar and unfamiliar males and females. In males, the CLM is potentially involved in auditory feedback processing important for vocal learning. Based on both the analyses of spike rates and temporal aspects of discharges, our results clearly indicate that call-evoked responses of CLM neurons are sexually dimorphic, being stronger, lasting longer, and conveying more information about calls in males than in females. In addition, how auditory responses vary among call types differ between sexes. In females, response strength differs between familiar male and female calls. In males, temporal features of responses reveal a sensitivity to the bird's own call. These findings provide evidence that sexual dimorphism occurs in higher-order processing areas within the auditory system. They suggest a sexual dimorphism in the function of the CLM, contributing to transmit information about the self-generated calls in males and to storage of information about the bird's auditory experience in females. PMID:26578918
Sex differences in the representation of call stimuli in a songbird secondary auditory area.
Giret, Nicolas; Menardy, Fabien; Del Negro, Catherine
2015-01-01
Understanding how communication sounds are encoded in the central auditory system is critical to deciphering the neural bases of acoustic communication. Songbirds use learned or unlearned vocalizations in a variety of social interactions. They have telencephalic auditory areas specialized for processing natural sounds and considered as playing a critical role in the discrimination of behaviorally relevant vocal sounds. The zebra finch, a highly social songbird species, forms lifelong pair bonds. Only male zebra finches sing. However, both sexes produce the distance call when placed in visual isolation. This call is sexually dimorphic, is learned only in males and provides support for individual recognition in both sexes. Here, we assessed whether auditory processing of distance calls differs between paired males and females by recording spiking activity in a secondary auditory area, the caudolateral mesopallium (CLM), while presenting the distance calls of a variety of individuals, including the bird itself, the mate, familiar and unfamiliar males and females. In males, the CLM is potentially involved in auditory feedback processing important for vocal learning. Based on both the analyses of spike rates and temporal aspects of discharges, our results clearly indicate that call-evoked responses of CLM neurons are sexually dimorphic, being stronger, lasting longer, and conveying more information about calls in males than in females. In addition, how auditory responses vary among call types differ between sexes. In females, response strength differs between familiar male and female calls. In males, temporal features of responses reveal a sensitivity to the bird's own call. These findings provide evidence that sexual dimorphism occurs in higher-order processing areas within the auditory system. They suggest a sexual dimorphism in the function of the CLM, contributing to transmit information about the self-generated calls in males and to storage of information about the bird's auditory experience in females.
Paladini, Rebecca E.; Diana, Lorenzo; Zito, Giuseppe A.; Nyffeler, Thomas; Wyss, Patric; Mosimann, Urs P.; Müri, René M.; Nef, Tobias
2018-01-01
Cross-modal spatial cueing can affect performance in a visual search task. For example, search performance improves if a visual target and an auditory cue originate from the same spatial location, and it deteriorates if they originate from different locations. Moreover, it has recently been postulated that multisensory settings, i.e., experimental settings, in which critical stimuli are concurrently presented in different sensory modalities (e.g., visual and auditory), may trigger asymmetries in visuospatial attention. Thereby, a facilitation has been observed for visual stimuli presented in the right compared to the left visual space. However, it remains unclear whether auditory cueing of attention differentially affects search performance in the left and the right hemifields in audio-visual search tasks. The present study investigated whether spatial asymmetries would occur in a search task with cross-modal spatial cueing. Participants completed a visual search task that contained no auditory cues (i.e., unimodal visual condition), spatially congruent, spatially incongruent, and spatially non-informative auditory cues. To further assess participants’ accuracy in localising the auditory cues, a unimodal auditory spatial localisation task was also administered. The results demonstrated no left/right asymmetries in the unimodal visual search condition. Both an additional incongruent, as well as a spatially non-informative, auditory cue resulted in lateral asymmetries. Thereby, search times were increased for targets presented in the left compared to the right hemifield. No such spatial asymmetry was observed in the congruent condition. However, participants’ performance in the congruent condition was modulated by their tone localisation accuracy. The findings of the present study demonstrate that spatial asymmetries in multisensory processing depend on the validity of the cross-modal cues, and occur under specific attentional conditions, i.e., when visual attention has to be reoriented towards the left hemifield. PMID:29293637
Investigating the role of visual and auditory search in reading and developmental dyslexia
Lallier, Marie; Donnadieu, Sophie; Valdois, Sylviane
2013-01-01
It has been suggested that auditory and visual sequential processing deficits contribute to phonological disorders in developmental dyslexia. As an alternative explanation to a phonological deficit as the proximal cause for reading disorders, the visual attention span hypothesis (VA Span) suggests that difficulties in processing visual elements simultaneously lead to dyslexia, regardless of the presence of a phonological disorder. In this study, we assessed whether deficits in processing simultaneously displayed visual or auditory elements is linked to dyslexia associated with a VA Span impairment. Sixteen children with developmental dyslexia and 16 age-matched skilled readers were assessed on visual and auditory search tasks. Participants were asked to detect a target presented simultaneously with 3, 9, or 15 distracters. In the visual modality, target detection was slower in the dyslexic children than in the control group on a “serial” search condition only: the intercepts (but not the slopes) of the search functions were higher in the dyslexic group than in the control group. In the auditory modality, although no group difference was observed, search performance was influenced by the number of distracters in the control group only. Within the dyslexic group, not only poor visual search (high reaction times and intercepts) but also low auditory search performance (d′) strongly correlated with poor irregular word reading accuracy. Moreover, both visual and auditory search performance was associated with the VA Span abilities of dyslexic participants but not with their phonological skills. The present data suggests that some visual mechanisms engaged in “serial” search contribute to reading and orthographic knowledge via VA Span skills regardless of phonological skills. The present results further open the question of the role of auditory simultaneous processing in reading as well as its link with VA Span skills. PMID:24093014
Investigating the role of visual and auditory search in reading and developmental dyslexia.
Lallier, Marie; Donnadieu, Sophie; Valdois, Sylviane
2013-01-01
It has been suggested that auditory and visual sequential processing deficits contribute to phonological disorders in developmental dyslexia. As an alternative explanation to a phonological deficit as the proximal cause for reading disorders, the visual attention span hypothesis (VA Span) suggests that difficulties in processing visual elements simultaneously lead to dyslexia, regardless of the presence of a phonological disorder. In this study, we assessed whether deficits in processing simultaneously displayed visual or auditory elements is linked to dyslexia associated with a VA Span impairment. Sixteen children with developmental dyslexia and 16 age-matched skilled readers were assessed on visual and auditory search tasks. Participants were asked to detect a target presented simultaneously with 3, 9, or 15 distracters. In the visual modality, target detection was slower in the dyslexic children than in the control group on a "serial" search condition only: the intercepts (but not the slopes) of the search functions were higher in the dyslexic group than in the control group. In the auditory modality, although no group difference was observed, search performance was influenced by the number of distracters in the control group only. Within the dyslexic group, not only poor visual search (high reaction times and intercepts) but also low auditory search performance (d') strongly correlated with poor irregular word reading accuracy. Moreover, both visual and auditory search performance was associated with the VA Span abilities of dyslexic participants but not with their phonological skills. The present data suggests that some visual mechanisms engaged in "serial" search contribute to reading and orthographic knowledge via VA Span skills regardless of phonological skills. The present results further open the question of the role of auditory simultaneous processing in reading as well as its link with VA Span skills.
Neurophysiological Estimates of Human Performance Capabilities in Aerospace Systems
1975-01-27
effects on the visual system (in lateral geniculate bodies and optic cortex) depending on the frequency of auditory stimulation. 27 SECTION VI...of spa- tial positions. Correct responses were rewarded with food. EEG activity was recorded in the hippocampus, hypothalamus and lateral geniculate ...movement or an object movement reduce transmission of visual information through the lateral geniculate nucleus. This may be a mechanism for saccadic
Gainotti, Guido
2010-02-01
The aim of the present survey was to review scientific articles dealing with the non-visual (auditory and tactile) forms of neglect to determine: (a) whether behavioural patterns similar to those observed in the visual modality can also be observed in the non-visual modalities; (b) whether a different severity of neglect can be found in the visual and in the auditory and tactile modalities; (c) the reasons for the possible differences between the visual and non-visual modalities. Data pointing to a contralesional orienting of attention in the auditory and the tactile modalities in visual neglect patients were separately reviewed. Results showed: (a) that in patients with right brain damage manifestations of neglect for the contralesional side of space can be found not only in the visual but also in the auditory and tactile modalities; (b) that the severity of neglect is greater in the visual than in the non-visual modalities. This asymmetry in the severity of neglect across modalities seems due to the greater role that the automatic capture of attention by irrelevant ipsilesional stimuli seems to play in the visual modality. Copyright 2009 Elsevier Srl. All rights reserved.
Brasileiro, A; Gama, G; Trigueiro, L; Ribeiro, T; Silva, E; Galvão, É; Lindquist, A
2015-02-01
Stroke is an important causal factor of deficiency and functional dependence worldwide. To determine the immediate effects of visual and auditory biofeedback, combined with partial body weight supported (PBWS) treadmill training on the gait of individuals with chronic hemiparesis. Randomized controlled trial. Outpatient rehabilitation hospital. Thirty subjects with chronic hemiparesis and ability to walk with some help. Participants were randomized to a control group that underwent only PBWS treadmill training; or experimental I group with visual biofeedback from the display monitor, in the form of symbolic feet as the subject took a step; or experimental group II with auditory biofeedback associated display, using a metronome at 115% of the individual's preferred cadence. They trained for 20 minutes and were evaluated before and after training. Spatio-temporal and angular gait variables were obtained by kinematics from the Qualisys Motion Analysis system. Increases in speed and stride length were observed for all groups over time (speed: F=25.63; P<0.001; stride length: F=27.18; P<0.001), as well as changes in hip and ankle range of motion - ROM (hip ROM: F=14.43; P=0.001; ankle ROM: F=4.76; P=0.038), with no time*groups interaction. Other spatio-temporal and angular parameters remain unchanged. Visual biofeedback and auditory biofeedback had no influence on PBWS treadmill training of individuals with chronic hemiparesis, in short term. Additional studies are needed to determine whether, in long term, the biofeedback will promote additional benefit to the PBWS treadmill training. The findings of this study indicate that visual and auditory biofeedback does not bring immediate benefits on PBWS treadmill training of individuals with chronic hemiparesis. This suggest that, for additional benefits are achieved with biofeedback, effects should be investigated after long-term training, which may determine if some kind of biofeedback is superior to another to improve the hemiparetic gait.
Visual Mislocalization of Moving Objects in an Audiovisual Event.
Kawachi, Yousuke
2016-01-01
The present study investigated the influence of an auditory tone on the localization of visual objects in the stream/bounce display (SBD). In this display, two identical visual objects move toward each other, overlap, and then return to their original positions. These objects can be perceived as either streaming through or bouncing off each other. In this study, the closest distance between object centers on opposing trajectories and tone presentation timing (none, 0 ms, ± 90 ms, and ± 390 ms relative to the instant for the closest distance) were manipulated. Observers were asked to judge whether the two objects overlapped with each other and whether the objects appeared to stream through, bounce off each other, or reverse their direction of motion. A tone presented at or around the instant of the objects' closest distance biased judgments toward "non-overlapping," and observers overestimated the physical distance between objects. A similar bias toward direction change judgments (bounce and reverse, not stream judgments) was also observed, which was always stronger than the non-overlapping bias. Thus, these two types of judgments were not always identical. Moreover, another experiment showed that it was unlikely that this observed mislocalization could be explained by other previously known mislocalization phenomena (i.e., representational momentum, the Fröhlich effect, and a turn-point shift). These findings indicate a new example of crossmodal mislocalization, which can be obtained without temporal offsets between audiovisual stimuli. The mislocalization effect is also specific to a more complex stimulus configuration of objects on opposing trajectories, with a tone that is presented simultaneously. The present study promotes an understanding of relatively complex audiovisual interactions beyond simple one-to-one audiovisual stimuli used in previous studies.
Multimedia Visualizer: An Animated, Object-Based OPAC.
ERIC Educational Resources Information Center
Lee, Newton S.
1991-01-01
Describes the Multimedia Visualizer, an online public access catalog (OPAC) that uses animated visualizations to make it more user friendly. Pictures of the system are shown that illustrate the interactive objects that patrons can access, including card catalog drawers, librarian desks, and bookshelves; and access to multimedia items is described.…
Impact of Language on Development of Auditory-Visual Speech Perception
ERIC Educational Resources Information Center
Sekiyama, Kaoru; Burnham, Denis
2008-01-01
The McGurk effect paradigm was used to examine the developmental onset of inter-language differences between Japanese and English in auditory-visual speech perception. Participants were asked to identify syllables in audiovisual (with congruent or discrepant auditory and visual components), audio-only, and video-only presentations at various…
Modality-independent representations of small quantities based on brain activation patterns.
Damarla, Saudamini Roy; Cherkassky, Vladimir L; Just, Marcel Adam
2016-04-01
Machine learning or MVPA (Multi Voxel Pattern Analysis) studies have shown that the neural representation of quantities of objects can be decoded from fMRI patterns, in cases where the quantities were visually displayed. Here we apply these techniques to investigate whether neural representations of quantities depicted in one modality (say, visual) can be decoded from brain activation patterns evoked by quantities depicted in the other modality (say, auditory). The main finding demonstrated, for the first time, that quantities of dots were decodable by a classifier that was trained on the neural patterns evoked by quantities of auditory tones, and vice-versa. The representations that were common across modalities were mainly right-lateralized in frontal and parietal regions. A second finding was that the neural patterns in parietal cortex that represent quantities were common across participants. These findings demonstrate a common neuronal foundation for the representation of quantities across sensory modalities and participants and provide insight into the role of parietal cortex in the representation of quantity information. © 2016 Wiley Periodicals, Inc.
Realigning Thunder and Lightning: Temporal Adaptation to Spatiotemporally Distant Events
Navarra, Jordi; Fernández-Prieto, Irune; Garcia-Morera, Joel
2013-01-01
The brain is able to realign asynchronous signals that approximately coincide in both space and time. Given that many experience-based links between visual and auditory stimuli are established in the absence of spatiotemporal proximity, we investigated whether or not temporal realignment arises in these conditions. Participants received a 3-min exposure to visual and auditory stimuli that were separated by 706 ms and appeared either from the same (Experiment 1) or from different spatial positions (Experiment 2). A simultaneity judgment task (SJ) was administered right afterwards. Temporal realignment between vision and audition was observed, in both Experiment 1 and 2, when comparing the participants’ SJs after this exposure phase with those obtained after a baseline exposure to audiovisual synchrony. However, this effect was present only when the visual stimuli preceded the auditory stimuli during the exposure to asynchrony. A similar pattern of results (temporal realignment after exposure to visual-leading asynchrony but not after exposure to auditory-leading asynchrony) was obtained using temporal order judgments (TOJs) instead of SJs (Experiment 3). Taken together, these results suggest that temporal recalibration still occurs for visual and auditory stimuli that fall clearly outside the so-called temporal window for multisensory integration and appear from different spatial positions. This temporal realignment may be modulated by long-term experience with the kind of asynchrony (vision-leading) that we most frequently encounter in the outside world (e.g., while perceiving distant events). PMID:24391928
The role of emotion in dynamic audiovisual integration of faces and voices.
Kokinous, Jenny; Kotz, Sonja A; Tavano, Alessandro; Schröger, Erich
2015-05-01
We used human electroencephalogram to study early audiovisual integration of dynamic angry and neutral expressions. An auditory-only condition served as a baseline for the interpretation of integration effects. In the audiovisual conditions, the validity of visual information was manipulated using facial expressions that were either emotionally congruent or incongruent with the vocal expressions. First, we report an N1 suppression effect for angry compared with neutral vocalizations in the auditory-only condition. Second, we confirm early integration of congruent visual and auditory information as indexed by a suppression of the auditory N1 and P2 components in the audiovisual compared with the auditory-only condition. Third, audiovisual N1 suppression was modulated by audiovisual congruency in interaction with emotion: for neutral vocalizations, there was N1 suppression in both the congruent and the incongruent audiovisual conditions. For angry vocalizations, there was N1 suppression only in the congruent but not in the incongruent condition. Extending previous findings of dynamic audiovisual integration, the current results suggest that audiovisual N1 suppression is congruency- and emotion-specific and indicate that dynamic emotional expressions compared with non-emotional expressions are preferentially processed in early audiovisual integration. © The Author (2014). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.
Zhang, Dan; Hong, Bo; Gao, Shangkai; Röder, Brigitte
2017-05-01
While the behavioral dynamics as well as the functional network of sustained and transient attention have extensively been studied, their underlying neural mechanisms have most often been investigated in separate experiments. In the present study, participants were instructed to perform an audio-visual spatial attention task. They were asked to attend to either the left or the right hemifield and to respond to deviant transient either auditory or visual stimuli. Steady-state visual evoked potentials (SSVEPs) elicited by two task irrelevant pattern reversing checkerboards flickering at 10 and 15 Hz in the left and the right hemifields, respectively, were used to continuously monitor the locus of spatial attention. The amplitude and phase of the SSVEPs were extracted for single trials and were separately analyzed. Sustained attention to one hemifield (spatial attention) as well as to the auditory modality (intermodal attention) increased the inter-trial phase locking of the SSVEP responses, whereas briefly presented visual and auditory stimuli decreased the single-trial SSVEP amplitude between 200 and 500 ms post-stimulus. This transient change of the single-trial amplitude was restricted to the SSVEPs elicited by the reversing checkerboard in the spatially attended hemifield and thus might reflect a transient re-orienting of attention towards the brief stimuli. Thus, the present results demonstrate independent, but interacting neural mechanisms of sustained and transient attentional orienting.
Aging and Sensory Substitution in a Virtual Navigation Task.
Levy-Tzedek, S; Maidenbaum, S; Amedi, A; Lackner, J
2016-01-01
Virtual environments are becoming ubiquitous, and used in a variety of contexts-from entertainment to training and rehabilitation. Recently, technology for making them more accessible to blind or visually impaired users has been developed, by using sound to represent visual information. The ability of older individuals to interpret these cues has not yet been studied. In this experiment, we studied the effects of age and sensory modality (visual or auditory) on navigation through a virtual maze. We added a layer of complexity by conducting the experiment in a rotating room, in order to test the effect of the spatial bias induced by the rotation on performance. Results from 29 participants showed that with the auditory cues, it took participants a longer time to complete the mazes, they took a longer path length through the maze, they paused more, and had more collisions with the walls, compared to navigation with the visual cues. The older group took a longer time to complete the mazes, they paused more, and had more collisions with the walls, compared to the younger group. There was no effect of room rotation on the performance, nor were there any significant interactions among age, feedback modality and room rotation. We conclude that there is a decline in performance with age, and that while navigation with auditory cues is possible even at an old age, it presents more challenges than visual navigation.
Forder, Lewis; Taylor, Olivia; Mankin, Helen; Scott, Ryan B; Franklin, Anna
2016-01-01
The idea that language can affect how we see the world continues to create controversy. A potentially important study in this field has shown that when an object is suppressed from visual awareness using continuous flash suppression (a form of binocular rivalry), detection of the object is differently affected by a preceding word prime depending on whether the prime matches or does not match the object. This may suggest that language can affect early stages of vision. We replicated this paradigm and further investigated whether colour terms likewise influence the detection of colours or colour-associated object images suppressed from visual awareness by continuous flash suppression. This method presents rapidly changing visual noise to one eye while the target stimulus is presented to the other. It has been shown to delay conscious perception of a target for up to several minutes. In Experiment 1 we presented greyscale photos of objects. They were either preceded by a congruent object label, an incongruent label, or white noise. Detection sensitivity (d') and hit rates were significantly poorer for suppressed objects preceded by an incongruent label compared to a congruent label or noise. In Experiment 2, targets were coloured discs preceded by a colour term. Detection sensitivity was significantly worse for suppressed colour patches preceded by an incongruent colour term as compared to a congruent term or white noise. In Experiment 3 targets were suppressed greyscale object images preceded by an auditory presentation of a colour term. On congruent trials the colour term matched the object's stereotypical colour and on incongruent trials the colour term mismatched. Detection sensitivity was significantly poorer on incongruent trials than congruent trials. Overall, these findings suggest that colour terms affect awareness of coloured stimuli and colour- associated objects, and provide new evidence for language-perception interaction in the brain.
Auditory orientation in crickets: Pattern recognition controls reactive steering
NASA Astrophysics Data System (ADS)
Poulet, James F. A.; Hedwig, Berthold
2005-10-01
Many groups of insects are specialists in exploiting sensory cues to locate food resources or conspecifics. To achieve orientation, bees and ants analyze the polarization pattern of the sky, male moths orient along the females' odor plume, and cicadas, grasshoppers, and crickets use acoustic signals to locate singing conspecifics. In comparison with olfactory and visual orientation, where learning is involved, auditory processing underlying orientation in insects appears to be more hardwired and genetically determined. In each of these examples, however, orientation requires a recognition process identifying the crucial sensory pattern to interact with a localization process directing the animal's locomotor activity. Here, we characterize this interaction. Using a sensitive trackball system, we show that, during cricket auditory behavior, the recognition process that is tuned toward the species-specific song pattern controls the amplitude of auditory evoked steering responses. Females perform small reactive steering movements toward any sound patterns. Hearing the male's calling song increases the gain of auditory steering within 2-5 s, and the animals even steer toward nonattractive sound patterns inserted into the speciesspecific pattern. This gain control mechanism in the auditory-to-motor pathway allows crickets to pursue species-specific sound patterns temporarily corrupted by environmental factors and may reflect the organization of recognition and localization networks in insects. localization | phonotaxis
An Experimental Analysis of Memory Processing
Wright, Anthony A
2007-01-01
Rhesus monkeys were trained and tested in visual and auditory list-memory tasks with sequences of four travel pictures or four natural/environmental sounds followed by single test items. Acquisitions of the visual list-memory task are presented. Visual recency (last item) memory diminished with retention delay, and primacy (first item) memory strengthened. Capuchin monkeys, pigeons, and humans showed similar visual-memory changes. Rhesus learned an auditory memory task and showed octave generalization for some lists of notes—tonal, but not atonal, musical passages. In contrast with visual list memory, auditory primacy memory diminished with delay and auditory recency memory strengthened. Manipulations of interitem intervals, list length, and item presentation frequency revealed proactive and retroactive inhibition among items of individual auditory lists. Repeating visual items from prior lists produced interference (on nonmatching tests) revealing how far back memory extended. The possibility of using the interference function to separate familiarity vs. recollective memory processing is discussed. PMID:18047230
Common Sense in Choice: The Effect of Sensory Modality on Neural Value Representations.
Shuster, Anastasia; Levy, Dino J
2018-01-01
Although it is well established that the ventromedial prefrontal cortex (vmPFC) represents value using a common currency across categories of rewards, it is unknown whether the vmPFC represents value irrespective of the sensory modality in which alternatives are presented. In the current study, male and female human subjects completed a decision-making task while their neural activity was recorded using functional magnetic resonance imaging. On each trial, subjects chose between a safe alternative and a lottery, which was presented visually or aurally. A univariate conjunction analysis revealed that the anterior portion of the vmPFC tracks subjective value (SV) irrespective of the sensory modality. Using a novel cross-modality multivariate classifier, we were able to decode auditory value based on visual trials and vice versa. In addition, we found that the visual and auditory sensory cortices, which were identified using functional localizers, are also sensitive to the value of stimuli, albeit in a modality-specific manner. Whereas both primary and higher-order auditory cortices represented auditory SV (aSV), only a higher-order visual area represented visual SV (vSV). These findings expand our understanding of the common currency network of the brain and shed a new light on the interplay between sensory and value information processing.
Common Sense in Choice: The Effect of Sensory Modality on Neural Value Representations
2018-01-01
Abstract Although it is well established that the ventromedial prefrontal cortex (vmPFC) represents value using a common currency across categories of rewards, it is unknown whether the vmPFC represents value irrespective of the sensory modality in which alternatives are presented. In the current study, male and female human subjects completed a decision-making task while their neural activity was recorded using functional magnetic resonance imaging. On each trial, subjects chose between a safe alternative and a lottery, which was presented visually or aurally. A univariate conjunction analysis revealed that the anterior portion of the vmPFC tracks subjective value (SV) irrespective of the sensory modality. Using a novel cross-modality multivariate classifier, we were able to decode auditory value based on visual trials and vice versa. In addition, we found that the visual and auditory sensory cortices, which were identified using functional localizers, are also sensitive to the value of stimuli, albeit in a modality-specific manner. Whereas both primary and higher-order auditory cortices represented auditory SV (aSV), only a higher-order visual area represented visual SV (vSV). These findings expand our understanding of the common currency network of the brain and shed a new light on the interplay between sensory and value information processing. PMID:29619408
Temporal factors affecting somatosensory–auditory interactions in speech processing
Ito, Takayuki; Gracco, Vincent L.; Ostry, David J.
2014-01-01
Speech perception is known to rely on both auditory and visual information. However, sound-specific somatosensory input has been shown also to influence speech perceptual processing (Ito et al., 2009). In the present study, we addressed further the relationship between somatosensory information and speech perceptual processing by addressing the hypothesis that the temporal relationship between orofacial movement and sound processing contributes to somatosensory–auditory interaction in speech perception. We examined the changes in event-related potentials (ERPs) in response to multisensory synchronous (simultaneous) and asynchronous (90 ms lag and lead) somatosensory and auditory stimulation compared to individual unisensory auditory and somatosensory stimulation alone. We used a robotic device to apply facial skin somatosensory deformations that were similar in timing and duration to those experienced in speech production. Following synchronous multisensory stimulation the amplitude of the ERP was reliably different from the two unisensory potentials. More importantly, the magnitude of the ERP difference varied as a function of the relative timing of the somatosensory–auditory stimulation. Event-related activity change due to stimulus timing was seen between 160 and 220 ms following somatosensory onset, mostly around the parietal area. The results demonstrate a dynamic modulation of somatosensory–auditory convergence and suggest the contribution of somatosensory information for speech processing process is dependent on the specific temporal order of sensory inputs in speech production. PMID:25452733
Inattentional Deafness: Visual Load Leads to Time-Specific Suppression of Auditory Evoked Responses
Molloy, Katharine; Griffiths, Timothy D.; Lavie, Nilli
2015-01-01
Due to capacity limits on perception, conditions of high perceptual load lead to reduced processing of unattended stimuli (Lavie et al., 2014). Accumulating work demonstrates the effects of visual perceptual load on visual cortex responses, but the effects on auditory processing remain poorly understood. Here we establish the neural mechanisms underlying “inattentional deafness”—the failure to perceive auditory stimuli under high visual perceptual load. Participants performed a visual search task of low (target dissimilar to nontarget items) or high (target similar to nontarget items) load. On a random subset (50%) of trials, irrelevant tones were presented concurrently with the visual stimuli. Brain activity was recorded with magnetoencephalography, and time-locked responses to the visual search array and to the incidental presence of unattended tones were assessed. High, compared to low, perceptual load led to increased early visual evoked responses (within 100 ms from onset). This was accompanied by reduced early (∼100 ms from tone onset) auditory evoked activity in superior temporal sulcus and posterior middle temporal gyrus. A later suppression of the P3 “awareness” response to the tones was also observed under high load. A behavioral experiment revealed reduced tone detection sensitivity under high visual load, indicating that the reduction in neural responses was indeed associated with reduced awareness of the sounds. These findings support a neural account of shared audiovisual resources, which, when depleted under load, leads to failures of sensory perception and awareness. SIGNIFICANCE STATEMENT The present work clarifies the neural underpinning of inattentional deafness under high visual load. The findings of near-simultaneous load effects on both visual and auditory evoked responses suggest shared audiovisual processing capacity. Temporary depletion of shared capacity in perceptually demanding visual tasks leads to a momentary reduction in sensory processing of auditory stimuli, resulting in inattentional deafness. The dynamic “push–pull” pattern of load effects on visual and auditory processing furthers our understanding of both the neural mechanisms of attention and of cross-modal effects across visual and auditory processing. These results also offer an explanation for many previous failures to find cross-modal effects in experiments where the visual load effects may not have coincided directly with auditory sensory processing. PMID:26658858
Selective Attention and Sensory Modality in Aging: Curses and Blessings.
Van Gerven, Pascal W M; Guerreiro, Maria J S
2016-01-01
The notion that selective attention is compromised in older adults as a result of impaired inhibitory control is well established. Yet it is primarily based on empirical findings covering the visual modality. Auditory and especially, cross-modal selective attention are remarkably underexposed in the literature on aging. In the past 5 years, we have attempted to fill these voids by investigating performance of younger and older adults on equivalent tasks covering all four combinations of visual or auditory target, and visual or auditory distractor information. In doing so, we have demonstrated that older adults are especially impaired in auditory selective attention with visual distraction. This pattern of results was not mirrored by the results from our psychophysiological studies, however, in which both enhancement of target processing and suppression of distractor processing appeared to be age equivalent. We currently conclude that: (1) age-related differences of selective attention are modality dependent; (2) age-related differences of selective attention are limited; and (3) it remains an open question whether modality-specific age differences in selective attention are due to impaired distractor inhibition, impaired target enhancement, or both. These conclusions put the longstanding inhibitory deficit hypothesis of aging in a new perspective.
Liu, Wen-Long; Zhao, Xu; Tan, Jian-Hui; Wang, Juan
2014-09-01
To explore the attention characteristics of children with different clinical subtypes of attention deficit hyperactivity disorder (ADHD) and to provide a basis for clinical intervention. A total of 345 children diagnosed with ADHD were selected and the subtypes were identified. Attention assessment was performed by the intermediate visual and auditory continuous performance test at diagnosis, and the visual and auditory attention characteristics were compared between children with different subtypes. A total of 122 normal children were recruited in the control group and their attention characteristics were compared with those of children with ADHD. The scores of full scale attention quotient (AQ) and full scale response control quotient (RCQ) of children with all three subtypes of ADHD were significantly lower than those of normal children (P<0.01). The score of auditory RCQ was significantly lower than that of visual RCQ in children with ADHD-hyperactive/impulsive subtype (P<0.05). The scores of auditory AQ and speed quotient (SQ) were significantly higher than those of visual AQ and SQ in three subtypes of ADHD children (P<0.01), while the score of visual precaution quotient (PQ) was significantly higher than that of auditory PQ (P<0.01). No significant differences in auditory or visual AQ were observed between the three subtypes of ADHD. The attention function of children with ADHD is worse than that of normal children, and the impairment of visual attention function is severer than that of auditory attention function. The degree of functional impairment of visual or auditory attention shows no significant differences between three subtypes of ADHD.
Visual Mislocalization of Moving Objects in an Audiovisual Event
Kawachi, Yousuke
2016-01-01
The present study investigated the influence of an auditory tone on the localization of visual objects in the stream/bounce display (SBD). In this display, two identical visual objects move toward each other, overlap, and then return to their original positions. These objects can be perceived as either streaming through or bouncing off each other. In this study, the closest distance between object centers on opposing trajectories and tone presentation timing (none, 0 ms, ± 90 ms, and ± 390 ms relative to the instant for the closest distance) were manipulated. Observers were asked to judge whether the two objects overlapped with each other and whether the objects appeared to stream through, bounce off each other, or reverse their direction of motion. A tone presented at or around the instant of the objects’ closest distance biased judgments toward “non-overlapping,” and observers overestimated the physical distance between objects. A similar bias toward direction change judgments (bounce and reverse, not stream judgments) was also observed, which was always stronger than the non-overlapping bias. Thus, these two types of judgments were not always identical. Moreover, another experiment showed that it was unlikely that this observed mislocalization could be explained by other previously known mislocalization phenomena (i.e., representational momentum, the Fröhlich effect, and a turn-point shift). These findings indicate a new example of crossmodal mislocalization, which can be obtained without temporal offsets between audiovisual stimuli. The mislocalization effect is also specific to a more complex stimulus configuration of objects on opposing trajectories, with a tone that is presented simultaneously. The present study promotes an understanding of relatively complex audiovisual interactions beyond simple one-to-one audiovisual stimuli used in previous studies. PMID:27111759
Oba, Sandra I.; Galvin, John J.; Fu, Qian-Jie
2014-01-01
Auditory training has been shown to significantly improve cochlear implant (CI) users’ speech and music perception. However, it is unclear whether post-training gains in performance were due to improved auditory perception or to generally improved attention, memory and/or cognitive processing. In this study, speech and music perception, as well as auditory and visual memory were assessed in ten CI users before, during, and after training with a non-auditory task. A visual digit span (VDS) task was used for training, in which subjects recalled sequences of digits presented visually. After the VDS training, VDS performance significantly improved. However, there were no significant improvements for most auditory outcome measures (auditory digit span, phoneme recognition, sentence recognition in noise, digit recognition in noise), except for small (but significant) improvements in vocal emotion recognition and melodic contour identification. Post-training gains were much smaller with the non-auditory VDS training than observed in previous auditory training studies with CI users. The results suggest that post-training gains observed in previous studies were not solely attributable to improved attention or memory, and were more likely due to improved auditory perception. The results also suggest that CI users may require targeted auditory training to improve speech and music perception. PMID:23516087
2012-01-01
Background A flexed neck posture leads to non-specific activation of the brain. Sensory evoked cerebral potentials and focal brain blood flow have been used to evaluate the activation of the sensory cortex. We investigated the effects of a flexed neck posture on the cerebral potentials evoked by visual, auditory and somatosensory stimuli and focal brain blood flow in the related sensory cortices. Methods Twelve healthy young adults received right visual hemi-field, binaural auditory and left median nerve stimuli while sitting with the neck in a resting and flexed (20° flexion) position. Sensory evoked potentials were recorded from the right occipital region, Cz in accordance with the international 10–20 system, and 2 cm posterior from C4, during visual, auditory and somatosensory stimulations. The oxidative-hemoglobin concentration was measured in the respective sensory cortex using near-infrared spectroscopy. Results Latencies of the late component of all sensory evoked potentials significantly shortened, and the amplitude of auditory evoked potentials increased when the neck was in a flexed position. Oxidative-hemoglobin concentrations in the left and right visual cortices were higher during visual stimulation in the flexed neck position. The left visual cortex is responsible for receiving the visual information. In addition, oxidative-hemoglobin concentrations in the bilateral auditory cortex during auditory stimulation, and in the right somatosensory cortex during somatosensory stimulation, were higher in the flexed neck position. Conclusions Visual, auditory and somatosensory pathways were activated by neck flexion. The sensory cortices were selectively activated, reflecting the modalities in sensory projection to the cerebral cortex and inter-hemispheric connections. PMID:23199306
A neural network model of ventriloquism effect and aftereffect.
Magosso, Elisa; Cuppini, Cristiano; Ursino, Mauro
2012-01-01
Presenting simultaneous but spatially discrepant visual and auditory stimuli induces a perceptual translocation of the sound towards the visual input, the ventriloquism effect. General explanation is that vision tends to dominate over audition because of its higher spatial reliability. The underlying neural mechanisms remain unclear. We address this question via a biologically inspired neural network. The model contains two layers of unimodal visual and auditory neurons, with visual neurons having higher spatial resolution than auditory ones. Neurons within each layer communicate via lateral intra-layer synapses; neurons across layers are connected via inter-layer connections. The network accounts for the ventriloquism effect, ascribing it to a positive feedback between the visual and auditory neurons, triggered by residual auditory activity at the position of the visual stimulus. Main results are: i) the less localized stimulus is strongly biased toward the most localized stimulus and not vice versa; ii) amount of the ventriloquism effect changes with visual-auditory spatial disparity; iii) ventriloquism is a robust behavior of the network with respect to parameter value changes. Moreover, the model implements Hebbian rules for potentiation and depression of lateral synapses, to explain ventriloquism aftereffect (that is, the enduring sound shift after exposure to spatially disparate audio-visual stimuli). By adaptively changing the weights of lateral synapses during cross-modal stimulation, the model produces post-adaptive shifts of auditory localization that agree with in-vivo observations. The model demonstrates that two unimodal layers reciprocally interconnected may explain ventriloquism effect and aftereffect, even without the presence of any convergent multimodal area. The proposed study may provide advancement in understanding neural architecture and mechanisms at the basis of visual-auditory integration in the spatial realm.
Visual-auditory integration during speech imitation in autism.
Williams, Justin H G; Massaro, Dominic W; Peel, Natalie J; Bosseler, Alexis; Suddendorf, Thomas
2004-01-01
Children with autistic spectrum disorder (ASD) may have poor audio-visual integration, possibly reflecting dysfunctional 'mirror neuron' systems which have been hypothesised to be at the core of the condition. In the present study, a computer program, utilizing speech synthesizer software and a 'virtual' head (Baldi), delivered speech stimuli for identification in auditory, visual or bimodal conditions. Children with ASD were poorer than controls at recognizing stimuli in the unimodal conditions, but once performance on this measure was controlled for, no group difference was found in the bimodal condition. A group of participants with ASD were also trained to develop their speech-reading ability. Training improved visual accuracy and this also improved the children's ability to utilize visual information in their processing of speech. Overall results were compared to predictions from mathematical models based on integration and non-integration, and were most consistent with the integration model. We conclude that, whilst they are less accurate in recognizing stimuli in the unimodal condition, children with ASD show normal integration of visual and auditory speech stimuli. Given that training in recognition of visual speech was effective, children with ASD may benefit from multi-modal approaches in imitative therapy and language training.
A sLORETA study for gaze-independent BCI speller.
Xingwei An; Jinwen Wei; Shuang Liu; Dong Ming
2017-07-01
EEG-based BCI (brain-computer-interface) speller, especially gaze-independent BCI speller, has become a hot topic in recent years. It provides direct spelling device by non-muscular method for people with severe motor impairments and with limited gaze movement. Brain needs to conduct both stimuli-driven and stimuli-related attention in fast presented BCI paradigms for such BCI speller applications. Few researchers studied the mechanism of brain response to such fast presented BCI applications. In this study, we compared the distribution of brain activation in visual, auditory, and audio-visual combined stimuli paradigms using sLORETA (standardized low-resolution brain electromagnetic tomography). Between groups comparisons showed the importance of visual and auditory stimuli in audio-visual combined paradigm. They both contribute to the activation of brain regions, with visual stimuli being the predominate stimuli. Visual stimuli related brain region was mainly located at parietal and occipital lobe, whereas response in frontal-temporal lobes might be caused by auditory stimuli. These regions played an important role in audio-visual bimodal paradigms. These new findings are important for future study of ERP speller as well as the mechanism of fast presented stimuli.
Perception of Animacy from the Motion of a Single Sound Object.
Nielsen, Rasmus Høll; Vuust, Peter; Wallentin, Mikkel
2015-02-01
Research in the visual modality has shown that the presence of certain dynamics in the motion of an object has a strong effect on whether or not the entity is perceived as animate. Cues for animacy are, among others, self-propelled motion and direction changes that are seemingly not caused by entities external to, or in direct contact with, the moving object. The present study aimed to extend this research into the auditory domain by determining if similar dynamics could influence the perceived animacy of a sound source. In two experiments, participants were presented with single, synthetically generated 'mosquito' sounds moving along trajectories in space, and asked to rate how certain they were that each sound-emitting entity was alive. At a random point on a linear motion trajectory, the sound source would deviate from its initial path and speed. Results confirm findings from the visual domain that a change in the velocity of motion is positively correlated with perceived animacy, and changes in direction were found to influence animacy judgment as well. This suggests that an ability to facilitate and sustain self-movement is perceived as a living quality not only in the visual domain, but in the auditory domain as well. © 2015 SAGE Publications.
Rhone, Ariane E; Nourski, Kirill V; Oya, Hiroyuki; Kawasaki, Hiroto; Howard, Matthew A; McMurray, Bob
In everyday conversation, viewing a talker's face can provide information about the timing and content of an upcoming speech signal, resulting in improved intelligibility. Using electrocorticography, we tested whether human auditory cortex in Heschl's gyrus (HG) and on superior temporal gyrus (STG) and motor cortex on precentral gyrus (PreC) were responsive to visual/gestural information prior to the onset of sound and whether early stages of auditory processing were sensitive to the visual content (speech syllable versus non-speech motion). Event-related band power (ERBP) in the high gamma band was content-specific prior to acoustic onset on STG and PreC, and ERBP in the beta band differed in all three areas. Following sound onset, we found with no evidence for content-specificity in HG, evidence for visual specificity in PreC, and specificity for both modalities in STG. These results support models of audio-visual processing in which sensory information is integrated in non-primary cortical areas.
Selective Audiovisual Semantic Integration Enabled by Feature-Selective Attention.
Li, Yuanqing; Long, Jinyi; Huang, Biao; Yu, Tianyou; Wu, Wei; Li, Peijun; Fang, Fang; Sun, Pei
2016-01-13
An audiovisual object may contain multiple semantic features, such as the gender and emotional features of the speaker. Feature-selective attention and audiovisual semantic integration are two brain functions involved in the recognition of audiovisual objects. Humans often selectively attend to one or several features while ignoring the other features of an audiovisual object. Meanwhile, the human brain integrates semantic information from the visual and auditory modalities. However, how these two brain functions correlate with each other remains to be elucidated. In this functional magnetic resonance imaging (fMRI) study, we explored the neural mechanism by which feature-selective attention modulates audiovisual semantic integration. During the fMRI experiment, the subjects were presented with visual-only, auditory-only, or audiovisual dynamical facial stimuli and performed several feature-selective attention tasks. Our results revealed that a distribution of areas, including heteromodal areas and brain areas encoding attended features, may be involved in audiovisual semantic integration. Through feature-selective attention, the human brain may selectively integrate audiovisual semantic information from attended features by enhancing functional connectivity and thus regulating information flows from heteromodal areas to brain areas encoding the attended features.
Seeing sounds and hearing colors: an event-related potential study of auditory-visual synesthesia.
Goller, Aviva I; Otten, Leun J; Ward, Jamie
2009-10-01
In auditory-visual synesthesia, sounds automatically elicit conscious and reliable visual experiences. It is presently unknown whether this reflects early or late processes in the brain. It is also unknown whether adult audiovisual synesthesia resembles auditory-induced visual illusions that can sometimes occur in the general population or whether it resembles the electrophysiological deflection over occipital sites that has been noted in infancy and has been likened to synesthesia. Electrical brain activity was recorded from adult synesthetes and control participants who were played brief tones and required to monitor for an infrequent auditory target. The synesthetes were instructed to attend either to the auditory or to the visual (i.e., synesthetic) dimension of the tone, whereas the controls attended to the auditory dimension alone. There were clear differences between synesthetes and controls that emerged early (100 msec after tone onset). These differences tended to lie in deflections of the auditory-evoked potential (e.g., the auditory N1, P2, and N2) rather than the presence of an additional posterior deflection. The differences occurred irrespective of what the synesthetes attended to (although attention had a late effect). The results suggest that differences between synesthetes and others occur early in time, and that synesthesia is qualitatively different from similar effects found in infants and certain auditory-induced visual illusions in adults. In addition, we report two novel cases of synesthesia in which colors elicit sounds, and vice versa.
Forder, Lewis; Taylor, Olivia; Mankin, Helen; Scott, Ryan B.; Franklin, Anna
2016-01-01
The idea that language can affect how we see the world continues to create controversy. A potentially important study in this field has shown that when an object is suppressed from visual awareness using continuous flash suppression (a form of binocular rivalry), detection of the object is differently affected by a preceding word prime depending on whether the prime matches or does not match the object. This may suggest that language can affect early stages of vision. We replicated this paradigm and further investigated whether colour terms likewise influence the detection of colours or colour-associated object images suppressed from visual awareness by continuous flash suppression. This method presents rapidly changing visual noise to one eye while the target stimulus is presented to the other. It has been shown to delay conscious perception of a target for up to several minutes. In Experiment 1 we presented greyscale photos of objects. They were either preceded by a congruent object label, an incongruent label, or white noise. Detection sensitivity (d’) and hit rates were significantly poorer for suppressed objects preceded by an incongruent label compared to a congruent label or noise. In Experiment 2, targets were coloured discs preceded by a colour term. Detection sensitivity was significantly worse for suppressed colour patches preceded by an incongruent colour term as compared to a congruent term or white noise. In Experiment 3 targets were suppressed greyscale object images preceded by an auditory presentation of a colour term. On congruent trials the colour term matched the object’s stereotypical colour and on incongruent trials the colour term mismatched. Detection sensitivity was significantly poorer on incongruent trials than congruent trials. Overall, these findings suggest that colour terms affect awareness of coloured stimuli and colour- associated objects, and provide new evidence for language-perception interaction in the brain. PMID:27023274
ERIC Educational Resources Information Center
Schaadt, Gesa; Männel, Claudia; van der Meer, Elke; Pannekamp, Ann; Friederici, Angela D.
2016-01-01
Successful communication in everyday life crucially involves the processing of auditory and visual components of speech. Viewing our interlocutor and processing visual components of speech facilitates speech processing by triggering auditory processing. Auditory phoneme processing, analyzed by event-related brain potentials (ERP), has been shown…
PONS, FERRAN; ANDREU, LLORENC.; SANZ-TORRENT, MONICA; BUIL-LEGAZ, LUCIA; LEWKOWICZ, DAVID J.
2014-01-01
Speech perception involves the integration of auditory and visual articulatory information and, thus, requires the perception of temporal synchrony between this information. There is evidence that children with Specific Language Impairment (SLI) have difficulty with auditory speech perception but it is not known if this is also true for the integration of auditory and visual speech. Twenty Spanish-speaking children with SLI, twenty typically developing age-matched Spanish-speaking children, and twenty Spanish-speaking children matched for MLU-w participated in an eye-tracking study to investigate the perception of audiovisual speech synchrony. Results revealed that children with typical language development perceived an audiovisual asynchrony of 666ms regardless of whether the auditory or visual speech attribute led the other one. Children with SLI only detected the 666 ms asynchrony when the auditory component followed the visual component. None of the groups perceived an audiovisual asynchrony of 366ms. These results suggest that the difficulty of speech processing by children with SLI would also involve difficulties in integrating auditory and visual aspects of speech perception. PMID:22874648
Frequency encoded auditory display of the critical tracking task
NASA Technical Reports Server (NTRS)
Stevenson, J.
1984-01-01
The use of auditory displays for selected cockpit instruments was examined. In auditory, visual, and combined auditory-visual compensatory displays of a vertical axis, critical tracking task were studied. The visual display encoded vertical error as the position of a dot on a 17.78 cm, center marked CRT. The auditory display encoded vertical error as log frequency with a six octave range; the center point at 1 kHz was marked by a 20-dB amplitude notch, one-third octave wide. Asymptotic performance on the critical tracking task was significantly better when using combined displays rather than the visual only mode. At asymptote, the combined display was slightly, but significantly, better than the visual only mode. The maximum controllable bandwidth using the auditory mode was only 60% of the maximum controllable bandwidth using the visual mode. Redundant cueing increased the rate of improvement of tracking performance, and the asymptotic performance level. This enhancement increases with the amount of redundant cueing used. This effect appears most prominent when the bandwidth of the forcing function is substantially less than the upper limit of controllability frequency.
Pons, Ferran; Andreu, Llorenç; Sanz-Torrent, Monica; Buil-Legaz, Lucía; Lewkowicz, David J
2013-06-01
Speech perception involves the integration of auditory and visual articulatory information, and thus requires the perception of temporal synchrony between this information. There is evidence that children with specific language impairment (SLI) have difficulty with auditory speech perception but it is not known if this is also true for the integration of auditory and visual speech. Twenty Spanish-speaking children with SLI, twenty typically developing age-matched Spanish-speaking children, and twenty Spanish-speaking children matched for MLU-w participated in an eye-tracking study to investigate the perception of audiovisual speech synchrony. Results revealed that children with typical language development perceived an audiovisual asynchrony of 666 ms regardless of whether the auditory or visual speech attribute led the other one. Children with SLI only detected the 666 ms asynchrony when the auditory component preceded [corrected] the visual component. None of the groups perceived an audiovisual asynchrony of 366 ms. These results suggest that the difficulty of speech processing by children with SLI would also involve difficulties in integrating auditory and visual aspects of speech perception.
Hasni, Anita A; Adamson, Lauren B; Williamson, Rebecca A; Robins, Diana L
2017-12-01
Theory of mind (ToM) gradually develops during the preschool years. Measures of ToM usually target visual experience, but auditory experiences also provide valuable social information. Given differences between the visual and auditory modalities (e.g., sights persist, sounds fade) and the important role environmental input plays in social-cognitive development, we asked whether modality might influence the progression of ToM development. The current study expands Wellman and Liu's ToM scale (2004) by testing 66 preschoolers using five standard visual ToM tasks and five newly crafted auditory ToM tasks. Age and gender effects were found, with 4- and 5-year-olds demonstrating greater ToM abilities than 3-year-olds and girls passing more tasks than boys; there was no significant effect of modality. Both visual and auditory tasks formed a scalable set. These results indicate that there is considerable consistency in when children are able to use visual and auditory inputs to reason about various aspects of others' mental states. Copyright © 2017 Elsevier Inc. All rights reserved.
Interactive Television in Nursing Continuing Education
ERIC Educational Resources Information Center
Fry, Carlton F.; And Others
1976-01-01
The use of a telemedicine system (live, color microwave television transmission with two-way auditory and visual communication capability) to teach a course in critical care nursing from an urban university medical center to staff members in rural southeastern Ohio hospitals is described. (MS)
Modeling the Development of Audiovisual Cue Integration in Speech Perception
Getz, Laura M.; Nordeen, Elke R.; Vrabic, Sarah C.; Toscano, Joseph C.
2017-01-01
Adult speech perception is generally enhanced when information is provided from multiple modalities. In contrast, infants do not appear to benefit from combining auditory and visual speech information early in development. This is true despite the fact that both modalities are important to speech comprehension even at early stages of language acquisition. How then do listeners learn how to process auditory and visual information as part of a unified signal? In the auditory domain, statistical learning processes provide an excellent mechanism for acquiring phonological categories. Is this also true for the more complex problem of acquiring audiovisual correspondences, which require the learner to integrate information from multiple modalities? In this paper, we present simulations using Gaussian mixture models (GMMs) that learn cue weights and combine cues on the basis of their distributional statistics. First, we simulate the developmental process of acquiring phonological categories from auditory and visual cues, asking whether simple statistical learning approaches are sufficient for learning multi-modal representations. Second, we use this time course information to explain audiovisual speech perception in adult perceivers, including cases where auditory and visual input are mismatched. Overall, we find that domain-general statistical learning techniques allow us to model the developmental trajectory of audiovisual cue integration in speech, and in turn, allow us to better understand the mechanisms that give rise to unified percepts based on multiple cues. PMID:28335558
Modeling the Development of Audiovisual Cue Integration in Speech Perception.
Getz, Laura M; Nordeen, Elke R; Vrabic, Sarah C; Toscano, Joseph C
2017-03-21
Adult speech perception is generally enhanced when information is provided from multiple modalities. In contrast, infants do not appear to benefit from combining auditory and visual speech information early in development. This is true despite the fact that both modalities are important to speech comprehension even at early stages of language acquisition. How then do listeners learn how to process auditory and visual information as part of a unified signal? In the auditory domain, statistical learning processes provide an excellent mechanism for acquiring phonological categories. Is this also true for the more complex problem of acquiring audiovisual correspondences, which require the learner to integrate information from multiple modalities? In this paper, we present simulations using Gaussian mixture models (GMMs) that learn cue weights and combine cues on the basis of their distributional statistics. First, we simulate the developmental process of acquiring phonological categories from auditory and visual cues, asking whether simple statistical learning approaches are sufficient for learning multi-modal representations. Second, we use this time course information to explain audiovisual speech perception in adult perceivers, including cases where auditory and visual input are mismatched. Overall, we find that domain-general statistical learning techniques allow us to model the developmental trajectory of audiovisual cue integration in speech, and in turn, allow us to better understand the mechanisms that give rise to unified percepts based on multiple cues.
Neural networks supporting audiovisual integration for speech: A large-scale lesion study.
Hickok, Gregory; Rogalsky, Corianne; Matchin, William; Basilakos, Alexandra; Cai, Julia; Pillay, Sara; Ferrill, Michelle; Mickelsen, Soren; Anderson, Steven W; Love, Tracy; Binder, Jeffrey; Fridriksson, Julius
2018-06-01
Auditory and visual speech information are often strongly integrated resulting in perceptual enhancements for audiovisual (AV) speech over audio alone and sometimes yielding compelling illusory fusion percepts when AV cues are mismatched, the McGurk-MacDonald effect. Previous research has identified three candidate regions thought to be critical for AV speech integration: the posterior superior temporal sulcus (STS), early auditory cortex, and the posterior inferior frontal gyrus. We assess the causal involvement of these regions (and others) in the first large-scale (N = 100) lesion-based study of AV speech integration. Two primary findings emerged. First, behavioral performance and lesion maps for AV enhancement and illusory fusion measures indicate that classic metrics of AV speech integration are not necessarily measuring the same process. Second, lesions involving superior temporal auditory, lateral occipital visual, and multisensory zones in the STS are the most disruptive to AV speech integration. Further, when AV speech integration fails, the nature of the failure-auditory vs visual capture-can be predicted from the location of the lesions. These findings show that AV speech processing is supported by unimodal auditory and visual cortices as well as multimodal regions such as the STS at their boundary. Motor related frontal regions do not appear to play a role in AV speech integration. Copyright © 2018 Elsevier Ltd. All rights reserved.
Evans, Julia L.; Pollak, Seth D.
2011-01-01
This study examined the electrophysiological correlates of auditory and visual working memory in children with Specific Language Impairments (SLI). Children with SLI and age-matched controls (11;9 – 14;10) completed visual and auditory working memory tasks while event-related potentials (ERPs) were recorded. In the auditory condition, children with SLI performed similarly to controls when the memory load was kept low (1-back memory load). As expected, when demands for auditory working memory were higher, children with SLI showed decreases in accuracy and attenuated P3b responses. However, children with SLI also evinced difficulties in the visual working memory tasks. In both the low (1-back) and high (2-back) memory load conditions, P3b amplitude was significantly lower for the SLI as compared to CA groups. These data suggest a domain-general working memory deficit in SLI that is manifested across auditory and visual modalities. PMID:21316354
Neurofeedback in Learning Disabled Children: Visual versus Auditory Reinforcement.
Fernández, Thalía; Bosch-Bayard, Jorge; Harmony, Thalía; Caballero, María I; Díaz-Comas, Lourdes; Galán, Lídice; Ricardo-Garcell, Josefina; Aubert, Eduardo; Otero-Ojeda, Gloria
2016-03-01
Children with learning disabilities (LD) frequently have an EEG characterized by an excess of theta and a deficit of alpha activities. NFB using an auditory stimulus as reinforcer has proven to be a useful tool to treat LD children by positively reinforcing decreases of the theta/alpha ratio. The aim of the present study was to optimize the NFB procedure by comparing the efficacy of visual (with eyes open) versus auditory (with eyes closed) reinforcers. Twenty LD children with an abnormally high theta/alpha ratio were randomly assigned to the Auditory or the Visual group, where a 500 Hz tone or a visual stimulus (a white square), respectively, was used as a positive reinforcer when the value of the theta/alpha ratio was reduced. Both groups had signs consistent with EEG maturation, but only the Auditory Group showed behavioral/cognitive improvements. In conclusion, the auditory reinforcer was more efficacious in reducing the theta/alpha ratio, and it improved the cognitive abilities more than the visual reinforcer.
Huyse, Aurélie; Berthommier, Frédéric; Leybaert, Jacqueline
2013-01-01
The aim of the present study was to examine audiovisual speech integration in cochlear-implanted children and in normally hearing children exposed to degraded auditory stimuli. Previous studies have shown that speech perception in cochlear-implanted users is biased toward the visual modality when audition and vision provide conflicting information. Our main question was whether an experimentally designed degradation of the visual speech cue would increase the importance of audition in the response pattern. The impact of auditory proficiency was also investigated. A group of 31 children with cochlear implants and a group of 31 normally hearing children matched for chronological age were recruited. All children with cochlear implants had profound congenital deafness and had used their implants for at least 2 years. Participants had to perform an /aCa/ consonant-identification task in which stimuli were presented randomly in three conditions: auditory only, visual only, and audiovisual (congruent and incongruent McGurk stimuli). In half of the experiment, the visual speech cue was normal; in the other half (visual reduction) a degraded visual signal was presented, aimed at preventing lipreading of good quality. The normally hearing children received a spectrally reduced speech signal (simulating the input delivered by the cochlear implant). First, performance in visual-only and in congruent audiovisual modalities were decreased, showing that the visual reduction technique used here was efficient at degrading lipreading. Second, in the incongruent audiovisual trials, visual reduction led to a major increase in the number of auditory based responses in both groups. Differences between proficient and nonproficient children were found in both groups, with nonproficient children's responses being more visual and less auditory than those of proficient children. Further analysis revealed that differences between visually clear and visually reduced conditions and between groups were not only because of differences in unisensory perception but also because of differences in the process of audiovisual integration per se. Visual reduction led to an increase in the weight of audition, even in cochlear-implanted children, whose perception is generally dominated by vision. This result suggests that the natural bias in favor of vision is not immutable. Audiovisual speech integration partly depends on the experimental situation, which modulates the informational content of the sensory channels and the weight that is awarded to each of them. Consequently, participants, whether deaf with cochlear implants or having normal hearing, not only base their perception on the most reliable modality but also award it an additional weight.
NASA Astrophysics Data System (ADS)
Munir; Sutarno, H.; Aisyah, N. S.
2018-05-01
This research aims to find out how the development of interactive multimedia based on auditory, intellectually, and repetition can improve student learning outcomes. This interactive multimedia is developed through 5 stages. Analysis stages include the study of literature, questionnaire, interviews and observations. The design phase is done by the database design, flowchart, storyboards and repetition algorithm material while the development phase is done by the creation of web-based framework. Presentation material is adapted to the model of learning such as auditory, intellectually, repetition. Auditory points are obtained by recording the narrative material that presented by a variety of intellectual points. Multimedia as a product is validated by material and media experts. Implementation phase conducted on grade XI-TKJ2 SMKN 1 Garut. Based on index’s gain, an increasing of student learning outcomes in this study is 0.46 which is fair due to interest of student in using interactive multimedia. While the multimedia assessment earned 84.36% which is categorized as very well.
Brooks, Cassandra J.; Chan, Yu Man; Anderson, Andrew J.; McKendrick, Allison M.
2018-01-01
Within each sensory modality, age-related deficits in temporal perception contribute to the difficulties older adults experience when performing everyday tasks. Since perceptual experience is inherently multisensory, older adults also face the added challenge of appropriately integrating or segregating the auditory and visual cues present in our dynamic environment into coherent representations of distinct objects. As such, many studies have investigated how older adults perform when integrating temporal information across audition and vision. This review covers both direct judgments about temporal information (the sound-induced flash illusion, temporal order, perceived synchrony, and temporal rate discrimination) and judgments regarding stimuli containing temporal information (the audiovisual bounce effect and speech perception). Although an age-related increase in integration has been demonstrated on a variety of tasks, research specifically investigating the ability of older adults to integrate temporal auditory and visual cues has produced disparate results. In this short review, we explore what factors could underlie these divergent findings. We conclude that both task-specific differences and age-related sensory loss play a role in the reported disparity in age-related effects on the integration of auditory and visual temporal information. PMID:29867415
Brooks, Cassandra J; Chan, Yu Man; Anderson, Andrew J; McKendrick, Allison M
2018-01-01
Within each sensory modality, age-related deficits in temporal perception contribute to the difficulties older adults experience when performing everyday tasks. Since perceptual experience is inherently multisensory, older adults also face the added challenge of appropriately integrating or segregating the auditory and visual cues present in our dynamic environment into coherent representations of distinct objects. As such, many studies have investigated how older adults perform when integrating temporal information across audition and vision. This review covers both direct judgments about temporal information (the sound-induced flash illusion, temporal order, perceived synchrony, and temporal rate discrimination) and judgments regarding stimuli containing temporal information (the audiovisual bounce effect and speech perception). Although an age-related increase in integration has been demonstrated on a variety of tasks, research specifically investigating the ability of older adults to integrate temporal auditory and visual cues has produced disparate results. In this short review, we explore what factors could underlie these divergent findings. We conclude that both task-specific differences and age-related sensory loss play a role in the reported disparity in age-related effects on the integration of auditory and visual temporal information.
End-to-End Multimodal Emotion Recognition Using Deep Neural Networks
NASA Astrophysics Data System (ADS)
Tzirakis, Panagiotis; Trigeorgis, George; Nicolaou, Mihalis A.; Schuller, Bjorn W.; Zafeiriou, Stefanos
2017-12-01
Automatic affect recognition is a challenging task due to the various modalities emotions can be expressed with. Applications can be found in many domains including multimedia retrieval and human computer interaction. In recent years, deep neural networks have been used with great success in determining emotional states. Inspired by this success, we propose an emotion recognition system using auditory and visual modalities. To capture the emotional content for various styles of speaking, robust features need to be extracted. To this purpose, we utilize a Convolutional Neural Network (CNN) to extract features from the speech, while for the visual modality a deep residual network (ResNet) of 50 layers. In addition to the importance of feature extraction, a machine learning algorithm needs also to be insensitive to outliers while being able to model the context. To tackle this problem, Long Short-Term Memory (LSTM) networks are utilized. The system is then trained in an end-to-end fashion where - by also taking advantage of the correlations of the each of the streams - we manage to significantly outperform the traditional approaches based on auditory and visual handcrafted features for the prediction of spontaneous and natural emotions on the RECOLA database of the AVEC 2016 research challenge on emotion recognition.
Gerdes, Antje B. M.; Wieser, Matthias J.; Alpers, Georg W.
2014-01-01
In everyday life, multiple sensory channels jointly trigger emotional experiences and one channel may alter processing in another channel. For example, seeing an emotional facial expression and hearing the voice’s emotional tone will jointly create the emotional experience. This example, where auditory and visual input is related to social communication, has gained considerable attention by researchers. However, interactions of visual and auditory emotional information are not limited to social communication but can extend to much broader contexts including human, animal, and environmental cues. In this article, we review current research on audiovisual emotion processing beyond face-voice stimuli to develop a broader perspective on multimodal interactions in emotion processing. We argue that current concepts of multimodality should be extended in considering an ecologically valid variety of stimuli in audiovisual emotion processing. Therefore, we provide an overview of studies in which emotional sounds and interactions with complex pictures of scenes were investigated. In addition to behavioral studies, we focus on neuroimaging, electro- and peripher-physiological findings. Furthermore, we integrate these findings and identify similarities or differences. We conclude with suggestions for future research. PMID:25520679
Psycho acoustical Measures in Individuals with Congenital Visual Impairment.
Kumar, Kaushlendra; Thomas, Teenu; Bhat, Jayashree S; Ranjan, Rajesh
2017-12-01
In congenital visual impaired individuals one modality is impaired (visual modality) this impairment is compensated by other sensory modalities. There is evidence that visual impaired performed better in different auditory task like localization, auditory memory, verbal memory, auditory attention, and other behavioural tasks when compare to normal sighted individuals. The current study was aimed to compare the temporal resolution, frequency resolution and speech perception in noise ability in individuals with congenital visual impaired and normal sighted. Temporal resolution, frequency resolution, and speech perception in noise were measured using MDT, GDT, DDT, SRDT, and SNR50 respectively. Twelve congenital visual impaired participants with age range of 18 to 40 years were taken and equal in number with normal sighted participants. All the participants had normal hearing sensitivity with normal middle ear functioning. Individual with visual impairment showed superior threshold in MDT, SRDT and SNR50 as compared to normal sighted individuals. This may be due to complexity of the tasks; MDT, SRDT and SNR50 are complex tasks than GDT and DDT. Visual impairment showed superior performance in auditory processing and speech perception with complex auditory perceptual tasks.
Parks, Nathan A; Hilimire, Matthew R; Corballis, Paul M
2011-05-01
The perceptual load theory of attention posits that attentional selection occurs early in processing when a task is perceptually demanding but occurs late in processing otherwise. We used a frequency-tagged steady-state evoked potential paradigm to investigate the modality specificity of perceptual load-induced distractor filtering and the nature of neural-competitive interactions between task and distractor stimuli. EEG data were recorded while participants monitored a stream of stimuli occurring in rapid serial visual presentation (RSVP) for the appearance of previously assigned targets. Perceptual load was manipulated by assigning targets that were identifiable by color alone (low load) or by the conjunction of color and orientation (high load). The RSVP task was performed alone and in the presence of task-irrelevant visual and auditory distractors. The RSVP stimuli, visual distractors, and auditory distractors were "tagged" by modulating each at a unique frequency (2.5, 8.5, and 40.0 Hz, respectively), which allowed each to be analyzed separately in the frequency domain. We report three important findings regarding the neural mechanisms of perceptual load. First, we replicated previous findings of within-modality distractor filtering and demonstrated a reduction in visual distractor signals with high perceptual load. Second, auditory steady-state distractor signals were unaffected by manipulations of visual perceptual load, consistent with the idea that perceptual load-induced distractor filtering is modality specific. Third, analysis of task-related signals revealed that visual distractors competed with task stimuli for representation and that increased perceptual load appeared to resolve this competition in favor of the task stimulus.
The Role of Auditory and Visual Speech in Word Learning at 18 Months and in Adulthood
ERIC Educational Resources Information Center
Havy, Mélanie; Foroud, Afra; Fais, Laurel; Werker, Janet F.
2017-01-01
Visual information influences speech perception in both infants and adults. It is still unknown whether lexical representations are multisensory. To address this question, we exposed 18-month-old infants (n = 32) and adults (n = 32) to new word-object pairings: Participants either heard the acoustic form of the words or saw the talking face in…
Brainstem origins for cortical 'what' and 'where' pathways in the auditory system.
Kraus, Nina; Nicol, Trent
2005-04-01
We have developed a data-driven conceptual framework that links two areas of science: the source-filter model of acoustics and cortical sensory processing streams. The source-filter model describes the mechanics behind speech production: the identity of the speaker is carried largely in the vocal cord source and the message is shaped by the ever-changing filters of the vocal tract. Sensory processing streams, popularly called 'what' and 'where' pathways, are well established in the visual system as a neural scheme for separately carrying different facets of visual objects, namely their identity and their position/motion, to the cortex. A similar functional organization has been postulated in the auditory system. Both speaker identity and the spoken message, which are simultaneously conveyed in the acoustic structure of speech, can be disentangled into discrete brainstem response components. We argue that these two response classes are early manifestations of auditory 'what' and 'where' streams in the cortex. This brainstem link forges a new understanding of the relationship between the acoustics of speech and cortical processing streams, unites two hitherto separate areas in science, and provides a model for future investigations of auditory function.
Effect of Virtual Reality on Cognitive Dysfunction in Patients With Brain Tumor
Yang, Seoyon; Son, Yu Ri
2014-01-01
Objective To investigate whether virtual reality (VR) training will help the recovery of cognitive function in brain tumor patients. Methods Thirty-eight brain tumor patients (19 men and 19 women) with cognitive impairment recruited for this study were assigned to either VR group (n=19, IREX system) or control group (n=19). Both VR training (30 minutes a day for 3 times a week) and computer-based cognitive rehabilitation program (30 minutes a day for 2 times) for 4 weeks were given to the VR group. The control group was given only the computer-based cognitive rehabilitation program (30 minutes a day for 5 days a week) for 4 weeks. Computerized neuropsychological tests (CNTs), Korean version of Mini-Mental Status Examination (K-MMSE), and Korean version of Modified Barthel Index (K-MBI) were used to evaluate cognitive function and functional status. Results The VR group showed improvements in the K-MMSE, visual and auditory continuous performance tests (CPTs), forward and backward digit span tests (DSTs), forward and backward visual span test (VSTs), visual and verbal learning tests, Trail Making Test type A (TMT-A), and K-MBI. The VR group showed significantly (p<0.05) better improvements than the control group in visual and auditory CPTs, backward DST and VST, and TMT-A after treatment. Conclusion VR training can have beneficial effects on cognitive improvement when it is combined with computer-assisted cognitive rehabilitation. Further randomized controlled studies with large samples according to brain tumor type and location are needed to investigate how VR training improves cognitive impairment. PMID:25566470
Mood Modulates Auditory Laterality of Hemodynamic Mismatch Responses during Dichotic Listening
Schock, Lisa; Dyck, Miriam; Demenescu, Liliana R.; Edgar, J. Christopher; Hertrich, Ingo; Sturm, Walter; Mathiak, Klaus
2012-01-01
Hemodynamic mismatch responses can be elicited by deviant stimuli in a sequence of standard stimuli even during cognitive demanding tasks. Emotional context is known to modulate lateralized processing. Right-hemispheric negative emotion processing may bias attention to the right and enhance processing of right-ear stimuli. The present study examined the influence of induced mood on lateralized pre-attentive auditory processing of dichotic stimuli using functional magnetic resonance imaging (fMRI). Faces expressing emotions (sad/happy/neutral) were presented in a blocked design while a dichotic oddball sequence with consonant-vowel (CV) syllables in an event-related design was simultaneously administered. Twenty healthy participants were instructed to feel the emotion perceived on the images and to ignore the syllables. Deviant sounds reliably activated bilateral auditory cortices and confirmed attention effects by modulation of visual activity. Sad mood induction activated visual, limbic and right prefrontal areas. A lateralization effect of emotion-attention interaction was reflected in a stronger response to right-ear deviants in the right auditory cortex during sad mood. This imbalance of resources may be a neurophysiological correlate of laterality in sad mood and depression. Conceivably, the compensatory right-hemispheric enhancement of resources elicits increased ipsilateral processing. PMID:22384105
Psychological Predictors of Visual and Auditory P300 Brain-Computer Interface Performance
Hammer, Eva M.; Halder, Sebastian; Kleih, Sonja C.; Kübler, Andrea
2018-01-01
Brain-Computer Interfaces (BCIs) provide communication channels independent from muscular control. In the current study we used two versions of the P300-BCI: one based on visual the other on auditory stimulation. Up to now, data on the impact of psychological variables on P300-BCI control are scarce. Hence, our goal was to identify new predictors with a comprehensive psychological test-battery. A total of N = 40 healthy BCI novices took part in a visual and an auditory BCI session. Psychological variables were measured with an electronic test-battery including clinical, personality, and performance tests. The personality factor “emotional stability” was negatively correlated (Spearman's rho = −0.416; p < 0.01) and an output variable of the non-verbal learning test (NVLT), which can be interpreted as ability to learn, correlated positively (Spearman's rho = 0.412; p < 0.01) with visual P300-BCI performance. In a linear regression analysis both independent variables explained 24% of the variance. “Emotional stability” was also negatively related to auditory P300-BCI performance (Spearman's rho = −0.377; p < 0.05), but failed significance in the regression analysis. Psychological parameters seem to play a moderate role in visual P300-BCI performance. “Emotional stability” was identified as a new predictor, indicating that BCI users who characterize themselves as calm and rational showed worse BCI performance. The positive relation of the ability to learn and BCI performance corroborates the notion that also for P300 based BCIs learning may constitute an important factor. Further studies are needed to consolidate or reject the presented predictors. PMID:29867319
The onset of visual experience gates auditory cortex critical periods
Mowery, Todd M.; Kotak, Vibhakar C.; Sanes, Dan H.
2016-01-01
Sensory systems influence one another during development and deprivation can lead to cross-modal plasticity. As auditory function begins before vision, we investigate the effect of manipulating visual experience during auditory cortex critical periods (CPs) by assessing the influence of early, normal and delayed eyelid opening on hearing loss-induced changes to membrane and inhibitory synaptic properties. Early eyelid opening closes the auditory cortex CPs precociously and dark rearing prevents this effect. In contrast, delayed eyelid opening extends the auditory cortex CPs by several additional days. The CP for recovery from hearing loss is also closed prematurely by early eyelid opening and extended by delayed eyelid opening. Furthermore, when coupled with transient hearing loss that animals normally fully recover from, very early visual experience leads to inhibitory deficits that persist into adulthood. Finally, we demonstrate a functional projection from the visual to auditory cortex that could mediate these effects. PMID:26786281
Bindings in working memory: The role of object-based attention.
Gao, Zaifeng; Wu, Fan; Qiu, Fangfang; He, Kaifeng; Yang, Yue; Shen, Mowei
2017-02-01
Over the past decade, it has been debated whether retaining bindings in working memory (WM) requires more attention than retaining constituent features, focusing on domain-general attention and space-based attention. Recently, we proposed that retaining bindings in WM needs more object-based attention than retaining constituent features (Shen, Huang, & Gao, 2015, Journal of Experimental Psychology: Human Perception and Performance, doi: 10.1037/xhp0000018 ). However, only unitized visual bindings were examined; to establish the role of object-based attention in retaining bindings in WM, more emperical evidence is required. We tested 4 new bindings that had been suggested requiring no more attention than the constituent features in the WM maintenance phase: The two constituent features of binding were stored in different WM modules (cross-module binding, Experiment 1), from auditory and visual modalities (cross-modal binding, Experiment 2), or temporally (cross-time binding, Experiments 3) or spatially (cross-space binding, Experiments 4-6) separated. In the critical condition, we added a secondary object feature-report task during the delay interval of the change-detection task, such that the secondary task competed for object-based attention with the to-be-memorized stimuli. If more object-based attention is required for retaining bindings than for retaining constituent features, the secondary task should impair the binding performance to a larger degree relative to the performance of constituent features. Indeed, Experiments 1-6 consistently revealed a significantly larger impairment for bindings than for the constituent features, suggesting that object-based attention plays a pivotal role in retaining bindings in WM.
Validating a visual version of the metronome response task.
Laflamme, Patrick; Seli, Paul; Smilek, Daniel
2018-02-12
The metronome response task (MRT)-a sustained-attention task that requires participants to produce a response in synchrony with an audible metronome-was recently developed to index response variability in the context of studies on mind wandering. In the present studies, we report on the development and validation of a visual version of the MRT (the visual metronome response task; vMRT), which uses the rhythmic presentation of visual, rather than auditory, stimuli. Participants completed the vMRT (Studies 1 and 2) and the original (auditory-based) MRT (Study 2) while also responding to intermittent thought probes asking them to report the depth of their mind wandering. The results showed that (1) individual differences in response variability during the vMRT are highly reliable; (2) prior to thought probes, response variability increases with increasing depth of mind wandering; (3) response variability is highly consistent between the vMRT and the original MRT; and (4) both response variability and depth of mind wandering increase with increasing time on task. Our results indicate that the original MRT findings are consistent across the visual and auditory modalities, and that the response variability measured in both tasks indexes a non-modality-specific tendency toward behavioral variability. The vMRT will be useful in the place of the MRT in experimental contexts in which researchers' designs require a visual-based primary task.
The effect of phasic auditory alerting on visual perception.
Petersen, Anders; Petersen, Annemarie Hilkjær; Bundesen, Claus; Vangkilde, Signe; Habekost, Thomas
2017-08-01
Phasic alertness refers to a short-lived change in the preparatory state of the cognitive system following an alerting signal. In the present study, we examined the effect of phasic auditory alerting on distinct perceptual processes, unconfounded by motor components. We combined an alerting/no-alerting design with a pure accuracy-based single-letter recognition task. Computational modeling based on Bundesen's Theory of Visual Attention was used to examine the effect of phasic alertness on visual processing speed and threshold of conscious perception. Results show that phasic auditory alertness affects visual perception by increasing the visual processing speed and lowering the threshold of conscious perception (Experiment 1). By manipulating the intensity of the alerting cue, we further observed a positive relationship between alerting intensity and processing speed, which was not seen for the threshold of conscious perception (Experiment 2). This was replicated in a third experiment, in which pupil size was measured as a physiological marker of alertness. Results revealed that the increase in processing speed was accompanied by an increase in pupil size, substantiating the link between alertness and processing speed (Experiment 3). The implications of these results are discussed in relation to a newly developed mathematical model of the relationship between levels of alertness and the speed with which humans process visual information. Copyright © 2017 Elsevier B.V. All rights reserved.
Musicians' edge: A comparison of auditory processing, cognitive abilities and statistical learning.
Mandikal Vasuki, Pragati Rao; Sharma, Mridula; Demuth, Katherine; Arciuli, Joanne
2016-12-01
It has been hypothesized that musical expertise is associated with enhanced auditory processing and cognitive abilities. Recent research has examined the relationship between musicians' advantage and implicit statistical learning skills. In the present study, we assessed a variety of auditory processing skills, cognitive processing skills, and statistical learning (auditory and visual forms) in age-matched musicians (N = 17) and non-musicians (N = 18). Musicians had significantly better performance than non-musicians on frequency discrimination, and backward digit span. A key finding was that musicians had better auditory, but not visual, statistical learning than non-musicians. Performance on the statistical learning tasks was not correlated with performance on auditory and cognitive measures. Musicians' superior performance on auditory (but not visual) statistical learning suggests that musical expertise is associated with an enhanced ability to detect statistical regularities in auditory stimuli. Copyright © 2016 Elsevier B.V. All rights reserved.
Marijuana and Human Performance: An Annotated Bibliography (1970-1975)
1976-03-01
Research 5 6 9 20 22 48 56 61 62 72 73 128 131 132 134 163 Auditory Related Research 22 70 I’l 130 134 169 175 IV MEDICAL COMMENTS AND RESEARCH CRITIQUES... Auditory and visual threshold effects of marihuana in man. Perceptual & Motor Skills, 1969, 29, 755-759. Auditory and visual thresholds were measured...a "high." Results indicated no effect on visual acuity, whereas one of three auditory measurements differentiated between marihuana and control
Do you see what I hear? Vantage point preference and visual dominance in a time-space synaesthete.
Jarick, Michelle; Stewart, Mark T; Smilek, Daniel; Dixon, Michael J
2013-01-01
Time-space synaesthetes "see" time units organized in a spatial form. While the structure might be invariant for most synaesthetes, the perspective by which some view their calendar is somewhat flexible. One well-studied synaesthete L adopts different viewpoints for months seen vs. heard. Interestingly, L claims to prefer her auditory perspective, even though the month names are represented visually upside down. To verify this, we used a spatial-cueing task that included audiovisual month cues. These cues were either congruent with L's preferred "auditory" viewpoint (auditory-only and auditory + month inverted) or incongruent (upright visual-only and auditory + month upright). Our prediction was that L would show enhanced cueing effects (larger response time difference between valid and invalid targets) following the audiovisual congruent cues since both elicit the "preferred" auditory perspective. Also, when faced with conflicting cues, we predicted L would choose the preferred auditory perspective over the visual perspective. As we expected, L did show enhanced cueing effects following the audiovisual congruent cues that corresponded with her preferred auditory perspective, but that the visual perspective dominated when L was faced with both viewpoints simultaneously. The results are discussed with relation to the reification hypothesis of sequence space synaesthesia (Eagleman, 2009).
Dual streams of auditory afferents target multiple domains in the primate prefrontal cortex
Romanski, L. M.; Tian, B.; Fritz, J.; Mishkin, M.; Goldman-Rakic, P. S.; Rauschecker, J. P.
2009-01-01
‘What’ and ‘where’ visual streams define ventrolateral object and dorsolateral spatial processing domains in the prefrontal cortex of nonhuman primates. We looked for similar streams for auditory–prefrontal connections in rhesus macaques by combining microelectrode recording with anatomical tract-tracing. Injection of multiple tracers into physiologically mapped regions AL, ML and CL of the auditory belt cortex revealed that anterior belt cortex was reciprocally connected with the frontal pole (area 10), rostral principal sulcus (area 46) and ventral prefrontal regions (areas 12 and 45), whereas the caudal belt was mainly connected with the caudal principal sulcus (area 46) and frontal eye fields (area 8a). Thus separate auditory streams originate in caudal and rostral auditory cortex and target spatial and non-spatial domains of the frontal lobe, respectively. PMID:10570492
Learning style-based teaching harvests a superior comprehension of respiratory physiology.
Anbarasi, M; Rajkumar, G; Krishnakumar, S; Rajendran, P; Venkatesan, R; Dinesh, T; Mohan, J; Venkidusamy, S
2015-09-01
Students entering medical college generally show vast diversity in their school education. It becomes the responsibility of teachers to motivate students and meet the needs of all diversities. One such measure is teaching students in their own preferred learning style. The present study was aimed to incorporate a learning style-based teaching-learning program for medical students and to reveal its significance and utility. Learning styles of students were assessed online using the visual-auditory-kinesthetic (VAK) learning style self-assessment questionnaire. When respiratory physiology was taught, students were divided into three groups, namely, visual (n = 34), auditory (n = 44), and kinesthetic (n = 28), based on their learning style. A fourth group (the traditional group; n = 40) was formed by choosing students randomly from the above three groups. Visual, auditory, and kinesthetic groups were taught following the appropriate teaching-learning strategies. The traditional group was taught via the routine didactic lecture method. The effectiveness of this intervention was evaluated by a pretest and two posttests, posttest 1 immediately after the intervention and posttest 2 after a month. In posttest 1, one-way ANOVA showed a significant statistical difference (P=0.005). Post hoc analysis showed significance between the kinesthetic group and traditional group (P=0.002). One-way ANOVA showed a significant difference in posttest 2 scores (P < 0.0001). Post hoc analysis showed significance between the three learning style-based groups compared with the traditional group [visual vs. traditional groups (p=0.002), auditory vs. traditional groups (p=0.03), and Kinesthetic vs. traditional groups (p=0.001)]. This study emphasizes that teaching methods tailored to students' style of learning definitely improve their understanding, performance, and retrieval of the subject. Copyright © 2015 The American Physiological Society.
Oryadi Zanjani, Mohammad Majid; Hasanzadeh, Saeid; Rahgozar, Mehdi; Shemshadi, Hashem; Purdy, Suzanne C; Mahmudi Bakhtiari, Behrooz; Vahab, Maryam
2013-09-01
Since the introduction of cochlear implantation, researchers have considered children's communication and educational success before and after implantation. Therefore, the present study aimed to compare auditory, speech, and language development scores following one-sided cochlear implantation between two groups of prelingual deaf children educated through either auditory-only (unisensory) or auditory-visual (bisensory) modes. A randomized controlled trial with a single-factor experimental design was used. The study was conducted in the Instruction and Rehabilitation Private Centre of Hearing Impaired Children and their Family, called Soroosh in Shiraz, Iran. We assessed 30 Persian deaf children for eligibility and 22 children qualified to enter the study. They were aged between 27 and 66 months old and had been implanted between the ages of 15 and 63 months. The sample of 22 children was randomly assigned to two groups: auditory-only mode and auditory-visual mode; 11 participants in each group were analyzed. In both groups, the development of auditory perception, receptive language, expressive language, speech, and speech intelligibility was assessed pre- and post-intervention by means of instruments which were validated and standardized in the Persian population. No significant differences were found between the two groups. The children with cochlear implants who had been instructed using either the auditory-only or auditory-visual modes acquired auditory, receptive language, expressive language, and speech skills at the same rate. Overall, spoken language significantly developed in both the unisensory group and the bisensory group. Thus, both the auditory-only mode and the auditory-visual mode were effective. Therefore, it is not essential to limit access to the visual modality and to rely solely on the auditory modality when instructing hearing, language, and speech in children with cochlear implants who are exposed to spoken language both at home and at school when communicating with their parents and educators prior to and after implantation. The trial has been registered at IRCT.ir, number IRCT201109267637N1. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Auditory Inhibition of Rapid Eye Movements and Dream Recall from REM Sleep
Stuart, Katrina; Conduit, Russell
2009-01-01
Study Objectives: There is debate in dream research as to whether ponto-geniculo-occipital (PGO) waves or cortical arousal during sleep underlie the biological mechanisms of dreaming. This study comprised 2 experiments. As eye movements (EMs) are currently considered the best noninvasive indicator of PGO burst activity in humans, the aim of the first experiment was to investigate the effect of low-intensity repeated auditory stimulation on EMs (and inferred PGO burst activity) during REM sleep. It was predicted that such auditory stimuli during REM sleep would have a suppressive effect on EMs. The aim of the second experiment was to examine the effects of this auditory stimulation on subsequent dream reporting on awakening. Design: Repeated measures design with counterbalanced order of experimental and control conditions across participants. Setting: Sleep laboratory based polysomnography (PSG) Participants: Experiment 1: 5 males and 10 females aged 18-35 years (M = 20.8, SD = 5.4). Experiment 2: 7 males and 13 females aged 18-35 years (M = 23.3, SD = 5.5). Interventions: Below-waking threshold tone presentations during REM sleep compared to control REM sleep conditions without tone presentations. Measurements and Results: PSG records were manually scored for sleep stages, EEG arousals, and EMs. Auditory stimulation during REM sleep was related to: (a) an increase in EEG arousal, (b) a decrease in the amplitude and frequency of EMs, and (c) a decrease in the frequency of visual imagery reports on awakening. Conclusions: The results of this study provide phenomenological support for PGO-based theories of dream reporting on awakening from sleep in humans. Citation: Stuart K; Conduit R. Auditory inhibition of rapid eye movements and dream recall from REM sleep. SLEEP 2009;32(3):399–408. PMID:19294960
Eye closure helps memory by reducing cognitive load and enhancing visualisation.
Vredeveldt, Annelies; Hitch, Graham J; Baddeley, Alan D
2011-10-01
Closing the eyes helps memory. We investigated the mechanisms underlying the eyeclosure effect by exposing 80 eyewitnesses to different types of distraction during the witness interview: blank screen (control), eyes closed, visual distraction, and auditory distraction. We examined the cognitive load hypothesis by comparing any type of distraction (visual or auditory) with minimal distraction (blank screen or eyes closed). We found recall to be significantly better when distraction was minimal, providing evidence that eyeclosure reduces cognitive load. We examined the modality-specific interference hypothesis by comparing the effects of visual and auditory distraction on recall of visual and auditory information. Visual and auditory distraction selectively impaired memory for information presented in the same modality, supporting the role of visualisation in the eyeclosure effect. Analysis of recall in terms of grain size revealed that recall of basic information about the event was robust, whereas recall of specific details was prone to both general and modality-specific disruptions.
Auditory-visual fusion in speech perception in children with cochlear implants
Schorr, Efrat A.; Fox, Nathan A.; van Wassenhove, Virginie; Knudsen, Eric I.
2005-01-01
Speech, for most of us, is a bimodal percept whenever we both hear the voice and see the lip movements of a speaker. Children who are born deaf never have this bimodal experience. We tested children who had been deaf from birth and who subsequently received cochlear implants for their ability to fuse the auditory information provided by their implants with visual information about lip movements for speech perception. For most of the children with implants (92%), perception was dominated by vision when visual and auditory speech information conflicted. For some, bimodal fusion was strong and consistent, demonstrating a remarkable plasticity in their ability to form auditory-visual associations despite the atypical stimulation provided by implants. The likelihood of consistent auditory-visual fusion declined with age at implant beyond 2.5 years, suggesting a sensitive period for bimodal integration in speech perception. PMID:16339316
Lau, Bonnie K; Ruggles, Dorea R; Katyal, Sucharit; Engel, Stephen A; Oxenham, Andrew J
2017-01-01
Short-term training can lead to improvements in behavioral discrimination of auditory and visual stimuli, as well as enhanced EEG responses to those stimuli. In the auditory domain, fluency with tonal languages and musical training has been associated with long-term cortical and subcortical plasticity, but less is known about the effects of shorter-term training. This study combined electroencephalography (EEG) and behavioral measures to investigate short-term learning and neural plasticity in both auditory and visual domains. Forty adult participants were divided into four groups. Three groups trained on one of three tasks, involving discrimination of auditory fundamental frequency (F0), auditory amplitude modulation rate (AM), or visual orientation (VIS). The fourth (control) group received no training. Pre- and post-training tests, as well as retention tests 30 days after training, involved behavioral discrimination thresholds, steady-state visually evoked potentials (SSVEP) to the flicker frequencies of visual stimuli, and auditory envelope-following responses simultaneously evoked and measured in response to rapid stimulus F0 (EFR), thought to reflect subcortical generators, and slow amplitude modulation (ASSR), thought to reflect cortical generators. Enhancement of the ASSR was observed in both auditory-trained groups, not specific to the AM-trained group, whereas enhancement of the SSVEP was found only in the visually-trained group. No evidence was found for changes in the EFR. The results suggest that some aspects of neural plasticity can develop rapidly and may generalize across tasks but not across modalities. Behaviorally, the pattern of learning was complex, with significant cross-task and cross-modal learning effects.
Katyal, Sucharit; Engel, Stephen A.; Oxenham, Andrew J.
2017-01-01
Short-term training can lead to improvements in behavioral discrimination of auditory and visual stimuli, as well as enhanced EEG responses to those stimuli. In the auditory domain, fluency with tonal languages and musical training has been associated with long-term cortical and subcortical plasticity, but less is known about the effects of shorter-term training. This study combined electroencephalography (EEG) and behavioral measures to investigate short-term learning and neural plasticity in both auditory and visual domains. Forty adult participants were divided into four groups. Three groups trained on one of three tasks, involving discrimination of auditory fundamental frequency (F0), auditory amplitude modulation rate (AM), or visual orientation (VIS). The fourth (control) group received no training. Pre- and post-training tests, as well as retention tests 30 days after training, involved behavioral discrimination thresholds, steady-state visually evoked potentials (SSVEP) to the flicker frequencies of visual stimuli, and auditory envelope-following responses simultaneously evoked and measured in response to rapid stimulus F0 (EFR), thought to reflect subcortical generators, and slow amplitude modulation (ASSR), thought to reflect cortical generators. Enhancement of the ASSR was observed in both auditory-trained groups, not specific to the AM-trained group, whereas enhancement of the SSVEP was found only in the visually-trained group. No evidence was found for changes in the EFR. The results suggest that some aspects of neural plasticity can develop rapidly and may generalize across tasks but not across modalities. Behaviorally, the pattern of learning was complex, with significant cross-task and cross-modal learning effects. PMID:28107359
Auditory short-term memory activation during score reading.
Simoens, Veerle L; Tervaniemi, Mari
2013-01-01
Performing music on the basis of reading a score requires reading ahead of what is being played in order to anticipate the necessary actions to produce the notes. Score reading thus not only involves the decoding of a visual score and the comparison to the auditory feedback, but also short-term storage of the musical information due to the delay of the auditory feedback during reading ahead. This study investigates the mechanisms of encoding of musical information in short-term memory during such a complicated procedure. There were three parts in this study. First, professional musicians participated in an electroencephalographic (EEG) experiment to study the slow wave potentials during a time interval of short-term memory storage in a situation that requires cross-modal translation and short-term storage of visual material to be compared with delayed auditory material, as it is the case in music score reading. This delayed visual-to-auditory matching task was compared with delayed visual-visual and auditory-auditory matching tasks in terms of EEG topography and voltage amplitudes. Second, an additional behavioural experiment was performed to determine which type of distractor would be the most interfering with the score reading-like task. Third, the self-reported strategies of the participants were also analyzed. All three parts of this study point towards the same conclusion according to which during music score reading, the musician most likely first translates the visual score into an auditory cue, probably starting around 700 or 1300 ms, ready for storage and delayed comparison with the auditory feedback.
Auditory Short-Term Memory Activation during Score Reading
Simoens, Veerle L.; Tervaniemi, Mari
2013-01-01
Performing music on the basis of reading a score requires reading ahead of what is being played in order to anticipate the necessary actions to produce the notes. Score reading thus not only involves the decoding of a visual score and the comparison to the auditory feedback, but also short-term storage of the musical information due to the delay of the auditory feedback during reading ahead. This study investigates the mechanisms of encoding of musical information in short-term memory during such a complicated procedure. There were three parts in this study. First, professional musicians participated in an electroencephalographic (EEG) experiment to study the slow wave potentials during a time interval of short-term memory storage in a situation that requires cross-modal translation and short-term storage of visual material to be compared with delayed auditory material, as it is the case in music score reading. This delayed visual-to-auditory matching task was compared with delayed visual-visual and auditory-auditory matching tasks in terms of EEG topography and voltage amplitudes. Second, an additional behavioural experiment was performed to determine which type of distractor would be the most interfering with the score reading-like task. Third, the self-reported strategies of the participants were also analyzed. All three parts of this study point towards the same conclusion according to which during music score reading, the musician most likely first translates the visual score into an auditory cue, probably starting around 700 or 1300 ms, ready for storage and delayed comparison with the auditory feedback. PMID:23326487
Ouimet, Tia; Foster, Nicholas E V; Tryfon, Ana; Hyde, Krista L
2012-04-01
Autism spectrum disorder (ASD) is a complex neurodevelopmental condition characterized by atypical social and communication skills, repetitive behaviors, and atypical visual and auditory perception. Studies in vision have reported enhanced detailed ("local") processing but diminished holistic ("global") processing of visual features in ASD. Individuals with ASD also show enhanced processing of simple visual stimuli but diminished processing of complex visual stimuli. Relative to the visual domain, auditory global-local distinctions, and the effects of stimulus complexity on auditory processing in ASD, are less clear. However, one remarkable finding is that many individuals with ASD have enhanced musical abilities, such as superior pitch processing. This review provides a critical evaluation of behavioral and brain imaging studies of auditory processing with respect to current theories in ASD. We have focused on auditory-musical processing in terms of global versus local processing and simple versus complex sound processing. This review contributes to a better understanding of auditory processing differences in ASD. A deeper comprehension of sensory perception in ASD is key to better defining ASD phenotypes and, in turn, may lead to better interventions. © 2012 New York Academy of Sciences.