Sample records for object-centered spatial selectivity

  1. Neurons with object-centered spatial selectivity in macaque SEF: do they represent locations or rules?

    PubMed

    Tremblay, Léon; Gettner, Sonya N; Olson, Carl R

    2002-01-01

    In macaque monkeys performing a task that requires eye movements to the leftmost or rightmost of two dots in a horizontal array, some neurons in the supplementary eye field (SEF) fire differentially according to which side of the array is the target regardless of the array's location on the screen. We refer to these neurons as exhibiting selectivity for object-centered location. This form of selectivity might arise from involvement of the neurons in either of two processes: representing the locations of targets or representing the rules by which targets are selected. To distinguish between these possibilities, we monitored neuronal activity in the SEF of two monkeys performing a task that required the selection of targets by either an object-centered spatial rule or a color rule. On each trial, a sample array consisting of two side-by-side dots appeared; then a cue flashed on one dot; then the display vanished and a delay ensued. Next a target array consisting of two side-by-side dots appeared at an unpredictable location and another delay ensued; finally the monkey had to make an eye movement to one of the target dots. On some trials, the monkey had to select the dot on the same side as the cue (right or left). On other trials, he had to select the target of the same color as the cue (red or green). Neuronal activity robustly encoded the object-centered locations first of the cue and then of the target regardless of the whether the monkey was following a rule based on object-centered location or color. Neuronal activity was at most weakly affected by the type of rule the monkey was following (object-centered-location or color) or by the color of the cue and target (red or green). On trials involving a color rule, neuronal activity was moderately enhanced when the cue and target appeared on opposite sides of their respective arrays. We conclude that the general function of SEF neurons selective for object-centered location is to represent where the cue and target

  2. A neuroanatomical model of space-based and object-centered processing in spatial neglect.

    PubMed

    Pedrazzini, Elena; Schnider, Armin; Ptak, Radek

    2017-11-01

    Visual attention can be deployed in space-based or object-centered reference frames. Right-hemisphere damage may lead to distinct deficits of space- or object-based processing, and such dissociations are thought to underlie the heterogeneous nature of spatial neglect. Previous studies have suggested that object-centered processing deficits (such as in copying, reading or line bisection) result from damage to retro-rolandic regions while impaired spatial exploration reflects damage to more anterior regions. However, this evidence is based on small samples and heterogeneous tasks. Here, we tested a theoretical model of neglect that takes in account the space- and object-based processing and relates them to neuroanatomical predictors. One hundred and one right-hemisphere-damaged patients were examined with classic neuropsychological tests and structural brain imaging. Relations between neglect measures and damage to the temporal-parietal junction, intraparietal cortex, insula and middle frontal gyrus were examined with two structural equation models by assuming that object-centered processing (involved in line bisection and single-word reading) and space-based processing (involved in cancelation tasks) either represented a unique latent variable or two distinct variables. Of these two models the latter had better explanatory power. Damage to the intraparietal sulcus was a significant predictor of object-centered, but not space-based processing, while damage to the temporal-parietal junction predicted space-based, but not object-centered processing. Space-based processing and object-centered processing were strongly intercorrelated, indicating that they rely on similar, albeit partly dissociated processes. These findings indicate that object-centered and space-based deficits in neglect are partly independent and result from superior parietal and inferior parietal damage, respectively.

  3. Time course of spatial and feature selective attention for partly-occluded objects.

    PubMed

    Kasai, Tetsuko; Takeya, Ryuji

    2012-07-01

    Attention selects objects/groups as the most fundamental units, and this may be achieved by an attention-spreading mechanism. Previous event-related potential (ERP) studies have found that attention-spreading is reflected by a decrease in the N1 spatial attention effect. The present study tested whether the electrophysiological attention effect is associated with the perception of object unity or amodal completion through the use of partly-occluded objects. ERPs were recorded in 14 participants who were required to pay attention to their left or right visual field and to press a button for a target shape in the attended field. Bilateral stimuli were presented rapidly, and were separated, connected, or connected behind an occluder. Behavioral performance in the connected and occluded conditions was worse than that in the separated condition, indicating that attention spread over perceptual object representations after amodal completion. Consistently, the late N1 spatial attention effect (180-220 ms post-stimulus) and the early phase (230-280 ms) of feature selection effects (target N2) at contralateral sites decreased, equally for the occluded and connected conditions, while the attention effect in the early N1 latency (140-180 ms) shifted most positively for the occluded condition. These results suggest that perceptual organization processes for object recognition transiently modulate spatial and feature selection processes in the visual cortex. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Sexual orientation and spatial position effects on selective forms of object location memory.

    PubMed

    Rahman, Qazi; Newland, Cherie; Smyth, Beatrice Mary

    2011-04-01

    Prior research has demonstrated robust sex and sexual orientation-related differences in object location memory in humans. Here we show that this sexual variation may depend on the spatial position of target objects and the task-specific nature of the spatial array. We tested the recovery of object locations in three object arrays (object exchanges, object shifts, and novel objects) relative to veridical center (left compared to right side of the arrays) in a sample of 35 heterosexual men, 35 heterosexual women, and 35 homosexual men. Relative to heterosexual men, heterosexual women showed better location recovery in the right side of the array during object exchanges and homosexual men performed better in the right side during novel objects. However, the difference between heterosexual and homosexual men disappeared after controlling for IQ. Heterosexual women and homosexual men did not differ significantly from each other in location change detection with respect to task or side of array. These data suggest that visual space biases in processing categorical spatial positions may enhance aspects of object location memory in heterosexual women. Copyright © 2010 Elsevier Inc. All rights reserved.

  5. Object-based selection from spatially-invariant representations: evidence from a feature-report task.

    PubMed

    Matsukura, Michi; Vecera, Shaun P

    2011-02-01

    Attention selects objects as well as locations. When attention selects an object's features, observers identify two features from a single object more accurately than two features from two different objects (object-based effect of attention; e.g., Duncan, Journal of Experimental Psychology: General, 113, 501-517, 1984). Several studies have demonstrated that object-based attention can operate at a late visual processing stage that is independent of objects' spatial information (Awh, Dhaliwal, Christensen, & Matsukura, Psychological Science, 12, 329-334, 2001; Matsukura & Vecera, Psychonomic Bulletin & Review, 16, 529-536, 2009; Vecera, Journal of Experimental Psychology: General, 126, 14-18, 1997; Vecera & Farah, Journal of Experimental Psychology: General, 123, 146-160, 1994). In the present study, we asked two questions regarding this late object-based selection mechanism. In Part I, we investigated how observers' foreknowledge of to-be-reported features allows attention to select objects, as opposed to individual features. Using a feature-report task, a significant object-based effect was observed when to-be-reported features were known in advance but not when this advance knowledge was absent. In Part II, we examined what drives attention to select objects rather than individual features in the absence of observers' foreknowledge of to-be-reported features. Results suggested that, when there was no opportunity for observers to direct their attention to objects that possess to-be-reported features at the time of stimulus presentation, these stimuli must retain strong perceptual cues to establish themselves as separate objects.

  6. Eye Movement Suppression Interferes with Construction of Object-Centered Spatial Reference Frames in Working Memory

    ERIC Educational Resources Information Center

    Wallentin, Mikkel; Kristensen, Line Burholt; Olsen, Jacob Hedeager; Nielsen, Andreas Hojlund

    2011-01-01

    The brain's frontal eye fields (FEF), responsible for eye movement control, are known to be involved in spatial working memory (WM). In a previous fMRI experiment (Wallentin, Roepstorff & Burgess, Neuropsychologia, 2008) it was found that FEF activation was primarily related to the formation of an object-centered, rather than egocentric, spatial…

  7. Object Orientation Affects Spatial Language Comprehension

    ERIC Educational Resources Information Center

    Burigo, Michele; Sacchi, Simona

    2013-01-01

    Typical spatial descriptions, such as "The car is in front of the house," describe the position of a located object (LO; e.g., the car) in space relative to a reference object (RO) whose location is known (e.g., the house). The orientation of the RO affects spatial language comprehension via the reference frame selection process.…

  8. Target-object integration, attention distribution, and object orientation interactively modulate object-based selection.

    PubMed

    Al-Janabi, Shahd; Greenberg, Adam S

    2016-10-01

    The representational basis of attentional selection can be object-based. Various studies have suggested, however, that object-based selection is less robust than spatial selection across experimental paradigms. We sought to examine the manner by which the following factors might explain this variation: Target-Object Integration (targets 'on' vs. part 'of' an object), Attention Distribution (narrow vs. wide), and Object Orientation (horizontal vs. vertical). In Experiment 1, participants discriminated between two targets presented 'on' an object in one session, or presented as a change 'of' an object in another session. There was no spatial cue-thus, attention was initially focused widely-and the objects were horizontal or vertical. We found evidence of object-based selection only when targets constituted a change 'of' an object. Additionally, object orientation modulated the sign of object-based selection: We observed a same-object advantage for horizontal objects, but a same-object cost for vertical objects. In Experiment 2, an informative cue preceded a single target presented 'on' an object or as a change 'of' an object (thus, attention was initially focused narrowly). Unlike in Experiment 1, we found evidence of object-based selection independent of target-object integration. We again found that the sign of selection was modulated by the objects' orientation. This result may reflect a meridian effect, which emerged due to anisotropies in the cortical representations when attention is oriented endogenously. Experiment 3 revealed that object orientation did not modulate object-based selection when attention was oriented exogenously. Our findings suggest that target-object integration, attention distribution, and object orientation modulate object-based selection, but only in combination.

  9. Faint blue objects at high Galactic latitude. V - Palomar Schmidt field centered on selected area 71

    NASA Technical Reports Server (NTRS)

    Usher, Peter D.; Mitchell, Kenneth J.; Warnock, Archibald, III

    1988-01-01

    Starlike objects with both blue and ultraviolet excess have been selected from a Palomar 1.2 m Schmidt field centered on Kapteyn selected area 71. The method of selection is that used in the previous papers of this series, but modified to account for the differential reddening that occurs across the field. The color classes, color subclasses, positions, and magnitudes of the selected objects are listed.

  10. Object orientation affects spatial language comprehension.

    PubMed

    Burigo, Michele; Sacchi, Simona

    2013-01-01

    Typical spatial descriptions, such as "The car is in front of the house," describe the position of a located object (LO; e.g., the car) in space relative to a reference object (RO) whose location is known (e.g., the house). The orientation of the RO affects spatial language comprehension via the reference frame selection process. However, the effects of the LO's orientation on spatial language have not received great attention. This study explores whether the pure geometric information of the LO (e.g., its orientation) affects spatial language comprehension using placing and production tasks. Our results suggest that the orientation of the LO influences spatial language comprehension even in the absence of functional relationships. Copyright © 2013 Cognitive Science Society, Inc.

  11. The Spatial Distribution of Attention within and across Objects

    ERIC Educational Resources Information Center

    Hollingworth, Andrew; Maxcey-Richard, Ashleigh M.; Vecera, Shaun P.

    2012-01-01

    Attention operates to select both spatial locations and perceptual objects. However, the specific mechanism by which attention is oriented to objects is not well understood. We examined the means by which object structure constrains the distribution of spatial attention (i.e., a "grouped array"). Using a modified version of the Egly et…

  12. Sexual Orientation and Spatial Position Effects on Selective Forms of Object Location Memory

    ERIC Educational Resources Information Center

    Rahman, Qazi; Newland, Cherie; Smyth, Beatrice Mary

    2011-01-01

    Prior research has demonstrated robust sex and sexual orientation-related differences in object location memory in humans. Here we show that this sexual variation may depend on the spatial position of target objects and the task-specific nature of the spatial array. We tested the recovery of object locations in three object arrays (object…

  13. The Spatial Distribution of Attention within and across Objects

    PubMed Central

    Hollingworth, Andrew; Maxcey-Richard, Ashleigh M.; Vecera, Shaun P.

    2011-01-01

    Attention operates to select both spatial locations and perceptual objects. However, the specific mechanism by which attention is oriented to objects is not well understood. We examined the means by which object structure constrains the distribution of spatial attention (i.e., a “grouped array”). Using a modified version of the Egly et al. object cuing task, we systematically manipulated within-object distance and object boundaries. Four major findings are reported: 1) spatial attention forms a gradient across the attended object; 2) object boundaries limit the distribution of this gradient, with the spread of attention constrained by a boundary; 3) boundaries within an object operate similarly to across-object boundaries: we observed object-based effects across a discontinuity within a single object, without the demand to divide or switch attention between discrete object representations; and 4) the gradient of spatial attention across an object directly modulates perceptual sensitivity, implicating a relatively early locus for the grouped array representation. PMID:21728455

  14. The effect of spatial organization of targets and distractors on the capacity to selectively memorize objects in visual short-term memory.

    PubMed

    Abbes, Aymen Ben; Gavault, Emmanuelle; Ripoll, Thierry

    2014-01-01

    We conducted a series of experiments to explore how the spatial configuration of objects influences the selection and the processing of these objects in a visual short-term memory task. We designed a new experiment in which participants had to memorize 4 targets presented among 4 distractors. Targets were cued during the presentation of distractor objects. Their locations varied according to 4 spatial configurations. From the first to the last configuration, the distance between targets' locations was progressively increased. The results revealed a high capacity to select and memorize targets embedded among distractors even when targets were extremely distant from each other. This capacity is discussed in relation to the unitary conception of attention, models of split attention, and the competitive interaction model. Finally, we propose that the spatial dispersion of objects has different effects on attentional allocation and processing stages. Thus, when targets are extremely distant from each other, attentional allocation becomes more difficult while processing becomes easier. This finding implicates that these 2 aspects of attention need to be more clearly distinguished in future research.

  15. The effect of spatial organization of targets and distractors on the capacity to selectively memorize objects in visual short-term memory

    PubMed Central

    Abbes, Aymen Ben; Gavault, Emmanuelle; Ripoll, Thierry

    2014-01-01

    We conducted a series of experiments to explore how the spatial configuration of objects influences the selection and the processing of these objects in a visual short-term memory task. We designed a new experiment in which participants had to memorize 4 targets presented among 4 distractors. Targets were cued during the presentation of distractor objects. Their locations varied according to 4 spatial configurations. From the first to the last configuration, the distance between targets’ locations was progressively increased. The results revealed a high capacity to select and memorize targets embedded among distractors even when targets were extremely distant from each other. This capacity is discussed in relation to the unitary conception of attention, models of split attention, and the competitive interaction model. Finally, we propose that the spatial dispersion of objects has different effects on attentional allocation and processing stages. Thus, when targets are extremely distant from each other, attentional allocation becomes more difficult while processing becomes easier. This finding implicates that these 2 aspects of attention need to be more clearly distinguished in future research. PMID:25339978

  16. SOP: parallel surrogate global optimization with Pareto center selection for computationally expensive single objective problems

    DOE PAGES

    Krityakierne, Tipaluck; Akhtar, Taimoor; Shoemaker, Christine A.

    2016-02-02

    This paper presents a parallel surrogate-based global optimization method for computationally expensive objective functions that is more effective for larger numbers of processors. To reach this goal, we integrated concepts from multi-objective optimization and tabu search into, single objective, surrogate optimization. Our proposed derivative-free algorithm, called SOP, uses non-dominated sorting of points for which the expensive function has been previously evaluated. The two objectives are the expensive function value of the point and the minimum distance of the point to previously evaluated points. Based on the results of non-dominated sorting, P points from the sorted fronts are selected as centersmore » from which many candidate points are generated by random perturbations. Based on surrogate approximation, the best candidate point is subsequently selected for expensive evaluation for each of the P centers, with simultaneous computation on P processors. Centers that previously did not generate good solutions are tabu with a given tenure. We show almost sure convergence of this algorithm under some conditions. The performance of SOP is compared with two RBF based methods. The test results show that SOP is an efficient method that can reduce time required to find a good near optimal solution. In a number of cases the efficiency of SOP is so good that SOP with 8 processors found an accurate answer in less wall-clock time than the other algorithms did with 32 processors.« less

  17. Rhinal and Dorsolateral Prefrontal Cortex Lesions Produce Selective Impairments in Object and Spatial Learning and Memory in Canines

    PubMed Central

    Christie, Lori-Ann; Saunders, Richard C.; Kowalska, Danuta, M.; MacKay, William A.; Head, Elizabeth; Cotman, Carl W.; Milgram, Norton W.

    2014-01-01

    To examine the effects of rhinal and dorsolateral prefrontal cortex lesions on object and spatial recognition memory in canines, we used a protocol in which both an object (delayed non-matching to sample, or DNMS) and a spatial (delayed non-matching to position or DNMP) recognition task were administered daily. The tasks used similar procedures such that only the type of stimulus information to be remembered differed. Rhinal cortex (RC) lesions produced a selective deficit on the DNMS task, both in retention of the task rules at short delays and in object recognition memory. By contrast, performance on the DNMP task remained intact at both short and long delay intervals in RC animals. Subjects who received dorsolateral prefrontal cortex (dlPFC) lesions were impaired on a spatial task at a short, 5-sec delay, suggesting disrupted retention of the general task rules, however, this impairment was transient; long-term spatial memory performance was unaffected in dlPFC subjects. The present results provide support for the involvement of the RC in object, but not visuospatial, processing and recognition memory, whereas the dlPFC appears to mediate retention of a non-matching rule. These findings support theories of functional specialization within the medial temporal lobe and frontal cortex and suggest that rhinal and dorsolateral prefrontal cortices in canines are functionally similar to analogous regions in other mammals. PMID:18792072

  18. Object-processing neural efficiency differentiates object from spatial visualizers.

    PubMed

    Motes, Michael A; Malach, Rafael; Kozhevnikov, Maria

    2008-11-19

    The visual system processes object properties and spatial properties in distinct subsystems, and we hypothesized that this distinction might extend to individual differences in visual processing. We conducted a functional MRI study investigating the neural underpinnings of individual differences in object versus spatial visual processing. Nine participants of high object-processing ability ('object' visualizers) and eight participants of high spatial-processing ability ('spatial' visualizers) were scanned, while they performed an object-processing task. Object visualizers showed lower bilateral neural activity in lateral occipital complex and lower right-lateralized neural activity in dorsolateral prefrontal cortex. The data indicate that high object-processing ability is associated with more efficient use of visual-object resources, resulting in less neural activity in the object-processing pathway.

  19. Selection in spatial working memory is independent of perceptual selective attention, but they interact in a shared spatial priority map.

    PubMed

    Hedge, Craig; Oberauer, Klaus; Leonards, Ute

    2015-11-01

    We examined the relationship between the attentional selection of perceptual information and of information in working memory (WM) through four experiments, using a spatial WM-updating task. Participants remembered the locations of two objects in a matrix and worked through a sequence of updating operations, each mentally shifting one dot to a new location according to an arrow cue. Repeatedly updating the same object in two successive steps is typically faster than switching to the other object; this object switch cost reflects the shifting of attention in WM. In Experiment 1, the arrows were presented in random peripheral locations, drawing perceptual attention away from the selected object in WM. This manipulation did not eliminate the object switch cost, indicating that the mechanisms of perceptual selection do not underlie selection in WM. Experiments 2a and 2b corroborated the independence of selection observed in Experiment 1, but showed a benefit to reaction times when the placement of the arrow cue was aligned with the locations of relevant objects in WM. Experiment 2c showed that the same benefit also occurs when participants are not able to mark an updating location through eye fixations. Together, these data can be accounted for by a framework in which perceptual selection and selection in WM are separate mechanisms that interact through a shared spatial priority map.

  20. High-resolution imaging of expertise reveals reliable object selectivity in the fusiform face area related to perceptual performance

    PubMed Central

    McGugin, Rankin Williams; Gatenby, J. Christopher; Gore, John C.; Gauthier, Isabel

    2012-01-01

    The fusiform face area (FFA) is a region of human cortex that responds selectively to faces, but whether it supports a more general function relevant for perceptual expertise is debated. Although both faces and objects of expertise engage many brain areas, the FFA remains the focus of the strongest modular claims and the clearest predictions about expertise. Functional MRI studies at standard-resolution (SR-fMRI) have found responses in the FFA for nonface objects of expertise, but high-resolution fMRI (HR-fMRI) in the FFA [Grill-Spector K, et al. (2006) Nat Neurosci 9:1177–1185] and neurophysiology in face patches in the monkey brain [Tsao DY, et al. (2006) Science 311:670–674] reveal no reliable selectivity for objects. It is thus possible that FFA responses to objects with SR-fMRI are a result of spatial blurring of responses from nonface-selective areas, potentially driven by attention to objects of expertise. Using HR-fMRI in two experiments, we provide evidence of reliable responses to cars in the FFA that correlate with behavioral car expertise. Effects of expertise in the FFA for nonface objects cannot be attributed to spatial blurring beyond the scale at which modular claims have been made, and within the lateral fusiform gyrus, they are restricted to a small area (200 mm2 on the right and 50 mm2 on the left) centered on the peak of face selectivity. Experience with a category may be sufficient to explain the spatially clustered face selectivity observed in this region. PMID:23027970

  1. High-resolution imaging of expertise reveals reliable object selectivity in the fusiform face area related to perceptual performance.

    PubMed

    McGugin, Rankin Williams; Gatenby, J Christopher; Gore, John C; Gauthier, Isabel

    2012-10-16

    The fusiform face area (FFA) is a region of human cortex that responds selectively to faces, but whether it supports a more general function relevant for perceptual expertise is debated. Although both faces and objects of expertise engage many brain areas, the FFA remains the focus of the strongest modular claims and the clearest predictions about expertise. Functional MRI studies at standard-resolution (SR-fMRI) have found responses in the FFA for nonface objects of expertise, but high-resolution fMRI (HR-fMRI) in the FFA [Grill-Spector K, et al. (2006) Nat Neurosci 9:1177-1185] and neurophysiology in face patches in the monkey brain [Tsao DY, et al. (2006) Science 311:670-674] reveal no reliable selectivity for objects. It is thus possible that FFA responses to objects with SR-fMRI are a result of spatial blurring of responses from nonface-selective areas, potentially driven by attention to objects of expertise. Using HR-fMRI in two experiments, we provide evidence of reliable responses to cars in the FFA that correlate with behavioral car expertise. Effects of expertise in the FFA for nonface objects cannot be attributed to spatial blurring beyond the scale at which modular claims have been made, and within the lateral fusiform gyrus, they are restricted to a small area (200 mm(2) on the right and 50 mm(2) on the left) centered on the peak of face selectivity. Experience with a category may be sufficient to explain the spatially clustered face selectivity observed in this region.

  2. Spatial-area selective retrieval of multiple object-place associations in a hierarchical cognitive map formed by theta phase coding.

    PubMed

    Sato, Naoyuki; Yamaguchi, Yoko

    2009-06-01

    The human cognitive map is known to be hierarchically organized consisting of a set of perceptually clustered landmarks. Patient studies have demonstrated that these cognitive maps are maintained by the hippocampus, while the neural dynamics are still poorly understood. The authors have shown that the neural dynamic "theta phase precession" observed in the rodent hippocampus may be capable of forming hierarchical cognitive maps in humans. In the model, a visual input sequence consisting of object and scene features in the central and peripheral visual fields, respectively, results in the formation of a hierarchical cognitive map for object-place associations. Surprisingly, it is possible for such a complex memory structure to be formed in a few seconds. In this paper, we evaluate the memory retrieval of object-place associations in the hierarchical network formed by theta phase precession. The results show that multiple object-place associations can be retrieved with the initial cue of a scene input. Importantly, according to the wide-to-narrow unidirectional connections among scene units, the spatial area for object-place retrieval can be controlled by the spatial area of the initial cue input. These results indicate that the hierarchical cognitive maps have computational advantages on a spatial-area selective retrieval of multiple object-place associations. Theta phase precession dynamics is suggested as a fundamental neural mechanism of the human cognitive map.

  3. Selecting and perceiving multiple visual objects

    PubMed Central

    Xu, Yaoda; Chun, Marvin M.

    2010-01-01

    To explain how multiple visual objects are attended and perceived, we propose that our visual system first selects a fixed number of about four objects from a crowded scene based on their spatial information (object individuation) and then encode their details (object identification). We describe the involvement of the inferior intra-parietal sulcus (IPS) in object individuation and the superior IPS and higher visual areas in object identification. Our neural object-file theory synthesizes and extends existing ideas in visual cognition and is supported by behavioral and neuroimaging results. It provides a better understanding of the role of the different parietal areas in encoding visual objects and can explain various forms of capacity-limited processing in visual cognition such as working memory. PMID:19269882

  4. Object-location binding across a saccade: A retinotopic Spatial Congruency Bias

    PubMed Central

    Shafer-Skelton, Anna; Kupitz, Colin N.; Golomb, Julie D.

    2017-01-01

    Despite frequent eye movements that rapidly shift the locations of objects on our retinas, our visual system creates a stable perception of the world. To do this, it must convert eye-centered (retinotopic) input to world-centered (spatiotopic) percepts. Moreover, for successful behavior we must also incorporate information about object features/identities during this updating – a fundamental challenge that remains to be understood. Here we adapted a recent behavioral paradigm, the “Spatial Congruency Bias”, to investigate object-location binding across an eye movement. In two initial baseline experiments, we showed that the Spatial Congruency Bias was present for both gabor and face stimuli in addition to the object stimuli used in the original paradigm. Then, across three main experiments, we found the bias was preserved across an eye movement, but only in retinotopic coordinates: Subjects were more likely to perceive two stimuli as having the same features/identity when they were presented in the same retinotopic location. Strikingly, there was no evidence of location binding in the more ecologically relevant spatiotopic (world-centered) coordinates; the reference frame did not update to spatiotopic even at longer post-saccade delays, nor did it transition to spatiotopic with more complex stimuli (gabors, shapes, and faces all showed a retinotopic Congruency Bias). Our results suggest that object-location binding may be tied to retinotopic coordinates, and that it may need to be re-established following each eye movement rather than being automatically updated to spatiotopic coordinates. PMID:28070793

  5. [Location selection for Shenyang urban parks based on GIS and multi-objective location allocation model].

    PubMed

    Zhou, Yuan; Shi, Tie-Mao; Hu, Yuan-Man; Gao, Chang; Liu, Miao; Song, Lin-Qi

    2011-12-01

    Based on geographic information system (GIS) technology and multi-objective location-allocation (LA) model, and in considering of four relatively independent objective factors (population density level, air pollution level, urban heat island effect level, and urban land use pattern), an optimized location selection for the urban parks within the Third Ring of Shenyang was conducted, and the selection results were compared with the spatial distribution of existing parks, aimed to evaluate the rationality of the spatial distribution of urban green spaces. In the location selection of urban green spaces in the study area, the factor air pollution was most important, and, compared with single objective factor, the weighted analysis results of multi-objective factors could provide optimized spatial location selection of new urban green spaces. The combination of GIS technology with LA model would be a new approach for the spatial optimizing of urban green spaces.

  6. The Interaction of Spatial and Object Pathways: Evidence from Balint's Syndrome.

    PubMed

    Robertson, L; Treisman, A; Friedman-Hill, S; Grabowecky, M

    1997-05-01

    An earlier report described a patient (RM) with bilateral parietal damage who showed severe binding problems between shape and color and shape and size (Friedman-Hill, Robertson, & Treisman, 1995). When shown two different-colored letters, RM reported a large number of illusory conjunctions (ICs) combining the shape of one letter with the color of the other, even when he was looking directly at one of them and had as long as 10 sec to respond. The lesions also produced severe deficits in locating and reaching for objects, and difficulty in seeing more than one object at a time, resulting in a neuropsychological diagnosis of Balint's syndrome or dorsal simultanagnosia. The pattern of deficits supported predictions of Treisman's Feature Integration Theory (FIT) that the loss of spatial information would lead to binding errors. They further suggested that the spatial information used in binding depends on intact parietal function. In the present paper we extend these findings and examine other deficits in RM that would be predicted by FIT. We show that: (1) Object individuation is impaired, making it impossible for him correctly to count more than one or two objects, even when he is aware that more are present. (2) Visual search for a target defined by a conjunction of features (requiring binding) is impaired, while the detection of a target defined by a unique feature is not. Search for the absence of a feature (0 among Qs) is also severely impaired, while search for the presence (Q among 0s) is not. Feature absence can only be detected when all the present features are bound to the nontarget items. (3) RM's deficits cannot be attributed to a general binding problem: binding errors were far more likely with simultaneous presentation where spatial information was required than with sequential presentation where time could be used as the medium for binding. (4) Selection for attention was severely impaired, whether it was based on the position of a marker or on some

  7. The (Spatial) Memory Game: Testing the Relationship Between Spatial Language, Object Knowledge, and Spatial Cognition.

    PubMed

    Gudde, Harmen B; Griffiths, Debra; Coventry, Kenny R

    2018-02-19

    The memory game paradigm is a behavioral procedure to explore the relationship between language, spatial memory, and object knowledge. Using two different versions of the paradigm, spatial language use and memory for object location are tested under different, experimentally manipulated conditions. This allows us to tease apart proposed models explaining the influence of object knowledge on spatial language (e.g., spatial demonstratives), and spatial memory, as well as understanding the parameters that affect demonstrative choice and spatial memory more broadly. Key to the development of the method was the need to collect data on language use (e.g., spatial demonstratives: "this/that") and spatial memory data under strictly controlled conditions, while retaining a degree of ecological validity. The language version (section 3.1) of the memory game tests how conditions affect language use. Participants refer verbally to objects placed at different locations (e.g., using spatial demonstratives: "this/that red circle"). Different parameters can be experimentally manipulated: the distance from the participant, the position of a conspecific, and for example whether the participant owns, knows, or sees the object while referring to it. The same parameters can be manipulated in the memory version of the memory game (section 3.2). This version tests the effects of the different conditions on object-location memory. Following object placement, participants get 10 seconds to memorize the object's location. After the object and location cues are removed, participants verbally direct the experimenter to move a stick to indicate where the object was. The difference between the memorized and the actual location shows the direction and strength of the memory error, allowing comparisons between the influences of the respective parameters.

  8. Object-based attentional selection modulates anticipatory alpha oscillations

    PubMed Central

    Knakker, Balázs; Weiss, Béla; Vidnyánszky, Zoltán

    2015-01-01

    Visual cortical alpha oscillations are involved in attentional gating of incoming visual information. It has been shown that spatial and feature-based attentional selection result in increased alpha oscillations over the cortical regions representing sensory input originating from the unattended visual field and task-irrelevant visual features, respectively. However, whether attentional gating in the case of object based selection is also associated with alpha oscillations has not been investigated before. Here we measured anticipatory electroencephalography (EEG) alpha oscillations while participants were cued to attend to foveal face or word stimuli, the processing of which is known to have right and left hemispheric lateralization, respectively. The results revealed that in the case of simultaneously displayed, overlapping face and word stimuli, attending to the words led to increased power of parieto-occipital alpha oscillations over the right hemisphere as compared to when faces were attended. This object category-specific modulation of the hemispheric lateralization of anticipatory alpha oscillations was maintained during sustained attentional selection of sequentially presented face and word stimuli. These results imply that in the case of object-based attentional selection—similarly to spatial and feature-based attention—gating of visual information processing might involve visual cortical alpha oscillations. PMID:25628554

  9. Coding of spatial attention priorities and object features in the macaque lateral intraparietal cortex.

    PubMed

    Levichkina, Ekaterina; Saalmann, Yuri B; Vidyasagar, Trichur R

    2017-03-01

    Primate posterior parietal cortex (PPC) is known to be involved in controlling spatial attention. Neurons in one part of the PPC, the lateral intraparietal area (LIP), show enhanced responses to objects at attended locations. Although many are selective for object features, such as the orientation of a visual stimulus, it is not clear how LIP circuits integrate feature-selective information when providing attentional feedback about behaviorally relevant locations to the visual cortex. We studied the relationship between object feature and spatial attention properties of LIP cells in two macaques by measuring the cells' orientation selectivity and the degree of attentional enhancement while performing a delayed match-to-sample task. Monkeys had to match both the location and orientation of two visual gratings presented separately in time. We found a wide range in orientation selectivity and degree of attentional enhancement among LIP neurons. However, cells with significant attentional enhancement had much less orientation selectivity in their response than cells which showed no significant modulation by attention. Additionally, orientation-selective cells showed working memory activity for their preferred orientation, whereas cells showing attentional enhancement also synchronized with local neuronal activity. These results are consistent with models of selective attention incorporating two stages, where an initial feature-selective process guides a second stage of focal spatial attention. We suggest that LIP contributes to both stages, where the first stage involves orientation-selective LIP cells that support working memory of the relevant feature, and the second stage involves attention-enhanced LIP cells that synchronize to provide feedback on spatial priorities. © 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  10. Spatial filtering velocimetry of objective speckles for measuring out-of-plane motion.

    PubMed

    Jakobsen, M L; Yura, H T; Hanson, S G

    2012-03-20

    This paper analyzes the dynamics of objective laser speckles as the distance between the object and the observation plane continuously changes. With the purpose of applying optical spatial filtering velocimetry to the speckle dynamics, in order to measure out-of-plane motion in real time, a rotational symmetric spatial filter is designed. The spatial filter converts the speckle dynamics into a photocurrent with a quasi-sinusoidal response to the out-of-plane motion. The spatial filter is here emulated with a CCD camera, and is tested on speckles arising from a real application. The analysis discusses the selectivity of the spatial filter, the nonlinear response between speckle motion and observation distance, and the influence of the distance-dependent speckle size. Experiments with the emulated filters illustrate performance and potential applications of the technology. © 2012 Optical Society of America

  11. Sex and spatial position effects on object location memory following intentional learning of object identities.

    PubMed

    Alexander, Gerianne M; Packard, Mark G; Peterson, Bradley S

    2002-01-01

    Memory for object location relative both to veridical center (left versus right visual hemispace) and to eccentricity (central versus peripheral objects) was measured in 26 males and 25 females using the Silverman and Eals Location Memory Task. A subset of participants (17 males and 13 females) also completed a measure of implicit learning, the mirror-tracing task. No sex differences were observed in memory for object identities. Further, in both sexes, memory for object locations was better for peripherally located objects than for centrally located objects. In contrast to these similarities in female and male task performance, females but not males showed better recovery of object locations in the right compared to the left visual hemispace. Moreover, memory for object locations in the right hemispace was associated with mirror-tracing performance in women but not in men. Together, these data suggest that the processing of object features and object identification in the left cerebral hemisphere may include processing of spatial information that may contribute to superior object location memory in females relative to males.

  12. Deconstructing Visual Scenes in Cortex: Gradients of Object and Spatial Layout Information

    PubMed Central

    Kravitz, Dwight J.; Baker, Chris I.

    2013-01-01

    Real-world visual scenes are complex cluttered, and heterogeneous stimuli engaging scene- and object-selective cortical regions including parahippocampal place area (PPA), retrosplenial complex (RSC), and lateral occipital complex (LOC). To understand the unique contribution of each region to distributed scene representations, we generated predictions based on a neuroanatomical framework adapted from monkey and tested them using minimal scenes in which we independently manipulated both spatial layout (open, closed, and gradient) and object content (furniture, e.g., bed, dresser). Commensurate with its strong connectivity with posterior parietal cortex, RSC evidenced strong spatial layout information but no object information, and its response was not even modulated by object presence. In contrast, LOC, which lies within the ventral visual pathway, contained strong object information but no background information. Finally, PPA, which is connected with both the dorsal and the ventral visual pathway, showed information about both objects and spatial backgrounds and was sensitive to the presence or absence of either. These results suggest that 1) LOC, PPA, and RSC have distinct representations, emphasizing different aspects of scenes, 2) the specific representations in each region are predictable from their patterns of connectivity, and 3) PPA combines both spatial layout and object information as predicted by connectivity. PMID:22473894

  13. Object-based spatial attention when objects have sufficient depth cues.

    PubMed

    Takeya, Ryuji; Kasai, Tetsuko

    2015-01-01

    Attention directed to a part of an object tends to obligatorily spread over all of the spatial regions that belong to the object, which may be critical for rapid object-recognition in cluttered visual scenes. Previous studies have generally used simple rectangles as objects and have shown that attention spreading is reflected by amplitude modulation in the posterior N1 component (150-200 ms poststimulus) of event-related potentials, while other interpretations (i.e., rectangular holes) may arise implicitly in early visual processing stages. By using modified Kanizsa-type stimuli that provided less ambiguity of depth ordering, the present study examined early event-related potential spatial-attention effects for connected and separated objects, both of which were perceived in front of (Experiment 1) and in back of (Experiment 2) the surroundings. Typical P1 (100-140 ms) and N1 (150-220 ms) attention effects of ERP in response to unilateral probes were observed in both experiments. Importantly, the P1 attention effect was decreased for connected objects compared to separated objects only in Experiment 1, and the typical object-based modulations of N1 were not observed in either experiment. These results suggest that spatial attention spreads over a figural object at earlier stages of processing than previously indicated, in three-dimensional visual scenes with multiple depth cues.

  14. Attention-spreading based on hierarchical spatial representations for connected objects.

    PubMed

    Kasai, Tetsuko

    2010-01-01

    Attention selects objects or groups as the most fundamental unit, and this may be achieved through a process in which attention automatically spreads throughout their entire region. Previously, we found that a lateralized potential relative to an attended hemifield at occipito-temporal electrode sites reflects attention-spreading in response to connected bilateral stimuli [Kasai, T., & Kondo, M. Electrophysiological correlates of attention-spreading in visual grouping. NeuroReport, 18, 93-98, 2007]. The present study examined the nature of object representations by manipulating the extent of grouping through connectedness, while controlling the symmetrical structure of bilateral stimuli. The electrophysiological results of two experiments consistently indicated that attention was guided twice in association with perceptual grouping in the early phase (N1, 150-200 msec poststimulus) and with the unity of an object in the later phase (N2pc, 310/330-390 msec). This suggests that there are two processes in object-based spatial selection, and these are discussed with regard to their cognitive mechanisms and object representations.

  15. A multiple-point spatially weighted k-NN method for object-based classification

    NASA Astrophysics Data System (ADS)

    Tang, Yunwei; Jing, Linhai; Li, Hui; Atkinson, Peter M.

    2016-10-01

    Object-based classification, commonly referred to as object-based image analysis (OBIA), is now commonly regarded as able to produce more appealing classification maps, often of greater accuracy, than pixel-based classification and its application is now widespread. Therefore, improvement of OBIA using spatial techniques is of great interest. In this paper, multiple-point statistics (MPS) is proposed for object-based classification enhancement in the form of a new multiple-point k-nearest neighbour (k-NN) classification method (MPk-NN). The proposed method first utilises a training image derived from a pre-classified map to characterise the spatial correlation between multiple points of land cover classes. The MPS borrows spatial structures from other parts of the training image, and then incorporates this spatial information, in the form of multiple-point probabilities, into the k-NN classifier. Two satellite sensor images with a fine spatial resolution were selected to evaluate the new method. One is an IKONOS image of the Beijing urban area and the other is a WorldView-2 image of the Wolong mountainous area, in China. The images were object-based classified using the MPk-NN method and several alternatives, including the k-NN, the geostatistically weighted k-NN, the Bayesian method, the decision tree classifier (DTC), and the support vector machine classifier (SVM). It was demonstrated that the new spatial weighting based on MPS can achieve greater classification accuracy relative to the alternatives and it is, thus, recommended as appropriate for object-based classification.

  16. Cortical systems mediating visual attention to both objects and spatial locations

    PubMed Central

    Shomstein, Sarah; Behrmann, Marlene

    2006-01-01

    Natural visual scenes consist of many objects occupying a variety of spatial locations. Given that the plethora of information cannot be processed simultaneously, the multiplicity of inputs compete for representation. Using event-related functional MRI, we show that attention, the mechanism by which a subset of the input is selected, is mediated by the posterior parietal cortex (PPC). Of particular interest is that PPC activity is differentially sensitive to the object-based properties of the input, with enhanced activation for those locations bound by an attended object. Of great interest too is the ensuing modulation of activation in early cortical regions, reflected as differences in the temporal profile of the blood oxygenation level-dependent (BOLD) response for within-object versus between-object locations. These findings indicate that object-based selection results from an object-sensitive reorienting signal issued by the PPC. The dynamic circuit between the PPC and earlier sensory regions then enables observers to attend preferentially to objects of interest in complex scenes. PMID:16840559

  17. Use of Self-to-Object and Object-to-Object Spatial Relations in Locomotion

    ERIC Educational Resources Information Center

    Xiao, Chengli; Mou, Weimin; McNamara, Timothy P.

    2009-01-01

    In 8 experiments, the authors examined the use of representations of self-to-object or object-to-object spatial relations during locomotion. Participants learned geometrically regular or irregular layouts of objects while standing at the edge or in the middle and then pointed to objects while blindfolded in 3 conditions: before turning (baseline),…

  18. Object-centered representations support flexible exogenous visual attention across translation and reflection

    PubMed Central

    Lin, Zhicheng

    2013-01-01

    Visual attention can be deployed to stimuli based on our willful, top-down goal (endogenous attention) or on their intrinsic saliency against the background (exogenous attention). Flexibility is thought to be a hallmark of endogenous attention, whereas decades of research show that exogenous attention is attracted to the retinotopic locations of the salient stimuli. However, to the extent that salient stimuli in the natural environment usually form specific spatial relations with the surrounding context and are dynamic, exogenous attention, to be adaptive, should embrace these structural regularities. Here we test a non-retinotopic, object-centered mechanism in exogenous attention, in which exogenous attention is dynamically attracted to a relative, object-centered location. Using a moving frame configuration, we presented two frames in succession, forming either apparent translational motion or in mirror reflection, with a completely uninformative, transient cue presented at one of the item locations in the first frame. Despite that the cue is presented in a spatially separate frame, in both translation and mirror reflection, human performance in visual search is enhanced when the target in the second frame appears at the same relative location as the cue location than at other locations. These results provide unambiguous evidence for non-retinotopic exogenous attention and further reveal an object-centered mechanism supporting flexible exogenous attention. Moreover, attentional generalization across mirror reflection may constitute an attentional correlate of perceptual generalization across lateral mirror images, supporting an adaptive, functional account of mirror images confusion. PMID:23942348

  19. Visual-Spatial Attention Aids the Maintenance of Object Representations in Visual Working Memory

    PubMed Central

    Williams, Melonie; Pouget, Pierre; Boucher, Leanne; Woodman, Geoffrey F.

    2013-01-01

    Theories have proposed that the maintenance of object representations in visual working memory is aided by a spatial rehearsal mechanism. In this study, we used two different approaches to test the hypothesis that overt and covert visual-spatial attention mechanisms contribute to the maintenance of object representations in visual working memory. First, we tracked observers’ eye movements while remembering a variable number of objects during change-detection tasks. We observed that during the blank retention interval, participants spontaneously shifted gaze to the locations that the objects had occupied in the memory array. Next, we hypothesized that if attention mechanisms contribute to the maintenance of object representations, then drawing attention away from the object locations during the retention interval would impair object memory during these change-detection tasks. Supporting this prediction, we found that attending to the fixation point in anticipation of a brief probe stimulus during the retention interval reduced change-detection accuracy even on the trials in which no probe occurred. These findings support models of working memory in which visual-spatial selection mechanisms contribute to the maintenance of object representations. PMID:23371773

  20. Spatially rearranged object parts can facilitate perception of intact whole objects.

    PubMed

    Cacciamani, Laura; Ayars, Alisabeth A; Peterson, Mary A

    2014-01-01

    The familiarity of an object depends on the spatial arrangement of its parts; when the parts are spatially rearranged, they form a novel, unrecognizable configuration. Yet the same collection of parts comprises both the familiar and novel configuration. Is it possible that the collection of familiar parts activates a representation of the intact familiar configuration even when they are spatially rearranged? We presented novel configurations as primes before test displays that assayed effects on figure-ground perception from memories of intact familiar objects. In our test displays, two equal-area regions shared a central border; one region depicted a portion of a familiar object. Previous research with such displays has shown that participants are more likely to perceive the region depicting a familiar object as the figure and the abutting region as its ground when the familiar object is depicted in its upright orientation rather than upside down. The novel primes comprised either the same or a different collection of parts as the familiar object in the test display (part-rearranged and control primes, respectively). We found that participants were more likely to perceive the familiar region as figure in upright vs. inverted displays following part-rearranged primes but not control primes. Thus, priming with a novel configuration comprising the same familiar parts as the upcoming figure-ground display facilitated orientation-dependent effects of object memories on figure assignment. Similar results were obtained when the spatially rearranged collection of parts was suggested on the groundside of the prime's border, suggesting that familiar parts in novel configurations access the representation of their corresponding intact whole object before figure assignment. These data demonstrate that familiar parts access memories of familiar objects even when they are arranged in a novel configuration.

  1. Spatially rearranged object parts can facilitate perception of intact whole objects

    PubMed Central

    Cacciamani, Laura; Ayars, Alisabeth A.; Peterson, Mary A.

    2014-01-01

    The familiarity of an object depends on the spatial arrangement of its parts; when the parts are spatially rearranged, they form a novel, unrecognizable configuration. Yet the same collection of parts comprises both the familiar and novel configuration. Is it possible that the collection of familiar parts activates a representation of the intact familiar configuration even when they are spatially rearranged? We presented novel configurations as primes before test displays that assayed effects on figure-ground perception from memories of intact familiar objects. In our test displays, two equal-area regions shared a central border; one region depicted a portion of a familiar object. Previous research with such displays has shown that participants are more likely to perceive the region depicting a familiar object as the figure and the abutting region as its ground when the familiar object is depicted in its upright orientation rather than upside down. The novel primes comprised either the same or a different collection of parts as the familiar object in the test display (part-rearranged and control primes, respectively). We found that participants were more likely to perceive the familiar region as figure in upright vs. inverted displays following part-rearranged primes but not control primes. Thus, priming with a novel configuration comprising the same familiar parts as the upcoming figure-ground display facilitated orientation-dependent effects of object memories on figure assignment. Similar results were obtained when the spatially rearranged collection of parts was suggested on the groundside of the prime's border, suggesting that familiar parts in novel configurations access the representation of their corresponding intact whole object before figure assignment. These data demonstrate that familiar parts access memories of familiar objects even when they are arranged in a novel configuration. PMID:24904495

  2. Objective Versus Subjective Military Pilot Selection Methods in the United States of America

    DTIC Science & Technology

    2015-12-14

    a computerized test designed to assess pilot skills by measuring spatial orientation and psychomotor skills and multitasking . The second is the...AFRL-SA-WP-SR-2015-0028 Objective Versus Subjective Military Pilot Selection Methods in the United States of America Joe...September 2014 4. TITLE AND SUBTITLE Objective Versus Subjective Military Pilot Selection Methods in the United States of America 5a. CONTRACT

  3. Object-centered representations support flexible exogenous visual attention across translation and reflection.

    PubMed

    Lin, Zhicheng

    2013-11-01

    Visual attention can be deployed to stimuli based on our willful, top-down goal (endogenous attention) or on their intrinsic saliency against the background (exogenous attention). Flexibility is thought to be a hallmark of endogenous attention, whereas decades of research show that exogenous attention is attracted to the retinotopic locations of the salient stimuli. However, to the extent that salient stimuli in the natural environment usually form specific spatial relations with the surrounding context and are dynamic, exogenous attention, to be adaptive, should embrace these structural regularities. Here we test a non-retinotopic, object-centered mechanism in exogenous attention, in which exogenous attention is dynamically attracted to a relative, object-centered location. Using a moving frame configuration, we presented two frames in succession, forming either apparent translational motion or in mirror reflection, with a completely uninformative, transient cue presented at one of the item locations in the first frame. Despite that the cue is presented in a spatially separate frame, in both translation and mirror reflection, behavioralperformance in visual search is enhanced when the target in the second frame appears at the same relative location as the cue location than at other locations. These results provide unambiguous evidence for non-retinotopic exogenous attention and further reveal an object-centered mechanism supporting flexible exogenous attention. Moreover, attentional generalization across mirror reflection may constitute an attentional correlate of perceptual generalization across lateral mirror images, supporting an adaptive, functional account of mirror images confusion. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Object recognition with severe spatial deficits in Williams syndrome: sparing and breakdown.

    PubMed

    Landau, Barbara; Hoffman, James E; Kurz, Nicole

    2006-07-01

    Williams syndrome (WS) is a rare genetic disorder that results in severe visual-spatial cognitive deficits coupled with relative sparing in language, face recognition, and certain aspects of motion processing. Here, we look for evidence for sparing or impairment in another cognitive system-object recognition. Children with WS, normal mental-age (MA) and chronological age-matched (CA) children, and normal adults viewed pictures of a large range of objects briefly presented under various conditions of degradation, including canonical and unusual orientations, and clear or blurred contours. Objects were shown as either full-color views (Experiment 1) or line drawings (Experiment 2). Across both experiments, WS and MA children performed similarly in all conditions while CA children performed better than both WS group and MA groups with unusual views. This advantage, however, was eliminated when images were also blurred. The error types and relative difficulty of different objects were similar across all participant groups. The results indicate selective sparing of basic mechanisms of object recognition in WS, together with developmental delay or arrest in recognition of objects from unusual viewpoints. These findings are consistent with the growing literature on brain abnormalities in WS which points to selective impairment in the parietal areas of the brain. As a whole, the results lend further support to the growing literature on the functional separability of object recognition mechanisms from other spatial functions, and raise intriguing questions about the link between genetic deficits and cognition.

  5. Multispecies genetic objectives in spatial conservation planning.

    PubMed

    Nielsen, Erica S; Beger, Maria; Henriques, Romina; Selkoe, Kimberly A; von der Heyden, Sophie

    2017-08-01

    Growing threats to biodiversity and global alteration of habitats and species distributions make it increasingly necessary to consider evolutionary patterns in conservation decision making. Yet, there is no clear-cut guidance on how genetic features can be incorporated into conservation-planning processes, despite multiple molecular markers and several genetic metrics for each marker type to choose from. Genetic patterns differ between species, but the potential tradeoffs among genetic objectives for multiple species in conservation planning are currently understudied. We compared spatial conservation prioritizations derived from 2 metrics of genetic diversity (nucleotide and haplotype diversity) and 2 metrics of genetic isolation (private haplotypes and local genetic differentiation) in mitochondrial DNA of 5 marine species. We compared outcomes of conservation plans based only on habitat representation with plans based on genetic data and habitat representation. Fewer priority areas were selected for conservation plans based solely on habitat representation than on plans that included habitat and genetic data. All 4 genetic metrics selected approximately similar conservation-priority areas, which is likely a result of prioritizing genetic patterns across a genetically diverse array of species. Largely, our results suggest that multispecies genetic conservation objectives are vital to creating protected-area networks that appropriately preserve community-level evolutionary patterns. © 2016 Society for Conservation Biology.

  6. The spatial patterns of directional phenotypic selection.

    PubMed

    Siepielski, Adam M; Gotanda, Kiyoko M; Morrissey, Michael B; Diamond, Sarah E; DiBattista, Joseph D; Carlson, Stephanie M

    2013-11-01

    Local adaptation, adaptive population divergence and speciation are often expected to result from populations evolving in response to spatial variation in selection. Yet, we lack a comprehensive understanding of the major features that characterise the spatial patterns of selection, namely the extent of variation among populations in the strength and direction of selection. Here, we analyse a data set of spatially replicated studies of directional phenotypic selection from natural populations. The data set includes 60 studies, consisting of 3937 estimates of selection across an average of five populations. We performed meta-analyses to explore features characterising spatial variation in directional selection. We found that selection tends to vary mainly in strength and less in direction among populations. Although differences in the direction of selection occur among populations they do so where selection is often weakest, which may limit the potential for ongoing adaptive population divergence. Overall, we also found that spatial variation in selection appears comparable to temporal (annual) variation in selection within populations; however, several deficiencies in available data currently complicate this comparison. We discuss future research needs to further advance our understanding of spatial variation in selection. © 2013 John Wiley & Sons Ltd/CNRS.

  7. Attention Modulates Spatial Precision in Multiple-Object Tracking.

    PubMed

    Srivastava, Nisheeth; Vul, Ed

    2016-01-01

    We present a computational model of multiple-object tracking that makes trial-level predictions about the allocation of visual attention and the effect of this allocation on observers' ability to track multiple objects simultaneously. This model follows the intuition that increased attention to a location increases the spatial resolution of its internal representation. Using a combination of empirical and computational experiments, we demonstrate the existence of a tight coupling between cognitive and perceptual resources in this task: Low-level tracking of objects generates bottom-up predictions of error likelihood, and high-level attention allocation selectively reduces error probabilities in attended locations while increasing it at non-attended locations. Whereas earlier models of multiple-object tracking have predicted the big picture relationship between stimulus complexity and response accuracy, our approach makes accurate predictions of both the macro-scale effect of target number and velocity on tracking difficulty and micro-scale variations in difficulty across individual trials and targets arising from the idiosyncratic within-trial interactions of targets and distractors. Copyright © 2016 Cognitive Science Society, Inc.

  8. Spatially explicit decision support for selecting translocation areas for Mojave desert tortoises

    USGS Publications Warehouse

    Heaton, Jill S.; Nussear, Kenneth E.; Esque, Todd C.; Inman, Richard D.; Davenport, Frank; Leuteritz, Thomas E.; Medica, Philip A.; Strout, Nathan W.; Burgess, Paul A.; Benvenuti, Lisa

    2008-01-01

    Spatially explicit decision support systems are assuming an increasing role in natural resource and conservation management. In order for these systems to be successful, however, they must address real-world management problems with input from both the scientific and management communities. The National Training Center at Fort Irwin, California, has expanded its training area, encroaching U.S. Fish and Wildlife Service critical habitat set aside for the Mojave desert tortoise (Gopherus agassizii), a federally threatened species. Of all the mitigation measures proposed to offset expansion, the most challenging to implement was the selection of areas most feasible for tortoise translocation. We developed an objective, open, scientifically defensible spatially explicit decision support system to evaluate translocation potential within the Western Mojave Recovery Unit for tortoise populations under imminent threat from military expansion. Using up to a total of 10 biological, anthropogenic, and/or logistical criteria, seven alternative translocation scenarios were developed. The final translocation model was a consensus model between the seven scenarios. Within the final model, six potential translocation areas were identified.

  9. Modulation of microsaccades by spatial frequency during object categorization.

    PubMed

    Craddock, Matt; Oppermann, Frank; Müller, Matthias M; Martinovic, Jasna

    2017-01-01

    The organization of visual processing into a coarse-to-fine information processing based on the spatial frequency properties of the input forms an important facet of the object recognition process. During visual object categorization tasks, microsaccades occur frequently. One potential functional role of these eye movements is to resolve high spatial frequency information. To assess this hypothesis, we examined the rate, amplitude and speed of microsaccades in an object categorization task in which participants viewed object and non-object images and classified them as showing either natural objects, man-made objects or non-objects. Images were presented unfiltered (broadband; BB) or filtered to contain only low (LSF) or high spatial frequency (HSF) information. This allowed us to examine whether microsaccades were modulated independently by the presence of a high-level feature - the presence of an object - and by low-level stimulus characteristics - spatial frequency. We found a bimodal distribution of saccades based on their amplitude, with a split between smaller and larger microsaccades at 0.4° of visual angle. The rate of larger saccades (⩾0.4°) was higher for objects than non-objects, and higher for objects with high spatial frequency content (HSF and BB objects) than for LSF objects. No effects were observed for smaller microsaccades (<0.4°). This is consistent with a role for larger microsaccades in resolving HSF information for object identification, and previous evidence that more microsaccades are directed towards informative image regions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Persistent spatial information in the frontal eye field during object-based short-term memory.

    PubMed

    Clark, Kelsey L; Noudoost, Behrad; Moore, Tirin

    2012-08-08

    Spatial attention is known to gate entry into visual short-term memory, and some evidence suggests that spatial signals may also play a role in binding features or protecting object representations during memory maintenance. To examine the persistence of spatial signals during object short-term memory, the activity of neurons in the frontal eye field (FEF) of macaque monkeys was recorded during an object-based delayed match-to-sample task. In this task, monkeys were trained to remember an object image over a brief delay, regardless of the locations of the sample or target presentation. FEF neurons exhibited visual, delay, and target period activity, including selectivity for sample location and target location. Delay period activity represented the sample location throughout the delay, despite the irrelevance of spatial information for successful task completion. Furthermore, neurons continued to encode sample position in a variant of the task in which the matching stimulus never appeared in their response field, confirming that FEF maintains sample location independent of subsequent behavioral relevance. FEF neurons also exhibited target-position-dependent anticipatory activity immediately before target onset, suggesting that monkeys predicted target position within blocks. These results show that FEF neurons maintain spatial information during short-term memory, even when that information is irrelevant for task performance.

  11. Automatic frame-centered object representation and integration revealed by iconic memory, visual priming, and backward masking.

    PubMed

    Lin, Zhicheng; He, Sheng

    2012-10-25

    Object identities ("what") and their spatial locations ("where") are processed in distinct pathways in the visual system, raising the question of how the what and where information is integrated. Because of object motions and eye movements, the retina-based representations are unstable, necessitating nonretinotopic representation and integration. A potential mechanism is to code and update objects according to their reference frames (i.e., frame-centered representation and integration). To isolate frame-centered processes, in a frame-to-frame apparent motion configuration, we (a) presented two preceding or trailing objects on the same frame, equidistant from the target on the other frame, to control for object-based (frame-based) effect and space-based effect, and (b) manipulated the target's relative location within its frame to probe frame-centered effect. We show that iconic memory, visual priming, and backward masking depend on objects' relative frame locations, orthogonal of the retinotopic coordinate. These findings not only reveal that iconic memory, visual priming, and backward masking can be nonretinotopic but also demonstrate that these processes are automatically constrained by contextual frames through a frame-centered mechanism. Thus, object representation is robustly and automatically coupled to its reference frame and continuously being updated through a frame-centered, location-specific mechanism. These findings lead to an object cabinet framework, in which objects ("files") within the reference frame ("cabinet") are orderly coded relative to the frame.

  12. Distributed encoding of spatial and object categories in primate hippocampal microcircuits

    PubMed Central

    Opris, Ioan; Santos, Lucas M.; Gerhardt, Greg A.; Song, Dong; Berger, Theodore W.; Hampson, Robert E.; Deadwyler, Sam A.

    2015-01-01

    The primate hippocampus plays critical roles in the encoding, representation, categorization and retrieval of cognitive information. Such cognitive abilities may use the transformational input-output properties of hippocampal laminar microcircuitry to generate spatial representations and to categorize features of objects, images, and their numeric characteristics. Four nonhuman primates were trained in a delayed-match-to-sample (DMS) task while multi-neuron activity was simultaneously recorded from the CA1 and CA3 hippocampal cell fields. The results show differential encoding of spatial location and categorization of images presented as relevant stimuli in the task. Individual hippocampal cells encoded visual stimuli only on specific types of trials in which retention of either, the Sample image, or the spatial position of the Sample image indicated at the beginning of the trial, was required. Consistent with such encoding, it was shown that patterned microstimulation applied during Sample image presentation facilitated selection of either Sample image spatial locations or types of images, during the Match phase of the task. These findings support the existence of specific codes for spatial and numeric object representations in primate hippocampus which can be applied on differentially signaled trials. Moreover, the transformational properties of hippocampal microcircuitry, together with the patterned microstimulation are supporting the practical importance of this approach for cognitive enhancement and rehabilitation, needed for memory neuroprosthetics. PMID:26500473

  13. Spatial processes decouple management from objectives in a heterogeneous landscape: predator control as a case study.

    PubMed

    Mahoney, Peter J; Young, Julie K; Hersey, Kent R; Larsen, Randy T; McMillan, Brock R; Stoner, David C

    2018-04-01

    Predator control is often implemented with the intent of disrupting top-down regulation in sensitive prey populations. However, ambiguity surrounding the efficacy of predator management, as well as the strength of top-down effects of predators in general, is often exacerbated by the spatially implicit analytical approaches used in assessing data with explicit spatial structure. Here, we highlight the importance of considering spatial context in the case of a predator control study in south-central Utah. We assessed the spatial match between aerial removal risk in coyotes (Canis latrans) and mule deer (Odocoileus hemionus) resource selection during parturition using a spatially explicit, multi-level Bayesian model. With our model, we were able to evaluate spatial congruence between management action (i.e., coyote removal) and objective (i.e., parturient deer site selection) at two distinct scales: the level of the management unit and the individual coyote removal. In the case of the former, our results indicated substantial spatial heterogeneity in expected congruence between removal risk and parturient deer site selection across large areas, and is a reflection of logistical constraints acting on the management strategy and differences in space use between the two species. At the level of the individual removal, we demonstrated that the potential management benefits of a removed coyote were highly variable across all individuals removed and in many cases, spatially distinct from parturient deer resource selection. Our methods and results provide a means of evaluating where we might anticipate an impact of predator control, while emphasizing the need to weight individual removals based on spatial proximity to management objectives in any assessment of large-scale predator control. Although we highlight the importance of spatial context in assessments of predator control strategy, we believe our methods are readily generalizable in any management or large

  14. Inhibition of Return and Object-based Attentional Selection

    PubMed Central

    List, Alexandra; Robertson, Lynn C.

    2008-01-01

    Visual attention research has revealed that attentional allocation can occur in space- and/or object-based coordinates. Using the direct and elegant design of R. Egly, J. Driver and R. Rafal (1994), we examine whether space- and object-based inhibition of return (IOR) emerge under similar time courses. The present experiments were capable of isolating both space- and object-based effects induced by peripheral and back-to-center cues. They generally support the contention that spatially non-predictive cues are effective in producing space-based IOR at a variety of SOAs, and under a variety of stimulus conditions. Whether facilitatory or inhibitory in direction, the object-based effects occurred over a very different time course than did the space-based effects. Reliable object-based IOR was only found under limited conditions and was tied to the time since the most recent cue (peripheral or central). The finding that object-based effects are generally determined by SOA from the most recent cue may help to resolve discrepancies in the IOR literature. These findings also have implications for the search facilitator role IOR is purported to play in the guidance of visual attention. PMID:18085946

  15. Reweighted mass center based object-oriented sparse subspace clustering for hyperspectral images

    NASA Astrophysics Data System (ADS)

    Zhai, Han; Zhang, Hongyan; Zhang, Liangpei; Li, Pingxiang

    2016-10-01

    Considering the inevitable obstacles faced by the pixel-based clustering methods, such as salt-and-pepper noise, high computational complexity, and the lack of spatial information, a reweighted mass center based object-oriented sparse subspace clustering (RMC-OOSSC) algorithm for hyperspectral images (HSIs) is proposed. First, the mean-shift segmentation method is utilized to oversegment the HSI to obtain meaningful objects. Second, a distance reweighted mass center learning model is presented to extract the representative and discriminative features for each object. Third, assuming that all the objects are sampled from a union of subspaces, it is natural to apply the SSC algorithm to the HSI. Faced with the high correlation among the hyperspectral objects, a weighting scheme is adopted to ensure that the highly correlated objects are preferred in the procedure of sparse representation, to reduce the representation errors. Two widely used hyperspectral datasets were utilized to test the performance of the proposed RMC-OOSSC algorithm, obtaining high clustering accuracies (overall accuracy) of 71.98% and 89.57%, respectively. The experimental results show that the proposed method clearly improves the clustering performance with respect to the other state-of-the-art clustering methods, and it significantly reduces the computational time.

  16. Architectural Implications for Spatial Object Association Algorithms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, V S; Kurc, T; Saltz, J

    2009-01-29

    Spatial object association, also referred to as cross-match of spatial datasets, is the problem of identifying and comparing objects in two or more datasets based on their positions in a common spatial coordinate system. In this work, we evaluate two crossmatch algorithms that are used for astronomical sky surveys, on the following database system architecture configurations: (1) Netezza Performance Server R, a parallel database system with active disk style processing capabilities, (2) MySQL Cluster, a high-throughput network database system, and (3) a hybrid configuration consisting of a collection of independent database system instances with data replication support. Our evaluation providesmore » insights about how architectural characteristics of these systems affect the performance of the spatial crossmatch algorithms. We conducted our study using real use-case scenarios borrowed from a large-scale astronomy application known as the Large Synoptic Survey Telescope (LSST).« less

  17. Architectural Implications for Spatial Object Association Algorithms*

    PubMed Central

    Kumar, Vijay S.; Kurc, Tahsin; Saltz, Joel; Abdulla, Ghaleb; Kohn, Scott R.; Matarazzo, Celeste

    2013-01-01

    Spatial object association, also referred to as crossmatch of spatial datasets, is the problem of identifying and comparing objects in two or more datasets based on their positions in a common spatial coordinate system. In this work, we evaluate two crossmatch algorithms that are used for astronomical sky surveys, on the following database system architecture configurations: (1) Netezza Performance Server®, a parallel database system with active disk style processing capabilities, (2) MySQL Cluster, a high-throughput network database system, and (3) a hybrid configuration consisting of a collection of independent database system instances with data replication support. Our evaluation provides insights about how architectural characteristics of these systems affect the performance of the spatial crossmatch algorithms. We conducted our study using real use-case scenarios borrowed from a large-scale astronomy application known as the Large Synoptic Survey Telescope (LSST). PMID:25692244

  18. Subliminally presented and stored objects capture spatial attention.

    PubMed

    Astle, Duncan E; Nobre, Anna C; Scerif, Gaia

    2010-03-10

    When objects disappear from view, we can still bring them to mind, at least for brief periods of time, because we can represent those objects in visual short-term memory (VSTM) (Sperling, 1960; Cowan, 2001). A defining characteristic of this representation is that it is topographic, that is, it preserves a spatial organization based on the original visual percept (Vogel and Machizawa, 2004; Astle et al., 2009; Kuo et al., 2009). Recent research has also shown that features or locations of visual items that match those being maintained in conscious VSTM automatically capture our attention (Awh and Jonides, 2001; Olivers et al., 2006; Soto et al., 2008). But do objects leave some trace that can guide spatial attention, even without participants intentionally remembering them? Furthermore, could subliminally presented objects leave a topographically arranged representation that can capture attention? We presented objects either supraliminally or subliminally and then 1 s later re-presented one of those objects in a new location, as a "probe" shape. As participants made an arbitrary perceptual judgment on the probe shape, their covert spatial attention was drawn to the original location of that shape, regardless of whether its initial presentation had been supraliminal or subliminal. We demonstrate this with neural and behavioral measures of memory-driven attentional capture. These findings reveal the existence of a topographically arranged store of "visual" objects, the content of which is beyond our explicit awareness but which nonetheless guides spatial attention.

  19. Automatic frame-centered object representation and integration revealed by iconic memory, visual priming, and backward masking

    PubMed Central

    Lin, Zhicheng; He, Sheng

    2012-01-01

    Object identities (“what”) and their spatial locations (“where”) are processed in distinct pathways in the visual system, raising the question of how the what and where information is integrated. Because of object motions and eye movements, the retina-based representations are unstable, necessitating nonretinotopic representation and integration. A potential mechanism is to code and update objects according to their reference frames (i.e., frame-centered representation and integration). To isolate frame-centered processes, in a frame-to-frame apparent motion configuration, we (a) presented two preceding or trailing objects on the same frame, equidistant from the target on the other frame, to control for object-based (frame-based) effect and space-based effect, and (b) manipulated the target's relative location within its frame to probe frame-centered effect. We show that iconic memory, visual priming, and backward masking depend on objects' relative frame locations, orthogonal of the retinotopic coordinate. These findings not only reveal that iconic memory, visual priming, and backward masking can be nonretinotopic but also demonstrate that these processes are automatically constrained by contextual frames through a frame-centered mechanism. Thus, object representation is robustly and automatically coupled to its reference frame and continuously being updated through a frame-centered, location-specific mechanism. These findings lead to an object cabinet framework, in which objects (“files”) within the reference frame (“cabinet”) are orderly coded relative to the frame. PMID:23104817

  20. Object versus spatial visual mental imagery in patients with schizophrenia

    PubMed Central

    Aleman, André; de Haan, Edward H.F.; Kahn, René S.

    2005-01-01

    Objective Recent research has revealed a larger impairment of object perceptual discrimination than of spatial perceptual discrimination in patients with schizophrenia. It has been suggested that mental imagery may share processing systems with perception. We investigated whether patients with schizophrenia would show greater impairment regarding object imagery than spatial imagery. Methods Forty-four patients with schizophrenia and 20 healthy control subjects were tested on a task of object visual mental imagery and on a task of spatial visual mental imagery. Both tasks included a condition in which no imagery was needed for adequate performance, but which was in other respects identical to the imagery condition. This allowed us to adjust for nonspecific differences in individual performance. Results The results revealed a significant difference between patients and controls on the object imagery task (F1,63 = 11.8, p = 0.001) but not on the spatial imagery task (F1,63 = 0.14, p = 0.71). To test for a differential effect, we conducted a 2 (patients v. controls) х 2 (object task v. spatial task) analysis of variance. The interaction term was statistically significant (F1,62 = 5.2, p = 0.026). Conclusions Our findings suggest a differential dysfunction of systems mediating object and spatial visual mental imagery in schizophrenia. PMID:15644999

  1. Object width modulates object-based attentional selection.

    PubMed

    Nah, Joseph C; Neppi-Modona, Marco; Strother, Lars; Behrmann, Marlene; Shomstein, Sarah

    2018-04-24

    Visual input typically includes a myriad of objects, some of which are selected for further processing. While these objects vary in shape and size, most evidence supporting object-based guidance of attention is drawn from paradigms employing two identical objects. Importantly, object size is a readily perceived stimulus dimension, and whether it modulates the distribution of attention remains an open question. Across four experiments, the size of the objects in the display was manipulated in a modified version of the two-rectangle paradigm. In Experiment 1, two identical parallel rectangles of two sizes (thin or thick) were presented. Experiments 2-4 employed identical trapezoids (each having a thin and thick end), inverted in orientation. In the experiments, one end of an object was cued and participants performed either a T/L discrimination or a simple target-detection task. Combined results show that, in addition to the standard object-based attentional advantage, there was a further attentional benefit for processing information contained in the thick versus thin end of objects. Additionally, eye-tracking measures demonstrated increased saccade precision towards thick object ends, suggesting that Fitts's Law may play a role in object-based attentional shifts. Taken together, these results suggest that object-based attentional selection is modulated by object width.

  2. Is that a belt or a snake? object attentional selection affects the early stages of visual sensory processing

    PubMed Central

    2012-01-01

    Background There is at present crescent empirical evidence deriving from different lines of ERPs research that, unlike previously observed, the earliest sensory visual response, known as C1 component or P/N80, generated within the striate cortex, might be modulated by selective attention to visual stimulus features. Up to now, evidence of this modulation has been related to space location, and simple features such as spatial frequency, luminance, and texture. Additionally, neurophysiological conditions, such as emotion, vigilance, the reflexive or voluntary nature of input attentional selection, and workload have also been related to C1 modulations, although at least the workload status has received controversial indications. No information is instead available, at present, for objects attentional selection. Methods In this study object- and space-based attention mechanisms were conjointly investigated by presenting complex, familiar shapes of artefacts and animals, intermixed with distracters, in different tasks requiring the selection of a relevant target-category within a relevant spatial location, while ignoring the other shape categories within this location, and, overall, all the categories at an irrelevant location. EEG was recorded from 30 scalp electrode sites in 21 right-handed participants. Results and Conclusions ERP findings showed that visual processing was modulated by both shape- and location-relevance per se, beginning separately at the latency of the early phase of a precocious negativity (60-80 ms) at mesial scalp sites consistent with the C1 component, and a positivity at more lateral sites. The data also showed that the attentional modulation progressed conjointly at the latency of the subsequent P1 (100-120 ms) and N1 (120-180 ms), as well as later-latency components. These findings support the views that (1) V1 may be precociously modulated by direct top-down influences, and participates to object, besides simple features, attentional

  3. Distinct roles of basal forebrain cholinergic neurons in spatial and object recognition memory.

    PubMed

    Okada, Kana; Nishizawa, Kayo; Kobayashi, Tomoko; Sakata, Shogo; Kobayashi, Kazuto

    2015-08-06

    Recognition memory requires processing of various types of information such as objects and locations. Impairment in recognition memory is a prominent feature of amnesia and a symptom of Alzheimer's disease (AD). Basal forebrain cholinergic neurons contain two major groups, one localized in the medial septum (MS)/vertical diagonal band of Broca (vDB), and the other in the nucleus basalis magnocellularis (NBM). The roles of these cell groups in recognition memory have been debated, and it remains unclear how they contribute to it. We use a genetic cell targeting technique to selectively eliminate cholinergic cell groups and then test spatial and object recognition memory through different behavioural tasks. Eliminating MS/vDB neurons impairs spatial but not object recognition memory in the reference and working memory tasks, whereas NBM elimination undermines only object recognition memory in the working memory task. These impairments are restored by treatment with acetylcholinesterase inhibitors, anti-dementia drugs for AD. Our results highlight that MS/vDB and NBM cholinergic neurons are not only implicated in recognition memory but also have essential roles in different types of recognition memory.

  4. Audiovisual communication of object-names improves the spatial accuracy of recalled object-locations in topographic maps.

    PubMed

    Lammert-Siepmann, Nils; Bestgen, Anne-Kathrin; Edler, Dennis; Kuchinke, Lars; Dickmann, Frank

    2017-01-01

    Knowing the correct location of a specific object learned from a (topographic) map is fundamental for orientation and navigation tasks. Spatial reference systems, such as coordinates or cardinal directions, are helpful tools for any geometric localization of positions that aims to be as exact as possible. Considering modern visualization techniques of multimedia cartography, map elements transferred through the auditory channel can be added easily. Audiovisual approaches have been discussed in the cartographic community for many years. However, the effectiveness of audiovisual map elements for map use has hardly been explored so far. Within an interdisciplinary (cartography-cognitive psychology) research project, it is examined whether map users remember object-locations better if they do not just read the corresponding place names, but also listen to them as voice recordings. This approach is based on the idea that learning object-identities influences learning object-locations, which is crucial for map-reading tasks. The results of an empirical study show that the additional auditory communication of object names not only improves memory for the names (object-identities), but also for the spatial accuracy of their corresponding object-locations. The audiovisual communication of semantic attribute information of a spatial object seems to improve the binding of object-identity and object-location, which enhances the spatial accuracy of object-location memory.

  5. Audiovisual communication of object-names improves the spatial accuracy of recalled object-locations in topographic maps

    PubMed Central

    Bestgen, Anne-Kathrin; Edler, Dennis; Kuchinke, Lars; Dickmann, Frank

    2017-01-01

    Knowing the correct location of a specific object learned from a (topographic) map is fundamental for orientation and navigation tasks. Spatial reference systems, such as coordinates or cardinal directions, are helpful tools for any geometric localization of positions that aims to be as exact as possible. Considering modern visualization techniques of multimedia cartography, map elements transferred through the auditory channel can be added easily. Audiovisual approaches have been discussed in the cartographic community for many years. However, the effectiveness of audiovisual map elements for map use has hardly been explored so far. Within an interdisciplinary (cartography-cognitive psychology) research project, it is examined whether map users remember object-locations better if they do not just read the corresponding place names, but also listen to them as voice recordings. This approach is based on the idea that learning object-identities influences learning object-locations, which is crucial for map-reading tasks. The results of an empirical study show that the additional auditory communication of object names not only improves memory for the names (object-identities), but also for the spatial accuracy of their corresponding object-locations. The audiovisual communication of semantic attribute information of a spatial object seems to improve the binding of object-identity and object-location, which enhances the spatial accuracy of object-location memory. PMID:29059237

  6. Selective visual attention in object detection processes

    NASA Astrophysics Data System (ADS)

    Paletta, Lucas; Goyal, Anurag; Greindl, Christian

    2003-03-01

    Object detection is an enabling technology that plays a key role in many application areas, such as content based media retrieval. Attentive cognitive vision systems are here proposed where the focus of attention is directed towards the most relevant target. The most promising information is interpreted in a sequential process that dynamically makes use of knowledge and that enables spatial reasoning on the local object information. The presented work proposes an innovative application of attention mechanisms for object detection which is most general in its understanding of information and action selection. The attentive detection system uses a cascade of increasingly complex classifiers for the stepwise identification of regions of interest (ROIs) and recursively refined object hypotheses. While the most coarse classifiers are used to determine first approximations on a region of interest in the input image, more complex classifiers are used for more refined ROIs to give more confident estimates. Objects are modelled by local appearance based representations and in terms of posterior distributions of the object samples in eigenspace. The discrimination function to discern between objects is modeled by a radial basis functions (RBF) network that has been compared with alternative networks and been proved consistent and superior to other artifical neural networks for appearance based object recognition. The experiments were led for the automatic detection of brand objects in Formula One broadcasts within the European Commission's cognitive vision project DETECT.

  7. The highs and lows of object impossibility: effects of spatial frequency on holistic processing of impossible objects.

    PubMed

    Freud, Erez; Avidan, Galia; Ganel, Tzvi

    2015-02-01

    Holistic processing, the decoding of a stimulus as a unified whole, is a basic characteristic of object perception. Recent research using Garner's speeded classification task has shown that this processing style is utilized even for impossible objects that contain an inherent spatial ambiguity. In particular, similar Garner interference effects were found for possible and impossible objects, indicating similar holistic processing styles for the two object categories. In the present study, we further investigated the perceptual mechanisms that mediate such holistic representation of impossible objects. We relied on the notion that, whereas information embedded in the high-spatial-frequency (HSF) content supports fine-detailed processing of object features, the information conveyed by low spatial frequencies (LSF) is more crucial for the emergence of a holistic shape representation. To test the effects of image frequency on the holistic processing of impossible objects, participants performed the Garner speeded classification task on images of possible and impossible cubes filtered for their LSF and HSF information. For images containing only LSF, similar interference effects were observed for possible and impossible objects, indicating that the two object categories were processed in a holistic manner. In contrast, for the HSF images, Garner interference was obtained only for possible, but not for impossible objects. Importantly, we provided evidence to show that this effect could not be attributed to a lack of sensitivity to object possibility in the LSF images. Particularly, even for full-spectrum images, Garner interference was still observed for both possible and impossible objects. Additionally, performance in an object classification task revealed high sensitivity to object possibility, even for LSF images. Taken together, these findings suggest that the visual system can tolerate the spatial ambiguity typical to impossible objects by relying on information

  8. Locator-Checker-Scaler Object Tracking Using Spatially Ordered and Weighted Patch Descriptor.

    PubMed

    Kim, Han-Ul; Kim, Chang-Su

    2017-08-01

    In this paper, we propose a simple yet effective object descriptor and a novel tracking algorithm to track a target object accurately. For the object description, we divide the bounding box of a target object into multiple patches and describe them with color and gradient histograms. Then, we determine the foreground weight of each patch to alleviate the impacts of background information in the bounding box. To this end, we perform random walk with restart (RWR) simulation. We then concatenate the weighted patch descriptors to yield the spatially ordered and weighted patch (SOWP) descriptor. For the object tracking, we incorporate the proposed SOWP descriptor into a novel tracking algorithm, which has three components: locator, checker, and scaler (LCS). The locator and the scaler estimate the center location and the size of a target, respectively. The checker determines whether it is safe to adjust the target scale in a current frame. These three components cooperate with one another to achieve robust tracking. Experimental results demonstrate that the proposed LCS tracker achieves excellent performance on recent benchmarks.

  9. [Effect of object consistency in a spatial contextual cueing paradigm].

    PubMed

    Takeda, Yuji

    2008-04-01

    Previous studies demonstrated that attention can be quickly guided to a target location in a visual search task when the spatial configurations of search items and/or the object identities were repeated in the previous trials. This phenomenon is termed contextual cueing. Recently, it was reported that spatial configuration learning and object identity learning occurred independently, when novel contours were used as search items. The present study examined whether this learning occurred independently even when the search items were meaningful. The results showed that the contextual cueing effect was observed even if the relationships between the spatial locations and object identities were jumbled (Experiment 1). However, it disappeared when the search items were changed into geometric patterns (Experiment 2). These results suggest that the spatial configuration can be learned independent of the object identities; however, the use of the learned configuration is restricted by the learning situations.

  10. Development of an Objective High Spatial Resolution Soil Moisture Index

    NASA Astrophysics Data System (ADS)

    Zavodsky, B.; Case, J.; White, K.; Bell, J. R.

    2015-12-01

    Drought detection, analysis, and mitigation has become a key challenge for a diverse set of decision makers, including but not limited to operational weather forecasters, climatologists, agricultural interests, and water resource management. One tool that is heavily used is the United States Drought Monitor (USDM), which is derived from a complex blend of objective data and subjective analysis on a state-by-state basis using a variety of modeled and observed precipitation, soil moisture, hydrologic, and vegetation and crop health data. The NASA Short-term Prediction Research and Transition (SPoRT) Center currently runs a real-time configuration of the Noah land surface model (LSM) within the NASA Land Information System (LIS) framework. The LIS-Noah is run at 3-km resolution for local numerical weather prediction (NWP) and situational awareness applications at select NOAA/National Weather Service (NWS) forecast offices over the Continental U.S. (CONUS). To enhance the practicality of the LIS-Noah output for drought monitoring and assessing flood potential, a 30+-year soil moisture climatology has been developed in an attempt to place near real-time soil moisture values in historical context at county- and/or watershed-scale resolutions. This LIS-Noah soil moisture climatology and accompanying anomalies is intended to complement the current suite of operational products, such as the North American Land Data Assimilation System phase 2 (NLDAS-2), which are generated on a coarser-resolution grid that may not capture localized, yet important soil moisture features. Daily soil moisture histograms are used to identify the real-time soil moisture percentiles at each grid point according to the county or watershed in which the grid point resides. Spatial plots are then produced that map the percentiles as proxies to the different USDM categories. This presentation will highlight recent developments of this gridded, objective soil moisture index, comparison to subjective

  11. Optimal timber harvest scheduling with spatially defined sediment objectives

    Treesearch

    Jon Hof; Michael Bevers

    2000-01-01

    This note presents a simple model formulation that focuses on the spatial relationships over time between timber harvesting and sediment levels in water runoff courses throughout the watershed being managed. A hypothetical example is developed to demonstrate the formulation and show how sediment objectives can be spatially defined anywhere in the watershed. Spatial...

  12. Persistent spatial information in the FEF during object-based short-term memory does not contribute to task performance.

    PubMed

    Clark, Kelsey L; Noudoost, Behrad; Moore, Tirin

    2014-06-01

    We previously reported the existence of a persistent spatial signal in the FEF during object-based STM. This persistent activity reflected the location at which the sample appeared, irrespective of the location of upcoming targets. We hypothesized that such a spatial signal could be used to maintain or enhance object-selective memory activity elsewhere in cortex, analogous to the role of a spatial signal during attention. Here, we inactivated a portion of the FEF with GABAa agonist muscimol to test whether the observed activity contributes to object memory performance. We found that, although RTs were slowed for saccades into the inactivated portion of retinotopic space, performance for samples appearing in that region was unimpaired. This contrasts with the devastating effects of the same FEF inactivation on purely spatial working memory, as assessed with the memory-guided saccade task. Thus, in a task in which a significant fraction of FEF neurons displayed persistent, sample location-based activity, disrupting this activity had no impact on task performance.

  13. Neural Dynamics of Object-Based Multifocal Visual Spatial Attention and Priming: Object Cueing, Useful-Field-of-View, and Crowding

    ERIC Educational Resources Information Center

    Foley, Nicholas C.; Grossberg, Stephen; Mingolla, Ennio

    2012-01-01

    How are spatial and object attention coordinated to achieve rapid object learning and recognition during eye movement search? How do prefrontal priming and parietal spatial mechanisms interact to determine the reaction time costs of intra-object attention shifts, inter-object attention shifts, and shifts between visible objects and covertly cued…

  14. Feature selection methods for object-based classification of sub-decimeter resolution digital aerial imagery

    USDA-ARS?s Scientific Manuscript database

    Due to the availability of numerous spectral, spatial, and contextual features, the determination of optimal features and class separabilities can be a time consuming process in object-based image analysis (OBIA). While several feature selection methods have been developed to assist OBIA, a robust c...

  15. An Evaluation of Database Solutions to Spatial Object Association

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, V S; Kurc, T; Saltz, J

    2008-06-24

    Object association is a common problem encountered in many applications. Spatial object association, also referred to as crossmatch of spatial datasets, is the problem of identifying and comparing objects in two datasets based on their positions in a common spatial coordinate system--one of the datasets may correspond to a catalog of objects observed over time in a multi-dimensional domain; the other dataset may consist of objects observed in a snapshot of the domain at a time point. The use of database management systems to the solve the object association problem provides portability across different platforms and also greater flexibility. Increasingmore » dataset sizes in today's applications, however, have made object association a data/compute-intensive problem that requires targeted optimizations for efficient execution. In this work, we investigate how database-based crossmatch algorithms can be deployed on different database system architectures and evaluate the deployments to understand the impact of architectural choices on crossmatch performance and associated trade-offs. We investigate the execution of two crossmatch algorithms on (1) a parallel database system with active disk style processing capabilities, (2) a high-throughput network database (MySQL Cluster), and (3) shared-nothing databases with replication. We have conducted our study in the context of a large-scale astronomy application with real use-case scenarios.« less

  16. A novel framework for objective detection and tracking of TC center from noisy satellite imagery

    NASA Astrophysics Data System (ADS)

    Johnson, Bibin; Thomas, Sachin; Rani, J. Sheeba

    2018-07-01

    This paper proposes a novel framework for automatically determining and tracking the center of a tropical cyclone (TC) during its entire life-cycle from the Thermal infrared (TIR) channel data of the geostationary satellite. The proposed method handles meteorological images with noise, missing or partial information due to the seasonal variability and lack of significant spatial or vortex features. To retrieve the cyclone center from these circumstances, a synergistic approach based on objective measures and Numerical Weather Prediction (NWP) model is being proposed. This method employs a spatial gradient scheme to process missing and noisy frames or a spatio-temporal gradient scheme for image sequences that are continuous and contain less noise. The initial estimate of the TC center from the missing imagery is corrected by exploiting a NWP model based post-processing scheme. The validity of the framework is tested on Infrared images of different cyclones obtained from various Geostationary satellites such as the Meteosat-7, INSAT- 3 D , Kalpana-1 etc. The computed track is compared with the actual track data obtained from Joint Typhoon Warning Center (JTWC), and it shows a reduction of mean track error by 11 % as compared to the other state of the art methods in the presence of missing and noisy frames. The proposed method is also successfully tested for simultaneous retrieval of the TC center from images containing multiple non-overlapping cyclones.

  17. Spatial and object-based attention modulates broadband high-frequency responses across the human visual cortical hierarchy.

    PubMed

    Davidesco, Ido; Harel, Michal; Ramot, Michal; Kramer, Uri; Kipervasser, Svetlana; Andelman, Fani; Neufeld, Miri Y; Goelman, Gadi; Fried, Itzhak; Malach, Rafael

    2013-01-16

    One of the puzzling aspects in the visual attention literature is the discrepancy between electrophysiological and fMRI findings: whereas fMRI studies reveal strong attentional modulation in the earliest visual areas, single-unit and local field potential studies yielded mixed results. In addition, it is not clear to what extent spatial attention effects extend from early to high-order visual areas. Here we addressed these issues using electrocorticography recordings in epileptic patients. The patients performed a task that allowed simultaneous manipulation of both spatial and object-based attention. They were presented with composite stimuli, consisting of a small object (face or house) superimposed on a large one, and in separate blocks, were instructed to attend one of the objects. We found a consistent increase in broadband high-frequency (30-90 Hz) power, but not in visual evoked potentials, associated with spatial attention starting with V1/V2 and continuing throughout the visual hierarchy. The magnitude of the attentional modulation was correlated with the spatial selectivity of each electrode and its distance from the occipital pole. Interestingly, the latency of the attentional modulation showed a significant decrease along the visual hierarchy. In addition, electrodes placed over high-order visual areas (e.g., fusiform gyrus) showed both effects of spatial and object-based attention. Overall, our results help to reconcile previous observations of discrepancy between fMRI and electrophysiology. They also imply that spatial attention effects can be found both in early and high-order visual cortical areas, in parallel with their stimulus tuning properties.

  18. Developmental Trends for Object and Spatial Working Memory: A Psychophysiological Analysis

    ERIC Educational Resources Information Center

    Van Leijenhorst, Linda; Crone, Eveline A.; Van der Molen, Maurits W.

    2007-01-01

    This study examined developmental trends in object and spatial working memory (WM) using heart rate (HR) to provide an index of covert cognitive processes. Participants in 4 age groups (6-7, 9-10, 11-12, 18-26, n=20 each) performed object and spatial WM tasks, in which each trial was followed by feedback. Spatial WM task performance reached adult…

  19. Integration trumps selection in object recognition.

    PubMed

    Saarela, Toni P; Landy, Michael S

    2015-03-30

    Finding and recognizing objects is a fundamental task of vision. Objects can be defined by several "cues" (color, luminance, texture, etc.), and humans can integrate sensory cues to improve detection and recognition [1-3]. Cortical mechanisms fuse information from multiple cues [4], and shape-selective neural mechanisms can display cue invariance by responding to a given shape independent of the visual cue defining it [5-8]. Selective attention, in contrast, improves recognition by isolating a subset of the visual information [9]. Humans can select single features (red or vertical) within a perceptual dimension (color or orientation), giving faster and more accurate responses to items having the attended feature [10, 11]. Attention elevates neural responses and sharpens neural tuning to the attended feature, as shown by studies in psychophysics and modeling [11, 12], imaging [13-16], and single-cell and neural population recordings [17, 18]. Besides single features, attention can select whole objects [19-21]. Objects are among the suggested "units" of attention because attention to a single feature of an object causes the selection of all of its features [19-21]. Here, we pit integration against attentional selection in object recognition. We find, first, that humans can integrate information near optimally from several perceptual dimensions (color, texture, luminance) to improve recognition. They cannot, however, isolate a single dimension even when the other dimensions provide task-irrelevant, potentially conflicting information. For object recognition, it appears that there is mandatory integration of information from multiple dimensions of visual experience. The advantage afforded by this integration, however, comes at the expense of attentional selection. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Integration trumps selection in object recognition

    PubMed Central

    Saarela, Toni P.; Landy, Michael S.

    2015-01-01

    Summary Finding and recognizing objects is a fundamental task of vision. Objects can be defined by several “cues” (color, luminance, texture etc.), and humans can integrate sensory cues to improve detection and recognition [1–3]. Cortical mechanisms fuse information from multiple cues [4], and shape-selective neural mechanisms can display cue-invariance by responding to a given shape independent of the visual cue defining it [5–8]. Selective attention, in contrast, improves recognition by isolating a subset of the visual information [9]. Humans can select single features (red or vertical) within a perceptual dimension (color or orientation), giving faster and more accurate responses to items having the attended feature [10,11]. Attention elevates neural responses and sharpens neural tuning to the attended feature, as shown by studies in psychophysics and modeling [11,12], imaging [13–16], and single-cell and neural population recordings [17,18]. Besides single features, attention can select whole objects [19–21]. Objects are among the suggested “units” of attention because attention to a single feature of an object causes the selection of all of its features [19–21]. Here, we pit integration against attentional selection in object recognition. We find, first, that humans can integrate information near-optimally from several perceptual dimensions (color, texture, luminance) to improve recognition. They cannot, however, isolate a single dimension even when the other dimensions provide task-irrelevant, potentially conflicting information. For object recognition, it appears that there is mandatory integration of information from multiple dimensions of visual experience. The advantage afforded by this integration, however, comes at the expense of attentional selection. PMID:25802154

  1. Neural dynamics of object-based multifocal visual spatial attention and priming: Object cueing, useful-field-of-view, and crowding

    PubMed Central

    Foley, Nicholas C.; Grossberg, Stephen; Mingolla, Ennio

    2015-01-01

    How are spatial and object attention coordinated to achieve rapid object learning and recognition during eye movement search? How do prefrontal priming and parietal spatial mechanisms interact to determine the reaction time costs of intra-object attention shifts, inter-object attention shifts, and shifts between visible objects and covertly cued locations? What factors underlie individual differences in the timing and frequency of such attentional shifts? How do transient and sustained spatial attentional mechanisms work and interact? How can volition, mediated via the basal ganglia, influence the span of spatial attention? A neural model is developed of how spatial attention in the where cortical stream coordinates view-invariant object category learning in the what cortical stream under free viewing conditions. The model simulates psychological data about the dynamics of covert attention priming and switching requiring multifocal attention without eye movements. The model predicts how “attentional shrouds” are formed when surface representations in cortical area V4 resonate with spatial attention in posterior parietal cortex (PPC) and prefrontal cortex (PFC), while shrouds compete among themselves for dominance. Winning shrouds support invariant object category learning, and active surface-shroud resonances support conscious surface perception and recognition. Attentive competition between multiple objects and cues simulates reaction-time data from the two-object cueing paradigm. The relative strength of sustained surface-driven and fast-transient motion-driven spatial attention controls individual differences in reaction time for invalid cues. Competition between surface-driven attentional shrouds controls individual differences in detection rate of peripheral targets in useful-field-of-view tasks. The model proposes how the strength of competition can be mediated, though learning or momentary changes in volition, by the basal ganglia. A new explanation of

  2. Neural dynamics of object-based multifocal visual spatial attention and priming: object cueing, useful-field-of-view, and crowding.

    PubMed

    Foley, Nicholas C; Grossberg, Stephen; Mingolla, Ennio

    2012-08-01

    How are spatial and object attention coordinated to achieve rapid object learning and recognition during eye movement search? How do prefrontal priming and parietal spatial mechanisms interact to determine the reaction time costs of intra-object attention shifts, inter-object attention shifts, and shifts between visible objects and covertly cued locations? What factors underlie individual differences in the timing and frequency of such attentional shifts? How do transient and sustained spatial attentional mechanisms work and interact? How can volition, mediated via the basal ganglia, influence the span of spatial attention? A neural model is developed of how spatial attention in the where cortical stream coordinates view-invariant object category learning in the what cortical stream under free viewing conditions. The model simulates psychological data about the dynamics of covert attention priming and switching requiring multifocal attention without eye movements. The model predicts how "attentional shrouds" are formed when surface representations in cortical area V4 resonate with spatial attention in posterior parietal cortex (PPC) and prefrontal cortex (PFC), while shrouds compete among themselves for dominance. Winning shrouds support invariant object category learning, and active surface-shroud resonances support conscious surface perception and recognition. Attentive competition between multiple objects and cues simulates reaction-time data from the two-object cueing paradigm. The relative strength of sustained surface-driven and fast-transient motion-driven spatial attention controls individual differences in reaction time for invalid cues. Competition between surface-driven attentional shrouds controls individual differences in detection rate of peripheral targets in useful-field-of-view tasks. The model proposes how the strength of competition can be mediated, though learning or momentary changes in volition, by the basal ganglia. A new explanation of

  3. Mechanisms underlying selecting objects for action

    PubMed Central

    Wulff, Melanie; Laverick, Rosanna; Humphreys, Glyn W.; Wing, Alan M.; Rotshtein, Pia

    2015-01-01

    We assessed the factors which affect the selection of objects for action, focusing on the role of action knowledge and its modulation by distracters. Fourteen neuropsychological patients and 10 healthy aged-matched controls selected pairs of objects commonly used together among distracters in two contexts: with real objects and with pictures of the same objects presented sequentially on a computer screen. Across both tasks, semantically related distracters led to slower responses and more errors than unrelated distracters and the object actively used for action was selected prior to the object that would be passively held during the action. We identified a sub-group of patients (N = 6) whose accuracy was 2SDs below the controls performances in the real object task. Interestingly, these impaired patients were more affected by the presence of unrelated distracters during both tasks than intact patients and healthy controls. Note that the impaired patients had lesions to left parietal, right anterior temporal and bilateral pre-motor regions. We conclude that: (1) motor procedures guide object selection for action, (2) semantic knowledge affects action-based selection, (3) impaired action decision making is associated with the inability to ignore distracting information and (4) lesions to either the dorsal or ventral visual stream can lead to deficits in making action decisions. Overall, the data indicate that impairments in everyday tasks can be evaluated using a simulated computer task. The implications for rehabilitation are discussed. PMID:25954177

  4. Prefocused objective-pinhole unit for beam expanding and spatial filtering.

    PubMed

    Antes, G P

    1973-03-01

    A beam-expanding and spatial-filtering device, the prefocused objective-pinhole unit (POP unit), is presented. The design is primarily aimed at greater simplicity in handling and construction than the commercially available lens-pinhole spatial filters (LPSF), for once the pinhole is fixed in the correct position with respect to the objective, the alignment of the whole unit can be made an easy matter.

  5. Color object detection using spatial-color joint probability functions.

    PubMed

    Luo, Jiebo; Crandall, David

    2006-06-01

    Object detection in unconstrained images is an important image understanding problem with many potential applications. There has been little success in creating a single algorithm that can detect arbitrary objects in unconstrained images; instead, algorithms typically must be customized for each specific object. Consequently, it typically requires a large number of exemplars (for rigid objects) or a large amount of human intuition (for nonrigid objects) to develop a robust algorithm. We present a robust algorithm designed to detect a class of compound color objects given a single model image. A compound color object is defined as having a set of multiple, particular colors arranged spatially in a particular way, including flags, logos, cartoon characters, people in uniforms, etc. Our approach is based on a particular type of spatial-color joint probability function called the color edge co-occurrence histogram. In addition, our algorithm employs perceptual color naming to handle color variation, and prescreening to limit the search scope (i.e., size and location) for the object. Experimental results demonstrated that the proposed algorithm is insensitive to object rotation, scaling, partial occlusion, and folding, outperforming a closely related algorithm based on color co-occurrence histograms by a decisive margin.

  6. Are Categorical Spatial Relations Encoded by Shifting Visual Attention between Objects?

    PubMed

    Yuan, Lei; Uttal, David; Franconeri, Steven

    2016-01-01

    Perceiving not just values, but relations between values, is critical to human cognition. We tested the predictions of a proposed mechanism for processing categorical spatial relations between two objects-the shift account of relation processing-which states that relations such as 'above' or 'below' are extracted by shifting visual attention upward or downward in space. If so, then shifts of attention should improve the representation of spatial relations, compared to a control condition of identity memory. Participants viewed a pair of briefly flashed objects and were then tested on either the relative spatial relation or identity of one of those objects. Using eye tracking to reveal participants' voluntary shifts of attention over time, we found that when initial fixation was on neither object, relational memory showed an absolute advantage for the object following an attention shift, while identity memory showed no advantage for either object. This result is consistent with the shift account of relation processing. When initial fixation began on one of the objects, identity memory strongly benefited this fixated object, while relational memory only showed a relative benefit for objects following an attention shift. This result is also consistent, although not as uniquely, with the shift account of relation processing. Taken together, we suggest that the attention shift account provides a mechanistic explanation for the overall results. This account can potentially serve as the common mechanism underlying both linguistic and perceptual representations of spatial relations.

  7. Selective object encryption for privacy protection

    NASA Astrophysics Data System (ADS)

    Zhou, Yicong; Panetta, Karen; Cherukuri, Ravindranath; Agaian, Sos

    2009-05-01

    This paper introduces a new recursive sequence called the truncated P-Fibonacci sequence, its corresponding binary code called the truncated Fibonacci p-code and a new bit-plane decomposition method using the truncated Fibonacci pcode. In addition, a new lossless image encryption algorithm is presented that can encrypt a selected object using this new decomposition method for privacy protection. The user has the flexibility (1) to define the object to be protected as an object in an image or in a specific part of the image, a selected region of an image, or an entire image, (2) to utilize any new or existing method for edge detection or segmentation to extract the selected object from an image or a specific part/region of the image, (3) to select any new or existing method for the shuffling process. The algorithm can be used in many different areas such as wireless networking, mobile phone services and applications in homeland security and medical imaging. Simulation results and analysis verify that the algorithm shows good performance in object/image encryption and can withstand plaintext attacks.

  8. Do silhouettes and photographs produce fundamentally different object-based correspondence effects?

    PubMed

    Proctor, Robert W; Lien, Mei-Ching; Thompson, Lane

    2017-12-01

    When participants classify pictures of objects as upright or inverted with a left or right keypress, responses are faster if the response location (left/right) corresponds with the location of a handle (left/right) than if it does not. This result has typically been attributed to a grasping affordance (automatic activation of muscles associated with grasping the object with the ipsilateral hand), but several findings have indicated instead that the effect is a spatial correspondence effect, much like the Simon effect for object location. Pappas (2014) reported evidence he interpreted as showing that spatial coding predominates with silhouettes of objects, whereas photographs of objects yield affordance-based effects. We conducted two experiments similar to those of Pappas, using frying pans as stimuli, with our two experiments differing in whether the entire object was centered on the display screen or the base was centered. When the objects were centered, a positive correspondence effect relative to the handle was evident for the silhouettes but a negative correspondence effect for the photographs. When the base was centered, the handle was clearly located to the left or right side of the display, and both silhouettes and photographs produced correspondence effects of similar size relative to the handle location. Despite the main results being counter to the grasping affordance hypothesis, response-time distribution analyses suggest that, instead of activating automatically at fast responses, an effector-specific component of the hypothesized type may come into play for responses that are selected after the handle location has been identified. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Combining satellite data and appropriate objective functions for improved spatial pattern performance of a distributed hydrologic model

    NASA Astrophysics Data System (ADS)

    Demirel, Mehmet C.; Mai, Juliane; Mendiguren, Gorka; Koch, Julian; Samaniego, Luis; Stisen, Simon

    2018-02-01

    Satellite-based earth observations offer great opportunities to improve spatial model predictions by means of spatial-pattern-oriented model evaluations. In this study, observed spatial patterns of actual evapotranspiration (AET) are utilised for spatial model calibration tailored to target the pattern performance of the model. The proposed calibration framework combines temporally aggregated observed spatial patterns with a new spatial performance metric and a flexible spatial parameterisation scheme. The mesoscale hydrologic model (mHM) is used to simulate streamflow and AET and has been selected due to its soil parameter distribution approach based on pedo-transfer functions and the build in multi-scale parameter regionalisation. In addition two new spatial parameter distribution options have been incorporated in the model in order to increase the flexibility of root fraction coefficient and potential evapotranspiration correction parameterisations, based on soil type and vegetation density. These parameterisations are utilised as they are most relevant for simulated AET patterns from the hydrologic model. Due to the fundamental challenges encountered when evaluating spatial pattern performance using standard metrics, we developed a simple but highly discriminative spatial metric, i.e. one comprised of three easily interpretable components measuring co-location, variation and distribution of the spatial data. The study shows that with flexible spatial model parameterisation used in combination with the appropriate objective functions, the simulated spatial patterns of actual evapotranspiration become substantially more similar to the satellite-based estimates. Overall 26 parameters are identified for calibration through a sequential screening approach based on a combination of streamflow and spatial pattern metrics. The robustness of the calibrations is tested using an ensemble of nine calibrations based on different seed numbers using the shuffled complex

  10. Are Categorical Spatial Relations Encoded by Shifting Visual Attention between Objects?

    PubMed Central

    Uttal, David; Franconeri, Steven

    2016-01-01

    Perceiving not just values, but relations between values, is critical to human cognition. We tested the predictions of a proposed mechanism for processing categorical spatial relations between two objects—the shift account of relation processing—which states that relations such as ‘above’ or ‘below’ are extracted by shifting visual attention upward or downward in space. If so, then shifts of attention should improve the representation of spatial relations, compared to a control condition of identity memory. Participants viewed a pair of briefly flashed objects and were then tested on either the relative spatial relation or identity of one of those objects. Using eye tracking to reveal participants’ voluntary shifts of attention over time, we found that when initial fixation was on neither object, relational memory showed an absolute advantage for the object following an attention shift, while identity memory showed no advantage for either object. This result is consistent with the shift account of relation processing. When initial fixation began on one of the objects, identity memory strongly benefited this fixated object, while relational memory only showed a relative benefit for objects following an attention shift. This result is also consistent, although not as uniquely, with the shift account of relation processing. Taken together, we suggest that the attention shift account provides a mechanistic explanation for the overall results. This account can potentially serve as the common mechanism underlying both linguistic and perceptual representations of spatial relations. PMID:27695104

  11. View-invariant object category learning, recognition, and search: how spatial and object attention are coordinated using surface-based attentional shrouds.

    PubMed

    Fazl, Arash; Grossberg, Stephen; Mingolla, Ennio

    2009-02-01

    How does the brain learn to recognize an object from multiple viewpoints while scanning a scene with eye movements? How does the brain avoid the problem of erroneously classifying parts of different objects together? How are attention and eye movements intelligently coordinated to facilitate object learning? A neural model provides a unified mechanistic explanation of how spatial and object attention work together to search a scene and learn what is in it. The ARTSCAN model predicts how an object's surface representation generates a form-fitting distribution of spatial attention, or "attentional shroud". All surface representations dynamically compete for spatial attention to form a shroud. The winning shroud persists during active scanning of the object. The shroud maintains sustained activity of an emerging view-invariant category representation while multiple view-specific category representations are learned and are linked through associative learning to the view-invariant object category. The shroud also helps to restrict scanning eye movements to salient features on the attended object. Object attention plays a role in controlling and stabilizing the learning of view-specific object categories. Spatial attention hereby coordinates the deployment of object attention during object category learning. Shroud collapse releases a reset signal that inhibits the active view-invariant category in the What cortical processing stream. Then a new shroud, corresponding to a different object, forms in the Where cortical processing stream, and search using attention shifts and eye movements continues to learn new objects throughout a scene. The model mechanistically clarifies basic properties of attention shifts (engage, move, disengage) and inhibition of return. It simulates human reaction time data about object-based spatial attention shifts, and learns with 98.1% accuracy and a compression of 430 on a letter database whose letters vary in size, position, and orientation

  12. Spatial Information Technology Center at Fulton-Montgomery Community College

    NASA Technical Reports Server (NTRS)

    Flinton, Michael E.

    2004-01-01

    The Spatial Information Technology Center (SITC) at Fulton-Montgomery Community College (FMCC) continued to fulfill its mission and charter by successfully completing its third year of operations under Congressional funding and NASA sponsorship. Third year operations (01 Oct 02 - 30 Sep 03) have been funded and conducted utilizing two authorized Research Grants NAG 13-00043 (via a one-year no-cost extension expiring Sep 03) and NAG 13-02053 (one-year no-cost extension expiring Sep 04). Drawdowns and reporting of fiscal activities for SlTC operations continues to pass through the Institute for the Application of Geo-spatial Technology (IAGT) at Cayuga Community College in Auburn, New York. Fiscal activity of the Center is reported quarterly via SF 272 to IAGT, thus this report contains only a budgetary overview and forecast of future expenditures for the remaining funds of NAG 13 - 02053. Funds from NAG 13 - 00043 were exhausted during the fourth quarter of fiscal year FY02 - 03, which necessitated initial draw down of NAG 13 - 02053. The IAGT receives no compensation for administrative costs as authorized and approved by NASA in each award budget. This report also includes the necessary addendums for each NAG award, as required by federal guidelines, though no reportable activities took place within this report period. Attached are the signed Report of New Technology/lnventions and a Final Property Report identifying qualifying equipment purchased by the Center. As an academic, economic and workforce development oriented program, the Center has made significant strides in bringing the technology, knowledge and applications of the spatial information technology field to the region it serves. Through the mission of the Center, the region's educational, economic development and work force communities have become increasingly educated to the benefits of spatial (Geospatial) technology, particularly in the region's K-12 arena. SlTC continues to positively affect the

  13. Managing Spatial Selections With Contextual Snapshots

    PubMed Central

    Mindek, P; Gröller, M E; Bruckner, S

    2014-01-01

    Spatial selections are a ubiquitous concept in visualization. By localizing particular features, they can be analysed and compared in different views. However, the semantics of such selections often depend on specific parameter settings and it can be difficult to reconstruct them without additional information. In this paper, we present the concept of contextual snapshots as an effective means for managing spatial selections in visualized data. The selections are automatically associated with the context in which they have been created. Contextual snapshots can also be used as the basis for interactive integrated and linked views, which enable in-place investigation and comparison of multiple visual representations of data. Our approach is implemented as a flexible toolkit with well-defined interfaces for integration into existing systems. We demonstrate the power and generality of our techniques by applying them to several distinct scenarios such as the visualization of simulation data, the analysis of historical documents and the display of anatomical data. PMID:25821284

  14. "Commentary": Object and Spatial Visualization in Geosciences

    ERIC Educational Resources Information Center

    Kastens, Kim

    2010-01-01

    Cognitive science research shows that the brain has two systems for processing visual information, one specialized for spatial information such as position, orientation, and trajectory, and the other specialized for information used to identify objects, such as color, shape and texture. Some individuals seem to be more facile with the spatial…

  15. Object detection in natural scenes: Independent effects of spatial and category-based attention.

    PubMed

    Stein, Timo; Peelen, Marius V

    2017-04-01

    Humans are remarkably efficient in detecting highly familiar object categories in natural scenes, with evidence suggesting that such object detection can be performed in the (near) absence of attention. Here we systematically explored the influences of both spatial attention and category-based attention on the accuracy of object detection in natural scenes. Manipulating both types of attention additionally allowed for addressing how these factors interact: whether the requirement for spatial attention depends on the extent to which observers are prepared to detect a specific object category-that is, on category-based attention. The results showed that the detection of targets from one category (animals or vehicles) was better than the detection of targets from two categories (animals and vehicles), demonstrating the beneficial effect of category-based attention. This effect did not depend on the semantic congruency of the target object and the background scene, indicating that observers attended to visual features diagnostic of the foreground target objects from the cued category. Importantly, in three experiments the detection of objects in scenes presented in the periphery was significantly impaired when observers simultaneously performed an attentionally demanding task at fixation, showing that spatial attention affects natural scene perception. In all experiments, the effects of category-based attention and spatial attention on object detection performance were additive rather than interactive. Finally, neither spatial nor category-based attention influenced metacognitive ability for object detection performance. These findings demonstrate that efficient object detection in natural scenes is independently facilitated by spatial and category-based attention.

  16. Color-selective attention need not be mediated by spatial attention.

    PubMed

    Andersen, Søren K; Müller, Matthias M; Hillyard, Steven A

    2009-06-08

    It is well-established that attention can select stimuli for preferential processing on the basis of non-spatial features such as color, orientation, or direction of motion. Evidence is mixed, however, as to whether feature-selective attention acts by increasing the signal strength of to-be-attended features irrespective of their spatial locations or whether it acts by guiding the spotlight of spatial attention to locations containing the relevant feature. To address this question, we designed a task in which feature-selective attention could not be mediated by spatial selection. Participants observed a display of intermingled dots of two colors, which rapidly and unpredictably changed positions, with the task of detecting brief intervals of reduced luminance of 20% of the dots of one or the other color. Both behavioral indices and electrophysiological measures of steady-state visual evoked potentials showed selectively enhanced processing of the attended-color items. The results demonstrate that feature-selective attention produces a sensory gain enhancement at early levels of the visual cortex that occurs without mediation by spatial attention.

  17. Multi-objective spatial tools to inform maritime spatial planning in the Adriatic Sea.

    PubMed

    Depellegrin, Daniel; Menegon, Stefano; Farella, Giulio; Ghezzo, Michol; Gissi, Elena; Sarretta, Alessandro; Venier, Chiara; Barbanti, Andrea

    2017-12-31

    This research presents a set of multi-objective spatial tools for sea planning and environmental management in the Adriatic Sea Basin. The tools address four objectives: 1) assessment of cumulative impacts from anthropogenic sea uses on environmental components of marine areas; 2) analysis of sea use conflicts; 3) 3-D hydrodynamic modelling of nutrient dispersion (nitrogen and phosphorus) from riverine sources in the Adriatic Sea Basin and 4) marine ecosystem services capacity assessment from seabed habitats based on an ES matrix approach. Geospatial modelling results were illustrated, analysed and compared on country level and for three biogeographic subdivisions, Northern-Central-Southern Adriatic Sea. The paper discusses model results for their spatial implications, relevance for sea planning, limitations and concludes with an outlook towards the need for more integrated, multi-functional tools development for sea planning. Copyright © 2017. Published by Elsevier B.V.

  18. The role of the right superior temporal gyrus in stimulus-centered spatial processing.

    PubMed

    Shah-Basak, Priyanka P; Chen, Peii; Caulfield, Kevin; Medina, Jared; Hamilton, Roy H

    2018-05-01

    Although emerging neuropsychological evidence supports the involvement of temporal areas, and in particular the right superior temporal gyrus (STG), in allocentric neglect deficits, the role of STG in healthy spatial processing remains elusive. While several functional brain imaging studies have demonstrated involvement of the STG in tasks involving explicit stimulus-centered judgments, prior rTMS studies targeting the right STG did not find the expected neglect-like rightward bias in size judgments using the conventional landmark task. The objective of the current study was to investigate whether disruption of the right STG using inhibitory repetitive transcranial magnetic stimulation (rTMS) could impact stimulus-centered, allocentric spatial processing in healthy individuals. A lateralized version of the landmark task was developed to accentuate the dissociation between viewer-centered and stimulus-centered reference frames. We predicted that inhibiting activity in the right STG would decrease accuracy because of induced rightward bias centered on the line stimulus irrespective of its viewer-centered or egocentric locations. Eleven healthy, right-handed adults underwent the lateralized landmark task. After viewing each stimulus, participants had to judge whether the line was bisected, or whether the left (left-long trials) or the right segment (right-long trials) of the line was longer. Participants repeated the task before (pre-rTMS) and after (post-rTMS) receiving 20 min of 1 Hz rTMS over the right STG, the right supramarginal gyrus (SMG), and the vertex (a control site) during three separate visits. Linear mixed models for binomial data were generated with either accuracy or judgment errors as dependent variables, to compare 1) performance across trial types (bisection, non-bisection), and 2) pre- vs. post-rTMS performance between the vertex and the STG and the vertex and the SMG. Line eccentricity (z = 4.31, p < 0.0001) and line bisection (z

  19. Spatial Scaling of the Profile of Selective Attention in the Visual Field.

    PubMed

    Gannon, Matthew A; Knapp, Ashley A; Adams, Thomas G; Long, Stephanie M; Parks, Nathan A

    2016-01-01

    Neural mechanisms of selective attention must be capable of adapting to variation in the absolute size of an attended stimulus in the ever-changing visual environment. To date, little is known regarding how attentional selection interacts with fluctuations in the spatial expanse of an attended object. Here, we use event-related potentials (ERPs) to investigate the scaling of attentional enhancement and suppression across the visual field. We measured ERPs while participants performed a task at fixation that varied in its attentional demands (attentional load) and visual angle (1.0° or 2.5°). Observers were presented with a stream of task-relevant stimuli while foveal, parafoveal, and peripheral visual locations were probed by irrelevant distractor stimuli. We found two important effects in the N1 component of visual ERPs. First, N1 modulations to task-relevant stimuli indexed attentional selection of stimuli during the load task and further correlated with task performance. Second, with increased task size, attentional modulation of the N1 to distractor stimuli showed a differential pattern that was consistent with a scaling of attentional selection. Together, these results demonstrate that the size of an attended stimulus scales the profile of attentional selection across the visual field and provides insights into the attentional mechanisms associated with such spatial scaling.

  20. Anatomical constraints on attention: Hemifield independence is a signature of multifocal spatial selection

    PubMed Central

    Alvarez, George A; Gill, Jonathan; Cavanagh, Patrick

    2012-01-01

    Previous studies have shown independent attentional selection of targets in the left and right visual hemifields during attentional tracking (Alvarez & Cavanagh, 2005) but not during a visual search (Luck, Hillyard, Mangun, & Gazzaniga, 1989). Here we tested whether multifocal spatial attention is the critical process that operates independently in the two hemifields. It is explicitly required in tracking (attend to a subset of object locations, suppress the others) but not in the standard visual search task (where all items are potential targets). We used a modified visual search task in which observers searched for a target within a subset of display items, where the subset was selected based on location (Experiments 1 and 3A) or based on a salient feature difference (Experiments 2 and 3B). The results show hemifield independence in this subset visual search task with location-based selection but not with feature-based selection; this effect cannot be explained by general difficulty (Experiment 4). Combined, these findings suggest that hemifield independence is a signature of multifocal spatial attention and highlight the need for cognitive and neural theories of attention to account for anatomical constraints on selection mechanisms. PMID:22637710

  1. Are objects the same as groups? ERP correlates of spatial attentional guidance by irrelevant feature similarity.

    PubMed

    Kasai, Tetsuko; Moriya, Hiroki; Hirano, Shingo

    2011-07-05

    It has been proposed that the most fundamental units of attentional selection are "objects" that are grouped according to Gestalt factors such as similarity or connectedness. Previous studies using event-related potentials (ERPs) have shown that object-based attention is associated with modulations of the visual-evoked N1 component, which reflects an early cortical mechanism that is shared with spatial attention. However, these studies only examined the case of perceptually continuous objects. The present study examined the case of separate objects that are grouped according to feature similarity (color, shape) by indexing lateralized potentials at posterior sites in a sustained-attention task that involved bilateral stimulus arrays. A behavioral object effect was found only for task-relevant shape similarity. Electrophysiological results indicated that attention was guided to the task-irrelevant side of the visual field due to achromatic-color similarity in N1 (155-205 ms post-stimulus) and early N2 (210-260 ms) and due to shape similarity in early N2 and late N2 (280-400 ms) latency ranges. These results are discussed in terms of selection mechanisms and object/group representations. Copyright © 2011 Elsevier B.V. All rights reserved.

  2. A Computational Model of Spatial Development

    NASA Astrophysics Data System (ADS)

    Hiraki, Kazuo; Sashima, Akio; Phillips, Steven

    Psychological experiments on children's development of spatial knowledge suggest experience at self-locomotion with visual tracking as important factors. Yet, the mechanism underlying development is unknown. We propose a robot that learns to mentally track a target object (i.e., maintaining a representation of an object's position when outside the field-of-view) as a model for spatial development. Mental tracking is considered as prediction of an object's position given the previous environmental state and motor commands, and the current environment state resulting from movement. Following Jordan & Rumelhart's (1992) forward modeling architecture the system consists of two components: an inverse model of sensory input to desired motor commands; and a forward model of motor commands to desired sensory input (goals). The robot was tested on the `three cups' paradigm (where children are required to select the cup containing the hidden object under various movement conditions). Consistent with child development, without the capacity for self-locomotion the robot's errors are self-center based. When given the ability of self-locomotion the robot responds allocentrically.

  3. Spatial Information Technology Center at Fulton-Montgomery Community College

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The Spatial Information Technology Center (SITC) at Fulton-Montgomery Community College (FMCC) continued to fulfill its mission and charter by successfully completing its fourth year of operations under Congressional funding and NASA sponsorship. Fourth year operations (01 Oct 03 - 30 Sep 04) have been funded and conducted utilizing an authorized Research Grant NAG 13-02053 (via a one-year no-cost extension expiring Sep 04). Drawdown and reporting of fiscal activities for SITC operations passes through the Institute for the Application of Geo-spatial Technology (IAGT) at Cayuga Community College in Auburn, New York. Fiscal activity of the Center is reported quarterly via SF 272 to IAGT, this report contains an overview and expenditures for the remaining funds of NAG 13-02053. NAG 13-02053, slated for operating costs for the fiscal year FY02-03, received a one-year no-cost extension. SITC also received permission to use remaining funds for salaries and benefits through December 31,2004. The IAGT receives no compensation for administrative costs. This report includes addendums for the NAG award as required by federal guidelines. Attached are the signed Report of New Technology/Inventions and a Final Property Report. As an academic, economic, and workforce development program, the Center has made significant strides in bringing the technology, knowledge and applications of the spatial information technology field to the region it serves. Through the mission of the Center, the region's communities have become increasingly aware of the benefits of Geospatial technology, particularly in the region s K-12 arena. SITC continues to positively affect the region's education, employment and economic development, while expanding its services and operations.

  4. Task and spatial frequency modulations of object processing: an EEG study.

    PubMed

    Craddock, Matt; Martinovic, Jasna; Müller, Matthias M

    2013-01-01

    Visual object processing may follow a coarse-to-fine sequence imposed by fast processing of low spatial frequencies (LSF) and slow processing of high spatial frequencies (HSF). Objects can be categorized at varying levels of specificity: the superordinate (e.g. animal), the basic (e.g. dog), or the subordinate (e.g. Border Collie). We tested whether superordinate and more specific categorization depend on different spatial frequency ranges, and whether any such dependencies might be revealed by or influence signals recorded using EEG. We used event-related potentials (ERPs) and time-frequency (TF) analysis to examine the time course of object processing while participants performed either a grammatical gender-classification task (which generally forces basic-level categorization) or a living/non-living judgement (superordinate categorization) on everyday, real-life objects. Objects were filtered to contain only HSF or LSF. We found a greater positivity and greater negativity for HSF than for LSF pictures in the P1 and N1 respectively, but no effects of task on either component. A later, fronto-central negativity (N350) was more negative in the gender-classification task than the superordinate categorization task, which may indicate that this component relates to semantic or syntactic processing. We found no significant effects of task or spatial frequency on evoked or total gamma band responses. Our results demonstrate early differences in processing of HSF and LSF content that were not modulated by categorization task, with later responses reflecting such higher-level cognitive factors.

  5. Neural representation of objects in space: a dual coding account.

    PubMed Central

    Humphreys, G W

    1998-01-01

    I present evidence on the nature of object coding in the brain and discuss the implications of this coding for models of visual selective attention. Neuropsychological studies of task-based constraints on: (i) visual neglect; and (ii) reading and counting, reveal the existence of parallel forms of spatial representation for objects: within-object representations, where elements are coded as parts of objects, and between-object representations, where elements are coded as independent objects. Aside from these spatial codes for objects, however, the coding of visual space is limited. We are extremely poor at remembering small spatial displacements across eye movements, indicating (at best) impoverished coding of spatial position per se. Also, effects of element separation on spatial extinction can be eliminated by filling the space with an occluding object, indicating that spatial effects on visual selection are moderated by object coding. Overall, there are separate limits on visual processing reflecting: (i) the competition to code parts within objects; (ii) the small number of independent objects that can be coded in parallel; and (iii) task-based selection of whether within- or between-object codes determine behaviour. Between-object coding may be linked to the dorsal visual system while parallel coding of parts within objects takes place in the ventral system, although there may additionally be some dorsal involvement either when attention must be shifted within objects or when explicit spatial coding of parts is necessary for object identification. PMID:9770227

  6. Object, spatial and social recognition testing in a single test paradigm.

    PubMed

    Lian, Bin; Gao, Jun; Sui, Nan; Feng, Tingyong; Li, Ming

    2018-07-01

    Animals have the ability to process information about an object or a conspecific's physical features and location, and alter its behavior when such information is updated. In the laboratory, the object, spatial and social recognition are often studied in separate tasks, making them unsuitable to study the potential dissociations and interactions among various types of recognition memories. The present study introduced a single paradigm to detect the object and spatial recognition, and social recognition of a familiar and novel conspecific. Specifically, male and female Sprague-Dawley adult (>75 days old) or preadolescent (25-28 days old) rats were tested with two objects and one social partner in an open-field arena for four 10-min sessions with a 20-min inter-session interval. After the first sample session, a new object replaced one of the sampled objects in the second session, and the location of one of the old objects was changed in the third session. Finally, a new social partner was introduced in the fourth session and replaced the familiar one. Exploration time with each stimulus was recorded and measures for the three recognitions were calculated based on the discrimination ratio. Overall results show that adult and preadolescent male and female rats spent more time exploring the social partner than the objects, showing a clear preference for social stimulus over nonsocial one. They also did not differ in their abilities to discriminate a new object, a new location and a new social partner from a familiar one, and to recognize a familiar conspecific. Acute administration of MK-801 (a NMDA receptor antagonist, 0.025 and 0.10 mg/kg, i.p.) after the sample session dose-dependently reduced the total time spent on exploring the social partner and objects in the adult rats, and had a significantly larger effect in the females than in the males. MK-801 also dose-dependently increased motor activity. However, it did not alter the object, spatial and social

  7. Sustaining the edge: factors influencing strategy selection in academic health centers.

    PubMed

    Walsh, Anne M; Szabat, Kathryn

    2002-01-01

    Competition within the acute care sector as well as increased penetration by managed care organizations has influenced the structure and role of academic health centers during the past decade. The market factors confronting academic health centers are not dissimilar from conditions that confront other organizations competing in mature industries characterized by declining profitability and intense rivalry for market share. When confronted with intense competition or adverse external events, organizations in other industries have responded to potential threats by forming alliances, developing joint ventures, or merging with another firm to maintain their competitive advantage. Although mergers and acquisitions dominated the strategic landscape in the healthcare industry during the past decade, recent evidence suggests that other types of strategic ventures may offer similar economic and contracting benefits to member organizations. Academic health centers have traditionally been involved in network relationships with multiple partners via their shared technology, collaborative research, and joint educational endeavors. These quasi-organizational relationships appear to have provided a framework for strategic decisions and allowed executives of academic health centers to select strategies that were competitive yet closely aligned with their organizational mission. The analysis of factors that influenced strategy selection by executives of academic health centers suggests a deliberate and methodical approach to achieving market share objectives, expanding managed care contracts, and developing physician networks.

  8. Analysis of students’ spatial thinking in geometry: 3D object into 2D representation

    NASA Astrophysics Data System (ADS)

    Fiantika, F. R.; Maknun, C. L.; Budayasa, I. K.; Lukito, A.

    2018-05-01

    The aim of this study is to find out the spatial thinking process of students in transforming 3-dimensional (3D) object to 2-dimensional (2D) representation. Spatial thinking is helpful in using maps, planning routes, designing floor plans, and creating art. The student can engage geometric ideas by using concrete models and drawing. Spatial thinking in this study is identified through geometrical problems of transforming a 3-dimensional object into a 2-dimensional object image. The problem was resolved by the subject and analyzed by reference to predetermined spatial thinking indicators. Two representative subjects of elementary school were chosen based on mathematical ability and visual learning style. Explorative description through qualitative approach was used in this study. The result of this study are: 1) there are different representations of spatial thinking between a boy and a girl object, 2) the subjects has their own way to invent the fastest way to draw cube net.

  9. Reversibility of object recognition but not spatial memory impairment following binge-like alcohol exposure in rats

    PubMed Central

    Cippitelli, Andrea; Zook, Michelle; Bell, Lauren; Damadzic, Ruslan; Eskay, Robert L.; Schwandt, Melanie; Heilig, Markus

    2010-01-01

    Excessive alcohol use leads to neurodegeneration in several brain structures including the hippocampal dentate gyrus and the entorhinal cortex. Cognitive deficits that result are among the most insidious and debilitating consequences of alcoholism. The object exploration task (OET) provides a sensitive measurement of spatial memory impairment induced by hippocampal and cortical damage. In this study, we examine whether the observed neurotoxicity produced by a 4-day binge ethanol treatment results in long-term memory impairment by observing the time course of reactions to spatial change (object configuration) and non-spatial change (object recognition). Wistar rats were assessed for their abilities to detect spatial configuration in the OET at 1 week and 10 weeks following the ethanol treatment, in which ethanol groups received 9–15 g/kg/day and achieved blood alcohol levels over 300 mg/dl. At 1 week, results indicated that the binge alcohol treatment produced impairment in both spatial memory and non-spatial object recognition performance. Unlike the controls, ethanol treated rats did not increase the duration or number of contacts with the displaced object in the spatial memory task, nor did they increase the duration of contacts with the novel object in the object recognition task. After 10 weeks, spatial memory remained impaired in the ethanol treated rats but object recognition ability was recovered. Our data suggest that episodes of binge-like alcohol exposure result in long-term and possibly permanent impairments in memory for the configuration of objects during exploration, whereas the ability to detect non-spatial changes is only temporarily affected. PMID:20849966

  10. Factor structure of the Spanish version of the Object-Spatial Imagery and Verbal Questionnaire.

    PubMed

    Campos, Alfredo; Pérez-Fabello, María José

    2011-04-01

    The reliability and factor structure of the Spanish version of the Object-Spatial Imagery and Verbal Questionnaire (OSIVQ) were assessed in a sample of 213 Spanish university graduates. The questionnaire measures three types of processing preferences (verbal, object imagery, and spatial imagery). Principal components analysis with varimax rotation identified three factors, corresponding to the three scales proposed in the original version, explaining 33.1% of the overall variance. Cronbach's alphas were .72, .77, and .81 for the verbal, object imagery, and spatial imagery scales, respectively.

  11. Scattering suppression from arbitrary objects in spatially dispersive layered metamaterials

    NASA Astrophysics Data System (ADS)

    Shalin, Alexander S.; Ginzburg, Pavel; Orlov, Alexey A.; Iorsh, Ivan; Belov, Pavel A.; Kivshar, Yuri S.; Zayats, Anatoly V.

    2015-03-01

    Concealing objects by making them invisible to an external electromagnetic probe is coined by the term "cloaking." Cloaking devices, having numerous potential applications, are still facing challenges in realization, especially in the visible spectral range. In particular, inherent losses and extreme parameters of metamaterials required for the cloak implementation are the limiting factors. Here, we numerically demonstrate nearly perfect suppression of scattering from arbitrary-shaped objects in spatially dispersive metamaterial acting as an alignment-free concealing cover. We consider a realization of a metamaterial as a metal-dielectric multilayer and demonstrate suppression of scattering from an arbitrary object in forward and backward directions with perfectly preserved wave fronts and less than 10% absolute intensity change, despite spatial dispersion effects present in the composite metamaterial. Beyond the usual scattering suppression applications, the proposed configuration may be used for a simple realization of scattering-free detectors and sensors.

  12. Reversibility of object recognition but not spatial memory impairment following binge-like alcohol exposure in rats.

    PubMed

    Cippitelli, Andrea; Zook, Michelle; Bell, Lauren; Damadzic, Ruslan; Eskay, Robert L; Schwandt, Melanie; Heilig, Markus

    2010-11-01

    Excessive alcohol use leads to neurodegeneration in several brain structures including the hippocampal dentate gyrus and the entorhinal cortex. Cognitive deficits that result are among the most insidious and debilitating consequences of alcoholism. The object exploration task (OET) provides a sensitive measurement of spatial memory impairment induced by hippocampal and cortical damage. In this study, we examine whether the observed neurotoxicity produced by a 4-day binge ethanol treatment results in long-term memory impairment by observing the time course of reactions to spatial change (object configuration) and non-spatial change (object recognition). Wistar rats were assessed for their abilities to detect spatial configuration in the OET at 1 week and 10 weeks following the ethanol treatment, in which ethanol groups received 9-15 g/kg/day and achieved blood alcohol levels over 300 mg/dl. At 1 week, results indicated that the binge alcohol treatment produced impairment in both spatial memory and non-spatial object recognition performance. Unlike the controls, ethanol treated rats did not increase the duration or number of contacts with the displaced object in the spatial memory task, nor did they increase the duration of contacts with the novel object in the object recognition task. After 10 weeks, spatial memory remained impaired in the ethanol treated rats but object recognition ability was recovered. Our data suggest that episodes of binge-like alcohol exposure result in long-term and possibly permanent impairments in memory for the configuration of objects during exploration, whereas the ability to detect non-spatial changes is only temporarily affected. Copyright © 2010 Elsevier Inc. All rights reserved.

  13. How learning might strengthen existing visual object representations in human object-selective cortex.

    PubMed

    Brants, Marijke; Bulthé, Jessica; Daniels, Nicky; Wagemans, Johan; Op de Beeck, Hans P

    2016-02-15

    Visual object perception is an important function in primates which can be fine-tuned by experience, even in adults. Which factors determine the regions and the neurons that are modified by learning is still unclear. Recently, it was proposed that the exact cortical focus and distribution of learning effects might depend upon the pre-learning mapping of relevant functional properties and how this mapping determines the informativeness of neural units for the stimuli and the task to be learned. From this hypothesis we would expect that visual experience would strengthen the pre-learning distributed functional map of the relevant distinctive object properties. Here we present a first test of this prediction in twelve human subjects who were trained in object categorization and differentiation, preceded and followed by a functional magnetic resonance imaging session. Specifically, training increased the distributed multi-voxel pattern information for trained object distinctions in object-selective cortex, resulting in a generalization from pre-training multi-voxel activity patterns to after-training activity patterns. Simulations show that the increased selectivity combined with the inter-session generalization is consistent with a training-induced strengthening of a pre-existing selectivity map. No training-related neural changes were detected in other regions. In sum, training to categorize or individuate objects strengthened pre-existing representations in human object-selective cortex, providing a first indication that the neuroanatomical distribution of learning effects depends upon the pre-learning mapping of visual object properties. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Effects of verbal and nonverbal interference on spatial and object visual working memory.

    PubMed

    Postle, Bradley R; Desposito, Mark; Corkin, Suzanne

    2005-03-01

    We tested the hypothesis that a verbal coding mechanism is necessarily engaged by object, but not spatial, visual working memory tasks. We employed a dual-task procedure that paired n-back working memory tasks with domain-specific distractor trials inserted into each interstimulus interval of the n-back tasks. In two experiments, object n-back performance demonstrated greater sensitivity to verbal distraction, whereas spatial n-back performance demonstrated greater sensitivity to motion distraction. Visual object and spatial working memory may differ fundamentally in that the mnemonic representation of featural characteristics of objects incorporates a verbal (perhaps semantic) code, whereas the mnemonic representation of the location of objects does not. Thus, the processes supporting working memory for these two types of information may differ in more ways than those dictated by the "what/where" organization of the visual system, a fact more easily reconciled with a component process than a memory systems account of working memory function.

  15. Effects of verbal and nonverbal interference on spatial and object visual working memory

    PubMed Central

    POSTLE, BRADLEY R.; D’ESPOSITO, MARK; CORKIN, SUZANNE

    2005-01-01

    We tested the hypothesis that a verbal coding mechanism is necessarily engaged by object, but not spatial, visual working memory tasks. We employed a dual-task procedure that paired n-back working memory tasks with domain-specific distractor trials inserted into each interstimulus interval of the n-back tasks. In two experiments, object n-back performance demonstrated greater sensitivity to verbal distraction, whereas spatial n-back performance demonstrated greater sensitivity to motion distraction. Visual object and spatial working memory may differ fundamentally in that the mnemonic representation of featural characteristics of objects incorporates a verbal (perhaps semantic) code, whereas the mnemonic representation of the location of objects does not. Thus, the processes supporting working memory for these two types of information may differ in more ways than those dictated by the “what/where” organization of the visual system, a fact more easily reconciled with a component process than a memory systems account of working memory function. PMID:16028575

  16. Laser-induced acoustic imaging of underground objects

    NASA Astrophysics Data System (ADS)

    Li, Wen; DiMarzio, Charles A.; McKnight, Stephen W.; Sauermann, Gerhard O.; Miller, Eric L.

    1999-02-01

    This paper introduces a new demining technique based on the photo-acoustic interaction, together with results from photo- acoustic experiments. We have buried different types of targets (metal, rubber and plastic) in different media (sand, soil and water) and imaged them by measuring reflection of acoustic waves generated by irradiation with a CO2 laser. Research has been focused on the signal acquisition and signal processing. A deconvolution method using Wiener filters is utilized in data processing. Using a uniform spatial distribution of laser pulses at the ground's surface, we obtained 3D images of buried objects. The images give us a clear representation of the shapes of the underground objects. The quality of the images depends on the mismatch of acoustic impedance of the buried objects, the bandwidth and center frequency of the acoustic sensors and the selection of filter functions.

  17. Spatial Optimization of Future Urban Development with Regards to Climate Risk and Sustainability Objectives.

    PubMed

    Caparros-Midwood, Daniel; Barr, Stuart; Dawson, Richard

    2017-11-01

    Future development in cities needs to manage increasing populations, climate-related risks, and sustainable development objectives such as reducing greenhouse gas emissions. Planners therefore face a challenge of multidimensional, spatial optimization in order to balance potential tradeoffs and maximize synergies between risks and other objectives. To address this, a spatial optimization framework has been developed. This uses a spatially implemented genetic algorithm to generate a set of Pareto-optimal results that provide planners with the best set of trade-off spatial plans for six risk and sustainability objectives: (i) minimize heat risks, (ii) minimize flooding risks, (iii) minimize transport travel costs to minimize associated emissions, (iv) maximize brownfield development, (v) minimize urban sprawl, and (vi) prevent development of greenspace. The framework is applied to Greater London (U.K.) and shown to generate spatial development strategies that are optimal for specific objectives and differ significantly from the existing development strategies. In addition, the analysis reveals tradeoffs between different risks as well as between risk and sustainability objectives. While increases in heat or flood risk can be avoided, there are no strategies that do not increase at least one of these. Tradeoffs between risk and other sustainability objectives can be more severe, for example, minimizing heat risk is only possible if future development is allowed to sprawl significantly. The results highlight the importance of spatial structure in modulating risks and other sustainability objectives. However, not all planning objectives are suited to quantified optimization and so the results should form part of an evidence base to improve the delivery of risk and sustainability management in future urban development. © 2017 The Authors Risk Analysis published by Wiley Periodicals, Inc. on behalf of Society for Risk Analysis.

  18. Front-Presented Looming Sound Selectively Alters the Perceived Size of a Visual Looming Object.

    PubMed

    Yamasaki, Daiki; Miyoshi, Kiyofumi; Altmann, Christian F; Ashida, Hiroshi

    2018-07-01

    In spite of accumulating evidence for the spatial rule governing cross-modal interaction according to the spatial consistency of stimuli, it is still unclear whether 3D spatial consistency (i.e., front/rear of the body) of stimuli also regulates audiovisual interaction. We investigated how sounds with increasing/decreasing intensity (looming/receding sound) presented from the front and rear space of the body impact the size perception of a dynamic visual object. Participants performed a size-matching task (Experiments 1 and 2) and a size adjustment task (Experiment 3) of visual stimuli with increasing/decreasing diameter, while being exposed to a front- or rear-presented sound with increasing/decreasing intensity. Throughout these experiments, we demonstrated that only the front-presented looming sound caused overestimation of the spatially consistent looming visual stimulus in size, but not of the spatially inconsistent and the receding visual stimulus. The receding sound had no significant effect on vision. Our results revealed that looming sound alters dynamic visual size perception depending on the consistency in the approaching quality and the front-rear spatial location of audiovisual stimuli, suggesting that the human brain differently processes audiovisual inputs based on their 3D spatial consistency. This selective interaction between looming signals should contribute to faster detection of approaching threats. Our findings extend the spatial rule governing audiovisual interaction into 3D space.

  19. Modulation of spatial Stroop by object-based attention but not by space-based attention.

    PubMed

    Luo, Chunming; Lupiáñez, Juan; Funes, María Jesús; Fu, Xiaolan

    2010-03-01

    Earlier studies have shown that the spatial Stroop effect systematically decreases when a peripheral precue is presented at the same location as the target, compared to an uncued location condition. In this study, two experiments were conducted to explore whether the cueing modulation of spatial Stroop is object based and/or space based. In Experiment 1, we found evidence favouring the view that the cueing modulation of the spatial Stroop effect is entirely object based, as no differences were found in conflict reduction for the same-location and same-object conditions. In Experiment 2, the cue was predictive, and a similar object-based modulation of spatial Stroop was still observed. However, the direction of such modulation was affected by the rectangles' orientation. Overall, the pattern of results obtained favours the object-integration (Lupiáñez & Milliken, 1999; Lupiáñez, Milliken, Solano, Weaver, & Tipper, 2001) and referential-coding accounts (Danziger, Kingstone, & Ward, 2001) and seems to provide evidence against the attention-shift account (Rubichi, Nicoletti, Iani, & Umilta, 1997; Stoffer, 1991).

  20. A comparison of three feature selection methods for object-based classification of sub-decimeter resolution UltraCam-L imagery

    USDA-ARS?s Scientific Manuscript database

    The availability of numerous spectral, spatial, and contextual features with object-based image analysis (OBIA) renders the selection of optimal features a time consuming and subjective process. While several feature election methods have been used in conjunction with OBIA, a robust comparison of th...

  1. A Multi-modal, Discriminative and Spatially Invariant CNN for RGB-D Object Labeling.

    PubMed

    Asif, Umar; Bennamoun, Mohammed; Sohel, Ferdous

    2017-08-30

    While deep convolutional neural networks have shown a remarkable success in image classification, the problems of inter-class similarities, intra-class variances, the effective combination of multimodal data, and the spatial variability in images of objects remain to be major challenges. To address these problems, this paper proposes a novel framework to learn a discriminative and spatially invariant classification model for object and indoor scene recognition using multimodal RGB-D imagery. This is achieved through three postulates: 1) spatial invariance - this is achieved by combining a spatial transformer network with a deep convolutional neural network to learn features which are invariant to spatial translations, rotations, and scale changes, 2) high discriminative capability - this is achieved by introducing Fisher encoding within the CNN architecture to learn features which have small inter-class similarities and large intra-class compactness, and 3) multimodal hierarchical fusion - this is achieved through the regularization of semantic segmentation to a multi-modal CNN architecture, where class probabilities are estimated at different hierarchical levels (i.e., imageand pixel-levels), and fused into a Conditional Random Field (CRF)- based inference hypothesis, the optimization of which produces consistent class labels in RGB-D images. Extensive experimental evaluations on RGB-D object and scene datasets, and live video streams (acquired from Kinect) show that our framework produces superior object and scene classification results compared to the state-of-the-art methods.

  2. First Spectroscopic Identification of Massive Young Stellar Objects in the Galactic Center

    NASA Technical Reports Server (NTRS)

    An, Deokkeun; Ramirez, V.; Sellgren, Kris; Arendt, Richard G.; Boogert, A. C.; Schultheis, Mathias; Stolovy, Susan R.; Cotera, Angela S.; Robitaille, Thomas P.; Smith, Howard A.

    2009-01-01

    We report the detection of several molecular gas-phase and ice absorption features in three photometrically-selected young stellar object (YSO) candidates in the central 280 pc of the Milky Way. Our spectra, obtained with the Infrared Spectrograph (IRS) onboard the Spitzer Space Telescope, reveal gas-phase absorption from CO2 (15.0 microns), C2H2 (13.7 microns) and HCN (14.0 microns). We attribute this absorption to warm, dense gas in massive YSOs. We also detect strong and broad 15 microns CO2 ice absorption features, with a remarkable double-peaked structure. The prominent long-wavelength peak is due to CH3OH-rich ice grains, and is similar to those found in other known massive YSOs. Our IRS observa.tions demonstra.te the youth of these objects, and provide the first spectroscopic identification of massive YSOs in the Galactic Center.

  3. Ensemble coding remains accurate under object and spatial visual working memory load.

    PubMed

    Epstein, Michael L; Emmanouil, Tatiana A

    2017-10-01

    A number of studies have provided evidence that the visual system statistically summarizes large amounts of information that would exceed the limitations of attention and working memory (ensemble coding). However the necessity of working memory resources for ensemble coding has not yet been tested directly. In the current study, we used a dual task design to test the effect of object and spatial visual working memory load on size averaging accuracy. In Experiment 1, we tested participants' accuracy in comparing the mean size of two sets under various levels of object visual working memory load. Although the accuracy of average size judgments depended on the difference in mean size between the two sets, we found no effect of working memory load. In Experiment 2, we tested the same average size judgment while participants were under spatial visual working memory load, again finding no effect of load on averaging accuracy. Overall our results reveal that ensemble coding can proceed unimpeded and highly accurately under both object and spatial visual working memory load, providing further evidence that ensemble coding reflects a basic perceptual process distinct from that of individual object processing.

  4. Selective memory generalization by spatial patterning of protein synthesis

    PubMed Central

    O’Donnell, Cian; Sejnowski, Terrence J.

    2014-01-01

    Summary Protein synthesis is crucial for both persistent synaptic plasticity and long-term memory. De novo protein expression can be restricted to specific neurons within a population, and to specific dendrites within a single neuron. Despite its ubiquity, the functional benefits of spatial protein regulation for learning are unknown. We used computational modeling to study this problem. We found that spatially patterned protein synthesis can enable selective consolidation of some memories but forgetting of others, even for simultaneous events that are represented by the same neural population. Key factors regulating selectivity include the functional clustering of synapses on dendrites, and the sparsity and overlap of neural activity patterns at the circuit level. Based on these findings we proposed a novel two-step model for selective memory generalization during REM and slow-wave sleep. The pattern-matching framework we propose may be broadly applicable to spatial protein signaling throughout cortex and hippocampus. PMID:24742462

  5. Selective memory generalization by spatial patterning of protein synthesis.

    PubMed

    O'Donnell, Cian; Sejnowski, Terrence J

    2014-04-16

    Protein synthesis is crucial for both persistent synaptic plasticity and long-term memory. De novo protein expression can be restricted to specific neurons within a population, and to specific dendrites within a single neuron. Despite its ubiquity, the functional benefits of spatial protein regulation for learning are unknown. We used computational modeling to study this problem. We found that spatially patterned protein synthesis can enable selective consolidation of some memories but forgetting of others, even for simultaneous events that are represented by the same neural population. Key factors regulating selectivity include the functional clustering of synapses on dendrites, and the sparsity and overlap of neural activity patterns at the circuit level. Based on these findings, we proposed a two-step model for selective memory generalization during REM and slow-wave sleep. The pattern-matching framework we propose may be broadly applicable to spatial protein signaling throughout cortex and hippocampus. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. 3D geospatial visualizations: Animation and motion effects on spatial objects

    NASA Astrophysics Data System (ADS)

    Evangelidis, Konstantinos; Papadopoulos, Theofilos; Papatheodorou, Konstantinos; Mastorokostas, Paris; Hilas, Constantinos

    2018-02-01

    Digital Elevation Models (DEMs), in combination with high quality raster graphics provide realistic three-dimensional (3D) representations of the globe (virtual globe) and amazing navigation experience over the terrain through earth browsers. In addition, the adoption of interoperable geospatial mark-up languages (e.g. KML) and open programming libraries (Javascript) makes it also possible to create 3D spatial objects and convey on them the sensation of any type of texture by utilizing open 3D representation models (e.g. Collada). One step beyond, by employing WebGL frameworks (e.g. Cesium.js, three.js) animation and motion effects are attributed on 3D models. However, major GIS-based functionalities in combination with all the above mentioned visualization capabilities such as for example animation effects on selected areas of the terrain texture (e.g. sea waves) as well as motion effects on 3D objects moving in dynamically defined georeferenced terrain paths (e.g. the motion of an animal over a hill, or of a big fish in an ocean etc.) are not widely supported at least by open geospatial applications or development frameworks. Towards this we developed and made available to the research community, an open geospatial software application prototype that provides high level capabilities for dynamically creating user defined virtual geospatial worlds populated by selected animated and moving 3D models on user specified locations, paths and areas. At the same time, the generated code may enhance existing open visualization frameworks and programming libraries dealing with 3D simulations, with the geospatial aspect of a virtual world.

  7. Spatial but not object memory impairments in children with fetal alcohol syndrome.

    PubMed

    Uecker, A; Nadel, L

    1998-07-01

    Behavioral dissociations on tests of cognitive abilities are powerful tools that can help define the neuropsychology of developmentally disabling conditions. Animals gestationally exposed to alcohol demonstrate spatial (place) but not object (cue) memory impairments. Whether children with fetal alcohol syndrome demonstrate a similar dissociation has received little attention. In this experiment, 30 Native American children, 15 previously identified with fetal alcohol syndrome and 15 control children, were asked to recall places and objects in a task previously shown to be sensitive to memory skills in individuals with and without mental retardation. As in animal models, children with fetal alcohol syndrome demonstrated a spatial but not an object memory impairment. A possible role for the hippocampus was discussed.

  8. Deficits of spatial and task-related attentional selection in mild cognitive impairment and Alzheimer's disease.

    PubMed

    Redel, P; Bublak, P; Sorg, C; Kurz, A; Förstl, H; Müller, H J; Schneider, W X; Perneczky, R; Finke, K

    2012-01-01

    Visual selective attention was assessed with a partial-report task in patients with probable Alzheimer's disease (AD), amnestic mild cognitive impairment (MCI), and healthy elderly controls. Based on Bundesen's "theory of visual attention" (TVA), two parameters were derived: top-down control of attentional selection, representing task-related attentional weighting for prioritizing relevant visual objects, and spatial distribution of attentional weights across the left and the right hemifield. Compared with controls, MCI patients showed significantly reduced top-down controlled selection, which was further deteriorated in AD subjects. Moreover, attentional weighting was significantly unbalanced across hemifields in MCI and tended to be more lateralized in AD. Across MCI and AD patients, carriers of the apolipoprotein E ε4 allele (ApoE4) displayed a leftward spatial bias, which was the more pronounced the younger the ApoE4-positive patients and the earlier disease onset. These results indicate that impaired top-down control may be linked to early dysfunction of fronto-parietal networks. An early temporo-parietal interhemispheric asymmetry might cause a pathological spatial bias which is associated with ApoE4 genotype and may therefore function as early cognitive marker of upcoming AD. Copyright © 2012 Elsevier Inc. All rights reserved.

  9. Enhancing Disaster Management: Development of a Spatial Database of Day Care Centers in the USA

    DOE PAGES

    Singh, Nagendra; Tuttle, Mark A.; Bhaduri, Budhendra L.

    2015-07-30

    Children under the age of five constitute around 7% of the total U.S. population and represent a segment of the population, which is totally dependent on others for day-to-day activities. A significant proportion of this population spends time in some form of day care arrangement while their parents are away from home. Accounting for those children during emergencies is of high priority, which requires a broad understanding of the locations of such day care centers. As concentrations of at risk population, the spatial location of day care centers is critical for any type of emergency preparedness and response (EPR). However,more » until recently, the U.S. emergency preparedness and response community did not have access to a comprehensive spatial database of day care centers at the national scale. This paper describes an approach for the development of the first comprehensive spatial database of day care center locations throughout the USA utilizing a variety of data harvesting techniques to integrate information from widely disparate data sources followed by geolocating for spatial precision. In the context of disaster management, such spatially refined demographic databases hold tremendous potential for improving high resolution population distribution and dynamics models and databases.« less

  10. Enhancing Disaster Management: Development of a Spatial Database of Day Care Centers in the USA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Nagendra; Tuttle, Mark A.; Bhaduri, Budhendra L.

    Children under the age of five constitute around 7% of the total U.S. population and represent a segment of the population, which is totally dependent on others for day-to-day activities. A significant proportion of this population spends time in some form of day care arrangement while their parents are away from home. Accounting for those children during emergencies is of high priority, which requires a broad understanding of the locations of such day care centers. As concentrations of at risk population, the spatial location of day care centers is critical for any type of emergency preparedness and response (EPR). However,more » until recently, the U.S. emergency preparedness and response community did not have access to a comprehensive spatial database of day care centers at the national scale. This paper describes an approach for the development of the first comprehensive spatial database of day care center locations throughout the USA utilizing a variety of data harvesting techniques to integrate information from widely disparate data sources followed by geolocating for spatial precision. In the context of disaster management, such spatially refined demographic databases hold tremendous potential for improving high resolution population distribution and dynamics models and databases.« less

  11. Feature-based and spatial attentional selection in visual working memory.

    PubMed

    Heuer, Anna; Schubö, Anna

    2016-05-01

    The contents of visual working memory (VWM) can be modulated by spatial cues presented during the maintenance interval ("retrocues"). Here, we examined whether attentional selection of representations in VWM can also be based on features. In addition, we investigated whether the mechanisms of feature-based and spatial attention in VWM differ with respect to parallel access to noncontiguous locations. In two experiments, we tested the efficacy of valid retrocues relying on different kinds of information. Specifically, participants were presented with a typical spatial retrocue pointing to two locations, a symbolic spatial retrocue (numbers mapping onto two locations), and two feature-based retrocues: a color retrocue (a blob of the same color as two of the items) and a shape retrocue (an outline of the shape of two of the items). The two cued items were presented at either contiguous or noncontiguous locations. Overall retrocueing benefits, as compared to a neutral condition, were observed for all retrocue types. Whereas feature-based retrocues yielded benefits for cued items presented at both contiguous and noncontiguous locations, spatial retrocues were only effective when the cued items had been presented at contiguous locations. These findings demonstrate that attentional selection and updating in VWM can operate on different kinds of information, allowing for a flexible and efficient use of this limited system. The observation that the representations of items presented at noncontiguous locations could only be reliably selected with feature-based retrocues suggests that feature-based and spatial attentional selection in VWM rely on different mechanisms, as has been shown for attentional orienting in the external world.

  12. Building on What You Have Learned: Object Construction Skill during Infancy Predicts the Comprehension of Spatial Relations Words

    ERIC Educational Resources Information Center

    Marcinowski, Emily C.; Campbell, Julie Marie

    2017-01-01

    Object construction involves organizing multiple objects into a unified structure (e.g., stacking blocks into a tower) and may provide infants with unique spatial information. Because object construction entails placing objects in spatial locations relative to one another, infants can acquire information about spatial relations during construction…

  13. An fMRI Study of Episodic Memory: Retrieval of Object, Spatial, and Temporal Information

    PubMed Central

    Hayes, Scott M.; Ryan, Lee; Schnyer, David M.; Nadel, Lynn

    2011-01-01

    Sixteen participants viewed a videotaped tour of 4 houses, highlighting a series of objects and their spatial locations. Participants were tested for memory of object, spatial, and temporal order information while undergoing functional Magnetic Resonance Imaging. Preferential activation was observed in right parahippocampal gyrus during the retrieval of spatial location information. Retrieval of contextual information (spatial location and temporal order) was associated with activation in right dorsolateral prefrontal cortex. In bilateral posterior parietal regions, greater activation was associated with processing of visual scenes, regardless of the memory judgment. These findings support current theories positing roles for frontal and medial temporal regions during episodic retrieval and suggest a specific role for the hippocampal complex in the retrieval of spatial location information PMID:15506871

  14. A spatial approach of magnitude-squared coherence applied to selective attention detection.

    PubMed

    Bonato Felix, Leonardo; de Souza Ranaudo, Fernando; D'affonseca Netto, Aluizio; Ferreira Leite Miranda de Sá, Antonio Mauricio

    2014-05-30

    Auditory selective attention is the human ability of actively focusing in a certain sound stimulus while avoiding all other ones. This ability can be used, for example, in behavioral studies and brain-machine interface. In this work we developed an objective method - called Spatial Coherence - to detect the side where a subject is focusing attention to. This method takes into consideration the Magnitude Squared Coherence and the topographic distribution of responses among electroencephalogram electrodes. The individuals were stimulated with amplitude-modulated tones binaurally and were oriented to focus attention to only one of the stimuli. The results indicate a contralateral modulation of ASSR in the attention condition and are in agreement with prior studies. Furthermore, the best combination of electrodes led to a hit rate of 82% for 5.03 commands per minute. Using a similar paradigm, in a recent work, a maximum hit rate of 84.33% was achieved, but with a greater a classification time (20s, i.e. 3 commands per minute). It seems that Spatial Coherence is a useful technique for detecting focus of auditory selective attention. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Multi-objective optimization in spatial planning: Improving the effectiveness of multi-objective evolutionary algorithms (non-dominated sorting genetic algorithm II)

    NASA Astrophysics Data System (ADS)

    Karakostas, Spiros

    2015-05-01

    The multi-objective nature of most spatial planning initiatives and the numerous constraints that are introduced in the planning process by decision makers, stakeholders, etc., synthesize a complex spatial planning context in which the concept of solid and meaningful optimization is a unique challenge. This article investigates new approaches to enhance the effectiveness of multi-objective evolutionary algorithms (MOEAs) via the adoption of a well-known metaheuristic: the non-dominated sorting genetic algorithm II (NSGA-II). In particular, the contribution of a sophisticated crossover operator coupled with an enhanced initialization heuristic is evaluated against a series of metrics measuring the effectiveness of MOEAs. Encouraging results emerge for both the convergence rate of the evolutionary optimization process and the occupation of valuable regions of the objective space by non-dominated solutions, facilitating the work of spatial planners and decision makers. Based on the promising behaviour of both heuristics, topics for further research are proposed to improve their effectiveness.

  16. Greater loss of object than spatial mnemonic discrimination in aged adults.

    PubMed

    Reagh, Zachariah M; Ho, Huy D; Leal, Stephanie L; Noche, Jessica A; Chun, Amanda; Murray, Elizabeth A; Yassa, Michael A

    2016-04-01

    Previous studies across species have established that the aging process adversely affects certain memory-related brain regions earlier than others. Behavioral tasks targeted at the function of vulnerable regions can provide noninvasive methods for assessing the integrity of particular components of memory throughout the lifespan. The present study modified a previous task designed to separately but concurrently test detailed memory for object identity and spatial location. Memory for objects or items is thought to rely on perirhinal and lateral entorhinal cortices, among the first targets of Alzheimer's related neurodegeneration. In line with prior work, we split an aged adult sample into "impaired" and "unimpaired" groups on the basis of a standardized word-learning task. The "impaired" group showed widespread difficulty with memory discrimination, whereas the "unimpaired" group showed difficulty with object, but not spatial memory discrimination. These findings support the hypothesized greater age-related impacts on memory for objects or items in older adults, perhaps even with healthy aging. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  17. The timecourse of space- and object-based attentional prioritization with varying degrees of certainty

    PubMed Central

    Drummond, Leslie; Shomstein, Sarah

    2013-01-01

    The relative contributions of objects (i.e., object-based) and underlying spatial (i.e., space-based representations) to attentional prioritization and selection remain unclear. In most experimental circumstances, the two representations overlap thus their respective contributions cannot be evaluated. Here, a dynamic version of the two-rectangle paradigm allowed for a successful de-coupling of spatial and object representations. Space-based (cued spatial location), cued end of the object, and object-based (locations within the cued object) effects were sampled at several timepoints following the cue with high or low certainty as to target location. In the high uncertainty condition spatial benefits prevailed throughout most of the timecourse, as evidenced by facilitatory and inhibitory effects. Additionally, the cued end of the object, rather than a whole object, received the attentional benefit. When target location was predictable (low uncertainty manipulation), only probabilities guided selection (i.e., evidence by a benefit for the statistically biased location). These results suggest that with high spatial uncertainty, all available information present within the stimulus display is used for the purposes of attentional selection (e.g., spatial locations, cued end of the object) albeit to varying degrees and at different time points. However, as certainty increases, only spatial certainty guides selection (i.e., object ends and whole objects are filtered out). Taken together, these results further elucidate the contributing role of space- and object-representations to attentional guidance. PMID:24367302

  18. Spatial patterns of arrests, police assault and addiction treatment center locations in Tijuana, Mexico.

    PubMed

    Werb, Dan; Strathdee, Steffanie A; Vera, Alicia; Arredondo, Jaime; Beletsky, Leo; Gonzalez-Zuniga, Patricia; Gaines, Tommi

    2016-07-01

    In the context of a public health-oriented drug policy reform in Mexico, we assessed the spatial distribution of police encounters among people who inject drugs (PWID) in Tijuana, determined the association between these encounters and the location of addiction treatment centers and explored the association between police encounters and treatment access. Geographically weighted regression (GWR) and logistic regression analysis using prospective spatial data from a community-recruited cohort of PWID in Tijuana and official geographical arrest data from the Tijuana Municipal Police Department. Tijuana, Mexico. A total of 608 participants (median age 37; 28.4% female) in the prospective Proyecto El Cuete cohort study recruited between January and December 2011. We compared the mean distance of police encounters and a randomly distributed set of events to treatment centers. GWR was undertaken to model the spatial relationship between police interactions and treatment centers. Logistic regression analysis was used to investigate factors associated with reporting police interactions. During the study period, 27.5% of police encounters occurred within 500 m of treatment centers. The GWR model suggested spatial correlation between encounters and treatment centers (global R(2)  = 0.53). Reporting a need for addiction treatment was associated with reporting arrest and police assault [adjusted odds ratio = 2.74, 95% confidence interval (CI) = 1.25-6.02, P = 0.012]. A geospatial analysis suggests that, in Mexico, people who inject drugs are at greater risk of being a victim of police violence if they consider themselves in need of addiction treatment, and their interactions with police appear to be more frequent around treatment centers. © 2016 Society for the Study of Addiction.

  19. Object-Part Attention Model for Fine-Grained Image Classification

    NASA Astrophysics Data System (ADS)

    Peng, Yuxin; He, Xiangteng; Zhao, Junjie

    2018-03-01

    Fine-grained image classification is to recognize hundreds of subcategories belonging to the same basic-level category, such as 200 subcategories belonging to the bird, which is highly challenging due to large variance in the same subcategory and small variance among different subcategories. Existing methods generally first locate the objects or parts and then discriminate which subcategory the image belongs to. However, they mainly have two limitations: (1) Relying on object or part annotations which are heavily labor consuming. (2) Ignoring the spatial relationships between the object and its parts as well as among these parts, both of which are significantly helpful for finding discriminative parts. Therefore, this paper proposes the object-part attention model (OPAM) for weakly supervised fine-grained image classification, and the main novelties are: (1) Object-part attention model integrates two level attentions: object-level attention localizes objects of images, and part-level attention selects discriminative parts of object. Both are jointly employed to learn multi-view and multi-scale features to enhance their mutual promotions. (2) Object-part spatial constraint model combines two spatial constraints: object spatial constraint ensures selected parts highly representative, and part spatial constraint eliminates redundancy and enhances discrimination of selected parts. Both are jointly employed to exploit the subtle and local differences for distinguishing the subcategories. Importantly, neither object nor part annotations are used in our proposed approach, which avoids the heavy labor consumption of labeling. Comparing with more than 10 state-of-the-art methods on 4 widely-used datasets, our OPAM approach achieves the best performance.

  20. Automating an integrated spatial data-mining model for landfill site selection

    NASA Astrophysics Data System (ADS)

    Abujayyab, Sohaib K. M.; Ahamad, Mohd Sanusi S.; Yahya, Ahmad Shukri; Ahmad, Siti Zubaidah; Aziz, Hamidi Abdul

    2017-10-01

    An integrated programming environment represents a robust approach to building a valid model for landfill site selection. One of the main challenges in the integrated model is the complicated processing and modelling due to the programming stages and several limitations. An automation process helps avoid the limitations and improve the interoperability between integrated programming environments. This work targets the automation of a spatial data-mining model for landfill site selection by integrating between spatial programming environment (Python-ArcGIS) and non-spatial environment (MATLAB). The model was constructed using neural networks and is divided into nine stages distributed between Matlab and Python-ArcGIS. A case study was taken from the north part of Peninsular Malaysia. 22 criteria were selected to utilise as input data and to build the training and testing datasets. The outcomes show a high-performance accuracy percentage of 98.2% in the testing dataset using 10-fold cross validation. The automated spatial data mining model provides a solid platform for decision makers to performing landfill site selection and planning operations on a regional scale.

  1. Object size determines the spatial spread of visual time

    PubMed Central

    McGraw, Paul V.; Roach, Neil W.; Whitaker, David

    2016-01-01

    A key question for temporal processing research is how the nervous system extracts event duration, despite a notable lack of neural structures dedicated to duration encoding. This is in stark contrast with the orderly arrangement of neurons tasked with spatial processing. In this study, we examine the linkage between the spatial and temporal domains. We use sensory adaptation techniques to generate after-effects where perceived duration is either compressed or expanded in the opposite direction to the adapting stimulus' duration. Our results indicate that these after-effects are broadly tuned, extending over an area approximately five times the size of the stimulus. This region is directly related to the size of the adapting stimulus—the larger the adapting stimulus the greater the spatial spread of the after-effect. We construct a simple model to test predictions based on overlapping adapted versus non-adapted neuronal populations and show that our effects cannot be explained by any single, fixed-scale neural filtering. Rather, our effects are best explained by a self-scaled mechanism underpinned by duration selective neurons that also pool spatial information across earlier stages of visual processing. PMID:27466452

  2. When Do Objects Become Landmarks? A VR Study of the Effect of Task Relevance on Spatial Memory

    PubMed Central

    Han, Xue; Byrne, Patrick; Kahana, Michael; Becker, Suzanna

    2012-01-01

    We investigated how objects come to serve as landmarks in spatial memory, and more specifically how they form part of an allocentric cognitive map. Participants performing a virtual driving task incidentally learned the layout of a virtual town and locations of objects in that town. They were subsequently tested on their spatial and recognition memory for the objects. To assess whether the objects were encoded allocentrically we examined pointing consistency across tested viewpoints. In three experiments, we found that spatial memory for objects at navigationally relevant locations was more consistent across tested viewpoints, particularly when participants had more limited experience of the environment. When participants’ attention was focused on the appearance of objects, the navigational relevance effect was eliminated, whereas when their attention was focused on objects’ locations, this effect was enhanced, supporting the hypothesis that when objects are processed in the service of navigation, rather than merely being viewed as objects, they engage qualitatively distinct attentional systems and are incorporated into an allocentric spatial representation. The results are consistent with evidence from the neuroimaging literature that when objects are relevant to navigation, they not only engage the ventral “object processing stream”, but also the dorsal stream and medial temporal lobe memory system classically associated with allocentric spatial memory. PMID:22586455

  3. A reconstruction algorithm for three-dimensional object-space data using spatial-spectral multiplexing

    NASA Astrophysics Data System (ADS)

    Wu, Zhejun; Kudenov, Michael W.

    2017-05-01

    This paper presents a reconstruction algorithm for the Spatial-Spectral Multiplexing (SSM) optical system. The goal of this algorithm is to recover the three-dimensional spatial and spectral information of a scene, given that a one-dimensional spectrometer array is used to sample the pupil of the spatial-spectral modulator. The challenge of the reconstruction is that the non-parametric representation of the three-dimensional spatial and spectral object requires a large number of variables, thus leading to an underdetermined linear system that is hard to uniquely recover. We propose to reparameterize the spectrum using B-spline functions to reduce the number of unknown variables. Our reconstruction algorithm then solves the improved linear system via a least- square optimization of such B-spline coefficients with additional spatial smoothness regularization. The ground truth object and the optical model for the measurement matrix are simulated with both spatial and spectral assumptions according to a realistic field of view. In order to test the robustness of the algorithm, we add Poisson noise to the measurement and test on both two-dimensional and three-dimensional spatial and spectral scenes. Our analysis shows that the root mean square error of the recovered results can be achieved within 5.15%.

  4. Representation of Non-Spatial and Spatial Information in the Lateral Entorhinal Cortex

    PubMed Central

    Deshmukh, Sachin S.; Knierim, James J.

    2011-01-01

    Some theories of memory propose that the hippocampus integrates the individual items and events of experience within a contextual or spatial framework. The hippocampus receives cortical input from two major pathways: the medial entorhinal cortex (MEC) and the lateral entorhinal cortex (LEC). During exploration in an open field, the firing fields of MEC grid cells form a periodically repeating, triangular array. In contrast, LEC neurons show little spatial selectivity, and it has been proposed that the LEC may provide non-spatial input to the hippocampus. Here, we recorded MEC and LEC neurons while rats explored an open field that contained discrete objects. LEC cells fired selectively at locations relative to the objects, whereas MEC cells were weakly influenced by the objects. These results provide the first direct demonstration of a double dissociation between LEC and MEC inputs to the hippocampus under conditions of exploration typically used to study hippocampal place cells. PMID:22065409

  5. From Objects to Landmarks: The Function of Visual Location Information in Spatial Navigation

    PubMed Central

    Chan, Edgar; Baumann, Oliver; Bellgrove, Mark A.; Mattingley, Jason B.

    2012-01-01

    Landmarks play an important role in guiding navigational behavior. A host of studies in the last 15 years has demonstrated that environmental objects can act as landmarks for navigation in different ways. In this review, we propose a parsimonious four-part taxonomy for conceptualizing object location information during navigation. We begin by outlining object properties that appear to be important for a landmark to attain salience. We then systematically examine the different functions of objects as navigational landmarks based on previous behavioral and neuroanatomical findings in rodents and humans. Evidence is presented showing that single environmental objects can function as navigational beacons, or act as associative or orientation cues. In addition, we argue that extended surfaces or boundaries can act as landmarks by providing a frame of reference for encoding spatial information. The present review provides a concise taxonomy of the use of visual objects as landmarks in navigation and should serve as a useful reference for future research into landmark-based spatial navigation. PMID:22969737

  6. Optical and radio properties of X-ray selected BL Lacertae objects

    NASA Technical Reports Server (NTRS)

    Stocke, J. T.; Liebert, J.; Schmidt, G.; Gioia, I. M.; Maccacaro, T.

    1985-01-01

    The eight BL Lac objects from the HEAO 1 A-2 all-sky survey and from the Einstein medium-sensitivity survey (MSS) form a flux-limited complete X-ray selected sample. The optical and radio properties of the MSS BL Lac objects are presented and compared with those of the HEAO 1 A-2 sample and with those of radio-selected BL Lac objects. The X-ray selected BL Lac objects possess smaller polarized fractions and less violent optical variability than radio-selected BL Lac objects. These properties are consistent with the substantial starlight fraction seen in the optical spectra of a majority of these objects. This starlight allows a determination of definite redshifts for two of four MSS BL Lac objects and a probable redshift for a third. These redshifts are 0.2, 0.3, and 0.6. Despite the differences in characteristics between the X-ray selected and radio-selected samples, it is concluded that these eight objects possess most of the basic qualities of BL Lac objects and should be considered members of that class. Moreover, as a class, these X-ray selected objects have the largest ratio of X-ray to optical flux of any active galactic nuclei yet discovered.

  7. Strategic Resource Allocation in the Human Brain Supports Cognitive Coordination of Object and Spatial Working Memory

    PubMed Central

    Jackson, Margaret C; Morgan, Helen M; Shapiro, Kimron L; Mohr, Harald; Linden, David EJ

    2011-01-01

    The ability to integrate different types of information (e.g., object identity and spatial orientation) and maintain or manipulate them concurrently in working memory (WM) facilitates the flow of ongoing tasks and is essential for normal human cognition. Research shows that object and spatial information is maintained and manipulated in WM via separate pathways in the brain (object/ventral versus spatial/dorsal). How does the human brain coordinate the activity of different specialized systems to conjoin different types of information? Here we used functional magnetic resonance imaging to investigate conjunction- versus single-task manipulation of object (compute average color blend) and spatial (compute intermediate angle) information in WM. Object WM was associated with ventral (inferior frontal gyrus, occipital cortex), and spatial WM with dorsal (parietal cortex, superior frontal, and temporal sulci) regions. Conjoined object/spatial WM resulted in intermediate activity in these specialized areas, but greater activity in different prefrontal and parietal areas. Unique to our study, we found lower temporo-occipital activity and greater deactivation in temporal and medial prefrontal cortices for conjunction- versus single-tasks. Using structural equation modeling, we derived a conjunction-task connectivity model that comprises a frontoparietal network with a bidirectional DLPFC-VLPFC connection, and a direct parietal-extrastriate pathway. We suggest that these activation/deactivation patterns reflect efficient resource allocation throughout the brain and propose a new extended version of the biased competition model of WM. Hum Brain Mapp, 2011. © 2010 Wiley-Liss, Inc. PMID:20715083

  8. Spatial evolutionary games with weak selection.

    PubMed

    Nanda, Mridu; Durrett, Richard

    2017-06-06

    Recently, a rigorous mathematical theory has been developed for spatial games with weak selection, i.e., when the payoff differences between strategies are small. The key to the analysis is that when space and time are suitably rescaled, the spatial model converges to the solution of a partial differential equation (PDE). This approach can be used to analyze all [Formula: see text] games, but there are a number of [Formula: see text] games for which the behavior of the limiting PDE is not known. In this paper, we give rules for determining the behavior of a large class of [Formula: see text] games and check their validity using simulation. In words, the effect of space is equivalent to making changes in the payoff matrix, and once this is done, the behavior of the spatial game can be predicted from the behavior of the replicator equation for the modified game. We say predicted here because in some cases the behavior of the spatial game is different from that of the replicator equation for the modified game. For example, if a rock-paper-scissors game has a replicator equation that spirals out to the boundary, space stabilizes the system and produces an equilibrium.

  9. Spatial evolutionary games with weak selection

    PubMed Central

    Nanda, Mridu; Durrett, Richard

    2017-01-01

    Recently, a rigorous mathematical theory has been developed for spatial games with weak selection, i.e., when the payoff differences between strategies are small. The key to the analysis is that when space and time are suitably rescaled, the spatial model converges to the solution of a partial differential equation (PDE). This approach can be used to analyze all 2×2 games, but there are a number of 3×3 games for which the behavior of the limiting PDE is not known. In this paper, we give rules for determining the behavior of a large class of 3×3 games and check their validity using simulation. In words, the effect of space is equivalent to making changes in the payoff matrix, and once this is done, the behavior of the spatial game can be predicted from the behavior of the replicator equation for the modified game. We say predicted here because in some cases the behavior of the spatial game is different from that of the replicator equation for the modified game. For example, if a rock–paper–scissors game has a replicator equation that spirals out to the boundary, space stabilizes the system and produces an equilibrium. PMID:28533405

  10. Jackson State University's Center for Spatial Data Research and Applications: New facilities and new paradigms

    NASA Technical Reports Server (NTRS)

    Davis, Bruce E.; Elliot, Gregory

    1989-01-01

    Jackson State University recently established the Center for Spatial Data Research and Applications, a Geographical Information System (GIS) and remote sensing laboratory. Taking advantage of new technologies and new directions in the spatial (geographic) sciences, JSU is building a Center of Excellence in Spatial Data Management. New opportunities for research, applications, and employment are emerging. GIS requires fundamental shifts and new demands in traditional computer science and geographic training. The Center is not merely another computer lab but is one setting the pace in a new applied frontier. GIS and its associated technologies are discussed. The Center's facilities are described. An ARC/INFO GIS runs on a Vax mainframe, with numerous workstations. Image processing packages include ELAS, LIPS, VICAR, and ERDAS. A host of hardware and software peripheral are used in support. Numerous projects are underway, such as the construction of a Gulf of Mexico environmental data base, development of AI in image processing, a land use dynamics study of metropolitan Jackson, and others. A new academic interdisciplinary program in Spatial Data Management is under development, combining courses in Geography and Computer Science. The broad range of JSU's GIS and remote sensing activities is addressed. The impacts on changing paradigms in the university and in the professional world conclude the discussion.

  11. Qualitative Differences in the Representation of Spatial Relations for Different Object Classes

    ERIC Educational Resources Information Center

    Cooper, Eric E.; Brooks, Brian E.

    2004-01-01

    Two experiments investigated whether the representations used for animal, produce, and object recognition code spatial relations in a similar manner. Experiment 1 tested the effects of planar rotation on the recognition of animals and nonanimal objects. Response times for recognizing animals followed an inverted U-shaped function, whereas those…

  12. Selection of the Maximum Spatial Cluster Size of the Spatial Scan Statistic by Using the Maximum Clustering Set-Proportion Statistic.

    PubMed

    Ma, Yue; Yin, Fei; Zhang, Tao; Zhou, Xiaohua Andrew; Li, Xiaosong

    2016-01-01

    Spatial scan statistics are widely used in various fields. The performance of these statistics is influenced by parameters, such as maximum spatial cluster size, and can be improved by parameter selection using performance measures. Current performance measures are based on the presence of clusters and are thus inapplicable to data sets without known clusters. In this work, we propose a novel overall performance measure called maximum clustering set-proportion (MCS-P), which is based on the likelihood of the union of detected clusters and the applied dataset. MCS-P was compared with existing performance measures in a simulation study to select the maximum spatial cluster size. Results of other performance measures, such as sensitivity and misclassification, suggest that the spatial scan statistic achieves accurate results in most scenarios with the maximum spatial cluster sizes selected using MCS-P. Given that previously known clusters are not required in the proposed strategy, selection of the optimal maximum cluster size with MCS-P can improve the performance of the scan statistic in applications without identified clusters.

  13. Selection of the Maximum Spatial Cluster Size of the Spatial Scan Statistic by Using the Maximum Clustering Set-Proportion Statistic

    PubMed Central

    Ma, Yue; Yin, Fei; Zhang, Tao; Zhou, Xiaohua Andrew; Li, Xiaosong

    2016-01-01

    Spatial scan statistics are widely used in various fields. The performance of these statistics is influenced by parameters, such as maximum spatial cluster size, and can be improved by parameter selection using performance measures. Current performance measures are based on the presence of clusters and are thus inapplicable to data sets without known clusters. In this work, we propose a novel overall performance measure called maximum clustering set–proportion (MCS-P), which is based on the likelihood of the union of detected clusters and the applied dataset. MCS-P was compared with existing performance measures in a simulation study to select the maximum spatial cluster size. Results of other performance measures, such as sensitivity and misclassification, suggest that the spatial scan statistic achieves accurate results in most scenarios with the maximum spatial cluster sizes selected using MCS-P. Given that previously known clusters are not required in the proposed strategy, selection of the optimal maximum cluster size with MCS-P can improve the performance of the scan statistic in applications without identified clusters. PMID:26820646

  14. Tuning Spatial Profiles of Selection Pressure to Modulate the Evolution of Drug Resistance

    NASA Astrophysics Data System (ADS)

    De Jong, Maxwell G.; Wood, Kevin B.

    2018-06-01

    Spatial heterogeneity plays an important role in the evolution of drug resistance. While recent studies have indicated that spatial gradients of selection pressure can accelerate resistance evolution, much less is known about evolution in more complex spatial profiles. Here we use a stochastic toy model of drug resistance to investigate how different spatial profiles of selection pressure impact the time to fixation of a resistant allele. Using mean first passage time calculations, we show that spatial heterogeneity accelerates resistance evolution when the rate of spatial migration is sufficiently large relative to mutation but slows fixation for small migration rates. Interestingly, there exists an intermediate regime—characterized by comparable rates of migration and mutation—in which the rate of fixation can be either accelerated or decelerated depending on the spatial profile, even when spatially averaged selection pressure remains constant. Finally, we demonstrate that optimal tuning of the spatial profile can dramatically slow the spread and fixation of resistant subpopulations, even in the absence of a fitness cost for resistance. Our results may lay the groundwork for optimized, spatially resolved drug dosing strategies for mitigating the effects of drug resistance.

  15. SPATIAL PATTERNS OF ARRESTS, POLICE ASSAULT, AND ADDICTION TREATMENT CENTER LOCATIONS IN TIJUANA, MEXICO

    PubMed Central

    Werb, D; Strathdee, SA; Vera, A; Arredondo, J; Beletsky, L; Gonzalez-Zuniga, P; Gaines, T

    2016-01-01

    Aims In the context of a public health-oriented drug policy reform in Mexico, we assessed the spatial distribution of police encounters among people who inject drugs (PWID) in Tijuana; determined the association between these encounters and the location of addiction treatment centers; and explored the association between police encounters and treatment access. Design Geographically weighted regression (GWR) and logistic regression analysis using prospective spatial data from a community-recruited cohort of PWID in Tijuana and official geographic arrest data from the Tijuana Municipal Police Department. Setting Tijuana, Mexico. Participants 608 participants (median age 37; 28.4% female) in the prospective Proyecto El Cuete cohort study recruited between January and December 2011. Measurements We compared the mean distance of police encounters and a randomly distributed set of events to treatment centers. GWR was undertaken to model the spatial relationship between police interactions and treatment centers. Logistic regression analysis was used to investigate factors associated with reporting police interactions. Findings During the study period, 27.5% of police encounters occurred within 500 meters of treatment centers. The GWR model suggested spatial correlation between encounters and treatment centers (Global R2 = 0.53). Reporting a need for addiction treatment was associated with reporting arrest and police assault (Adjusted Odds Ratio = 2.74, 95% Confidence Interval [CI]: 1.25–6.02, p = 0.012). Conclusions A geospatial analysis suggests that in Mexico, people who inject drugs are at greater risk of being a victim of police violence if they consider themselves in need of addiction treatment, and their interactions with police appear to be more frequent around treatment centres. PMID:26879179

  16. Frontotemporal Dementia Selectively Impairs Transitive Reasoning About Familiar Spatial Environments

    PubMed Central

    Vartanian, Oshin; Goel, Vinod; Tierney, Michael; Huey, Edward D.; Grafman, Jordan

    2010-01-01

    Although patients with frontotemporal dementia (FTD) are known to exhibit a wide range of cognitive and personality difficulties, some evidence suggests that there may be a degree of selectivity in their reasoning impairments. Based on a recent review of the neuroimaging literature on reasoning, the authors hypothesized that the presence or absence of familiar content may have a selective impact on the reasoning abilities of patients with FTD. Specifically, the authors predicted that patients with frontalvariant FTD would be more impaired when reasoning about transitive arguments involving familiar spatial environments than when reasoning about identical logical arguments involving unfamiliar spatial environments. As predicted, patients with FTD were less accurate than normal controls only when the content of arguments involved familiar spatial environments. These results indicate a degree of selectivity in the cognitive deficits of this patient population and suggest that the frontal-temporal lobe system may play a necessary role in reasoning about familiar material. PMID:19702415

  17. Spatial and thematic assessment of object-based forest stand delineation using an OFA-matrix

    NASA Astrophysics Data System (ADS)

    Hernando, A.; Tiede, D.; Albrecht, F.; Lang, S.

    2012-10-01

    The delineation and classification of forest stands is a crucial aspect of forest management. Object-based image analysis (OBIA) can be used to produce detailed maps of forest stands from either orthophotos or very high resolution satellite imagery. However, measures are then required for evaluating and quantifying both the spatial and thematic accuracy of the OBIA output. In this paper we present an approach for delineating forest stands and a new Object Fate Analysis (OFA) matrix for accuracy assessment. A two-level object-based orthophoto analysis was first carried out to delineate stands on the Dehesa Boyal public land in central Spain (Avila Province). Two structural features were first created for use in class modelling, enabling good differentiation between stands: a relational tree cover cluster feature, and an arithmetic ratio shadow/tree feature. We then extended the OFA comparison approach with an OFA-matrix to enable concurrent validation of thematic and spatial accuracies. Its diagonal shows the proportion of spatial and thematic coincidence between a reference data and the corresponding classification. New parameters for Spatial Thematic Loyalty (STL), Spatial Thematic Loyalty Overall (STLOVERALL) and Maximal Interfering Object (MIO) are introduced to summarise the OFA-matrix accuracy assessment. A stands map generated by OBIA (classification data) was compared with a map of the same area produced from photo interpretation and field data (reference data). In our example the OFA-matrix results indicate good spatial and thematic accuracies (>65%) for all stand classes except for the shrub stands (31.8%), and a good STLOVERALL (69.8%). The OFA-matrix has therefore been shown to be a valid tool for OBIA accuracy assessment.

  18. Spatial Mutual Information Based Hyperspectral Band Selection for Classification

    PubMed Central

    2015-01-01

    The amount of information involved in hyperspectral imaging is large. Hyperspectral band selection is a popular method for reducing dimensionality. Several information based measures such as mutual information have been proposed to reduce information redundancy among spectral bands. Unfortunately, mutual information does not take into account the spatial dependency between adjacent pixels in images thus reducing its robustness as a similarity measure. In this paper, we propose a new band selection method based on spatial mutual information. As validation criteria, a supervised classification method using support vector machine (SVM) is used. Experimental results of the classification of hyperspectral datasets show that the proposed method can achieve more accurate results. PMID:25918742

  19. Biased figure-ground assignment affects conscious object recognition in spatial neglect.

    PubMed

    Eramudugolla, Ranmalee; Driver, Jon; Mattingley, Jason B

    2010-09-01

    Unilateral spatial neglect is a disorder of attention and spatial representation, in which early visual processes such as figure-ground segmentation have been assumed to be largely intact. There is evidence, however, that the spatial attention bias underlying neglect can bias the segmentation of a figural region from its background. Relatively few studies have explicitly examined the effect of spatial neglect on processing the figures that result from such scene segmentation. Here, we show that a neglect patient's bias in figure-ground segmentation directly influences his conscious recognition of these figures. By varying the relative salience of figural and background regions in static, two-dimensional displays, we show that competition between elements in such displays can modulate a neglect patient's ability to recognise parsed figures in a scene. The findings provide insight into the interaction between scene segmentation, explicit object recognition, and attention.

  20. Reference Directions and Reference Objects in Spatial Memory of a Briefly Viewed Layout

    ERIC Educational Resources Information Center

    Mou, Weimin; Xiao, Chengli; McNamara, Timothy P.

    2008-01-01

    Two experiments investigated participants' spatial memory of a briefly viewed layout. Participants saw an array of five objects on a table and, after a short delay, indicated whether the target object indicated by the experimenter had been moved. Experiment 1 showed that change detection was more accurate when non-target objects were stationary…

  1. Attention to Hierarchical Level Influences Attentional Selection of Spatial Scale

    ERIC Educational Resources Information Center

    Flevaris, Anastasia V.; Bentin, Shlomo; Robertson, Lynn C.

    2011-01-01

    Ample evidence suggests that global perception may involve low spatial frequency (LSF) processing and that local perception may involve high spatial frequency (HSF) processing (Shulman, Sullivan, Gish, & Sakoda, 1986; Shulman & Wilson, 1987; Robertson, 1996). It is debated whether SF selection is a low-level mechanism associating global…

  2. A spatially resolved network spike in model neuronal cultures reveals nucleation centers, circular traveling waves and drifting spiral waves.

    PubMed

    Paraskevov, A V; Zendrikov, D K

    2017-03-23

    We show that in model neuronal cultures, where the probability of interneuronal connection formation decreases exponentially with increasing distance between the neurons, there exists a small number of spatial nucleation centers of a network spike, from where the synchronous spiking activity starts propagating in the network typically in the form of circular traveling waves. The number of nucleation centers and their spatial locations are unique and unchanged for a given realization of neuronal network but are different for different networks. In contrast, if the probability of interneuronal connection formation is independent of the distance between neurons, then the nucleation centers do not arise and the synchronization of spiking activity during a network spike occurs spatially uniform throughout the network. Therefore one can conclude that spatial proximity of connections between neurons is important for the formation of nucleation centers. It is also shown that fluctuations of the spatial density of neurons at their random homogeneous distribution typical for the experiments in vitro do not determine the locations of the nucleation centers. The simulation results are qualitatively consistent with the experimental observations.

  3. A spatially resolved network spike in model neuronal cultures reveals nucleation centers, circular traveling waves and drifting spiral waves

    NASA Astrophysics Data System (ADS)

    Paraskevov, A. V.; Zendrikov, D. K.

    2017-04-01

    We show that in model neuronal cultures, where the probability of interneuronal connection formation decreases exponentially with increasing distance between the neurons, there exists a small number of spatial nucleation centers of a network spike, from where the synchronous spiking activity starts propagating in the network typically in the form of circular traveling waves. The number of nucleation centers and their spatial locations are unique and unchanged for a given realization of neuronal network but are different for different networks. In contrast, if the probability of interneuronal connection formation is independent of the distance between neurons, then the nucleation centers do not arise and the synchronization of spiking activity during a network spike occurs spatially uniform throughout the network. Therefore one can conclude that spatial proximity of connections between neurons is important for the formation of nucleation centers. It is also shown that fluctuations of the spatial density of neurons at their random homogeneous distribution typical for the experiments in vitro do not determine the locations of the nucleation centers. The simulation results are qualitatively consistent with the experimental observations.

  4. Object view in spatial system dynamics: a grassland farming example

    PubMed Central

    Neuwirth, Christian; Hofer, Barbara; Schaumberger, Andreas

    2016-01-01

    Abstract Spatial system dynamics (SSD) models are typically implemented by linking stock variables to raster grids while the use of object representations of human artefacts such as buildings or ownership has been limited. This limitation is addressed by this article, which demonstrates the use of object representations in SSD. The objects are parcels of land that are attributed to grassland farms. The model simulates structural change in agriculture, i.e., change in the size of farms. The aim of the model is to reveal relations between structural change, farmland fragmentation and variable farmland quality. Results show that fragmented farms tend to become consolidated by structural change, whereas consolidated initial conditions result in a significant increase of fragmentation. Consolidation is reinforced by a dynamic land market and high transportation costs. The example demonstrates the capabilities of the object-based approach for integrating object geometries (parcel shapes) and relations between objects (distances between parcels) dynamically in SSD. PMID:28190972

  5. Spatially-Correlated Risk in Nature Reserve Site Selection

    PubMed Central

    Albers, Heidi J.; Busby, Gwenlyn M.; Hamaide, Bertrand; Ando, Amy W.; Polasky, Stephen

    2016-01-01

    Establishing nature reserves protects species from land cover conversion and the resulting loss of habitat. Even within a reserve, however, many factors such as fires and defoliating insects still threaten habitat and the survival of species. To address the risk to species survival after reserve establishment, reserve networks can be created that allow some redundancy of species coverage to maximize the expected number of species that survive in the presence of threats. In some regions, however, the threats to species within a reserve may be spatially correlated. As examples, fires, diseases, and pest infestations can spread from a starting point and threaten neighboring parcels’ habitats, in addition to damage caused at the initial location. This paper develops a reserve site selection optimization framework that compares the optimal reserve networks in cases where risks do and do not reflect spatial correlation. By exploring the impact of spatially-correlated risk on reserve networks on a stylized landscape and on an Oregon landscape, this analysis demonstrates an appropriate and feasible method for incorporating such post-reserve establishment risks in the reserve site selection literature as an additional tool to be further developed for future conservation planning. PMID:26789127

  6. Blocks, Bricks, and Planks: Relationships between Affordance and Visuo-Spatial Constructive Play Objects

    ERIC Educational Resources Information Center

    Ness, Daniel; Farenga, Stephen J.

    2016-01-01

    The authors consider the strengths and weaknesses of three different visuo-spatial constructive play object (VCPO) types--blocks, bricks, and planks--and their impact on the development of creativity in spatial thinking and higher learning during free play. Each VCPO has its own set of attributes, they note, leading to different purposes,…

  7. ERP correlates of anticipatory attention: spatial and non-spatial specificity and relation to subsequent selective attention.

    PubMed

    Dale, Corby L; Simpson, Gregory V; Foxe, John J; Luks, Tracy L; Worden, Michael S

    2008-06-01

    Brain-based models of visual attention hypothesize that attention-related benefits afforded to imperative stimuli occur via enhancement of neural activity associated with relevant spatial and non-spatial features. When relevant information is available in advance of a stimulus, anticipatory deployment processes are likely to facilitate allocation of attention to stimulus properties prior to its arrival. The current study recorded EEG from humans during a centrally-cued covert attention task. Cues indicated relevance of left or right visual field locations for an upcoming motion or orientation discrimination. During a 1 s delay between cue and S2, multiple attention-related events occurred at frontal, parietal and occipital electrode sites. Differences in anticipatory activity associated with the non-spatial task properties were found late in the delay, while spatially-specific modulation of activity occurred during both early and late periods and continued during S2 processing. The magnitude of anticipatory activity preceding the S2 at frontal scalp sites (and not occipital) was predictive of the magnitude of subsequent selective attention effects on the S2 event-related potentials observed at occipital electrodes. Results support the existence of multiple anticipatory attention-related processes, some with differing specificity for spatial and non-spatial task properties, and the hypothesis that levels of activity in anterior areas are important for effective control of subsequent S2 selective attention.

  8. Object recognition and pose estimation of planar objects from range data

    NASA Technical Reports Server (NTRS)

    Pendleton, Thomas W.; Chien, Chiun Hong; Littlefield, Mark L.; Magee, Michael

    1994-01-01

    The Extravehicular Activity Helper/Retriever (EVAHR) is a robotic device currently under development at the NASA Johnson Space Center that is designed to fetch objects or to assist in retrieving an astronaut who may have become inadvertently de-tethered. The EVAHR will be required to exhibit a high degree of intelligent autonomous operation and will base much of its reasoning upon information obtained from one or more three-dimensional sensors that it will carry and control. At the highest level of visual cognition and reasoning, the EVAHR will be required to detect objects, recognize them, and estimate their spatial orientation and location. The recognition phase and estimation of spatial pose will depend on the ability of the vision system to reliably extract geometric features of the objects such as whether the surface topologies observed are planar or curved and the spatial relationships between the component surfaces. In order to achieve these tasks, three-dimensional sensing of the operational environment and objects in the environment will therefore be essential. One of the sensors being considered to provide image data for object recognition and pose estimation is a phase-shift laser scanner. The characteristics of the data provided by this scanner have been studied and algorithms have been developed for segmenting range images into planar surfaces, extracting basic features such as surface area, and recognizing the object based on the characteristics of extracted features. Also, an approach has been developed for estimating the spatial orientation and location of the recognized object based on orientations of extracted planes and their intersection points. This paper presents some of the algorithms that have been developed for the purpose of recognizing and estimating the pose of objects as viewed by the laser scanner, and characterizes the desirability and utility of these algorithms within the context of the scanner itself, considering data quality and

  9. Automated measurement of spatial preference in the open field test with transmitted lighting.

    PubMed

    Kulikov, Alexander V; Tikhonova, Maria A; Kulikov, Victor A

    2008-05-30

    New modification of the open field was designed to improve automation of the test. The main innovations were: (1) transmitted lighting and (2) estimation of probability to find pixels associated with an animal in the selected region of arena as an objective index of spatial preference. Transmitted (inverted) lighting significantly ameliorated the contrast between an animal and arena and allowed to track white animals with similar efficacy as colored ones. Probability as a measure of preference of selected region was mathematically proved and experimentally verified. A good correlation between probability and classic indices of spatial preference (number of region entries and time spent therein) was shown. The algorithm of calculation of probability to find pixels associated with an animal in the selected region was implemented in the EthoStudio software. Significant interstrain differences in locomotion and the central zone preference (index of anxiety) were shown using the inverted lighting and the EthoStudio software in mice of six inbred strains. The effects of arena shape (circle or square) and a novel object presence in the center of arena on the open field behavior in mice were studied.

  10. The intraday variability in the radio-selected and X-ray-selected BL Lacertae objects

    NASA Astrophysics Data System (ADS)

    Bai, J. M.; Xie, G. Z.; Li, K. H.; Zhang, X.; Liu, W. W.

    1998-10-01

    Seven BL Lac objects have been photometrically observed in an effort to study the difference of optical intraday variability between the radio-selected BL Lac objects (RBLs) and X-ray-selected BL Lac objects (XBLs). The objects we observed are selected arbitrarily. They are four RBLs, PKS 0735+178, PKS 0754+101, OJ 287 and BL Lac, and three XBLs, H 0323+022, H 0548-322 and H 2154-304. During the observation all of them exhibited microvariation, and H 0323+022 and H 0548-322 sometimes showed brightness oscillation. PKS 0735+178 and BL Lac were in their faint states and not very active. It seems that RBLs do not show microvariability more frequently than XBLs. Table 2 is only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5)

  11. Spatial and symbolic queries for 3D image data

    NASA Astrophysics Data System (ADS)

    Benson, Daniel C.; Zick, Gregory L.

    1992-04-01

    We present a query system for an object-oriented biomedical imaging database containing 3-D anatomical structures and their corresponding 2-D images. The graphical interface facilitates the formation of spatial queries, nonspatial or symbolic queries, and combined spatial/symbolic queries. A query editor is used for the creation and manipulation of 3-D query objects as volumes, surfaces, lines, and points. Symbolic predicates are formulated through a combination of text fields and multiple choice selections. Query results, which may include images, image contents, composite objects, graphics, and alphanumeric data, are displayed in multiple views. Objects returned by the query may be selected directly within the views for further inspection or modification, or for use as query objects in subsequent queries. Our image database query system provides visual feedback and manipulation of spatial query objects, multiple views of volume data, and the ability to combine spatial and symbolic queries. The system allows for incremental enhancement of existing objects and the addition of new objects and spatial relationships. The query system is designed for databases containing symbolic and spatial data. This paper discuses its application to data acquired in biomedical 3- D image reconstruction, but it is applicable to other areas such as CAD/CAM, geographical information systems, and computer vision.

  12. Object Persistence Enhances Spatial Navigation: A Case Study in Smartphone Vision Science.

    PubMed

    Liverence, Brandon M; Scholl, Brian J

    2015-07-01

    Violations of spatiotemporal continuity disrupt performance in many tasks involving attention and working memory, but experiments on this topic have been limited to the study of moment-by-moment on-line perception, typically assessed by passive monitoring tasks. We tested whether persisting object representations also serve as underlying units of longer-term memory and active spatial navigation, using a novel paradigm inspired by the visual interfaces common to many smartphones. Participants used key presses to navigate through simple visual environments consisting of grids of icons (depicting real-world objects), only one of which was visible at a time through a static virtual window. Participants found target icons faster when navigation involved persistence cues (via sliding animations) than when persistence was disrupted (e.g., via temporally matched fading animations), with all transitions inspired by smartphone interfaces. Moreover, this difference occurred even after explicit memorization of the relevant information, which demonstrates that object persistence enhances spatial navigation in an automatic and irresistible fashion. © The Author(s) 2015.

  13. A Neurobehavioral Model of Flexible Spatial Language Behaviors

    PubMed Central

    Lipinski, John; Schneegans, Sebastian; Sandamirskaya, Yulia; Spencer, John P.; Schöner, Gregor

    2012-01-01

    We propose a neural dynamic model that specifies how low-level visual processes can be integrated with higher level cognition to achieve flexible spatial language behaviors. This model uses real-word visual input that is linked to relational spatial descriptions through a neural mechanism for reference frame transformations. We demonstrate that the system can extract spatial relations from visual scenes, select items based on relational spatial descriptions, and perform reference object selection in a single unified architecture. We further show that the performance of the system is consistent with behavioral data in humans by simulating results from 2 independent empirical studies, 1 spatial term rating task and 1 study of reference object selection behavior. The architecture we present thereby achieves a high degree of task flexibility under realistic stimulus conditions. At the same time, it also provides a detailed neural grounding for complex behavioral and cognitive processes. PMID:21517224

  14. Spatial Object Recognition Enables Endogenous LTD that Curtails LTP in the Mouse Hippocampus

    PubMed Central

    Goh, Jinzhong Jeremy

    2013-01-01

    Although synaptic plasticity is believed to comprise the cellular substrate for learning and memory, limited direct evidence exists that hippocampus-dependent learning actually triggers synaptic plasticity. It is likely, however, that long-term potentiation (LTP) works in concert with its counterpart, long-term depression (LTD) in the creation of spatial memory. It has been reported in rats that weak synaptic plasticity is facilitated into persistent plasticity if afferent stimulation is coupled with a novel spatial learning event. It is not known if this phenomenon also occurs in other species. We recorded from the hippocampal CA1 of freely behaving mice and observed that novel spatial learning triggers endogenous LTD. Specifically, we observed that LTD is enabled when test-pulse afferent stimulation is given during the learning of object constellations or during a spatial object recognition task. Intriguingly, LTP is significantly impaired by the same tasks, suggesting that LTD is the main cellular substrate for this type of learning. These data indicate that learning-facilitated plasticity is not exclusive to rats and that spatial learning leads to endogenous LTD in the hippocampus, suggesting an important role for this type of synaptic plasticity in the creation of hippocampus-dependent memory. PMID:22510536

  15. Fast automated segmentation of multiple objects via spatially weighted shape learning

    NASA Astrophysics Data System (ADS)

    Chandra, Shekhar S.; Dowling, Jason A.; Greer, Peter B.; Martin, Jarad; Wratten, Chris; Pichler, Peter; Fripp, Jurgen; Crozier, Stuart

    2016-11-01

    Active shape models (ASMs) have proved successful in automatic segmentation by using shape and appearance priors in a number of areas such as prostate segmentation, where accurate contouring is important in treatment planning for prostate cancer. The ASM approach however, is heavily reliant on a good initialisation for achieving high segmentation quality. This initialisation often requires algorithms with high computational complexity, such as three dimensional (3D) image registration. In this work, we present a fast, self-initialised ASM approach that simultaneously fits multiple objects hierarchically controlled by spatially weighted shape learning. Prominent objects are targeted initially and spatial weights are progressively adjusted so that the next (more difficult, less visible) object is simultaneously initialised using a series of weighted shape models. The scheme was validated and compared to a multi-atlas approach on 3D magnetic resonance (MR) images of 38 cancer patients and had the same (mean, median, inter-rater) Dice’s similarity coefficients of (0.79, 0.81, 0.85), while having no registration error and a computational time of 12-15 min, nearly an order of magnitude faster than the multi-atlas approach.

  16. Fast automated segmentation of multiple objects via spatially weighted shape learning.

    PubMed

    Chandra, Shekhar S; Dowling, Jason A; Greer, Peter B; Martin, Jarad; Wratten, Chris; Pichler, Peter; Fripp, Jurgen; Crozier, Stuart

    2016-11-21

    Active shape models (ASMs) have proved successful in automatic segmentation by using shape and appearance priors in a number of areas such as prostate segmentation, where accurate contouring is important in treatment planning for prostate cancer. The ASM approach however, is heavily reliant on a good initialisation for achieving high segmentation quality. This initialisation often requires algorithms with high computational complexity, such as three dimensional (3D) image registration. In this work, we present a fast, self-initialised ASM approach that simultaneously fits multiple objects hierarchically controlled by spatially weighted shape learning. Prominent objects are targeted initially and spatial weights are progressively adjusted so that the next (more difficult, less visible) object is simultaneously initialised using a series of weighted shape models. The scheme was validated and compared to a multi-atlas approach on 3D magnetic resonance (MR) images of 38 cancer patients and had the same (mean, median, inter-rater) Dice's similarity coefficients of (0.79, 0.81, 0.85), while having no registration error and a computational time of 12-15 min, nearly an order of magnitude faster than the multi-atlas approach.

  17. The interaction between hippocampal GABA-B and cannabinoid receptors upon spatial change and object novelty discrimination memory function.

    PubMed

    Nasehi, Mohammad; Alaghmandan-Motlagh, Niyousha; Ebrahimi-Ghiri, Mohaddeseh; Nami, Mohammad; Zarrindast, Mohammad-Reza

    2017-10-01

    Previous studies have postulated functional links between GABA and cannabinoid systems in the hippocampus. The aim of the present study was to investigate any possible interaction between these systems in spatial change and object novelty discrimination memory consolidation in the dorsal hippocampus (CA1 region) of NMRI mice. Assessment of the spatial change and object novelty discrimination memory function was carried out in a non-associative task. The experiment comprised mice exposure to an open field containing five objects followed by the examination of their reactivity to object displacement (spatial change) and object substitution (object novelty) after three sessions of habituation. Our results showed that the post-training intraperitoneal administration of the higher dose of ACPA (0.02 mg/kg) impaired both spatial change and novelty discrimination memory functions. Meanwhile, the higher dose of GABA-B receptor agonist, baclofen, impaired the spatial change memory by itself. Moreover, the post-training intra-CA1 microinjection of a subthreshold dose of baclofen increased the ACPA effect on spatial change and novelty discrimination memory at a lower and higher dose, respectively. On the other hand, the lower and higher but not mid-level doses of GABA-B receptor antagonist, phaclofen, could reverse memory deficits induced by ACPA. However, phaclofen at its mid-level dose impaired the novelty discrimination memory and whereas the higher dose impaired the spatial change memory. Based on our findings, GABA-B receptors in the CA1 region appear to modulate the ACPA-induced cannabinoid CB1 signaling upon spatial change and novelty discrimination memory functions.

  18. Unidentified Flying Objects, A Selected Bibliography.

    ERIC Educational Resources Information Center

    Rodgers, Kay, Comp.

    This bibliography, intended for the general reader, provides selective coverage of the unidentified flying object (UFO) literature that has appeared since 1969. The coverage is limited to English language works, but does include translations and materials published abroad. Other bibliographies are listed, as are books, congressional and other…

  19. Processing the presence, placement, and properties of a distractor in spatial language tasks.

    PubMed

    Carlson, Laura A; Hill, Patrick L

    2008-03-01

    A common way to describe the location of an object is to spatially relate it to a nearby object. For such descriptions, the object being described is referred to as the located object; the object to which it is spatially related is referred to as the reference object. Typically, however, there are many nearby objects (distractors), resulting in the need for selection. We report three experiments that examine the extent to which a distractor in the display is processed during the selection of a reference object. Using acceptability ratings and production measures, we show that the presence and the placement ofa distractor have a significant impact on the assessment of the spatial relation between the located and reference objects; there is also evidence that the properties of the distractor are processed, but only under limited conditions. One implication is that the dimension that is most relevant to reference object selection is its spatial relation to the located object, rather than its salience with respect to other objects in the display.

  20. BOLD repetition decreases in object-responsive ventral visual areas depend on spatial attention.

    PubMed

    Eger, E; Henson, R N A; Driver, J; Dolan, R J

    2004-08-01

    Functional imaging studies of priming-related repetition phenomena have become widely used to study neural object representation. Although blood oxygenation level-dependent (BOLD) repetition decreases can sometimes be observed without awareness of repetition, any role for spatial attention in BOLD repetition effects remains largely unknown. We used fMRI in 13 healthy subjects to test whether BOLD repetition decreases for repeated objects in ventral visual cortices depend on allocation of spatial attention to the prime. Subjects performed a size-judgment task on a probe object that had been attended or ignored in a preceding prime display of 2 lateralized objects. Reaction times showed faster responses when the probe was the same object as the attended prime, independent of the view tested (identical vs. mirror image). No behavioral effect was evident from unattended primes. BOLD repetition decreases for attended primes were found in lateral occipital and fusiform regions bilaterally, which generalized across identical and mirror-image repeats. No repetition decreases were observed for ignored primes. Our results suggest a critical role for attention in achieving visual representations of objects that lead to both BOLD signal decreases and behavioral priming on repeated presentation.

  1. Spatial analyses for nonoverlapping objects with size variations and their application to coral communities.

    PubMed

    Muko, Soyoka; Shimatani, Ichiro K; Nozawa, Yoko

    2014-07-01

    Spatial distributions of individuals are conventionally analysed by representing objects as dimensionless points, in which spatial statistics are based on centre-to-centre distances. However, if organisms expand without overlapping and show size variations, such as is the case for encrusting corals, interobject spacing is crucial for spatial associations where interactions occur. We introduced new pairwise statistics using minimum distances between objects and demonstrated their utility when examining encrusting coral community data. We also calculated the conventional point process statistics and the grid-based statistics to clarify the advantages and limitations of each spatial statistical method. For simplicity, coral colonies were approximated by disks in these demonstrations. Focusing on short-distance effects, the use of minimum distances revealed that almost all coral genera were aggregated at a scale of 1-25 cm. However, when fragmented colonies (ramets) were treated as a genet, a genet-level analysis indicated weak or no aggregation, suggesting that most corals were randomly distributed and that fragmentation was the primary cause of colony aggregations. In contrast, point process statistics showed larger aggregation scales, presumably because centre-to-centre distances included both intercolony spacing and colony sizes (radius). The grid-based statistics were able to quantify the patch (aggregation) scale of colonies, but the scale was strongly affected by the colony size. Our approach quantitatively showed repulsive effects between an aggressive genus and a competitively weak genus, while the grid-based statistics (covariance function) also showed repulsion although the spatial scale indicated from the statistics was not directly interpretable in terms of ecological meaning. The use of minimum distances together with previously proposed spatial statistics helped us to extend our understanding of the spatial patterns of nonoverlapping objects that vary in

  2. Deep Spatial-Temporal Joint Feature Representation for Video Object Detection.

    PubMed

    Zhao, Baojun; Zhao, Boya; Tang, Linbo; Han, Yuqi; Wang, Wenzheng

    2018-03-04

    With the development of deep neural networks, many object detection frameworks have shown great success in the fields of smart surveillance, self-driving cars, and facial recognition. However, the data sources are usually videos, and the object detection frameworks are mostly established on still images and only use the spatial information, which means that the feature consistency cannot be ensured because the training procedure loses temporal information. To address these problems, we propose a single, fully-convolutional neural network-based object detection framework that involves temporal information by using Siamese networks. In the training procedure, first, the prediction network combines the multiscale feature map to handle objects of various sizes. Second, we introduce a correlation loss by using the Siamese network, which provides neighboring frame features. This correlation loss represents object co-occurrences across time to aid the consistent feature generation. Since the correlation loss should use the information of the track ID and detection label, our video object detection network has been evaluated on the large-scale ImageNet VID dataset where it achieves a 69.5% mean average precision (mAP).

  3. Spatial attention enhances the selective integration of activity from area MT.

    PubMed

    Masse, Nicolas Y; Herrington, Todd M; Cook, Erik P

    2012-09-01

    Distinguishing which of the many proposed neural mechanisms of spatial attention actually underlies behavioral improvements in visually guided tasks has been difficult. One attractive hypothesis is that attention allows downstream neural circuits to selectively integrate responses from the most informative sensory neurons. This would allow behavioral performance to be based on the highest-quality signals available in visual cortex. We examined this hypothesis by asking how spatial attention affects both the stimulus sensitivity of middle temporal (MT) neurons and their corresponding correlation with behavior. Analyzing a data set pooled from two experiments involving four monkeys, we found that spatial attention did not appreciably affect either the stimulus sensitivity of the neurons or the correlation between their activity and behavior. However, for those sessions in which there was a robust behavioral effect of attention, focusing attention inside the neuron's receptive field significantly increased the correlation between these two metrics, an indication of selective integration. These results suggest that, similar to mechanisms proposed for the neural basis of perceptual learning, the behavioral benefits of focusing spatial attention are attributable to selective integration of neural activity from visual cortical areas by their downstream targets.

  4. Visual shape perception as Bayesian inference of 3D object-centered shape representations.

    PubMed

    Erdogan, Goker; Jacobs, Robert A

    2017-11-01

    Despite decades of research, little is known about how people visually perceive object shape. We hypothesize that a promising approach to shape perception is provided by a "visual perception as Bayesian inference" framework which augments an emphasis on visual representation with an emphasis on the idea that shape perception is a form of statistical inference. Our hypothesis claims that shape perception of unfamiliar objects can be characterized as statistical inference of 3D shape in an object-centered coordinate system. We describe a computational model based on our theoretical framework, and provide evidence for the model along two lines. First, we show that, counterintuitively, the model accounts for viewpoint-dependency of object recognition, traditionally regarded as evidence against people's use of 3D object-centered shape representations. Second, we report the results of an experiment using a shape similarity task, and present an extensive evaluation of existing models' abilities to account for the experimental data. We find that our shape inference model captures subjects' behaviors better than competing models. Taken as a whole, our experimental and computational results illustrate the promise of our approach and suggest that people's shape representations of unfamiliar objects are probabilistic, 3D, and object-centered. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  5. Are Categorical Spatial Relations Encoded by Shifting Visual Attention between Objects?

    ERIC Educational Resources Information Center

    Yuan, Lei; Uttal, David; Franconeri, Steven

    2016-01-01

    Perceiving not just values, but relations between values, is critical to human cognition. We tested the predictions of a proposed mechanism for processing categorical spatial relations between two objects--the "shift account" of relation processing--which states that relations such as "above" or "below" are extracted…

  6. Optical/Near-infrared Selection of Red Quasi-stellar Objects: Evidence for Steep Extinction Curves toward Galactic Centers?

    NASA Astrophysics Data System (ADS)

    Fynbo, J. P. U.; Krogager, J.-K.; Venemans, B.; Noterdaeme, P.; Vestergaard, M.; Møller, P.; Ledoux, C.; Geier, S.

    2013-01-01

    We present the results of a search for red QSOs using a selection based on optical imaging from the Sloan Digital Sky Survey (SDSS) and near-infrared imaging from UKIDSS. Our main goal with the selection is to search for QSOs reddened by foreground dusty absorber galaxies. For a sample of 58 candidates (including 20 objects fulfilling our selection criteria that already have spectra in the SDSS), 46 (79%) are confirmed to be QSOs. The QSOs are predominantly dust-reddened except for a handful at redshifts z >~ 3.5. However, the dust is most likely located in the QSO host galaxies (and for two, the reddening is primarily caused by Galactic dust) rather than in the intervening absorbers. More than half of the QSOs show evidence of associated absorption (BAL absorption). Four (7%) of the candidates turned out to be late-type stars, and another four (7%) are compact galaxies. We could not identify the remaining four objects. In terms of their optical spectra, these QSOs are similar to the QSOs selected in the FIRST-2MASS Red Quasar Survey except they are on average fainter, more distant, and only two are detected in the FIRST survey. As per the usual procedure, we estimate the amount of extinction using the SDSS QSO template reddened by Small-Magellanic-Cloud-(SMC) like dust. It is possible to get a good match to the observed (rest-frame ultraviolet) spectra, but it is not possible to match the observed near-IR photometry from UKIDSS for nearly all the reddened QSOs. The most likely reasons are that the SDSS QSO template is too red at optical wavelengths due to contaminating host galaxy light and because the assumed SMC extinction curve is too shallow. Three of the compact galaxies display old stellar populations with ages of several Gyr and masses of about 1010 M ⊙ (based on spectral energy distribution modeling). The inferred stellar densities in these galaxies exceed 1010 M ⊙ kpc-2, which is among the highest measured for early-type galaxies. Our survey has

  7. Disentangling the effects of spatial inconsistency of targets and distractors when searching in realistic scenes.

    PubMed

    Spotorno, Sara; Malcolm, George L; Tatler, Benjamin W

    2015-02-10

    Previous research has suggested that correctly placed objects facilitate eye guidance, but also that objects violating spatial associations within scenes may be prioritized for selection and subsequent inspection. We analyzed the respective eye guidance of spatial expectations and target template (precise picture or verbal label) in visual search, while taking into account any impact of object spatial inconsistency on extrafoveal or foveal processing. Moreover, we isolated search disruption due to misleading spatial expectations about the target from the influence of spatial inconsistency within the scene upon search behavior. Reliable spatial expectations and precise target template improved oculomotor efficiency across all search phases. Spatial inconsistency resulted in preferential saccadic selection when guidance by template was insufficient to ensure effective search from the outset and the misplaced object was bigger than the objects consistently placed in the same scene region. This prioritization emerged principally during early inspection of the region, but the inconsistent object also tended to be preferentially fixated overall across region viewing. These results suggest that objects are first selected covertly on the basis of their relative size and that subsequent overt selection is made considering object-context associations processed in extrafoveal vision. Once the object was fixated, inconsistency resulted in longer first fixation duration and longer total dwell time. As a whole, our findings indicate that observed impairment of oculomotor behavior when searching for an implausibly placed target is the combined product of disruption due to unreliable spatial expectations and prioritization of inconsistent objects before and during object fixation. © 2015 ARVO.

  8. Ontology-Based Retrieval of Spatially Related Objects for Location Based Services

    NASA Astrophysics Data System (ADS)

    Haav, Hele-Mai; Kaljuvee, Aivi; Luts, Martin; Vajakas, Toivo

    Advanced Location Based Service (LBS) applications have to integrate information stored in GIS, information about users' preferences (profile) as well as contextual information and information about application itself. Ontology engineering provides methods to semantically integrate several data sources. We propose an ontology-driven LBS development framework: the paper describes the architecture of ontologies and their usage for retrieval of spatially related objects relevant to the user. Our main contribution is to enable personalised ontology driven LBS by providing a novel approach for defining personalised semantic spatial relationships by means of ontologies. The approach is illustrated by an industrial case study.

  9. Deadlines in space: Selective effects of coordinate spatial processing in multitasking.

    PubMed

    Todorov, Ivo; Del Missier, Fabio; Konke, Linn Andersson; Mäntylä, Timo

    2015-11-01

    Many everyday activities require coordination and monitoring of multiple deadlines. One way to handle these temporal demands might be to represent future goals and deadlines as a pattern of spatial relations. We examined the hypothesis that spatial ability, in addition to executive functioning, contributes to individual differences in multitasking. In two studies, participants completed a multitasking session in which they monitored four digital clocks running at different rates. In Study 1, we found that individual differences in spatial ability and executive functions were independent predictors of multiple-task performance. In Study 2, we found that individual differences in specific spatial abilities were selectively related to multiple-task performance, as only coordinate spatial processing, but not categorical, predicted multitasking, even beyond executive functioning and numeracy. In both studies, males outperformed females in spatial ability and multitasking and in Study 2 these sex differences generalized to a simulation of everyday multitasking. Menstrual changes moderated the effects on multitasking, in that sex differences in coordinate spatial processing and multitasking were observed between males and females in the luteal phase of the menstrual cycle, but not between males and females at menses. Overall, these findings suggest that multiple-task performance reflects independent contributions of spatial ability and executive functioning. Furthermore, our results support the distinction of categorical versus coordinate spatial processing, and suggest that these two basic relational processes are selectively affected by female sex hormones and differentially effective in transforming and handling temporal patterns as spatial relations in the context of multitasking.

  10. Massive Young Stellar Objects in the Galactic Center. 1; Spectroscopic Identification from Spitzer/IRS Observations

    NASA Technical Reports Server (NTRS)

    An, Deokkeun; Ramirez, Solange V.; Sellgren, Kris; Arendt, Richard G.; Boogert, A. C. Adwin; Robitaille, Thomas P.; Schultheis, Mathias; Cotera, Angela S.; Smith, Howard A.; Stolovy, Susan R.

    2011-01-01

    We present results from our spectroscopic study, using the Infrared Spectrograph (IRS) onboard the Spitzer Space Telescope, designed to identify massive young stellar objects (YSOs) in the Galactic Center (GC). Our sample of 107 YSO candidates was selected based on IRAC colors from the high spatial resolution, high sensitivity Spitzer/IRAC images in the Central Molecular Zone (CMZ), which spans the central approximately 300 pc region of the Milky Way Galaxy. We obtained IRS spectra over 5 micron to 35 micron using both high- and low-resolution IRS modules. We spectroscopically identify massive YSOs by the presence of a 15.4 micron shoulder on the absorption profile of 15 micron CO2 ice, suggestive of CO2 ice mixed with CH30H ice on grains. This 15.4 micron shoulder is clearly observed in 16 sources and possibly observed in an additional 19 sources. We show that 9 massive YSOs also reveal molecular gas-phase absorption from C02, C2H2, and/or HCN, which traces warm and dense gas in YSOs. Our results provide the first spectroscopic census of the massive YSO population in the GC. We fit YSO models to the observed spectral energy distributions and find YSO masses of 8 - 23 solar Mass, which generally agree with the masses derived from observed radio continuum emission. We find that about 50% of photometrically identified YSOs are confirmed with our spectroscopic study. This implies a preliminary star formation rate of approximately 0.07 solar mass/yr at the GC.

  11. Visual object agnosia is associated with a breakdown of object-selective responses in the lateral occipital cortex.

    PubMed

    Ptak, Radek; Lazeyras, François; Di Pietro, Marie; Schnider, Armin; Simon, Stéphane R

    2014-07-01

    Patients with visual object agnosia fail to recognize the identity of visually presented objects despite preserved semantic knowledge. Object agnosia may result from damage to visual cortex lying close to or overlapping with the lateral occipital complex (LOC), a brain region that exhibits selectivity to the shape of visually presented objects. Despite this anatomical overlap the relationship between shape processing in the LOC and shape representations in object agnosia is unknown. We studied a patient with object agnosia following isolated damage to the left occipito-temporal cortex overlapping with the LOC. The patient showed intact processing of object structure, yet often made identification errors that were mainly based on the global visual similarity between objects. Using functional Magnetic Resonance Imaging (fMRI) we found that the damaged as well as the contralateral, structurally intact right LOC failed to show any object-selective fMRI activity, though the latter retained selectivity for faces. Thus, unilateral damage to the left LOC led to a bilateral breakdown of neural responses to a specific stimulus class (objects and artefacts) while preserving the response to a different stimulus class (faces). These findings indicate that representations of structure necessary for the identification of objects crucially rely on bilateral, distributed coding of shape features. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Spatial versus Object Visualisation: The Case of Mathematical Understanding in Three-Dimensional Arrays of Cubes and Nets

    ERIC Educational Resources Information Center

    Pitta-Pantazi, Demetra; Christou, Constantinos

    2010-01-01

    This paper investigates the relations of students' spatial and object visualisation with their analytic, creative and practical abilities in three-dimensional geometry. Fifty-three 11-year-olds were tested using a Greek modified version of the Object-Spatial Imagery Questionnaire (OSIQ) (Blajenkova, Kozhevnikov, & Motes, 2006) and two…

  13. Interaction between hippocampal serotonin and cannabinoid systems in reactivity to spatial and object novelty detection.

    PubMed

    Nasehi, Mohammad; Rostam-Nezhad, Elnaz; Ebrahimi-Ghiri, Mohaddeseh; Zarrindast, Mohammad-Reza

    2017-01-15

    Functional interaction between cannabinoid and serotonin neuronal systems have been reported in different tasks related to memory assessment. The present study investigated the effect of serotonin 5-HT4 agents into the dorsal hippocampus (the CA1 region) on spatial and object novelty detection deficits induced by activation of cannabinoid CB1 receptors (CB1Rs) using arachidonylcyclopropylamide (ACPA) in a non-associative behavioral task designed to forecast the ability of rodents to encode spatial and non-spatial relationships between distinct stimuli. Post-training, intra-CA1 microinjection of 5-HT4 receptor agonist RS67333 or 5-HT4 receptor antagonist RS23597 both at the dose of 0.016μg/mouse impaired spatial memory, while cannabinoid CB1R antagonist AM251 (0.1μg/mouse) facilitated object novelty memory. Also, post-training, intraperitoneal administration of CB1R agonist ACPA (0.005-0.05mg/kg) impaired both memories. However, a subthreshold dose of RS67333 restored ACPA response on both memories. Moreover, a subthreshold dose of RS23597 potentiated ACPA (0.01mg/kg) and reversed ACPA (0.05mg/kg) responses on spatial memory, while it potentiated ACPA response at the dose of 0.005 or 0.05mg/kg on object novelty memory. Furthermore, effective dose of AM251 restored ACPA response at the higher dose. AM251 blocked response induced by combination of RS67333 or RS23597 and the higher dose of ACPA on both memories. Our results highlight that hippocampal 5-HT4 receptors differently affect cannabinoid signaling in spatial and object novelty memories. The inactivation of CB1 receptors blocks the effect of 5-HT4 agents into the CA1 region on memory deficits induced by activation of CB1Rs via ACPA. Copyright © 2016. Published by Elsevier B.V.

  14. Method of center localization for objects containing concentric arcs

    NASA Astrophysics Data System (ADS)

    Kuznetsova, Elena G.; Shvets, Evgeny A.; Nikolaev, Dmitry P.

    2015-02-01

    This paper proposes a method for automatic center location of objects containing concentric arcs. The method utilizes structure tensor analysis and voting scheme optimized with Fast Hough Transform. Two applications of the proposed method are considered: (i) wheel tracking in video-based system for automatic vehicle classification and (ii) tree growth rings analysis on a tree cross cut image.

  15. ITEM SELECTION TECHNIQUES AND EVALUATION OF INSTRUCTIONAL OBJECTIVES.

    ERIC Educational Resources Information Center

    COX, RICHARD C.

    THE VALIDITY OF AN EDUCATIONAL ACHIEVEMENT TEST DEPENDS UPON THE CORRESPONDENCE BETWEEN SPECIFIED EDUCATIONAL OBJECTIVES AND THE EXTENT TO WHICH THESE OBJECTIVES ARE MEASURED BY THE EVALUATION INSTRUMENT. THIS STUDY IS DESIGNED TO EVALUATE THE EFFECT OF STATISTICAL ITEM SELECTION ON THE STRUCTURE OF THE FINAL EVALUATION INSTRUMENT AS COMPARED WITH…

  16. Active marks structure optimization for optical-electronic systems of spatial position control of industrial objects

    NASA Astrophysics Data System (ADS)

    Sycheva, Elena A.; Vasilev, Aleksandr S.; Lashmanov, Oleg U.; Korotaev, Valery V.

    2017-06-01

    The article is devoted to the optimization of optoelectronic systems of the spatial position of objects. Probabilistic characteristics of the detection of an active structured mark on a random noisy background are investigated. The developed computer model and the results of the study allow us to estimate the probabilistic characteristics of detection of a complex structured mark on a random gradient background, and estimate the error of spatial coordinates. The results of the study make it possible to improve the accuracy of measuring the coordinates of the object. Based on the research recommendations are given on the choice of parameters of the optimal mark structure for use in opticalelectronic systems for monitoring the spatial position of large-sized structures.

  17. A theory of germinal center B cell selection, division, and exit.

    PubMed

    Meyer-Hermann, Michael; Mohr, Elodie; Pelletier, Nadége; Zhang, Yang; Victora, Gabriel D; Toellner, Kai-Michael

    2012-07-26

    High-affinity antibodies are generated in germinal centers in a process involving mutation and selection of B cells. Information processing in germinal center reactions has been investigated in a number of recent experiments. These have revealed cell migration patterns, asymmetric cell divisions, and cell-cell interaction characteristics, used here to develop a theory of germinal center B cell selection, division, and exit (the LEDA model). According to this model, B cells selected by T follicular helper cells on the basis of successful antigen processing always return to the dark zone for asymmetric division, and acquired antigen is inherited by one daughter cell only. Antigen-retaining B cells differentiate to plasma cells and leave the germinal center through the dark zone. This theory has implications for the functioning of germinal centers because compared to previous models, high-affinity antibodies appear one day earlier and the amount of derived plasma cells is considerably larger. Copyright © 2012 The Authors. Published by Elsevier Inc. All rights reserved.

  18. Achieving pattern uniformity in plasmonic lithography by spatial frequency selection

    NASA Astrophysics Data System (ADS)

    Liang, Gaofeng; Chen, Xi; Zhao, Qing; Guo, L. Jay

    2018-01-01

    The effects of the surface roughness of thin films and defects on photomasks are investigated in two representative plasmonic lithography systems: thin silver film-based superlens and multilayer-based hyperbolic metamaterial (HMM). Superlens can replicate arbitrary patterns because of its broad evanescent wave passband, which also makes it inherently vulnerable to the roughness of the thin film and imperfections of the mask. On the other hand, the HMM system has spatial frequency filtering characteristics and its pattern formation is based on interference, producing uniform and stable periodic patterns. In this work, we show that the HMM system is more immune to such imperfections due to its function of spatial frequency selection. The analyses are further verified by an interference lithography system incorporating the photoresist layer as an optical waveguide to improve the aspect ratio of the pattern. It is concluded that a system capable of spatial frequency selection is a powerful method to produce deep-subwavelength periodic patterns with high degree of uniformity and fidelity.

  19. Design and Evaluation of Perceptual-based Object Group Selection Techniques

    NASA Astrophysics Data System (ADS)

    Dehmeshki, Hoda

    Selecting groups of objects is a frequent task in graphical user interfaces. It is required prior to many standard operations such as deletion, movement, or modification. Conventional selection techniques are lasso, rectangle selection, and the selection and de-selection of items through the use of modifier keys. These techniques may become time-consuming and error-prone when target objects are densely distributed or when the distances between target objects are large. Perceptual-based selection techniques can considerably improve selection tasks when targets have a perceptual structure, for example when arranged along a line. Current methods to detect such groups use ad hoc grouping algorithms that are not based on results from perception science. Moreover, these techniques do not allow selecting groups with arbitrary arrangements or permit modifying a selection. This dissertation presents two domain-independent perceptual-based systems that address these issues. Based on established group detection models from perception research, the proposed systems detect perceptual groups formed by the Gestalt principles of good continuation and proximity. The new systems provide gesture-based or click-based interaction techniques for selecting groups with curvilinear or arbitrary structures as well as clusters. Moreover, the gesture-based system is adapted for the graph domain to facilitate path selection. This dissertation includes several user studies that show the proposed systems outperform conventional selection techniques when targets form salient perceptual groups and are still competitive when targets are semi-structured.

  20. Environment-dependent variation in selection on life history across small spatial scales.

    PubMed

    Lange, Rolanda; Monro, Keyne; J Marshall, Dustin

    2016-10-01

    Variation in life-history traits is ubiquitous, even though genetic variation is thought to be depleted by selection. One potential mechanism for the maintenance of trait variation is spatially variable selection. We explored spatial variation in selection in the field for a colonial marine invertebrate that shows phenotypic differences across a depth gradient of only 3 m. Our analysis included life-history traits relating to module size, colony growth, and phenology. Directional selection on colony growth varied in strength across depths, while module size was under directional selection at one depth but not the other. Differences in selection may explain some of the observed phenotypic differentiation among depths for one trait but not another: instead, selection should actually erode the differences observed for this trait. Our results suggest selection is not acting alone to maintain trait variation within and across environments in this system. © 2016 The Author(s). Evolution © 2016 The Society for the Study of Evolution.

  1. Object-based methods for individual tree identification and tree species classification from high-spatial resolution imagery

    NASA Astrophysics Data System (ADS)

    Wang, Le

    2003-10-01

    Modern forest management poses an increasing need for detailed knowledge of forest information at different spatial scales. At the forest level, the information for tree species assemblage is desired whereas at or below the stand level, individual tree related information is preferred. Remote Sensing provides an effective tool to extract the above information at multiple spatial scales in the continuous time domain. To date, the increasing volume and readily availability of high-spatial-resolution data have lead to a much wider application of remotely sensed products. Nevertheless, to make effective use of the improving spatial resolution, conventional pixel-based classification methods are far from satisfactory. Correspondingly, developing object-based methods becomes a central challenge for researchers in the field of Remote Sensing. This thesis focuses on the development of methods for accurate individual tree identification and tree species classification. We develop a method in which individual tree crown boundaries and treetop locations are derived under a unified framework. We apply a two-stage approach with edge detection followed by marker-controlled watershed segmentation. Treetops are modeled from radiometry and geometry aspects. Specifically, treetops are assumed to be represented by local radiation maxima and to be located near the center of the tree-crown. As a result, a marker image was created from the derived treetop to guide a watershed segmentation to further differentiate overlapping trees and to produce a segmented image comprised of individual tree crowns. The image segmentation method developed achieves a promising result for a 256 x 256 CASI image. Then further effort is made to extend our methods to the multiscales which are constructed from a wavelet decomposition. A scale consistency and geometric consistency are designed to examine the gradients along the scale-space for the purpose of separating true crown boundary from unwanted

  2. The effects of visual search efficiency on object-based attention

    PubMed Central

    Rosen, Maya; Cutrone, Elizabeth; Behrmann, Marlene

    2017-01-01

    The attentional prioritization hypothesis of object-based attention (Shomstein & Yantis in Perception & Psychophysics, 64, 41–51, 2002) suggests a two-stage selection process comprising an automatic spatial gradient and flexible strategic (prioritization) selection. The combined attentional priorities of these two stages of object-based selection determine the order in which participants will search the display for the presence of a target. The strategic process has often been likened to a prioritized visual search. By modifying the double-rectangle cueing paradigm (Egly, Driver, & Rafal in Journal of Experimental Psychology: General, 123, 161–177, 1994) and placing it in the context of a larger-scale visual search, we examined how the prioritization search is affected by search efficiency. By probing both targets located on the cued object and targets external to the cued object, we found that the attentional priority surrounding a selected object is strongly modulated by search mode. However, the ordering of the prioritization search is unaffected by search mode. The data also provide evidence that standard spatial visual search and object-based prioritization search may rely on distinct mechanisms. These results provide insight into the interactions between the mode of visual search and object-based selection, and help define the modulatory consequences of search efficiency for object-based attention. PMID:25832192

  3. Developmental Profiles for Multiple Object Tracking and Spatial Memory: Typically Developing Preschoolers and People with Williams Syndrome

    ERIC Educational Resources Information Center

    O'Hearn, Kirsten; Hoffman, James E.; Landau, Barbara

    2010-01-01

    The ability to track moving objects, a crucial skill for mature performance on everyday spatial tasks, has been hypothesized to require a specialized mechanism that may be available in infancy (i.e. indexes). Consistent with the idea of specialization, our previous work showed that object tracking was more impaired than a matched spatial memory…

  4. Spatial Selection and Local Adaptation Jointly Shape Life-History Evolution during Range Expansion.

    PubMed

    Van Petegem, Katrien H P; Boeye, Jeroen; Stoks, Robby; Bonte, Dries

    2016-11-01

    In the context of climate change and species invasions, range shifts increasingly gain attention because the rates at which they occur in the Anthropocene induce rapid changes in biological assemblages. During range shifts, species experience multiple selection pressures. For poleward expansions in particular, it is difficult to interpret observed evolutionary dynamics because of the joint action of evolutionary processes related to spatial selection and to adaptation toward local climatic conditions. To disentangle the effects of these two processes, we integrated stochastic modeling and data from a common garden experiment, using the spider mite Tetranychus urticae as a model species. By linking the empirical data with those derived form a highly parameterized individual-based model, we infer that both spatial selection and local adaptation contributed to the observed latitudinal life-history divergence. Spatial selection best described variation in dispersal behavior, while variation in development was best explained by adaptation to the local climate. Divergence in life-history traits in species shifting poleward could consequently be jointly determined by contemporary evolutionary dynamics resulting from adaptation to the environmental gradient and from spatial selection. The integration of modeling with common garden experiments provides a powerful tool to study the contribution of these evolutionary processes on life-history evolution during range expansion.

  5. Masticophis flagellum selects florida scrub habitat at multiple spatial scales

    USGS Publications Warehouse

    Halstead, B.J.; Mushinsky, H.R.; McCoy, E.D.

    2009-01-01

    The use of space by individual animals strongly influences the spatial extent, abundance, and growth rates of their populations. We analyzed the spatial ecology and habitat selection of Masticophis flagellum (the coachwhip) at three different scales to determine which habitats are most important to this species. Home ranges and mean daily displacements of M. flagellum in Florida were large compared to individuals in other populations of this species. Home ranges contained a greater proportion of Florida scrub habitat than did the study site as a whole, and individuals selected Florida scrub habitat within their home ranges. For both selection of the home range within the study site and selection of habitats within the home range, mesic cutthroat and hydric swamp habitats were avoided. Standardized selection ratios of Florida scrub patches were positively correlated with lizard abundance. Several non-mutually exclusive mechanisms, including foraging success (prey abundance, prey vulnerability, and foraging efficiency), abundance of refugia, and thermoregulatory opportunity may underlie the selection of Florida scrub by M. flagellum. Historic rarity and anthropogenic loss and fragmentation of Florida scrub habitat, coupled with the long-distance movements, large home ranges, and selection of Florida scrub by M. flagellum, indicate that large contiguous tracts of land containing Florida scrub will be essential for the persistence of M. flagellum in central Florida. ?? 2009 by The Herpetologists' League, Inc.

  6. A cortical edge-integration model of object-based lightness computation that explains effects of spatial context and individual differences

    PubMed Central

    Rudd, Michael E.

    2014-01-01

    Previous work has demonstrated that perceived surface reflectance (lightness) can be modeled in simple contexts in a quantitatively exact way by assuming that the visual system first extracts information about local, directed steps in log luminance, then spatially integrates these steps along paths through the image to compute lightness (Rudd and Zemach, 2004, 2005, 2007). This method of computing lightness is called edge integration. Recent evidence (Rudd, 2013) suggests that human vision employs a default strategy to integrate luminance steps only along paths from a common background region to the targets whose lightness is computed. This implies a role for gestalt grouping in edge-based lightness computation. Rudd (2010) further showed the perceptual weights applied to edges in lightness computation can be influenced by the observer's interpretation of luminance steps as resulting from either spatial variation in surface reflectance or illumination. This implies a role for top-down factors in any edge-based model of lightness (Rudd and Zemach, 2005). Here, I show how the separate influences of grouping and attention on lightness can be modeled in tandem by a cortical mechanism that first employs top-down signals to spatially select regions of interest for lightness computation. An object-based network computation, involving neurons that code for border-ownership, then automatically sets the neural gains applied to edge signals surviving the earlier spatial selection stage. Only the borders that survive both processing stages are spatially integrated to compute lightness. The model assumptions are consistent with those of the cortical lightness model presented earlier by Rudd (2010, 2013), and with neurophysiological data indicating extraction of local edge information in V1, network computations to establish figure-ground relations and border ownership in V2, and edge integration to encode lightness and darkness signals in V4. PMID:25202253

  7. A cortical edge-integration model of object-based lightness computation that explains effects of spatial context and individual differences.

    PubMed

    Rudd, Michael E

    2014-01-01

    Previous work has demonstrated that perceived surface reflectance (lightness) can be modeled in simple contexts in a quantitatively exact way by assuming that the visual system first extracts information about local, directed steps in log luminance, then spatially integrates these steps along paths through the image to compute lightness (Rudd and Zemach, 2004, 2005, 2007). This method of computing lightness is called edge integration. Recent evidence (Rudd, 2013) suggests that human vision employs a default strategy to integrate luminance steps only along paths from a common background region to the targets whose lightness is computed. This implies a role for gestalt grouping in edge-based lightness computation. Rudd (2010) further showed the perceptual weights applied to edges in lightness computation can be influenced by the observer's interpretation of luminance steps as resulting from either spatial variation in surface reflectance or illumination. This implies a role for top-down factors in any edge-based model of lightness (Rudd and Zemach, 2005). Here, I show how the separate influences of grouping and attention on lightness can be modeled in tandem by a cortical mechanism that first employs top-down signals to spatially select regions of interest for lightness computation. An object-based network computation, involving neurons that code for border-ownership, then automatically sets the neural gains applied to edge signals surviving the earlier spatial selection stage. Only the borders that survive both processing stages are spatially integrated to compute lightness. The model assumptions are consistent with those of the cortical lightness model presented earlier by Rudd (2010, 2013), and with neurophysiological data indicating extraction of local edge information in V1, network computations to establish figure-ground relations and border ownership in V2, and edge integration to encode lightness and darkness signals in V4.

  8. Effects of a classroom intervention with spatial play materials on children's object and viewer transformation abilities.

    PubMed

    Vander Heyden, Karin M; Huizinga, Mariette; Jolles, Jelle

    2017-02-01

    Children practice their spatial skills when playing with spatial toys, such as construction materials, board games, and puzzles. Sex and SES differences are observed in the engagement in such spatial play activities at home, which relate to individual differences in spatial performance. The current study investigated the effects of explicitly providing spatial play activities in the school setting on different types of spatial ability. We presented 8- to 10-year-old children with a short and easy-to-adopt classroom intervention comprising a set of different spatial play materials. The design involved a pretest-posttest comparison between the intervention group (n = 70) and a control group without intervention (n = 70). Effects were examined on object transformation ability (i.e., a paper-and-pencil mental rotation and paper folding task) and viewer transformation ability (i.e., a hands-on 3D spatial perspective-taking task). Results showed specific effects: there were no differences between the intervention and control group in progress on the two object transformation tasks. Substantial improvements were found for the intervention group compared to the control group on the viewer transformation task. Training progress was not related to sex and socioeconomic background of the child. These findings support the value of spatial play in the classroom for the spatial development of children between 8 and 10 years of age. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  9. Dynamic nuclear polarization and optimal control spatial-selective 13C MRI and MRS

    NASA Astrophysics Data System (ADS)

    Vinding, Mads S.; Laustsen, Christoffer; Maximov, Ivan I.; Søgaard, Lise Vejby; Ardenkjær-Larsen, Jan H.; Nielsen, Niels Chr.

    2013-02-01

    Aimed at 13C metabolic magnetic resonance imaging (MRI) and spectroscopy (MRS) applications, we demonstrate that dynamic nuclear polarization (DNP) may be combined with optimal control 2D spatial selection to simultaneously obtain high sensitivity and well-defined spatial restriction. This is achieved through the development of spatial-selective single-shot spiral-readout MRI and MRS experiments combined with dynamic nuclear polarization hyperpolarized [1-13C]pyruvate on a 4.7 T pre-clinical MR scanner. The method stands out from related techniques by facilitating anatomic shaped region-of-interest (ROI) single metabolite signals available for higher image resolution or single-peak spectra. The 2D spatial-selective rf pulses were designed using a novel Krotov-based optimal control approach capable of iteratively fast providing successful pulse sequences in the absence of qualified initial guesses. The technique may be important for early detection of abnormal metabolism, monitoring disease progression, and drug research.

  10. Discrete capacity limits and neuroanatomical correlates of visual short-term memory for objects and spatial locations.

    PubMed

    Konstantinou, Nikos; Constantinidou, Fofi; Kanai, Ryota

    2017-02-01

    Working memory is responsible for keeping information in mind when it is no longer in view, linking perception with higher cognitive functions. Despite such crucial role, short-term maintenance of visual information is severely limited. Research suggests that capacity limits in visual short-term memory (VSTM) are correlated with sustained activity in distinct brain areas. Here, we investigated whether variability in the structure of the brain is reflected in individual differences of behavioral capacity estimates for spatial and object VSTM. Behavioral capacity estimates were calculated separately for spatial and object information using a novel adaptive staircase procedure and were found to be unrelated, supporting domain-specific VSTM capacity limits. Voxel-based morphometry (VBM) analyses revealed dissociable neuroanatomical correlates of spatial versus object VSTM. Interindividual variability in spatial VSTM was reflected in the gray matter density of the inferior parietal lobule. In contrast, object VSTM was reflected in the gray matter density of the left insula. These dissociable findings highlight the importance of considering domain-specific estimates of VSTM capacity and point to the crucial brain regions that limit VSTM capacity for different types of visual information. Hum Brain Mapp 38:767-778, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  11. Aesthetic Issues in Spatial Composition: Effects of Vertical Position and Perspective on Framing Single Objects

    ERIC Educational Resources Information Center

    Sammartino, Jonathan; Palmer, Stephen E.

    2012-01-01

    Aesthetic preference for the vertical composition of single-object pictures was studied through a series of two-alternative forced-choice experiments. The results reveal the influence of several factors, including spatial asymmetries in the functional properties of the object and the typical position of the object relative to the observer. With…

  12. Dual-task results and the lateralization of spatial orientation: artifact of test selection?

    PubMed

    Bowers, C A; Milham, L M; Price, C

    1998-01-01

    An investigation was conducted to identify the degree to which results regarding the lateralization of spatial orientation among men and women are artifacts of test selection. A dual-task design was used to study possible lateralization differences, providing baseline and dual-task measures of spatial-orientation performance, right- and left-hand tapping, and vocalization of "cat, dog, horse." The Guilford-Zimmerman Test (Guilford & Zimmerman, 1953), the Eliot-Price Test (Eliot & Price, 1976), and the Stumpf-Fay Cube Perspectives Test (Stumpf & Fay, 1983) were the three spatial-orientation tests used to investigate possible artifacts of test selection. Twenty-eight right-handed male and 39 right-handed female undergraduates completed random baseline and dual-task sessions. Analyses indicated no significant sex-related differences in spatial-orientation ability for all three tests. Furthermore, there was no evidence of differential lateralization of spatial orientation between the sexes.

  13. The modulation of inhibition of return by object-internal structure: implications for theories of object-based attentional selection.

    PubMed

    Reppa, Irene; Leek, E Charles

    2003-06-01

    Recently, Vecera, Behrmann, and McGoldrick (2000), using a divided-attention task, reported that targets are detected more accurately when they occur on the same structural part of an object, suggesting that attention can be directed toward object-internal features. We present converging evidence using the object-based inhibition of return (IOR) paradigm as an implicit measure of selection. The results show that IOR is attenuated when cues and targets appear on the same part of an object relative to when they are separated by a part boundary. These findings suggest that object-based mechanisms of selection can operate over shape representations that make explicit information about object-internal structure.

  14. Real-world spatial regularities affect visual working memory for objects.

    PubMed

    Kaiser, Daniel; Stein, Timo; Peelen, Marius V

    2015-12-01

    Traditional memory research has focused on measuring and modeling the capacity of visual working memory for simple stimuli such as geometric shapes or colored disks. Although these studies have provided important insights, it is unclear how their findings apply to memory for more naturalistic stimuli. An important aspect of real-world scenes is that they contain a high degree of regularity: For instance, lamps appear above tables, not below them. In the present study, we tested whether such real-world spatial regularities affect working memory capacity for individual objects. Using a delayed change-detection task with concurrent verbal suppression, we found enhanced visual working memory performance for objects positioned according to real-world regularities, as compared to irregularly positioned objects. This effect was specific to upright stimuli, indicating that it did not reflect low-level grouping, because low-level grouping would be expected to equally affect memory for upright and inverted displays. These results suggest that objects can be held in visual working memory more efficiently when they are positioned according to frequently experienced real-world regularities. We interpret this effect as the grouping of single objects into larger representational units.

  15. Altering spatial priority maps via statistical learning of target selection and distractor filtering.

    PubMed

    Ferrante, Oscar; Patacca, Alessia; Di Caro, Valeria; Della Libera, Chiara; Santandrea, Elisa; Chelazzi, Leonardo

    2018-05-01

    The cognitive system has the capacity to learn and make use of environmental regularities - known as statistical learning (SL), including for the implicit guidance of attention. For instance, it is known that attentional selection is biased according to the spatial probability of targets; similarly, changes in distractor filtering can be triggered by the unequal spatial distribution of distractors. Open questions remain regarding the cognitive/neuronal mechanisms underlying SL of target selection and distractor filtering. Crucially, it is unclear whether the two processes rely on shared neuronal machinery, with unavoidable cross-talk, or they are fully independent, an issue that we directly addressed here. In a series of visual search experiments, participants had to discriminate a target stimulus, while ignoring a task-irrelevant salient distractor (when present). We systematically manipulated spatial probabilities of either one or the other stimulus, or both. We then measured performance to evaluate the direct effects of the applied contingent probability distribution (e.g., effects on target selection of the spatial imbalance in target occurrence across locations) as well as its indirect or "transfer" effects (e.g., effects of the same spatial imbalance on distractor filtering across locations). By this approach, we confirmed that SL of both target and distractor location implicitly bias attention. Most importantly, we described substantial indirect effects, with the unequal spatial probability of the target affecting filtering efficiency and, vice versa, the unequal spatial probability of the distractor affecting target selection efficiency across locations. The observed cross-talk demonstrates that SL of target selection and distractor filtering are instantiated via (at least partly) shared neuronal machinery, as further corroborated by strong correlations between direct and indirect effects at the level of individual participants. Our findings are compatible

  16. Selection and Inhibition in Infancy: Evidence from the Spatial Negative Priming Paradigm

    ERIC Educational Resources Information Center

    Amso, D.; Johnson, S.P.

    2005-01-01

    We used a spatial negative priming (SNP) paradigm to examine visual selective attention in infants and adults using eye movements as the motor selection measure. In SNP, when a previously ignored location becomes the target to be selected, responses to it are impaired, providing a measure of inhibitory selection. Each trial consisted of a prime…

  17. Embodied Spatial Transformations: "Body Analogy" for the Mental Rotation of Objects

    ERIC Educational Resources Information Center

    Amorim, Michel-Ange; Isableu, Brice; Jarraya, Mohamed

    2006-01-01

    The cognitive advantage of imagined spatial transformations of the human body over that of more unfamiliar objects (e.g., Shepard-Metzler [S-M] cubes) is an issue for validating motor theories of visual perception. In 6 experiments, the authors show that providing S-M cubes with body characteristics (e.g., by adding a head to S-M cubes to evoke a…

  18. The Grid File: A Data Structure Designed to Support Proximity Queries on Spatial Objects.

    DTIC Science & Technology

    1983-06-01

    dimensional space. The technique to be presented for storing spatial objects works for any choice of parameters by which * simple objects can be represented...However, depending on characteristics of the data to be processed , some choices of parameters are better than others. Let us discuss some...considerations that may determine the choice of parameters. 1) istinction between lmaerba peuwuers ad extensiem prwuneert For some clasm of simple objects It

  19. Being Wheeled or Walking: A Qualitative Study of Patients' Spatial Experience in Two Distinct Day Surgery Centers.

    PubMed

    Annemans, Margo; Audenhove, Chantal Van; Vermolen, Hilde; Heylighen, Ann

    2016-04-01

    In this article, we explore what a different way of moving-being wheeled versus walking-means for the spatial experience of day surgery patients. Day surgery centers can be conceived in very different manners. Some are organized similar to traditional hospital admittance; others are located in a specifically designed part of the hospital and receive patients as guests who walk through the entire procedure. We conducted semistructured interviews with 37 patients at two distinct day surgery centers. Despite the different managerial concepts and corresponding spatial designs, in both centers, patients' spatial experience is shaped by the interrelation of material, social, and time-related aspects. However, the chosen concept results in a different experience throughout patients' journey. Based on an analysis of the different journeys, we conclude that patients' interpretation of a hospital's care vision is influenced not only by what the hospital communicates explicitly or how it educates its staff but also by what is implicitly told by the built environment. © The Author(s) 2016.

  20. [Research of Identify Spatial Object Using Spectrum Analysis Technique].

    PubMed

    Song, Wei; Feng, Shi-qi; Shi, Jing; Xu, Rong; Wang, Gong-chang; Li, Bin-yu; Liu, Yu; Li, Shuang; Cao Rui; Cai, Hong-xing; Zhang, Xi-he; Tan, Yong

    2015-06-01

    The high precision scattering spectrum of spatial fragment with the minimum brightness of 4.2 and the resolution of 0.5 nm has been observed using spectrum detection technology on the ground. The obvious differences for different types of objects are obtained by the normalizing and discrete rate analysis of the spectral data. Each of normalized multi-frame scattering spectral line shape for rocket debris is identical. However, that is different for lapsed satellites. The discrete rate of the single frame spectrum of normalized space debris for rocket debris ranges from 0.978% to 3.067%, and the difference of oscillation and average value is small. The discrete rate for lapsed satellites ranges from 3.118 4% to 19.472 7%, and the difference of oscillation and average value relatively large. The reason is that the composition of rocket debris is single, while that of the lapsed satellites is complex. Therefore, the spectrum detection technology on the ground can be used to the classification of the spatial fragment.

  1. Signal Enhancement and Suppression During Visual-Spatial Selective Attention

    PubMed Central

    Couperus, J. W.; Mangun, G.R.

    2010-01-01

    Selective attention involves the relative enhancement of relevant versus irrelevant stimuli. However, whether this relative enhancement involves primarily enhancement of attended stimuli, or suppression of irrelevant stimuli, remains controversial. Moreover, if both enhancement and suppression are involved, whether they result from a single mechanism or separate mechanisms during attentional control or selection is not known. In two experiments using a spatial cuing paradigm with task-relevant targets and irrelevant distractors, target and distracter processing was examined as a function of distractor expectancy. Additionally, in the second study the interaction of perceptual load and distractor expectancy was explored. In both experiments, distractors were either validly cued (70%) or invalidly cued (30%) in order to examine the effects of distractor expectancy on attentional control as well as target and distractor processing. The effects of distractor expectancy were assessed using event-related potentials recorded during the cue-to-target period (preparatory attention) and in response to the task-relevant target stimuli (selective stimulus processing). Analyses of distractor-present displays (anticipated versus unanticipated), showed modulations in brain activity during both the preparatory period and during target processing. The pattern of brain responses suggest both facilitation of attended targets and suppression of unattended distractors. These findings provide evidence for a two-process model of visual spatial selective attention, where one mechanism (facilitation) influences relevant stimuli and another (suppression) acts to filter distracting stimuli. PMID:20807513

  2. Landscape object-based analysis of wetland plant functional types: the effects of spatial scale, vegetation classes and classifier methods

    NASA Astrophysics Data System (ADS)

    Dronova, I.; Gong, P.; Wang, L.; Clinton, N.; Fu, W.; Qi, S.

    2011-12-01

    Remote sensing-based vegetation classifications representing plant function such as photosynthesis and productivity are challenging in wetlands with complex cover and difficult field access. Recent advances in object-based image analysis (OBIA) and machine-learning algorithms offer new classification tools; however, few comparisons of different algorithms and spatial scales have been discussed to date. We applied OBIA to delineate wetland plant functional types (PFTs) for Poyang Lake, the largest freshwater lake in China and Ramsar wetland conservation site, from 30-m Landsat TM scene at the peak of spring growing season. We targeted major PFTs (C3 grasses, C3 forbs and different types of C4 grasses and aquatic vegetation) that are both key players in system's biogeochemical cycles and critical providers of waterbird habitat. Classification results were compared among: a) several object segmentation scales (with average object sizes 900-9000 m2); b) several families of statistical classifiers (including Bayesian, Logistic, Neural Network, Decision Trees and Support Vector Machines) and c) two hierarchical levels of vegetation classification, a generalized 3-class set and more detailed 6-class set. We found that classification benefited from object-based approach which allowed including object shape, texture and context descriptors in classification. While a number of classifiers achieved high accuracy at the finest pixel-equivalent segmentation scale, the highest accuracies and best agreement among algorithms occurred at coarser object scales. No single classifier was consistently superior across all scales, although selected algorithms of Neural Network, Logistic and K-Nearest Neighbors families frequently provided the best discrimination of classes at different scales. The choice of vegetation categories also affected classification accuracy. The 6-class set allowed for higher individual class accuracies but lower overall accuracies than the 3-class set because

  3. Selective 4D modelling framework for spatial-temporal land information management system

    NASA Astrophysics Data System (ADS)

    Doulamis, Anastasios; Soile, Sofia; Doulamis, Nikolaos; Chrisouli, Christina; Grammalidis, Nikos; Dimitropoulos, Kosmas; Manesis, Charalambos; Potsiou, Chryssy; Ioannidis, Charalabos

    2015-06-01

    This paper introduces a predictive (selective) 4D modelling framework where only the spatial 3D differences are modelled at the forthcoming time instances, while regions of no significant spatial-temporal alterations remain intact. To accomplish this, initially spatial-temporal analysis is applied between 3D digital models captured at different time instances. So, the creation of dynamic change history maps is made. Change history maps indicate spatial probabilities of regions needed further 3D modelling at forthcoming instances. Thus, change history maps are good examples for a predictive assessment, that is, to localize surfaces within the objects where a high accuracy reconstruction process needs to be activated at the forthcoming time instances. The proposed 4D Land Information Management System (LIMS) is implemented using open interoperable standards based on the CityGML framework. CityGML allows the description of the semantic metadata information and the rights of the land resources. Visualization aspects are also supported to allow easy manipulation, interaction and representation of the 4D LIMS digital parcels and the respective semantic information. The open source 3DCityDB incorporating a PostgreSQL geo-database is used to manage and manipulate 3D data and their semantics. An application is made to detect the change through time of a 3D block of plots in an urban area of Athens, Greece. Starting with an accurate 3D model of the buildings in 1983, a change history map is created using automated dense image matching on aerial photos of 2010. For both time instances meshes are created and through their comparison the changes are detected.

  4. Affective and contextual values modulate spatial frequency use in object recognition

    PubMed Central

    Caplette, Laurent; West, Gregory; Gomot, Marie; Gosselin, Frédéric; Wicker, Bruno

    2014-01-01

    Visual object recognition is of fundamental importance in our everyday interaction with the environment. Recent models of visual perception emphasize the role of top-down predictions facilitating object recognition via initial guesses that limit the number of object representations that need to be considered. Several results suggest that this rapid and efficient object processing relies on the early extraction and processing of low spatial frequencies (LSF). The present study aimed to investigate the SF content of visual object representations and its modulation by contextual and affective values of the perceived object during a picture-name verification task. Stimuli consisted of pictures of objects equalized in SF content and categorized as having low or high affective and contextual values. To access the SF content of stored visual representations of objects, SFs of each image were then randomly sampled on a trial-by-trial basis. Results reveal that intermediate SFs between 14 and 24 cycles per object (2.3–4 cycles per degree) are correlated with fast and accurate identification for all categories of objects. Moreover, there was a significant interaction between affective and contextual values over the SFs correlating with fast recognition. These results suggest that affective and contextual values of a visual object modulate the SF content of its internal representation, thus highlighting the flexibility of the visual recognition system. PMID:24904514

  5. An independent brain-computer interface using covert non-spatial visual selective attention

    NASA Astrophysics Data System (ADS)

    Zhang, Dan; Maye, Alexander; Gao, Xiaorong; Hong, Bo; Engel, Andreas K.; Gao, Shangkai

    2010-02-01

    In this paper, a novel independent brain-computer interface (BCI) system based on covert non-spatial visual selective attention of two superimposed illusory surfaces is described. Perception of two superimposed surfaces was induced by two sets of dots with different colors rotating in opposite directions. The surfaces flickered at different frequencies and elicited distinguishable steady-state visual evoked potentials (SSVEPs) over parietal and occipital areas of the brain. By selectively attending to one of the two surfaces, the SSVEP amplitude at the corresponding frequency was enhanced. An online BCI system utilizing the attentional modulation of SSVEP was implemented and a 3-day online training program with healthy subjects was carried out. The study was conducted with Chinese subjects at Tsinghua University, and German subjects at University Medical Center Hamburg-Eppendorf (UKE) using identical stimulation software and equivalent technical setup. A general improvement of control accuracy with training was observed in 8 out of 18 subjects. An averaged online classification accuracy of 72.6 ± 16.1% was achieved on the last training day. The system renders SSVEP-based BCI paradigms possible for paralyzed patients with substantial head or ocular motor impairments by employing covert attention shifts instead of changing gaze direction.

  6. An independent brain-computer interface using covert non-spatial visual selective attention.

    PubMed

    Zhang, Dan; Maye, Alexander; Gao, Xiaorong; Hong, Bo; Engel, Andreas K; Gao, Shangkai

    2010-02-01

    In this paper, a novel independent brain-computer interface (BCI) system based on covert non-spatial visual selective attention of two superimposed illusory surfaces is described. Perception of two superimposed surfaces was induced by two sets of dots with different colors rotating in opposite directions. The surfaces flickered at different frequencies and elicited distinguishable steady-state visual evoked potentials (SSVEPs) over parietal and occipital areas of the brain. By selectively attending to one of the two surfaces, the SSVEP amplitude at the corresponding frequency was enhanced. An online BCI system utilizing the attentional modulation of SSVEP was implemented and a 3-day online training program with healthy subjects was carried out. The study was conducted with Chinese subjects at Tsinghua University, and German subjects at University Medical Center Hamburg-Eppendorf (UKE) using identical stimulation software and equivalent technical setup. A general improvement of control accuracy with training was observed in 8 out of 18 subjects. An averaged online classification accuracy of 72.6 +/- 16.1% was achieved on the last training day. The system renders SSVEP-based BCI paradigms possible for paralyzed patients with substantial head or ocular motor impairments by employing covert attention shifts instead of changing gaze direction.

  7. Sinusoidal Siemens star spatial frequency response measurement errors due to misidentified target centers

    DOE PAGES

    Birch, Gabriel Carisle; Griffin, John Clark

    2015-07-23

    Numerous methods are available to measure the spatial frequency response (SFR) of an optical system. A recent change to the ISO 12233 photography resolution standard includes a sinusoidal Siemens star test target. We take the sinusoidal Siemens star proposed by the ISO 12233 standard, measure system SFR, and perform an analysis of errors induced by incorrectly identifying the center of a test target. We show a closed-form solution for the radial profile intensity measurement given an incorrectly determined center and describe how this error reduces the measured SFR of the system. As a result, using the closed-form solution, we proposemore » a two-step process by which test target centers are corrected and the measured SFR is restored to the nominal, correctly centered values.« less

  8. Penalized likelihood and multi-objective spatial scans for the detection and inference of irregular clusters

    PubMed Central

    2010-01-01

    Background Irregularly shaped spatial clusters are difficult to delineate. A cluster found by an algorithm often spreads through large portions of the map, impacting its geographical meaning. Penalized likelihood methods for Kulldorff's spatial scan statistics have been used to control the excessive freedom of the shape of clusters. Penalty functions based on cluster geometry and non-connectivity have been proposed recently. Another approach involves the use of a multi-objective algorithm to maximize two objectives: the spatial scan statistics and the geometric penalty function. Results & Discussion We present a novel scan statistic algorithm employing a function based on the graph topology to penalize the presence of under-populated disconnection nodes in candidate clusters, the disconnection nodes cohesion function. A disconnection node is defined as a region within a cluster, such that its removal disconnects the cluster. By applying this function, the most geographically meaningful clusters are sifted through the immense set of possible irregularly shaped candidate cluster solutions. To evaluate the statistical significance of solutions for multi-objective scans, a statistical approach based on the concept of attainment function is used. In this paper we compared different penalized likelihoods employing the geometric and non-connectivity regularity functions and the novel disconnection nodes cohesion function. We also build multi-objective scans using those three functions and compare them with the previous penalized likelihood scans. An application is presented using comprehensive state-wide data for Chagas' disease in puerperal women in Minas Gerais state, Brazil. Conclusions We show that, compared to the other single-objective algorithms, multi-objective scans present better performance, regarding power, sensitivity and positive predicted value. The multi-objective non-connectivity scan is faster and better suited for the detection of moderately irregularly

  9. Vestibular stimulation, spatial hemineglect and dysphasia, selective effects.

    PubMed

    Vallar, G; Papagno, C; Rusconi, M L; Bisiach, E

    1995-09-01

    The selectivity of the effects of vestibular stimulation was investigated in a left brain-damaged patient suffering from right visuo-spatial hemineglect and severe dysplasia. Vestibular stimulation temporarily improved the former but not the latter disorder. These results support the view that this treatment improves hemineglect by a specific effect, running counter the rightward distortion of egocentric co-ordinates, rather than by a general hemispheric activation.

  10. Selective deficit of spatial short-term memory: Role of storage and rehearsal mechanisms.

    PubMed

    Bonnì, Sonia; Perri, Roberta; Fadda, Lucia; Tomaiuolo, Francesco; Koch, Giacomo; Caltagirone, Carlo; Carlesimo, Giovanni Augusto

    2014-10-01

    We report the neuropsychological and MRI investigation of a patient (GP) who developed a selective impairment of spatial short-term memory (STM) following damage to the dorso-mesial areas of the right frontal lobe. We assessed in this patient spatial STM with an experimental procedure that evaluated immediate and 5-20 s delayed recall of verbal, visual and spatial stimuli. The patient scored significantly worse than normal controls on tests that required delayed recall of spatial data. This could not be ascribed to a deficit of spatial episodic long-term memory because amnesic patients performed normally on these tests. Conversely, the patient scored in the normal range on tests of immediate recall of verbal, visual and spatial data and tests of delayed recall of verbal and visual data. Comparison with a previously described patient who had a selective deficit in immediate spatial recall and an ischemic lesion that affected frontal and parietal dorso-mesial areas in the right hemisphere (Carlesimo GA, Perri R, Turriziani P, Tomaiuolo F, Caltagirone C. Remembering what but not where: independence of spatial and visual working memory in the human brain. Cortex. 2001 Sep; 37(4):519-34) suggests that the right parietal areas are involved in the short-term storage of spatial information and that the dorso-mesial regions of the right frontal underlie mechanisms for the delayed maintenance of the same data.

  11. 3D shape measurement of moving object with FFT-based spatial matching

    NASA Astrophysics Data System (ADS)

    Guo, Qinghua; Ruan, Yuxi; Xi, Jiangtao; Song, Limei; Zhu, Xinjun; Yu, Yanguang; Tong, Jun

    2018-03-01

    This work presents a new technique for 3D shape measurement of moving object in translational motion, which finds applications in online inspection, quality control, etc. A low-complexity 1D fast Fourier transform (FFT)-based spatial matching approach is devised to obtain accurate object displacement estimates, and it is combined with single shot fringe pattern prolometry (FPP) techniques to achieve high measurement performance with multiple captured images through coherent combining. The proposed technique overcomes some limitations of existing ones. Specifically, the placement of marks on object surface and synchronization between projector and camera are not needed, the velocity of the moving object is not required to be constant, and there is no restriction on the movement trajectory. Both simulation and experimental results demonstrate the effectiveness of the proposed technique.

  12. Object-Spatial Visualization and Verbal Cognitive Styles, and Their Relation to Cognitive Abilities and Mathematical Performance

    ERIC Educational Resources Information Center

    Haciomeroglu, Erhan Selcuk

    2016-01-01

    The present study investigated the object-spatial visualization and verbal cognitive styles among high school students and related differences in spatial ability, verbal-logical reasoning ability, and mathematical performance of those students. Data were collected from 348 students enrolled in Advanced Placement calculus courses at six high…

  13. Spatially Distributed Dendritic Resonance Selectively Filters Synaptic Input

    PubMed Central

    Segev, Idan; Shamma, Shihab

    2014-01-01

    An important task performed by a neuron is the selection of relevant inputs from among thousands of synapses impinging on the dendritic tree. Synaptic plasticity enables this by strenghtening a subset of synapses that are, presumably, functionally relevant to the neuron. A different selection mechanism exploits the resonance of the dendritic membranes to preferentially filter synaptic inputs based on their temporal rates. A widely held view is that a neuron has one resonant frequency and thus can pass through one rate. Here we demonstrate through mathematical analyses and numerical simulations that dendritic resonance is inevitably a spatially distributed property; and therefore the resonance frequency varies along the dendrites, and thus endows neurons with a powerful spatiotemporal selection mechanism that is sensitive both to the dendritic location and the temporal structure of the incoming synaptic inputs. PMID:25144440

  14. An Efficient Method for the Retrieval of Objects by Topological Relations in Spatial Database Systems.

    ERIC Educational Resources Information Center

    Lin, P. L.; Tan, W. H.

    2003-01-01

    Presents a new method to improve the performance of query processing in a spatial database. Experiments demonstrated that performance of database systems can be improved because both the number of objects accessed and number of objects requiring detailed inspection are much less than those in the previous approach. (AEF)

  15. Time takes space: selective effects of multitasking on concurrent spatial processing.

    PubMed

    Mäntylä, Timo; Coni, Valentina; Kubik, Veit; Todorov, Ivo; Del Missier, Fabio

    2017-08-01

    Many everyday activities require coordination and monitoring of complex relations of future goals and deadlines. Cognitive offloading may provide an efficient strategy for reducing control demands by representing future goals and deadlines as a pattern of spatial relations. We tested the hypothesis that multiple-task monitoring involves time-to-space transformational processes, and that these spatial effects are selective with greater demands on coordinate (metric) than categorical (nonmetric) spatial relation processing. Participants completed a multitasking session in which they monitored four series of deadlines, running on different time scales, while making concurrent coordinate or categorical spatial judgments. We expected and found that multitasking taxes concurrent coordinate, but not categorical, spatial processing. Furthermore, males showed a better multitasking performance than females. These findings provide novel experimental evidence for the hypothesis that efficient multitasking involves metric relational processing.

  16. Contributions of Low and High Spatial Frequency Processing to Impaired Object Recognition Circuitry in Schizophrenia

    PubMed Central

    Calderone, Daniel J.; Hoptman, Matthew J.; Martínez, Antígona; Nair-Collins, Sangeeta; Mauro, Cristina J.; Bar, Moshe; Javitt, Daniel C.; Butler, Pamela D.

    2013-01-01

    Patients with schizophrenia exhibit cognitive and sensory impairment, and object recognition deficits have been linked to sensory deficits. The “frame and fill” model of object recognition posits that low spatial frequency (LSF) information rapidly reaches the prefrontal cortex (PFC) and creates a general shape of an object that feeds back to the ventral temporal cortex to assist object recognition. Visual dysfunction findings in schizophrenia suggest a preferential loss of LSF information. This study used functional magnetic resonance imaging (fMRI) and resting state functional connectivity (RSFC) to investigate the contribution of visual deficits to impaired object “framing” circuitry in schizophrenia. Participants were shown object stimuli that were intact or contained only LSF or high spatial frequency (HSF) information. For controls, fMRI revealed preferential activation to LSF information in precuneus, superior temporal, and medial and dorsolateral PFC areas, whereas patients showed a preference for HSF information or no preference. RSFC revealed a lack of connectivity between early visual areas and PFC for patients. These results demonstrate impaired processing of LSF information during object recognition in schizophrenia, with patients instead displaying increased processing of HSF information. This is consistent with findings of a preference for local over global visual information in schizophrenia. PMID:22735157

  17. Biophysics of object segmentation in a collision-detecting neuron

    PubMed Central

    Dewell, Richard Burkett

    2018-01-01

    Collision avoidance is critical for survival, including in humans, and many species possess visual neurons exquisitely sensitive to objects approaching on a collision course. Here, we demonstrate that a collision-detecting neuron can detect the spatial coherence of a simulated impending object, thereby carrying out a computation akin to object segmentation critical for proper escape behavior. At the cellular level, object segmentation relies on a precise selection of the spatiotemporal pattern of synaptic inputs by dendritic membrane potential-activated channels. One channel type linked to dendritic computations in many neural systems, the hyperpolarization-activated cation channel, HCN, plays a central role in this computation. Pharmacological block of HCN channels abolishes the neuron's spatial selectivity and impairs the generation of visually guided escape behaviors, making it directly relevant to survival. Additionally, our results suggest that the interaction of HCN and inactivating K+ channels within active dendrites produces neuronal and behavioral object specificity by discriminating between complex spatiotemporal synaptic activation patterns. PMID:29667927

  18. Raccoon spatial requirements and multi-scale habitat selection within an intensively managed central Appalachian forest

    USGS Publications Warehouse

    Owen, Sheldon F.; Berl, Jacob L.; Edwards, John W.; Ford, W. Mark; Wood, Petra Bohall

    2015-01-01

    We studied a raccoon (Procyon lotor) population within a managed central Appalachian hardwood forest in West Virginia to investigate the effects of intensive forest management on raccoon spatial requirements and habitat selection. Raccoon home-range (95% utilization distribution) and core-area (50% utilization distribution) size differed between sexes with males maintaining larger (2×) home ranges and core areas than females. Home-range and core-area size did not differ between seasons for either sex. We used compositional analysis to quantify raccoon selection of six different habitat types at multiple spatial scales. Raccoons selected riparian corridors (riparian management zones [RMZ]) and intact forests (> 70 y old) at the core-area spatial scale. RMZs likely were used by raccoons because they provided abundant denning resources (i.e., large-diameter trees) as well as access to water. Habitat composition associated with raccoon foraging locations indicated selection for intact forests, riparian areas, and regenerating harvest (stands <10 y old). Although raccoons were able to utilize multiple habitat types for foraging resources, a selection of intact forest and RMZs at multiple spatial scales indicates the need of mature forest (with large-diameter trees) for this species in managed forests in the central Appalachians.

  19. Face Recognition Is Affected by Similarity in Spatial Frequency Range to a Greater Degree Than Within-Category Object Recognition

    ERIC Educational Resources Information Center

    Collin, Charles A.; Liu, Chang Hong; Troje, Nikolaus F.; McMullen, Patricia A.; Chaudhuri, Avi

    2004-01-01

    Previous studies have suggested that face identification is more sensitive to variations in spatial frequency content than object recognition, but none have compared how sensitive the 2 processes are to variations in spatial frequency overlap (SFO). The authors tested face and object matching accuracy under varying SFO conditions. Their results…

  20. Object Categorization in Finer Levels Relies More on Higher Spatial Frequencies and Takes Longer.

    PubMed

    Ashtiani, Matin N; Kheradpisheh, Saeed R; Masquelier, Timothée; Ganjtabesh, Mohammad

    2017-01-01

    The human visual system contains a hierarchical sequence of modules that take part in visual perception at different levels of abstraction, i.e., superordinate, basic, and subordinate levels. One important question is to identify the "entry" level at which the visual representation is commenced in the process of object recognition. For a long time, it was believed that the basic level had a temporal advantage over two others. This claim has been challenged recently. Here we used a series of psychophysics experiments, based on a rapid presentation paradigm, as well as two computational models, with bandpass filtered images of five object classes to study the processing order of the categorization levels. In these experiments, we investigated the type of visual information required for categorizing objects in each level by varying the spatial frequency bands of the input image. The results of our psychophysics experiments and computational models are consistent. They indicate that the different spatial frequency information had different effects on object categorization in each level. In the absence of high frequency information, subordinate and basic level categorization are performed less accurately, while the superordinate level is performed well. This means that low frequency information is sufficient for superordinate level, but not for the basic and subordinate levels. These finer levels rely more on high frequency information, which appears to take longer to be processed, leading to longer reaction times. Finally, to avoid the ceiling effect, we evaluated the robustness of the results by adding different amounts of noise to the input images and repeating the experiments. As expected, the categorization accuracy decreased and the reaction time increased significantly, but the trends were the same. This shows that our results are not due to a ceiling effect. The compatibility between our psychophysical and computational results suggests that the temporal

  1. Object Categorization in Finer Levels Relies More on Higher Spatial Frequencies and Takes Longer

    PubMed Central

    Ashtiani, Matin N.; Kheradpisheh, Saeed R.; Masquelier, Timothée; Ganjtabesh, Mohammad

    2017-01-01

    The human visual system contains a hierarchical sequence of modules that take part in visual perception at different levels of abstraction, i.e., superordinate, basic, and subordinate levels. One important question is to identify the “entry” level at which the visual representation is commenced in the process of object recognition. For a long time, it was believed that the basic level had a temporal advantage over two others. This claim has been challenged recently. Here we used a series of psychophysics experiments, based on a rapid presentation paradigm, as well as two computational models, with bandpass filtered images of five object classes to study the processing order of the categorization levels. In these experiments, we investigated the type of visual information required for categorizing objects in each level by varying the spatial frequency bands of the input image. The results of our psychophysics experiments and computational models are consistent. They indicate that the different spatial frequency information had different effects on object categorization in each level. In the absence of high frequency information, subordinate and basic level categorization are performed less accurately, while the superordinate level is performed well. This means that low frequency information is sufficient for superordinate level, but not for the basic and subordinate levels. These finer levels rely more on high frequency information, which appears to take longer to be processed, leading to longer reaction times. Finally, to avoid the ceiling effect, we evaluated the robustness of the results by adding different amounts of noise to the input images and repeating the experiments. As expected, the categorization accuracy decreased and the reaction time increased significantly, but the trends were the same. This shows that our results are not due to a ceiling effect. The compatibility between our psychophysical and computational results suggests that the temporal

  2. Selective white matter pathology induces a specific impairment in spatial working memory.

    PubMed

    Coltman, Robin; Spain, Aisling; Tsenkina, Yanina; Fowler, Jill H; Smith, Jessica; Scullion, Gillian; Allerhand, Mike; Scott, Fiona; Kalaria, Rajesh N; Ihara, Masafumi; Daumas, Stephanie; Deary, Ian J; Wood, Emma; McCulloch, James; Horsburgh, Karen

    2011-12-01

    The integrity of the white matter is critical in regulating efficient neuronal communication and maintaining cognitive function. Damage to brain white matter putatively contributes to age-related cognitive decline. There is a growing interest in animal models from which the mechanistic basis of white matter pathology in aging can be elucidated but to date there has been a lack of systematic behavior and pathology in the same mice. Anatomically widespread, diffuse white matter damage was induced, in 3 different cohorts of C57Bl/6J mice, by chronic hypoperfusion produced by bilateral carotid stenosis. A comprehensive assessment of spatial memory (spatial reference learning and memory; cohort 1) and serial spatial learning and memory (cohort 2) using the water maze, and spatial working memory (cohort 3) using the 8-arm radial arm maze, was conducted. In parallel, a systematic assessment of white matter components (myelin, axon, glia) was conducted using immunohistochemical markers (myelin-associated glycoprotein [MAG], degraded myelin basic protein [dMBP], anti-amyloid precursor protein [APP], anti-ionized calcium-binding adapter molecule [Iba-1]). Ischemic neuronal perikarya damage, assessed using histology (hematoxylin and eosin; H&E), was absent in all shams but was present in some hypoperfused mice (2/11 in cohort 1, 4/14 in cohort 2, and 17/24 in cohort 3). All animals with neuronal perikaryal damage were excluded from further study. Diffuse white matter damage occurred, throughout the brain, in all hypoperfused mice in each cohort and was essentially absent in sham-operated controls. There was a selective impairment in spatial working memory, with all other measures of spatial memory remaining intact, in hypoperfused mice with selective white matter damage. The results demonstrate that diffuse white matter pathology, in the absence of gray matter damage, induces a selective impairment of spatial working memory. This highlights the importance of assessing

  3. A simulation system to hide dynamic objects selectively at visible wavelengths

    NASA Astrophysics Data System (ADS)

    Cheng, Qiluan; Zhang, Shu; Ding, Chizhu; Tan, Zuojun; Wang, Guo Ping

    2018-04-01

    Currently, invisibility devices are increasingly approaching practical application requirements, such as using easily obtained materials for construction and hiding dynamic objects. Here, using phase retrieval and computer-generated holography techniques, we design an invisibility system in simulation to produce a phase-conjugation signal that changes with the dynamic object to hide it. This system is highly selective for the hidden objects, i.e., it only hides the target object and has no effect on the others. Such function may provide our invisibility system with great potential in special fields, such as biology and military applications for living and dynamic target recognition, selective camouflaging, and others.

  4. Towards quantum superposition of a levitated nanodiamond with a NV center

    NASA Astrophysics Data System (ADS)

    Li, Tongcang

    2015-05-01

    Creating large Schrödinger's cat states with massive objects is one of the most challenging goals in quantum mechanics. We have previously achieved an important step of this goal by cooling the center-of-mass motion of a levitated microsphere from room temperature to millikelvin temperatures with feedback cooling. To generate spatial quantum superposition states with an optical cavity, however, requires a very strong quadratic coupling that is difficult to achieve. We proposed to optically trap a nanodiamond with a nitrogen-vacancy (NV) center in vacuum, and generate large spatial superposition states using the NV spin-optomechanical coupling in a strong magnetic gradient field. The large spatial superposition states can be used to study objective collapse theories of quantum mechanics. We have optically trapped nanodiamonds in air and are working towards this goal.

  5. SU-F-R-10: Selecting the Optimal Solution for Multi-Objective Radiomics Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Z; Folkert, M; Wang, J

    2016-06-15

    Purpose: To develop an evidential reasoning approach for selecting the optimal solution from a Pareto solution set obtained by a multi-objective radiomics model for predicting distant failure in lung SBRT. Methods: In the multi-objective radiomics model, both sensitivity and specificity are considered as the objective functions simultaneously. A Pareto solution set with many feasible solutions will be resulted from the multi-objective optimization. In this work, an optimal solution Selection methodology for Multi-Objective radiomics Learning model using the Evidential Reasoning approach (SMOLER) was proposed to select the optimal solution from the Pareto solution set. The proposed SMOLER method used the evidentialmore » reasoning approach to calculate the utility of each solution based on pre-set optimal solution selection rules. The solution with the highest utility was chosen as the optimal solution. In SMOLER, an optimal learning model coupled with clonal selection algorithm was used to optimize model parameters. In this study, PET, CT image features and clinical parameters were utilized for predicting distant failure in lung SBRT. Results: Total 126 solution sets were generated by adjusting predictive model parameters. Each Pareto set contains 100 feasible solutions. The solution selected by SMOLER within each Pareto set was compared to the manually selected optimal solution. Five-cross-validation was used to evaluate the optimal solution selection accuracy of SMOLER. The selection accuracies for five folds were 80.00%, 69.23%, 84.00%, 84.00%, 80.00%, respectively. Conclusion: An optimal solution selection methodology for multi-objective radiomics learning model using the evidential reasoning approach (SMOLER) was proposed. Experimental results show that the optimal solution can be found in approximately 80% cases.« less

  6. Monopolar Detection Thresholds Predict Spatial Selectivity of Neural Excitation in Cochlear Implants: Implications for Speech Recognition

    PubMed Central

    2016-01-01

    The objectives of the study were to (1) investigate the potential of using monopolar psychophysical detection thresholds for estimating spatial selectivity of neural excitation with cochlear implants and to (2) examine the effect of site removal on speech recognition based on the threshold measure. Detection thresholds were measured in Cochlear Nucleus® device users using monopolar stimulation for pulse trains that were of (a) low rate and long duration, (b) high rate and short duration, and (c) high rate and long duration. Spatial selectivity of neural excitation was estimated by a forward-masking paradigm, where the probe threshold elevation in the presence of a forward masker was measured as a function of masker-probe separation. The strength of the correlation between the monopolar thresholds and the slopes of the masking patterns systematically reduced as neural response of the threshold stimulus involved interpulse interactions (refractoriness and sub-threshold adaptation), and spike-rate adaptation. Detection threshold for the low-rate stimulus most strongly correlated with the spread of forward masking patterns and the correlation reduced for long and high rate pulse trains. The low-rate thresholds were then measured for all electrodes across the array for each subject. Subsequently, speech recognition was tested with experimental maps that deactivated five stimulation sites with the highest thresholds and five randomly chosen ones. Performance with deactivating the high-threshold sites was better than performance with the subjects’ clinical map used every day with all electrodes active, in both quiet and background noise. Performance with random deactivation was on average poorer than that with the clinical map but the difference was not significant. These results suggested that the monopolar low-rate thresholds are related to the spatial neural excitation patterns in cochlear implant users and can be used to select sites for more optimal speech

  7. The roles of scene gist and spatial dependency among objects in the semantic guidance of attention in real-world scenes.

    PubMed

    Wu, Chia-Chien; Wang, Hsueh-Cheng; Pomplun, Marc

    2014-12-01

    A previous study (Vision Research 51 (2011) 1192-1205) found evidence for semantic guidance of visual attention during the inspection of real-world scenes, i.e., an influence of semantic relationships among scene objects on overt shifts of attention. In particular, the results revealed an observer bias toward gaze transitions between semantically similar objects. However, this effect is not necessarily indicative of semantic processing of individual objects but may be mediated by knowledge of the scene gist, which does not require object recognition, or by known spatial dependency among objects. To examine the mechanisms underlying semantic guidance, in the present study, participants were asked to view a series of displays with the scene gist excluded and spatial dependency varied. Our results show that spatial dependency among objects seems to be sufficient to induce semantic guidance. Scene gist, on the other hand, does not seem to affect how observers use semantic information to guide attention while viewing natural scenes. Extracting semantic information mainly based on spatial dependency may be an efficient strategy of the visual system that only adds little cognitive load to the viewing task. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. A probabilistic and multi-objective analysis of lexicase selection and ε-lexicase selection.

    PubMed

    Cava, William La; Helmuth, Thomas; Spector, Lee; Moore, Jason H

    2018-05-10

    Lexicase selection is a parent selection method that considers training cases individually, rather than in aggregate, when performing parent selection. Whereas previous work has demonstrated the ability of lexicase selection to solve difficult problems in program synthesis and symbolic regression, the central goal of this paper is to develop the theoretical underpinnings that explain its performance. To this end, we derive an analytical formula that gives the expected probabilities of selection under lexicase selection, given a population and its behavior. In addition, we expand upon the relation of lexicase selection to many-objective optimization methods to describe the behavior of lexicase selection, which is to select individuals on the boundaries of Pareto fronts in high-dimensional space. We show analytically why lexicase selection performs more poorly for certain sizes of population and training cases, and show why it has been shown to perform more poorly in continuous error spaces. To address this last concern, we propose new variants of ε-lexicase selection, a method that modifies the pass condition in lexicase selection to allow near-elite individuals to pass cases, thereby improving selection performance with continuous errors. We show that ε-lexicase outperforms several diversity-maintenance strategies on a number of real-world and synthetic regression problems.

  9. A New Integrated Threshold Selection Methodology for Spatial Forecast Verification of Extreme Events

    NASA Astrophysics Data System (ADS)

    Kholodovsky, V.

    2017-12-01

    Extreme weather and climate events such as heavy precipitation, heat waves and strong winds can cause extensive damage to the society in terms of human lives and financial losses. As climate changes, it is important to understand how extreme weather events may change as a result. Climate and statistical models are often independently used to model those phenomena. To better assess performance of the climate models, a variety of spatial forecast verification methods have been developed. However, spatial verification metrics that are widely used in comparing mean states, in most cases, do not have an adequate theoretical justification to benchmark extreme weather events. We proposed a new integrated threshold selection methodology for spatial forecast verification of extreme events that couples existing pattern recognition indices with high threshold choices. This integrated approach has three main steps: 1) dimension reduction; 2) geometric domain mapping; and 3) thresholds clustering. We apply this approach to an observed precipitation dataset over CONUS. The results are evaluated by displaying threshold distribution seasonally, monthly and annually. The method offers user the flexibility of selecting a high threshold that is linked to desired geometrical properties. The proposed high threshold methodology could either complement existing spatial verification methods, where threshold selection is arbitrary, or be directly applicable in extreme value theory.

  10. Reducing the spatial resolution range of neutron radiographs cast by thick objects

    NASA Astrophysics Data System (ADS)

    Almeida, G. L.; Silvani, M. I.; Souza, E. S.; Lopes, R. T.

    2017-11-01

    The quality of a neutron radiograph is strongly dependent upon the features of the acquisition system. Most of them, such as detector resolution, electronic noise and statistical fluctuation can hardly be improved. Yet, a main parameter ruling the image spatial resolution, namely the L/D ratio of the system can be increased simply by lengthening the source-detector clearance. Such an option eventually may not be feasible due to neutron flux decreasing or engineering constraints. Under this circumstance, a radiograph improvement is only possible by some kind of after-acquisition procedure capable to retrieve, at least partially, the information concealed by the degradation process. Since the spoiling agent tied to the L/D has a systematic character, its impact can be reduced by an unfolding procedure such as Richardson-Lucy algorithm. However, that agent should be fully characterized and furnished to the algorithm as a Point Spread Function - PSF unfolding function. A main drawback of unfolding algorithms like Richardson-Lucy is that the PSF should be fixed, i.e., it assumes a certain constant image spatial resolution, rather than a variable one as actually occurs for thick objects. This work presents a methodology to minimize this difficulty by making all planes of the inspected object to cast a resolution within the shorter gap comprised between the object central plane and the detector. The image can then be unfolded with a lower resolution within a tighter range, yielding a better quality. The process is performed with two radiographs, where one of them is acquired with the object turned by 180° on its vertical axis with regard to the other. After a mirroring of one of them about its vertical axis, the images are added. As the resolution increases linearly with the object-detector gap, it would remain always lower than that of the central one. Therefore, the overall resolution of the composite radiograph is enhanced. A further improvement can then be achieved

  11. Quantifying selective alignment of ensemble nitrogen-vacancy centers in (111) diamond

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tahara, Kosuke; Ozawa, Hayato; Iwasaki, Takayuki

    2015-11-09

    Selective alignment of nitrogen-vacancy (NV) centers in diamond is an important technique towards its applications. Quantification of the alignment ratio is necessary to design the optimized diamond samples. However, this is not a straightforward problem for dense ensemble of the NV centers. We estimate the alignment ratio of ensemble NV centers along the [111] direction in (111) diamond by optically detected magnetic resonance measurements. Diamond films deposited by N{sub 2} doped chemical vapor deposition have NV center densities over 1 × 10{sup 15 }cm{sup −3} and alignment ratios over 75%. Although spin coherence time (T{sub 2}) is limited to a few μs bymore » electron spins of nitrogen impurities, the combination of the selective alignment and the high density can be a possible way to optimize NV-containing diamond samples for the sensing applications.« less

  12. Hybrid vision activities at NASA Johnson Space Center

    NASA Technical Reports Server (NTRS)

    Juday, Richard D.

    1990-01-01

    NASA's Johnson Space Center in Houston, Texas, is active in several aspects of hybrid image processing. (The term hybrid image processing refers to a system that combines digital and photonic processing). The major thrusts are autonomous space operations such as planetary landing, servicing, and rendezvous and docking. By processing images in non-Cartesian geometries to achieve shift invariance to canonical distortions, researchers use certain aspects of the human visual system for machine vision. That technology flow is bidirectional; researchers are investigating the possible utility of video-rate coordinate transformations for human low-vision patients. Man-in-the-loop teleoperations are also supported by the use of video-rate image-coordinate transformations, as researchers plan to use bandwidth compression tailored to the varying spatial acuity of the human operator. Technological elements being developed in the program include upgraded spatial light modulators, real-time coordinate transformations in video imagery, synthetic filters that robustly allow estimation of object pose parameters, convolutionally blurred filters that have continuously selectable invariance to such image changes as magnification and rotation, and optimization of optical correlation done with spatial light modulators that have limited range and couple both phase and amplitude in their response.

  13. Precise Spatially Selective Photothermolysis Using Modulated Femtosecond Lasers and Real-time Multimodal Microscopy Monitoring.

    PubMed

    Huang, Yimei; Lui, Harvey; Zhao, Jianhua; Wu, Zhenguo; Zeng, Haishan

    2017-01-01

    The successful application of lasers in the treatment of skin diseases and cosmetic surgery is largely based on the principle of conventional selective photothermolysis which relies strongly on the difference in the absorption between the therapeutic target and its surroundings. However, when the differentiation in absorption is not sufficient, collateral damage would occur due to indiscriminate and nonspecific tissue heating. To deal with such cases, we introduce a novel spatially selective photothermolysis method based on multiphoton absorption in which the radiant energy of a tightly focused near-infrared femtosecond laser beam can be directed spatially by aiming the laser focal point to the target of interest. We construct a multimodal optical microscope to perform and monitor the spatially selective photothermolysis. We demonstrate that precise alteration of the targeted tissue is achieved while leaving surrounding tissue intact by choosing appropriate femtosecond laser exposure with multimodal optical microscopy monitoring in real time.

  14. Implicit Learning of Viewpoint-Independent Spatial Layouts

    PubMed Central

    Tsuchiai, Taiga; Matsumiya, Kazumichi; Kuriki, Ichiro; Shioiri, Satoshi

    2012-01-01

    We usually perceive things in our surroundings as unchanged despite viewpoint changes caused by self-motion. The visual system therefore must have a function to process objects independently of viewpoint. In this study, we examined whether viewpoint-independent spatial layout can be obtained implicitly. For this purpose, we used a contextual cueing effect, a learning effect of spatial layout in visual search displays known to be an implicit effect. We investigated the transfer of the contextual cueing effect to images from a different viewpoint by using visual search displays of 3D objects. For images from a different viewpoint, the contextual cueing effect was maintained with self-motion but disappeared when the display changed without self-motion. This indicates that there is an implicit learning effect in environment-centered coordinates and suggests that the spatial representation of object layouts can be obtained and updated implicitly. We also showed that binocular disparity plays an important role in the layout representations. PMID:22740837

  15. Prototypes and particulars: geometric and experience-dependent spatial categories.

    PubMed

    Spencer, John P; Hund, Alycia M

    2002-03-01

    People use geometric cues to form spatial categories. This study investigated whether people also use the spatial distribution of exemplars. Adults pointed to remembered locations on a tabletop. In Experiment 1, a target was placed in each geometric category, and the location of targets was varied. Adults' responses were biased away from a midline category boundary toward geometric prototypes located at the centers of left and right categories. Experiment 2 showed that prototype effects were not influenced by cross-category interactions. In Experiment 3, subsets of targets were positioned at different locations within each category. When prototype effects were removed, there was a bias toward the center of the exemplar distribution, suggesting that common categorization processes operate across spatial and object domains.

  16. A novel artificial immune algorithm for spatial clustering with obstacle constraint and its applications.

    PubMed

    Sun, Liping; Luo, Yonglong; Ding, Xintao; Zhang, Ji

    2014-01-01

    An important component of a spatial clustering algorithm is the distance measure between sample points in object space. In this paper, the traditional Euclidean distance measure is replaced with innovative obstacle distance measure for spatial clustering under obstacle constraints. Firstly, we present a path searching algorithm to approximate the obstacle distance between two points for dealing with obstacles and facilitators. Taking obstacle distance as similarity metric, we subsequently propose the artificial immune clustering with obstacle entity (AICOE) algorithm for clustering spatial point data in the presence of obstacles and facilitators. Finally, the paper presents a comparative analysis of AICOE algorithm and the classical clustering algorithms. Our clustering model based on artificial immune system is also applied to the case of public facility location problem in order to establish the practical applicability of our approach. By using the clone selection principle and updating the cluster centers based on the elite antibodies, the AICOE algorithm is able to achieve the global optimum and better clustering effect.

  17. Informative Feature Selection for Object Recognition via Sparse PCA

    DTIC Science & Technology

    2011-04-07

    constraint on images collected from low-power camera net- works instead of high-end photography is that establishing wide-baseline feature correspondence of...variable selection tool for selecting informative features in the object images captured from low-resolution cam- era sensor networks. Firstly, we...More examples can be found in Figure 4 later. 3. Identifying Informative Features Classical PCA is a well established tool for the analysis of high

  18. Development of an intelligent interface for adding spatial objects to a knowledge-based geographic information system

    NASA Technical Reports Server (NTRS)

    Campbell, William J.; Goettsche, Craig

    1989-01-01

    Earth Scientists lack adequate tools for quantifying complex relationships between existing data layers and studying and modeling the dynamic interactions of these data layers. There is a need for an earth systems tool to manipulate multi-layered, heterogeneous data sets that are spatially indexed, such as sensor imagery and maps, easily and intelligently in a single system. The system can access and manipulate data from multiple sensor sources, maps, and from a learned object hierarchy using an advanced knowledge-based geographical information system. A prototype Knowledge-Based Geographic Information System (KBGIS) was recently constructed. Many of the system internals are well developed, but the system lacks an adequate user interface. A methodology is described for developing an intelligent user interface and extending KBGIS to interconnect with existing NASA systems, such as imagery from the Land Analysis System (LAS), atmospheric data in Common Data Format (CDF), and visualization of complex data with the National Space Science Data Center Graphics System. This would allow NASA to quickly explore the utility of such a system, given the ability to transfer data in and out of KBGIS easily. The use and maintenance of the object hierarchies as polymorphic data types brings, to data management, a while new set of problems and issues, few of which have been explored above the prototype level.

  19. Shaping Attention with Reward: Effects of Reward on Space- and Object-Based Selection

    PubMed Central

    Shomstein, Sarah; Johnson, Jacoba

    2014-01-01

    The contribution of rewarded actions to automatic attentional selection remains obscure. We hypothesized that some forms of automatic orienting, such as object-based selection, can be completely abandoned in lieu of reward maximizing strategy. While presenting identical visual stimuli to the observer, in a set of two experiments, we manipulate what is being rewarded (different object targets or random object locations) and the type of reward received (money or points). It was observed that reward alone guides attentional selection, entirely predicting behavior. These results suggest that guidance of selective attention, while automatic, is flexible and can be adjusted in accordance with external non-sensory reward-based factors. PMID:24121412

  20. Systemic lipopolysaccharide administration impairs retrieval of context-object discrimination, but not spatial, memory: Evidence for selective disruption of specific hippocampus-dependent memory functions during acute neuroinflammation

    PubMed Central

    Czerniawski, Jennifer; Miyashita, Teiko; Lewandowski, Gail; Guzowski, John F.

    2014-01-01

    Neuroinflammation is implicated in impairments in neuronal function and cognition that arise with aging, trauma, and/or disease. Therefore, understanding the underlying basis of the effect of immune system activation on neural function could lead to therapies for treating cognitive decline. Although neuroinflammation is widely thought to preferentially impair hippocampus-dependent memory, data on the effects of cytokines on cognition are mixed. One possible explanation for these inconsistent results is that cytokines may disrupt specific neural processes underlying some forms of memory but not others. In an earlier study, we tested the effect of systemic administration of bacterial lipopolysaccharide (LPS) on retrieval of hippocampus-dependent context memory and neural circuit function in CA3 and CA1 (Czerniawski and Guzowski, 2014). Paralleling impairment in context discrimination memory, we observed changes in neural circuit function consistent with disrupted pattern separation function. In the current study we tested the hypothesis that acute neuroinflammation selectively disrupts memory retrieval in tasks requiring hippocampal pattern separation processes. Male Sprague-Dawley rats given LPS systemically prior to testing exhibited intact performance in tasks that do not require hippocampal pattern separation processes: novel object recognition and spatial memory in the water maze. By contrast, memory retrieval in a task thought to require hippocampal pattern separation, context-object discrimination, was strongly impaired in LPS-treated rats in the absence of any gross effects on exploratory activity or motivation. These data show that LPS administration does not impair memory retrieval in all hippocampus-dependent tasks, and support the hypothesis that acute neuroinflammation impairs context discrimination memory via disruption of pattern separation processes in hippocampus. PMID:25451612

  1. Systemic lipopolysaccharide administration impairs retrieval of context-object discrimination, but not spatial, memory: Evidence for selective disruption of specific hippocampus-dependent memory functions during acute neuroinflammation.

    PubMed

    Czerniawski, Jennifer; Miyashita, Teiko; Lewandowski, Gail; Guzowski, John F

    2015-02-01

    Neuroinflammation is implicated in impairments in neuronal function and cognition that arise with aging, trauma, and/or disease. Therefore, understanding the underlying basis of the effect of immune system activation on neural function could lead to therapies for treating cognitive decline. Although neuroinflammation is widely thought to preferentially impair hippocampus-dependent memory, data on the effects of cytokines on cognition are mixed. One possible explanation for these inconsistent results is that cytokines may disrupt specific neural processes underlying some forms of memory but not others. In an earlier study, we tested the effect of systemic administration of bacterial lipopolysaccharide (LPS) on retrieval of hippocampus-dependent context memory and neural circuit function in CA3 and CA1 (Czerniawski and Guzowski, 2014). Paralleling impairment in context discrimination memory, we observed changes in neural circuit function consistent with disrupted pattern separation function. In the current study we tested the hypothesis that acute neuroinflammation selectively disrupts memory retrieval in tasks requiring hippocampal pattern separation processes. Male Sprague-Dawley rats given LPS systemically prior to testing exhibited intact performance in tasks that do not require hippocampal pattern separation processes: novel object recognition and spatial memory in the water maze. By contrast, memory retrieval in a task thought to require hippocampal pattern separation, context-object discrimination, was strongly impaired in LPS-treated rats in the absence of any gross effects on exploratory activity or motivation. These data show that LPS administration does not impair memory retrieval in all hippocampus-dependent tasks, and support the hypothesis that acute neuroinflammation impairs context discrimination memory via disruption of pattern separation processes in hippocampus. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Precise Spatially Selective Photothermolysis Using Modulated Femtosecond Lasers and Real-time Multimodal Microscopy Monitoring

    PubMed Central

    Huang, Yimei; Lui, Harvey; Zhao, Jianhua; Wu, Zhenguo; Zeng, Haishan

    2017-01-01

    The successful application of lasers in the treatment of skin diseases and cosmetic surgery is largely based on the principle of conventional selective photothermolysis which relies strongly on the difference in the absorption between the therapeutic target and its surroundings. However, when the differentiation in absorption is not sufficient, collateral damage would occur due to indiscriminate and nonspecific tissue heating. To deal with such cases, we introduce a novel spatially selective photothermolysis method based on multiphoton absorption in which the radiant energy of a tightly focused near-infrared femtosecond laser beam can be directed spatially by aiming the laser focal point to the target of interest. We construct a multimodal optical microscope to perform and monitor the spatially selective photothermolysis. We demonstrate that precise alteration of the targeted tissue is achieved while leaving surrounding tissue intact by choosing appropriate femtosecond laser exposure with multimodal optical microscopy monitoring in real time. PMID:28255346

  3. Autonomous mental development with selective attention, object perception, and knowledge representation

    NASA Astrophysics Data System (ADS)

    Ban, Sang-Woo; Lee, Minho

    2008-04-01

    Knowledge-based clustering and autonomous mental development remains a high priority research topic, among which the learning techniques of neural networks are used to achieve optimal performance. In this paper, we present a new framework that can automatically generate a relevance map from sensory data that can represent knowledge regarding objects and infer new knowledge about novel objects. The proposed model is based on understating of the visual what pathway in our brain. A stereo saliency map model can selectively decide salient object areas by additionally considering local symmetry feature. The incremental object perception model makes clusters for the construction of an ontology map in the color and form domains in order to perceive an arbitrary object, which is implemented by the growing fuzzy topology adaptive resonant theory (GFTART) network. Log-polar transformed color and form features for a selected object are used as inputs of the GFTART. The clustered information is relevant to describe specific objects, and the proposed model can automatically infer an unknown object by using the learned information. Experimental results with real data have demonstrated the validity of this approach.

  4. The modulation of perceptual selection by working memory is dependent on the focus of spatial attention.

    PubMed

    Pan, Yi; Soto, David

    2010-07-09

    Recent research suggests that visual selection can be automatically biased to those stimuli matching the contents of working memory (WM). However, a complete functional account of the interplay between WM and attention remains to be established. In particular, the boundary conditions of the WM effect on selection are unclear. Here, the authors investigate the influence of the focus of spatial attention (i.e., diffused vs. focused) by assessing the effect of spatial precues on attentional capture by WM. Experiments 1 and 2 showed that relative to a neutral condition without memory-matching stimuli, the presence of a memory distractor can trigger attentional capture despite being entirely irrelevant for the attention task but this happened only when the item was actively maintained in WM and not when it was merely repeated. Experiments 3a, 3b and 3c showed that attentional capture by WM can be modulated by endogenous spatial pre-cueing of the incoming target of selection. The authors conclude that WM-driven capture of visual selection is dependent on the focus of spatial attention. Copyright 2009 Elsevier Ltd. All rights reserved.

  5. A Ks-band-selected catalogue of objects in the ALHAMBRA survey

    NASA Astrophysics Data System (ADS)

    Nieves-Seoane, L.; Fernandez-Soto, A.; Arnalte-Mur, P.; Molino, A.; Stefanon, M.; Ferreras, I.; Ascaso, B.; Ballesteros, F. J.; Cristóbal-Hornillos, D.; López-Sanjuán, C.; Hurtado-Gil, Ll.; Márquez, I.; Masegosa, J.; Aguerri, J. A. L.; Alfaro, E.; Aparicio-Villegas, T.; Benítez, N.; Broadhurst, T.; Cabrera-Caño, J.; Castander, F. J.; Cepa, J.; Cerviño, M.; González Delgado, R. M.; Husillos, C.; Infante, L.; Martínez, V. J.; Moles, M.; Olmo, A. del; Perea, J.; Pović, M.; Prada, F.; Quintana, J. M.; Troncoso-Iribarren, P.; Viironen, K.

    2017-02-01

    The original ALHAMBRA catalogue contained over 400 000 galaxies selected using a synthetic F814W image, to the magnitude limit AB(F814W) ≈ 24.5. Given the photometric redshift depth of the ALHAMBRA multiband data ( = 0.86) and the approximately I-band selection, there is a noticeable bias against red objects at moderate redshift. We avoid this bias by creating a new catalogue selected in the Ks band. This newly obtained catalogue is certainly shallower in terms of apparent magnitude, but deeper in terms of redshift, with a significant population of red objects at z > 1. We select objects using the Ks band images, which reach an approximate AB magnitude limit Ks ≈ 22. We generate masks and derive completeness functions to characterize the sample. We have tested the quality of the photometry and photometric redshifts using both internal and external checks. Our final catalogue includes ≈95 000 sources down to Ks ≈ 22, with a significant tail towards high redshift. We have checked that there is a large sample of objects with spectral energy distributions that correspond to that of massive, passively evolving galaxies at z > 1, reaching as far as z ≈ 2.5. We have tested the possibility of combining our data with deep infrared observations at longer wavelengths, particularly Spitzer IRAC data.

  6. QuickStats: Percentage of Adult Day Services Center Participants, by Selected Diagnoses

    MedlinePlus

    ... MMWR ) MMWR Share Compartir QuickStats: Percentage of Adult Day Services Center Participants,* by Selected Diagnoses † — National Study ... which is the estimated number of enrolled adult day services center participants in the United States on ...

  7. Classification of spatially unresolved objects

    NASA Technical Reports Server (NTRS)

    Nalepka, R. F.; Horwitz, H. M.; Hyde, P. D.; Morgenstern, J. P.

    1972-01-01

    A proportion estimation technique for classification of multispectral scanner images is reported that uses data point averaging to extract and compute estimated proportions for a single average data point to classify spatial unresolved areas. Example extraction calculations of spectral signatures for bare soil, weeds, alfalfa, and barley prove quite accurate.

  8. Additive effects of emotional content and spatial selective attention on electrocortical facilitation.

    PubMed

    Keil, Andreas; Moratti, Stephan; Sabatinelli, Dean; Bradley, Margaret M; Lang, Peter J

    2005-08-01

    Affectively arousing visual stimuli have been suggested to automatically attract attentional resources in order to optimize sensory processing. The present study crosses the factors of spatial selective attention and affective content, and examines the relationship between instructed (spatial) and automatic attention to affective stimuli. In addition to response times and error rate, electroencephalographic data from 129 electrodes were recorded during a covert spatial attention task. This task required silent counting of random-dot targets embedded in a 10 Hz flicker of colored pictures presented to both hemifields. Steady-state visual evoked potentials (ssVEPs) were obtained to determine amplitude and phase of electrocortical responses to pictures. An increase of ssVEP amplitude was observed as an additive function of spatial attention and emotional content. Statistical parametric mapping of this effect indicated occipito-temporal and parietal cortex activation contralateral to the attended visual hemifield in ssVEP amplitude modulation. This difference was most pronounced during selection of the left visual hemifield, at right temporal electrodes. In line with this finding, phase information revealed accelerated processing of aversive arousing, compared to affectively neutral pictures. The data suggest that affective stimulus properties modulate the spatiotemporal process along the ventral stream, encompassing amplitude amplification and timing changes of posterior and temporal cortex.

  9. A spatial multi-objective optimization model for sustainable urban wastewater system layout planning.

    PubMed

    Dong, X; Zeng, S; Chen, J

    2012-01-01

    Design of a sustainable city has changed the traditional centralized urban wastewater system towards a decentralized or clustering one. Note that there is considerable spatial variability of the factors that affect urban drainage performance including urban catchment characteristics. The potential options are numerous for planning the layout of an urban wastewater system, which are associated with different costs and local environmental impacts. There is thus a need to develop an approach to find the optimal spatial layout for collecting, treating, reusing and discharging the municipal wastewater of a city. In this study, a spatial multi-objective optimization model, called Urban wastewateR system Layout model (URL), was developed. It is solved by a genetic algorithm embedding Monte Carlo sampling and a series of graph algorithms. This model was illustrated by a case study in a newly developing urban area in Beijing, China. Five optimized system layouts were recommended to the local municipality for further detailed design.

  10. Pregnenolone sulphate enhances spatial orientation and object discrimination in adult male rats: evidence from a behavioural and electrophysiological study.

    PubMed

    Plescia, Fulvio; Sardo, Pierangelo; Rizzo, Valerio; Cacace, Silvana; Marino, Rosa Anna Maria; Brancato, Anna; Ferraro, Giuseppe; Carletti, Fabio; Cannizzaro, Carla

    2014-01-01

    Neurosteroids can alter neuronal excitability interacting with specific neurotransmitter receptors, thus affecting several functions such as cognition and emotionality. In this study we investigated, in adult male rats, the effects of the acute administration of pregnenolone-sulfate (PREGS) (10mg/kg, s.c.) on cognitive processes using the Can test, a non aversive spatial/visual task which allows the assessment of both spatial orientation-acquisition and object discrimination in a simple and in a complex version of the visual task. Electrophysiological recordings were also performed in vivo, after acute PREGS systemic administration in order to investigate on the neuronal activation in the hippocampus and the perirhinal cortex. Our results indicate that, PREGS induces an improvement in spatial orientation-acquisition and in object discrimination in the simple and in the complex visual task; the behavioural responses were also confirmed by electrophysiological recordings showing a potentiation in the neuronal activity of the hippocampus and the perirhinal cortex. In conclusion, this study demonstrates that PREGS systemic administration in rats exerts cognitive enhancing properties which involve both the acquisition and utilization of spatial information, and object discrimination memory, and also correlates the behavioural potentiation observed to an increase in the neuronal firing of discrete cerebral areas critical for spatial learning and object recognition. This provides further evidence in support of the role of PREGS in exerting a protective and enhancing role on human memory. Copyright © 2013. Published by Elsevier B.V.

  11. All-dielectric metamaterial frequency selective surface based on spatial arrangement ceramic resonators

    NASA Astrophysics Data System (ADS)

    Li, Liyang; Wang, Jun; Feng, Mingde; Ma, Hua; Wang, Jiafu; Du, Hongliang; Qu, Shaobo

    In this paper, we demonstrate a method of designing all-dielectric metamaterial frequency selective surface (FSS) with ceramic resonators in spatial arrangement. Compared with the traditional way, spatial arrangement provides a flexible way to handle the permutation and combination of different ceramic resonators. With this method, the resonance response can be adjusted easily to achieve pass/stop band effects. As an example, a stop band spatial arrangement all-dielectric metamaterial FSS is designed. Its working band is in 11.65-12.23GHz. By adjusting permittivity and geometrical parameters of ceramic resonators, we can easily modulate the resonances, band pass or band stop characteristic, as well as the working band.

  12. Spatial Frequency Selectivity Is Impaired in Dopamine D2 Receptor Knockout Mice

    PubMed Central

    Souza, Bruno Oliveira Ferreira; Abou Rjeili, Mira; Quintana, Clémentine; Beaulieu, Jean M.; Casanova, Christian

    2018-01-01

    Dopamine is a neurotransmitter implicated in several brain functions, including vision. In the present study, we investigated the impacts of the lack of D2 dopamine receptors on the structure and function of the primary visual cortex (V1) of D2-KO mice using optical imaging of intrinsic signals. Retinotopic maps were generated in order to measure anatomo-functional parameters such as V1 shape, cortical magnification factor, scatter, and ocular dominance. Contrast sensitivity and spatial frequency selectivity (SF) functions were computed from responses to drifting gratings. When compared to control mice, none of the parameters of the retinotopic maps were affected by D2 receptor loss of function. While the contrast sensitivity function of D2-KO mice did not differ from their wild-type counterparts, SF selectivity function was significantly affected as the optimal SF and the high cut-off frequency (p < 0.01) were higher in D2-KO than in WT mice. These findings show that the lack of function of D2 dopamine receptors had no influence on cortical structure whereas it had a significant impact on the spatial frequency selectivity and high cut-off. Taken together, our results suggest that D2 receptors play a specific role on the processing of spatial features in early visual cortex while they do not seem to participate in its development. PMID:29379422

  13. Functional region prediction with a set of appropriate homologous sequences-an index for sequence selection by integrating structure and sequence information with spatial statistics

    PubMed Central

    2012-01-01

    Background The detection of conserved residue clusters on a protein structure is one of the effective strategies for the prediction of functional protein regions. Various methods, such as Evolutionary Trace, have been developed based on this strategy. In such approaches, the conserved residues are identified through comparisons of homologous amino acid sequences. Therefore, the selection of homologous sequences is a critical step. It is empirically known that a certain degree of sequence divergence in the set of homologous sequences is required for the identification of conserved residues. However, the development of a method to select homologous sequences appropriate for the identification of conserved residues has not been sufficiently addressed. An objective and general method to select appropriate homologous sequences is desired for the efficient prediction of functional regions. Results We have developed a novel index to select the sequences appropriate for the identification of conserved residues, and implemented the index within our method to predict the functional regions of a protein. The implementation of the index improved the performance of the functional region prediction. The index represents the degree of conserved residue clustering on the tertiary structure of the protein. For this purpose, the structure and sequence information were integrated within the index by the application of spatial statistics. Spatial statistics is a field of statistics in which not only the attributes but also the geometrical coordinates of the data are considered simultaneously. Higher degrees of clustering generate larger index scores. We adopted the set of homologous sequences with the highest index score, under the assumption that the best prediction accuracy is obtained when the degree of clustering is the maximum. The set of sequences selected by the index led to higher functional region prediction performance than the sets of sequences selected by other sequence

  14. Trajectory Recognition as the Basis for Object Individuation: A Functional Model of Object File Instantiation and Object-Token Encoding

    PubMed Central

    Fields, Chris

    2011-01-01

    The perception of persisting visual objects is mediated by transient intermediate representations, object files, that are instantiated in response to some, but not all, visual trajectories. The standard object file concept does not, however, provide a mechanism sufficient to account for all experimental data on visual object persistence, object tracking, and the ability to perceive spatially disconnected stimuli as continuously existing objects. Based on relevant anatomical, functional, and developmental data, a functional model is constructed that bases visual object individuation on the recognition of temporal sequences of apparent center-of-mass positions that are specifically identified as trajectories by dedicated “trajectory recognition networks” downstream of the medial–temporal motion-detection area. This model is shown to account for a wide range of data, and to generate a variety of testable predictions. Individual differences in the recognition, abstraction, and encoding of trajectory information are expected to generate distinct object persistence judgments and object recognition abilities. Dominance of trajectory information over feature information in stored object tokens during early infancy, in particular, is expected to disrupt the ability to re-identify human and other individuals across perceptual episodes, and lead to developmental outcomes with characteristics of autism spectrum disorders. PMID:21716599

  15. Optical polarimetry and photometry of X-ray selected BL Lacertae objects

    NASA Technical Reports Server (NTRS)

    Jannuzi, Buell T.; Smith, Paul S.; Elston, Richard

    1993-01-01

    We present the data from 3 years of monitoring the optical polarization and apparent brightness of 37 X-ray-selected BL Lacertae objects. The monitored objects include a complete sample drawn from the Einstein Extended Medium Sensitivity Survey. We confirm the BL Lac identifications for 15 of these 22 objects. We include descriptions of the objects and samples in our monitoring program and of the existing complete samples of BL Lac objects, highly polarized quasars, optically violent variable quasars, and blazars.

  16. Preferential selection based on degree difference in the spatial prisoner's dilemma games

    NASA Astrophysics Data System (ADS)

    Huang, Changwei; Dai, Qionglin; Cheng, Hongyan; Li, Haihong

    2017-10-01

    Strategy evolution in spatial evolutionary games is generally implemented through imitation processes between individuals. In most previous studies, it is assumed that individuals pick up one of their neighbors randomly to learn from. However, by considering the heterogeneity of individuals' influence in the real society, preferential selection is more realistic. Here, we introduce a preferential selection mechanism based on degree difference into spatial prisoner's dilemma games on Erdös-Rényi networks and Barabási-Albert scale-free networks and investigate the effects of the preferential selection on cooperation. The results show that, when the individuals prefer to choose the neighbors who have small degree difference with themselves to imitate, cooperation is hurt by the preferential selection. In contrast, when the individuals prefer to choose those large degree difference neighbors to learn from, there exists optimal preference strength resulting in the maximal cooperation level no matter what the network structure is. In addition, we investigate the robustness of the results against variations of the noise, the average degree and the size of network in the model, and find that the qualitative features of the results are unchanged.

  17. How Fast Do Objects Fall in Visual Memory? Uncovering the Temporal and Spatial Features of Representational Gravity.

    PubMed

    De Sá Teixeira, Nuno

    2016-01-01

    Visual memory for the spatial location where a moving target vanishes has been found to be systematically displaced downward in the direction of gravity. Moreover, it was recently reported that the magnitude of the downward error increases steadily with increasing retention intervals imposed after object's offset and before observers are allowed to perform the spatial localization task, in a pattern where the remembered vanishing location drifts downward as if following a falling trajectory. This outcome was taken to reflect the dynamics of a representational model of earth's gravity. The present study aims to establish the spatial and temporal features of this downward drift by taking into account the dynamics of the motor response. The obtained results show that the memory for the last location of the target drifts downward with time, thus replicating previous results. Moreover, the time taken for completion of the behavioural localization movements seems to add to the imposed retention intervals in determining the temporal frame during which the visual memory is updated. Overall, it is reported that the representation of spatial location drifts downward by about 3 pixels for each two-fold increase of time until response. The outcomes are discussed in relation to a predictive internal model of gravity which outputs an on-line spatial update of remembered objects' location.

  18. Mechanisms of Reference Frame Selection in Spatial Term Use: Computational and Empirical Studies

    ERIC Educational Resources Information Center

    Schultheis, Holger; Carlson, Laura A.

    2017-01-01

    Previous studies have shown that multiple reference frames are available and compete for selection during the use of spatial terms such as "above." However, the mechanisms that underlie the selection process are poorly understood. In the current paper we present two experiments and a comparison of three computational models of selection…

  19. Categorical spatial memory in patients with mild cognitive impairment and Alzheimer dementia: positional versus object-location recall.

    PubMed

    Kessels, Roy P C; Rijken, Stefan; Joosten-Weyn Banningh, Liesbeth W A; Van Schuylenborgh-VAN Es, Nelleke; Olde Rikkert, Marcel G M

    2010-01-01

    Memory for object locations, as part of spatial memory function, has rarely been studied in patients with Alzheimer dementia (AD), while studies in patients with Mild Cognitive Impairment (MCI) patients are lacking altogether. The present study examined categorical spatial memory function using the Location Learning Test (LLT) in MCI patients (n = 30), AD patients (n = 30), and healthy controls (n = 40). Two scoring methods were compared, aimed at disentangling positional recall (location irrespective of object identity) and object-location binding. The results showed that AD patients performed worse than the MCI patients on the LLT, both on recall of positional information and on recall of the locations of different objects. In addition, both measures could validly discriminate between AD and MCI patients. These findings are in agreement with the notion that visual cued-recall tests may have better diagnostic value than traditional (verbal) free-recall tests in the assessment of patients with suspected MCI or AD.

  20. Optimal attributes for the object based detection of giant reed in riparian habitats: A comparative study between Airborne High Spatial Resolution and WorldView-2 imagery

    NASA Astrophysics Data System (ADS)

    Fernandes, Maria Rosário; Aguiar, Francisca C.; Silva, João M. N.; Ferreira, Maria Teresa; Pereira, José M. C.

    2014-10-01

    Giant reed is an aggressive invasive plant of riparian ecosystems in many sub-tropical and warm-temperate regions, including Mediterranean Europe. In this study we tested a set of geometric, spectral and textural attributes in an object based image analysis (OBIA) approach to map giant reed invasions in riparian habitats. Bagging Classification and Regression Tree were used to select the optimal attributes and to build the classification rules sets. Mapping accuracy was performed using landscape metrics and the Kappa coefficient to compare the topographical and geometric similarity between the giant reed patches obtained with the OBIA map and with a validation map derived from on-screen digitizing. The methodology was applied in two high spatial resolution images: an airborne multispectral imagery and the newly WorldView-2 imagery. A temporal coverage of the airborne multispectral images was radiometrically calibrated with the IR-Mad transformation and used to assess the influence of the phenological variability of the invader. We found that optimal attributes for giant reed OBIA detection are a combination of spectral, geometric and textural information, with different scoring selection depending on the spectral and spatial characteristics of the imagery. WorldView-2 showed higher mapping accuracy (Kappa coefficient of 77%) and spectral attributes, including the newly yellow band, were preferentially selected, although a tendency to overestimate the total invaded area, due to the low spatial resolution (2 m of pixel size vs. 50 cm) was observed. When airborne images were used, geometric attributes were primarily selected and a higher spatial detail of the invasive patches was obtained, due to the higher spatial resolution. However, in highly heterogeneous landscapes, the low spectral resolution of the airborne images (4 bands instead of the 8 of WorldView-2) reduces the capability to detect giant reed patches. Giant reed displays peculiar spectral and geometric

  1. Objective Assessment and Design Improvement of a Staring, Sparse Transducer Array by the Spatial Crosstalk Matrix for 3D Photoacoustic Tomography

    PubMed Central

    Kosik, Ivan; Raess, Avery

    2015-01-01

    Accurate reconstruction of 3D photoacoustic (PA) images requires detection of photoacoustic signals from many angles. Several groups have adopted staring ultrasound arrays, but assessment of array performance has been limited. We previously reported on a method to calibrate a 3D PA tomography (PAT) staring array system and analyze system performance using singular value decomposition (SVD). The developed SVD metric, however, was impractical for large system matrices, which are typical of 3D PAT problems. The present study consisted of two main objectives. The first objective aimed to introduce the crosstalk matrix concept to the field of PAT for system design. Figures-of-merit utilized in this study were root mean square error, peak signal-to-noise ratio, mean absolute error, and a three dimensional structural similarity index, which were derived between the normalized spatial crosstalk matrix and the identity matrix. The applicability of this approach for 3D PAT was validated by observing the response of the figures-of-merit in relation to well-understood PAT sampling characteristics (i.e. spatial and temporal sampling rate). The second objective aimed to utilize the figures-of-merit to characterize and improve the performance of a near-spherical staring array design. Transducer arrangement, array radius, and array angular coverage were the design parameters examined. We observed that the performance of a 129-element staring transducer array for 3D PAT could be improved by selection of optimal values of the design parameters. The results suggested that this formulation could be used to objectively characterize 3D PAT system performance and would enable the development of efficient strategies for system design optimization. PMID:25875177

  2. Abnormal center-periphery gradient in spatial attention in simultanagnosia.

    PubMed

    Balslev, Daniela; Odoj, Bartholomaeus; Rennig, Johannes; Karnath, Hans-Otto

    2014-12-01

    Patients suffering from simultanagnosia cannot perceive more than one object at a time. The underlying mechanism is incompletely understood. One hypothesis is that simultanagnosia reflects "tunnel vision," a constricted attention window around gaze, which precludes the grouping of individual objects. Although this idea has a long history in neuropsychology, the question whether the patients indeed have an abnormal attention gradient around the gaze has so far not been addressed. Here we tested this hypothesis in two simultanagnosia patients with bilateral parieto-occipital lesions and two control groups, with and without brain damage. We assessed the participants' ability to discriminate letters presented briefly at fixation with and without a peripheral distractor or in the visual periphery, with or without a foveal distractor. A constricted span of attention around gaze would predict an increased susceptibility to foveated versus peripheral distractors. Contrary to this prediction and unlike both control groups, the patients' ability to discriminate the target decreased more in the presence of peripheral compared with foveated distractors. Thus, the attentional spotlight in simultanagnosia does not fall on foveated objects as previously assumed, but rather abnormally highlights the periphery. Furthermore, we found the same center-periphery gradient in the patients' ability to recognize multiple objects. They detected multiple, but not single objects more accurately in the periphery than at fixation. These results suggest that an abnormal allocation of attention around the gaze can disrupt the grouping of individual objects into an integrated visual scene.

  3. Economic selection index development for Beefmaster cattle I: Terminal breeding objective.

    PubMed

    Ochsner, K P; MacNeil, M D; Lewis, R M; Spangler, M L

    2017-03-01

    The objective of this study was to develop an economic selection index for Beefmaster cattle in a terminal production system where bulls are mated to mature cows with all resulting progeny harvested. National average prices from 2010 to 2014 were used to establish income and expenses for the system. Phenotypic and genetic parameter values among the selection criteria and goal traits were obtained from literature. Economic values were estimated by simulating 100,000 animals and approximating the partial derivatives of the profit function by perturbing traits one at a time, by 1 unit, while holding the other traits constant at their respective means. Relative economic values (REV) for the terminal objective traits HCW, marbling score (MS), ribeye area (REA), 12th-rib fat (FAT), and feed intake (FI) were 91.29, 17.01, 8.38, -7.07, and -29.66, respectively. Consequently, improving the efficiency of beef production is expected to impact profitability greater than improving carcass merit alone. The accuracy of the index lies between 0.338 (phenotypic selection) and 0.503 (breeding values known without error). The application of this index would aid Beefmaster breeders in their sire selection decisions, facilitating genetic improvement for a terminal breeding objective.

  4. Experimental Effects and Individual Differences in Linear Mixed Models: Estimating the Relationship between Spatial, Object, and Attraction Effects in Visual Attention

    PubMed Central

    Kliegl, Reinhold; Wei, Ping; Dambacher, Michael; Yan, Ming; Zhou, Xiaolin

    2011-01-01

    Linear mixed models (LMMs) provide a still underused methodological perspective on combining experimental and individual-differences research. Here we illustrate this approach with two-rectangle cueing in visual attention (Egly et al., 1994). We replicated previous experimental cue-validity effects relating to a spatial shift of attention within an object (spatial effect), to attention switch between objects (object effect), and to the attraction of attention toward the display centroid (attraction effect), also taking into account the design-inherent imbalance of valid and other trials. We simultaneously estimated variance/covariance components of subject-related random effects for these spatial, object, and attraction effects in addition to their mean reaction times (RTs). The spatial effect showed a strong positive correlation with mean RT and a strong negative correlation with the attraction effect. The analysis of individual differences suggests that slow subjects engage attention more strongly at the cued location than fast subjects. We compare this joint LMM analysis of experimental effects and associated subject-related variances and correlations with two frequently used alternative statistical procedures. PMID:21833292

  5. Spatiotemporal dynamics underlying object completion in human ventral visual cortex.

    PubMed

    Tang, Hanlin; Buia, Calin; Madhavan, Radhika; Crone, Nathan E; Madsen, Joseph R; Anderson, William S; Kreiman, Gabriel

    2014-08-06

    Natural vision often involves recognizing objects from partial information. Recognition of objects from parts presents a significant challenge for theories of vision because it requires spatial integration and extrapolation from prior knowledge. Here we recorded intracranial field potentials of 113 visually selective electrodes from epilepsy patients in response to whole and partial objects. Responses along the ventral visual stream, particularly the inferior occipital and fusiform gyri, remained selective despite showing only 9%-25% of the object areas. However, these visually selective signals emerged ∼100 ms later for partial versus whole objects. These processing delays were particularly pronounced in higher visual areas within the ventral stream. This latency difference persisted when controlling for changes in contrast, signal amplitude, and the strength of selectivity. These results argue against a purely feedforward explanation of recognition from partial information, and provide spatiotemporal constraints on theories of object recognition that involve recurrent processing. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Repeated Δ9-Tetrahydrocannabinol Exposure in Adolescent Monkeys: Persistent Effects Selective for Spatial Working Memory

    PubMed Central

    Verrico, Christopher D.; Gu, Hong; Peterson, Melanie L.; Sampson, Allan R.; Lewis, David A.

    2014-01-01

    Objective Epidemiological findings suggest that, relative to adults, adolescents are more vulnerable to the adverse persistent effects of cannabis on working memory. However, the potential confounds inherent in human studies preclude direct determination of a cause-and-effect relationship between adolescent cannabis use and heightened susceptibility to persistent working memory impairments. Consequently, the authors examined the effects of repeated exposure to Δ9-tetrahydrocannabinol (THC) on performance of spatial and object working memory tasks in adolescent monkeys. Method Seven pairs of male adolescent rhesus monkeys, matched for baseline cognitive performance, received vehicle or THC intravenously 5 days/week for 6 months. Performance on spatial and object memory tasks was assessed 23 or 71 hours after drug administration throughout the study. In addition, acute effects on working memory were also assessed at the beginning and end of the 6-month period. Results Relative to the vehicle-exposed control animals, those with repeated THC exposure had a blunted trajectory of accuracy improvements on the spatial working memory task in a delay-dependent manner. Accuracy improvements on the object working memory task did not differ between groups. Relative to the acute effects of THC on working memory at the beginning of the study, neither sensitivity nor tolerance was evident after 6 months of THC exposure. Conclusions Because maturation of performance is later for spatial than for object working memory, these findings suggest that persistent effects of THC on cognitive abilities are more evident when exposure coincides with the developmental stage during which the underlying neural circuits are actively maturing. PMID:24577206

  7. Accurate Memory for Object Location by Individuals with Intellectual Disability: Absolute Spatial Tagging Instead of Configural Processing?

    ERIC Educational Resources Information Center

    Giuliani, Fabienne; Favrod, Jerome; Grasset, Francois; Schenk, Francoise

    2011-01-01

    Using head-mounted eye tracker material, we assessed spatial recognition abilities (e.g., reaction to object permutation, removal or replacement with a new object) in participants with intellectual disabilities. The "Intellectual Disabilities (ID)" group (n = 40) obtained a score totalling a 93.7% success rate, whereas the "Normal Control" group…

  8. Parental prey selection affects risk-taking behaviour and spatial learning in avian offspring

    PubMed Central

    Arnold, Kathryn E; Ramsay, Scot L; Donaldson, Christine; Adam, Aileen

    2007-01-01

    Early nutrition shapes life history. Parents should, therefore, provide a diet that will optimize the nutrient intake of their offspring. In a number of passerines, there is an often observed, but unexplained, peak in spider provisioning during chick development. We show that the proportion of spiders in the diet of nestling blue tits, Cyanistes caeruleus, varies significantly with the age of chicks but is unrelated to the timing of breeding or spider availability. Moreover, this parental prey selection supplies nestlings with high levels of taurine particularly at younger ages. This amino acid is known to be both vital and limiting for mammalian development and consequently found in high concentrations in placenta and milk. Based on the known roles of taurine in mammalian brain development and function, we then asked whether by supplying taurine-rich spiders, avian parents influence the stress responsiveness and cognitive function of their offspring. To test this, we provided wild blue tit nestlings with either a taurine supplement or control treatment once daily from the ages of 2–14 days. Then pairs of size- and sex-matched siblings were brought into captivity for behavioural testing. We found that juveniles that had received additional taurine as neonates took significantly greater risks when investigating novel objects than controls. Taurine birds were also more successful at a spatial learning task than controls. Additionally, those individuals that succeeded at a spatial learning task had shown intermediate levels of risk taking. Non-learners were generally very risk-averse controls. Early diet therefore has downstream impacts on behavioural characteristics that could affect fitness via foraging and competitive performance. Fine-scale prey selection is a mechanism by which parents can manipulate the behavioural phenotype of offspring. PMID:17698490

  9. Parental prey selection affects risk-taking behaviour and spatial learning in avian offspring.

    PubMed

    Arnold, Kathryn E; Ramsay, Scot L; Donaldson, Christine; Adam, Aileen

    2007-10-22

    Early nutrition shapes life history. Parents should, therefore, provide a diet that will optimize the nutrient intake of their offspring. In a number of passerines, there is an often observed, but unexplained, peak in spider provisioning during chick development. We show that the proportion of spiders in the diet of nestling blue tits, Cyanistes caeruleus, varies significantly with the age of chicks but is unrelated to the timing of breeding or spider availability. Moreover, this parental prey selection supplies nestlings with high levels of taurine particularly at younger ages. This amino acid is known to be both vital and limiting for mammalian development and consequently found in high concentrations in placenta and milk. Based on the known roles of taurine in mammalian brain development and function, we then asked whether by supplying taurine-rich spiders, avian parents influence the stress responsiveness and cognitive function of their offspring. To test this, we provided wild blue tit nestlings with either a taurine supplement or control treatment once daily from the ages of 2-14 days. Then pairs of size- and sex-matched siblings were brought into captivity for behavioural testing. We found that juveniles that had received additional taurine as neonates took significantly greater risks when investigating novel objects than controls. Taurine birds were also more successful at a spatial learning task than controls. Additionally, those individuals that succeeded at a spatial learning task had shown intermediate levels of risk taking. Non-learners were generally very risk-averse controls. Early diet therefore has downstream impacts on behavioural characteristics that could affect fitness via foraging and competitive performance. Fine-scale prey selection is a mechanism by which parents can manipulate the behavioural phenotype of offspring.

  10. Color selectivity of the spatial congruency effect: evidence from the focused attention paradigm.

    PubMed

    Makovac, Elena; Gerbino, Walter

    2014-01-01

    The multisensory response enhancement (MRE), occurring when the response to a visual target integrated with a spatially congruent sound is stronger than the response to the visual target alone, is believed to be mediated by the superior colliculus (SC) (Stein & Meredith, 1993). Here, we used a focused attention paradigm to show that the spatial congruency effect occurs with red (SC-effective) but not blue (SC-ineffective) visual stimuli, when presented with spatially congruent sounds. To isolate the chromatic component of SC-ineffective targets and to demonstrate the selectivity of the spatial congruency effect we used the random luminance modulation technique (Experiment 1) and the tritanopic technique (Experiment 2). Our results indicate that the spatial congruency effect does not require the distribution of attention over different sensory modalities and provide correlational evidence that the SC mediates the effect.

  11. Advanced display object selection methods for enhancing user-computer productivity

    NASA Technical Reports Server (NTRS)

    Osga, Glenn A.

    1993-01-01

    The User-Interface Technology Branch at NCCOSC RDT&E Division has been conducting a series of studies to address the suitability of commercial off-the-shelf (COTS) graphic user-interface (GUI) methods for efficiency and performance in critical naval combat systems. This paper presents an advanced selection algorithm and method developed to increase user performance when making selections on tactical displays. The method has also been applied with considerable success to a variety of cursor and pointing tasks. Typical GUI's allow user selection by: (1) moving a cursor with a pointing device such as a mouse, trackball, joystick, touchscreen; and (2) placing the cursor on the object. Examples of GUI objects are the buttons, icons, folders, scroll bars, etc. used in many personal computer and workstation applications. This paper presents an improved method of selection and the theoretical basis for the significant performance gains achieved with various input devices tested. The method is applicable to all GUI styles and display sizes, and is particularly useful for selections on small screens such as notebook computers. Considering the amount of work-hours spent pointing and clicking across all styles of available graphic user-interfaces, the cost/benefit in applying this method to graphic user-interfaces is substantial, with the potential for increasing productivity across thousands of users and applications.

  12. Object-based warping: an illusory distortion of space within objects.

    PubMed

    Vickery, Timothy J; Chun, Marvin M

    2010-12-01

    Visual objects are high-level primitives that are fundamental to numerous perceptual functions, such as guidance of attention. We report that objects warp visual perception of space in such a way that spatial distances within objects appear to be larger than spatial distances in ground regions. When two dots were placed inside a rectangular object, they appeared farther apart from one another than two dots with identical spacing outside of the object. To investigate whether this effect was object based, we measured the distortion while manipulating the structure surrounding the dots. Object displays were constructed with a single object, multiple objects, a partially occluded object, and an illusory object. Nonobject displays were constructed to be comparable to object displays in low-level visual attributes. In all cases, the object displays resulted in a more powerful distortion of spatial perception than comparable non-object-based displays. These results suggest that perception of space within objects is warped.

  13. Cochlear Implant Spatial Selectivity with Monopolar, Bipolar and Tripolar Stimulation

    PubMed Central

    Zhu, Ziyan; Tang, Qing; Zeng, Fan-Gang; Guan, Tian; Ye, Datian

    2011-01-01

    Sharp spatial selectivity is critical to auditory performance, particularly in pitch related tasks. Most contemporary cochlear implants have employed monopolar stimulation that produces broad electric fields, which presumably contribute to poor pitch and pitch-related performance by implant users. Bipolar or tripolar stimulation can generate focused electric fields but requires higher current to reach threshold and, more interestingly, has not produced any apparent improvement in cochlear implant performance. The present study addressed this dilemma by measuring psychophysical and physiological spatial selectivity with both broad and focused stimulations in the same cohort of subjects. Different current levels were adjusted by systematically measuring loudness growth for each stimulus, each stimulation mode, and in each subject. Both psychophysical and physiological measures showed that, although focused stimulation produced significantly sharper spatial tuning than monopolar stimulation, it could shift the tuning position or even split the tuning tips. The altered tuning with focused stimulation is interpreted as a result of poor electrode-to-neuron interface in the cochlea, and is suggested to be mainly responsible for the lack of consistent improvement in implant performance. A linear model could satisfactorily quantify the psychophysical and physiological data and derive the tuning width. Significant correlation was found between the individual physiological and psychophysical tuning widths, and the correlation was improved by log-linearly transforming the physiological data to predict the psychophysical data. Because the physiological measure took only one-tenth of the time of the psychophysical measure, the present model is of high clinical significance in terms of predicting and improving cochlear implant performance. PMID:22138630

  14. Relationships Among Peripheral and Central Electrophysiological Measures of Spatial and Spectral Selectivity and Speech Perception in Cochlear Implant Users

    PubMed Central

    Scheperle, Rachel A.; Abbas, Paul J.

    2014-01-01

    Objectives The ability to perceive speech is related to the listener’s ability to differentiate among frequencies (i.e., spectral resolution). Cochlear implant (CI) users exhibit variable speech-perception and spectral-resolution abilities, which can be attributed in part to the extent of electrode interactions at the periphery (i.e., spatial selectivity). However, electrophysiological measures of peripheral spatial selectivity have not been found to correlate with speech perception. The purpose of this study was to evaluate auditory processing at the periphery and cortex using both simple and spectrally complex stimuli to better understand the stages of neural processing underlying speech perception. The hypotheses were that (1) by more completely characterizing peripheral excitation patterns than in previous studies, significant correlations with measures of spectral selectivity and speech perception would be observed, (2) adding information about processing at a level central to the auditory nerve would account for additional variability in speech perception, and (3) responses elicited with spectrally complex stimuli would be more strongly correlated with speech perception than responses elicited with spectrally simple stimuli. Design Eleven adult CI users participated. Three experimental processor programs (MAPs) were created to vary the likelihood of electrode interactions within each participant. For each MAP, a subset of 7 of 22 intracochlear electrodes was activated: adjacent (MAP 1), every-other (MAP 2), or every third (MAP 3). Peripheral spatial selectivity was assessed using the electrically evoked compound action potential (ECAP) to obtain channel-interaction functions for all activated electrodes (13 functions total). Central processing was assessed by eliciting the auditory change complex (ACC) with both spatial (electrode pairs) and spectral (rippled noise) stimulus changes. Speech-perception measures included vowel-discrimination and the Bamford

  15. Search strategy selection in the Morris water maze indicates allocentric map formation during learning that underpins spatial memory formation.

    PubMed

    Rogers, Jake; Churilov, Leonid; Hannan, Anthony J; Renoir, Thibault

    2017-03-01

    Using a Matlab classification algorithm, we demonstrate that a highly salient distal cue array is required for significantly increased likelihoods of spatial search strategy selection during Morris water maze spatial learning. We hypothesized that increased spatial search strategy selection during spatial learning would be the key measure demonstrating the formation of an allocentric map to the escape location. Spatial memory, as indicated by quadrant preference for the area of the pool formally containing the hidden platform, was assessed as the main measure that this allocentric map had formed during spatial learning. Our C57BL/6J wild-type (WT) mice exhibit quadrant preference in the highly salient cue paradigm but not the low, corresponding with a 120% increase in the odds of a spatial search strategy selection during learning. In contrast, quadrant preference remains absent in serotonin 1A receptor (5-HT 1A R) knockout (KO) mice, who exhibit impaired search strategy selection during spatial learning. Additionally, we also aimed to assess the impact of the quality of the distal cue array on the spatial learning curves of both latency to platform and path length using mixed-effect regression models and found no significant associations or interactions. In contrast, we demonstrated that the spatial learning curve for search strategy selection was absent during training in the low saliency paradigm. Therefore, we propose that allocentric search strategy selection during spatial learning is the learning parameter in mice that robustly indicates the formation of a cognitive map for the escape goal location. These results also suggest that both latency to platform and path length spatial learning curves do not discriminate between allocentric and egocentric spatial learning and do not reliably predict spatial memory formation. We also show that spatial memory, as indicated by the absolute time in the quadrant formerly containing the hidden platform alone (without

  16. The VISTA Carina Nebula Survey. II. Spatial distribution of the infrared-excess-selected young stellar population

    NASA Astrophysics Data System (ADS)

    Zeidler, P.; Preibisch, T.; Ratzka, T.; Roccatagliata, V.; Petr-Gotzens, M. G.

    2016-01-01

    We performed a deep wide-field (6.76 sq. deg) near-infrared survey with the VISTA telescope that covers the entire extent of the Carina nebula complex (CNC). The point-source catalog created from these data contains around four million individual objects down to masses of 0.1 M⊙. We present a statistical study of the large-scale spatial distribution and an investigation of the clustering properties of infrared-excesses objects, which are used to trace disk-bearing young stellar objects (YSOs). A selection based on a near-infrared (J-H) versus (H-Ks) color-color diagram shows an almost uniform distribution over the entire observed area. We interpret this as a result of the very high degree of background contamination that arises from the Carina Nebula's location close to the Galactic plane. Complementing the VISTA near-infrared catalog with Spitzer IRAC mid-infrared photometry improves the situation of the background contamination considerably. We find that a (J-H) versus (Ks- [4.5]) color-color diagram is well suited to tracing the population of YSO-candidates (cYSOs) by their infrared excess. We identify 8781 sources with strong infrared excess, which we consider as cYSOs. This sample is used to investigate the spatial distribution of the cYSOs with a nearest-neighbor analysis. The surface density distribution of cYSOs agrees well with the shape of the clouds as seen in our Herschel far-infrared survey. The strong decline in the surface density of excess sources outside the area of the clouds supports the hypothesis that our excess-selected sample consists predominantly of cYSOs with a low level of background contamination. This analysis allows us to identify 14 groups of cYSOs outside the central area.Our results suggest that the total population of cYSOs in the CNC comprises about 164 000 objects, with a substantial fraction (~35%) located in the northern, still not well studied parts. Our cluster analysis suggests that roughly half of the cYSOs constitute a

  17. Transport spatial model for the definition of green routes for city logistics centers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pamučar, Dragan, E-mail: dpamucar@gmail.com; Gigović, Ljubomir, E-mail: gigoviclj@gmail.com; Ćirović, Goran, E-mail: cirovic@sezampro.rs

    This paper presents a transport spatial decision support model (TSDSM) for carrying out the optimization of green routes for city logistics centers. The TSDSM model is based on the integration of the multi-criteria method of Weighted Linear Combination (WLC) and the modified Dijkstra algorithm within a geographic information system (GIS). The GIS is used for processing spatial data. The proposed model makes it possible to plan routes for green vehicles and maximize the positive effects on the environment, which can be seen in the reduction of harmful gas emissions and an increase in the air quality in highly populated areas.more » The scheduling of delivery vehicles is given as a problem of optimization in terms of the parameters of: the environment, health, use of space and logistics operating costs. Each of these input parameters was thoroughly examined and broken down in the GIS into criteria which further describe them. The model presented here takes into account the fact that logistics operators have a limited number of environmentally friendly (green) vehicles available. The TSDSM was tested on a network of roads with 127 links for the delivery of goods from the city logistics center to the user. The model supports any number of available environmentally friendly or environmentally unfriendly vehicles consistent with the size of the network and the transportation requirements. - Highlights: • Model for routing light delivery vehicles in urban areas. • Optimization of green routes for city logistics centers. • The proposed model maximizes the positive effects on the environment. • The model was tested on a real network.« less

  18. The Synaptic and Morphological Basis of Orientation Selectivity in a Polyaxonal Amacrine Cell of the Rabbit Retina.

    PubMed

    Murphy-Baum, Benjamin L; Taylor, W Rowland

    2015-09-30

    Much of the computational power of the retina derives from the activity of amacrine cells, a large and diverse group of GABAergic and glycinergic inhibitory interneurons. Here, we identify an ON-type orientation-selective, wide-field, polyaxonal amacrine cell (PAC) in the rabbit retina and demonstrate how its orientation selectivity arises from the structure of the dendritic arbor and the pattern of excitatory and inhibitory inputs. Excitation from ON bipolar cells and inhibition arising from the OFF pathway converge to generate a quasi-linear integration of visual signals in the receptive field center. This serves to suppress responses to high spatial frequencies, thereby improving sensitivity to larger objects and enhancing orientation selectivity. Inhibition also regulates the magnitude and time course of excitatory inputs to this PAC through serial inhibitory connections onto the presynaptic terminals of ON bipolar cells. This presynaptic inhibition is driven by graded potentials within local microcircuits, similar in extent to the size of single bipolar cell receptive fields. Additional presynaptic inhibition is generated by spiking amacrine cells on a larger spatial scale covering several hundred microns. The orientation selectivity of this PAC may be a substrate for the inhibition that mediates orientation selectivity in some types of ganglion cells. Significance statement: The retina comprises numerous excitatory and inhibitory circuits that encode specific features in the visual scene, such as orientation, contrast, or motion. Here, we identify a wide-field inhibitory neuron that responds to visual stimuli of a particular orientation, a feature selectivity that is primarily due to the elongated shape of the dendritic arbor. Integration of convergent excitatory and inhibitory inputs from the ON and OFF visual pathways suppress responses to small objects and fine textures, thus enhancing selectivity for larger objects. Feedback inhibition regulates the

  19. Spatially-Heterodyned Holography

    DOEpatents

    Thomas, Clarence E [Knoxville, TN; Hanson, Gregory R [Clinton, TN

    2006-02-21

    A method of recording a spatially low-frequency heterodyne hologram, including spatially heterodyne fringes for Fourier analysis, includes: splitting a laser beam into a reference beam and an object beam; interacting the object beam with an object; focusing the reference beam and the object beam at a focal plane of a digital recorder to form a spatially low-frequency heterodyne hologram including spatially heterodyne fringes for Fourier analysis; digital recording the spatially low-frequency heterodyne hologram; Fourier transforming axes of the recorded spatially low-frequency heterodyne hologram including spatially heterodyne fringes in Fourier space to sit on top of a heterodyne carrier frequency defined by an angle between the reference beam and the object beam; cutting off signals around an origin; and performing an inverse Fourier transform.

  20. Women match men when learning a spatial skill.

    PubMed

    Spence, Ian; Yu, Jingjie Jessica; Feng, Jing; Marshman, Jeff

    2009-07-01

    Meta-analytic studies have concluded that although training improves spatial cognition in both sexes, the male advantage generally persists. However, because some studies run counter to this pattern, a closer examination of the anomaly is warranted. The authors investigated the acquisition of a basic skill (spatial selective attention) using a matched-pair two-wave longitudinal design. Participants were screened with the use of an attentional visual field task, with the objective of selecting and matching 10 male-female pairs, over a wide range (30% to 57% correct). Subsequently, 20 participants 17-23 years of age (selected from 43 screened) were trained for 10 hr (distributed over several sessions) by playing a first-person shooter video game. This genre is known to be highly effective in enhancing spatial skills. All 20 participants improved, with matched members of the male-female pairs achieving very similar gains, independent of starting level. This is consistent with the hypothesis that the learning trajectory of women is not inferior to that of men when acquiring a basic spatial skill. Training methods that develop basic spatial skills may be essential to achieve gender parity in both basic and complex spatial tasks.

  1. Selective spatial attention modulates bottom-up informational masking of speech

    PubMed Central

    Carlile, Simon; Corkhill, Caitlin

    2015-01-01

    To hear out a conversation against other talkers listeners overcome energetic and informational masking. Largely attributed to top-down processes, information masking has also been demonstrated using unintelligible speech and amplitude-modulated maskers suggesting bottom-up processes. We examined the role of speech-like amplitude modulations in information masking using a spatial masking release paradigm. Separating a target talker from two masker talkers produced a 20 dB improvement in speech reception threshold; 40% of which was attributed to a release from informational masking. When across frequency temporal modulations in the masker talkers are decorrelated the speech is unintelligible, although the within frequency modulation characteristics remains identical. Used as a masker as above, the information masking accounted for 37% of the spatial unmasking seen with this masker. This unintelligible and highly differentiable masker is unlikely to involve top-down processes. These data provides strong evidence of bottom-up masking involving speech-like, within-frequency modulations and that this, presumably low level process, can be modulated by selective spatial attention. PMID:25727100

  2. Selective spatial attention modulates bottom-up informational masking of speech.

    PubMed

    Carlile, Simon; Corkhill, Caitlin

    2015-03-02

    To hear out a conversation against other talkers listeners overcome energetic and informational masking. Largely attributed to top-down processes, information masking has also been demonstrated using unintelligible speech and amplitude-modulated maskers suggesting bottom-up processes. We examined the role of speech-like amplitude modulations in information masking using a spatial masking release paradigm. Separating a target talker from two masker talkers produced a 20 dB improvement in speech reception threshold; 40% of which was attributed to a release from informational masking. When across frequency temporal modulations in the masker talkers are decorrelated the speech is unintelligible, although the within frequency modulation characteristics remains identical. Used as a masker as above, the information masking accounted for 37% of the spatial unmasking seen with this masker. This unintelligible and highly differentiable masker is unlikely to involve top-down processes. These data provides strong evidence of bottom-up masking involving speech-like, within-frequency modulations and that this, presumably low level process, can be modulated by selective spatial attention.

  3. Effects of Spatial and Feature Attention on Disparity-Rendered Structure-From-Motion Stimuli in the Human Visual Cortex

    PubMed Central

    Ip, Ifan Betina; Bridge, Holly; Parker, Andrew J.

    2014-01-01

    An important advance in the study of visual attention has been the identification of a non-spatial component of attention that enhances the response to similar features or objects across the visual field. Here we test whether this non-spatial component can co-select individual features that are perceptually bound into a coherent object. We combined human psychophysics and functional magnetic resonance imaging (fMRI) to demonstrate the ability to co-select individual features from perceptually coherent objects. Our study used binocular disparity and visual motion to define disparity structure-from-motion (dSFM) stimuli. Although the spatial attention system induced strong modulations of the fMRI response in visual regions, the non-spatial system’s ability to co-select features of the dSFM stimulus was less pronounced and variable across subjects. Our results demonstrate that feature and global feature attention effects are variable across participants, suggesting that the feature attention system may be limited in its ability to automatically select features within the attended object. Careful comparison of the task design suggests that even minor differences in the perceptual task may be critical in revealing the presence of global feature attention. PMID:24936974

  4. Spatial enhancement of ECG using diagnostic similarity score based lead selective multi-scale linear model.

    PubMed

    Nallikuzhy, Jiss J; Dandapat, S

    2017-06-01

    In this work, a new patient-specific approach to enhance the spatial resolution of ECG is proposed and evaluated. The proposed model transforms a three-lead ECG into a standard twelve-lead ECG thereby enhancing its spatial resolution. The three leads used for prediction are obtained from the standard twelve-lead ECG. The proposed model takes advantage of the improved inter-lead correlation in wavelet domain. Since the model is patient-specific, it also selects the optimal predictor leads for a given patient using a lead selection algorithm. The lead selection algorithm is based on a new diagnostic similarity score which computes the diagnostic closeness between the original and the spatially enhanced leads. Standard closeness measures are used to assess the performance of the model. The similarity in diagnostic information between the original and the spatially enhanced leads are evaluated using various diagnostic measures. Repeatability and diagnosability are performed to quantify the applicability of the model. A comparison of the proposed model is performed with existing models that transform a subset of standard twelve-lead ECG into the standard twelve-lead ECG. From the analysis of the results, it is evident that the proposed model preserves diagnostic information better compared to other models. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Mental Spatial Transformations of Objects and Bodies: Different Developmental Trajectories in Children from 7 to 11 Years of Age

    ERIC Educational Resources Information Center

    Crescentini, Cristiano; Fabbro, Franco; Urgesi, Cosimo

    2014-01-01

    Despite the large body of knowledge on adults suggesting that 2 basic types of mental spatial transformation--namely, object-based and egocentric perspective transformations--are dissociable and specialized for different situations, there is much less research investigating the developmental aspects of such spatial transformation systems. Here, an…

  6. Language supports young children's use of spatial relations to remember locations.

    PubMed

    Miller, Hilary E; Patterson, Rebecca; Simmering, Vanessa R

    2016-05-01

    Two experiments investigated the role of language in children's spatial recall performance. In particular, we assessed whether selecting an intrinsic reference frame could be improved through verbal encoding. Selecting an intrinsic reference frame requires remembering locations relative to nearby objects independent of one's body (egocentric) or distal environmental (allocentric) cues, and does not reliably occur in children under 5 years of age (Nardini, Burgess, Breckenridge, & Atkinson, 2006). The current studies tested the relation between spatial language and 4-year-olds' selection of an intrinsic reference frame in spatial recall. Experiment 1 showed that providing 4-year-olds with location-descriptive cues during (Exp. 1a) or before (Exp. 1b) the recall task improved performance both overall and specifically on trials relying most on an intrinsic reference frame. Additionally, children's recall performance was predicted by their verbal descriptions of the task space (Exp. 1a control condition). Non-verbally highlighting relations among objects during the recall task (Exp. 2) supported children's performance relative to the control condition, but significantly less than the location-descriptive cues. These results suggest that the ability to verbally represent relations is a potential mechanism that could account for developmental changes in the selection of an intrinsic reference frame during spatial recall. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. SU-C-209-05: Monte Carlo Model of a Prototype Backscatter X-Ray (BSX) Imager for Projective and Selective Object-Plane Imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rolison, L; Samant, S; Baciak, J

    Purpose: To develop a Monte Carlo N-Particle (MCNP) model for the validation of a prototype backscatter x-ray (BSX) imager, and optimization of BSX technology for medical applications, including selective object-plane imaging. Methods: BSX is an emerging technology that represents an alternative to conventional computed tomography (CT) and projective digital radiography (DR). It employs detectors located on the same side as the incident x-ray source, making use of backscatter and avoiding ring geometry to enclose the imaging object. Current BSX imagers suffer from low spatial resolution. A MCNP model was designed to replicate a BSX prototype used for flaw detection inmore » industrial materials. This prototype consisted of a 1.5mm diameter 60kVp pencil beam surrounded by a ring of four 5.0cm diameter NaI scintillation detectors. The imaging phantom consisted of a 2.9cm thick aluminum plate with five 0.6cm diameter holes drilled halfway. The experimental image was created using a raster scanning motion (in 1.5mm increments). Results: A qualitative comparison between the physical and simulated images showed very good agreement with 1.5mm spatial resolution in plane perpendicular to incident x-ray beam. The MCNP model developed the concept of radiography by selective plane detection (RSPD) for BSX, whereby specific object planes can be imaged by varying kVp. 10keV increments in mean x-ray energy yielded 4mm thick slice resolution in the phantom. Image resolution in the MCNP model can be further increased by increasing the number of detectors, and decreasing raster step size. Conclusion: MCNP modelling was used to validate a prototype BSX imager and introduce the RSPD concept, allowing for selective object-plane imaging. There was very good visual agreement between the experimental and MCNP imaging. Beyond optimizing system parameters for the existing prototype, new geometries can be investigated for volumetric image acquisition in medical applications. This material

  8. Multi-Object Spectroscopy with MUSE

    NASA Astrophysics Data System (ADS)

    Kelz, A.; Kamann, S.; Urrutia, T.; Weilbacher, P.; Bacon, R.

    2016-10-01

    Since 2014, MUSE, the Multi-Unit Spectroscopic Explorer, is in operation at the ESO-VLT. It combines a superb spatial sampling with a large wavelength coverage. By design, MUSE is an integral-field instrument, but its field-of-view and large multiplex make it a powerful tool for multi-object spectroscopy too. Every data-cube consists of 90,000 image-sliced spectra and 3700 monochromatic images. In autumn 2014, the observing programs with MUSE have commenced, with targets ranging from distant galaxies in the Hubble Deep Field to local stellar populations, star formation regions and globular clusters. This paper provides a brief summary of the key features of the MUSE instrument and its complex data reduction software. Some selected examples are given, how multi-object spectroscopy for hundreds of continuum and emission-line objects can be obtained in wide, deep and crowded fields with MUSE, without the classical need for any target pre-selection.

  9. Procedural Factors That Affect Psychophysical Measures of Spatial Selectivity in Cochlear Implant Users

    PubMed Central

    Deeks, John M.; Carlyon, Robert P.

    2015-01-01

    Behavioral measures of spatial selectivity in cochlear implants are important both for guiding the programing of individual users’ implants and for the evaluation of different stimulation methods. However, the methods used are subject to a number of confounding factors that can contaminate estimates of spatial selectivity. These factors include off-site listening, charge interactions between masker and probe pulses in interleaved masking paradigms, and confusion effects in forward masking. We review the effects of these confounds and discuss methods for minimizing them. We describe one such method in which the level of a 125-pps masker is adjusted so as to mask a 125-pps probe, and where the masker and probe pulses are temporally interleaved. Five experiments describe the method and evaluate the potential roles of the different potential confounding factors. No evidence was obtained for off-site listening of the type observed in acoustic hearing. The choice of the masking paradigm was shown to alter the measured spatial selectivity. For short gaps between masker and probe pulses, both facilitation and refractory mechanisms had an effect on masking; this finding should inform the choice of stimulation rate in interleaved masking experiments. No evidence for confusion effects in forward masking was revealed. It is concluded that the proposed method avoids many potential confounds but that the choice of method should depend on the research question under investigation. PMID:26420785

  10. Examining spatial patterns of selection and use for an altered predator guild

    USGS Publications Warehouse

    Organ, John F.; Mumma, Matthew; Holbrook, Joseph D.; Rayl, Nathaniel D.; Zieminski, Christopher J.; Fuller, Todd K.; Mahoney, Shane P.; Waits, Lisette P.

    2017-01-01

    Anthropogenic disturbances have altered species’ distributions potentially impacting interspecific interactions. Interference competition is when one species denies a competing species access to a resource. One mechanism of interference competition is aggression, which can result in altered space-use of a subordinate species due to the threat of harm, otherwise known as a ‘landscape of fear’. Alternatively, subordinates might outcompete dominant species in resource-poor environments via a superior ability to extract resources. Our goal was to evaluate spatial predictions of the ‘landscape of fear’ hypothesis for a carnivore guild in Newfoundland, Canada, where coyotes recently immigrated. Native Newfoundland carnivores include red foxes, Canada lynx, and black bears. We predicted foxes and lynx would avoid coyotes because of their larger size and similar dietary niches. We used scat-detecting dogs and genetic techniques to locate and identify predator scats. We then built resource selection functions and tested for avoidance by incorporating predicted values of selection for the alternative species into the best supported models of each species. We found multiple negative relationships, but notably did not find avoidance by foxes of areas selected by coyotes. While we did find that lynx avoided coyotes, we also found a reciprocal relationship. The observed patterns suggest spatial partitioning and not coyote avoidance, although avoidance could still be occurring at different spatial or temporal scales. Furthermore, Newfoundland’s harsh climate and poor soils may swing the pendulum of interspecific interactions from interference competition to exploitative competition, where subordinates outcompete dominant competitors through a superior ability to extract resources.

  11. Examining spatial patterns of selection and use for an altered predator guild.

    PubMed

    Mumma, Matthew A; Holbrook, Joseph D; Rayl, Nathaniel D; Zieminski, Christopher J; Fuller, Todd K; Organ, John F; Mahoney, Shane P; Waits, Lisette P

    2017-12-01

    Anthropogenic disturbances have altered species' distributions potentially impacting interspecific interactions. Interference competition is when one species denies a competing species access to a resource. One mechanism of interference competition is aggression, which can result in altered space-use of a subordinate species due to the threat of harm, otherwise known as a 'landscape of fear'. Alternatively, subordinates might outcompete dominant species in resource-poor environments via a superior ability to extract resources. Our goal was to evaluate spatial predictions of the 'landscape of fear' hypothesis for a carnivore guild in Newfoundland, Canada, where coyotes recently immigrated. Native Newfoundland carnivores include red foxes, Canada lynx, and black bears. We predicted foxes and lynx would avoid coyotes because of their larger size and similar dietary niches. We used scat-detecting dogs and genetic techniques to locate and identify predator scats. We then built resource selection functions and tested for avoidance by incorporating predicted values of selection for the alternative species into the best supported models of each species. We found multiple negative relationships, but notably did not find avoidance by foxes of areas selected by coyotes. While we did find that lynx avoided coyotes, we also found a reciprocal relationship. The observed patterns suggest spatial partitioning and not coyote avoidance, although avoidance could still be occurring at different spatial or temporal scales. Furthermore, Newfoundland's harsh climate and poor soils may swing the pendulum of interspecific interactions from interference competition to exploitative competition, where subordinates outcompete dominant competitors through a superior ability to extract resources.

  12. Readout from iconic memory and selective spatial attention involve similar neural processes.

    PubMed

    Ruff, Christian C; Kristjánsson, Arni; Driver, Jon

    2007-10-01

    Iconic memory and spatial attention are often considered separately, but they may have functional similarities. Here we provide functional magnetic resonance imaging evidence for some common underlying neural effects. Subjects judged three visual stimuli in one hemifield of a bilateral array comprising six stimuli. The relevant hemifield for partial report was indicated by an auditory cue, administered either before the visual array (precue, spatial attention) or shortly after the array (postcue, iconic memory). Pre- and postcues led to similar activity modulations in lateral occipital cortex contralateral to the cued side. This finding indicates that readout from iconic memory can have some neural effects similar to those of spatial attention. We also found common bilateral activation of a fronto-parietal network for postcue and precue trials. These neuroimaging data suggest that some common neural mechanisms underlie selective spatial attention and readout from iconic memory. Some differences were also found; compared with precues, postcues led to higher activity in the right middle frontal gyrus.

  13. Readout From Iconic Memory and Selective Spatial Attention Involve Similar Neural Processes

    PubMed Central

    Ruff, Christian C; Kristjánsson, Árni; Driver, Jon

    2007-01-01

    Iconic memory and spatial attention are often considered separately, but they may have functional similarities. Here we provide functional magnetic resonance imaging evidence for some common underlying neural effects. Subjects judged three visual stimuli in one hemifield of a bilateral array comprising six stimuli. The relevant hemifield for partial report was indicated by an auditory cue, administered either before the visual array (precue, spatial attention) or shortly after the array (postcue, iconic memory). Pre- and postcues led to similar activity modulations in lateral occipital cortex contralateral to the cued side. This finding indicates that readout from iconic memory can have some neural effects similar to those of spatial attention. We also found common bilateral activation of a fronto-parietal network for postcue and precue trials. These neuroimaging data suggest that some common neural mechanisms underlie selective spatial attention and readout from iconic memory. Some differences were also found; compared with precues, postcues led to higher activity in the right middle frontal gyrus. PMID:17894608

  14. Spatial coding of object typical size: evidence for a SNARC-like effect.

    PubMed

    Sellaro, Roberta; Treccani, Barbara; Job, Remo; Cubelli, Roberto

    2015-11-01

    The present study aimed to assess whether the representation of the typical size of objects can interact with response position codes in two-choice bimanual tasks, and give rise to a SNARC-like effect (faster responses when the representation of the typical size of the object to which the target stimulus refers corresponds to response side). Participants performed either a magnitude comparison task (in which they were required to judge whether the target was smaller or larger than a reference stimulus; Experiment 1) or a semantic decision task (in which they had to classify the target as belonging to either the category of living or non-living entities; Experiment 2). Target stimuli were pictures or written words referring to either typically large and small animals or inanimate objects. In both tasks, participants responded by pressing a left- or right-side button. Results showed that, regardless of the to-be-performed task (magnitude comparison or semantic decision) and stimulus format (picture or word), left responses were faster when the target represented typically small-sized entities, whereas right responses were faster for typically large-sized entities. These results provide evidence that the information about the typical size of objects is activated even if it is not requested by the task, and are consistent with the idea that objects' typical size is automatically spatially coded, as has been proposed to occur for number magnitudes. In this representation, small objects would be on the left and large objects would be on the right. Alternative interpretations of these results are also discussed.

  15. Exploring spatial change and gravity center movement for ecosystem services value using a spatially explicit ecosystem services value index and gravity model.

    PubMed

    He, Yingbin; Chen, Youqi; Tang, Huajun; Yao, Yanmin; Yang, Peng; Chen, Zhongxin

    2011-04-01

    Spatially explicit ecosystem services valuation and change is a newly developing area of research in the field of ecology. Using the Beijing region as a study area, the authors have developed a spatially explicit ecosystem services value index and implemented this to quantify and spatially differentiate ecosystem services value at 1-km grid resolution. A gravity model was developed to trace spatial change in the total ecosystem services value of the Beijing study area from a holistic point of view. Study results show that the total value of ecosystem services for the study area decreased by 19.75% during the period 1996-2006 (3,226.2739 US$×10(6) in 1996, 2,589.0321 US$×10(6) in 2006). However, 27.63% of the total area of the Beijing study area increased in ecosystem services value. Spatial differences in ecosystem services values for both 1996 and 2006 are very clear. The center of gravity of total ecosystem services value for the study area moved 32.28 km northwestward over the 10 years due to intensive human intervention taking place in southeast Beijing. The authors suggest that policy-makers should pay greater attention to ecological protection under conditions of rapid socio-economic development and increase the area of green belt in the southeastern part of Beijing.

  16. Cochlear-implant spatial selectivity with monopolar, bipolar and tripolar stimulation.

    PubMed

    Zhu, Ziyan; Tang, Qing; Zeng, Fan-Gang; Guan, Tian; Ye, Datian

    2012-01-01

    Sharp spatial selectivity is critical to auditory performance, particularly in pitch-related tasks. Most contemporary cochlear implants have employed monopolar stimulation that produces broad electric fields, which presumably contribute to poor pitch and pitch-related performance by implant users. Bipolar or tripolar stimulation can generate focused electric fields but requires higher current to reach threshold and, more interestingly, has not produced any apparent improvement in cochlear-implant performance. The present study addressed this dilemma by measuring psychophysical and physiological spatial selectivity with both broad and focused stimulations in the same cohort of subjects. Different current levels were adjusted by systematically measuring loudness growth for each stimulus, each stimulation mode, and in each subject. Both psychophysical and physiological measures showed that, although focused stimulation produced significantly sharper spatial tuning than monopolar stimulation, it could shift the tuning position or even split the tuning tips. The altered tuning with focused stimulation is interpreted as a result of poor electrode-to-neuron interface in the cochlea, and is suggested to be mainly responsible for the lack of consistent improvement in implant performance. A linear model could satisfactorily quantify the psychophysical and physiological data and derive the tuning width. Significant correlation was found between the individual physiological and psychophysical tuning widths, and the correlation was improved by log-linearly transforming the physiological data to predict the psychophysical data. Because the physiological measure took only one-tenth of the time of the psychophysical measure, the present model is of high clinical significance in terms of predicting and improving cochlear-implant performance. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. Temporal Limitations in the Effective Binding of Attended Target Attributes in the Mutual Masking of Visual Objects

    ERIC Educational Resources Information Center

    Hommuk, Karita; Bachmann, Talis

    2009-01-01

    The problem of feature binding has been examined under conditions of distributed attention or with spatially dispersed stimuli. We studied binding by asking whether selective attention to a feature of a masked object enables perceptual access to the other features of that object using conditions in which spatial attention was directed at a single…

  18. The contribution of multidimensional spatial analysis to a waste management policy: implementation of the ELECTRE method for characterizing transfer centers in the region of Oran

    NASA Astrophysics Data System (ADS)

    Saidi, A.; Trache, M. A.; Khelfi, M. F.

    2016-08-01

    The social and economic activity steadily growing in our cities creates a significant waste production in constantly evolving. The management of this waste is problematic because it is the center of many issues and interests. Indeed, any action or decision to the collection, transportation, treatment and disposal of waste should be considered in the economic, social, political and especially environmental aspect. A global Geomatic solution requires implementing a GIS with powerful multidimensional spatial analysis tools that support really waste management problem. Algeria has adopted a solution of waste landfill for all urban cities. In the Oran region, it exists three Centers Controlled landfill (CET) which the most important is that of Hassi-Bounif. This center currently meeting the needs of the region is unsustainable solution at the long-term because of its rapid saturation and its geographic location, which is still far from city centers (20-30 km) implying a negative impact on the vehicle park collecting such frequent breakdowns, the rapid degradation, slow delivery time and especially the high cost of the maintenance operation. This phenomenon is aggravated by the absence of real and actual initiatives targeting the recycling and recovery of waste, which makes the CET an endpoint for all types of waste. We present in this study, the use of the ELECTRE method (Multicriteria Analysis) integrated into a GIS to characterize the impact of the implementation of transfers centers at Oran region. The results of this study will accentuate the advantages of the activation of waste warehouse closer to the city, and relieving considerably the volume of transfer towards CET. The objective of our presentation is to show the leading role of the new Geomatics tools and the multidimensional spatial analysis in the apprehension of an environmental problem such the waste management and more generally in the urban management.

  19. Gravity Influences the Visual Representation of Object Tilt in Parietal Cortex

    PubMed Central

    Angelaki, Dora E.

    2014-01-01

    Sensory systems encode the environment in egocentric (e.g., eye, head, or body) reference frames, creating inherently unstable representations that shift and rotate as we move. However, it is widely speculated that the brain transforms these signals into an allocentric, gravity-centered representation of the world that is stable and independent of the observer's spatial pose. Where and how this representation may be achieved is currently unknown. Here we demonstrate that a subpopulation of neurons in the macaque caudal intraparietal area (CIP) visually encodes object tilt in nonegocentric coordinates defined relative to the gravitational vector. Neuronal responses to the tilt of a visually presented planar surface were measured with the monkey in different spatial orientations (upright and rolled left/right ear down) and then compared. This revealed a continuum of representations in which planar tilt was encoded in a gravity-centered reference frame in approximately one-tenth of the comparisons, intermediate reference frames ranging between gravity-centered and egocentric in approximately two-tenths of the comparisons, and in an egocentric reference frame in less than half of the comparisons. Altogether, almost half of the comparisons revealed a shift in the preferred tilt and/or a gain change consistent with encoding object orientation in nonegocentric coordinates. Through neural network modeling, we further show that a purely gravity-centered representation of object tilt can be achieved directly from the population activity of CIP-like units. These results suggest that area CIP may play a key role in creating a stable, allocentric representation of the environment defined relative to an “earth-vertical” direction. PMID:25339732

  20. Implementation of Multi-Agent Object Attention System Based on Biologically Inspired Attractor Selection

    NASA Astrophysics Data System (ADS)

    Hashimoto, Ryoji; Matsumura, Tomoya; Nozato, Yoshihiro; Watanabe, Kenji; Onoye, Takao

    A multi-agent object attention system is proposed, which is based on biologically inspired attractor selection model. Object attention is facilitated by using a video sequence and a depth map obtained through a compound-eye image sensor TOMBO. Robustness of the multi-agent system over environmental changes is enhanced by utilizing the biological model of adaptive response by attractor selection. To implement the proposed system, an efficient VLSI architecture is employed with reducing enormous computational costs and memory accesses required for depth map processing and multi-agent attractor selection process. According to the FPGA implementation result of the proposed object attention system, which is accomplished by using 7,063 slices, 640×512 pixel input images can be processed in real-time with three agents at a rate of 9fps in 48MHz operation.

  1. Space Operations Center orbit altitude selection strategy

    NASA Technical Reports Server (NTRS)

    Indrikis, J.; Myers, H. L.

    1982-01-01

    The strategy for the operational altitude selection has to respond to the Space Operation Center's (SOC) maintenance requirements and the logistics demands of the missions to be supported by the SOC. Three orbit strategies are developed: two are constant altitude, and one variable altitude. In order to minimize the effect of atmospheric uncertainty the dynamic altitude method is recommended. In this approach the SOC will operate at the optimum altitude for the prevailing atmospheric conditions and logistics model, provided that mission safety constraints are not violated. Over a typical solar activity cycle this method produces significant savings in the overall logistics cost.

  2. Independent effects of colour on object identification and memory.

    PubMed

    Lloyd-Jones, Toby J; Nakabayashi, Kazuyo

    2009-02-01

    We examined the effects of colour on object identification and memory using a study-test priming procedure with a coloured-object decision task at test (i.e., deciding whether an object is correctly coloured). Objects were selected to have a single associated colour and were either correctly or incorrectly coloured. In addition, object shape and colour were either spatially integrated (i.e., colour fell on the object surface) or spatially separated (i.e., colour formed the background to the object). Transforming the colour of an object from study to test (e.g., from a yellow banana to a purple banana) reduced priming of response times, as compared to when the object was untransformed. This utilization of colour information in object memory was not contingent upon colour falling on the object surface or whether the resulting configuration was of a correctly or incorrectly coloured object. In addition, we observed independent effects of colour on response times, whereby coloured-object decisions were more efficient for correctly than for incorrectly coloured objects but only when colour fell on the object surface. These findings provide evidence for two distinct mechanisms of shape-colour binding in object processing.

  3. Spatial-simultaneous working memory and selective interference in Down syndrome.

    PubMed

    Lanfranchi, Silvia; Mammarella, Irene C; Carretti, Barbara

    2015-01-01

    Several studies have suggested that individuals with Down syndrome (DS) have impairments in some aspects of the visuospatial domain. It has been reported that they are particularly impaired in the spatial-simultaneous working memory (WM) even in advantageous conditions such as when information is grouped to form a configuration. This study aimed to assess the performance of individuals with DS carrying out a spatial-simultaneous WM task in single and dual selective interference conditions in order to better explore the characteristics of their impairment in this area. Groups of individuals with DS and mentally age-matched typically developing (TD) children were asked to carry out a spatial-simultaneous WM task in a single- and in two dual-task conditions. In the single condition, the participants were required to recall an increasing number of positions of red squares presented simultaneously in a matrix. In the dual-task conditions, together with the spatial-simultaneous WM task, the participants were asked to carry out an articulatory suppression task or a tapping task. As has already been shown in other studies, individuals with DS were found to be impaired in carrying out a spatial-simultaneous WM task and showed a worse performance with respect to the TD group in both the conditions. These findings indicate that individuals with DS use the same coding modality as TD children of the same mental age. Just as the TD children, they performed lower in the dual- than in the single-task condition and there was no difference between the verbal and visuospatial conditions.

  4. Simultaneous Spectral-Spatial Feature Selection and Extraction for Hyperspectral Images.

    PubMed

    Zhang, Lefei; Zhang, Qian; Du, Bo; Huang, Xin; Tang, Yuan Yan; Tao, Dacheng

    2018-01-01

    In hyperspectral remote sensing data mining, it is important to take into account of both spectral and spatial information, such as the spectral signature, texture feature, and morphological property, to improve the performances, e.g., the image classification accuracy. In a feature representation point of view, a nature approach to handle this situation is to concatenate the spectral and spatial features into a single but high dimensional vector and then apply a certain dimension reduction technique directly on that concatenated vector before feed it into the subsequent classifier. However, multiple features from various domains definitely have different physical meanings and statistical properties, and thus such concatenation has not efficiently explore the complementary properties among different features, which should benefit for boost the feature discriminability. Furthermore, it is also difficult to interpret the transformed results of the concatenated vector. Consequently, finding a physically meaningful consensus low dimensional feature representation of original multiple features is still a challenging task. In order to address these issues, we propose a novel feature learning framework, i.e., the simultaneous spectral-spatial feature selection and extraction algorithm, for hyperspectral images spectral-spatial feature representation and classification. Specifically, the proposed method learns a latent low dimensional subspace by projecting the spectral-spatial feature into a common feature space, where the complementary information has been effectively exploited, and simultaneously, only the most significant original features have been transformed. Encouraging experimental results on three public available hyperspectral remote sensing datasets confirm that our proposed method is effective and efficient.

  5. Six mode selective fiber optic spatial multiplexer.

    PubMed

    Velazquez-Benitez, A M; Alvarado, J C; Lopez-Galmiche, G; Antonio-Lopez, J E; Hernández-Cordero, J; Sanchez-Mondragon, J; Sillard, P; Okonkwo, C M; Amezcua-Correa, R

    2015-04-15

    Low-loss all-fiber photonic lantern (PL) mode multiplexers (MUXs) capable of selectively exciting the first six fiber modes of a multimode fiber (LP01, LP11a, LP11b, LP21a, LP21b, and LP02) are demonstrated. Fabrication of the spatial mode multiplexers was successfully achieved employing a combination of either six step or six graded index fibers of four different core sizes. Insertion losses of 0.2-0.3 dB and mode purities above 9 dB are achieved. Moreover, it is demonstrated that the use of graded index fibers in a PL eases the length requirements of the adiabatic tapered transition and could enable scaling to large numbers.

  6. Repeated Δ9-tetrahydrocannabinol exposure in adolescent monkeys: persistent effects selective for spatial working memory.

    PubMed

    Verrico, Christopher D; Gu, Hong; Peterson, Melanie L; Sampson, Allan R; Lewis, David A

    2014-04-01

    Epidemiological findings suggest that, relative to adults, adolescents are more vulnerable to the adverse persistent effects of cannabis on working memory. However, the potential confounds inherent in human studies preclude direct determination of a cause-and-effect relationship between adolescent cannabis use and heightened susceptibility to persistent working memory impairments. Consequently, the authors examined the effects of repeated exposure to Δ9-tetrahydrocannabinol (THC) on performance of spatial and object working memory tasks in adolescent monkeys. Seven pairs of male adolescent rhesus monkeys, matched for baseline cognitive performance, received vehicle or THC intravenously 5 days/week for 6 months. Performance on spatial and object memory tasks was assessed 23 or 71 hours after drug administration throughout the study. In addition, acute effects on working memory were also assessed at the beginning and end of the 6-month period. Relative to the vehicle-exposed control animals, those with repeated THC exposure had a blunted trajectory of accuracy improvements on the spatial working memory task in a delay-dependent manner. Accuracy improvements on the object working memory task did not differ between groups. Relative to the acute effects of THC on working memory at the beginning of the study, neither sensitivity nor tolerance was evident after 6 months of THC exposure. Because maturation of performance is later for spatial than for object working memory, these findings suggest that persistent effects of THC on cognitive abilities are more evident when exposure coincides with the developmental stage during which the underlying neural circuits are actively maturing.

  7. Beyond time and space: The effect of a lateralized sustained attention task and brain stimulation on spatial and selective attention.

    PubMed

    Shalev, Nir; De Wandel, Linde; Dockree, Paul; Demeyere, Nele; Chechlacz, Magdalena

    2017-10-03

    The Theory of Visual Attention (TVA) provides a mathematical formalisation of the "biased competition" account of visual attention. Applying this model to individual performance in a free recall task allows the estimation of 5 independent attentional parameters: visual short-term memory (VSTM) capacity, speed of information processing, perceptual threshold of visual detection; attentional weights representing spatial distribution of attention (spatial bias), and the top-down selectivity index. While the TVA focuses on selection in space, complementary accounts of attention describe how attention is maintained over time, and how temporal processes interact with selection. A growing body of evidence indicates that different facets of attention interact and share common neural substrates. The aim of the current study was to modulate a spatial attentional bias via transfer effects, based on a mechanistic understanding of the interplay between spatial, selective and temporal aspects of attention. Specifically, we examined here: (i) whether a single administration of a lateralized sustained attention task could prime spatial orienting and lead to transferable changes in attentional weights (assigned to the left vs right hemi-field) and/or other attentional parameters assessed within the framework of TVA (Experiment 1); (ii) whether the effects of such spatial-priming on TVA parameters could be further enhanced by bi-parietal high frequency transcranial random noise stimulation (tRNS) (Experiment 2). Our results demonstrate that spatial attentional bias, as assessed within the TVA framework, was primed by sustaining attention towards the right hemi-field, but this spatial-priming effect did not occur when sustaining attention towards the left. Furthermore, we show that bi-parietal high-frequency tRNS combined with the rightward spatial-priming resulted in an increased attentional selectivity. To conclude, we present a novel, theory-driven method for attentional modulation

  8. The Relationship between Preschoolers' Selective Attention and Memory for Location Strategies

    ERIC Educational Resources Information Center

    Blumberg, F.C.; Torenberg, M.; Randall, J.D.

    2005-01-01

    Late and early preschoolers' attention and spatial strategies were examined in response to instructions to recall relevant objects [Blumberg, F. C. & Torenberg, M. (2003). The impact of spatial cues on preschoolers' selective attention. Journal of Genetic Psychology, 164, 42-53] and irrelevant objects [Blumberg, F. C. & Torenberg, M. (in press).…

  9. Optoelectronic scanning system upgrade by energy center localization methods

    NASA Astrophysics Data System (ADS)

    Flores-Fuentes, W.; Sergiyenko, O.; Rodriguez-Quiñonez, J. C.; Rivas-López, M.; Hernández-Balbuena, D.; Básaca-Preciado, L. C.; Lindner, L.; González-Navarro, F. F.

    2016-11-01

    A problem of upgrading an optoelectronic scanning system with digital post-processing of the signal based on adequate methods of energy center localization is considered. An improved dynamic triangulation analysis technique is proposed by an example of industrial infrastructure damage detection. A modification of our previously published method aimed at searching for the energy center of an optoelectronic signal is described. Application of the artificial intelligence algorithm of compensation for the error of determining the angular coordinate in calculating the spatial coordinate through dynamic triangulation is demonstrated. Five energy center localization methods are developed and tested to select the best method. After implementation of these methods, digital compensation for the measurement error, and statistical data analysis, a non-parametric behavior of the data is identified. The Wilcoxon signed rank test is applied to improve the result further. For optical scanning systems, it is necessary to detect a light emitter mounted on the infrastructure being investigated to calculate its spatial coordinate by the energy center localization method.

  10. Using a filtering task to measure the spatial extent of selective attention

    PubMed Central

    Palmer, John; Moore, Cathleen M.

    2009-01-01

    The spatial extent of attention was investigated by measuring sensitivity to stimuli at to-be-ignored locations. Observers detected a stimulus at a cued location (target), while ignoring otherwise identical stimuli at nearby locations (foils). Only an attentional cue distinguished target from foil. Several experiments varied the contrast and separation of targets and foils. Two theories of selection were compared: contrast gain and a version of attention switching called an all-or-none mixture model. Results included large effects of separation, rejection of the contrast gain model, and the measurement of the size and profile of the spatial extent of attention. PMID:18405935

  11. Spatial analyses identify the geographic source of patients at a National Cancer Institute Comprehensive Cancer Center.

    PubMed

    Su, Shu-Chih; Kanarek, Norma; Fox, Michael G; Guseynova, Alla; Crow, Shirley; Piantadosi, Steven

    2010-02-01

    We examined the geographic distribution of patients to better understand the service area of the Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, a designated National Cancer Institute (NCI) comprehensive cancer center located in an urban center. Like most NCI cancer centers, the Sidney Kimmel Comprehensive Cancer Center serves a population beyond city limits. Urban cancer centers are expected to serve their immediate neighborhoods and to address disparities in access to specialty care. Our purpose was to learn the extent and nature of the cancer center service area. Statistical clustering of patient residence in the continental United States was assessed for all patients and by gender, cancer site, and race using SaTScan. Primary clusters detected for all cases and demographically and tumor-defined subpopulations were centered at Baltimore City and consisted of adjacent counties in Delaware, Pennsylvania, Virginia, West Virginia, New Jersey and New York, and the District of Columbia. Primary clusters varied in size by race, gender, and cancer site. Spatial analysis can provide insights into the populations served by urban cancer centers, assess centers' performance relative to their communities, and aid in developing a cancer center business plan that recognizes strengths, regional utility, and referral patterns. Today, 62 NCI cancer centers serve a quarter of the U.S. population in their immediate communities. From the Baltimore experience, we might project that the population served by these centers is actually more extensive and varies by patient characteristics, cancer site, and probably cancer center services offered.

  12. Spatial Data Services for Interdisciplinary Applications from the NASA Socioeconomic Data and Applications Center

    NASA Astrophysics Data System (ADS)

    Chen, R. S.; MacManus, K.; Vinay, S.; Yetman, G.

    2016-12-01

    The Socioeconomic Data and Applications Center (SEDAC), one of 12 Distributed Active Archive Centers (DAACs) in the NASA Earth Observing System Data and Information System (EOSDIS), has developed a variety of operational spatial data services aimed at providing online access, visualization, and analytic functions for geospatial socioeconomic and environmental data. These services include: open web services that implement Open Geospatial Consortium (OGC) specifications such as Web Map Service (WMS), Web Feature Service (WFS), and Web Coverage Service (WCS); spatial query services that support Web Processing Service (WPS) and Representation State Transfer (REST); and web map clients and a mobile app that utilize SEDAC and other open web services. These services may be accessed from a variety of external map clients and visualization tools such as NASA's WorldView, NOAA's Climate Explorer, and ArcGIS Online. More than 200 data layers related to population, settlements, infrastructure, agriculture, environmental pollution, land use, health, hazards, climate change and other aspects of sustainable development are available through WMS, WFS, and/or WCS. Version 2 of the SEDAC Population Estimation Service (PES) supports spatial queries through WPS and REST in the form of a user-defined polygon or circle. The PES returns an estimate of the population residing in the defined area for a specific year (2000, 2005, 2010, 2015, or 2020) based on SEDAC's Gridded Population of the World version 4 (GPWv4) dataset, together with measures of accuracy. The SEDAC Hazards Mapper and the recently released HazPop iOS mobile app enable users to easily submit spatial queries to the PES and see the results. SEDAC has developed an operational virtualized backend infrastructure to manage these services and support their continual improvement as standards change, new data and services become available, and user needs evolve. An ongoing challenge is to improve the reliability and performance

  13. Center of mass perception and inertial frames of reference.

    PubMed

    Bingham, G P; Muchisky, M M

    1993-11-01

    Center of mass perception was investigated by varying the shape, size, and orientation of planar objects. Shape was manipulated to investigate symmetries as information. The number of reflective symmetry axes, the amount of rotational symmetry, and the presence of radial symmetry were varied. Orientation affected systematic errors. Judgments tended to undershoot the center of mass. Random errors increased with size and decreased with symmetry. Size had no effect on random errors for maximally symmetric objects, although orientation did. The spatial distributions of judgments were elliptical. Distribution axes were found to align with the principle moments of inertia. Major axes tended to align with gravity in maximally symmetric objects. A functional and physical account was given in terms of the repercussions of error. Overall, judgments were very accurate.

  14. Efficient visual object and word recognition relies on high spatial frequency coding in the left posterior fusiform gyrus: evidence from a case-series of patients with ventral occipito-temporal cortex damage.

    PubMed

    Roberts, Daniel J; Woollams, Anna M; Kim, Esther; Beeson, Pelagie M; Rapcsak, Steven Z; Lambon Ralph, Matthew A

    2013-11-01

    Recent visual neuroscience investigations suggest that ventral occipito-temporal cortex is retinotopically organized, with high acuity foveal input projecting primarily to the posterior fusiform gyrus (pFG), making this region crucial for coding high spatial frequency information. Because high spatial frequencies are critical for fine-grained visual discrimination, we hypothesized that damage to the left pFG should have an adverse effect not only on efficient reading, as observed in pure alexia, but also on the processing of complex non-orthographic visual stimuli. Consistent with this hypothesis, we obtained evidence that a large case series (n = 20) of patients with lesions centered on left pFG: 1) Exhibited reduced sensitivity to high spatial frequencies; 2) demonstrated prolonged response latencies both in reading (pure alexia) and object naming; and 3) were especially sensitive to visual complexity and similarity when discriminating between novel visual patterns. These results suggest that the patients' dual reading and non-orthographic recognition impairments have a common underlying mechanism and reflect the loss of high spatial frequency visual information normally coded in the left pFG.

  15. Language supports young children’s use of spatial relations to remember locations

    PubMed Central

    Miller, Hilary E.; Patterson, Rebecca; Simmering, Vanessa R.

    2016-01-01

    Two experiments investigated the role of language in children’s spatial recall performance. In particular, we assessed whether selecting an intrinsic reference frame could be improved through verbal encoding. Selecting an intrinsic reference frame requires remembering locations relative to nearby objects independent of one’s body (egocentric) or distal environmental (allocentric) cues, and does not reliably occur in children under 5 years of age (Nardini, Burgess, Breckenridge, & Atkinson, 2006). The current studies tested the relation between spatial language and 4-year-olds’ selection of an intrinsic reference frame in spatial recall. Experiment 1 showed that providing 4-year-olds with location-descriptive cues during (Exp. 1a) or before (Exp. 1b) the recall task improved performance both overall and specifically on trials relying most on an intrinsic reference frame. Additionally, children’s recall performance was predicted by their verbal descriptions of the task space (Exp. 1a control condition). Non-verbally highlighting relations among objects during the recall task (Exp. 2) supported children’s performance relative to the control condition, but significantly less than the location-descriptive cues. These results suggest that the ability to verbally represent relations is a potential mechanism that could account for developmental changes in the selection of an intrinsic reference frame during spatial recall. PMID:26896902

  16. Spatial selective auditory attention in the presence of reverberant energy: individual differences in normal-hearing listeners.

    PubMed

    Ruggles, Dorea; Shinn-Cunningham, Barbara

    2011-06-01

    Listeners can selectively attend to a desired target by directing attention to known target source features, such as location or pitch. Reverberation, however, reduces the reliability of the cues that allow a target source to be segregated and selected from a sound mixture. Given this, it is likely that reverberant energy interferes with selective auditory attention. Anecdotal reports suggest that the ability to focus spatial auditory attention degrades even with early aging, yet there is little evidence that middle-aged listeners have behavioral deficits on tasks requiring selective auditory attention. The current study was designed to look for individual differences in selective attention ability and to see if any such differences correlate with age. Normal-hearing adults, ranging in age from 18 to 55 years, were asked to report a stream of digits located directly ahead in a simulated rectangular room. Simultaneous, competing masker digit streams were simulated at locations 15° left and right of center. The level of reverberation was varied to alter task difficulty by interfering with localization cues (increasing localization blur). Overall, performance was best in the anechoic condition and worst in the high-reverberation condition. Listeners nearly always reported a digit from one of the three competing streams, showing that reverberation did not render the digits unintelligible. Importantly, inter-subject differences were extremely large. These differences, however, were not significantly correlated with age, memory span, or hearing status. These results show that listeners with audiometrically normal pure tone thresholds differ in their ability to selectively attend to a desired source, a task important in everyday communication. Further work is necessary to determine if these differences arise from differences in peripheral auditory function or in more central function.

  17. Main drive selection for the Windstorm Simulation Center

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lacy, J.M.; Earl, J.S.

    1998-02-01

    Operated by the Partnership for Natural Disaster Reduction, the Windstorm Simulation Center (WSC) will be a structural test center dedicated to studying the performance of civil structural systems subjected to hurricanes, tornadoes, and other storm winds. Within the WSC, a bank of high-power fans, the main drive, will produce the high velocity wind necessary to reproduce these storms. Several options are available for the main drive, each with advantages and liabilities. This report documents a study to identify and evaluate all candidates available, and to select the most promising system such that the best possible combination of real-world performance attributesmore » is achieved at the best value. Four broad classes of candidate were identified: electric motors, turbofan aircraft engines, turboshaft aircraft engines, and turboshaft industrial engines. Candidate systems were evaluated on a basis of technical feasibility, availability, power, installed cost, and operating cost.« less

  18. A method for the selection of relevant pattern indices for monitoring of spatial forest cover pattern at a regional scale

    NASA Astrophysics Data System (ADS)

    De Clercq, Eva M.; Vandemoortele, Femke; De Wulf, Robert R.

    2006-06-01

    When signing Agenda 21, several countries agreed to monitor the status of forests to ensure their sustainable use. For reporting on the change in spatial forest cover pattern on a regional scale, pattern metrics are widely used. These indices are not often thoroughly evaluated as to their sensitivity to remote sensing data characteristics. Hence, one would not know whether the change in the metric values was due to actual landscape pattern changes or to characteristic variation of multitemporal remote sensing data. The objective of this study is to empirically test an array of pattern metrics for the monitoring of spatial forest cover. Different user requirements are used as point of departure. This proved to be a straightforward method for selecting relevant pattern indices. We strongly encourage the systematic screening of these indices prior to use in order to get a deeper understanding of the results obtained by them.

  19. Regulation of spatial selectivity by crossover inhibition.

    PubMed

    Cafaro, Jon; Rieke, Fred

    2013-04-10

    Signals throughout the nervous system diverge into parallel excitatory and inhibitory pathways that later converge on downstream neurons to control their spike output. Converging excitatory and inhibitory synaptic inputs can exhibit a variety of temporal relationships. A common motif is feedforward inhibition, in which an increase (decrease) in excitatory input precedes a corresponding increase (decrease) in inhibitory input. The delay of inhibitory input relative to excitatory input originates from an extra synapse in the circuit shaping inhibitory input. Another common motif is push-pull or "crossover" inhibition, in which increases (decreases) in excitatory input occur together with decreases (increases) in inhibitory input. Primate On midget ganglion cells receive primarily feedforward inhibition and On parasol cells receive primarily crossover inhibition; this difference provides an opportunity to study how each motif shapes the light responses of cell types that play a key role in visual perception. For full-field stimuli, feedforward inhibition abbreviated and attenuated responses of On midget cells, while crossover inhibition, though plentiful, had surprisingly little impact on the responses of On parasol cells. Spatially structured stimuli, however, could cause excitatory and inhibitory inputs to On parasol cells to increase together, adopting a temporal relation very much like that for feedforward inhibition. In this case, inhibitory inputs substantially abbreviated a cell's spike output. Thus inhibitory input shapes the temporal stimulus selectivity of both midget and parasol ganglion cells, but its impact on responses of parasol cells depends strongly on the spatial structure of the light inputs.

  20. Postural tasks are associated with center of pressure spatial patterns of three-dimensional statokinesigrams in young and elderly healthy subjects.

    PubMed

    Baracat, Patrícia Junqueira Ferraz; de Sá Ferreira, Arthur

    2013-12-01

    The present study investigated the association between postural tasks and center of pressure spatial patterns of three-dimensional statokinesigrams. Young (n=35; 27.0±7.7years) and elderly (n=38; 67.3±8.7years) healthy volunteers maintained an undisturbed standing position during postural tasks characterized by combined sensory (vision/no vision) and biomechanical challenges (feet apart/together). A method for the analysis of three-dimensional statokinesigrams based on nonparametric statistics and image-processing analysis was employed. Four patterns of spatial distribution were derived from ankle and hip strategies according to the quantity (single; double; multi) and location (anteroposterior; mediolateral) of high-density regions on three-dimensional statokinesigrams. Significant associations between postural task and spatial pattern were observed (young: gamma=0.548, p<.001; elderly: gamma=0.582, p<.001). Robustness analysis revealed small changes related to parameter choices for histogram processing. MANOVA revealed multivariate main effects for postural task [Wilks' Lambda=0.245, p<.001] and age [Wilks' Lambda=0.308, p<.001], with interaction [Wilks' Lambda=0.732, p<.001]. The quantity of high-density regions was positively correlated to stabilogram and statokinesigram variables (p<.05 or lower). In conclusion, postural tasks are associated with center of pressure spatial patterns and are similar in young and elderly healthy volunteers. Single-centered patterns reflected more stable postural conditions and were more frequent with complete visual input and a wide base of support. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Rhythmic Sampling within and between Objects despite Sustained Attention at a Cued Location

    PubMed Central

    Fiebelkorn, Ian C.; Saalmann, Yuri B.; Kastner, Sabine

    2013-01-01

    SUMMARY The brain directs its limited processing resources through various selection mechanisms, broadly referred to as attention. The present study investigated the temporal dynamics of two such selection mechanisms: space- and object-based selection. Previous evidence has demonstrated that preferential processing resulting from a spatial cue (i.e., space-based selection) spreads to uncued locations, if those locations are part of the same object (i.e., resulting in object-based selection). But little is known about the relationship between these fundamental selection mechanisms. Here, we used human behavioral data to determine how space- and object-based selection simultaneously evolve under conditions that promote sustained attention at a cued location, varying the cue-to-target interval from 300—1100 ms. We tracked visual-target detection at a cued location (i.e., space-based selection), at an uncued location that was part of the same object (i.e., object-based selection), and at an uncued location that was part of a different object (i.e., in the absence of space- and object-based selection). The data demonstrate that even under static conditions, there is a moment-to-moment reweighting of attentional priorities based on object properties. This reweighting is revealed through rhythmic patterns of visual-target detection both within (at 8 Hz) and between (at 4 Hz) objects. PMID:24316204

  2. Estimating Temperature Retrieval Accuracy Associated With Thermal Band Spatial Resolution Requirements for Center Pivot Irrigation Monitoring and Management

    NASA Technical Reports Server (NTRS)

    Ryan, Robert E.; Irons, James; Spruce, Joseph P.; Underwood, Lauren W.; Pagnutti, Mary

    2006-01-01

    This study explores the use of synthetic thermal center pivot irrigation scenes to estimate temperature retrieval accuracy for thermal remote sensed data, such as data acquired from current and proposed Landsat-like thermal systems. Center pivot irrigation is a common practice in the western United States and in other parts of the world where water resources are scarce. Wide-area ET (evapotranspiration) estimates and reliable water management decisions depend on accurate temperature information retrieval from remotely sensed data. Spatial resolution, sensor noise, and the temperature step between a field and its surrounding area impose limits on the ability to retrieve temperature information. Spatial resolution is an interrelationship between GSD (ground sample distance) and a measure of image sharpness, such as edge response or edge slope. Edge response and edge slope are intuitive, and direct measures of spatial resolution are easier to visualize and estimate than the more common Modulation Transfer Function or Point Spread Function. For these reasons, recent data specifications, such as those for the LDCM (Landsat Data Continuity Mission), have used GSD and edge response to specify spatial resolution. For this study, we have defined a 400-800 m diameter center pivot irrigation area with a large 25 K temperature step associated with a 300 K well-watered field surrounded by an infinite 325 K dry area. In this context, we defined the benchmark problem as an easily modeled, highly common stressing case. By parametrically varying GSD (30-240 m) and edge slope, we determined the number of pixels and field area fraction that meet a given temperature accuracy estimate for 400-m, 600-m, and 800-m diameter field sizes. Results of this project will help assess the utility of proposed specifications for the LDCM and other future thermal remote sensing missions and for water resource management.

  3. Using an evidence-based approach for system selection at a large academic medical center: lessons learned in selecting an ambulatory EMR at Mount Sinai Hospital.

    PubMed

    Kannry, Joseph; Mukani, Sonia; Myers, Kristin

    2006-01-01

    The experience of Mount Sinai Hospital is representative of the challenges and problems facing large academic medical centers in selecting an ambulatory EMR. The facility successfully revived a stalled process in a challenging financial climate, using a framework of science and rigorous investigation. The process incorporated several innovations: 1) There was a thorough review of medical informatics literature to develop a mission statement, determine practical objectives and guide the demonstration process; 2) The process involved rigorous investigation of vendor statements, industry statements and other institution's views of vendors; 3) The initiative focused on user-centric selection, and the survey instrument was scientifically and specifically designed to assess user feedback; 4) There was scientific analysis of validated findings and survey results at all steering meetings; 5) The process included an assessment of vendors' ability to support research by identifying funded and published research; 6) Selection involved meticulous total cost of ownership analysis to assess and compare real costs of implementing a vendor solution; and finally, 7) There were iterative meetings with stakeholders, executives and users to understand needs, address concerns and communicate the vision.

  4. Two spatial memories are not better than one: evidence of exclusivity in memory for object location.

    PubMed

    Baguley, Thom; Lansdale, Mark W; Lines, Lorna K; Parkin, Jennifer K

    2006-05-01

    This paper studies the dynamics of attempting to access two spatial memories simultaneously and its implications for the accuracy of recall. Experiment 1 demonstrates in a range of conditions that two cues pointing to different experiences of the same object location produce little or no higher recall than that observed with a single cue. Experiment 2 confirms this finding in a within-subject design where both cues have previously elicited recall. Experiment 3 shows that these findings are only consistent with a model in which two representations of the same object location are mutually exclusive at both encoding and retrieval, and inconsistent with models that assume information from both representations is available. We propose that these representations quantify directionally specific judgments of location relative to specific anchor points in the stimulus; a format that precludes the parallel processing of like representations. Finally, we consider the apparent paradox of how such representations might contribute to the acquisition of spatial knowledge from multiple experiences of the same stimuli.

  5. Temporal and Spatial Scales Matter: Circannual Habitat Selection by Bird Communities in Vineyards

    PubMed Central

    Arlettaz, Raphaël; Korner, Pius

    2017-01-01

    Vineyards are likely to be regionally important for wildlife, but we lack biodiversity studies in this agroecosystem which is undergoing a rapid management revolution. As vine cultivation is restricted to arid and warm climatic regions, biodiversity-friendly management would promote species typical of southern biomes. Vineyards are often intensively cultivated, mostly surrounded by few natural features and offering a fairly mineral appearance with little ground vegetation cover. Ground vegetation cover and composition may further strongly vary with respect to season, influencing patterns of habitat selection by ecological communities. We investigated season-specific bird-habitat associations to highlight the importance of semi-natural habitat features and vineyard ground vegetation cover throughout the year. Given that avian habitat selection varies according to taxa, guilds and spatial scale, we modelled bird-habitat associations in all months at two spatial scales using mixed effects regression models. At the landscape scale, birds were recorded along 10 1-km long transects in Southwestern Switzerland (February 2014 –January 2015). At the field scale, we compared the characteristics of visited and unvisited vineyard fields (hereafter called parcels). Bird abundance in vineyards tripled in winter compared to summer. Vineyards surrounded by a greater amount of hedges and small woods harboured higher bird abundance, species richness and diversity, especially during the winter season. Regarding ground vegetation, birds showed a season-specific habitat selection pattern, notably a marked preference for ground-vegetated parcels in winter and for intermediate vegetation cover in spring and summer. These season-specific preferences might be related to species-specific life histories: more insectivorous, ground-foraging species occur during the breeding season whereas granivores predominate in winter. These results highlight the importance of investigating habitat

  6. Sensorineural hearing loss degrades behavioral and physiological measures of human spatial selective auditory attention

    PubMed Central

    Dai, Lengshi; Best, Virginia; Shinn-Cunningham, Barbara G.

    2018-01-01

    Listeners with sensorineural hearing loss often have trouble understanding speech amid other voices. While poor spatial hearing is often implicated, direct evidence is weak; moreover, studies suggest that reduced audibility and degraded spectrotemporal coding may explain such problems. We hypothesized that poor spatial acuity leads to difficulty deploying selective attention, which normally filters out distracting sounds. In listeners with normal hearing, selective attention causes changes in the neural responses evoked by competing sounds, which can be used to quantify the effectiveness of attentional control. Here, we used behavior and electroencephalography to explore whether control of selective auditory attention is degraded in hearing-impaired (HI) listeners. Normal-hearing (NH) and HI listeners identified a simple melody presented simultaneously with two competing melodies, each simulated from different lateral angles. We quantified performance and attentional modulation of cortical responses evoked by these competing streams. Compared with NH listeners, HI listeners had poorer sensitivity to spatial cues, performed more poorly on the selective attention task, and showed less robust attentional modulation of cortical responses. Moreover, across NH and HI individuals, these measures were correlated. While both groups showed cortical suppression of distracting streams, this modulation was weaker in HI listeners, especially when attending to a target at midline, surrounded by competing streams. These findings suggest that hearing loss interferes with the ability to filter out sound sources based on location, contributing to communication difficulties in social situations. These findings also have implications for technologies aiming to use neural signals to guide hearing aid processing. PMID:29555752

  7. Remote sensing imagery classification using multi-objective gravitational search algorithm

    NASA Astrophysics Data System (ADS)

    Zhang, Aizhu; Sun, Genyun; Wang, Zhenjie

    2016-10-01

    Simultaneous optimization of different validity measures can capture different data characteristics of remote sensing imagery (RSI) and thereby achieving high quality classification results. In this paper, two conflicting cluster validity indices, the Xie-Beni (XB) index and the fuzzy C-means (FCM) (Jm) measure, are integrated with a diversity-enhanced and memory-based multi-objective gravitational search algorithm (DMMOGSA) to present a novel multi-objective optimization based RSI classification method. In this method, the Gabor filter method is firstly implemented to extract texture features of RSI. Then, the texture features are syncretized with the spectral features to construct the spatial-spectral feature space/set of the RSI. Afterwards, cluster of the spectral-spatial feature set is carried out on the basis of the proposed method. To be specific, cluster centers are randomly generated initially. After that, the cluster centers are updated and optimized adaptively by employing the DMMOGSA. Accordingly, a set of non-dominated cluster centers are obtained. Therefore, numbers of image classification results of RSI are produced and users can pick up the most promising one according to their problem requirements. To quantitatively and qualitatively validate the effectiveness of the proposed method, the proposed classification method was applied to classifier two aerial high-resolution remote sensing imageries. The obtained classification results are compared with that produced by two single cluster validity index based and two state-of-the-art multi-objective optimization algorithms based classification results. Comparison results show that the proposed method can achieve more accurate RSI classification.

  8. Object-Based Attention on Social Units: Visual Selection of Hands Performing a Social Interaction.

    PubMed

    Yin, Jun; Xu, Haokui; Duan, Jipeng; Shen, Mowei

    2018-05-01

    Traditionally, objects of attention are characterized either as full-fledged entities or either as elements grouped by Gestalt principles. Because humans appear to use social groups as units to explain social activities, we proposed that a socially defined group, according to social interaction information, would also be a possible object of attentional selection. This hypothesis was examined using displays with and without handshaking interactions. Results demonstrated that object-based attention, which was measured by an object-specific attentional advantage (i.e., shorter response times to targets on a single object), was extended to two hands performing a handshake but not to hands that did not perform meaningful social interactions, even when they did perform handshake-like actions. This finding cannot be attributed to the familiarity of the frequent co-occurrence of two handshaking hands. Hence, object-based attention can select a grouped object whose parts are connected within a meaningful social interaction. This finding implies that object-based attention is constrained by top-down information.

  9. Asymmetric coding of categorical spatial relations in both language and vision.

    PubMed

    Roth, J C; Franconeri, S L

    2012-01-01

    Describing certain types of spatial relationships between a pair of objects requires that the objects are assigned different "roles" in the relation, e.g., "A is above B" is different than "B is above A." This asymmetric representation places one object in the "target" or "figure" role and the other in the "reference" or "ground" role. Here we provide evidence that this asymmetry may be present not just in spatial language, but also in perceptual representations. More specifically, we describe a model of visual spatial relationship judgment where the designation of the target object within such a spatial relationship is guided by the location of the "spotlight" of attention. To demonstrate the existence of this perceptual asymmetry, we cued attention to one object within a pair by briefly previewing it, and showed that participants were faster to verify the depicted relation when that object was the linguistic target. Experiment 1 demonstrated this effect for left-right relations, and Experiment 2 for above-below relations. These results join several other types of demonstrations in suggesting that perceptual representations of some spatial relations may be asymmetrically coded, and further suggest that the location of selective attention may serve as the mechanism that guides this asymmetry.

  10. Gravity influences the visual representation of object tilt in parietal cortex.

    PubMed

    Rosenberg, Ari; Angelaki, Dora E

    2014-10-22

    Sensory systems encode the environment in egocentric (e.g., eye, head, or body) reference frames, creating inherently unstable representations that shift and rotate as we move. However, it is widely speculated that the brain transforms these signals into an allocentric, gravity-centered representation of the world that is stable and independent of the observer's spatial pose. Where and how this representation may be achieved is currently unknown. Here we demonstrate that a subpopulation of neurons in the macaque caudal intraparietal area (CIP) visually encodes object tilt in nonegocentric coordinates defined relative to the gravitational vector. Neuronal responses to the tilt of a visually presented planar surface were measured with the monkey in different spatial orientations (upright and rolled left/right ear down) and then compared. This revealed a continuum of representations in which planar tilt was encoded in a gravity-centered reference frame in approximately one-tenth of the comparisons, intermediate reference frames ranging between gravity-centered and egocentric in approximately two-tenths of the comparisons, and in an egocentric reference frame in less than half of the comparisons. Altogether, almost half of the comparisons revealed a shift in the preferred tilt and/or a gain change consistent with encoding object orientation in nonegocentric coordinates. Through neural network modeling, we further show that a purely gravity-centered representation of object tilt can be achieved directly from the population activity of CIP-like units. These results suggest that area CIP may play a key role in creating a stable, allocentric representation of the environment defined relative to an "earth-vertical" direction. Copyright © 2014 the authors 0270-6474/14/3414170-11$15.00/0.

  11. A Unified Fisher's Ratio Learning Method for Spatial Filter Optimization.

    PubMed

    Li, Xinyang; Guan, Cuntai; Zhang, Haihong; Ang, Kai Keng

    To detect the mental task of interest, spatial filtering has been widely used to enhance the spatial resolution of electroencephalography (EEG). However, the effectiveness of spatial filtering is undermined due to the significant nonstationarity of EEG. Based on regularization, most of the conventional stationary spatial filter design methods address the nonstationarity at the cost of the interclass discrimination. Moreover, spatial filter optimization is inconsistent with feature extraction when EEG covariance matrices could not be jointly diagonalized due to the regularization. In this paper, we propose a novel framework for a spatial filter design. With Fisher's ratio in feature space directly used as the objective function, the spatial filter optimization is unified with feature extraction. Given its ratio form, the selection of the regularization parameter could be avoided. We evaluate the proposed method on a binary motor imagery data set of 16 subjects, who performed the calibration and test sessions on different days. The experimental results show that the proposed method yields improvement in classification performance for both single broadband and filter bank settings compared with conventional nonunified methods. We also provide a systematic attempt to compare different objective functions in modeling data nonstationarity with simulation studies.To detect the mental task of interest, spatial filtering has been widely used to enhance the spatial resolution of electroencephalography (EEG). However, the effectiveness of spatial filtering is undermined due to the significant nonstationarity of EEG. Based on regularization, most of the conventional stationary spatial filter design methods address the nonstationarity at the cost of the interclass discrimination. Moreover, spatial filter optimization is inconsistent with feature extraction when EEG covariance matrices could not be jointly diagonalized due to the regularization. In this paper, we propose a novel

  12. Extracting spatial information from large aperture exposures of diffuse sources

    NASA Technical Reports Server (NTRS)

    Clarke, J. T.; Moos, H. W.

    1981-01-01

    The spatial properties of large aperture exposures of diffuse emission can be used both to investigate spatial variations in the emission and to filter out camera noise in exposures of weak emission sources. Spatial imaging can be accomplished both parallel and perpendicular to dispersion with a resolution of 5-6 arc sec, and a narrow median filter running perpendicular to dispersion across a diffuse image selectively filters out point source features, such as reseaux marks and fast particle hits. Spatial information derived from observations of solar system objects is presented.

  13. Spatial Relational Memory in 9-Month-Old Macaque Monkeys

    ERIC Educational Resources Information Center

    Lavenex, Pierre; Lavenex, Pamela Banta

    2006-01-01

    This experiment assesses spatial and nonspatial relational memory in freely moving 9-mo-old and adult (11-13-yr-old) macaque monkeys ("Macaca mulatta"). We tested the use of proximal landmarks, two different objects placed at the center of an open-field arena, as conditional cues allowing monkeys to predict the location of food rewards hidden in…

  14. Preattentive representation of feature conjunctions for concurrent spatially distributed auditory objects.

    PubMed

    Takegata, Rika; Brattico, Elvira; Tervaniemi, Mari; Varyagina, Olga; Näätänen, Risto; Winkler, István

    2005-09-01

    The role of attention in conjoining features of an object has been a topic of much debate. Studies using the mismatch negativity (MMN), an index of detecting acoustic deviance, suggested that the conjunctions of auditory features are preattentively represented in the brain. These studies, however, used sequentially presented sounds and thus are not directly comparable with visual studies of feature integration. Therefore, the current study presented an array of spatially distributed sounds to determine whether the auditory features of concurrent sounds are correctly conjoined without focal attention directed to the sounds. Two types of sounds differing from each other in timbre and pitch were repeatedly presented together while subjects were engaged in a visual n-back working-memory task and ignored the sounds. Occasional reversals of the frequent pitch-timbre combinations elicited MMNs of a very similar amplitude and latency irrespective of the task load. This result suggested preattentive integration of auditory features. However, performance in a subsequent target-search task with the same stimuli indicated the occurrence of illusory conjunctions. The discrepancy between the results obtained with and without focal attention suggests that illusory conjunctions may occur during voluntary access to the preattentively encoded object representations.

  15. Temperature grid sensor for the measurement of spatial temperature distributions at object surfaces.

    PubMed

    Schäfer, Thomas; Schubert, Markus; Hampel, Uwe

    2013-01-25

    This paper presents results of the development and application of a new temperature grid sensor based on the wire-mesh sensor principle. The grid sensor consists of a matrix of 256 Pt1000 platinum chip resistors and an associated electronics that measures the grid resistances with a multiplexing scheme at high speed. The individual sensor elements can be spatially distributed on an object surface and measure transient temperature distributions in real time. The advantage compared with other temperature field measurement approaches such as infrared cameras is that the object under investigation can be thermally insulated and the radiation properties of the surface do not affect the measurement accuracy. The sensor principle is therefore suited for various industrial monitoring applications. Its applicability for surface temperature monitoring has been demonstrated through heating and mixing experiments in a vessel.

  16. Robust selectivity to two-object images in human visual cortex

    PubMed Central

    Agam, Yigal; Liu, Hesheng; Papanastassiou, Alexander; Buia, Calin; Golby, Alexandra J.; Madsen, Joseph R.; Kreiman, Gabriel

    2010-01-01

    SUMMARY We can recognize objects in a fraction of a second in spite of the presence of other objects [1–3]. The responses in macaque areas V4 and inferior temporal cortex [4–15] to a neuron’s preferred stimuli are typically suppressed by the addition of a second object within the receptive field (see however [16, 17]). How can this suppression be reconciled with rapid visual recognition in complex scenes? One option is that certain “special categories” are unaffected by other objects [18] but this leaves the problem unsolved for other categories. Another possibility is that serial attentional shifts help ameliorate the problem of distractor objects [19–21]. Yet, psychophysical studies [1–3], scalp recordings [1] and neurophysiological recordings [14, 16, 22–24], suggest that the initial sweep of visual processing contains a significant amount of information. We recorded intracranial field potentials in human visual cortex during presentation of flashes of two-object images. Visual selectivity from temporal cortex during the initial ~200 ms was largely robust to the presence of other objects. We could train linear decoders on the responses to isolated objects and decode information in two-object images. These observations are compatible with parallel, hierarchical and feed-forward theories of rapid visual recognition [25] and may provide a neural substrate to begin to unravel rapid recognition in natural scenes. PMID:20417105

  17. Object-Oriented Technology-Based Software Library for Operations of Water Reclamation Centers

    NASA Astrophysics Data System (ADS)

    Otani, Tetsuo; Shimada, Takehiro; Yoshida, Norio; Abe, Wataru

    SCADA systems in water reclamation centers have been constructed based on hardware and software that each manufacturer produced according to their design. Even though this approach used to be effective to realize real-time and reliable execution, it is an obstacle to cost reduction about system construction and maintenance. A promising solution to address the problem is to set specifications that can be used commonly. In terms of software, information model approach has been adopted in SCADA systems in other field, such as telecommunications and power systems. An information model is a piece of software specification that describes a physical or logical object to be monitored. In this paper, we propose information models for operations of water reclamation centers, which have not ever existed. In addition, we show the feasibility of the information model in terms of common use and processing performance.

  18. Visual object naming in patients with small lesions centered at the left temporopolar region.

    PubMed

    Campo, Pablo; Poch, Claudia; Toledano, Rafael; Igoa, José Manuel; Belinchón, Mercedes; García-Morales, Irene; Gil-Nagel, Antonio

    2016-01-01

    Naming is considered a left hemisphere function that operates according to a posterior-anterior specificity gradient, with more fine-grained information processed in most anterior regions of the temporal lobe (ATL), including the temporal pole (TP). Word finding difficulties are typically assessed using visual confrontation naming tasks, and have been associated with selective damage to ATL resulting from different aetiologies. Nonetheless, the role of the ATL and, more specifically, of the TP in the naming network is not completely established. Most of the accumulated evidence is based on studies on patients with extensive lesions, often bilateral. Furthermore, there is a considerable variability in the anatomical definition of ATL. To better understand the specific involvement of the left TP in visual object naming, we assessed a group of patients with an epileptogenic lesion centered at the TP, and compared their performance with that of a strictly matched control group. We also administered a battery of verbal and non-verbal semantic tasks that was used as a semantic memory baseline. Patients showed an impaired naming ability, manifesting in a certain degree of anomia and semantically related naming errors, which was influenced by concept familiarity. This pattern took place in a context of mild semantic dysfunction that was evident in different types and modalities of semantic tasks. Therefore, current findings demonstrate that a restricted lesion to the left TP can cause a significant deficit in object naming. Of importance, the observed semantic impairment was far from the devastating degradation observed in semantic dementia and other bilateral conditions.

  19. A method for real-time visual stimulus selection in the study of cortical object perception.

    PubMed

    Leeds, Daniel D; Tarr, Michael J

    2016-06-01

    The properties utilized by visual object perception in the mid- and high-level ventral visual pathway are poorly understood. To better establish and explore possible models of these properties, we adopt a data-driven approach in which we repeatedly interrogate neural units using functional Magnetic Resonance Imaging (fMRI) to establish each unit's image selectivity. This approach to imaging necessitates a search through a broad space of stimulus properties using a limited number of samples. To more quickly identify the complex visual features underlying human cortical object perception, we implemented a new functional magnetic resonance imaging protocol in which visual stimuli are selected in real-time based on BOLD responses to recently shown images. Two variations of this protocol were developed, one relying on natural object stimuli and a second based on synthetic object stimuli, both embedded in feature spaces based on the complex visual properties of the objects. During fMRI scanning, we continuously controlled stimulus selection in the context of a real-time search through these image spaces in order to maximize neural responses across pre-determined 1cm(3) rain regions. Elsewhere we have reported the patterns of cortical selectivity revealed by this approach (Leeds et al., 2014). In contrast, here our objective is to present more detailed methods and explore the technical and biological factors influencing the behavior of our real-time stimulus search. We observe that: 1) Searches converged more reliably when exploring a more precisely parameterized space of synthetic objects; 2) real-time estimation of cortical responses to stimuli is reasonably consistent; 3) search behavior was acceptably robust to delays in stimulus displays and subject motion effects. Overall, our results indicate that real-time fMRI methods may provide a valuable platform for continuing study of localized neural selectivity, both for visual object representation and beyond. Copyright

  20. A method for real-time visual stimulus selection in the study of cortical object perception

    PubMed Central

    Leeds, Daniel D.; Tarr, Michael J.

    2016-01-01

    The properties utilized by visual object perception in the mid- and high-level ventral visual pathway are poorly understood. To better establish and explore possible models of these properties, we adopt a data-driven approach in which we repeatedly interrogate neural units using functional Magnetic Resonance Imaging (fMRI) to establish each unit’s image selectivity. This approach to imaging necessitates a search through a broad space of stimulus properties using a limited number of samples. To more quickly identify the complex visual features underlying human cortical object perception, we implemented a new functional magnetic resonance imaging protocol in which visual stimuli are selected in real-time based on BOLD responses to recently shown images. Two variations of this protocol were developed, one relying on natural object stimuli and a second based on synthetic object stimuli, both embedded in feature spaces based on the complex visual properties of the objects. During fMRI scanning, we continuously controlled stimulus selection in the context of a real-time search through these image spaces in order to maximize neural responses across predetermined 1 cm3 brain regions. Elsewhere we have reported the patterns of cortical selectivity revealed by this approach (Leeds 2014). In contrast, here our objective is to present more detailed methods and explore the technical and biological factors influencing the behavior of our real-time stimulus search. We observe that: 1) Searches converged more reliably when exploring a more precisely parameterized space of synthetic objects; 2) Real-time estimation of cortical responses to stimuli are reasonably consistent; 3) Search behavior was acceptably robust to delays in stimulus displays and subject motion effects. Overall, our results indicate that real-time fMRI methods may provide a valuable platform for continuing study of localized neural selectivity, both for visual object representation and beyond. PMID:26973168

  1. A management-oriented framework for selecting metrics used to assess habitat- and path-specific quality in spatially structured populations

    USGS Publications Warehouse

    Nicol, Sam; Wiederholt, Ruscena; Diffendorfer, James E.; Mattsson, Brady; Thogmartin, Wayne E.; Semmens, Darius J.; Laura Lopez-Hoffman,; Norris, Ryan

    2016-01-01

    Mobile species with complex spatial dynamics can be difficult to manage because their population distributions vary across space and time, and because the consequences of managing particular habitats are uncertain when evaluated at the level of the entire population. Metrics to assess the importance of habitats and pathways connecting habitats in a network are necessary to guide a variety of management decisions. Given the many metrics developed for spatially structured models, it can be challenging to select the most appropriate one for a particular decision. To guide the management of spatially structured populations, we define three classes of metrics describing habitat and pathway quality based on their data requirements (graph-based, occupancy-based, and demographic-based metrics) and synopsize the ecological literature relating to these classes. Applying the first steps of a formal decision-making approach (problem framing, objectives, and management actions), we assess the utility of metrics for particular types of management decisions. Our framework can help managers with problem framing, choosing metrics of habitat and pathway quality, and to elucidate the data needs for a particular metric. Our goal is to help managers to narrow the range of suitable metrics for a management project, and aid in decision-making to make the best use of limited resources.

  2. The Biology of Linguistic Expression Impacts Neural Correlates for Spatial Language

    PubMed Central

    Emmorey, Karen; McCullough, Stephen; Mehta, Sonya; Ponto, Laura L. B.; Grabowski, Thomas J.

    2013-01-01

    Biological differences between signed and spoken languages may be most evident in the expression of spatial information. PET was used to investigate the neural substrates supporting the production of spatial language in American Sign Language as expressed by classifier constructions, in which handshape indicates object type and the location/motion of the hand iconically depicts the location/motion of a referent object. Deaf native signers performed a picture description task in which they overtly named objects or produced classifier constructions that varied in location, motion, or object type. In contrast to the expression of location and motion, the production of both lexical signs and object type classifier morphemes engaged left inferior frontal cortex and left inferior temporal cortex, supporting the hypothesis that unlike the location and motion components of a classifier construction, classifier handshapes are categorical morphemes that are retrieved via left hemisphere language regions. In addition, lexical signs engaged the anterior temporal lobes to a greater extent than classifier constructions, which we suggest reflects increased semantic processing required to name individual objects compared with simply indicating the type of object. Both location and motion classifier constructions engaged bilateral superior parietal cortex, with some evidence that the expression of static locations differentially engaged the left intraparietal sulcus. We argue that bilateral parietal activation reflects the biological underpinnings of sign language. To express spatial information, signers must transform visual–spatial representations into a body-centered reference frame and reach toward target locations within signing space. PMID:23249348

  3. Contralateral Bias of High Spatial Frequency Tuning and Cardinal Direction Selectivity in Mouse Visual Cortex

    PubMed Central

    Zeitoun, Jack H.; Kim, Hyungtae

    2017-01-01

    Binocular mechanisms for visual processing are thought to enhance spatial acuity by combining matched input from the two eyes. Studies in the primary visual cortex of carnivores and primates have confirmed that eye-specific neuronal response properties are largely matched. In recent years, the mouse has emerged as a prominent model for binocular visual processing, yet little is known about the spatial frequency tuning of binocular responses in mouse visual cortex. Using calcium imaging in awake mice of both sexes, we show that the spatial frequency preference of cortical responses to the contralateral eye is ∼35% higher than responses to the ipsilateral eye. Furthermore, we find that neurons in binocular visual cortex that respond only to the contralateral eye are tuned to higher spatial frequencies. Binocular neurons that are well matched in spatial frequency preference are also matched in orientation preference. In contrast, we observe that binocularly mismatched cells are more mismatched in orientation tuning. Furthermore, we find that contralateral responses are more direction-selective than ipsilateral responses and are strongly biased to the cardinal directions. The contralateral bias of high spatial frequency tuning was found in both awake and anesthetized recordings. The distinct properties of contralateral cortical responses may reflect the functional segregation of direction-selective, high spatial frequency-preferring neurons in earlier stages of the central visual pathway. Moreover, these results suggest that the development of binocularity and visual acuity may engage distinct circuits in the mouse visual system. SIGNIFICANCE STATEMENT Seeing through two eyes is thought to improve visual acuity by enhancing sensitivity to fine edges. Using calcium imaging of cellular responses in awake mice, we find surprising asymmetries in the spatial processing of eye-specific visual input in binocular primary visual cortex. The contralateral visual pathway is

  4. Neurocomputational bases of object and face recognition.

    PubMed Central

    Biederman, I; Kalocsai, P

    1997-01-01

    A number of behavioural phenomena distinguish the recognition of faces and objects, even when members of a set of objects are highly similar. Because faces have the same parts in approximately the same relations, individuation of faces typically requires specification of the metric variation in a holistic and integral representation of the facial surface. The direct mapping of a hypercolumn-like pattern of activation onto a representation layer that preserves relative spatial filter values in a two-dimensional (2D) coordinate space, as proposed by C. von der Malsburg and his associates, may account for many of the phenomena associated with face recognition. An additional refinement, in which each column of filters (termed a 'jet') is centred on a particular facial feature (or fiducial point), allows selectivity of the input into the holistic representation to avoid incorporation of occluding or nearby surfaces. The initial hypercolumn representation also characterizes the first stage of object perception, but the image variation for objects at a given location in a 2D coordinate space may be too great to yield sufficient predictability directly from the output of spatial kernels. Consequently, objects can be represented by a structural description specifying qualitative (typically, non-accidental) characterizations of an object's parts, the attributes of the parts, and the relations among the parts, largely based on orientation and depth discontinuities (as shown by Hummel & Biederman). A series of experiments on the name priming or physical matching of complementary images (in the Fourier domain) of objects and faces documents that whereas face recognition is strongly dependent on the original spatial filter values, evidence from object recognition indicates strong invariance to these values, even when distinguishing among objects that are as similar as faces. PMID:9304687

  5. Spatial language and converseness.

    PubMed

    Burigo, Michele; Coventry, Kenny R; Cangelosi, Angelo; Lynott, Dermot

    2016-12-01

    Typical spatial language sentences consist of describing the location of an object (the located object) in relation to another object (the reference object) as in "The book is above the vase". While it has been suggested that the properties of the located object (the book) are not translated into language because they are irrelevant when exchanging location information, it has been shown that the orientation of the located object affects the production and comprehension of spatial descriptions. In line with the claim that spatial language apprehension involves inferences about relations that hold between objects it has been suggested that during spatial language apprehension people use the orientation of the located object to evaluate whether the logical property of converseness (e.g., if "the book is above the vase" is true, then also "the vase is below the book" must be true) holds across the objects' spatial relation. In three experiments using sentence acceptability rating tasks we tested this hypothesis and demonstrated that when converseness is violated people's acceptability ratings of a scene's description are reduced indicating that people do take into account geometric properties of the located object and use it to infer logical spatial relations.

  6. Multi-Attribute Selection of Coal Center Location: A Case Study in Thailand

    NASA Astrophysics Data System (ADS)

    Kuakunrittiwong, T.; Ratanakuakangwan, S.

    2016-11-01

    Under Power Development Plan 2015, Thailand has to diversify its heavily gas-fired electricity generation. The main owner of electricity transmission grids is responsible to implement several coal-fired power plants with clean coal technology. To environmentally handle and economically transport unprecedented quantities of sub-bituminous and bituminous coal, a coal center is required. The location of such facility is an important strategic decision and a paramount to the success of the energy plan. As site selection involves many criteria, Fuzzy Analytical Hierarchy Process or Fuzzy-AHP is applied to select the most suitable location among three candidates. Having analyzed relevant criteria and the potential alternatives, the result reveals that engineering and socioeconomic are important criteria and Map Ta Phut is the most suitable site for the coal center.

  7. Risperidone reverses the spatial object recognition impairment and hippocampal BDNF-TrkB signalling system alterations induced by acute MK-801 treatment

    PubMed Central

    Chen, Guangdong; Lin, Xiaodong; Li, Gongying; Jiang, Diego; Lib, Zhiruo; Jiang, Ronghuan; Zhuo, Chuanjun

    2017-01-01

    The aim of the present study was to investigate the effects of a commonly-used atypical antipsychotic, risperidone, on alterations in spatial learning and in the hippocampal brain-derived neurotrophic factor (BDNF)-tyrosine receptor kinase B (TrkB) signalling system caused by acute dizocilpine maleate (MK-801) treatment. In experiment 1, adult male Sprague-Dawley rats subjected to acute treatment of either low-dose MK801 (0.1 mg/kg) or normal saline (vehicle) were tested for spatial object recognition and hippocampal expression levels of BDNF, TrkB and the phophorylation of TrkB (p-TrkB). We found that compared to the vehicle, MK-801 treatment impaired spatial object recognition of animals and downregulated the expression levels of p-TrkB. In experiment 2, MK-801- or vehicle-treated animals were further injected with risperidone (0.1 mg/kg) or vehicle before behavioural testing and sacrifice. Of note, we found that risperidone successfully reversed the deleterious effects of MK-801 on spatial object recognition and upregulated the hippocampal BDNF-TrkB signalling system. Collectively, the findings suggest that cognitive deficits from acute N-methyl-D-aspartate receptor blockade may be associated with the hypofunction of hippocampal BDNF-TrkB signalling system and that risperidone was able to reverse these alterations. PMID:28451387

  8. Spatial and temporal demographic variation drives within-season fluctuations in sexual selection.

    PubMed

    Kasumovic, Michael M; Bruce, Matthew J; Andrade, Maydianne C B; Herberstein, Marie E

    2008-09-01

    Our understanding of selection in nature stems mainly from whole-season and cross-sectional estimates of selection gradients. These estimates suggest that selection is relatively constant within, but fluctuates between seasons. However, the strength of selection depends on demographics, and because demographics can vary within seasons, there is a gap in our understanding regarding the extent to which seasonal fluctuations in demographics may cause variation in selection. Here we use two populations of the golden orb-web spider (Nephila plumipes) that differ in density to examine how demographics change within a season and whether there are correlated shifts in selection. We demonstrate that there is within-season variation in sex ratio and density at multiple spatial and temporal scales. This variation led to changes in the competitive challenges that males encountered at different times of the season and was correlated with significant variation in selection gradients on male size and weight between sampling periods. We highlight the importance of understanding the biology of the organism under study to correctly determine the relevant scale in which to examine selection. We also argue that studies may underestimate the true variation in selection by averaging values, leading to misinterpretation of the effect of selection on phenotypic evolution.

  9. Two Spatial Memories Are Not Better than One: Evidence of Exclusivity in Memory for Object Location

    ERIC Educational Resources Information Center

    Baguley, Thom; Lansdale, Mark W.; Lines, Lorna K.; Parkin, Jennifer K.

    2006-01-01

    This paper studies the dynamics of attempting to access two spatial memories simultaneously and its implications for the accuracy of recall. Experiment 1 demonstrates in a range of conditions that two cues pointing to different experiences of the same object location produce little or no higher recall than that observed with a single cue.…

  10. Selective spatial enhancement: Attentional spotlight size impacts spatial but not temporal perception.

    PubMed

    Goodhew, Stephanie C; Shen, Elizabeth; Edwards, Mark

    2016-08-01

    An important but often neglected aspect of attention is how changes in the attentional spotlight size impact perception. The zoom-lens model predicts that a small ("focal") attentional spotlight enhances all aspects of perception relative to a larger ("diffuse" spotlight). However, based on the physiological properties of the two major classes of visual cells (magnocellular and parvocellular neurons) we predicted trade-offs in spatial and temporal acuity as a function of spotlight size. Contrary to both of these accounts, however, across two experiments we found that attentional spotlight size affected spatial acuity, such that spatial acuity was enhanced for a focal relative to a diffuse spotlight, whereas the same modulations in spotlight size had no impact on temporal acuity. This likely reflects the function of attention: to induce the high spatial resolution of the fovea in periphery, where spatial resolution is poor but temporal resolution is good. It is adaptive, therefore, for the attentional spotlight to enhance spatial acuity, whereas enhancing temporal acuity does not confer the same benefit.

  11. Restricted cross-scale habitat selection by American beavers.

    PubMed

    Francis, Robert A; Taylor, Jimmy D; Dibble, Eric; Strickland, Bronson; Petro, Vanessa M; Easterwood, Christine; Wang, Guiming

    2017-12-01

    Animal habitat selection, among other ecological phenomena, is spatially scale dependent. Habitat selection by American beavers Castor canadensis (hereafter, beaver) has been studied at singular spatial scales, but to date no research addresses multi-scale selection. Our objectives were to determine if beaver habitat selection was specialized to semiaquatic habitats and if variables explaining habitat selection are consistent between landscape and fine spatial scales. We built maximum entropy (MaxEnt) models to relate landscape-scale presence-only data to landscape variables, and used generalized linear mixed models to evaluate fine spatial scale habitat selection using global positioning system (GPS) relocation data. Explanatory variables between the landscape and fine spatial scale were compared for consistency. Our findings suggested that beaver habitat selection at coarse (study area) and fine (within home range) scales was congruent, and was influenced by increasing amounts of woody wetland edge density and shrub edge density, and decreasing amounts of open water edge density. Habitat suitability at the landscape scale also increased with decreasing amounts of grass frequency. As territorial, central-place foragers, beavers likely trade-off open water edge density (i.e., smaller non-forested wetlands or lodges closer to banks) for defense and shorter distances to forage and obtain construction material. Woody plants along edges and expanses of open water for predator avoidance may limit beaver fitness and subsequently determine beaver habitat selection.

  12. Restricted cross-scale habitat selection by American beavers

    PubMed Central

    Taylor, Jimmy D; Dibble, Eric; Strickland, Bronson; Petro, Vanessa M; Easterwood, Christine; Wang, Guiming

    2017-01-01

    Abstract Animal habitat selection, among other ecological phenomena, is spatially scale dependent. Habitat selection by American beavers Castor canadensis (hereafter, beaver) has been studied at singular spatial scales, but to date no research addresses multi-scale selection. Our objectives were to determine if beaver habitat selection was specialized to semiaquatic habitats and if variables explaining habitat selection are consistent between landscape and fine spatial scales. We built maximum entropy (MaxEnt) models to relate landscape-scale presence-only data to landscape variables, and used generalized linear mixed models to evaluate fine spatial scale habitat selection using global positioning system (GPS) relocation data. Explanatory variables between the landscape and fine spatial scale were compared for consistency. Our findings suggested that beaver habitat selection at coarse (study area) and fine (within home range) scales was congruent, and was influenced by increasing amounts of woody wetland edge density and shrub edge density, and decreasing amounts of open water edge density. Habitat suitability at the landscape scale also increased with decreasing amounts of grass frequency. As territorial, central-place foragers, beavers likely trade-off open water edge density (i.e., smaller non-forested wetlands or lodges closer to banks) for defense and shorter distances to forage and obtain construction material. Woody plants along edges and expanses of open water for predator avoidance may limit beaver fitness and subsequently determine beaver habitat selection. PMID:29492032

  13. Evaluation of the 29-km Eta Model. Part 1; Objective Verification at Three Selected Stations

    NASA Technical Reports Server (NTRS)

    Nutter, Paul A.; Manobianco, John; Merceret, Francis J. (Technical Monitor)

    1998-01-01

    This paper describes an objective verification of the National Centers for Environmental Prediction (NCEP) 29-km eta model from May 1996 through January 1998. The evaluation was designed to assess the model's surface and upper-air point forecast accuracy at three selected locations during separate warm (May - August) and cool (October - January) season periods. In order to enhance sample sizes available for statistical calculations, the objective verification includes two consecutive warm and cool season periods. Systematic model deficiencies comprise the larger portion of the total error in most of the surface forecast variables that were evaluated. The error characteristics for both surface and upper-air forecasts vary widely by parameter, season, and station location. At upper levels, a few characteristic biases are identified. Overall however, the upper-level errors are more nonsystematic in nature and could be explained partly by observational measurement uncertainty. With a few exceptions, the upper-air results also indicate that 24-h model error growth is not statistically significant. In February and August 1997, NCEP implemented upgrades to the eta model's physical parameterizations that were designed to change some of the model's error characteristics near the surface. The results shown in this paper indicate that these upgrades led to identifiable and statistically significant changes in forecast accuracy for selected surface parameters. While some of the changes were expected, others were not consistent with the intent of the model updates and further emphasize the need for ongoing sensitivity studies and localized statistical verification efforts. Objective verification of point forecasts is a stringent measure of model performance, but when used alone, is not enough to quantify the overall value that model guidance may add to the forecast process. Therefore, results from a subjective verification of the meso-eta model over the Florida peninsula are

  14. A twin study of spatial and non-spatial delayed response performance in middle age.

    PubMed

    Kremen, William S; Mai, Tuan; Panizzon, Matthew S; Franz, Carol E; Blankfeld, Howard M; Xian, Hong; Eisen, Seth A; Tsuang, Ming T; Lyons, Michael J

    2011-06-01

    Delayed alternation and object alternation are classic spatial and non-spatial delayed response tasks. We tested 632 middle-aged male veteran twins on variants of these tasks in order to compare test difficulty, measure their inter-correlation, test order effects, and estimate heritabilities (proportion of observed variance due to genetic influences). Non-spatial alternation (NSA), which may involve greater reliance on processing of subgoals, was significantly more difficult than spatial alternation (SA). Despite their similarities, NSA and SA scores were uncorrelated. NSA performance was worse when administered second; there was no SA order effect. NSA scores were modestly heritable (h(2)=.25; 26); SA was not. There was shared genetic variance between NSA scores and general intellectual ability (r(g)=.55; .67), but this also suggests genetic influences specific to NSA. Compared with findings from small, selected control samples, high "failure" rates in this community-based sample raise concerns about interpretation of brain dysfunction in elderly or patient samples. Copyright © 2011 Elsevier Inc. All rights reserved.

  15. A Twin Study of Spatial and Non-Spatial Delayed Response Performance in Middle Age

    PubMed Central

    Kremen, William S.; Mai, Tuan; Panizzon, Matthew S.; Franz, Carol E.; Blankfeld, Howard M.; Xian, Hong; Eisen, Seth A.; Tsuang, Ming T.; Lyons, Michael J.

    2011-01-01

    Delayed alternation and object alternation are classic spatial and non-spatial delayed response tasks. We tested 632 middle-aged male veteran twins on variants of these tasks in order to compare test difficulty, measure their inter-correlation, test order effects, and estimate heritabilities (proportion of observed variance due to genetic influences). Non-spatial alternation (NSA), which may involve greater reliance on processing of subgoals, was significantly more difficult than spatial alternation (SA). Despite their similarities, NSA and SA scores were uncorrelated. NSA performance was worse when administered second; there was no SA order effect. NSA scores were modestly heritable (h2=.25; 26); SA was not. There was shared genetic variance between NSA scores and general intellectual ability (rg=.55; .67), but this also suggests genetic influences specific to NSA. Compared with findings from small, selected control samples, high “failure” rates in this community-based sample raise concerns about interpretation of brain dysfunction in elderly or patient samples. PMID:21477911

  16. An Objective Approach to Select Climate Scenarios when Projecting Species Distribution under Climate Change

    PubMed Central

    Casajus, Nicolas; Périé, Catherine; Logan, Travis; Lambert, Marie-Claude; de Blois, Sylvie; Berteaux, Dominique

    2016-01-01

    An impressive number of new climate change scenarios have recently become available to assess the ecological impacts of climate change. Among these impacts, shifts in species range analyzed with species distribution models are the most widely studied. Whereas it is widely recognized that the uncertainty in future climatic conditions must be taken into account in impact studies, many assessments of species range shifts still rely on just a few climate change scenarios, often selected arbitrarily. We describe a method to select objectively a subset of climate change scenarios among a large ensemble of available ones. Our k-means clustering approach reduces the number of climate change scenarios needed to project species distributions, while retaining the coverage of uncertainty in future climate conditions. We first show, for three biologically-relevant climatic variables, that a reduced number of six climate change scenarios generates average climatic conditions very close to those obtained from a set of 27 scenarios available before reduction. A case study on potential gains and losses of habitat by three northeastern American tree species shows that potential future species distributions projected from the selected six climate change scenarios are very similar to those obtained from the full set of 27, although with some spatial discrepancies at the edges of species distributions. In contrast, projections based on just a few climate models vary strongly according to the initial choice of climate models. We give clear guidance on how to reduce the number of climate change scenarios while retaining the central tendencies and coverage of uncertainty in future climatic conditions. This should be particularly useful during future climate change impact studies as more than twice as many climate models were reported in the fifth assessment report of IPCC compared to the previous one. PMID:27015274

  17. An Objective Approach to Select Climate Scenarios when Projecting Species Distribution under Climate Change.

    PubMed

    Casajus, Nicolas; Périé, Catherine; Logan, Travis; Lambert, Marie-Claude; de Blois, Sylvie; Berteaux, Dominique

    2016-01-01

    An impressive number of new climate change scenarios have recently become available to assess the ecological impacts of climate change. Among these impacts, shifts in species range analyzed with species distribution models are the most widely studied. Whereas it is widely recognized that the uncertainty in future climatic conditions must be taken into account in impact studies, many assessments of species range shifts still rely on just a few climate change scenarios, often selected arbitrarily. We describe a method to select objectively a subset of climate change scenarios among a large ensemble of available ones. Our k-means clustering approach reduces the number of climate change scenarios needed to project species distributions, while retaining the coverage of uncertainty in future climate conditions. We first show, for three biologically-relevant climatic variables, that a reduced number of six climate change scenarios generates average climatic conditions very close to those obtained from a set of 27 scenarios available before reduction. A case study on potential gains and losses of habitat by three northeastern American tree species shows that potential future species distributions projected from the selected six climate change scenarios are very similar to those obtained from the full set of 27, although with some spatial discrepancies at the edges of species distributions. In contrast, projections based on just a few climate models vary strongly according to the initial choice of climate models. We give clear guidance on how to reduce the number of climate change scenarios while retaining the central tendencies and coverage of uncertainty in future climatic conditions. This should be particularly useful during future climate change impact studies as more than twice as many climate models were reported in the fifth assessment report of IPCC compared to the previous one.

  18. Combining High Spatial Resolution Optical and LIDAR Data for Object-Based Image Classification

    NASA Astrophysics Data System (ADS)

    Li, R.; Zhang, T.; Geng, R.; Wang, L.

    2018-04-01

    In order to classify high spatial resolution images more accurately, in this research, a hierarchical rule-based object-based classification framework was developed based on a high-resolution image with airborne Light Detection and Ranging (LiDAR) data. The eCognition software is employed to conduct the whole process. In detail, firstly, the FBSP optimizer (Fuzzy-based Segmentation Parameter) is used to obtain the optimal scale parameters for different land cover types. Then, using the segmented regions as basic units, the classification rules for various land cover types are established according to the spectral, morphological and texture features extracted from the optical images, and the height feature from LiDAR respectively. Thirdly, the object classification results are evaluated by using the confusion matrix, overall accuracy and Kappa coefficients. As a result, a method using the combination of an aerial image and the airborne Lidar data shows higher accuracy.

  19. The influence of object shape and center of mass on grasp and gaze

    PubMed Central

    Desanghere, Loni; Marotta, Jonathan J.

    2015-01-01

    Recent experiments examining where participants look when grasping an object found that fixations favor the eventual index finger landing position on the object. Even though the act of picking up an object must involve complex high-level computations such as the visual analysis of object contours, surface properties, knowledge of an object’s function and center of mass (COM) location, these investigations have generally used simple symmetrical objects – where COM and horizontal midline overlap. Less research has been aimed at looking at how variations in object properties, such as differences in curvature and changes in COM location, affect visual and motor control. The purpose of this study was to examine grasp and fixation locations when grasping objects whose COM was positioned to the left or right of the objects horizontal midline (Experiment 1) and objects whose COM was moved progressively further from the midline of the objects based on the alteration of the object’s shape (Experiment 2). Results from Experiment 1 showed that object COM position influenced fixation locations and grasp locations differently, with fixations not as tightly linked to index finger grasp locations as was previously reported with symmetrical objects. Fixation positions were also found to be more central on the non-symmetrical objects. This difference in gaze position may provide a more holistic view, which would allow both index finger and thumb positions to be monitored while grasping. Finally, manipulations of COM distance (Experiment 2) exerted marked effects on the visual analysis of the objects when compared to its influence on grasp locations, with fixation locations more sensitive to these manipulations. Together, these findings demonstrate how object features differentially influence gaze vs. grasp positions during object interaction. PMID:26528207

  20. Cross-Sensory Transfer of Reference Frames in Spatial Memory

    ERIC Educational Resources Information Center

    Kelly, Jonathan W.; Avraamides, Marios N.

    2011-01-01

    Two experiments investigated whether visual cues influence spatial reference frame selection for locations learned through touch. Participants experienced visual cues emphasizing specific environmental axes and later learned objects through touch. Visual cues were manipulated and haptic learning conditions were held constant. Imagined perspective…

  1. Privacy Protection Versus Cluster Detection in Spatial Epidemiology

    PubMed Central

    Olson, Karen L.; Grannis, Shaun J.; Mandl, Kenneth D.

    2006-01-01

    Objectives. Patient data that includes precise locations can reveal patients’ identities, whereas data aggregated into administrative regions may preserve privacy and confidentiality. We investigated the effect of varying degrees of address precision (exact latitude and longitude vs the center points of zip code or census tracts) on detection of spatial clusters of cases. Methods. We simulated disease outbreaks by adding supplementary spatially clustered emergency department visits to authentic hospital emergency department syndromic surveillance data. We identified clusters with a spatial scan statistic and evaluated detection rate and accuracy. Results. More clusters were identified, and clusters were more accurately detected, when exact locations were used. That is, these clusters contained at least half of the simulated points and involved few additional emergency department visits. These results were especially apparent when the synthetic clustered points crossed administrative boundaries and fell into multiple zip code or census tracts. Conclusions. The spatial cluster detection algorithm performed better when addresses were analyzed as exact locations than when they were analyzed as center points of zip code or census tracts, particularly when the clustered points crossed administrative boundaries. Use of precise addresses offers improved performance, but this practice must be weighed against privacy concerns in the establishment of public health data exchange policies. PMID:17018828

  2. Liquid cooled data center design selection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chainer, Timothy J.; Iyengar, Madhusudan K.; Parida, Pritish R.

    Input data, specifying aspects of a thermal design of a liquid cooled data center, is obtained. The input data includes data indicative of ambient outdoor temperature for a location of the data center; and/or data representing workload power dissipation for the data center. The input data is evaluated to obtain performance of the data center thermal design. The performance includes cooling energy usage; and/or one pertinent temperature associated with the data center. The performance of the data center thermal design is output.

  3. Invariant visual object recognition: a model, with lighting invariance.

    PubMed

    Rolls, Edmund T; Stringer, Simon M

    2006-01-01

    How are invariant representations of objects formed in the visual cortex? We describe a neurophysiological and computational approach which focusses on a feature hierarchy model in which invariant representations can be built by self-organizing learning based on the statistics of the visual input. The model can use temporal continuity in an associative synaptic learning rule with a short term memory trace, and/or it can use spatial continuity in Continuous Transformation learning. The model of visual processing in the ventral cortical stream can build representations of objects that are invariant with respect to translation, view, size, and in this paper we show also lighting. The model has been extended to provide an account of invariant representations in the dorsal visual system of the global motion produced by objects such as looming, rotation, and object-based movement. The model has been extended to incorporate top-down feedback connections to model the control of attention by biased competition in for example spatial and object search tasks. The model has also been extended to account for how the visual system can select single objects in complex visual scenes, and how multiple objects can be represented in a scene.

  4. Visual memory in unilateral spatial neglect: immediate recall versus delayed recognition.

    PubMed

    Moreh, Elior; Malkinson, Tal Seidel; Zohary, Ehud; Soroker, Nachum

    2014-09-01

    Patients with unilateral spatial neglect (USN) often show impaired performance in spatial working memory tasks, apart from the difficulty retrieving "left-sided" spatial data from long-term memory, shown in the "piazza effect" by Bisiach and colleagues. This study's aim was to compare the effect of the spatial position of a visual object on immediate and delayed memory performance in USN patients. Specifically, immediate verbal recall performance, tested using a simultaneous presentation of four visual objects in four quadrants, was compared with memory in a later-provided recognition task, in which objects were individually shown at the screen center. Unlike healthy controls, USN patients showed a left-side disadvantage and a vertical bias in the immediate free recall task (69% vs. 42% recall for right- and left-sided objects, respectively). In the recognition task, the patients correctly recognized half of "old" items, and their correct rejection rate was 95.5%. Importantly, when the analysis focused on previously recalled items (in the immediate task), no statistically significant difference was found in the delayed recognition of objects according to their original quadrant of presentation. Furthermore, USN patients were able to recollect the correct original location of the recognized objects in 60% of the cases, well beyond chance level. This suggests that the memory trace formed in these cases was not only semantic but also contained a visuospatial tag. Finally, successful recognition of objects missed in recall trials points to formation of memory traces for neglected contralesional objects, which may become accessible to retrieval processes in explicit memory.

  5. Object-based selection in the Baylis and Driver (1993) paradigm is subject to space-based attentional modulation.

    PubMed

    Müller, Hermann J; O'Grady, Rebecca; Krummenacher, Joseph; Heller, Dieter

    2008-11-01

    Three experiments re-examined Baylis and Driver's (1993) strong evidence for object-based selection, that making relative apex location judgments is harder between two objects than within a single object, with object (figure-ground) segmentation determined solely by color-based perceptual set. Using variations of the Baylis and Driver paradigm, the experiments replicated a two-object cost. However, they also showed a large part of the two-object cost to be attributable to space-based factors, though there remained an irreducible cost consistent with 'true' object-based selection.

  6. Improving site selection in clinical studies: a standardised, objective, multistep method and first experience results.

    PubMed

    Hurtado-Chong, Anahí; Joeris, Alexander; Hess, Denise; Blauth, Michael

    2017-07-12

    A considerable number of clinical studies experience delays, which result in increased duration and costs. In multicentre studies, patient recruitment is among the leading causes of delays. Poor site selection can result in low recruitment and bad data quality. Site selection is therefore crucial for study quality and completion, but currently no specific guidelines are available. Selection of sites adequate to participate in a prospective multicentre cohort study was performed through an open call using a newly developed objective multistep approach. The method is based on use of a network, definition of objective criteria and a systematic screening process. Out of 266 interested sites, 24 were shortlisted and finally 12 sites were selected to participate in the study. The steps in the process included an open call through a network, use of selection questionnaires tailored to the study, evaluation of responses using objective criteria and scripted telephone interviews. At each step, the number of candidate sites was quickly reduced leaving only the most promising candidates. Recruitment and quality of data went according to expectations in spite of the contracting problems faced with some sites. The results of our first experience with a standardised and objective method of site selection are encouraging. The site selection method described here can serve as a guideline for other researchers performing multicentre studies. ClinicalTrials.gov: NCT02297581. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  7. Spatial and temporal dynamics of forest canopy gaps following selective logging in the eastern Amazon.

    Treesearch

    GREGORY P. ASNER; MICHAEL KELLER; JOSEN M. SILVA

    2004-01-01

    Selective logging is a dominant form of land use in the Amazon basin and throughout the humid tropics, yet little is known about the spatial variability of forest canopy gap formation and closure following timber harvests. We established chronosequences of large-area (14–158 ha) selective logging sites spanning a 3.5-year period of forest regeneration and two distinct...

  8. Attentional Selection in Object Recognition

    DTIC Science & Technology

    1993-02-01

    order. It also affects the choice of strategies in both the 24 A Computational Model of Attentional Selection filtering and arbiter stages. The set...such processing. In Treisman’s model this was hidden in the concept of the selection filter . Later computational models of attention tried to...This thesis presents a novel approach to the selection problem by propos. ing a computational model of visual attentional selection as a paradigm for

  9. Road-safety education: spatial decentering and subjective or objective picture processing.

    PubMed

    Guercin, F

    2007-10-01

    The current study examined children's ability to analyse pictures of a risky situation, both in relation to the characteristics of the pictures and in relation to the centering/decentering process of cognitive development. Sixty children aged 6, 9 or 11 years were given an objective or subjective version of a story about a risky situation involving road crossing and were asked to reconstruct it by putting six pictures in chronological order. The type of picture series, objective or subjective, had a different effect on the children's understanding and performance, according to the age. The older children were better at ordering the pictures, but on the subjective version only. The picture-version effect on planning time decreased with age; only the younger children took more time to start touching the pictures. On one hand, it is concluded that for the youngest children, objective representations are essential to analysing pictures showing a risk, whereas the oldest children will profit more from a subjective view. On the other hand, subjective representations, which give a more realistic view, provide an excellent tool for testing children's abilities. Subjective representations can be used to detect potentially risky behaviour in virtual situations (static pictures, or multimedia tools), since it permits one to predict at-risk behaviour in the street and to assess the effectiveness of remedial measures.

  10. Association, inhibition, and object permanence in dogs' (Canis familiaris) spatial search.

    PubMed

    Ashton, Rebecca L; De Lillo, Carlo

    2011-05-01

    The relative role of associative processes and the use of explicit cues about object location in search behavior in dogs (Canis familiaris) was assessed by using a spatial binary discrimination reversal paradigm in which reversal conditions featured: (1) a previously rewarded location and a novel location, (2) a previously nonrewarded location and a novel location, or (3) a previously rewarded location and a previously nonrewarded location. Rule mediated learning predicts a similar performance in these different reversal conditions whereas associative learning predicts the worst performance in Condition 3. Evidence for an associative control of search emerged when no explicit cues about food location were provided (Experiment 1) but also when dogs witnessed the hiding of food in the reversal trials (Experiment 2) and when they did so in both the prereversal and the reversal trials (Experiment 3). Nevertheless, dogs performed better in the prereversal phase of Experiment 3 indicating that their search could be informed by the knowledge of the food location. Experiment 4 confirmed the results of Experiments 1 and 2, under a different arrangement of search locations. We conclude that knowledge about object location guides search behavior in dogs but it cannot override associative processes. 2011 APA, all rights reserved

  11. Real-time 2D spatially selective MRI experiments: Comparative analysis of optimal control design methods

    NASA Astrophysics Data System (ADS)

    Maximov, Ivan I.; Vinding, Mads S.; Tse, Desmond H. Y.; Nielsen, Niels Chr.; Shah, N. Jon

    2015-05-01

    There is an increasing need for development of advanced radio-frequency (RF) pulse techniques in modern magnetic resonance imaging (MRI) systems driven by recent advancements in ultra-high magnetic field systems, new parallel transmit/receive coil designs, and accessible powerful computational facilities. 2D spatially selective RF pulses are an example of advanced pulses that have many applications of clinical relevance, e.g., reduced field of view imaging, and MR spectroscopy. The 2D spatially selective RF pulses are mostly generated and optimised with numerical methods that can handle vast controls and multiple constraints. With this study we aim at demonstrating that numerical, optimal control (OC) algorithms are efficient for the design of 2D spatially selective MRI experiments, when robustness towards e.g. field inhomogeneity is in focus. We have chosen three popular OC algorithms; two which are gradient-based, concurrent methods using first- and second-order derivatives, respectively; and a third that belongs to the sequential, monotonically convergent family. We used two experimental models: a water phantom, and an in vivo human head. Taking into consideration the challenging experimental setup, our analysis suggests the use of the sequential, monotonic approach and the second-order gradient-based approach as computational speed, experimental robustness, and image quality is key. All algorithms used in this work were implemented in the MATLAB environment and are freely available to the MRI community.

  12. The use of neural networks and texture analysis for rapid objective selection of regions of interest in cytoskeletal images.

    PubMed

    Derkacs, Amanda D Felder; Ward, Samuel R; Lieber, Richard L

    2012-02-01

    Understanding cytoskeletal dynamics in living tissue is prerequisite to understanding mechanisms of injury, mechanotransduction, and mechanical signaling. Real-time visualization is now possible using transfection with plasmids that encode fluorescent cytoskeletal proteins. Using this approach with the muscle-specific intermediate filament protein desmin, we found that a green fluorescent protein-desmin chimeric protein was unevenly distributed throughout the muscle fiber, resulting in some image areas that were saturated as well as others that lacked any signal. Our goal was to analyze the muscle fiber cytoskeletal network quantitatively in an unbiased fashion. To objectively select areas of the muscle fiber that are suitable for analysis, we devised a method that provides objective classification of regions of images of striated cytoskeletal structures into "usable" and "unusable" categories. This method consists of a combination of spatial analysis of the image using Fourier methods along with a boosted neural network that "decides" on the quality of the image based on previous training. We trained the neural network using the expert opinion of three scientists familiar with these types of images. We found that this method was over 300 times faster than manual classification and that it permitted objective and accurate classification of image regions.

  13. Center for Mapping, Ohio State University

    NASA Technical Reports Server (NTRS)

    Starr, Lowell

    1991-01-01

    There are many future opportunities for Centers for the Commercial Development of Space (CCDS) activities that are directly linked to industry strategic objectives. In the fields of mapping, remote sensing, and geographic information systems (GIS), the near term opportunities may exceed all that have occurred in the past 10 years. It is strongly believed that a national spatial data infrastructure must be established in this country, if we are to remain a leader in the information age.

  14. Spatially selective assembly of quantum dot light emitters in an LED using engineered peptides.

    PubMed

    Demir, Hilmi Volkan; Seker, Urartu Ozgur Safak; Zengin, Gulis; Mutlugun, Evren; Sari, Emre; Tamerler, Candan; Sarikaya, Mehmet

    2011-04-26

    Semiconductor nanocrystal quantum dots are utilized in numerous applications in nano- and biotechnology. In device applications, where several different material components are involved, quantum dots typically need to be assembled at explicit locations for enhanced functionality. Conventional approaches cannot meet these requirements where assembly of nanocrystals is usually material-nonspecific, thereby limiting the control of their spatial distribution. Here we demonstrate directed self-assembly of quantum dot emitters at material-specific locations in a color-conversion LED containing several material components including a metal, a dielectric, and a semiconductor. We achieve a spatially selective immobilization of quantum dot emitters by using the unique material selectivity characteristics provided by the engineered solid-binding peptides as smart linkers. Peptide-decorated quantum dots exhibited several orders of magnitude higher photoluminescence compared to the control groups, thus, potentially opening up novel ways to advance these photonic platforms in applications ranging from chemical to biodetection.

  15. The role of spatial selective attention in working memory for locations: evidence from event-related potentials.

    PubMed

    Awh, E; Anllo-Vento, L; Hillyard, S A

    2000-09-01

    We investigated the hypothesis that the covert focusing of spatial attention mediates the on-line maintenance of location information in spatial working memory. During the delay period of a spatial working-memory task, behaviorally irrelevant probe stimuli were flashed at both memorized and nonmemorized locations. Multichannel recordings of event-related potentials (ERPs) were used to assess visual processing of the probes at the different locations. Consistent with the hypothesis of attention-based rehearsal, early ERP components were enlarged in response to probes that appeared at memorized locations. These visual modulations were similar in latency and topography to those observed after explicit manipulations of spatial selective attention in a parallel experimental condition that employed an identical stimulus display.

  16. Spatial heterogeneity and scale-dependent habitat selection for two sympatric raptors in mixed-grass prairie.

    PubMed

    Atuo, Fidelis Akunke; O'Connell, Timothy John

    2017-08-01

    Sympatric predators are predicted to partition resources, especially under conditions of food limitation. Spatial heterogeneity that influences prey availability might play an important role in the scales at which potential competitors select habitat. We assessed potential mechanisms for coexistence by examining the role of heterogeneity in resource partitioning between sympatric raptors overwintering in the southern Great Plains. We conducted surveys for wintering Red-tailed hawk ( Buteo jamaicensis ) and Northern Harrier ( Circus cyanea ) at two state wildlife management areas in Oklahoma, USA. We used information from repeated distance sampling to project use locations in a GIS. We applied resource selection functions to model habitat selection at three scales and analyzed for niche partitioning using the outlying mean index. Habitat selection of the two predators was mediated by spatial heterogeneity. The two predators demonstrated significant fine-scale discrimination in habitat selection in homogeneous landscapes, but were more sympatric in heterogeneous landscapes. Red-tailed hawk used a variety of cover types in heterogeneous landscapes but specialized on riparian forest in homogeneous landscapes. Northern Harrier specialized on upland grasslands in homogeneous landscapes but selected more cover types in heterogeneous landscapes. Our study supports the growing body of evidence that landscapes can affect animal behaviors. In the system we studied, larger patches of primary land cover types were associated with greater allopatry in habitat selection between two potentially competing predators. Heterogeneity within the scale of raptor home ranges was associated with greater sympatry in use and less specialization in land cover types selected.

  17. Spatial tuning of a RF frequency selective surface through origami

    NASA Astrophysics Data System (ADS)

    Fuchi, Kazuko; Buskohl, Philip R.; Bazzan, Giorgio; Durstock, Michael F.; Joo, James J.; Reich, Gregory W.; Vaia, Richard A.

    2016-05-01

    Origami devices have the ability to spatially reconfigure between 2D and 3D states through folding motions. The precise mapping of origami presents a novel method to spatially tune radio frequency (RF) devices, including adaptive antennas, sensors, reflectors, and frequency selective surfaces (FSSs). While conventional RF FSSs are designed based upon a planar distribution of conductive elements, this leaves the large design space of the out of plane dimension underutilized. We investigated this design regime through the computational study of four FSS origami tessellations with conductive dipoles. The dipole patterns showed increased resonance shift with decreased separation distances, with the separation in the direction orthogonal to the dipole orientations having a more significant effect. The coupling mechanisms between dipole neighbours were evaluated by comparing surface charge densities, which revealed the gain and loss of coupling as the dipoles moved in and out of alignment via folding. Collectively, these results provide a basis of origami FSS designs for experimental study and motivates the development of computational tools to systematically predict optimal fold patterns for targeted frequency response and directionality.

  18. From brain synapses to systems for learning and memory: Object recognition, spatial navigation, timed conditioning, and movement control.

    PubMed

    Grossberg, Stephen

    2015-09-24

    This article provides an overview of neural models of synaptic learning and memory whose expression in adaptive behavior depends critically on the circuits and systems in which the synapses are embedded. It reviews Adaptive Resonance Theory, or ART, models that use excitatory matching and match-based learning to achieve fast category learning and whose learned memories are dynamically stabilized by top-down expectations, attentional focusing, and memory search. ART clarifies mechanistic relationships between consciousness, learning, expectation, attention, resonance, and synchrony. ART models are embedded in ARTSCAN architectures that unify processes of invariant object category learning, recognition, spatial and object attention, predictive remapping, and eye movement search, and that clarify how conscious object vision and recognition may fail during perceptual crowding and parietal neglect. The generality of learned categories depends upon a vigilance process that is regulated by acetylcholine via the nucleus basalis. Vigilance can get stuck at too high or too low values, thereby causing learning problems in autism and medial temporal amnesia. Similar synaptic learning laws support qualitatively different behaviors: Invariant object category learning in the inferotemporal cortex; learning of grid cells and place cells in the entorhinal and hippocampal cortices during spatial navigation; and learning of time cells in the entorhinal-hippocampal system during adaptively timed conditioning, including trace conditioning. Spatial and temporal processes through the medial and lateral entorhinal-hippocampal system seem to be carried out with homologous circuit designs. Variations of a shared laminar neocortical circuit design have modeled 3D vision, speech perception, and cognitive working memory and learning. A complementary kind of inhibitory matching and mismatch learning controls movement. This article is part of a Special Issue entitled SI: Brain and Memory

  19. The role of Parenting and Goal Selection in Positive Youth Development: A Person-Centered Approach

    ERIC Educational Resources Information Center

    Napolitano, Christopher M.; Bowers, Edmond P.; Gestsdottir, Steinunn; Depping, Miriam; von Eye, Alexander; Chase, Paul; Lerner, Jacqueline V.

    2011-01-01

    Using a person-centered approach, we examined the relations between goal selection, various indicators of parenting, and positive development among 510 Grades 9 to 11 participants (68% female) in the 4-H Study of Positive Youth Development (PYD), a longitudinal study involving U.S. adolescents. Goal selection was operationalized by the "Selection"…

  20. Selection of fire-created snags at two spatial scales by cavity-nesting birds

    Treesearch

    Victoria A. Saab; Ree Brannon; Jonathan Dudley; Larry Donohoo; Dave Vanderzanden; Vicky Johnson; Henry Lachowski

    2002-01-01

    We examined the use of snag stands by seven species of cavity-nesting birds from 1994-1998. Selection of snags was studied in logged and unlogged burned forests at two spatial scales: microhabitat (local vegetation characteristics) and landscape (composition and patterning of surrounding vegetation types). We modeled nest occurrence at the landscape scale by using...

  1. Spatial relationships among cereal yields and selected soil physical and chemical properties.

    PubMed

    Lipiec, Jerzy; Usowicz, Bogusław

    2018-08-15

    Sandy soils occupy large area in Poland (about 50%) and in the world. This study aimed at determining spatial relationships of cereal yields and the selected soil physical and chemical properties in three study years (2001-2003) on low productive sandy Podzol soil (Podlasie, Poland). The yields and soil properties in plough and subsoil layers were determined at 72-150 points. The test crops were: wheat, wheat and barley mixture and oats. To explore the spatial relationship between cereal yields and each soil property spatial statistics was used. The best fitting models were adjusted to empirical semivariance and cross-semivariance, which were used to draw maps using kriging. Majority of the soil properties and crop yields exhibited low and medium variability (coefficient of variation 5-70%). The effective ranges of the spatial dependence (the distance at which data are autocorrelated) for yields and all soil properties were 24.3-58.5m and 10.5-373m, respectively. Nugget to sill ratios showed that crop yields and soil properties were strongly spatially dependent except bulk density. Majority of the pairs in cross-semivariograms exhibited strong spatial interdependence. The ranges of the spatial dependence varied in plough layer between 54.6m for yield×pH up to 2433m for yield×silt content. Corresponding ranges in subsoil were 24.8m for crop yield×clay content in 2003 and 1404m for yield×bulk density. Kriging maps allowed separating sub-field area with the lowest yield and soil cation exchange capacity, organic carbon content and pH. This area had lighter color on the aerial photograph due to high content of the sand and low content of soil organic carbon. The results will help farmers at identifying sub-field areas for applying localized management practices to improve these soil properties and further spatial studies in larger scale. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  2. Spatially Resolved Observations of the Galactic Center Source IRS 21

    NASA Astrophysics Data System (ADS)

    Tanner, A.; Ghez, A. M.; Morris, M.; Becklin, E. E.; Cotera, A.; Ressler, M.; Werner, M.; Wizinowich, P.

    2002-08-01

    We present diffraction-limited 2-25 μm images obtained with the W. M. Keck 10 m telescopes that spatially resolve the cool source IRS 21, one of a small group of enigmatic objects in the central parsec of our Galaxy that have eluded classification. Modeled as a Gaussian, the azimuthally averaged intensity profile of IRS 21 has a half-width at half-maximum (HWHM) size of 650+/-80 AU at 2.2 μm and an average HWHM size of 1600+/-200 AU at mid-infrared wavelengths. These large apparent sizes imply an extended distribution of dust. The mid-infrared color map indicates that IRS 21 is a self-luminous source rather than an externally heated dust clump as originally suggested. The spectral energy distribution has distinct near- and mid-infrared components. A simple radiative transfer code, which simultaneously fits the near- and mid-infrared photometry and intensity profiles, supports a model in which the near-infrared radiation is scattered and extincted light from an embedded central source, while the mid-infrared emission is from thermally reradiating silicate dust. We argue that IRS 21 (and by analogy, the other luminous sources along the Northern Arm) is a massive star experiencing rapid mass loss and plowing through the Northern Arm, thereby generating a bow shock, which is spatially resolved in our observations.

  3. The Selection of Computed Tomography Scanning Schemes for Lengthy Symmetric Objects

    NASA Astrophysics Data System (ADS)

    Trinh, V. B.; Zhong, Y.; Osipov, S. P.

    2017-04-01

    . The article describes the basic computed tomography scan schemes for lengthy symmetric objects: continuous (discrete) rotation with a discrete linear movement; continuous (discrete) rotation with discrete linear movement to acquire 2D projection; continuous (discrete) linear movement with discrete rotation to acquire one-dimensional projection and continuous (discrete) rotation to acquire of 2D projection. The general method to calculate the scanning time is discussed in detail. It should be extracted the comparison principle to select a scanning scheme. This is because data are the same for all scanning schemes: the maximum energy of the X-ray radiation; the power of X-ray radiation source; the angle of the X-ray cone beam; the transverse dimension of a single detector; specified resolution and the maximum time, which is need to form one point of the original image and complies the number of registered photons). It demonstrates the possibilities of the above proposed method to compare the scanning schemes. Scanning object was a cylindrical object with the mass thickness is 4 g/cm2, the effective atomic number is 15 and length is 1300 mm. It analyzes data of scanning time and concludes about the efficiency of scanning schemes. It examines the productivity of all schemes and selects the effective one.

  4. Effects of Selected Object Characteristics on Object Permanence Test Performance.

    ERIC Educational Resources Information Center

    Lingle, Kathleen M.; Lingle, John H.

    A study was conducted to investigate the degree to which both object familiarity and motivational factors influence infants' search behavior in an object permanence test. Infants' search behavior for an unfamiliar test object was compared with search behavior for (a) an experientially familiar object that each infant had played with daily for a…

  5. Dual-Objective Item Selection Criteria in Cognitive Diagnostic Computerized Adaptive Testing

    ERIC Educational Resources Information Center

    Kang, Hyeon-Ah; Zhang, Susu; Chang, Hua-Hua

    2017-01-01

    The development of cognitive diagnostic-computerized adaptive testing (CD-CAT) has provided a new perspective for gaining information about examinees' mastery on a set of cognitive attributes. This study proposes a new item selection method within the framework of dual-objective CD-CAT that simultaneously addresses examinees' attribute mastery…

  6. Selective equal spin Andreev reflection at vortex core center in magnetic semiconductor-superconductor heterostructure.

    PubMed

    Li, Chuang; Hu, Lun-Hui; Zhou, Yi; Zhang, Fu-Chun

    2018-05-18

    Sau, Lutchyn, Tewari and Das Sarma (SLTD) proposed a heterostructure consisting of a semiconducting thin film sandwiched between an s-wave superconductor and a magnetic insulator and showed possible Majorana zero mode. Here we study spin polarization of the vortex core states and spin selective Andreev reflection at the vortex center of the SLTD model. In the topological phase, the differential conductance at the vortex center contributed from the Andreev reflection, is spin selective and has a quantized value [Formula: see text] at zero bias. In the topological trivial phase, [Formula: see text] at the lowest quasiparticle energy of the vortex core is spin selective due to the spin-orbit coupling (SOC). Unlike in the topological phase, [Formula: see text] is suppressed in the Giaever limit and vanishes exactly at zero bias due to the quantum destruction interference.

  7. Spatial variation in pollinator-mediated selection on phenology, floral display and spur length in the orchid Gymnadenia conopsea.

    PubMed

    Chapurlat, Elodie; Ågren, Jon; Sletvold, Nina

    2015-12-01

    Spatial variation in plant-pollinator interactions may cause variation in pollinator-mediated selection on floral traits, but to establish this link conclusively experimental studies are needed. We quantified pollinator-mediated selection on flowering phenology and morphology in four populations of the fragrant orchid Gymnadenia conopsea, and compared selection mediated by diurnal and nocturnal pollinators in two of the populations. Variation in pollinator-mediated selection explained most of the among-population variation in the strength of directional and correlational selection. Pollinators mediated correlational selection on pairs of display traits, and on one display trait and spur length, a trait affecting pollination efficiency. Only nocturnal pollinators selected for longer spurs, and mediated stronger selection on the number of flowers compared with diurnal pollinators in one population. The two types of pollinators caused correlational selection on different pairs of traits and selected for different combinations of spur length and number of flowers. The results demonstrate that spatial variation in interactions with pollinators may result in differences in directional and correlational selection on floral traits in a plant with a semi-generalized pollination system, and suggest that differences in the relative importance of diurnal and nocturnal pollinators can cause variation in selection. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  8. Selection of day-roosts by Keen's myotis (Myotis keenii) at multiple spatial scales

    Treesearch

    Julia L. Boland; John P. Hayes; Winston P. Smith; Manuela M. Huso

    2009-01-01

    Keen's myotis (Myotis keenii) has one of the most limited geographic distributions of any species of bat in North America. Because there is little knowledge of its roosting ecology, we examined selection of day-roosts in trees by male and female Keen's myotis at three spatial scales (tree, tree plot, and landscape) on Prince of Wales Island...

  9. Temperature variability is integrated by a spatially embedded decision-making center to break dormancy in Arabidopsis seeds.

    PubMed

    Topham, Alexander T; Taylor, Rachel E; Yan, Dawei; Nambara, Eiji; Johnston, Iain G; Bassel, George W

    2017-06-20

    Plants perceive and integrate information from the environment to time critical transitions in their life cycle. Some mechanisms underlying this quantitative signal processing have been described, whereas others await discovery. Seeds have evolved a mechanism to integrate environmental information by regulating the abundance of the antagonistically acting hormones abscisic acid (ABA) and gibberellin (GA). Here, we show that hormone metabolic interactions and their feedbacks are sufficient to create a bistable developmental fate switch in Arabidopsis seeds. A digital single-cell atlas mapping the distribution of hormone metabolic and response components revealed their enrichment within the embryonic radicle, identifying the presence of a decision-making center within dormant seeds. The responses to both GA and ABA were found to occur within distinct cell types, suggesting cross-talk occurs at the level of hormone transport between these signaling centers. We describe theoretically, and demonstrate experimentally, that this spatial separation within the decision-making center is required to process variable temperature inputs from the environment to promote the breaking of dormancy. In contrast to other noise-filtering systems, including human neurons, the functional role of this spatial embedding is to leverage variability in temperature to transduce a fate-switching signal within this biological system. Fluctuating inputs therefore act as an instructive signal for seeds, enhancing the accuracy with which plants are established in ecosystems, and distributed computation within the radicle underlies this signal integration mechanism.

  10. Temperature variability is integrated by a spatially embedded decision-making center to break dormancy in Arabidopsis seeds

    PubMed Central

    Topham, Alexander T.; Taylor, Rachel E.; Yan, Dawei; Nambara, Eiji; Johnston, Iain G.

    2017-01-01

    Plants perceive and integrate information from the environment to time critical transitions in their life cycle. Some mechanisms underlying this quantitative signal processing have been described, whereas others await discovery. Seeds have evolved a mechanism to integrate environmental information by regulating the abundance of the antagonistically acting hormones abscisic acid (ABA) and gibberellin (GA). Here, we show that hormone metabolic interactions and their feedbacks are sufficient to create a bistable developmental fate switch in Arabidopsis seeds. A digital single-cell atlas mapping the distribution of hormone metabolic and response components revealed their enrichment within the embryonic radicle, identifying the presence of a decision-making center within dormant seeds. The responses to both GA and ABA were found to occur within distinct cell types, suggesting cross-talk occurs at the level of hormone transport between these signaling centers. We describe theoretically, and demonstrate experimentally, that this spatial separation within the decision-making center is required to process variable temperature inputs from the environment to promote the breaking of dormancy. In contrast to other noise-filtering systems, including human neurons, the functional role of this spatial embedding is to leverage variability in temperature to transduce a fate-switching signal within this biological system. Fluctuating inputs therefore act as an instructive signal for seeds, enhancing the accuracy with which plants are established in ecosystems, and distributed computation within the radicle underlies this signal integration mechanism. PMID:28584126

  11. Spatial coding-based approach for partitioning big spatial data in Hadoop

    NASA Astrophysics Data System (ADS)

    Yao, Xiaochuang; Mokbel, Mohamed F.; Alarabi, Louai; Eldawy, Ahmed; Yang, Jianyu; Yun, Wenju; Li, Lin; Ye, Sijing; Zhu, Dehai

    2017-09-01

    Spatial data partitioning (SDP) plays a powerful role in distributed storage and parallel computing for spatial data. However, due to skew distribution of spatial data and varying volume of spatial vector objects, it leads to a significant challenge to ensure both optimal performance of spatial operation and data balance in the cluster. To tackle this problem, we proposed a spatial coding-based approach for partitioning big spatial data in Hadoop. This approach, firstly, compressed the whole big spatial data based on spatial coding matrix to create a sensing information set (SIS), including spatial code, size, count and other information. SIS was then employed to build spatial partitioning matrix, which was used to spilt all spatial objects into different partitions in the cluster finally. Based on our approach, the neighbouring spatial objects can be partitioned into the same block. At the same time, it also can minimize the data skew in Hadoop distributed file system (HDFS). The presented approach with a case study in this paper is compared against random sampling based partitioning, with three measurement standards, namely, the spatial index quality, data skew in HDFS, and range query performance. The experimental results show that our method based on spatial coding technique can improve the query performance of big spatial data, as well as the data balance in HDFS. We implemented and deployed this approach in Hadoop, and it is also able to support efficiently any other distributed big spatial data systems.

  12. Space-based and object-centered gaze cuing of attention in right hemisphere-damaged patients.

    PubMed

    Dalmaso, Mario; Castelli, Luigi; Priftis, Konstantinos; Buccheri, Marta; Primon, Daniela; Tronco, Silvia; Galfano, Giovanni

    2015-01-01

    Gaze cuing of attention is a well established phenomenon consisting of the tendency to shift attention to the location signaled by the averted gaze of other individuals. Evidence suggests that such phenomenon might follow intrinsic object-centered features of the head containing the gaze cue. In the present exploratory study, we aimed to investigate whether such object-centered component is present in neuropsychological patients with a lesion involving the right hemisphere, which is known to play a critical role both in orienting of attention and in face processing. To this purpose, we used a modified gaze-cuing paradigm in which a centrally placed head with averted gaze was presented either in the standard upright position or rotated 90° clockwise or anti-clockwise. Afterward, a to-be-detected target was presented either in the right or in the left hemifield. The results showed that gaze cuing of attention was present only when the target appeared in the left visual hemifield and was not modulated by head orientation. This suggests that gaze cuing of attention in right hemisphere-damaged patients can operate within different frames of reference.

  13. Space-based and object-centered gaze cuing of attention in right hemisphere-damaged patients

    PubMed Central

    Dalmaso, Mario; Castelli, Luigi; Priftis, Konstantinos; Buccheri, Marta; Primon, Daniela; Tronco, Silvia; Galfano, Giovanni

    2015-01-01

    Gaze cuing of attention is a well established phenomenon consisting of the tendency to shift attention to the location signaled by the averted gaze of other individuals. Evidence suggests that such phenomenon might follow intrinsic object-centered features of the head containing the gaze cue. In the present exploratory study, we aimed to investigate whether such object-centered component is present in neuropsychological patients with a lesion involving the right hemisphere, which is known to play a critical role both in orienting of attention and in face processing. To this purpose, we used a modified gaze-cuing paradigm in which a centrally placed head with averted gaze was presented either in the standard upright position or rotated 90° clockwise or anti-clockwise. Afterward, a to-be-detected target was presented either in the right or in the left hemifield. The results showed that gaze cuing of attention was present only when the target appeared in the left visual hemifield and was not modulated by head orientation. This suggests that gaze cuing of attention in right hemisphere-damaged patients can operate within different frames of reference. PMID:26300815

  14. [National survey of preoperative management and patient selection in ambulatory surgery centers].

    PubMed

    Papaceit, J; Olona, M; Ramón, C; García-Aguado, R; Rodríguez, R; Rull, M

    2003-01-01

    The objective of this study was to determine both the selection and preparation criteria in patients in various Spanish ambulatory surgery centers, as well as the impact of these criteria on their results. The results were compared according to the type of functional structure of the units (autonomous or integrated). We performed a cross sectional, descriptive study through postal survey. The survey contained the following items: type of unit, surgical procedures, selection criteria, preoperative assessment and management, and qualitative and quantitative indexes of the activity performed in 2000. A total of 123 units were included with a response rate of 39%. The selection criteria showed a high degree of consensus. The outpatient anesthesia clinic was used for preoperative assessment by 97.9% of the units. Most units routinely requested preoperative tests (hemostasis and hemogram by 89%; biochemical parameters by 72.9%) and to a lesser extent chest X-ray (33.3%) and electrocardiogram (35.4%). The introduction of procedures for the management of coexisting diseases was scarce (25-64.6%). Units using the outpatient anesthesia clinic in all patients had a lower cancellation rate (1.5% vs 4.4%). Autonomous units were significantly more likely to accept patients with high surgical-anesthetic risk than integrated units. Autonomous units also showed a significantly lower number of admissions (1.2% vs 1.9%, p = 0.003), mean stay (240 min vs 367 min, p = 0.002), and recovery time (150 min vs 212 min, p = 0.001) than integrated units. No statistically significant differences were found in the remaining parameters. Scientifically based protocols for patient selection, preoperative assessment and perioperative management of distinct processes and for the rational use of laboratory tests should be more widely used. The need for an outpatient anesthesia clinic for preoperative assessment was notable. The results of our survey indicate that better results in performance indexes

  15. Towards a hierarchical optimization framework for spatially targeting incentive policies to promote green infrastructure amidst multiple objectives and uncertainty

    EPA Science Inventory

    We introduce a hierarchical optimization framework for spatially targeting green infrastructure (GI) incentive policies in order to meet objectives related to cost and environmental effectiveness. The framework explicitly simulates the interaction between multiple levels of polic...

  16. Effects of spatial disturbance on common loon nest site selection and territory success

    USGS Publications Warehouse

    McCarthy, K.P.; DeStefano, S.

    2011-01-01

    The common loon (Gavia immer) breeds during the summer on northern lakes and water bodies that are also often desirable areas for aquatic recreation and human habitation. In northern New England, we assessed how the spatial nature of disturbance affects common loon nest site selection and territory success. We found through classification and regression analysis that distance to and density of disturbance factors can be used to classify observed nest site locations versus random points, suggesting that these factors affect loon nest site selection (model 1: Correct classification = 75%, null = 50%, K = 0.507, P < 0.001; model 2: Correct classification = 78%, null = 50%, K = 0.551, P < 0.001). However, in an exploratory analysis, we were unable to show a relation between spatial disturbance variables and breeding success (P = 0.595, R 2 = 0.436), possibly because breeding success was so low during the breeding seasons of 2007-2008. We suggest that by selecting nest site locations that avoid disturbance factors, loons thereby limit the effect that disturbance will have on their breeding success. Still, disturbance may force loons to use sub-optimal nesting habitat, limiting the available number of territories, and overall productivity. We advise that management efforts focus on limiting disturbance factors to allow breeding pairs access to the best nesting territories, relieving disturbance pressures that may force sub-optimal nest placement. ?? 2011 The Wildlife Society.

  17. Development of exploration of spatial-relational object properties in the second and third years of life.

    PubMed

    Oudgenoeg-Paz, Ora; Boom, Jan; Volman, M Chiel J M; Leseman, Paul P M

    2016-06-01

    Within a perception-action framework, exploration is seen as a driving force in young children's development. Through exploration, children become skilled in perceiving the affordances in their environment and acting on them. Using a perception-action framework, the current study examined the development of children's exploration of the spatial-relational properties of objects such as the possibility of containing or stacking. A total of 61 children, belonging to two age cohorts, were followed from 9 to 24 months and from 20 to 36 months of age, respectively. Exploration of a standard set of objects was observed in five home visits in each cohort conducted every 4 months. A cohort-sequential augmented growth model for categorical data, incorporating assumptions of item response theory, was constructed that fitted the data well, showing that the development of exploration of spatial-relational object properties follows an overlapping waves pattern. This is in line with Siegler's model (Emerging Minds, 1996), which suggested that skill development can be seen as ebbing and flowing of alternative (simple and advanced) behaviors. Although the probability of observing the more complex forms of exploration increased with age, the simpler forms did not disappear altogether but only became less probable. Findings support a perception-action view on development. Individual differences in observed exploration and their relations with other variables, as well as future directions for research, are discussed. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Real-time 2D spatially selective MRI experiments: Comparative analysis of optimal control design methods.

    PubMed

    Maximov, Ivan I; Vinding, Mads S; Tse, Desmond H Y; Nielsen, Niels Chr; Shah, N Jon

    2015-05-01

    There is an increasing need for development of advanced radio-frequency (RF) pulse techniques in modern magnetic resonance imaging (MRI) systems driven by recent advancements in ultra-high magnetic field systems, new parallel transmit/receive coil designs, and accessible powerful computational facilities. 2D spatially selective RF pulses are an example of advanced pulses that have many applications of clinical relevance, e.g., reduced field of view imaging, and MR spectroscopy. The 2D spatially selective RF pulses are mostly generated and optimised with numerical methods that can handle vast controls and multiple constraints. With this study we aim at demonstrating that numerical, optimal control (OC) algorithms are efficient for the design of 2D spatially selective MRI experiments, when robustness towards e.g. field inhomogeneity is in focus. We have chosen three popular OC algorithms; two which are gradient-based, concurrent methods using first- and second-order derivatives, respectively; and a third that belongs to the sequential, monotonically convergent family. We used two experimental models: a water phantom, and an in vivo human head. Taking into consideration the challenging experimental setup, our analysis suggests the use of the sequential, monotonic approach and the second-order gradient-based approach as computational speed, experimental robustness, and image quality is key. All algorithms used in this work were implemented in the MATLAB environment and are freely available to the MRI community. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Spatially selective hydrogen irradiation of dilute nitride semiconductors: a brief review

    NASA Astrophysics Data System (ADS)

    Felici, Marco; Pettinari, Giorgio; Biccari, Francesco; Capizzi, Mario; Polimeni, Antonio

    2018-05-01

    We provide a brief survey of the most recent results obtained by performing spatially selective hydrogen irradiation of dilute nitride semiconductors. The striking effects of the formation of stable N–H complexes in these compounds—coupled to the ultrasharp diffusion profile of H therein—can be exploited to tailor the structural (lattice constant) and optoelectronic (energy gap, refractive index, electron effective mass) properties of the material in the growth plane, with a spatial resolution of a few nm. This can be applied to the fabrication of site-controlled quantum dots (QDs) and wires, but also to the realization of the optical elements required for the on-chip manipulation and routing of qubits in fully integrated photonic circuits. The fabricated QDs—which have shown the ability to emit single photons—can also be deterministically coupled with photonic crystal microcavities, proving their inherent suitability to act as integrated light sources in complex nanophotonic devices.

  20. Genetic Particle Swarm Optimization–Based Feature Selection for Very-High-Resolution Remotely Sensed Imagery Object Change Detection

    PubMed Central

    Chen, Qiang; Chen, Yunhao; Jiang, Weiguo

    2016-01-01

    In the field of multiple features Object-Based Change Detection (OBCD) for very-high-resolution remotely sensed images, image objects have abundant features and feature selection affects the precision and efficiency of OBCD. Through object-based image analysis, this paper proposes a Genetic Particle Swarm Optimization (GPSO)-based feature selection algorithm to solve the optimization problem of feature selection in multiple features OBCD. We select the Ratio of Mean to Variance (RMV) as the fitness function of GPSO, and apply the proposed algorithm to the object-based hybrid multivariate alternative detection model. Two experiment cases on Worldview-2/3 images confirm that GPSO can significantly improve the speed of convergence, and effectively avoid the problem of premature convergence, relative to other feature selection algorithms. According to the accuracy evaluation of OBCD, GPSO is superior at overall accuracy (84.17% and 83.59%) and Kappa coefficient (0.6771 and 0.6314) than other algorithms. Moreover, the sensitivity analysis results show that the proposed algorithm is not easily influenced by the initial parameters, but the number of features to be selected and the size of the particle swarm would affect the algorithm. The comparison experiment results reveal that RMV is more suitable than other functions as the fitness function of GPSO-based feature selection algorithm. PMID:27483285

  1. Genetic Particle Swarm Optimization-Based Feature Selection for Very-High-Resolution Remotely Sensed Imagery Object Change Detection.

    PubMed

    Chen, Qiang; Chen, Yunhao; Jiang, Weiguo

    2016-07-30

    In the field of multiple features Object-Based Change Detection (OBCD) for very-high-resolution remotely sensed images, image objects have abundant features and feature selection affects the precision and efficiency of OBCD. Through object-based image analysis, this paper proposes a Genetic Particle Swarm Optimization (GPSO)-based feature selection algorithm to solve the optimization problem of feature selection in multiple features OBCD. We select the Ratio of Mean to Variance (RMV) as the fitness function of GPSO, and apply the proposed algorithm to the object-based hybrid multivariate alternative detection model. Two experiment cases on Worldview-2/3 images confirm that GPSO can significantly improve the speed of convergence, and effectively avoid the problem of premature convergence, relative to other feature selection algorithms. According to the accuracy evaluation of OBCD, GPSO is superior at overall accuracy (84.17% and 83.59%) and Kappa coefficient (0.6771 and 0.6314) than other algorithms. Moreover, the sensitivity analysis results show that the proposed algorithm is not easily influenced by the initial parameters, but the number of features to be selected and the size of the particle swarm would affect the algorithm. The comparison experiment results reveal that RMV is more suitable than other functions as the fitness function of GPSO-based feature selection algorithm.

  2. A spatial and genetic analysis of Cowbird host selection

    USGS Publications Warehouse

    Hahn, D.C.; Sedgwick, J.A.; Painter, I.S.; Casna, N.J.; Morrison, Michael L.; Hall, Linnea S.; Robinson, Scott K.; Rothstein, Stephen I.; Hahn, D. Caldwell; Rich, Terrell D.

    1999-01-01

    Our study of brood parasitism patterns in forest communities revealed the egg-laying frequency and host selection patterns of female cowbirds. By integrating molecular genetics and spatial data, we have the first published estimate on cowbird laying rates in field studies. The 29 females in the study laid only 1-5 eggs each, much lower than previous estimates from captive cowbirds and extrapolations from ovarian development in capture/recapture studies that had suggested that as many as 40 eggs could be laid per individual cowbird. Cowbird females also were shown for the first time to lay significantly more eggs within the home range areas they established rather than outside the home range. No patterns were uncovered for individual females preferentially parasitizing particular host species

  3. Selecting and implementing scientific objectives. [for Voyager 1 and 2 planetary encounters

    NASA Technical Reports Server (NTRS)

    Miner, E. D.; Stembridge, C. H.; Doms, P. E.

    1985-01-01

    The procedures used to select and implement scientific objectives for the Voyager 1 and 2 planetary encounters are described. Attention is given to the scientific tradeoffs and engineering considerations must be addressed at various stages in the mission planning process, including: the limitations of ground and spacecraft communications systems, ageing of instruments in flight, and instrument calibration over long distances. The contribution of planetary science workshops to the definition of scientific objectives for deep space missions is emphasized.

  4. An Ensemble Method with Integration of Feature Selection and Classifier Selection to Detect the Landslides

    NASA Astrophysics Data System (ADS)

    Zhongqin, G.; Chen, Y.

    2017-12-01

    Abstract Quickly identify the spatial distribution of landslides automatically is essential for the prevention, mitigation and assessment of the landslide hazard. It's still a challenging job owing to the complicated characteristics and vague boundary of the landslide areas on the image. The high resolution remote sensing image has multi-scales, complex spatial distribution and abundant features, the object-oriented image classification methods can make full use of the above information and thus effectively detect the landslides after the hazard happened. In this research we present a new semi-supervised workflow, taking advantages of recent object-oriented image analysis and machine learning algorithms to quick locate the different origins of landslides of some areas on the southwest part of China. Besides a sequence of image segmentation, feature selection, object classification and error test, this workflow ensemble the feature selection and classifier selection. The feature this study utilized were normalized difference vegetation index (NDVI) change, textural feature derived from the gray level co-occurrence matrices (GLCM), spectral feature and etc. The improvement of this study shows this algorithm significantly removes some redundant feature and the classifiers get fully used. All these improvements lead to a higher accuracy on the determination of the shape of landslides on the high resolution remote sensing image, in particular the flexibility aimed at different kinds of landslides.

  5. Object Based Image Analysis Combining High Spatial Resolution Imagery and Laser Point Clouds for Urban Land Cover

    NASA Astrophysics Data System (ADS)

    Zou, Xiaoliang; Zhao, Guihua; Li, Jonathan; Yang, Yuanxi; Fang, Yong

    2016-06-01

    With the rapid developments of the sensor technology, high spatial resolution imagery and airborne Lidar point clouds can be captured nowadays, which make classification, extraction, evaluation and analysis of a broad range of object features available. High resolution imagery, Lidar dataset and parcel map can be widely used for classification as information carriers. Therefore, refinement of objects classification is made possible for the urban land cover. The paper presents an approach to object based image analysis (OBIA) combing high spatial resolution imagery and airborne Lidar point clouds. The advanced workflow for urban land cover is designed with four components. Firstly, colour-infrared TrueOrtho photo and laser point clouds were pre-processed to derive the parcel map of water bodies and nDSM respectively. Secondly, image objects are created via multi-resolution image segmentation integrating scale parameter, the colour and shape properties with compactness criterion. Image can be subdivided into separate object regions. Thirdly, image objects classification is performed on the basis of segmentation and a rule set of knowledge decision tree. These objects imagery are classified into six classes such as water bodies, low vegetation/grass, tree, low building, high building and road. Finally, in order to assess the validity of the classification results for six classes, accuracy assessment is performed through comparing randomly distributed reference points of TrueOrtho imagery with the classification results, forming the confusion matrix and calculating overall accuracy and Kappa coefficient. The study area focuses on test site Vaihingen/Enz and a patch of test datasets comes from the benchmark of ISPRS WG III/4 test project. The classification results show higher overall accuracy for most types of urban land cover. Overall accuracy is 89.5% and Kappa coefficient equals to 0.865. The OBIA approach provides an effective and convenient way to combine high

  6. Impact of Spatial Pumping Patterns on Groundwater Management

    NASA Astrophysics Data System (ADS)

    Yin, J.; Tsai, F. T. C.

    2017-12-01

    Challenges exist to manage groundwater resources while maintaining a balance between groundwater quantity and quality because of anthropogenic pumping activities as well as complex subsurface environment. In this study, to address the impact of spatial pumping pattern on groundwater management, a mixed integer nonlinear multi-objective model is formulated by integrating three objectives within a management framework to: (i) maximize total groundwater withdrawal from potential wells; (ii) minimize total electricity cost for well pumps; and (iii) attain groundwater level at selected monitoring locations as close as possible to the target level. Binary variables are used in the groundwater management model to control the operative status of pumping wells. The NSGA-II is linked with MODFLOW to solve the multi-objective problem. The proposed method is applied to a groundwater management problem in the complex Baton Rouge aquifer system, southeastern Louisiana. Results show that (a) non-dominated trade-off solutions under various spatial distributions of active pumping wells can be achieved. Each solution is optimal with regard to its corresponding objectives; (b) operative status, locations and pumping rates of pumping wells are significant to influence the distribution of hydraulic head, which in turn influence the optimization results; (c) A wide range of optimal solutions is obtained such that decision makers can select the most appropriate solution through negotiation with different stakeholders. This technique is beneficial to finding out the optimal extent to which three objectives including water supply concern, energy concern and subsidence concern can be balanced.

  7. Spatially selective formation of hydrocarbon, fluorocarbon, and hydroxyl-terminated monolayers on a microelectrode array.

    PubMed

    Cook, Kevin M; Nissley, Daniel A; Ferguson, Gregory S

    2013-06-11

    A protection-deprotection strategy, using gold oxide as a passivating layer, was used to direct the self-assembly of monolayers (SAMs) selectively at individual gold microelectrodes in an array. This approach allowed the formation of hydroxyl-terminated monolayers, without side reactions, in addition to hydrocarbon and fluorocarbon SAMs. Fluorescence microscopy was used to visualize selective dewetting of hydrophobic monolayers by an aqueous dye solution, and spatially resolved X-ray photoelectron spectroscopy was used to demonstrate a lack of cross-contamination on neighboring microelectrodes in the array.

  8. Spatial ecology of refuge selection by an herbivore under risk of predation

    USGS Publications Warehouse

    Wilson, Tammy L.; Rayburn, Andrew P.; Edwards, Thomas C.

    2012-01-01

    Prey species use structures such as burrows to minimize predation risk. The spatial arrangement of these resources can have important implications for individual and population fitness. For example, there is evidence that clustered resources can benefit individuals by reducing predation risk and increasing foraging opportunity concurrently, which leads to higher population density. However, the scale of clustering that is important in these processes has been ignored during theoretical and empirical development of resource models. Ecological understanding of refuge exploitation by prey can be improved by spatial analysis of refuge use and availability that incorporates the effect of scale. We measured the spatial distribution of pygmy rabbit (Brachylagus idahoensis) refugia (burrows) through censuses in four 6-ha sites. Point pattern analyses were used to evaluate burrow selection by comparing the spatial distribution of used and available burrows. The presence of food resources and additional overstory cover resources was further examined using logistic regression. Burrows were spatially clustered at scales up to approximately 25 m, and then regularly spaced at distances beyond ~40 m. Pygmy rabbit exploitation of burrows did not match availability. Burrows used by pygmy rabbits were likely to be located in areas with high overall burrow density (resource clusters) and high overstory cover, which together minimized predation risk. However, in some cases we observed an interaction between either overstory cover (safety) or understory cover (forage) and burrow density. The interactions show that pygmy rabbits will use burrows in areas with low relative burrow density (high relative predation risk) if understory food resources are high. This points to a potential trade-off whereby rabbits must sacrifice some safety afforded by additional nearby burrows to obtain ample forage resources. Observed patterns of clustered burrows and non-random burrow use improve

  9. Detecting Selection on Temporal and Spatial Scales: A Genomic Time-Series Assessment of Selective Responses to Devil Facial Tumor Disease

    PubMed Central

    Brüniche-Olsen, Anna; Austin, Jeremy J.; Jones, Menna E.; Holland, Barbara R.; Burridge, Christopher P.

    2016-01-01

    Detecting loci under selection is an important task in evolutionary biology. In conservation genetics detecting selection is key to investigating adaptation to the spread of infectious disease. Loci under selection can be detected on a spatial scale, accounting for differences in demographic history among populations, or on a temporal scale, tracing changes in allele frequencies over time. Here we use these two approaches to investigate selective responses to the spread of an infectious cancer—devil facial tumor disease (DFTD)—that since 1996 has ravaged the Tasmanian devil (Sarcophilus harrisii). Using time-series ‘restriction site associated DNA’ (RAD) markers from populations pre- and post DFTD arrival, and DFTD free populations, we infer loci under selection due to DFTD and investigate signatures of selection that are incongruent among methods, populations, and times. The lack of congruence among populations influenced by DFTD with respect to inferred loci under selection, and the direction of that selection, fail to implicate a consistent selective role for DFTD. Instead genetic drift is more likely driving the observed allele frequency changes over time. Our study illustrates the importance of applying methods with different performance optima e.g. accounting for population structure and background selection, and assessing congruence of the results. PMID:26930198

  10. MO-FG-204-09: High Spatial Resolution and Artifact-Free CT Bone Imaging at Off-Centered Positions: An Application of Model-Based Iterative Reconstruction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, G; Li, K; Gomez-Cardona, D

    Purpose: Although the anatomy of interest should be positioned as close as possible to the isocenter of CT scanners, off-centering may be inevitable during certain exams in clinical practice such as lumbar spine and elbow imaging. Off-centering degrades image sharpness, generates streak artifacts, and sometimes creates blooming artifacts due to truncation. The purpose of this work was to investigate whether the use of model-based image reconstruction (MBIR) can alleviate the negative impacts of off-centering to achieve high quality CT bone imaging. Methods: Both an anthropomorphic phantom and an ex vivo swine elbow sample were scanned at centered and off-centered positionsmore » using clinical CT bone scan protocols. The magnitude of off-centering was determined from localizer radiographs. Both FBP and MBIR reconstructions were performed. For FBP, both standard and Bone Plus kernels commonly used in bone imaging were used. Objective assessment of image sharpness, noise standard deviation, and noise nonuniformity were performed. Additionally, we retrospectively analyzed human subject data acquired under off-centered conditions as a validation study. Results: In FBP images of the phantom, off-centering by 10 cm led to a 14% increase in noise (p<1e-3) and a 68% increase in noise nonuniformity (p<0.02). A visible drop in bone sharpness was observed. In contrast, no significant difference in the noise magnitude or the noise nonuniformity between the centered and off-centered MBIR images was found. The image sharpness of off-centered MBIR images outperformed that of FBP images reconstructed with the Bone Plus kernel. In images of the swine elbow off-centered by 20 cm, not only was the noise and spatial resolution performance improved by MBIR, truncation artifacts were also elliminated. The human subject study generated similar results, in which the visibility of the off-centered lumbar spine was significantly improved. Conclusion: High quality CT bone imaging at off-centered

  11. An unsupervised technique for optimal feature selection in attribute profiles for spectral-spatial classification of hyperspectral images

    NASA Astrophysics Data System (ADS)

    Bhardwaj, Kaushal; Patra, Swarnajyoti

    2018-04-01

    Inclusion of spatial information along with spectral features play a significant role in classification of remote sensing images. Attribute profiles have already proved their ability to represent spatial information. In order to incorporate proper spatial information, multiple attributes are required and for each attribute large profiles need to be constructed by varying the filter parameter values within a wide range. Thus, the constructed profiles that represent spectral-spatial information of an hyperspectral image have huge dimension which leads to Hughes phenomenon and increases computational burden. To mitigate these problems, this work presents an unsupervised feature selection technique that selects a subset of filtered image from the constructed high dimensional multi-attribute profile which are sufficiently informative to discriminate well among classes. In this regard the proposed technique exploits genetic algorithms (GAs). The fitness function of GAs are defined in an unsupervised way with the help of mutual information. The effectiveness of the proposed technique is assessed using one-against-all support vector machine classifier. The experiments conducted on three hyperspectral data sets show the robustness of the proposed method in terms of computation time and classification accuracy.

  12. Dynamic modulation of the perceptual load on microsaccades during a selective spatial attention task.

    PubMed

    Xue, Linyan; Huang, Dan; Wang, Tong; Hu, Qiyi; Chai, Xinyu; Li, Liming; Chen, Yao

    2017-11-28

    Selective spatial attention enhances task performance at restricted regions within the visual field. The magnitude of this effect depends on the level of attentional load, which determines the efficiency of distractor rejection. Mechanisms of attentional load include perceptual selection and/or cognitive control involving working memory. Recent studies have provided evidence that microsaccades are influenced by spatial attention. Therefore, microsaccade activities may be exploited to help understand the dynamic control of selective attention under different load levels. However, previous reports in humans on the effect of attentional load on microsaccades are inconsistent, and it is not clear to what extent these results and the dynamic changes of microsaccade activities are similar in monkeys. We trained monkeys to perform a color detection task in which the perceptual load was manipulated by task difficulty with limited involvement of working memory. Our results indicate that during the task with high perceptual load, the rate and amplitude of microsaccades immediately before the target color change were significantly suppressed. We also found that the occurrence of microsaccades before the monkeys' detection response deteriorated their performance, especially in the hard task. We propose that the activity of microsaccades might be an efficacious indicator of the perceptual load.

  13. Macro and micro geo-spatial environment consideration for landfill site selection in Sharjah, United Arab Emirates.

    PubMed

    Al-Ruzouq, Rami; Shanableh, Abdallah; Omar, Maher; Al-Khayyat, Ghadeer

    2018-02-17

    Waste management involves various procedures and resources for proper handling of waste materials in compliance with health codes and environmental regulations. Landfills are one of the oldest, most convenient, and cheapest methods to deposit waste. However, landfill utilization involves social, environmental, geotechnical, cost, and restrictive regulation considerations. For instance, landfills are considered a source of hazardous air pollutants that can cause health and environmental problems related to landfill gas and non-methanic organic compounds. The increasing number of sensors and availability of remotely sensed images along with rapid development of spatial technology are helping with effective landfill site selection. The present study used fuzzy membership and the analytical hierarchy process (AHP) in a geo-spatial environment for landfill site selection in the city of Sharjah, United Arab Emirates. Macro- and micro-level factors were considered; the macro-level contained social and economic factors, while the micro-level accounted for geo-environmental factors. The weighted spatial layers were combined to generate landfill suitability and overall suitability index maps. Sensitivity analysis was then carried out to rectify initial theoretical weights. The results showed that 30.25% of the study area had a high suitability index for landfill sites in the Sharjah, and the most suitable site was selected based on weighted factors. The developed fuzzy-AHP methodology can be applied in neighboring regions with similar geo-natural conditions.

  14. Fourier power, subjective distance, and object categories all provide plausible models of BOLD responses in scene-selective visual areas

    PubMed Central

    Lescroart, Mark D.; Stansbury, Dustin E.; Gallant, Jack L.

    2015-01-01

    Perception of natural visual scenes activates several functional areas in the human brain, including the Parahippocampal Place Area (PPA), Retrosplenial Complex (RSC), and the Occipital Place Area (OPA). It is currently unclear what specific scene-related features are represented in these areas. Previous studies have suggested that PPA, RSC, and/or OPA might represent at least three qualitatively different classes of features: (1) 2D features related to Fourier power; (2) 3D spatial features such as the distance to objects in a scene; or (3) abstract features such as the categories of objects in a scene. To determine which of these hypotheses best describes the visual representation in scene-selective areas, we applied voxel-wise modeling (VM) to BOLD fMRI responses elicited by a set of 1386 images of natural scenes. VM provides an efficient method for testing competing hypotheses by comparing predictions of brain activity based on encoding models that instantiate each hypothesis. Here we evaluated three different encoding models that instantiate each of the three hypotheses listed above. We used linear regression to fit each encoding model to the fMRI data recorded from each voxel, and we evaluated each fit model by estimating the amount of variance it predicted in a withheld portion of the data set. We found that voxel-wise models based on Fourier power or the subjective distance to objects in each scene predicted much of the variance predicted by a model based on object categories. Furthermore, the response variance explained by these three models is largely shared, and the individual models explain little unique variance in responses. Based on an evaluation of previous studies and the data we present here, we conclude that there is currently no good basis to favor any one of the three alternative hypotheses about visual representation in scene-selective areas. We offer suggestions for further studies that may help resolve this issue. PMID:26594164

  15. Quantifying spatial habitat loss from hydrocarbon development through assessing habitat selection patterns of mule deer.

    PubMed

    Northrup, Joseph M; Anderson, Charles R; Wittemyer, George

    2015-11-01

    Extraction of oil and natural gas (hydrocarbons) from shale is increasing rapidly in North America, with documented impacts to native species and ecosystems. With shale oil and gas resources on nearly every continent, this development is set to become a major driver of global land-use change. It is increasingly critical to quantify spatial habitat loss driven by this development to implement effective mitigation strategies and develop habitat offsets. Habitat selection is a fundamental ecological process, influencing both individual fitness and population-level distribution on the landscape. Examinations of habitat selection provide a natural means for understanding spatial impacts. We examined the impact of natural gas development on habitat selection patterns of mule deer on their winter range in Colorado. We fit resource selection functions in a Bayesian hierarchical framework, with habitat availability defined using a movement-based modeling approach. Energy development drove considerable alterations to deer habitat selection patterns, with the most substantial impacts manifested as avoidance of well pads with active drilling to a distance of at least 800 m. Deer displayed more nuanced responses to other infrastructure, avoiding pads with active production and roads to a greater degree during the day than night. In aggregate, these responses equate to alteration of behavior by human development in over 50% of the critical winter range in our study area during the day and over 25% at night. Compared to other regions, the topographic and vegetative diversity in the study area appear to provide refugia that allow deer to behaviorally mediate some of the impacts of development. This study, and the methods we employed, provides a template for quantifying spatial take by industrial activities in natural areas and the results offer guidance for policy makers, mangers, and industry when attempting to mitigate habitat loss due to energy development. © 2015 The Authors

  16. Modality-specificity of Selective Attention Networks

    PubMed Central

    Stewart, Hannah J.; Amitay, Sygal

    2015-01-01

    Objective: To establish the modality specificity and generality of selective attention networks. Method: Forty-eight young adults completed a battery of four auditory and visual selective attention tests based upon the Attention Network framework: the visual and auditory Attention Network Tests (vANT, aANT), the Test of Everyday Attention (TEA), and the Test of Attention in Listening (TAiL). These provided independent measures for auditory and visual alerting, orienting, and conflict resolution networks. The measures were subjected to an exploratory factor analysis to assess underlying attention constructs. Results: The analysis yielded a four-component solution. The first component comprised of a range of measures from the TEA and was labeled “general attention.” The third component was labeled “auditory attention,” as it only contained measures from the TAiL using pitch as the attended stimulus feature. The second and fourth components were labeled as “spatial orienting” and “spatial conflict,” respectively—they were comprised of orienting and conflict resolution measures from the vANT, aANT, and TAiL attend-location task—all tasks based upon spatial judgments (e.g., the direction of a target arrow or sound location). Conclusions: These results do not support our a-priori hypothesis that attention networks are either modality specific or supramodal. Auditory attention separated into selectively attending to spatial and non-spatial features, with the auditory spatial attention loading onto the same factor as visual spatial attention, suggesting spatial attention is supramodal. However, since our study did not include a non-spatial measure of visual attention, further research will be required to ascertain whether non-spatial attention is modality-specific. PMID:26635709

  17. Habitat selection by Forster's Terns (Sterna forsteri) at multiple spatial scales in an urbanized estuary: The importance of salt ponds

    USGS Publications Warehouse

    Bluso-Demers, Jill; Ackerman, Joshua T.; Takekawa, John Y.; Peterson, Sarah

    2016-01-01

    The highly urbanized San Francisco Bay Estuary, California, USA, is currently undergoing large-scale habitat restoration, and several thousand hectares of former salt evaporation ponds are being converted to tidal marsh. To identify potential effects of this habitat restoration on breeding waterbirds, habitat selection of radiotagged Forster's Terns (Sterna forsteri) was examined at multiple spatial scales during the pre-breeding and breeding seasons of 2005 and 2006. At each spatial scale, habitat selection ratios were calculated by season, year, and sex. Forster's Terns selected salt pond habitats at most spatial scales and demonstrated the importance of salt ponds for foraging and roosting. Salinity influenced the types of salt pond habitats that were selected. Specifically, Forster's Terns strongly selected lower salinity salt ponds (0.5–30 g/L) and generally avoided higher salinity salt ponds (≥31 g/L). Forster's Terns typically used tidal marsh and managed marsh habitats in proportion to their availability, avoided upland and tidal flat habitats, and strongly avoided open bay habitats. Salt ponds provide important habitat for breeding waterbirds, and restoration efforts to convert former salt ponds to tidal marsh may reduce the availability of preferred breeding and foraging areas.

  18. Multi-objective decision-making under uncertainty: Fuzzy logic methods

    NASA Technical Reports Server (NTRS)

    Hardy, Terry L.

    1994-01-01

    Selecting the best option among alternatives is often a difficult process. This process becomes even more difficult when the evaluation criteria are vague or qualitative, and when the objectives vary in importance and scope. Fuzzy logic allows for quantitative representation of vague or fuzzy objectives, and therefore is well-suited for multi-objective decision-making. This paper presents methods employing fuzzy logic concepts to assist in the decision-making process. In addition, this paper describes software developed at NASA Lewis Research Center for assisting in the decision-making process. Two diverse examples are used to illustrate the use of fuzzy logic in choosing an alternative among many options and objectives. One example is the selection of a lunar lander ascent propulsion system, and the other example is the selection of an aeration system for improving the water quality of the Cuyahoga River in Cleveland, Ohio. The fuzzy logic techniques provided here are powerful tools which complement existing approaches, and therefore should be considered in future decision-making activities.

  19. Effects of spatial disturbance on common loon nest site selection and territory success

    USGS Publications Warehouse

    McCarthy, Kyle P.; DeStefano, Stephen

    2011-01-01

    The common loon (Gavia immer) breeds during the summer on northern lakes and water bodies that are also often desirable areas for aquatic recreation and human habitation. In northern New England, we assessed how the spatial nature of disturbance affects common loon nest site selection and territory success. We found through classification and regression analysis that distance to and density of disturbance factors can be used to classify observed nest site locations versus random points, suggesting that these factors affect loon nest site selection (model 1: Correct classification = 75%, null = 50%, K = 0.507, P < 0.001; model 2: Correct classification = 78%, null = 50%, K = 0.551, P < 0.001). However, in an exploratory analysis, we were unable to show a relation between spatial disturbance variables and breeding success (P = 0.595, R2 = 0.436), possibly because breeding success was so low during the breeding seasons of 2007–2008. We suggest that by selecting nest site locations that avoid disturbance factors, loons thereby limit the effect that disturbance will have on their breeding success. Still, disturbance may force loons to use sub-optimal nesting habitat, limiting the available number of territories, and overall productivity. We advise that management efforts focus on limiting disturbance factors to allow breeding pairs access to the best nesting territories, relieving disturbance pressures that may force sub-optimal nest placement.

  20. Saccade Latency Indexes Exogenous and Endogenous Object-Based Attention

    PubMed Central

    Şentürk, Gözde; Greenberg, Adam S.; Liu, Taosheng

    2016-01-01

    Classic studies of object-based attention have utilized keypress responses as the main dependent measure. However, people typically make saccades to fixate important objects. Recent work has shown that attention may act differently when deployed covertly versus in advance of a saccade. We further investigated the link between saccades and attention by examining whether object-based effects can be observed for saccades. We adapted the classical double-rectangle cueing paradigm of Egly et al., (1994), and measured both the first saccade latency and keypress reaction time (RT) to a target that appeared at the end of one of the two rectangles. Our results showed that saccade latency exhibited higher sensitivity than RT in detecting effects of attention. We also assessed the generality of the attention effects by testing three types of cues: hybrid (predictive and peripheral), exogenous (non-predictive and peripheral), and endogenous (predictive and central). We found that both RT and saccade latency exhibited effects of both space-based and object-based attentional selection. However, saccade latency showed a more robust attentional modulation than RTs. For the exogenous cue, we observed a spatial inhibition-of-return along with an object-based effect, implying that object-based attention is independent of space-based attention. Overall, our results reveal an oculomotor correlate of object-based attention, suggesting that, in addition to spatial priority, object-level priority also affects saccade planning. PMID:27225468

  1. Object-based implicit learning in visual search: perceptual segmentation constrains contextual cueing.

    PubMed

    Conci, Markus; Müller, Hermann J; von Mühlenen, Adrian

    2013-07-09

    In visual search, detection of a target is faster when it is presented within a spatial layout of repeatedly encountered nontarget items, indicating that contextual invariances can guide selective attention (contextual cueing; Chun & Jiang, 1998). However, perceptual regularities may interfere with contextual learning; for instance, no contextual facilitation occurs when four nontargets form a square-shaped grouping, even though the square location predicts the target location (Conci & von Mühlenen, 2009). Here, we further investigated potential causes for this interference-effect: We show that contextual cueing can reliably occur for targets located within the region of a segmented object, but not for targets presented outside of the object's boundaries. Four experiments demonstrate an object-based facilitation in contextual cueing, with a modulation of context-based learning by relatively subtle grouping cues including closure, symmetry, and spatial regularity. Moreover, the lack of contextual cueing for targets located outside the segmented region was due to an absence of (latent) learning of contextual layouts, rather than due to an attentional bias towards the grouped region. Taken together, these results indicate that perceptual segmentation provides a basic structure within which contextual scene regularities are acquired. This in turn argues that contextual learning is constrained by object-based selection.

  2. The objective structured interview for medical student selection

    PubMed Central

    Powis, D A; Neame, R L B; Bristow, T; Murphy, L B

    1988-01-01

    An objective structured interview is an integral part of the process of selecting and admitting applicants to study medicine at this university. During the nine years (to the end of 1986) that the interview has been used 1600 candidates were interviewed out of roughly 13 000 applicants, and from these, 584 students were admitted to the course. Analysis of the interview data was carried out based on two aspects of student progress: graduation with honours and failure to complete the course of study. The interview as a whole, and especially some of the subscales, appears to identify students who may fail to complete the course: it may also help to predict which students are likely to graduate with honours. PMID:3126966

  3. Multi-objective decision-making under uncertainty: Fuzzy logic methods

    NASA Technical Reports Server (NTRS)

    Hardy, Terry L.

    1995-01-01

    Fuzzy logic allows for quantitative representation of vague or fuzzy objectives, and therefore is well-suited for multi-objective decision-making. This paper presents methods employing fuzzy logic concepts to assist in the decision-making process. In addition, this paper describes software developed at NASA Lewis Research Center for assisting in the decision-making process. Two diverse examples are used to illustrate the use of fuzzy logic in choosing an alternative among many options and objectives. One example is the selection of a lunar lander ascent propulsion system, and the other example is the selection of an aeration system for improving the water quality of the Cuyahoga River in Cleveland, Ohio. The fuzzy logic techniques provided here are powerful tools which complement existing approaches, and therefore should be considered in future decision-making activities.

  4. Invariant Visual Object and Face Recognition: Neural and Computational Bases, and a Model, VisNet

    PubMed Central

    Rolls, Edmund T.

    2012-01-01

    Neurophysiological evidence for invariant representations of objects and faces in the primate inferior temporal visual cortex is described. Then a computational approach to how invariant representations are formed in the brain is described that builds on the neurophysiology. A feature hierarchy model in which invariant representations can be built by self-organizing learning based on the temporal and spatial statistics of the visual input produced by objects as they transform in the world is described. VisNet can use temporal continuity in an associative synaptic learning rule with a short-term memory trace, and/or it can use spatial continuity in continuous spatial transformation learning which does not require a temporal trace. The model of visual processing in the ventral cortical stream can build representations of objects that are invariant with respect to translation, view, size, and also lighting. The model has been extended to provide an account of invariant representations in the dorsal visual system of the global motion produced by objects such as looming, rotation, and object-based movement. The model has been extended to incorporate top-down feedback connections to model the control of attention by biased competition in, for example, spatial and object search tasks. The approach has also been extended to account for how the visual system can select single objects in complex visual scenes, and how multiple objects can be represented in a scene. The approach has also been extended to provide, with an additional layer, for the development of representations of spatial scenes of the type found in the hippocampus. PMID:22723777

  5. Invariant Visual Object and Face Recognition: Neural and Computational Bases, and a Model, VisNet.

    PubMed

    Rolls, Edmund T

    2012-01-01

    Neurophysiological evidence for invariant representations of objects and faces in the primate inferior temporal visual cortex is described. Then a computational approach to how invariant representations are formed in the brain is described that builds on the neurophysiology. A feature hierarchy model in which invariant representations can be built by self-organizing learning based on the temporal and spatial statistics of the visual input produced by objects as they transform in the world is described. VisNet can use temporal continuity in an associative synaptic learning rule with a short-term memory trace, and/or it can use spatial continuity in continuous spatial transformation learning which does not require a temporal trace. The model of visual processing in the ventral cortical stream can build representations of objects that are invariant with respect to translation, view, size, and also lighting. The model has been extended to provide an account of invariant representations in the dorsal visual system of the global motion produced by objects such as looming, rotation, and object-based movement. The model has been extended to incorporate top-down feedback connections to model the control of attention by biased competition in, for example, spatial and object search tasks. The approach has also been extended to account for how the visual system can select single objects in complex visual scenes, and how multiple objects can be represented in a scene. The approach has also been extended to provide, with an additional layer, for the development of representations of spatial scenes of the type found in the hippocampus.

  6. Children's Spatial Thinking: Does Talk about the Spatial World Matter?

    ERIC Educational Resources Information Center

    Pruden, Shannon M.; Levine, Susan C.; Huttenlocher, Janellen

    2011-01-01

    In this paper we examine the relations between parent spatial language input, children's own production of spatial language, and children's later spatial abilities. Using a longitudinal study design, we coded the use of spatial language (i.e. words describing the spatial features and properties of objects; e.g. big, tall, circle, curvy, edge) from…

  7. The selective serotonin reuptake inhibitor, escitalopram, enhances inhibition of prepotent responding and spatial reversal learning

    PubMed Central

    Brown, Holden D.; Amodeo, Dionisio A.; Sweeney, John A.; Ragozzino, Michael E.

    2011-01-01

    Previous findings indicate treatment with a selective serotonin reuptake inhibitor (SSRI) facilitates behavioral flexibility when conditions require inhibition of a learned response pattern. The present experiment investigated whether acute treatment with the SSRI, escitalopram, affects behavioral flexibility when conditions require inhibition of a naturally-biased response pattern (elevated conflict test) and/or reversal of a learned response pattern (spatial reversal learning). An additional experiment was carried out to determine whether escitalopram, at doses that affected behavioral flexibility, also reduced anxiety as tested in the elevated plus-maze. In each experiment, Long-Evans rats received an intraperitoneal injection of either saline or escitalopram (0.03, 0.3 or 1.0 mg/kg) 30 minutes prior to behavioral testing. Escitalopram, at all doses tested, enhanced acquisition in the elevated conflict test, but did not affect performance in the elevated plus-maze. Escitalopram (0.3 and 1.0 mg/kg) did not alter acquisition of the spatial discrimination, but facilitated reversal learning. In the elevated conflict and spatial reversal learning test, escitalopram enhanced the ability to maintain the relevant strategy after being initially selected. The present findings suggest that enhancing serotonin transmission with a SSRI facilitates inhibitory processes when conditions require a shift away from either a naturally-biased response pattern or a learned choice pattern. PMID:22219222

  8. Sex-specific effects of Cacna1c haploinsufficiency on object recognition, spatial memory, and reversal learning capabilities in rats.

    PubMed

    Braun, Moria D; Kisko, Theresa M; Vecchia, Débora Dalla; Andreatini, Roberto; Schwarting, Rainer K W; Wöhr, Markus

    2018-05-23

    The CACNA1C gene is strongly implicated in the etiology of multiple major neuropsychiatric disorders, such as bipolar disorder, major depression, and schizophrenia, with cognitive deficits being a common feature. It is unclear, however, by which mechanisms CACNA1C variants advance the risk of developing neuropsychiatric disorders. This study set out to investigate cognitive functioning in a newly developed genetic Cacna1c rat model. Specifically, spatial and reversal learning, as well as object recognition memory were assessed in heterozygous Cacna1c +/- rats and compared to wildtype Cacna1c +/+ littermate controls in both sexes. Our results show that both Cacna1c +/+ and Cacna1c +/- animals were able to learn the rewarded arm configuration of a radial maze over the course of seven days. Both groups also showed reversal learning patterns indicative of intact abilities. In females, genotype differences were evident in the initial spatial learning phase, with Cacna1c +/- females showing hypo-activity and fewer mixed errors. In males, a difference was found during probe trials for both learning phases, with Cacna1c +/- rats displaying better distinction between previously baited and non-baited arms; and regarding cognitive flexibility in favor of the Cacna1c +/+ animals. All experimental groups proved to be sensitive to reward magnitude and fully able to distinguish between novel and familiar objects in the novel object recognition task. Taken together, these results indicate that Cacna1c haploinsufficiency has a minor, but positive impact on (spatial) memory functions in rats. Copyright © 2018 Elsevier Inc. All rights reserved.

  9. Cognitive Process Modeling of Spatial Ability: The Assembling Objects Task

    ERIC Educational Resources Information Center

    Ivie, Jennifer L.; Embretson, Susan E.

    2010-01-01

    Spatial ability tasks appear on many intelligence and aptitude tests. Although the construct validity of spatial ability tests has often been studied through traditional correlational methods, such as factor analysis, less is known about the cognitive processes involved in solving test items. This study examines the cognitive processes involved in…

  10. Spatial and Temporal Monitoring of Aerosol over Selected Urban Areas in Egypt

    NASA Astrophysics Data System (ADS)

    Shokr, Mohammed; El-Tahan, Mohammed; Ibrahim, Alaa

    2015-04-01

    We utilize remote sensing data of atmospheric aerosols from the Moderate Resolution Imaging Spectroradiometer (MODIS) aboard the Terra and Aqua satellites to explore spatio-temporal patterns over selected urban sites in Egypt during 2000-2015. High resolution (10 x 10 km^2) Level 2, collection 5, quality-controlled product was used. The selected sites are characterized by different human and industrial activities as well as landscape and meteorological attributes. These have impacts on the dominant types and intensity of aerosols. Aerosol robotic network (AERONET) data were used to validate the calculations from MODIS. The suitability of the MODIS product in terms of spatial and temporal coverage as well as accuracy and robustness has been established. Seasonal patterns of aerosol concentration are identified and compared between the sites. Spatial gradient of aerosol is assessed in the vicinity of major aerosol-emission sites (e.g. Cairo) to determine the range of influence of the generated pollution. Peak aerosol concentrations are explained in terms of meteorological events and land cover. The limited trends found in the temporal records of the aerosol measurements will be confirmed using calibrated long-term ground observations. The study has been conducted under the PEER 2-239 research project titled "The Impact of Biogenic and Anthropogenic Atmospheric Aerosols to Climate in Egypt". Project website is CleanAirEgypt.org

  11. Spatially localized motion aftereffect disappears faster from awareness when selectively attended to according to its direction.

    PubMed

    Murd, Carolina; Bachmann, Talis

    2011-05-25

    In searching for the target-afterimage patch among spatially separate alternatives of color-afterimages the target fades from awareness before its competitors (Bachmann, T., & Murd, C. (2010). Covert spatial attention in search for the location of a color-afterimage patch speeds up its decay from awareness: Introducing a method useful for the study of neural correlates of visual awareness. Vision Research 50, 1048-1053). In an analogous study presented here we show that a similar effect is obtained when a target spatial location specified according to the direction of motion aftereffect within it is searched by covert top-down attention. The adverse effect of selective attention on the duration of awareness of sensory qualiae known earlier to be present for color and periodic spatial contrast is extended also to sensory channels carrying motion information. Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. Learning and memory in streptozotocin-induced diabetic rats in a novel spatial/object discrimination task.

    PubMed

    Popoviç, M; Biessels, G J; Isaacson, R L; Gispen, W H

    2001-08-01

    Diabetes mellitus is associated with disturbances of cognitive functioning. The aim of this study was to examine cognitive functioning in diabetic rats using the 'Can test', a novel spatial/object learning and memory task, without the use of aversive stimuli. Rats were trained to select a single rewarded can from seven cans. Mild water deprivation provided the motivation to obtain the reward (0.3 ml of water). After 5 days of baseline training, in which the rewarded can was marked by its surface and position in an open field, the animals were divided into two groups. Diabetes was induced in one group, by an intravenous injection of streptozotocin. Retention of baseline training was tested at 2-weekly intervals for 10 weeks. Next, two adapted versions of the task were used, with 4 days of training in each version. The rewarded can was a soft-drink can with coloured print. In a 'simple visual task' the soft-drink can was placed among six white cans, whereas in a 'complex visual task' it was placed among six soft-drink cans from different brands with distinct prints. In diabetic rats the number of correct responses was lower and number of reference and working memory errors higher than in controls in the various versions of the test. Switches between tasks and increases in task complexity accentuated the performance deficits, which may reflect an inability of diabetic rats to adapt behavioural strategies to the demands of the tasks.

  13. A multicriteria decision making approach based on fuzzy theory and credibility mechanism for logistics center location selection.

    PubMed

    Wang, Bowen; Xiong, Haitao; Jiang, Chengrui

    2014-01-01

    As a hot topic in supply chain management, fuzzy method has been widely used in logistics center location selection to improve the reliability and suitability of the logistics center location selection with respect to the impacts of both qualitative and quantitative factors. However, it does not consider the consistency and the historical assessments accuracy of experts in predecisions. So this paper proposes a multicriteria decision making model based on credibility of decision makers by introducing priority of consistency and historical assessments accuracy mechanism into fuzzy multicriteria decision making approach. In this way, only decision makers who pass the credibility check are qualified to perform the further assessment. Finally, a practical example is analyzed to illustrate how to use the model. The result shows that the fuzzy multicriteria decision making model based on credibility mechanism can improve the reliability and suitability of site selection for the logistics center.

  14. A Multicriteria Decision Making Approach Based on Fuzzy Theory and Credibility Mechanism for Logistics Center Location Selection

    PubMed Central

    Wang, Bowen; Jiang, Chengrui

    2014-01-01

    As a hot topic in supply chain management, fuzzy method has been widely used in logistics center location selection to improve the reliability and suitability of the logistics center location selection with respect to the impacts of both qualitative and quantitative factors. However, it does not consider the consistency and the historical assessments accuracy of experts in predecisions. So this paper proposes a multicriteria decision making model based on credibility of decision makers by introducing priority of consistency and historical assessments accuracy mechanism into fuzzy multicriteria decision making approach. In this way, only decision makers who pass the credibility check are qualified to perform the further assessment. Finally, a practical example is analyzed to illustrate how to use the model. The result shows that the fuzzy multicriteria decision making model based on credibility mechanism can improve the reliability and suitability of site selection for the logistics center. PMID:25215319

  15. Developing a spatial-statistical model and map of historical malaria prevalence in Botswana using a staged variable selection procedure

    PubMed Central

    Craig, Marlies H; Sharp, Brian L; Mabaso, Musawenkosi LH; Kleinschmidt, Immo

    2007-01-01

    Background Several malaria risk maps have been developed in recent years, many from the prevalence of infection data collated by the MARA (Mapping Malaria Risk in Africa) project, and using various environmental data sets as predictors. Variable selection is a major obstacle due to analytical problems caused by over-fitting, confounding and non-independence in the data. Testing and comparing every combination of explanatory variables in a Bayesian spatial framework remains unfeasible for most researchers. The aim of this study was to develop a malaria risk map using a systematic and practicable variable selection process for spatial analysis and mapping of historical malaria risk in Botswana. Results Of 50 potential explanatory variables from eight environmental data themes, 42 were significantly associated with malaria prevalence in univariate logistic regression and were ranked by the Akaike Information Criterion. Those correlated with higher-ranking relatives of the same environmental theme, were temporarily excluded. The remaining 14 candidates were ranked by selection frequency after running automated step-wise selection procedures on 1000 bootstrap samples drawn from the data. A non-spatial multiple-variable model was developed through step-wise inclusion in order of selection frequency. Previously excluded variables were then re-evaluated for inclusion, using further step-wise bootstrap procedures, resulting in the exclusion of another variable. Finally a Bayesian geo-statistical model using Markov Chain Monte Carlo simulation was fitted to the data, resulting in a final model of three predictor variables, namely summer rainfall, mean annual temperature and altitude. Each was independently and significantly associated with malaria prevalence after allowing for spatial correlation. This model was used to predict malaria prevalence at unobserved locations, producing a smooth risk map for the whole country. Conclusion We have produced a highly plausible and

  16. Selecting and Designing Questions to Facilitate Spatial Thinking

    ERIC Educational Resources Information Center

    Jo, Injeong; Bednarz, Sarah; Metoyer, Sandra

    2010-01-01

    One measure of the impact of a new idea in geography education is how well it is incorporated into teachers' everyday practice. "Spatial thinking" is not really a new idea in geography education; spatial analysis has long been one of its core traditions, but the use of the term is novel and only beginning to be widely used. By spatial thinking the…

  17. Resource selection by elk at two spatial scales in the Black Hills, South Dakota

    Treesearch

    Mark A. Rumble; R. Scott Gamo

    2011-01-01

    Understanding resource selection by elk (Cervus elaphus) at multiple spatial scales may provide information that will help resolve the increasing number of resource conflicts involving elk. We quantified vegetation at 412 sites where the precise location of elk was known by direct observation and 509 random sites in the Black Hills of South Dakota during 1998-2001. We...

  18. Spatial use and habitat selection of golden eagles in southwestern Idaho

    USGS Publications Warehouse

    Marzluff, J.M.; Knick, Steven T.; Vekasy, M.S.; Schueck, Linda S.; Zarriello, T.J.

    1997-01-01

    We measured spatial use and habitat selection of radio-tagged Golden Eagles (Aquila chrysaetos) at eight to nine territories each year from 1992 to 1994 in the Snake River Birds of Prey National Conservation Area. Use of space did not vary between years or sexes, but did vary among seasons (home ranges and travel distances were larger during the nonbreeding than during the breeding season) and among individuals. Home ranges were large, ranging from 190 to 8,330 ha during the breeding season and from 1,370 to 170,000 ha outside of the breeding season, but activity was concentrated in small core areas of 30 to 1,535 ha and 485 to 6,380 ha during the breeding and nonbreeding seasons, respectively. Eagles selected shrub habitats and avoided disturbed areas, grasslands, and agriculture. This resulted in selection for habitat likely to contain their principal prey, black-tailed jackrabbits (Lepus californicus). Individuals with home ranges in extensive shrubland (n = 3) did not select for shrubs in the placement of their core areas or foraging points, but individuals in highly fragmented or dispersed shrublands (n = 5) concentrated their activities and foraged preferentially in jackrabbit habitats (i.e. areas with abundant and large shrub patches). As home ranges expanded outside of the breeding season, individuals selected jackrabbit habitats within their range. Shrubland fragmentation should be minimized so that remaining shrub patches are large enough to support jackrabbits.

  19. Testing the Pairs-Reflection Model with X-Ray Spectral Variability and X-Ray Properties of Complete Samples of Radio-Selected BL Lacertae Objects

    NASA Astrophysics Data System (ADS)

    Urry, C. Megan

    1997-01-01

    This grant was awarded to Dr. C. Megan Urry of the Space Telescope Science Institute in response to two successful ADP proposals to use archival Ginga and Rosat X-ray data for 'Testing the Pairs-Reflection model with X-Ray Spectral Variability' (in collaboration with Paola Grandi, now at the University of Rome) and 'X-Ray Properties of Complete Samples of Radio-Selected BL Lacertae Objects' (in collaboration with then-graduate student Rita Sambruna, now a post-doc at Goddard Space Flight Center). In addition, post-docs Joseph Pesce and Elena Pian, and graduate student Matthew O'Dowd, have worked on several aspects of these projects. The grant was originally awarded on 3/01/94; this report covers the full period, through May 1997. We have completed our project on the X-ray properties of radio-selected BL Lacs.

  20. Seasonal and spatial distribution patterns of finfish and selected invertebrates in coastal lagoons of northeastern Florida, 2002-2004

    USGS Publications Warehouse

    Turtora, Michael; Schotman, Elizabeth M.

    2010-01-01

    The U.S. Geological Survey conducted a survey of juvenile fisheries resources, in cooperation with the St. Johns River Water Management District and Volusia County, to establish baseline data on spatial and temporal distribution patterns of estuarine fish. The survey was conducted from November 2001 to March 2005 and the baseline data established for the survey in the Northern Coastal Basins were collected from January 2002 to December 2004. The study area included the bar-built estuaries ranging from just north of St. Augustine, Florida, south to Ponce de Leon Inlet. Sampling protocols developed by the Florida Fish and Wildlife Research Institute for their statewide Fisheries Independent Monitoring (FIM) program were replicated to allow for comparability with FIM program results. Samples were collected monthly from randomly selected stations based on a geographically stratified design. Finfish and selected invertebrates were collected using a 21.3-meter center-bag seine with a 3-millimeter mesh, and a 6.1-meter otter trawl with a 3-millimeter mesh liner. Total estimated fish and selected invertebrate densities were similar to estimates from FIM projects in adjacent areas and were characterized by similar dominant species. Preliminary analysis indicates that observed species distribution patterns were mainly a function of proximity to the three inlets within the study area. The two regions encompassing the northern Tolomato River and the Tomoka River and Basin are farthest from inlets and appear to function as oligohaline nursery areas. Those two areas had the greatest estimated densities of shellfish and juvenile sciaenid (drum) species associated with oligohaline waters (for example, Micropogonias undulatus, Sciaenops ocellatus and Cynoscion nebulosus). Samples near inlets, and between the two northern inlets, had greater estimated densities of species limited to euhaline waters, including juvenile clupeids collected at relatively high abundance and species of

  1. Advantages and disadvantages of an objective selection process for early intervention in employees at risk for sickness absence

    PubMed Central

    Duijts, Saskia FA; Kant, IJmert; Swaen, Gerard MH

    2007-01-01

    Background It is unclear if objective selection of employees, for an intervention to prevent sickness absence, is more effective than subjective 'personal enlistment'. We hypothesize that objectively selected employees are 'at risk' for sickness absence and eligible to participate in the intervention program. Methods The dispatch of 8603 screening instruments forms the starting point of the objective selection process. Different stages of this process, throughout which employees either dropped out or were excluded, were described and compared with the subjective selection process. Characteristics of ineligible and ultimately selected employees, for a randomized trial, were described and quantified using sickness absence data. Results Overall response rate on the screening instrument was 42.0%. Response bias was found for the parameters sex and age, but not for sickness absence. Sickness absence was higher in the 'at risk' (N = 212) group (42%) compared to the 'not at risk' (N = 2503) group (25%) (OR 2.17 CI 1.63–2.89; p = 0.000). The selection process ended with the successful inclusion of 151 eligible, i.e. 2% of the approached employees in the trial. Conclusion The study shows that objective selection of employees for early intervention is effective. Despite methodological and practical problems, selected employees are actually those at risk for sickness absence, who will probably benefit more from the intervention program than others. PMID:17474980

  2. A real-world size organization of object responses in occipito-temporal cortex

    PubMed Central

    Konkle, Talia; Oliva, Aude

    2012-01-01

    SUMMARY While there are selective regions of occipito-temporal cortex that respond to faces, letters, and bodies, the large-scale neural organization of most object categories remains unknown. Here we find that object representations can be differentiated along the ventral temporal cortex by their real-world size. In a functional neuroimaging experiment, observers were shown pictures of big and small real-world objects (e.g. table, bathtub; paperclip, cup), presented at the same retinal size. We observed a consistent medial-to-lateral organization of big and small object preferences in the ventral temporal cortex, mirrored along the lateral surface. Regions in the lateral-occipital, infero-temporal, and parahippocampal cortices showed strong peaks of differential real-world size selectivity, and maintained these preferences over changes in retinal size and in mental imagery. These data demonstrate that the real-world size of objects can provide insight into the spatial topography of object representation. PMID:22726840

  3. Selective attention neutralizes the adverse effects of low socioeconomic status on memory in 9-month-old infants

    PubMed Central

    Markant, Julie; Ackerman, Laura K.; Nussenbaum, Kate; Amso, Dima

    2015-01-01

    Socioeconomic status (SES) has a documented impact on brain and cognitive development. We demonstrate that engaging spatial selective attention mechanisms may counteract this negative influence of impoverished environments on early learning. We previously used a spatial cueing task to compare target object encoding in the context of basic orienting (“facilitation”) versus a spatial selective attention orienting mechanism that engages distractor suppression (“IOR”). This work showed that object encoding in the context of IOR boosted 9-month-old infants’ recognition memory relative to facilitation (Markant and Amso, 2013). Here we asked whether this attention-memory links further interacted with SES in infancy. Results indicated that SES was related to memory but not attention orienting efficacy. However, the correlation between SES and memory performance was moderated by the attention mechanism engaged during encoding. SES predicted memory performance when objects were encoded with basic orienting processes, with infants from low-SES environments showing poorer memory than those from high-SES environments. However, SES did not predict memory performance among infants who engaged selective attention during encoding. Spatial selective attention engagement mitigated the effects of SES on memory and may offer an effective mechanism for promoting learning among infants at risk for poor cognitive outcomes related to SES. PMID:26597046

  4. Rasdaman for Big Spatial Raster Data

    NASA Astrophysics Data System (ADS)

    Hu, F.; Huang, Q.; Scheele, C. J.; Yang, C. P.; Yu, M.; Liu, K.

    2015-12-01

    Spatial raster data have grown exponentially over the past decade. Recent advancements on data acquisition technology, such as remote sensing, have allowed us to collect massive observation data of various spatial resolution and domain coverage. The volume, velocity, and variety of such spatial data, along with the computational intensive nature of spatial queries, pose grand challenge to the storage technologies for effective big data management. While high performance computing platforms (e.g., cloud computing) can be used to solve the computing-intensive issues in big data analysis, data has to be managed in a way that is suitable for distributed parallel processing. Recently, rasdaman (raster data manager) has emerged as a scalable and cost-effective database solution to store and retrieve massive multi-dimensional arrays, such as sensor, image, and statistics data. Within this paper, the pros and cons of using rasdaman to manage and query spatial raster data will be examined and compared with other common approaches, including file-based systems, relational databases (e.g., PostgreSQL/PostGIS), and NoSQL databases (e.g., MongoDB and Hive). Earth Observing System (EOS) data collected from NASA's Atmospheric Scientific Data Center (ASDC) will be used and stored in these selected database systems, and a set of spatial and non-spatial queries will be designed to benchmark their performance on retrieving large-scale, multi-dimensional arrays of EOS data. Lessons learnt from using rasdaman will be discussed as well.

  5. Do Object-Category Selective Regions in the Ventral Visual Stream Represent Perceived Distance Information?

    ERIC Educational Resources Information Center

    Amit, Elinor; Mehoudar, Eyal; Trope, Yaacov; Yovel, Galit

    2012-01-01

    It is well established that scenes and objects elicit a highly selective response in specific brain regions in the ventral visual cortex. An inherent difference between these categories that has not been explored yet is their perceived distance from the observer (i.e. scenes are distal whereas objects are proximal). The current study aimed to test…

  6. Considering Spatial Scale and Reproductive Consequences of Habitat Selection when Managing Grasslands for a Threatened Species

    PubMed Central

    Pearson, Scott F.; Knapp, Shannon M.

    2016-01-01

    Habitat selection that has fitness consequences has important implications for conservation activities. For example, habitat characteristics that influence nest success in birds can be manipulated to improve habitat quality with the goal of ultimately improving reproductive success. We examined habitat selection by the threatened streaked horned lark (Eremophila alpestris strigata) at both the breeding-site (territory) and nest-site scales. Larks were selective at both spatial scales but with contrasting selection. At the territory scale, male larks selected sparsely vegetated grasslands with relatively short vegetation. At the nest-site scale, female larks selected sites within territories with higher vegetation density and more perennial forbs. These nest-site scale choices had reproductive consequences, with greater nest success in areas with higher densities of perennial forbs. We experimentally manipulated lark habitat structure in an attempt to mimic the habitat conditions selected by larks by using late summer prescribed fires. After the burn, changes in vegetation structure were in the direction preferred by larks but habitat effects attenuated by the following year. Our results highlight the importance of evaluating habitat selection at spatial scales appropriate to the species of interest, especially when attempting to improve habitat quality for rare and declining species. They also highlight the importance of conducting restoration activities in a research context. For example, because the sparsely vegetated conditions created by fire attenuate, there may be value in examining more frequent burns or hotter fires as the next management and research action. We hope the design outlined in this study will serve as an integrated research and management example for conserving grassland birds generally. PMID:27322196

  7. Fuzzy bi-objective linear programming for portfolio selection problem with magnitude ranking function

    NASA Astrophysics Data System (ADS)

    Kusumawati, Rosita; Subekti, Retno

    2017-04-01

    Fuzzy bi-objective linear programming (FBOLP) model is bi-objective linear programming model in fuzzy number set where the coefficients of the equations are fuzzy number. This model is proposed to solve portfolio selection problem which generate an asset portfolio with the lowest risk and the highest expected return. FBOLP model with normal fuzzy numbers for risk and expected return of stocks is transformed into linear programming (LP) model using magnitude ranking function.

  8. Space-based visual attention: a marker of immature selective attention in toddlers?

    PubMed

    Rivière, James; Brisson, Julie

    2014-11-01

    Various studies suggested that attentional difficulties cause toddlers' failure in some spatial search tasks. However, attention is not a unitary construct and this study investigated two attentional mechanisms: location selection (space-based attention) and object selection (object-based attention). We investigated how toddlers' attention is distributed in the visual field during a manual search task for objects moving out of sight, namely the moving boxes task. Results show that 2.5-year-olds who failed this task allocated more attention to the location of the relevant object than to the object itself. These findings suggest that in some manual search tasks the primacy of space-based attention over object-based attention could be a marker of immature selective attention in toddlers. © 2014 Wiley Periodicals, Inc.

  9. The effective use of virtualization for selection of data centers in a cloud computing environment

    NASA Astrophysics Data System (ADS)

    Kumar, B. Santhosh; Parthiban, Latha

    2018-04-01

    Data centers are the places which consist of network of remote servers to store, access and process the data. Cloud computing is a technology where users worldwide will submit the tasks and the service providers will direct the requests to the data centers which are responsible for execution of tasks. The servers in the data centers need to employ the virtualization concept so that multiple tasks can be executed simultaneously. In this paper we proposed an algorithm for data center selection based on energy of virtual machines created in server. The virtualization energy in each of the server is calculated and total energy of the data center is obtained by the summation of individual server energy. The tasks submitted are routed to the data center with least energy consumption which will result in minimizing the operational expenses of a service provider.

  10. Centering Objects in the Workspace

    ERIC Educational Resources Information Center

    Free, Cory

    2005-01-01

    Drafters must be detail-oriented people. The objects they draw are interpreted and then built with the extreme precision required by today's manufacturers. Now that computer-aided drafting (CAD) has taken over the drafting profession, anything less than exact precision is unacceptable. In her drafting classes, the author expects her students to…

  11. Simultaneous selection by object-based attention in visual and frontal cortex

    PubMed Central

    Pooresmaeili, Arezoo; Poort, Jasper; Roelfsema, Pieter R.

    2014-01-01

    Models of visual attention hold that top-down signals from frontal cortex influence information processing in visual cortex. It is unknown whether situations exist in which visual cortex actively participates in attentional selection. To investigate this question, we simultaneously recorded neuronal activity in the frontal eye fields (FEF) and primary visual cortex (V1) during a curve-tracing task in which attention shifts are object-based. We found that accurate performance was associated with similar latencies of attentional selection in both areas and that the latency in both areas increased if the task was made more difficult. The amplitude of the attentional signals in V1 saturated early during a trial, whereas these selection signals kept increasing for a longer time in FEF, until the moment of an eye movement, as if FEF integrated attentional signals present in early visual cortex. In erroneous trials, we observed an interareal latency difference because FEF selected the wrong curve before V1 and imposed its erroneous decision onto visual cortex. The neuronal activity in visual and frontal cortices was correlated across trials, and this trial-to-trial coupling was strongest for the attended curve. These results imply that selective attention relies on reciprocal interactions within a large network of areas that includes V1 and FEF. PMID:24711379

  12. Multiple reference frames in haptic spatial processing

    NASA Astrophysics Data System (ADS)

    Volčič, R.

    2008-08-01

    The present thesis focused on haptic spatial processing. In particular, our interest was directed to the perception of spatial relations with the main focus on the perception of orientation. To this end, we studied haptic perception in different tasks, either in isolation or in combination with vision. The parallelity task, where participants have to match the orientations of two spatially separated bars, was used in its two-dimensional and three-dimensional versions in Chapter 2 and Chapter 3, respectively. The influence of non-informative vision and visual interference on performance in the parallelity task was studied in Chapter 4. A different task, the mental rotation task, was introduced in a purely haptic study in Chapter 5 and in a visuo-haptic cross-modal study in Chapter 6. The interaction of multiple reference frames and their influence on haptic spatial processing were the common denominators of these studies. In this thesis we approached the problems of which reference frames play the major role in haptic spatial processing and how the relative roles of distinct reference frames change depending on the available information and the constraints imposed by different tasks. We found that the influence of a reference frame centered on the hand was the major cause of the deviations from veridicality observed in both the two-dimensional and three-dimensional studies. The results were described by a weighted average model, in which the hand-centered egocentric reference frame is supposed to have a biasing influence on the allocentric reference frame. Performance in haptic spatial processing has been shown to depend also on sources of information or processing that are not strictly connected to the task at hand. When non-informative vision was provided, a beneficial effect was observed in the haptic performance. This improvement was interpreted as a shift from the egocentric to the allocentric reference frame. Moreover, interfering visual information presented

  13. The Microanatomic Segregation of Selection by Apoptosis in the Germinal Center

    PubMed Central

    Mayer, Christian T.; Gazumyan, Anna; Kara, Ervin E.; Gitlin, Alexander D.; Golijanin, Jovana; Viant, Charlotte; Pai, Joy; Oliveira, Thiago Y.; Wang, Qiao; Escolano, Amelia; Medina-Ramirez, Max; Sanders, Rogier W.; Nussenzweig, Michel C.

    2018-01-01

    B cells undergo rapid cell division and affinity maturation in anatomically distinct sites in lymphoid organs called germinal centers (GCs). Homeostasis is maintained in part by B-cell apoptosis. However, the precise contribution of apoptosis to GC biology and selection is not well defined. We developed apoptosis-indicator mice and used them to visualize, purify, and characterize dying GC B cells. Apoptosis is prevalent in the GC with up to half of all GC B cells dying every 6h. Moreover, programmed cell death is differentially regulated in the light zone (LZ) and the dark zone (DZ): LZ B cells die by default if they are not positively selected, whereas DZ cells die when their antigen receptors are damaged by activation-induced cytidine deaminase (AID). PMID:28935768

  14. Optimization of forest wildlife objectives

    Treesearch

    John Hof; Robert Haight

    2007-01-01

    This chapter presents an overview of methods for optimizing wildlife-related objectives. These objectives hinge on landscape pattern, so we refer to these methods as "spatial optimization." It is currently possible to directly capture deterministic characterizations of the most basic spatial relationships: proximity relationships (including those that lead to...

  15. A multi-objective optimization approach for the selection of working fluids of geothermal facilities: Economic, environmental and social aspects.

    PubMed

    Martínez-Gomez, Juan; Peña-Lamas, Javier; Martín, Mariano; Ponce-Ortega, José María

    2017-12-01

    The selection of the working fluid for Organic Rankine Cycles has traditionally been addressed from systematic heuristic methods, which perform a characterization and prior selection considering mainly one objective, thus avoiding a selection considering simultaneously the objectives related to sustainability and safety. The objective of this work is to propose a methodology for the optimal selection of the working fluid for Organic Rankine Cycles. The model is presented as a multi-objective approach, which simultaneously considers the economic, environmental and safety aspects. The economic objective function considers the profit obtained by selling the energy produced. Safety was evaluated in terms of individual risk for each of the components of the Organic Rankine Cycles and it was formulated as a function of the operating conditions and hazardous properties of each working fluid. The environmental function is based on carbon dioxide emissions, considering carbon dioxide mitigation, emission due to the use of cooling water as well emissions due material release. The methodology was applied to the case of geothermal facilities to select the optimal working fluid although it can be extended to waste heat recovery. The results show that the hydrocarbons represent better solutions, thus among a list of 24 working fluids, toluene is selected as the best fluid. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Saccade latency indexes exogenous and endogenous object-based attention.

    PubMed

    Şentürk, Gözde; Greenberg, Adam S; Liu, Taosheng

    2016-10-01

    Classic studies of object-based attention have utilized keypress responses as the main dependent measure. However, people typically make saccades to fixate important objects. Recent work has shown that attention may act differently when it is deployed covertly versus in advance of a saccade. We further investigated the link between saccades and attention by examining whether object-based effects can be observed for saccades. We adapted the classical double-rectangle cueing paradigm of Egly, Driver, and Rafal (1994), and measured both the first saccade latency and the keypress reaction time (RT) to a target that appeared at the end of one of the two rectangles. Our results showed that saccade latencies exhibited higher sensitivity than did RTs for detecting effects of attention. We also assessed the generality of the attention effects by testing three types of cues: hybrid (predictive and peripheral), exogenous (nonpredictive and peripheral), and endogenous (predictive and central). We found that both RTs and saccade latencies exhibited effects of both space-based and object-based attentional selection. However, saccade latencies showed a more robust attentional modulation than RTs. For the exogenous cues, we observed a spatial inhibition of return along with an object-based effect, implying that object-based attention is independent of space-based attention. Overall, our results revealed an oculomotor correlate of object-based attention, suggesting that, in addition to spatial priority, object-level priority also affects saccade planning.

  17. Seeing the forest through the trees: Considering roost-site selection at multiple spatial scales

    USGS Publications Warehouse

    Jachowski, David S.; Rota, Christopher T.; Dobony, Christopher A.; Ford, W. Mark; Edwards, John W.

    2016-01-01

    Conservation of bat species is one of the most daunting wildlife conservation challenges in North America, requiring detailed knowledge about their ecology to guide conservation efforts. Outside of the hibernating season, bats in temperate forest environments spend their diurnal time in day-roosts. In addition to simple shelter, summer roost availability is as critical as maternity sites and maintaining social group contact. To date, a major focus of bat conservation has concentrated on conserving individual roost sites, with comparatively less focus on the role that broader habitat conditions contribute towards roost-site selection. We evaluated roost-site selection by a northern population of federally-endangered Indiana bats (Myotis sodalis) at Fort Drum Military Installation in New York, USA at three different spatial scales: landscape, forest stand, and individual tree level. During 2007–2011, we radiotracked 33 Indiana bats (10 males, 23 females) and located 348 roosting events in 116 unique roost trees. At the landscape scale, bat roost-site selection was positively associated with northern mixed forest, increased slope, and greater distance from human development. At the stand scale, we observed subtle differences in roost site selection based on sex and season, but roost selection was generally positively associated with larger stands with a higher basal area, larger tree diameter, and a greater sugar maple (Acer saccharum) component. We observed no distinct trends of roosts being near high-quality foraging areas of water and forest edges. At the tree scale, roosts were typically in American elm (Ulmus americana) or sugar maple of large diameter (>30 cm) of moderate decay with loose bark. Collectively, our results highlight the importance of considering day roost needs simultaneously across multiple spatial scales. Size and decay class of individual roosts are key ecological attributes for the Indiana bat, however, larger-scale stand structural

  18. Ventral-stream-like shape representation: from pixel intensity values to trainable object-selective COSFIRE models

    PubMed Central

    Azzopardi, George; Petkov, Nicolai

    2014-01-01

    The remarkable abilities of the primate visual system have inspired the construction of computational models of some visual neurons. We propose a trainable hierarchical object recognition model, which we call S-COSFIRE (S stands for Shape and COSFIRE stands for Combination Of Shifted FIlter REsponses) and use it to localize and recognize objects of interests embedded in complex scenes. It is inspired by the visual processing in the ventral stream (V1/V2 → V4 → TEO). Recognition and localization of objects embedded in complex scenes is important for many computer vision applications. Most existing methods require prior segmentation of the objects from the background which on its turn requires recognition. An S-COSFIRE filter is automatically configured to be selective for an arrangement of contour-based features that belong to a prototype shape specified by an example. The configuration comprises selecting relevant vertex detectors and determining certain blur and shift parameters. The response is computed as the weighted geometric mean of the blurred and shifted responses of the selected vertex detectors. S-COSFIRE filters share similar properties with some neurons in inferotemporal cortex, which provided inspiration for this work. We demonstrate the effectiveness of S-COSFIRE filters in two applications: letter and keyword spotting in handwritten manuscripts and object spotting in complex scenes for the computer vision system of a domestic robot. S-COSFIRE filters are effective to recognize and localize (deformable) objects in images of complex scenes without requiring prior segmentation. They are versatile trainable shape detectors, conceptually simple and easy to implement. The presented hierarchical shape representation contributes to a better understanding of the brain and to more robust computer vision algorithms. PMID:25126068

  19. How tufted capuchin monkeys (Cebus apella spp) and common chimpanzees (Pan troglodytes) align objects to surfaces: Insights into spatial reasoning and implications for tool use

    PubMed Central

    Fragaszy, Dorothy M.; Stone, Brian; Scott, Nicole M.; Menzel, Charles

    2011-01-01

    This report addresses phylogenetic variation in a spatial skill that underlies tool use: aligning objects to a feature of a surface. Fragaszy and Cummins-Sebree’s [2005] model of relational spatial reasoning and Skill Development and Perception-Action theories guided the design of the study. We examined how capuchins and chimpanzees place stick objects of varying shapes into matching grooves on a flat surface. Although most individuals aligned the long axis of the object with the matching groove more often than expected by chance, all typically did so with poor precision. Some individuals managed to align a second feature, and only one (a capuchin monkey) achieved above-chance success at aligning three features with matching grooves. Our findings suggest that capuchins and chimpanzees do not reliably align objects along even one axis, and that neither species can reliably or easily master object placement tasks that require managing two or more spatial relations concurrently. Moreover, they did not systematically vary their behavior in a manner that would aid discovery of the affordances of the stick-surface combination beyond sliding the stick along the surface (which may have provided haptic information about the location of the groove). These limitations have profound consequences for the forms of tool use we can expect these individuals to master. PMID:21608008

  20. Development and feasibility of an objective measure of patient-centered communication fidelity in a pediatric obesity intervention

    USDA-ARS?s Scientific Manuscript database

    Our objective was to develop a measure of person-centered communication (PCC) and demonstrate feasibility for use in primary care child obesity interventions. Helping Healthy Activity and Nutrition Directions was a primary care intervention for families of overweight or obese 5- to 8-year-old childr...

  1. ERP Evidence of Early Cross-Modal Links between Auditory Selective Attention and Visuo-Spatial Memory

    ERIC Educational Resources Information Center

    Bomba, Marie D.; Singhal, Anthony

    2010-01-01

    Previous dual-task research pairing complex visual tasks involving non-spatial cognitive processes during dichotic listening have shown effects on the late component (Ndl) of the negative difference selective attention waveform but no effects on the early (Nde) response suggesting that the Ndl, but not the Nde, is affected by non-spatial…

  2. Health information security: a case study of three selected medical centers in iran.

    PubMed

    Hajrahimi, Nafiseh; Dehaghani, Sayed Mehdi Hejazi; Sheikhtaheri, Abbas

    2013-03-01

    Health Information System (HIS) is considered a unique factor in improving the quality of health care activities and cost reduction, but today with the development of information technology and use of internet and computer networks, patients' electronic records and health information systems have become a source for hackers. This study aims at checking health information security of three selected medical centers in Iran using AHP fuzzy and TOPSIS compound model. To achieve that security measures were identified, based on the research literature and decision making matrix using experts' points of view. Among the 27 indicators, seven indicators were selected as effective indicators and Fuzzy AHP technique was used to determine the importance of security indicators. Based on the comparisons made between the three selected medical centers to assess the security of health information, it is concluded that Chamran hospital has the most acceptable level of security and attention in three indicators of "verification and system design, user access management, access control system", Al Zahra Hospital in two indicators of "access management and network access control" and Amin Hospital in "equipment safety and system design". In terms of information security, Chamran Hospital ranked first, Al-Zahra Hospital ranked second and Al- Zahra hospital has the third place.

  3. Health Information Security: A Case Study of Three Selected Medical Centers in Iran

    PubMed Central

    Hajrahimi, Nafiseh; Dehaghani, Sayed Mehdi Hejazi; Sheikhtaheri, Abbas

    2013-01-01

    Health Information System (HIS) is considered a unique factor in improving the quality of health care activities and cost reduction, but today with the development of information technology and use of internet and computer networks, patients’ electronic records and health information systems have become a source for hackers. Methods This study aims at checking health information security of three selected medical centers in Iran using AHP fuzzy and TOPSIS compound model. To achieve that security measures were identified, based on the research literature and decision making matrix using experts’ points of view. Results and discussion Among the 27 indicators, seven indicators were selected as effective indicators and Fuzzy AHP technique was used to determine the importance of security indicators. Based on the comparisons made between the three selected medical centers to assess the security of health information, it is concluded that Chamran hospital has the most acceptable level of security and attention in three indicators of “verification and system design, user access management, access control system”, Al Zahra Hospital in two indicators of “access management and network access control” and Amin Hospital in “equipment safety and system design”. In terms of information security, Chamran Hospital ranked first, Al-Zahra Hospital ranked second and Al- Zahra hospital has the third place. PMID:23572861

  4. Cognitive load during route selection increases reliance on spatial heuristics.

    PubMed

    Brunyé, Tad T; Martis, Shaina B; Taylor, Holly A

    2018-05-01

    Planning routes from maps involves perceiving the symbolic environment, identifying alternate routes and applying explicit strategies and implicit heuristics to select an option. Two implicit heuristics have received considerable attention, the southern route preference and initial segment strategy. This study tested a prediction from decision-making theory that increasing cognitive load during route planning will increase reliance on these heuristics. In two experiments, participants planned routes while under conditions of minimal (0-back) or high (2-back) working memory load. In Experiment 1, we examined how memory load impacts the southern route heuristic. In Experiment 2, we examined how memory load impacts the initial segment heuristic. Results replicated earlier results demonstrating a southern route preference (Experiment 1) and initial segment strategy (Experiment 2) and further demonstrated that evidence for heuristic reliance is more likely under conditions of concurrent working memory load. Furthermore, the extent to which participants maintained efficient route selection latencies in the 2-back condition predicted the magnitude of this effect. Together, results demonstrate that working memory load increases the application of heuristics during spatial decision making, particularly when participants attempt to maintain quick decisions while managing concurrent task demands.

  5. Egocentric and nonegocentric coding in memory for spatial layout: Evidence from scene recognition

    PubMed Central

    2005-01-01

    Much contemporary research has suggested that memories for spatial layout are stored with a preferred orientation. The present paper examines whether spatial memories are also stored with a preferred viewpoint position. Participants viewed images of an arrangement of objects taken from a single viewpoint, and were subsequently tested on their ability to recognize the arrangement from novel viewpoints that had been translated in either the lateral or depth dimension. Lateral and forward displacements of the viewpoint resulted in increasing response latencies and errors. Backward displacement showed no such effect, nor did lateral translation that resulted in a centered “canonical” view of the arrangement. These results further constrain the specificity of spatial memory, while also providing some evidence that nonegocentric spatial information is coded in memory. PMID:16933759

  6. Calibration of a distributed hydrologic model using observed spatial patterns from MODIS data

    NASA Astrophysics Data System (ADS)

    Demirel, Mehmet C.; González, Gorka M.; Mai, Juliane; Stisen, Simon

    2016-04-01

    Distributed hydrologic models are typically calibrated against streamflow observations at the outlet of the basin. Along with these observations from gauging stations, satellite based estimates offer independent evaluation data such as remotely sensed actual evapotranspiration (aET) and land surface temperature. The primary objective of the study is to compare model calibrations against traditional downstream discharge measurements with calibrations against simulated spatial patterns and combinations of both types of observations. While the discharge based model calibration typically improves the temporal dynamics of the model, it seems to give rise to minimum improvement of the simulated spatial patterns. In contrast, objective functions specifically targeting the spatial pattern performance could potentially increase the spatial model performance. However, most modeling studies, including the model formulations and parameterization, are not designed to actually change the simulated spatial pattern during calibration. This study investigates the potential benefits of incorporating spatial patterns from MODIS data to calibrate the mesoscale hydrologic model (mHM). This model is selected as it allows for a change in the spatial distribution of key soil parameters through the optimization of pedo-transfer function parameters and includes options for using fully distributed daily Leaf Area Index (LAI) values directly as input. In addition the simulated aET can be estimated at a spatial resolution suitable for comparison to the spatial patterns observed with MODIS data. To increase our control on spatial calibration we introduced three additional parameters to the model. These new parameters are part of an empirical equation to the calculate crop coefficient (Kc) from daily LAI maps and used to update potential evapotranspiration (PET) as model inputs. This is done instead of correcting/updating PET with just a uniform (or aspect driven) factor used in the mHM model

  7. Transverse tripolar stimulation of peripheral nerve: a modelling study of spatial selectivity.

    PubMed

    Deurloo, K E; Holsheimer, J; Boom, H B

    1998-01-01

    Various anode-cathode configurations in a nerve cuff are modelled to predict their spatial selectivity characteristics for functional nerve stimulation. A 3D volume conductor model of a monofascicular nerve is used for the computation of stimulation-induced field potentials, whereas a cable model of myelinated nerve fibre is used for the calculation of the excitation thresholds of fibres. As well as the usual configurations (monopole, bipole, longitudinal tripole, 'steering' anode), a transverse tripolar configuration (central cathode) is examined. It is found that the transverse tripole is the only configuration giving convex recruitment contours and therefore maximises activation selectivity for a small (cylindrical) bundle of fibres in the periphery of a monofascicular nerve trunk. As the electrode configuration is changed to achieve greater selectivity, the threshold current increases. Therefore threshold currents for fibre excitation with a transverse tripole are relatively high. Inverse recruitment is less extreme than for the other configurations. The influences of several geometrical parameters and model conductivities of the transverse tripole on selectivity and threshold current are analysed. In chronic implantation, when electrodes are encapsulated by a layer of fibrous tissue, threshold currents are low, whereas the shape of the recruitment contours in transverse tripolar stimulation does not change.

  8. Selection of features within and without objects: effects of gestalt appearance and object-based instruction on behavior and event-related brain potentials.

    PubMed

    Verleger, Rolf; Groen, Margriet; Heide, Wolfgang; Sobieralska, Kinga; Jaśkowski, Piotr

    2008-05-01

    We studied how physical and instructed embedding of features in gestalts affects perceptual selection. Four ovals on the horizontal midline were either unconnected or pairwise connected by circles, forming ears of left and right heads (gestalts). Relevant to responding was the position of one colored oval, either within its pair or relative to fixation ("object-based" or "fixation-based" instruction). Responses were faster under fixation- than object-based instruction, less so with gestalts. Previously reported increases of N1 when evoked by features within objects were replicated for fixation-based instruction only. There was no effect of instruction on N2pc. However P1 increased under the adequate instruction, object-based for gestalts, fixation-based for unconnected items, which presumably indicated how foci of attention were set by expecting specific stimuli under instructions that specified how to bind these stimuli to objects.

  9. Selective attention neutralizes the adverse effects of low socioeconomic status on memory in 9-month-old infants.

    PubMed

    Markant, Julie; Ackerman, Laura K; Nussenbaum, Kate; Amso, Dima

    2016-04-01

    Socioeconomic status (SES) has a documented impact on brain and cognitive development. We demonstrate that engaging spatial selective attention mechanisms may counteract this negative influence of impoverished environments on early learning. We previously used a spatial cueing task to compare target object encoding in the context of basic orienting ("facilitation") versus a spatial selective attention orienting mechanism that engages distractor suppression ("IOR"). This work showed that object encoding in the context of IOR boosted 9-month-old infants' recognition memory relative to facilitation (Markant and Amso, 2013). Here we asked whether this attention-memory link further interacted with SES in infancy. Results indicated that SES was related to memory but not attention orienting efficacy. However, the correlation between SES and memory performance was moderated by the attention mechanism engaged during encoding. SES predicted memory performance when objects were encoded with basic orienting processes, with infants from low-SES environments showing poorer memory than those from high-SES environments. However, SES did not predict memory performance among infants who engaged selective attention during encoding. Spatial selective attention engagement mitigated the effects of SES on memory and may offer an effective mechanism for promoting learning among infants at risk for poor cognitive outcomes related to SES. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  10. Effect of Modeling-Based Activities Developed Using Virtual Environments and Concrete Objects on Spatial Thinking and Mental Rotation Skills

    ERIC Educational Resources Information Center

    Yurt, Eyup; Sunbul, Ali Murat

    2012-01-01

    In this study, the effect of modeling based activities using virtual environments and concrete objects on spatial thinking and mental rotation skills was investigated. The study was designed as a pretest-posttest model with a control group, which is one of the experimental research models. The study was carried out on sixth grade students…

  11. Masking reduces orientation selectivity in rat visual cortex

    PubMed Central

    Alwis, Dasuni S.; Richards, Katrina L.

    2016-01-01

    In visual masking the perception of a target stimulus is impaired by a preceding (forward) or succeeding (backward) mask stimulus. The illusion is of interest because it allows uncoupling of the physical stimulus, its neuronal representation, and its perception. To understand the neuronal correlates of masking, we examined how masks affected the neuronal responses to oriented target stimuli in the primary visual cortex (V1) of anesthetized rats (n = 37). Target stimuli were circular gratings with 12 orientations; mask stimuli were plaids created as a binarized sum of all possible target orientations. Spatially, masks were presented either overlapping or surrounding the target. Temporally, targets and masks were presented for 33 ms, but the stimulus onset asynchrony (SOA) of their relative appearance was varied. For the first time, we examine how spatially overlapping and center-surround masking affect orientation discriminability (rather than visibility) in V1. Regardless of the spatial or temporal arrangement of stimuli, the greatest reductions in firing rate and orientation selectivity occurred for the shortest SOAs. Interestingly, analyses conducted separately for transient and sustained target response components showed that changes in orientation selectivity do not always coincide with changes in firing rate. Given the near-instantaneous reductions observed in orientation selectivity even when target and mask do not spatially overlap, we suggest that monotonic visual masking is explained by a combination of neural integration and lateral inhibition. PMID:27535373

  12. Object-based attention: strength of object representation and attentional guidance.

    PubMed

    Shomstein, Sarah; Behrmann, Marlene

    2008-01-01

    Two or more features belonging to a single object are identified more quickly and more accurately than are features belonging to different objects--a finding attributed to sensory enhancement of all features belonging to an attended or selected object. However, several recent studies have suggested that this "single-object advantage" may be a product of probabilistic and configural strategic prioritizations rather than of object-based perceptual enhancement per se, challenging the underlying mechanism that is thought to give rise to object-based attention. In the present article, we further explore constraints on the mechanisms of object-based selection by examining the contribution of the strength of object representations to the single-object advantage. We manipulated factors such as exposure duration (i.e., preview time) and salience of configuration (i.e., objects). Varying preview time changes the magnitude of the object-based effect, so that if there is ample time to establish an object representation (i.e., preview time of 1,000 msec), then both probability and configuration (i.e., objects) guide attentional selection. If, however, insufficient time is provided to establish a robust object-based representation, then only probabilities guide attentional selection. Interestingly, at a short preview time of 200 msec, when the two objects were sufficiently different from each other (i.e., different colors), both configuration and probability guided attention selection. These results suggest that object-based effects can be explained both in terms of strength of object representations (established at longer exposure durations and by pictorial cues) and probabilistic contingencies in the visual environment.

  13. Field evaluation of four spatial repellent devices against Arkansas rice-land mosquitoes.

    PubMed

    Dame, David A; Meisch, Max V; Lewis, Carolyn N; Kline, Daniel L; Clark, Gary G

    2014-03-01

    Four commercially available spatial repellent devices were tested in a rice-land habitat near Stuttgart, AR, after semi-field level assessments had been made at the Center for Medical, Agricultural, and Veterinary Entomology, Agricultural Research Service, US Department of Agriculture in Gainesville, FL. OFF! Clip-On(metofluthrin), Mosquito Cognito (linalool), No-Pest Strip (dichlorvos), and ThermaCELL (d-cisltrans allethrin) were selected for this study from >20 candidate products. The units based on metofluthrin, linalool, or d-cisltrans allethrin significantly reduced captures of 1 or more of the mosquito species at surrogate human sites (unlit Centers for Disease Control and Prevention traps with CO2 and octenol). Among the mosquito species analyzed statistically (Anopheles quadrimaculatus, Culex erraticus, and Psorophora columbiae), there were significantly different responses (up to 84% reduction) to individual products, suggesting that combinations of certain spatial repellents might provide significantly greater protection.

  14. The head-centered meridian effect: auditory attention orienting in conditions of impaired visuo-spatial information.

    PubMed

    Olivetti Belardinelli, Marta; Santangelo, Valerio

    2005-07-08

    This paper examines the characteristics of spatial attention orienting in situations of visual impairment. Two groups of subjects, respectively schizophrenic and blind, with different degrees of visual spatial information impairment, were tested. In Experiment 1, the schizophrenic subjects were instructed to detect an auditory target, which was preceded by a visual cue. The cue could appear in the same location as the target, separated from it respectively by the vertical visual meridian (VM), the vertical head-centered meridian (HCM) or another meridian. Similarly to normal subjects tested with the same paradigm (Ferlazzo, Couyoumdjian, Padovani, and Olivetti Belardinelli, 2002), schizophrenic subjects showed slower reactions times (RTs) when cued, and when the target locations were on the opposite sides of the HCM. This HCM effect strengthens the assumption that different auditory and visual spatial maps underlie the representation of attention orienting mechanisms. In Experiment 2, blind subjects were asked to detect an auditory target, which had been preceded by an auditory cue, while staring at an imaginary point. The point was located either to the left or to the right, in order to control for ocular movements and maintain the dissociation between the HCM and the VM. Differences between crossing and no-crossing conditions of HCM were not found. Therefore it is possible to consider the HCM effect as a consequence of the interaction between visual and auditory modalities. Related theoretical issues are also discussed.

  15. Local density of electromagnetic states in plasmonic nanotapers: spatial resolution limits with nitrogen-vacancy centers in diamond nanospheres.

    PubMed

    Salas-Montiel, Rafael; Berthel, Martin; Beltran-Madrigal, Josslyn; Huant, Serge; Drezet, Aurélien; Blaize, Sylvain

    2017-05-19

    One of the most explored single quantum emitters for the development of nanoscale fluorescence lifetime imaging is the nitrogen-vacancy (NV) color center in diamond. An NV center does not experience fluorescence bleaching or blinking at room temperature. Furthermore, its optical properties are preserved when embedded into nanodiamond hosts. This paper focuses on the modeling of the local density of states (LDOS) in a plasmonic nanofocusing structure with an NV center acting as local illumination sources. Numerical calculations of the LDOS near such a nanostructure were done with a classical electric dipole radiation placed inside a diamond sphere as well as near-field optical fluorescence lifetime imaging of the structure. We found that Purcell factors higher than ten can be reached with diamond nanospheres of radius less than 5 nm and at a distance of less than 20 nm from the surface of the structure. Although the spatial resolution of the experiment is limited by the size of the nanodiamond, our work supports the analysis and interpretation of a single NV color center in a nanodiamond as a probe for scanning near-field optical microscopy.

  16. A review of supervised object-based land-cover image classification

    NASA Astrophysics Data System (ADS)

    Ma, Lei; Li, Manchun; Ma, Xiaoxue; Cheng, Liang; Du, Peijun; Liu, Yongxue

    2017-08-01

    Object-based image classification for land-cover mapping purposes using remote-sensing imagery has attracted significant attention in recent years. Numerous studies conducted over the past decade have investigated a broad array of sensors, feature selection, classifiers, and other factors of interest. However, these research results have not yet been synthesized to provide coherent guidance on the effect of different supervised object-based land-cover classification processes. In this study, we first construct a database with 28 fields using qualitative and quantitative information extracted from 254 experimental cases described in 173 scientific papers. Second, the results of the meta-analysis are reported, including general characteristics of the studies (e.g., the geographic range of relevant institutes, preferred journals) and the relationships between factors of interest (e.g., spatial resolution and study area or optimal segmentation scale, accuracy and number of targeted classes), especially with respect to the classification accuracy of different sensors, segmentation scale, training set size, supervised classifiers, and land-cover types. Third, useful data on supervised object-based image classification are determined from the meta-analysis. For example, we find that supervised object-based classification is currently experiencing rapid advances, while development of the fuzzy technique is limited in the object-based framework. Furthermore, spatial resolution correlates with the optimal segmentation scale and study area, and Random Forest (RF) shows the best performance in object-based classification. The area-based accuracy assessment method can obtain stable classification performance, and indicates a strong correlation between accuracy and training set size, while the accuracy of the point-based method is likely to be unstable due to mixed objects. In addition, the overall accuracy benefits from higher spatial resolution images (e.g., unmanned aerial

  17. High-spatial-resolution K-band Imaging of Select K2 Campaign Fields

    NASA Astrophysics Data System (ADS)

    Colón, Knicole D.; Howell, Steve B.; Ciardi, David R.; Barclay, Thomas

    2017-12-01

    NASA's K2 mission began observing fields along the ecliptic plane in 2014. Each observing campaign lasts approximately 80 days, during which high-precision optical photometry of select astrophysical targets is collected by the Kepler spacecraft. Due to the 4 arcsec pixel scale of the Kepler photometer, significant blending between the observed targets can occur (especially in dense fields close to the Galactic plane). We undertook a program to use the Wide Field Camera (WFCAM) on the 3.8 m United Kingdom InfraRed Telescope (UKIRT) to collect high-spatial-resolution near-infrared images of targets in select K2 campaign fields, which we report here. These 0.4 arcsec resolution K-band images offer the opportunity to perform a variety of science, including vetting exoplanet candidates by identifying nearby stars blended with the target star and estimating the size, color, and type of galaxies observed by K2.

  18. PACS strategy for imaging centers.

    PubMed

    Bedel, Victoria; Zdanowicz, Mark

    2004-01-01

    Picture archiving and communications systems (PACS) have been available in imaging centers for many years, but they often were less functional, were not well integrated into patient information systems, and lacked the network backbone to implement a system. As modalities are replaced and technology improves, the ability and time for an imaging center to acquire, integrate, and utilize PACS has arrived. However, each imaging center must determine why it should invest in PACS. A business plan is the fundamental need. Each imaging center must understand its target market, growth rate, and staffing plans. Additional considerations lie in current and future modality availability, the need for offsite delivery of images and reports, and the potential need for remote transmission of images. These issues must be identified and prioritized. A multidisciplinary team is essential. The most successful PACS implementation begins with complete involvement from all levels. The team should be comprised of people with complementary skills who are committed to a common purpose, set of performance goals, and approach for which they hold themselves mutually accountable. The team must jointly decide on the project's objectives. These objectives fall under 4 categories: clinical, service, financial, and performance. PACS must be considered a tool to help accomplish each objective. The imaging center must determine its top priorities, then translate them into a technology "wish list." The center can then list those pieces of technology that are most important and prioritize them. There are even more considerations for connecting multiple imaging centers. The team must create a comprehensive request for proposal (RFP) and determine the vendors that will receive the document. Once the RFP responses have been received and the vendor has been selected, an effective training plan must be executed. Training plans should be competency-based, ensuring comfort and competency among all staff. Upon

  19. Rural health care bypass behavior: how community and spatial characteristics affect primary health care selection.

    PubMed

    Sanders, Scott R; Erickson, Lance D; Call, Vaughn R A; McKnight, Matthew L; Hedges, Dawson W

    2015-01-01

    (1) To assess the prevalence of rural primary care physician (PCP) bypass, a behavior in which residents travel farther than necessary to obtain health care, (2) To examine the role of community and non-health-care-related characteristics on bypass behavior, and (3) To analyze spatial bypass patterns to determine which rural communities are most affected by bypass. Data came from the Montana Health Matters survey, which gathered self-reported information from Montana residents on their health care utilization, satisfaction with health care services, and community and demographic characteristics. Logistic regression and spatial analysis were used to examine the probability and spatial patterns of bypass. Overall, 39% of respondents bypass local health care. Similar to previous studies, dissatisfaction with local health care was found to increase the likelihood of bypass. Dissatisfaction with local shopping also increases the likelihood of bypass, while the number of friends in a community, and commonality with community reduce the likelihood of bypass. Other significant factors associated with bypass include age, income, health, and living in a highly rural community or one with high commuting flows. Our results suggest that outshopping theory, in which patients bundle services and shopping for added convenience, extends to primary health care selection. This implies that rural health care selection is multifaceted, and that in addition to perceived satisfaction with local health care, the quality of local shopping and levels of community attachment also influence bypass behavior. © 2014 National Rural Health Association.

  20. Landscape effects on mallard habitat selection at multiple spatial scales during the non-breeding period

    USGS Publications Warehouse

    Beatty, William S.; Webb, Elisabeth B.; Kesler, Dylan C.; Raedeke, Andrew H.; Naylor, Luke W.; Humburg, Dale D.

    2014-01-01

    Previous studies that evaluated effects of landscape-scale habitat heterogeneity on migratory waterbird distributions were spatially limited and temporally restricted to one major life-history phase. However, effects of landscape-scale habitat heterogeneity on long-distance migratory waterbirds can be studied across the annual cycle using new technologies, including global positioning system satellite transmitters. We used Bayesian discrete choice models to examine the influence of local habitats and landscape composition on habitat selection by a generalist dabbling duck, the mallard (Anas platyrhynchos), in the midcontinent of North America during the non-breeding period. Using a previously published empirical movement metric, we separated the non-breeding period into three seasons, including autumn migration, winter, and spring migration. We defined spatial scales based on movement patterns such that movements >0.25 and <30.00 km were classified as local scale and movements >30.00 km were classified as relocation scale. Habitat selection at the local scale was generally influenced by local and landscape-level variables across all seasons. Variables in top models at the local scale included proximities to cropland, emergent wetland, open water, and woody wetland. Similarly, variables associated with area of cropland, emergent wetland, open water, and woody wetland were also included at the local scale. At the relocation scale, mallards selected resource units based on more generalized variables, including proximity to wetlands and total wetland area. Our results emphasize the role of landscape composition in waterbird habitat selection and provide further support for local wetland landscapes to be considered functional units of waterbird conservation and management.