Tremblay, Léon; Gettner, Sonya N; Olson, Carl R
2002-01-01
In macaque monkeys performing a task that requires eye movements to the leftmost or rightmost of two dots in a horizontal array, some neurons in the supplementary eye field (SEF) fire differentially according to which side of the array is the target regardless of the array's location on the screen. We refer to these neurons as exhibiting selectivity for object-centered location. This form of selectivity might arise from involvement of the neurons in either of two processes: representing the locations of targets or representing the rules by which targets are selected. To distinguish between these possibilities, we monitored neuronal activity in the SEF of two monkeys performing a task that required the selection of targets by either an object-centered spatial rule or a color rule. On each trial, a sample array consisting of two side-by-side dots appeared; then a cue flashed on one dot; then the display vanished and a delay ensued. Next a target array consisting of two side-by-side dots appeared at an unpredictable location and another delay ensued; finally the monkey had to make an eye movement to one of the target dots. On some trials, the monkey had to select the dot on the same side as the cue (right or left). On other trials, he had to select the target of the same color as the cue (red or green). Neuronal activity robustly encoded the object-centered locations first of the cue and then of the target regardless of the whether the monkey was following a rule based on object-centered location or color. Neuronal activity was at most weakly affected by the type of rule the monkey was following (object-centered-location or color) or by the color of the cue and target (red or green). On trials involving a color rule, neuronal activity was moderately enhanced when the cue and target appeared on opposite sides of their respective arrays. We conclude that the general function of SEF neurons selective for object-centered location is to represent where the cue and target are in their respective arrays rather than to represent the rule for target selection.
McGugin, Rankin Williams; Gatenby, J. Christopher; Gore, John C.; Gauthier, Isabel
2012-01-01
The fusiform face area (FFA) is a region of human cortex that responds selectively to faces, but whether it supports a more general function relevant for perceptual expertise is debated. Although both faces and objects of expertise engage many brain areas, the FFA remains the focus of the strongest modular claims and the clearest predictions about expertise. Functional MRI studies at standard-resolution (SR-fMRI) have found responses in the FFA for nonface objects of expertise, but high-resolution fMRI (HR-fMRI) in the FFA [Grill-Spector K, et al. (2006) Nat Neurosci 9:1177–1185] and neurophysiology in face patches in the monkey brain [Tsao DY, et al. (2006) Science 311:670–674] reveal no reliable selectivity for objects. It is thus possible that FFA responses to objects with SR-fMRI are a result of spatial blurring of responses from nonface-selective areas, potentially driven by attention to objects of expertise. Using HR-fMRI in two experiments, we provide evidence of reliable responses to cars in the FFA that correlate with behavioral car expertise. Effects of expertise in the FFA for nonface objects cannot be attributed to spatial blurring beyond the scale at which modular claims have been made, and within the lateral fusiform gyrus, they are restricted to a small area (200 mm2 on the right and 50 mm2 on the left) centered on the peak of face selectivity. Experience with a category may be sufficient to explain the spatially clustered face selectivity observed in this region. PMID:23027970
McGugin, Rankin Williams; Gatenby, J Christopher; Gore, John C; Gauthier, Isabel
2012-10-16
The fusiform face area (FFA) is a region of human cortex that responds selectively to faces, but whether it supports a more general function relevant for perceptual expertise is debated. Although both faces and objects of expertise engage many brain areas, the FFA remains the focus of the strongest modular claims and the clearest predictions about expertise. Functional MRI studies at standard-resolution (SR-fMRI) have found responses in the FFA for nonface objects of expertise, but high-resolution fMRI (HR-fMRI) in the FFA [Grill-Spector K, et al. (2006) Nat Neurosci 9:1177-1185] and neurophysiology in face patches in the monkey brain [Tsao DY, et al. (2006) Science 311:670-674] reveal no reliable selectivity for objects. It is thus possible that FFA responses to objects with SR-fMRI are a result of spatial blurring of responses from nonface-selective areas, potentially driven by attention to objects of expertise. Using HR-fMRI in two experiments, we provide evidence of reliable responses to cars in the FFA that correlate with behavioral car expertise. Effects of expertise in the FFA for nonface objects cannot be attributed to spatial blurring beyond the scale at which modular claims have been made, and within the lateral fusiform gyrus, they are restricted to a small area (200 mm(2) on the right and 50 mm(2) on the left) centered on the peak of face selectivity. Experience with a category may be sufficient to explain the spatially clustered face selectivity observed in this region.
Sexual orientation and spatial position effects on selective forms of object location memory.
Rahman, Qazi; Newland, Cherie; Smyth, Beatrice Mary
2011-04-01
Prior research has demonstrated robust sex and sexual orientation-related differences in object location memory in humans. Here we show that this sexual variation may depend on the spatial position of target objects and the task-specific nature of the spatial array. We tested the recovery of object locations in three object arrays (object exchanges, object shifts, and novel objects) relative to veridical center (left compared to right side of the arrays) in a sample of 35 heterosexual men, 35 heterosexual women, and 35 homosexual men. Relative to heterosexual men, heterosexual women showed better location recovery in the right side of the array during object exchanges and homosexual men performed better in the right side during novel objects. However, the difference between heterosexual and homosexual men disappeared after controlling for IQ. Heterosexual women and homosexual men did not differ significantly from each other in location change detection with respect to task or side of array. These data suggest that visual space biases in processing categorical spatial positions may enhance aspects of object location memory in heterosexual women. Copyright © 2010 Elsevier Inc. All rights reserved.
Do silhouettes and photographs produce fundamentally different object-based correspondence effects?
Proctor, Robert W; Lien, Mei-Ching; Thompson, Lane
2017-12-01
When participants classify pictures of objects as upright or inverted with a left or right keypress, responses are faster if the response location (left/right) corresponds with the location of a handle (left/right) than if it does not. This result has typically been attributed to a grasping affordance (automatic activation of muscles associated with grasping the object with the ipsilateral hand), but several findings have indicated instead that the effect is a spatial correspondence effect, much like the Simon effect for object location. Pappas (2014) reported evidence he interpreted as showing that spatial coding predominates with silhouettes of objects, whereas photographs of objects yield affordance-based effects. We conducted two experiments similar to those of Pappas, using frying pans as stimuli, with our two experiments differing in whether the entire object was centered on the display screen or the base was centered. When the objects were centered, a positive correspondence effect relative to the handle was evident for the silhouettes but a negative correspondence effect for the photographs. When the base was centered, the handle was clearly located to the left or right side of the display, and both silhouettes and photographs produced correspondence effects of similar size relative to the handle location. Despite the main results being counter to the grasping affordance hypothesis, response-time distribution analyses suggest that, instead of activating automatically at fast responses, an effector-specific component of the hypothesized type may come into play for responses that are selected after the handle location has been identified. Copyright © 2017 Elsevier B.V. All rights reserved.
A Computational Model of Spatial Development
NASA Astrophysics Data System (ADS)
Hiraki, Kazuo; Sashima, Akio; Phillips, Steven
Psychological experiments on children's development of spatial knowledge suggest experience at self-locomotion with visual tracking as important factors. Yet, the mechanism underlying development is unknown. We propose a robot that learns to mentally track a target object (i.e., maintaining a representation of an object's position when outside the field-of-view) as a model for spatial development. Mental tracking is considered as prediction of an object's position given the previous environmental state and motor commands, and the current environment state resulting from movement. Following Jordan & Rumelhart's (1992) forward modeling architecture the system consists of two components: an inverse model of sensory input to desired motor commands; and a forward model of motor commands to desired sensory input (goals). The robot was tested on the `three cups' paradigm (where children are required to select the cup containing the hidden object under various movement conditions). Consistent with child development, without the capacity for self-locomotion the robot's errors are self-center based. When given the ability of self-locomotion the robot responds allocentrically.
Automated measurement of spatial preference in the open field test with transmitted lighting.
Kulikov, Alexander V; Tikhonova, Maria A; Kulikov, Victor A
2008-05-30
New modification of the open field was designed to improve automation of the test. The main innovations were: (1) transmitted lighting and (2) estimation of probability to find pixels associated with an animal in the selected region of arena as an objective index of spatial preference. Transmitted (inverted) lighting significantly ameliorated the contrast between an animal and arena and allowed to track white animals with similar efficacy as colored ones. Probability as a measure of preference of selected region was mathematically proved and experimentally verified. A good correlation between probability and classic indices of spatial preference (number of region entries and time spent therein) was shown. The algorithm of calculation of probability to find pixels associated with an animal in the selected region was implemented in the EthoStudio software. Significant interstrain differences in locomotion and the central zone preference (index of anxiety) were shown using the inverted lighting and the EthoStudio software in mice of six inbred strains. The effects of arena shape (circle or square) and a novel object presence in the center of arena on the open field behavior in mice were studied.
Processing the presence, placement, and properties of a distractor in spatial language tasks.
Carlson, Laura A; Hill, Patrick L
2008-03-01
A common way to describe the location of an object is to spatially relate it to a nearby object. For such descriptions, the object being described is referred to as the located object; the object to which it is spatially related is referred to as the reference object. Typically, however, there are many nearby objects (distractors), resulting in the need for selection. We report three experiments that examine the extent to which a distractor in the display is processed during the selection of a reference object. Using acceptability ratings and production measures, we show that the presence and the placement ofa distractor have a significant impact on the assessment of the spatial relation between the located and reference objects; there is also evidence that the properties of the distractor are processed, but only under limited conditions. One implication is that the dimension that is most relevant to reference object selection is its spatial relation to the located object, rather than its salience with respect to other objects in the display.
Spotorno, Sara; Malcolm, George L; Tatler, Benjamin W
2015-02-10
Previous research has suggested that correctly placed objects facilitate eye guidance, but also that objects violating spatial associations within scenes may be prioritized for selection and subsequent inspection. We analyzed the respective eye guidance of spatial expectations and target template (precise picture or verbal label) in visual search, while taking into account any impact of object spatial inconsistency on extrafoveal or foveal processing. Moreover, we isolated search disruption due to misleading spatial expectations about the target from the influence of spatial inconsistency within the scene upon search behavior. Reliable spatial expectations and precise target template improved oculomotor efficiency across all search phases. Spatial inconsistency resulted in preferential saccadic selection when guidance by template was insufficient to ensure effective search from the outset and the misplaced object was bigger than the objects consistently placed in the same scene region. This prioritization emerged principally during early inspection of the region, but the inconsistent object also tended to be preferentially fixated overall across region viewing. These results suggest that objects are first selected covertly on the basis of their relative size and that subsequent overt selection is made considering object-context associations processed in extrafoveal vision. Once the object was fixated, inconsistency resulted in longer first fixation duration and longer total dwell time. As a whole, our findings indicate that observed impairment of oculomotor behavior when searching for an implausibly placed target is the combined product of disruption due to unreliable spatial expectations and prioritization of inconsistent objects before and during object fixation. © 2015 ARVO.
Drummond, Leslie; Shomstein, Sarah
2013-01-01
The relative contributions of objects (i.e., object-based) and underlying spatial (i.e., space-based representations) to attentional prioritization and selection remain unclear. In most experimental circumstances, the two representations overlap thus their respective contributions cannot be evaluated. Here, a dynamic version of the two-rectangle paradigm allowed for a successful de-coupling of spatial and object representations. Space-based (cued spatial location), cued end of the object, and object-based (locations within the cued object) effects were sampled at several timepoints following the cue with high or low certainty as to target location. In the high uncertainty condition spatial benefits prevailed throughout most of the timecourse, as evidenced by facilitatory and inhibitory effects. Additionally, the cued end of the object, rather than a whole object, received the attentional benefit. When target location was predictable (low uncertainty manipulation), only probabilities guided selection (i.e., evidence by a benefit for the statistically biased location). These results suggest that with high spatial uncertainty, all available information present within the stimulus display is used for the purposes of attentional selection (e.g., spatial locations, cued end of the object) albeit to varying degrees and at different time points. However, as certainty increases, only spatial certainty guides selection (i.e., object ends and whole objects are filtered out). Taken together, these results further elucidate the contributing role of space- and object-representations to attentional guidance. PMID:24367302
Neurophysiological Organization of the Middle Face Patch in Macaque Inferior Temporal Cortex
Aparicio, Paul L.; Issa, Elias B.
2016-01-01
While early cortical visual areas contain fine scale spatial organization of neuronal properties, such as orientation preference, the spatial organization of higher-level visual areas is less well understood. The fMRI demonstration of face-preferring regions in human ventral cortex and monkey inferior temporal cortex (“face patches”) raises the question of how neural selectivity for faces is organized. Here, we targeted hundreds of spatially registered neural recordings to the largest fMRI-identified face-preferring region in monkeys, the middle face patch (MFP), and show that the MFP contains a graded enrichment of face-preferring neurons. At its center, as much as 93% of the sites we sampled responded twice as strongly to faces than to nonface objects. We estimate the maximum neurophysiological size of the MFP to be ∼6 mm in diameter, consistent with its previously reported size under fMRI. Importantly, face selectivity in the MFP varied strongly even between neighboring sites. Additionally, extremely face-selective sites were ∼40 times more likely to be present inside the MFP than outside. These results provide the first direct quantification of the size and neural composition of the MFP by showing that the cortical tissue localized to the fMRI defined region consists of a very high fraction of face-preferring sites near its center, and a monotonic decrease in that fraction along any radial spatial axis. SIGNIFICANCE STATEMENT The underlying organization of neurons that give rise to the large spatial regions of activity observed with fMRI is not well understood. Neurophysiological studies that have targeted the fMRI identified face patches in monkeys have provided evidence for both large-scale clustering and a heterogeneous spatial organization. Here we used a novel x-ray imaging system to spatially map the responses of hundreds of sites in and around the middle face patch. We observed that face-selective signal localized to the middle face patch was characterized by a gradual spatial enrichment. Furthermore, strongly face-selective sites were ∼40 times more likely to be found inside the patch than outside of the patch. PMID:27810930
Neurophysiological Organization of the Middle Face Patch in Macaque Inferior Temporal Cortex.
Aparicio, Paul L; Issa, Elias B; DiCarlo, James J
2016-12-14
While early cortical visual areas contain fine scale spatial organization of neuronal properties, such as orientation preference, the spatial organization of higher-level visual areas is less well understood. The fMRI demonstration of face-preferring regions in human ventral cortex and monkey inferior temporal cortex ("face patches") raises the question of how neural selectivity for faces is organized. Here, we targeted hundreds of spatially registered neural recordings to the largest fMRI-identified face-preferring region in monkeys, the middle face patch (MFP), and show that the MFP contains a graded enrichment of face-preferring neurons. At its center, as much as 93% of the sites we sampled responded twice as strongly to faces than to nonface objects. We estimate the maximum neurophysiological size of the MFP to be ∼6 mm in diameter, consistent with its previously reported size under fMRI. Importantly, face selectivity in the MFP varied strongly even between neighboring sites. Additionally, extremely face-selective sites were ∼40 times more likely to be present inside the MFP than outside. These results provide the first direct quantification of the size and neural composition of the MFP by showing that the cortical tissue localized to the fMRI defined region consists of a very high fraction of face-preferring sites near its center, and a monotonic decrease in that fraction along any radial spatial axis. The underlying organization of neurons that give rise to the large spatial regions of activity observed with fMRI is not well understood. Neurophysiological studies that have targeted the fMRI identified face patches in monkeys have provided evidence for both large-scale clustering and a heterogeneous spatial organization. Here we used a novel x-ray imaging system to spatially map the responses of hundreds of sites in and around the middle face patch. We observed that face-selective signal localized to the middle face patch was characterized by a gradual spatial enrichment. Furthermore, strongly face-selective sites were ∼40 times more likely to be found inside the patch than outside of the patch. Copyright © 2016 the authors 0270-6474/16/3612729-17$15.00/0.
Zhou, Yuan; Shi, Tie-Mao; Hu, Yuan-Man; Gao, Chang; Liu, Miao; Song, Lin-Qi
2011-12-01
Based on geographic information system (GIS) technology and multi-objective location-allocation (LA) model, and in considering of four relatively independent objective factors (population density level, air pollution level, urban heat island effect level, and urban land use pattern), an optimized location selection for the urban parks within the Third Ring of Shenyang was conducted, and the selection results were compared with the spatial distribution of existing parks, aimed to evaluate the rationality of the spatial distribution of urban green spaces. In the location selection of urban green spaces in the study area, the factor air pollution was most important, and, compared with single objective factor, the weighted analysis results of multi-objective factors could provide optimized spatial location selection of new urban green spaces. The combination of GIS technology with LA model would be a new approach for the spatial optimizing of urban green spaces.
A neuroanatomical model of space-based and object-centered processing in spatial neglect.
Pedrazzini, Elena; Schnider, Armin; Ptak, Radek
2017-11-01
Visual attention can be deployed in space-based or object-centered reference frames. Right-hemisphere damage may lead to distinct deficits of space- or object-based processing, and such dissociations are thought to underlie the heterogeneous nature of spatial neglect. Previous studies have suggested that object-centered processing deficits (such as in copying, reading or line bisection) result from damage to retro-rolandic regions while impaired spatial exploration reflects damage to more anterior regions. However, this evidence is based on small samples and heterogeneous tasks. Here, we tested a theoretical model of neglect that takes in account the space- and object-based processing and relates them to neuroanatomical predictors. One hundred and one right-hemisphere-damaged patients were examined with classic neuropsychological tests and structural brain imaging. Relations between neglect measures and damage to the temporal-parietal junction, intraparietal cortex, insula and middle frontal gyrus were examined with two structural equation models by assuming that object-centered processing (involved in line bisection and single-word reading) and space-based processing (involved in cancelation tasks) either represented a unique latent variable or two distinct variables. Of these two models the latter had better explanatory power. Damage to the intraparietal sulcus was a significant predictor of object-centered, but not space-based processing, while damage to the temporal-parietal junction predicted space-based, but not object-centered processing. Space-based processing and object-centered processing were strongly intercorrelated, indicating that they rely on similar, albeit partly dissociated processes. These findings indicate that object-centered and space-based deficits in neglect are partly independent and result from superior parietal and inferior parietal damage, respectively.
ERIC Educational Resources Information Center
Wallentin, Mikkel; Kristensen, Line Burholt; Olsen, Jacob Hedeager; Nielsen, Andreas Hojlund
2011-01-01
The brain's frontal eye fields (FEF), responsible for eye movement control, are known to be involved in spatial working memory (WM). In a previous fMRI experiment (Wallentin, Roepstorff & Burgess, Neuropsychologia, 2008) it was found that FEF activation was primarily related to the formation of an object-centered, rather than egocentric, spatial…
Neural representation of objects in space: a dual coding account.
Humphreys, G W
1998-01-01
I present evidence on the nature of object coding in the brain and discuss the implications of this coding for models of visual selective attention. Neuropsychological studies of task-based constraints on: (i) visual neglect; and (ii) reading and counting, reveal the existence of parallel forms of spatial representation for objects: within-object representations, where elements are coded as parts of objects, and between-object representations, where elements are coded as independent objects. Aside from these spatial codes for objects, however, the coding of visual space is limited. We are extremely poor at remembering small spatial displacements across eye movements, indicating (at best) impoverished coding of spatial position per se. Also, effects of element separation on spatial extinction can be eliminated by filling the space with an occluding object, indicating that spatial effects on visual selection are moderated by object coding. Overall, there are separate limits on visual processing reflecting: (i) the competition to code parts within objects; (ii) the small number of independent objects that can be coded in parallel; and (iii) task-based selection of whether within- or between-object codes determine behaviour. Between-object coding may be linked to the dorsal visual system while parallel coding of parts within objects takes place in the ventral system, although there may additionally be some dorsal involvement either when attention must be shifted within objects or when explicit spatial coding of parts is necessary for object identification. PMID:9770227
Hedge, Craig; Oberauer, Klaus; Leonards, Ute
2015-11-01
We examined the relationship between the attentional selection of perceptual information and of information in working memory (WM) through four experiments, using a spatial WM-updating task. Participants remembered the locations of two objects in a matrix and worked through a sequence of updating operations, each mentally shifting one dot to a new location according to an arrow cue. Repeatedly updating the same object in two successive steps is typically faster than switching to the other object; this object switch cost reflects the shifting of attention in WM. In Experiment 1, the arrows were presented in random peripheral locations, drawing perceptual attention away from the selected object in WM. This manipulation did not eliminate the object switch cost, indicating that the mechanisms of perceptual selection do not underlie selection in WM. Experiments 2a and 2b corroborated the independence of selection observed in Experiment 1, but showed a benefit to reaction times when the placement of the arrow cue was aligned with the locations of relevant objects in WM. Experiment 2c showed that the same benefit also occurs when participants are not able to mark an updating location through eye fixations. Together, these data can be accounted for by a framework in which perceptual selection and selection in WM are separate mechanisms that interact through a shared spatial priority map.
The Red MSX Source Survey: The Massive Young Stellar Population of Our Galaxy
NASA Astrophysics Data System (ADS)
Lumsden, S. L.; Hoare, M. G.; Urquhart, J. S.; Oudmaijer, R. D.; Davies, B.; Mottram, J. C.; Cooper, H. D. B.; Moore, T. J. T.
2013-09-01
We present the Red MSX Source survey, the largest statistically selected catalog of young massive protostars and H II regions to date. We outline the construction of the catalog using mid- and near-infrared color selection. We also discuss the detailed follow up work at other wavelengths, including higher spatial resolution data in the infrared. We show that within the adopted selection bounds we are more than 90% complete for the massive protostellar population, with a positional accuracy of the exciting source of better than 2 arcsec. We briefly summarize some of the results that can be obtained from studying the properties of the objects in the catalog as a whole; we find evidence that the most massive stars form: (1) preferentially nearer the Galactic center than the anti-center; (2) in the most heavily reddened environments, suggestive of high accretion rates; and (3) from the most massive cloud cores.
Congenital blindness limits allocentric to egocentric switching ability.
Ruggiero, Gennaro; Ruotolo, Francesco; Iachini, Tina
2018-03-01
Many everyday spatial activities require the cooperation or switching between egocentric (subject-to-object) and allocentric (object-to-object) spatial representations. The literature on blind people has reported that the lack of vision (congenital blindness) may limit the capacity to represent allocentric spatial information. However, research has mainly focused on the selective involvement of egocentric or allocentric representations, not the switching between them. Here we investigated the effect of visual deprivation on the ability to switch between spatial frames of reference. To this aim, congenitally blind (long-term visual deprivation), blindfolded sighted (temporary visual deprivation) and sighted (full visual availability) participants were compared on the Ego-Allo switching task. This task assessed the capacity to verbally judge the relative distances between memorized stimuli in switching (from egocentric-to-allocentric: Ego-Allo; from allocentric-to-egocentric: Allo-Ego) and non-switching (only-egocentric: Ego-Ego; only-allocentric: Allo-Allo) conditions. Results showed a difficulty in congenitally blind participants when switching from allocentric to egocentric representations, not when the first anchor point was egocentric. In line with previous results, a deficit in processing allocentric representations in non-switching conditions also emerged. These findings suggest that the allocentric deficit in congenital blindness may determine a difficulty in simultaneously maintaining and combining different spatial representations. This deficit alters the capacity to switch between reference frames specifically when the first anchor point is external and not body-centered.
Sexual Orientation and Spatial Position Effects on Selective Forms of Object Location Memory
ERIC Educational Resources Information Center
Rahman, Qazi; Newland, Cherie; Smyth, Beatrice Mary
2011-01-01
Prior research has demonstrated robust sex and sexual orientation-related differences in object location memory in humans. Here we show that this sexual variation may depend on the spatial position of target objects and the task-specific nature of the spatial array. We tested the recovery of object locations in three object arrays (object…
Murphy-Baum, Benjamin L; Taylor, W Rowland
2015-09-30
Much of the computational power of the retina derives from the activity of amacrine cells, a large and diverse group of GABAergic and glycinergic inhibitory interneurons. Here, we identify an ON-type orientation-selective, wide-field, polyaxonal amacrine cell (PAC) in the rabbit retina and demonstrate how its orientation selectivity arises from the structure of the dendritic arbor and the pattern of excitatory and inhibitory inputs. Excitation from ON bipolar cells and inhibition arising from the OFF pathway converge to generate a quasi-linear integration of visual signals in the receptive field center. This serves to suppress responses to high spatial frequencies, thereby improving sensitivity to larger objects and enhancing orientation selectivity. Inhibition also regulates the magnitude and time course of excitatory inputs to this PAC through serial inhibitory connections onto the presynaptic terminals of ON bipolar cells. This presynaptic inhibition is driven by graded potentials within local microcircuits, similar in extent to the size of single bipolar cell receptive fields. Additional presynaptic inhibition is generated by spiking amacrine cells on a larger spatial scale covering several hundred microns. The orientation selectivity of this PAC may be a substrate for the inhibition that mediates orientation selectivity in some types of ganglion cells. Significance statement: The retina comprises numerous excitatory and inhibitory circuits that encode specific features in the visual scene, such as orientation, contrast, or motion. Here, we identify a wide-field inhibitory neuron that responds to visual stimuli of a particular orientation, a feature selectivity that is primarily due to the elongated shape of the dendritic arbor. Integration of convergent excitatory and inhibitory inputs from the ON and OFF visual pathways suppress responses to small objects and fine textures, thus enhancing selectivity for larger objects. Feedback inhibition regulates the strength and speed of excitation on both local and wide-field spatial scales. This study demonstrates how different synaptic inputs are regulated to tune a neuron to respond to specific features in the visual scene. Copyright © 2015 the authors 0270-6474/15/3513336-15$15.00/0.
The Spatial Distribution of Attention within and across Objects
ERIC Educational Resources Information Center
Hollingworth, Andrew; Maxcey-Richard, Ashleigh M.; Vecera, Shaun P.
2012-01-01
Attention operates to select both spatial locations and perceptual objects. However, the specific mechanism by which attention is oriented to objects is not well understood. We examined the means by which object structure constrains the distribution of spatial attention (i.e., a "grouped array"). Using a modified version of the Egly et…
Ip, Ifan Betina; Bridge, Holly; Parker, Andrew J.
2014-01-01
An important advance in the study of visual attention has been the identification of a non-spatial component of attention that enhances the response to similar features or objects across the visual field. Here we test whether this non-spatial component can co-select individual features that are perceptually bound into a coherent object. We combined human psychophysics and functional magnetic resonance imaging (fMRI) to demonstrate the ability to co-select individual features from perceptually coherent objects. Our study used binocular disparity and visual motion to define disparity structure-from-motion (dSFM) stimuli. Although the spatial attention system induced strong modulations of the fMRI response in visual regions, the non-spatial system’s ability to co-select features of the dSFM stimulus was less pronounced and variable across subjects. Our results demonstrate that feature and global feature attention effects are variable across participants, suggesting that the feature attention system may be limited in its ability to automatically select features within the attended object. Careful comparison of the task design suggests that even minor differences in the perceptual task may be critical in revealing the presence of global feature attention. PMID:24936974
Spatially explicit decision support for selecting translocation areas for Mojave desert tortoises
Heaton, Jill S.; Nussear, Kenneth E.; Esque, Todd C.; Inman, Richard D.; Davenport, Frank; Leuteritz, Thomas E.; Medica, Philip A.; Strout, Nathan W.; Burgess, Paul A.; Benvenuti, Lisa
2008-01-01
Spatially explicit decision support systems are assuming an increasing role in natural resource and conservation management. In order for these systems to be successful, however, they must address real-world management problems with input from both the scientific and management communities. The National Training Center at Fort Irwin, California, has expanded its training area, encroaching U.S. Fish and Wildlife Service critical habitat set aside for the Mojave desert tortoise (Gopherus agassizii), a federally threatened species. Of all the mitigation measures proposed to offset expansion, the most challenging to implement was the selection of areas most feasible for tortoise translocation. We developed an objective, open, scientifically defensible spatially explicit decision support system to evaluate translocation potential within the Western Mojave Recovery Unit for tortoise populations under imminent threat from military expansion. Using up to a total of 10 biological, anthropogenic, and/or logistical criteria, seven alternative translocation scenarios were developed. The final translocation model was a consensus model between the seven scenarios. Within the final model, six potential translocation areas were identified.
Object Orientation Affects Spatial Language Comprehension
ERIC Educational Resources Information Center
Burigo, Michele; Sacchi, Simona
2013-01-01
Typical spatial descriptions, such as "The car is in front of the house," describe the position of a located object (LO; e.g., the car) in space relative to a reference object (RO) whose location is known (e.g., the house). The orientation of the RO affects spatial language comprehension via the reference frame selection process.…
Spatial and symbolic queries for 3D image data
NASA Astrophysics Data System (ADS)
Benson, Daniel C.; Zick, Gregory L.
1992-04-01
We present a query system for an object-oriented biomedical imaging database containing 3-D anatomical structures and their corresponding 2-D images. The graphical interface facilitates the formation of spatial queries, nonspatial or symbolic queries, and combined spatial/symbolic queries. A query editor is used for the creation and manipulation of 3-D query objects as volumes, surfaces, lines, and points. Symbolic predicates are formulated through a combination of text fields and multiple choice selections. Query results, which may include images, image contents, composite objects, graphics, and alphanumeric data, are displayed in multiple views. Objects returned by the query may be selected directly within the views for further inspection or modification, or for use as query objects in subsequent queries. Our image database query system provides visual feedback and manipulation of spatial query objects, multiple views of volume data, and the ability to combine spatial and symbolic queries. The system allows for incremental enhancement of existing objects and the addition of new objects and spatial relationships. The query system is designed for databases containing symbolic and spatial data. This paper discuses its application to data acquired in biomedical 3- D image reconstruction, but it is applicable to other areas such as CAD/CAM, geographical information systems, and computer vision.
Laser-induced acoustic imaging of underground objects
NASA Astrophysics Data System (ADS)
Li, Wen; DiMarzio, Charles A.; McKnight, Stephen W.; Sauermann, Gerhard O.; Miller, Eric L.
1999-02-01
This paper introduces a new demining technique based on the photo-acoustic interaction, together with results from photo- acoustic experiments. We have buried different types of targets (metal, rubber and plastic) in different media (sand, soil and water) and imaged them by measuring reflection of acoustic waves generated by irradiation with a CO2 laser. Research has been focused on the signal acquisition and signal processing. A deconvolution method using Wiener filters is utilized in data processing. Using a uniform spatial distribution of laser pulses at the ground's surface, we obtained 3D images of buried objects. The images give us a clear representation of the shapes of the underground objects. The quality of the images depends on the mismatch of acoustic impedance of the buried objects, the bandwidth and center frequency of the acoustic sensors and the selection of filter functions.
Southern Arizona riparian habitat: Spatial distribution and analysis
NASA Technical Reports Server (NTRS)
Lacey, J. R.; Ogden, P. R.; Foster, K. E.
1975-01-01
The objectives of this study were centered around the demonstration of remote sensing as an inventory tool and researching the multiple uses of riparian vegetation. Specific study objectives were to: (1) map riparian vegetation along the Gila River, San Simon Creek, San Pedro River, Pantano Wash, (2) determine the feasibility of automated mapping using LANDSAT-1 computer compatible tapes, (3) locate and summarize existing mpas delineating riparian vegetation, (4) summarize data relevant to Southern Arizona's riparian products and uses, (5) document recent riparian vegetation changes along a selected portion of the San Pedro River, (6) summarize historical changes in composition and distribution of riparian vegetation, and (7) summarize sources of available photography pertinent to Southern Arizona.
The Relationship between Preschoolers' Selective Attention and Memory for Location Strategies
ERIC Educational Resources Information Center
Blumberg, F.C.; Torenberg, M.; Randall, J.D.
2005-01-01
Late and early preschoolers' attention and spatial strategies were examined in response to instructions to recall relevant objects [Blumberg, F. C. & Torenberg, M. (2003). The impact of spatial cues on preschoolers' selective attention. Journal of Genetic Psychology, 164, 42-53] and irrelevant objects [Blumberg, F. C. & Torenberg, M. (in press).…
Faint blue objects at high Galactic latitude. V - Palomar Schmidt field centered on selected area 71
NASA Technical Reports Server (NTRS)
Usher, Peter D.; Mitchell, Kenneth J.; Warnock, Archibald, III
1988-01-01
Starlike objects with both blue and ultraviolet excess have been selected from a Palomar 1.2 m Schmidt field centered on Kapteyn selected area 71. The method of selection is that used in the previous papers of this series, but modified to account for the differential reddening that occurs across the field. The color classes, color subclasses, positions, and magnitudes of the selected objects are listed.
Al-Janabi, Shahd; Greenberg, Adam S
2016-10-01
The representational basis of attentional selection can be object-based. Various studies have suggested, however, that object-based selection is less robust than spatial selection across experimental paradigms. We sought to examine the manner by which the following factors might explain this variation: Target-Object Integration (targets 'on' vs. part 'of' an object), Attention Distribution (narrow vs. wide), and Object Orientation (horizontal vs. vertical). In Experiment 1, participants discriminated between two targets presented 'on' an object in one session, or presented as a change 'of' an object in another session. There was no spatial cue-thus, attention was initially focused widely-and the objects were horizontal or vertical. We found evidence of object-based selection only when targets constituted a change 'of' an object. Additionally, object orientation modulated the sign of object-based selection: We observed a same-object advantage for horizontal objects, but a same-object cost for vertical objects. In Experiment 2, an informative cue preceded a single target presented 'on' an object or as a change 'of' an object (thus, attention was initially focused narrowly). Unlike in Experiment 1, we found evidence of object-based selection independent of target-object integration. We again found that the sign of selection was modulated by the objects' orientation. This result may reflect a meridian effect, which emerged due to anisotropies in the cortical representations when attention is oriented endogenously. Experiment 3 revealed that object orientation did not modulate object-based selection when attention was oriented exogenously. Our findings suggest that target-object integration, attention distribution, and object orientation modulate object-based selection, but only in combination.
Object-Part Attention Model for Fine-Grained Image Classification
NASA Astrophysics Data System (ADS)
Peng, Yuxin; He, Xiangteng; Zhao, Junjie
2018-03-01
Fine-grained image classification is to recognize hundreds of subcategories belonging to the same basic-level category, such as 200 subcategories belonging to the bird, which is highly challenging due to large variance in the same subcategory and small variance among different subcategories. Existing methods generally first locate the objects or parts and then discriminate which subcategory the image belongs to. However, they mainly have two limitations: (1) Relying on object or part annotations which are heavily labor consuming. (2) Ignoring the spatial relationships between the object and its parts as well as among these parts, both of which are significantly helpful for finding discriminative parts. Therefore, this paper proposes the object-part attention model (OPAM) for weakly supervised fine-grained image classification, and the main novelties are: (1) Object-part attention model integrates two level attentions: object-level attention localizes objects of images, and part-level attention selects discriminative parts of object. Both are jointly employed to learn multi-view and multi-scale features to enhance their mutual promotions. (2) Object-part spatial constraint model combines two spatial constraints: object spatial constraint ensures selected parts highly representative, and part spatial constraint eliminates redundancy and enhances discrimination of selected parts. Both are jointly employed to exploit the subtle and local differences for distinguishing the subcategories. Importantly, neither object nor part annotations are used in our proposed approach, which avoids the heavy labor consumption of labeling. Comparing with more than 10 state-of-the-art methods on 4 widely-used datasets, our OPAM approach achieves the best performance.
Towards quantum superposition of a levitated nanodiamond with a NV center
NASA Astrophysics Data System (ADS)
Li, Tongcang
2015-05-01
Creating large Schrödinger's cat states with massive objects is one of the most challenging goals in quantum mechanics. We have previously achieved an important step of this goal by cooling the center-of-mass motion of a levitated microsphere from room temperature to millikelvin temperatures with feedback cooling. To generate spatial quantum superposition states with an optical cavity, however, requires a very strong quadratic coupling that is difficult to achieve. We proposed to optically trap a nanodiamond with a nitrogen-vacancy (NV) center in vacuum, and generate large spatial superposition states using the NV spin-optomechanical coupling in a strong magnetic gradient field. The large spatial superposition states can be used to study objective collapse theories of quantum mechanics. We have optically trapped nanodiamonds in air and are working towards this goal.
Levichkina, Ekaterina; Saalmann, Yuri B; Vidyasagar, Trichur R
2017-03-01
Primate posterior parietal cortex (PPC) is known to be involved in controlling spatial attention. Neurons in one part of the PPC, the lateral intraparietal area (LIP), show enhanced responses to objects at attended locations. Although many are selective for object features, such as the orientation of a visual stimulus, it is not clear how LIP circuits integrate feature-selective information when providing attentional feedback about behaviorally relevant locations to the visual cortex. We studied the relationship between object feature and spatial attention properties of LIP cells in two macaques by measuring the cells' orientation selectivity and the degree of attentional enhancement while performing a delayed match-to-sample task. Monkeys had to match both the location and orientation of two visual gratings presented separately in time. We found a wide range in orientation selectivity and degree of attentional enhancement among LIP neurons. However, cells with significant attentional enhancement had much less orientation selectivity in their response than cells which showed no significant modulation by attention. Additionally, orientation-selective cells showed working memory activity for their preferred orientation, whereas cells showing attentional enhancement also synchronized with local neuronal activity. These results are consistent with models of selective attention incorporating two stages, where an initial feature-selective process guides a second stage of focal spatial attention. We suggest that LIP contributes to both stages, where the first stage involves orientation-selective LIP cells that support working memory of the relevant feature, and the second stage involves attention-enhanced LIP cells that synchronize to provide feedback on spatial priorities. © 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.
Abbes, Aymen Ben; Gavault, Emmanuelle; Ripoll, Thierry
2014-01-01
We conducted a series of experiments to explore how the spatial configuration of objects influences the selection and the processing of these objects in a visual short-term memory task. We designed a new experiment in which participants had to memorize 4 targets presented among 4 distractors. Targets were cued during the presentation of distractor objects. Their locations varied according to 4 spatial configurations. From the first to the last configuration, the distance between targets' locations was progressively increased. The results revealed a high capacity to select and memorize targets embedded among distractors even when targets were extremely distant from each other. This capacity is discussed in relation to the unitary conception of attention, models of split attention, and the competitive interaction model. Finally, we propose that the spatial dispersion of objects has different effects on attentional allocation and processing stages. Thus, when targets are extremely distant from each other, attentional allocation becomes more difficult while processing becomes easier. This finding implicates that these 2 aspects of attention need to be more clearly distinguished in future research.
Sun, Liping; Luo, Yonglong; Ding, Xintao; Zhang, Ji
2014-01-01
An important component of a spatial clustering algorithm is the distance measure between sample points in object space. In this paper, the traditional Euclidean distance measure is replaced with innovative obstacle distance measure for spatial clustering under obstacle constraints. Firstly, we present a path searching algorithm to approximate the obstacle distance between two points for dealing with obstacles and facilitators. Taking obstacle distance as similarity metric, we subsequently propose the artificial immune clustering with obstacle entity (AICOE) algorithm for clustering spatial point data in the presence of obstacles and facilitators. Finally, the paper presents a comparative analysis of AICOE algorithm and the classical clustering algorithms. Our clustering model based on artificial immune system is also applied to the case of public facility location problem in order to establish the practical applicability of our approach. By using the clone selection principle and updating the cluster centers based on the elite antibodies, the AICOE algorithm is able to achieve the global optimum and better clustering effect.
Hybrid vision activities at NASA Johnson Space Center
NASA Technical Reports Server (NTRS)
Juday, Richard D.
1990-01-01
NASA's Johnson Space Center in Houston, Texas, is active in several aspects of hybrid image processing. (The term hybrid image processing refers to a system that combines digital and photonic processing). The major thrusts are autonomous space operations such as planetary landing, servicing, and rendezvous and docking. By processing images in non-Cartesian geometries to achieve shift invariance to canonical distortions, researchers use certain aspects of the human visual system for machine vision. That technology flow is bidirectional; researchers are investigating the possible utility of video-rate coordinate transformations for human low-vision patients. Man-in-the-loop teleoperations are also supported by the use of video-rate image-coordinate transformations, as researchers plan to use bandwidth compression tailored to the varying spatial acuity of the human operator. Technological elements being developed in the program include upgraded spatial light modulators, real-time coordinate transformations in video imagery, synthetic filters that robustly allow estimation of object pose parameters, convolutionally blurred filters that have continuously selectable invariance to such image changes as magnification and rotation, and optimization of optical correlation done with spatial light modulators that have limited range and couple both phase and amplitude in their response.
A Neurobehavioral Model of Flexible Spatial Language Behaviors
Lipinski, John; Schneegans, Sebastian; Sandamirskaya, Yulia; Spencer, John P.; Schöner, Gregor
2012-01-01
We propose a neural dynamic model that specifies how low-level visual processes can be integrated with higher level cognition to achieve flexible spatial language behaviors. This model uses real-word visual input that is linked to relational spatial descriptions through a neural mechanism for reference frame transformations. We demonstrate that the system can extract spatial relations from visual scenes, select items based on relational spatial descriptions, and perform reference object selection in a single unified architecture. We further show that the performance of the system is consistent with behavioral data in humans by simulating results from 2 independent empirical studies, 1 spatial term rating task and 1 study of reference object selection behavior. The architecture we present thereby achieves a high degree of task flexibility under realistic stimulus conditions. At the same time, it also provides a detailed neural grounding for complex behavioral and cognitive processes. PMID:21517224
Time course of spatial and feature selective attention for partly-occluded objects.
Kasai, Tetsuko; Takeya, Ryuji
2012-07-01
Attention selects objects/groups as the most fundamental units, and this may be achieved by an attention-spreading mechanism. Previous event-related potential (ERP) studies have found that attention-spreading is reflected by a decrease in the N1 spatial attention effect. The present study tested whether the electrophysiological attention effect is associated with the perception of object unity or amodal completion through the use of partly-occluded objects. ERPs were recorded in 14 participants who were required to pay attention to their left or right visual field and to press a button for a target shape in the attended field. Bilateral stimuli were presented rapidly, and were separated, connected, or connected behind an occluder. Behavioral performance in the connected and occluded conditions was worse than that in the separated condition, indicating that attention spread over perceptual object representations after amodal completion. Consistently, the late N1 spatial attention effect (180-220 ms post-stimulus) and the early phase (230-280 ms) of feature selection effects (target N2) at contralateral sites decreased, equally for the occluded and connected conditions, while the attention effect in the early N1 latency (140-180 ms) shifted most positively for the occluded condition. These results suggest that perceptual organization processes for object recognition transiently modulate spatial and feature selection processes in the visual cortex. Copyright © 2012 Elsevier Ltd. All rights reserved.
Abbes, Aymen Ben; Gavault, Emmanuelle; Ripoll, Thierry
2014-01-01
We conducted a series of experiments to explore how the spatial configuration of objects influences the selection and the processing of these objects in a visual short-term memory task. We designed a new experiment in which participants had to memorize 4 targets presented among 4 distractors. Targets were cued during the presentation of distractor objects. Their locations varied according to 4 spatial configurations. From the first to the last configuration, the distance between targets’ locations was progressively increased. The results revealed a high capacity to select and memorize targets embedded among distractors even when targets were extremely distant from each other. This capacity is discussed in relation to the unitary conception of attention, models of split attention, and the competitive interaction model. Finally, we propose that the spatial dispersion of objects has different effects on attentional allocation and processing stages. Thus, when targets are extremely distant from each other, attentional allocation becomes more difficult while processing becomes easier. This finding implicates that these 2 aspects of attention need to be more clearly distinguished in future research. PMID:25339978
Representation of Non-Spatial and Spatial Information in the Lateral Entorhinal Cortex
Deshmukh, Sachin S.; Knierim, James J.
2011-01-01
Some theories of memory propose that the hippocampus integrates the individual items and events of experience within a contextual or spatial framework. The hippocampus receives cortical input from two major pathways: the medial entorhinal cortex (MEC) and the lateral entorhinal cortex (LEC). During exploration in an open field, the firing fields of MEC grid cells form a periodically repeating, triangular array. In contrast, LEC neurons show little spatial selectivity, and it has been proposed that the LEC may provide non-spatial input to the hippocampus. Here, we recorded MEC and LEC neurons while rats explored an open field that contained discrete objects. LEC cells fired selectively at locations relative to the objects, whereas MEC cells were weakly influenced by the objects. These results provide the first direct demonstration of a double dissociation between LEC and MEC inputs to the hippocampus under conditions of exploration typically used to study hippocampal place cells. PMID:22065409
The Spatial Distribution of Attention within and across Objects
Hollingworth, Andrew; Maxcey-Richard, Ashleigh M.; Vecera, Shaun P.
2011-01-01
Attention operates to select both spatial locations and perceptual objects. However, the specific mechanism by which attention is oriented to objects is not well understood. We examined the means by which object structure constrains the distribution of spatial attention (i.e., a “grouped array”). Using a modified version of the Egly et al. object cuing task, we systematically manipulated within-object distance and object boundaries. Four major findings are reported: 1) spatial attention forms a gradient across the attended object; 2) object boundaries limit the distribution of this gradient, with the spread of attention constrained by a boundary; 3) boundaries within an object operate similarly to across-object boundaries: we observed object-based effects across a discontinuity within a single object, without the demand to divide or switch attention between discrete object representations; and 4) the gradient of spatial attention across an object directly modulates perceptual sensitivity, implicating a relatively early locus for the grouped array representation. PMID:21728455
2012-01-01
Background There is at present crescent empirical evidence deriving from different lines of ERPs research that, unlike previously observed, the earliest sensory visual response, known as C1 component or P/N80, generated within the striate cortex, might be modulated by selective attention to visual stimulus features. Up to now, evidence of this modulation has been related to space location, and simple features such as spatial frequency, luminance, and texture. Additionally, neurophysiological conditions, such as emotion, vigilance, the reflexive or voluntary nature of input attentional selection, and workload have also been related to C1 modulations, although at least the workload status has received controversial indications. No information is instead available, at present, for objects attentional selection. Methods In this study object- and space-based attention mechanisms were conjointly investigated by presenting complex, familiar shapes of artefacts and animals, intermixed with distracters, in different tasks requiring the selection of a relevant target-category within a relevant spatial location, while ignoring the other shape categories within this location, and, overall, all the categories at an irrelevant location. EEG was recorded from 30 scalp electrode sites in 21 right-handed participants. Results and Conclusions ERP findings showed that visual processing was modulated by both shape- and location-relevance per se, beginning separately at the latency of the early phase of a precocious negativity (60-80 ms) at mesial scalp sites consistent with the C1 component, and a positivity at more lateral sites. The data also showed that the attentional modulation progressed conjointly at the latency of the subsequent P1 (100-120 ms) and N1 (120-180 ms), as well as later-latency components. These findings support the views that (1) V1 may be precociously modulated by direct top-down influences, and participates to object, besides simple features, attentional selection; (2) object spatial and non-spatial features selection might begin with an early, parallel detection of a target object in the visual field, followed by the progressive focusing of spatial attention onto the location of an actual target for its identification, somehow in line with neural mechanisms reported in the literature as "object-based space selection", or with those proposed for visual search. PMID:22300540
Object-location binding across a saccade: A retinotopic Spatial Congruency Bias
Shafer-Skelton, Anna; Kupitz, Colin N.; Golomb, Julie D.
2017-01-01
Despite frequent eye movements that rapidly shift the locations of objects on our retinas, our visual system creates a stable perception of the world. To do this, it must convert eye-centered (retinotopic) input to world-centered (spatiotopic) percepts. Moreover, for successful behavior we must also incorporate information about object features/identities during this updating – a fundamental challenge that remains to be understood. Here we adapted a recent behavioral paradigm, the “Spatial Congruency Bias”, to investigate object-location binding across an eye movement. In two initial baseline experiments, we showed that the Spatial Congruency Bias was present for both gabor and face stimuli in addition to the object stimuli used in the original paradigm. Then, across three main experiments, we found the bias was preserved across an eye movement, but only in retinotopic coordinates: Subjects were more likely to perceive two stimuli as having the same features/identity when they were presented in the same retinotopic location. Strikingly, there was no evidence of location binding in the more ecologically relevant spatiotopic (world-centered) coordinates; the reference frame did not update to spatiotopic even at longer post-saccade delays, nor did it transition to spatiotopic with more complex stimuli (gabors, shapes, and faces all showed a retinotopic Congruency Bias). Our results suggest that object-location binding may be tied to retinotopic coordinates, and that it may need to be re-established following each eye movement rather than being automatically updated to spatiotopic coordinates. PMID:28070793
Methods for magnetic resonance analysis using magic angle technique
Hu, Jian Zhi [Richland, WA; Wind, Robert A [Kennewick, WA; Minard, Kevin R [Kennewick, WA; Majors, Paul D [Kennewick, WA
2011-11-22
Methods of performing a magnetic resonance analysis of a biological object are disclosed that include placing the object in a main magnetic field (that has a static field direction) and in a radio frequency field; rotating the object at a frequency of less than about 100 Hz around an axis positioned at an angle of about 54.degree.44' relative to the main magnetic static field direction; pulsing the radio frequency to provide a sequence that includes a phase-corrected magic angle turning pulse segment; and collecting data generated by the pulsed radio frequency. In particular embodiments the method includes pulsing the radio frequency to provide at least two of a spatially selective read pulse, a spatially selective phase pulse, and a spatially selective storage pulse. Further disclosed methods provide pulse sequences that provide extended imaging capabilities, such as chemical shift imaging or multiple-voxel data acquisition.
Markant, Julie; Ackerman, Laura K.; Nussenbaum, Kate; Amso, Dima
2015-01-01
Socioeconomic status (SES) has a documented impact on brain and cognitive development. We demonstrate that engaging spatial selective attention mechanisms may counteract this negative influence of impoverished environments on early learning. We previously used a spatial cueing task to compare target object encoding in the context of basic orienting (“facilitation”) versus a spatial selective attention orienting mechanism that engages distractor suppression (“IOR”). This work showed that object encoding in the context of IOR boosted 9-month-old infants’ recognition memory relative to facilitation (Markant and Amso, 2013). Here we asked whether this attention-memory links further interacted with SES in infancy. Results indicated that SES was related to memory but not attention orienting efficacy. However, the correlation between SES and memory performance was moderated by the attention mechanism engaged during encoding. SES predicted memory performance when objects were encoded with basic orienting processes, with infants from low-SES environments showing poorer memory than those from high-SES environments. However, SES did not predict memory performance among infants who engaged selective attention during encoding. Spatial selective attention engagement mitigated the effects of SES on memory and may offer an effective mechanism for promoting learning among infants at risk for poor cognitive outcomes related to SES. PMID:26597046
Matsukura, Michi; Vecera, Shaun P
2011-02-01
Attention selects objects as well as locations. When attention selects an object's features, observers identify two features from a single object more accurately than two features from two different objects (object-based effect of attention; e.g., Duncan, Journal of Experimental Psychology: General, 113, 501-517, 1984). Several studies have demonstrated that object-based attention can operate at a late visual processing stage that is independent of objects' spatial information (Awh, Dhaliwal, Christensen, & Matsukura, Psychological Science, 12, 329-334, 2001; Matsukura & Vecera, Psychonomic Bulletin & Review, 16, 529-536, 2009; Vecera, Journal of Experimental Psychology: General, 126, 14-18, 1997; Vecera & Farah, Journal of Experimental Psychology: General, 123, 146-160, 1994). In the present study, we asked two questions regarding this late object-based selection mechanism. In Part I, we investigated how observers' foreknowledge of to-be-reported features allows attention to select objects, as opposed to individual features. Using a feature-report task, a significant object-based effect was observed when to-be-reported features were known in advance but not when this advance knowledge was absent. In Part II, we examined what drives attention to select objects rather than individual features in the absence of observers' foreknowledge of to-be-reported features. Results suggested that, when there was no opportunity for observers to direct their attention to objects that possess to-be-reported features at the time of stimulus presentation, these stimuli must retain strong perceptual cues to establish themselves as separate objects.
Mahoney, Peter J; Young, Julie K; Hersey, Kent R; Larsen, Randy T; McMillan, Brock R; Stoner, David C
2018-04-01
Predator control is often implemented with the intent of disrupting top-down regulation in sensitive prey populations. However, ambiguity surrounding the efficacy of predator management, as well as the strength of top-down effects of predators in general, is often exacerbated by the spatially implicit analytical approaches used in assessing data with explicit spatial structure. Here, we highlight the importance of considering spatial context in the case of a predator control study in south-central Utah. We assessed the spatial match between aerial removal risk in coyotes (Canis latrans) and mule deer (Odocoileus hemionus) resource selection during parturition using a spatially explicit, multi-level Bayesian model. With our model, we were able to evaluate spatial congruence between management action (i.e., coyote removal) and objective (i.e., parturient deer site selection) at two distinct scales: the level of the management unit and the individual coyote removal. In the case of the former, our results indicated substantial spatial heterogeneity in expected congruence between removal risk and parturient deer site selection across large areas, and is a reflection of logistical constraints acting on the management strategy and differences in space use between the two species. At the level of the individual removal, we demonstrated that the potential management benefits of a removed coyote were highly variable across all individuals removed and in many cases, spatially distinct from parturient deer resource selection. Our methods and results provide a means of evaluating where we might anticipate an impact of predator control, while emphasizing the need to weight individual removals based on spatial proximity to management objectives in any assessment of large-scale predator control. Although we highlight the importance of spatial context in assessments of predator control strategy, we believe our methods are readily generalizable in any management or large-scale experimental framework where spatial context is likely an important driver of outcomes. © 2018 by the Ecological Society of America.
The effects of visual search efficiency on object-based attention
Rosen, Maya; Cutrone, Elizabeth; Behrmann, Marlene
2017-01-01
The attentional prioritization hypothesis of object-based attention (Shomstein & Yantis in Perception & Psychophysics, 64, 41–51, 2002) suggests a two-stage selection process comprising an automatic spatial gradient and flexible strategic (prioritization) selection. The combined attentional priorities of these two stages of object-based selection determine the order in which participants will search the display for the presence of a target. The strategic process has often been likened to a prioritized visual search. By modifying the double-rectangle cueing paradigm (Egly, Driver, & Rafal in Journal of Experimental Psychology: General, 123, 161–177, 1994) and placing it in the context of a larger-scale visual search, we examined how the prioritization search is affected by search efficiency. By probing both targets located on the cued object and targets external to the cued object, we found that the attentional priority surrounding a selected object is strongly modulated by search mode. However, the ordering of the prioritization search is unaffected by search mode. The data also provide evidence that standard spatial visual search and object-based prioritization search may rely on distinct mechanisms. These results provide insight into the interactions between the mode of visual search and object-based selection, and help define the modulatory consequences of search efficiency for object-based attention. PMID:25832192
ERIC Educational Resources Information Center
Hommuk, Karita; Bachmann, Talis
2009-01-01
The problem of feature binding has been examined under conditions of distributed attention or with spatially dispersed stimuli. We studied binding by asking whether selective attention to a feature of a masked object enables perceptual access to the other features of that object using conditions in which spatial attention was directed at a single…
Object orientation affects spatial language comprehension.
Burigo, Michele; Sacchi, Simona
2013-01-01
Typical spatial descriptions, such as "The car is in front of the house," describe the position of a located object (LO; e.g., the car) in space relative to a reference object (RO) whose location is known (e.g., the house). The orientation of the RO affects spatial language comprehension via the reference frame selection process. However, the effects of the LO's orientation on spatial language have not received great attention. This study explores whether the pure geometric information of the LO (e.g., its orientation) affects spatial language comprehension using placing and production tasks. Our results suggest that the orientation of the LO influences spatial language comprehension even in the absence of functional relationships. Copyright © 2013 Cognitive Science Society, Inc.
Markant, Julie; Ackerman, Laura K; Nussenbaum, Kate; Amso, Dima
2016-04-01
Socioeconomic status (SES) has a documented impact on brain and cognitive development. We demonstrate that engaging spatial selective attention mechanisms may counteract this negative influence of impoverished environments on early learning. We previously used a spatial cueing task to compare target object encoding in the context of basic orienting ("facilitation") versus a spatial selective attention orienting mechanism that engages distractor suppression ("IOR"). This work showed that object encoding in the context of IOR boosted 9-month-old infants' recognition memory relative to facilitation (Markant and Amso, 2013). Here we asked whether this attention-memory link further interacted with SES in infancy. Results indicated that SES was related to memory but not attention orienting efficacy. However, the correlation between SES and memory performance was moderated by the attention mechanism engaged during encoding. SES predicted memory performance when objects were encoded with basic orienting processes, with infants from low-SES environments showing poorer memory than those from high-SES environments. However, SES did not predict memory performance among infants who engaged selective attention during encoding. Spatial selective attention engagement mitigated the effects of SES on memory and may offer an effective mechanism for promoting learning among infants at risk for poor cognitive outcomes related to SES. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
Objective Versus Subjective Military Pilot Selection Methods in the United States of America
2015-12-14
a computerized test designed to assess pilot skills by measuring spatial orientation and psychomotor skills and multitasking . The second is the...AFRL-SA-WP-SR-2015-0028 Objective Versus Subjective Military Pilot Selection Methods in the United States of America Joe...September 2014 4. TITLE AND SUBTITLE Objective Versus Subjective Military Pilot Selection Methods in the United States of America 5a. CONTRACT
Prototypes and particulars: geometric and experience-dependent spatial categories.
Spencer, John P; Hund, Alycia M
2002-03-01
People use geometric cues to form spatial categories. This study investigated whether people also use the spatial distribution of exemplars. Adults pointed to remembered locations on a tabletop. In Experiment 1, a target was placed in each geometric category, and the location of targets was varied. Adults' responses were biased away from a midline category boundary toward geometric prototypes located at the centers of left and right categories. Experiment 2 showed that prototype effects were not influenced by cross-category interactions. In Experiment 3, subsets of targets were positioned at different locations within each category. When prototype effects were removed, there was a bias toward the center of the exemplar distribution, suggesting that common categorization processes operate across spatial and object domains.
Inhibition of Return and Object-based Attentional Selection
List, Alexandra; Robertson, Lynn C.
2008-01-01
Visual attention research has revealed that attentional allocation can occur in space- and/or object-based coordinates. Using the direct and elegant design of R. Egly, J. Driver and R. Rafal (1994), we examine whether space- and object-based inhibition of return (IOR) emerge under similar time courses. The present experiments were capable of isolating both space- and object-based effects induced by peripheral and back-to-center cues. They generally support the contention that spatially non-predictive cues are effective in producing space-based IOR at a variety of SOAs, and under a variety of stimulus conditions. Whether facilitatory or inhibitory in direction, the object-based effects occurred over a very different time course than did the space-based effects. Reliable object-based IOR was only found under limited conditions and was tied to the time since the most recent cue (peripheral or central). The finding that object-based effects are generally determined by SOA from the most recent cue may help to resolve discrepancies in the IOR literature. These findings also have implications for the search facilitator role IOR is purported to play in the guidance of visual attention. PMID:18085946
Myths and realities about the recovery of L׳Aquila after the earthquake
Contreras, Diana; Blaschke, Thomas; Kienberger, Stefan; Zeil, Peter
2014-01-01
There is a set of myths which are linked to the recovery of L׳Aquila, such as: the L׳Aquila recovery has come to a halt, it is still in an early recovery phase, and there is economic stagnation. The objective of this paper is threefold: (a) to identify and develop a set of spatial indicators for the case of L׳Aquila, (b) to test the feasibility of a numerical assessment of these spatial indicators as a method to monitor the progress of a recovery process after an earthquake and (c) to answer the question whether the recovery process in L׳Aquila stagnates or not. We hypothesize that after an earthquake the spatial distribution of expert defined variables can constitute an index to assess the recovery process more objectively. In these articles, we aggregated several indicators of building conditions to characterize the physical dimension, and we developed building use indicators to serve as proxies for the socio-economic dimension while aiming for transferability of this approach. The methodology of this research entailed six steps: (1) fieldwork, (2) selection of a sampling area, (3) selection of the variables and indicators for the physical and socio-economic dimensions, (4) analyses of the recovery progress using spatial indicators by comparing the changes in the restricted core area as well as building use over time; (5) selection and integration of the results through expert weighting; and (6) determining hotspots of recovery in L׳Aquila. Eight categories of building conditions and twelve categories of building use were identified. Both indicators: building condition and building use are aggregated into a recovery index. The reconstruction process in the city center of L׳Aquila seems to stagnate, which is reflected by the five following variables: percentage of buildings with on-going reconstruction, partial reconstruction, reconstruction projected residential building use and transport facilities. These five factors were still at low levels within the core area in 2012. Nevertheless, we can conclude that the recovery process in L׳Aquila did not come to a halt but is still ongoing, albeit being slow. PMID:26779431
Christie, Lori-Ann; Saunders, Richard C.; Kowalska, Danuta, M.; MacKay, William A.; Head, Elizabeth; Cotman, Carl W.; Milgram, Norton W.
2014-01-01
To examine the effects of rhinal and dorsolateral prefrontal cortex lesions on object and spatial recognition memory in canines, we used a protocol in which both an object (delayed non-matching to sample, or DNMS) and a spatial (delayed non-matching to position or DNMP) recognition task were administered daily. The tasks used similar procedures such that only the type of stimulus information to be remembered differed. Rhinal cortex (RC) lesions produced a selective deficit on the DNMS task, both in retention of the task rules at short delays and in object recognition memory. By contrast, performance on the DNMP task remained intact at both short and long delay intervals in RC animals. Subjects who received dorsolateral prefrontal cortex (dlPFC) lesions were impaired on a spatial task at a short, 5-sec delay, suggesting disrupted retention of the general task rules, however, this impairment was transient; long-term spatial memory performance was unaffected in dlPFC subjects. The present results provide support for the involvement of the RC in object, but not visuospatial, processing and recognition memory, whereas the dlPFC appears to mediate retention of a non-matching rule. These findings support theories of functional specialization within the medial temporal lobe and frontal cortex and suggest that rhinal and dorsolateral prefrontal cortices in canines are functionally similar to analogous regions in other mammals. PMID:18792072
Sato, Naoyuki; Yamaguchi, Yoko
2009-06-01
The human cognitive map is known to be hierarchically organized consisting of a set of perceptually clustered landmarks. Patient studies have demonstrated that these cognitive maps are maintained by the hippocampus, while the neural dynamics are still poorly understood. The authors have shown that the neural dynamic "theta phase precession" observed in the rodent hippocampus may be capable of forming hierarchical cognitive maps in humans. In the model, a visual input sequence consisting of object and scene features in the central and peripheral visual fields, respectively, results in the formation of a hierarchical cognitive map for object-place associations. Surprisingly, it is possible for such a complex memory structure to be formed in a few seconds. In this paper, we evaluate the memory retrieval of object-place associations in the hierarchical network formed by theta phase precession. The results show that multiple object-place associations can be retrieved with the initial cue of a scene input. Importantly, according to the wide-to-narrow unidirectional connections among scene units, the spatial area for object-place retrieval can be controlled by the spatial area of the initial cue input. These results indicate that the hierarchical cognitive maps have computational advantages on a spatial-area selective retrieval of multiple object-place associations. Theta phase precession dynamics is suggested as a fundamental neural mechanism of the human cognitive map.
USDA-ARS?s Scientific Manuscript database
Due to the availability of numerous spectral, spatial, and contextual features, the determination of optimal features and class separabilities can be a time consuming process in object-based image analysis (OBIA). While several feature selection methods have been developed to assist OBIA, a robust c...
Spatial filtering velocimetry of objective speckles for measuring out-of-plane motion.
Jakobsen, M L; Yura, H T; Hanson, S G
2012-03-20
This paper analyzes the dynamics of objective laser speckles as the distance between the object and the observation plane continuously changes. With the purpose of applying optical spatial filtering velocimetry to the speckle dynamics, in order to measure out-of-plane motion in real time, a rotational symmetric spatial filter is designed. The spatial filter converts the speckle dynamics into a photocurrent with a quasi-sinusoidal response to the out-of-plane motion. The spatial filter is here emulated with a CCD camera, and is tested on speckles arising from a real application. The analysis discusses the selectivity of the spatial filter, the nonlinear response between speckle motion and observation distance, and the influence of the distance-dependent speckle size. Experiments with the emulated filters illustrate performance and potential applications of the technology. © 2012 Optical Society of America
Cortical systems mediating visual attention to both objects and spatial locations
Shomstein, Sarah; Behrmann, Marlene
2006-01-01
Natural visual scenes consist of many objects occupying a variety of spatial locations. Given that the plethora of information cannot be processed simultaneously, the multiplicity of inputs compete for representation. Using event-related functional MRI, we show that attention, the mechanism by which a subset of the input is selected, is mediated by the posterior parietal cortex (PPC). Of particular interest is that PPC activity is differentially sensitive to the object-based properties of the input, with enhanced activation for those locations bound by an attended object. Of great interest too is the ensuing modulation of activation in early cortical regions, reflected as differences in the temporal profile of the blood oxygenation level-dependent (BOLD) response for within-object versus between-object locations. These findings indicate that object-based selection results from an object-sensitive reorienting signal issued by the PPC. The dynamic circuit between the PPC and earlier sensory regions then enables observers to attend preferentially to objects of interest in complex scenes. PMID:16840559
Language supports young children’s use of spatial relations to remember locations
Miller, Hilary E.; Patterson, Rebecca; Simmering, Vanessa R.
2016-01-01
Two experiments investigated the role of language in children’s spatial recall performance. In particular, we assessed whether selecting an intrinsic reference frame could be improved through verbal encoding. Selecting an intrinsic reference frame requires remembering locations relative to nearby objects independent of one’s body (egocentric) or distal environmental (allocentric) cues, and does not reliably occur in children under 5 years of age (Nardini, Burgess, Breckenridge, & Atkinson, 2006). The current studies tested the relation between spatial language and 4-year-olds’ selection of an intrinsic reference frame in spatial recall. Experiment 1 showed that providing 4-year-olds with location-descriptive cues during (Exp. 1a) or before (Exp. 1b) the recall task improved performance both overall and specifically on trials relying most on an intrinsic reference frame. Additionally, children’s recall performance was predicted by their verbal descriptions of the task space (Exp. 1a control condition). Non-verbally highlighting relations among objects during the recall task (Exp. 2) supported children’s performance relative to the control condition, but significantly less than the location-descriptive cues. These results suggest that the ability to verbally represent relations is a potential mechanism that could account for developmental changes in the selection of an intrinsic reference frame during spatial recall. PMID:26896902
Language supports young children's use of spatial relations to remember locations.
Miller, Hilary E; Patterson, Rebecca; Simmering, Vanessa R
2016-05-01
Two experiments investigated the role of language in children's spatial recall performance. In particular, we assessed whether selecting an intrinsic reference frame could be improved through verbal encoding. Selecting an intrinsic reference frame requires remembering locations relative to nearby objects independent of one's body (egocentric) or distal environmental (allocentric) cues, and does not reliably occur in children under 5 years of age (Nardini, Burgess, Breckenridge, & Atkinson, 2006). The current studies tested the relation between spatial language and 4-year-olds' selection of an intrinsic reference frame in spatial recall. Experiment 1 showed that providing 4-year-olds with location-descriptive cues during (Exp. 1a) or before (Exp. 1b) the recall task improved performance both overall and specifically on trials relying most on an intrinsic reference frame. Additionally, children's recall performance was predicted by their verbal descriptions of the task space (Exp. 1a control condition). Non-verbally highlighting relations among objects during the recall task (Exp. 2) supported children's performance relative to the control condition, but significantly less than the location-descriptive cues. These results suggest that the ability to verbally represent relations is a potential mechanism that could account for developmental changes in the selection of an intrinsic reference frame during spatial recall. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Du, Jia-Wei; Wang, Xuan-Yin; Zhu, Shi-Qiang
2017-10-01
Based on the process by which the spatial depth clue is obtained by a single eye, a monocular stereo vision to measure the depth information of spatial objects was proposed in this paper and a humanoid monocular stereo measuring system with two degrees of freedom was demonstrated. The proposed system can effectively obtain the three-dimensional (3-D) structure of spatial objects of different distances without changing the position of the system and has the advantages of being exquisite, smart, and flexible. The bionic optical imaging system we proposed in a previous paper, named ZJU SY-I, was employed and its vision characteristic was just like the resolution decay of the eye's vision from center to periphery. We simplified the eye's rotation in the eye socket and the coordinated rotation of other organs of the body into two rotations in the orthogonal direction and employed a rotating platform with two rotation degrees of freedom to drive ZJU SY-I. The structure of the proposed system was described in detail. The depth of a single feature point on the spatial object was deduced, as well as its spatial coordination. With the focal length adjustment of ZJU SY-I and the rotation control of the rotation platform, the spatial coordinates of all feature points on the spatial object could be obtained and then the 3-D structure of the spatial object could be reconstructed. The 3-D structure measurement experiments of two spatial objects with different distances and sizes were conducted. Some main factors affecting the measurement accuracy of the proposed system were analyzed and discussed.
Lin, Zhicheng; He, Sheng
2012-10-25
Object identities ("what") and their spatial locations ("where") are processed in distinct pathways in the visual system, raising the question of how the what and where information is integrated. Because of object motions and eye movements, the retina-based representations are unstable, necessitating nonretinotopic representation and integration. A potential mechanism is to code and update objects according to their reference frames (i.e., frame-centered representation and integration). To isolate frame-centered processes, in a frame-to-frame apparent motion configuration, we (a) presented two preceding or trailing objects on the same frame, equidistant from the target on the other frame, to control for object-based (frame-based) effect and space-based effect, and (b) manipulated the target's relative location within its frame to probe frame-centered effect. We show that iconic memory, visual priming, and backward masking depend on objects' relative frame locations, orthogonal of the retinotopic coordinate. These findings not only reveal that iconic memory, visual priming, and backward masking can be nonretinotopic but also demonstrate that these processes are automatically constrained by contextual frames through a frame-centered mechanism. Thus, object representation is robustly and automatically coupled to its reference frame and continuously being updated through a frame-centered, location-specific mechanism. These findings lead to an object cabinet framework, in which objects ("files") within the reference frame ("cabinet") are orderly coded relative to the frame.
USDA-ARS?s Scientific Manuscript database
The availability of numerous spectral, spatial, and contextual features with object-based image analysis (OBIA) renders the selection of optimal features a time consuming and subjective process. While several feature election methods have been used in conjunction with OBIA, a robust comparison of th...
Coherent inflation for large quantum superpositions of levitated microspheres
NASA Astrophysics Data System (ADS)
Romero-Isart, Oriol
2017-12-01
We show that coherent inflation (CI), namely quantum dynamics generated by inverted conservative potentials acting on the center of mass of a massive object, is an enabling tool to prepare large spatial quantum superpositions in a double-slit experiment. Combined with cryogenic, extreme high vacuum, and low-vibration environments, we argue that it is experimentally feasible to exploit CI to prepare the center of mass of a micrometer-sized object in a spatial quantum superposition comparable to its size. In such a hitherto unexplored parameter regime gravitationally-induced decoherence could be unambiguously falsified. We present a protocol to implement CI in a double-slit experiment by letting a levitated microsphere traverse a static potential landscape. Such a protocol could be experimentally implemented with an all-magnetic scheme using superconducting microspheres.
The Interaction of Spatial and Object Pathways: Evidence from Balint's Syndrome.
Robertson, L; Treisman, A; Friedman-Hill, S; Grabowecky, M
1997-05-01
An earlier report described a patient (RM) with bilateral parietal damage who showed severe binding problems between shape and color and shape and size (Friedman-Hill, Robertson, & Treisman, 1995). When shown two different-colored letters, RM reported a large number of illusory conjunctions (ICs) combining the shape of one letter with the color of the other, even when he was looking directly at one of them and had as long as 10 sec to respond. The lesions also produced severe deficits in locating and reaching for objects, and difficulty in seeing more than one object at a time, resulting in a neuropsychological diagnosis of Balint's syndrome or dorsal simultanagnosia. The pattern of deficits supported predictions of Treisman's Feature Integration Theory (FIT) that the loss of spatial information would lead to binding errors. They further suggested that the spatial information used in binding depends on intact parietal function. In the present paper we extend these findings and examine other deficits in RM that would be predicted by FIT. We show that: (1) Object individuation is impaired, making it impossible for him correctly to count more than one or two objects, even when he is aware that more are present. (2) Visual search for a target defined by a conjunction of features (requiring binding) is impaired, while the detection of a target defined by a unique feature is not. Search for the absence of a feature (0 among Qs) is also severely impaired, while search for the presence (Q among 0s) is not. Feature absence can only be detected when all the present features are bound to the nontarget items. (3) RM's deficits cannot be attributed to a general binding problem: binding errors were far more likely with simultaneous presentation where spatial information was required than with sequential presentation where time could be used as the medium for binding. (4) Selection for attention was severely impaired, whether it was based on the position of a marker or on some other feature (color). (5) Spatial information seems to exist that RM cannot access, suggesting that feature binding relies on a relatively late stage where implicit spatial information is made explicitly accessible. The data converge to support our conclusions that explicit spatial knowledge is necessary for the perception of accurately bound features, for accurate attentional selection, and for accurate and rapid search for a conjunction of features in a multiitem display. It is obviously necessary for directing attention to spatial locations, but the consequences of impairments in this ability seem also to affect object selection, object individuation, and feature integration. Thus, the functional effects of parietal damage are not limited to the spatial and attentional problems that have long been described in patients with Balint's syndrome. Damage to parietal areas also affects object perception through damage to spatial representations that are fundamental for spatial awareness.
Spatial Relational Memory in 9-Month-Old Macaque Monkeys
ERIC Educational Resources Information Center
Lavenex, Pierre; Lavenex, Pamela Banta
2006-01-01
This experiment assesses spatial and nonspatial relational memory in freely moving 9-mo-old and adult (11-13-yr-old) macaque monkeys ("Macaca mulatta"). We tested the use of proximal landmarks, two different objects placed at the center of an open-field arena, as conditional cues allowing monkeys to predict the location of food rewards hidden in…
Visual-Spatial Attention Aids the Maintenance of Object Representations in Visual Working Memory
Williams, Melonie; Pouget, Pierre; Boucher, Leanne; Woodman, Geoffrey F.
2013-01-01
Theories have proposed that the maintenance of object representations in visual working memory is aided by a spatial rehearsal mechanism. In this study, we used two different approaches to test the hypothesis that overt and covert visual-spatial attention mechanisms contribute to the maintenance of object representations in visual working memory. First, we tracked observers’ eye movements while remembering a variable number of objects during change-detection tasks. We observed that during the blank retention interval, participants spontaneously shifted gaze to the locations that the objects had occupied in the memory array. Next, we hypothesized that if attention mechanisms contribute to the maintenance of object representations, then drawing attention away from the object locations during the retention interval would impair object memory during these change-detection tasks. Supporting this prediction, we found that attending to the fixation point in anticipation of a brief probe stimulus during the retention interval reduced change-detection accuracy even on the trials in which no probe occurred. These findings support models of working memory in which visual-spatial selection mechanisms contribute to the maintenance of object representations. PMID:23371773
Asymmetric coding of categorical spatial relations in both language and vision.
Roth, J C; Franconeri, S L
2012-01-01
Describing certain types of spatial relationships between a pair of objects requires that the objects are assigned different "roles" in the relation, e.g., "A is above B" is different than "B is above A." This asymmetric representation places one object in the "target" or "figure" role and the other in the "reference" or "ground" role. Here we provide evidence that this asymmetry may be present not just in spatial language, but also in perceptual representations. More specifically, we describe a model of visual spatial relationship judgment where the designation of the target object within such a spatial relationship is guided by the location of the "spotlight" of attention. To demonstrate the existence of this perceptual asymmetry, we cued attention to one object within a pair by briefly previewing it, and showed that participants were faster to verify the depicted relation when that object was the linguistic target. Experiment 1 demonstrated this effect for left-right relations, and Experiment 2 for above-below relations. These results join several other types of demonstrations in suggesting that perceptual representations of some spatial relations may be asymmetrically coded, and further suggest that the location of selective attention may serve as the mechanism that guides this asymmetry.
Galeazzi, Juan M.; Navajas, Joaquín; Mender, Bedeho M. W.; Quian Quiroga, Rodrigo; Minini, Loredana; Stringer, Simon M.
2016-01-01
ABSTRACT Neurons have been found in the primate brain that respond to objects in specific locations in hand-centered coordinates. A key theoretical challenge is to explain how such hand-centered neuronal responses may develop through visual experience. In this paper we show how hand-centered visual receptive fields can develop using an artificial neural network model, VisNet, of the primate visual system when driven by gaze changes recorded from human test subjects as they completed a jigsaw. A camera mounted on the head captured images of the hand and jigsaw, while eye movements were recorded using an eye-tracking device. This combination of data allowed us to reconstruct the retinal images seen as humans undertook the jigsaw task. These retinal images were then fed into the neural network model during self-organization of its synaptic connectivity using a biologically plausible trace learning rule. A trace learning mechanism encourages neurons in the model to learn to respond to input images that tend to occur in close temporal proximity. In the data recorded from human subjects, we found that the participant’s gaze often shifted through a sequence of locations around a fixed spatial configuration of the hand and one of the jigsaw pieces. In this case, trace learning should bind these retinal images together onto the same subset of output neurons. The simulation results consequently confirmed that some cells learned to respond selectively to the hand and a jigsaw piece in a fixed spatial configuration across different retinal views. PMID:27253452
Galeazzi, Juan M; Navajas, Joaquín; Mender, Bedeho M W; Quian Quiroga, Rodrigo; Minini, Loredana; Stringer, Simon M
2016-01-01
Neurons have been found in the primate brain that respond to objects in specific locations in hand-centered coordinates. A key theoretical challenge is to explain how such hand-centered neuronal responses may develop through visual experience. In this paper we show how hand-centered visual receptive fields can develop using an artificial neural network model, VisNet, of the primate visual system when driven by gaze changes recorded from human test subjects as they completed a jigsaw. A camera mounted on the head captured images of the hand and jigsaw, while eye movements were recorded using an eye-tracking device. This combination of data allowed us to reconstruct the retinal images seen as humans undertook the jigsaw task. These retinal images were then fed into the neural network model during self-organization of its synaptic connectivity using a biologically plausible trace learning rule. A trace learning mechanism encourages neurons in the model to learn to respond to input images that tend to occur in close temporal proximity. In the data recorded from human subjects, we found that the participant's gaze often shifted through a sequence of locations around a fixed spatial configuration of the hand and one of the jigsaw pieces. In this case, trace learning should bind these retinal images together onto the same subset of output neurons. The simulation results consequently confirmed that some cells learned to respond selectively to the hand and a jigsaw piece in a fixed spatial configuration across different retinal views.
The guidance of visual search by shape features and shape configurations.
McCants, Cody W; Berggren, Nick; Eimer, Martin
2018-03-01
Representations of target features (attentional templates) guide attentional object selection during visual search. In many search tasks, targets objects are defined not by a single feature but by the spatial configuration of their component shapes. We used electrophysiological markers of attentional selection processes to determine whether the guidance of shape configuration search is entirely part-based or sensitive to the spatial relationship between shape features. Participants searched for targets defined by the spatial arrangement of two shape components (e.g., hourglass above circle). N2pc components were triggered not only by targets but also by partially matching distractors with one target shape (e.g., hourglass above hexagon) and by distractors that contained both target shapes in the reverse arrangement (e.g., circle above hourglass), in line with part-based attentional control. Target N2pc components were delayed when a reverse distractor was present on the opposite side of the same display, suggesting that early shape-specific attentional guidance processes could not distinguish between targets and reverse distractors. The control of attention then became sensitive to spatial configuration, which resulted in a stronger attentional bias for target objects relative to reverse and partially matching distractors. Results demonstrate that search for target objects defined by the spatial arrangement of their component shapes is initially controlled in a feature-based fashion but can later be guided by templates for spatial configurations. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
Large-Scale, High-Resolution Neurophysiological Maps Underlying fMRI of Macaque Temporal Lobe
Papanastassiou, Alex M.; DiCarlo, James J.
2013-01-01
Maps obtained by functional magnetic resonance imaging (fMRI) are thought to reflect the underlying spatial layout of neural activity. However, previous studies have not been able to directly compare fMRI maps to high-resolution neurophysiological maps, particularly in higher level visual areas. Here, we used a novel stereo microfocal x-ray system to localize thousands of neural recordings across monkey inferior temporal cortex (IT), construct large-scale maps of neuronal object selectivity at subvoxel resolution, and compare those neurophysiology maps with fMRI maps from the same subjects. While neurophysiology maps contained reliable structure at the sub-millimeter scale, fMRI maps of object selectivity contained information at larger scales (>2.5 mm) and were only partly correlated with raw neurophysiology maps collected in the same subjects. However, spatial smoothing of neurophysiology maps more than doubled that correlation, while a variety of alternative transforms led to no significant improvement. Furthermore, raw spiking signals, once spatially smoothed, were as predictive of fMRI maps as local field potential signals. Thus, fMRI of the inferior temporal lobe reflects a spatially low-passed version of neurophysiology signals. These findings strongly validate the widespread use of fMRI for detecting large (>2.5 mm) neuronal domains of object selectivity but show that a complete understanding of even the most pure domains (e.g., faces vs nonface objects) requires investigation at fine scales that can currently only be obtained with invasive neurophysiological methods. PMID:24048850
Eye Gaze versus Arrows as Spatial Cues: Two Qualitatively Different Modes of Attentional Selection
ERIC Educational Resources Information Center
Marotta, Andrea; Lupianez, Juan; Martella, Diana; Casagrande, Maria
2012-01-01
This study aimed to evaluate the type of attentional selection (location- and/or object-based) triggered by two different types of central noninformative cues: eye gaze and arrows. Two rectangular objects were presented in the visual field, and subjects' attention was directed to the end of a rectangle via the observation of noninformative…
Lin, Zhicheng; He, Sheng
2012-01-01
Object identities (“what”) and their spatial locations (“where”) are processed in distinct pathways in the visual system, raising the question of how the what and where information is integrated. Because of object motions and eye movements, the retina-based representations are unstable, necessitating nonretinotopic representation and integration. A potential mechanism is to code and update objects according to their reference frames (i.e., frame-centered representation and integration). To isolate frame-centered processes, in a frame-to-frame apparent motion configuration, we (a) presented two preceding or trailing objects on the same frame, equidistant from the target on the other frame, to control for object-based (frame-based) effect and space-based effect, and (b) manipulated the target's relative location within its frame to probe frame-centered effect. We show that iconic memory, visual priming, and backward masking depend on objects' relative frame locations, orthogonal of the retinotopic coordinate. These findings not only reveal that iconic memory, visual priming, and backward masking can be nonretinotopic but also demonstrate that these processes are automatically constrained by contextual frames through a frame-centered mechanism. Thus, object representation is robustly and automatically coupled to its reference frame and continuously being updated through a frame-centered, location-specific mechanism. These findings lead to an object cabinet framework, in which objects (“files”) within the reference frame (“cabinet”) are orderly coded relative to the frame. PMID:23104817
Lin, Zhicheng
2013-11-01
Visual attention can be deployed to stimuli based on our willful, top-down goal (endogenous attention) or on their intrinsic saliency against the background (exogenous attention). Flexibility is thought to be a hallmark of endogenous attention, whereas decades of research show that exogenous attention is attracted to the retinotopic locations of the salient stimuli. However, to the extent that salient stimuli in the natural environment usually form specific spatial relations with the surrounding context and are dynamic, exogenous attention, to be adaptive, should embrace these structural regularities. Here we test a non-retinotopic, object-centered mechanism in exogenous attention, in which exogenous attention is dynamically attracted to a relative, object-centered location. Using a moving frame configuration, we presented two frames in succession, forming either apparent translational motion or in mirror reflection, with a completely uninformative, transient cue presented at one of the item locations in the first frame. Despite that the cue is presented in a spatially separate frame, in both translation and mirror reflection, behavioralperformance in visual search is enhanced when the target in the second frame appears at the same relative location as the cue location than at other locations. These results provide unambiguous evidence for non-retinotopic exogenous attention and further reveal an object-centered mechanism supporting flexible exogenous attention. Moreover, attentional generalization across mirror reflection may constitute an attentional correlate of perceptual generalization across lateral mirror images, supporting an adaptive, functional account of mirror images confusion. Copyright © 2013 Elsevier B.V. All rights reserved.
Lin, Zhicheng
2013-01-01
Visual attention can be deployed to stimuli based on our willful, top-down goal (endogenous attention) or on their intrinsic saliency against the background (exogenous attention). Flexibility is thought to be a hallmark of endogenous attention, whereas decades of research show that exogenous attention is attracted to the retinotopic locations of the salient stimuli. However, to the extent that salient stimuli in the natural environment usually form specific spatial relations with the surrounding context and are dynamic, exogenous attention, to be adaptive, should embrace these structural regularities. Here we test a non-retinotopic, object-centered mechanism in exogenous attention, in which exogenous attention is dynamically attracted to a relative, object-centered location. Using a moving frame configuration, we presented two frames in succession, forming either apparent translational motion or in mirror reflection, with a completely uninformative, transient cue presented at one of the item locations in the first frame. Despite that the cue is presented in a spatially separate frame, in both translation and mirror reflection, human performance in visual search is enhanced when the target in the second frame appears at the same relative location as the cue location than at other locations. These results provide unambiguous evidence for non-retinotopic exogenous attention and further reveal an object-centered mechanism supporting flexible exogenous attention. Moreover, attentional generalization across mirror reflection may constitute an attentional correlate of perceptual generalization across lateral mirror images, supporting an adaptive, functional account of mirror images confusion. PMID:23942348
Space-based visual attention: a marker of immature selective attention in toddlers?
Rivière, James; Brisson, Julie
2014-11-01
Various studies suggested that attentional difficulties cause toddlers' failure in some spatial search tasks. However, attention is not a unitary construct and this study investigated two attentional mechanisms: location selection (space-based attention) and object selection (object-based attention). We investigated how toddlers' attention is distributed in the visual field during a manual search task for objects moving out of sight, namely the moving boxes task. Results show that 2.5-year-olds who failed this task allocated more attention to the location of the relevant object than to the object itself. These findings suggest that in some manual search tasks the primacy of space-based attention over object-based attention could be a marker of immature selective attention in toddlers. © 2014 Wiley Periodicals, Inc.
Clark, Kelsey L; Noudoost, Behrad; Moore, Tirin
2014-06-01
We previously reported the existence of a persistent spatial signal in the FEF during object-based STM. This persistent activity reflected the location at which the sample appeared, irrespective of the location of upcoming targets. We hypothesized that such a spatial signal could be used to maintain or enhance object-selective memory activity elsewhere in cortex, analogous to the role of a spatial signal during attention. Here, we inactivated a portion of the FEF with GABAa agonist muscimol to test whether the observed activity contributes to object memory performance. We found that, although RTs were slowed for saccades into the inactivated portion of retinotopic space, performance for samples appearing in that region was unimpaired. This contrasts with the devastating effects of the same FEF inactivation on purely spatial working memory, as assessed with the memory-guided saccade task. Thus, in a task in which a significant fraction of FEF neurons displayed persistent, sample location-based activity, disrupting this activity had no impact on task performance.
Attention-spreading based on hierarchical spatial representations for connected objects.
Kasai, Tetsuko
2010-01-01
Attention selects objects or groups as the most fundamental unit, and this may be achieved through a process in which attention automatically spreads throughout their entire region. Previously, we found that a lateralized potential relative to an attended hemifield at occipito-temporal electrode sites reflects attention-spreading in response to connected bilateral stimuli [Kasai, T., & Kondo, M. Electrophysiological correlates of attention-spreading in visual grouping. NeuroReport, 18, 93-98, 2007]. The present study examined the nature of object representations by manipulating the extent of grouping through connectedness, while controlling the symmetrical structure of bilateral stimuli. The electrophysiological results of two experiments consistently indicated that attention was guided twice in association with perceptual grouping in the early phase (N1, 150-200 msec poststimulus) and with the unity of an object in the later phase (N2pc, 310/330-390 msec). This suggests that there are two processes in object-based spatial selection, and these are discussed with regard to their cognitive mechanisms and object representations.
Biophysics of object segmentation in a collision-detecting neuron
Dewell, Richard Burkett
2018-01-01
Collision avoidance is critical for survival, including in humans, and many species possess visual neurons exquisitely sensitive to objects approaching on a collision course. Here, we demonstrate that a collision-detecting neuron can detect the spatial coherence of a simulated impending object, thereby carrying out a computation akin to object segmentation critical for proper escape behavior. At the cellular level, object segmentation relies on a precise selection of the spatiotemporal pattern of synaptic inputs by dendritic membrane potential-activated channels. One channel type linked to dendritic computations in many neural systems, the hyperpolarization-activated cation channel, HCN, plays a central role in this computation. Pharmacological block of HCN channels abolishes the neuron's spatial selectivity and impairs the generation of visually guided escape behaviors, making it directly relevant to survival. Additionally, our results suggest that the interaction of HCN and inactivating K+ channels within active dendrites produces neuronal and behavioral object specificity by discriminating between complex spatiotemporal synaptic activation patterns. PMID:29667927
Center of mass perception and inertial frames of reference.
Bingham, G P; Muchisky, M M
1993-11-01
Center of mass perception was investigated by varying the shape, size, and orientation of planar objects. Shape was manipulated to investigate symmetries as information. The number of reflective symmetry axes, the amount of rotational symmetry, and the presence of radial symmetry were varied. Orientation affected systematic errors. Judgments tended to undershoot the center of mass. Random errors increased with size and decreased with symmetry. Size had no effect on random errors for maximally symmetric objects, although orientation did. The spatial distributions of judgments were elliptical. Distribution axes were found to align with the principle moments of inertia. Major axes tended to align with gravity in maximally symmetric objects. A functional and physical account was given in terms of the repercussions of error. Overall, judgments were very accurate.
Deconstructing Visual Scenes in Cortex: Gradients of Object and Spatial Layout Information
Kravitz, Dwight J.; Baker, Chris I.
2013-01-01
Real-world visual scenes are complex cluttered, and heterogeneous stimuli engaging scene- and object-selective cortical regions including parahippocampal place area (PPA), retrosplenial complex (RSC), and lateral occipital complex (LOC). To understand the unique contribution of each region to distributed scene representations, we generated predictions based on a neuroanatomical framework adapted from monkey and tested them using minimal scenes in which we independently manipulated both spatial layout (open, closed, and gradient) and object content (furniture, e.g., bed, dresser). Commensurate with its strong connectivity with posterior parietal cortex, RSC evidenced strong spatial layout information but no object information, and its response was not even modulated by object presence. In contrast, LOC, which lies within the ventral visual pathway, contained strong object information but no background information. Finally, PPA, which is connected with both the dorsal and the ventral visual pathway, showed information about both objects and spatial backgrounds and was sensitive to the presence or absence of either. These results suggest that 1) LOC, PPA, and RSC have distinct representations, emphasizing different aspects of scenes, 2) the specific representations in each region are predictable from their patterns of connectivity, and 3) PPA combines both spatial layout and object information as predicted by connectivity. PMID:22473894
Object-based attentional selection modulates anticipatory alpha oscillations
Knakker, Balázs; Weiss, Béla; Vidnyánszky, Zoltán
2015-01-01
Visual cortical alpha oscillations are involved in attentional gating of incoming visual information. It has been shown that spatial and feature-based attentional selection result in increased alpha oscillations over the cortical regions representing sensory input originating from the unattended visual field and task-irrelevant visual features, respectively. However, whether attentional gating in the case of object based selection is also associated with alpha oscillations has not been investigated before. Here we measured anticipatory electroencephalography (EEG) alpha oscillations while participants were cued to attend to foveal face or word stimuli, the processing of which is known to have right and left hemispheric lateralization, respectively. The results revealed that in the case of simultaneously displayed, overlapping face and word stimuli, attending to the words led to increased power of parieto-occipital alpha oscillations over the right hemisphere as compared to when faces were attended. This object category-specific modulation of the hemispheric lateralization of anticipatory alpha oscillations was maintained during sustained attentional selection of sequentially presented face and word stimuli. These results imply that in the case of object-based attentional selection—similarly to spatial and feature-based attention—gating of visual information processing might involve visual cortical alpha oscillations. PMID:25628554
Implicit Learning of Viewpoint-Independent Spatial Layouts
Tsuchiai, Taiga; Matsumiya, Kazumichi; Kuriki, Ichiro; Shioiri, Satoshi
2012-01-01
We usually perceive things in our surroundings as unchanged despite viewpoint changes caused by self-motion. The visual system therefore must have a function to process objects independently of viewpoint. In this study, we examined whether viewpoint-independent spatial layout can be obtained implicitly. For this purpose, we used a contextual cueing effect, a learning effect of spatial layout in visual search displays known to be an implicit effect. We investigated the transfer of the contextual cueing effect to images from a different viewpoint by using visual search displays of 3D objects. For images from a different viewpoint, the contextual cueing effect was maintained with self-motion but disappeared when the display changed without self-motion. This indicates that there is an implicit learning effect in environment-centered coordinates and suggests that the spatial representation of object layouts can be obtained and updated implicitly. We also showed that binocular disparity plays an important role in the layout representations. PMID:22740837
Automatic image acquisition processor and method
Stone, William J.
1986-01-01
A computerized method and point location system apparatus is disclosed for ascertaining the center of a primitive or fundamental object whose shape and approximate location are known. The technique involves obtaining an image of the object, selecting a trial center, and generating a locus of points having a predetermined relationship with the center. Such a locus of points could include a circle. The number of points overlying the object in each quadrant is obtained and the counts of these points per quadrant are compared. From this comparison, error signals are provided to adjust the relative location of the trial center. This is repeated until the trial center overlies the geometric center within the predefined accuracy limits.
Automatic image acquisition processor and method
Stone, W.J.
1984-01-16
A computerized method and point location system apparatus is disclosed for ascertaining the center of a primitive or fundamental object whose shape and approximate location are known. The technique involves obtaining an image of the object, selecting a trial center, and generating a locus of points having a predetermined relationship with the center. Such a locus of points could include a circle. The number of points overlying the object in each quadrant is obtained and the counts of these points per quadrant are compared. From this comparison, error signals are provided to adjust the relative location of the trial center. This is repeated until the trial center overlies the geometric center within the predefined accuracy limits.
The Biology of Linguistic Expression Impacts Neural Correlates for Spatial Language
Emmorey, Karen; McCullough, Stephen; Mehta, Sonya; Ponto, Laura L. B.; Grabowski, Thomas J.
2013-01-01
Biological differences between signed and spoken languages may be most evident in the expression of spatial information. PET was used to investigate the neural substrates supporting the production of spatial language in American Sign Language as expressed by classifier constructions, in which handshape indicates object type and the location/motion of the hand iconically depicts the location/motion of a referent object. Deaf native signers performed a picture description task in which they overtly named objects or produced classifier constructions that varied in location, motion, or object type. In contrast to the expression of location and motion, the production of both lexical signs and object type classifier morphemes engaged left inferior frontal cortex and left inferior temporal cortex, supporting the hypothesis that unlike the location and motion components of a classifier construction, classifier handshapes are categorical morphemes that are retrieved via left hemisphere language regions. In addition, lexical signs engaged the anterior temporal lobes to a greater extent than classifier constructions, which we suggest reflects increased semantic processing required to name individual objects compared with simply indicating the type of object. Both location and motion classifier constructions engaged bilateral superior parietal cortex, with some evidence that the expression of static locations differentially engaged the left intraparietal sulcus. We argue that bilateral parietal activation reflects the biological underpinnings of sign language. To express spatial information, signers must transform visual–spatial representations into a body-centered reference frame and reach toward target locations within signing space. PMID:23249348
Cross-Sensory Transfer of Reference Frames in Spatial Memory
ERIC Educational Resources Information Center
Kelly, Jonathan W.; Avraamides, Marios N.
2011-01-01
Two experiments investigated whether visual cues influence spatial reference frame selection for locations learned through touch. Participants experienced visual cues emphasizing specific environmental axes and later learned objects through touch. Visual cues were manipulated and haptic learning conditions were held constant. Imagined perspective…
A novel framework for objective detection and tracking of TC center from noisy satellite imagery
NASA Astrophysics Data System (ADS)
Johnson, Bibin; Thomas, Sachin; Rani, J. Sheeba
2018-07-01
This paper proposes a novel framework for automatically determining and tracking the center of a tropical cyclone (TC) during its entire life-cycle from the Thermal infrared (TIR) channel data of the geostationary satellite. The proposed method handles meteorological images with noise, missing or partial information due to the seasonal variability and lack of significant spatial or vortex features. To retrieve the cyclone center from these circumstances, a synergistic approach based on objective measures and Numerical Weather Prediction (NWP) model is being proposed. This method employs a spatial gradient scheme to process missing and noisy frames or a spatio-temporal gradient scheme for image sequences that are continuous and contain less noise. The initial estimate of the TC center from the missing imagery is corrected by exploiting a NWP model based post-processing scheme. The validity of the framework is tested on Infrared images of different cyclones obtained from various Geostationary satellites such as the Meteosat-7, INSAT- 3 D , Kalpana-1 etc. The computed track is compared with the actual track data obtained from Joint Typhoon Warning Center (JTWC), and it shows a reduction of mean track error by 11 % as compared to the other state of the art methods in the presence of missing and noisy frames. The proposed method is also successfully tested for simultaneous retrieval of the TC center from images containing multiple non-overlapping cyclones.
Gravity Influences the Visual Representation of Object Tilt in Parietal Cortex
Angelaki, Dora E.
2014-01-01
Sensory systems encode the environment in egocentric (e.g., eye, head, or body) reference frames, creating inherently unstable representations that shift and rotate as we move. However, it is widely speculated that the brain transforms these signals into an allocentric, gravity-centered representation of the world that is stable and independent of the observer's spatial pose. Where and how this representation may be achieved is currently unknown. Here we demonstrate that a subpopulation of neurons in the macaque caudal intraparietal area (CIP) visually encodes object tilt in nonegocentric coordinates defined relative to the gravitational vector. Neuronal responses to the tilt of a visually presented planar surface were measured with the monkey in different spatial orientations (upright and rolled left/right ear down) and then compared. This revealed a continuum of representations in which planar tilt was encoded in a gravity-centered reference frame in approximately one-tenth of the comparisons, intermediate reference frames ranging between gravity-centered and egocentric in approximately two-tenths of the comparisons, and in an egocentric reference frame in less than half of the comparisons. Altogether, almost half of the comparisons revealed a shift in the preferred tilt and/or a gain change consistent with encoding object orientation in nonegocentric coordinates. Through neural network modeling, we further show that a purely gravity-centered representation of object tilt can be achieved directly from the population activity of CIP-like units. These results suggest that area CIP may play a key role in creating a stable, allocentric representation of the environment defined relative to an “earth-vertical” direction. PMID:25339732
Rhythmic Sampling within and between Objects despite Sustained Attention at a Cued Location
Fiebelkorn, Ian C.; Saalmann, Yuri B.; Kastner, Sabine
2013-01-01
SUMMARY The brain directs its limited processing resources through various selection mechanisms, broadly referred to as attention. The present study investigated the temporal dynamics of two such selection mechanisms: space- and object-based selection. Previous evidence has demonstrated that preferential processing resulting from a spatial cue (i.e., space-based selection) spreads to uncued locations, if those locations are part of the same object (i.e., resulting in object-based selection). But little is known about the relationship between these fundamental selection mechanisms. Here, we used human behavioral data to determine how space- and object-based selection simultaneously evolve under conditions that promote sustained attention at a cued location, varying the cue-to-target interval from 300—1100 ms. We tracked visual-target detection at a cued location (i.e., space-based selection), at an uncued location that was part of the same object (i.e., object-based selection), and at an uncued location that was part of a different object (i.e., in the absence of space- and object-based selection). The data demonstrate that even under static conditions, there is a moment-to-moment reweighting of attentional priorities based on object properties. This reweighting is revealed through rhythmic patterns of visual-target detection both within (at 8 Hz) and between (at 4 Hz) objects. PMID:24316204
Visual memory in unilateral spatial neglect: immediate recall versus delayed recognition.
Moreh, Elior; Malkinson, Tal Seidel; Zohary, Ehud; Soroker, Nachum
2014-09-01
Patients with unilateral spatial neglect (USN) often show impaired performance in spatial working memory tasks, apart from the difficulty retrieving "left-sided" spatial data from long-term memory, shown in the "piazza effect" by Bisiach and colleagues. This study's aim was to compare the effect of the spatial position of a visual object on immediate and delayed memory performance in USN patients. Specifically, immediate verbal recall performance, tested using a simultaneous presentation of four visual objects in four quadrants, was compared with memory in a later-provided recognition task, in which objects were individually shown at the screen center. Unlike healthy controls, USN patients showed a left-side disadvantage and a vertical bias in the immediate free recall task (69% vs. 42% recall for right- and left-sided objects, respectively). In the recognition task, the patients correctly recognized half of "old" items, and their correct rejection rate was 95.5%. Importantly, when the analysis focused on previously recalled items (in the immediate task), no statistically significant difference was found in the delayed recognition of objects according to their original quadrant of presentation. Furthermore, USN patients were able to recollect the correct original location of the recognized objects in 60% of the cases, well beyond chance level. This suggests that the memory trace formed in these cases was not only semantic but also contained a visuospatial tag. Finally, successful recognition of objects missed in recall trials points to formation of memory traces for neglected contralesional objects, which may become accessible to retrieval processes in explicit memory.
Object recognition with severe spatial deficits in Williams syndrome: sparing and breakdown.
Landau, Barbara; Hoffman, James E; Kurz, Nicole
2006-07-01
Williams syndrome (WS) is a rare genetic disorder that results in severe visual-spatial cognitive deficits coupled with relative sparing in language, face recognition, and certain aspects of motion processing. Here, we look for evidence for sparing or impairment in another cognitive system-object recognition. Children with WS, normal mental-age (MA) and chronological age-matched (CA) children, and normal adults viewed pictures of a large range of objects briefly presented under various conditions of degradation, including canonical and unusual orientations, and clear or blurred contours. Objects were shown as either full-color views (Experiment 1) or line drawings (Experiment 2). Across both experiments, WS and MA children performed similarly in all conditions while CA children performed better than both WS group and MA groups with unusual views. This advantage, however, was eliminated when images were also blurred. The error types and relative difficulty of different objects were similar across all participant groups. The results indicate selective sparing of basic mechanisms of object recognition in WS, together with developmental delay or arrest in recognition of objects from unusual viewpoints. These findings are consistent with the growing literature on brain abnormalities in WS which points to selective impairment in the parietal areas of the brain. As a whole, the results lend further support to the growing literature on the functional separability of object recognition mechanisms from other spatial functions, and raise intriguing questions about the link between genetic deficits and cognition.
A Unified Fisher's Ratio Learning Method for Spatial Filter Optimization.
Li, Xinyang; Guan, Cuntai; Zhang, Haihong; Ang, Kai Keng
To detect the mental task of interest, spatial filtering has been widely used to enhance the spatial resolution of electroencephalography (EEG). However, the effectiveness of spatial filtering is undermined due to the significant nonstationarity of EEG. Based on regularization, most of the conventional stationary spatial filter design methods address the nonstationarity at the cost of the interclass discrimination. Moreover, spatial filter optimization is inconsistent with feature extraction when EEG covariance matrices could not be jointly diagonalized due to the regularization. In this paper, we propose a novel framework for a spatial filter design. With Fisher's ratio in feature space directly used as the objective function, the spatial filter optimization is unified with feature extraction. Given its ratio form, the selection of the regularization parameter could be avoided. We evaluate the proposed method on a binary motor imagery data set of 16 subjects, who performed the calibration and test sessions on different days. The experimental results show that the proposed method yields improvement in classification performance for both single broadband and filter bank settings compared with conventional nonunified methods. We also provide a systematic attempt to compare different objective functions in modeling data nonstationarity with simulation studies.To detect the mental task of interest, spatial filtering has been widely used to enhance the spatial resolution of electroencephalography (EEG). However, the effectiveness of spatial filtering is undermined due to the significant nonstationarity of EEG. Based on regularization, most of the conventional stationary spatial filter design methods address the nonstationarity at the cost of the interclass discrimination. Moreover, spatial filter optimization is inconsistent with feature extraction when EEG covariance matrices could not be jointly diagonalized due to the regularization. In this paper, we propose a novel framework for a spatial filter design. With Fisher's ratio in feature space directly used as the objective function, the spatial filter optimization is unified with feature extraction. Given its ratio form, the selection of the regularization parameter could be avoided. We evaluate the proposed method on a binary motor imagery data set of 16 subjects, who performed the calibration and test sessions on different days. The experimental results show that the proposed method yields improvement in classification performance for both single broadband and filter bank settings compared with conventional nonunified methods. We also provide a systematic attempt to compare different objective functions in modeling data nonstationarity with simulation studies.
Persistent spatial information in the frontal eye field during object-based short-term memory.
Clark, Kelsey L; Noudoost, Behrad; Moore, Tirin
2012-08-08
Spatial attention is known to gate entry into visual short-term memory, and some evidence suggests that spatial signals may also play a role in binding features or protecting object representations during memory maintenance. To examine the persistence of spatial signals during object short-term memory, the activity of neurons in the frontal eye field (FEF) of macaque monkeys was recorded during an object-based delayed match-to-sample task. In this task, monkeys were trained to remember an object image over a brief delay, regardless of the locations of the sample or target presentation. FEF neurons exhibited visual, delay, and target period activity, including selectivity for sample location and target location. Delay period activity represented the sample location throughout the delay, despite the irrelevance of spatial information for successful task completion. Furthermore, neurons continued to encode sample position in a variant of the task in which the matching stimulus never appeared in their response field, confirming that FEF maintains sample location independent of subsequent behavioral relevance. FEF neurons also exhibited target-position-dependent anticipatory activity immediately before target onset, suggesting that monkeys predicted target position within blocks. These results show that FEF neurons maintain spatial information during short-term memory, even when that information is irrelevant for task performance.
Restricted cross-scale habitat selection by American beavers.
Francis, Robert A; Taylor, Jimmy D; Dibble, Eric; Strickland, Bronson; Petro, Vanessa M; Easterwood, Christine; Wang, Guiming
2017-12-01
Animal habitat selection, among other ecological phenomena, is spatially scale dependent. Habitat selection by American beavers Castor canadensis (hereafter, beaver) has been studied at singular spatial scales, but to date no research addresses multi-scale selection. Our objectives were to determine if beaver habitat selection was specialized to semiaquatic habitats and if variables explaining habitat selection are consistent between landscape and fine spatial scales. We built maximum entropy (MaxEnt) models to relate landscape-scale presence-only data to landscape variables, and used generalized linear mixed models to evaluate fine spatial scale habitat selection using global positioning system (GPS) relocation data. Explanatory variables between the landscape and fine spatial scale were compared for consistency. Our findings suggested that beaver habitat selection at coarse (study area) and fine (within home range) scales was congruent, and was influenced by increasing amounts of woody wetland edge density and shrub edge density, and decreasing amounts of open water edge density. Habitat suitability at the landscape scale also increased with decreasing amounts of grass frequency. As territorial, central-place foragers, beavers likely trade-off open water edge density (i.e., smaller non-forested wetlands or lodges closer to banks) for defense and shorter distances to forage and obtain construction material. Woody plants along edges and expanses of open water for predator avoidance may limit beaver fitness and subsequently determine beaver habitat selection.
Restricted cross-scale habitat selection by American beavers
Taylor, Jimmy D; Dibble, Eric; Strickland, Bronson; Petro, Vanessa M; Easterwood, Christine; Wang, Guiming
2017-01-01
Abstract Animal habitat selection, among other ecological phenomena, is spatially scale dependent. Habitat selection by American beavers Castor canadensis (hereafter, beaver) has been studied at singular spatial scales, but to date no research addresses multi-scale selection. Our objectives were to determine if beaver habitat selection was specialized to semiaquatic habitats and if variables explaining habitat selection are consistent between landscape and fine spatial scales. We built maximum entropy (MaxEnt) models to relate landscape-scale presence-only data to landscape variables, and used generalized linear mixed models to evaluate fine spatial scale habitat selection using global positioning system (GPS) relocation data. Explanatory variables between the landscape and fine spatial scale were compared for consistency. Our findings suggested that beaver habitat selection at coarse (study area) and fine (within home range) scales was congruent, and was influenced by increasing amounts of woody wetland edge density and shrub edge density, and decreasing amounts of open water edge density. Habitat suitability at the landscape scale also increased with decreasing amounts of grass frequency. As territorial, central-place foragers, beavers likely trade-off open water edge density (i.e., smaller non-forested wetlands or lodges closer to banks) for defense and shorter distances to forage and obtain construction material. Woody plants along edges and expanses of open water for predator avoidance may limit beaver fitness and subsequently determine beaver habitat selection. PMID:29492032
A multiple-point spatially weighted k-NN method for object-based classification
NASA Astrophysics Data System (ADS)
Tang, Yunwei; Jing, Linhai; Li, Hui; Atkinson, Peter M.
2016-10-01
Object-based classification, commonly referred to as object-based image analysis (OBIA), is now commonly regarded as able to produce more appealing classification maps, often of greater accuracy, than pixel-based classification and its application is now widespread. Therefore, improvement of OBIA using spatial techniques is of great interest. In this paper, multiple-point statistics (MPS) is proposed for object-based classification enhancement in the form of a new multiple-point k-nearest neighbour (k-NN) classification method (MPk-NN). The proposed method first utilises a training image derived from a pre-classified map to characterise the spatial correlation between multiple points of land cover classes. The MPS borrows spatial structures from other parts of the training image, and then incorporates this spatial information, in the form of multiple-point probabilities, into the k-NN classifier. Two satellite sensor images with a fine spatial resolution were selected to evaluate the new method. One is an IKONOS image of the Beijing urban area and the other is a WorldView-2 image of the Wolong mountainous area, in China. The images were object-based classified using the MPk-NN method and several alternatives, including the k-NN, the geostatistically weighted k-NN, the Bayesian method, the decision tree classifier (DTC), and the support vector machine classifier (SVM). It was demonstrated that the new spatial weighting based on MPS can achieve greater classification accuracy relative to the alternatives and it is, thus, recommended as appropriate for object-based classification.
Alexander, Gerianne M; Packard, Mark G; Peterson, Bradley S
2002-01-01
Memory for object location relative both to veridical center (left versus right visual hemispace) and to eccentricity (central versus peripheral objects) was measured in 26 males and 25 females using the Silverman and Eals Location Memory Task. A subset of participants (17 males and 13 females) also completed a measure of implicit learning, the mirror-tracing task. No sex differences were observed in memory for object identities. Further, in both sexes, memory for object locations was better for peripherally located objects than for centrally located objects. In contrast to these similarities in female and male task performance, females but not males showed better recovery of object locations in the right compared to the left visual hemispace. Moreover, memory for object locations in the right hemispace was associated with mirror-tracing performance in women but not in men. Together, these data suggest that the processing of object features and object identification in the left cerebral hemisphere may include processing of spatial information that may contribute to superior object location memory in females relative to males.
Analysis of High Temporal and Spatial Observations of Hurricane Joaquin During TCI-15
NASA Technical Reports Server (NTRS)
Creasey, Robert; Elsberry, Russell L.; Velden, Chris; Cecil, Daniel J.; Bell, Michael; Hendricks, Eric A.
2016-01-01
Objectives: Provide an example of why analysis of high density soundings across Hurricane Joaquin also require highly accurate center positions; Describe technique for calculating 3-D zero-wind center positions from the highly accurate GPS positions of sequences of High-Density Sounding System (HDSS) soundings as they fall from 10 km to the ocean surface; Illustrate the vertical tilt of the vortex above 4-5 km during two center passes through Hurricane Joaquin on 4 October 2015.
Front-Presented Looming Sound Selectively Alters the Perceived Size of a Visual Looming Object.
Yamasaki, Daiki; Miyoshi, Kiyofumi; Altmann, Christian F; Ashida, Hiroshi
2018-07-01
In spite of accumulating evidence for the spatial rule governing cross-modal interaction according to the spatial consistency of stimuli, it is still unclear whether 3D spatial consistency (i.e., front/rear of the body) of stimuli also regulates audiovisual interaction. We investigated how sounds with increasing/decreasing intensity (looming/receding sound) presented from the front and rear space of the body impact the size perception of a dynamic visual object. Participants performed a size-matching task (Experiments 1 and 2) and a size adjustment task (Experiment 3) of visual stimuli with increasing/decreasing diameter, while being exposed to a front- or rear-presented sound with increasing/decreasing intensity. Throughout these experiments, we demonstrated that only the front-presented looming sound caused overestimation of the spatially consistent looming visual stimulus in size, but not of the spatially inconsistent and the receding visual stimulus. The receding sound had no significant effect on vision. Our results revealed that looming sound alters dynamic visual size perception depending on the consistency in the approaching quality and the front-rear spatial location of audiovisual stimuli, suggesting that the human brain differently processes audiovisual inputs based on their 3D spatial consistency. This selective interaction between looming signals should contribute to faster detection of approaching threats. Our findings extend the spatial rule governing audiovisual interaction into 3D space.
Whisking mechanics and active sensing.
Bush, Nicholas E; Solla, Sara A; Hartmann, Mitra Jz
2016-10-01
We describe recent advances in quantifying the three-dimensional (3D) geometry and mechanics of whisking. Careful delineation of relevant 3D reference frames reveals important geometric and mechanical distinctions between the localization problem ('where' is an object) and the feature extraction problem ('what' is an object). Head-centered and resting-whisker reference frames lend themselves to quantifying temporal and kinematic cues used for object localization. The whisking-centered reference frame lends itself to quantifying the contact mechanics likely associated with feature extraction. We offer the 'windowed sampling' hypothesis for active sensing: that rats can estimate an object's spatial features by integrating mechanical information across whiskers during brief (25-60ms) windows of 'haptic enclosure' with the whiskers, a motion that resembles a hand grasp. Copyright © 2016. Published by Elsevier Ltd.
Selecting and perceiving multiple visual objects
Xu, Yaoda; Chun, Marvin M.
2010-01-01
To explain how multiple visual objects are attended and perceived, we propose that our visual system first selects a fixed number of about four objects from a crowded scene based on their spatial information (object individuation) and then encode their details (object identification). We describe the involvement of the inferior intra-parietal sulcus (IPS) in object individuation and the superior IPS and higher visual areas in object identification. Our neural object-file theory synthesizes and extends existing ideas in visual cognition and is supported by behavioral and neuroimaging results. It provides a better understanding of the role of the different parietal areas in encoding visual objects and can explain various forms of capacity-limited processing in visual cognition such as working memory. PMID:19269882
Remote sensing imagery classification using multi-objective gravitational search algorithm
NASA Astrophysics Data System (ADS)
Zhang, Aizhu; Sun, Genyun; Wang, Zhenjie
2016-10-01
Simultaneous optimization of different validity measures can capture different data characteristics of remote sensing imagery (RSI) and thereby achieving high quality classification results. In this paper, two conflicting cluster validity indices, the Xie-Beni (XB) index and the fuzzy C-means (FCM) (Jm) measure, are integrated with a diversity-enhanced and memory-based multi-objective gravitational search algorithm (DMMOGSA) to present a novel multi-objective optimization based RSI classification method. In this method, the Gabor filter method is firstly implemented to extract texture features of RSI. Then, the texture features are syncretized with the spectral features to construct the spatial-spectral feature space/set of the RSI. Afterwards, cluster of the spectral-spatial feature set is carried out on the basis of the proposed method. To be specific, cluster centers are randomly generated initially. After that, the cluster centers are updated and optimized adaptively by employing the DMMOGSA. Accordingly, a set of non-dominated cluster centers are obtained. Therefore, numbers of image classification results of RSI are produced and users can pick up the most promising one according to their problem requirements. To quantitatively and qualitatively validate the effectiveness of the proposed method, the proposed classification method was applied to classifier two aerial high-resolution remote sensing imageries. The obtained classification results are compared with that produced by two single cluster validity index based and two state-of-the-art multi-objective optimization algorithms based classification results. Comparison results show that the proposed method can achieve more accurate RSI classification.
NASA Astrophysics Data System (ADS)
Teller, Amit; Lange, Manfred; Ioannou, Stelios; Keleshis, Christos
2010-05-01
The Autonomous Flying Platforms for Atmospheric and Earth Surface Observations project (APAESO) of the Energy, Environment and Water Research Center (EEWRC) at the Cyprus Institute is aimed at the dual purpose of carrying out atmospheric and earth-surface observations in the Mediterranean. The APAESO platforms will offer the unique potential to determine physical, chemical and radiative atmospheric properties, aerosol and dust concentrations, atmospheric dynamics, surface morphology, vegetation and land use patterns as well as ocean surface properties (biology, waves, currents) and to carry out archaeological site reconnaissance and contaminant detection at high spatial resolution. The first phase of APAESO was dedicated to the preliminary design and the selection of an Unmanned Aerial Vehicle (UAV) as the backbone of the APAESO infrastructure. Selection of a UAV suitable for the many research objectives as outlined above is challenging because the UAV technology is new and rapidly evolving. This notwithstanding, a very large number of systems, mostly utilized for defense purposes, are currently available. The major challenge in the selection process lies in considering the trade-off between different platform characteristics (e.g. payload weight, endurance, max. altitude for operation and price) and in optimizing the potential performance of the UAV. Based on the required characteristics for the UAV platform, a survey of possible UAVs and suitable sensors was prepared based on various data sources. We used an elimination process in order to consider only a few models for the final selection process out of about 1000 commercially available UAV models that were initially investigated. The presentation will discuss the main scientific objectives that determine the specification of the UAV platform, major considerations in selecting best available technology for our needs and will briefly describe the next phases of the project.
Extracting spatial information from large aperture exposures of diffuse sources
NASA Technical Reports Server (NTRS)
Clarke, J. T.; Moos, H. W.
1981-01-01
The spatial properties of large aperture exposures of diffuse emission can be used both to investigate spatial variations in the emission and to filter out camera noise in exposures of weak emission sources. Spatial imaging can be accomplished both parallel and perpendicular to dispersion with a resolution of 5-6 arc sec, and a narrow median filter running perpendicular to dispersion across a diffuse image selectively filters out point source features, such as reseaux marks and fast particle hits. Spatial information derived from observations of solar system objects is presented.
Kasai, Tetsuko; Moriya, Hiroki; Hirano, Shingo
2011-07-05
It has been proposed that the most fundamental units of attentional selection are "objects" that are grouped according to Gestalt factors such as similarity or connectedness. Previous studies using event-related potentials (ERPs) have shown that object-based attention is associated with modulations of the visual-evoked N1 component, which reflects an early cortical mechanism that is shared with spatial attention. However, these studies only examined the case of perceptually continuous objects. The present study examined the case of separate objects that are grouped according to feature similarity (color, shape) by indexing lateralized potentials at posterior sites in a sustained-attention task that involved bilateral stimulus arrays. A behavioral object effect was found only for task-relevant shape similarity. Electrophysiological results indicated that attention was guided to the task-irrelevant side of the visual field due to achromatic-color similarity in N1 (155-205 ms post-stimulus) and early N2 (210-260 ms) and due to shape similarity in early N2 and late N2 (280-400 ms) latency ranges. These results are discussed in terms of selection mechanisms and object/group representations. Copyright © 2011 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Tarabalka, Y.; Tilton, J. C.; Benediktsson, J. A.; Chanussot, J.
2012-01-01
The Hierarchical SEGmentation (HSEG) algorithm, which combines region object finding with region object clustering, has given good performances for multi- and hyperspectral image analysis. This technique produces at its output a hierarchical set of image segmentations. The automated selection of a single segmentation level is often necessary. We propose and investigate the use of automatically selected markers for this purpose. In this paper, a novel Marker-based HSEG (M-HSEG) method for spectral-spatial classification of hyperspectral images is proposed. Two classification-based approaches for automatic marker selection are adapted and compared for this purpose. Then, a novel constrained marker-based HSEG algorithm is applied, resulting in a spectral-spatial classification map. Three different implementations of the M-HSEG method are proposed and their performances in terms of classification accuracies are compared. The experimental results, presented for three hyperspectral airborne images, demonstrate that the proposed approach yields accurate segmentation and classification maps, and thus is attractive for remote sensing image analysis.
Spatiotemporal dynamics underlying object completion in human ventral visual cortex.
Tang, Hanlin; Buia, Calin; Madhavan, Radhika; Crone, Nathan E; Madsen, Joseph R; Anderson, William S; Kreiman, Gabriel
2014-08-06
Natural vision often involves recognizing objects from partial information. Recognition of objects from parts presents a significant challenge for theories of vision because it requires spatial integration and extrapolation from prior knowledge. Here we recorded intracranial field potentials of 113 visually selective electrodes from epilepsy patients in response to whole and partial objects. Responses along the ventral visual stream, particularly the inferior occipital and fusiform gyri, remained selective despite showing only 9%-25% of the object areas. However, these visually selective signals emerged ∼100 ms later for partial versus whole objects. These processing delays were particularly pronounced in higher visual areas within the ventral stream. This latency difference persisted when controlling for changes in contrast, signal amplitude, and the strength of selectivity. These results argue against a purely feedforward explanation of recognition from partial information, and provide spatiotemporal constraints on theories of object recognition that involve recurrent processing. Copyright © 2014 Elsevier Inc. All rights reserved.
Nonmydriatic fluorescence-based quantitative imaging of human macular pigment distributions
NASA Astrophysics Data System (ADS)
Sharifzadeh, Mohsen; Bernstein, Paul S.; Gellermann, Werner
2006-10-01
We have developed a CCD-camera-based nonmydriatic instrument that detects fluorescence from retinal lipofuscin chromophores ("autofluorescence") as a means to indirectly quantify and spatially image the distribution of macular pigment (MP). The lipofuscin fluorescence intensity is reduced at all retinal locations containing MP, since MP has a competing absorption in the blue-green wavelength region. Projecting a large diameter, 488 nm excitation spot onto the retina, centered on the fovea, but extending into the macular periphery, and comparing lipofuscin fluorescence intensities outside and inside the foveal area, it is possible to spatially map out the distribution of MP. Spectrally selective detection of the lipofuscin fluorescence reveals an important wavelength dependence of the obtainable image contrast and deduced MP optical density levels, showing that it is important to block out interfering fluorescence contributions in the detection setup originating from ocular media such as the lens. Measuring 70 healthy human volunteer subjects with no ocular pathologies, we find widely varying spatial extent of MP, distinctly differing distribution patterns of MP, and strongly differing absolute MP levels among individuals. Our population study suggests that MP imaging based on lipofuscin fluorescence is useful as a relatively simple, objective, and quantitative noninvasive optical technique suitable to rapidly screen MP levels and distributions in healthy humans with undilated pupils.
Gravity influences the visual representation of object tilt in parietal cortex.
Rosenberg, Ari; Angelaki, Dora E
2014-10-22
Sensory systems encode the environment in egocentric (e.g., eye, head, or body) reference frames, creating inherently unstable representations that shift and rotate as we move. However, it is widely speculated that the brain transforms these signals into an allocentric, gravity-centered representation of the world that is stable and independent of the observer's spatial pose. Where and how this representation may be achieved is currently unknown. Here we demonstrate that a subpopulation of neurons in the macaque caudal intraparietal area (CIP) visually encodes object tilt in nonegocentric coordinates defined relative to the gravitational vector. Neuronal responses to the tilt of a visually presented planar surface were measured with the monkey in different spatial orientations (upright and rolled left/right ear down) and then compared. This revealed a continuum of representations in which planar tilt was encoded in a gravity-centered reference frame in approximately one-tenth of the comparisons, intermediate reference frames ranging between gravity-centered and egocentric in approximately two-tenths of the comparisons, and in an egocentric reference frame in less than half of the comparisons. Altogether, almost half of the comparisons revealed a shift in the preferred tilt and/or a gain change consistent with encoding object orientation in nonegocentric coordinates. Through neural network modeling, we further show that a purely gravity-centered representation of object tilt can be achieved directly from the population activity of CIP-like units. These results suggest that area CIP may play a key role in creating a stable, allocentric representation of the environment defined relative to an "earth-vertical" direction. Copyright © 2014 the authors 0270-6474/14/3414170-11$15.00/0.
Optoelectronic scanning system upgrade by energy center localization methods
NASA Astrophysics Data System (ADS)
Flores-Fuentes, W.; Sergiyenko, O.; Rodriguez-Quiñonez, J. C.; Rivas-López, M.; Hernández-Balbuena, D.; Básaca-Preciado, L. C.; Lindner, L.; González-Navarro, F. F.
2016-11-01
A problem of upgrading an optoelectronic scanning system with digital post-processing of the signal based on adequate methods of energy center localization is considered. An improved dynamic triangulation analysis technique is proposed by an example of industrial infrastructure damage detection. A modification of our previously published method aimed at searching for the energy center of an optoelectronic signal is described. Application of the artificial intelligence algorithm of compensation for the error of determining the angular coordinate in calculating the spatial coordinate through dynamic triangulation is demonstrated. Five energy center localization methods are developed and tested to select the best method. After implementation of these methods, digital compensation for the measurement error, and statistical data analysis, a non-parametric behavior of the data is identified. The Wilcoxon signed rank test is applied to improve the result further. For optical scanning systems, it is necessary to detect a light emitter mounted on the infrastructure being investigated to calculate its spatial coordinate by the energy center localization method.
Cavalli, Rosa Maria; Fusilli, Lorenzo; Pascucci, Simone; Pignatti, Stefano; Santini, Federico
2008-01-01
This study aims at comparing the capability of different sensors to detect land cover materials within an historical urban center. The main objective is to evaluate the added value of hyperspectral sensors in mapping a complex urban context. In this study we used: (a) the ALI and Hyperion satellite data, (b) the LANDSAT ETM+ satellite data, (c) MIVIS airborne data and (d) the high spatial resolution IKONOS imagery as reference. The Venice city center shows a complex urban land cover and therefore was chosen for testing the spectral and spatial characteristics of different sensors in mapping the urban tissue. For this purpose, an object-oriented approach and different common classification methods were used. Moreover, spectra of the main anthropogenic surfaces (i.e. roofing and paving materials) were collected during the field campaigns conducted on the study area. They were exploited for applying band-depth and sub-pixel analyses to subsets of Hyperion and MIVIS hyperspectral imagery. The results show that satellite data with a 30m spatial resolution (ALI, LANDSAT ETM+ and HYPERION) are able to identify only the main urban land cover materials. PMID:27879879
Reweighted mass center based object-oriented sparse subspace clustering for hyperspectral images
NASA Astrophysics Data System (ADS)
Zhai, Han; Zhang, Hongyan; Zhang, Liangpei; Li, Pingxiang
2016-10-01
Considering the inevitable obstacles faced by the pixel-based clustering methods, such as salt-and-pepper noise, high computational complexity, and the lack of spatial information, a reweighted mass center based object-oriented sparse subspace clustering (RMC-OOSSC) algorithm for hyperspectral images (HSIs) is proposed. First, the mean-shift segmentation method is utilized to oversegment the HSI to obtain meaningful objects. Second, a distance reweighted mass center learning model is presented to extract the representative and discriminative features for each object. Third, assuming that all the objects are sampled from a union of subspaces, it is natural to apply the SSC algorithm to the HSI. Faced with the high correlation among the hyperspectral objects, a weighting scheme is adopted to ensure that the highly correlated objects are preferred in the procedure of sparse representation, to reduce the representation errors. Two widely used hyperspectral datasets were utilized to test the performance of the proposed RMC-OOSSC algorithm, obtaining high clustering accuracies (overall accuracy) of 71.98% and 89.57%, respectively. The experimental results show that the proposed method clearly improves the clustering performance with respect to the other state-of-the-art clustering methods, and it significantly reduces the computational time.
a Buffer Analysis Based on Co-Location Algorithm
NASA Astrophysics Data System (ADS)
Zhou, G.; Huang, S.; Wang, H.; Zhang, R.; Wang, Q.; Sha, H.; Liu, X.; Pan, Q.
2018-05-01
Buffer analysis is a common tool of spatial analysis, which deals with the problem of proximity in GIS. Buffer analysis researches the relationship between the center object and other objects around a certain distance. Buffer analysis can make the complicated problem be more scientifically and visually, and provide valuable information for users. Over the past decades, people have done a lot of researches on buffer analysis. Along with the constantly improvement of spatial analysis accuracy needed by people, people hope that the results of spatial analysis can be more exactly express the actual situation. Due to the influence of some certain factors, the impact scope and contact range of a geographic elements on the surrounding objects are uncertain. As all we know, each object has its own characteristics and changing rules in the nature. They are both independent and relative to each other. However, almost all the generational algorithms of existing buffer analysis are based on fixed buffer distance, which do not consider the co-location relationship among instances. Consequently, it is a waste of resource to retrieve the useless information, and useful information is ignored.
The fate of task-irrelevant visual motion: perceptual load versus feature-based attention.
Taya, Shuichiro; Adams, Wendy J; Graf, Erich W; Lavie, Nilli
2009-11-18
We tested contrasting predictions derived from perceptual load theory and from recent feature-based selection accounts. Observers viewed moving, colored stimuli and performed low or high load tasks associated with one stimulus feature, either color or motion. The resultant motion aftereffect (MAE) was used to evaluate attentional allocation. We found that task-irrelevant visual features received less attention than co-localized task-relevant features of the same objects. Moreover, when color and motion features were co-localized yet perceived to belong to two distinct surfaces, feature-based selection was further increased at the expense of object-based co-selection. Load theory predicts that the MAE for task-irrelevant motion would be reduced with a higher load color task. However, this was not seen for co-localized features; perceptual load only modulated the MAE for task-irrelevant motion when this was spatially separated from the attended color location. Our results suggest that perceptual load effects are mediated by spatial selection and do not generalize to the feature domain. Feature-based selection operates to suppress processing of task-irrelevant, co-localized features, irrespective of perceptual load.
Surface density of quasars in two high-latitude fields
NASA Technical Reports Server (NTRS)
Usher, P. D.; Green, R. F.; Huang, K. L.; Warnock, A., III
1983-01-01
Fourty-four objects selected for ultraviolet excess have been identified spectroscopically. The objects lie in two Palomar 1.2 m Schmidt fields in the north galactic polar cap, one of 7.7 sq deg centered on Kapteyn Selected Area 29, the other of 36 sq deg centered on SA 55. The objects are characterized by Color Classes (CC) 1A, 1, 1B, 1C, 2, and 3. Quasars comprise 75 percent of the CC 1A objects and 44 percent of the objects in the SA 29 field. Twelve quasars in the SA 29 field comprise a complete sample to B = 18.5 mag, and given an uncorrected surface density of 1.6 quasars/sq deg. This value is essentially that derived by Sandage (1969). Corrections are applied to account for the lack of high redshift quasars. An empirical correction is derived to account for lack of simultaneity in selection and photometry. A corrected lower limit to the surface density is estimated to be 1.85 quasars/sq deg to B = 18.5 mag.
A Bayesian method for assessing multiscalespecies-habitat relationships
Stuber, Erica F.; Gruber, Lutz F.; Fontaine, Joseph J.
2017-01-01
ContextScientists face several theoretical and methodological challenges in appropriately describing fundamental wildlife-habitat relationships in models. The spatial scales of habitat relationships are often unknown, and are expected to follow a multi-scale hierarchy. Typical frequentist or information theoretic approaches often suffer under collinearity in multi-scale studies, fail to converge when models are complex or represent an intractable computational burden when candidate model sets are large.ObjectivesOur objective was to implement an automated, Bayesian method for inference on the spatial scales of habitat variables that best predict animal abundance.MethodsWe introduce Bayesian latent indicator scale selection (BLISS), a Bayesian method to select spatial scales of predictors using latent scale indicator variables that are estimated with reversible-jump Markov chain Monte Carlo sampling. BLISS does not suffer from collinearity, and substantially reduces computation time of studies. We present a simulation study to validate our method and apply our method to a case-study of land cover predictors for ring-necked pheasant (Phasianus colchicus) abundance in Nebraska, USA.ResultsOur method returns accurate descriptions of the explanatory power of multiple spatial scales, and unbiased and precise parameter estimates under commonly encountered data limitations including spatial scale autocorrelation, effect size, and sample size. BLISS outperforms commonly used model selection methods including stepwise and AIC, and reduces runtime by 90%.ConclusionsGiven the pervasiveness of scale-dependency in ecology, and the implications of mismatches between the scales of analyses and ecological processes, identifying the spatial scales over which species are integrating habitat information is an important step in understanding species-habitat relationships. BLISS is a widely applicable method for identifying important spatial scales, propagating scale uncertainty, and testing hypotheses of scaling relationships.
Women match men when learning a spatial skill.
Spence, Ian; Yu, Jingjie Jessica; Feng, Jing; Marshman, Jeff
2009-07-01
Meta-analytic studies have concluded that although training improves spatial cognition in both sexes, the male advantage generally persists. However, because some studies run counter to this pattern, a closer examination of the anomaly is warranted. The authors investigated the acquisition of a basic skill (spatial selective attention) using a matched-pair two-wave longitudinal design. Participants were screened with the use of an attentional visual field task, with the objective of selecting and matching 10 male-female pairs, over a wide range (30% to 57% correct). Subsequently, 20 participants 17-23 years of age (selected from 43 screened) were trained for 10 hr (distributed over several sessions) by playing a first-person shooter video game. This genre is known to be highly effective in enhancing spatial skills. All 20 participants improved, with matched members of the male-female pairs achieving very similar gains, independent of starting level. This is consistent with the hypothesis that the learning trajectory of women is not inferior to that of men when acquiring a basic spatial skill. Training methods that develop basic spatial skills may be essential to achieve gender parity in both basic and complex spatial tasks.
Bowen, Zachary H.; Melcher, Cynthia P.; Wilson, Juliette T.
2013-01-01
The Ecosystem Dynamics Branch of the Fort Collins Science Center offers an interdisciplinary team of talented and creative scientists with expertise in biology, botany, ecology, geology, biogeochemistry, physical sciences, geographic information systems, and remote-sensing, for tackling complex questions about natural resources. As demand for natural resources increases, the issues facing natural resource managers, planners, policy makers, industry, and private landowners are increasing in spatial and temporal scope, often involving entire regions, multiple jurisdictions, and long timeframes. Needs for addressing these issues include (1) a better understanding of biotic and abiotic ecosystem components and their complex interactions; (2) the ability to easily monitor, assess, and visualize the spatially complex movements of animals, plants, water, and elements across highly variable landscapes; and (3) the techniques for accurately predicting both immediate and long-term responses of system components to natural and human-caused change. The overall objectives of our research are to provide the knowledge, tools, and techniques needed by the U.S. Department of the Interior, state agencies, and other stakeholders in their endeavors to meet the demand for natural resources while conserving biodiversity and ecosystem services. Ecosystem Dynamics scientists use field and laboratory research, data assimilation, and ecological modeling to understand ecosystem patterns, trends, and mechanistic processes. This information is used to predict the outcomes of changes imposed on species, habitats, landscapes, and climate across spatiotemporal scales. The products we develop include conceptual models to illustrate system structure and processes; regional baseline and integrated assessments; predictive spatial and mathematical models; literature syntheses; and frameworks or protocols for improved ecosystem monitoring, adaptive management, and program evaluation. The descriptions in this fact sheet provide snapshots of our three research emphases, followed by descriptions of select current projects.
Lew, Timothy F; Vul, Edward
2015-01-01
People seem to compute the ensemble statistics of objects and use this information to support the recall of individual objects in visual working memory. However, there are many different ways that hierarchical structure might be encoded. We examined the format of structured memories by asking subjects to recall the locations of objects arranged in different spatial clustering structures. Consistent with previous investigations of structured visual memory, subjects recalled objects biased toward the center of their clusters. Subjects also recalled locations more accurately when they were arranged in fewer clusters containing more objects, suggesting that subjects used the clustering structure of objects to aid recall. Furthermore, subjects had more difficulty recalling larger relative distances, consistent with subjects encoding the positions of objects relative to clusters and recalling them with magnitude-proportional (Weber) noise. Our results suggest that clustering improved the fidelity of recall by biasing the recall of locations toward cluster centers to compensate for uncertainty and by reducing the magnitude of encoded relative distances.
Center for Mapping, Ohio State University
NASA Technical Reports Server (NTRS)
Starr, Lowell
1991-01-01
There are many future opportunities for Centers for the Commercial Development of Space (CCDS) activities that are directly linked to industry strategic objectives. In the fields of mapping, remote sensing, and geographic information systems (GIS), the near term opportunities may exceed all that have occurred in the past 10 years. It is strongly believed that a national spatial data infrastructure must be established in this country, if we are to remain a leader in the information age.
College Counselors' Perceptions and Practices regarding Anticipatory Guidance on Firearms
ERIC Educational Resources Information Center
Price, James; Mrdjenovich, Adam J.; Thompson, Amy; Dake, Joseph A.
2009-01-01
Objectives: This study assessed college counselors' anticipatory guidance on firearms for student clients. Participants: The membership of the Association for University and College Counseling Center Directors was used to identify a national random sample of counseling centers (n = 361). One counselor from each center was selected to survey.…
Invariant Visual Object and Face Recognition: Neural and Computational Bases, and a Model, VisNet
Rolls, Edmund T.
2012-01-01
Neurophysiological evidence for invariant representations of objects and faces in the primate inferior temporal visual cortex is described. Then a computational approach to how invariant representations are formed in the brain is described that builds on the neurophysiology. A feature hierarchy model in which invariant representations can be built by self-organizing learning based on the temporal and spatial statistics of the visual input produced by objects as they transform in the world is described. VisNet can use temporal continuity in an associative synaptic learning rule with a short-term memory trace, and/or it can use spatial continuity in continuous spatial transformation learning which does not require a temporal trace. The model of visual processing in the ventral cortical stream can build representations of objects that are invariant with respect to translation, view, size, and also lighting. The model has been extended to provide an account of invariant representations in the dorsal visual system of the global motion produced by objects such as looming, rotation, and object-based movement. The model has been extended to incorporate top-down feedback connections to model the control of attention by biased competition in, for example, spatial and object search tasks. The approach has also been extended to account for how the visual system can select single objects in complex visual scenes, and how multiple objects can be represented in a scene. The approach has also been extended to provide, with an additional layer, for the development of representations of spatial scenes of the type found in the hippocampus. PMID:22723777
Invariant Visual Object and Face Recognition: Neural and Computational Bases, and a Model, VisNet.
Rolls, Edmund T
2012-01-01
Neurophysiological evidence for invariant representations of objects and faces in the primate inferior temporal visual cortex is described. Then a computational approach to how invariant representations are formed in the brain is described that builds on the neurophysiology. A feature hierarchy model in which invariant representations can be built by self-organizing learning based on the temporal and spatial statistics of the visual input produced by objects as they transform in the world is described. VisNet can use temporal continuity in an associative synaptic learning rule with a short-term memory trace, and/or it can use spatial continuity in continuous spatial transformation learning which does not require a temporal trace. The model of visual processing in the ventral cortical stream can build representations of objects that are invariant with respect to translation, view, size, and also lighting. The model has been extended to provide an account of invariant representations in the dorsal visual system of the global motion produced by objects such as looming, rotation, and object-based movement. The model has been extended to incorporate top-down feedback connections to model the control of attention by biased competition in, for example, spatial and object search tasks. The approach has also been extended to account for how the visual system can select single objects in complex visual scenes, and how multiple objects can be represented in a scene. The approach has also been extended to provide, with an additional layer, for the development of representations of spatial scenes of the type found in the hippocampus.
Richardson, Miles; Hunt, Thomas E; Richardson, Cassandra
2014-12-01
This paper presents a methodology to control construction task complexity and examined the relationships between construction performance and spatial and mathematical abilities in children. The study included three groups of children (N = 96); ages 7-8, 10-11, and 13-14 years. Each group constructed seven pre-specified objects. The study replicated and extended previous findings that indicated that the extent of component symmetry and variety, and the number of components for each object and available for selection, significantly predicted construction task difficulty. Results showed that this methodology is a valid and reliable technique for assessing and predicting construction play task difficulty. Furthermore, construction play performance predicted mathematical attainment independently of spatial ability.
Sparsely-distributed organization of face and limb activations in human ventral temporal cortex
Weiner, Kevin S.; Grill-Spector, Kalanit
2011-01-01
Functional magnetic resonance imaging (fMRI) has identified face- and body part-selective regions, as well as distributed activation patterns for object categories across human ventral temporal cortex (VTC), eliciting a debate regarding functional organization in VTC and neural coding of object categories. Using high-resolution fMRI, we illustrate that face- and limb-selective activations alternate in a series of largely nonoverlapping clusters in lateral VTC along the inferior occipital gyrus (IOG), fusiform gyrus (FG), and occipitotemporal sulcus (OTS). Both general linear model (GLM) and multivoxel pattern (MVP) analyses show that face- and limb-selective activations minimally overlap and that this organization is consistent across experiments and days. We provide a reliable method to separate two face-selective clusters on the middle and posterior FG (mFus and pFus), and another on the IOG using their spatial relation to limb-selective activations and retinotopic areas hV4, VO-1/2, and hMT+. Furthermore, these activations show a gradient of increasing face selectivity and decreasing limb selectivity from the IOG to the mFus. Finally, MVP analyses indicate that there is differential information for faces in lateral VTC (containing weakly- and highly-selective voxels) relative to non-selective voxels in medial VTC. These findings suggest a sparsely-distributed organization where sparseness refers to the presence of several face- and limb-selective clusters in VTC, and distributed refers to the presence of different amounts of information in highly-, weakly-, and non-selective voxels. Consequently, theories of object recognition should consider the functional and spatial constraints of neural coding across a series of nonoverlapping category-selective clusters that are themselves distributed. PMID:20457261
Baumann, Oliver; Skilleter, Ashley J.; Mattingley, Jason B.
2011-01-01
The goal of the present study was to examine the extent to which working memory supports the maintenance of object locations during active spatial navigation. Participants were required to navigate a virtual environment and to encode the location of a target object. In the subsequent maintenance period they performed one of three secondary tasks that were designed to selectively load visual, verbal or spatial working memory subsystems. Thereafter participants re-entered the environment and navigated back to the remembered location of the target. We found that while navigation performance in participants with high navigational ability was impaired only by the spatial secondary task, navigation performance in participants with poor navigational ability was impaired equally by spatial and verbal secondary tasks. The visual secondary task had no effect on navigation performance. Our results extend current knowledge by showing that the differential engagement of working memory subsystems is determined by navigational ability. PMID:21629686
Calibration of a distributed hydrologic model using observed spatial patterns from MODIS data
NASA Astrophysics Data System (ADS)
Demirel, Mehmet C.; González, Gorka M.; Mai, Juliane; Stisen, Simon
2016-04-01
Distributed hydrologic models are typically calibrated against streamflow observations at the outlet of the basin. Along with these observations from gauging stations, satellite based estimates offer independent evaluation data such as remotely sensed actual evapotranspiration (aET) and land surface temperature. The primary objective of the study is to compare model calibrations against traditional downstream discharge measurements with calibrations against simulated spatial patterns and combinations of both types of observations. While the discharge based model calibration typically improves the temporal dynamics of the model, it seems to give rise to minimum improvement of the simulated spatial patterns. In contrast, objective functions specifically targeting the spatial pattern performance could potentially increase the spatial model performance. However, most modeling studies, including the model formulations and parameterization, are not designed to actually change the simulated spatial pattern during calibration. This study investigates the potential benefits of incorporating spatial patterns from MODIS data to calibrate the mesoscale hydrologic model (mHM). This model is selected as it allows for a change in the spatial distribution of key soil parameters through the optimization of pedo-transfer function parameters and includes options for using fully distributed daily Leaf Area Index (LAI) values directly as input. In addition the simulated aET can be estimated at a spatial resolution suitable for comparison to the spatial patterns observed with MODIS data. To increase our control on spatial calibration we introduced three additional parameters to the model. These new parameters are part of an empirical equation to the calculate crop coefficient (Kc) from daily LAI maps and used to update potential evapotranspiration (PET) as model inputs. This is done instead of correcting/updating PET with just a uniform (or aspect driven) factor used in the mHM model (version 5.3). We selected the 20 most important parameters out of 53 mHM parameters based on a comprehensive sensitivity analysis (Cuntz et al., 2015). We calibrated 1km-daily mHM for the Skjern basin in Denmark using the Shuffled Complex Evolution (SCE) algorithm and inputs at different spatial scales i.e. meteorological data at 10km and morphological data at 250 meters. We used correlation coefficients between observed monthly (summer months only) MODIS data calculated from cloud free days over the calibration period from 2001 to 2008 and simulated aET from mHM over the same period. Similarly other metrics, e.g mapcurves and fraction skill-score, are also included in our objective function to assess the co-location of the grid-cells. The preliminary results show that multi-objective calibration of mHM against observed streamflow and spatial patterns together does not significantly reduce the spatial errors in aET while it improves the streamflow simulations. This is a strong signal for further investigation of the multi parameter regionalization affecting spatial aET patterns and weighting the spatial metrics in the objective function relative to the streamflow metrics.
Whisking mechanics and active sensing
Bush, Nicholas E; Solla, Sara A
2017-01-01
We describe recent advances in quantifying the three-dimensional (3D) geometry and mechanics of whisking. Careful delineation of relevant 3D reference frames reveals important geometric and mechanical distinctions between the localization problem (‘where’ is an object) and the feature extraction problem (‘what’ is an object). Head-centered and resting-whisker reference frames lend themselves to quantifying temporal and kinematic cues used for object localization. The whisking-centered reference frame lends itself to quantifying the contact mechanics likely associated with feature extraction. We offer the ‘windowed sampling’ hypothesis for active sensing: that rats can estimate an object’s spatial features by integrating mechanical information across whiskers during brief (25–60 ms) windows of ‘haptic enclosure’ with the whiskers, a motion that resembles a hand grasp. PMID:27632212
Field evaluation of four spatial repellent devices against Arkansas rice-land mosquitoes.
Dame, David A; Meisch, Max V; Lewis, Carolyn N; Kline, Daniel L; Clark, Gary G
2014-03-01
Four commercially available spatial repellent devices were tested in a rice-land habitat near Stuttgart, AR, after semi-field level assessments had been made at the Center for Medical, Agricultural, and Veterinary Entomology, Agricultural Research Service, US Department of Agriculture in Gainesville, FL. OFF! Clip-On(metofluthrin), Mosquito Cognito (linalool), No-Pest Strip (dichlorvos), and ThermaCELL (d-cisltrans allethrin) were selected for this study from >20 candidate products. The units based on metofluthrin, linalool, or d-cisltrans allethrin significantly reduced captures of 1 or more of the mosquito species at surrogate human sites (unlit Centers for Disease Control and Prevention traps with CO2 and octenol). Among the mosquito species analyzed statistically (Anopheles quadrimaculatus, Culex erraticus, and Psorophora columbiae), there were significantly different responses (up to 84% reduction) to individual products, suggesting that combinations of certain spatial repellents might provide significantly greater protection.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schröder, T.; Walsh, M.; Zheng, J.
2017-04-06
Towards building large-scale integrated photonic systems for quantum information processing, spatial and spectral alignment of single quantum systems to photonic nanocavities is required. In this paper, we demonstrate spatially targeted implantation of nitrogen vacancy (NV) centers into the mode maximum of 2-d diamond photonic crystal cavities with quality factors up to 8000, achieving an average of 1.1 ± 0.2 NVs per cavity. Nearly all NV-cavity systems have significant emission intensity enhancement, reaching a cavity-fed spectrally selective intensity enhancement, F int, of up to 93. Although spatial NV-cavity overlap is nearly guaranteed within about 40 nm, spectral tuning of the NV’smore » zero-phonon-line (ZPL) is still necessary after fabrication. To demonstrate spectral control, we temperature tune a cavity into an NV ZPL, yielding F ZPL int~5 at cryogenic temperatures.« less
Davidesco, Ido; Harel, Michal; Ramot, Michal; Kramer, Uri; Kipervasser, Svetlana; Andelman, Fani; Neufeld, Miri Y; Goelman, Gadi; Fried, Itzhak; Malach, Rafael
2013-01-16
One of the puzzling aspects in the visual attention literature is the discrepancy between electrophysiological and fMRI findings: whereas fMRI studies reveal strong attentional modulation in the earliest visual areas, single-unit and local field potential studies yielded mixed results. In addition, it is not clear to what extent spatial attention effects extend from early to high-order visual areas. Here we addressed these issues using electrocorticography recordings in epileptic patients. The patients performed a task that allowed simultaneous manipulation of both spatial and object-based attention. They were presented with composite stimuli, consisting of a small object (face or house) superimposed on a large one, and in separate blocks, were instructed to attend one of the objects. We found a consistent increase in broadband high-frequency (30-90 Hz) power, but not in visual evoked potentials, associated with spatial attention starting with V1/V2 and continuing throughout the visual hierarchy. The magnitude of the attentional modulation was correlated with the spatial selectivity of each electrode and its distance from the occipital pole. Interestingly, the latency of the attentional modulation showed a significant decrease along the visual hierarchy. In addition, electrodes placed over high-order visual areas (e.g., fusiform gyrus) showed both effects of spatial and object-based attention. Overall, our results help to reconcile previous observations of discrepancy between fMRI and electrophysiology. They also imply that spatial attention effects can be found both in early and high-order visual cortical areas, in parallel with their stimulus tuning properties.
The Neural Basis of Selective Attention
Yantis, Steven
2009-01-01
Selective attention is an intrinsic component of perceptual representation in a visual system that is hierarchically organized. Modulatory signals originate in brain regions that represent behavioral goals; these signals specify which perceptual objects are to be represented by sensory neurons that are subject to contextual modulation. Attention can be deployed to spatial locations, features, or objects, and corresponding modulatory signals must be targeted within these domains. Open questions include how nonspatial perceptual domains are modulated by attention and how abstract goals are transformed into targeted modulatory signals. PMID:19444327
NASA Astrophysics Data System (ADS)
Zhongqin, G.; Chen, Y.
2017-12-01
Abstract Quickly identify the spatial distribution of landslides automatically is essential for the prevention, mitigation and assessment of the landslide hazard. It's still a challenging job owing to the complicated characteristics and vague boundary of the landslide areas on the image. The high resolution remote sensing image has multi-scales, complex spatial distribution and abundant features, the object-oriented image classification methods can make full use of the above information and thus effectively detect the landslides after the hazard happened. In this research we present a new semi-supervised workflow, taking advantages of recent object-oriented image analysis and machine learning algorithms to quick locate the different origins of landslides of some areas on the southwest part of China. Besides a sequence of image segmentation, feature selection, object classification and error test, this workflow ensemble the feature selection and classifier selection. The feature this study utilized were normalized difference vegetation index (NDVI) change, textural feature derived from the gray level co-occurrence matrices (GLCM), spectral feature and etc. The improvement of this study shows this algorithm significantly removes some redundant feature and the classifiers get fully used. All these improvements lead to a higher accuracy on the determination of the shape of landslides on the high resolution remote sensing image, in particular the flexibility aimed at different kinds of landslides.
Dashniani, M G; Burjanadze, M A; Naneishvili, T L; Chkhikvishvili, N C; Beselia, G V; Kruashvili, L B; Pochkhidze, N O; Chighladze, M R
2015-01-01
In the present study, the effect of the medial septal (MS) lesions on exploratory activity in the open field and the spatial and object recognition memory has been investigated. This experiment compares three types of MS lesions: electrolytic lesions that destroy cells and fibers of passage, neurotoxic - ibotenic acid lesions that spare fibers of passage but predominantly affect the septal noncholinergic neurons, and immunotoxin - 192 IgG-saporin infusions that only eliminate cholinergic neurons. The main results are: the MS electrolytic lesioned rats were impaired in habituating to the environment in the repeated spatial environment, but rats with immuno- or neurotoxic lesions of the MS did not differ from control ones; the MS electrolytic and ibotenic acid lesioned rats showed an increase in their exploratory activity to the objects and were impaired in habituating to the objects in the repeated spatial environment; rats with immunolesions of the MS did not differ from control rats; electrolytic lesions of the MS disrupt spatial recognition memory; rats with immuno- or neurotoxic lesions of the MS were normal in detecting spatial novelty; all of the MS-lesioned and control rats clearly reacted to the object novelty by exploring the new object more than familiar ones. Results observed across lesion techniques indicate that: (i) the deficits after nonselective damage of MS are limited to a subset of cognitive processes dependent on the hippocampus, (ii) MS is substantial for spatial, but not for object recognition memory - the object recognition memory can be supported outside the septohippocampal system; (iii) the selective loss of septohippocampal cholinergic or noncholinergic projections does not disrupt the function of the hippocampus to a sufficient extent to impair spatial recognition memory; (iv) there is dissociation between the two major components (cholinergic and noncholinergic) of the septohippocampal pathway in exploratory behavior assessed in the open field - the memory exhibited by decrements in exploration of repeated object presentations is affected by either electrolytic or ibotenic lesions, but not saporin.
Impact of Spatial Pumping Patterns on Groundwater Management
NASA Astrophysics Data System (ADS)
Yin, J.; Tsai, F. T. C.
2017-12-01
Challenges exist to manage groundwater resources while maintaining a balance between groundwater quantity and quality because of anthropogenic pumping activities as well as complex subsurface environment. In this study, to address the impact of spatial pumping pattern on groundwater management, a mixed integer nonlinear multi-objective model is formulated by integrating three objectives within a management framework to: (i) maximize total groundwater withdrawal from potential wells; (ii) minimize total electricity cost for well pumps; and (iii) attain groundwater level at selected monitoring locations as close as possible to the target level. Binary variables are used in the groundwater management model to control the operative status of pumping wells. The NSGA-II is linked with MODFLOW to solve the multi-objective problem. The proposed method is applied to a groundwater management problem in the complex Baton Rouge aquifer system, southeastern Louisiana. Results show that (a) non-dominated trade-off solutions under various spatial distributions of active pumping wells can be achieved. Each solution is optimal with regard to its corresponding objectives; (b) operative status, locations and pumping rates of pumping wells are significant to influence the distribution of hydraulic head, which in turn influence the optimization results; (c) A wide range of optimal solutions is obtained such that decision makers can select the most appropriate solution through negotiation with different stakeholders. This technique is beneficial to finding out the optimal extent to which three objectives including water supply concern, energy concern and subsidence concern can be balanced.
Oculomotor selection underlies feature retention in visual working memory.
Hanning, Nina M; Jonikaitis, Donatas; Deubel, Heiner; Szinte, Martin
2016-02-01
Oculomotor selection, spatial task relevance, and visual working memory (WM) are described as three processes highly intertwined and sustained by similar cortical structures. However, because task-relevant locations always constitute potential saccade targets, no study so far has been able to distinguish between oculomotor selection and spatial task relevance. We designed an experiment that allowed us to dissociate in humans the contribution of task relevance, oculomotor selection, and oculomotor execution to the retention of feature representations in WM. We report that task relevance and oculomotor selection lead to dissociable effects on feature WM maintenance. In a first task, in which an object's location was encoded as a saccade target, its feature representations were successfully maintained in WM, whereas they declined at nonsaccade target locations. Likewise, we observed a similar WM benefit at the target of saccades that were prepared but never executed. In a second task, when an object's location was marked as task relevant but constituted a nonsaccade target (a location to avoid), feature representations maintained at that location did not benefit. Combined, our results demonstrate that oculomotor selection is consistently associated with WM, whereas task relevance is not. This provides evidence for an overlapping circuitry serving saccade target selection and feature-based WM that can be dissociated from processes encoding task-relevant locations. Copyright © 2016 the American Physiological Society.
Egocentric and nonegocentric coding in memory for spatial layout: Evidence from scene recognition
2005-01-01
Much contemporary research has suggested that memories for spatial layout are stored with a preferred orientation. The present paper examines whether spatial memories are also stored with a preferred viewpoint position. Participants viewed images of an arrangement of objects taken from a single viewpoint, and were subsequently tested on their ability to recognize the arrangement from novel viewpoints that had been translated in either the lateral or depth dimension. Lateral and forward displacements of the viewpoint resulted in increasing response latencies and errors. Backward displacement showed no such effect, nor did lateral translation that resulted in a centered “canonical” view of the arrangement. These results further constrain the specificity of spatial memory, while also providing some evidence that nonegocentric spatial information is coded in memory. PMID:16933759
Spatiotemporal proximity effects in visual short-term memory examined by target-nontarget analysis.
Sapkota, Raju P; Pardhan, Shahina; van der Linde, Ian
2016-08-01
Visual short-term memory (VSTM) is a limited-capacity system that holds a small number of objects online simultaneously, implying that competition for limited storage resources occurs (Phillips, 1974). How the spatial and temporal proximity of stimuli affects this competition is unclear. In this 2-experiment study, we examined the effect of the spatial and temporal separation of real-world memory targets and erroneously selected nontarget items examined during location-recognition and object-recall tasks. In Experiment 1 (the location-recognition task), our test display comprised either the picture or name of 1 previously examined memory stimulus (rendered above as the stimulus-display area), together with numbered square boxes at each of the memory-stimulus locations used in that trial. Participants were asked to report the number inside the square box corresponding to the location at which the cued object was originally presented. In Experiment 2 (the object-recall task), the test display comprised a single empty square box presented at 1 memory-stimulus location. Participants were asked to report the name of the object presented at that location. In both experiments, nontarget objects that were spatially and temporally proximal to the memory target were confused more often than nontarget objects that were spatially and temporally distant (i.e., a spatiotemporal proximity effect); this effect generalized across memory tasks, and the object feature (picture or name) that cued the test-display memory target. Our findings are discussed in terms of spatial and temporal confusion "fields" in VSTM, wherein objects occupy diffuse loci in a spatiotemporal coordinate system, wherein neighboring locations are more susceptible to confusion. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
Spatiotemporal Thinking in the Geosciences
NASA Astrophysics Data System (ADS)
Shipley, T. F.; Manduca, C. A.; Ormand, C. J.; Tikoff, B.
2011-12-01
Reasoning about spatial relations is a critical skill for geoscientists. Within the geosciences different disciplines may reason about different sorts of relationships. These relationships may span vastly different spatial and temporal scales (from the spatial alignment in atoms in crystals to the changes in the shape of plates). As part of work in a research center on spatial thinking in STEM education, we have been working to classify the spatial skills required in geology, develop tests for each spatial skill, and develop the cognitive science tools to promote the critical spatial reasoning skills. Research in psychology, neurology and linguistics supports a broad classification of spatial skills along two dimensions: one versus many objects (which roughly translates to object- focused and navigation focused skills) and static versus dynamic spatial relations. The talk will focus on the interaction of space and time in spatial cognition in the geosciences. We are working to develop measures of skill in visualizing spatiotemporal changes. A new test developed to measure visualization of brittle deformations will be presented. This is a skill that has not been clearly recognized in the cognitive science research domain and thus illustrates the value of interdisciplinary work that combines geosciences with cognitive sciences. Teaching spatiotemporal concepts can be challenging. Recent theoretical work suggests analogical reasoning can be a powerful tool to aid student learning to reason about temporal relations using spatial skills. Recent work in our lab has found that progressive alignment of spatial and temporal scales promotes accurate reasoning about temporal relations at geological time scales.
Krityakierne, Tipaluck; Akhtar, Taimoor; Shoemaker, Christine A.
2016-02-02
This paper presents a parallel surrogate-based global optimization method for computationally expensive objective functions that is more effective for larger numbers of processors. To reach this goal, we integrated concepts from multi-objective optimization and tabu search into, single objective, surrogate optimization. Our proposed derivative-free algorithm, called SOP, uses non-dominated sorting of points for which the expensive function has been previously evaluated. The two objectives are the expensive function value of the point and the minimum distance of the point to previously evaluated points. Based on the results of non-dominated sorting, P points from the sorted fronts are selected as centersmore » from which many candidate points are generated by random perturbations. Based on surrogate approximation, the best candidate point is subsequently selected for expensive evaluation for each of the P centers, with simultaneous computation on P processors. Centers that previously did not generate good solutions are tabu with a given tenure. We show almost sure convergence of this algorithm under some conditions. The performance of SOP is compared with two RBF based methods. The test results show that SOP is an efficient method that can reduce time required to find a good near optimal solution. In a number of cases the efficiency of SOP is so good that SOP with 8 processors found an accurate answer in less wall-clock time than the other algorithms did with 32 processors.« less
Kim, Jejoong; Park, Sohee; Shin, Yong-Wook; Jin Lee, Kyung; Kwon, Jun Soo
2006-02-15
Working memory (WM) deficit is present in a majority of patients with schizophrenia but it is unclear which components of WM are impaired. Past studies suggest that encoding may be compromised. One important determinant of encoding is the deployment of selective attention to the target stimulus. In addition, attention and encoding are modulated by motivational factors. In this study, we investigated the effects of self-initiated encoding (i.e., voluntary attention) on WM. 19 patients with schizophrenia and 19 matched control subjects participated in visual WM and control tasks. Encoding was manipulated by asking subjects to select from two face targets and memorize 1) one of the two identical faces (Non-preference condition), 2) one that is marked (Non-choice condition), and 3) one they prefer (Preference condition). WM accuracy for both location (spatial) and identity (object) was measured. Overall, patients with schizophrenia were less accurate and slower than the control subjects but the deficit was greater for object WM. However, patients were more accurate in object WM when they selected a preferred face as their target during encoding (preference condition) compared with the other two conditions. This effect was not significant for spatial WM. These results suggest that voluntary, self-initiated attention may facilitate object encoding especially if the selection of the target involves affective choice, and that attention may play different roles in encoding 'what' versus 'where' in WM. Since encoding affects all forms of memory, these results may have a more general implication for memory.
Distinct roles of basal forebrain cholinergic neurons in spatial and object recognition memory.
Okada, Kana; Nishizawa, Kayo; Kobayashi, Tomoko; Sakata, Shogo; Kobayashi, Kazuto
2015-08-06
Recognition memory requires processing of various types of information such as objects and locations. Impairment in recognition memory is a prominent feature of amnesia and a symptom of Alzheimer's disease (AD). Basal forebrain cholinergic neurons contain two major groups, one localized in the medial septum (MS)/vertical diagonal band of Broca (vDB), and the other in the nucleus basalis magnocellularis (NBM). The roles of these cell groups in recognition memory have been debated, and it remains unclear how they contribute to it. We use a genetic cell targeting technique to selectively eliminate cholinergic cell groups and then test spatial and object recognition memory through different behavioural tasks. Eliminating MS/vDB neurons impairs spatial but not object recognition memory in the reference and working memory tasks, whereas NBM elimination undermines only object recognition memory in the working memory task. These impairments are restored by treatment with acetylcholinesterase inhibitors, anti-dementia drugs for AD. Our results highlight that MS/vDB and NBM cholinergic neurons are not only implicated in recognition memory but also have essential roles in different types of recognition memory.
Berggren, Nick; Eimer, Martin
2016-09-01
Representations of target-defining features (attentional templates) guide the selection of target objects in visual search. We used behavioral and electrophysiological measures to investigate how such search templates control the allocation of attention in search tasks where targets are defined by the combination of 2 colors or by a specific spatial configuration of these colors. Target displays were preceded by spatially uninformative cue displays that contained items in 1 or both target-defining colors. Experiments 1 and 2 demonstrated that, during search for color combinations, attention is initially allocated independently and in parallel to all objects with target-matching colors, but is then rapidly withdrawn from objects that only have 1 of the 2 target colors. In Experiment 3, targets were defined by a particular spatial configuration of 2 colors, and could be accompanied by nontarget objects with a different configuration of the same colors. Attentional guidance processes were unable to distinguish between these 2 types of objects. Both attracted attention equally when they appeared in a cue display, and both received parallel focal-attentional processing and were encoded into working memory when they were presented in the same target display. Results demonstrate that attention can be guided simultaneously by multiple features from the same dimension, but that these guidance processes have no access to the spatial-configural properties of target objects. They suggest that attentional templates do not represent target objects in an integrated pictorial fashion, but contain separate representations of target-defining features. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
Spatial Characterization of Polycyclic Aromatic Hydrocarbons in 2008 TC3 Samples
NASA Astrophysics Data System (ADS)
Sabbah, Hassan; Morrow, A.; Zare, R. N.; Jenniskens, P.
2009-09-01
Hassan Sabbah1, Amy L. Morrow1, Richard N. Zare1 and Petrus Jenniskens2 1Stanford University, Stanford, California 94305, 2 SETI Institute, Carl Sagan Center, 515 North Whisman Road, Mountain View, California 94043, USA. In October 2006 a small asteroid (2-3 meters) was observed in outer space. On October 7, 2008, it entered the Earth's atmosphere creating a fireball over Northern Sudan. Some 280 meteorites were collected by the University of Khartoum. In order to explore the existence of organic materials, specifically polycyclic aromatic hydrocarbons (PAHs), we applied two-step laser desorption laser ionization mass spectrometry (L2MS) to some selected fragments. This technique consists of desorbing with a pulsed infrared laser beam the solid materials into a gaseous phase with no fragmentation followed by resonance enhanced multiphoton ionization to analyze the PAH content. L2MS was already applied to an array of extraterrestrial objects including interplanetary dust particles IDPs, carbonaceous chondrites and comet coma particles. Moreover, spatial resolution of PAHs in 2008 TC3 samples was achieved to explore the heterogeneity within individual fragments. The results of these studies and their contribution to understanding the formation of this asteroid will be discussed.
1989-10-01
weight based on how powerful the corresponding feature is for object recognition and discrimination. For example, consider an arbitrary weight, denoted...quality of the segmentation, how powerful the features and spatial constraints in the knowledge base are (as far as object recognition is concern...that are powerful for object recognition and discrimination. At this point, this selection is performed heuristically through trial-and-error. As a
Modality-specificity of Selective Attention Networks
Stewart, Hannah J.; Amitay, Sygal
2015-01-01
Objective: To establish the modality specificity and generality of selective attention networks. Method: Forty-eight young adults completed a battery of four auditory and visual selective attention tests based upon the Attention Network framework: the visual and auditory Attention Network Tests (vANT, aANT), the Test of Everyday Attention (TEA), and the Test of Attention in Listening (TAiL). These provided independent measures for auditory and visual alerting, orienting, and conflict resolution networks. The measures were subjected to an exploratory factor analysis to assess underlying attention constructs. Results: The analysis yielded a four-component solution. The first component comprised of a range of measures from the TEA and was labeled “general attention.” The third component was labeled “auditory attention,” as it only contained measures from the TAiL using pitch as the attended stimulus feature. The second and fourth components were labeled as “spatial orienting” and “spatial conflict,” respectively—they were comprised of orienting and conflict resolution measures from the vANT, aANT, and TAiL attend-location task—all tasks based upon spatial judgments (e.g., the direction of a target arrow or sound location). Conclusions: These results do not support our a-priori hypothesis that attention networks are either modality specific or supramodal. Auditory attention separated into selectively attending to spatial and non-spatial features, with the auditory spatial attention loading onto the same factor as visual spatial attention, suggesting spatial attention is supramodal. However, since our study did not include a non-spatial measure of visual attention, further research will be required to ascertain whether non-spatial attention is modality-specific. PMID:26635709
Locator-Checker-Scaler Object Tracking Using Spatially Ordered and Weighted Patch Descriptor.
Kim, Han-Ul; Kim, Chang-Su
2017-08-01
In this paper, we propose a simple yet effective object descriptor and a novel tracking algorithm to track a target object accurately. For the object description, we divide the bounding box of a target object into multiple patches and describe them with color and gradient histograms. Then, we determine the foreground weight of each patch to alleviate the impacts of background information in the bounding box. To this end, we perform random walk with restart (RWR) simulation. We then concatenate the weighted patch descriptors to yield the spatially ordered and weighted patch (SOWP) descriptor. For the object tracking, we incorporate the proposed SOWP descriptor into a novel tracking algorithm, which has three components: locator, checker, and scaler (LCS). The locator and the scaler estimate the center location and the size of a target, respectively. The checker determines whether it is safe to adjust the target scale in a current frame. These three components cooperate with one another to achieve robust tracking. Experimental results demonstrate that the proposed LCS tracker achieves excellent performance on recent benchmarks.
The One to Multiple Automatic High Accuracy Registration of Terrestrial LIDAR and Optical Images
NASA Astrophysics Data System (ADS)
Wang, Y.; Hu, C.; Xia, G.; Xue, H.
2018-04-01
The registration of ground laser point cloud and close-range image is the key content of high-precision 3D reconstruction of cultural relic object. In view of the requirement of high texture resolution in the field of cultural relic at present, The registration of point cloud and image data in object reconstruction will result in the problem of point cloud to multiple images. In the current commercial software, the two pairs of registration of the two kinds of data are realized by manually dividing point cloud data, manual matching point cloud and image data, manually selecting a two - dimensional point of the same name of the image and the point cloud, and the process not only greatly reduces the working efficiency, but also affects the precision of the registration of the two, and causes the problem of the color point cloud texture joint. In order to solve the above problems, this paper takes the whole object image as the intermediate data, and uses the matching technology to realize the automatic one-to-one correspondence between the point cloud and multiple images. The matching of point cloud center projection reflection intensity image and optical image is applied to realize the automatic matching of the same name feature points, and the Rodrigo matrix spatial similarity transformation model and weight selection iteration are used to realize the automatic registration of the two kinds of data with high accuracy. This method is expected to serve for the high precision and high efficiency automatic 3D reconstruction of cultural relic objects, which has certain scientific research value and practical significance.
Vallée, Julie; Souris, Marc; Fournet, Florence; Bochaton, Audrey; Mobillion, Virginie; Peyronnie, Karine; Salem, Gérard
2007-01-01
Background Geographical objectives and probabilistic methods are difficult to reconcile in a unique health survey. Probabilistic methods focus on individuals to provide estimates of a variable's prevalence with a certain precision, while geographical approaches emphasise the selection of specific areas to study interactions between spatial characteristics and health outcomes. A sample selected from a small number of specific areas creates statistical challenges: the observations are not independent at the local level, and this results in poor statistical validity at the global level. Therefore, it is difficult to construct a sample that is appropriate for both geographical and probability methods. Methods We used a two-stage selection procedure with a first non-random stage of selection of clusters. Instead of randomly selecting clusters, we deliberately chose a group of clusters, which as a whole would contain all the variation in health measures in the population. As there was no health information available before the survey, we selected a priori determinants that can influence the spatial homogeneity of the health characteristics. This method yields a distribution of variables in the sample that closely resembles that in the overall population, something that cannot be guaranteed with randomly-selected clusters, especially if the number of selected clusters is small. In this way, we were able to survey specific areas while minimising design effects and maximising statistical precision. Application We applied this strategy in a health survey carried out in Vientiane, Lao People's Democratic Republic. We selected well-known health determinants with unequal spatial distribution within the city: nationality and literacy. We deliberately selected a combination of clusters whose distribution of nationality and literacy is similar to the distribution in the general population. Conclusion This paper describes the conceptual reasoning behind the construction of the survey sample and shows that it can be advantageous to choose clusters using reasoned hypotheses, based on both probability and geographical approaches, in contrast to a conventional, random cluster selection strategy. PMID:17543100
Vallée, Julie; Souris, Marc; Fournet, Florence; Bochaton, Audrey; Mobillion, Virginie; Peyronnie, Karine; Salem, Gérard
2007-06-01
Geographical objectives and probabilistic methods are difficult to reconcile in a unique health survey. Probabilistic methods focus on individuals to provide estimates of a variable's prevalence with a certain precision, while geographical approaches emphasise the selection of specific areas to study interactions between spatial characteristics and health outcomes. A sample selected from a small number of specific areas creates statistical challenges: the observations are not independent at the local level, and this results in poor statistical validity at the global level. Therefore, it is difficult to construct a sample that is appropriate for both geographical and probability methods. We used a two-stage selection procedure with a first non-random stage of selection of clusters. Instead of randomly selecting clusters, we deliberately chose a group of clusters, which as a whole would contain all the variation in health measures in the population. As there was no health information available before the survey, we selected a priori determinants that can influence the spatial homogeneity of the health characteristics. This method yields a distribution of variables in the sample that closely resembles that in the overall population, something that cannot be guaranteed with randomly-selected clusters, especially if the number of selected clusters is small. In this way, we were able to survey specific areas while minimising design effects and maximising statistical precision. We applied this strategy in a health survey carried out in Vientiane, Lao People's Democratic Republic. We selected well-known health determinants with unequal spatial distribution within the city: nationality and literacy. We deliberately selected a combination of clusters whose distribution of nationality and literacy is similar to the distribution in the general population. This paper describes the conceptual reasoning behind the construction of the survey sample and shows that it can be advantageous to choose clusters using reasoned hypotheses, based on both probability and geographical approaches, in contrast to a conventional, random cluster selection strategy.
Geographic Distribution of Trauma Centers and Injury Related Mortality in the United States
Brown, Joshua B.; Rosengart, Matthew R.; Billiar, Timothy R.; Peitzman, Andrew B.; Sperry, Jason L.
2015-01-01
Background Regionalized trauma care improves outcomes; however access to care is not uniform across the US. The objective was to evaluate whether geographic distribution of trauma centers correlates with injury mortality across state trauma systems. Methods Level I/II trauma centers in the contiguous US were mapped. State-level age-adjusted injury fatality rates/100,000people were obtained and evaluated for spatial autocorrelation. Nearest neighbor ratios (NNR) were generated for each state. A NNR<1 indicates clustering, while NNR>1 indicates dispersion. NNR were tested for difference from random geographic distribution. Fatality rates and NNR were examined for correlation. Fatality rates were compared between states with trauma center clustering versus dispersion. Trauma center distribution and population density were evaluated. Spatial-lag regression determined the association between fatality rate and NNR, controlling for state-level demographics, population density, injury severity, trauma system resources, and socioeconomic factors. Results Fatality rates were spatially autocorrelated (Moran's I=0.35, p<0.01). Nine states had a clustered pattern (median NNR 0.55, IQR 0.48–0.60), 22 had a dispersed pattern (median NNR 2.00, IQR 1.68–3.99), and 10 had a random pattern (median NNR 0.90, IQR 0.85–1.00) of trauma center distribution. Fatality rate and NNR were correlated (ρ=0.34, p=0.03). Clustered states had a lower median injury fatality rate compared to dispersed states (56.9 [IQR 46.5–58.9] versus 64.9 [IQR 52.5–77.1], p=0.04). Dispersed compared to clustered states had more counties without a trauma center that had higher population density than counties with a trauma center (5.7% versus 1.2%, p<0.01). Spatial-lag regression demonstrated fatality rates increased 0.02/100,000persons for each unit increase in NNR (p<0.01). Conclusions Geographic distribution of trauma centers correlates with injury mortality, with more clustered state trauma centers associated with lower fatality rates. This may be a result of access relative to population density. These results may have implications for trauma system planning and requires further study to investigate underlying mechanisms PMID:26517780
An overview of the Columbia Habitat Monitoring Program's (CHaMP) spatial-temporal design framework
We briefly review the concept of a master sample applied to stream networks in which a randomized set of stream sites is selected across a broad region to serve as a list of sites from which a subset of sites is selected to achieve multiple objectives of specific designs. The Col...
Fine-grained, local maps and coarse, global representations support human spatial working memory.
Katshu, Mohammad Zia Ul Haq; d'Avossa, Giovanni
2014-01-01
While sensory processes are tuned to particular features, such as an object's specific location, color or orientation, visual working memory (vWM) is assumed to store information using representations, which generalize over a feature dimension. Additionally, current vWM models presume that different features or objects are stored independently. On the other hand, configurational effects, when observed, are supposed to mainly reflect encoding strategies. We show that the location of the target, relative to the display center and boundaries, and overall memory load influenced recall precision, indicating that, like sensory processes, capacity limited vWM resources are spatially tuned. When recalling one of three memory items the target distance from the display center was overestimated, similar to the error when only one item was memorized, but its distance from the memory items' average position was underestimated, showing that not only individual memory items' position, but also the global configuration of the memory array may be stored. Finally, presenting the non-target items at recall, consequently providing landmarks and configurational information, improved precision and accuracy of target recall. Similarly, when the non-target items were translated at recall, relative to their position in the initial display, a parallel displacement of the recalled target was observed. These findings suggest that fine-grained spatial information in vWM is represented in local maps whose resolution varies with distance from landmarks, such as the display center, while coarse representations are used to store the memory array configuration. Both these representations are updated at the time of recall.
Fine-Grained, Local Maps and Coarse, Global Representations Support Human Spatial Working Memory
Katshu, Mohammad Zia Ul Haq; d'Avossa, Giovanni
2014-01-01
While sensory processes are tuned to particular features, such as an object's specific location, color or orientation, visual working memory (vWM) is assumed to store information using representations, which generalize over a feature dimension. Additionally, current vWM models presume that different features or objects are stored independently. On the other hand, configurational effects, when observed, are supposed to mainly reflect encoding strategies. We show that the location of the target, relative to the display center and boundaries, and overall memory load influenced recall precision, indicating that, like sensory processes, capacity limited vWM resources are spatially tuned. When recalling one of three memory items the target distance from the display center was overestimated, similar to the error when only one item was memorized, but its distance from the memory items' average position was underestimated, showing that not only individual memory items' position, but also the global configuration of the memory array may be stored. Finally, presenting the non-target items at recall, consequently providing landmarks and configurational information, improved precision and accuracy of target recall. Similarly, when the non-target items were translated at recall, relative to their position in the initial display, a parallel displacement of the recalled target was observed. These findings suggest that fine-grained spatial information in vWM is represented in local maps whose resolution varies with distance from landmarks, such as the display center, while coarse representations are used to store the memory array configuration. Both these representations are updated at the time of recall. PMID:25259601
Feeling form: the neural basis of haptic shape perception.
Yau, Jeffrey M; Kim, Sung Soo; Thakur, Pramodsingh H; Bensmaia, Sliman J
2016-02-01
The tactile perception of the shape of objects critically guides our ability to interact with them. In this review, we describe how shape information is processed as it ascends the somatosensory neuraxis of primates. At the somatosensory periphery, spatial form is represented in the spatial patterns of activation evoked across populations of mechanoreceptive afferents. In the cerebral cortex, neurons respond selectively to particular spatial features, like orientation and curvature. While feature selectivity of neurons in the earlier processing stages can be understood in terms of linear receptive field models, higher order somatosensory neurons exhibit nonlinear response properties that result in tuning for more complex geometrical features. In fact, tactile shape processing bears remarkable analogies to its visual counterpart and the two may rely on shared neural circuitry. Furthermore, one of the unique aspects of primate somatosensation is that it contains a deformable sensory sheet. Because the relative positions of cutaneous mechanoreceptors depend on the conformation of the hand, the haptic perception of three-dimensional objects requires the integration of cutaneous and proprioceptive signals, an integration that is observed throughout somatosensory cortex. Copyright © 2016 the American Physiological Society.
Redel, P; Bublak, P; Sorg, C; Kurz, A; Förstl, H; Müller, H J; Schneider, W X; Perneczky, R; Finke, K
2012-01-01
Visual selective attention was assessed with a partial-report task in patients with probable Alzheimer's disease (AD), amnestic mild cognitive impairment (MCI), and healthy elderly controls. Based on Bundesen's "theory of visual attention" (TVA), two parameters were derived: top-down control of attentional selection, representing task-related attentional weighting for prioritizing relevant visual objects, and spatial distribution of attentional weights across the left and the right hemifield. Compared with controls, MCI patients showed significantly reduced top-down controlled selection, which was further deteriorated in AD subjects. Moreover, attentional weighting was significantly unbalanced across hemifields in MCI and tended to be more lateralized in AD. Across MCI and AD patients, carriers of the apolipoprotein E ε4 allele (ApoE4) displayed a leftward spatial bias, which was the more pronounced the younger the ApoE4-positive patients and the earlier disease onset. These results indicate that impaired top-down control may be linked to early dysfunction of fronto-parietal networks. An early temporo-parietal interhemispheric asymmetry might cause a pathological spatial bias which is associated with ApoE4 genotype and may therefore function as early cognitive marker of upcoming AD. Copyright © 2012 Elsevier Inc. All rights reserved.
A Neural Network Architecture For Rapid Model Indexing In Computer Vision Systems
NASA Astrophysics Data System (ADS)
Pawlicki, Ted
1988-03-01
Models of objects stored in memory have been shown to be useful for guiding the processing of computer vision systems. A major consideration in such systems, however, is how stored models are initially accessed and indexed by the system. As the number of stored models increases, the time required to search memory for the correct model becomes high. Parallel distributed, connectionist, neural networks' have been shown to have appealing content addressable memory properties. This paper discusses an architecture for efficient storage and reference of model memories stored as stable patterns of activity in a parallel, distributed, connectionist, neural network. The emergent properties of content addressability and resistance to noise are exploited to perform indexing of the appropriate object centered model from image centered primitives. The system consists of three network modules each of which represent information relative to a different frame of reference. The model memory network is a large state space vector where fields in the vector correspond to ordered component objects and relative, object based spatial relationships between the component objects. The component assertion network represents evidence about the existence of object primitives in the input image. It establishes local frames of reference for object primitives relative to the image based frame of reference. The spatial relationship constraint network is an intermediate representation which enables the association between the object based and the image based frames of reference. This intermediate level represents information about possible object orderings and establishes relative spatial relationships from the image based information in the component assertion network below. It is also constrained by the lawful object orderings in the model memory network above. The system design is consistent with current psychological theories of recognition by component. It also seems to support Marr's notions of hierarchical indexing. (i.e. the specificity, adjunct, and parent indices) It supports the notion that multiple canonical views of an object may have to be stored in memory to enable its efficient identification. The use of variable fields in the state space vectors appears to keep the number of required nodes in the network down to a tractable number while imposing a semantic value on different areas of the state space. This semantic imposition supports an interface between the analogical aspects of neural networks and the propositional paradigms of symbolic processing.
Optimal Access to NASA Water Cycle Data for Water Resources Management
NASA Astrophysics Data System (ADS)
Teng, W. L.; Arctur, D. K.; Espinoza, G. E.; Rui, H.; Strub, R. F.; Vollmer, B.
2016-12-01
A "Digital Divide" in data representation exists between the preferred way of data access by the hydrology community (i.e., as time series of discrete spatial objects) and the common way of data archival by earth science data centers (i.e., as continuous spatial fields, one file per time step). This Divide has been an obstacle, specifically, between the Consortium of Universities for the Advancement of Hydrologic Science, Inc. Hydrologic Information System (CUAHSI HIS) and NASA Goddard Earth Sciences Data and Information Services Center (GES DISC). An optimal approach to bridging the Divide, developed by the GES DISC, is to reorganize data from the way they are archived to some way that is optimal for the desired method of data access. Specifically for CUAHSI HIS, selected data sets were reorganized into time series files, one per geographical "point." These time series files, termed "data rods," are pre-generated or virtual (generated on-the-fly). Data sets available as data rods include North American Land Data Assimilation System (NLDAS), Global Land Data Assimilation System (GLDAS), TRMM Multi-satellite Precipitation Analysis (TMPA), Land Parameter Retrieval Model (LPRM), Modern-Era Retrospective Analysis for Research and Applications (MERRA)-Land, and Groundwater and Soil Moisture Conditions from Gravity Recovery and Climate Experiment (GRACE) Data Assimilation drought indicators for North America Drought Monitor (GRACE-DA-DM). In order to easily avail the operational water resources community the benefits of optimally reorganized data, we have developed multiple methods of making these data more easily accessible and usable. These include direct access via RESTful Web services, a browser-based Web map and statistical tool for selected NLDAS variables for the U.S. (CONUS), a HydroShare app (Data Rods Explorer, under development) on the Tethys Platform, and access via the GEOSS Portal. Examples of drought-related applications of these data and data access methods are provided.
NASA Astrophysics Data System (ADS)
Lawhead, Pamela B.; Aten, Michelle L.
2003-04-01
The Center for GeoSpatial Workforce Development is embarking on a new era in education by developing a repository of dynamic online courseware authored by the foremost industry experts within the remote sensing and GIS industries. Virtual classrooms equipped with the most advanced instructions, computations, communications, course evaluation, and management facilities amplify these courses to enhance the learning environment and provide rapid feedback between instructors and students. The launch of this program included the objective development of the Model Curriculum by an independent consortium of remote sensing industry leaders. The Center's research and development focus on recruiting additional industry experts to develop the technical content of the courseware and then utilize state-of-the-art technology to enhance their material with visually stimulating animations, compelling audio clips and entertaining, interactive exercises intended to reach the broadest audience possible by targeting various learning styles. The courseware will be delivered via various media: Internet, CD-ROM, DVD, and compressed video, that translates into anywhere, anytime delivery of GeoSpatial Information Technology education.
Dai, Shengfa; Wei, Qingguo
2017-01-01
Common spatial pattern algorithm is widely used to estimate spatial filters in motor imagery based brain-computer interfaces. However, use of a large number of channels will make common spatial pattern tend to over-fitting and the classification of electroencephalographic signals time-consuming. To overcome these problems, it is necessary to choose an optimal subset of the whole channels to save computational time and improve the classification accuracy. In this paper, a novel method named backtracking search optimization algorithm is proposed to automatically select the optimal channel set for common spatial pattern. Each individual in the population is a N-dimensional vector, with each component representing one channel. A population of binary codes generate randomly in the beginning, and then channels are selected according to the evolution of these codes. The number and positions of 1's in the code denote the number and positions of chosen channels. The objective function of backtracking search optimization algorithm is defined as the combination of classification error rate and relative number of channels. Experimental results suggest that higher classification accuracy can be achieved with much fewer channels compared to standard common spatial pattern with whole channels.
Evaluation of focused multipolar stimulation for cochlear implants in long-term deafened cats
NASA Astrophysics Data System (ADS)
George, Shefin S.; Wise, Andrew K.; Fallon, James B.; Shepherd, Robert K.
2015-06-01
Objective. Focused multipolar (FMP) stimulation has been shown to produce restricted neural activation using intracochlear stimulation in animals with a normal population of spiral ganglion neurons (SGNs). However, in a clinical setting, the widespread loss of SGNs and peripheral fibres following deafness is expected to influence the effectiveness of FMP. Approach. We compared the efficacy of FMP stimulation to both monopolar (MP) and tripolar (TP) stimulation in long-term deafened cat cochleae (n = 8). Unlike our previous study, these cochleae contained <10% of the normal SGN population adjacent to the electrode array. We also evaluated the effect of electrode position on stimulation modes by using either modiolar facing or lateral wall facing half-band electrodes. The spread of neural activity across the inferior colliculus, a major nucleus within the central auditory pathway, was used as a measure of spatial selectivity. Main results. In cochleae with significant SGN degeneration, we observed that FMP and TP stimulation resulted in greater spatial selectivity than MP stimulation (p < 0.001). However, thresholds were significantly higher for FMP and TP stimulation compared to MP stimulation (p < 0.001). No difference between FMP and TP stimulation was found in any measures. The high threshold levels for FMP stimulation was significantly reduced without compromising spatial selectivity by varying the degree of current focusing (referred as ‘partial-FMP’ stimulation). Spatial selectivity of all stimulation modes was unaffected by the electrode position. Finally, spatial selectivity in long-term deafened cochleae was significantly less than that of cochleae with normal SGN population (George S S et al 2014 J. Neural Eng. 11 065003). Significance. The present results indicate that the greater spatial selectivity of FMP and TP stimulation over MP stimulation is maintained in cochleae with significant neural degeneration and is not adversely affected by electrode position. The greater spatial selectivity of FMP and TP stimulation would be expected to result in improved clinical performance.
Born, Jannis; Galeazzi, Juan M; Stringer, Simon M
2017-01-01
A subset of neurons in the posterior parietal and premotor areas of the primate brain respond to the locations of visual targets in a hand-centred frame of reference. Such hand-centred visual representations are thought to play an important role in visually-guided reaching to target locations in space. In this paper we show how a biologically plausible, Hebbian learning mechanism may account for the development of localized hand-centred representations in a hierarchical neural network model of the primate visual system, VisNet. The hand-centered neurons developed in the model use an invariance learning mechanism known as continuous transformation (CT) learning. In contrast to previous theoretical proposals for the development of hand-centered visual representations, CT learning does not need a memory trace of recent neuronal activity to be incorporated in the synaptic learning rule. Instead, CT learning relies solely on a Hebbian learning rule, which is able to exploit the spatial overlap that naturally occurs between successive images of a hand-object configuration as it is shifted across different retinal locations due to saccades. Our simulations show how individual neurons in the network model can learn to respond selectively to target objects in particular locations with respect to the hand, irrespective of where the hand-object configuration occurs on the retina. The response properties of these hand-centred neurons further generalise to localised receptive fields in the hand-centred space when tested on novel hand-object configurations that have not been explored during training. Indeed, even when the network is trained with target objects presented across a near continuum of locations around the hand during training, the model continues to develop hand-centred neurons with localised receptive fields in hand-centred space. With the help of principal component analysis, we provide the first theoretical framework that explains the behavior of Hebbian learning in VisNet.
Born, Jannis; Stringer, Simon M.
2017-01-01
A subset of neurons in the posterior parietal and premotor areas of the primate brain respond to the locations of visual targets in a hand-centred frame of reference. Such hand-centred visual representations are thought to play an important role in visually-guided reaching to target locations in space. In this paper we show how a biologically plausible, Hebbian learning mechanism may account for the development of localized hand-centred representations in a hierarchical neural network model of the primate visual system, VisNet. The hand-centered neurons developed in the model use an invariance learning mechanism known as continuous transformation (CT) learning. In contrast to previous theoretical proposals for the development of hand-centered visual representations, CT learning does not need a memory trace of recent neuronal activity to be incorporated in the synaptic learning rule. Instead, CT learning relies solely on a Hebbian learning rule, which is able to exploit the spatial overlap that naturally occurs between successive images of a hand-object configuration as it is shifted across different retinal locations due to saccades. Our simulations show how individual neurons in the network model can learn to respond selectively to target objects in particular locations with respect to the hand, irrespective of where the hand-object configuration occurs on the retina. The response properties of these hand-centred neurons further generalise to localised receptive fields in the hand-centred space when tested on novel hand-object configurations that have not been explored during training. Indeed, even when the network is trained with target objects presented across a near continuum of locations around the hand during training, the model continues to develop hand-centred neurons with localised receptive fields in hand-centred space. With the help of principal component analysis, we provide the first theoretical framework that explains the behavior of Hebbian learning in VisNet. PMID:28562618
Roberts, Daniel J; Woollams, Anna M; Kim, Esther; Beeson, Pelagie M; Rapcsak, Steven Z; Lambon Ralph, Matthew A
2013-11-01
Recent visual neuroscience investigations suggest that ventral occipito-temporal cortex is retinotopically organized, with high acuity foveal input projecting primarily to the posterior fusiform gyrus (pFG), making this region crucial for coding high spatial frequency information. Because high spatial frequencies are critical for fine-grained visual discrimination, we hypothesized that damage to the left pFG should have an adverse effect not only on efficient reading, as observed in pure alexia, but also on the processing of complex non-orthographic visual stimuli. Consistent with this hypothesis, we obtained evidence that a large case series (n = 20) of patients with lesions centered on left pFG: 1) Exhibited reduced sensitivity to high spatial frequencies; 2) demonstrated prolonged response latencies both in reading (pure alexia) and object naming; and 3) were especially sensitive to visual complexity and similarity when discriminating between novel visual patterns. These results suggest that the patients' dual reading and non-orthographic recognition impairments have a common underlying mechanism and reflect the loss of high spatial frequency visual information normally coded in the left pFG.
Achieving full connectivity of sites in the multiperiod reserve network design problem
Jafari, Nahid; Nuse, Bryan L.; Moore, Clinton; Dilkina, Bistra; Hepinstall-Cymerman, Jeffrey
2017-01-01
The conservation reserve design problem is a challenge to solve because of the spatial and temporal nature of the problem, uncertainties in the decision process, and the possibility of alternative conservation actions for any given land parcel. Conservation agencies tasked with reserve design may benefit from a dynamic decision system that provides tactical guidance for short-term decision opportunities while maintaining focus on a long-term objective of assembling the best set of protected areas possible. To plan cost-effective conservation over time under time-varying action costs and budget, we propose a multi-period mixed integer programming model for the budget-constrained selection of fully connected sites. The objective is to maximize a summed conservation value over all network parcels at the end of the planning horizon. The originality of this work is in achieving full spatial connectivity of the selected sites during the schedule of conservation actions.
Alvarez, George A; Gill, Jonathan; Cavanagh, Patrick
2012-01-01
Previous studies have shown independent attentional selection of targets in the left and right visual hemifields during attentional tracking (Alvarez & Cavanagh, 2005) but not during a visual search (Luck, Hillyard, Mangun, & Gazzaniga, 1989). Here we tested whether multifocal spatial attention is the critical process that operates independently in the two hemifields. It is explicitly required in tracking (attend to a subset of object locations, suppress the others) but not in the standard visual search task (where all items are potential targets). We used a modified visual search task in which observers searched for a target within a subset of display items, where the subset was selected based on location (Experiments 1 and 3A) or based on a salient feature difference (Experiments 2 and 3B). The results show hemifield independence in this subset visual search task with location-based selection but not with feature-based selection; this effect cannot be explained by general difficulty (Experiment 4). Combined, these findings suggest that hemifield independence is a signature of multifocal spatial attention and highlight the need for cognitive and neural theories of attention to account for anatomical constraints on selection mechanisms. PMID:22637710
Independent effects of colour on object identification and memory.
Lloyd-Jones, Toby J; Nakabayashi, Kazuyo
2009-02-01
We examined the effects of colour on object identification and memory using a study-test priming procedure with a coloured-object decision task at test (i.e., deciding whether an object is correctly coloured). Objects were selected to have a single associated colour and were either correctly or incorrectly coloured. In addition, object shape and colour were either spatially integrated (i.e., colour fell on the object surface) or spatially separated (i.e., colour formed the background to the object). Transforming the colour of an object from study to test (e.g., from a yellow banana to a purple banana) reduced priming of response times, as compared to when the object was untransformed. This utilization of colour information in object memory was not contingent upon colour falling on the object surface or whether the resulting configuration was of a correctly or incorrectly coloured object. In addition, we observed independent effects of colour on response times, whereby coloured-object decisions were more efficient for correctly than for incorrectly coloured objects but only when colour fell on the object surface. These findings provide evidence for two distinct mechanisms of shape-colour binding in object processing.
Evaluation of focused multipolar stimulation for cochlear implants in acutely deafened cats
NASA Astrophysics Data System (ADS)
George, Shefin S.; Wise, Andrew K.; Shivdasani, Mohit N.; Shepherd, Robert K.; Fallon, James B.
2014-12-01
Objective. The conductive nature of the fluids and tissues of the cochlea can lead to broad activation of spiral ganglion neurons using contemporary cochlear implant stimulation configurations such as monopolar (MP) stimulation. The relatively poor spatial selectivity is thought to limit implant performance, particularly in noisy environments. Several current focusing techniques have been proposed to reduce the spread of activation with the aim towards achieving improved clinical performance. Approach. The present research evaluated the efficacy of focused multipolar (FMP) stimulation, a relatively new focusing technique in the cochlea, and compared its efficacy to both MP stimulation and tripolar (TP) stimulation. The spread of neural activity across the inferior colliculus (IC), measured by recording the spatial tuning curve, was used as a measure of spatial selectivity. Adult cats (n = 6) were acutely deafened and implanted with an intracochlear electrode array before multi-unit responses were recorded across the cochleotopic gradient of the contralateral IC. Recordings were made in response to acoustic and electrical stimulation using the MP, TP and FMP configurations. Main results. FMP and TP stimulation resulted in greater spatial selectivity than MP stimulation. However, thresholds were significantly higher (p < 0.001) for FMP and TP stimulation compared to MP stimulation. There were no differences found in spatial selectivity and threshold between FMP and TP stimulation. Significance. The greater spatial selectivity of FMP and TP stimulation would be expected to result in improved clinical performance. However, further research will be required to demonstrate the efficacy of these modes of stimulation after longer durations of deafness.
Object recognition and pose estimation of planar objects from range data
NASA Technical Reports Server (NTRS)
Pendleton, Thomas W.; Chien, Chiun Hong; Littlefield, Mark L.; Magee, Michael
1994-01-01
The Extravehicular Activity Helper/Retriever (EVAHR) is a robotic device currently under development at the NASA Johnson Space Center that is designed to fetch objects or to assist in retrieving an astronaut who may have become inadvertently de-tethered. The EVAHR will be required to exhibit a high degree of intelligent autonomous operation and will base much of its reasoning upon information obtained from one or more three-dimensional sensors that it will carry and control. At the highest level of visual cognition and reasoning, the EVAHR will be required to detect objects, recognize them, and estimate their spatial orientation and location. The recognition phase and estimation of spatial pose will depend on the ability of the vision system to reliably extract geometric features of the objects such as whether the surface topologies observed are planar or curved and the spatial relationships between the component surfaces. In order to achieve these tasks, three-dimensional sensing of the operational environment and objects in the environment will therefore be essential. One of the sensors being considered to provide image data for object recognition and pose estimation is a phase-shift laser scanner. The characteristics of the data provided by this scanner have been studied and algorithms have been developed for segmenting range images into planar surfaces, extracting basic features such as surface area, and recognizing the object based on the characteristics of extracted features. Also, an approach has been developed for estimating the spatial orientation and location of the recognized object based on orientations of extracted planes and their intersection points. This paper presents some of the algorithms that have been developed for the purpose of recognizing and estimating the pose of objects as viewed by the laser scanner, and characterizes the desirability and utility of these algorithms within the context of the scanner itself, considering data quality and noise.
Silicon oxide nanoparticles doped PQ-PMMA for volume holographic imaging filters.
Luo, Yuan; Russo, Juan M; Kostuk, Raymond K; Barbastathis, George
2010-04-15
Holographic imaging filters are required to have high Bragg selectivity, namely, narrow angular and spectral bandwidth, to obtain spatial-spectral information within a three-dimensional object. In this Letter, we present the design of holographic imaging filters formed using silicon oxide nanoparticles (nano-SiO(2)) in phenanthrenquinone-poly(methyl methacrylate) (PQ-PMMA) polymer recording material. This combination offers greater Bragg selectivity and increases the diffraction efficiency of holographic filters. The holographic filters with optimized ratio of nano-SiO(2) in PQ-PMMA can significantly improve the performance of Bragg selectivity and diffraction efficiency by 53% and 16%, respectively. We present experimental results and data analysis demonstrating this technique in use for holographic spatial-spectral imaging filters.
Adaptive antenna arrays for satellite communications: Design and testing
NASA Technical Reports Server (NTRS)
Gupta, I. J.; Swarner, W. G.; Walton, E. K.
1985-01-01
When two separate antennas are used with each feedback loop to decorrelate noise, the antennas should be located such that the phase of the interfering signal in the two antennas is the same while the noise in them is uncorrelated. Thus, the antenna patterns and spatial distribution of the auxiliary antennas are quite important and should be carefully selected. The selection and spatial distribution of auxiliary elements is discussed when the main antenna is a center fed reflector antenna. It is shown that offset feeds of the reflector antenna can be used as auxiliary elements of an adaptive array to suppress weak interfering signals. An experimental system is designed to verify the theoretical analysis. The details of the experimental systems are presented.
Plasmonic micropillars for precision cell force measurement across a large field-of-view
NASA Astrophysics Data System (ADS)
Xiao, Fan; Wen, Ximiao; Tan, Xing Haw Marvin; Chiou, Pei-Yu
2018-01-01
A plasmonic micropillar platform with self-organized gold nanospheres is reported for the precision cell traction force measurement across a large field-of-view (FOV). Gold nanospheres were implanted into the tips of polymer micropillars by annealing gold microdisks with nanosecond laser pulses. Each gold nanosphere is physically anchored in the center of a pillar tip and serves as a strong, point-source-like light scattering center for each micropillar. This allows a micropillar to be clearly observed and precisely tracked even under a low magnification objective lens for the concurrent and precision measurement across a large FOV. A spatial resolution of 30 nm for the pillar deflection measurement has been accomplished on this platform with a 20× objective lens.
Micromechanical slit positioning system as a transmissive spatial light modulator
NASA Astrophysics Data System (ADS)
Riesenberg, Rainer
2001-11-01
Micro-slits have been prepared with a slit-width and a slit- length of 2 ... 1000 micrometers . Linear and two-dimensional arrays up to 10 x 110 slits have been developed and completed with a piezo-actuator for shifting. This system is a so-called mechanical slit positioning system. The light is switched by simple one- or two-dimensional displacement of coded slit masks in a one- or two-layer architecture. The slit positioning system belongs to the transmissive class of MEMS-based spatial light modulators (SLM). It has fundamental advantages for optical contrast and also can be used in the full spectral region. Therefore transmissive versions of SLM should be a future solution. Instrument architectures based on the slit positioning system can increase the resolution by subpixel generation, the throughput by HADAMARD transform mode, or select objects for multi-object-spectroscopy. The linear slit positioning system was space qualified within an advanced micro- spectrometer. A NIR multi-object-spectrometer for the Next Generation Space Telescope (NGST) is based on a field selector for selecting objects. The field selector is a SLM, which could be implemented by a slit positioning system.
A real-world size organization of object responses in occipito-temporal cortex
Konkle, Talia; Oliva, Aude
2012-01-01
SUMMARY While there are selective regions of occipito-temporal cortex that respond to faces, letters, and bodies, the large-scale neural organization of most object categories remains unknown. Here we find that object representations can be differentiated along the ventral temporal cortex by their real-world size. In a functional neuroimaging experiment, observers were shown pictures of big and small real-world objects (e.g. table, bathtub; paperclip, cup), presented at the same retinal size. We observed a consistent medial-to-lateral organization of big and small object preferences in the ventral temporal cortex, mirrored along the lateral surface. Regions in the lateral-occipital, infero-temporal, and parahippocampal cortices showed strong peaks of differential real-world size selectivity, and maintained these preferences over changes in retinal size and in mental imagery. These data demonstrate that the real-world size of objects can provide insight into the spatial topography of object representation. PMID:22726840
NASA Astrophysics Data System (ADS)
Demirel, Mehmet C.; Mai, Juliane; Mendiguren, Gorka; Koch, Julian; Samaniego, Luis; Stisen, Simon
2018-02-01
Satellite-based earth observations offer great opportunities to improve spatial model predictions by means of spatial-pattern-oriented model evaluations. In this study, observed spatial patterns of actual evapotranspiration (AET) are utilised for spatial model calibration tailored to target the pattern performance of the model. The proposed calibration framework combines temporally aggregated observed spatial patterns with a new spatial performance metric and a flexible spatial parameterisation scheme. The mesoscale hydrologic model (mHM) is used to simulate streamflow and AET and has been selected due to its soil parameter distribution approach based on pedo-transfer functions and the build in multi-scale parameter regionalisation. In addition two new spatial parameter distribution options have been incorporated in the model in order to increase the flexibility of root fraction coefficient and potential evapotranspiration correction parameterisations, based on soil type and vegetation density. These parameterisations are utilised as they are most relevant for simulated AET patterns from the hydrologic model. Due to the fundamental challenges encountered when evaluating spatial pattern performance using standard metrics, we developed a simple but highly discriminative spatial metric, i.e. one comprised of three easily interpretable components measuring co-location, variation and distribution of the spatial data. The study shows that with flexible spatial model parameterisation used in combination with the appropriate objective functions, the simulated spatial patterns of actual evapotranspiration become substantially more similar to the satellite-based estimates. Overall 26 parameters are identified for calibration through a sequential screening approach based on a combination of streamflow and spatial pattern metrics. The robustness of the calibrations is tested using an ensemble of nine calibrations based on different seed numbers using the shuffled complex evolution optimiser. The calibration results reveal a limited trade-off between streamflow dynamics and spatial patterns illustrating the benefit of combining separate observation types and objective functions. At the same time, the simulated spatial patterns of AET significantly improved when an objective function based on observed AET patterns and a novel spatial performance metric compared to traditional streamflow-only calibration were included. Since the overall water balance is usually a crucial goal in hydrologic modelling, spatial-pattern-oriented optimisation should always be accompanied by traditional discharge measurements. In such a multi-objective framework, the current study promotes the use of a novel bias-insensitive spatial pattern metric, which exploits the key information contained in the observed patterns while allowing the water balance to be informed by discharge observations.
Masking reduces orientation selectivity in rat visual cortex
Alwis, Dasuni S.; Richards, Katrina L.
2016-01-01
In visual masking the perception of a target stimulus is impaired by a preceding (forward) or succeeding (backward) mask stimulus. The illusion is of interest because it allows uncoupling of the physical stimulus, its neuronal representation, and its perception. To understand the neuronal correlates of masking, we examined how masks affected the neuronal responses to oriented target stimuli in the primary visual cortex (V1) of anesthetized rats (n = 37). Target stimuli were circular gratings with 12 orientations; mask stimuli were plaids created as a binarized sum of all possible target orientations. Spatially, masks were presented either overlapping or surrounding the target. Temporally, targets and masks were presented for 33 ms, but the stimulus onset asynchrony (SOA) of their relative appearance was varied. For the first time, we examine how spatially overlapping and center-surround masking affect orientation discriminability (rather than visibility) in V1. Regardless of the spatial or temporal arrangement of stimuli, the greatest reductions in firing rate and orientation selectivity occurred for the shortest SOAs. Interestingly, analyses conducted separately for transient and sustained target response components showed that changes in orientation selectivity do not always coincide with changes in firing rate. Given the near-instantaneous reductions observed in orientation selectivity even when target and mask do not spatially overlap, we suggest that monotonic visual masking is explained by a combination of neural integration and lateral inhibition. PMID:27535373
Conci, Markus; Müller, Hermann J; von Mühlenen, Adrian
2013-07-09
In visual search, detection of a target is faster when it is presented within a spatial layout of repeatedly encountered nontarget items, indicating that contextual invariances can guide selective attention (contextual cueing; Chun & Jiang, 1998). However, perceptual regularities may interfere with contextual learning; for instance, no contextual facilitation occurs when four nontargets form a square-shaped grouping, even though the square location predicts the target location (Conci & von Mühlenen, 2009). Here, we further investigated potential causes for this interference-effect: We show that contextual cueing can reliably occur for targets located within the region of a segmented object, but not for targets presented outside of the object's boundaries. Four experiments demonstrate an object-based facilitation in contextual cueing, with a modulation of context-based learning by relatively subtle grouping cues including closure, symmetry, and spatial regularity. Moreover, the lack of contextual cueing for targets located outside the segmented region was due to an absence of (latent) learning of contextual layouts, rather than due to an attentional bias towards the grouped region. Taken together, these results indicate that perceptual segmentation provides a basic structure within which contextual scene regularities are acquired. This in turn argues that contextual learning is constrained by object-based selection.
Elk resource selection at parturition sites, Black Hills, South Dakota
Chadwick P. Lehman; Mark A. Rumble; Christopher T. Rota; Benjamin J. Bird; Dillon T. Fogarty; Joshua J. Millspaugh
2015-01-01
We studied elk (Cervus canadensis nelsoni) parturition sites at coarse (314-km2 and 7-km2) and fine (0.2-ha) scales in the Black Hills, South Dakota, 2011-2013, following a period of population decline and poor calf recruitment. Our objective was to test whether female elk selected parturition sites across spatial scales in association with forage, terrain...
Layout Geometry in the Selection of Intrinsic Frames of Reference from Multiple Viewpoints
ERIC Educational Resources Information Center
Mou, Weimin; Zhao, Mintao; McNamara, Timothy P.
2007-01-01
Four experiments investigated the roles of layout geometry in the selection of intrinsic frames of reference in spatial memory. Participants learned the locations of objects in a room from 2 or 3 viewing perspectives. One view corresponded to the axis of bilateral symmetry of the layout, and the other view(s) was (were) nonorthogonal to the axis…
Behrmann, Marlene; Peterson, Mary A; Moscovitch, Morris; Suzuki, Satoru
2006-10-01
Whether objects are represented as a collection of parts whose relations are coded independently remains a topic of ongoing discussion among theorists in the domain of shape perception. S. M., an individual with integrative agnosia, and neurologically intact ("normal") individuals learned initially to identify 4 target objects constructed of 2 simple volumetric parts. At test, the targets were mixed with distractors, some of which could be discriminated from the targets on the basis of a mismatching part, whereas the rest could be discriminated only on the basis of the altered spatial arrangements of parts. S. M. learned to identify the target objects, although at a rate slower than that of the normal participants. At test, he correctly rejected distractors on the basis of mismatching parts but was profoundly impaired at rejecting distractors made of the same local components but with mismatching spatial arrangements. These results suggest that encoding the spatial arrangements of parts of an object requires a mechanism that is different from that required for encoding the shape of individual parts, with the former selectively compromised in integrative agnosia. Copyright 2006 APA.
Shadpour, Hamed; Zawistowski, Jon S.; Herman, Annadele; Hahn, Klaus; Allbritton, Nancy L.
2011-01-01
Pallet arrays enable cells to be separated while they remain adherent to a surface and provide a much greater range of cell selection criteria relative to that of current technologies. However there remains a need to further broaden cell selection criteria to include dynamic intracellular signaling events. To demonstrate the feasibility of measuring cellular protein behavior on the arrays using high resolution microscopy, the surfaces of individual pallets were modified to minimize the impact of scattered light at the pallet edges. The surfaces of the three-dimensional pallets on an array were patterned with a coating such as fibronectin using a customized stamping tool. Micropatterns of varying shape and size were printed in designated regions on the pallets in single or multiple steps to demonstrate the reliability and precision of patterning molecules on the pallet surface. Use of a fibronectin matrix stamped at the center of each pallet permitted the localization of H1299 and mouse embryonic fibroblast (MEF) cells to the pallet centers and away from the edges. Compared to pallet arrays with fibronection coating the entire top surface, arrays with a central fibronectin pattern increased the percentage of cells localized to the pallet center by 3-4 fold. Localization of cells to the pallet center also enabled the physical separation of cells from optical artifacts created by the rough pallet side walls. To demonstrate the measurement of dynamic intracellular signaling on the arrays, fluorescence measurements of high spatial resolution were performed using a RhoA GTPase biosensor. This biosensor utilized fluorescence resonance energy transfer (FRET) between cyan fluorescent protein (CFP) and yellow fluorescent protein (YFP) to measure localized RhoA activity in cellular ruffles at the cell periphery. These results demonstrated the ability to perform spatially resolved measurements of fluorescence-based sensors on the pallet arrays. Thus, the patterned pallet arrays should enable novel cell separations in which cell selection is based on complex cellular signaling properties. PMID:21621038
Multisensory guidance of orienting behavior.
Maier, Joost X; Groh, Jennifer M
2009-12-01
We use both vision and audition when localizing objects and events in our environment. However, these sensory systems receive spatial information in different coordinate systems: sounds are localized using inter-aural and spectral cues, yielding a head-centered representation of space, whereas the visual system uses an eye-centered representation of space, based on the site of activation on the retina. In addition, the visual system employs a place-coded, retinotopic map of space, whereas the auditory system's representational format is characterized by broad spatial tuning and a lack of topographical organization. A common view is that the brain needs to reconcile these differences in order to control behavior, such as orienting gaze to the location of a sound source. To accomplish this, it seems that either auditory spatial information must be transformed from a head-centered rate code to an eye-centered map to match the frame of reference used by the visual system, or vice versa. Here, we review a number of studies that have focused on the neural basis underlying such transformations in the primate auditory system. Although, these studies have found some evidence for such transformations, many differences in the way the auditory and visual system encode space exist throughout the auditory pathway. We will review these differences at the neural level, and will discuss them in relation to differences in the way auditory and visual information is used in guiding orienting movements.
Positional priming of visual pop-out search is supported by multiple spatial reference frames
Gokce, Ahu; Müller, Hermann J.; Geyer, Thomas
2015-01-01
The present study investigates the representations(s) underlying positional priming of visual ‘pop-out’ search (Maljkovic and Nakayama, 1996). Three search items (one target and two distractors) were presented at different locations, in invariant (Experiment 1) or random (Experiment 2) cross-trial sequences. By these manipulations it was possible to disentangle retinotopic, spatiotopic, and object-centered priming representations. Two forms of priming were tested: target location facilitation (i.e., faster reaction times – RTs– when the trial n target is presented at a trial n-1 target relative to n-1 blank location) and distractor location inhibition (i.e., slower RTs for n targets presented at n-1 distractor compared to n-1 blank locations). It was found that target locations were coded in positional short-term memory with reference to both spatiotopic and object-centered representations (Experiment 1 vs. 2). In contrast, distractor locations were maintained in an object-centered reference frame (Experiments 1 and 2). We put forward the idea that the uncertainty induced by the experiment manipulation (predictable versus random cross-trial item displacements) modulates the transition from object- to space-based representations in cross-trial memory for target positions. PMID:26136718
THE NATURE OF ACTIVE GALACTIC NUCLEI WITH VELOCITY OFFSET EMISSION LINES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Müller-Sánchez, F.; Comerford, J.; Stern, D.
We obtained Keck/OSIRIS near-IR adaptive optics-assisted integral-field spectroscopy to probe the morphology and kinematics of the ionized gas in four velocity-offset active galactic nuclei (AGNs) from the Sloan Digital Sky Survey. These objects possess optical emission lines that are offset in velocity from systemic as measured from stellar absorption features. At a resolution of ∼0.″18, OSIRIS allows us to distinguish which velocity offset emission lines are produced by the motion of an AGN in a dual supermassive black hole system, and which are produced by outflows or other kinematic structures. In three galaxies, J1018+2941, J1055+1520, and J1346+5228, the spectral offsetmore » of the emission lines is caused by AGN-driven outflows. In the remaining galaxy, J1117+6140, a counterrotating nuclear disk is observed that contains the peak of Pa α emission 0.″2 from the center of the galaxy. The most plausible explanation for the origin of this spatially and kinematically offset peak is that it is a region of enhanced Pa α emission located at the intersection zone between the nuclear disk and the bar of the galaxy. In all four objects, the peak of ionized gas emission is not spatially coincident with the center of the galaxy as traced by the peak of the near-IR continuum emission. The peaks of ionized gas emission are spatially offset from the galaxy centers by 0.″1–0.″4 (0.1–0.7 kpc). We find that the velocity offset originates at the location of this peak of emission, and the value of the offset can be directly measured in the velocity maps. The emission-line ratios of these four velocity-offset AGNs can be reproduced only with a mixture of shocks and AGN photoionization. Shocks provide a natural explanation for the origin of the spatially and spectrally offset peaks of ionized gas emission in these galaxies.« less
Privacy Protection Versus Cluster Detection in Spatial Epidemiology
Olson, Karen L.; Grannis, Shaun J.; Mandl, Kenneth D.
2006-01-01
Objectives. Patient data that includes precise locations can reveal patients’ identities, whereas data aggregated into administrative regions may preserve privacy and confidentiality. We investigated the effect of varying degrees of address precision (exact latitude and longitude vs the center points of zip code or census tracts) on detection of spatial clusters of cases. Methods. We simulated disease outbreaks by adding supplementary spatially clustered emergency department visits to authentic hospital emergency department syndromic surveillance data. We identified clusters with a spatial scan statistic and evaluated detection rate and accuracy. Results. More clusters were identified, and clusters were more accurately detected, when exact locations were used. That is, these clusters contained at least half of the simulated points and involved few additional emergency department visits. These results were especially apparent when the synthetic clustered points crossed administrative boundaries and fell into multiple zip code or census tracts. Conclusions. The spatial cluster detection algorithm performed better when addresses were analyzed as exact locations than when they were analyzed as center points of zip code or census tracts, particularly when the clustered points crossed administrative boundaries. Use of precise addresses offers improved performance, but this practice must be weighed against privacy concerns in the establishment of public health data exchange policies. PMID:17018828
Developing a decision support system for R&D project portfolio selection with interdependencies
NASA Astrophysics Data System (ADS)
Ashrafi, Maryam; Davoudpour, Hamid; Abbassi, Mohammad
2012-11-01
Although investment in research and technology is a promising tool for technology centered organizations through obtaining their objectives, resource constraints make organizations select between their pool of research and technology projects through means of R&D project portfolio selection techniques mitigating corresponding risks and enhancing the overall value of project portfolio.
NASA Astrophysics Data System (ADS)
Fernandes, Maria Rosário; Aguiar, Francisca C.; Silva, João M. N.; Ferreira, Maria Teresa; Pereira, José M. C.
2014-10-01
Giant reed is an aggressive invasive plant of riparian ecosystems in many sub-tropical and warm-temperate regions, including Mediterranean Europe. In this study we tested a set of geometric, spectral and textural attributes in an object based image analysis (OBIA) approach to map giant reed invasions in riparian habitats. Bagging Classification and Regression Tree were used to select the optimal attributes and to build the classification rules sets. Mapping accuracy was performed using landscape metrics and the Kappa coefficient to compare the topographical and geometric similarity between the giant reed patches obtained with the OBIA map and with a validation map derived from on-screen digitizing. The methodology was applied in two high spatial resolution images: an airborne multispectral imagery and the newly WorldView-2 imagery. A temporal coverage of the airborne multispectral images was radiometrically calibrated with the IR-Mad transformation and used to assess the influence of the phenological variability of the invader. We found that optimal attributes for giant reed OBIA detection are a combination of spectral, geometric and textural information, with different scoring selection depending on the spectral and spatial characteristics of the imagery. WorldView-2 showed higher mapping accuracy (Kappa coefficient of 77%) and spectral attributes, including the newly yellow band, were preferentially selected, although a tendency to overestimate the total invaded area, due to the low spatial resolution (2 m of pixel size vs. 50 cm) was observed. When airborne images were used, geometric attributes were primarily selected and a higher spatial detail of the invasive patches was obtained, due to the higher spatial resolution. However, in highly heterogeneous landscapes, the low spectral resolution of the airborne images (4 bands instead of the 8 of WorldView-2) reduces the capability to detect giant reed patches. Giant reed displays peculiar spectral and geometric traits, at leaf, canopy and stand level, which makes the OBIA approach a very suitable technique for management purposes.
An enhanced digital line graph design
Guptill, Stephen C.
1990-01-01
In response to increasing information demands on its digital cartographic data, the U.S. Geological Survey has designed an enhanced version of the Digital Line Graph, termed Digital Line Graph - Enhanced (DLG-E). In the DLG-E model, the phenomena represented by geographic and cartographic data are termed entities. Entities represent individual phenomena in the real world. A feature is an abstraction of a set of entities, with the feature description encompassing only selected properties of the entities (typically the properties that have been portrayed cartographically on a map). Buildings, bridges, roads, streams, grasslands, and counties are examples of features. A feature instance, that is, one occurrence of a feature, is described in the digital environment by feature objects and spatial objects. A feature object identifies a feature instance and its nonlocational attributes. Nontopological relationships are associated with feature objects. The locational aspects of the feature instance are represented by spatial objects. Four spatial objects (points, nodes, chains, and polygons) and their topological relationships are defined. To link the locational and nonlocational aspects of the feature instance, a given feature object is associated with (or is composed of) a set of spatial objects. These objects, attributes, and relationships are the components of the DLG-E data model. To establish a domain of features for DLG-E, an approach using a set of classes, or views, of spatial entities was adopted. The five views that were developed are cover, division, ecosystem, geoposition, and morphology. The views are exclusive; each view is a self-contained analytical approach to the entire range of world features. Because each view is independent of the others, a single point on the surface of the Earth can be represented under multiple views. Under the five views, over 200 features were identified and defined. This set constitutes an initial domain of DLG-E features.
Distributed encoding of spatial and object categories in primate hippocampal microcircuits
Opris, Ioan; Santos, Lucas M.; Gerhardt, Greg A.; Song, Dong; Berger, Theodore W.; Hampson, Robert E.; Deadwyler, Sam A.
2015-01-01
The primate hippocampus plays critical roles in the encoding, representation, categorization and retrieval of cognitive information. Such cognitive abilities may use the transformational input-output properties of hippocampal laminar microcircuitry to generate spatial representations and to categorize features of objects, images, and their numeric characteristics. Four nonhuman primates were trained in a delayed-match-to-sample (DMS) task while multi-neuron activity was simultaneously recorded from the CA1 and CA3 hippocampal cell fields. The results show differential encoding of spatial location and categorization of images presented as relevant stimuli in the task. Individual hippocampal cells encoded visual stimuli only on specific types of trials in which retention of either, the Sample image, or the spatial position of the Sample image indicated at the beginning of the trial, was required. Consistent with such encoding, it was shown that patterned microstimulation applied during Sample image presentation facilitated selection of either Sample image spatial locations or types of images, during the Match phase of the task. These findings support the existence of specific codes for spatial and numeric object representations in primate hippocampus which can be applied on differentially signaled trials. Moreover, the transformational properties of hippocampal microcircuitry, together with the patterned microstimulation are supporting the practical importance of this approach for cognitive enhancement and rehabilitation, needed for memory neuroprosthetics. PMID:26500473
Gharat, Amol; Baker, Curtis L
2017-01-25
Many of the neurons in early visual cortex are selective for the orientation of boundaries defined by first-order cues (luminance) as well as second-order cues (contrast, texture). The neural circuit mechanism underlying this selectivity is still unclear, but some studies have proposed that it emerges from spatial nonlinearities of subcortical Y cells. To understand how inputs from the Y-cell pathway might be pooled to generate cue-invariant receptive fields, we recorded visual responses from single neurons in cat Area 18 using linear multielectrode arrays. We measured responses to drifting and contrast-reversing luminance gratings as well as contrast modulation gratings. We found that a large fraction of these neurons have nonoriented responses to gratings, similar to those of subcortical Y cells: they respond at the second harmonic (F2) to high-spatial frequency contrast-reversing gratings and at the first harmonic (F1) to low-spatial frequency drifting gratings ("Y-cell signature"). For a given neuron, spatial frequency tuning for linear (F1) and nonlinear (F2) responses is quite distinct, similar to orientation-selective cue-invariant neurons. Also, these neurons respond to contrast modulation gratings with selectivity for the carrier (texture) spatial frequency and, in some cases, orientation. Their receptive field properties suggest that they could serve as building blocks for orientation-selective cue-invariant neurons. We propose a circuit model that combines ON- and OFF-center cortical Y-like cells in an unbalanced push-pull manner to generate orientation-selective, cue-invariant receptive fields. A significant fraction of neurons in early visual cortex have specialized receptive fields that allow them to selectively respond to the orientation of boundaries that are invariant to the cue (luminance, contrast, texture, motion) that defines them. However, the neural mechanism to construct such versatile receptive fields remains unclear. Using multielectrode recording, we found a large fraction of neurons in early visual cortex with receptive fields not selective for orientation that have spatial nonlinearities like those of subcortical Y cells. These are strong candidates for building cue-invariant orientation-selective neurons; we present a neural circuit model that pools such neurons in an imbalanced "push-pull" manner, to generate orientation-selective cue-invariant receptive fields. Copyright © 2017 the authors 0270-6474/17/370998-16$15.00/0.
LASER BIOLOGY AND MEDICINE: Optoacoustic laser monitoring of cooling and freezing of tissues
NASA Astrophysics Data System (ADS)
Larin, Kirill V.; Larina, I. V.; Motamedi, M.; Esenaliev, R. O.
2002-11-01
Real-time monitoring of cooling and freezing of tissues, cells, and other biological objects with a high spatial and time resolution, which is necessary for selective destruction of cancer and benign tumours during cryotherapy, as well as for preventing any damage to the structure and functioning of biological objects in cryobiology, is considered. The optoacoustic method, based on the measurement and analysis of acoustic waves induced by short laser pulses, is proposed for monitoring the cooling and freezing of the tissue. The effect of cooling and freezing on the amplitude and time profile of acoustic signals generated in real tissues and in a model object is studied. The experimental results indicate that the optoacoustic laser technique can be used for real-time monitoring of cooling and freezing of biological objects with a submillimeter spatial resolution and a high contrast.
Verrico, Christopher D.; Gu, Hong; Peterson, Melanie L.; Sampson, Allan R.; Lewis, David A.
2014-01-01
Objective Epidemiological findings suggest that, relative to adults, adolescents are more vulnerable to the adverse persistent effects of cannabis on working memory. However, the potential confounds inherent in human studies preclude direct determination of a cause-and-effect relationship between adolescent cannabis use and heightened susceptibility to persistent working memory impairments. Consequently, the authors examined the effects of repeated exposure to Δ9-tetrahydrocannabinol (THC) on performance of spatial and object working memory tasks in adolescent monkeys. Method Seven pairs of male adolescent rhesus monkeys, matched for baseline cognitive performance, received vehicle or THC intravenously 5 days/week for 6 months. Performance on spatial and object memory tasks was assessed 23 or 71 hours after drug administration throughout the study. In addition, acute effects on working memory were also assessed at the beginning and end of the 6-month period. Results Relative to the vehicle-exposed control animals, those with repeated THC exposure had a blunted trajectory of accuracy improvements on the spatial working memory task in a delay-dependent manner. Accuracy improvements on the object working memory task did not differ between groups. Relative to the acute effects of THC on working memory at the beginning of the study, neither sensitivity nor tolerance was evident after 6 months of THC exposure. Conclusions Because maturation of performance is later for spatial than for object working memory, these findings suggest that persistent effects of THC on cognitive abilities are more evident when exposure coincides with the developmental stage during which the underlying neural circuits are actively maturing. PMID:24577206
ERIC Educational Resources Information Center
Wright, Alexandra; Hiebert-Murphy, Diane; Trute, Barry
2010-01-01
This article presents findings from an exploratory, qualitative study whose objective was to identify professionals' perceptions of organizational factors that support or hinder the implementation of family-centered practice (FCP). Two disability services organizations in Manitoba, Canada, were selected as the research sites. In 2002, all staff…
American College Health Association Annual Pap Test and Sexually Transmitted Infection Survey: 2006
ERIC Educational Resources Information Center
Smith, P. Davis; Roberts, Craig M.
2009-01-01
Objective: The authors describe the cervical cytology and sexually transmitted infection (STI) testing patterns of US college health centers. Participants and Methods: A total of 128 self-selected US college health centers--representing more than 2 million college students--completed an online survey during February and March 2007. Results: Almost…
2012-01-01
Background The detection of conserved residue clusters on a protein structure is one of the effective strategies for the prediction of functional protein regions. Various methods, such as Evolutionary Trace, have been developed based on this strategy. In such approaches, the conserved residues are identified through comparisons of homologous amino acid sequences. Therefore, the selection of homologous sequences is a critical step. It is empirically known that a certain degree of sequence divergence in the set of homologous sequences is required for the identification of conserved residues. However, the development of a method to select homologous sequences appropriate for the identification of conserved residues has not been sufficiently addressed. An objective and general method to select appropriate homologous sequences is desired for the efficient prediction of functional regions. Results We have developed a novel index to select the sequences appropriate for the identification of conserved residues, and implemented the index within our method to predict the functional regions of a protein. The implementation of the index improved the performance of the functional region prediction. The index represents the degree of conserved residue clustering on the tertiary structure of the protein. For this purpose, the structure and sequence information were integrated within the index by the application of spatial statistics. Spatial statistics is a field of statistics in which not only the attributes but also the geometrical coordinates of the data are considered simultaneously. Higher degrees of clustering generate larger index scores. We adopted the set of homologous sequences with the highest index score, under the assumption that the best prediction accuracy is obtained when the degree of clustering is the maximum. The set of sequences selected by the index led to higher functional region prediction performance than the sets of sequences selected by other sequence-based methods. Conclusions Appropriate homologous sequences are selected automatically and objectively by the index. Such sequence selection improved the performance of functional region prediction. As far as we know, this is the first approach in which spatial statistics have been applied to protein analyses. Such integration of structure and sequence information would be useful for other bioinformatics problems. PMID:22643026
Frontal and parietal theta burst TMS impairs working memory for visual-spatial conjunctions
Morgan, Helen M.; Jackson, Margaret C.; van Koningsbruggen, Martijn G.; Shapiro, Kimron L.; Linden, David E.J.
2013-01-01
In tasks that selectively probe visual or spatial working memory (WM) frontal and posterior cortical areas show a segregation, with dorsal areas preferentially involved in spatial (e.g. location) WM and ventral areas in visual (e.g. object identity) WM. In a previous fMRI study [1], we showed that right parietal cortex (PC) was more active during WM for orientation, whereas left inferior frontal gyrus (IFG) was more active during colour WM. During WM for colour-orientation conjunctions, activity in these areas was intermediate to the level of activity for the single task preferred and non-preferred information. To examine whether these specialised areas play a critical role in coordinating visual and spatial WM to perform a conjunction task, we used theta burst transcranial magnetic stimulation (TMS) to induce a functional deficit. Compared to sham stimulation, TMS to right PC or left IFG selectively impaired WM for conjunctions but not single features. This is consistent with findings from visual search paradigms, in which frontal and parietal TMS selectively affects search for conjunctions compared to single features, and with combined TMS and functional imaging work suggesting that parietal and frontal regions are functionally coupled in tasks requiring integration of visual and spatial information. Our results thus elucidate mechanisms by which the brain coordinates spatially segregated processing streams and have implications beyond the field of working memory. PMID:22483548
Frontal and parietal theta burst TMS impairs working memory for visual-spatial conjunctions.
Morgan, Helen M; Jackson, Margaret C; van Koningsbruggen, Martijn G; Shapiro, Kimron L; Linden, David E J
2013-03-01
In tasks that selectively probe visual or spatial working memory (WM) frontal and posterior cortical areas show a segregation, with dorsal areas preferentially involved in spatial (e.g. location) WM and ventral areas in visual (e.g. object identity) WM. In a previous fMRI study [1], we showed that right parietal cortex (PC) was more active during WM for orientation, whereas left inferior frontal gyrus (IFG) was more active during colour WM. During WM for colour-orientation conjunctions, activity in these areas was intermediate to the level of activity for the single task preferred and non-preferred information. To examine whether these specialised areas play a critical role in coordinating visual and spatial WM to perform a conjunction task, we used theta burst transcranial magnetic stimulation (TMS) to induce a functional deficit. Compared to sham stimulation, TMS to right PC or left IFG selectively impaired WM for conjunctions but not single features. This is consistent with findings from visual search paradigms, in which frontal and parietal TMS selectively affects search for conjunctions compared to single features, and with combined TMS and functional imaging work suggesting that parietal and frontal regions are functionally coupled in tasks requiring integration of visual and spatial information. Our results thus elucidate mechanisms by which the brain coordinates spatially segregated processing streams and have implications beyond the field of working memory. Copyright © 2013 Elsevier Inc. All rights reserved.
Geographic distribution of trauma centers and injury-related mortality in the United States.
Brown, Joshua B; Rosengart, Matthew R; Billiar, Timothy R; Peitzman, Andrew B; Sperry, Jason L
2016-01-01
Regionalized trauma care improves outcomes; however, access to care is not uniform across the United States. The objective was to evaluate whether geographic distribution of trauma centers correlates with injury mortality across state trauma systems. Level I or II trauma centers in the contiguous United States were mapped. State-level age-adjusted injury fatality rates per 100,000 people were obtained and evaluated for spatial autocorrelation. Nearest neighbor ratios (NNRs) were generated for each state. A NNR less than 1 indicates clustering, while a NNR greater than 1 indicates dispersion. NNRs were tested for difference from random geographic distribution. Fatality rates and NNRs were examined for correlation. Fatality rates were compared between states with trauma center clustering versus dispersion. Trauma center distribution and population density were evaluated. Spatial-lag regression determined the association between fatality rate and NNR, controlling for state-level demographics, population density, injury severity, trauma system resources, and socioeconomic factors. Fatality rates were spatially autocorrelated (Moran's I = 0.35, p < 0.01). Nine states had a clustered pattern (median NNR, 0.55; interquartile range [IQR], 0.48-0.60), 22 had a dispersed pattern (median NNR, 2.00; IQR, 1.68-3.99), and 10 had a random pattern (median NNR, 0.90; IQR, 0.85-1.00) of trauma center distribution. Fatality rate and NNR were correlated (ρ = 0.34, p = 0.03). Clustered states had a lower median injury fatality rate compared with dispersed states (56.9 [IQR, 46.5-58.9] vs. 64.9 [IQR, 52.5-77.1]; p = 0.04). Dispersed compared with clustered states had more counties without a trauma center that had higher population density than counties with a trauma center (5.7% vs. 1.2%, p < 0.01). Spatial-lag regression demonstrated that fatality rates increased by 0.02 per 100,000 persons for each unit increase in NNR (p < 0.01). Geographic distribution of trauma centers correlates with injury mortality, with more clustered state trauma centers associated with lower fatality rates. This may be a result of access relative to population density. These results may have implications for trauma system planning and require further study to investigate underlying mechanisms. Therapeutic/care management study, level IV.
NASA Astrophysics Data System (ADS)
McIntosh, Chris; Purdie, Thomas G.
2017-01-01
Automating the radiotherapy treatment planning process is a technically challenging problem. The majority of automated approaches have focused on customizing and inferring dose volume objectives to be used in plan optimization. In this work we outline a multi-patient atlas-based dose prediction approach that learns to predict the dose-per-voxel for a novel patient directly from the computed tomography planning scan without the requirement of specifying any objectives. Our method learns to automatically select the most effective atlases for a novel patient, and then map the dose from those atlases onto the novel patient. We extend our previous work to include a conditional random field for the optimization of a joint distribution prior that matches the complementary goals of an accurately spatially distributed dose distribution while still adhering to the desired dose volume histograms. The resulting distribution can then be used for inverse-planning with a new spatial dose objective, or to create typical dose volume objectives for the canonical optimization pipeline. We investigated six treatment sites (633 patients for training and 113 patients for testing) and evaluated the mean absolute difference in all DVHs for the clinical and predicted dose distribution. The results on average are favorable in comparison to our previous approach (1.91 versus 2.57). Comparing our method with and without atlas-selection further validates that atlas-selection improved dose prediction on average in whole breast (0.64 versus 1.59), prostate (2.13 versus 4.07), and rectum (1.46 versus 3.29) while it is less important in breast cavity (0.79 versus 0.92) and lung (1.33 versus 1.27) for which there is high conformity and minimal dose shaping. In CNS brain, atlas-selection has the potential to be impactful (3.65 versus 5.09), but selecting the ideal atlas is the most challenging.
Geospatial analysis of unmet pediatric surgical need in Uganda.
Smith, Emily R; Vissoci, Joao Ricardo Nickenig; Rocha, Thiago Augusto Hernandes; Tran, Tu M; Fuller, Anthony T; Butler, Elissa K; de Andrade, Luciano; Makumbi, Fredrick; Luboga, Samuel; Muhumuza, Christine; Namanya, Didacus B; Chipman, Jeffrey G; Galukande, Moses; Haglund, Michael M
2017-10-01
In low- and middle-income countries (LMICs), an estimated 85% of children do not have access to surgical care. The objective of the current study was to determine the geographic distribution of surgical conditions among children throughout Uganda. Using the Surgeons OverSeas Assessment of Surgical Need (SOSAS) survey, we enumerated 2176 children in 2315 households throughout Uganda. At the district level, we determined the spatial autocorrelation of surgical need with geographic access to surgical centers variable. The highest average distance to a surgical center was found in the northern region at 14.97km (95% CI: 11.29km-16.89km). Younger children less than five years old had a higher prevalence of unmet surgical need in all four regions than their older counterparts. The spatial regression model showed that distance to surgical center and care availability were the main spatial predictors of unmet surgical need. We found differences in unmet surgical need by region and age group of the children, which could serve as priority areas for focused interventions to alleviate the burden. Future studies could be conducted in the northern regions to develop targeted interventions aimed at increasing pediatric surgical care in the areas of most need. Level III. Copyright © 2017 Elsevier Inc. All rights reserved.
Some of the thousand words a picture is worth.
Mandler, J M; Johnson, N S
1976-09-01
The effects of real-world schemata on recognition of complex pictures were studied. Two kinds of pictures were used: pictures of objects forming real-world scenes and unorganized collections of the same objects. The recognition test employed distractors that varied four types of information: inventory, spatial location, descriptive and spatial composition. Results emphasized the selective nature of schemata since superior recognition of one kind of information was offset by loss of another. Spatial location information was better recognized in real-world scenes and spatial composition information was better recognized in unorganized scenes. Organized and unorganized pictures did not differ with respect of inventory and descriptive information. The longer the pictures were studied, the longer subjects took to recognize them. Reaction time for hits, misses, and false alarms increased dramatically as presentation time increased from 5 to 60 sec. It was suggested that detection of a difference in a distractor terminated search, but that when no difference was detected, an exhaustive search of the available information took place.
Spatial Scaling of the Profile of Selective Attention in the Visual Field.
Gannon, Matthew A; Knapp, Ashley A; Adams, Thomas G; Long, Stephanie M; Parks, Nathan A
2016-01-01
Neural mechanisms of selective attention must be capable of adapting to variation in the absolute size of an attended stimulus in the ever-changing visual environment. To date, little is known regarding how attentional selection interacts with fluctuations in the spatial expanse of an attended object. Here, we use event-related potentials (ERPs) to investigate the scaling of attentional enhancement and suppression across the visual field. We measured ERPs while participants performed a task at fixation that varied in its attentional demands (attentional load) and visual angle (1.0° or 2.5°). Observers were presented with a stream of task-relevant stimuli while foveal, parafoveal, and peripheral visual locations were probed by irrelevant distractor stimuli. We found two important effects in the N1 component of visual ERPs. First, N1 modulations to task-relevant stimuli indexed attentional selection of stimuli during the load task and further correlated with task performance. Second, with increased task size, attentional modulation of the N1 to distractor stimuli showed a differential pattern that was consistent with a scaling of attentional selection. Together, these results demonstrate that the size of an attended stimulus scales the profile of attentional selection across the visual field and provides insights into the attentional mechanisms associated with such spatial scaling.
Weather assessment and forecasting
NASA Technical Reports Server (NTRS)
1977-01-01
Data management program activities centered around the analyses of selected far-term Office of Applications (OA) objectives, with the intent of determining if significant data-related problems would be encountered and if so what alternative solutions would be possible. Three far-term (1985 and beyond) OA objectives selected for analyses as having potential significant data problems were large-scale weather forecasting, local weather and severe storms forecasting, and global marine weather forecasting. An overview of general weather forecasting activities and their implications upon the ground based data system is provided. Selected topics were specifically oriented to the use of satellites.
Cognition and Function in Language.
ERIC Educational Resources Information Center
Fox, Barbara A., Ed.; Jurafsky, Dan, Ed.; Michaelis, Laura A., Ed.
Selected papers include: "From Core to Periphery: A Study on the Directionality of Syntactic Change in Japanese" (Kaoru Horie); "On the Extension of Body-Part Nouns to Object-Part Nouns and Spatial Adpositions" (Yo Matsumoto); "Noun Classes: Language Change and Learning" (Maria Polinsky, Dan Jackson);…
Activity in human visual and parietal cortex reveals object-based attention in working memory.
Peters, Benjamin; Kaiser, Jochen; Rahm, Benjamin; Bledowski, Christoph
2015-02-25
Visual attention enables observers to select behaviorally relevant information based on spatial locations, features, or objects. Attentional selection is not limited to physically present visual information, but can also operate on internal representations maintained in working memory (WM) in service of higher-order cognition. However, only little is known about whether attention to WM contents follows the same principles as attention to sensory stimuli. To address this question, we investigated in humans whether the typically observed effects of object-based attention in perception are also evident for object-based attentional selection of internal object representations in WM. In full accordance with effects in visual perception, the key behavioral and neuronal characteristics of object-based attention were observed in WM. Specifically, we found that reaction times were shorter when shifting attention to memory positions located on the currently attended object compared with equidistant positions on a different object. Furthermore, functional magnetic resonance imaging and multivariate pattern analysis of visuotopic activity in visual (areas V1-V4) and parietal cortex revealed that directing attention to one position of an object held in WM also enhanced brain activation for other positions on the same object, suggesting that attentional selection in WM activates the entire object. This study demonstrated that all characteristic features of object-based attention are present in WM and thus follows the same principles as in perception. Copyright © 2015 the authors 0270-6474/15/353360-10$15.00/0.
Data center thermal management
Hamann, Hendrik F.; Li, Hongfei
2016-02-09
Historical high-spatial-resolution temperature data and dynamic temperature sensor measurement data may be used to predict temperature. A first formulation may be derived based on the historical high-spatial-resolution temperature data for determining a temperature at any point in 3-dimensional space. The dynamic temperature sensor measurement data may be calibrated based on the historical high-spatial-resolution temperature data at a corresponding historical time. Sensor temperature data at a plurality of sensor locations may be predicted for a future time based on the calibrated dynamic temperature sensor measurement data. A three-dimensional temperature spatial distribution associated with the future time may be generated based on the forecasted sensor temperature data and the first formulation. The three-dimensional temperature spatial distribution associated with the future time may be projected to a two-dimensional temperature distribution, and temperature in the future time for a selected space location may be forecasted dynamically based on said two-dimensional temperature distribution.
EPA Region 1 - Map Layers for Valley ID Tool (Hosted Feature Service)
The Valley Service Feature Layer hosts spatial data for EPA Region 1's Valley Identification Tool. These layers contain attribute information added by EPA R1 GIS Center to help identify populated valleys:- Fac_2011NEI: Pollution sources selected from the National Emissions Inventory (EPA, 2011).- NE_Towns_PopValleys: New England Town polygons (courtesy USGS), with Population in Valleys and Population Density in Valleys calculated by EPA R1 GIS, from 2010 US Census blocks. - VT_E911: Vermont residences (courtesy VT Center for Geographic Information E-911).
Attention Modulates Spatial Precision in Multiple-Object Tracking.
Srivastava, Nisheeth; Vul, Ed
2016-01-01
We present a computational model of multiple-object tracking that makes trial-level predictions about the allocation of visual attention and the effect of this allocation on observers' ability to track multiple objects simultaneously. This model follows the intuition that increased attention to a location increases the spatial resolution of its internal representation. Using a combination of empirical and computational experiments, we demonstrate the existence of a tight coupling between cognitive and perceptual resources in this task: Low-level tracking of objects generates bottom-up predictions of error likelihood, and high-level attention allocation selectively reduces error probabilities in attended locations while increasing it at non-attended locations. Whereas earlier models of multiple-object tracking have predicted the big picture relationship between stimulus complexity and response accuracy, our approach makes accurate predictions of both the macro-scale effect of target number and velocity on tracking difficulty and micro-scale variations in difficulty across individual trials and targets arising from the idiosyncratic within-trial interactions of targets and distractors. Copyright © 2016 Cognitive Science Society, Inc.
NASA Technical Reports Server (NTRS)
Feinstein, S. P.; Girard, M. A.
1979-01-01
An automated technique for measuring particle diameters and their spatial coordinates from holographic reconstructions is being developed. Preliminary tests on actual cold-flow holograms of impinging jets indicate that a suitable discriminant algorithm consists of a Fourier-Gaussian noise filter and a contour thresholding technique. This process identifies circular as well as noncircular objects. The desired objects (in this case, circular or possibly ellipsoidal) are then selected automatically from the above set and stored with their parametric representations. From this data, dropsize distributions as a function of spatial coordinates can be generated and combustion effects due to hardware and/or physical variables studied.
EVIDENCE FOR REDUCED SPECIFIC STAR FORMATION RATES IN THE CENTERS OF MASSIVE GALAXIES AT z = 4
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jung, Intae; Finkelstein, Steven L.; Song, Mimi
2017-01-01
We perform the first spatially resolved stellar population study of galaxies in the early universe ( z = 3.5–6.5), utilizing the Hubble Space Telescope Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey imaging data set over the GOODS-S field. We select a sample of 418 bright and extended galaxies at z = 3.5–6.5 from a parent sample of ∼8000 photometric-redshift-selected galaxies from Finkelstein et al. We first examine galaxies at 3.5 ≲ z ≲ 4.0 using additional deep K -band survey data from the HAWK-I UDS and GOODS Survey which covers the 4000 Å break at these redshifts. We measure the stellar mass,more » star formation rate, and dust extinction for galaxy inner and outer regions via spatially resolved spectral energy distribution fitting based on a Markov Chain Monte Carlo algorithm. By comparing specific star formation rates (sSFRs) between inner and outer parts of the galaxies we find that the majority of galaxies with high central mass densities show evidence for a preferentially lower sSFR in their centers than in their outer regions, indicative of reduced sSFRs in their central regions. We also study galaxies at z ∼ 5 and 6 (here limited to high spatial resolution in the rest-frame ultraviolet only), finding that they show sSFRs which are generally independent of radial distance from the center of the galaxies. This indicates that stars are formed uniformly at all radii in massive galaxies at z ∼ 5–6, contrary to massive galaxies at z ≲ 4.« less
Evidence for Reduced Species Star Formation Rates in the Centers of Massive Galaxies at zeta = 4
NASA Technical Reports Server (NTRS)
Jung, Intae; Finkelstein, Steven L.; Song, Mimi; Dickinson, Mark; Dekel, Avishai; Ferguson, Henry C.; Fontana, Adriano; Koekemoer, Anton M.; Lu, Yu; Mobasher, Bahram;
2017-01-01
We perform the first spatially-resolved stellar population study of galaxies in the early universe z equals 3.5 -6.5, utilizing the Hubble Space Telescope Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey (CANDELS) imaging dataset over the GOODS-S field. We select a sample of 418 bright and extended galaxies at z less than or approximately equal to 3.5-6.5 from a parent sample of approximately 8000 photometric-redshift selected galaxies from Finkelstein et al. We first examine galaxies at 3.5 less than or equal to z less than or approximately equal to 4.0 using additional deep K-band survey data from the HAWK-I UDS and GOODS Survey (HUGS) which covers the 4000 Angstrom break at these redshifts. We measure the stellar mass, star formation rate, and dust extinction for galaxy inner and outer regions via spatially-resolved spectral energy distribution fitting based on a Markov Chain Monte Carlo algorithm. By comparing specific star formation rates (sSFRs) between inner and outer parts of the galaxies we find that the majority of galaxies with the high central mass densities show evidence for a preferentially lower sSFR in their centers than in their outer regions, indicative of reduced sSFRs in their central regions. We also study galaxies at z approximately equal to 5 and 6 (here limited to high spatial resolution in the rest-frame ultraviolet only), finding that they show sSFRs which are generally independent of radial distance from the center of the galaxies. This indicates that stars are formed uniformly at all radii in massive galaxies at z approximately equal to 5-6, contrary tomassive galaxies at z. less than approximately equal to 4.
Crowding with conjunctions of simple features.
Põder, Endel; Wagemans, Johan
2007-11-20
Several recent studies have related crowding with the feature integration stage in visual processing. In order to understand the mechanisms involved in this stage, it is important to use stimuli that have several features to integrate, and these features should be clearly defined and measurable. In this study, Gabor patches were used as target and distractor stimuli. The stimuli differed in three dimensions: spatial frequency, orientation, and color. A group of 3, 5, or 7 objects was presented briefly at 4 deg eccentricity of the visual field. The observers' task was to identify the object located in the center of the group. A strong effect of the number of distractors was observed, consistent with various spatial pooling models. The analysis of incorrect responses revealed that these were a mix of feature errors and mislocalizations of the target object. Feature errors were not purely random, but biased by the features of distractors. We propose a simple feature integration model that predicts most of the observed regularities.
Fink, G R; Marshall, J C; Weiss, P H; Shah, N J; Toni, I; Halligan, P W; Zilles, K
2000-01-01
Line bisection is widely used as a clinical test of spatial cognition in patients with left visuospatial neglect after right hemisphere lesion. Surprisingly, many neglect patients who show severe impairment on marking the center of horizontal lines can accurately mark the center of squares. That these patients with left neglect are also typically poor at judging whether lines are correctly prebisected implies that the deficit can be perceptual rather than motoric. These findings suggest a differential neural basis for one- and two-dimensional visual position discrimination that we investigated with functional neuroimaging (fMRI). Normal subjects judged whether, in premarked lines or squares, the mark was placed centrally. Line center judgements differentially activated right parietal cortex, while square center judgements differentially activated the lingual gyrus bilaterally. These distinct neural bases for one- and two-dimensional visuospatial judgements help explain the observed clinical dissociations by showing that as a stimulus becomes a better, more 'object-like' gestalt, the ventral visuoperceptive route assumes more responsibility for assessing position within the object.
Syed Abdul Mutalib, Sharifah Norsukhairin; Juahir, Hafizan; Azid, Azman; Mohd Sharif, Sharifah; Latif, Mohd Talib; Aris, Ahmad Zaharin; Zain, Sharifuddin M; Dominick, Doreena
2013-09-01
The objective of this study is to identify spatial and temporal patterns in the air quality at three selected Malaysian air monitoring stations based on an eleven-year database (January 2000-December 2010). Four statistical methods, Discriminant Analysis (DA), Hierarchical Agglomerative Cluster Analysis (HACA), Principal Component Analysis (PCA) and Artificial Neural Networks (ANNs), were selected to analyze the datasets of five air quality parameters, namely: SO2, NO2, O3, CO and particulate matter with a diameter size of below 10 μm (PM10). The three selected air monitoring stations share the characteristic of being located in highly urbanized areas and are surrounded by a number of industries. The DA results show that spatial characterizations allow successful discrimination between the three stations, while HACA shows the temporal pattern from the monthly and yearly factor analysis which correlates with severe haze episodes that have happened in this country at certain periods of time. The PCA results show that the major source of air pollution is mostly due to the combustion of fossil fuel in motor vehicles and industrial activities. The spatial pattern recognition (S-ANN) results show a better prediction performance in discriminating between the regions, with an excellent percentage of correct classification compared to DA. This study presents the necessity and usefulness of environmetric techniques for the interpretation of large datasets aiming to obtain better information about air quality patterns based on spatial and temporal characterizations at the selected air monitoring stations.
Single-organelle tracking by two-photon conversion
NASA Astrophysics Data System (ADS)
Watanabe, Wataru; Shimada, Tomoko; Matsunaga, Sachihiro; Kurihara, Daisuke; Fukui, Kiichi; Shin-Ichi Arimura, Shin-Ichi; Tsutsumi, Nobuhiro; Isobe, Keisuke; Itoh, Kazuyoshi
2007-03-01
Spatial and temporal information about intracellular objects and their dynamics within a living cell are essential for dynamic analysis of such objects in cell biology. A specific intracellular object can be discriminated by photoactivatable fluorescent proteins that exhibit pronounced light-induced spectral changes. Here, we report on selective labeling and tracking of a single organelle by using two-photon conversion of a photoconvertible fluorescent protein with near-infrared femtosecond laser pulses. We performed selective labeling of a single mitochondrion in a living tobacco BY-2 cell using two-photon photoconversion of Kaede. Using this technique, we demonstrated that, in plants, the directed movement of individual mitochondria along the cytoskeletons was mediated by actin filaments, whereas microtubules were not required for the movement of mitochondria. This single-organelle labeling technique enabled us to track the dynamics of a single organelle, revealing the mechanisms involved in organelle dynamics. The technique has potential application in direct tracking of selective cellular and intracellular structures.
Contributions of Alternative (Nonformal) Education in Developing Countries.
ERIC Educational Resources Information Center
Koech, Michael Kipkorir
An analysis of two alternative (nonformal) rural education projects provides data on Rural Craft Training Centers (RCTC's) in Kenya and the Sarvodaya Shramadana Movement (SSM) in Sri Lanka. The RCTC objective is to design pilot rural development strategies for expanding income in selected poor; the SSM objective is to build a "righteous…
NASA Astrophysics Data System (ADS)
Mohammed, Habiba Ibrahim; Majid, Zulkepli; Yusof, Norhakim Bin; Bello Yamusa, Yamusa
2018-03-01
Landfilling remains the most common systematic technique of solid waste disposal in most of the developed and developing countries. Finding a suitable site for landfill is a very challenging task. Landfill site selection process aims to provide suitable areas that will protect the environment and public health from pollution and hazards. Therefore, various factors such as environmental, physical, socio-economic, and geological criteria must be considered before siting any landfill. This makes the site selection process vigorous and tedious because it involves the processing of large amount of spatial data, rules and regulations from different agencies and also policy from decision makers. This allows the incorporation of conflicting objectives and decision maker preferences into spatial decision models. This paper particularly analyzes the multi-criteria evaluation (MCE) method of landfill site selection for solid waste management by means of literature reviews and surveys. The study will help the decision makers and waste management authorities to choose the most effective method when considering landfill site selection.
Miconi, Thomas; Groomes, Laura; Kreiman, Gabriel
2016-01-01
When searching for an object in a scene, how does the brain decide where to look next? Visual search theories suggest the existence of a global “priority map” that integrates bottom-up visual information with top-down, target-specific signals. We propose a mechanistic model of visual search that is consistent with recent neurophysiological evidence, can localize targets in cluttered images, and predicts single-trial behavior in a search task. This model posits that a high-level retinotopic area selective for shape features receives global, target-specific modulation and implements local normalization through divisive inhibition. The normalization step is critical to prevent highly salient bottom-up features from monopolizing attention. The resulting activity pattern constitues a priority map that tracks the correlation between local input and target features. The maximum of this priority map is selected as the locus of attention. The visual input is then spatially enhanced around the selected location, allowing object-selective visual areas to determine whether the target is present at this location. This model can localize objects both in array images and when objects are pasted in natural scenes. The model can also predict single-trial human fixations, including those in error and target-absent trials, in a search task involving complex objects. PMID:26092221
NASA Technical Reports Server (NTRS)
Kasturi, Rangachar; Devadiga, Sadashiva; Tang, Yuan-Liang
1994-01-01
This research was initiated as a part of the Advanced Sensor and Imaging System Technology (ASSIST) program at NASA Langley Research Center. The primary goal of this research is the development of image analysis algorithms for the detection of runways and other objects using an on-board camera. Initial effort was concentrated on images acquired using a passive millimeter wave (PMMW) sensor. The images obtained using PMMW sensors under poor visibility conditions due to atmospheric fog are characterized by very low spatial resolution but good image contrast compared to those images obtained using sensors operating in the visible spectrum. Algorithms developed for analyzing these images using a model of the runway and other objects are described in Part 1 of this report. Experimental verification of these algorithms was limited to a sequence of images simulated from a single frame of PMMW image. Subsequent development and evaluation of algorithms was done using video image sequences. These images have better spatial and temporal resolution compared to PMMW images. Algorithms for reliable recognition of runways and accurate estimation of spatial position of stationary objects on the ground have been developed and evaluated using several image sequences. These algorithms are described in Part 2 of this report. A list of all publications resulting from this work is also included.
Trillo, C; Doval, A F; López-Vázquez, J C
2010-07-05
Phase evaluation methods based on the 2D spatial Fourier transform of a speckle interferogram with spatial carrier usually assume that the Fourier spectrum of the interferogram has a trimodal distribution, i. e. that the side lobes corresponding to the interferential terms do not overlap the other two spectral terms, which are related to the intensity of the object and reference beams, respectively. Otherwise, part of the spectrum of the object beam is inside the inverse-transform window of the selected interference lobe and induces an error in the resultant phase map. We present a technique for the acquisition and processing of speckle interferogram sequences that separates the interference lobes from the other spectral terms when the aforementioned assumption does not apply and regardless of the temporal bandwidth of the phase signal. It requires the recording of a sequence of interferograms with spatial and temporal carriers, and their processing with a 3D Fourier transform. In the resultant 3D spectrum, the spatial and temporal carriers separate the conjugate interferential terms from each other and from the term related to the object beam. Experimental corroboration is provided through the measurement of the amplitude of surface acoustic waves in plates with a double-pulsed TV holography setup. The results obtained with the proposed method are compared to those obtained with the processing of individual interferograms with the regular spatial-carrier 2D Fourier transform method.
NASA Astrophysics Data System (ADS)
de Oliveira Silveira, Eduarda Martiniano; de Menezes, Michele Duarte; Acerbi Júnior, Fausto Weimar; Castro Nunes Santos Terra, Marcela; de Mello, José Márcio
2017-07-01
Accurate mapping and monitoring of savanna and semiarid woodland biomes are needed to support the selection of areas of conservation, to provide sustainable land use, and to improve the understanding of vegetation. The potential of geostatistical features, derived from medium spatial resolution satellite imagery, to characterize contrasted landscape vegetation cover and improve object-based image classification is studied. The study site in Brazil includes cerrado sensu stricto, deciduous forest, and palm swamp vegetation cover. Sentinel 2 and Landsat 8 images were acquired and divided into objects, for each of which a semivariogram was calculated using near-infrared (NIR) and normalized difference vegetation index (NDVI) to extract the set of geostatistical features. The features selected by principal component analysis were used as input data to train a random forest algorithm. Tests were conducted, combining spectral and geostatistical features. Change detection evaluation was performed using a confusion matrix and its accuracies. The semivariogram curves were efficient to characterize spatial heterogeneity, with similar results using NIR and NDVI from Sentinel 2 and Landsat 8. Accuracy was significantly greater when combining geostatistical features with spectral data, suggesting that this method can improve image classification results.
Baig, Kamran; Shaw-Ridley, Mary; Munoz, Oscar J
2016-10-01
Colonias are sub standardized and unincorporated areas located along the US-Mexico border, with severely lacking infrastructure. Residents have poor health and limited availability, accessibility and/or utilization of healthcare services in the region. Using 2006-2007 community needs assessment (CNA) surveys collected by the Center for Housing and Urban Development of Texas A&M University, 410 randomly selected surveys from Hidalgo County, Texas were analyzed. Descriptive and spatial analyses were performed and Odds ratio (OR) was calculated. Out of 410 surveys, 333 were geo-coded to identify areas most in need of dental and vision care. Two hospitals existed within 5 miles radius of the mean centers for the two areas. Distance to health care facility was not statistically predictive of the need of dental care OR=0.96 (95% CI=0.855-1.078, p value=0.492) and vision care OR=1.083 (95% CI=0.968-1.212, p value=0.164). Integrating spatial analysis and CNA enhances planning to improve service accessibility and utilization in underserved areas. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
An, Deokkeun; Ramirez, Solange V.; Sellgren, Kris; Arendt, Richard G.; Boogert, A. C. Adwin; Robitaille, Thomas P.; Schultheis, Mathias; Cotera, Angela S.; Smith, Howard A.; Stolovy, Susan R.
2011-01-01
We present results from our spectroscopic study, using the Infrared Spectrograph (IRS) onboard the Spitzer Space Telescope, designed to identify massive young stellar objects (YSOs) in the Galactic Center (GC). Our sample of 107 YSO candidates was selected based on IRAC colors from the high spatial resolution, high sensitivity Spitzer/IRAC images in the Central Molecular Zone (CMZ), which spans the central approximately 300 pc region of the Milky Way Galaxy. We obtained IRS spectra over 5 micron to 35 micron using both high- and low-resolution IRS modules. We spectroscopically identify massive YSOs by the presence of a 15.4 micron shoulder on the absorption profile of 15 micron CO2 ice, suggestive of CO2 ice mixed with CH30H ice on grains. This 15.4 micron shoulder is clearly observed in 16 sources and possibly observed in an additional 19 sources. We show that 9 massive YSOs also reveal molecular gas-phase absorption from C02, C2H2, and/or HCN, which traces warm and dense gas in YSOs. Our results provide the first spectroscopic census of the massive YSO population in the GC. We fit YSO models to the observed spectral energy distributions and find YSO masses of 8 - 23 solar Mass, which generally agree with the masses derived from observed radio continuum emission. We find that about 50% of photometrically identified YSOs are confirmed with our spectroscopic study. This implies a preliminary star formation rate of approximately 0.07 solar mass/yr at the GC.
Patients with chronic insomnia have selective impairments in memory that are modulated by cortisol.
Chen, Gui-Hai; Xia, Lan; Wang, Fang; Li, Xue-Wei; Jiao, Chuan-An
2016-10-01
Memory impairment is a frequent complaint in insomniacs; however, it is not consistently demonstrated. It is unknown whether memory impairment in insomniacs involves neuroendocrine dysfunction. The participants in this study were selected from the clinical setting and included 21 patients with chronic insomnia disorder (CID), 25 patients with insomnia and comorbid depressive disorder (CDD), and 20 control participants without insomnia. We evaluated spatial working and reference memory, object working and reference memory, and object recognition memory using the Nine Box Maze Test. We also evaluated serum neuroendocrine hormone levels. Compared to the controls, the CID patients made significantly more errors in spatial working and object recognition memory (p < .05), whereas the CDD patients performed poorly in all the assessed memory types (p < .05). In addition, the CID patients had higher levels (mean difference [95% CI]) of corticotrophin-releasing hormone, cortisol (31.98 [23.97, 39.98] μg/l), total triiodothyronine (667.58 [505.71, 829.45] μg/l), and total thyroxine (41.49 [33.23, 49.74] μg/l) (p < .05), and lower levels of thyrotropin-releasing hormone (-35.93 [-38.83, -33.02] ng/l), gonadotropin-releasing hormone (-4.50 [-5.02, -3.98] ng/l) (p < .05), and adrenocorticotropic hormone compared to the CDD patients. After controlling for confounding variables, the partial correlation analysis revealed that the levels of cortisol positively correlated with the errors in object working memory (r = .534, p = .033) and negatively correlated with the errors in object recognition memory (r = -.659, p = .006) in the CID patients. The results suggest that the CID patients had selective memory impairment, which may be mediated by increased cortisol levels. © 2016 Society for Psychophysiological Research.
Martínez-Cañada, Pablo; Halnes, Geir; Fyhn, Marianne
2018-01-01
Despite half-a-century of research since the seminal work of Hubel and Wiesel, the role of the dorsal lateral geniculate nucleus (dLGN) in shaping the visual signals is not properly understood. Placed on route from retina to primary visual cortex in the early visual pathway, a striking feature of the dLGN circuit is that both the relay cells (RCs) and interneurons (INs) not only receive feedforward input from retinal ganglion cells, but also a prominent feedback from cells in layer 6 of visual cortex. This feedback has been proposed to affect synchronicity and other temporal properties of the RC firing. It has also been seen to affect spatial properties such as the center-surround antagonism of thalamic receptive fields, i.e., the suppression of the response to very large stimuli compared to smaller, more optimal stimuli. Here we explore the spatial effects of cortical feedback on the RC response by means of a a comprehensive network model with biophysically detailed, single-compartment and multicompartment neuron models of RCs, INs and a population of orientation-selective layer 6 simple cells, consisting of pyramidal cells (PY). We have considered two different arrangements of synaptic feedback from the ON and OFF zones in the visual cortex to the dLGN: phase-reversed (‘push-pull’) and phase-matched (‘push-push’), as well as different spatial extents of the corticothalamic projection pattern. Our simulation results support that a phase-reversed arrangement provides a more effective way for cortical feedback to provide the increased center-surround antagonism seen in experiments both for flashing spots and, even more prominently, for patch gratings. This implies that ON-center RCs receive direct excitation from OFF-dominated cortical cells and indirect inhibitory feedback from ON-dominated cortical cells. The increased center-surround antagonism in the model is accompanied by spatial focusing, i.e., the maximum RC response occurs for smaller stimuli when feedback is present. PMID:29377888
Invariant visual object recognition: a model, with lighting invariance.
Rolls, Edmund T; Stringer, Simon M
2006-01-01
How are invariant representations of objects formed in the visual cortex? We describe a neurophysiological and computational approach which focusses on a feature hierarchy model in which invariant representations can be built by self-organizing learning based on the statistics of the visual input. The model can use temporal continuity in an associative synaptic learning rule with a short term memory trace, and/or it can use spatial continuity in Continuous Transformation learning. The model of visual processing in the ventral cortical stream can build representations of objects that are invariant with respect to translation, view, size, and in this paper we show also lighting. The model has been extended to provide an account of invariant representations in the dorsal visual system of the global motion produced by objects such as looming, rotation, and object-based movement. The model has been extended to incorporate top-down feedback connections to model the control of attention by biased competition in for example spatial and object search tasks. The model has also been extended to account for how the visual system can select single objects in complex visual scenes, and how multiple objects can be represented in a scene.
1987-07-01
Neuilly s/Seine FR AC;U American Geophysical Union : 2000 Florida Avenue, N.W.. Washington, )C 20009 LIS The various AGARD Panels are as follows: AMP...Railway Terrace, Rugby CV221 3HQ UK ICHMT International Center for Heat and Mass Transfer: P.O. Box 522, 11001 Belgrade YU 127 Acronym or Code Title and...IUGG International Union of Geodesy and Geophysics: c/o School of Surveying, University of New South Wales, Kensington, NSW 2033 0S IUPAC International
Crooks, Valorie A; Schuurman, Nadine
2012-08-01
Primary health care (PHC) encompasses an array of health and social services that focus on preventative, diagnostic, and basic care measures to maintain wellbeing and address illnesses. In Canada, PHC involves the provision of first-contact health care services by providers such as family physicians and general practitioners - collectively referred as PHC physicians here. Ensuring access is a key requirement of effective PHC delivery. This is because having access to PHC has been shown to positively impact a number of health outcomes. We build on recent innovations in measuring potential spatial access to PHC physicians using geographic information systems (GIS) by running and then interpreting the findings of a modified gravity model. Elsewhere we have introduced the protocol for this model. In this article we run it for five selected Canadian provinces and territories. Our objectives are to present the results of the modified gravity model in order to: (1) understand how potential spatial access to PHC physicians can be interpreted in these Canadian jurisdictions, and (2) provide guidance regarding how findings of the modified gravity model should be interpreted in other analyses. Regarding the first objective, two distinct spatial patterns emerge regarding potential spatial access to PHC physicians in the five selected Canadian provinces: (1) a clear north-south pattern, where southern areas have greater potential spatial access than northern areas; and (2) while gradients of potential spatial access exist in and around urban areas, access outside of densely-to-moderately populated areas is fairly binary. Regarding the second objective, we identify three principles that others can use to interpret the findings of the modified gravity model when used in other research contexts. Future applications of the modified gravity model are needed in order to refine the recommendations we provide on interpreting its results. It is important that studies are undertaken that can help administrators, policy-makers, researchers, and others with characterizing the state of access to PHC, including potential spatial access. We encourage further research to be done using GIS in order to offer new, spatial perspectives on issues of access to health services given the increased recognition that the place-based nature of health services can benefit from the use of the capabilities of GIS to enhance the role that visualization plays in decision-making.
2012-01-01
Background Primary health care (PHC) encompasses an array of health and social services that focus on preventative, diagnostic, and basic care measures to maintain wellbeing and address illnesses. In Canada, PHC involves the provision of first-contact health care services by providers such as family physicians and general practitioners – collectively referred as PHC physicians here. Ensuring access is a key requirement of effective PHC delivery. This is because having access to PHC has been shown to positively impact a number of health outcomes. Methods We build on recent innovations in measuring potential spatial access to PHC physicians using geographic information systems (GIS) by running and then interpreting the findings of a modified gravity model. Elsewhere we have introduced the protocol for this model. In this article we run it for five selected Canadian provinces and territories. Our objectives are to present the results of the modified gravity model in order to: (1) understand how potential spatial access to PHC physicians can be interpreted in these Canadian jurisdictions, and (2) provide guidance regarding how findings of the modified gravity model should be interpreted in other analyses. Results Regarding the first objective, two distinct spatial patterns emerge regarding potential spatial access to PHC physicians in the five selected Canadian provinces: (1) a clear north–south pattern, where southern areas have greater potential spatial access than northern areas; and (2) while gradients of potential spatial access exist in and around urban areas, access outside of densely-to-moderately populated areas is fairly binary. Regarding the second objective, we identify three principles that others can use to interpret the findings of the modified gravity model when used in other research contexts. Conclusions Future applications of the modified gravity model are needed in order to refine the recommendations we provide on interpreting its results. It is important that studies are undertaken that can help administrators, policy-makers, researchers, and others with characterizing the state of access to PHC, including potential spatial access. We encourage further research to be done using GIS in order to offer new, spatial perspectives on issues of access to health services given the increased recognition that the place-based nature of health services can benefit from the use of the capabilities of GIS to enhance the role that visualization plays in decision-making. PMID:22852816
Vaessen, Maarten J; Saj, Arnaud; Lovblad, Karl-Olof; Gschwind, Markus; Vuilleumier, Patrik
2016-04-01
Spatial neglect is a neuropsychological syndrome in which patients fail to perceive and orient to stimuli located in the space contralateral to the lesioned hemisphere. It is characterized by a wide heterogeneity in clinical symptoms which can be grouped into distinct behavioral components correlating with different lesion sites. Moreover, damage to white-matter (WM) fiber tracts has been suggested to disconnect brain networks that mediate different functions associated with spatial cognition and attention. However, it remains unclear what WM pathways are associated with functionally dissociable neglect components. In this study we examined nine patients with a focal right hemisphere stroke using a series of neuropsychological tests and diffusion tensor imaging (DTI) in order to disentangle the role of specific WM pathways in neglect symptoms. First, following previous work, the behavioral test scores of patients were factorized into three independent components reflecting perceptual, exploratory, and object-centered deficits in spatial awareness. We then examined the structural neural substrates of these components by correlating indices of WM integrity (fractional anisotropy) with the severity of deficits along each profile. Several locations in the right parietal and frontal WM correlated with neuropsychological scores. Fiber tracts projecting from these locations indicated that posterior parts of the superior longitudinal fasciculus (SLF), as well as nearby callosal fibers connecting ipsilateral and contralateral parietal areas, were associated with perceptual spatial deficits, whereas more anterior parts of SLF and inferior fronto-occipital fasciculus (IFOF) were predominantly associated with object-centered deficits. In addition, connections between frontal areas and superior colliculus were found to be associated with the exploratory deficits. Our results provide novel support to the view that neglect may result from disconnection lesions in distributed brain networks, but also extend these notions by highlighting the role of dissociable circuits in different functional components of the neglect syndrome. However these preliminary findings require replication with larger samples of patients. Copyright © 2016 Elsevier Ltd. All rights reserved.
Prut, L; Prenosil, G; Willadt, S; Vogt, K; Fritschy, J-M; Crestani, F
2010-07-01
The memory for location of objects, which binds information about objects to discrete positions or spatial contexts of occurrence, is a form of episodic memory particularly sensitive to hippocampal damage. Its early decline is symptomatic for elderly dementia. Substances that selectively reduce alpha5-GABA(A) receptor function are currently developed as potential cognition enhancers for Alzheimer's syndrome and other dementia, consistent with genetic studies implicating these receptors that are highly expressed in hippocampus in learning performance. Here we explored the consequences of reduced GABA(A)alpha5-subunit contents, as occurring in alpha5(H105R) knock-in mice, on the memory for location of objects. This required the behavioral characterization of alpha5(H105R) and wild-type animals in various tasks examining learning and memory retrieval strategies for objects, locations, contexts and their combinations. In mutants, decreased amounts of alpha5-subunits and retained long-term potentiation in hippocampus were confirmed. They exhibited hyperactivity with conserved circadian rhythm in familiar actimeters, and normal exploration and emotional reactivity in novel places, allocentric spatial guidance, and motor pattern learning acquisition, inhibition and flexibility in T- and eight-arm mazes. Processing of object, position and context memories and object-guided response learning were spared. Genotype difference in object-in-place memory retrieval and in encoding and response learning strategies for object-location combinations manifested as a bias favoring object-based recognition and guidance strategies over spatial processing of objects in the mutants. These findings identify in alpha5(H105R) mice a behavioral-cognitive phenotype affecting basal locomotion and the memory for location of objects indicative of hippocampal dysfunction resulting from moderately decreased alpha5-subunit contents.
2014-02-01
installation based on a Euclidean distance allocation and assigned that installation’s threshold values. The second approach used a thin - plate spline ...installation critical nLS+ thresholds involved spatial interpolation. A thin - plate spline radial basis functions (RBF) was selected as the...the interpolation of installation results using a thin - plate spline radial basis function technique. 6.5 OBJECTIVE #5: DEVELOP AND
Verrico, Christopher D; Gu, Hong; Peterson, Melanie L; Sampson, Allan R; Lewis, David A
2014-04-01
Epidemiological findings suggest that, relative to adults, adolescents are more vulnerable to the adverse persistent effects of cannabis on working memory. However, the potential confounds inherent in human studies preclude direct determination of a cause-and-effect relationship between adolescent cannabis use and heightened susceptibility to persistent working memory impairments. Consequently, the authors examined the effects of repeated exposure to Δ9-tetrahydrocannabinol (THC) on performance of spatial and object working memory tasks in adolescent monkeys. Seven pairs of male adolescent rhesus monkeys, matched for baseline cognitive performance, received vehicle or THC intravenously 5 days/week for 6 months. Performance on spatial and object memory tasks was assessed 23 or 71 hours after drug administration throughout the study. In addition, acute effects on working memory were also assessed at the beginning and end of the 6-month period. Relative to the vehicle-exposed control animals, those with repeated THC exposure had a blunted trajectory of accuracy improvements on the spatial working memory task in a delay-dependent manner. Accuracy improvements on the object working memory task did not differ between groups. Relative to the acute effects of THC on working memory at the beginning of the study, neither sensitivity nor tolerance was evident after 6 months of THC exposure. Because maturation of performance is later for spatial than for object working memory, these findings suggest that persistent effects of THC on cognitive abilities are more evident when exposure coincides with the developmental stage during which the underlying neural circuits are actively maturing.
Simione, Luca; Raffone, Antonino; Wolters, Gezinus; Salmas, Paola; Nakatani, Chie; Belardinelli, Marta Olivetti; van Leeuwen, Cees
2012-10-01
Two separate lines of study have clarified the role of selectivity in conscious access to visual information. Both involve presenting multiple targets and distracters: one simultaneously in a spatially distributed fashion, the other sequentially at a single location. To understand their findings in a unified framework, we propose a neurodynamic model for Visual Selection and Awareness (ViSA). ViSA supports the view that neural representations for conscious access and visuo-spatial working memory are globally distributed and are based on recurrent interactions between perceptual and access control processors. Its flexible global workspace mechanisms enable a unitary account of a broad range of effects: It accounts for the limited storage capacity of visuo-spatial working memory, attentional cueing, and efficient selection with multi-object displays, as well as for the attentional blink and associated sparing and masking effects. In particular, the speed of consolidation for storage in visuo-spatial working memory in ViSA is not fixed but depends adaptively on the input and recurrent signaling. Slowing down of consolidation due to weak bottom-up and recurrent input as a result of brief presentation and masking leads to the attentional blink. Thus, ViSA goes beyond earlier 2-stage and neuronal global workspace accounts of conscious processing limitations. PsycINFO Database Record (c) 2012 APA, all rights reserved.
Palmer, Daniel; Creighton, Samantha; Prado, Vania F; Prado, Marco A M; Choleris, Elena; Winters, Boyer D
2016-09-15
Substantial evidence implicates Acetylcholine (ACh) in the acquisition of object memories. While most research has focused on the role of the cholinergic basal forebrain and its cortical targets, there are additional cholinergic networks that may contribute to object recognition. The striatum contains an independent cholinergic network comprised of interneurons. In the current study, we investigated the role of this cholinergic signalling in object recognition using mice deficient for Vesicular Acetylcholine Transporter (VAChT) within interneurons of the striatum. We tested whether these striatal VAChT(D2-Cre-flox/flox) mice would display normal short-term (5 or 15min retention delay) and long-term (3h retention delay) object recognition memory. In a home cage object recognition task, male and female VAChT(D2-Cre-flox/flox) mice were impaired selectively with a 15min retention delay. When tested on an object location task, VAChT(D2-Cre-flox/flox) mice displayed intact spatial memory. Finally, when object recognition was tested in a Y-shaped apparatus, designed to minimize the influence of spatial and contextual cues, only females displayed impaired recognition with a 5min retention delay, but when males were challenged with a 15min retention delay, they were also impaired; neither males nor females were impaired with the 3h delay. The pattern of results suggests that striatal cholinergic transmission plays a role in the short-term memory for object features, but not spatial location. Copyright © 2016 Elsevier B.V. All rights reserved.
Sereno, Anne B.; Lehky, Sidney R.
2011-01-01
Although the representation of space is as fundamental to visual processing as the representation of shape, it has received relatively little attention from neurophysiological investigations. In this study we characterize representations of space within visual cortex, and examine how they differ in a first direct comparison between dorsal and ventral subdivisions of the visual pathways. Neural activities were recorded in anterior inferotemporal cortex (AIT) and lateral intraparietal cortex (LIP) of awake behaving monkeys, structures associated with the ventral and dorsal visual pathways respectively, as a stimulus was presented at different locations within the visual field. In spatially selective cells, we find greater modulation of cell responses in LIP with changes in stimulus position. Further, using a novel population-based statistical approach (namely, multidimensional scaling), we recover the spatial map implicit within activities of neural populations, allowing us to quantitatively compare the geometry of neural space with physical space. We show that a population of spatially selective LIP neurons, despite having large receptive fields, is able to almost perfectly reconstruct stimulus locations within a low-dimensional representation. In contrast, a population of AIT neurons, despite each cell being spatially selective, provide less accurate low-dimensional reconstructions of stimulus locations. They produce instead only a topologically (categorically) correct rendition of space, which nevertheless might be critical for object and scene recognition. Furthermore, we found that the spatial representation recovered from population activity shows greater translation invariance in LIP than in AIT. We suggest that LIP spatial representations may be dimensionally isomorphic with 3D physical space, while in AIT spatial representations may reflect a more categorical representation of space (e.g., “next to” or “above”). PMID:21344010
Covariate selection with iterative principal component analysis for predicting physical
USDA-ARS?s Scientific Manuscript database
Local and regional soil data can be improved by coupling new digital soil mapping techniques with high resolution remote sensing products to quantify both spatial and absolute variation of soil properties. The objective of this research was to advance data-driven digital soil mapping techniques for ...
NASA Astrophysics Data System (ADS)
Madokoro, H.; Tsukada, M.; Sato, K.
2013-07-01
This paper presents an unsupervised learning-based object category formation and recognition method for mobile robot vision. Our method has the following features: detection of feature points and description of features using a scale-invariant feature transform (SIFT), selection of target feature points using one class support vector machines (OC-SVMs), generation of visual words using self-organizing maps (SOMs), formation of labels using adaptive resonance theory 2 (ART-2), and creation and classification of categories on a category map of counter propagation networks (CPNs) for visualizing spatial relations between categories. Classification results of dynamic images using time-series images obtained using two different-size robots and according to movements respectively demonstrate that our method can visualize spatial relations of categories while maintaining time-series characteristics. Moreover, we emphasize the effectiveness of our method for category formation of appearance changes of objects.
Tree regeneration response to the group selection method in southern Indiana
Dale R. Weigel; George R. Parker
1997-01-01
Tree regeneration response following the use of the group selection method was studied within 36 group openings on the Naval Surface Warfare Center, Crane Division in south central Indiana. Two different aspects and three time periods since cutting were examined. The objectives were to determine whether aspect, age, species group, location within the opening, or their...
ESDORA: A Data Archive Infrastructure Using Digital Object Model and Open Source Frameworks
NASA Astrophysics Data System (ADS)
Shrestha, Biva; Pan, Jerry; Green, Jim; Palanisamy, Giriprakash; Wei, Yaxing; Lenhardt, W.; Cook, R. Bob; Wilson, B. E.; Leggott, M.
2011-12-01
There are an array of challenges associated with preserving, managing, and using contemporary scientific data. Large volume, multiple formats and data services, and the lack of a coherent mechanism for metadata/data management are some of the common issues across data centers. It is often difficult to preserve the data history and lineage information, along with other descriptive metadata, hindering the true science value for the archived data products. In this project, we use digital object abstraction architecture as the information/knowledge framework to address these challenges. We have used the following open-source frameworks: Fedora-Commons Repository, Drupal Content Management System, Islandora (Drupal Module) and Apache Solr Search Engine. The system is an active archive infrastructure for Earth Science data resources, which include ingestion, archiving, distribution, and discovery functionalities. We use an ingestion workflow to ingest the data and metadata, where many different aspects of data descriptions (including structured and non-structured metadata) are reviewed. The data and metadata are published after reviewing multiple times. They are staged during the reviewing phase. Each digital object is encoded in XML for long-term preservation of the content and relations among the digital items. The software architecture provides a flexible, modularized framework for adding pluggable user-oriented functionality. Solr is used to enable word search as well as faceted search. A home grown spatial search module is plugged in to allow user to make a spatial selection in a map view. A RDF semantic store within the Fedora-Commons Repository is used for storing information on data lineage, dissemination services, and text-based metadata. We use the semantic notion "isViewerFor" to register internally or externally referenced URLs, which are rendered within the same web browser when possible. With appropriate mapping of content into digital objects, many different data descriptions, including structured metadata, data history, auditing trails, are captured and coupled with the data content. The semantic store provides a foundation for possible further utilizations, including provide full-fledged Earth Science ontology for data interpretation or lineage tracking. Datasets from the NASA-sponsored Oak Ridge National Laboratory Distributed Active Archive Center (ORNL DAAC) as well as from the Synthesis Thematic Data Center (MAST-DC) are used in a testing deployment with the system. The testing deployment allows us to validate the features and values described here for the integrated system, which will be presented here. Overall, we believe that the integrated system is valid, reusable data archive software that provides digital stewardship for Earth Sciences data content, now and in the future. References: [1] Devarakonda, Ranjeet, and Harold Shanafield. "Drupal: Collaborative framework for science research." Collaboration Technologies and Systems (CTS), 2011 International Conference on. IEEE, 2011. [2] Devarakonda, Ranjeet, et al. "Semantic search integration to climate data." Collaboration Technologies and Systems (CTS), 2014 International Conference on. IEEE, 2014.
Stennis Space Center Verification & Validation Capabilities
NASA Technical Reports Server (NTRS)
Pagnutti, Mary; Ryan, Robert E.; Holekamp, Kara; O'Neal, Duane; Knowlton, Kelly; Ross, Kenton; Blonski, Slawomir
2007-01-01
Scientists within NASA#s Applied Research & Technology Project Office (formerly the Applied Sciences Directorate) have developed a well-characterized remote sensing Verification & Validation (V&V) site at the John C. Stennis Space Center (SSC). This site enables the in-flight characterization of satellite and airborne high spatial resolution remote sensing systems and their products. The smaller scale of the newer high resolution remote sensing systems allows scientists to characterize geometric, spatial, and radiometric data properties using a single V&V site. The targets and techniques used to characterize data from these newer systems can differ significantly from the techniques used to characterize data from the earlier, coarser spatial resolution systems. Scientists have used the SSC V&V site to characterize thermal infrared systems. Enhancements are being considered to characterize active lidar systems. SSC employs geodetic targets, edge targets, radiometric tarps, atmospheric monitoring equipment, and thermal calibration ponds to characterize remote sensing data products. Similar techniques are used to characterize moderate spatial resolution sensing systems at selected nearby locations. The SSC Instrument Validation Lab is a key component of the V&V capability and is used to calibrate field instrumentation and to provide National Institute of Standards and Technology traceability. This poster presents a description of the SSC characterization capabilities and examples of calibration data.
Atomic-Scale Nuclear Spin Imaging Using Quantum-Assisted Sensors in Diamond
NASA Astrophysics Data System (ADS)
Ajoy, A.; Bissbort, U.; Lukin, M. D.; Walsworth, R. L.; Cappellaro, P.
2015-01-01
Nuclear spin imaging at the atomic level is essential for the understanding of fundamental biological phenomena and for applications such as drug discovery. The advent of novel nanoscale sensors promises to achieve the long-standing goal of single-protein, high spatial-resolution structure determination under ambient conditions. In particular, quantum sensors based on the spin-dependent photoluminescence of nitrogen-vacancy (NV) centers in diamond have recently been used to detect nanoscale ensembles of external nuclear spins. While NV sensitivity is approaching single-spin levels, extracting relevant information from a very complex structure is a further challenge since it requires not only the ability to sense the magnetic field of an isolated nuclear spin but also to achieve atomic-scale spatial resolution. Here, we propose a method that, by exploiting the coupling of the NV center to an intrinsic quantum memory associated with the nitrogen nuclear spin, can reach a tenfold improvement in spatial resolution, down to atomic scales. The spatial resolution enhancement is achieved through coherent control of the sensor spin, which creates a dynamic frequency filter selecting only a few nuclear spins at a time. We propose and analyze a protocol that would allow not only sensing individual spins in a complex biomolecule, but also unraveling couplings among them, thus elucidating local characteristics of the molecule structure.
Multi-Object Spectroscopy with MUSE
NASA Astrophysics Data System (ADS)
Kelz, A.; Kamann, S.; Urrutia, T.; Weilbacher, P.; Bacon, R.
2016-10-01
Since 2014, MUSE, the Multi-Unit Spectroscopic Explorer, is in operation at the ESO-VLT. It combines a superb spatial sampling with a large wavelength coverage. By design, MUSE is an integral-field instrument, but its field-of-view and large multiplex make it a powerful tool for multi-object spectroscopy too. Every data-cube consists of 90,000 image-sliced spectra and 3700 monochromatic images. In autumn 2014, the observing programs with MUSE have commenced, with targets ranging from distant galaxies in the Hubble Deep Field to local stellar populations, star formation regions and globular clusters. This paper provides a brief summary of the key features of the MUSE instrument and its complex data reduction software. Some selected examples are given, how multi-object spectroscopy for hundreds of continuum and emission-line objects can be obtained in wide, deep and crowded fields with MUSE, without the classical need for any target pre-selection.
Development of an Objective High Spatial Resolution Soil Moisture Index
NASA Astrophysics Data System (ADS)
Zavodsky, B.; Case, J.; White, K.; Bell, J. R.
2015-12-01
Drought detection, analysis, and mitigation has become a key challenge for a diverse set of decision makers, including but not limited to operational weather forecasters, climatologists, agricultural interests, and water resource management. One tool that is heavily used is the United States Drought Monitor (USDM), which is derived from a complex blend of objective data and subjective analysis on a state-by-state basis using a variety of modeled and observed precipitation, soil moisture, hydrologic, and vegetation and crop health data. The NASA Short-term Prediction Research and Transition (SPoRT) Center currently runs a real-time configuration of the Noah land surface model (LSM) within the NASA Land Information System (LIS) framework. The LIS-Noah is run at 3-km resolution for local numerical weather prediction (NWP) and situational awareness applications at select NOAA/National Weather Service (NWS) forecast offices over the Continental U.S. (CONUS). To enhance the practicality of the LIS-Noah output for drought monitoring and assessing flood potential, a 30+-year soil moisture climatology has been developed in an attempt to place near real-time soil moisture values in historical context at county- and/or watershed-scale resolutions. This LIS-Noah soil moisture climatology and accompanying anomalies is intended to complement the current suite of operational products, such as the North American Land Data Assimilation System phase 2 (NLDAS-2), which are generated on a coarser-resolution grid that may not capture localized, yet important soil moisture features. Daily soil moisture histograms are used to identify the real-time soil moisture percentiles at each grid point according to the county or watershed in which the grid point resides. Spatial plots are then produced that map the percentiles as proxies to the different USDM categories. This presentation will highlight recent developments of this gridded, objective soil moisture index, comparison to subjective analyses, and application examples.
Detecting spatial memory deficits beyond blindness in tg2576 Alzheimer mice.
Yassine, Nour; Lazaris, Anelise; Dorner-Ciossek, Cornelia; Després, Olivier; Meyer, Laurence; Maitre, Michel; Mensah-Nyagan, Ayikoe Guy; Cassel, Jean-Christophe; Mathis, Chantal
2013-03-01
The retinal degeneration Pde6b(rd1) (rd) mutation can be a major pitfall in behavioral studies using tg2576 mice bred on a B6:SJL genetic background, 1 of the most widely used models of Alzheimer's disease. After a pilot study in wild type mice, performance of 8- and 16-month-old tg2576 mice were assessed in several behavioral tasks with the challenge of selecting 1 or more task(s) showing robust memory deficits on this genetic background. Water maze acquisition was impossible in rd homozygotes, whereas Y-maze alternation, object recognition, and olfactory discrimination were unaffected by both the transgene and the rd mutation. Spatial memory retention of 8- and 16-month-old tg2576 mice, however, was dramatically affected independently of the rd mutation when mice had to recognize a spatial configuration of objects or to perform the Barnes maze. Thus, the latter tasks appear extremely useful to evaluate spatial memory deficits and to test cognitive therapies in tg2576 mice and other mouse models bred on a background susceptible to visual impairment. Copyright © 2013 Elsevier Inc. All rights reserved.
Multi-objective decision-making under uncertainty: Fuzzy logic methods
NASA Technical Reports Server (NTRS)
Hardy, Terry L.
1994-01-01
Selecting the best option among alternatives is often a difficult process. This process becomes even more difficult when the evaluation criteria are vague or qualitative, and when the objectives vary in importance and scope. Fuzzy logic allows for quantitative representation of vague or fuzzy objectives, and therefore is well-suited for multi-objective decision-making. This paper presents methods employing fuzzy logic concepts to assist in the decision-making process. In addition, this paper describes software developed at NASA Lewis Research Center for assisting in the decision-making process. Two diverse examples are used to illustrate the use of fuzzy logic in choosing an alternative among many options and objectives. One example is the selection of a lunar lander ascent propulsion system, and the other example is the selection of an aeration system for improving the water quality of the Cuyahoga River in Cleveland, Ohio. The fuzzy logic techniques provided here are powerful tools which complement existing approaches, and therefore should be considered in future decision-making activities.
Malkova, Ludise; Mishkin, Mortimer
2003-03-01
In earlier studies of one-trial spatial memory in monkeys (Parkinson et al., 1988; Angeli et al., 1993), severe and chronic memory impairment for both object-place association and place alone was found after ablation of the hippocampal formation. The results appeared to provide the first clear-cut evidence in the monkey of the essential role of the hippocampus in spatial memory, but that interpretation neglected the inclusion in the lesion of the underlying posterior parahippocampal region. To determine the separate contributions of the hippocampus and posterior parahippocampal region to these spatial forms of one-trial memory, we trained 10 rhesus monkeys, as before, to remember the spatial positions of either two different trial-unique objects overlying two of the wells in a three-well test tray (object-place trials) or simply two of the three wells (place trials). Six of the monkeys then received ibotenic acid lesions restricted to the hippocampal formation (group H), and the four others received selective ablations of the posterior parahippocampal region (group P), comprising mainly parahippocampal cortex, parasubiculum, and presubiculum. Group H was found to be completely unaffected postoperatively on both types of trials, whereas group P sustained an impairment on both types equal in magnitude to that observed after the combined lesions in the original studies. Thus, contrary to the previous interpretation, one-trial memory for object-place association and, perhaps more fundamentally, one-trial memory for two different places appear to be critically dependent not on the hippocampal formation but rather on the posterior parahippocampal region.
A dissociation between attention and selection
NASA Technical Reports Server (NTRS)
Remington, R. W.; Folk, C. L.
2001-01-01
It is widely assumed that the allocatian of spatial attention results in the "selection" of attended objects or regions of space. That is, once a stimulus is attended, all its feature dimensions are processed irrespective of their relevance to behavioral goals. This assumption is based in part on experiments showing significant interference for attended stimuli when the response to an irrelevant dimension conflicts with the response to the relevant dimension (e.g., the Stroop effect). Here we show that such interference is not due to attending per se. In two spatial cuing experiments, we found that it was possible to restrict processing of attended stimuli to task-relevant dimensions. This new evidence supports two novel conclusions: (a) Selection involves more than the focusing of attention per se: and (b) task expectations play a key role in detertnining the depth of processing of the elementary feature dimensions of attended stimuli.
Ambient radiation levels in positron emission tomography/computed tomography (PET/CT) imaging center
Santana, Priscila do Carmo; de Oliveira, Paulo Marcio Campos; Mamede, Marcelo; Silveira, Mariana de Castro; Aguiar, Polyanna; Real, Raphaela Vila; da Silva, Teógenes Augusto
2015-01-01
Objective To evaluate the level of ambient radiation in a PET/CT center. Materials and Methods Previously selected and calibrated TLD-100H thermoluminescent dosimeters were utilized to measure room radiation levels. During 32 days, the detectors were placed in several strategically selected points inside the PET/CT center and in adjacent buildings. After the exposure period the dosimeters were collected and processed to determine the radiation level. Results In none of the points selected for measurements the values exceeded the radiation dose threshold for controlled area (5 mSv/year) or free area (0.5 mSv/year) as recommended by the Brazilian regulations. Conclusion In the present study the authors demonstrated that the whole shielding system is appropriate and, consequently, the workers are exposed to doses below the threshold established by Brazilian standards, provided the radiation protection standards are followed. PMID:25798004
NASA Technical Reports Server (NTRS)
Nutter, Paul; Manobianco, John
1998-01-01
This report describes the Applied Meteorology Unit's objective verification of the National Centers for Environmental Prediction 29-km eta model during separate warm and cool season periods from May 1996 through January 1998. The verification of surface and upper-air point forecasts was performed at three selected stations important for 45th Weather Squadron, Spaceflight Meteorology Group, and National Weather Service, Melbourne operational weather concerns. The statistical evaluation identified model biases that may result from inadequate parameterization of physical processes. Since model biases are relatively small compared to the random error component, most of the total model error results from day-to-day variability in the forecasts and/or observations. To some extent, these nonsystematic errors reflect the variability in point observations that sample spatial and temporal scales of atmospheric phenomena that cannot be resolved by the model. On average, Meso-Eta point forecasts provide useful guidance for predicting the evolution of the larger scale environment. A more substantial challenge facing model users in real time is the discrimination of nonsystematic errors that tend to inflate the total forecast error. It is important that model users maintain awareness of ongoing model changes. Such changes are likely to modify the basic error characteristics, particularly near the surface.
An Efficient Method for Automatic Road Extraction Based on Multiple Features from LiDAR Data
NASA Astrophysics Data System (ADS)
Li, Y.; Hu, X.; Guan, H.; Liu, P.
2016-06-01
The road extraction in urban areas is difficult task due to the complicated patterns and many contextual objects. LiDAR data directly provides three dimensional (3D) points with less occlusions and smaller shadows. The elevation information and surface roughness are distinguishing features to separate roads. However, LiDAR data has some disadvantages are not beneficial to object extraction, such as the irregular distribution of point clouds and lack of clear edges of roads. For these problems, this paper proposes an automatic road centerlines extraction method which has three major steps: (1) road center point detection based on multiple feature spatial clustering for separating road points from ground points, (2) local principal component analysis with least squares fitting for extracting the primitives of road centerlines, and (3) hierarchical grouping for connecting primitives into complete roads network. Compared with MTH (consist of Mean shift algorithm, Tensor voting, and Hough transform) proposed in our previous article, this method greatly reduced the computational cost. To evaluate the proposed method, the Vaihingen data set, a benchmark testing data provided by ISPRS for "Urban Classification and 3D Building Reconstruction" project, was selected. The experimental results show that our method achieve the same performance by less time in road extraction using LiDAR data.
NASA Astrophysics Data System (ADS)
Demirel, M. C.; Mai, J.; Stisen, S.; Mendiguren González, G.; Koch, J.; Samaniego, L. E.
2016-12-01
Distributed hydrologic models are traditionally calibrated and evaluated against observations of streamflow. Spatially distributed remote sensing observations offer a great opportunity to enhance spatial model calibration schemes. For that it is important to identify the model parameters that can change spatial patterns before the satellite based hydrologic model calibration. Our study is based on two main pillars: first we use spatial sensitivity analysis to identify the key parameters controlling the spatial distribution of actual evapotranspiration (AET). Second, we investigate the potential benefits of incorporating spatial patterns from MODIS data to calibrate the mesoscale Hydrologic Model (mHM). This distributed model is selected as it allows for a change in the spatial distribution of key soil parameters through the calibration of pedo-transfer function parameters and includes options for using fully distributed daily Leaf Area Index (LAI) directly as input. In addition the simulated AET can be estimated at the spatial resolution suitable for comparison to the spatial patterns observed using MODIS data. We introduce a new dynamic scaling function employing remotely sensed vegetation to downscale coarse reference evapotranspiration. In total, 17 parameters of 47 mHM parameters are identified using both sequential screening and Latin hypercube one-at-a-time sampling methods. The spatial patterns are found to be sensitive to the vegetation parameters whereas streamflow dynamics are sensitive to the PTF parameters. The results of multi-objective model calibration show that calibration of mHM against observed streamflow does not reduce the spatial errors in AET while they improve only the streamflow simulations. We will further examine the results of model calibration using only multi spatial objective functions measuring the association between observed AET and simulated AET maps and another case including spatial and streamflow metrics together.
Neurocomputational bases of object and face recognition.
Biederman, I; Kalocsai, P
1997-01-01
A number of behavioural phenomena distinguish the recognition of faces and objects, even when members of a set of objects are highly similar. Because faces have the same parts in approximately the same relations, individuation of faces typically requires specification of the metric variation in a holistic and integral representation of the facial surface. The direct mapping of a hypercolumn-like pattern of activation onto a representation layer that preserves relative spatial filter values in a two-dimensional (2D) coordinate space, as proposed by C. von der Malsburg and his associates, may account for many of the phenomena associated with face recognition. An additional refinement, in which each column of filters (termed a 'jet') is centred on a particular facial feature (or fiducial point), allows selectivity of the input into the holistic representation to avoid incorporation of occluding or nearby surfaces. The initial hypercolumn representation also characterizes the first stage of object perception, but the image variation for objects at a given location in a 2D coordinate space may be too great to yield sufficient predictability directly from the output of spatial kernels. Consequently, objects can be represented by a structural description specifying qualitative (typically, non-accidental) characterizations of an object's parts, the attributes of the parts, and the relations among the parts, largely based on orientation and depth discontinuities (as shown by Hummel & Biederman). A series of experiments on the name priming or physical matching of complementary images (in the Fourier domain) of objects and faces documents that whereas face recognition is strongly dependent on the original spatial filter values, evidence from object recognition indicates strong invariance to these values, even when distinguishing among objects that are as similar as faces. PMID:9304687
Age- and sex-related disturbance in a battery of sensorimotor and cognitive tasks in Kunming mice.
Chen, Gui-Hai; Wang, Yue-Ju; Zhang, Li-Qun; Zhou, Jiang-Ning
2004-12-15
A battery of tasks, i.e. beam walking, open field, tightrope, radial six-arm water maze (RAWM), novel-object recognition and olfactory discrimination, was used to determine whether there was age- and sex-related memory deterioration in Kunming (KM) mice, and whether these tasks are independent or correlated with each other. Two age groups of KM mice were used: a younger group (7-8 months old, 12 males and 11 females) and an older group (17-18 months old, 12 males and 12 females). The results showed that the spatial learning ability and memory in the RAWM were lower in older female KM mice relative to younger female mice and older male mice. Consistent with this, in the novel-object recognition task, a non-spatial cognitive task, older female mice but not older male mice had impairment of short-term memory. In olfactory discrimination, another non-spatial task, the older mice retained this ability. Interestingly, female mice performed better than males, especially in the younger group. The older females exhibited sensorimotor impairment in the tightrope task and low locomotor activity in the open-field task. Moreover, older mice spent a longer time in the peripheral squares of the open-field than younger ones. The non-spatial cognitive performance in the novel-object recognition and olfactory discrimination tasks was related to performance in the open-field, whereas the spatial cognitive performance in the RAWM was not related to performance in any of the three sensorimotor tasks. These results suggest that disturbance of spatial learning and memory, as well as selective impairment of non-spatial learning and memory, existed in older female KM mice.
Selective attention within the foveola.
Poletti, Martina; Rucci, Michele; Carrasco, Marisa
2017-10-01
Efficient control of attentional resources and high-acuity vision are both fundamental for survival. Shifts in visual attention are known to covertly enhance processing at locations away from the center of gaze, where visual resolution is low. It is unknown, however, whether selective spatial attention operates where the observer is already looking-that is, within the high-acuity foveola, the small yet disproportionally important rod-free region of the retina. Using new methods for precisely controlling retinal stimulation, here we show that covert attention flexibly improves and speeds up both detection and discrimination at loci only a fraction of a degree apart within the foveola. These findings reveal a surprisingly precise control of attention and its involvement in fine spatial vision. They show that the commonly studied covert shifts of attention away from the fovea are the expression of a global mechanism that exerts its action across the entire visual field.
Selective attention within the foveola
Poletti, Martina; Rucci, Michele; Carrasco, Marisa
2018-01-01
Efficient control of attentional resources and high-acuity vision are both fundamental for survival. Shifts in visual attention are known to covertly enhance processing at locations away from the center of gaze, where visual resolution is low. It is unknown, however, whether selective spatial attention operates where the observer already looks, i.e., within the high-acuity foveola, the small, yet disproportionally important rod-free region of the retina. Using new methods for precisely controlling retinal stimulation, here we show that covert attention flexibly improves and speeds-up both detection and discrimination at loci only a fraction of a degree apart within the foveola. These findings reveal a surprisingly precise control of attention and its involvement in fine spatial vision. They show that the commonly studied covert shifts of attention away from the fovea are the expression of a global mechanism that exerts its action across the entire visual field. PMID:28805816
Lin, Yu-Pin; Chu, Hone-Jay; Huang, Yu-Long; Tang, Chia-Hsi; Rouhani, Shahrokh
2011-06-01
This study develops a stratified conditional Latin hypercube sampling (scLHS) approach for multiple, remotely sensed, normalized difference vegetation index (NDVI) images. The objective is to sample, monitor, and delineate spatiotemporal landscape changes, including spatial heterogeneity and variability, in a given area. The scLHS approach, which is based on the variance quadtree technique (VQT) and the conditional Latin hypercube sampling (cLHS) method, selects samples in order to delineate landscape changes from multiple NDVI images. The images are then mapped for calibration and validation by using sequential Gaussian simulation (SGS) with the scLHS selected samples. Spatial statistical results indicate that in terms of their statistical distribution, spatial distribution, and spatial variation, the statistics and variograms of the scLHS samples resemble those of multiple NDVI images more closely than those of cLHS and VQT samples. Moreover, the accuracy of simulated NDVI images based on SGS with scLHS samples is significantly better than that of simulated NDVI images based on SGS with cLHS samples and VQT samples, respectively. However, the proposed approach efficiently monitors the spatial characteristics of landscape changes, including the statistics, spatial variability, and heterogeneity of NDVI images. In addition, SGS with the scLHS samples effectively reproduces spatial patterns and landscape changes in multiple NDVI images.
NASA Technical Reports Server (NTRS)
Teng, William; Rui, Hualan; Strub, Richard; Vollmer, Bruce
2016-01-01
A long-standing "Digital Divide" in data representation exists between the preferred way of data access by the hydrology community and the common way of data archival by earth science data centers. Typically, in hydrology, earth surface features are expressed as discrete spatial objects (e.g., watersheds), and time-varying data are contained in associated time series. Data in earth science archives, although stored as discrete values (of satellite swath pixels or geographical grids), represent continuous spatial fields, one file per time step. This Divide has been an obstacle, specifically, between the Consortium of Universities for the Advancement of Hydrologic Science, Inc. and NASA earth science data systems. In essence, the way data are archived is conceptually orthogonal to the desired method of access. Our recent work has shown an optimal method of bridging the Divide, by enabling operational access to long-time series (e.g., 36 years of hourly data) of selected NASA datasets. These time series, which we have termed "data rods," are pre-generated or generated on-the-fly. This optimal solution was arrived at after extensive investigations of various approaches, including one based on "data curtains." The on-the-fly generation of data rods uses "data cubes," NASA Giovanni, and parallel processing. The optimal reorganization of NASA earth science data has significantly enhanced the access to and use of the data for the hydrology user community.
Global ensemble texture representations are critical to rapid scene perception.
Brady, Timothy F; Shafer-Skelton, Anna; Alvarez, George A
2017-06-01
Traditionally, recognizing the objects within a scene has been treated as a prerequisite to recognizing the scene itself. However, research now suggests that the ability to rapidly recognize visual scenes could be supported by global properties of the scene itself rather than the objects within the scene. Here, we argue for a particular instantiation of this view: That scenes are recognized by treating them as a global texture and processing the pattern of orientations and spatial frequencies across different areas of the scene without recognizing any objects. To test this model, we asked whether there is a link between how proficient individuals are at rapid scene perception and how proficiently they represent simple spatial patterns of orientation information (global ensemble texture). We find a significant and selective correlation between these tasks, suggesting a link between scene perception and spatial ensemble tasks but not nonspatial summary statistics In a second and third experiment, we additionally show that global ensemble texture information is not only associated with scene recognition, but that preserving only global ensemble texture information from scenes is sufficient to support rapid scene perception; however, preserving the same information is not sufficient for object recognition. Thus, global ensemble texture alone is sufficient to allow activation of scene representations but not object representations. Together, these results provide evidence for a view of scene recognition based on global ensemble texture rather than a view based purely on objects or on nonspatially localized global properties. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Delivery Pain Anxiety/Fear Control between Midwives among Women in Cross River State, Nigeria
ERIC Educational Resources Information Center
Oyira, Emilia James; Mgbekem, Mary; Osuchukwu, Easther Chukwudi; Affiong, Ekpenyong Onoyom; Lukpata, Felicia E.; Ojong-Alasia, Mary Manyo
2016-01-01
Objective: To examine background of midwives the effectiveness in delivery pain and anxiety/fear control of expectant mothers in Nigeria. Methods: Two null hypotheses were formulated. The survey design with sample of 360 post-natal women was selected from a population of 78,814 through the polio immunization registers of selected health center in…
Yang, Guoxiang; Best, Elly P H
2015-09-15
Best management practices (BMPs) can be used effectively to reduce nutrient loads transported from non-point sources to receiving water bodies. However, methodologies of BMP selection and placement in a cost-effective way are needed to assist watershed management planners and stakeholders. We developed a novel modeling-optimization framework that can be used to find cost-effective solutions of BMP placement to attain nutrient load reduction targets. This was accomplished by integrating a GIS-based BMP siting method, a WQM-TMDL-N modeling approach to estimate total nitrogen (TN) loading, and a multi-objective optimization algorithm. Wetland restoration and buffer strip implementation were the two BMP categories used to explore the performance of this framework, both differing greatly in complexity of spatial analysis for site identification. Minimizing TN load and BMP cost were the two objective functions for the optimization process. The performance of this framework was demonstrated in the Tippecanoe River watershed, Indiana, USA. Optimized scenario-based load reduction indicated that the wetland subset selected by the minimum scenario had the greatest N removal efficiency. Buffer strips were more effective for load removal than wetlands. The optimized solutions provided a range of trade-offs between the two objective functions for both BMPs. This framework can be expanded conveniently to a regional scale because the NHDPlus catchment serves as its spatial computational unit. The present study demonstrated the potential of this framework to find cost-effective solutions to meet a water quality target, such as a 20% TN load reduction, under different conditions. Copyright © 2015 Elsevier Ltd. All rights reserved.
Selecting a sampling method to aid in vegetation management decisions in loblolly pine plantations
David R. Weise; Glenn R. Glover
1993-01-01
Objective methods to evaluate hardwood competition in young loblolly pine (Pinustaeda L.) plantations are not widely used in the southeastern United States. Ability of common sampling rules to accurately estimate hardwood rootstock attributes at low sampling intensities and across varying rootstock spatial distributions is unknown. Fixed area plot...
ERIC Educational Resources Information Center
Buis, Joyce M.; Schane, Catherine S.
1980-01-01
Background, rationale, and techniques for using movement exploration to teach preswimming skills to developmentally delayed persons are given. Objectives (beyond the primary one of safety) of such a program include body awareness, spatial awareness, movement, and perceptual motor functions. Guidelins for activity selection and adaptation are…
NASA Astrophysics Data System (ADS)
Saidi, A.; Trache, M. A.; Khelfi, M. F.
2016-08-01
The social and economic activity steadily growing in our cities creates a significant waste production in constantly evolving. The management of this waste is problematic because it is the center of many issues and interests. Indeed, any action or decision to the collection, transportation, treatment and disposal of waste should be considered in the economic, social, political and especially environmental aspect. A global Geomatic solution requires implementing a GIS with powerful multidimensional spatial analysis tools that support really waste management problem. Algeria has adopted a solution of waste landfill for all urban cities. In the Oran region, it exists three Centers Controlled landfill (CET) which the most important is that of Hassi-Bounif. This center currently meeting the needs of the region is unsustainable solution at the long-term because of its rapid saturation and its geographic location, which is still far from city centers (20-30 km) implying a negative impact on the vehicle park collecting such frequent breakdowns, the rapid degradation, slow delivery time and especially the high cost of the maintenance operation. This phenomenon is aggravated by the absence of real and actual initiatives targeting the recycling and recovery of waste, which makes the CET an endpoint for all types of waste. We present in this study, the use of the ELECTRE method (Multicriteria Analysis) integrated into a GIS to characterize the impact of the implementation of transfers centers at Oran region. The results of this study will accentuate the advantages of the activation of waste warehouse closer to the city, and relieving considerably the volume of transfer towards CET. The objective of our presentation is to show the leading role of the new Geomatics tools and the multidimensional spatial analysis in the apprehension of an environmental problem such the waste management and more generally in the urban management.
How Sensor, Signal, and Imaging Informatics May Impact Patient Centered Care and Care Coordination
Moreau-Gaudry, A.
2015-01-01
Summary Objective This synopsis presents a selection for the IMIA (International Medical Informatics Association) Yearbook 2015 of excellent research in the broad field of Sensor, Signal, and Imaging Informatics published in the year 2014, with a focus on patient centered care coordination. Methods The two section editors performed a systematic initial selection and a double blind peer review process to select a list of candidate best papers in the domain published in 2014, from the PubMed and Web of Science databases. A set of MeSH keywords provided by experts was used. This selection was peer-reviewed by external reviewers. Results The review process highlighted articles illustrating two current trends related to care coordination and patient centered care: the enhanced capacity to predict the evolution of a disease based on patient-specific information can impact care coordination; similarly, better perception of the patient and his treatment could lead to enhanced personalized care with a potential impact on care coordination. Conclusions This review shows the multiplicity of angles from which the question of patient-centered care can be addressed, with consequences on care coordination that will need to be confirmed and demonstrated in the future. PMID:26293856
Multi-objective decision-making under uncertainty: Fuzzy logic methods
NASA Technical Reports Server (NTRS)
Hardy, Terry L.
1995-01-01
Fuzzy logic allows for quantitative representation of vague or fuzzy objectives, and therefore is well-suited for multi-objective decision-making. This paper presents methods employing fuzzy logic concepts to assist in the decision-making process. In addition, this paper describes software developed at NASA Lewis Research Center for assisting in the decision-making process. Two diverse examples are used to illustrate the use of fuzzy logic in choosing an alternative among many options and objectives. One example is the selection of a lunar lander ascent propulsion system, and the other example is the selection of an aeration system for improving the water quality of the Cuyahoga River in Cleveland, Ohio. The fuzzy logic techniques provided here are powerful tools which complement existing approaches, and therefore should be considered in future decision-making activities.
Multispecies genetic objectives in spatial conservation planning.
Nielsen, Erica S; Beger, Maria; Henriques, Romina; Selkoe, Kimberly A; von der Heyden, Sophie
2017-08-01
Growing threats to biodiversity and global alteration of habitats and species distributions make it increasingly necessary to consider evolutionary patterns in conservation decision making. Yet, there is no clear-cut guidance on how genetic features can be incorporated into conservation-planning processes, despite multiple molecular markers and several genetic metrics for each marker type to choose from. Genetic patterns differ between species, but the potential tradeoffs among genetic objectives for multiple species in conservation planning are currently understudied. We compared spatial conservation prioritizations derived from 2 metrics of genetic diversity (nucleotide and haplotype diversity) and 2 metrics of genetic isolation (private haplotypes and local genetic differentiation) in mitochondrial DNA of 5 marine species. We compared outcomes of conservation plans based only on habitat representation with plans based on genetic data and habitat representation. Fewer priority areas were selected for conservation plans based solely on habitat representation than on plans that included habitat and genetic data. All 4 genetic metrics selected approximately similar conservation-priority areas, which is likely a result of prioritizing genetic patterns across a genetically diverse array of species. Largely, our results suggest that multispecies genetic conservation objectives are vital to creating protected-area networks that appropriately preserve community-level evolutionary patterns. © 2016 Society for Conservation Biology.
Lateral entorhinal cortex is necessary for associative but not nonassociative recognition memory
Wilson, David IG; Watanabe, Sakurako; Milner, Helen; Ainge, James A
2013-01-01
The lateral entorhinal cortex (LEC) provides one of the two major input pathways to the hippocampus and has been suggested to process the nonspatial contextual details of episodic memory. Combined with spatial information from the medial entorhinal cortex it is hypothesised that this contextual information is used to form an integrated spatially selective, context-specific response in the hippocampus that underlies episodic memory. Recently, we reported that the LEC is required for recognition of objects that have been experienced in a specific context (Wilson et al. (2013) Hippocampus 23:352-366). Here, we sought to extend this work to assess the role of the LEC in recognition of all associative combinations of objects, places and contexts within an episode. Unlike controls, rats with excitotoxic lesions of the LEC showed no evidence of recognizing familiar combinations of object in place, place in context, or object in place and context. However, LEC lesioned rats showed normal recognition of objects and places independently from each other (nonassociative recognition). Together with our previous findings, these data suggest that the LEC is critical for associative recognition memory and may bind together information relating to objects, places, and contexts needed for episodic memory formation. PMID:23836525
Spatial Coverage Planning and Optimization for Planetary Exploration
NASA Technical Reports Server (NTRS)
Gaines, Daniel M.; Estlin, Tara; Chouinard, Caroline
2008-01-01
We are developing onboard planning and scheduling technology to enable in situ robotic explorers, such as rovers and aerobots, to more effectively assist scientists in planetary exploration. In our current work, we are focusing on situations in which the robot is exploring large geographical features such as craters, channels or regional boundaries. In to develop valid and high quality plans, the robot must take into account a range of scientific and engineering constraints and preferences. We have developed a system that incorporates multiobjective optimization and planning allowing the robot to generate high quality mission operations plans that respect resource limitations and mission constraints while attempting to maximize science and engineering objectives. An important scientific objective for the exploration of geological features is selecting observations that spatially cover an area of interest. We have developed a metric to enable an in situ explorer to reason about and track the spatial coverage quality of a plan. We describe this technique and show how it is combined in the overall multiobjective optimization and planning algorithm.
Bohbot, Véronique D; Allen, John J B; Dagher, Alain; Dumoulin, Serge O; Evans, Alan C; Petrides, Michael; Kalina, Miroslav; Stepankova, Katerina; Nadel, Lynn
2015-01-01
The parahippocampal cortex and hippocampus are brain structures known to be involved in memory. However, the unique contribution of the parahippocampal cortex remains unclear. The current study investigates memory for object identity and memory of the configuration of objects in patients with small thermo-coagulation lesions to the hippocampus or the parahippocampal cortex. Results showed that in contrast to control participants and patients with damage to the hippocampus leaving the parahippocampal cortex intact, patients with lesions that included the right parahippocampal cortex (RPH) were severely impaired on a task that required learning the spatial configuration of objects on a computer screen; these patients, however, were not impaired at learning the identity of objects. Conversely, we found that patients with lesions to the right hippocampus (RH) or left hippocampus (LH), sparing the parahippocampal cortex, performed just as well as the control participants. Furthermore, they were not impaired on the object identity task. In the functional Magnetic Resonance Imaging (fMRI) experiment, healthy young adults performed the same tasks. Consistent with the findings of the lesion study, the fMRI results showed significant activity in the RPH in the memory for the spatial configuration condition, but not memory for object identity. Furthermore, the pattern of fMRI activity measured in the baseline control conditions decreased specifically in the parahippocampal cortex as a result of the experimental task, providing evidence for task specific repetition suppression. In summary, while our previous studies demonstrated that the hippocampus is critical to the construction of a cognitive map, both the lesion and fMRI studies have shown an involvement of the RPH for learning spatial configurations of objects but not object identity, and that this takes place independent of the hippocampus.
Chang, Hung-Cheng; Grossberg, Stephen; Cao, Yongqiang
2014-01-01
The Where’s Waldo problem concerns how individuals can rapidly learn to search a scene to detect, attend, recognize, and look at a valued target object in it. This article develops the ARTSCAN Search neural model to clarify how brain mechanisms across the What and Where cortical streams are coordinated to solve the Where’s Waldo problem. The What stream learns positionally-invariant object representations, whereas the Where stream controls positionally-selective spatial and action representations. The model overcomes deficiencies of these computationally complementary properties through What and Where stream interactions. Where stream processes of spatial attention and predictive eye movement control modulate What stream processes whereby multiple view- and positionally-specific object categories are learned and associatively linked to view- and positionally-invariant object categories through bottom-up and attentive top-down interactions. Gain fields control the coordinate transformations that enable spatial attention and predictive eye movements to carry out this role. What stream cognitive-emotional learning processes enable the focusing of motivated attention upon the invariant object categories of desired objects. What stream cognitive names or motivational drives can prime a view- and positionally-invariant object category of a desired target object. A volitional signal can convert these primes into top-down activations that can, in turn, prime What stream view- and positionally-specific categories. When it also receives bottom-up activation from a target, such a positionally-specific category can cause an attentional shift in the Where stream to the positional representation of the target, and an eye movement can then be elicited to foveate it. These processes describe interactions among brain regions that include visual cortex, parietal cortex, inferotemporal cortex, prefrontal cortex (PFC), amygdala, basal ganglia (BG), and superior colliculus (SC). PMID:24987339
Acute Unilateral Vestibular Failure Does Not Cause Spatial Hemineglect
Conrad, Julian; Habs, Maximilian; Brandt, Thomas; Dieterich, Marianne
2015-01-01
Objectives Visuo-spatial neglect and vestibular disorders have common clinical findings and involve the same cortical areas. We questioned (1) whether visuo-spatial hemineglect is not only a disorder of spatial attention but may also reflect a disorder of higher cortical vestibular function and (2) whether a vestibular tone imbalance due to an acute peripheral dysfunction can also cause symptoms of neglect or extinction. Therefore, patients with an acute unilateral peripheral vestibular failure (VF) were tested for symptoms of hemineglect. Methods Twenty-eight patients with acute VF were assessed for signs of vestibular deficits and spatial neglect using clinical measures and various common standardized paper-pencil tests. Neglect severity was evaluated further with the Center of Cancellation method. Pathological neglect test scores were correlated with the degree of vestibular dysfunction determined by the subjective visual vertical and caloric testing. Results Three patients showed isolated pathological scores in one or the other neglect test, either ipsilesionally or contralesionally to the VF. None of the patients fulfilled the diagnostic criteria of spatial hemineglect or extinction. Conclusions A vestibular tone imbalance due to unilateral failure of the vestibular endorgan does not cause spatial hemineglect, but evidence indicates it causes mild attentional deficits in both visual hemifields. PMID:26247469
Effect of feature-selective attention on neuronal responses in macaque area MT
Chen, X.; Hoffmann, K.-P.; Albright, T. D.
2012-01-01
Attention influences visual processing in striate and extrastriate cortex, which has been extensively studied for spatial-, object-, and feature-based attention. Most studies exploring neural signatures of feature-based attention have trained animals to attend to an object identified by a certain feature and ignore objects/displays identified by a different feature. Little is known about the effects of feature-selective attention, where subjects attend to one stimulus feature domain (e.g., color) of an object while features from different domains (e.g., direction of motion) of the same object are ignored. To study this type of feature-selective attention in area MT in the middle temporal sulcus, we trained macaque monkeys to either attend to and report the direction of motion of a moving sine wave grating (a feature for which MT neurons display strong selectivity) or attend to and report its color (a feature for which MT neurons have very limited selectivity). We hypothesized that neurons would upregulate their firing rate during attend-direction conditions compared with attend-color conditions. We found that feature-selective attention significantly affected 22% of MT neurons. Contrary to our hypothesis, these neurons did not necessarily increase firing rate when animals attended to direction of motion but fell into one of two classes. In one class, attention to color increased the gain of stimulus-induced responses compared with attend-direction conditions. The other class displayed the opposite effects. Feature-selective activity modulations occurred earlier in neurons modulated by attention to color compared with neurons modulated by attention to motion direction. Thus feature-selective attention influences neuronal processing in macaque area MT but often exhibited a mismatch between the preferred stimulus dimension (direction of motion) and the preferred attention dimension (attention to color). PMID:22170961
Effect of feature-selective attention on neuronal responses in macaque area MT.
Chen, X; Hoffmann, K-P; Albright, T D; Thiele, A
2012-03-01
Attention influences visual processing in striate and extrastriate cortex, which has been extensively studied for spatial-, object-, and feature-based attention. Most studies exploring neural signatures of feature-based attention have trained animals to attend to an object identified by a certain feature and ignore objects/displays identified by a different feature. Little is known about the effects of feature-selective attention, where subjects attend to one stimulus feature domain (e.g., color) of an object while features from different domains (e.g., direction of motion) of the same object are ignored. To study this type of feature-selective attention in area MT in the middle temporal sulcus, we trained macaque monkeys to either attend to and report the direction of motion of a moving sine wave grating (a feature for which MT neurons display strong selectivity) or attend to and report its color (a feature for which MT neurons have very limited selectivity). We hypothesized that neurons would upregulate their firing rate during attend-direction conditions compared with attend-color conditions. We found that feature-selective attention significantly affected 22% of MT neurons. Contrary to our hypothesis, these neurons did not necessarily increase firing rate when animals attended to direction of motion but fell into one of two classes. In one class, attention to color increased the gain of stimulus-induced responses compared with attend-direction conditions. The other class displayed the opposite effects. Feature-selective activity modulations occurred earlier in neurons modulated by attention to color compared with neurons modulated by attention to motion direction. Thus feature-selective attention influences neuronal processing in macaque area MT but often exhibited a mismatch between the preferred stimulus dimension (direction of motion) and the preferred attention dimension (attention to color).
Evaluation of stormwater harvesting sites using multi criteria decision methodology
NASA Astrophysics Data System (ADS)
Inamdar, P. M.; Sharma, A. K.; Cook, Stephen; Perera, B. J. C.
2018-07-01
Selection of suitable urban stormwater harvesting sites and associated project planning are often complex due to spatial, temporal, economic, environmental and social factors, and related various other variables. This paper is aimed at developing a comprehensive methodology framework for evaluating of stormwater harvesting sites in urban areas using Multi Criteria Decision Analysis (MCDA). At the first phase, framework selects potential stormwater harvesting (SWH) sites using spatial characteristics in a GIS environment. In second phase, MCDA methodology is used for evaluating and ranking of SWH sites in multi-objective and multi-stakeholder environment. The paper briefly describes first phase of framework and focuses chiefly on the second phase of framework. The application of the methodology is also demonstrated over a case study comprising of the local government area, City of Melbourne (CoM), Australia for the benefit of wider water professionals engaged in this area. Nine performance measures (PMs) were identified to characterise the objectives and system performance related to the eight alternative SWH sites for the demonstration of the application of developed methodology. To reflect the stakeholder interests in the current study, four stakeholder participant groups were identified, namely, water authorities (WA), academics (AC), consultants (CS), and councils (CL). The decision analysis methodology broadly consisted of deriving PROMETHEE II rankings of eight alternative SWH sites in the CoM case study, under two distinct group decision making scenarios. The major innovation of this work is the development and application of comprehensive methodology framework that assists in the selection of potential sites for SWH, and facilitates the ranking in multi-objective and multi-stakeholder environment. It is expected that the proposed methodology will assist the water professionals and managers with better knowledge that will reduce the subjectivity in the selection and evaluation of SWH sites.
NASA Astrophysics Data System (ADS)
Clem, Douglas Wayne
Spatial ability refers to an individual's capacity to visualize and mentally manipulate three dimensional objects. Since sonographers manually manipulate 2D and 3D sonographic images to generate multi-viewed, logical, sequential renderings of an anatomical structure, it can be assumed that spatial ability is central to the perception and interpretation of these medical images. Using Ackerman's theory of ability determinants of skilled performance as a conceptual framework, this study explored the relationship of spatial ability and learning sonographic scanning. Beginning first year sonography students from four different educational institutions were administered a spatial abilities test prior to their initial scanning lab coursework. The students' spatial test scores were compared with their scanning competency performance scores. A significant relationship between the students' spatial ability scores and their scanning performance scores was found. This result suggests that the use of spatial ability tests for admission to sonography programs may improve candidate selection, as well as assist programs in adjusting instruction and curriculum for students who demonstrate low spatial ability.
NASA Astrophysics Data System (ADS)
De Clercq, Eva M.; Vandemoortele, Femke; De Wulf, Robert R.
2006-06-01
When signing Agenda 21, several countries agreed to monitor the status of forests to ensure their sustainable use. For reporting on the change in spatial forest cover pattern on a regional scale, pattern metrics are widely used. These indices are not often thoroughly evaluated as to their sensitivity to remote sensing data characteristics. Hence, one would not know whether the change in the metric values was due to actual landscape pattern changes or to characteristic variation of multitemporal remote sensing data. The objective of this study is to empirically test an array of pattern metrics for the monitoring of spatial forest cover. Different user requirements are used as point of departure. This proved to be a straightforward method for selecting relevant pattern indices. We strongly encourage the systematic screening of these indices prior to use in order to get a deeper understanding of the results obtained by them.
Ikeda, Takako; Yoshimura, Masashi; Onoyama, Keiichi; Oku, Yuzaburo; Nonaka, Nariaki; Katakura, Ken
2014-08-06
Deworming wild foxes by baiting with the anthelmintic praziquantel is being established as a preventive technique against environmental contamination with Echinococcus multilocularis eggs. Improvement of the cost-benefit performance of baiting treatment is required urgently to raise and maintain the efficacy of deworming. We established a spatial model of den site selection by urban red foxes, the definitive host, to specify the optimal micro-habitats for delivering baits in a new modeling approach modified for urban fox populations. The model was established for two cities (Obihiro and Sapporo) in Hokkaido, Japan, in which a sylvatic cycle of E. multilocularis is maintained. The two cities have different degrees of urbanization. The modeling process was designed to detect the best combination of key environmental factors and spatial scale that foxes pay attention to most (here named 'heeding range') when they select den sites. All possible models were generated using logistic regression analysis, with "presence" or "absence" of fox den as the objective variable, and nine landscape categories customized for urban environments as predictor variables to detect the best subset of predictors. This procedure was conducted for each of ten sizes of concentric circles from dens and control points to detect the best circle size. Out of all models generated, the most parsimonious model was selected using Akaike's Information Criterion (AIC) inspection. Our models suggest that fox dens in Obihiro are located at the center of a circle with 500 m radius including low percentages of wide roads, narrow roads, and occupied buildings, but high percentages of green covered areas; the dens in Sapporo within 300 m radius with low percentages of wide roads, occupied buildings, but high percentages of riverbeds and green covered areas. The variation of the models suggests the necessity of accumulating models for various types of cities in order to reveal the patterns of the model. Our denning models indicating suitable sites for delivering baits will improve the cost-benefit performance of the campaign. Our modeling protocol is suitable for the urban landscapes, and for extracting the heeding range when they select the den sites.
Spatial and Feature-Based Attention in a Layered Cortical Microcircuit Model
Wagatsuma, Nobuhiko; Potjans, Tobias C.; Diesmann, Markus; Sakai, Ko; Fukai, Tomoki
2013-01-01
Directing attention to the spatial location or the distinguishing feature of a visual object modulates neuronal responses in the visual cortex and the stimulus discriminability of subjects. However, the spatial and feature-based modes of attention differently influence visual processing by changing the tuning properties of neurons. Intriguingly, neurons' tuning curves are modulated similarly across different visual areas under both these modes of attention. Here, we explored the mechanism underlying the effects of these two modes of visual attention on the orientation selectivity of visual cortical neurons. To do this, we developed a layered microcircuit model. This model describes multiple orientation-specific microcircuits sharing their receptive fields and consisting of layers 2/3, 4, 5, and 6. These microcircuits represent a functional grouping of cortical neurons and mutually interact via lateral inhibition and excitatory connections between groups with similar selectivity. The individual microcircuits receive bottom-up visual stimuli and top-down attention in different layers. A crucial assumption of the model is that feature-based attention activates orientation-specific microcircuits for the relevant feature selectively, whereas spatial attention activates all microcircuits homogeneously, irrespective of their orientation selectivity. Consequently, our model simultaneously accounts for the multiplicative scaling of neuronal responses in spatial attention and the additive modulations of orientation tuning curves in feature-based attention, which have been observed widely in various visual cortical areas. Simulations of the model predict contrasting differences between excitatory and inhibitory neurons in the two modes of attentional modulations. Furthermore, the model replicates the modulation of the psychophysical discriminability of visual stimuli in the presence of external noise. Our layered model with a biologically suggested laminar structure describes the basic circuit mechanism underlying the attention-mode specific modulations of neuronal responses and visual perception. PMID:24324628
All-Optical Nanoscale Thermometry using Silicon-Vacancy Centers in Diamond
NASA Astrophysics Data System (ADS)
Nguyen, Christian; Evans, Ruffin; Sipahigil, Alp; Bhaskar, Mihir; Sukachev, Denis; Lukin, Mikhail
2017-04-01
Accurate thermometry at the nanoscale is a difficult challenge, but building such a thermometer would be a powerful tool for discovering and understanding new processes in biology, chemistry and physics. Applications include cell-selective treatment of disease, engineering of more efficient integrated circuits, or even the development of new chemical and biological reactions. In this work, we study how the bulk properties of the Silicon Vacancy center (SiV) in diamond depend on temperature, and use them to measure temperature with 100mK accuracy. Using SiVs in 200 nm nanodiamonds, we measure the temperature with 100 nm spatial resolution over a 10 μm area.
D GIS for Flood Modelling in River Valleys
NASA Astrophysics Data System (ADS)
Tymkow, P.; Karpina, M.; Borkowski, A.
2016-06-01
The objective of this study is implementation of system architecture for collecting and analysing data as well as visualizing results for hydrodynamic modelling of flood flows in river valleys using remote sensing methods, tree-dimensional geometry of spatial objects and GPU multithread processing. The proposed solution includes: spatial data acquisition segment, data processing and transformation, mathematical modelling of flow phenomena and results visualization. Data acquisition segment was based on aerial laser scanning supplemented by images in visible range. Vector data creation was based on automatic and semiautomatic algorithms of DTM and 3D spatial features modelling. Algorithms for buildings and vegetation geometry modelling were proposed or adopted from literature. The implementation of the framework was designed as modular software using open specifications and partially reusing open source projects. The database structure for gathering and sharing vector data, including flood modelling results, was created using PostgreSQL. For the internal structure of feature classes of spatial objects in a database, the CityGML standard was used. For the hydrodynamic modelling the solutions of Navier-Stokes equations in two-dimensional version was implemented. Visualization of geospatial data and flow model results was transferred to the client side application. This gave the independence from server hardware platform. A real-world case in Poland, which is a part of Widawa River valley near Wroclaw city, was selected to demonstrate the applicability of proposed system.
Spatial attention improves the quality of population codes in human visual cortex.
Saproo, Sameer; Serences, John T
2010-08-01
Selective attention enables sensory input from behaviorally relevant stimuli to be processed in greater detail, so that these stimuli can more accurately influence thoughts, actions, and future goals. Attention has been shown to modulate the spiking activity of single feature-selective neurons that encode basic stimulus properties (color, orientation, etc.). However, the combined output from many such neurons is required to form stable representations of relevant objects and little empirical work has formally investigated the relationship between attentional modulations on population responses and improvements in encoding precision. Here, we used functional MRI and voxel-based feature tuning functions to show that spatial attention induces a multiplicative scaling in orientation-selective population response profiles in early visual cortex. In turn, this multiplicative scaling correlates with an improvement in encoding precision, as evidenced by a concurrent increase in the mutual information between population responses and the orientation of attended stimuli. These data therefore demonstrate how multiplicative scaling of neural responses provides at least one mechanism by which spatial attention may improve the encoding precision of population codes. Increased encoding precision in early visual areas may then enhance the speed and accuracy of perceptual decisions computed by higher-order neural mechanisms.
A spatial approach of magnitude-squared coherence applied to selective attention detection.
Bonato Felix, Leonardo; de Souza Ranaudo, Fernando; D'affonseca Netto, Aluizio; Ferreira Leite Miranda de Sá, Antonio Mauricio
2014-05-30
Auditory selective attention is the human ability of actively focusing in a certain sound stimulus while avoiding all other ones. This ability can be used, for example, in behavioral studies and brain-machine interface. In this work we developed an objective method - called Spatial Coherence - to detect the side where a subject is focusing attention to. This method takes into consideration the Magnitude Squared Coherence and the topographic distribution of responses among electroencephalogram electrodes. The individuals were stimulated with amplitude-modulated tones binaurally and were oriented to focus attention to only one of the stimuli. The results indicate a contralateral modulation of ASSR in the attention condition and are in agreement with prior studies. Furthermore, the best combination of electrodes led to a hit rate of 82% for 5.03 commands per minute. Using a similar paradigm, in a recent work, a maximum hit rate of 84.33% was achieved, but with a greater a classification time (20s, i.e. 3 commands per minute). It seems that Spatial Coherence is a useful technique for detecting focus of auditory selective attention. Copyright © 2014 Elsevier B.V. All rights reserved.
Dorsal CA1 interneurons contribute to acute stress-induced spatial memory deficits.
Yu, Jing-Ying; Fang, Ping; Wang, Chi; Wang, Xing-Xing; Li, Kun; Gong, Qian; Luo, Ben-Yan; Wang, Xiao-Dong
2018-06-01
Exposure to severely stressful experiences disrupts the activity of neuronal circuits and impairs declarative memory. GABAergic interneurons coordinate neuronal network activity, but their involvement in stress-evoked memory loss remains to be elucidated. Here, we provide evidence that interneurons in area CA1 of the dorsal hippocampus partially modulate acute stress-induced memory deficits. In adult male mice, both acute forced swim stress and restraint stress impaired hippocampus-dependent spatial memory and increased the density of c-fos-positive interneurons in the dorsal CA1. Selective activation of dorsal CA1 interneurons by chemogenetics disrupted memory performance in the spatial object recognition task. In comparison, anxiety-related behavior, spatial working memory and novel object recognition memory remained intact when dorsal CA1 interneurons were overactivated. Moreover, chemogenetic activation of dorsal CA1 interneurons suppressed the activity of adjacent pyramidal neurons, whereas a single exposure to forced swim stress but not restraint stress increased the activity of CA1 pyramidal neurons. However, chemogenetic inhibition of dorsal CA1 interneurons led to spatial memory impairments and failed to attenuate acute stress-induced memory loss. These findings suggest that acute stress may overactivate interneurons in the dorsal CA1, which reduces the activity of pyramidal neurons and in turn disrupts long-term memory. Copyright © 2018 Elsevier Ltd. All rights reserved.
Sustaining the edge: factors influencing strategy selection in academic health centers.
Walsh, Anne M; Szabat, Kathryn
2002-01-01
Competition within the acute care sector as well as increased penetration by managed care organizations has influenced the structure and role of academic health centers during the past decade. The market factors confronting academic health centers are not dissimilar from conditions that confront other organizations competing in mature industries characterized by declining profitability and intense rivalry for market share. When confronted with intense competition or adverse external events, organizations in other industries have responded to potential threats by forming alliances, developing joint ventures, or merging with another firm to maintain their competitive advantage. Although mergers and acquisitions dominated the strategic landscape in the healthcare industry during the past decade, recent evidence suggests that other types of strategic ventures may offer similar economic and contracting benefits to member organizations. Academic health centers have traditionally been involved in network relationships with multiple partners via their shared technology, collaborative research, and joint educational endeavors. These quasi-organizational relationships appear to have provided a framework for strategic decisions and allowed executives of academic health centers to select strategies that were competitive yet closely aligned with their organizational mission. The analysis of factors that influenced strategy selection by executives of academic health centers suggests a deliberate and methodical approach to achieving market share objectives, expanding managed care contracts, and developing physician networks.
The effects of heavy particle irradiation on exploration and response to environmental change
NASA Astrophysics Data System (ADS)
Casadesus, G.; Shukitt-Hale, B.; Cantuti-Castelvetri, I.; Rabin, B.; Joseph, J.
Free radicals produced by exposure to heavy particles have been found to produce motor and behavioral toxicity effects in rats similar to those found during aging. The present research was designed to investigate the effects of exposure to 56Fe particles on the ability to detect novel arrangements in a given environment of male Sprague-Dawley rats. Using a test of spatial memory previously demonstrated to be sensitive to aging, open-field activity and reaction to spatial and non-spatial changes were measured in a group that received a dose of 1.5 Gy (n=10) of 56Fe heavy particle radiation or in non- radiated controls. Animals irradiated with 1.5 Gy of56Fe particles exhibited some age-like effects in animals tested, even though they were for the most part, subtle. Animals took longer to enter, visited less and spent significantly less time in the middle and the center portions of the open-field independently of total frequency and duration of activity of both groups. Likewise, irradiated subjects reacted significantly more to novel objects placed in the open-field than did controls. However, irradiated subjects did not vary from controls in their exploration patterns when objects in the open-field were spatially rearranged. Thus, irradiation with a dose of 1.5 Gy of 56Fe high-energy particle radiation elicited age-like effects in general open-field exploratory behavior, but did not elicit age- like effects during the spatial and non-spatial rearrangement tasks. Supported by N.A.S.A. Grant NAG9-1190.
The effects of heavy particle irradiation on exploration and response to environmental change
NASA Astrophysics Data System (ADS)
Casadesus, G.; Shukitt-Hale, B.; Cantuti-Castelvetri, I.; Rabin, B. M.; Joseph, J. A.
2004-01-01
Free radicals produced by exposure to heavy particles have been found to produce motor and cognitive behavioral toxicity effects in rats similar to those found during aging. The present research was designed to investigate the effects of exposure to 56Fe particles on the ability of male Sprague-Dawley rats to detect novel arrangements in a given environment. Using a test of spatial memory previously demonstrated to be sensitive to aging, open field activity and reaction to spatial and non-spatial changes were measured in a group that received a dose of 1.5 Gy ( n=10) of 56Fe heavy particle radiation or in non-radiated controls ( n=10). Animals irradiated with 1.5 Gy of 56Fe particles exhibited some age-like effects in rats tested, even though they were, for the most part, subtle. Animals took longer to enter, visited less and spent significantly less time in the middle and the center portions of the open field, independently of total frequency and duration of activity of both groups. Likewise, irradiated subjects spend significantly more time exploring novel objects placed in the open field than did controls. However, irradiated subjects did not vary from controls in their exploration patterns when objects in the open field were spatially rearranged. Thus, irradiation with a dose of 1.5 Gy of 56Fe high-energy particle radiation elicited age-like effects in general open field exploratory behavior, but did not elicit age-like effects during the spatial and non-spatial rearrangement tasks.
The effects of heavy particle irradiation on exploration and response to environmental change
NASA Technical Reports Server (NTRS)
Casadesus, G.; Shukitt-Hale, B.; Cantuti-Castelvetri, I.; Rabin, B. M.; Joseph, J. A.
2004-01-01
Free radicals produced by exposure to heavy particles have been found to produce motor and cognitive behavioral toxicity effects in rats similar to those found during aging. The present research was designed to investigate the effects of exposure to 56Fe particles on the ability of male Sprague-Dawley rats to detect novel arrangements in a given environment. Using a test of spatial memory previously demonstrated to be sensitive to aging, open field activity and reaction to spatial and non-spatial changes were measured in a group that received a dose of 1.5 Gy (n=10) of 56Fe heavy particle radiation or in non-radiated controls (n=10). Animals irradiated with 1.5 Gy of 56Fe particles exhibited some age-like effects in rats tested, even though they were, for the most part, subtle. Animals took longer to enter, visited less and spent significantly less time in the middle and the center portions of the open field, independently of total frequency and duration of activity of both groups. Likewise, irradiated subjects spend significantly more time exploring novel objects placed in the open field than did controls. However, irradiated subjects did not vary from controls in their exploration patterns when objects in the open field were spatially rearranged. Thus, irradiation with a dose of 1.5 Gy of 56Fe high-energy particle radiation elicited age-like effects in general open field exploratory behavior, but did not elicit age-like effects during the spatial and non-spatial rearrangement tasks. Published by Elsevier Ltd on behalf of COSPAR.
NASA Astrophysics Data System (ADS)
Kukushkin, V. A.
2017-10-01
A way to significantly increase the spatial resolution of the color center photoluminescence collection in chemically vapor-deposited (CVD) diamond at a fixed exciting beam focal volume is suggested. It is based on the creation of a narrow waveguide for the color center photoluminescence with a small number of allowed vertical indices of guided modes. The waveguide is formed between the top surface of a CVD diamond film and an underlaid mirror—a Bragg superlattice made of interchanging high- and low boron-doped layers of CVD diamond. The guided color center photoluminescence is extracted through the top surface of a CVD diamond film with the frustrated total internal reflection method. According to the results of simulation made for a case when color centers are nitrogen-vacancy (NV) centers, the suggested way allows to increase the maximal value of the NV center concentration still compatible with selective collection of their photoluminescence by several times at a fixed exciting beam focal volume. This increase is provided without the deterioration of the NV center photoluminescence collection efficiency.
Potential of 3D City Models to assess flood vulnerability
NASA Astrophysics Data System (ADS)
Schröter, Kai; Bochow, Mathias; Schüttig, Martin; Nagel, Claus; Ross, Lutz; Kreibich, Heidi
2016-04-01
Vulnerability, as the product of exposure and susceptibility, is a key factor of the flood risk equation. Furthermore, the estimation of flood loss is very sensitive to the choice of the vulnerability model. Still, in contrast to elaborate hazard simulations, vulnerability is often considered in a simplified manner concerning the spatial resolution and geo-location of exposed objects as well as the susceptibility of these objects at risk. Usually, area specific potential flood loss is quantified on the level of aggregated land-use classes, and both hazard intensity and resistance characteristics of affected objects are represented in highly simplified terms. We investigate the potential of 3D City Models and spatial features derived from remote sensing data to improve the differentiation of vulnerability in flood risk assessment. 3D City Models are based on CityGML, an application scheme of the Geography Markup Language (GML), which represents the 3D geometry, 3D topology, semantics and appearance of objects on different levels of detail. As such, 3D City Models offer detailed spatial information which is useful to describe the exposure and to characterize the susceptibility of residential buildings at risk. This information is further consolidated with spatial features of the building stock derived from remote sensing data. Using this database a spatially detailed flood vulnerability model is developed by means of data-mining. Empirical flood damage data are used to derive and to validate flood susceptibility models for individual objects. We present first results from a prototype application in the city of Dresden, Germany. The vulnerability modeling based on 3D City Models and remote sensing data is compared i) to the generally accepted good engineering practice based on area specific loss potential and ii) to a highly detailed representation of flood vulnerability based on a building typology using urban structure types. Comparisons are drawn in terms of affected building area and estimated loss for a selection of inundation scenarios.
Rudd, Michael E.
2014-01-01
Previous work has demonstrated that perceived surface reflectance (lightness) can be modeled in simple contexts in a quantitatively exact way by assuming that the visual system first extracts information about local, directed steps in log luminance, then spatially integrates these steps along paths through the image to compute lightness (Rudd and Zemach, 2004, 2005, 2007). This method of computing lightness is called edge integration. Recent evidence (Rudd, 2013) suggests that human vision employs a default strategy to integrate luminance steps only along paths from a common background region to the targets whose lightness is computed. This implies a role for gestalt grouping in edge-based lightness computation. Rudd (2010) further showed the perceptual weights applied to edges in lightness computation can be influenced by the observer's interpretation of luminance steps as resulting from either spatial variation in surface reflectance or illumination. This implies a role for top-down factors in any edge-based model of lightness (Rudd and Zemach, 2005). Here, I show how the separate influences of grouping and attention on lightness can be modeled in tandem by a cortical mechanism that first employs top-down signals to spatially select regions of interest for lightness computation. An object-based network computation, involving neurons that code for border-ownership, then automatically sets the neural gains applied to edge signals surviving the earlier spatial selection stage. Only the borders that survive both processing stages are spatially integrated to compute lightness. The model assumptions are consistent with those of the cortical lightness model presented earlier by Rudd (2010, 2013), and with neurophysiological data indicating extraction of local edge information in V1, network computations to establish figure-ground relations and border ownership in V2, and edge integration to encode lightness and darkness signals in V4. PMID:25202253
Rudd, Michael E
2014-01-01
Previous work has demonstrated that perceived surface reflectance (lightness) can be modeled in simple contexts in a quantitatively exact way by assuming that the visual system first extracts information about local, directed steps in log luminance, then spatially integrates these steps along paths through the image to compute lightness (Rudd and Zemach, 2004, 2005, 2007). This method of computing lightness is called edge integration. Recent evidence (Rudd, 2013) suggests that human vision employs a default strategy to integrate luminance steps only along paths from a common background region to the targets whose lightness is computed. This implies a role for gestalt grouping in edge-based lightness computation. Rudd (2010) further showed the perceptual weights applied to edges in lightness computation can be influenced by the observer's interpretation of luminance steps as resulting from either spatial variation in surface reflectance or illumination. This implies a role for top-down factors in any edge-based model of lightness (Rudd and Zemach, 2005). Here, I show how the separate influences of grouping and attention on lightness can be modeled in tandem by a cortical mechanism that first employs top-down signals to spatially select regions of interest for lightness computation. An object-based network computation, involving neurons that code for border-ownership, then automatically sets the neural gains applied to edge signals surviving the earlier spatial selection stage. Only the borders that survive both processing stages are spatially integrated to compute lightness. The model assumptions are consistent with those of the cortical lightness model presented earlier by Rudd (2010, 2013), and with neurophysiological data indicating extraction of local edge information in V1, network computations to establish figure-ground relations and border ownership in V2, and edge integration to encode lightness and darkness signals in V4.
NASA Astrophysics Data System (ADS)
Liu, Q.; Li, X.; Liu, G.; Huang, C.; Li, H.; Guan, X.
2018-04-01
The Tiangong-II space lab was launched at the Jiuquan Satellite Launch Center of China on September 15, 2016. The Wide Band Spectral Imager (WBSI) onboard the Tiangong-II has 14 visible and near-infrared (VNIR) spectral bands covering the range from 403-990 nm and two shortwave infrared (SWIR) bands covering the range from 1230-1250 nm and 1628-1652 nm respectively. In this paper the selected bands are proposed which aims at considering the closest spectral similarities between the VNIR with 100 m spatial resolution and SWIR bands with 200 m spatial resolution. The evaluation of Gram-Schmidt transform (GS) sharpening techniques embedded in ENVI software is presented based on four types of the different low resolution pan band. The experimental results indicated that the VNIR band with higher CC value with the raw SWIR Band was selected, more texture information was injected the corresponding sharpened SWIR band image, and at that time another sharpened SWIR band image preserve the similar spectral and texture characteristics to the raw SWIR band image.
Paraskevov, A V; Zendrikov, D K
2017-03-23
We show that in model neuronal cultures, where the probability of interneuronal connection formation decreases exponentially with increasing distance between the neurons, there exists a small number of spatial nucleation centers of a network spike, from where the synchronous spiking activity starts propagating in the network typically in the form of circular traveling waves. The number of nucleation centers and their spatial locations are unique and unchanged for a given realization of neuronal network but are different for different networks. In contrast, if the probability of interneuronal connection formation is independent of the distance between neurons, then the nucleation centers do not arise and the synchronization of spiking activity during a network spike occurs spatially uniform throughout the network. Therefore one can conclude that spatial proximity of connections between neurons is important for the formation of nucleation centers. It is also shown that fluctuations of the spatial density of neurons at their random homogeneous distribution typical for the experiments in vitro do not determine the locations of the nucleation centers. The simulation results are qualitatively consistent with the experimental observations.
NASA Astrophysics Data System (ADS)
Paraskevov, A. V.; Zendrikov, D. K.
2017-04-01
We show that in model neuronal cultures, where the probability of interneuronal connection formation decreases exponentially with increasing distance between the neurons, there exists a small number of spatial nucleation centers of a network spike, from where the synchronous spiking activity starts propagating in the network typically in the form of circular traveling waves. The number of nucleation centers and their spatial locations are unique and unchanged for a given realization of neuronal network but are different for different networks. In contrast, if the probability of interneuronal connection formation is independent of the distance between neurons, then the nucleation centers do not arise and the synchronization of spiking activity during a network spike occurs spatially uniform throughout the network. Therefore one can conclude that spatial proximity of connections between neurons is important for the formation of nucleation centers. It is also shown that fluctuations of the spatial density of neurons at their random homogeneous distribution typical for the experiments in vitro do not determine the locations of the nucleation centers. The simulation results are qualitatively consistent with the experimental observations.
Tanabe, Shinsuke; Ramu, Karri
2012-07-01
The Environmental Specimen Bank (es-BANK) for Global Monitoring at the Center for Marine Environmental Studies, Ehime University, Japan has more than four decades of practical experience in specimen banking. Over the years, es-BANK has archived specimens representing a wide range of environmental matrices, i.e. fishes, reptiles, birds, aquatic mammals, terrestrial mammals, human, soils, and sediments. The samples have been collected as part of the various monitoring programs conducted worldwide. The current review is a summary of selected studies conducted at the Center for Marine Environmental Studies, on temporal and spatial trends of legacy and emerging contaminants in the marine environment. One of the major conclusions drawn from the studies is that environmental problems are no more regional issues and, thus, environmental specimen banking should not be limited to national boundaries, but should have a global outlook. Copyright © 2012 Elsevier Ltd. All rights reserved.
The spread of attention across features of a surface
Ernst, Zachary Raymond; Jazayeri, Mehrdad
2013-01-01
Contrasting theories of visual attention have emphasized selection by spatial location, individual features, and whole objects. We used functional magnetic resonance imaging to ask whether and how attention to one feature of an object spreads to other features of the same object. Subjects viewed two spatially superimposed surfaces of random dots that were segregated by distinct color-motion conjunctions. The color and direction of motion of each surface changed smoothly and in a cyclical fashion. Subjects were required to track one feature (e.g., color) of one of the two surfaces and detect brief moments when the attended feature diverged from its smooth trajectory. To tease apart the effect of attention to individual features on the hemodynamic response, we used a frequency-tagging scheme. In this scheme, the stimulus features (color and direction of motion) are modulated periodically at distinct frequencies so that the contribution of each feature to the hemodynamics can be inferred from the harmonic response at the corresponding frequency. We found that attention to one feature (e.g., color) of one surface increased the response modulation not only to the attended feature but also to the other feature (e.g., motion) of the same surface. This attentional modulation was evident in multiple visual areas and was present as early as V1. The spread of attention to the behaviorally irrelevant features of a surface suggests that attention may automatically select all features of a single object. Thus object-based attention may be supported by an enhancement of feature-specific sensory signals in the visual cortex. PMID:23883860
Multiple reference frames in haptic spatial processing
NASA Astrophysics Data System (ADS)
Volčič, R.
2008-08-01
The present thesis focused on haptic spatial processing. In particular, our interest was directed to the perception of spatial relations with the main focus on the perception of orientation. To this end, we studied haptic perception in different tasks, either in isolation or in combination with vision. The parallelity task, where participants have to match the orientations of two spatially separated bars, was used in its two-dimensional and three-dimensional versions in Chapter 2 and Chapter 3, respectively. The influence of non-informative vision and visual interference on performance in the parallelity task was studied in Chapter 4. A different task, the mental rotation task, was introduced in a purely haptic study in Chapter 5 and in a visuo-haptic cross-modal study in Chapter 6. The interaction of multiple reference frames and their influence on haptic spatial processing were the common denominators of these studies. In this thesis we approached the problems of which reference frames play the major role in haptic spatial processing and how the relative roles of distinct reference frames change depending on the available information and the constraints imposed by different tasks. We found that the influence of a reference frame centered on the hand was the major cause of the deviations from veridicality observed in both the two-dimensional and three-dimensional studies. The results were described by a weighted average model, in which the hand-centered egocentric reference frame is supposed to have a biasing influence on the allocentric reference frame. Performance in haptic spatial processing has been shown to depend also on sources of information or processing that are not strictly connected to the task at hand. When non-informative vision was provided, a beneficial effect was observed in the haptic performance. This improvement was interpreted as a shift from the egocentric to the allocentric reference frame. Moreover, interfering visual information presented in the vicinity of the haptic stimuli parametrically modulated the magnitude of the deviations. The influence of the hand-centered reference frame was shown also in the haptic mental rotation task where participants were quicker in judging the parity of objects when these were aligned with respect to the hands than when they were physically aligned. Similarly, in the visuo-haptic cross-modal mental rotation task the parity judgments were influenced by the orientation of the exploring hand with respect to the viewing direction. This effect was shown to be modulated also by an intervening temporal delay that supposedly counteracts the influence of the hand-centered reference frame. We suggest that the hand-centered reference frame is embedded in a hierarchical structure of reference frames where some of these emerge depending on the demands and the circumstances of the surrounding environment and the needs of an active perceiver.
Restoring the spatial resolution of refocus images on 4D light field
NASA Astrophysics Data System (ADS)
Lim, JaeGuyn; Park, ByungKwan; Kang, JooYoung; Lee, SeongDeok
2010-01-01
This paper presents the method for generating a refocus image with restored spatial resolution on a plenoptic camera, which functions controlling the depth of field after capturing one image unlike a traditional camera. It is generally known that the camera captures 4D light field (angular and spatial information of light) within a limited 2D sensor and results in reducing 2D spatial resolution due to inevitable 2D angular data. That's the reason why a refocus image is composed of a low spatial resolution compared with 2D sensor. However, it has recently been known that angular data contain sub-pixel spatial information such that the spatial resolution of 4D light field can be increased. We exploit the fact for improving the spatial resolution of a refocus image. We have experimentally scrutinized that the spatial information is different according to the depth of objects from a camera. So, from the selection of refocused regions (corresponding depth), we use corresponding pre-estimated sub-pixel spatial information for reconstructing spatial resolution of the regions. Meanwhile other regions maintain out-of-focus. Our experimental results show the effect of this proposed method compared to existing method.
Chang, Chia-Yuan; Lin, Cheng-Han; Lin, Chun-Yu; Sie, Yong-Da; Hu, Yvonne Yuling; Tsai, Sheng-Feng; Chen, Shean-Jen
2018-01-01
A developed temporal focusing-based multiphoton excitation microscope (TFMPEM) has a digital micromirror device (DMD) which is adopted not only as a blazed grating for light spatial dispersion but also for patterned illumination simultaneously. Herein, the TFMPEM has been extended to implement spatially modulated illumination at structured frequency and orientation to increase the beam coverage at the back-focal aperture of the objective lens. The axial excitation confinement (AEC) of TFMPEM can be condensed from 3.0 μm to 1.5 μm for a 50 % improvement. By using the TFMPEM with HiLo technique as two structured illuminations at the same spatial frequency but different orientation, reconstructed biotissue images according to the condensed AEC structured illumination are shown obviously superior in contrast and better scattering suppression. Picture: TPEF images of the eosin-stained mouse cerebellar cortex by conventional TFMPEM (left), and the TFMPEM with HiLo technique as 1.09 μm -1 spatially modulated illumination at 90° (center) and 0° (right) orientations. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
An Attempt of Formalizing the Selection Parameters for Settlements Generalization in Small-Scales
NASA Astrophysics Data System (ADS)
Karsznia, Izabela
2014-12-01
The paper covers one of the most important problems concerning context-sensitive settlement selection for the purpose of the small-scale maps. So far, no formal parameters for small-scale settlements generalization have been specified, hence the problem seems to be an important and innovative challenge. It is also crucial from the practical point of view as it is necessary to develop appropriate generalization algorithms for the purpose of the General Geographic Objects Database generalization which is the essential Spatial Data Infrastructure component in Poland. The author proposes and verifies quantitative generalization parameters for the purpose of the settlement selection process in small-scale maps. The selection of settlements was carried out in two research areas - in Lower Silesia and Łódź Province. Based on the conducted analysis appropriate contextual-sensitive settlements selection parameters have been defined. Particular effort has been made to develop a methodology of quantitative settlements selection which would be useful in the automation processes and that would make it possible to keep specifics of generalized objects unchanged.
Flash radiography with 24 GeV/c protons
NASA Astrophysics Data System (ADS)
Morris, C. L.; Ables, E.; Alrick, K. R.; Aufderheide, M. B.; Barnes, P. D.; Buescher, K. L.; Cagliostro, D. J.; Clark, D. A.; Clark, D. J.; Espinoza, C. J.; Ferm, E. N.; Gallegos, R. A.; Gardner, S. D.; Gomez, J. J.; Greene, G. A.; Hanson, A.; Hartouni, E. P.; Hogan, G. E.; King, N. S. P.; Kwiatkowski, K.; Liljestrand, R. P.; Mariam, F. G.; Merrill, F. E.; Morgan, D. V.; Morley, K. B.; Mottershead, C. T.; Murray, M. M.; Pazuchanics, P. D.; Pearson, J. E.; Sarracino, J. S.; Saunders, A.; Scaduto, J.; Schach von Wittenau, A. E.; Soltz, R. A.; Sterbenz, S.; Thompson, R. T.; Vixie, K.; Wilke, M. D.; Wright, D. M.; Zumbro, J. D.
2011-05-01
The accuracy of density measurements and position resolution in flash (40 ns) radiography of thick objects with 24 Gev/c protons is investigated. A global model fit to step wedge data is shown to give a good description spanning the periodic table. The parameters obtained from the step wedge data are used to predict transmission through the French Test Object (FTO), a test object of nested spheres, to a precision better than 1%. Multiple trials have been used to show that the systematic errors are less than 2%. Absolute agreement between the average radiographic measurements of the density and the known density is 1%. Spatial resolution has been measured to be 200 μm at the center of the FTO. These data verify expectations of the benefits provided by high energy hadron radiography for thick objects.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rolison, L; Samant, S; Baciak, J
Purpose: To develop a Monte Carlo N-Particle (MCNP) model for the validation of a prototype backscatter x-ray (BSX) imager, and optimization of BSX technology for medical applications, including selective object-plane imaging. Methods: BSX is an emerging technology that represents an alternative to conventional computed tomography (CT) and projective digital radiography (DR). It employs detectors located on the same side as the incident x-ray source, making use of backscatter and avoiding ring geometry to enclose the imaging object. Current BSX imagers suffer from low spatial resolution. A MCNP model was designed to replicate a BSX prototype used for flaw detection inmore » industrial materials. This prototype consisted of a 1.5mm diameter 60kVp pencil beam surrounded by a ring of four 5.0cm diameter NaI scintillation detectors. The imaging phantom consisted of a 2.9cm thick aluminum plate with five 0.6cm diameter holes drilled halfway. The experimental image was created using a raster scanning motion (in 1.5mm increments). Results: A qualitative comparison between the physical and simulated images showed very good agreement with 1.5mm spatial resolution in plane perpendicular to incident x-ray beam. The MCNP model developed the concept of radiography by selective plane detection (RSPD) for BSX, whereby specific object planes can be imaged by varying kVp. 10keV increments in mean x-ray energy yielded 4mm thick slice resolution in the phantom. Image resolution in the MCNP model can be further increased by increasing the number of detectors, and decreasing raster step size. Conclusion: MCNP modelling was used to validate a prototype BSX imager and introduce the RSPD concept, allowing for selective object-plane imaging. There was very good visual agreement between the experimental and MCNP imaging. Beyond optimizing system parameters for the existing prototype, new geometries can be investigated for volumetric image acquisition in medical applications. This material is based upon work supported under an Integrated University Program Graduate Fellowship sponsored by the Department of Energy Office of Nuclear Energy.« less
Role of the Dorsal Hippocampus in Object Memory Load
ERIC Educational Resources Information Center
Sannino, Sara; Russo, Fabio; Torromino, Giulia; Pendolino, Valentina; Calabresi, Paolo; De Leonibus, Elvira
2012-01-01
The dorsal hippocampus is crucial for mammalian spatial memory, but its exact role in item memory is still hotly debated. Recent evidence in humans suggested that the hippocampus might be selectively involved in item short-term memory to deal with an increasing memory load. In this study, we sought to test this hypothesis. To this aim we developed…
Selective attention increases choice certainty in human decision making.
Zizlsperger, Leopold; Sauvigny, Thomas; Haarmeier, Thomas
2012-01-01
Choice certainty is a probabilistic estimate of past performance and expected outcome. In perceptual decisions the degree of confidence correlates closely with choice accuracy and reaction times, suggesting an intimate relationship to objective performance. Here we show that spatial and feature-based attention increase human subjects' certainty more than accuracy in visual motion discrimination tasks. Our findings demonstrate for the first time a dissociation of choice accuracy and certainty with a significantly stronger influence of voluntary top-down attention on subjective performance measures than on objective performance. These results reveal a so far unknown mechanism of the selection process implemented by attention and suggest a unique biological valence of choice certainty beyond a faithful reflection of the decision process.
A twin study of spatial and non-spatial delayed response performance in middle age.
Kremen, William S; Mai, Tuan; Panizzon, Matthew S; Franz, Carol E; Blankfeld, Howard M; Xian, Hong; Eisen, Seth A; Tsuang, Ming T; Lyons, Michael J
2011-06-01
Delayed alternation and object alternation are classic spatial and non-spatial delayed response tasks. We tested 632 middle-aged male veteran twins on variants of these tasks in order to compare test difficulty, measure their inter-correlation, test order effects, and estimate heritabilities (proportion of observed variance due to genetic influences). Non-spatial alternation (NSA), which may involve greater reliance on processing of subgoals, was significantly more difficult than spatial alternation (SA). Despite their similarities, NSA and SA scores were uncorrelated. NSA performance was worse when administered second; there was no SA order effect. NSA scores were modestly heritable (h(2)=.25; 26); SA was not. There was shared genetic variance between NSA scores and general intellectual ability (r(g)=.55; .67), but this also suggests genetic influences specific to NSA. Compared with findings from small, selected control samples, high "failure" rates in this community-based sample raise concerns about interpretation of brain dysfunction in elderly or patient samples. Copyright © 2011 Elsevier Inc. All rights reserved.
A Twin Study of Spatial and Non-Spatial Delayed Response Performance in Middle Age
Kremen, William S.; Mai, Tuan; Panizzon, Matthew S.; Franz, Carol E.; Blankfeld, Howard M.; Xian, Hong; Eisen, Seth A.; Tsuang, Ming T.; Lyons, Michael J.
2011-01-01
Delayed alternation and object alternation are classic spatial and non-spatial delayed response tasks. We tested 632 middle-aged male veteran twins on variants of these tasks in order to compare test difficulty, measure their inter-correlation, test order effects, and estimate heritabilities (proportion of observed variance due to genetic influences). Non-spatial alternation (NSA), which may involve greater reliance on processing of subgoals, was significantly more difficult than spatial alternation (SA). Despite their similarities, NSA and SA scores were uncorrelated. NSA performance was worse when administered second; there was no SA order effect. NSA scores were modestly heritable (h2=.25; 26); SA was not. There was shared genetic variance between NSA scores and general intellectual ability (rg=.55; .67), but this also suggests genetic influences specific to NSA. Compared with findings from small, selected control samples, high “failure” rates in this community-based sample raise concerns about interpretation of brain dysfunction in elderly or patient samples. PMID:21477911
The role of the right superior temporal gyrus in stimulus-centered spatial processing.
Shah-Basak, Priyanka P; Chen, Peii; Caulfield, Kevin; Medina, Jared; Hamilton, Roy H
2018-05-01
Although emerging neuropsychological evidence supports the involvement of temporal areas, and in particular the right superior temporal gyrus (STG), in allocentric neglect deficits, the role of STG in healthy spatial processing remains elusive. While several functional brain imaging studies have demonstrated involvement of the STG in tasks involving explicit stimulus-centered judgments, prior rTMS studies targeting the right STG did not find the expected neglect-like rightward bias in size judgments using the conventional landmark task. The objective of the current study was to investigate whether disruption of the right STG using inhibitory repetitive transcranial magnetic stimulation (rTMS) could impact stimulus-centered, allocentric spatial processing in healthy individuals. A lateralized version of the landmark task was developed to accentuate the dissociation between viewer-centered and stimulus-centered reference frames. We predicted that inhibiting activity in the right STG would decrease accuracy because of induced rightward bias centered on the line stimulus irrespective of its viewer-centered or egocentric locations. Eleven healthy, right-handed adults underwent the lateralized landmark task. After viewing each stimulus, participants had to judge whether the line was bisected, or whether the left (left-long trials) or the right segment (right-long trials) of the line was longer. Participants repeated the task before (pre-rTMS) and after (post-rTMS) receiving 20 min of 1 Hz rTMS over the right STG, the right supramarginal gyrus (SMG), and the vertex (a control site) during three separate visits. Linear mixed models for binomial data were generated with either accuracy or judgment errors as dependent variables, to compare 1) performance across trial types (bisection, non-bisection), and 2) pre- vs. post-rTMS performance between the vertex and the STG and the vertex and the SMG. Line eccentricity (z = 4.31, p < 0.0001) and line bisection (z = 5.49, p < 0.0001) were significant predictors of accuracy. In the models comparing the effects of rTMS, a significant two-way interaction with STG (z = -3.09, p = 0.002) revealed a decrease in accuracy of 9.5% and an increase in errors of the right-long type by 10.7% on bisection trials, in both left and right viewer-centered locations. No significant changes in leftward errors were found. These findings suggested an induced stimulus-centered rightward bias in our participants after STG stimulation. Notably, accuracy or errors were not influenced by SMG stimulation compared to vertex. In line with our predictions, the findings provide compelling evidence for right STG's involvement in healthy stimulus-centered spatial processing. Copyright © 2018 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
James, S St.; Argento, D; Stewart, R
Purpose: The University of Washington Medical Center offers neutron therapy for the palliative and definitive treatment of selected cancers. In vivo field verification has the potential to improve the safe and effective delivery of neutron therapy. We propose a portal imaging method that relies on the creation of positron emitting isotopes (11C and 15O) through (n, 2n) reactions with a PMMA plate placed below the patient. After field delivery, the plate is retrieved from the vault and imaged using a reader that detects annihilation photons. The spatial pattern of activity produced in the PMMA plate provides information to reconstruct themore » neutron fluence map needed to confirm treatment delivery. Methods: We used MCNP to simulate the accumulation of 11C activity in a slab of PMMA 2 mm thick, and GATE was used to simulate the sensitivity and spatial resolution of a prototype imaging system. BGO crystal thicknesses of 1 cm, 2 cm and 3 cm were simulated with detector separations of 2 cm. Crystal pitches of 2 mm and 4 mm were evaluated. Back-projection of the events was used to create a planar image. The spatial resolution was taken to be the FWHM of the reconstructed point source image. Results: The system sensitivity for a point source in the center of the field of view was found to range from 58% for 1 cm thick BGO with 2 mm crystal pitch to 74% for the 3 cm thick BGO crystals with 4 mm crystal pitch. The spatial resolution at the center of the field of view was found to be 1.5 mm for the system with 2 mm crystal pitch and 2.8 mm for the system with the 4 mm crystal pitch. Conclusion: BGO crystals with 4 mm crystal pitch and 3 cm length would offer the best sensitivity reader.« less
An evaluation of three-dimensional sensors for the extravehicular activity helper/retreiver
NASA Technical Reports Server (NTRS)
Magee, Michael
1993-01-01
The Extravehicular Activity Retriever/Helper (EVAHR) is a robotic device currently under development at the NASA Johnson Space Center that is designed to fetch objects or to assist in retrieving an astronaut who may have become inadvertently de-tethered. The EVAHR will be required to exhibit a high degree of intelligent autonomous operation and will base much of its reasoning upon information obtained from one or more three-dimensional sensors that it will carry and control. At the highest level of visual cognition and reasoning, the EVAHR will be required to detect objects, recognize them, and estimate their spatial orientation and location. The recognition phase and estimation of spatial pose will depend on the ability of the vision system to reliably extract geometric features of the objects such as whether the surface topologies observed are planar or curved and the spatial relationships between the component surfaces. In order to achieve these tasks, accurate sensing of the operational environment and objects in the environment will therefore be critical. The qualitative and quantitative results of empirical studies of three sensors that are capable of providing three-dimensional information to the EVAHR, but using completely different hardware approaches are documented. The first of these devices is a phase shift laser with an effective operating range (ambiguity interval) of approximately 15 meters. The second sensor is a laser triangulation system designed to operate at much closer range and to provide higher resolution images. The third sensor is a dual camera stereo imaging system from which range images can also be obtained. The remainder of the report characterizes the strengths and weaknesses of each of these systems relative to quality of data extracted and how different object characteristics affect sensor operation.
Saccade Latency Indexes Exogenous and Endogenous Object-Based Attention
Şentürk, Gözde; Greenberg, Adam S.; Liu, Taosheng
2016-01-01
Classic studies of object-based attention have utilized keypress responses as the main dependent measure. However, people typically make saccades to fixate important objects. Recent work has shown that attention may act differently when deployed covertly versus in advance of a saccade. We further investigated the link between saccades and attention by examining whether object-based effects can be observed for saccades. We adapted the classical double-rectangle cueing paradigm of Egly et al., (1994), and measured both the first saccade latency and keypress reaction time (RT) to a target that appeared at the end of one of the two rectangles. Our results showed that saccade latency exhibited higher sensitivity than RT in detecting effects of attention. We also assessed the generality of the attention effects by testing three types of cues: hybrid (predictive and peripheral), exogenous (non-predictive and peripheral), and endogenous (predictive and central). We found that both RT and saccade latency exhibited effects of both space-based and object-based attentional selection. However, saccade latency showed a more robust attentional modulation than RTs. For the exogenous cue, we observed a spatial inhibition-of-return along with an object-based effect, implying that object-based attention is independent of space-based attention. Overall, our results reveal an oculomotor correlate of object-based attention, suggesting that, in addition to spatial priority, object-level priority also affects saccade planning. PMID:27225468
Saccade latency indexes exogenous and endogenous object-based attention.
Şentürk, Gözde; Greenberg, Adam S; Liu, Taosheng
2016-10-01
Classic studies of object-based attention have utilized keypress responses as the main dependent measure. However, people typically make saccades to fixate important objects. Recent work has shown that attention may act differently when it is deployed covertly versus in advance of a saccade. We further investigated the link between saccades and attention by examining whether object-based effects can be observed for saccades. We adapted the classical double-rectangle cueing paradigm of Egly, Driver, and Rafal (1994), and measured both the first saccade latency and the keypress reaction time (RT) to a target that appeared at the end of one of the two rectangles. Our results showed that saccade latencies exhibited higher sensitivity than did RTs for detecting effects of attention. We also assessed the generality of the attention effects by testing three types of cues: hybrid (predictive and peripheral), exogenous (nonpredictive and peripheral), and endogenous (predictive and central). We found that both RTs and saccade latencies exhibited effects of both space-based and object-based attentional selection. However, saccade latencies showed a more robust attentional modulation than RTs. For the exogenous cues, we observed a spatial inhibition of return along with an object-based effect, implying that object-based attention is independent of space-based attention. Overall, our results revealed an oculomotor correlate of object-based attention, suggesting that, in addition to spatial priority, object-level priority also affects saccade planning.
Adaptation of Mesoscale Weather Models to Local Forecasting
NASA Technical Reports Server (NTRS)
Manobianco, John T.; Taylor, Gregory E.; Case, Jonathan L.; Dianic, Allan V.; Wheeler, Mark W.; Zack, John W.; Nutter, Paul A.
2003-01-01
Methodologies have been developed for (1) configuring mesoscale numerical weather-prediction models for execution on high-performance computer workstations to make short-range weather forecasts for the vicinity of the Kennedy Space Center (KSC) and the Cape Canaveral Air Force Station (CCAFS) and (2) evaluating the performances of the models as configured. These methodologies have been implemented as part of a continuing effort to improve weather forecasting in support of operations of the U.S. space program. The models, methodologies, and results of the evaluations also have potential value for commercial users who could benefit from tailoring their operations and/or marketing strategies based on accurate predictions of local weather. More specifically, the purpose of developing the methodologies for configuring the models to run on computers at KSC and CCAFS is to provide accurate forecasts of winds, temperature, and such specific thunderstorm-related phenomena as lightning and precipitation. The purpose of developing the evaluation methodologies is to maximize the utility of the models by providing users with assessments of the capabilities and limitations of the models. The models used in this effort thus far include the Mesoscale Atmospheric Simulation System (MASS), the Regional Atmospheric Modeling System (RAMS), and the National Centers for Environmental Prediction Eta Model ( Eta for short). The configuration of the MASS and RAMS is designed to run the models at very high spatial resolution and incorporate local data to resolve fine-scale weather features. Model preprocessors were modified to incorporate surface, ship, buoy, and rawinsonde data as well as data from local wind towers, wind profilers, and conventional or Doppler radars. The overall evaluation of the MASS, Eta, and RAMS was designed to assess the utility of these mesoscale models for satisfying the weather-forecasting needs of the U.S. space program. The evaluation methodology includes objective and subjective verification methodologies. Objective (e.g., statistical) verification of point forecasts is a stringent measure of model performance, but when used alone, it is not usually sufficient for quantifying the value of the overall contribution of the model to the weather-forecasting process. This is especially true for mesoscale models with enhanced spatial and temporal resolution that may be capable of predicting meteorologically consistent, though not necessarily accurate, fine-scale weather phenomena. Therefore, subjective (phenomenological) evaluation, focusing on selected case studies and specific weather features, such as sea breezes and precipitation, has been performed to help quantify the added value that cannot be inferred solely from objective evaluation.
Hard X-ray Microscopy with sub 30 nm Spatial Resolution
NASA Astrophysics Data System (ADS)
Tang, Mau-Tsu; Song, Yen-Fang; Yin, Gung-Chian; Chen, Fu-Rong; Chen, Jian-Hua; Chen, Yi-Ming; Liang, Keng S.; Duewer, F.; Yun, Wenbing
2007-01-01
A transmission X-ray microscope (TXM) has been installed at the BL01B beamline at National Synchrotron Radiation Research Center in Taiwan. This state-of-the-art TXM operational in a range 8-11 keV provides 2D images and 3D tomography with spatial resolution 60 nm, and with the Zernike-phase contrast mode for imaging light materials such as biological specimens. A spatial resolution of the TXM better than 30 nm, apparently the best result in hard X-ray microscopy, has been achieved by employing the third diffraction order of the objective zone plate. The TXM has been applied in diverse research fields, including analysis of failure mechanisms in microelectronic devices, tomographic structures of naturally grown photonic specimens, and the internal structure of fault zone gouges from an earthquake core. Here we discuss the scope and prospects of the project, and the progress of the TXM in NSRRC.
Generating Ground Reference Data for a Global Impervious Surface Survey
NASA Technical Reports Server (NTRS)
Tilton, James C.; De Colstoun, Eric Brown; Wolfe, Robert E.; Tan, Bin; Huang, Chengquan
2012-01-01
We are developing an approach for generating ground reference data in support of a project to produce a 30m impervious cover data set of the entire Earth for the years 2000 and 2010 based on the Landsat Global Land Survey (GLS) data set. Since sufficient ground reference data for training and validation is not available from ground surveys, we are developing an interactive tool, called HSegLearn, to facilitate the photo-interpretation of 1 to 2 m spatial resolution imagery data, which we will use to generate the needed ground reference data at 30m. Through the submission of selected region objects and positive or negative examples of impervious surfaces, HSegLearn enables an analyst to automatically select groups of spectrally similar objects from a hierarchical set of image segmentations produced by the HSeg image segmentation program at an appropriate level of segmentation detail, and label these region objects as either impervious or nonimpervious.
Kumar, A.; Rani, A.; Tchigranova, Olga; Lee, Wei-Hua; Foster, T.C.
2011-01-01
Aged (20–22 months) male Fischer 344 rats were randomly assigned to sedentary (A-SED), environmentally enriched (A-ENR) or exercise (A-EX) conditions. After 10–12 weeks of differential experience, the three groups of aged rats and young sedentary controls were tested for physical and cognitive function. Spatial discrimination learning and memory consolidation, tested on the water maze, were enhanced in A-ENR compared to A-SED. A-EX exhibited improved and impaired performance on the cue and spatial task, respectively. Impaired spatial learning in A-EX was likely due to a bias in response selection associated with exercise training, as object recognition memory improved for A-EX rats. An examination of senescent hippocampal physiology revealed that enrichment and exercise reversed age-related changes in long-term depression (LTD) and long-term potentiation (LTP). Rats in the enrichment group exhibited an increase in cell excitability compared to the other two groups of aged animals. The results indicate that differential experience biased the selection of a spatial or a response strategy and factors common across the two conditions, such as increased hippocampal activity associated with locomotion, contribute to reversal of senescent synaptic plasticity. PMID:21820213
Kempadoo, Kimberly A.; Mosharov, Eugene V.; Choi, Se Joon; Sulzer, David; Kandel, Eric R.
2016-01-01
Dopamine neurotransmission in the dorsal hippocampus is critical for a range of functions from spatial learning and synaptic plasticity to the deficits underlying psychiatric disorders such as attention-deficit hyperactivity disorder. The ventral tegmental area (VTA) is the presumed source of dopamine in the dorsal hippocampus. However, there is a surprising scarcity of VTA dopamine axons in the dorsal hippocampus despite the dense network of dopamine receptors. We have explored this apparent paradox using optogenetic, biochemical, and behavioral approaches and found that dopaminergic axons and subsequent dopamine release in the dorsal hippocampus originate from neurons of the locus coeruleus (LC). Photostimulation of LC axons produced an increase in dopamine release in the dorsal hippocampus as revealed by high-performance liquid chromatography. Furthermore, optogenetically induced release of dopamine from the LC into the dorsal hippocampus enhanced selective attention and spatial object recognition via the dopamine D1/D5 receptor. These results suggest that spatial learning and memory are energized by the release of dopamine in the dorsal hippocampus from noradrenergic neurons of the LC. The present findings are critical for identifying the neural circuits that enable proper attention selection and successful learning and memory. PMID:27930324
Kempadoo, Kimberly A; Mosharov, Eugene V; Choi, Se Joon; Sulzer, David; Kandel, Eric R
2016-12-20
Dopamine neurotransmission in the dorsal hippocampus is critical for a range of functions from spatial learning and synaptic plasticity to the deficits underlying psychiatric disorders such as attention-deficit hyperactivity disorder. The ventral tegmental area (VTA) is the presumed source of dopamine in the dorsal hippocampus. However, there is a surprising scarcity of VTA dopamine axons in the dorsal hippocampus despite the dense network of dopamine receptors. We have explored this apparent paradox using optogenetic, biochemical, and behavioral approaches and found that dopaminergic axons and subsequent dopamine release in the dorsal hippocampus originate from neurons of the locus coeruleus (LC). Photostimulation of LC axons produced an increase in dopamine release in the dorsal hippocampus as revealed by high-performance liquid chromatography. Furthermore, optogenetically induced release of dopamine from the LC into the dorsal hippocampus enhanced selective attention and spatial object recognition via the dopamine D1/D5 receptor. These results suggest that spatial learning and memory are energized by the release of dopamine in the dorsal hippocampus from noradrenergic neurons of the LC. The present findings are critical for identifying the neural circuits that enable proper attention selection and successful learning and memory.
Evidence for negative feature guidance in visual search is explained by spatial recoding.
Beck, Valerie M; Hollingworth, Andrew
2015-10-01
Theories of attention and visual search explain how attention is guided toward objects with known target features. But can attention be directed away from objects with a feature known to be associated only with distractors? Most studies have found that the demand to maintain the to-be-avoided feature in visual working memory biases attention toward matching objects rather than away from them. In contrast, Arita, Carlisle, and Woodman (2012) claimed that attention can be configured to selectively avoid objects that match a cued distractor color, and they reported evidence that this type of negative cue generates search benefits. However, the colors of the search array items in Arita et al. (2012) were segregated by hemifield (e.g., blue items on the left, red on the right), which allowed for a strategy of translating the feature-cue information into a simple spatial template (e.g., avoid right, or attend left). In the present study, we replicated the negative cue benefit using the Arita et al. (2012), method (albeit within a subset of participants who reliably used the color cues to guide attention). Then, we eliminated the benefit by using search arrays that could not be grouped by hemifield. Our results suggest that feature-guided avoidance is implemented only indirectly, in this case by translating feature-cue information into a spatial template. (c) 2015 APA, all rights reserved).
NASA Technical Reports Server (NTRS)
Hall, Dorothy K.; Salomonson, Vincent V.; Riggs, George A.; Chien, Janet Y. L.; Houser, Paul R. (Technical Monitor)
2001-01-01
Moderate Resolution Imaging Spectroradiometer (MODIS) snow-cover maps have been available since September 13, 2000. These products, at 500 m spatial resolution, are available through the National Snow and Ice Data Center Distributed Active Archive Center in Boulder, Colorado. By the 2001-02 winter, 5 km climate-modeling grid (CMG) products will be available for presentation of global views of snow cover and for use in climate models. All MODIS snow-cover products are produced from automated algorithms that map snow in an objective manner. In this paper, we describe the MODIS snow products, and show snow maps from the fall of 2000 in North America.
NASA Technical Reports Server (NTRS)
Hall, Dorothy K.; Salomonson, Vincent V.; Riggs, George A.; Chien, Y. L.; Houser, Paul R. (Technical Monitor)
2001-01-01
Moderate Resolution Imaging Spectroradiometer (MODIS) snow-cover maps have been available since September 13, 2000. These products, at 500-m spatial resolution, are available through the National Snow and Ice Data Center Distributed Active Archive Center in Boulder, Colorado. By the 2001-02 winter, 5-km climate-modeling grid (CMG) products will be available for presentation of global views of snow cover and for use in climate models. All MODIS snow-cover products are produced from automated algorithms that map snow in an objective manner. In this paper, we describe the MODIS snow products, and show snow maps from the fall of 2000 in North America.
Predictors of senior center use among older adults in New York City public housing.
Schneider, Amanda E; Ralph, Nancy; Olson, Carolyn; Flatley, Anne-Marie; Thorpe, Lorna
2014-12-01
Despite agreement among stakeholders that senior centers can promote physical and mental health, research on senior center use in urban populations is limited. Our objective was to describe demographic and health factors associated with senior center use among urban, low-income older adults in order to inform programming and outreach efforts. We used data from a 2009 telephone survey of 1036 adults randomly selected from rosters of New York City public housing residents aged 65 and older. We analyzed senior center use by race/ethnicity, age, gender, health, housing type, and income, and used a forward selection approach to build best-fit models predicting senior center use. Older adults of all ages and of both genders reported substantial use of senior centers, with nearly one third (31.3%) reporting use. Older adults living alone, at risk of depression, or living in specialized senior housing had the greatest use of centers. Senior center use varied by race/ethnicity, and English-speaking Hispanics had a higher prevalence of use than Spanish-speaking Hispanics (adjusted prevalence ratio [PR]=1.69, 95% CI: 1.11-2.59). Spanish-speaking communities and older adults living in non-senior congregate housing are appropriate targets for increased senior center outreach efforts.
1973-01-01
This chart describes the Skylab student experiment Objects Within Mercury's Orbit, proposed by Daniel C. Bochsler of Silverton, Oregon. This experiment utilized Skylab's White Light Coronagraph telescope to identify any objects orbiting the Sun within the orbit of Mercury. In March 1972, NASA and the National Science Teachers Association selected 25 experiment proposals for flight on Skylab. Science advisors from the Marshall Space Flight Center aided and assisted the students in developing the proposals for flight on Skylab.
Normal aging delays and compromises early multifocal visual attention during object tracking.
Störmer, Viola S; Li, Shu-Chen; Heekeren, Hauke R; Lindenberger, Ulman
2013-02-01
Declines in selective attention are one of the sources contributing to age-related impairments in a broad range of cognitive functions. Most previous research on mechanisms underlying older adults' selection deficits has studied the deployment of visual attention to static objects and features. Here we investigate neural correlates of age-related differences in spatial attention to multiple objects as they move. We used a multiple object tracking task, in which younger and older adults were asked to keep track of moving target objects that moved randomly in the visual field among irrelevant distractor objects. By recording the brain's electrophysiological responses during the tracking period, we were able to delineate neural processing for targets and distractors at early stages of visual processing (~100-300 msec). Older adults showed less selective attentional modulation in the early phase of the visual P1 component (100-125 msec) than younger adults, indicating that early selection is compromised in old age. However, with a 25-msec delay relative to younger adults, older adults showed distinct processing of targets (125-150 msec), that is, a delayed yet intact attentional modulation. The magnitude of this delayed attentional modulation was related to tracking performance in older adults. The amplitude of the N1 component (175-210 msec) was smaller in older adults than in younger adults, and the target amplification effect of this component was also smaller in older relative to younger adults. Overall, these results indicate that normal aging affects the efficiency and timing of early visual processing during multiple object tracking.
Jiang, Wen-Wei; Guo, Hui-Hui; Mei, Yan-Xia
2012-03-01
By adopting gradient analysis combining with the analysis of urban land use degree, this paper studied the spatial layout characteristics of residential and industrial lands in new Yinzhou Town, and explored the location characters of various urban land use by selecting public green land, public facilities, and road as the location advantage factors. Gradient analysis could effectively connect with the spatial layout of urban land use, and quantitatively depict the spatial character of urban land use. In the new town, there was a new urban spatial center mostly within the radius of 2 km, namely, the urban core area had obvious location advantage in the cross-shaft direction urban development. On the south of Yinzhou Avenue, the urban hinterland would be constructed soon. In the future land use of the new town, the focus would be the reasonable vicissitude of industrial land after the adjustment of industrial structure, the high-efficient intensive use of the commercial land restricted by the compulsive condition of urban core area, and the agricultural land protection in the southeastern urban-rural fringe.
Selective reaching in macaques: evidence for action-centred attention.
Bulgheroni, Maria; Camperio-Ciani, Andrea; Straulino, Elisa; Sartori, Luisa; D'Amico, Enrico; Castiello, Umberto
2017-03-01
When a monkey selects a piece of food lying on the ground from among other viable objects in the near vicinity, only the desired item governs the particular pattern and direction of the animal's reaching action. It would seem then that selection is an important component controlling the animal's action. But, we may ask, is the selection process in such cases impervious to the presence of other objects that could constitute potential obstacles to or constraints on movement execution? And if it is, in fact, pervious to other objects, do they have a direct influence on the organization of the response? The kinematics of macaques' reaching movements were examined by the current study that analysed some exemplars as they selectively reached to grasp a food item in the absence as well as in the presence of potential obstacles (i.e., stones) that could affect the arm trajectory. Changes in movement parameterization were noted in temporal measures, such as movement time, as well as in spatial ones, such as paths of trajectory. Generally speaking, the presence of stones in the vicinity of the acting hand stalled the reaching movement and affected the arm trajectory as the hand veered away from the stone even when it was not a physical obstacle. We concluded that nearby objects evoke a motor response in macaques, and the attentional mechanisms that allow for a successful action selection are revealed in the reaching path. The data outlined here concur with human studies indicating that potential obstacles are internally represented, a finding implying basic cognitive operations allowing for action selection in macaques.
Inland waterway ports nodal attraction indices relevant in development strategies on regional level
NASA Astrophysics Data System (ADS)
Dinu, O.; Burciu, Ş.; Oprea, C.; Ilie, A.; Rosca, M.
2016-08-01
Present paper aims to propose a set of ranking indices and related criteria, concerning mainly spatial analysis, for the inland waterway port, with special view on inland ports of Danube. Commonly, the attraction potential of a certain transport node is assessed by its spatial accessibility indices considering both spatial features of the location provided by the networks that connect into that node and its economic potential defining the level of traffic flows depending on the economic centers of its hinterland. Paper starts with a overview of the critical needs that are required for potential sites to become inland waterway ports and presents nodal functions that coexist at different levels, leading to a port hierarchy from the points of view of: capacity, connection to hinterland, traffic structure and volume. After a brief review of the key inland waterway port ranking criterion, a selection of nodal attraction measures is made. Particular considerations for the Danube inland port case follows proposed methodology concerning indices of performance for network scale and centrality. As expected, the shorter the distance from an inland port to the nearest access point the greater accessibility. Major differences in ranking, dependent on selected criterion, were registered.
The Nature of Active Galactic Nuclei with Velocity Offset Emission Lines
NASA Astrophysics Data System (ADS)
Müller-Sánchez, F.; Comerford, J.; Stern, D.; Harrison, F. A.
2016-10-01
We obtained Keck/OSIRIS near-IR adaptive optics-assisted integral-field spectroscopy to probe the morphology and kinematics of the ionized gas in four velocity-offset active galactic nuclei (AGNs) from the Sloan Digital Sky Survey. These objects possess optical emission lines that are offset in velocity from systemic as measured from stellar absorption features. At a resolution of ˜0.″18, OSIRIS allows us to distinguish which velocity offset emission lines are produced by the motion of an AGN in a dual supermassive black hole system, and which are produced by outflows or other kinematic structures. In three galaxies, J1018+2941, J1055+1520, and J1346+5228, the spectral offset of the emission lines is caused by AGN-driven outflows. In the remaining galaxy, J1117+6140, a counterrotating nuclear disk is observed that contains the peak of Paα emission 0.″2 from the center of the galaxy. The most plausible explanation for the origin of this spatially and kinematically offset peak is that it is a region of enhanced Paα emission located at the intersection zone between the nuclear disk and the bar of the galaxy. In all four objects, the peak of ionized gas emission is not spatially coincident with the center of the galaxy as traced by the peak of the near-IR continuum emission. The peaks of ionized gas emission are spatially offset from the galaxy centers by 0.″1-0.″4 (0.1-0.7 kpc). We find that the velocity offset originates at the location of this peak of emission, and the value of the offset can be directly measured in the velocity maps. The emission-line ratios of these four velocity-offset AGNs can be reproduced only with a mixture of shocks and AGN photoionization. Shocks provide a natural explanation for the origin of the spatially and spectrally offset peaks of ionized gas emission in these galaxies. Based on observations at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation.
Ling, Hangjian; Katz, Joseph
2014-09-20
This paper deals with two issues affecting the application of digital holographic microscopy (DHM) for measuring the spatial distribution of particles in a dense suspension, namely discriminating between real and virtual images and accurate detection of the particle center. Previous methods to separate real and virtual fields have involved applications of multiple phase-shifted holograms, combining reconstructed fields of multiple axially displaced holograms, and analysis of intensity distributions of weakly scattering objects. Here, we introduce a simple approach based on simultaneously recording two in-line holograms, whose planes are separated by a short distance from each other. This distance is chosen to be longer than the elongated trace of the particle. During reconstruction, the real images overlap, whereas the virtual images are displaced by twice the distance between hologram planes. Data analysis is based on correlating the spatial intensity distributions of the two reconstructed fields to measure displacement between traces. This method has been implemented for both synthetic particles and a dense suspension of 2 μm particles. The correlation analysis readily discriminates between real and virtual images of a sample containing more than 1300 particles. Consequently, we can now implement DHM for three-dimensional tracking of particles when the hologram plane is located inside the sample volume. Spatial correlations within the same reconstructed field are also used to improve the detection of the axial location of the particle center, extending previously introduced procedures to suspensions of microscopic particles. For each cross section within a particle trace, we sum the correlations among intensity distributions in all planes located symmetrically on both sides of the section. This cumulative correlation has a sharp peak at the particle center. Using both synthetic and recorded particle fields, we show that the uncertainty in localizing the axial location of the center is reduced to about one particle's diameter.
Object-processing neural efficiency differentiates object from spatial visualizers.
Motes, Michael A; Malach, Rafael; Kozhevnikov, Maria
2008-11-19
The visual system processes object properties and spatial properties in distinct subsystems, and we hypothesized that this distinction might extend to individual differences in visual processing. We conducted a functional MRI study investigating the neural underpinnings of individual differences in object versus spatial visual processing. Nine participants of high object-processing ability ('object' visualizers) and eight participants of high spatial-processing ability ('spatial' visualizers) were scanned, while they performed an object-processing task. Object visualizers showed lower bilateral neural activity in lateral occipital complex and lower right-lateralized neural activity in dorsolateral prefrontal cortex. The data indicate that high object-processing ability is associated with more efficient use of visual-object resources, resulting in less neural activity in the object-processing pathway.
ERIC Educational Resources Information Center
Marcinowski, Emily C.; Campbell, Julie Marie
2017-01-01
Object construction involves organizing multiple objects into a unified structure (e.g., stacking blocks into a tower) and may provide infants with unique spatial information. Because object construction entails placing objects in spatial locations relative to one another, infants can acquire information about spatial relations during construction…
... status of the civilian noninstitutionalized U.S. population. The survey consists of interviews conducted in participants' homes and standardized physical examinations in mobile examination centers. The sample design includes oversampling to obtain reliable estimates of health ...
The astronomical data base and retrieval system at NASA
NASA Technical Reports Server (NTRS)
Mead, J. M.; Nagy, T. A.; Hill, R. S.; Warren, W. H., Jr.
1982-01-01
More than 250 machine-readable catalogs of stars and extended celestial objects are now available at the NASA/Goddard Space Flight Center (GSFC) as the result of over a decade of catalog acquisition, verification and documentation. Retrieval programs are described which permit the user to obtain from a remote terminal bibliographical listings for stars; to find all celestial objects from a given list that are within a defined angular separation from each object in another list; to plot celestial objects on overlays for sky survey plate areas; and to search selected catalogs for objects by criteria of position, identification number, magnitude or spectral type.
Price, Jeffery R.; Bingham, Philip R.
2005-11-08
Systems and methods are described for rapid acquisition of fused off-axis illumination direct-to-digital holography. A method of recording a plurality of off-axis object illuminated spatially heterodyne holograms, each of the off-axis object illuminated spatially heterodyne holograms including spatially heterodyne fringes for Fourier analysis, includes digitally recording, with a first illumination source of an interferometer, a first off-axis object illuminated spatially heterodyne hologram including spatially heterodyne fringes for Fourier analysis; and digitally recording, with a second illumination source of the interferometer, a second off-axis object illuminated spatially heterodyne hologram including spatially heterodyne fringes for Fourier analysis.
Using satellite and airborne LiDAR to model woodpecker habitat occupancy at the landscape scale
Lee A. Vierling; Kerri T. Vierling; Patrick Adam; Andrew T. Hudak
2013-01-01
Incorporating vertical vegetation structure into models of animal distributions can improve understanding of the patterns and processes governing habitat selection. LiDAR can provide such structural information, but these data are typically collected via aircraft and thus are limited in spatial extent. Our objective was to explore the utility of satellite-based LiDAR...
5.0 Monitoring methods for forests vulnerable to non-native invasive pest species
David W. Williams; Michael E. Montgomery; Kathleen S. Shields; Richard A. Evans
2008-01-01
Non-native invasive species pose a serious threat to forest resources, requiring programs to monitor their spatial spread and the damage they inflict on forest ecosystems. Invasive species research in the Delaware River Basin (DRB) had three primary objectives: to develop and evaluate monitoring protocols for selected pests and resulting ecosystem damage at the IMRAs...
Gudde, Harmen B; Griffiths, Debra; Coventry, Kenny R
2018-02-19
The memory game paradigm is a behavioral procedure to explore the relationship between language, spatial memory, and object knowledge. Using two different versions of the paradigm, spatial language use and memory for object location are tested under different, experimentally manipulated conditions. This allows us to tease apart proposed models explaining the influence of object knowledge on spatial language (e.g., spatial demonstratives), and spatial memory, as well as understanding the parameters that affect demonstrative choice and spatial memory more broadly. Key to the development of the method was the need to collect data on language use (e.g., spatial demonstratives: "this/that") and spatial memory data under strictly controlled conditions, while retaining a degree of ecological validity. The language version (section 3.1) of the memory game tests how conditions affect language use. Participants refer verbally to objects placed at different locations (e.g., using spatial demonstratives: "this/that red circle"). Different parameters can be experimentally manipulated: the distance from the participant, the position of a conspecific, and for example whether the participant owns, knows, or sees the object while referring to it. The same parameters can be manipulated in the memory version of the memory game (section 3.2). This version tests the effects of the different conditions on object-location memory. Following object placement, participants get 10 seconds to memorize the object's location. After the object and location cues are removed, participants verbally direct the experimenter to move a stick to indicate where the object was. The difference between the memorized and the actual location shows the direction and strength of the memory error, allowing comparisons between the influences of the respective parameters.
Distance-dependent processing of pictures and words.
Amit, Elinor; Algom, Daniel; Trope, Yaacov
2009-08-01
A series of 8 experiments investigated the association between pictorial and verbal representations and the psychological distance of the referent objects from the observer. The results showed that people better process pictures that represent proximal objects and words that represent distal objects than pictures that represent distal objects and words that represent proximal objects. These results were obtained with various psychological distance dimensions (spatial, temporal, and social), different tasks (classification and categorization), and different measures (speed of processing and selective attention). The authors argue that differences in the processing of pictures and words emanate from the physical similarity of pictures, but not words, to the referents. Consequently, perceptual analysis is commonly applied to pictures but not to words. Pictures thus impart a sense of closeness to the referent objects and are preferably used to represent such objects, whereas words do not convey proximity and are preferably used to represent distal objects in space, time, and social perspective.
Scolforo, Henrique Ferraco; Scolforo, Jose Roberto Soares; Mello, Carlos Rogerio; Mello, Jose Marcio; Ferraz Filho, Antonio Carlos
2015-01-01
The objective of this study was to map the spatial distribution of aboveground carbon stock (using Regression-kriging) of arboreal plants in the Atlantic Forest, Semi-arid woodland, and Savanna Biomes in Minas Gerais State, southeastern Brazil. The database used in this study was obtained from 163 forest fragments, totaling 4,146 plots of 1,000 m2 distributed in these Biomes. A geographical model for carbon stock estimation was parameterized as a function of Biome, latitude and altitude. This model was applied over the samples and the residuals generated were mapped based on geostatistical procedures, selecting the exponential semivariogram theoretical model for conducting ordinary Kriging. The aboveground carbon stock was found to have a greater concentration in the north of the State, where the largest contingent of native vegetation is located, mainly the Savanna Biome, with Wooded Savanna and Shrub Savanna phytophysiognomes. The largest weighted averages of carbon stock per hectare were found in the south-center region (48.6 Mg/ha) and in the southern part of the eastern region (48.4 Mg/ha) of Minas Gerais State, due to the greatest predominance of Atlantic Forest Biome forest fragments. The smallest weighted averages per hectare were found in the central (21.2 Mg/ha), northern (20.4 Mg/ha), and northwestern (20.7 Mg/ha) regions of Minas Gerais State, where Savanna Biome fragments are predominant, in the phytophysiognomes Wooded Savanna and Shrub Savanna.
2015-01-01
The objective of this study was to map the spatial distribution of aboveground carbon stock (using Regression-kriging) of arboreal plants in the Atlantic Forest, Semi-arid woodland, and Savanna Biomes in Minas Gerais State, southeastern Brazil. The database used in this study was obtained from 163 forest fragments, totaling 4,146 plots of 1,000 m2 distributed in these Biomes. A geographical model for carbon stock estimation was parameterized as a function of Biome, latitude and altitude. This model was applied over the samples and the residuals generated were mapped based on geostatistical procedures, selecting the exponential semivariogram theoretical model for conducting ordinary Kriging. The aboveground carbon stock was found to have a greater concentration in the north of the State, where the largest contingent of native vegetation is located, mainly the Savanna Biome, with Wooded Savanna and Shrub Savanna phytophysiognomes. The largest weighted averages of carbon stock per hectare were found in the south-center region (48.6 Mg/ha) and in the southern part of the eastern region (48.4 Mg/ha) of Minas Gerais State, due to the greatest predominance of Atlantic Forest Biome forest fragments. The smallest weighted averages per hectare were found in the central (21.2 Mg/ha), northern (20.4 Mg/ha), and northwestern (20.7 Mg/ha) regions of Minas Gerais State, where Savanna Biome fragments are predominant, in the phytophysiognomes Wooded Savanna and Shrub Savanna. PMID:26066508
Role of Oculoproprioception in Coding the Locus of Attention.
Odoj, Bartholomaeus; Balslev, Daniela
2016-03-01
The most common neural representations for spatial attention encode locations retinotopically, relative to center of gaze. To keep track of visual objects across saccades or to orient toward sounds, retinotopic representations must be combined with information about the rotation of one's own eyes in the orbits. Although gaze input is critical for a correct allocation of attention, the source of this input has so far remained unidentified. Two main signals are available: corollary discharge (copy of oculomotor command) and oculoproprioception (feedback from extraocular muscles). Here we asked whether the oculoproprioceptive signal relayed from the somatosensory cortex contributes to coding the locus of attention. We used continuous theta burst stimulation (cTBS) over a human oculoproprioceptive area in the postcentral gyrus (S1EYE). S1EYE-cTBS reduces proprioceptive processing, causing ∼1° underestimation of gaze angle. Participants discriminated visual targets whose location was cued in a nonvisual modality. Throughout the visual space, S1EYE-cTBS shifted the locus of attention away from the cue by ∼1°, in the same direction and by the same magnitude as the oculoproprioceptive bias. This systematic shift cannot be attributed to visual mislocalization. Accuracy of open-loop pointing to the same visual targets, a function thought to rely mainly on the corollary discharge, was unchanged. We argue that oculoproprioception is selective for attention maps. By identifying a potential substrate for the coupling between eye and attention, this study contributes to the theoretical models for spatial attention.
Spatially-Heterodyned Holography
Thomas, Clarence E [Knoxville, TN; Hanson, Gregory R [Clinton, TN
2006-02-21
A method of recording a spatially low-frequency heterodyne hologram, including spatially heterodyne fringes for Fourier analysis, includes: splitting a laser beam into a reference beam and an object beam; interacting the object beam with an object; focusing the reference beam and the object beam at a focal plane of a digital recorder to form a spatially low-frequency heterodyne hologram including spatially heterodyne fringes for Fourier analysis; digital recording the spatially low-frequency heterodyne hologram; Fourier transforming axes of the recorded spatially low-frequency heterodyne hologram including spatially heterodyne fringes in Fourier space to sit on top of a heterodyne carrier frequency defined by an angle between the reference beam and the object beam; cutting off signals around an origin; and performing an inverse Fourier transform.
Quantitative analysis of spatial variability of geotechnical parameters
NASA Astrophysics Data System (ADS)
Fang, Xing
2018-04-01
Geotechnical parameters are the basic parameters of geotechnical engineering design, while the geotechnical parameters have strong regional characteristics. At the same time, the spatial variability of geotechnical parameters has been recognized. It is gradually introduced into the reliability analysis of geotechnical engineering. Based on the statistical theory of geostatistical spatial information, the spatial variability of geotechnical parameters is quantitatively analyzed. At the same time, the evaluation of geotechnical parameters and the correlation coefficient between geotechnical parameters are calculated. A residential district of Tianjin Survey Institute was selected as the research object. There are 68 boreholes in this area and 9 layers of mechanical stratification. The parameters are water content, natural gravity, void ratio, liquid limit, plasticity index, liquidity index, compressibility coefficient, compressive modulus, internal friction angle, cohesion and SP index. According to the principle of statistical correlation, the correlation coefficient of geotechnical parameters is calculated. According to the correlation coefficient, the law of geotechnical parameters is obtained.
Quasars in the Galactic Anti-Center Area from LAMOST DR3
NASA Astrophysics Data System (ADS)
Huo, Zhi-Ying; Liu, Xiao-Wei; Shi, Jian-Rong; Xiang, Mao-Sheng; Huang, Yang; Yuan, Hai-Bo; Zhang, Jian-Nan; Zhang, Wei; Wang, Jian-Ling; Wu, Yu-Zhong; Cao, Zi-Huang; Zhang, Yong; Hou, Yong-Hui; Wang, Yue-Fei
2017-03-01
We present a sample of quasars discovered in an area near the Galactic Anti-Center covering 150^\\circ ≤ l≤ 210^\\circ and | b| ≤ 30^\\circ , based on LAMOST Data Release 3 (DR3). This sample contains 151 spectroscopically confirmed quasars. Among them 80 are newly discovered with LAMOST. All these quasars are very bright, with i magnitudes peaking around 17.5 mag. All the new quasars were discovered serendipitously from objects that were originally targeted with LAMOST as stars having bluer colors, except for a few candidates targeted as variable, young stellar objects. This bright quasar sample at low Galactic latitudes will help fill the gap in the spatial distribution of known quasars near the Galactic disk that are used to construct an astrometric reference frame for the purpose of accurate proper motion measurements that can be applied to, for example, Gaia. They are also excellent tracers to probe the kinematics and chemistry of the interstellar medium in the Milky Way disk and halo via absorption line spectroscopy.
Objective Interpolation of Scatterometer Winds
NASA Technical Reports Server (NTRS)
Tang, Wenquing; Liu, W. Timothy
1996-01-01
Global wind fields are produced by successive corrections that use measurements by the European Remote Sensing Satellite (ERS-1) scatterometer. The methodology is described. The wind fields at 10-meter height provided by the European Center for Medium-Range Weather Forecasting (ECMWF) are used to initialize the interpolation process. The interpolated wind field product ERSI is evaluated in terms of its improvement over the initial guess field (ECMWF) and the bin-averaged ERS-1 wind field (ERSB). Spatial and temporal differences between ERSI, ECMWF and ERSB are presented and discussed.
Acoustic Inverse Scattering for Breast Cancer Microcalcification Detection. Addendum
2011-12-01
the center. To conserve space, few are shown here. A graph comparing the spatial location and the error in reconstruction will follow...following graphs show the error in reconstruction as a function of position of the object along the x-axis, y-axis and the diagonal in the fourth quadrant of...the well-known Kirchhoff – Poisson formulas (see, e.g., Refs. [33,34]) allow one to rep- resent the solution p(x,t) in terms of the spherical means
The MSFC Program Control Development Program
NASA Technical Reports Server (NTRS)
1994-01-01
It is the policy of the Marshall Space Flight Center (MSFC) that employees be given the opportunity to develop their individual skills and realize their full potential consistent with their selected career path and with the overall Center's needs and objectives. The MSFC Program Control Development Program has been designed to assist individuals who have selected Program Control or Program Analyst Program Control as a career path to achieve their ultimate career goals. Individuals selected to participate in the MSFC Program Control Development Program will be provided with development training in the various Program Control functional areas identified in the NASA Program Control Model. The purpose of the MSFC Program Control Development Program is to develop individual skills in the various Program Control functions by on-the-job and classroom instructional training on the various systems, tools, techniques, and processes utilized in these areas.
The Cutplane - A tool for interactive solid modeling
NASA Technical Reports Server (NTRS)
Edwards, Laurence; Kessler, William; Leifer, Larry
1988-01-01
A geometric modeling system which incorporates a new concept for intuitively and unambiguously specifying and manipulating points or features in three dimensional space is presented. The central concept, the Cutplane, consists of a plane that moves through space under control of a mouse or similar input device. The intersection of the plane and any object is highlighted, and only this highlighted section can be selected for manipulation. Selection is accomplished with a crosshair that is constrained to remain within the plane, so that the relationship between the crosshair and the feature of interest is immediately evident. Although the idea of a section view is not new, previously it has been used as a way to reveal hidden structure, not as a means of manipulating objects or indicating spatial position, as is proposed here.
NASA Technical Reports Server (NTRS)
Al-Hamdan, Mohammad; Crosson, William; Economou, Sigrid; Estes, Maurice, Jr.; Estes, Sue; Hemmings, Sarah; Kent, Shia; Quattrochi, Dale; Wade, Gina; McClure, Leslie
2011-01-01
NASA Marshall Space Flight Center is collaborating with the University of Alabama at Birmingham (UAB) School of Public Health and the Centers for Disease Control and Prevention (CDC) National Center for Public Health Informatics to address issues of environmental health and enhance public health decision making by utilizing NASA remotely sensed data and products. The objectives of this study are to develop high-quality spatial data sets of environmental variables, link these with public health data from a national cohort study, and deliver the linked data sets and associated analyses to local, state and federal end-user groups. Three daily environmental data sets will be developed for the conterminous U.S. on different spatial resolutions for the period 2003-2008: (1) spatial surfaces of estimated fine particulate matter (PM2.5) exposures on a 10-km grid utilizing the US Environmental Protection Agency (EPA) ground observations and NASA's MODerate-resolution Imaging Spectroradiometer (MODIS) data; (2) a 1-km grid of Land Surface Temperature (LST) using MODIS data; and (3) a 12-km grid of daily Solar Insolation (SI) using the North American Land Data Assimilation System (NLDAS) forcing data. These environmental data sets will be linked with public health data from the UAB REasons for Geographic And Racial Differences in Stroke (REGARDS) national cohort study to determine whether exposures to these environmental risk factors are related to cognitive decline and other health outcomes. These environmental datasets and public health linkage analyses will be disseminated to end-users for decision making through the CDC Wide-ranging Online Data for Epidemiologic Research (WONDER) system.
Schmetz, Emilie; Rousselle, Laurence; Ballaz, Cécile; Detraux, Jean-Jacques; Barisnikov, Koviljka
2017-06-20
This study aims to examine the different levels of visual perceptual object recognition (early, intermediate, and late) defined in Humphreys and Riddoch's model as well as basic visual spatial processing in children using a new test battery (BEVPS). It focuses on the age sensitivity, internal coherence, theoretical validity, and convergent validity of this battery. French-speaking, typically developing children (n = 179; 5 to 14 years) were assessed using 15 new computerized subtests. After selecting the most age-sensitive tasks though ceiling effect and correlation analyses, an exploratory factorial analysis was run with the 12 remaining subtests to examine the BEVPS' theoretical validity. Three separate factors were identified for the assessment of the stimuli's basic features (F1, four subtests), view-dependent and -independent object representations (F2, six subtests), and basic visual spatial processing (F3, two subtests). Convergent validity analyses revealed positive correlations between F1 and F2 and the Beery-VMI visual perception subtest, while no such correlations were found for F3. Children's performances progressed until the age of 9-10 years in F1 and in view-independent representations (F2), and until 11-12 years in view-dependent representations (F2). However, no progression with age was observed in F3. Moreover, the selected subtests, present good-to-excellent internal consistency, which indicates that they provide reliable measures for the assessment of visual perceptual processing abilities in children.
Development of a Patient-Centered Antipsychotic Medication Adherence Intervention
ERIC Educational Resources Information Center
Pyne, Jeffrey M.; Fischer, Ellen P.; Gilmore, LaNissa; McSweeney, Jean C.; Stewart, Katharine E.; Mittal, Dinesh; Bost, James E.; Valenstein, Marcia
2014-01-01
Objective: A substantial gap exists between patients and their mental health providers about patient's perceived barriers, facilitators, and motivators (BFMs) for taking antipsychotic medications. This article describes how we used an intervention mapping (IM) framework coupled with qualitative and quantitative item-selection methods to…
NASA Astrophysics Data System (ADS)
Whitmore, Brad; Schweizer, Francois; Leitherer, Claus; Borne, Kirk; Robert, Carmelle
1993-05-01
A population of about 40 blue pointlike objects has been discovered in NGC 7252 using the Planetary Camera on board of the Hubble Space Telescope. NGC 7252 (sometimes referred to as the ``Atoms-for-Peace'' galaxy) is one of the prototypical examples of a merger between two disk galaxies. Schweizer (1982: ApJ, 252, 455) has argued that the remnant will eventually become an elliptical galaxy. The luminosities, V-I colors, spatial distribution, and sizes are all compatible with the hypothesis that these objects formed <= 1 Gyr ago during the original merger, and that they are the progenitors of globular clusters similar to those we see around galaxies today. It therefore appears that the number of globular clusters is not a conserved quantity during the merger of two spiral galaxies, but increases instead. This weakens van den Bergh's objection against ellipticals being formed through disk mergers, based mainly on the fact that disk galaxies have fewer globular clusters per unit luminosity than ellipticals galaxies do. The objects found in NGC 7252 are very similar to the pointlike sources recently discovered in NGC 1275 by Holtzman et al. (1992: AJ, 103, 691). However, NGC 1275 is a peculiar galaxy in the center of the Perseus cluster. While Holtzman et al. argue that the objects in NGC 1275 may be the progenitors of globular clusters, Richer et al. (1993: AJ, 105, 877) suggest that these objects may instead be related to the strong cooling flow in the cluster. Our discovery of a population of bright blue pointlike objects in NGC 7252, a prototypical merger, makes a much stronger connection between the formation of globular clusters and the merger history of a galaxy. Other findings are: (1) NGC 7252 has a single, semi-stellar nucleus; (2) spiral arms are seen within 3.5'' (1.6 kpc) of the center, presumably formed through the continued infall of gas into a disk around the center of the galaxy; (3) dust lanes and very weak spiral structure are seen out to about 9.2'' (4.3 kpc), primarily on the NE side; and (4) a ripple is found on the west side, 5.0'' from the center.
SOFIA/FORCAST Observations of the Arched Filamentary Region in the Galactic Center
NASA Astrophysics Data System (ADS)
Hankins, Matthew; Lau, Ryan M.; Morris, Mark; Herter, Terry L.
2016-06-01
Abstract: We present 19.7, 25.2, 31.5, and 37.1 μm maps of the Thermal Arched Filament region in the Galactic Center taken with the Faint Object Infrared Camera for the SOFIA Telescope (FORCAST) with an angular resolution of 3.2-3.8". We calculate the integrated infrared luminosity of the Arched Filaments and show that they are consistent with being heated by the nearby Arches cluster. Additionally, using our observations, we infer dust temperatures (75 - 90 K) across the Arched Filaments which are remarkably consistent over large spatial scales (˜ 25 pc). We discuss the possible geometric effects needed to recreate this temperature structure. Additionally, we compare the observed morphology of the Arches in the FORCAST maps with the Paschen-α emission in the region to study what fraction of the infrared emission may be coming from dust in the HII region versus the PDR beneath it. Finally, we use Spitzer/IRAC 8 μm data to look for spatial variations in PAH abundance in the rich UV environment of the young (~2-4 Myr) and massive Arches cluster.
Hubble Space Telescope discovery of candidate young globular clusters in the merger remnant NGC 7252
NASA Technical Reports Server (NTRS)
Whitmore, Bradley C.; Schweizer, Francois; Leitherer, Claus; Borne, Kirk; Robert, Carmelle
1993-01-01
New, high-resolution images of the central region of NGC 7252 obtained with the Planetary Camera of the HST are presented. NGC 7252 is a prototypical example of a remnant of two merged disk galaxies. Our most striking result is the discovery of a population of about 40 blue pointlike objects in this galaxy. The mean absolute magnitude of these objects is Mv = -13 mag; the mean color is V-I = 0.7 mag; and the mean effective radius is 10 pc. The luminosities, colors, projected spatial distribution, and sizes are all compatible with the hypothesis that these objects formed within the last 1 Gyr following the collision of two spiral galaxies, and that they are young globular clusters. It therefore appears that the number of globular clusters may increase during the merger of gas-rich galaxies. This weakens van den Bergh's objection against ellipticals being formed through disk mergers, based mainly on the fact that disk galaxies have fewer globular clusters per unit luminosity than ellipticals do. NGC 7252 shows a single, semistellar nucleus; relatively bright spiral structure is seen within 1.6 kpc of the center, presumably formed through the continued infall of gas into a disk around the center of the galaxy.
Intrusive effects of semantic information on visual selective attention.
Malcolm, George L; Rattinger, Michelle; Shomstein, Sarah
2016-10-01
Every object is represented by semantic information in extension to its low-level properties. It is well documented that such information biases attention when it is necessary for an ongoing task. However, whether semantic relationships influence attentional selection when they are irrelevant to the ongoing task remains an open question. The ubiquitous nature of semantic information suggests that it could bias attention even when these properties are irrelevant. In the present study, three objects appeared on screen, two of which were semantically related. After a varying time interval, a target or distractor appeared on top of each object. The objects' semantic relationships never predicted the target location. Despite this, a semantic bias on attentional allocation was observed, with an initial, transient bias to semantically related objects. Further experiments demonstrated that this effect was contingent on the objects being attended: if an object never contained the target, it no longer exerted a semantic influence. In a final set of experiments, we demonstrated that the semantic bias is robust and appears even in the presence of more predictive cues (spatial probability). These results suggest that as long as an object is attended, its semantic properties bias attention, even if it is irrelevant to an ongoing task and if more predictive factors are available.
Lien, Mei-Ching; Jardin, Elliott; Proctor, Robert W
2013-11-01
We examined Goslin, Dixon, Fischer, Cangelosi, and Ellis's (Psychological Science 23:152-157, 2012) claim that the object-based correspondence effect (i.e., faster keypress responses when the orientation of an object's graspable part corresponds with the response location than when it does not) is the result of object-based attention (vision-action binding). In Experiment 1, participants determined the category of a centrally located object (kitchen utensil vs. tool), as in Goslin et al.'s study. The handle orientation (left vs. right) did or did not correspond with the response location (left vs. right). We found no correspondence effect on the response times (RTs) for either category. The effect was also not evident in the P1 and N1 components of the event-related potentials, which are thought to reflect the allocation of early visual attention. This finding was replicated in Experiment 2 for centrally located objects, even when the object was presented 45 times (33 more times than in Exp. 1). Critically, the correspondence effects on RTs, P1s, and N1s emerged only when the object was presented peripherally, so that the object handle was clearly located to the left or right of fixation. Experiment 3 provided further evidence that the effect was observed only for the base-centered objects, in which the handle was clearly positioned to the left or right of center. These findings contradict those of Goslin et al. and provide no evidence that an intended grasping action modulates visual attention. Instead, the findings support the spatial-coding account of the object-based correspondence effect.
Bohbot, Véronique D.; Allen, John J. B.; Dagher, Alain; Dumoulin, Serge O.; Evans, Alan C.; Petrides, Michael; Kalina, Miroslav; Stepankova, Katerina; Nadel, Lynn
2015-01-01
The parahippocampal cortex and hippocampus are brain structures known to be involved in memory. However, the unique contribution of the parahippocampal cortex remains unclear. The current study investigates memory for object identity and memory of the configuration of objects in patients with small thermo-coagulation lesions to the hippocampus or the parahippocampal cortex. Results showed that in contrast to control participants and patients with damage to the hippocampus leaving the parahippocampal cortex intact, patients with lesions that included the right parahippocampal cortex (RPH) were severely impaired on a task that required learning the spatial configuration of objects on a computer screen; these patients, however, were not impaired at learning the identity of objects. Conversely, we found that patients with lesions to the right hippocampus (RH) or left hippocampus (LH), sparing the parahippocampal cortex, performed just as well as the control participants. Furthermore, they were not impaired on the object identity task. In the functional Magnetic Resonance Imaging (fMRI) experiment, healthy young adults performed the same tasks. Consistent with the findings of the lesion study, the fMRI results showed significant activity in the RPH in the memory for the spatial configuration condition, but not memory for object identity. Furthermore, the pattern of fMRI activity measured in the baseline control conditions decreased specifically in the parahippocampal cortex as a result of the experimental task, providing evidence for task specific repetition suppression. In summary, while our previous studies demonstrated that the hippocampus is critical to the construction of a cognitive map, both the lesion and fMRI studies have shown an involvement of the RPH for learning spatial configurations of objects but not object identity, and that this takes place independent of the hippocampus. PMID:26283949
[Spatial analysis of mortality from cardiovascular diseases in Madrid City, Spain].
Gómez-Barroso, Diana; Prieto-Flores, María-Eugenia; Mellado San Gabino, Ana; Moreno Jiménez, Antonio
2015-01-01
Cardiovascular disease is the leading cause of death worldwide, but its spatial distribution is not homogeneous. The objective of this study is to analyze the spatial pattern of mortality from these diseases for men and women, in the populated urban area (AUP) of the municipality of Madrid, and to identify spatial aggregations. An ecological study was carried out by census tract, for men and women in 2010. Standardized Mortality Ratio (SMR), Relative Risk Smoothing (RRS) and Posterior Probability (PP) were calculated to consider the spatial pattern of the disease. To identify spatial clusters the Moran index (Moran I) and the Local Index of Spatial Autocorrelation (LISA) were used. The results were mapped. SMR higher than 1.1 was observed mainly in central areas among men and in peripheral areas among women. The PP that RRS was higher than 1 surpassed 0.8 in the center and in the periphery, in both men and women. Moran's I was 0.04 for men and 0.03 for women (p <0.05 in both cases). Sex differences were observed in the spatial distribution of mortality cases. RME RRS and PP maps showed a heterogeneous pattern in men, whereas in women a clearer pattern was detected, with a relatively higher risk in peripheral areas of the AUP. The LISA method showed similar patterns to those previously observed.
NASA Astrophysics Data System (ADS)
Jobin, Benoît; Labrecque, Sandra; Grenier, Marcelle; Falardeau, Gilles
2008-01-01
The traditional method of identifying wildlife habitat distribution over large regions consists of pixel-based classification of satellite images into a suite of habitat classes used to select suitable habitat patches. Object-based classification is a new method that can achieve the same objective based on the segmentation of spectral bands of the image creating homogeneous polygons with regard to spatial or spectral characteristics. The segmentation algorithm does not solely rely on the single pixel value, but also on shape, texture, and pixel spatial continuity. The object-based classification is a knowledge base process where an interpretation key is developed using ground control points and objects are assigned to specific classes according to threshold values of determined spectral and/or spatial attributes. We developed a model using the eCognition software to identify suitable habitats for the Grasshopper Sparrow, a rare and declining species found in southwestern Québec. The model was developed in a region with known breeding sites and applied on other images covering adjacent regions where potential breeding habitats may be present. We were successful in locating potential habitats in areas where dairy farming prevailed but failed in an adjacent region covered by a distinct Landsat scene and dominated by annual crops. We discuss the added value of this method, such as the possibility to use the contextual information associated to objects and the ability to eliminate unsuitable areas in the segmentation and land cover classification processes, as well as technical and logistical constraints. A series of recommendations on the use of this method and on conservation issues of Grasshopper Sparrow habitat is also provided.
Sigurdardottir, Heida M; Sheinberg, David L
2015-07-01
The lateral intraparietal area (LIP) is thought to play an important role in the guidance of where to look and pay attention. LIP can also respond selectively to differently shaped objects. We sought to understand to what extent short-term and long-term experience with visual orienting determines the responses of LIP to objects of different shapes. We taught monkeys to arbitrarily associate centrally presented objects of various shapes with orienting either toward or away from a preferred spatial location of a neuron. The training could last for less than a single day or for several months. We found that neural responses to objects are affected by such experience, but that the length of the learning period determines how this neural plasticity manifests. Short-term learning affects neural responses to objects, but these effects are only seen relatively late after visual onset; at this time, the responses to newly learned objects resemble those of familiar objects that share their meaning or arbitrary association. Long-term learning affects the earliest bottom-up responses to visual objects. These responses tend to be greater for objects that have been associated with looking toward, rather than away from, LIP neurons' preferred spatial locations. Responses to objects can nonetheless be distinct, although they have been similarly acted on in the past and will lead to the same orienting behavior in the future. Our results therefore indicate that a complete experience-driven override of LIP object responses may be difficult or impossible. We relate these results to behavioral work on visual attention.
A review of supervised object-based land-cover image classification
NASA Astrophysics Data System (ADS)
Ma, Lei; Li, Manchun; Ma, Xiaoxue; Cheng, Liang; Du, Peijun; Liu, Yongxue
2017-08-01
Object-based image classification for land-cover mapping purposes using remote-sensing imagery has attracted significant attention in recent years. Numerous studies conducted over the past decade have investigated a broad array of sensors, feature selection, classifiers, and other factors of interest. However, these research results have not yet been synthesized to provide coherent guidance on the effect of different supervised object-based land-cover classification processes. In this study, we first construct a database with 28 fields using qualitative and quantitative information extracted from 254 experimental cases described in 173 scientific papers. Second, the results of the meta-analysis are reported, including general characteristics of the studies (e.g., the geographic range of relevant institutes, preferred journals) and the relationships between factors of interest (e.g., spatial resolution and study area or optimal segmentation scale, accuracy and number of targeted classes), especially with respect to the classification accuracy of different sensors, segmentation scale, training set size, supervised classifiers, and land-cover types. Third, useful data on supervised object-based image classification are determined from the meta-analysis. For example, we find that supervised object-based classification is currently experiencing rapid advances, while development of the fuzzy technique is limited in the object-based framework. Furthermore, spatial resolution correlates with the optimal segmentation scale and study area, and Random Forest (RF) shows the best performance in object-based classification. The area-based accuracy assessment method can obtain stable classification performance, and indicates a strong correlation between accuracy and training set size, while the accuracy of the point-based method is likely to be unstable due to mixed objects. In addition, the overall accuracy benefits from higher spatial resolution images (e.g., unmanned aerial vehicle) or agricultural sites where it also correlates with the number of targeted classes. More than 95.6% of studies involve an area less than 300 ha, and the spatial resolution of images is predominantly between 0 and 2 m. Furthermore, we identify some methods that may advance supervised object-based image classification. For example, deep learning and type-2 fuzzy techniques may further improve classification accuracy. Lastly, scientists are strongly encouraged to report results of uncertainty studies to further explore the effects of varied factors on supervised object-based image classification.
NASA Astrophysics Data System (ADS)
Dahlberg, Peter D.; Boughter, Christopher T.; Faruk, Nabil F.; Hong, Lu; Koh, Young Hoon; Reyer, Matthew A.; Shaiber, Alon; Sherani, Aiman; Zhang, Jiacheng; Jureller, Justin E.; Hammond, Adam T.
2016-11-01
A standard wide field inverted microscope was converted to a spatially selective spectrally resolved microscope through the addition of a polarizing beam splitter, a pair of polarizers, an amplitude-mode liquid crystal-spatial light modulator, and a USB spectrometer. The instrument is capable of simultaneously imaging and acquiring spectra over user defined regions of interest. The microscope can also be operated in a bright-field mode to acquire absorption spectra of micron scale objects. The utility of the instrument is demonstrated on three different samples. First, the instrument is used to resolve three differently labeled fluorescent beads in vitro. Second, the instrument is used to recover time dependent bleaching dynamics that have distinct spectral changes in the cyanobacteria, Synechococcus leopoliensis UTEX 625. Lastly, the technique is used to acquire the absorption spectra of CH3NH3PbBr3 perovskites and measure differences between nanocrystal films and micron scale crystals.
Dahlberg, Peter D; Boughter, Christopher T; Faruk, Nabil F; Hong, Lu; Koh, Young Hoon; Reyer, Matthew A; Shaiber, Alon; Sherani, Aiman; Zhang, Jiacheng; Jureller, Justin E; Hammond, Adam T
2016-11-01
A standard wide field inverted microscope was converted to a spatially selective spectrally resolved microscope through the addition of a polarizing beam splitter, a pair of polarizers, an amplitude-mode liquid crystal-spatial light modulator, and a USB spectrometer. The instrument is capable of simultaneously imaging and acquiring spectra over user defined regions of interest. The microscope can also be operated in a bright-field mode to acquire absorption spectra of micron scale objects. The utility of the instrument is demonstrated on three different samples. First, the instrument is used to resolve three differently labeled fluorescent beads in vitro. Second, the instrument is used to recover time dependent bleaching dynamics that have distinct spectral changes in the cyanobacteria, Synechococcus leopoliensis UTEX 625. Lastly, the technique is used to acquire the absorption spectra of CH 3 NH 3 PbBr 3 perovskites and measure differences between nanocrystal films and micron scale crystals.
NASA Astrophysics Data System (ADS)
Ushenko, Yu. A.; Angelskii, P. O.; Dubolazov, A. V.; Karachevtsev, A. O.; Sidor, M. I.; Mintser, O. P.; Oleinichenko, B. P.; Bizer, L. I.
2013-10-01
We present a theoretical formalism of correlation phase analysis of laser images of human blood plasma with spatial-frequency selection of manifestations of mechanisms of linear and circular birefringence of albumin and globulin polycrystalline networks. Comparative results of the measurement of coordinate distributions of the correlation parameter—the modulus of the degree of local correlation of amplitudes—of laser images of blood plasma taken from patients of three groups—healthy patients (donors), rheumatoid-arthritis patients, and breast-cancer patients—are presented. We investigate values and ranges of change of statistical (the first to fourth statistical moments), correlation (excess of autocorrelation functions), and fractal (slopes of approximating curves and dispersion of extrema of logarithmic dependences of power spectra) parameters of coordinate distributions of the degree of local correlation of amplitudes. Objective criteria for diagnostics of occurrence and differentiation of inflammatory and oncological states are determined.
The planetary spatial data infrastructure for the OSIRIS-REx mission
NASA Astrophysics Data System (ADS)
DellaGiustina, D. N.; Selznick, S.; Nolan, M. C.; Enos, H. L.; Lauretta, D. S.
2017-12-01
The primary objective of the Origins, Spectral Interpretation, Resource Identification, and Security-Regolith Explorer (OSIRIS-REx) mission is to return a pristine sample of carbonaceous material from primitive asteroid (101955) Bennu. Understanding the geospatial context of Bennu is critical to choosing a sample-site and also linking the nature of the sample to the global properties of Bennu and the broader asteroid population. We established a planetary spatial data infrastructure (PSDI) support the primary objective of OSIRIS-REx. OSIRIS-REx is unique among planetary missions in that all remote sensing is performed to support the sample return objective. Prior to sampling, OSIRIS-REx will survey Bennu for nearly two years to select and document the most valuable primary and backup sample sites. During this period, the mission will combine coordinated observations from five science instruments into four thematic maps: deliverability, safety, sampleability, and scientific value. The deliverability map assesses the probability that the flight dynamics team can deliver the spacecraft to the desired location. The safety map indicates the probability that physical hazards are present at the sample-site. The sampleability map quantifies the probability that a sample can be successfully collected from the surface. Finally, the scientific value map shows the probability that the collected sample contains organics and volatiles and also places the sample site in a definitive geological context relative to Bennu's history. The OSIRIS-REx Science Processing and Operations Center (SPOC) serves as the operational PSDI for the mission. The SPOC is tasked with intake of all data from the spacecraft and other ground sources and assimilating these data into a single comprehensive system for processing and presentation. The SPOC centralizes all geographic data of Bennu in a relational database and ensures that standardization and provenance are maintained throughout proximity operations.The SPOC is a live system that handles inputs from spacecraft and science instrument telemetry, and science data producers. It includes multiple levels of validation, both automated and manual to process all data in a robust and reliable manner and eventually deliver it to the NASA Planetary Data System for archive.
Liu, Xing-Cai; He, Shi-Wei; Song, Rui; Sun, Yang; Li, Hao-Dong
2014-01-01
Railway freight center location problem is an important issue in railway freight transport programming. This paper focuses on the railway freight center location problem in uncertain environment. Seeing that the expected value model ignores the negative influence of disadvantageous scenarios, a robust optimization model was proposed. The robust optimization model takes expected cost and deviation value of the scenarios as the objective. A cloud adaptive clonal selection algorithm (C-ACSA) was presented. It combines adaptive clonal selection algorithm with Cloud Model which can improve the convergence rate. Design of the code and progress of the algorithm were proposed. Result of the example demonstrates the model and algorithm are effective. Compared with the expected value cases, the amount of disadvantageous scenarios in robust model reduces from 163 to 21, which prove the result of robust model is more reliable.
An independent brain-computer interface using covert non-spatial visual selective attention
NASA Astrophysics Data System (ADS)
Zhang, Dan; Maye, Alexander; Gao, Xiaorong; Hong, Bo; Engel, Andreas K.; Gao, Shangkai
2010-02-01
In this paper, a novel independent brain-computer interface (BCI) system based on covert non-spatial visual selective attention of two superimposed illusory surfaces is described. Perception of two superimposed surfaces was induced by two sets of dots with different colors rotating in opposite directions. The surfaces flickered at different frequencies and elicited distinguishable steady-state visual evoked potentials (SSVEPs) over parietal and occipital areas of the brain. By selectively attending to one of the two surfaces, the SSVEP amplitude at the corresponding frequency was enhanced. An online BCI system utilizing the attentional modulation of SSVEP was implemented and a 3-day online training program with healthy subjects was carried out. The study was conducted with Chinese subjects at Tsinghua University, and German subjects at University Medical Center Hamburg-Eppendorf (UKE) using identical stimulation software and equivalent technical setup. A general improvement of control accuracy with training was observed in 8 out of 18 subjects. An averaged online classification accuracy of 72.6 ± 16.1% was achieved on the last training day. The system renders SSVEP-based BCI paradigms possible for paralyzed patients with substantial head or ocular motor impairments by employing covert attention shifts instead of changing gaze direction.
An independent brain-computer interface using covert non-spatial visual selective attention.
Zhang, Dan; Maye, Alexander; Gao, Xiaorong; Hong, Bo; Engel, Andreas K; Gao, Shangkai
2010-02-01
In this paper, a novel independent brain-computer interface (BCI) system based on covert non-spatial visual selective attention of two superimposed illusory surfaces is described. Perception of two superimposed surfaces was induced by two sets of dots with different colors rotating in opposite directions. The surfaces flickered at different frequencies and elicited distinguishable steady-state visual evoked potentials (SSVEPs) over parietal and occipital areas of the brain. By selectively attending to one of the two surfaces, the SSVEP amplitude at the corresponding frequency was enhanced. An online BCI system utilizing the attentional modulation of SSVEP was implemented and a 3-day online training program with healthy subjects was carried out. The study was conducted with Chinese subjects at Tsinghua University, and German subjects at University Medical Center Hamburg-Eppendorf (UKE) using identical stimulation software and equivalent technical setup. A general improvement of control accuracy with training was observed in 8 out of 18 subjects. An averaged online classification accuracy of 72.6 +/- 16.1% was achieved on the last training day. The system renders SSVEP-based BCI paradigms possible for paralyzed patients with substantial head or ocular motor impairments by employing covert attention shifts instead of changing gaze direction.
Spatial resolution dependence on spectral frequency in human speech cortex electrocorticography
NASA Astrophysics Data System (ADS)
Muller, Leah; Hamilton, Liberty S.; Edwards, Erik; Bouchard, Kristofer E.; Chang, Edward F.
2016-10-01
Objective. Electrocorticography (ECoG) has become an important tool in human neuroscience and has tremendous potential for emerging applications in neural interface technology. Electrode array design parameters are outstanding issues for both research and clinical applications, and these parameters depend critically on the nature of the neural signals to be recorded. Here, we investigate the functional spatial resolution of neural signals recorded at the human cortical surface. We empirically derive spatial spread functions to quantify the shared neural activity for each frequency band of the electrocorticogram. Approach. Five subjects with high-density (4 mm center-to-center spacing) ECoG grid implants participated in speech perception and production tasks while neural activity was recorded from the speech cortex, including superior temporal gyrus, precentral gyrus, and postcentral gyrus. The cortical surface field potential was decomposed into traditional EEG frequency bands. Signal similarity between electrode pairs for each frequency band was quantified using a Pearson correlation coefficient. Main results. The correlation of neural activity between electrode pairs was inversely related to the distance between the electrodes; this relationship was used to quantify spatial falloff functions for cortical subdomains. As expected, lower frequencies remained correlated over larger distances than higher frequencies. However, both the envelope and phase of gamma and high gamma frequencies (30-150 Hz) are largely uncorrelated (<90%) at 4 mm, the smallest spacing of the high-density arrays. Thus, ECoG arrays smaller than 4 mm have significant promise for increasing signal resolution at high frequencies, whereas less additional gain is achieved for lower frequencies. Significance. Our findings quantitatively demonstrate the dependence of ECoG spatial resolution on the neural frequency of interest. We demonstrate that this relationship is consistent across patients and across cortical areas during activity.
Motion-based nearest vector metric for reference frame selection in the perception of motion.
Agaoglu, Mehmet N; Clarke, Aaron M; Herzog, Michael H; Ögmen, Haluk
2016-05-01
We investigated how the visual system selects a reference frame for the perception of motion. Two concentric arcs underwent circular motion around the center of the display, where observers fixated. The outer (target) arc's angular velocity profile was modulated by a sine wave midflight whereas the inner (reference) arc moved at a constant angular speed. The task was to report whether the target reversed its direction of motion at any point during its motion. We investigated the effects of spatial and figural factors by systematically varying the radial and angular distances between the arcs, and their relative sizes. We found that the effectiveness of the reference frame decreases with increasing radial- and angular-distance measures. Drastic changes in the relative sizes of the arcs did not influence motion reversal thresholds, suggesting no influence of stimulus form on perceived motion. We also investigated the effect of common velocity by introducing velocity fluctuations to the reference arc as well. We found no effect of whether or not a reference frame has a constant motion. We examined several form- and motion-based metrics, which could potentially unify our findings. We found that a motion-based nearest vector metric can fully account for all the data reported here. These findings suggest that the selection of reference frames for motion processing does not result from a winner-take-all process, but instead, can be explained by a field whose strength decreases with the distance between the nearest motion vectors regardless of the form of the moving objects.
NASA Astrophysics Data System (ADS)
Xu, Xibao; Zhang, Jianming; Zhou, Xiaojian
2006-10-01
This paper presents a model integrating GIS, cellular automata (CA) and genetic algorithm (GA) in urban spatial optimization. The model involves three objectives of the maximization of land-use efficiency, the maximization of urban spatial harmony and appropriate proportion of each land-use type. CA submodel is designed with standard Moore neighbor and three transition rules to maximize the land-use efficiency and urban spatial harmony, according to the land-use suitability and spatial harmony index. GA submodel is designed with four constraints and seven steps for the maximization of urban spatial harmony and appropriate proportion of each land-use type, including encoding, initializing, calculating fitness, selection, crossover, mutation and elitism. GIS is used to prepare for the input data sets for the model and perform spatial analysis on the results, while CA and GA are integrated to optimize urban spatial structure, programmed with Matlab 7 and coupled with GIS loosely. Lanzhou, a typical valley-basin city with fast urban development, is chosen as the case study. At the end, a detail analysis and evaluation of the spatial optimization with the model are made, and it proves to be a powerful tool in optimizing urban spatial structure and make supplement for urban planning and policy-makers.
Projector Center: Slide-Tape Presentations on a Classroom Budget.
ERIC Educational Resources Information Center
Barman, Charles R., Ed.
1984-01-01
Presented is a recommended sequence for developing a slide-tape presentation. Steps include selecting a topic, determining objectives for the presentation, constructing a storyboard, writing the script, and recording the script. Comments on use of quotation, sound effects, built-in pauses, and use of student voices are included. (JN)
USDA-ARS?s Scientific Manuscript database
‘Tiger’ hard white winter wheat (Triticum aestivum L.) was developed at Research Center-Hays, Kansas State University and released by Kansas Agricultural Experiment Station in 2010. Tiger was selected from a three-way cross KS98H245/’Trego’//KS98HW518 made in 1999 at Hays, KS. The objective of this ...
EduMOOs: Virtual Learning Centers.
ERIC Educational Resources Information Center
Woods, Judy C.
1998-01-01
Multi-user Object Oriented Internet activities (MOOs) permit real time interaction in a text-based virtual reality via the Internet. This article explains EduMOOs (educational MOOs) and provides brief descriptions, World Wide Web addresses, and telnet addresses for selected EduMOOs. Instructions for connecting to a MOO and a list of related Web…
Tiempos Pasados (Past Times). Grass-Roots Oral History.
ERIC Educational Resources Information Center
Hunsaker, Alan, Ed.
Compiled with learning objectives, suggested lesson plans, learning center activities, and selected teacher and student bibliographies for use at the elementary level, transcripts of oral history interviews with 11 Mexican Americans in San Bernardino County's West End provide understanding of the mass movement of Mexicans to the United States in…
Jacob, Benjamin J; Krapp, Fiorella; Ponce, Mario; Gottuzzo, Eduardo; Griffith, Daniel A; Novak, Robert J
2010-05-01
Spatial autocorrelation is problematic for classical hierarchical cluster detection tests commonly used in multi-drug resistant tuberculosis (MDR-TB) analyses as considerable random error can occur. Therefore, when MDRTB clusters are spatially autocorrelated the assumption that the clusters are independently random is invalid. In this research, a product moment correlation coefficient (i.e., the Moran's coefficient) was used to quantify local spatial variation in multiple clinical and environmental predictor variables sampled in San Juan de Lurigancho, Lima, Peru. Initially, QuickBird 0.61 m data, encompassing visible bands and the near infra-red bands, were selected to synthesize images of land cover attributes of the study site. Data of residential addresses of individual patients with smear-positive MDR-TB were geocoded, prevalence rates calculated and then digitally overlaid onto the satellite data within a 2 km buffer of 31 georeferenced health centers, using a 10 m2 grid-based algorithm. Geographical information system (GIS)-gridded measurements of each health center were generated based on preliminary base maps of the georeferenced data aggregated to block groups and census tracts within each buffered area. A three-dimensional model of the study site was constructed based on a digital elevation model (DEM) to determine terrain covariates associated with the sampled MDR-TB covariates. Pearson's correlation was used to evaluate the linear relationship between the DEM and the sampled MDR-TB data. A SAS/GIS(R) module was then used to calculate univariate statistics and to perform linear and non-linear regression analyses using the sampled predictor variables. The estimates generated from a global autocorrelation analyses were then spatially decomposed into empirical orthogonal bases using a negative binomial regression with a non-homogeneous mean. Results of the DEM analyses indicated a statistically non-significant, linear relationship between georeferenced health centers and the sampled covariate elevation. The data exhibited positive spatial autocorrelation and the decomposition of Moran's coefficient into uncorrelated, orthogonal map pattern components revealed global spatial heterogeneities necessary to capture latent autocorrelation in the MDR-TB model. It was thus shown that Poisson regression analyses and spatial eigenvector mapping can elucidate the mechanics of MDR-TB transmission by prioritizing clinical and environmental-sampled predictor variables for identifying high risk populations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reft, C; Pankuch, M; Ramirez, H
Purpose: Use the ratio of the two high temperature peaks (HTR) in TLD 700 glow curves to investigate spatial dependence of the linear energy transfer (LET) in proton beams. Studies show that the relative biological effectiveness (RBE) depends upon the physical dose as well as its spatial distribution. Although proton therapy uses a spatially invariant RBE of 1.1, studies suggest that the RBE increases in the distal edge of a spread out Bragg peak (SOBP) due to the increased LET. Methods: Glow curve studies in TLD 700 show that the 280 C temperature peak is more sensitive to LET radiationmore » than the 210 C temperature peak. Therefore, the areas under the individual temperature peaks for TLDs irradiated in a proton beam normalized to the peak ratio for 6 MV photons are used to determine the HTR to obtain information on its LET. TLD 700 chips with dimensions 0.31×0.31×0.038 cc are irradiated with 90 MeV protons at varying depths in a specially designed blue wax phantom to investigate LET spatial dependence. Results: Five TLDs were placed at five different depths of the percent depth dose curve (PDD) of range 16.2 cm: center of the SOPB and approximately at the 99% distal edge, 90%, 75% and 25% of the PDD, respectively. HTR was 1.3 at the center of the SOBP and varied from 2.2 to 3.9 which can be related to an LET variation from 0.5 to 18 KeV/μ via calibration with radiation beams of varying LET. Conclusion: HTR data show a spatially invariant LET slightly greater than the 6 MV radiations in the SOBP, but a rapidly increasing LET at the end of the proton range. These results indicate a spatial variation in RBE with potential treatment consequences when selecting treatment margins to minimize the uncertainties in proton RBE.« less
ERIC Educational Resources Information Center
Foley, Nicholas C.; Grossberg, Stephen; Mingolla, Ennio
2012-01-01
How are spatial and object attention coordinated to achieve rapid object learning and recognition during eye movement search? How do prefrontal priming and parietal spatial mechanisms interact to determine the reaction time costs of intra-object attention shifts, inter-object attention shifts, and shifts between visible objects and covertly cued…
Selective visual attention in object detection processes
NASA Astrophysics Data System (ADS)
Paletta, Lucas; Goyal, Anurag; Greindl, Christian
2003-03-01
Object detection is an enabling technology that plays a key role in many application areas, such as content based media retrieval. Attentive cognitive vision systems are here proposed where the focus of attention is directed towards the most relevant target. The most promising information is interpreted in a sequential process that dynamically makes use of knowledge and that enables spatial reasoning on the local object information. The presented work proposes an innovative application of attention mechanisms for object detection which is most general in its understanding of information and action selection. The attentive detection system uses a cascade of increasingly complex classifiers for the stepwise identification of regions of interest (ROIs) and recursively refined object hypotheses. While the most coarse classifiers are used to determine first approximations on a region of interest in the input image, more complex classifiers are used for more refined ROIs to give more confident estimates. Objects are modelled by local appearance based representations and in terms of posterior distributions of the object samples in eigenspace. The discrimination function to discern between objects is modeled by a radial basis functions (RBF) network that has been compared with alternative networks and been proved consistent and superior to other artifical neural networks for appearance based object recognition. The experiments were led for the automatic detection of brand objects in Formula One broadcasts within the European Commission's cognitive vision project DETECT.
Abnormal center-periphery gradient in spatial attention in simultanagnosia.
Balslev, Daniela; Odoj, Bartholomaeus; Rennig, Johannes; Karnath, Hans-Otto
2014-12-01
Patients suffering from simultanagnosia cannot perceive more than one object at a time. The underlying mechanism is incompletely understood. One hypothesis is that simultanagnosia reflects "tunnel vision," a constricted attention window around gaze, which precludes the grouping of individual objects. Although this idea has a long history in neuropsychology, the question whether the patients indeed have an abnormal attention gradient around the gaze has so far not been addressed. Here we tested this hypothesis in two simultanagnosia patients with bilateral parieto-occipital lesions and two control groups, with and without brain damage. We assessed the participants' ability to discriminate letters presented briefly at fixation with and without a peripheral distractor or in the visual periphery, with or without a foveal distractor. A constricted span of attention around gaze would predict an increased susceptibility to foveated versus peripheral distractors. Contrary to this prediction and unlike both control groups, the patients' ability to discriminate the target decreased more in the presence of peripheral compared with foveated distractors. Thus, the attentional spotlight in simultanagnosia does not fall on foveated objects as previously assumed, but rather abnormally highlights the periphery. Furthermore, we found the same center-periphery gradient in the patients' ability to recognize multiple objects. They detected multiple, but not single objects more accurately in the periphery than at fixation. These results suggest that an abnormal allocation of attention around the gaze can disrupt the grouping of individual objects into an integrated visual scene.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krityakierne, Tipaluck; Akhtar, Taimoor; Shoemaker, Christine A.
This paper presents a parallel surrogate-based global optimization method for computationally expensive objective functions that is more effective for larger numbers of processors. To reach this goal, we integrated concepts from multi-objective optimization and tabu search into, single objective, surrogate optimization. Our proposed derivative-free algorithm, called SOP, uses non-dominated sorting of points for which the expensive function has been previously evaluated. The two objectives are the expensive function value of the point and the minimum distance of the point to previously evaluated points. Based on the results of non-dominated sorting, P points from the sorted fronts are selected as centersmore » from which many candidate points are generated by random perturbations. Based on surrogate approximation, the best candidate point is subsequently selected for expensive evaluation for each of the P centers, with simultaneous computation on P processors. Centers that previously did not generate good solutions are tabu with a given tenure. We show almost sure convergence of this algorithm under some conditions. The performance of SOP is compared with two RBF based methods. The test results show that SOP is an efficient method that can reduce time required to find a good near optimal solution. In a number of cases the efficiency of SOP is so good that SOP with 8 processors found an accurate answer in less wall-clock time than the other algorithms did with 32 processors.« less
Wilkins, Leanne K; Girard, Todd A; Herdman, Katherine A; Christensen, Bruce K; King, Jelena; Kiang, Michael; Bohbot, Veronique D
2017-10-30
Different strategies may be spontaneously adopted to solve most navigation tasks. These strategies are associated with dissociable brain systems. Here, we use brain-imaging and cognitive tasks to test the hypothesis that individuals living with Schizophrenia Spectrum Disorders (SSD) have selective impairment using a hippocampal-dependent spatial navigation strategy. Brain activation and memory performance were examined using functional magnetic resonance imaging (fMRI) during the 4-on-8 virtual maze (4/8VM) task, a human analog of the rodent radial-arm maze that is amenable to both response-based (egocentric or landmark-based) and spatial (allocentric, cognitive mapping) strategies to remember and navigate to target objects. SSD (schizophrenia and schizoaffective disorder) participants who adopted a spatial strategy performed more poorly on the 4/8VM task and had less hippocampal activation than healthy comparison participants using either strategy as well as SSD participants using a response strategy. This study highlights the importance of strategy use in relation to spatial cognitive functioning in SSD. Consistent with a selective-hippocampal dependent deficit in SSD, these results support the further development of protocols to train impaired hippocampal-dependent abilities or harness non-hippocampal dependent intact abilities. Copyright © 2017 Elsevier B.V. All rights reserved.
Image Stability Requirements For a Geostationary Imaging Fourier Transform Spectrometer (GIFTS)
NASA Technical Reports Server (NTRS)
Bingham, G. E.; Cantwell, G.; Robinson, R. C.; Revercomb, H. E.; Smith, W. L.
2001-01-01
A Geostationary Imaging Fourier Transform Spectrometer (GIFTS) has been selected for the NASA New Millennium Program (NMP) Earth Observing-3 (EO-3) mission. Our paper will discuss one of the key GIFTS measurement requirements, Field of View (FOV) stability, and its impact on required system performance. The GIFTS NMP mission is designed to demonstrate new and emerging sensor and data processing technologies with the goal of making revolutionary improvements in meteorological observational capability and forecasting accuracy. The GIFTS payload is a versatile imaging FTS with programmable spectral resolution and spatial scene selection that allows radiometric accuracy and atmospheric sounding precision to be traded in near real time for area coverage. The GIFTS sensor combines high sensitivity with a massively parallel spatial data collection scheme to allow high spatial resolution measurement of the Earth's atmosphere and rapid broad area coverage. An objective of the GIFTS mission is to demonstrate the advantages of high spatial resolution (4 km ground sample distance - gsd) on temperature and water vapor retrieval by allowing sampling in broken cloud regions. This small gsd, combined with the relatively long scan time required (approximately 10 s) to collect high resolution spectra from geostationary (GEO) orbit, may require extremely good pointing control. This paper discusses the analysis of this requirement.
Nicol, Sam; Wiederholt, Ruscena; Diffendorfer, James E.; Mattsson, Brady; Thogmartin, Wayne E.; Semmens, Darius J.; Laura Lopez-Hoffman,; Norris, Ryan
2016-01-01
Mobile species with complex spatial dynamics can be difficult to manage because their population distributions vary across space and time, and because the consequences of managing particular habitats are uncertain when evaluated at the level of the entire population. Metrics to assess the importance of habitats and pathways connecting habitats in a network are necessary to guide a variety of management decisions. Given the many metrics developed for spatially structured models, it can be challenging to select the most appropriate one for a particular decision. To guide the management of spatially structured populations, we define three classes of metrics describing habitat and pathway quality based on their data requirements (graph-based, occupancy-based, and demographic-based metrics) and synopsize the ecological literature relating to these classes. Applying the first steps of a formal decision-making approach (problem framing, objectives, and management actions), we assess the utility of metrics for particular types of management decisions. Our framework can help managers with problem framing, choosing metrics of habitat and pathway quality, and to elucidate the data needs for a particular metric. Our goal is to help managers to narrow the range of suitable metrics for a management project, and aid in decision-making to make the best use of limited resources.
First Spectroscopic Identification of Massive Young Stellar Objects in the Galactic Center
NASA Technical Reports Server (NTRS)
An, Deokkeun; Ramirez, V.; Sellgren, Kris; Arendt, Richard G.; Boogert, A. C.; Schultheis, Mathias; Stolovy, Susan R.; Cotera, Angela S.; Robitaille, Thomas P.; Smith, Howard A.
2009-01-01
We report the detection of several molecular gas-phase and ice absorption features in three photometrically-selected young stellar object (YSO) candidates in the central 280 pc of the Milky Way. Our spectra, obtained with the Infrared Spectrograph (IRS) onboard the Spitzer Space Telescope, reveal gas-phase absorption from CO2 (15.0 microns), C2H2 (13.7 microns) and HCN (14.0 microns). We attribute this absorption to warm, dense gas in massive YSOs. We also detect strong and broad 15 microns CO2 ice absorption features, with a remarkable double-peaked structure. The prominent long-wavelength peak is due to CH3OH-rich ice grains, and is similar to those found in other known massive YSOs. Our IRS observa.tions demonstra.te the youth of these objects, and provide the first spectroscopic identification of massive YSOs in the Galactic Center.
Fox, Jessica L.; Aptekar, Jacob W.; Zolotova, Nadezhda M.; Shoemaker, Patrick A.; Frye, Mark A.
2014-01-01
The behavioral algorithms and neural subsystems for visual figure–ground discrimination are not sufficiently described in any model system. The fly visual system shares structural and functional similarity with that of vertebrates and, like vertebrates, flies robustly track visual figures in the face of ground motion. This computation is crucial for animals that pursue salient objects under the high performance requirements imposed by flight behavior. Flies smoothly track small objects and use wide-field optic flow to maintain flight-stabilizing optomotor reflexes. The spatial and temporal properties of visual figure tracking and wide-field stabilization have been characterized in flies, but how the two systems interact spatially to allow flies to actively track figures against a moving ground has not. We took a systems identification approach in flying Drosophila and measured wing-steering responses to velocity impulses of figure and ground motion independently. We constructed a spatiotemporal action field (STAF) – the behavioral analog of a spatiotemporal receptive field – revealing how the behavioral impulse responses to figure tracking and concurrent ground stabilization vary for figure motion centered at each location across the visual azimuth. The figure tracking and ground stabilization STAFs show distinct spatial tuning and temporal dynamics, confirming the independence of the two systems. When the figure tracking system is activated by a narrow vertical bar moving within the frontal field of view, ground motion is essentially ignored despite comprising over 90% of the total visual input. PMID:24198267
Spatial language and converseness.
Burigo, Michele; Coventry, Kenny R; Cangelosi, Angelo; Lynott, Dermot
2016-12-01
Typical spatial language sentences consist of describing the location of an object (the located object) in relation to another object (the reference object) as in "The book is above the vase". While it has been suggested that the properties of the located object (the book) are not translated into language because they are irrelevant when exchanging location information, it has been shown that the orientation of the located object affects the production and comprehension of spatial descriptions. In line with the claim that spatial language apprehension involves inferences about relations that hold between objects it has been suggested that during spatial language apprehension people use the orientation of the located object to evaluate whether the logical property of converseness (e.g., if "the book is above the vase" is true, then also "the vase is below the book" must be true) holds across the objects' spatial relation. In three experiments using sentence acceptability rating tasks we tested this hypothesis and demonstrated that when converseness is violated people's acceptability ratings of a scene's description are reduced indicating that people do take into account geometric properties of the located object and use it to infer logical spatial relations.
Rodo, Christophe; Sargolini, Francesca; Save, Etienne
2017-03-01
The entorhinal-hippocampal circuitry has been suggested to play an important role in episodic memory but the contribution of the entorhinal cortex remains elusive. Predominant theories propose that the medial entorhinal cortex (MEC) processes spatial information whereas the lateral entorhinal cortex (LEC) processes non spatial information. A recent study using an object exploration task has suggested that the involvement of the MEC and LEC spatial and non-spatial information processing could be modulated by the amount of information to be processed, i.e. environmental complexity. To address this hypothesis we used an object exploration task in which rats with excitotoxic lesions of the MEC and LEC had to detect spatial and non-spatial novelty among a set of objects and we varied environmental complexity by decreasing the number of objects or amount of object diversity. Reducing diversity resulted in restored ability to process spatial and non-spatial information in MEC and LEC groups, respectively. Reducing the number of objects yielded restored ability to process non-spatial information in the LEC group but not the ability to process spatial information in the MEC group. The findings indicate that the MEC and LEC are not strictly necessary for spatial and non-spatial processing but that their involvement depends on the complexity of the information to be processed. Copyright © 2016 Elsevier B.V. All rights reserved.
Analysis of terrestrial conditions and dynamics
NASA Technical Reports Server (NTRS)
Goward, S. N. (Principal Investigator)
1984-01-01
Land spectral reflectance properties for selected locations, including the Goddard Space Flight Center, the Wallops Flight Facility, a MLA test site in Cambridge, Maryland, and an acid test site in Burlington, Vermont, were measured. Methods to simulate the bidirectional reflectance properties of vegetated landscapes and a data base for spatial resolution were developed. North American vegetation patterns observed with the Advanced Very High Resolution Radiometer were assessed. Data and methods needed to model large-scale vegetation activity with remotely sensed observations and climate data were compiled.
Integration agent-based models and GIS as a virtual urban dynamic laboratory
NASA Astrophysics Data System (ADS)
Chen, Peng; Liu, Miaolong
2007-06-01
Based on the Agent-based Model and spatial data model, a tight-coupling integrating method of GIS and Agent-based Model (ABM) is to be discussed in this paper. The use of object-orientation for both spatial data and spatial process models facilitates their integration, which can allow exploration and explanation of spatial-temporal phenomena such as urban dynamic. In order to better understand how tight coupling might proceed and to evaluate the possible functional and efficiency gains from such a tight coupling, the agent-based model and spatial data model are discussed, and then the relationships affecting spatial data model and agent-based process models interaction. After that, a realistic crowd flow simulation experiment is presented. Using some tools provided by general GIS systems and a few specific programming languages, a new software system integrating GIS and MAS as a virtual laboratory applicable for simulating pedestrian flows in a crowd activity centre has been developed successfully. Under the environment supported by the software system, as an applicable case, a dynamic evolution process of the pedestrian's flows (dispersed process for the spectators) in a crowds' activity center - The Shanghai Stadium has been simulated successfully. At the end of the paper, some new research problems have been pointed out for the future.
Cippitelli, Andrea; Zook, Michelle; Bell, Lauren; Damadzic, Ruslan; Eskay, Robert L.; Schwandt, Melanie; Heilig, Markus
2010-01-01
Excessive alcohol use leads to neurodegeneration in several brain structures including the hippocampal dentate gyrus and the entorhinal cortex. Cognitive deficits that result are among the most insidious and debilitating consequences of alcoholism. The object exploration task (OET) provides a sensitive measurement of spatial memory impairment induced by hippocampal and cortical damage. In this study, we examine whether the observed neurotoxicity produced by a 4-day binge ethanol treatment results in long-term memory impairment by observing the time course of reactions to spatial change (object configuration) and non-spatial change (object recognition). Wistar rats were assessed for their abilities to detect spatial configuration in the OET at 1 week and 10 weeks following the ethanol treatment, in which ethanol groups received 9–15 g/kg/day and achieved blood alcohol levels over 300 mg/dl. At 1 week, results indicated that the binge alcohol treatment produced impairment in both spatial memory and non-spatial object recognition performance. Unlike the controls, ethanol treated rats did not increase the duration or number of contacts with the displaced object in the spatial memory task, nor did they increase the duration of contacts with the novel object in the object recognition task. After 10 weeks, spatial memory remained impaired in the ethanol treated rats but object recognition ability was recovered. Our data suggest that episodes of binge-like alcohol exposure result in long-term and possibly permanent impairments in memory for the configuration of objects during exploration, whereas the ability to detect non-spatial changes is only temporarily affected. PMID:20849966
Zeroth-order phase-contrast technique.
Pizolato, José Carlos; Cirino, Giuseppe Antonio; Gonçalves, Cristhiane; Neto, Luiz Gonçalves
2007-11-01
What we believe to be a new phase-contrast technique is proposed to recover intensity distributions from phase distributions modulated by spatial light modulators (SLMs) and binary diffractive optical elements (DOEs). The phase distribution is directly transformed into intensity distributions using a 4f optical correlator and an iris centered in the frequency plane as a spatial filter. No phase-changing plates or phase dielectric dots are used as a filter. This method allows the use of twisted nematic liquid-crystal televisions (LCTVs) operating in the real-time phase-mostly regime mode between 0 and p to generate high-intensity multiple beams for optical trap applications. It is also possible to use these LCTVs as input SLMs for optical correlators to obtain high-intensity Fourier transform distributions of input amplitude objects.
NASA Astrophysics Data System (ADS)
Tavakkoli-Moghaddam, Reza; Forouzanfar, Fateme; Ebrahimnejad, Sadoullah
2013-07-01
This paper considers a single-sourcing network design problem for a three-level supply chain. For the first time, a novel mathematical model is presented considering risk-pooling, the inventory existence at distribution centers (DCs) under demand uncertainty, the existence of several alternatives to transport the product between facilities, and routing of vehicles from distribution centers to customer in a stochastic supply chain system, simultaneously. This problem is formulated as a bi-objective stochastic mixed-integer nonlinear programming model. The aim of this model is to determine the number of located distribution centers, their locations, and capacity levels, and allocating customers to distribution centers and distribution centers to suppliers. It also determines the inventory control decisions on the amount of ordered products and the amount of safety stocks at each opened DC, selecting a type of vehicle for transportation. Moreover, it determines routing decisions, such as determination of vehicles' routes starting from an opened distribution center to serve its allocated customers and returning to that distribution center. All are done in a way that the total system cost and the total transportation time are minimized. The Lingo software is used to solve the presented model. The computational results are illustrated in this paper.
NASA Astrophysics Data System (ADS)
Dronova, I.; Gong, P.; Wang, L.; Clinton, N.; Fu, W.; Qi, S.
2011-12-01
Remote sensing-based vegetation classifications representing plant function such as photosynthesis and productivity are challenging in wetlands with complex cover and difficult field access. Recent advances in object-based image analysis (OBIA) and machine-learning algorithms offer new classification tools; however, few comparisons of different algorithms and spatial scales have been discussed to date. We applied OBIA to delineate wetland plant functional types (PFTs) for Poyang Lake, the largest freshwater lake in China and Ramsar wetland conservation site, from 30-m Landsat TM scene at the peak of spring growing season. We targeted major PFTs (C3 grasses, C3 forbs and different types of C4 grasses and aquatic vegetation) that are both key players in system's biogeochemical cycles and critical providers of waterbird habitat. Classification results were compared among: a) several object segmentation scales (with average object sizes 900-9000 m2); b) several families of statistical classifiers (including Bayesian, Logistic, Neural Network, Decision Trees and Support Vector Machines) and c) two hierarchical levels of vegetation classification, a generalized 3-class set and more detailed 6-class set. We found that classification benefited from object-based approach which allowed including object shape, texture and context descriptors in classification. While a number of classifiers achieved high accuracy at the finest pixel-equivalent segmentation scale, the highest accuracies and best agreement among algorithms occurred at coarser object scales. No single classifier was consistently superior across all scales, although selected algorithms of Neural Network, Logistic and K-Nearest Neighbors families frequently provided the best discrimination of classes at different scales. The choice of vegetation categories also affected classification accuracy. The 6-class set allowed for higher individual class accuracies but lower overall accuracies than the 3-class set because individual classes differed in scales at which they were best discriminated from others. Main classification challenges included a) presence of C3 grasses in C4-grass areas, particularly following harvesting of C4 reeds and b) mixtures of emergent, floating and submerged aquatic plants at sub-object and sub-pixel scales. We conclude that OBIA with advanced statistical classifiers offers useful instruments for landscape vegetation analyses, and that spatial scale considerations are critical in mapping PFTs, while multi-scale comparisons can be used to guide class selection. Future work will further apply fuzzy classification and field-collected spectral data for PFT analysis and compare results with MODIS PFT products.
Rasdaman for Big Spatial Raster Data
NASA Astrophysics Data System (ADS)
Hu, F.; Huang, Q.; Scheele, C. J.; Yang, C. P.; Yu, M.; Liu, K.
2015-12-01
Spatial raster data have grown exponentially over the past decade. Recent advancements on data acquisition technology, such as remote sensing, have allowed us to collect massive observation data of various spatial resolution and domain coverage. The volume, velocity, and variety of such spatial data, along with the computational intensive nature of spatial queries, pose grand challenge to the storage technologies for effective big data management. While high performance computing platforms (e.g., cloud computing) can be used to solve the computing-intensive issues in big data analysis, data has to be managed in a way that is suitable for distributed parallel processing. Recently, rasdaman (raster data manager) has emerged as a scalable and cost-effective database solution to store and retrieve massive multi-dimensional arrays, such as sensor, image, and statistics data. Within this paper, the pros and cons of using rasdaman to manage and query spatial raster data will be examined and compared with other common approaches, including file-based systems, relational databases (e.g., PostgreSQL/PostGIS), and NoSQL databases (e.g., MongoDB and Hive). Earth Observing System (EOS) data collected from NASA's Atmospheric Scientific Data Center (ASDC) will be used and stored in these selected database systems, and a set of spatial and non-spatial queries will be designed to benchmark their performance on retrieving large-scale, multi-dimensional arrays of EOS data. Lessons learnt from using rasdaman will be discussed as well.
Penke, Zsuzsa; Morice, Elise; Veyrac, Alexandra; Gros, Alexandra; Chagneau, Carine; LeBlanc, Pascale; Samson, Nathalie; Baumgärtel, Karsten; Mansuy, Isabelle M; Davis, Sabrina; Laroche, Serge
2014-01-05
It is well established that Zif268/Egr1, a member of the Egr family of transcription factors, is critical for the consolidation of several forms of memory; however, it is as yet uncertain whether increasing expression of Zif268 in neurons can facilitate memory formation. Here, we used an inducible transgenic mouse model to specifically induce Zif268 overexpression in forebrain neurons and examined the effect on recognition memory and hippocampal synaptic transmission and plasticity. We found that Zif268 overexpression during the establishment of memory for objects did not change the ability to form a long-term memory of objects, but enhanced the capacity to form a long-term memory of the spatial location of objects. This enhancement was paralleled by increased long-term potentiation in the dentate gyrus of the hippocampus and by increased activity-dependent expression of Zif268 and selected Zif268 target genes. These results provide novel evidence that transcriptional mechanisms engaging Zif268 contribute to determining the strength of newly encoded memories.
Influence Of Advertisments On Changes In The Urban Structure Of Cites On The Example Of Poznan
NASA Astrophysics Data System (ADS)
Bonenberg, Agata
2015-09-01
The article presents the results of studies on the influence of outdoor advertisements on the activation of selected areas in the spatial structure of the city of Poznań. The contents of advertisements were analyzed in terms of the places which advertisements placed on signs, billboards and advertising displays located in public spaces direct us to. The results of studies indicated that the majority of advertisements located in the city center of Poznań promote suburban locations, encouraging its inhabitants to make use of trade and services outside of the strict city center. At the same time, it was indicated that outside advertisements due to the content of the advertising message are a factor degrading the city center, directing potential customers away into the suburbs. In practice, it was noted that the phenomenon significantly decreases the effectiveness of actions directed towards revitalizing the city center and the urban activation of this region.
The spatial patterns of directional phenotypic selection.
Siepielski, Adam M; Gotanda, Kiyoko M; Morrissey, Michael B; Diamond, Sarah E; DiBattista, Joseph D; Carlson, Stephanie M
2013-11-01
Local adaptation, adaptive population divergence and speciation are often expected to result from populations evolving in response to spatial variation in selection. Yet, we lack a comprehensive understanding of the major features that characterise the spatial patterns of selection, namely the extent of variation among populations in the strength and direction of selection. Here, we analyse a data set of spatially replicated studies of directional phenotypic selection from natural populations. The data set includes 60 studies, consisting of 3937 estimates of selection across an average of five populations. We performed meta-analyses to explore features characterising spatial variation in directional selection. We found that selection tends to vary mainly in strength and less in direction among populations. Although differences in the direction of selection occur among populations they do so where selection is often weakest, which may limit the potential for ongoing adaptive population divergence. Overall, we also found that spatial variation in selection appears comparable to temporal (annual) variation in selection within populations; however, several deficiencies in available data currently complicate this comparison. We discuss future research needs to further advance our understanding of spatial variation in selection. © 2013 John Wiley & Sons Ltd/CNRS.
Post-parturition habitat selection by elk calves and adult female elk in New Mexico
Pitman, James W.; Cain, James W.; Liley, Stewart; Gould, William R.; Quintana, Nichole T.; Ballard, Warren
2014-01-01
Neonatal survival and juvenile recruitment are crucial to maintaining viable elk (Cervus elaphus) populations. Neonate survival is known to be influenced by many factors, including bed-site selection. Although neonates select the actual bed-site location, they must do so within the larger calf-rearing area selected by the mother. As calves age, habitat selection should change to meet the changing needs of the growing calf. Our main objectives were to characterize habitat selection at 2 spatial scales and in areas with different predator assemblages in New Mexico. We evaluated bed-site selection by calves and calf-rearing area selection by adult females. We captured 108 elk calves by hand and fitted them with ear tag transmitters in two areas in New Mexico: the Valle Vidal and Blue Range Wolf Recovery Area. In both study areas, we found that concealing cover structure and distance to that cover influenced bed-site selection of young calves (i.e., <2 weeks of age). Older calves (i.e., 3–10 weeks of age) still selected areas in relation to distance to cover, but also preferred areas with higher visibility. At the larger spatial scale of calf-rearing habitat selection by the adult female, concealing cover (e.g., rocks, shrubs, and logs) and other variables important to the hiding calves were still in the most supported models, but selection was also influenced by forage availability and indices of forage quality. Studies that seek to obtain insight into microhabitat selection of ungulate neonates should consider selection by the neonate and selection by the adult female, changes in selection as neonates age, and potential selection differences in areas of differing predation risk. By considering these influences together and at multiple scales, studies can achieve a broader understanding of neonatal ungulate habitat requirements.
Geographic patterns of networks derived from extreme precipitation over the Indian subcontinent
NASA Astrophysics Data System (ADS)
Stolbova, Veronika; Bookhagen, Bodo; Marwan, Norbert; Kurths, Juergen
2014-05-01
Complex networks (CN) and event synchronization (ES) methods have been applied to study a number of climate phenomena such as Indian Summer Monsoon (ISM), South-American Monsoon, and African Monsoon. These methods proved to be powerful tools to infer interdependencies in climate dynamics between geographical sites, spatial structures, and key regions of the considered climate phenomenon. Here, we use these methods to study the spatial temporal variability of the extreme rainfall over the Indian subcontinent, in order to filter the data by coarse-graining the network, and to identify geographic patterns that are signature features (spatial signatures) of the ISM. We find four main geographic patterns of networks derived from extreme precipitation over the Indian subcontinent using up-to-date satellite-derived, and high temporal and spatial resolution rain-gauge interpolated daily rainfall datasets. In order to prove that our results are also relevant for other climatic variables like pressure and temperature, we use re-analysis data provided by the National Center for Environmental Prediction and National Center for Atmospheric Research (NCEP/NCAR). We find that two of the patterns revealed from the CN extreme rainfall analysis coincide with those obtained for the pressure and temperature fields, and all four above mentioned patterns can be explained by topography, winds, and monsoon circulation. CN and ES enable to select the most informative regions for the ISM, providing realistic description of the ISM dynamics with fewer data, and also help to infer geographic pattern that are spatial signatures of the ISM. These patterns deserve a special attention for the meteorologists and can be used as markers of the ISM variability.
NASA Astrophysics Data System (ADS)
Garen, D. C.; Kahl, A.; Marks, D. G.; Winstral, A. H.
2012-12-01
In mountainous catchments, it is well known that meteorological inputs, such as precipitation, air temperature, humidity, etc. vary greatly with elevation, spatial location, and time. Understanding and monitoring catchment inputs is necessary in characterizing and predicting hydrologic response to these inputs. This is true all of the time, but it is the most dramatically critical during large storms, when the input to the stream system due to rain and snowmelt creates the potential for flooding. Besides such crisis events, however, proper estimation of catchment inputs and their spatial distribution is also needed in more prosaic but no less important water and related resource management activities. The first objective of this study is to apply a geostatistical spatial interpolation technique (elevationally detrended kriging) to precipitation and dew point temperature on an hourly basis and explore its characteristics, accuracy, and other issues. The second objective is to use these spatial fields to determine precipitation phase (rain or snow) during a large, dynamic winter storm. The catchment studied is the data-rich Reynolds Creek Experimental Watershed near Boise, Idaho. As part of this analysis, precipitation-elevation lapse rates are examined for spatial and temporal consistency. A clear dependence of lapse rate on precipitation amount exists. Certain stations, however, are outliers from these relationships, showing that significant local effects can be present and raising the question of whether such stations should be used for spatial interpolation. Experiments with selecting subsets of stations demonstrate the importance of elevation range and spatial placement on the interpolated fields. Hourly spatial fields of precipitation and dew point temperature are used to distinguish precipitation phase during a large rain-on-snow storm in December 2005. This application demonstrates the feasibility of producing hourly spatial fields and the importance of doing so to support an accurate determination of precipitation phase for assessing catchment hydrologic response to the storm.
Attending to space within and between objects: Implications from a patient with Balint’s syndrome
Robertson, Lynn C.; Treisman, Anne
2007-01-01
Neuropsychological conditions such as Balint’s syndrome have shown that perceptual organization of parts into a perceptual unit can be dissociated from the ability to localize objects relative to each other. Neural mechanisms that code the spatial structure within individual objects or words may seem to be intact, while between-object structure is compromised. Here we investigate the nature of within-object spatial processing in a patient with Balint’s syndrome (RM). We suggest that within-object spatial structure can be determined (a) directly by explicit spatial processing of between-part relations, mediated by the same dorsal pathway as between-object spatial relations; or (b) indirectly by the discrimination of object identities, which may involve implicit processing of between-part relations and which is probably mediated by the ventral system. When this route is ruled out, by testing discrimination of differences in part location that do not change the identity of the object, we find no evidence of explicit within-object spatial coding in a patient without functioning parietal lobes. PMID:21049339
Ruiz, Marilyn O'Hara; Sharma, Arun Kumar
2016-01-01
The implementation of geospatial technologies and methods for improving health has become widespread in many nations, but India's adoption of these approaches has been fairly slow. With a large population, ongoing public health challenges, and a growing economy with an emphasis on innovative technologies, the adoption of spatial approaches to disease surveillance, spatial epidemiology, and implementation of health policies in India has great potential for both success and efficacy. Through our evaluation of scientific papers selected through a structured key phrase review of the National Center for Biotechnology Information on the database PubMed, we found that current spatial approaches to health research in India are fairly descriptive in nature, but the use of more complex models and statistics is increasing. The institutional home of the authors is skewed regionally, with Delhi and South India more likely to show evidence of use. The need for scientists engaged in spatial health analysis to first digitize basic data, such as maps of road networks, hydrological features, and land use, is a strong impediment to efficiency, and their work would certainly advance more quickly without this requirement.
Student perceptions of a patient- centered medical training curriculum
Gallentine, Ashley; Salinas-Miranda, Abraham A.; Shaffer-Hudkins, Emily; Hinojosa, Sara; Monroe, Alicia
2014-01-01
Objectives To evaluate a patient-centered medical training curriculum, the SELECT program, through perceptions of the inaugural student cohort. Methods Data were collected from two focus groups conducted in the university setting, comprised of fifteen first-year medical students who participated in the SELECT program during its inaugural year. A questioning protocol was used to guide the focus group discussion, which was transcribed and hand-coded through thematic analyses. Results Various themes related to patient-centered care were identified. Students noted changes in their attitudes towards interacting with patients in an empowering and educative manner as a result of communication and motivational interviewing exercises. Additionally, they recognized certain external, structural barriers as well as internal conflict between pragmatism and emotional intelligence that could potentially hinder patient-centered care. The impact of family dynamics and social support on quality of life and health outcomes was acknowledged. Students also emphasized the value of collaborating with multiple health professionals. Lastly, students provided suggestions for program improvement, namely additional simulations, more education regarding other healthcare professionals’ roles, more standardized experiences, and application of principles to acute and primary care. Conclusions Upon completion of the first year of the SELECT program, students gained an appreciation for patient-centered care and various factors and skills that facilitate such care. Additionally, they experienced a dissonance between didactic concepts from the curriculum and observed medical practices. This study highlights the educational benefits of a patient-centered medical curriculum and provides suggestions for future improvement. PMID:25341218
Investigation of Spatial and Temporal Trends in Water Quality in Daya Bay, South China Sea
Wu, Mei-Lin; Wang, You-Shao; Dong, Jun-De; Sun, Cui-Ci; Wang, Yu-Tu; Sun, Fu-Lin; Cheng, Hao
2011-01-01
The objective is to identify the spatial and temporal variability of the hydrochemical quality of the water column in a subtropical coastal system, Daya Bay, China. Water samples were collected in four seasons at 12 monitoring sites. The Southeast Asian monsoons, northeasterly from October to the next April and southwesterly from May to September have also an important influence on water quality in Daya Bay. In the spatial pattern, two groups have been identified, with the help of multidimensional scaling analysis and cluster analysis. Cluster I consisted of the sites S3, S8, S10 and S11 in the west and north coastal parts of Daya Bay. Cluster I is mainly related to anthropogenic activities such as fish-farming. Cluster II consisted of the rest of the stations in the center, east and south parts of Daya Bay. Cluster II is mainly related to seawater exchange from South China Sea. PMID:21776234
Spatial distribution of low birthweight infants in Taubaté, São Paulo, Brazil
Nascimento, Luiz Fernando C.; Costa, Thais Moreira; Zöllner, Maria Stella A. da C.
2013-01-01
OBJECTIVE: To identify the spatial pattern of low birth weight infants in the city of Taubaté, São Paulo, Southeast Brazil. METHODS: Ecological and exploratory study, developed with the data acquired from the Health Department of Taubaté, regarding the period from January 1st 2006 and December 31st 2010. Birth certificates were used to obtain the data from infants weighing less than 2500g. A digital basis of census tracts was applied and the Global Moran index (IM) was estimated. Thematic maps were built for the distribution of low birth weight, health centers and tracts, according to the priority care (Moran map). The adopted statistical significance was α=5% and TerraView software conducted the spatial analysis. RESULTS: There were 18,915 live births during the study period, with 1,817 low birth weight infants (9.6%). The low birth weight infants' prevalence during the period ranged from 9.3 to 9.8%. A total of 1,185 infants with known addresses, compatible with the digital base (65.2% of low birth weight infants), were included. The IM for low birth weight was 0.12, with p<0.01; regarding the health centers distribution, IM was -0.07, with p=0.01. The Moran map identified 11 census tracts with high priority for intervention by health managers, located in the outskirts of the city. CONCLUSIONS: The spatial analysis identified the low birth weight distribution by census tracts and the sectors with a high priority for intervention. PMID:24473951
NASA Astrophysics Data System (ADS)
Kostencka, Julianna; Kozacki, Tomasz; Hennelly, Bryan; Sheridan, John T.
2017-06-01
Holographic tomography (HT) allows noninvasive, quantitative, 3D imaging of transparent microobjects, such as living biological cells and fiber optics elements. The technique is based on acquisition of multiple scattered fields for various sample perspectives using digital holographic microscopy. Then, the captured data is processed with one of the tomographic reconstruction algorithms, which enables 3D reconstruction of refractive index distribution. In our recent works we addressed the issue of spatially variant accuracy of the HT reconstructions, which results from the insufficient model of diffraction that is applied in the widely-used tomographic reconstruction algorithms basing on the Rytov approximation. In the present study, we continue investigating the spatially variant properties of the HT imaging, however, we are now focusing on the limited spatial size of holograms as a source of this problem. Using the Wigner distribution representation and the Ewald sphere approach, we show that the limited size of the holograms results in a decreased quality of tomographic imaging in off-center regions of the HT reconstructions. This is because the finite detector extent becomes a limiting aperture that prohibits acquisition of full information about diffracted fields coming from the out-of-focus structures of a sample. The incompleteness of the data results in an effective truncation of the tomographic transfer function for the out-of-center regions of the tomographic image. In this paper, the described effect is quantitatively characterized for three types of the tomographic systems: the configuration with 1) object rotation, 2) scanning of the illumination direction, 3) the hybrid HT solution combing both previous approaches.
Recording multiple spatially-heterodyned direct to digital holograms in one digital image
Hanson, Gregory R [Clinton, TN; Bingham, Philip R [Knoxville, TN
2008-03-25
Systems and methods are described for recording multiple spatially-heterodyned direct to digital holograms in one digital image. A method includes digitally recording, at a first reference beam-object beam angle, a first spatially-heterodyned hologram including spatial heterodyne fringes for Fourier analysis; Fourier analyzing the recorded first spatially-heterodyned hologram by shifting a first original origin of the recorded first spatially-heterodyned hologram to sit on top of a first spatial-heterodyne carrier frequency defined by the first reference beam-object beam angle; digitally recording, at a second reference beam-object beam angle, a second spatially-heterodyned hologram including spatial heterodyne fringes for Fourier analysis; Fourier analyzing the recorded second spatially-heterodyned hologram by shifting a second original origin of the recorded second spatially-heterodyned hologram to sit on top of a second spatial-heterodyne carrier frequency defined by the second reference beam-object beam angle; applying a first digital filter to cut off signals around the first original origin and define a first result; performing a first inverse Fourier transform on the first result; applying a second digital filter to cut off signals around the second original origin and define a second result; and performing a second inverse Fourier transform on the second result, wherein the first reference beam-object beam angle is not equal to the second reference beam-object beam angle and a single digital image includes both the first spatially-heterodyned hologram and the second spatially-heterodyned hologram.
Cippitelli, Andrea; Zook, Michelle; Bell, Lauren; Damadzic, Ruslan; Eskay, Robert L; Schwandt, Melanie; Heilig, Markus
2010-11-01
Excessive alcohol use leads to neurodegeneration in several brain structures including the hippocampal dentate gyrus and the entorhinal cortex. Cognitive deficits that result are among the most insidious and debilitating consequences of alcoholism. The object exploration task (OET) provides a sensitive measurement of spatial memory impairment induced by hippocampal and cortical damage. In this study, we examine whether the observed neurotoxicity produced by a 4-day binge ethanol treatment results in long-term memory impairment by observing the time course of reactions to spatial change (object configuration) and non-spatial change (object recognition). Wistar rats were assessed for their abilities to detect spatial configuration in the OET at 1 week and 10 weeks following the ethanol treatment, in which ethanol groups received 9-15 g/kg/day and achieved blood alcohol levels over 300 mg/dl. At 1 week, results indicated that the binge alcohol treatment produced impairment in both spatial memory and non-spatial object recognition performance. Unlike the controls, ethanol treated rats did not increase the duration or number of contacts with the displaced object in the spatial memory task, nor did they increase the duration of contacts with the novel object in the object recognition task. After 10 weeks, spatial memory remained impaired in the ethanol treated rats but object recognition ability was recovered. Our data suggest that episodes of binge-like alcohol exposure result in long-term and possibly permanent impairments in memory for the configuration of objects during exploration, whereas the ability to detect non-spatial changes is only temporarily affected. Copyright © 2010 Elsevier Inc. All rights reserved.
Optimization of Landscape Services under Uncoordinated Management by Multiple Landowners
Porto, Miguel; Correia, Otília; Beja, Pedro
2014-01-01
Landscapes are often patchworks of private properties, where composition and configuration patterns result from cumulative effects of the actions of multiple landowners. Securing the delivery of services in such multi-ownership landscapes is challenging, because it is difficult to assure tight compliance to spatially explicit management rules at the level of individual properties, which may hinder the conservation of critical landscape features. To deal with these constraints, a multi-objective simulation-optimization procedure was developed to select non-spatial management regimes that best meet landscape-level objectives, while accounting for uncoordinated and uncertain response of individual landowners to management rules. Optimization approximates the non-dominated Pareto frontier, combining a multi-objective genetic algorithm and a simulator that forecasts trends in landscape pattern as a function of management rules implemented annually by individual landowners. The procedure was demonstrated with a case study for the optimum scheduling of fuel treatments in cork oak forest landscapes, involving six objectives related to reducing management costs (1), reducing fire risk (3), and protecting biodiversity associated with mid- and late-successional understories (2). There was a trade-off between cost, fire risk and biodiversity objectives, that could be minimized by selecting management regimes involving ca. 60% of landowners clearing the understory at short intervals (around 5 years), and the remaining managing at long intervals (ca. 75 years) or not managing. The optimal management regimes produces a mosaic landscape dominated by stands with herbaceous and low shrub understories, but also with a satisfactory representation of old understories, that was favorable in terms of both fire risk and biodiversity. The simulation-optimization procedure presented can be extended to incorporate a wide range of landscape dynamic processes, management rules and quantifiable objectives. It may thus be adapted to other socio-ecological systems, particularly where specific patterns of landscape heterogeneity are to be maintained despite imperfect management by multiple landowners. PMID:24465833
STS-93 Crew Interview: Michel Tognini
NASA Technical Reports Server (NTRS)
1999-01-01
This NASA Johnson Space Center (JSC) video release presents a one-on-one interview with Mission Specialist 3, Michel Tognini (Col., French Air Force and Centre Nacional Etudes Spatiales (CNES) Astronaut). Subjects discussed include early influences that made Michel want to be a pilot and astronaut, his experience as a French military pilot and his flying history. Also discussed were French participation in building the International Space Station (ISS), the STS-93 primary mission objective, X-ray observation using the Advanced X-ray Astrophysics Facility (AXAF), and failure scenarios associated with AXAF deployment. The STS-93 mission objective was to deploy the Advanced X-ray Astrophysics Facility (AXAF), later renamed the Chandra X-Ray Observatory in honor of the late Indian-American Nobel Laureate Subrahmanyan Chandrasekhar.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bacon, L. D.
Hybrid Band{trademark} (H-band) is a Lockheed Martin Missiles and Fire Control (LMMFC) designation for a specific RF modulation that causes disruption of select electronic components and circuits. H-Band enables conventional high-power microwave (HPM) effects (with a center frequency of 1 to 2 GHz, for example) using a higher frequency carrier signal. The primary technical objective of this project was to understand the fundamental physics of Hybrid Band{trademark} Radio Frequency effects on electronic systems. The follow-on objective was to develop and validate a Hybrid Band{trademark} effects analysis process.
Fast Image Restoration for Spatially Varying Defocus Blur of Imaging Sensor
Cheong, Hejin; Chae, Eunjung; Lee, Eunsung; Jo, Gwanghyun; Paik, Joonki
2015-01-01
This paper presents a fast adaptive image restoration method for removing spatially varying out-of-focus blur of a general imaging sensor. After estimating the parameters of space-variant point-spread-function (PSF) using the derivative in each uniformly blurred region, the proposed method performs spatially adaptive image restoration by selecting the optimal restoration filter according to the estimated blur parameters. Each restoration filter is implemented in the form of a combination of multiple FIR filters, which guarantees the fast image restoration without the need of iterative or recursive processing. Experimental results show that the proposed method outperforms existing space-invariant restoration methods in the sense of both objective and subjective performance measures. The proposed algorithm can be employed to a wide area of image restoration applications, such as mobile imaging devices, robot vision, and satellite image processing. PMID:25569760
Rocha, Thiago Augusto Hernandes; da Silva, Núbia Cristina; Amaral, Pedro Vasconcelos; Barbosa, Allan Claudius Queiroz; Rocha, João Victor Muniz; Alvares, Viviane; de Almeida, Dante Grapiuna; Thumé, Elaine; Thomaz, Erika Bárbara Abreu Fonseca; de Sousa Queiroz, Rejane Christine; de Souza, Marta Rovery; Lein, Adriana; Lopes, Daniel Paulino; Staton, Catherine A; Vissoci, João Ricardo Nickenig; Facchini, Luiz Augusto
2017-08-22
Unequal distribution of emergency care services is a critical barrier to be overcome to assure access to emergency and surgical care. Considering this context it was objective of the present work analyze geographic access barriers to emergency care services in Brazil. A secondary aim of the study is to define possible roles to be assumed by small hospitals in the Brazilian healthcare network to overcome geographic access challenges. The present work can be classified as a cross-sectional ecological study. To carry out the present study, data of all 5843 Brazilian hospitals were categorized among high complexity centers and small hospitals. The geographical access barriers were identified through the use of two-step floating catchment area method. Once concluded the previous step an evaluation using the Getis-Ord-Gi method was performed to identify spatial clusters of municipalities with limited access to high complexity centers but well covered by well-equipped small hospitals. The analysis of accessibility index of high complexity centers highlighted large portions of the country with nearly zero hospital beds by inhabitant. In contrast, it was possible observe a group of 1595 municipalities with high accessibility to small hospitals, simultaneously with a low coverage of high complexity centers. Among the 1595 municipalities with good accessibility to small hospitals, 74% (1183) were covered by small hospitals with at least 60% of minimum emergency service requirements. The spatial clusters analysis aggregated 589 municipalities with high values related to minimum emergency service requirements. Small hospitals in these 589 cities could promote the equity in access to emergency services benefiting more than eight million people. There is a spatial disequilibrium within the country with prominent gaps in the health care network for emergency services. Taking this challenge into consideration, small hospitals could be a possible solution and foster equity in access to emergency and surgical care. However more investments in are necessary to improve small hospitals capabilities to fill this gap.
NASA Astrophysics Data System (ADS)
Thomas, John Meurig
2008-05-01
Predominantly this article deals with the question of how to design new solid catalysts for a variety of industrial and laboratory-orientated purposes. A generally applicable strategy, illustrated by numerous examples, is made possible based on the use of nanoporous materials on to the (high-area) inner surfaces of which well-defined (experimentally and computationally) active centers are placed in a spatially separated fashion. Such single-site catalysts, which have much in common with metal-centered homogenous catalysts and enzymes, enable a wide range of new catalysts to be designed for a variety of selective oxidations, hydrogenations, hydrations and hydrodewaxing, and other reactions that the "greening" of industrial processes demand. Examples are given of new shape-selective, regio-selective, and enantioselective catalysts, many of which operate under mild, environmentally benign conditions. Also considered are some of the reasons why detailed studies of adsorption and stoichiometric reactions at single-crystal surfaces have, disappointingly, not hitherto paved the way to the design and production of many new heterogenous catalysts. Recent work of a theoretical and high-throughout nature, allied to some experimental studies of well-chosen model systems, holds promise for the identification of new catalysts for simple, but industrially important reactions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, G; Li, K; Gomez-Cardona, D
Purpose: Although the anatomy of interest should be positioned as close as possible to the isocenter of CT scanners, off-centering may be inevitable during certain exams in clinical practice such as lumbar spine and elbow imaging. Off-centering degrades image sharpness, generates streak artifacts, and sometimes creates blooming artifacts due to truncation. The purpose of this work was to investigate whether the use of model-based image reconstruction (MBIR) can alleviate the negative impacts of off-centering to achieve high quality CT bone imaging. Methods: Both an anthropomorphic phantom and an ex vivo swine elbow sample were scanned at centered and off-centered positionsmore » using clinical CT bone scan protocols. The magnitude of off-centering was determined from localizer radiographs. Both FBP and MBIR reconstructions were performed. For FBP, both standard and Bone Plus kernels commonly used in bone imaging were used. Objective assessment of image sharpness, noise standard deviation, and noise nonuniformity were performed. Additionally, we retrospectively analyzed human subject data acquired under off-centered conditions as a validation study. Results: In FBP images of the phantom, off-centering by 10 cm led to a 14% increase in noise (p<1e-3) and a 68% increase in noise nonuniformity (p<0.02). A visible drop in bone sharpness was observed. In contrast, no significant difference in the noise magnitude or the noise nonuniformity between the centered and off-centered MBIR images was found. The image sharpness of off-centered MBIR images outperformed that of FBP images reconstructed with the Bone Plus kernel. In images of the swine elbow off-centered by 20 cm, not only was the noise and spatial resolution performance improved by MBIR, truncation artifacts were also elliminated. The human subject study generated similar results, in which the visibility of the off-centered lumbar spine was significantly improved. Conclusion: High quality CT bone imaging at off-centered positions can be achieved using MBIR. This work was partially supported by an NIH grant R01CA169331 and GE Healthcare. K. Li, D. Gomez-Cardona: Nothing to disclose. G.-H. Chen: Research funded, GE Healthcare; Research funded, Siemens AX. A. Budde, J. Hsieh: Employee, GE Healthcare.« less
Adiposity and Quality of Life: A Case Study from an Urban Center in Nigeria
ERIC Educational Resources Information Center
Akinpelu, Aderonke O.; Akinola, Odunayo T.; Gbiri, Caleb A.
2009-01-01
Objective: To determine relationship between adiposity indices and quality of life (QOL) of residents of a housing estate in Lagos, Nigeria. Design: Cross-sectional survey employing multistep random sampling method. Setting: Urban residential estate. Participants: This study involved 900 randomly selected residents of Abesan Housing Estate, Lagos,…
ERIC Educational Resources Information Center
Schlichter, Carol
1978-01-01
The final installment of a series of articles on the "Mushroom Place" learning center program, which involves creative thinking activities for young, gifted students, describes "Doing It the Hard Way," a performance task which involves the actual construction of objects from a selected set of materials in the absence of the usual project tools.…
Report on 1986 Survey of New Jersey County Community College Students.
ERIC Educational Resources Information Center
Rutgers, The State Univ., New Brunswick, NJ. Eagleton Inst. of Politics.
In fall 1986, the Center for Public Interest Polling at the Eagleton Institute of Politics conducted a study of the educational objectives, attitudes, characteristics, and plans of students enrolled in New Jersey's 19 community and county colleges. Interviews were conducted with 2,100 randomly selected students. Study findings included the…
ERIC Educational Resources Information Center
Ramani, Esther; And Others
1988-01-01
Argues for an ethnographic reorientation to needs analysis and syllabus design in English for specific purposes in advanced postgraduate centers of science and technology. The seven-stage framework (specify learners, analyze needs, specify enabling objectives, select materials, identify teaching/learning activities, evaluate, and revise) used to…
"Almost Darks": HI Mapping and Optical Analysis
NASA Astrophysics Data System (ADS)
Singer, Quinton; Ball, Catie; Cannon, John M.; Leisman, Luke; Haynes, Martha P.; Adams, Elizabeth A.; Bernal Neira, David; Giovanelli, Riccardo; Hallenbeck, Gregory L.; Janesh, William; Janowiecki, Steven; Jozsa, Gyula; Rhode, Katherine L.; Salzer, John Joseph
2017-01-01
We present VLA HI imaging of the "Almost Dark" galaxies AGC 227982, AGC 268363, and AGC 219533. Selected from the ALFALFA survey, "Almost Dark" galaxies have significant HI reservoirs but lack an obvious stellar counterpart in survey-depth ground-based optical imaging. These three HI-rich objects harbor some of the most extreme levels of suppressed star formation amongst the isolated sources in the ALFALFA catalog. Our new multi-configuration, high angular (~20") and spectral (1.7 km/s) resolution HI observations produce spatially resolved column density and velocity distribution moment maps. We compare these images to Sloan Digitized Sky Survey (SDSS) optical images. By localizing the HI gas, we identify previously unknown optical components (offset from the ALFALFA pointing center) for AGC 227982 and AGC 268363, and confirm the association with a very low surface brightness stellar counterpart for AGC 219533. Baryonic masses are derived from VLA flux integral values and ALFALFA distance estimates, giving answers consistent with those derived from ALFALFA fluxes. All three sources appear to have fairly regular HI morphologies and show evidence of ordered rotation.Support for this work was provided by NSF grant 1211683 to JMC at Macalester College.
VizieR Online Data Catalog: Tori in AGNs through Spitzer/IRS spectra (Gonzalez-Martin+, 2017)
NASA Astrophysics Data System (ADS)
Gonzalez-Martin, O.; Masegosa, J.; Hernan-Caballero, A.; Marquez, I.; Almeida, C. R.; Alonso-Herrero, A.; Aretxaga, I.; Rodriguez-Espinosa, J. M.; Acosta-Pulido, J. A.; Hernandez-Garcia, L.; Esparza-Arredondo, D.; Martinez-Paredes, M.; Bonfini, P.; Pasetto, A.; Dultzin, D.
2018-01-01
The sample was originally presented by Gonzalez-Martin+ (2015, J/A+A/578/A74). The LINER sample is selected as those objects with reported X-ray luminosities from Gonzalez-Martin+ (2009A&A...506.1107G) with full coverage of the 5-30um range with the InfraRed Spectrograph (Spitzer/IRS) spectra. This guarantees that all of the LINERs have LX(2-10keV) measurements. Among the 48 LINERs with Spitzer/IRS spectra, 40 mid-infrared spectra were taken from the CASSIS atlas (Lebouteiller+ 2011ApJS..196....8L) and 8 from the SINGS database (Kennicutt+ 2003PASP..115..928K). We have included in our analysis mid-infrared spatially resolved images taken with CanariCam/GTC using the filter "Si6" centered at 11.5um. These observations are part of proprietary data of a sample of faint and Compton-thick LINERs observed with CanariCam/GTC (proposal ID GTC10-14A, P.I. Gonzalez-Martin). The summary of the observations used in this paper is reported in Table 4. See section 3.2 for further explanations. (5 data files).
Enhancing Disaster Management: Development of a Spatial Database of Day Care Centers in the USA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singh, Nagendra; Tuttle, Mark A.; Bhaduri, Budhendra L.
Children under the age of five constitute around 7% of the total U.S. population and represent a segment of the population, which is totally dependent on others for day-to-day activities. A significant proportion of this population spends time in some form of day care arrangement while their parents are away from home. Accounting for those children during emergencies is of high priority, which requires a broad understanding of the locations of such day care centers. As concentrations of at risk population, the spatial location of day care centers is critical for any type of emergency preparedness and response (EPR). However,more » until recently, the U.S. emergency preparedness and response community did not have access to a comprehensive spatial database of day care centers at the national scale. This paper describes an approach for the development of the first comprehensive spatial database of day care center locations throughout the USA utilizing a variety of data harvesting techniques to integrate information from widely disparate data sources followed by geolocating for spatial precision. In the context of disaster management, such spatially refined demographic databases hold tremendous potential for improving high resolution population distribution and dynamics models and databases.« less
Enhancing Disaster Management: Development of a Spatial Database of Day Care Centers in the USA
Singh, Nagendra; Tuttle, Mark A.; Bhaduri, Budhendra L.
2015-07-30
Children under the age of five constitute around 7% of the total U.S. population and represent a segment of the population, which is totally dependent on others for day-to-day activities. A significant proportion of this population spends time in some form of day care arrangement while their parents are away from home. Accounting for those children during emergencies is of high priority, which requires a broad understanding of the locations of such day care centers. As concentrations of at risk population, the spatial location of day care centers is critical for any type of emergency preparedness and response (EPR). However,more » until recently, the U.S. emergency preparedness and response community did not have access to a comprehensive spatial database of day care centers at the national scale. This paper describes an approach for the development of the first comprehensive spatial database of day care center locations throughout the USA utilizing a variety of data harvesting techniques to integrate information from widely disparate data sources followed by geolocating for spatial precision. In the context of disaster management, such spatially refined demographic databases hold tremendous potential for improving high resolution population distribution and dynamics models and databases.« less
Spatial attention determines the nature of nonverbal number representation.
Hyde, Daniel C; Wood, Justin N
2011-09-01
Coordinated studies of adults, infants, and nonhuman animals provide evidence for two systems of nonverbal number representation: a "parallel individuation" system that represents individual items and a "numerical magnitude" system that represents the approximate cardinal value of a group. However, there is considerable debate about the nature and functions of these systems, due largely to the fact that some studies show a dissociation between small (1-3) and large (>3) number representation, whereas others do not. Using event-related potentials, we show that it is possible to determine which system will represent the numerical value of a small number set (1-3 items) by manipulating spatial attention. Specifically, when attention can select individual objects, an early brain response (N1) scales with the cardinal value of the display, the signature of parallel individuation. In contrast, when attention cannot select individual objects or is occupied by another task, a later brain response (P2p) scales with ratio, the signature of the approximate numerical magnitude system. These results provide neural evidence that small numbers can be represented as approximate numerical magnitudes. Further, they empirically demonstrate the importance of early attentional processes to number representation by showing that the way in which attention disperses across a scene determines which numerical system will deploy in a given context.
Dynamic interactions between visual working memory and saccade target selection
Schneegans, Sebastian; Spencer, John P.; Schöner, Gregor; Hwang, Seongmin; Hollingworth, Andrew
2014-01-01
Recent psychophysical experiments have shown that working memory for visual surface features interacts with saccadic motor planning, even in tasks where the saccade target is unambiguously specified by spatial cues. Specifically, a match between a memorized color and the color of either the designated target or a distractor stimulus influences saccade target selection, saccade amplitudes, and latencies in a systematic fashion. To elucidate these effects, we present a dynamic neural field model in combination with new experimental data. The model captures the neural processes underlying visual perception, working memory, and saccade planning relevant to the psychophysical experiment. It consists of a low-level visual sensory representation that interacts with two separate pathways: a spatial pathway implementing spatial attention and saccade generation, and a surface feature pathway implementing color working memory and feature attention. Due to bidirectional coupling between visual working memory and feature attention in the model, the working memory content can indirectly exert an effect on perceptual processing in the low-level sensory representation. This in turn biases saccadic movement planning in the spatial pathway, allowing the model to quantitatively reproduce the observed interaction effects. The continuous coupling between representations in the model also implies that modulation should be bidirectional, and model simulations provide specific predictions for complementary effects of saccade target selection on visual working memory. These predictions were empirically confirmed in a new experiment: Memory for a sample color was biased toward the color of a task-irrelevant saccade target object, demonstrating the bidirectional coupling between visual working memory and perceptual processing. PMID:25228628
Kosik, Ivan; Raess, Avery
2015-01-01
Accurate reconstruction of 3D photoacoustic (PA) images requires detection of photoacoustic signals from many angles. Several groups have adopted staring ultrasound arrays, but assessment of array performance has been limited. We previously reported on a method to calibrate a 3D PA tomography (PAT) staring array system and analyze system performance using singular value decomposition (SVD). The developed SVD metric, however, was impractical for large system matrices, which are typical of 3D PAT problems. The present study consisted of two main objectives. The first objective aimed to introduce the crosstalk matrix concept to the field of PAT for system design. Figures-of-merit utilized in this study were root mean square error, peak signal-to-noise ratio, mean absolute error, and a three dimensional structural similarity index, which were derived between the normalized spatial crosstalk matrix and the identity matrix. The applicability of this approach for 3D PAT was validated by observing the response of the figures-of-merit in relation to well-understood PAT sampling characteristics (i.e. spatial and temporal sampling rate). The second objective aimed to utilize the figures-of-merit to characterize and improve the performance of a near-spherical staring array design. Transducer arrangement, array radius, and array angular coverage were the design parameters examined. We observed that the performance of a 129-element staring transducer array for 3D PAT could be improved by selection of optimal values of the design parameters. The results suggested that this formulation could be used to objectively characterize 3D PAT system performance and would enable the development of efficient strategies for system design optimization. PMID:25875177
Qiao, Hong; Li, Yinlin; Li, Fengfu; Xi, Xuanyang; Wu, Wei
2016-10-01
Recently, many biologically inspired visual computational models have been proposed. The design of these models follows the related biological mechanisms and structures, and these models provide new solutions for visual recognition tasks. In this paper, based on the recent biological evidence, we propose a framework to mimic the active and dynamic learning and recognition process of the primate visual cortex. From principle point of view, the main contributions are that the framework can achieve unsupervised learning of episodic features (including key components and their spatial relations) and semantic features (semantic descriptions of the key components), which support higher level cognition of an object. From performance point of view, the advantages of the framework are as follows: 1) learning episodic features without supervision-for a class of objects without a prior knowledge, the key components, their spatial relations and cover regions can be learned automatically through a deep neural network (DNN); 2) learning semantic features based on episodic features-within the cover regions of the key components, the semantic geometrical values of these components can be computed based on contour detection; 3) forming the general knowledge of a class of objects-the general knowledge of a class of objects can be formed, mainly including the key components, their spatial relations and average semantic values, which is a concise description of the class; and 4) achieving higher level cognition and dynamic updating-for a test image, the model can achieve classification and subclass semantic descriptions. And the test samples with high confidence are selected to dynamically update the whole model. Experiments are conducted on face images, and a good performance is achieved in each layer of the DNN and the semantic description learning process. Furthermore, the model can be generalized to recognition tasks of other objects with learning ability.
A neutral hydrogen survey of the Hydra 1 cluster
NASA Technical Reports Server (NTRS)
Mcmahon, Pauline; Vangorkom, Jacqueline; Richter, Otto; Ferguson, Henry
1993-01-01
We are undertaking a project to image the entire volume of the Hydra 1 cluster of galaxies in neutral hydrogen using the VLA. This involves making a series of pointings spaced 30 min. (the half power beam width) apart, each observed at three velocity settings in order to span the whole velocity range of the cluster. The purpose of this survey is to determine the true distribution, both in space and velocity, of gas-rich systems and hence, to deduce what effects a dense environment may have on the evolution of these systems. Most surveys of clusters to date have been performed on optically selected samples. However, optically selected samples may provide misleading views of the distribution of gas-rich systems, since many low surface brightness galaxies have an abundance of neutral gas (Bothun et al. 1987, Giovanelli & Haynes 1989). The Hydra project is providing the first unbiased view of the HI distribution in a cluster of galaxies. Our 5 sigma sensitivity is 4.1 x 10(exp 7) solar M/beam, (assuming H(sub 0) = 75 km s(exp -1) Mpc(exp -1)) and our velocity resolution is 42 km s(exp -1). We have a spatial resolution of 45 sec., which means that only the largest galaxies are spatially resolved enough to determine HI disk size. Our coverage is about 50 percent of the central region plus eight other fields centered on bright spirals within about 2 deg. of the center.
Optical synthesizer for a large quadrant-array CCD camera: Center director's discretionary fund
NASA Technical Reports Server (NTRS)
Hagyard, Mona J.
1992-01-01
The objective of this program was to design and develop an optical device, an optical synthesizer, that focuses four contiguous quadrants of a solar image on four spatially separated CCD arrays that are part of a unique CCD camera system. This camera and the optical synthesizer will be part of the new NASA-Marshall Experimental Vector Magnetograph, and instrument developed to measure the Sun's magnetic field as accurately as present technology allows. The tasks undertaken in the program are outlined and the final detailed optical design is presented.
Takahama, Sachiko; Saiki, Jun
2014-01-01
Information on an object's features bound to its location is very important for maintaining object representations in visual working memory. Interactions with dynamic multi-dimensional objects in an external environment require complex cognitive control, including the selective maintenance of feature-location binding. Here, we used event-related functional magnetic resonance imaging to investigate brain activity and functional connectivity related to the maintenance of complex feature-location binding. Participants were required to detect task-relevant changes in feature-location binding between objects defined by color, orientation, and location. We compared a complex binding task requiring complex feature-location binding (color-orientation-location) with a simple binding task in which simple feature-location binding, such as color-location, was task-relevant and the other feature was task-irrelevant. Univariate analyses showed that the dorsolateral prefrontal cortex (DLPFC), hippocampus, and frontoparietal network were activated during the maintenance of complex feature-location binding. Functional connectivity analyses indicated cooperation between the inferior precentral sulcus (infPreCS), DLPFC, and hippocampus during the maintenance of complex feature-location binding. In contrast, the connectivity for the spatial updating of simple feature-location binding determined by reanalyzing the data from Takahama et al. (2010) demonstrated that the superior parietal lobule (SPL) cooperated with the DLPFC and hippocampus. These results suggest that the connectivity for complex feature-location binding does not simply reflect general memory load and that the DLPFC and hippocampus flexibly modulate the dorsal frontoparietal network, depending on the task requirements, with the infPreCS involved in the maintenance of complex feature-location binding and the SPL involved in the spatial updating of simple feature-location binding. PMID:24917833
Takahama, Sachiko; Saiki, Jun
2014-01-01
Information on an object's features bound to its location is very important for maintaining object representations in visual working memory. Interactions with dynamic multi-dimensional objects in an external environment require complex cognitive control, including the selective maintenance of feature-location binding. Here, we used event-related functional magnetic resonance imaging to investigate brain activity and functional connectivity related to the maintenance of complex feature-location binding. Participants were required to detect task-relevant changes in feature-location binding between objects defined by color, orientation, and location. We compared a complex binding task requiring complex feature-location binding (color-orientation-location) with a simple binding task in which simple feature-location binding, such as color-location, was task-relevant and the other feature was task-irrelevant. Univariate analyses showed that the dorsolateral prefrontal cortex (DLPFC), hippocampus, and frontoparietal network were activated during the maintenance of complex feature-location binding. Functional connectivity analyses indicated cooperation between the inferior precentral sulcus (infPreCS), DLPFC, and hippocampus during the maintenance of complex feature-location binding. In contrast, the connectivity for the spatial updating of simple feature-location binding determined by reanalyzing the data from Takahama et al. (2010) demonstrated that the superior parietal lobule (SPL) cooperated with the DLPFC and hippocampus. These results suggest that the connectivity for complex feature-location binding does not simply reflect general memory load and that the DLPFC and hippocampus flexibly modulate the dorsal frontoparietal network, depending on the task requirements, with the infPreCS involved in the maintenance of complex feature-location binding and the SPL involved in the spatial updating of simple feature-location binding.
Keijser, Jan N; van Heuvelen, Marieke J G; Nyakas, Csaba; Tóth, Kata; Schoemaker, Regien G; Zeinstra, Edzard; van der Zee, Eddy A
2017-01-01
Whole body vibration (WBV) is a form of physical stimulation via mechanical vibrations transmitted to a subject. It is assumed that WBV induces sensory stimulation in cortical brain regions through the activation of skin and muscle receptors responding to the vibration. The effects of WBV on muscle strength are well described. However, little is known about the impact of WBV on the brain. Recently, it was shown in humans that WBV improves attention in an acute WBV protocol. Preclinical research is needed to unravel the underlying brain mechanism. As a first step, we examined whether chronic WBV improves attention in mice. A custom made vibrating platform for mice with low intensity vibrations was used. Male CD1 mice (3 months of age) received five weeks WBV (30 Hz; 1.9 G), five days a week with sessions of five (n=12) or 30 (n=10) minutes. Control mice (pseudo-WBV; n=12 and 10 for the five and 30 minute sessions, respectively) were treated in a similar way, but did not receive the actual vibration. Object recognition tasks were used as an attention test (novel and spatial object recognition - the primary outcome measure). A Balance beam was used for motor performance, serving as a secondary outcome measure. WBV sessions of five (but not WBV sessions of 30 minutes) improved balance beam performance (mice gained 28% in time needed to cross the beam) and novel object recognition (mice paid significantly more attention to the novel object) as compared to pseudo WBV, but no change was found for spatial object performance (mice did not notice the relocation). Although 30 minutes WBV sessions were not beneficial, it did not impair either attention or motor performance. These results show that brief sessions of WBV improve, next to motor performance, attention for object recognition, but not spatial cues of the objects. The selective improvement of attention in mice opens the avenue to unravel the underlying brain mechanisms.
Fields, Chris
2011-01-01
The perception of persisting visual objects is mediated by transient intermediate representations, object files, that are instantiated in response to some, but not all, visual trajectories. The standard object file concept does not, however, provide a mechanism sufficient to account for all experimental data on visual object persistence, object tracking, and the ability to perceive spatially disconnected stimuli as continuously existing objects. Based on relevant anatomical, functional, and developmental data, a functional model is constructed that bases visual object individuation on the recognition of temporal sequences of apparent center-of-mass positions that are specifically identified as trajectories by dedicated “trajectory recognition networks” downstream of the medial–temporal motion-detection area. This model is shown to account for a wide range of data, and to generate a variety of testable predictions. Individual differences in the recognition, abstraction, and encoding of trajectory information are expected to generate distinct object persistence judgments and object recognition abilities. Dominance of trajectory information over feature information in stored object tokens during early infancy, in particular, is expected to disrupt the ability to re-identify human and other individuals across perceptual episodes, and lead to developmental outcomes with characteristics of autism spectrum disorders. PMID:21716599
BASIN-CENTERED GAS SYSTEMS OF THE U.S.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marin A. Popov; Vito F. Nuccio; Thaddeus S. Dyman
2000-11-01
The USGS is re-evaluating the resource potential of basin-centered gas accumulations in the U.S. because of changing perceptions of the geology of these accumulations, and the availability of new data since the USGS 1995 National Assessment of United States oil and gas resources (Gautier et al., 1996). To attain these objectives, this project used knowledge of basin-centered gas systems and procedures such as stratigraphic analysis, organic geochemistry, modeling of basin thermal dynamics, reservoir characterization, and pressure analysis. This project proceeded in two phases which had the following objectives: Phase I (4/1998 through 5/1999): Identify and describe the geologic and geographicmore » distribution of potential basin-centered gas systems, and Phase II (6/1999 through 11/2000): For selected systems, estimate the location of those basin-centered gas resources that are likely to be produced over the next 30 years. In Phase I, we characterize thirty-three (33) potential basin-centered gas systems (or accumulations) based on information published in the literature or acquired from internal computerized well and reservoir data files. These newly defined potential accumulations vary from low to high risk and may or may not survive the rigorous geologic scrutiny leading towards full assessment by the USGS. For logistical reasons, not all basins received the level of detail desired or required.« less
Spatial-Heterodyne Interferometry For Reflection And Transm Ission (Shirt) Measurements
Hanson, Gregory R [Clinton, TN; Bingham, Philip R [Knoxville, TN; Tobin, Ken W [Harriman, TN
2006-02-14
Systems and methods are described for spatial-heterodyne interferometry for reflection and transmission (SHIRT) measurements. A method includes digitally recording a first spatially-heterodyned hologram using a first reference beam and a first object beam; digitally recording a second spatially-heterodyned hologram using a second reference beam and a second object beam; Fourier analyzing the digitally recorded first spatially-heterodyned hologram to define a first analyzed image; Fourier analyzing the digitally recorded second spatially-heterodyned hologram to define a second analyzed image; digitally filtering the first analyzed image to define a first result; and digitally filtering the second analyzed image to define a second result; performing a first inverse Fourier transform on the first result, and performing a second inverse Fourier transform on the second result. The first object beam is transmitted through an object that is at least partially translucent, and the second object beam is reflected from the object.
Young, Laura K; Smithson, Hannah E
2014-01-01
There is evidence that letter identification is mediated by only a narrow band of spatial frequencies and that the center frequency of the neural channel thought to underlie this selectivity is related to the size of the letters. When letters are spatially filtered (at a fixed size) the channel tuning characteristics change according to the properties of the spatial filter (Majaj et al., 2002). Optical aberrations in the eye act to spatially filter the image formed on the retina-their effect is generally to attenuate high frequencies more than low frequencies but often in a non-monotonic way. We might expect the change in the spatial frequency spectrum caused by the aberration to predict the shift in channel tuning observed for aberrated letters. We show that this is not the case. We used critical-band masking to estimate channel-tuning in the presence of three types of aberration-defocus, coma and secondary astigmatism. We found that the maximum masking was shifted to lower frequencies in the presence of an aberration and that this result was not simply predicted by the spatial-frequency-dependent degradation in image quality, assessed via metrics that have previously been shown to correlate well with performance loss in the presence of an aberration. We show that if image quality effects are taken into account (using visual Strehl metrics), the neural channel required to model the data is shifted to lower frequencies compared to the control (no-aberration) condition. Additionally, we show that when spurious resolution (caused by π phase shifts in the optical transfer function) in the image is masked, the channel tuning properties for aberrated letters are affected, suggesting that there may be interference between visual channels. Even in the presence of simulated aberrations, whose properties change from trial-to-trial, observers exhibit flexibility in selecting the spatial frequencies that support letter identification.
Detection of the relationship between peak temperature and extreme precipitation
NASA Astrophysics Data System (ADS)
Yu, Y.; Liu, J.; Zhiyong, Y.
2017-12-01
Under the background of climate change and human activities, the characteristics and pattern of precipitation have changed significantly in many regions. As the political and cultural center of China, the structure and character of precipitation in Jingjinji District has varied dramatically in recent years. In this paper, the daily precipitation data throughout the period 1960-2013 are selected for analyzing the spatial-temporal variability of precipitation. The results indicate that the frequency and intensity of precipitation presents an increasing trend. Based on the precipitation data, the maximum, minimum and mean precipitation in different temporal and spatial scales is calculated respectively. The temporal and spatial variation of temperature is obtained by using statistical methods. The relationship between temperature and precipitation in different range is analyzed. The curve relates daily precipitation extremes with local temperatures has a peak structure, increasing at the low-medium range of temperature variations but decreasing at high temperatures. The relationship between extreme precipitation is stronger in downtown than that in suburbs.
Perspectives on the geographic stability and mobility of people in cities
Hanson, Susan
2005-01-01
A class of questions in the human environment sciences focuses on the relationship between individual or household behavior and local geographic context. Central to these questions is the nature of people's geographic mobility as well as the duration of their locational stability at varying spatial and temporal scales. The problem for researchers is that the processes of mobility/stability are temporally and spatially dynamic and therefore difficult to measure. Whereas time and space are continuous, analysts must select levels of aggregation for both length of time in place and spatial scale of place that fit with the problem in question. Previous work has emphasized mobility and suppressed stability as an analytic category. I focus here on stability and show how analyzing individuals' stability requires also analyzing their mobility. Through an empirical example centered on the relationship between entrepreneurship and place, I demonstrate how a spotlight on stability illuminates a resolution to the measurement problem by highlighting the interdependence between the time and space dimensions of stability/mobility. PMID:16230616
Deng, Jie; Larson, Andrew C.
2010-01-01
Objectives To test the feasibility of combining inner-volume imaging (IVI) techniques with conventional multishot periodically rotated overlapping parallel lines with enhanced reconstruction (PROPELLER) techniques for targeted-PROPELLER magnetic resonance imaging. Materials and Methods Perpendicular section-selective gradients for spatially selective excitation and refocusing RF pulses were applied to limit the refocused field-of-view (FOV) along the phase-encoding direction for each rectangular blade image. We performed comparison studies in phantoms and normal volunteers by using targeted-PROPELLER methods for a wide range of imaging applications that commonly use turbo-spin-echo (TSE) approaches (brain, abdominal, vessel wall, cardiac). Results In these initial studies, we demonstrated the feasibility of using targeted-PROPELLER approaches to limit the imaging FOV thereby reducing the number of blades or permitting increased spatial resolution without commensurate increases in scan time. Both phantom and in vivo motion studies demonstrated the potential for more robust regional self-navigated motion correction compared with conventional full FOV PROPELLER methods. Conclusion We demonstrated that the reduced FOV targeted-PROPELLER technique offers the potential for reducing imaging time, increasing spatial resolution, and targeting specific areas for robust regional motion correction. PMID:19465860
Medium-range, objective predictions of thunderstorm location and severity for aviation
NASA Technical Reports Server (NTRS)
Wilson, G. S.; Turner, R. E.
1981-01-01
This paper presents a computerized technique for medium-range (12-48h) prediction of both the location and severity of thunderstorms utilizing atmospheric predictions from the National Meteorological Center's limited-area fine-mesh model (LFM). A regional-scale analysis scheme is first used to examine the spatial and temporal distributions of forecasted variables associated with the structure and dynamics of mesoscale systems over an area of approximately 10 to the 6th sq km. The final prediction of thunderstorm location and severity is based upon an objective combination of these regionally analyzed variables. Medium-range thunderstorm predictions are presented for the late afternoon period of April 10, 1979, the day of the Wichita Falls, Texas tornado. Conventional medium-range thunderstorm forecasts, made from observed data, are presented with the case study to demonstrate the possible application of this objective technique in improving 12-48 h thunderstorm forecasts for aviation.
Kothapalli, Sri-Rajasekhar; Ma, Te-Jen; Vaithilingam, Srikant; Oralkan, Ömer
2014-01-01
In this paper, we demonstrate 3-D photoacoustic imaging (PAI) of light absorbing objects embedded as deep as 5 cm inside strong optically scattering phantoms using a miniaturized (4 mm × 4 mm × 500 µm), 2-D capacitive micromachined ultrasonic transducer (CMUT) array of 16 × 16 elements with a center frequency of 5.5 MHz. Two-dimensional tomographic images and 3-D volumetric images of the objects placed at different depths are presented. In addition, we studied the sensitivity of CMUT-based PAI to the concentration of indocyanine green dye at 5 cm depth inside the phantom. Under optimized experimental conditions, the objects at 5 cm depth can be imaged with SNR of about 35 dB and a spatial resolution of approximately 500 µm. Results demonstrate that CMUTs with integrated front-end amplifier circuits are an attractive choice for achieving relatively high depth sensitivity for PAI. PMID:22249594
NASA Astrophysics Data System (ADS)
Dobek, Mateusz; Demczuk, Piotr; Nowosad, Marek
2013-06-01
Due to the diversified land relief and presence of numerous gorge dissections intensively used by man largely for recreational purposes, Lublin is a valuable study area in terms of bioclimatology. The results of modelling of the variation of the bioclimatic conditions of Lublin provide information useful e.g. in the economy and spatial planning. The determined features of the city's bioclimate can be a significant element in the selection of locations for new residential and recreational investments. Knowledge on the spatial variation of biometeorological situations positively and negatively influencing the human organism can also find application in activities concerning the improvement of life quality and health protection, as well as in tourism and recreation. The objective of the paper is to present the spatial variation of biometeorological conditions in Lublin based on the example of specified weather scenarios.
Hyperspectral Image Denoising Using a Nonlocal Spectral Spatial Principal Component Analysis
NASA Astrophysics Data System (ADS)
Li, D.; Xu, L.; Peng, J.; Ma, J.
2018-04-01
Hyperspectral images (HSIs) denoising is a critical research area in image processing duo to its importance in improving the quality of HSIs, which has a negative impact on object detection and classification and so on. In this paper, we develop a noise reduction method based on principal component analysis (PCA) for hyperspectral imagery, which is dependent on the assumption that the noise can be removed by selecting the leading principal components. The main contribution of paper is to introduce the spectral spatial structure and nonlocal similarity of the HSIs into the PCA denoising model. PCA with spectral spatial structure can exploit spectral correlation and spatial correlation of HSI by using 3D blocks instead of 2D patches. Nonlocal similarity means the similarity between the referenced pixel and other pixels in nonlocal area, where Mahalanobis distance algorithm is used to estimate the spatial spectral similarity by calculating the distance in 3D blocks. The proposed method is tested on both simulated and real hyperspectral images, the results demonstrate that the proposed method is superior to several other popular methods in HSI denoising.
Object size determines the spatial spread of visual time
McGraw, Paul V.; Roach, Neil W.; Whitaker, David
2016-01-01
A key question for temporal processing research is how the nervous system extracts event duration, despite a notable lack of neural structures dedicated to duration encoding. This is in stark contrast with the orderly arrangement of neurons tasked with spatial processing. In this study, we examine the linkage between the spatial and temporal domains. We use sensory adaptation techniques to generate after-effects where perceived duration is either compressed or expanded in the opposite direction to the adapting stimulus' duration. Our results indicate that these after-effects are broadly tuned, extending over an area approximately five times the size of the stimulus. This region is directly related to the size of the adapting stimulus—the larger the adapting stimulus the greater the spatial spread of the after-effect. We construct a simple model to test predictions based on overlapping adapted versus non-adapted neuronal populations and show that our effects cannot be explained by any single, fixed-scale neural filtering. Rather, our effects are best explained by a self-scaled mechanism underpinned by duration selective neurons that also pool spatial information across earlier stages of visual processing. PMID:27466452
Spatial issues in user interface design from a graphic design perspective
NASA Technical Reports Server (NTRS)
Marcus, Aaron
1989-01-01
The user interface of a computer system is a visual display that provides information about the status of operations on data within the computer and control options to the user that enable adjustments to these operations. From the very beginning of computer technology the user interface was a spatial display, although its spatial features were not necessarily complex or explicitly recognized by the users. All text and nonverbal signs appeared in a virtual space generally thought of as a single flat plane of symbols. Current technology of high performance workstations permits any element of the display to appear as dynamic, multicolor, 3-D signs in a virtual 3-D space. The complexity of appearance and the user's interaction with the display provide significant challenges to the graphic designer of current and future user interfaces. In particular, spatial depiction provides many opportunities for effective communication of objects, structures, processes, navigation, selection, and manipulation. Issues are presented that are relevant to the graphic designer seeking to optimize the user interface's spatial attributes for effective visual communication.
Is Attentional Resource Allocation Across Sensory Modalities Task-Dependent?
Wahn, Basil; König, Peter
2017-01-01
Human information processing is limited by attentional resources. That is, via attentional mechanisms, humans select a limited amount of sensory input to process while other sensory input is neglected. In multisensory research, a matter of ongoing debate is whether there are distinct pools of attentional resources for each sensory modality or whether attentional resources are shared across sensory modalities. Recent studies have suggested that attentional resource allocation across sensory modalities is in part task-dependent. That is, the recruitment of attentional resources across the sensory modalities depends on whether processing involves object-based attention (e.g., the discrimination of stimulus attributes) or spatial attention (e.g., the localization of stimuli). In the present paper, we review findings in multisensory research related to this view. For the visual and auditory sensory modalities, findings suggest that distinct resources are recruited when humans perform object-based attention tasks, whereas for the visual and tactile sensory modalities, partially shared resources are recruited. If object-based attention tasks are time-critical, shared resources are recruited across the sensory modalities. When humans perform an object-based attention task in combination with a spatial attention task, partly shared resources are recruited across the sensory modalities as well. Conversely, for spatial attention tasks, attentional processing does consistently involve shared attentional resources for the sensory modalities. Generally, findings suggest that the attentional system flexibly allocates attentional resources depending on task demands. We propose that such flexibility reflects a large-scale optimization strategy that minimizes the brain's costly resource expenditures and simultaneously maximizes capability to process currently relevant information.
NASA Astrophysics Data System (ADS)
Urry, C. Megan
1997-01-01
This grant was awarded to Dr. C. Megan Urry of the Space Telescope Science Institute in response to two successful ADP proposals to use archival Ginga and Rosat X-ray data for 'Testing the Pairs-Reflection model with X-Ray Spectral Variability' (in collaboration with Paola Grandi, now at the University of Rome) and 'X-Ray Properties of Complete Samples of Radio-Selected BL Lacertae Objects' (in collaboration with then-graduate student Rita Sambruna, now a post-doc at Goddard Space Flight Center). In addition, post-docs Joseph Pesce and Elena Pian, and graduate student Matthew O'Dowd, have worked on several aspects of these projects. The grant was originally awarded on 3/01/94; this report covers the full period, through May 1997. We have completed our project on the X-ray properties of radio-selected BL Lacs.
Modulation of microsaccades by spatial frequency during object categorization.
Craddock, Matt; Oppermann, Frank; Müller, Matthias M; Martinovic, Jasna
2017-01-01
The organization of visual processing into a coarse-to-fine information processing based on the spatial frequency properties of the input forms an important facet of the object recognition process. During visual object categorization tasks, microsaccades occur frequently. One potential functional role of these eye movements is to resolve high spatial frequency information. To assess this hypothesis, we examined the rate, amplitude and speed of microsaccades in an object categorization task in which participants viewed object and non-object images and classified them as showing either natural objects, man-made objects or non-objects. Images were presented unfiltered (broadband; BB) or filtered to contain only low (LSF) or high spatial frequency (HSF) information. This allowed us to examine whether microsaccades were modulated independently by the presence of a high-level feature - the presence of an object - and by low-level stimulus characteristics - spatial frequency. We found a bimodal distribution of saccades based on their amplitude, with a split between smaller and larger microsaccades at 0.4° of visual angle. The rate of larger saccades (⩾0.4°) was higher for objects than non-objects, and higher for objects with high spatial frequency content (HSF and BB objects) than for LSF objects. No effects were observed for smaller microsaccades (<0.4°). This is consistent with a role for larger microsaccades in resolving HSF information for object identification, and previous evidence that more microsaccades are directed towards informative image regions. Copyright © 2016 Elsevier Ltd. All rights reserved.
When Do Objects Become Landmarks? A VR Study of the Effect of Task Relevance on Spatial Memory
Han, Xue; Byrne, Patrick; Kahana, Michael; Becker, Suzanna
2012-01-01
We investigated how objects come to serve as landmarks in spatial memory, and more specifically how they form part of an allocentric cognitive map. Participants performing a virtual driving task incidentally learned the layout of a virtual town and locations of objects in that town. They were subsequently tested on their spatial and recognition memory for the objects. To assess whether the objects were encoded allocentrically we examined pointing consistency across tested viewpoints. In three experiments, we found that spatial memory for objects at navigationally relevant locations was more consistent across tested viewpoints, particularly when participants had more limited experience of the environment. When participants’ attention was focused on the appearance of objects, the navigational relevance effect was eliminated, whereas when their attention was focused on objects’ locations, this effect was enhanced, supporting the hypothesis that when objects are processed in the service of navigation, rather than merely being viewed as objects, they engage qualitatively distinct attentional systems and are incorporated into an allocentric spatial representation. The results are consistent with evidence from the neuroimaging literature that when objects are relevant to navigation, they not only engage the ventral “object processing stream”, but also the dorsal stream and medial temporal lobe memory system classically associated with allocentric spatial memory. PMID:22586455
Acoustic energy relations in Mudejar-Gothic churches.
Zamarreño, Teófilo; Girón, Sara; Galindo, Miguel
2007-01-01
Extensive objective energy-based parameters have been measured in 12 Mudejar-Gothic churches in the south of Spain. Measurements took place in unoccupied churches according to the ISO-3382 standard. Monoaural objective measures in the 125-4000 Hz frequency range and in their spatial distributions were obtained. Acoustic parameters: clarity C80, definition D50, sound strength G and center time Ts have been deduced using impulse response analysis through a maximum length sequence measurement system in each church. These parameters spectrally averaged according to the most extended criteria in auditoria in order to consider acoustic quality were studied as a function of source-receiver distance. The experimental results were compared with predictions given by classical and other existing theoretical models proposed for concert halls and churches. An analytical semi-empirical model based on the measured values of the C80 parameter is proposed in this work for these spaces. The good agreement between predicted values and experimental data for definition, sound strength, and center time in the churches analyzed shows that the model can be used for design predictions and other purposes with reasonable accuracy.
NASA Astrophysics Data System (ADS)
Soszyński, I.; Udalski, A.; Szymański, M. K.; Wyrzykowski, Ł.; Ulaczyk, K.; Poleski, R.; Pietrukowicz, P.; Kozłowski, S.; Skowron, D. M.; Skowron, J.; Mróz, P.; Pawlak, M.; Rybicki, K.; Jacyszyn-Dobrzeniecka, A.
2017-12-01
We present a collection of classical, typeII, and anomalous Cepheids detected in the OGLE fields toward the Galactic center. The sample contains 87 classical Cepheids pulsating in one, two or three radial modes, 924 type II Cepheids divided into BL Her, W Vir, peculiar W Vir, and RV Tau stars, and 20 anomalous Cepheids - first such objects found in the Galactic bulge. Additionally, we upgrade the OGLE Collection of RR Lyr stars in the Galactic bulge by adding 828 newly identified variables. For all Cepheids and RRLyr stars, we publish time-series VI photometry obtained during the OGLE-IV project, from 2010 through 2017. We discuss basic properties of our classical pulsators: their spatial distribution, light curve morphology, period-luminosity relations, and position in the Petersen diagram. We present the most interesting individual objects in our collection: a typeII Cepheid with additional eclipsing modulation, WVir stars with the period doubling effect and the RVb phenomenon, a mode-switching RR Lyr star, and a triple-mode anomalous RRd star.
Phobos spectral clustering: first results using the MRO-CRISM 0.4-2.5 micron dataset
NASA Astrophysics Data System (ADS)
Pajola, M.; Roush, T. L.; Marzo, G. A.; Simioni, E.
2016-12-01
Whether Phobos is a captured asteroid or it formed in situ around Mars, is still an outstanding question within the scientific community. The proposed Japanese Mars Moon eXploration (MMX) sample return mission has the chief scientific objective to solve this conundrum, reaching Phobos in early 2020s and returning Phobos samples to Earth few years later. Nonetheless, well before surface samples are returned to Earth, there are important spectral datasets that can be mined in order to constrain Phobos' surface properties and address implications regarding Phobos' origin. One of these is the MRO-CRISM multispectral observations of Phobos. The MRO-CRISM visible and infrared observations (0.4-2.5 micron) are here corrected for incidence and emission angles of the observation. Unlike previous studies of the MRO-CRISM data that selected specific regions for analyses, we apply a statistical technique that identifies different clusters based on a K-means partitioning algorithm. Selecting specific wavelength ranges of Phobos' reflectance spectra permits identification of possible mineralogical compounds and the spatial distribution of these on the surface of Phobos. This work paves the way to a deeper analysis of the available dataset regarding Phobos, potentially identifying regions of interest on the surface of Phobos that may warrant more detailed investigation by the MXX mission as potential sampling areas. Acknowledgments: M. Pajola was supported for this research by an appointment to the NASA Postdoctoral Program at the Ames Research Center administered by USRA.
Content-based fused off-axis object illumination direct-to-digital holography
Price, Jeffery R.
2006-05-02
Systems and methods are described for content-based fused off-axis illumination direct-to-digital holography. A method includes calculating an illumination angle with respect to an optical axis defined by a focusing lens as a function of data representing a Fourier analyzed spatially heterodyne hologram; reflecting a reference beam from a reference mirror at a non-normal angle; reflecting an object beam from an object the object beam incident upon the object at the illumination angle; focusing the reference beam and the object beam at a focal plane of a digital recorder to from the content-based off-axis illuminated spatially heterodyne hologram including spatially heterodyne fringes for Fourier analysis; and digitally recording the content based off-axis illuminated spatially heterodyne hologram including spatially heterodyne fringes for Fourier analysis.
NASA Astrophysics Data System (ADS)
Kistler, Marc; Estre, Nicolas; Merle, Elsa
2018-01-01
As part of its R&D activities on high-energy X-ray imaging for non-destructive characterization, the Nuclear Measurement Laboratory has started an upgrade of its imaging system currently implemented at the CEA-Cadarache center. The goals are to achieve a sub-millimeter spatial resolution and the ability to perform tomographies on very large objects (more than 100-cm standard concrete or 40-cm steel). This paper presentsresults on the detection part of the imaging system. The upgrade of the detection part needs a thorough study of the performance of two detectors: a series of CdTe semiconductor sensors and two arrays of segmented CdWO4 scintillators with different pixel sizes. This study consists in a Quantum Accounting Diagram (QAD) analysis coupled with Monte-Carlo simulations. The scintillator arrays are able to detect millimeter details through 140 cm of concrete, but are limited to 120 cm for smaller ones. CdTe sensors have lower but more stable performance, with a 0.5 mm resolution for 90 cm of concrete. The choice of the detector then depends on the preferred characteristic: the spatial resolution or the use on large volumes. The combination of the features of the source and the studies on the detectors gives the expected performance of the whole equipment, in terms of signal-over-noise ratio (SNR), spatial resolution and acquisition time.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schulz, D.; Schulz, D.; Mirrione, M.
2009-11-29
Cognitive processes are assumed to change with learned helplessness, an animal model of depression, but little is known about such deficits. Here we investigated the role of cognitive and related functions in selectively bred helpless (cLH, n = 10), non-helpless (cNLH, n = 12) and wild type (WT, n = 8) Sprague Dawley rats. The animals were exposed to an open field for 10 min on each of two test days. On the third day, an object exploration paradigm was carried out. The animals were later tested for helplessness. Both cLH and cNLH rats were more active than WTs onmore » the first day in the open field. Over trials, cNLH and WT rats lowered their activity less than cLH rats. This resistance-to-habituation co-varied with a resistance to develop helplessness. In cLH rats, higher 'anxiety' or less time spent in the center of the open field co-varied with severe helplessness. In WTs, a greater reactivity to novel objects and to a spatially relocated object predicted lower levels of helplessness. In cLH rats (n = 4-5 per group), chronic treatment with a high dose of the monoamineoxidase (MAO)-Binhibitordeprenyl (10 mg/kg; i.p.), an anti-Parkinson, nootropic and antidepressant drug, attenuated helplessness. Remarkably, helplessness reversal required the experience of repeated test trials, reminiscent of a learning process. Chronic deprenyl (10 mg/kg; i.p.) did not alter locomotion/exploration or 'anxiety' in the open field. In conclusion, helplessness may be related to altered mechanisms of reinforcement learning and working memory, and to abnormalities in MAO-A and/or MAO-B functioning.« less
Schulz, Daniela; Mirrione, Martine M; Henn, Fritz A
2010-02-01
Cognitive processes are assumed to change with learned helplessness, an animal model of depression, but little is known about such deficits. Here we investigated the role of cognitive and related functions in selectively bred helpless (cLH, n=10), non-helpless (cNLH, n=12) and wild type (WT, n=8) Sprague Dawley rats. The animals were exposed to an open field for 10min on each of two test days. On the third day, an object exploration paradigm was carried out. The animals were later tested for helplessness. Both cLH and cNLH rats were more active than WTs on the first day in the open field. Over trials, cNLH and WT rats lowered their activity less than cLH rats. This resistance-to-habituation co-varied with a resistance to develop helplessness. In cLH rats, higher 'anxiety' or less time spent in the center of the open field co-varied with severe helplessness. In WTs, a greater reactivity to novel objects and to a spatially relocated object predicted lower levels of helplessness. In cLH rats (n=4-5 per group), chronic treatment with a high dose of the monoamine oxidase (MAO)-B inhibitor deprenyl (10mg/kg; i.p.), an anti-Parkinson, nootropic and antidepressant drug, attenuated helplessness. Remarkably, helplessness reversal required the experience of repeated test trials, reminiscent of a learning process. Chronic deprenyl (10mg/kg; i.p.) did not alter locomotion/exploration or 'anxiety' in the open field. In conclusion, helplessness may be related to altered mechanisms of reinforcement learning and working memory, and to abnormalities in MAO-A and/or MAO-B functioning. Copyright 2009 Elsevier Inc. All rights reserved.
Object detection in natural scenes: Independent effects of spatial and category-based attention.
Stein, Timo; Peelen, Marius V
2017-04-01
Humans are remarkably efficient in detecting highly familiar object categories in natural scenes, with evidence suggesting that such object detection can be performed in the (near) absence of attention. Here we systematically explored the influences of both spatial attention and category-based attention on the accuracy of object detection in natural scenes. Manipulating both types of attention additionally allowed for addressing how these factors interact: whether the requirement for spatial attention depends on the extent to which observers are prepared to detect a specific object category-that is, on category-based attention. The results showed that the detection of targets from one category (animals or vehicles) was better than the detection of targets from two categories (animals and vehicles), demonstrating the beneficial effect of category-based attention. This effect did not depend on the semantic congruency of the target object and the background scene, indicating that observers attended to visual features diagnostic of the foreground target objects from the cued category. Importantly, in three experiments the detection of objects in scenes presented in the periphery was significantly impaired when observers simultaneously performed an attentionally demanding task at fixation, showing that spatial attention affects natural scene perception. In all experiments, the effects of category-based attention and spatial attention on object detection performance were additive rather than interactive. Finally, neither spatial nor category-based attention influenced metacognitive ability for object detection performance. These findings demonstrate that efficient object detection in natural scenes is independently facilitated by spatial and category-based attention.
Dynamic NMDAR-mediated properties of place cells during the object place memory task.
Faust, Thomas W; Robbiati, Sergio; Huerta, Tomás S; Huerta, Patricio T
2013-01-01
N-methyl-D-aspartate receptors (NMDAR) in the hippocampus participate in encoding and recalling the location of objects in the environment, but the ensemble mechanisms by which NMDARs mediate these processes have not been completely elucidated. To address this issue, we examined the firing patterns of place cells in the dorsal CA1 area of the hippocampus of mice (n = 7) that performed an object place memory (OPM) task, consisting of familiarization (T1), sample (T2), and choice (T3) trials, after systemic injection of 3-[(±)2-carboxypiperazin-4yl]propyl-1-phosphate (CPP), a specific NMDAR antagonist. Place cell properties under CPP (CPP-PCs) were compared to those after control saline injection (SAL-PCs) in the same mice. We analyzed place cells across the OPM task to determine whether they signaled the introduction or movement of objects by NMDAR-mediated changes of their spatial coding. On T2, when two objects were first introduced to a familiar chamber, CPP-PCs and SAL-PCs showed stable, vanishing or moving place fields in addition to changes in spatial information (SI). These metrics were comparable between groups. Remarkably, previously inactive CPP-PCs (with place fields emerging de novo on T2) had significantly weaker SI increases than SAL-PCs. On T3, when one object was moved, CPP-PCs showed reduced center-of-mass (COM) shift of their place fields. Indeed, a subset of SAL-PCs with large COM shifts (>7 cm) was largely absent in the CPP condition. Notably, for SAL-PCs that exhibited COM shifts, those initially close to the moving object followed the trajectory of the object, whereas those far from the object did the opposite. Our results strongly suggest that the SI changes and COM shifts of place fields that occur during the OPM task reflect key dynamic properties that are mediated by NMDARs and might be responsible for binding object identity with location.
Dynamic NMDAR-mediated properties of place cells during the object place memory task
Faust, Thomas W.; Robbiati, Sergio; Huerta, Tomás S.; Huerta, Patricio T.
2013-01-01
N-methyl-D-aspartate receptors (NMDAR) in the hippocampus participate in encoding and recalling the location of objects in the environment, but the ensemble mechanisms by which NMDARs mediate these processes have not been completely elucidated. To address this issue, we examined the firing patterns of place cells in the dorsal CA1 area of the hippocampus of mice (n = 7) that performed an object place memory (OPM) task, consisting of familiarization (T1), sample (T2), and choice (T3) trials, after systemic injection of 3-[(±)2-carboxypiperazin-4yl]propyl-1-phosphate (CPP), a specific NMDAR antagonist. Place cell properties under CPP (CPP–PCs) were compared to those after control saline injection (SAL–PCs) in the same mice. We analyzed place cells across the OPM task to determine whether they signaled the introduction or movement of objects by NMDAR-mediated changes of their spatial coding. On T2, when two objects were first introduced to a familiar chamber, CPP–PCs and SAL–PCs showed stable, vanishing or moving place fields in addition to changes in spatial information (SI). These metrics were comparable between groups. Remarkably, previously inactive CPP–PCs (with place fields emerging de novo on T2) had significantly weaker SI increases than SAL–PCs. On T3, when one object was moved, CPP–PCs showed reduced center-of-mass (COM) shift of their place fields. Indeed, a subset of SAL–PCs with large COM shifts (>7 cm) was largely absent in the CPP condition. Notably, for SAL–PCs that exhibited COM shifts, those initially close to the moving object followed the trajectory of the object, whereas those far from the object did the opposite. Our results strongly suggest that the SI changes and COM shifts of place fields that occur during the OPM task reflect key dynamic properties that are mediated by NMDARs and might be responsible for binding object identity with location. PMID:24381547
A Bayesian approach to modeling 2D gravity data using polygon states
NASA Astrophysics Data System (ADS)
Titus, W. J.; Titus, S.; Davis, J. R.
2015-12-01
We present a Bayesian Markov chain Monte Carlo (MCMC) method for the 2D gravity inversion of a localized subsurface object with constant density contrast. Our models have four parameters: the density contrast, the number of vertices in a polygonal approximation of the object, an upper bound on the ratio of the perimeter squared to the area, and the vertices of a polygon container that bounds the object. Reasonable parameter values can be estimated prior to inversion using a forward model and geologic information. In addition, we assume that the field data have a common random uncertainty that lies between two bounds but that it has no systematic uncertainty. Finally, we assume that there is no uncertainty in the spatial locations of the measurement stations. For any set of model parameters, we use MCMC methods to generate an approximate probability distribution of polygons for the object. We then compute various probability distributions for the object, including the variance between the observed and predicted fields (an important quantity in the MCMC method), the area, the center of area, and the occupancy probability (the probability that a spatial point lies within the object). In addition, we compare probabilities of different models using parallel tempering, a technique which also mitigates trapping in local optima that can occur in certain model geometries. We apply our method to several synthetic data sets generated from objects of varying shape and location. We also analyze a natural data set collected across the Rio Grande Gorge Bridge in New Mexico, where the object (i.e. the air below the bridge) is known and the canyon is approximately 2D. Although there are many ways to view results, the occupancy probability proves quite powerful. We also find that the choice of the container is important. In particular, large containers should be avoided, because the more closely a container confines the object, the better the predictions match properties of object.
The finite body triangulation: algorithms, subgraphs, homogeneity estimation and application.
Carson, Cantwell G; Levine, Jonathan S
2016-09-01
The concept of a finite body Dirichlet tessellation has been extended to that of a finite body Delaunay 'triangulation' to provide a more meaningful description of the spatial distribution of nonspherical secondary phase bodies in 2- and 3-dimensional images. A finite body triangulation (FBT) consists of a network of minimum edge-to-edge distances between adjacent objects in a microstructure. From this is also obtained the characteristic object chords formed by the intersection of the object boundary with the finite body tessellation. These two sets of distances form the basis of a parsimonious homogeneity estimation. The characteristics of the spatial distribution are then evaluated with respect to the distances between objects and the distances within them. Quantitative analysis shows that more physically representative distributions can be obtained by selecting subgraphs, such as the relative neighbourhood graph and the minimum spanning tree, from the finite body tessellation. To demonstrate their potential, we apply these methods to 3-dimensional X-ray computed tomographic images of foamed cement and their 2-dimensional cross sections. The Python computer code used to estimate the FBT is made available. Other applications for the algorithm - such as porous media transport and crack-tip propagation - are also discussed. © 2016 The Authors Journal of Microscopy © 2016 Royal Microscopical Society.
NASA Astrophysics Data System (ADS)
Pravitasari, A. E.; Rustiadi, E.; Mulya, S. P.; Setiawan, Y.; Fuadina, L. N.; Murtadho, A.
2018-05-01
The socio-economic development in Jakarta-Bandung Mega Urban Region (JBMUR) caused the increasing of urban expansion and led to a variety of environmental damage such as uncontrolled land use conversion and raising anthropogenic disaster. The objectives of this study are: (1) to identify the driving forces of urban expansion that occurs on JBMUR and (2) to analyze the environmental quality decline on JBMUR by producing time series spatial distribution map and spatial autocorrelation of floods and landslide as the proxy of anthropogenic disaster. The driving forces of urban expansion in this study were identified by employing Geographically Weighted Regression (GWR) model using 6 (six) independent variables, namely: population density, percentage of agricultural land, distance to the center of capital city/municipality, percentage of household who works in agricultural sector, distance to the provincial road, and distance to the local road. The GWR results showed that local demographic, social and economic factors including distance to the road spatially affect urban expansion in JBMUR. The time series spatial distribution map of floods and landslide event showed the spatial cluster of anthropogenic disaster in some areas. Through Local Moran Index, we found that environmental damage in one location has a significant impact on the condition of its surrounding area.
Integration and management of massive remote-sensing data based on GeoSOT subdivision model
NASA Astrophysics Data System (ADS)
Li, Shuang; Cheng, Chengqi; Chen, Bo; Meng, Li
2016-07-01
Owing to the rapid development of earth observation technology, the volume of spatial information is growing rapidly; therefore, improving query retrieval speed from large, rich data sources for remote-sensing data management systems is quite urgent. A global subdivision model, geographic coordinate subdivision grid with one-dimension integer coding on 2n-tree, which we propose as a solution, has been used in data management organizations. However, because a spatial object may cover several grids, ample data redundancy will occur when data are stored in relational databases. To solve this redundancy problem, we first combined the subdivision model with the spatial array database containing the inverted index. We proposed an improved approach for integrating and managing massive remote-sensing data. By adding a spatial code column in an array format in a database, spatial information in remote-sensing metadata can be stored and logically subdivided. We implemented our method in a Kingbase Enterprise Server database system and compared the results with the Oracle platform by simulating worldwide image data. Experimental results showed that our approach performed better than Oracle in terms of data integration and time and space efficiency. Our approach also offers an efficient storage management system for existing storage centers and management systems.
Li, Yi Zhe; Zhang, Ting Long; Liu, Qiu Yu; Li, Ying
2018-01-01
The ecological process models are powerful tools for studying terrestrial ecosystem water and carbon cycle at present. However, there are many parameters for these models, and weather the reasonable values of these parameters were taken, have important impact on the models simulation results. In the past, the sensitivity and the optimization of model parameters were analyzed and discussed in many researches. But the temporal and spatial heterogeneity of the optimal parameters is less concerned. In this paper, the BIOME-BGC model was used as an example. In the evergreen broad-leaved forest, deciduous broad-leaved forest and C3 grassland, the sensitive parameters of the model were selected by constructing the sensitivity judgment index with two experimental sites selected under each vegetation type. The objective function was constructed by using the simulated annealing algorithm combined with the flux data to obtain the monthly optimal values of the sensitive parameters at each site. Then we constructed the temporal heterogeneity judgment index, the spatial heterogeneity judgment index and the temporal and spatial heterogeneity judgment index to quantitatively analyze the temporal and spatial heterogeneity of the optimal values of the model sensitive parameters. The results showed that the sensitivity of BIOME-BGC model parameters was different under different vegetation types, but the selected sensitive parameters were mostly consistent. The optimal values of the sensitive parameters of BIOME-BGC model mostly presented time-space heterogeneity to different degrees which varied with vegetation types. The sensitive parameters related to vegetation physiology and ecology had relatively little temporal and spatial heterogeneity while those related to environment and phenology had generally larger temporal and spatial heterogeneity. In addition, the temporal heterogeneity of the optimal values of the model sensitive parameters showed a significant linear correlation with the spatial heterogeneity under the three vegetation types. According to the temporal and spatial heterogeneity of the optimal values, the parameters of the BIOME-BGC model could be classified in order to adopt different parameter strategies in practical application. The conclusion could help to deeply understand the parameters and the optimal values of the ecological process models, and provide a way or reference for obtaining the reasonable values of parameters in models application.
Building a Lego wall: Sequential action selection.
Arnold, Amy; Wing, Alan M; Rotshtein, Pia
2017-05-01
The present study draws together two distinct lines of enquiry into the selection and control of sequential action: motor sequence production and action selection in everyday tasks. Participants were asked to build 2 different Lego walls. The walls were designed to have hierarchical structures with shared and dissociated colors and spatial components. Participants built 1 wall at a time, under low and high load cognitive states. Selection times for correctly completed trials were measured using 3-dimensional motion tracking. The paradigm enabled precise measurement of the timing of actions, while using real objects to create an end product. The experiment demonstrated that action selection was slowed at decision boundary points, relative to boundaries where no between-wall decision was required. Decision points also affected selection time prior to the actual selection window. Dual-task conditions increased selection errors. Errors mostly occurred at boundaries between chunks and especially when these required decisions. The data support hierarchical control of sequenced behavior. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Small target detection using bilateral filter and temporal cross product in infrared images
NASA Astrophysics Data System (ADS)
Bae, Tae-Wuk
2011-09-01
We introduce a spatial and temporal target detection method using spatial bilateral filter (BF) and temporal cross product (TCP) of temporal pixels in infrared (IR) image sequences. At first, the TCP is presented to extract the characteristics of temporal pixels by using temporal profile in respective spatial coordinates of pixels. The TCP represents the cross product values by the gray level distance vector of a current temporal pixel and the adjacent temporal pixel, as well as the horizontal distance vector of the current temporal pixel and a temporal pixel corresponding to potential target center. The summation of TCP values of temporal pixels in spatial coordinates makes the temporal target image (TTI), which represents the temporal target information of temporal pixels in spatial coordinates. And then the proposed BF filter is used to extract the spatial target information. In order to predict background without targets, the proposed BF filter uses standard deviations obtained by an exponential mapping of the TCP value corresponding to the coordinate of a pixel processed spatially. The spatial target image (STI) is made by subtracting the predicted image from the original image. Thus, the spatial and temporal target image (STTI) is achieved by multiplying the STI and the TTI, and then targets finally are detected in STTI. In experimental result, the receiver operating characteristics (ROC) curves were computed experimentally to compare the objective performance. From the results, the proposed algorithm shows better discrimination of target and clutters and lower false alarm rates than the existing target detection methods.
Developmental Trends for Object and Spatial Working Memory: A Psychophysiological Analysis
ERIC Educational Resources Information Center
Van Leijenhorst, Linda; Crone, Eveline A.; Van der Molen, Maurits W.
2007-01-01
This study examined developmental trends in object and spatial working memory (WM) using heart rate (HR) to provide an index of covert cognitive processes. Participants in 4 age groups (6-7, 9-10, 11-12, 18-26, n=20 each) performed object and spatial WM tasks, in which each trial was followed by feedback. Spatial WM task performance reached adult…
Bottom-up influences of voice continuity in focusing selective auditory attention
Bressler, Scott; Masud, Salwa; Bharadwaj, Hari; Shinn-Cunningham, Barbara
2015-01-01
Selective auditory attention causes a relative enhancement of the neural representation of important information and suppression of the neural representation of distracting sound, which enables a listener to analyze and interpret information of interest. Some studies suggest that in both vision and in audition, the “unit” on which attention operates is an object: an estimate of the information coming from a particular external source out in the world. In this view, which object ends up in the attentional foreground depends on the interplay of top-down, volitional attention and stimulus-driven, involuntary attention. Here, we test the idea that auditory attention is object based by exploring whether continuity of a non-spatial feature (talker identity, a feature that helps acoustic elements bind into one perceptual object) also influences selective attention performance. In Experiment 1, we show that perceptual continuity of target talker voice helps listeners report a sequence of spoken target digits embedded in competing reversed digits spoken by different talkers. In Experiment 2, we provide evidence that this benefit of voice continuity is obligatory and automatic, as if voice continuity biases listeners by making it easier to focus on a subsequent target digit when it is perceptually linked to what was already in the attentional foreground. Our results support the idea that feature continuity enhances streaming automatically, thereby influencing the dynamic processes that allow listeners to successfully attend to objects through time in the cacophony that assails our ears in many everyday settings. PMID:24633644
Bottom-up influences of voice continuity in focusing selective auditory attention.
Bressler, Scott; Masud, Salwa; Bharadwaj, Hari; Shinn-Cunningham, Barbara
2014-01-01
Selective auditory attention causes a relative enhancement of the neural representation of important information and suppression of the neural representation of distracting sound, which enables a listener to analyze and interpret information of interest. Some studies suggest that in both vision and in audition, the "unit" on which attention operates is an object: an estimate of the information coming from a particular external source out in the world. In this view, which object ends up in the attentional foreground depends on the interplay of top-down, volitional attention and stimulus-driven, involuntary attention. Here, we test the idea that auditory attention is object based by exploring whether continuity of a non-spatial feature (talker identity, a feature that helps acoustic elements bind into one perceptual object) also influences selective attention performance. In Experiment 1, we show that perceptual continuity of target talker voice helps listeners report a sequence of spoken target digits embedded in competing reversed digits spoken by different talkers. In Experiment 2, we provide evidence that this benefit of voice continuity is obligatory and automatic, as if voice continuity biases listeners by making it easier to focus on a subsequent target digit when it is perceptually linked to what was already in the attentional foreground. Our results support the idea that feature continuity enhances streaming automatically, thereby influencing the dynamic processes that allow listeners to successfully attend to objects through time in the cacophony that assails our ears in many everyday settings.
Texture analysis of Napoleonic War Era copper bolts
NASA Astrophysics Data System (ADS)
Malamud, Florencia; Northover, Shirley; James, Jon; Northover, Peter; Kelleher, Joe
2016-04-01
Neutron diffraction techniques are suitable for volume texture analyses due to high penetration of thermal neutrons in most materials. We have implemented a new data analysis methodology that employed the spatial resolution achievable by a time-of-flight neutron strain scanner to non-destructively determine the crystallographic texture at selected locations within a macroscopic sample. The method is based on defining the orientation distribution function of the crystallites from several incomplete pole figures, and it has been implemented on ENGIN-X, a neutron strain scanner at the Isis Facility in the UK. Here, we demonstrate the application of this new texture analysis methodology in determining the crystallographic texture at selected locations within museum quality archaeological objects up to 1 m in length. The results were verified using samples of similar, but less valuable, objects by comparing the results of applying this method with those obtained using both electron backscatter diffraction and X-ray diffraction on their cross sections.
Arima, E. Y.
2016-01-01
Tropical forests are now at the center stage of climate mitigation policies worldwide given their roles as sources of carbon emissions resulting from deforestation and forest degradation. Although the international community has created mechanisms such as REDD+ to reduce those emissions, developing tropical countries continue to invest in infrastructure development in an effort to spur economic growth. Construction of roads in particular is known to be an important driver of deforestation. This article simulates the impact of road construction on deforestation in Western Amazonia, Peru, and quantifies the amount of carbon emissions associated with projected deforestation. To accomplish this objective, the article adopts a Bayesian probit land change model in which spatial dependencies are defined between regions or groups of pixels instead of between individual pixels, thereby reducing computational requirements. It also compares and contrasts the patterns of deforestation predicted by both spatial and non-spatial probit models. The spatial model replicates complex patterns of deforestation whereas the non-spatial model fails to do so. In terms of policy, both models suggest that road construction will increase deforestation by a modest amount, between 200–300 km2. This translates into aboveground carbon emissions of 1.36 and 1.85 x 106 tons. However, recent introduction of palm oil in the region serves as a cautionary example that the models may be underestimating the impact of roads. PMID:27010739
Arima, E Y
2016-01-01
Tropical forests are now at the center stage of climate mitigation policies worldwide given their roles as sources of carbon emissions resulting from deforestation and forest degradation. Although the international community has created mechanisms such as REDD+ to reduce those emissions, developing tropical countries continue to invest in infrastructure development in an effort to spur economic growth. Construction of roads in particular is known to be an important driver of deforestation. This article simulates the impact of road construction on deforestation in Western Amazonia, Peru, and quantifies the amount of carbon emissions associated with projected deforestation. To accomplish this objective, the article adopts a Bayesian probit land change model in which spatial dependencies are defined between regions or groups of pixels instead of between individual pixels, thereby reducing computational requirements. It also compares and contrasts the patterns of deforestation predicted by both spatial and non-spatial probit models. The spatial model replicates complex patterns of deforestation whereas the non-spatial model fails to do so. In terms of policy, both models suggest that road construction will increase deforestation by a modest amount, between 200-300 km2. This translates into aboveground carbon emissions of 1.36 and 1.85 x 106 tons. However, recent introduction of palm oil in the region serves as a cautionary example that the models may be underestimating the impact of roads.
Saliency-Guided Detection of Unknown Objects in RGB-D Indoor Scenes.
Bao, Jiatong; Jia, Yunyi; Cheng, Yu; Xi, Ning
2015-08-27
This paper studies the problem of detecting unknown objects within indoor environments in an active and natural manner. The visual saliency scheme utilizing both color and depth cues is proposed to arouse the interests of the machine system for detecting unknown objects at salient positions in a 3D scene. The 3D points at the salient positions are selected as seed points for generating object hypotheses using the 3D shape. We perform multi-class labeling on a Markov random field (MRF) over the voxels of the 3D scene, combining cues from object hypotheses and 3D shape. The results from MRF are further refined by merging the labeled objects, which are spatially connected and have high correlation between color histograms. Quantitative and qualitative evaluations on two benchmark RGB-D datasets illustrate the advantages of the proposed method. The experiments of object detection and manipulation performed on a mobile manipulator validate its effectiveness and practicability in robotic applications.
Saliency-Guided Detection of Unknown Objects in RGB-D Indoor Scenes
Bao, Jiatong; Jia, Yunyi; Cheng, Yu; Xi, Ning
2015-01-01
This paper studies the problem of detecting unknown objects within indoor environments in an active and natural manner. The visual saliency scheme utilizing both color and depth cues is proposed to arouse the interests of the machine system for detecting unknown objects at salient positions in a 3D scene. The 3D points at the salient positions are selected as seed points for generating object hypotheses using the 3D shape. We perform multi-class labeling on a Markov random field (MRF) over the voxels of the 3D scene, combining cues from object hypotheses and 3D shape. The results from MRF are further refined by merging the labeled objects, which are spatially connected and have high correlation between color histograms. Quantitative and qualitative evaluations on two benchmark RGB-D datasets illustrate the advantages of the proposed method. The experiments of object detection and manipulation performed on a mobile manipulator validate its effectiveness and practicability in robotic applications. PMID:26343656
Object versus spatial visual mental imagery in patients with schizophrenia
Aleman, André; de Haan, Edward H.F.; Kahn, René S.
2005-01-01
Objective Recent research has revealed a larger impairment of object perceptual discrimination than of spatial perceptual discrimination in patients with schizophrenia. It has been suggested that mental imagery may share processing systems with perception. We investigated whether patients with schizophrenia would show greater impairment regarding object imagery than spatial imagery. Methods Forty-four patients with schizophrenia and 20 healthy control subjects were tested on a task of object visual mental imagery and on a task of spatial visual mental imagery. Both tasks included a condition in which no imagery was needed for adequate performance, but which was in other respects identical to the imagery condition. This allowed us to adjust for nonspecific differences in individual performance. Results The results revealed a significant difference between patients and controls on the object imagery task (F1,63 = 11.8, p = 0.001) but not on the spatial imagery task (F1,63 = 0.14, p = 0.71). To test for a differential effect, we conducted a 2 (patients v. controls) х 2 (object task v. spatial task) analysis of variance. The interaction term was statistically significant (F1,62 = 5.2, p = 0.026). Conclusions Our findings suggest a differential dysfunction of systems mediating object and spatial visual mental imagery in schizophrenia. PMID:15644999
Localization of virtual sound at 4 Gz.
Sandor, Patrick M B; McAnally, Ken I; Pellieux, Lionel; Martin, Russell L
2005-02-01
Acceleration directed along the body's z-axis (Gz) leads to misperception of the elevation of visual objects (the "elevator illusion"), most probably as a result of errors in the transformation from eye-centered to head-centered coordinates. We have investigated whether the location of sound sources is misperceived under increased Gz. Visually guided localization responses were made, using a remotely controlled laser pointer, to virtual auditory targets under conditions of 1 and 4 Gz induced in a human centrifuge. As these responses would be expected to be affected by the elevator illusion, we also measured the effect of Gz on the accuracy with which subjects could point to the horizon. Horizon judgments were lower at 4 Gz than at 1 Gz, so sound localization responses at 4 Gz were corrected for this error in the transformation from eye-centered to head-centered coordinates. We found that the accuracy and bias of sound localization are not significantly affected by increased Gz. The auditory modality is likely to provide a reliable means of conveying spatial information to operators in dynamic environments in which Gz can vary.
Brain Activation during Spatial Updating and Attentive Tracking of Moving Targets
ERIC Educational Resources Information Center
Jahn, Georg; Wendt, Julia; Lotze, Martin; Papenmeier, Frank; Huff, Markus
2012-01-01
Keeping aware of the locations of objects while one is moving requires the updating of spatial representations. As long as the objects are visible, attentional tracking is sufficient, but knowing where objects out of view went in relation to one's own body involves an updating of spatial working memory. Here, multiple object tracking was employed…
Neural Models of Spatial Orientation in Novel Environments
1994-01-01
tool use, the problem of self-organizing body -centered spatial representations for movement planning and spatial orientation, and the problem of...meeting of the American Association for the Advancement of Science, Boston, February, 1993. 23. Grossberg, S., annual Linnaeus Lecture, Uppsala...Congress on Neural Networks entitled --A self-organizing neural network for learning a body -centered invariant representa- tion of 3-D target
KBGIS-II: A knowledge-based geographic information system
NASA Technical Reports Server (NTRS)
Smith, Terence; Peuquet, Donna; Menon, Sudhakar; Agarwal, Pankaj
1986-01-01
The architecture and working of a recently implemented Knowledge-Based Geographic Information System (KBGIS-II), designed to satisfy several general criteria for the GIS, is described. The system has four major functions including query-answering, learning and editing. The main query finds constrained locations for spatial objects that are describable in a predicate-calculus based spatial object language. The main search procedures include a family of constraint-satisfaction procedures that use a spatial object knowledge base to search efficiently for complex spatial objects in large, multilayered spatial data bases. These data bases are represented in quadtree form. The search strategy is designed to reduce the computational cost of search in the average case. The learning capabilities of the system include the addition of new locations of complex spatial objects to the knowledge base as queries are answered, and the ability to learn inductively definitions of new spatial objects from examples. The new definitions are added to the knowledge base by the system. The system is performing all its designated tasks successfully. Future reports will relate performance characteristics of the system.
Leslie, Eva; Coffee, Neil; Frank, Lawrence; Owen, Neville; Bauman, Adrian; Hugo, Graeme
2007-03-01
Geographic Information Systems (GIS) can be used to objectively measure features of the built environment that may influence adults' physical activity, which is an important determinant of chronic disease. We describe how a previously developed index of walkability was operationalised in an Australian context, using available spatial data. The index was used to generate a stratified sampling frame for the selection of households from 32 communities for the PLACE (Physical Activity in Localities and Community Environments) study. GIS data have the potential to be used to construct measures of environmental attributes and to develop indices of walkability for cities, regions or local communities.
Region Based CNN for Foreign Object Debris Detection on Airfield Pavement
Cao, Xiaoguang; Wang, Peng; Meng, Cai; Gong, Guoping; Liu, Miaoming; Qi, Jun
2018-01-01
In this paper, a novel algorithm based on convolutional neural network (CNN) is proposed to detect foreign object debris (FOD) based on optical imaging sensors. It contains two modules, the improved region proposal network (RPN) and spatial transformer network (STN) based CNN classifier. In the improved RPN, some extra select rules are designed and deployed to generate high quality candidates with fewer numbers. Moreover, the efficiency of CNN detector is significantly improved by introducing STN layer. Compared to faster R-CNN and single shot multiBox detector (SSD), the proposed algorithm achieves better result for FOD detection on airfield pavement in the experiment. PMID:29494524
Region Based CNN for Foreign Object Debris Detection on Airfield Pavement.
Cao, Xiaoguang; Wang, Peng; Meng, Cai; Bai, Xiangzhi; Gong, Guoping; Liu, Miaoming; Qi, Jun
2018-03-01
In this paper, a novel algorithm based on convolutional neural network (CNN) is proposed to detect foreign object debris (FOD) based on optical imaging sensors. It contains two modules, the improved region proposal network (RPN) and spatial transformer network (STN) based CNN classifier. In the improved RPN, some extra select rules are designed and deployed to generate high quality candidates with fewer numbers. Moreover, the efficiency of CNN detector is significantly improved by introducing STN layer. Compared to faster R-CNN and single shot multiBox detector (SSD), the proposed algorithm achieves better result for FOD detection on airfield pavement in the experiment.
Intensive group selection silviculture in central hardwoods
Leon S. Minckler
1989-01-01
In 1947 conferences of Forest Service research people from Federal, Regional, and Research Center units met in Southern Illinois to set up in 1948 a whole rotation study on the Kaskaskia Experimental Forest involving 38 commercial compartments. The chief objectives were to evaluate the success, ability for sustained silviculture, and the costs and returns for a full...
ERIC Educational Resources Information Center
Griessman, B. Eugene, Ed.
In 1965 Concerted Services in Training and Education (CSTE) began operation in three selected rural counties of New Mexico, Arkansas, and Minnesota with objectives of: (1) developing general operational patterns for alleviation and solution of occupational education problems, (2) identifying employment opportunities and occupational education…
NASA Technical Reports Server (NTRS)
Feldkhun, Daniel (Inventor); Wagner, Kelvin H. (Inventor)
2013-01-01
Methods and systems are disclosed of sensing an object. A first radiation is spatially modulated to generate a structured second radiation. The object is illuminated with the structured second radiation such that the object produces a third radiation in response. Apart from any spatially dependent delay, a time variation of the third radiation is spatially independent. With a single-element detector, a portion of the third radiation is detected from locations on the object simultaneously. At least one characteristic of a sinusoidal spatial Fourier-transform component of the object is estimated from a time-varying signal from the detected portion of the third radiation.
NASA Astrophysics Data System (ADS)
Zeidler, P.; Preibisch, T.; Ratzka, T.; Roccatagliata, V.; Petr-Gotzens, M. G.
2016-01-01
We performed a deep wide-field (6.76 sq. deg) near-infrared survey with the VISTA telescope that covers the entire extent of the Carina nebula complex (CNC). The point-source catalog created from these data contains around four million individual objects down to masses of 0.1 M⊙. We present a statistical study of the large-scale spatial distribution and an investigation of the clustering properties of infrared-excesses objects, which are used to trace disk-bearing young stellar objects (YSOs). A selection based on a near-infrared (J-H) versus (H-Ks) color-color diagram shows an almost uniform distribution over the entire observed area. We interpret this as a result of the very high degree of background contamination that arises from the Carina Nebula's location close to the Galactic plane. Complementing the VISTA near-infrared catalog with Spitzer IRAC mid-infrared photometry improves the situation of the background contamination considerably. We find that a (J-H) versus (Ks- [4.5]) color-color diagram is well suited to tracing the population of YSO-candidates (cYSOs) by their infrared excess. We identify 8781 sources with strong infrared excess, which we consider as cYSOs. This sample is used to investigate the spatial distribution of the cYSOs with a nearest-neighbor analysis. The surface density distribution of cYSOs agrees well with the shape of the clouds as seen in our Herschel far-infrared survey. The strong decline in the surface density of excess sources outside the area of the clouds supports the hypothesis that our excess-selected sample consists predominantly of cYSOs with a low level of background contamination. This analysis allows us to identify 14 groups of cYSOs outside the central area.Our results suggest that the total population of cYSOs in the CNC comprises about 164 000 objects, with a substantial fraction (~35%) located in the northern, still not well studied parts. Our cluster analysis suggests that roughly half of the cYSOs constitute a non-clustered, dispersed population. Based on observations made with ESO Telescopes at the La Silla Paranal Observatory under program ID 088.C-0117.Final VISTA+HAWKI+Spitzer catalog is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/585/A49
Fazl, Arash; Grossberg, Stephen; Mingolla, Ennio
2009-02-01
How does the brain learn to recognize an object from multiple viewpoints while scanning a scene with eye movements? How does the brain avoid the problem of erroneously classifying parts of different objects together? How are attention and eye movements intelligently coordinated to facilitate object learning? A neural model provides a unified mechanistic explanation of how spatial and object attention work together to search a scene and learn what is in it. The ARTSCAN model predicts how an object's surface representation generates a form-fitting distribution of spatial attention, or "attentional shroud". All surface representations dynamically compete for spatial attention to form a shroud. The winning shroud persists during active scanning of the object. The shroud maintains sustained activity of an emerging view-invariant category representation while multiple view-specific category representations are learned and are linked through associative learning to the view-invariant object category. The shroud also helps to restrict scanning eye movements to salient features on the attended object. Object attention plays a role in controlling and stabilizing the learning of view-specific object categories. Spatial attention hereby coordinates the deployment of object attention during object category learning. Shroud collapse releases a reset signal that inhibits the active view-invariant category in the What cortical processing stream. Then a new shroud, corresponding to a different object, forms in the Where cortical processing stream, and search using attention shifts and eye movements continues to learn new objects throughout a scene. The model mechanistically clarifies basic properties of attention shifts (engage, move, disengage) and inhibition of return. It simulates human reaction time data about object-based spatial attention shifts, and learns with 98.1% accuracy and a compression of 430 on a letter database whose letters vary in size, position, and orientation. The model provides a powerful framework for unifying many data about spatial and object attention, and their interactions during perception, cognition, and action.
Individual differences in spatial relation processing: effects of strategy, ability, and gender
van der Ham, Ineke J. M.; Borst, Gregoire
2011-01-01
Numerous studies have focused on the distinction between categorical and coordinate spatial relations. Categorical relations are propositional and abstract, and often related to a left hemisphere advantage. Coordinate relations specify the metric information of the relative locations of objects, and can be linked to right hemisphere processing. Yet, not all studies have reported such a clear double dissociation; in particular the categorical left hemisphere advantage is not always reported. In the current study we investigated whether verbal and spatial strategies, verbal and spatial cognitive abilities, and gender could account for the discrepancies observed in hemispheric lateralization of spatial relations. Seventy-five participants performed two visual half field, match-to-sample tasks (Van der Ham et al., 2007; 2009) to study the lateralization of categorical and coordinate relation processing. For each participant we determined the strategy they used in each of the two tasks. Consistent with previous findings, we found an overall categorical left hemisphere advantage and coordinate right hemisphere advantage. The lateralization pattern was affected selectively by the degree to which participants used a spatial strategy and by none of the other variables (i.e., verbal strategy, cognitive abilities, and gender). Critically, the categorical left hemisphere advantage was observed only for participants that relied strongly on a spatial strategy. This result is another piece of evidence that categorical spatial relation processing relies on spatial and not verbal processes. PMID:21353361
NASA Astrophysics Data System (ADS)
Murray, J. R.
2017-12-01
Earth surface displacements measured at Global Navigation Satellite System (GNSS) sites record crustal deformation due, for example, to slip on faults underground. A primary objective in designing geodetic networks to study crustal deformation is to maximize the ability to recover parameters of interest like fault slip. Given Green's functions (GFs) relating observed displacement to motion on buried dislocations representing a fault, one can use various methods to estimate spatially variable slip. However, assumptions embodied in the GFs, e.g., use of a simplified elastic structure, introduce spatially correlated model prediction errors (MPE) not reflected in measurement uncertainties (Duputel et al., 2014). In theory, selection algorithms should incorporate inter-site correlations to identify measurement locations that give unique information. I assess the impact of MPE on site selection by expanding existing methods (Klein et al., 2017; Reeves and Zhe, 1999) to incorporate this effect. Reeves and Zhe's algorithm sequentially adds or removes a predetermined number of data according to a criterion that minimizes the sum of squared errors (SSE) on parameter estimates. Adapting this method to GNSS network design, Klein et al. select new sites that maximize model resolution, using trade-off curves to determine when additional resolution gain is small. Their analysis uses uncorrelated data errors and GFs for a uniform elastic half space. I compare results using GFs for spatially variable strike slip on a discretized dislocation in a uniform elastic half space, a layered elastic half space, and a layered half space with inclusion of MPE. I define an objective criterion to terminate the algorithm once the next site removal would increase SSE more than the expected incremental SSE increase if all sites had equal impact. Using a grid of candidate sites with 8 km spacing, I find the relative value of the selected sites (defined by the percent increase in SSE that further removal of each site would cause) is more uniform when MPE is included. However, the number and distribution of selected sites depends primarily on site location relative to the fault. For this test case, inclusion of MPE has minimal practical impact; I will investigate whether these findings hold for more densely spaced candidate grids and dipping faults.
Dahlberg, Peter D.; Boughter, Christopher T.; Faruk, Nabil F.; Hong, Lu; Koh, Young Hoon; Reyer, Matthew A.; Sherani, Aiman; Hammond, Adam T.
2016-01-01
A standard wide field inverted microscope was converted to a spatially selective spectrally resolved microscope through the addition of a polarizing beam splitter, a pair of polarizers, an amplitude-mode liquid crystal-spatial light modulator, and a USB spectrometer. The instrument is capable of simultaneously imaging and acquiring spectra over user defined regions of interest. The microscope can also be operated in a bright-field mode to acquire absorption spectra of micron scale objects. The utility of the instrument is demonstrated on three different samples. First, the instrument is used to resolve three differently labeled fluorescent beads in vitro. Second, the instrument is used to recover time dependent bleaching dynamics that have distinct spectral changes in the cyanobacteria, Synechococcus leopoliensis UTEX 625. Lastly, the technique is used to acquire the absorption spectra of CH3NH3PbBr3 perovskites and measure differences between nanocrystal films and micron scale crystals. PMID:27910631
Galanaud, Pierre; Galanaud, Anne; Giraudoux, Patrick
2015-01-01
Objectives This work was designed to adapt Geographical Information System-based spatial analysis to the study of historical epidemics. We mapped "plague" deaths during three epidemics of the early 15th century, analyzed spatial distributions by applying the Kulldorff's method, and determined their relationships with the distribution of socio-professional categories in the city of Dijon. Materials and Methods Our study was based on a database including 50 annual tax registers (established from 1376 to 1447) indicating deaths and survivors among the heads of households, their home location, tax level and profession. The households of the deceased and survivors during 6 years with excess mortality were individually located on a georeferenced medieval map, established by taking advantage of the preserved geography of the historical center of Dijon. We searched for clusters of heads of households characterized by shared tax levels (high-tax payers, the upper decile; low-tax payers, the half charged at the minimum level) or professional activities and for clusters of differential mortality. Results High-tax payers were preferentially in the northern intramural part, as well as most wealthy or specialized professionals, whereas low-tax payers were preferentially in the southern part. During two epidemics, in 1400–1401 and 1428, areas of higher mortality were found in the northern part whereas areas of lower mortality were in the southern one. A high concentration of housing and the proximity to food stocks were common features of the most affected areas, creating suitable conditions for rats to pullulate. A third epidemic, lasting from 1438 to 1440 had a different and evolving geography: cases were initially concentrated around the southern gate, at the confluence of three rivers, they were then diffuse, and ended with residual foci of deaths in the northern suburb. Conclusion Using a selected historical source, we designed an approach allowing spatial analysis of urban medieval epidemics. Our results fit with the view that the 1400–1401 epidemic was a Black Death recurrence. They suggest that this was also the case in 1428, whereas in 1438–1440 a different, possibly waterborne, disease was involved. PMID:26625117
3D hierarchical spatial representation and memory of multimodal sensory data
NASA Astrophysics Data System (ADS)
Khosla, Deepak; Dow, Paul A.; Huber, David J.
2009-04-01
This paper describes an efficient method and system for representing, processing and understanding multi-modal sensory data. More specifically, it describes a computational method and system for how to process and remember multiple locations in multimodal sensory space (e.g., visual, auditory, somatosensory, etc.). The multimodal representation and memory is based on a biologically-inspired hierarchy of spatial representations implemented with novel analogues of real representations used in the human brain. The novelty of the work is in the computationally efficient and robust spatial representation of 3D locations in multimodal sensory space as well as an associated working memory for storage and recall of these representations at the desired level for goal-oriented action. We describe (1) A simple and efficient method for human-like hierarchical spatial representations of sensory data and how to associate, integrate and convert between these representations (head-centered coordinate system, body-centered coordinate, etc.); (2) a robust method for training and learning a mapping of points in multimodal sensory space (e.g., camera-visible object positions, location of auditory sources, etc.) to the above hierarchical spatial representations; and (3) a specification and implementation of a hierarchical spatial working memory based on the above for storage and recall at the desired level for goal-oriented action(s). This work is most useful for any machine or human-machine application that requires processing of multimodal sensory inputs, making sense of it from a spatial perspective (e.g., where is the sensory information coming from with respect to the machine and its parts) and then taking some goal-oriented action based on this spatial understanding. A multi-level spatial representation hierarchy means that heterogeneous sensory inputs (e.g., visual, auditory, somatosensory, etc.) can map onto the hierarchy at different levels. When controlling various machine/robot degrees of freedom, the desired movements and action can be computed from these different levels in the hierarchy. The most basic embodiment of this machine could be a pan-tilt camera system, an array of microphones, a machine with arm/hand like structure or/and a robot with some or all of the above capabilities. We describe the approach, system and present preliminary results on a real-robotic platform.
NASA Astrophysics Data System (ADS)
de Azevedo, Samara C.; Singh, Ramesh P.; da Silva, Erivaldo A.
2017-04-01
Finer spatial resolution of areas with tall objects within urban environment causes intense shadows that lead to wrong information in urban mapping. Due to the shadows, automatic detection of objects (such as buildings, trees, structures, towers) and to estimate the surface coverage from high spatial resolution is difficult. Thus, automatic shadow detection is the first necessary preprocessing step to improve the outcome of many remote sensing applications, particularly for high spatial resolution images. Efforts have been made to explore spatial and spectral information to evaluate such shadows. In this paper, we have used morphological attribute filtering to extract contextual relations in an efficient multilevel approach for high resolution images. The attribute selected for the filtering was the area estimated from shadow spectral feature using the Normalized Saturation-Value Difference Index (NSVDI) derived from pan-sharpening images. In order to assess the quality of fusion products and the influence on shadow detection algorithm, we evaluated three pan-sharpening methods - Intensity-Hue-Saturation (IHS), Principal Components (PC) and Gran-Schmidt (GS) through the image quality measures: Correlation Coefficient (CC), Root Mean Square Error (RMSE), Relative Dimensionless Global Error in Synthesis (ERGAS) and Universal Image Quality Index (UIQI). Experimental results over Worldview II scene from São Paulo city (Brazil) show that GS method provides good correlation with original multispectral bands with no radiometric and contrast distortion. The automatic method using GS method for NSDVI generation clearly provide a clear distinction of shadows and non-shadows pixels with an overall accuracy more than 90%. The experimental results confirm the effectiveness of the proposed approach which could be used for further shadow removal and reliable for object recognition, land-cover mapping, 3D reconstruction, etc. especially in developing countries where land use and land cover are rapidly changing with tall objects within urban areas.
Spatial ability of slow learners based on Hubert Maier theory
NASA Astrophysics Data System (ADS)
Permatasari, I.; Pramudya, I.; Kusmayadi, T. A.
2018-03-01
Slow learners are children who have low learning achievement (under the average of normal children) in one or all of the academic field, but they are not classified as a mentally retarded children. Spatial ability developed according to age and level of knowledge possessed, both from the neighborhood and formal education. Analyzing the spatial ability of students is important for teachers, as an effort to improve the quality of learning for slow learners. Especially on the implementation of inclusion school which is developing in Indonesia. This research used a qualitative method and involved slow learner students as the subject. Based on the data analysis it was found the spatial ability of slow learners, there were: spatial perception, students were able to describe the other shape of object when its position changed; spatial visualisation, students were able to describe the materials that construct an object; mental rotation, students cannot describe the object being rotated; spatial relation, students cannot describe the relations of same objects; spatial orientation, students were able to describe object from the others perspective.