Sample records for object-oriented deployment simulations

  1. GFEChutes Lo-Fi

    NASA Technical Reports Server (NTRS)

    Gist, Emily; Turner, Gary; Shelton, Robert; Vautier, Mana; Shaikh, Ashraf

    2013-01-01

    NASA needed to provide a software model of a parachute system for a manned re-entry vehicle. NASA has parachute codes, e.g., the Descent Simulation System (DSS), that date back to the Apollo Program. Since the space shuttle did not rely on parachutes as its primary descent control mechanism, DSS has not been maintained or incorporated into modern simulation architectures such as Osiris and Antares, which are used for new mission simulations. GFEChutes Lo-Fi is an object-oriented implementation of conventional parachute codes designed for use in modern simulation environments. The GFE (Government Furnished Equipment), low-fidelity (Lo-Fi) parachute model (GFEChutes Lo-Fi) is a software package capable of modeling the effects of multiple parachutes, deployed concurrently and/or sequentially, on a vehicle during the subsonic phase of reentry into planetary atmosphere. The term "low-fidelity" distinguishes models that represent the parachutes as simple forces acting on the vehicle, as opposed to independent aerodynamic bodies. GFEChutes Lo-Fi was created from these existing models to be clean, modular, certified as NASA Class C software, and portable, or "plug and play." The GFE Lo-Fi Chutes Model provides basic modeling capability of a sequential series of parachute activities. Actions include deploying the parachute, changing the reefing on the parachute, and cutting away the parachute. Multiple chutes can be deployed at any given time, but all chutes in that case are assumed to behave as individually isolated chutes; there is no modeling of any interactions between deployed chutes. Drag characteristics of a deployed chute are based on a coefficient of drag, the face area of the chute, and the local dynamic pressure only. The orientation of the chute is approximately modeled for purposes of obtaining torques on the vehicle, but the dynamic state of the chute as a separate entity is not integrated - the treatment is simply an approximation. The innovation in GFEChutes Lo-Fi is to use an object design that closely followed the mechanical characteristics and structure of a physical system of parachutes and their deployment mechanisms. Software objects represent the components of the system, and use of an object hierarchy allows a progression from general component outlines to specific implementations. These extra chutes were not part of the baseline deceleration sequence of drogues and mains, but still had to be simulated. The major innovation in GFEChutes Lo-Fi is the software design and architecture.

  2. Information Environments

    NASA Technical Reports Server (NTRS)

    Follen, Gregory J.; Naiman, Cynthia

    2003-01-01

    The objective of GRC CNIS/IE work is to build a plug-n-play infrastructure that provides the Grand Challenge Applications with a suite of tools for coupling codes together, numerical zooming between fidelity of codes and gaining deployment of these simulations onto the Information Power Grid. The GRC CNIS/IE work will streamline and improve this process by providing tighter integration of various tools through the use of object oriented design of component models and data objects and through the use of CORBA (Common Object Request Broker Architecture).

  3. Applications of AN OO Methodology and Case to a Daq System

    NASA Astrophysics Data System (ADS)

    Bee, C. P.; Eshghi, S.; Jones, R.; Kolos, S.; Magherini, C.; Maidantchik, C.; Mapelli, L.; Mornacchi, G.; Niculescu, M.; Patel, A.; Prigent, D.; Spiwoks, R.; Soloviev, I.; Caprini, M.; Duval, P. Y.; Etienne, F.; Ferrato, D.; Le van Suu, A.; Qian, Z.; Gaponenko, I.; Merzliakov, Y.; Ambrosini, G.; Ferrari, R.; Fumagalli, G.; Polesello, G.

    The RD13 project has evaluated the use of the Object Oriented Information Engineering (OOIE) method during the development of several software components connected to the DAQ system. The method is supported by a sophisticated commercial CASE tool (Object Management Workbench) and programming environment (Kappa) which covers the full life-cycle of the software including model simulation, code generation and application deployment. This paper gives an overview of the method, CASE tool, DAQ components which have been developed and we relate our experiences with the method and tool, its integration into our development environment and the spiral lifecycle it supports.

  4. An Object Oriented Extensible Architecture for Affordable Aerospace Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Follen, Gregory J.; Lytle, John K. (Technical Monitor)

    2002-01-01

    Driven by a need to explore and develop propulsion systems that exceeded current computing capabilities, NASA Glenn embarked on a novel strategy leading to the development of an architecture that enables propulsion simulations never thought possible before. Full engine 3 Dimensional Computational Fluid Dynamic propulsion system simulations were deemed impossible due to the impracticality of the hardware and software computing systems required. However, with a software paradigm shift and an embracing of parallel and distributed processing, an architecture was designed to meet the needs of future propulsion system modeling. The author suggests that the architecture designed at the NASA Glenn Research Center for propulsion system modeling has potential for impacting the direction of development of affordable weapons systems currently under consideration by the Applied Vehicle Technology Panel (AVT). This paper discusses the salient features of the NPSS Architecture including its interface layer, object layer, implementation for accessing legacy codes, numerical zooming infrastructure and its computing layer. The computing layer focuses on the use and deployment of these propulsion simulations on parallel and distributed computing platforms which has been the focus of NASA Ames. Additional features of the object oriented architecture that support MultiDisciplinary (MD) Coupling, computer aided design (CAD) access and MD coupling objects will be discussed. Included will be a discussion of the successes, challenges and benefits of implementing this architecture.

  5. Gas turbine system simulation: An object-oriented approach

    NASA Technical Reports Server (NTRS)

    Drummond, Colin K.; Follen, Gregory J.; Putt, Charles W.

    1993-01-01

    A prototype gas turbine engine simulation has been developed that offers a generalized framework for the simulation of engines subject to steady-state and transient operating conditions. The prototype is in preliminary form, but it successfully demonstrates the viability of an object-oriented approach for generalized simulation applications. Although object oriented programming languages are-relative to FORTRAN-somewhat austere, it is proposed that gas turbine simulations of an interdisciplinary nature will benefit significantly in terms of code reliability, maintainability, and manageability. This report elucidates specific gas turbine simulation obstacles that an object-oriented framework can overcome and describes the opportunity for interdisciplinary simulation that the approach offers.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bush, Brian W; Brunhart-Lupo, Nicholas J; Gruchalla, Kenny M

    This brochure describes a system dynamics simulation (SD) framework that supports an end-to-end analysis workflow that is optimized for deployment on ESIF facilities(Peregrine and the Insight Center). It includes (I) parallel and distributed simulation of SD models, (ii) real-time 3D visualization of running simulations, and (iii) comprehensive database-oriented persistence of simulation metadata, inputs, and outputs.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bush, Brian W; Brunhart-Lupo, Nicholas J; Gruchalla, Kenny M

    This presentation describes a system dynamics simulation (SD) framework that supports an end-to-end analysis workflow that is optimized for deployment on ESIF facilities(Peregrine and the Insight Center). It includes (I) parallel and distributed simulation of SD models, (ii) real-time 3D visualization of running simulations, and (iii) comprehensive database-oriented persistence of simulation metadata, inputs, and outputs.

  8. A future Outlook: Web based Simulation of Hydrodynamic models

    NASA Astrophysics Data System (ADS)

    Islam, A. S.; Piasecki, M.

    2003-12-01

    Despite recent advances to present simulation results as 3D graphs or animation contours, the modeling user community still faces some shortcomings when trying to move around and analyze data. Typical problems include the lack of common platforms with standard vocabulary to exchange simulation results from different numerical models, insufficient descriptions about data (metadata), lack of robust search and retrieval tools for data, and difficulties to reuse simulation domain knowledge. This research demonstrates how to create a shared simulation domain in the WWW and run a number of models through multi-user interfaces. Firstly, meta-datasets have been developed to describe hydrodynamic model data based on geographic metadata standard (ISO 19115) that has been extended to satisfy the need of the hydrodynamic modeling community. The Extended Markup Language (XML) is used to publish this metadata by the Resource Description Framework (RDF). Specific domain ontology for Web Based Simulation (WBS) has been developed to explicitly define vocabulary for the knowledge based simulation system. Subsequently, this knowledge based system is converted into an object model using Meta Object Family (MOF). The knowledge based system acts as a Meta model for the object oriented system, which aids in reusing the domain knowledge. Specific simulation software has been developed based on the object oriented model. Finally, all model data is stored in an object relational database. Database back-ends help store, retrieve and query information efficiently. This research uses open source software and technology such as Java Servlet and JSP, Apache web server, Tomcat Servlet Engine, PostgresSQL databases, Protégé ontology editor, RDQL and RQL for querying RDF in semantic level, Jena Java API for RDF. Also, we use international standards such as the ISO 19115 metadata standard, and specifications such as XML, RDF, OWL, XMI, and UML. The final web based simulation product is deployed as Web Archive (WAR) files which is platform and OS independent and can be used by Windows, UNIX, or Linux. Keywords: Apache, ISO 19115, Java Servlet, Jena, JSP, Metadata, MOF, Linux, Ontology, OWL, PostgresSQL, Protégé, RDF, RDQL, RQL, Tomcat, UML, UNIX, Windows, WAR, XML

  9. A user's guide to the Flexible Spacecraft Dynamics and Control Program

    NASA Technical Reports Server (NTRS)

    Fedor, J. V.

    1984-01-01

    A guide to the use of the Flexible Spacecraft Dynamics Program (FSD) is presented covering input requirements, control words, orbit generation, spacecraft description and simulation options, and output definition. The program can be used in dynamics and control analysis as well as in orbit support of deployment and control of spacecraft. The program is applicable to inertially oriented spinning, Earth oriented or gravity gradient stabilized spacecraft. Internal and external environmental effects can be simulated.

  10. Development of a Dynamically Configurable, Object-Oriented Framework for Distributed, Multi-modal Computational Aerospace Systems Simulation

    NASA Technical Reports Server (NTRS)

    Afjeh, Abdollah A.; Reed, John A.

    2003-01-01

    The following reports are presented on this project:A first year progress report on: Development of a Dynamically Configurable,Object-Oriented Framework for Distributed, Multi-modal Computational Aerospace Systems Simulation; A second year progress report on: Development of a Dynamically Configurable, Object-Oriented Framework for Distributed, Multi-modal Computational Aerospace Systems Simulation; An Extensible, Interchangeable and Sharable Database Model for Improving Multidisciplinary Aircraft Design; Interactive, Secure Web-enabled Aircraft Engine Simulation Using XML Databinding Integration; and Improving the Aircraft Design Process Using Web-based Modeling and Simulation.

  11. Designing and Deploying Programming Courses: Strategies, Tools, Difficulties and Pedagogy

    ERIC Educational Resources Information Center

    Xinogalos, Stelios

    2016-01-01

    Designing and deploying programming courses is undoubtedly a challenging task. In this paper, an attempt to analyze important aspects of a sequence of two courses on imperative-procedural and object-oriented programming in a non-CS majors Department is made. This analysis is based on a questionnaire filled in by fifty students in a voluntary…

  12. Object-oriented Technology for Compressor Simulation

    NASA Technical Reports Server (NTRS)

    Drummond, C. K.; Follen, G. J.; Cannon, M. R.

    1994-01-01

    An object-oriented basis for interdisciplinary compressor simulation can, in principle, overcome several barriers associated with the traditional structured (procedural) development approach. This paper presents the results of a research effort with the objective to explore the repercussions on design, analysis, and implementation of a compressor model in an object oriented (OO) language, and to examine the ability of the OO system design to accommodate computational fluid dynamics (CFD) code for compressor performance prediction. Three fundamental results are that: (1) the selection of the object oriented language is not the central issue; enhanced (interdisciplinary) analysis capability derives from a broader focus on object-oriented technology; (2) object-oriented designs will produce more effective and reusable computer programs when the technology is applied to issues involving complex system inter-relationships (more so than when addressing the complex physics of an isolated discipline); and (3) the concept of disposable prototypes is effective for exploratory research programs, but this requires organizations to have a commensurate long-term perspective. This work also suggests that interdisciplinary simulation can be effectively accomplished (over several levels of fidelity) with a mixed language treatment (i.e., FORTRAN-C++), reinforcing the notion the OO technology implementation into simulations is a 'journey' in which the syntax can, by design, continuously evolve.

  13. Knowledge-based simulation using object-oriented programming

    NASA Technical Reports Server (NTRS)

    Sidoran, Karen M.

    1993-01-01

    Simulations have become a powerful mechanism for understanding and modeling complex phenomena. Their results have had substantial impact on a broad range of decisions in the military, government, and industry. Because of this, new techniques are continually being explored and developed to make them even more useful, understandable, extendable, and efficient. One such area of research is the application of the knowledge-based methods of artificial intelligence (AI) to the computer simulation field. The goal of knowledge-based simulation is to facilitate building simulations of greatly increased power and comprehensibility by making use of deeper knowledge about the behavior of the simulated world. One technique for representing and manipulating knowledge that has been enhanced by the AI community is object-oriented programming. Using this technique, the entities of a discrete-event simulation can be viewed as objects in an object-oriented formulation. Knowledge can be factual (i.e., attributes of an entity) or behavioral (i.e., how the entity is to behave in certain circumstances). Rome Laboratory's Advanced Simulation Environment (RASE) was developed as a research vehicle to provide an enhanced simulation development environment for building more intelligent, interactive, flexible, and realistic simulations. This capability will support current and future battle management research and provide a test of the object-oriented paradigm for use in large scale military applications.

  14. Modeling ground-based timber harvesting systems using computer simulation

    Treesearch

    Jingxin Wang; Chris B. LeDoux

    2001-01-01

    Modeling ground-based timber harvesting systems with an object-oriented methodology was investigated. Object-oriented modeling and design promote a better understanding of requirements, cleaner designs, and better maintainability of the harvesting simulation system. The model developed simulates chainsaw felling, drive-to-tree feller-buncher, swing-to-tree single-grip...

  15. ATLS-stowage and deployment testing of medical supplies and pharmaceuticals

    NASA Technical Reports Server (NTRS)

    Gosbee, John; Benz, Darren; Lloyd, Charles W.; Bueker, Richard; Orsak, Debra

    1991-01-01

    The objective is to evaluate stowage and deployment methods for the Health Maintenance Facility (HMF) during microgravity. The specific objectives of this experiment are: (1) to evaluate the stowage and deployment mechanisms for the medical supplies; and (2) to evaluate the procedures for performing medical scenarios. To accomplish these objectives, the HMF test mini-racks will contain medical equipment mounted in the racks; and self-contained drawers with various mechanisms for stowing and deploying items. The medical supplies and pharmaceuticals will be destowed, handled, and restowed. The in-flight test procedures and other aspects of the KC-135 parabolic flight test to simulate weightlessness are presented.

  16. Synchronous Parallel Emulation and Discrete Event Simulation System with Self-Contained Simulation Objects and Active Event Objects

    NASA Technical Reports Server (NTRS)

    Steinman, Jeffrey S. (Inventor)

    1998-01-01

    The present invention is embodied in a method of performing object-oriented simulation and a system having inter-connected processor nodes operating in parallel to simulate mutual interactions of a set of discrete simulation objects distributed among the nodes as a sequence of discrete events changing state variables of respective simulation objects so as to generate new event-defining messages addressed to respective ones of the nodes. The object-oriented simulation is performed at each one of the nodes by assigning passive self-contained simulation objects to each one of the nodes, responding to messages received at one node by generating corresponding active event objects having user-defined inherent capabilities and individual time stamps and corresponding to respective events affecting one of the passive self-contained simulation objects of the one node, restricting the respective passive self-contained simulation objects to only providing and receiving information from die respective active event objects, requesting information and changing variables within a passive self-contained simulation object by the active event object, and producing corresponding messages specifying events resulting therefrom by the active event objects.

  17. Model-driven methodology for rapid deployment of smart spaces based on resource-oriented architectures.

    PubMed

    Corredor, Iván; Bernardos, Ana M; Iglesias, Josué; Casar, José R

    2012-01-01

    Advances in electronics nowadays facilitate the design of smart spaces based on physical mash-ups of sensor and actuator devices. At the same time, software paradigms such as Internet of Things (IoT) and Web of Things (WoT) are motivating the creation of technology to support the development and deployment of web-enabled embedded sensor and actuator devices with two major objectives: (i) to integrate sensing and actuating functionalities into everyday objects, and (ii) to easily allow a diversity of devices to plug into the Internet. Currently, developers who are applying this Internet-oriented approach need to have solid understanding about specific platforms and web technologies. In order to alleviate this development process, this research proposes a Resource-Oriented and Ontology-Driven Development (ROOD) methodology based on the Model Driven Architecture (MDA). This methodology aims at enabling the development of smart spaces through a set of modeling tools and semantic technologies that support the definition of the smart space and the automatic generation of code at hardware level. ROOD feasibility is demonstrated by building an adaptive health monitoring service for a Smart Gym.

  18. Etomica: an object-oriented framework for molecular simulation.

    PubMed

    Schultz, Andrew J; Kofke, David A

    2015-03-30

    We describe the design of an object-oriented library of software components that are suitable for constructing simulations of systems of interacting particles. The emphasis of the discussion is on the general design of the components and how they interact, and less on details of the programming interface or its implementation. Example code is provided as an aid to understanding object-oriented programming structures and to demonstrate how the framework is applied. © 2015 Wiley Periodicals, Inc.

  19. VIMOS Instrument Control Software Design: an Object Oriented Approach

    NASA Astrophysics Data System (ADS)

    Brau-Nogué, Sylvie; Lucuix, Christian

    2002-12-01

    The Franco-Italian VIMOS instrument is a VIsible imaging Multi-Object Spectrograph with outstanding multiplex capabilities, allowing to take spectra of more than 800 objects simultaneously, or integral field spectroscopy mode in a 54x54 arcsec area. VIMOS is being installed at the Nasmyth focus of the third Unit Telescope of the European Southern Observatory Very Large Telescope (VLT) at Mount Paranal in Chile. This paper will describe the analysis, the design and the implementation of the VIMOS Instrument Control System, using UML notation. Our Control group followed an Object Oriented software process while keeping in mind the ESO VLT standard control concepts. At ESO VLT a complete software library is available. Rather than applying waterfall lifecycle, ICS project used iterative development, a lifecycle consisting of several iterations. Each iteration consisted in : capture and evaluate the requirements, visual modeling for analysis and design, implementation, test, and deployment. Depending of the project phases, iterations focused more or less on specific activity. The result is an object model (the design model), including use-case realizations. An implementation view and a deployment view complement this product. An extract of VIMOS ICS UML model will be presented and some implementation, integration and test issues will be discussed.

  20. FSD- FLEXIBLE SPACECRAFT DYNAMICS

    NASA Technical Reports Server (NTRS)

    Fedor, J. V.

    1994-01-01

    The Flexible Spacecraft Dynamics and Control program (FSD) was developed to aid in the simulation of a large class of flexible and rigid spacecraft. FSD is extremely versatile and can be used in attitude dynamics and control analysis as well as in-orbit support of deployment and control of spacecraft. FSD has been used to analyze the in-orbit attitude performance and antenna deployment of the RAE and IMP class satellites, and the HAWKEYE, SCATHA, EXOS-B, and Dynamics Explorer flight programs. FSD is applicable to inertially-oriented spinning, earth oriented, or gravity gradient stabilized spacecraft. The spacecraft flexibility is treated in a continuous manner (instead of finite element) by employing a series of shape functions for the flexible elements. Torsion, bending, and three flexible modes can be simulated for every flexible element. FSD can handle up to ten tubular elements in an arbitrary orientation. FSD is appropriate for studies involving the active control of pointed instruments, with options for digital PID (proportional, integral, derivative) error feedback controllers and control actuators such as thrusters and momentum wheels. The input to FSD is in four parts: 1) Orbit Construction FSD calculates a Keplerian orbit with environmental effects such as drag, magnetic torque, solar pressure, thermal effects, and thruster adjustments; or the user can supply a GTDS format orbit tape for a particular satellite/time-span; 2) Control words - for options such as gravity gradient effects, control torques, and integration ranges; 3) Mathematical descriptions of spacecraft, appendages, and control systems- including element geometry, properties, attitudes, libration damping, tip mass inertia, thermal expansion, magnetic tracking, and gimbal simulation options; and 4) Desired state variables to output, i.e., geometries, bending moments, fast Fourier transform plots, gimbal rotation, filter vectors, etc. All FSD input is of free format, namelist construction. FSD is written in FORTRAN 77, PASCAL, and MACRO assembler for batch execution and has been implemented on a DEC VAX series computer operating under VMS. The PASCAL and MACRO routines (in addition to the FORTRAN program) are supplied as both source and object code, so the PASCAL compiler is not required for implementation. This program was last updated in 1985.

  1. Simulating complex intracellular processes using object-oriented computational modelling.

    PubMed

    Johnson, Colin G; Goldman, Jacki P; Gullick, William J

    2004-11-01

    The aim of this paper is to give an overview of computer modelling and simulation in cellular biology, in particular as applied to complex biochemical processes within the cell. This is illustrated by the use of the techniques of object-oriented modelling, where the computer is used to construct abstractions of objects in the domain being modelled, and these objects then interact within the computer to simulate the system and allow emergent properties to be observed. The paper also discusses the role of computer simulation in understanding complexity in biological systems, and the kinds of information which can be obtained about biology via simulation.

  2. Object-oriented code SUR for plasma kinetic simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Levchenko, V.D.; Sigov, Y.S.

    1995-12-31

    We have developed a self-consistent simulation code based on object-oriented model of plasma (OOMP) for solving the Vlasov/Poisson (V/P), Vlasov/Maxwell (V/M), Bhatnagar-Gross-Krook (BGK) as well as Fokker-Planck (FP) kinetic equations. The application of an object-oriented approach (OOA) to simulation of plasmas and plasma-like media by means of splitting methods permits to uniformly describe and solve the wide circle of plasma kinetics problems, including those being very complicated: many-dimensional, relativistic, with regard for collisions, specific boundary conditions etc. This paper gives the brief description of possibilities of the SUR code, as a concrete realization of OOMP.

  3. Object oriented studies into artificial space debris

    NASA Technical Reports Server (NTRS)

    Adamson, J. M.; Marshall, G.

    1988-01-01

    A prototype simulation is being developed under contract to the Royal Aerospace Establishment (RAE), Farnborough, England, to assist in the discrimination of artificial space objects/debris. The methodology undertaken has been to link Object Oriented programming, intelligent knowledge based system (IKBS) techniques and advanced computer technology with numeric analysis to provide a graphical, symbolic simulation. The objective is to provide an additional layer of understanding on top of conventional classification methods. Use is being made of object and rule based knowledge representation, multiple reasoning, truth maintenance and uncertainty. Software tools being used include Knowledge Engineering Environment (KEE) and SymTactics for knowledge representation. Hooks are being developed within the SymTactics framework to incorporate mathematical models describing orbital motion and fragmentation. Penetration and structural analysis can also be incorporated. SymTactics is an Object Oriented discrete event simulation tool built as a domain specific extension to the KEE environment. The tool provides facilities for building, debugging and monitoring dynamic (military) simulations.

  4. Technology Review of Multi-Agent Systems and Tools

    DTIC Science & Technology

    2005-06-01

    over a network, including the Internet. A web services architecture is the logical evolution of object-oriented analysis and design coupled with...the logical evolution of components geared towards the architecture, design, implementation, and deployment of e-business solutions. As in object...querying. The Web Services architecture describes the principles behind the next generation of e- business architectures, presenting a logical evolution

  5. Progress in modeling and simulation.

    PubMed

    Kindler, E

    1998-01-01

    For the modeling of systems, the computers are more and more used while the other "media" (including the human intellect) carrying the models are abandoned. For the modeling of knowledges, i.e. of more or less general concepts (possibly used to model systems composed of instances of such concepts), the object-oriented programming is nowadays widely used. For the modeling of processes existing and developing in the time, computer simulation is used, the results of which are often presented by means of animation (graphical pictures moving and changing in time). Unfortunately, the object-oriented programming tools are commonly not designed to be of a great use for simulation while the programming tools for simulation do not enable their users to apply the advantages of the object-oriented programming. Nevertheless, there are exclusions enabling to use general concepts represented at a computer, for constructing simulation models and for their easy modification. They are described in the present paper, together with true definitions of modeling, simulation and object-oriented programming (including cases that do not satisfy the definitions but are dangerous to introduce misunderstanding), an outline of their applications and of their further development. In relation to the fact that computing systems are being introduced to be control components into a large spectrum of (technological, social and biological) systems, the attention is oriented to models of systems containing modeling components.

  6. Deploying Object Oriented Data Technology to the Planetary Data System

    NASA Technical Reports Server (NTRS)

    Kelly, S.; Crichton, D.; Hughes, J. S.

    2003-01-01

    How do you provide more than 350 scientists and researchers access to data from every instrument in Odyssey when the data is curated across half a dozen institutions and in different formats and is too big to mail on a CD-ROM anymore? The Planetary Data System (PDS) faced this exact question. The solution was to use a metadata-based middleware framework developed by the Object Oriented Data Technology task at NASA s Jet Propulsion Laboratory. Using OODT, PDS provided - for the first time ever - data from all mission instruments through a single system immediately upon data delivery.

  7. Model-Driven Methodology for Rapid Deployment of Smart Spaces Based on Resource-Oriented Architectures

    PubMed Central

    Corredor, Iván; Bernardos, Ana M.; Iglesias, Josué; Casar, José R.

    2012-01-01

    Advances in electronics nowadays facilitate the design of smart spaces based on physical mash-ups of sensor and actuator devices. At the same time, software paradigms such as Internet of Things (IoT) and Web of Things (WoT) are motivating the creation of technology to support the development and deployment of web-enabled embedded sensor and actuator devices with two major objectives: (i) to integrate sensing and actuating functionalities into everyday objects, and (ii) to easily allow a diversity of devices to plug into the Internet. Currently, developers who are applying this Internet-oriented approach need to have solid understanding about specific platforms and web technologies. In order to alleviate this development process, this research proposes a Resource-Oriented and Ontology-Driven Development (ROOD) methodology based on the Model Driven Architecture (MDA). This methodology aims at enabling the development of smart spaces through a set of modeling tools and semantic technologies that support the definition of the smart space and the automatic generation of code at hardware level. ROOD feasibility is demonstrated by building an adaptive health monitoring service for a Smart Gym. PMID:23012544

  8. Experiences in teaching of modeling and simulation with emphasize on equation-based and acausal modeling techniques.

    PubMed

    Kulhánek, Tomáš; Ježek, Filip; Mateják, Marek; Šilar, Jan; Kofránek, Jří

    2015-08-01

    This work introduces experiences of teaching modeling and simulation for graduate students in the field of biomedical engineering. We emphasize the acausal and object-oriented modeling technique and we have moved from teaching block-oriented tool MATLAB Simulink to acausal and object oriented Modelica language, which can express the structure of the system rather than a process of computation. However, block-oriented approach is allowed in Modelica language too and students have tendency to express the process of computation. Usage of the exemplar acausal domains and approach allows students to understand the modeled problems much deeper. The causality of the computation is derived automatically by the simulation tool.

  9. An Ada Object Oriented Missile Flight Simulation

    DTIC Science & Technology

    1991-09-01

    identify by block number) This thesis uses the Ada programming language in the design and development of an air-to-air missile flight simulation with...object oriented techniques and sound software engineering principles. The simulation is designed to be more understandable, modifiable, efficient and...Department of Computer Science ii ABSTRACT This thesis uses the Ada programming language in the design and development of an air-to-air missile flight

  10. Performance Analysis of an Actor-Based Distributed Simulation

    NASA Technical Reports Server (NTRS)

    Schoeffler, James D.

    1998-01-01

    Object-oriented design of simulation programs appears to be very attractive because of the natural association of components in the simulated system with objects. There is great potential in distributing the simulation across several computers for the purpose of parallel computation and its consequent handling of larger problems in less elapsed time. One approach to such a design is to use "actors", that is, active objects with their own thread of control. Because these objects execute concurrently, communication is via messages. This is in contrast to an object-oriented design using passive objects where communication between objects is via method calls (direct calls when they are in the same address space and remote procedure calls when they are in different address spaces or different machines). This paper describes a performance analysis program for the evaluation of a design for distributed simulations based upon actors.

  11. Deployable System for Crash-Load Attenuation

    NASA Technical Reports Server (NTRS)

    Kellas, Sotiris; Jackson, Karen E.

    2007-01-01

    An externally deployable honeycomb structure is investigated with respect to crash energy management for light aircraft. The new concept utilizes an expandable honeycomb-like structure to absorb impact energy by crushing. Distinguished by flexible hinges between cell wall junctions that enable effortless deployment, the new energy absorber offers most of the desirable features of an external airbag system without the limitations of poor shear stability, system complexity, and timing sensitivity. Like conventional honeycomb, once expanded, the energy absorber is transformed into a crush efficient and stable cellular structure. Other advantages, afforded by the flexible hinge feature, include a variety of deployment options such as linear, radial, and/or hybrid deployment methods. Radial deployment is utilized when omnidirectional cushioning is required. Linear deployment offers better efficiency, which is preferred when the impact orientation is known in advance. Several energy absorbers utilizing different deployment modes could also be combined to optimize overall performance and/or improve system reliability as outlined in the paper. Results from a series of component and full scale demonstration tests are presented as well as typical deployment techniques and mechanisms. LS-DYNA analytical simulations of selected tests are also presented.

  12. OSIRIS - an object-oriented parallel 3D PIC code for modeling laser and particle beam-plasma interaction

    NASA Astrophysics Data System (ADS)

    Hemker, Roy

    1999-11-01

    The advances in computational speed make it now possible to do full 3D PIC simulations of laser plasma and beam plasma interactions, but at the same time the increased complexity of these problems makes it necessary to apply modern approaches like object oriented programming to the development of simulation codes. We report here on our progress in developing an object oriented parallel 3D PIC code using Fortran 90. In its current state the code contains algorithms for 1D, 2D, and 3D simulations in cartesian coordinates and for 2D cylindrically-symmetric geometry. For all of these algorithms the code allows for a moving simulation window and arbitrary domain decomposition for any number of dimensions. Recent 3D simulation results on the propagation of intense laser and electron beams through plasmas will be presented.

  13. Mission and Safety Critical (MASC) plans for the MASC Kernel simulation

    NASA Technical Reports Server (NTRS)

    1991-01-01

    This report discusses a prototype for Mission and Safety Critical (MASC) kernel simulation which explains the intended approach and how the simulation will be used. Smalltalk is chosen for the simulation because of usefulness in quickly building working models of the systems and its object-oriented approach to software. A scenario is also introduced to give details about how the simulation works. The eventual system will be a fully object-oriented one implemented in Ada via Dragoon. To implement the simulation, a scenario using elements typical of those in the Space Station, was created.

  14. Development of a Dynamically Configurable,Object-Oriented Framework for Distributed, Multi-modal Computational Aerospace Systems Simulation

    NASA Technical Reports Server (NTRS)

    Afjeh, Abdollah A.; Reed, John A.

    2003-01-01

    This research is aimed at developing a neiv and advanced simulation framework that will significantly improve the overall efficiency of aerospace systems design and development. This objective will be accomplished through an innovative integration of object-oriented and Web-based technologies ivith both new and proven simulation methodologies. The basic approach involves Ihree major areas of research: Aerospace system and component representation using a hierarchical object-oriented component model which enables the use of multimodels and enforces component interoperability. Collaborative software environment that streamlines the process of developing, sharing and integrating aerospace design and analysis models. . Development of a distributed infrastructure which enables Web-based exchange of models to simplify the collaborative design process, and to support computationally intensive aerospace design and analysis processes. Research for the first year dealt with the design of the basic architecture and supporting infrastructure, an initial implementation of that design, and a demonstration of its application to an example aircraft engine system simulation.

  15. Cloudbus Toolkit for Market-Oriented Cloud Computing

    NASA Astrophysics Data System (ADS)

    Buyya, Rajkumar; Pandey, Suraj; Vecchiola, Christian

    This keynote paper: (1) presents the 21st century vision of computing and identifies various IT paradigms promising to deliver computing as a utility; (2) defines the architecture for creating market-oriented Clouds and computing atmosphere by leveraging technologies such as virtual machines; (3) provides thoughts on market-based resource management strategies that encompass both customer-driven service management and computational risk management to sustain SLA-oriented resource allocation; (4) presents the work carried out as part of our new Cloud Computing initiative, called Cloudbus: (i) Aneka, a Platform as a Service software system containing SDK (Software Development Kit) for construction of Cloud applications and deployment on private or public Clouds, in addition to supporting market-oriented resource management; (ii) internetworking of Clouds for dynamic creation of federated computing environments for scaling of elastic applications; (iii) creation of 3rd party Cloud brokering services for building content delivery networks and e-Science applications and their deployment on capabilities of IaaS providers such as Amazon along with Grid mashups; (iv) CloudSim supporting modelling and simulation of Clouds for performance studies; (v) Energy Efficient Resource Allocation Mechanisms and Techniques for creation and management of Green Clouds; and (vi) pathways for future research.

  16. Stress-oriented driver assistance system for electric vehicles.

    PubMed

    Athanasiou, Georgia; Tsotoulidis, Savvas; Mitronikas, Epaminondas; Lymberopoulos, Dimitrios

    2014-01-01

    Stress is physiological and physical reaction that appears in highly demanding situations and affects human's perception and reaction capability. Occurrence of stress events within highly dynamic road environment could lead to life-threatening situation. With the perspective of safety and comfort driving provision to anxious drivers, in this paper a stress-oriented Driver Assistance System (DAS) is proposed. The DAS deployed on Electric Vehicle. This novel DAS customizes driving command signal in respect to road context, when stress is detected. The effectiveness of this novel DAS is verified by simulation in MATLAB/SIMULINK environment.

  17. An Object-Oriented Finite Element Framework for Multiphysics Phase Field Simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Michael R Tonks; Derek R Gaston; Paul C Millett

    2012-01-01

    The phase field approach is a powerful and popular method for modeling microstructure evolution. In this work, advanced numerical tools are used to create a phase field framework that facilitates rapid model development. This framework, called MARMOT, is based on Idaho National Laboratory's finite element Multiphysics Object-Oriented Simulation Environment. In MARMOT, the system of phase field partial differential equations (PDEs) are solved simultaneously with PDEs describing additional physics, such as solid mechanics and heat conduction, using the Jacobian-Free Newton Krylov Method. An object-oriented architecture is created by taking advantage of commonalities in phase fields models to facilitate development of newmore » models with very little written code. In addition, MARMOT provides access to mesh and time step adaptivity, reducing the cost for performing simulations with large disparities in both spatial and temporal scales. In this work, phase separation simulations are used to show the numerical performance of MARMOT. Deformation-induced grain growth and void growth simulations are included to demonstrate the muliphysics capability.« less

  18. Implementation of an Object-Oriented Flight Simulator D.C. Electrical System on a Hypercube Architecture

    DTIC Science & Technology

    1991-12-01

    abstract data type is, what an object-oriented design is and how to apply "software engineering" principles to the design of both of them. I owe a great... Program (ASVP), a research and development effort by two aerospace contractors to redesign and implement subsets of two existing flight simulators in...effort addresses how to implement a simulator designed using the SEI OOD Paradigm on a distributed, parallel, multiple instruction, multiple data (MIMD

  19. Linguistic Indicators of Wives’ Attachment Security and Communal Orientation During Military Deployment

    PubMed Central

    Borelli, Jessica L.; Sbarra, David A.; Randall, Ashley K.; Snavely, Jonathan E.; St. John, Heather K.; Ruiz, Sarah K.

    2013-01-01

    Military deployment affects thousands of families each year, yet little is known about its impact on non-deployed spouses (NDSs) and romantic relationships. This report examines two factors–attachment security and a communal orientation with respect to the deployment– that may be crucial to successful dyadic adjustment by the NDS. Thirty-seven female NDSs reported on their relationship satisfaction before and during their partner’s deployment, and 20 also did so two weeks following their partner’s return. Participants provided a stream-of-conscious speech sample regarding their relationship during the deployment; linguistic coding of sample transcripts provided measures of each participant’s (a) narrative coherence, hypothesized to reflect attachment security with respect to their deployed spouse; and, (b) frequency of first person plural pronoun use (we-talk), hypothesized to reflect a communal orientation to coping. More frequent first person plural pronouns— we-talk— was uniquely associated with higher relationship satisfaction during the deployment, and greater narrative coherence was uniquely associated with higher relationship satisfaction post-deployment. Discussion centers on the value of relationship security and communal orientations in predicting how couples cope with deployment and other types of relationship stressors. PMID:24033247

  20. Reasserting the Fundamentals of Systems Analysis and Design through the Rudiments of Artifacts

    ERIC Educational Resources Information Center

    Jafar, Musa; Babb, Jeffry

    2012-01-01

    In this paper we present an artifacts-based approach to teaching a senior level Object-Oriented Analysis and Design course. Regardless of the systems development methodology and process model, and in order to facilitate communication across the business modeling, analysis, design, construction and deployment disciplines, we focus on (1) the…

  1. Unified Framework for Development, Deployment and Robust Testing of Neuroimaging Algorithms

    PubMed Central

    Joshi, Alark; Scheinost, Dustin; Okuda, Hirohito; Belhachemi, Dominique; Murphy, Isabella; Staib, Lawrence H.; Papademetris, Xenophon

    2011-01-01

    Developing both graphical and command-line user interfaces for neuroimaging algorithms requires considerable effort. Neuroimaging algorithms can meet their potential only if they can be easily and frequently used by their intended users. Deployment of a large suite of such algorithms on multiple platforms requires consistency of user interface controls, consistent results across various platforms and thorough testing. We present the design and implementation of a novel object-oriented framework that allows for rapid development of complex image analysis algorithms with many reusable components and the ability to easily add graphical user interface controls. Our framework also allows for simplified yet robust nightly testing of the algorithms to ensure stability and cross platform interoperability. All of the functionality is encapsulated into a software object requiring no separate source code for user interfaces, testing or deployment. This formulation makes our framework ideal for developing novel, stable and easy-to-use algorithms for medical image analysis and computer assisted interventions. The framework has been both deployed at Yale and released for public use in the open source multi-platform image analysis software—BioImage Suite (bioimagesuite.org). PMID:21249532

  2. Design of object-oriented distributed simulation classes

    NASA Technical Reports Server (NTRS)

    Schoeffler, James D. (Principal Investigator)

    1995-01-01

    Distributed simulation of aircraft engines as part of a computer aided design package is being developed by NASA Lewis Research Center for the aircraft industry. The project is called NPSS, an acronym for 'Numerical Propulsion Simulation System'. NPSS is a flexible object-oriented simulation of aircraft engines requiring high computing speed. It is desirable to run the simulation on a distributed computer system with multiple processors executing portions of the simulation in parallel. The purpose of this research was to investigate object-oriented structures such that individual objects could be distributed. The set of classes used in the simulation must be designed to facilitate parallel computation. Since the portions of the simulation carried out in parallel are not independent of one another, there is the need for communication among the parallel executing processors which in turn implies need for their synchronization. Communication and synchronization can lead to decreased throughput as parallel processors wait for data or synchronization signals from other processors. As a result of this research, the following have been accomplished. The design and implementation of a set of simulation classes which result in a distributed simulation control program have been completed. The design is based upon MIT 'Actor' model of a concurrent object and uses 'connectors' to structure dynamic connections between simulation components. Connectors may be dynamically created according to the distribution of objects among machines at execution time without any programming changes. Measurements of the basic performance have been carried out with the result that communication overhead of the distributed design is swamped by the computation time of modules unless modules have very short execution times per iteration or time step. An analytical performance model based upon queuing network theory has been designed and implemented. Its application to realistic configurations has not been carried out.

  3. Design of Object-Oriented Distributed Simulation Classes

    NASA Technical Reports Server (NTRS)

    Schoeffler, James D.

    1995-01-01

    Distributed simulation of aircraft engines as part of a computer aided design package being developed by NASA Lewis Research Center for the aircraft industry. The project is called NPSS, an acronym for "Numerical Propulsion Simulation System". NPSS is a flexible object-oriented simulation of aircraft engines requiring high computing speed. It is desirable to run the simulation on a distributed computer system with multiple processors executing portions of the simulation in parallel. The purpose of this research was to investigate object-oriented structures such that individual objects could be distributed. The set of classes used in the simulation must be designed to facilitate parallel computation. Since the portions of the simulation carried out in parallel are not independent of one another, there is the need for communication among the parallel executing processors which in turn implies need for their synchronization. Communication and synchronization can lead to decreased throughput as parallel processors wait for data or synchronization signals from other processors. As a result of this research, the following have been accomplished. The design and implementation of a set of simulation classes which result in a distributed simulation control program have been completed. The design is based upon MIT "Actor" model of a concurrent object and uses "connectors" to structure dynamic connections between simulation components. Connectors may be dynamically created according to the distribution of objects among machines at execution time without any programming changes. Measurements of the basic performance have been carried out with the result that communication overhead of the distributed design is swamped by the computation time of modules unless modules have very short execution times per iteration or time step. An analytical performance model based upon queuing network theory has been designed and implemented. Its application to realistic configurations has not been carried out.

  4. The effect of implied orientation derived from verbal context on picture recognition.

    PubMed

    Stanfield, R A; Zwaan, R A

    2001-03-01

    Perceptual symbol systems assume an analogue relationship between a symbol and its referent, whereas amodal symbol systems assume an arbitrary relationship between a symbol and its referent. According to perceptual symbol theories, the complete representation of an object, called a simulation, should reflect physical characteristics of the object. Amodal theories, in contrast, do not make this prediction. We tested the hypothesis, derived from perceptual symbol theories, that people mentally represent the orientation of an object implied by a verbal description. Orientation (vertical-horizontal) was manipulated by having participants read a sentence that implicitly suggested a particular orientation for an object. Then recognition latencies to pictures of the object in each of the two orientations were measured. Pictures matching the orientation of the object implied by the sentence were responded to faster than pictures that did not match the orientation. This finding is interpreted as offering support for theories positing perceptual symbol systems.

  5. PSYCHE: An Object-Oriented Approach to Simulating Medical Education

    PubMed Central

    Mullen, Jamie A.

    1990-01-01

    Traditional approaches to computer-assisted instruction (CAI) do not provide realistic simulations of medical education, in part because they do not utilize heterogeneous knowledge bases for their source of domain knowledge. PSYCHE, a CAI program designed to teach hypothetico-deductive psychiatric decision-making to medical students, uses an object-oriented implementation of an intelligent tutoring system (ITS) to model the student, domain expert, and tutor. It models the transactions between the participants in complex transaction chains, and uses heterogeneous knowledge bases to represent both domain and procedural knowledge in clinical medicine. This object-oriented approach is a flexible and dynamic approach to modeling, and represents a potentially valuable tool for the investigation of medical education and decision-making.

  6. Towards a general object-oriented software development methodology

    NASA Technical Reports Server (NTRS)

    Seidewitz, ED; Stark, Mike

    1986-01-01

    An object is an abstract software model of a problem domain entity. Objects are packages of both data and operations of that data (Goldberg 83, Booch 83). The Ada (tm) package construct is representative of this general notion of an object. Object-oriented design is the technique of using objects as the basic unit of modularity in systems design. The Software Engineering Laboratory at the Goddard Space Flight Center is currently involved in a pilot program to develop a flight dynamics simulator in Ada (approximately 40,000 statements) using object-oriented methods. Several authors have applied object-oriented concepts to Ada (e.g., Booch 83, Cherry 85). It was found that these methodologies are limited. As a result a more general approach was synthesized with allows a designer to apply powerful object-oriented principles to a wide range of applications and at all stages of design. An overview is provided of this approach. Further, how object-oriented design fits into the overall software life-cycle is considered.

  7. SIMOGEN - An Object-Oriented Language for Simulation

    DTIC Science & Technology

    1989-03-01

    program generator must also be written in the same prcgramming languaje . In this case, the C language was chosen, for the following main reasons...3), March 88. 4. PRESTO: A System for Object-Oriented Parallel Programing B N Bershad, E D Lazowska & H M Levy Software Practice and Experience, Vol...U.S. Depare nt of Defence ANSI/ML-STD 1815A. 7. Object-oriented Development Grady Booch Transactions on Software Engineering , February 86. 8. A

  8. Object-Oriented Scientific Programming with Fortran 90

    NASA Technical Reports Server (NTRS)

    Norton, C.

    1998-01-01

    Fortran 90 is a modern language that introduces many important new features beneficial for scientific programming. We discuss our experiences in plasma particle simulation and unstructured adaptive mesh refinement on supercomputers, illustrating the features of Fortran 90 that support the object-oriented methodology.

  9. GENASIS Basics: Object-oriented utilitarian functionality for large-scale physics simulations (Version 2)

    NASA Astrophysics Data System (ADS)

    Cardall, Christian Y.; Budiardja, Reuben D.

    2017-05-01

    GenASiS Basics provides Fortran 2003 classes furnishing extensible object-oriented utilitarian functionality for large-scale physics simulations on distributed memory supercomputers. This functionality includes physical units and constants; display to the screen or standard output device; message passing; I/O to disk; and runtime parameter management and usage statistics. This revision -Version 2 of Basics - makes mostly minor additions to functionality and includes some simplifying name changes.

  10. Simulating Operation of a Complex Sensor Network

    NASA Technical Reports Server (NTRS)

    Jennings, Esther; Clare, Loren; Woo, Simon

    2008-01-01

    Simulation Tool for ASCTA Microsensor Network Architecture (STAMiNA) ["ASCTA" denotes the Advanced Sensors Collaborative Technology Alliance.] is a computer program for evaluating conceptual sensor networks deployed over terrain to provide military situational awareness. This or a similar program is needed because of the complexity of interactions among such diverse phenomena as sensing and communication portions of a network, deployment of sensor nodes, effects of terrain, data-fusion algorithms, and threat characteristics. STAMiNA is built upon a commercial network-simulator engine, with extensions to include both sensing and communication models in a discrete-event simulation environment. Users can define (1) a mission environment, including terrain features; (2) objects to be sensed; (3) placements and modalities of sensors, abilities of sensors to sense objects of various types, and sensor false alarm rates; (4) trajectories of threatening objects; (5) means of dissemination and fusion of data; and (6) various network configurations. By use of STAMiNA, one can simulate detection of targets through sensing, dissemination of information by various wireless communication subsystems under various scenarios, and fusion of information, incorporating such metrics as target-detection probabilities, false-alarm rates, and communication loads, and capturing effects of terrain and threat.

  11. Integrated corridor management : stage 3A analysis, modeling, and simulation for the I-15 corridor in San Diego, California, pre-deployment AMS assessment.

    DOT National Transportation Integrated Search

    2012-08-01

    The objective of the Stage 3A AMS efforts is to ensure that the Stage 2 models and methodologies can sufficiently replicate and evaluate corridor conditions and the proposed ICM strategies prior to deployment. In Stage 3A, the AMS contractor and the ...

  12. A Hybrid Parachute Simulation Environment for the Orion Parachute Development Project

    NASA Technical Reports Server (NTRS)

    Moore, James W.

    2011-01-01

    A parachute simulation environment (PSE) has been developed that aims to take advantage of legacy parachute simulation codes and modern object-oriented programming techniques. This hybrid simulation environment provides the parachute analyst with a natural and intuitive way to construct simulation tasks while preserving the pedigree and authority of established parachute simulations. NASA currently employs four simulation tools for developing and analyzing air-drop tests performed by the CEV Parachute Assembly System (CPAS) Project. These tools were developed at different times, in different languages, and with different capabilities in mind. As a result, each tool has a distinct interface and set of inputs and outputs. However, regardless of the simulation code that is most appropriate for the type of test, engineers typically perform similar tasks for each drop test such as prediction of loads, assessment of altitude, and sequencing of disreefs or cut-aways. An object-oriented approach to simulation configuration allows the analyst to choose models of real physical test articles (parachutes, vehicles, etc.) and sequence them to achieve the desired test conditions. Once configured, these objects are translated into traditional input lists and processed by the legacy simulation codes. This approach minimizes the number of sim inputs that the engineer must track while configuring an input file. An object oriented approach to simulation output allows a common set of post-processing functions to perform routine tasks such as plotting and timeline generation with minimal sensitivity to the simulation that generated the data. Flight test data may also be translated into the common output class to simplify test reconstruction and analysis.

  13. Robotic virtual reality simulation plus standard robotic orientation versus standard robotic orientation alone: a randomized controlled trial.

    PubMed

    Vaccaro, Christine M; Crisp, Catrina C; Fellner, Angela N; Jackson, Christopher; Kleeman, Steven D; Pavelka, James

    2013-01-01

    The objective of this study was to compare the effect of virtual reality simulation training plus robotic orientation versus robotic orientation alone on performance of surgical tasks using an inanimate model. Surgical resident physicians were enrolled in this assessor-blinded randomized controlled trial. Residents were randomized to receive either (1) robotic virtual reality simulation training plus standard robotic orientation or (2) standard robotic orientation alone. Performance of surgical tasks was assessed at baseline and after the intervention. Nine of 33 modules from the da Vinci Skills Simulator were chosen. Experts in robotic surgery evaluated each resident's videotaped performance of the inanimate model using the Global Rating Scale (GRS) and Objective Structured Assessment of Technical Skills-modified for robotic-assisted surgery (rOSATS). Nine resident physicians were enrolled in the simulation group and 9 in the control group. As a whole, participants improved their total time, time to incision, and suture time from baseline to repeat testing on the inanimate model (P = 0.001, 0.003, <0.001, respectively). Both groups improved their GRS and rOSATS scores significantly (both P < 0.001); however, the GRS overall pass rate was higher in the simulation group compared with the control group (89% vs 44%, P = 0.066). Standard robotic orientation and/or robotic virtual reality simulation improve surgical skills on an inanimate model, although this may be a function of the initial "practice" on the inanimate model and repeat testing of a known task. However, robotic virtual reality simulation training increases GRS pass rates consistent with improved robotic technical skills learned in a virtual reality environment.

  14. Designing the Next Generation Global Geodetic Network for GGOS

    NASA Astrophysics Data System (ADS)

    Pavlis, Erricos C.; Kuzmicz-Cieslak, Magdalena; König, Daniel; MacMillan, Daniel S.

    2014-05-01

    The U.S. National Research Council report "Precise Geodetic Infrastructure: National Requirements for a Shared Resource" (2010) recommended that we 'make a long-term commitment to maintain the International Terrestrial Reference Frame (ITRF) to ensure its continuity and stability'. It further determined that to ensure this, a network of about ~30 globally distributed "core" observatories with state of the art equipment was necessary and should be deployed over the next decade or so. The findings were based on simulation studies using conceptual networks where Satellite Laser Ranging (SLR) and Very Long Baseline Interferometry (VLBI) equipment of the next generation quality were deployed and operated 24/7. Since then, GGOS—the Global Geodetic Observing System, has embarked in an international effort to organize this future network, soliciting contributions from around the world, through an open solicitation "Call for Proposals—CfP". After a critical number of proposals were received, the results were evaluated and a data base was established where the likely sites are ranked in terms of the available equipment, local environment and weather, probability of completion and the relevant date, etc. The renewal process is expected to evolve smoothly over many years, from the current (legacy) state to the next generation ("GGOS-class") equipment. In order to design the optimal distribution of the proposed sites and to determine any gaps in the final network, simulations have been called for again, only this time the site locations are identical to those listed in the compiled data base, and the equipment at each site is in accordance to what is described in the data base for each point in time. The main objective of the simulations addresses the quality of the ITRF product from a network we expect to have in place about five and ten years after the NRC report (2016/2020). A secondary but equally important simulation task is the study of trade-offs when deploying new sites, e.g. comparing possible alternatives from several proposed sites in a region, or the order in time of deployment of future sites so that the transition is seamless and the ITRF suffers no degradation. As a first step, the simulation process was validated against the prior realization of the ITRF, using simulated SLR, VLBI and GNSS information based on two years of real data contributing to ITRF. We present the results of these simulation studies and examine the likelihood that the designed networks will successfully meet the GGOS goal of 1 mm or better accuracy at epoch and a temporal stability on the order of 0.1 mm/y, with similar numbers for the scale and orientation components of the ITRF.

  15. MODELING DISPERSANT INTERACTIONS WITH OIL SPILLS

    EPA Science Inventory

    EPA is developing a model called the EPA Research Object-Oriented Oil Spill Model (ERO3S) and associated databases to simulate the impacts of dispersants on oil slicks. Because there are features of oil slicks that align naturally with major concepts of object-oriented programmi...

  16. On Efficient Deployment of Wireless Sensors for Coverage and Connectivity in Constrained 3D Space.

    PubMed

    Wu, Chase Q; Wang, Li

    2017-10-10

    Sensor networks have been used in a rapidly increasing number of applications in many fields. This work generalizes a sensor deployment problem to place a minimum set of wireless sensors at candidate locations in constrained 3D space to k -cover a given set of target objects. By exhausting the combinations of discreteness/continuousness constraints on either sensor locations or target objects, we formulate four classes of sensor deployment problems in 3D space: deploy sensors at Discrete/Continuous Locations (D/CL) to cover Discrete/Continuous Targets (D/CT). We begin with the design of an approximate algorithm for DLDT and then reduce DLCT, CLDT, and CLCT to DLDT by discretizing continuous sensor locations or target objects into a set of divisions without sacrificing sensing precision. Furthermore, we consider a connected version of each problem where the deployed sensors must form a connected network, and design an approximation algorithm to minimize the number of deployed sensors with connectivity guarantee. For performance comparison, we design and implement an optimal solution and a genetic algorithm (GA)-based approach. Extensive simulation results show that the proposed deployment algorithms consistently outperform the GA-based heuristic and achieve a close-to-optimal performance in small-scale problem instances and a significantly superior overall performance than the theoretical upper bound.

  17. Code C# for chaos analysis of relativistic many-body systems

    NASA Astrophysics Data System (ADS)

    Grossu, I. V.; Besliu, C.; Jipa, Al.; Bordeianu, C. C.; Felea, D.; Stan, E.; Esanu, T.

    2010-08-01

    This work presents a new Microsoft Visual C# .NET code library, conceived as a general object oriented solution for chaos analysis of three-dimensional, relativistic many-body systems. In this context, we implemented the Lyapunov exponent and the “fragmentation level” (defined using the graph theory and the Shannon entropy). Inspired by existing studies on billiard nuclear models and clusters of galaxies, we tried to apply the virial theorem for a simplified many-body system composed by nucleons. A possible application of the “virial coefficient” to the stability analysis of chaotic systems is also discussed. Catalogue identifier: AEGH_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEGH_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 30 053 No. of bytes in distributed program, including test data, etc.: 801 258 Distribution format: tar.gz Programming language: Visual C# .NET 2005 Computer: PC Operating system: .Net Framework 2.0 running on MS Windows Has the code been vectorized or parallelized?: Each many-body system is simulated on a separate execution thread RAM: 128 Megabytes Classification: 6.2, 6.5 External routines: .Net Framework 2.0 Library Nature of problem: Chaos analysis of three-dimensional, relativistic many-body systems. Solution method: Second order Runge-Kutta algorithm for simulating relativistic many-body systems. Object oriented solution, easy to reuse, extend and customize, in any development environment which accepts .Net assemblies or COM components. Implementation of: Lyapunov exponent, “fragmentation level”, “average system radius”, “virial coefficient”, and energy conservation precision test. Additional comments: Easy copy/paste based deployment method. Running time: Quadratic complexity.

  18. Language comprehenders retain implied shape and orientation of objects.

    PubMed

    Pecher, Diane; van Dantzig, Saskia; Zwaan, Rolf A; Zeelenberg, René

    2009-06-01

    According to theories of embodied cognition, language comprehenders simulate sensorimotor experiences to represent the meaning of what they read. Previous studies have shown that picture recognition is better if the object in the picture matches the orientation or shape implied by a preceding sentence. In order to test whether strategic imagery may explain previous findings, language comprehenders first read a list of sentences in which objects were mentioned. Only once the complete list had been read was recognition memory tested with pictures. Recognition performance was better if the orientation or shape of the object matched that implied by the sentence, both immediately after reading the complete list of sentences and after a 45-min delay. These results suggest that previously found match effects were not due to strategic imagery and show that details of sensorimotor simulations are retained over longer periods.

  19. Customizing WRF-Hydro for the Laurentian Great Lakes Basin

    NASA Astrophysics Data System (ADS)

    Gronewold, A.; Pei, L.; Gochis, D.; Mason, L.; Sampson, K. M.; Dugger, A. L.; Read, L.; McCreight, J. L.; Xiao, C.; Lofgren, B. M.; Anderson, E. J.; Chu, P. Y.

    2017-12-01

    To advance the state of the art in regional hydrological forecasting, and to align with operational deployment of the National Water Model, a team of scientists has been customizing WRF-Hydro (the Weather Research and Forecasting model - Hydrological modeling extension package) to the entirety (including binational land and lake surfaces) of the Laurentian Great Lakes basin. Objectives of this customization project include opererational simulation and forecasting of the Great Lakes water balance and, in the short-term, research-oriented insights into modeling one- and two-way coupled lake-atmosphere and near-shore processes. Initial steps in this project have focused on overcoming inconsistencies in land surface hydrographic datasets between the United States and Canada. Improvements in the model's current representation of lake physics and stream routing are also critical components of this effort. Here, we present an update on the status of this project, including a synthesis of offline tests with WRF-Hydro based on the newly developed Great Lakes hydrographic data, and an assessment of the model's ability to simulate seasonal and multi-decadal hydrological response across the Great Lakes.

  20. Software To Secure Distributed Propulsion Simulations

    NASA Technical Reports Server (NTRS)

    Blaser, Tammy M.

    2003-01-01

    Distributed-object computing systems are presented with many security threats, including network eavesdropping, message tampering, and communications middleware masquerading. NASA Glenn Research Center, and its industry partners, has taken an active role in mitigating the security threats associated with developing and operating their proprietary aerospace propulsion simulations. In particular, they are developing a collaborative Common Object Request Broker Architecture (CORBA) Security (CORBASec) test bed to secure their distributed aerospace propulsion simulations. Glenn has been working with its aerospace propulsion industry partners to deploy the Numerical Propulsion System Simulation (NPSS) object-based technology. NPSS is a program focused on reducing the cost and time in developing aerospace propulsion engines

  1. Phasor Simulator for Operator Training Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dyer, Jim

    2016-09-14

    Synchrophasor systems are being deployed in power systems throughout the North American Power Grid and there are plans to integrate this technology and its associated tools into Independent System Operator (ISO)/utility control room operations. A pre-requisite to using synchrophasor technologies in control rooms is for operators to obtain training and understand how to use this technology in real-time situations. The Phasor Simulator for Operator Training (PSOT) project objective was to develop, deploy and demonstrate a pre-commercial training simulator for operators on the use of this technology and to promote acceptance of the technology in utility and ISO/Regional Transmission Owner (RTO)more » control centers.« less

  2. Towards a general object-oriented software development methodology

    NASA Technical Reports Server (NTRS)

    Seidewitz, ED; Stark, Mike

    1986-01-01

    Object diagrams were used to design a 5000 statement team training exercise and to design the entire dynamics simulator. The object diagrams are also being used to design another 50,000 statement Ada system and a personal computer based system that will be written in Modula II. The design methodology evolves out of these experiences as well as the limitations of other methods that were studied. Object diagrams, abstraction analysis, and associated principles provide a unified framework which encompasses concepts from Yourdin, Booch, and Cherry. This general object-oriented approach handles high level system design, possibly with concurrency, through object-oriented decomposition down to a completely functional level. How object-oriented concepts can be used in other phases of the software life-cycle, such as specification and testing is being studied concurrently.

  3. GenASiS Basics: Object-oriented utilitarian functionality for large-scale physics simulations

    DOE PAGES

    Cardall, Christian Y.; Budiardja, Reuben D.

    2015-06-11

    Aside from numerical algorithms and problem setup, large-scale physics simulations on distributed-memory supercomputers require more basic utilitarian functionality, such as physical units and constants; display to the screen or standard output device; message passing; I/O to disk; and runtime parameter management and usage statistics. Here we describe and make available Fortran 2003 classes furnishing extensible object-oriented implementations of this sort of rudimentary functionality, along with individual `unit test' programs and larger example problems demonstrating their use. Lastly, these classes compose the Basics division of our developing astrophysics simulation code GenASiS (General Astrophysical Simulation System), but their fundamental nature makes themmore » useful for physics simulations in many fields.« less

  4. SIMSAT: An object oriented architecture for real-time satellite simulation

    NASA Technical Reports Server (NTRS)

    Williams, Adam P.

    1993-01-01

    Real-time satellite simulators are vital tools in the support of satellite missions. They are used in the testing of ground control systems, the training of operators, the validation of operational procedures, and the development of contingency plans. The simulators must provide high-fidelity modeling of the satellite, which requires detailed system information, much of which is not available until relatively near launch. The short time-scales and resulting high productivity required of such simulator developments culminates in the need for a reusable infrastructure which can be used as a basis for each simulator. This paper describes a major new simulation infrastructure package, the Software Infrastructure for Modelling Satellites (SIMSAT). It outlines the object oriented design methodology used, describes the resulting design, and discusses the advantages and disadvantages experienced in applying the methodology.

  5. An object-oriented computational model to study cardiopulmonary hemodynamic interactions in humans.

    PubMed

    Ngo, Chuong; Dahlmanns, Stephan; Vollmer, Thomas; Misgeld, Berno; Leonhardt, Steffen

    2018-06-01

    This work introduces an object-oriented computational model to study cardiopulmonary interactions in humans. Modeling was performed in object-oriented programing language Matlab Simscape, where model components are connected with each other through physical connections. Constitutive and phenomenological equations of model elements are implemented based on their non-linear pressure-volume or pressure-flow relationship. The model includes more than 30 physiological compartments, which belong either to the cardiovascular or respiratory system. The model considers non-linear behaviors of veins, pulmonary capillaries, collapsible airways, alveoli, and the chest wall. Model parameters were derisved based on literature values. Model validation was performed by comparing simulation results with clinical and animal data reported in literature. The model is able to provide quantitative values of alveolar, pleural, interstitial, aortic and ventricular pressures, as well as heart and lung volumes during spontaneous breathing and mechanical ventilation. Results of baseline simulation demonstrate the consistency of the assigned parameters. Simulation results during mechanical ventilation with PEEP trials can be directly compared with animal and clinical data given in literature. Object-oriented programming languages can be used to model interconnected systems including model non-linearities. The model provides a useful tool to investigate cardiopulmonary activity during spontaneous breathing and mechanical ventilation. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. In-Vacuum Photogrammetry of a 10-Meter Solar Sail

    NASA Technical Reports Server (NTRS)

    Meyer, Chris G.; Jones, Thomas W.; Lunsford, Charles B.; Pappa, Richard S.

    2005-01-01

    In July 2004, a 10-meter solar sail structure developed by L Garde, Inc. was tested in vacuum at the NASA Glenn 30-meter Plum Brook Space Power Facility in Sandusky, Ohio. The three main objections of the test were to demonstrate unattended deployment from a stowed configuration, to measure the deployed shape of the sail at both ambient and cryogenic room temperatures, and to measure the deployed structural dynamic characteristics (vibration modes). This paper summarizes the work conducted to fulfill the second test objective. The deployed shape was measured photogrammetrically in vacuum conditions with four 2-megapixel digital video cameras contained in custom made pressurized canisters. The canisters included high-intensity LED ring lights to illuminate a grid of retroreflective targets distributed on the solar sail. The test results closely matched pre-test photogrammetry numerical simulations and compare well with ABAQUS finite-element model predictions.

  7. Object-oriented approach for gas turbine engine simulation

    NASA Technical Reports Server (NTRS)

    Curlett, Brian P.; Felder, James L.

    1995-01-01

    An object-oriented gas turbine engine simulation program was developed. This program is a prototype for a more complete, commercial grade engine performance program now being proposed as part of the Numerical Propulsion System Simulator (NPSS). This report discusses architectural issues of this complex software system and the lessons learned from developing the prototype code. The prototype code is a fully functional, general purpose engine simulation program, however, only the component models necessary to model a transient compressor test rig have been written. The production system will be capable of steady state and transient modeling of almost any turbine engine configuration. Chief among the architectural considerations for this code was the framework in which the various software modules will interact. These modules include the equation solver, simulation code, data model, event handler, and user interface. Also documented in this report is the component based design of the simulation module and the inter-component communication paradigm. Object class hierarchies for some of the code modules are given.

  8. Object-Oriented/Data-Oriented Design of a Direct Simulation Monte Carlo Algorithm

    NASA Technical Reports Server (NTRS)

    Liechty, Derek S.

    2014-01-01

    Over the past decade, there has been much progress towards improved phenomenological modeling and algorithmic updates for the direct simulation Monte Carlo (DSMC) method, which provides a probabilistic physical simulation of gas Rows. These improvements have largely been based on the work of the originator of the DSMC method, Graeme Bird. Of primary importance are improved chemistry, internal energy, and physics modeling and a reduction in time to solution. These allow for an expanded range of possible solutions In altitude and velocity space. NASA's current production code, the DSMC Analysis Code (DAC), is well-established and based on Bird's 1994 algorithms written in Fortran 77 and has proven difficult to upgrade. A new DSMC code is being developed in the C++ programming language using object-oriented and data-oriented design paradigms to facilitate the inclusion of the recent improvements and future development activities. The development efforts on the new code, the Multiphysics Algorithm with Particles (MAP), are described, and performance comparisons are made with DAC.

  9. A Scalable Context-Aware Objective Function (SCAOF) of Routing Protocol for Agricultural Low-Power and Lossy Networks (RPAL).

    PubMed

    Chen, Yibo; Chanet, Jean-Pierre; Hou, Kun-Mean; Shi, Hongling; de Sousa, Gil

    2015-08-10

    In recent years, IoT (Internet of Things) technologies have seen great advances, particularly, the IPv6 Routing Protocol for Low-power and Lossy Networks (RPL), which provides a powerful and flexible routing framework that can be applied in a variety of application scenarios. In this context, as an important role of IoT, Wireless Sensor Networks (WSNs) can utilize RPL to design efficient routing protocols for a specific application to increase the ubiquity of networks with resource-constrained WSN nodes that are low-cost and easy to deploy. In this article, our work starts with the description of Agricultural Low-power and Lossy Networks (A-LLNs) complying with the LLN framework, and to clarify the requirements of this application-oriented routing solution. After a brief review of existing optimization techniques for RPL, our contribution is dedicated to a Scalable Context-Aware Objective Function (SCAOF) that can adapt RPL to the environmental monitoring of A-LLNs, through combining energy-aware, reliability-aware, robustness-aware and resource-aware contexts according to the composite routing metrics approach. The correct behavior of this enhanced RPL version (RPAL) was verified by performance evaluations on both simulation and field tests. The obtained experimental results confirm that SCAOF can deliver the desired advantages on network lifetime extension, and high reliability and efficiency in different simulation scenarios and hardware testbeds.

  10. A Scalable Context-Aware Objective Function (SCAOF) of Routing Protocol for Agricultural Low-Power and Lossy Networks (RPAL)

    PubMed Central

    Chen, Yibo; Chanet, Jean-Pierre; Hou, Kun-Mean; Shi, Hongling; de Sousa, Gil

    2015-01-01

    In recent years, IoT (Internet of Things) technologies have seen great advances, particularly, the IPv6 Routing Protocol for Low-power and Lossy Networks (RPL), which provides a powerful and flexible routing framework that can be applied in a variety of application scenarios. In this context, as an important role of IoT, Wireless Sensor Networks (WSNs) can utilize RPL to design efficient routing protocols for a specific application to increase the ubiquity of networks with resource-constrained WSN nodes that are low-cost and easy to deploy. In this article, our work starts with the description of Agricultural Low-power and Lossy Networks (A-LLNs) complying with the LLN framework, and to clarify the requirements of this application-oriented routing solution. After a brief review of existing optimization techniques for RPL, our contribution is dedicated to a Scalable Context-Aware Objective Function (SCAOF) that can adapt RPL to the environmental monitoring of A-LLNs, through combining energy-aware, reliability-aware, robustness-aware and resource-aware contexts according to the composite routing metrics approach. The correct behavior of this enhanced RPL version (RPAL) was verified by performance evaluations on both simulation and field tests. The obtained experimental results confirm that SCAOF can deliver the desired advantages on network lifetime extension, and high reliability and efficiency in different simulation scenarios and hardware testbeds. PMID:26266411

  11. An object-oriented forest landscape model and its representation of tree species

    Treesearch

    Hong S. He; David J. Mladenoff; Joel Boeder

    1999-01-01

    LANDIS is a forest landscape model that simulates the interaction of large landscape processes and forest successional dynamics at tree species level. We discuss how object-oriented design (OOD) approaches such as modularity, abstraction and encapsulation are integrated into the design of LANDIS. We show that using OOD approaches, model decisions (olden as model...

  12. Strawman Distributed Interactive Simulation Architecture Description Document. Volume 2. Supporting Rationale. Book 2. DIS Architecture Issues

    DTIC Science & Technology

    1992-03-31

    the-loop, interactive training environment. Its primary advantage is that it has a long history of use and a number of experienced users. However...programmer teams. Mazda IsU ADST/WDLPr,-92.OO8O1O 2 The Object Oriented Behavioral Decomposition Approach Object oriented behavioral decomposition is

  13. An application of object-oriented knowledge representation to engineering expert systems

    NASA Technical Reports Server (NTRS)

    Logie, D. S.; Kamil, H.; Umaretiya, J. R.

    1990-01-01

    The paper describes an object-oriented knowledge representation and its application to engineering expert systems. The object-oriented approach promotes efficient handling of the problem data by allowing knowledge to be encapsulated in objects and organized by defining relationships between the objects. An Object Representation Language (ORL) was implemented as a tool for building and manipulating the object base. Rule-based knowledge representation is then used to simulate engineering design reasoning. Using a common object base, very large expert systems can be developed, comprised of small, individually processed, rule sets. The integration of these two schemes makes it easier to develop practical engineering expert systems. The general approach to applying this technology to the domain of the finite element analysis, design, and optimization of aerospace structures is discussed.

  14. Common arc method for diffraction pattern orientation.

    PubMed

    Bortel, Gábor; Tegze, Miklós

    2011-11-01

    Very short pulses of X-ray free-electron lasers opened the way to obtaining diffraction signal from single particles beyond the radiation dose limit. For three-dimensional structure reconstruction many patterns are recorded in the object's unknown orientation. A method is described for the orientation of continuous diffraction patterns of non-periodic objects, utilizing intensity correlations in the curved intersections of the corresponding Ewald spheres, and hence named the common arc orientation method. The present implementation of the algorithm optionally takes into account Friedel's law, handles missing data and is capable of determining the point group of symmetric objects. Its performance is demonstrated on simulated diffraction data sets and verification of the results indicates a high orientation accuracy even at low signal levels. The common arc method fills a gap in the wide palette of orientation methods. © 2011 International Union of Crystallography

  15. Efficient Software Systems for Cardio Surgical Departments

    NASA Astrophysics Data System (ADS)

    Fountoukis, S. G.; Diomidous, M. J.

    2009-08-01

    Herein, the design implementation and deployment of an object oriented software system, suitable for the monitoring of cardio surgical departments, is investigated. Distributed design architectures are applied and the implemented software system can be deployed on distributed infrastructures. The software is flexible and adaptable to any cardio surgical environment regardless of the department resources used. The system exploits the relations and the interdependency of the successive bed positions that the patients occupy at the different health care units during their stay in a cardio surgical department, to determine bed availabilities and to perform patient scheduling and instant rescheduling whenever necessary. It also aims to successful monitoring of the workings of the cardio surgical departments in an efficient manner.

  16. Discrete mathematics, formal methods, the Z schema and the software life cycle

    NASA Technical Reports Server (NTRS)

    Bown, Rodney L.

    1991-01-01

    The proper role and scope for the use of discrete mathematics and formal methods in support of engineering the security and integrity of components within deployed computer systems are discussed. It is proposed that the Z schema can be used as the specification language to capture the precise definition of system and component interfaces. This can be accomplished with an object oriented development paradigm.

  17. Integration of object-oriented knowledge representation with the CLIPS rule based system

    NASA Technical Reports Server (NTRS)

    Logie, David S.; Kamil, Hasan

    1990-01-01

    The paper describes a portion of the work aimed at developing an integrated, knowledge based environment for the development of engineering-oriented applications. An Object Representation Language (ORL) was implemented in C++ which is used to build and modify an object-oriented knowledge base. The ORL was designed in such a way so as to be easily integrated with other representation schemes that could effectively reason with the object base. Specifically, the integration of the ORL with the rule based system C Language Production Systems (CLIPS), developed at the NASA Johnson Space Center, will be discussed. The object-oriented knowledge representation provides a natural means of representing problem data as a collection of related objects. Objects are comprised of descriptive properties and interrelationships. The object-oriented model promotes efficient handling of the problem data by allowing knowledge to be encapsulated in objects. Data is inherited through an object network via the relationship links. Together, the two schemes complement each other in that the object-oriented approach efficiently handles problem data while the rule based knowledge is used to simulate the reasoning process. Alone, the object based knowledge is little more than an object-oriented data storage scheme; however, the CLIPS inference engine adds the mechanism to directly and automatically reason with that knowledge. In this hybrid scheme, the expert system dynamically queries for data and can modify the object base with complete access to all the functionality of the ORL from rules.

  18. Object-Oriented Simulation of EW Systems.

    DTIC Science & Technology

    1987-12-01

    elix.- r’UATO. SY - ~ ow W ." --N I -SEL’ TD DEEICESESEC ETBLISKM - 1Eol~P7 TEST National Defense Deec ationale OBJECT-ORIENTED SIMULATION OF EW...C C- _ _ _4- 0 E (4. I o 0 ~1 . __ _ L c 0 0 i EnE- L-C( 1*c 0~~ N1 Ld 0- E, U, E 0 cu a 0* L L L C:c0 Yc 0 c aja, it) oO -.zz - VV1V 41-4- ia. ca...will retain a simultaneous capability to simulate signal processing at the pulse level. 10 ?1( N 0 .0O Ldk rW% o N1 0 4’-V - 54 - " As discussed

  19. The Generalized Support Software (GSS) Domain Engineering Process: An Object-Oriented Implementation and Reuse Success at Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Condon, Steven; Hendrick, Robert; Stark, Michael E.; Steger, Warren

    1997-01-01

    The Flight Dynamics Division (FDD) of NASA's Goddard Space Flight Center (GSFC) recently embarked on a far-reaching revision of its process for developing and maintaining satellite support software. The new process relies on an object-oriented software development method supported by a domain specific library of generalized components. This Generalized Support Software (GSS) Domain Engineering Process is currently in use at the NASA GSFC Software Engineering Laboratory (SEL). The key facets of the GSS process are (1) an architecture for rapid deployment of FDD applications, (2) a reuse asset library for FDD classes, and (3) a paradigm shift from developing software to configuring software for mission support. This paper describes the GSS architecture and process, results of fielding the first applications, lessons learned, and future directions

  20. A neural network simulating human reach-grasp coordination by continuous updating of vector positioning commands.

    PubMed

    Ulloa, Antonio; Bullock, Daniel

    2003-10-01

    We developed a neural network model to simulate temporal coordination of human reaching and grasping under variable initial grip apertures and perturbations of object size and object location/orientation. The proposed model computes reach-grasp trajectories by continuously updating vector positioning commands. The model hypotheses are (1) hand/wrist transport, grip aperture, and hand orientation control modules are coupled by a gating signal that fosters synchronous completion of the three sub-goals. (2) Coupling from transport and orientation velocities to aperture control causes maximum grip apertures that scale with these velocities and exceed object size. (3) Part of the aperture trajectory is attributable to an aperture-reducing passive biomechanical effect that is stronger for larger apertures. (4) Discrepancies between internal representations of targets partially inhibit the gating signal, leading to movement time increases that compensate for perturbations. Simulations of the model replicate key features of human reach-grasp kinematics observed under three experimental protocols. Our results indicate that no precomputation of component movement times is necessary for online temporal coordination of the components of reaching and grasping.

  1. Software Design for Interactive Graphic Radiation Treatment Simulation Systems*

    PubMed Central

    Kalet, Ira J.; Sweeney, Christine; Jacky, Jonathan

    1990-01-01

    We examine issues in the design of interactive computer graphic simulation programs for radiation treatment planning (RTP), as well as expert system programs that automate parts of the RTP process, in light of ten years of experience at designing, building and using such programs. An experiment in object-oriented design using standard Pascal shows that while some advantage is gained from the design, it is still difficult to achieve modularity and to integrate expert system components. A new design based on the Common LISP Object System (CLOS) is described. This series of designs for RTP software shows that this application benefits in specific ways from object-oriented design methods and appropriate languages and tools.

  2. Development of a verification program for deployable truss advanced technology

    NASA Technical Reports Server (NTRS)

    Dyer, Jack E.

    1988-01-01

    Use of large deployable space structures to satisfy the growth demands of space systems is contingent upon reducing the associated risks that pervade many related technical disciplines. The overall objectives of this program was to develop a detailed plan to verify deployable truss advanced technology applicable to future large space structures and to develop a preliminary design of a deployable truss reflector/beam structure for use a a technology demonstration test article. The planning is based on a Shuttle flight experiment program using deployable 5 and 15 meter aperture tetrahedral truss reflections and a 20 m long deployable truss beam structure. The plan addresses validation of analytical methods, the degree to which ground testing adequately simulates flight and in-space testing requirements for large precision antenna designs. Based on an assessment of future NASA and DOD space system requirements, the program was developed to verify four critical technology areas: deployment, shape accuracy and control, pointing and alignment, and articulation and maneuvers. The flight experiment technology verification objectives can be met using two shuttle flights with the total experiment integrated on a single Shuttle Test Experiment Platform (STEP) and a Mission Peculiar Experiment Support Structure (MPESS). First flight of the experiment can be achieved 60 months after go-ahead with a total program duration of 90 months.

  3. LibHalfSpace: A C++ object-oriented library to study deformation and stress in elastic half-spaces

    NASA Astrophysics Data System (ADS)

    Ferrari, Claudio; Bonafede, Maurizio; Belardinelli, Maria Elina

    2016-11-01

    The study of deformation processes in elastic half-spaces is widely employed for many purposes (e.g. didactic, scientific investigation of real processes, inversion of geodetic data, etc.). We present a coherent programming interface containing a set of tools designed to make easier and faster the study of processes in an elastic half-space. LibHalfSpace is presented in the form of an object-oriented library. A set of well known and frequently used source models (Mogi source, penny shaped horizontal crack, inflating spheroid, Okada rectangular dislocation, etc.) are implemented to describe the potential usage and the versatility of the library. The common interface given to library tools enables us to switch easily among the effects produced by different deformation sources that can be monitored at the free surface. Furthermore, the library also offers an interface which simplifies the creation of new source models exploiting the features of object-oriented programming (OOP). These source models can be built as distributions of rectangular boundary elements. In order to better explain how new models can be deployed some examples are included in the library.

  4. Neural dynamics underlying attentional orienting to auditory representations in short-term memory.

    PubMed

    Backer, Kristina C; Binns, Malcolm A; Alain, Claude

    2015-01-21

    Sounds are ephemeral. Thus, coherent auditory perception depends on "hearing" back in time: retrospectively attending that which was lost externally but preserved in short-term memory (STM). Current theories of auditory attention assume that sound features are integrated into a perceptual object, that multiple objects can coexist in STM, and that attention can be deployed to an object in STM. Recording electroencephalography from humans, we tested these assumptions, elucidating feature-general and feature-specific neural correlates of auditory attention to STM. Alpha/beta oscillations and frontal and posterior event-related potentials indexed feature-general top-down attentional control to one of several coexisting auditory representations in STM. Particularly, task performance during attentional orienting was correlated with alpha/low-beta desynchronization (i.e., power suppression). However, attention to one feature could occur without simultaneous processing of the second feature of the representation. Therefore, auditory attention to memory relies on both feature-specific and feature-general neural dynamics. Copyright © 2015 the authors 0270-6474/15/351307-12$15.00/0.

  5. The ENSDF Java Package

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sonzogni, A.A.

    2005-05-24

    A package of computer codes has been developed to process and display nuclear structure and decay data stored in the ENSDF (Evaluated Nuclear Structure Data File) library. The codes were written in an object-oriented fashion using the java language. This allows for an easy implementation across multiple platforms as well as deployment on web pages. The structure of the different java classes that make up the package is discussed as well as several different implementations.

  6. Maximizing photovoltaic power generation of a space-dart configured satellite

    NASA Astrophysics Data System (ADS)

    Lee, Dae Young; Cutler, James W.; Mancewicz, Joe; Ridley, Aaron J.

    2015-06-01

    Many small satellites are power constrained due to their minimal solar panel area and the eclipse environment of low-Earth orbit. As with larger satellites, these small satellites, including CubeSats, use deployable power arrays to increase power production. This presents a design opportunity to develop various objective functions related to energy management and methods for optimizing these functions over a satellite design. A novel power generation model was created, and a simulation system was developed to evaluate various objective functions describing energy management for complex satellite designs. The model uses a spacecraft-body-fixed spherical coordinate system to analyze the complex geometry of a satellite's self-induced shadowing with computation provided by the Open Graphics Library. As an example design problem, a CubeSat configured as a space-dart with four deployable panels is optimized. Due to the fast computation speed of the solution, an exhaustive search over the design space is used to find the solar panel deployment angles which maximize total power generation. Simulation results are presented for a variety of orbit scenarios. The method is extendable to a variety of complex satellite geometries and power generation systems.

  7. OpenFOAM: Open source CFD in research and industry

    NASA Astrophysics Data System (ADS)

    Jasak, Hrvoje

    2009-12-01

    The current focus of development in industrial Computational Fluid Dynamics (CFD) is integration of CFD into Computer-Aided product development, geometrical optimisation, robust design and similar. On the other hand, in CFD research aims to extend the boundaries ofpractical engineering use in "non-traditional " areas. Requirements of computational flexibility and code integration are contradictory: a change of coding paradigm, with object orientation, library components, equation mimicking is proposed as a way forward. This paper describes OpenFOAM, a C++ object oriented library for Computational Continuum Mechanics (CCM) developed by the author. Efficient and flexible implementation of complex physical models is achieved by mimicking the form ofpartial differential equation in software, with code functionality provided in library form. Open Source deployment and development model allows the user to achieve desired versatility in physical modeling without the sacrifice of complex geometry support and execution efficiency.

  8. A software bus for thread objects

    NASA Technical Reports Server (NTRS)

    Callahan, John R.; Li, Dehuai

    1995-01-01

    The authors have implemented a software bus for lightweight threads in an object-oriented programming environment that allows for rapid reconfiguration and reuse of thread objects in discrete-event simulation experiments. While previous research in object-oriented, parallel programming environments has focused on direct communication between threads, our lightweight software bus, called the MiniBus, provides a means to isolate threads from their contexts of execution by restricting communications between threads to message-passing via their local ports only. The software bus maintains a topology of connections between these ports. It routes, queues, and delivers messages according to this topology. This approach allows for rapid reconfiguration and reuse of thread objects in other systems without making changes to the specifications or source code. A layered approach that provides the needed transparency to developers is presented. Examples of using the MiniBus are given, and the value of bus architectures in building and conducting simulations of discrete-event systems is discussed.

  9. Hand placement near the visual stimulus improves orientation selectivity in V2 neurons

    PubMed Central

    Sergio, Lauren E.; Crawford, J. Douglas; Fallah, Mazyar

    2015-01-01

    Often, the brain receives more sensory input than it can process simultaneously. Spatial attention helps overcome this limitation by preferentially processing input from a behaviorally-relevant location. Recent neuropsychological and psychophysical studies suggest that attention is deployed to near-hand space much like how the oculomotor system can deploy attention to an upcoming gaze position. Here we provide the first neuronal evidence that the presence of a nearby hand enhances orientation selectivity in early visual processing area V2. When the hand was placed outside the receptive field, responses to the preferred orientation were significantly enhanced without a corresponding significant increase at the orthogonal orientation. Consequently, there was also a significant sharpening of orientation tuning. In addition, the presence of the hand reduced neuronal response variability. These results indicate that attention is automatically deployed to the space around a hand, improving orientation selectivity. Importantly, this appears to be optimal for motor control of the hand, as opposed to oculomotor mechanisms which enhance responses without sharpening orientation selectivity. Effector-based mechanisms for visual enhancement thus support not only the spatiotemporal dissociation of gaze and reach, but also the optimization of vision for their separate requirements for guiding movements. PMID:25717165

  10. Transforming Clinical Imaging and 3D Data for Virtual Reality Learning Objects: HTML5 and Mobile Devices Implementation

    ERIC Educational Resources Information Center

    Trelease, Robert B.; Nieder, Gary L.

    2013-01-01

    Web deployable anatomical simulations or "virtual reality learning objects" can easily be produced with QuickTime VR software, but their use for online and mobile learning is being limited by the declining support for web browser plug-ins for personal computers and unavailability on popular mobile devices like Apple iPad and Android…

  11. Simulation and Gaming: Directions, Issues, Ponderables.

    ERIC Educational Resources Information Center

    Uretsky, Michael

    1995-01-01

    Discusses the current use of simulation and gaming in a variety of settings. Describes advances in technology that facilitate the use of simulation and gaming, including computer power, computer networks, software, object-oriented programming, video, multimedia, virtual reality, and artificial intelligence. Considers the future use of simulation…

  12. Modelling multi-rotor UAVs swarm deployment using virtual pheromones

    PubMed Central

    Pujol, Mar; Rizo, Ramón; Rizo, Carlos

    2018-01-01

    In this work, a swarm behaviour for multi-rotor Unmanned Aerial Vehicles (UAVs) deployment will be presented. The main contribution of this behaviour is the use of a virtual device for quantitative sematectonic stigmergy providing more adaptable behaviours in complex environments. It is a fault tolerant highly robust behaviour that does not require prior information of the area to be covered, or to assume the existence of any kind of information signals (GPS, mobile communication networks …), taking into account the specific features of UAVs. This behaviour will be oriented towards emergency tasks. Their main goal will be to cover an area of the environment for later creating an ad-hoc communication network, that can be used to establish communications inside this zone. Although there are several papers on robotic deployment it is more difficult to find applications with UAV systems, mainly because of the existence of various problems that must be overcome including limitations in available sensory and on-board processing capabilities and low flight endurance. In addition, those behaviours designed for UAVs often have significant limitations on their ability to be used in real tasks, because they assume specific features, not easily applicable in a general way. Firstly, in this article the characteristics of the simulation environment will be presented. Secondly, a microscopic model for deployment and creation of ad-hoc networks, that implicitly includes stigmergy features, will be shown. Then, the overall swarm behaviour will be modeled, providing a macroscopic model of this behaviour. This model can accurately predict the number of agents needed to cover an area as well as the time required for the deployment process. An experimental analysis through simulation will be carried out in order to verify our models. In this analysis the influence of both the complexity of the environment and the stigmergy system will be discussed, given the data obtained in the simulation. In addition, the macroscopic and microscopic models will be compared verifying the number of predicted individuals for each state regarding the simulation. PMID:29370203

  13. SEDS1 mission software verification using a signal simulator

    NASA Technical Reports Server (NTRS)

    Pierson, William E.

    1992-01-01

    The first flight of the Small Expendable Deployer System (SEDS1) is schedule to fly as the secondary payload of a Delta 2 in March, 1993. The objective of the SEDS1 mission is to collect data to validate the concept of tethered satellite systems and to verify computer simulations used to predict their behavior. SEDS1 will deploy a 50 lb. instrumented satellite as an end mass using a 20 km tether. Langley Research Center is providing the end mass instrumentation, while the Marshall Space Flight Center is designing and building the deployer. The objective of the experiment is to test the SEDS design concept by demonstrating that the system will satisfactorily deploy the full 20 km tether without stopping prematurely, come to a smooth stop on the application of a brake, and cut the tether at the proper time after it swings to the local vertical. Also, SEDS1 will collect data which will be used to test the accuracy of tether dynamics models used to stimulate this type of deployment. The experiment will last about 1.5 hours and complete approximately 1.5 orbits. Radar tracking of the Delta II and end mass is planned. In addition, the SEDS1 on-board computer will continuously record, store, and transmit mission data over the Delta II S-band telemetry system. The Data System will count tether windings as the tether unwinds, log the times of each turn and other mission events, monitor tether tension, and record the temperature of system components. A summary of the measurements taken during the SEDS1 are shown. The Data System will also control the tether brake and cutter mechanisms. Preliminary versions of two major sections of the flight software, the data telemetry modules and the data collection modules, were developed and tested under the 1990 NASA/ASEE Summer Faculty Fellowship Program. To facilitate the debugging of these software modules, a prototype SEDS Data System was programmed to simulate turn count signals. During the 1991 summer program, the concept of simulating signals produced by the SEDS electronics systems and circuits was expanded and more precisely defined. During the 1992 summer program, the SEDS signal simulator was programmed to test the requirements of the SEDS Mission software, and this simulator will be used in the formal verification of the SEDS Mission Software. The formal test procedures specification was written which incorporates the use of the signal simulator to test the SEDS Mission Software and which incorporates procedures for testing the other major component of the SEDS software, the Monitor Software.

  14. NuSTAR: system engineering and modeling challenges in pointing reconstruction for a deployable x-ray telescope

    NASA Astrophysics Data System (ADS)

    Harp, D. Isaiah; Liebe, Carl Christian; Craig, William; Harrison, Fiona; Kruse-Madsen, Kristin; Zoglauer, Andreas

    2010-07-01

    The Nuclear Spectroscopic Telescope Array (NuSTAR) is a NASA Small Explorer mission that will make the first sensitive images of the sky in the high energy X-ray band (6 - 80 keV). The NuSTAR observatory consists of two co-aligned grazing incidence hard X-ray telescopes with a ~10 meter focal length, achieved by the on-orbit extension of a deployable mast. A principal science objective of the mission is to locate previously unknown high-energy X-ray sources to an accuracy of 10 arcseconds (3-sigma), sufficient to uniquely identify counterparts at other wavelengths. In order to achieve this, a star tracker and laser metrology system are an integral part of the instrument; in conjunction, they will determine the orientation of the optics bench in celestial coordinates and also measure the flexures in the deployable mast as it responds to the varying on-orbit thermal environment, as well as aerodynamic and control torques. The architecture of the NuSTAR system for solving the attitude and aspect problems differs from that of previous X-ray telescopes, which did not require ex post facto reconstruction of the instantaneous observatory alignment on-orbit. In this paper we describe the NuSTAR instrument metrology system architecture and implementation, focusing on the systems engineering challenges associated with validating the instantaneous transformations between focal plane and celestial coordinates to within the required accuracy. We present a mathematical solution to photon source reconstruction, along with a detailed error budget that relates component errors to science performance. We also describe the architecture of the instrument simulation software being used to validate the end-to-end performance model.

  15. Three-dimensional scene reconstruction from a two-dimensional image

    NASA Astrophysics Data System (ADS)

    Parkins, Franz; Jacobs, Eddie

    2017-05-01

    We propose and simulate a method of reconstructing a three-dimensional scene from a two-dimensional image for developing and augmenting world models for autonomous navigation. This is an extension of the Perspective-n-Point (PnP) method which uses a sampling of the 3D scene, 2D image point parings, and Random Sampling Consensus (RANSAC) to infer the pose of the object and produce a 3D mesh of the original scene. Using object recognition and segmentation, we simulate the implementation on a scene of 3D objects with an eye to implementation on embeddable hardware. The final solution will be deployed on the NVIDIA Tegra platform.

  16. AN/SLQ-32 EW System Model: and Expandable, Object-Oriented, Process- Based Simulation

    DTIC Science & Technology

    1992-09-01

    CONST threshold = 0.1; timetol = 0.01; orientol = 5.8; VAR rec, recLast :BufferBeamRecType; time,power : REAL; powerl,orientation : REAL; BEGIN NEW...PulseGroup); rec:-ASK BufferBeam Removed; time: =rec. time; orientation: =rec. orientation; OUTPUT ( "ORIENREFI, orientation); recLast :=ASK BufferBeam Last...TO Add(rec); IF (rec= recLast ) EXIT; END IF; rec :=ASK BufferBeam Remove o; ELSE ASK BufferBeam TO Add(rec); IF (rec = recLast ) EXIT; END IF; rec

  17. Titan Explorer Entry, Descent and Landing Trajectory Design

    NASA Technical Reports Server (NTRS)

    Fisher, Jody L.; Lindberg, Robert E.; Lockwood, Mary Kae

    2006-01-01

    The Titan Explorer mission concept includes an orbiter, entry probe and inflatable airship designed to take remote and in-situ measurements of Titan's atmosphere. A modified entry, descent and landing trajectory at Titan that incorporates mid-air airship inflation (under a parachute) and separation is developed and examined for Titan Explorer. The feasibility of mid-air inflation and deployment of an airship under a parachute is determined by implementing and validating an airship buoyancy and inflation model in the trajectory simulation program, Program to Optimize Simulated Trajectories II (POST2). A nominal POST2 trajectory simulation case study is generated which examines different descent scenarios by varying airship inflation duration, orientation, and separation. The buoyancy model incorporation into POST2 is new to the software and may be used in future trajectory simulations. Each case from the nominal POST2 trajectory case study simulates a successful separation between the parachute and airship systems with sufficient velocity change as to alter their paths to avoid collision throughout their descent. The airship and heatshield also separate acceptably with a minimum distance of separation from the parachute system of 1.5 km. This analysis shows the feasibility of airship inflation on a parachute for different orientations, airship separation at various inflation times, and preparation for level-flight at Titan.

  18. An object oriented Python interface for atomistic simulations

    NASA Astrophysics Data System (ADS)

    Hynninen, T.; Himanen, L.; Parkkinen, V.; Musso, T.; Corander, J.; Foster, A. S.

    2016-01-01

    Programmable simulation environments allow one to monitor and control calculations efficiently and automatically before, during, and after runtime. Environments directly accessible in a programming environment can be interfaced with powerful external analysis tools and extensions to enhance the functionality of the core program, and by incorporating a flexible object based structure, the environments make building and analysing computational setups intuitive. In this work, we present a classical atomistic force field with an interface written in Python language. The program is an extension for an existing object based atomistic simulation environment.

  19. Lightweight Object Oriented Structure analysis: Tools for building Tools to Analyze Molecular Dynamics Simulations

    PubMed Central

    Romo, Tod D.; Leioatts, Nicholas; Grossfield, Alan

    2014-01-01

    LOOS (Lightweight Object-Oriented Structure-analysis) is a C++ library designed to facilitate making novel tools for analyzing molecular dynamics simulations by abstracting out the repetitive tasks, allowing developers to focus on the scientifically relevant part of the problem. LOOS supports input using the native file formats of most common biomolecular simulation packages, including CHARMM, NAMD, Amber, Tinker, and Gromacs. A dynamic atom selection language based on the C expression syntax is included and is easily accessible to the tool-writer. In addition, LOOS is bundled with over 120 pre-built tools, including suites of tools for analyzing simulation convergence, 3D histograms, and elastic network models. Through modern C++ design, LOOS is both simple to develop with (requiring knowledge of only 4 core classes and a few utility functions) and is easily extensible. A python interface to the core classes is also provided, further facilitating tool development. PMID:25327784

  20. Lightweight object oriented structure analysis: tools for building tools to analyze molecular dynamics simulations.

    PubMed

    Romo, Tod D; Leioatts, Nicholas; Grossfield, Alan

    2014-12-15

    LOOS (Lightweight Object Oriented Structure-analysis) is a C++ library designed to facilitate making novel tools for analyzing molecular dynamics simulations by abstracting out the repetitive tasks, allowing developers to focus on the scientifically relevant part of the problem. LOOS supports input using the native file formats of most common biomolecular simulation packages, including CHARMM, NAMD, Amber, Tinker, and Gromacs. A dynamic atom selection language based on the C expression syntax is included and is easily accessible to the tool-writer. In addition, LOOS is bundled with over 140 prebuilt tools, including suites of tools for analyzing simulation convergence, three-dimensional histograms, and elastic network models. Through modern C++ design, LOOS is both simple to develop with (requiring knowledge of only four core classes and a few utility functions) and is easily extensible. A python interface to the core classes is also provided, further facilitating tool development. © 2014 Wiley Periodicals, Inc.

  1. Analysis of Macro-micro Simulation Models for Service-Oriented Public Platform: Coordination of Networked Services and Measurement of Public Values

    NASA Astrophysics Data System (ADS)

    Kinoshita, Yumiko

    When service sectors are a major driver for the growth of the world economy, we are challenged to implement service-oriented infrastructure as e-Gov platform to achieve further growth and innovation for both developed and developing countries. According to recent trends in service industry, it is clarified that main factors for the growth of service sectors are investment into knowledge, trade, and the enhanced capacity of micro, small, and medium-sized enterprises (MSMEs). In addition, the design and deployment of public service platform require appropriate evaluation methodology. Reflecting these observations, this paper proposes macro-micro simulation approach to assess public values (PV) focusing on MSMEs. Linkage aggregate variables (LAVs) are defined to show connection between macro and micro impacts of public services. As a result, the relationship of demography, business environment, macro economy, and socio-economic impact are clarified and their values are quantified from the behavioral perspectives of citizens and firms.

  2. Design of a Model Execution Framework: Repetitive Object-Oriented Simulation Environment (ROSE)

    NASA Technical Reports Server (NTRS)

    Gray, Justin S.; Briggs, Jeffery L.

    2008-01-01

    The ROSE framework was designed to facilitate complex system analyses. It completely divorces the model execution process from the model itself. By doing so ROSE frees the modeler to develop a library of standard modeling processes such as Design of Experiments, optimizers, parameter studies, and sensitivity studies which can then be applied to any of their available models. The ROSE framework accomplishes this by means of a well defined API and object structure. Both the API and object structure are presented here with enough detail to implement ROSE in any object-oriented language or modeling tool.

  3. Simulation and Digitization of a Gas Electron Multiplier Detector Using Geant4 and an Object-Oriented Digitization Program

    NASA Astrophysics Data System (ADS)

    McMullen, Timothy; Liyanage, Nilanga; Xiong, Weizhi; Zhao, Zhiwen

    2017-01-01

    Our research has focused on simulating the response of a Gas Electron Multiplier (GEM) detector using computational methods. GEM detectors provide a cost effective solution for radiation detection in high rate environments. A detailed simulation of GEM detector response to radiation is essential for the successful adaption of these detectors to different applications. Using Geant4 Monte Carlo (GEMC), a wrapper around Geant4 which has been successfully used to simulate the Solenoidal Large Intensity Device (SoLID) at Jefferson Lab, we are developing a simulation of a GEM chamber similar to the detectors currently used in our lab. We are also refining an object-oriented digitization program, which translates energy deposition information from GEMC into electronic readout which resembles the readout from our physical detectors. We have run the simulation with beta particles produced by the simulated decay of a 90Sr source, as well as with a simulated bremsstrahlung spectrum. Comparing the simulation data with real GEM data taken under similar conditions is used to refine the simulation parameters. Comparisons between results from the simulations and results from detector tests will be presented.

  4. Modeling bistable behaviors in morphing structures through finite element simulations.

    PubMed

    Guo, Qiaohang; Zheng, Huang; Chen, Wenzhe; Chen, Zi

    2014-01-01

    Bistable structures, exemplified by the Venus flytrap and slap bracelets, can transit between different configurations upon certain external stimulation. Here we study, through three-dimensional finite element simulations, the bistable behaviors in elastic plates in the absence of terminate loads, but with pre-strains in one (or both) of the two composite layers. Both the scenarios with and without a given geometric mis-orientation angle are investigated, the results of which are consistent with recent theoretical and experimental studies. This work can open ample venues for programmable designs of plant/shell structures with large deformations, with applications in designing bio-inspired robotics for biomedical research and morphing/deployable structures in aerospace engineering.

  5. A conditioned visual orientation requires the ellipsoid body in Drosophila

    PubMed Central

    Guo, Chao; Du, Yifei; Yuan, Deliang; Li, Meixia; Gong, Haiyun; Gong, Zhefeng

    2015-01-01

    Orientation, the spatial organization of animal behavior, is an essential faculty of animals. Bacteria and lower animals such as insects exhibit taxis, innate orientation behavior, directly toward or away from a directional cue. Organisms can also orient themselves at a specific angle relative to the cues. In this study, using Drosophila as a model system, we established a visual orientation conditioning paradigm based on a flight simulator in which a stationary flying fly could control the rotation of a visual object. By coupling aversive heat shocks to a fly's orientation toward one side of the visual object, we found that the fly could be conditioned to orientate toward the left or right side of the frontal visual object and retain this conditioned visual orientation. The lower and upper visual fields have different roles in conditioned visual orientation. Transfer experiments showed that conditioned visual orientation could generalize between visual targets of different sizes, compactness, or vertical positions, but not of contour orientation. Rut—Type I adenylyl cyclase and Dnc—phosphodiesterase were dispensable for visual orientation conditioning. Normal activity and scb signaling in R3/R4d neurons of the ellipsoid body were required for visual orientation conditioning. Our studies established a visual orientation conditioning paradigm and examined the behavioral properties and neural circuitry of visual orientation, an important component of the insect's spatial navigation. PMID:25512578

  6. Using Google SketchUp to simulate tree row azimuth effects on alley shading

    USDA-ARS?s Scientific Manuscript database

    Effect of row azimuth on alley crop illumination is difficult to determine empirically. Our objective was to determine if Google SketchUp (Trimble Inc., Sunnyvale, CA) could be used to simulate effect of azimuth orientation on illumination of loblolly pine (Pinus taeda L.) alleys. Simulations were...

  7. Overview of Computer Simulation Modeling Approaches and Methods

    Treesearch

    Robert E. Manning; Robert M. Itami; David N. Cole; Randy Gimblett

    2005-01-01

    The field of simulation modeling has grown greatly with recent advances in computer hardware and software. Much of this work has involved large scientific and industrial applications for which substantial financial resources are available. However, advances in object-oriented programming and simulation methodology, concurrent with dramatic increases in computer...

  8. Modelling and Simulation as a Recognizing Method in Education

    ERIC Educational Resources Information Center

    Stoffa, Veronika

    2004-01-01

    Computer animation-simulation models of complex processes and events, which are the method of instruction, can be an effective didactic device. Gaining deeper knowledge about objects modelled helps to plan simulation experiments oriented on processes and events researched. Animation experiments realized on multimedia computers can aid easier…

  9. A framework to determine the locations of the environmental monitoring in an estuary of the Yellow Sea.

    PubMed

    Kim, Nam-Hoon; Hwang, Jin Hwan; Cho, Jaegab; Kim, Jae Seong

    2018-06-04

    The characteristics of an estuary are determined by various factors as like as tide, wave, river discharge, etc. which also control the water quality of the estuary. Therefore, detecting the changes of characteristics is critical in managing the environmental qualities and pollution and so the locations of monitoring should be selected carefully. The present study proposes a framework to deploy the monitoring systems based on a graphical method of the spatial and temporal optimizations. With the well-validated numerical simulation results, the monitoring locations are determined to capture the changes of water qualities and pollutants depending on the variations of tide, current and freshwater discharge. The deployment strategy to find the appropriate monitoring locations is designed with the constrained optimization method, which finds solutions by constraining the objective function into the feasible regions. The objective and constrained functions are constructed with the interpolation technique such as objective analysis. Even with the smaller number of the monitoring locations, the present method performs well equivalently to the arbitrarily and evenly deployed monitoring system. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. In-flight edge response measurements for high-spatial-resolution remote sensing systems

    NASA Astrophysics Data System (ADS)

    Blonski, Slawomir; Pagnutti, Mary A.; Ryan, Robert; Zanoni, Vickie

    2002-09-01

    In-flight measurements of spatial resolution were conducted as part of the NASA Scientific Data Purchase Verification and Validation process. Characterization included remote sensing image products with ground sample distance of 1 meter or less, such as those acquired with the panchromatic imager onboard the IKONOS satellite and the airborne ADAR System 5500 multispectral instrument. Final image products were used to evaluate the effects of both the image acquisition system and image post-processing. Spatial resolution was characterized by full width at half maximum of an edge-response-derived line spread function. The edge responses were analyzed using the tilted-edge technique that overcomes the spatial sampling limitations of the digital imaging systems. As an enhancement to existing algorithms, the slope of the edge response and the orientation of the edge target were determined by a single computational process. Adjacent black and white square panels, either painted on a flat surface or deployed as tarps, formed the ground-based edge targets used in the tests. Orientation of the deployable tarps was optimized beforehand, based on simulations of the imaging system. The effects of such factors as acquisition geometry, temporal variability, Modulation Transfer Function compensation, and ground sample distance on spatial resolution were investigated.

  11. JGromacs: a Java package for analyzing protein simulations.

    PubMed

    Münz, Márton; Biggin, Philip C

    2012-01-23

    In this paper, we introduce JGromacs, a Java API (Application Programming Interface) that facilitates the development of cross-platform data analysis applications for Molecular Dynamics (MD) simulations. The API supports parsing and writing file formats applied by GROMACS (GROningen MAchine for Chemical Simulations), one of the most widely used MD simulation packages. JGromacs builds on the strengths of object-oriented programming in Java by providing a multilevel object-oriented representation of simulation data to integrate and interconvert sequence, structure, and dynamics information. The easy-to-learn, easy-to-use, and easy-to-extend framework is intended to simplify and accelerate the implementation and development of complex data analysis algorithms. Furthermore, a basic analysis toolkit is included in the package. The programmer is also provided with simple tools (e.g., XML-based configuration) to create applications with a user interface resembling the command-line interface of GROMACS applications. JGromacs and detailed documentation is freely available from http://sbcb.bioch.ox.ac.uk/jgromacs under a GPLv3 license .

  12. JGromacs: A Java Package for Analyzing Protein Simulations

    PubMed Central

    2011-01-01

    In this paper, we introduce JGromacs, a Java API (Application Programming Interface) that facilitates the development of cross-platform data analysis applications for Molecular Dynamics (MD) simulations. The API supports parsing and writing file formats applied by GROMACS (GROningen MAchine for Chemical Simulations), one of the most widely used MD simulation packages. JGromacs builds on the strengths of object-oriented programming in Java by providing a multilevel object-oriented representation of simulation data to integrate and interconvert sequence, structure, and dynamics information. The easy-to-learn, easy-to-use, and easy-to-extend framework is intended to simplify and accelerate the implementation and development of complex data analysis algorithms. Furthermore, a basic analysis toolkit is included in the package. The programmer is also provided with simple tools (e.g., XML-based configuration) to create applications with a user interface resembling the command-line interface of GROMACS applications. Availability: JGromacs and detailed documentation is freely available from http://sbcb.bioch.ox.ac.uk/jgromacs under a GPLv3 license. PMID:22191855

  13. An Agile Methodology for Implementing Service-Oriented Architecture in Small and Medium Sized Organizations

    ERIC Educational Resources Information Center

    Laidlaw, Gregory

    2013-01-01

    The purpose of this study is to evaluate the use of Lean/Agile principles, using action research to develop and deploy new technology for Small and Medium sized enterprises. The research case was conducted at the Lapeer County Sheriff's Department and involves the initial deployment of a Service Oriented Architecture to alleviate the data…

  14. Estimating Relative Positions of Outer-Space Structures

    NASA Technical Reports Server (NTRS)

    Balian, Harry; Breckenridge, William; Brugarolas, Paul

    2009-01-01

    A computer program estimates the relative position and orientation of two structures from measurements, made by use of electronic cameras and laser range finders on one structure, of distances and angular positions of fiducial objects on the other structure. The program was written specifically for use in determining errors in the alignment of large structures deployed in outer space from a space shuttle. The program is based partly on equations for transformations among the various coordinate systems involved in the measurements and on equations that account for errors in the transformation operators. It computes a least-squares estimate of the relative position and orientation. Sequential least-squares estimates, acquired at a measurement rate of 4 Hz, are averaged by passing them through a fourth-order Butterworth filter. The program is executed in a computer aboard the space shuttle, and its position and orientation estimates are displayed to astronauts on a graphical user interface.

  15. Launch Deployment Assembly Extravehicular Activity Neutral Buoyancy Development Test Report

    NASA Technical Reports Server (NTRS)

    Loughead, T.

    1996-01-01

    This test evaluated the Launch Deployment Assembly (LDA) design for Extravehicular Activity (EVA) work sites (setup, igress, egress), reach and visual access, and translation required for cargo item removal. As part of the LDA design, this document describes the method and results of the LDA EVA Neutral Buoyancy Development Test to ensure that the LDA hardware support the deployment of the cargo items from the pallet. This document includes the test objectives, flight and mockup hardware description, descriptions of procedures and data collection used in the testing, and the results of the development test at the National Aeronautics and Space Administrations (NASA) Marshall Space Flight Center (MSFC) Neutral Buoyancy Simulator (NBS).

  16. Modeling relief.

    PubMed

    Sumner, Walton; Xu, Jin Zhong; Roussel, Guy; Hagen, Michael D

    2007-10-11

    The American Board of Family Medicine deployed virtual patient simulations in 2004 to evaluate Diplomates' diagnostic and management skills. A previously reported dynamic process generates general symptom histories from time series data representing baseline values and reactions to medications. The simulator also must answer queries about details such as palliation and provocation. These responses often describe some recurring pattern, such as, "this medicine relieves my symptoms in a few minutes." The simulator can provide a detail stored as text, or it can evaluate a reference to a second query object. The second query object can generate details using a single Bayesian network to evaluate the effect of each drug in a virtual patient's medication list. A new medication option may not require redesign of the second query object if its implementation is consistent with related drugs. We expect this mechanism to maintain realistic responses to detail questions in complex simulations.

  17. Multiphysics Object-Oriented Simulation Environment (MOOSE)

    ScienceCinema

    None

    2017-12-09

    Nuclear reactor operators can expand safety margins with more precise information about how materials behave inside operating reactors. INL's new simulation platform makes such studies easier & more informative by letting researchers "plug-n-play" their mathematical models, skipping years of computer code development.

  18. View-invariant object category learning, recognition, and search: how spatial and object attention are coordinated using surface-based attentional shrouds.

    PubMed

    Fazl, Arash; Grossberg, Stephen; Mingolla, Ennio

    2009-02-01

    How does the brain learn to recognize an object from multiple viewpoints while scanning a scene with eye movements? How does the brain avoid the problem of erroneously classifying parts of different objects together? How are attention and eye movements intelligently coordinated to facilitate object learning? A neural model provides a unified mechanistic explanation of how spatial and object attention work together to search a scene and learn what is in it. The ARTSCAN model predicts how an object's surface representation generates a form-fitting distribution of spatial attention, or "attentional shroud". All surface representations dynamically compete for spatial attention to form a shroud. The winning shroud persists during active scanning of the object. The shroud maintains sustained activity of an emerging view-invariant category representation while multiple view-specific category representations are learned and are linked through associative learning to the view-invariant object category. The shroud also helps to restrict scanning eye movements to salient features on the attended object. Object attention plays a role in controlling and stabilizing the learning of view-specific object categories. Spatial attention hereby coordinates the deployment of object attention during object category learning. Shroud collapse releases a reset signal that inhibits the active view-invariant category in the What cortical processing stream. Then a new shroud, corresponding to a different object, forms in the Where cortical processing stream, and search using attention shifts and eye movements continues to learn new objects throughout a scene. The model mechanistically clarifies basic properties of attention shifts (engage, move, disengage) and inhibition of return. It simulates human reaction time data about object-based spatial attention shifts, and learns with 98.1% accuracy and a compression of 430 on a letter database whose letters vary in size, position, and orientation. The model provides a powerful framework for unifying many data about spatial and object attention, and their interactions during perception, cognition, and action.

  19. Remote Advanced Payload Test Rig (RAPTR) Portable Payload Test System for the International Space Station

    NASA Technical Reports Server (NTRS)

    De La Cruz, Melinda; Henderson, Steve

    2016-01-01

    The RAPTR was developed to test ISS payloads for NASA. RAPTR is a simulation of the Command and Data Handling (C&DH) interfaces of the ISS (MIL-STD1553B, Ethernet and TAXI) and is designed for rapid testing and deployment of payload experiments to the ISS. The ISS's goal is to reduce the amount of time it takes for a payload developer to build, test and fly a payload, including payload software. The RAPTR meets this need with its user oriented, visually rich interface.

  20. Deployable wing model considering structural flexibility and aerodynamic unsteadiness for deployment system design

    NASA Astrophysics Data System (ADS)

    Otsuka, Keisuke; Wang, Yinan; Makihara, Kanjuro

    2017-11-01

    In future, wings will be deployed in the span direction during flight. The deployment system improves flight ability and saves storage space in the airplane. For the safe design of the wing, the deployment motion needs to be simulated. In the simulation, the structural flexibility and aerodynamic unsteadiness should be considered because they may lead to undesirable phenomena such as a residual vibration after the deployment or a flutter during the deployment. In this study, the deployment motion is simulated in the time domain by using a nonlinear folding wing model based on multibody dynamics, absolute nodal coordinate formulation, and two-dimensional aerodynamics with strip theory. We investigate the effect of the structural flexibility and aerodynamic unsteadiness on the time-domain deployment simulation.

  1. Investigating the nature of the GPR antenna orientation effect on temperate glaciers

    NASA Astrophysics Data System (ADS)

    Langhammer, Lisbeth; Rabenstein, Lasse; Bauder, Andreas; Lathion, Patrick; Maurer, Hansruedi

    2015-04-01

    In the recent years the bedrock topography of the Swiss Alpine Glaciers has been mapped by ground-based and helicopter-borne GPR (Ground Penetrating Radar) as part of an ongoing comprehensive inventory initiated by the ETH Zürich, the Swiss Competence Center for Energy Research (SCCER) and the Swiss Geophysical Commission (SGPK). Our recorded GPR data of glacier bedrock topography highlights the need of a better understanding of the interaction between GPR systems and the glacierized subsurface in high mountain terrain. The Otemma glacier in the Pennine Alps, Valais, has been subject to repeated profiling with commercial GPR ground units (pulseEKKO and GSSI) operating at frequencies ranging from 15-67 MHz deployed at the surface and mounted on a helicopter. Our data shows significant quality differences between similar GPR profiles, which could not be explained by system failure or technical discrepancies. To investigate the issue, we conducted antenna rotation experiments at several locations on the glacier surface. The results indicate a strong relationship between the orientation of the bistatic antennas and the flow direction of the glacier. Possible explanation for our observations range from anisotropy effects in glacier ice, the influence of directional characteristics of the GPR antennas or distinctive features of the bedrock topography. To explain our results, we perform 3D GPR modeling of the glacier body with the FDTD electromagnetic simulator gprMax. A basic homogenous three-dimensional model of the glacier will be replaced by varying bedrock topography along a transect. Internal structures such as water layers and inclusion will be imbedded in the simulations. Currently ground based GPR surveys produce higher quality data with respect to the visibility of glacier bed reflections. We intent to enhance our operating system and antenna installation on the helicopter based on the results of the simulations to achieve similar quality standards. The objective is to successfully map the bedrock topography of the Swiss glaciers in the next three years.

  2. Deployment strategy for battery energy storage system in distribution network based on voltage violation regulation

    NASA Astrophysics Data System (ADS)

    Wu, H.; Zhou, L.; Xu, T.; Fang, W. L.; He, W. G.; Liu, H. M.

    2017-11-01

    In order to improve the situation of voltage violation caused by the grid-connection of photovoltaic (PV) system in a distribution network, a bi-level programming model is proposed for battery energy storage system (BESS) deployment. The objective function of inner level programming is to minimize voltage violation, with the power of PV and BESS as the variables. The objective function of outer level programming is to minimize the comprehensive function originated from inner layer programming and all the BESS operating parameters, with the capacity and rated power of BESS as the variables. The differential evolution (DE) algorithm is applied to solve the model. Based on distribution network operation scenarios with photovoltaic generation under multiple alternative output modes, the simulation results of IEEE 33-bus system prove that the deployment strategy of BESS proposed in this paper is well adapted to voltage violation regulation invariable distribution network operation scenarios. It contributes to regulating voltage violation in distribution network, as well as to improve the utilization of PV systems.

  3. Modelling robot construction systems

    NASA Technical Reports Server (NTRS)

    Grasso, Chris

    1990-01-01

    TROTER's are small, inexpensive robots that can work together to accomplish sophisticated construction tasks. To understand the issues involved in designing and operating a team of TROTER's, the robots and their components are being modeled. A TROTER system that features standardized component behavior is introduced. An object-oriented model implemented in the Smalltalk programming language is described and the advantages of the object-oriented approach for simulating robot and component interactions are discussed. The presentation includes preliminary results and a discussion of outstanding issues.

  4. The Potential of Different Concepts of Fast Breeder Reactor for the French Fleet Renewal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Massara, Simone; Tetart, Philippe; Lecarpentier, David

    2006-07-01

    The performances of different concepts of Fast Breeder Reactor (Na-cooled, He-cooled and Pb-cooled FBR) for the current French fleet renewal are analyzed in the framework of a transition scenario to a 100% FBR fleet at the end of the 21. century. Firstly, the modeling of these three FBR types by means of a semi-analytical approach in TIRELIRE - STRATEGIE, the EDF fuel cycle simulation code, is presented, together with some validation elements against ERANOS, the French reference code system for neutronic FBR analysis (CEA). Afterwards, performances comparisons are made in terms of maximum deployable power, natural uranium consumption and wastemore » production. The results show that the FBR maximum deployable capacity, independently from the FBR technology, is highly sensitive to the fuel cycle options, like the spent nuclear fuel cooling time or the Minor Actinides management strategy. Thus, some of the key parameters defining the dynamic of FBR deployment are highlighted, to inform the orientation of R and D in the development and optimization of these systems. (authors)« less

  5. CORBASec Used to Secure Distributed Aerospace Propulsion Simulations

    NASA Technical Reports Server (NTRS)

    Blaser, Tammy M.

    2003-01-01

    The NASA Glenn Research Center and its industry partners are developing a Common Object Request Broker (CORBA) Security (CORBASec) test bed to secure their distributed aerospace propulsion simulations. Glenn has been working with its aerospace propulsion industry partners to deploy the Numerical Propulsion System Simulation (NPSS) object-based technology. NPSS is a program focused on reducing the cost and time in developing aerospace propulsion engines. It was developed by Glenn and is being managed by the NASA Ames Research Center as the lead center reporting directly to NASA Headquarters' Aerospace Technology Enterprise. Glenn is an active domain member of the Object Management Group: an open membership, not-for-profit consortium that produces and manages computer industry specifications (i.e., CORBA) for interoperable enterprise applications. When NPSS is deployed, it will assemble a distributed aerospace propulsion simulation scenario from proprietary analytical CORBA servers and execute them with security afforded by the CORBASec implementation. The NPSS CORBASec test bed was initially developed with the TPBroker Security Service product (Hitachi Computer Products (America), Inc., Waltham, MA) using the Object Request Broker (ORB), which is based on the TPBroker Basic Object Adaptor, and using NPSS software across different firewall products. The test bed has been migrated to the Portable Object Adaptor architecture using the Hitachi Security Service product based on the VisiBroker 4.x ORB (Borland, Scotts Valley, CA) and on the Orbix 2000 ORB (Dublin, Ireland, with U.S. headquarters in Waltham, MA). Glenn, GE Aircraft Engines, and Pratt & Whitney Aircraft are the initial industry partners contributing to the NPSS CORBASec test bed. The test bed uses Security SecurID (RSA Security Inc., Bedford, MA) two-factor token-based authentication together with Hitachi Security Service digital-certificate-based authentication to validate the various NPSS users. The test bed is expected to demonstrate NPSS CORBASec-specific policy functionality, confirm adequate performance, and validate the required Internet configuration in a distributed collaborative aerospace propulsion environment.

  6. A Performance-Based Comparison of Object-Oriented Simulation Tools

    DTIC Science & Technology

    1992-04-01

    simulation" [Belanger 90a, 90b]. CACI Products Company markets MODSIM II as the commercial version of ModSim, which was created on a US Army contract...aim fprintf (report_file, "Line Statistics\\ nLine teller repoirt.cust interrupts; Lengt~is\

  7. Object oriented design (OOD) in real-time hardware-in-the-loop (HWIL) simulations

    NASA Astrophysics Data System (ADS)

    Morris, Joe; Richard, Henri; Lowman, Alan; Youngren, Rob

    2006-05-01

    Using Object Oriented Design (OOD) concepts in AMRDEC's Hardware-in-the Loop (HWIL) real-time simulations allows the user to interchange parts of the simulation to meet test requirements. A large-scale three-spectral band simulator connected via a high speed reflective memory ring for time-critical data transfers to PC controllers connected by non real-time Ethernet protocols is used to separate software objects from logical entities close to their respective controlled hardware. Each standalone object does its own dynamic initialization, real-time processing, and end of run processing; therefore it can be easily maintained and updated. A Resource Allocation Program (RAP) is also utilized along with a device table to allocate, organize, and document the communication protocol between the software and hardware components. A GUI display program lists all allocations and deallocations of HWIL memory and hardware resources. This interactive program is also used to clean up defunct allocations of dead processes. Three examples are presented using the OOD and RAP concepts. The first is the control of an ACUTRONICS built three-axis flight table using the same control for calibration and real-time functions. The second is the transportability of a six-degree-of-freedom (6-DOF) simulation from an Onyx residence to a Linux-PC. The third is the replacement of the 6-DOF simulation with a replay program to drive the facility with archived run data for demonstration or analysis purposes.

  8. An Object-Oriented Graphical User Interface for a Reusable Rocket Engine Intelligent Control System

    NASA Technical Reports Server (NTRS)

    Litt, Jonathan S.; Musgrave, Jeffrey L.; Guo, Ten-Huei; Paxson, Daniel E.; Wong, Edmond; Saus, Joseph R.; Merrill, Walter C.

    1994-01-01

    An intelligent control system for reusable rocket engines under development at NASA Lewis Research Center requires a graphical user interface to allow observation of the closed-loop system in operation. The simulation testbed consists of a real-time engine simulation computer, a controls computer, and several auxiliary computers for diagnostics and coordination. The system is set up so that the simulation computer could be replaced by the real engine and the change would be transparent to the control system. Because of the hard real-time requirement of the control computer, putting a graphical user interface on it was not an option. Thus, a separate computer used strictly for the graphical user interface was warranted. An object-oriented LISP-based graphical user interface has been developed on a Texas Instruments Explorer 2+ to indicate the condition of the engine to the observer through plots, animation, interactive graphics, and text.

  9. Molecular Dynamic Simulations of Interaction of an AFM Probe with the Surface of an SCN Sample

    NASA Technical Reports Server (NTRS)

    Bune, Adris; Kaukler, William; Rose, M. Franklin (Technical Monitor)

    2001-01-01

    Molecular dynamic (MD) simulations is conducted in order to estimate forces of probe-substrate interaction in the Atomic Force Microscope (AFM). First a review of available molecular dynamic techniques is given. Implementation of MD simulation is based on an object-oriented code developed at the University of Delft. Modeling of the sample material - succinonitrile (SCN) - is based on the Lennard-Jones potentials. For the polystyrene probe an atomic interaction potential is used. Due to object-oriented structure of the code modification of an atomic interaction potential is straight forward. Calculation of melting temperature is used for validation of the code and of the interaction potentials. Various fitting parameters of the probe-substrate interaction potentials are considered, as potentials fitted to certain properties and temperature ranges may not be reliable for the others. This research provides theoretical foundation for an interpretation of actual measurements of an interaction forces using AFM.

  10. MAGE (M-file/Mif Automatic GEnerator): A graphical interface tool for automatic generation of Object Oriented Micromagnetic Framework configuration files and Matlab scripts for results analysis

    NASA Astrophysics Data System (ADS)

    Chęciński, Jakub; Frankowski, Marek

    2016-10-01

    We present a tool for fully-automated generation of both simulations configuration files (Mif) and Matlab scripts for automated data analysis, dedicated for Object Oriented Micromagnetic Framework (OOMMF). We introduce extended graphical user interface (GUI) that allows for fast, error-proof and easy creation of Mifs, without any programming skills usually required for manual Mif writing necessary. With MAGE we provide OOMMF extensions for complementing it by mangetoresistance and spin-transfer-torque calculations, as well as local magnetization data selection for output. Our software allows for creation of advanced simulations conditions like simultaneous parameters sweeps and synchronic excitation application. Furthermore, since output of such simulation could be long and complicated we provide another GUI allowing for automated creation of Matlab scripts suitable for analysis of such data with Fourier and wavelet transforms as well as user-defined operations.

  11. Faunus: An object oriented framework for molecular simulation

    PubMed Central

    Lund, Mikael; Trulsson, Martin; Persson, Björn

    2008-01-01

    Background We present a C++ class library for Monte Carlo simulation of molecular systems, including proteins in solution. The design is generic and highly modular, enabling multiple developers to easily implement additional features. The statistical mechanical methods are documented by extensive use of code comments that – subsequently – are collected to automatically build a web-based manual. Results We show how an object oriented design can be used to create an intuitively appealing coding framework for molecular simulation. This is exemplified in a minimalistic C++ program that can calculate protein protonation states. We further discuss performance issues related to high level coding abstraction. Conclusion C++ and the Standard Template Library (STL) provide a high-performance platform for generic molecular modeling. Automatic generation of code documentation from inline comments has proven particularly useful in that no separate manual needs to be maintained. PMID:18241331

  12. GENASIS Mathematics : Object-oriented manifolds, operations, and solvers for large-scale physics simulations

    NASA Astrophysics Data System (ADS)

    Cardall, Christian Y.; Budiardja, Reuben D.

    2018-01-01

    The large-scale computer simulation of a system of physical fields governed by partial differential equations requires some means of approximating the mathematical limit of continuity. For example, conservation laws are often treated with a 'finite-volume' approach in which space is partitioned into a large number of small 'cells,' with fluxes through cell faces providing an intuitive discretization modeled on the mathematical definition of the divergence operator. Here we describe and make available Fortran 2003 classes furnishing extensible object-oriented implementations of simple meshes and the evolution of generic conserved currents thereon, along with individual 'unit test' programs and larger example problems demonstrating their use. These classes inaugurate the Mathematics division of our developing astrophysics simulation code GENASIS (Gen eral A strophysical Si mulation S ystem), which will be expanded over time to include additional meshing options, mathematical operations, solver types, and solver variations appropriate for many multiphysics applications.

  13. Object Orientated Simulation on Transputer Arrays Using Time Warp

    DTIC Science & Technology

    1989-12-01

    Transputer based Machines, Grenoble, Sept 14-16 1987, Ed. Traian Muntean. [ 3 ] Muntean T., "PARX operating system kernal; application to Minix ", Esprit P1085...Simulation 3 Time Warp Simulation 8 3.1 Rollback Mechanism ........ ............................. 8 3.2 Simulation Outp,,t...23 4.3.* Importan Noc .......... ............................ 23 5 Low Level Operations 24 • 3 IIiI 5.1 Global Virtual Timne Estimiation

  14. Space Situational Awareness of Large Numbers of Payloads From a Single Deployment

    NASA Astrophysics Data System (ADS)

    Segerman, A.; Byers, J.; Emmert, J.; Nicholas, A.

    2014-09-01

    The nearly simultaneous deployment of a large number of payloads from a single vehicle presents a new challenge for space object catalog maintenance and space situational awareness (SSA). Following two cubesat deployments last November, it took five weeks to catalog the resulting 64 orbits. The upcoming Kicksat mission will present an even greater SSA challenge, with its deployment of 128 chip-sized picosats. Although all of these deployments are in short-lived orbits, future deployments will inevitably occur at higher altitudes, with a longer term threat of collision with active spacecraft. With such deployments, individual scientific payload operators require rapid precise knowledge of their satellites' locations. Following the first November launch, the cataloguing did not initially associate a payload with each orbit, leaving this to the satellite operators. For short duration missions, the time required to identify an experiment's specific orbit may easily be a large fraction of the spacecraft's lifetime. For a Kicksat-type deployment, present tracking cannot collect enough observations to catalog each small object. The current approach is to treat the chip cloud as a single catalog object. However, the cloud dissipates into multiple subclouds and, ultimately, tiny groups of untrackable chips. One response to this challenge may be to mandate installation of a transponder on each spacecraft. Directional transponder transmission detections could be used as angle observations for orbit cataloguing. Of course, such an approach would only be employable with cooperative spacecraft. In other cases, a probabilistic association approach may be useful, with the goal being to establish the probability of an element being at a given point in space. This would permit more reliable assessment of the probability of collision of active spacecraft with any cloud element. This paper surveys the cataloguing challenges presented by large scale deployments of small spacecraft, examining current methods. Potential new approaches are discussed, including simulations to evaluate their utility. Acknowledgement: This work was supported by the Office of the Assistant Secretary of Defense for R&E, via the Data-to-Decisions program.

  15. Optimized Determination of Deployable Consumable Spares Packages

    DTIC Science & Technology

    2007-06-01

    also called deployable bench stock) • CRSP = Consumable Readiness Spares Package • COLT = Customer -Oriented Leveling Technique • ASM = Aircraft...changed please list both.) Original title on 712 A/B: Optimized Determination of Deployable Consumable Spares Packages If the title was revised...number. 1. REPORT DATE 01 JUN 2007 2. REPORT TYPE N/A 3. DATES COVERED - 4. TITLE AND SUBTITLE Optimized Determination of Deployable Consumable

  16. Space Science

    NASA Image and Video Library

    1991-01-28

    This is the STS-37 Crew portrait. Pictured from left to right are Kenneth D. (Ken) Cameron, pilot; Jay Apt, mission specialist; Steven R. Nagel, commander; and Jerry L. Ross and Linda M. Godwin, mission specialists. Launched aboard the Space Shuttle Atlantis on April 5, 1991 at 9:22:44am (EST), the crew’s major objective was the deployment of the Gamma Ray Observatory (GRO). Included in the observatory were the Burst and Transient Source Experiment (BATSE); the Imaging Compton Telescope (COMPTEL); the Energetic Gamma Ray Experiment Telescope (EGRET); and the Oriented Scintillation Spectrometer Telescope (OSSEE).

  17. Space Shuttle Projects

    NASA Image and Video Library

    1991-04-05

    Launched aboard the Space Shuttle Atlantis on April 5, 1991 at 9:22:44am (EST), the STS-37 mission hurtles toward space. Her crew included Steven R. Nagel, commander; Kenneth D. (Ken) Cameron, pilot; and Jay Apt, Jerry L. Ross, and Linda M. Godwin, all mission specialists. The crew’s major objective was the deployment of the Gamma Ray Observatory (GRO). Included in the observatory were the Burst and Transient Source Experiment (BATSE); the Imaging Compton Telescope (COMPTEL); the Energetic Gamma Ray Experiment Telescope (EGRET); and the Oriented Scintillation Spectrometer Telescope (OSSEE).

  18. NeuroManager: a workflow analysis based simulation management engine for computational neuroscience

    PubMed Central

    Stockton, David B.; Santamaria, Fidel

    2015-01-01

    We developed NeuroManager, an object-oriented simulation management software engine for computational neuroscience. NeuroManager automates the workflow of simulation job submissions when using heterogeneous computational resources, simulators, and simulation tasks. The object-oriented approach (1) provides flexibility to adapt to a variety of neuroscience simulators, (2) simplifies the use of heterogeneous computational resources, from desktops to super computer clusters, and (3) improves tracking of simulator/simulation evolution. We implemented NeuroManager in MATLAB, a widely used engineering and scientific language, for its signal and image processing tools, prevalence in electrophysiology analysis, and increasing use in college Biology education. To design and develop NeuroManager we analyzed the workflow of simulation submission for a variety of simulators, operating systems, and computational resources, including the handling of input parameters, data, models, results, and analyses. This resulted in 22 stages of simulation submission workflow. The software incorporates progress notification, automatic organization, labeling, and time-stamping of data and results, and integrated access to MATLAB's analysis and visualization tools. NeuroManager provides users with the tools to automate daily tasks, and assists principal investigators in tracking and recreating the evolution of research projects performed by multiple people. Overall, NeuroManager provides the infrastructure needed to improve workflow, manage multiple simultaneous simulations, and maintain provenance of the potentially large amounts of data produced during the course of a research project. PMID:26528175

  19. NeuroManager: a workflow analysis based simulation management engine for computational neuroscience.

    PubMed

    Stockton, David B; Santamaria, Fidel

    2015-01-01

    We developed NeuroManager, an object-oriented simulation management software engine for computational neuroscience. NeuroManager automates the workflow of simulation job submissions when using heterogeneous computational resources, simulators, and simulation tasks. The object-oriented approach (1) provides flexibility to adapt to a variety of neuroscience simulators, (2) simplifies the use of heterogeneous computational resources, from desktops to super computer clusters, and (3) improves tracking of simulator/simulation evolution. We implemented NeuroManager in MATLAB, a widely used engineering and scientific language, for its signal and image processing tools, prevalence in electrophysiology analysis, and increasing use in college Biology education. To design and develop NeuroManager we analyzed the workflow of simulation submission for a variety of simulators, operating systems, and computational resources, including the handling of input parameters, data, models, results, and analyses. This resulted in 22 stages of simulation submission workflow. The software incorporates progress notification, automatic organization, labeling, and time-stamping of data and results, and integrated access to MATLAB's analysis and visualization tools. NeuroManager provides users with the tools to automate daily tasks, and assists principal investigators in tracking and recreating the evolution of research projects performed by multiple people. Overall, NeuroManager provides the infrastructure needed to improve workflow, manage multiple simultaneous simulations, and maintain provenance of the potentially large amounts of data produced during the course of a research project.

  20. DoD Modeling and Simulation (M&S) Glossary

    DTIC Science & Technology

    1998-01-01

    modeling and simulation. It is the group responsible for establishing the need for the ...logical data grouping (in the logical data model ) to which it belongs. (DoD Publication 8320.1-M-l and NBS Pub 500-149, (references (q) and (u)) 399...Department of the Navy Modeling and Simulation Technical Support Group Demonstration of Dynamic Object Oriented Requirements System Disk

  1. Using semantic data modeling techniques to organize an object-oriented database for extending the mass storage model

    NASA Technical Reports Server (NTRS)

    Campbell, William J.; Short, Nicholas M., Jr.; Roelofs, Larry H.; Dorfman, Erik

    1991-01-01

    A methodology for optimizing organization of data obtained by NASA earth and space missions is discussed. The methodology uses a concept based on semantic data modeling techniques implemented in a hierarchical storage model. The modeling is used to organize objects in mass storage devices, relational database systems, and object-oriented databases. The semantic data modeling at the metadata record level is examined, including the simulation of a knowledge base and semantic metadata storage issues. The semantic data model hierarchy and its application for efficient data storage is addressed, as is the mapping of the application structure to the mass storage.

  2. Multi-point objective-oriented sequential sampling strategy for constrained robust design

    NASA Astrophysics Data System (ADS)

    Zhu, Ping; Zhang, Siliang; Chen, Wei

    2015-03-01

    Metamodelling techniques are widely used to approximate system responses of expensive simulation models. In association with the use of metamodels, objective-oriented sequential sampling methods have been demonstrated to be effective in balancing the need for searching an optimal solution versus reducing the metamodelling uncertainty. However, existing infilling criteria are developed for deterministic problems and restricted to one sampling point in one iteration. To exploit the use of multiple samples and identify the true robust solution in fewer iterations, a multi-point objective-oriented sequential sampling strategy is proposed for constrained robust design problems. In this article, earlier development of objective-oriented sequential sampling strategy for unconstrained robust design is first extended to constrained problems. Next, a double-loop multi-point sequential sampling strategy is developed. The proposed methods are validated using two mathematical examples followed by a highly nonlinear automotive crashworthiness design example. The results show that the proposed method can mitigate the effect of both metamodelling uncertainty and design uncertainty, and identify the robust design solution more efficiently than the single-point sequential sampling approach.

  3. Modelling of long-term and short-term mechanisms of arterial pressure control in the cardiovascular system: an object-oriented approach.

    PubMed

    Fernandez de Canete, J; Luque, J; Barbancho, J; Munoz, V

    2014-04-01

    A mathematical model that provides an overall description of both the short- and long-term mechanisms of arterial pressure regulation is presented. Short-term control is exerted through the baroreceptor reflex while renal elimination plays a role in long-term control. Both mechanisms operate in an integrated way over the compartmental model of the cardiovascular system. The whole system was modelled in MODELICA, which uses a hierarchical object-oriented modelling strategy, under the DYMOLA simulation environment. The performance of the controlled system was analysed by simulation in light of the existing hypothesis and validation tests previously performed with physiological data, demonstrating the effectiveness of both regulation mechanisms under physiological and pathological conditions. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Simulation of Regionally Ecological Land Based on a Cellular Automation Model: A Case Study of Beijing, China

    PubMed Central

    Xie, Hualin; Kung, Chih-Chun; Zhang, Yanting; Li, Xiubin

    2012-01-01

    Ecological land is like the “liver” of a city and is very useful to public health. Ecological land change is a spatially dynamic non-linear process under the interaction between natural and anthropogenic factors at different scales. In this study, by setting up natural development scenario, object orientation scenario and ecosystem priority scenario, a Cellular Automation (CA) model has been established to simulate the evolution pattern of ecological land in Beijing in the year 2020. Under the natural development scenario, most of ecological land will be replaced by construction land and crop land. But under the scenarios of object orientation and ecosystem priority, the ecological land area will increase, especially under the scenario of ecosystem priority. When considering the factors such as total area of ecological land, loss of key ecological land and spatial patterns of land use, the scenarios from priority to inferiority are ecosystem priority, object orientation and natural development, so future land management policies in Beijing should be focused on conversion of cropland to forest, wetland protection and prohibition of exploitation of natural protection zones, water source areas and forest parks to maintain the safety of the regional ecosystem. PMID:23066410

  5. Simulation of regionally ecological land based on a cellular automation model: a case study of Beijing, China.

    PubMed

    Xie, Hualin; Kung, Chih-Chun; Zhang, Yanting; Li, Xiubin

    2012-08-01

    Ecological land is like the "liver" of a city and is very useful to public health. Ecological land change is a spatially dynamic non-linear process under the interaction between natural and anthropogenic factors at different scales. In this study, by setting up natural development scenario, object orientation scenario and ecosystem priority scenario, a Cellular Automation (CA) model has been established to simulate the evolution pattern of ecological land in Beijing in the year 2020. Under the natural development scenario, most of ecological land will be replaced by construction land and crop land. But under the scenarios of object orientation and ecosystem priority, the ecological land area will increase, especially under the scenario of ecosystem priority. When considering the factors such as total area of ecological land, loss of key ecological land and spatial patterns of land use, the scenarios from priority to inferiority are ecosystem priority, object orientation and natural development, so future land management policies in Beijing should be focused on conversion of cropland to forest, wetland protection and prohibition of exploitation of natural protection zones, water source areas and forest parks to maintain the safety of the regional ecosystem.

  6. Reliability database development for use with an object-oriented fault tree evaluation program

    NASA Technical Reports Server (NTRS)

    Heger, A. Sharif; Harringtton, Robert J.; Koen, Billy V.; Patterson-Hine, F. Ann

    1989-01-01

    A description is given of the development of a fault-tree analysis method using object-oriented programming. In addition, the authors discuss the programs that have been developed or are under development to connect a fault-tree analysis routine to a reliability database. To assess the performance of the routines, a relational database simulating one of the nuclear power industry databases has been constructed. For a realistic assessment of the results of this project, the use of one of existing nuclear power reliability databases is planned.

  7. An object-oriented software for fate and exposure assessments.

    PubMed

    Scheil, S; Baumgarten, G; Reiter, B; Schwartz, S; Wagner, J O; Trapp, S; Matthies, M

    1995-07-01

    The model system CemoS(1) (Chemical Exposure Model System) was developed for the exposure prediction of hazardous chemicals released to the environment. Eight different models were implemented involving chemicals fate simulation in air, water, soil and plants after continuous or single emissions from point and diffuse sources. Scenario studies are supported by a substance and an environmental data base. All input data are checked on their plausibility. Substance and environmental process estimation functions facilitate generic model calculations. CemoS is implemented in a modular structure using object-oriented programming.

  8. Improved Object Localization Using Accurate Distance Estimation in Wireless Multimedia Sensor Networks

    PubMed Central

    Ur Rehman, Yasar Abbas; Tariq, Muhammad; Khan, Omar Usman

    2015-01-01

    Object localization plays a key role in many popular applications of Wireless Multimedia Sensor Networks (WMSN) and as a result, it has acquired a significant status for the research community. A significant body of research performs this task without considering node orientation, object geometry and environmental variations. As a result, the localized object does not reflect the real world scenarios. In this paper, a novel object localization scheme for WMSN has been proposed that utilizes range free localization, computer vision, and principle component analysis based algorithms. The proposed approach provides the best possible approximation of distance between a wmsn sink and an object, and the orientation of the object using image based information. Simulation results report 99% efficiency and an error ratio of 0.01 (around 1 ft) when compared to other popular techniques. PMID:26528919

  9. Global Village as Virtual Community (On Writing, Thinking, and Teacher Education).

    ERIC Educational Resources Information Center

    Polin, Linda

    1993-01-01

    Describes virtual communities known as Multi-User Simulated Environment (MUSE) or Multi-User Object Oriented environment (MOO), text-based computer "communities" whose inhabitants are a combination of the real people and constructed objects that people agree to treat as real. Describes their uses in the classroom. (SR)

  10. Dynamic tracking of prosthetic valve motion and deformation from bi-plane x-ray views: feasibility study

    NASA Astrophysics Data System (ADS)

    Hatt, Charles R.; Wagner, Martin; Raval, Amish N.; Speidel, Michael A.

    2016-03-01

    Transcatheter aortic valve replacement (TAVR) requires navigation and deployment of a prosthetic valve within the aortic annulus under fluoroscopic guidance. To support improved device visualization in this procedure, this study investigates the feasibility of frame-by-frame 3D reconstruction of a moving and expanding prosthetic valve structure from simultaneous bi-plane x-ray views. In the proposed method, a dynamic 3D model of the valve is used in a 2D/3D registration framework to obtain a reconstruction of the valve. For each frame, valve model parameters describing position, orientation, expansion state, and deformation are iteratively adjusted until forward projections of the model match both bi-plane views. Simulated bi-plane imaging of a valve at different signal-difference-to-noise ratio (SDNR) levels was performed to test the approach. 20 image sequences with 50 frames of valve deployment were simulated at each SDNR. The simulation achieved a target registration error (TRE) of the estimated valve model of 0.93 +/- 2.6 mm (mean +/- S.D.) for the lowest SDNR of 2. For higher SDNRs (5 to 50) a TRE of 0.04 mm +/- 0.23 mm was achieved. A tabletop phantom study was then conducted using a TAVR valve. The dynamic 3D model was constructed from high resolution CT scans and a simple expansion model. TRE was 1.22 +/- 0.35 mm for expansion states varying from undeployed to fully deployed, and for moderate amounts of inter-frame motion. Results indicate that it is feasible to use bi-plane imaging to recover the 3D structure of deformable catheter devices.

  11. Dynamic tracking of prosthetic valve motion and deformation from bi-plane x-ray views: feasibility study.

    PubMed

    Hatt, Charles R; Wagner, Martin; Raval, Amish N; Speidel, Michael A

    2016-01-01

    Transcatheter aortic valve replacement (TAVR) requires navigation and deployment of a prosthetic valve within the aortic annulus under fluoroscopic guidance. To support improved device visualization in this procedure, this study investigates the feasibility of frame-by-frame 3D reconstruction of a moving and expanding prosthetic valve structure from simultaneous bi-plane x-ray views. In the proposed method, a dynamic 3D model of the valve is used in a 2D/3D registration framework to obtain a reconstruction of the valve. For each frame, valve model parameters describing position, orientation, expansion state, and deformation are iteratively adjusted until forward projections of the model match both bi-plane views. Simulated bi-plane imaging of a valve at different signal-difference-to-noise ratio (SDNR) levels was performed to test the approach. 20 image sequences with 50 frames of valve deployment were simulated at each SDNR. The simulation achieved a target registration error (TRE) of the estimated valve model of 0.93 ± 2.6 mm (mean ± S.D.) for the lowest SDNR of 2. For higher SDNRs (5 to 50) a TRE of 0.04 mm ± 0.23 mm was achieved. A tabletop phantom study was then conducted using a TAVR valve. The dynamic 3D model was constructed from high resolution CT scans and a simple expansion model. TRE was 1.22 ± 0.35 mm for expansion states varying from undeployed to fully deployed, and for moderate amounts of inter-frame motion. Results indicate that it is feasible to use bi-plane imaging to recover the 3D structure of deformable catheter devices.

  12. Modeling and Simulation of Compression Molding Process for Sheet Molding Compound (SMC) of Chopped Carbon Fiber Composites

    DOE PAGES

    Li, Yang; Chen, Zhangxing; Xu, Hongyi; ...

    2017-01-02

    Compression molded SMC composed of chopped carbon fiber and resin polymer which balances the mechanical performance and manufacturing cost presents a promising solution for vehicle lightweight strategy. However, the performance of the SMC molded parts highly depends on the compression molding process and local microstructure, which greatly increases the cost for the part level performance testing and elongates the design cycle. ICME (Integrated Computational Material Engineering) approaches are thus necessary tools to reduce the number of experiments required during part design and speed up the deployment of the SMC materials. As the fundamental stage of the ICME workflow, commercial softwaremore » packages for SMC compression molding exist yet remain not fully validated especially for chopped fiber systems. In this study, SMC plaques are prepared through compression molding process. The corresponding simulation models are built in Autodesk Moldflow with the same part geometry and processing conditions as in the molding tests. The output variables of the compression molding simulations, including press force history and fiber orientation of the part, are compared with experimental data. Influence of the processing conditions to the fiber orientation of the SMC plaque is also discussed. It is found that generally Autodesk Moldflow can achieve a good simulation of the compression molding process for chopped carbon fiber SMC, yet quantitative discrepancies still remain between predicted variables and experimental results.« less

  13. Modeling and Simulation of Compression Molding Process for Sheet Molding Compound (SMC) of Chopped Carbon Fiber Composites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Yang; Chen, Zhangxing; Xu, Hongyi

    Compression molded SMC composed of chopped carbon fiber and resin polymer which balances the mechanical performance and manufacturing cost presents a promising solution for vehicle lightweight strategy. However, the performance of the SMC molded parts highly depends on the compression molding process and local microstructure, which greatly increases the cost for the part level performance testing and elongates the design cycle. ICME (Integrated Computational Material Engineering) approaches are thus necessary tools to reduce the number of experiments required during part design and speed up the deployment of the SMC materials. As the fundamental stage of the ICME workflow, commercial softwaremore » packages for SMC compression molding exist yet remain not fully validated especially for chopped fiber systems. In this study, SMC plaques are prepared through compression molding process. The corresponding simulation models are built in Autodesk Moldflow with the same part geometry and processing conditions as in the molding tests. The output variables of the compression molding simulations, including press force history and fiber orientation of the part, are compared with experimental data. Influence of the processing conditions to the fiber orientation of the SMC plaque is also discussed. It is found that generally Autodesk Moldflow can achieve a good simulation of the compression molding process for chopped carbon fiber SMC, yet quantitative discrepancies still remain between predicted variables and experimental results.« less

  14. Perceptual Simulations and Linguistic Representations Have Differential Effects on Speeded Relatedness Judgments and Recognition Memory

    PubMed Central

    Tse, Chi-Shing; Kurby, Christopher A.; Du, Feng

    2010-01-01

    We examined the effect of spatial iconicity (a perceptual simulation of canonical locations of objects) and word-order frequency on language processing and episodic memory of orientation. Participants made speeded relatedness judgments to pairs of words presented in locations typical to their real world arrangements (e.g., ceiling on top and floor on bottom). They then engaged in a surprise orientation recognition task for the word pairs. We replicated Louwerse’s finding (2008) that word-order frequency has a stronger effect on semantic relatedness judgments than spatial iconicity. This is consistent with recent suggestions that linguistic representations have a stronger impact on immediate decisions about verbal materials than perceptual simulations. In contrast, spatial iconicity enhanced episodic memory of orientation to a greater extent than word-order frequency did. This new finding indicates that perceptual simulations have an important role in episodic memory. Results are discussed with respect to theories of perceptual representation and linguistic processing. PMID:19742388

  15. An Evaluative Review of Simulated Dynamic Smart 3d Objects

    NASA Astrophysics Data System (ADS)

    Romeijn, H.; Sheth, F.; Pettit, C. J.

    2012-07-01

    Three-dimensional (3D) modelling of plants can be an asset for creating agricultural based visualisation products. The continuum of 3D plants models ranges from static to dynamic objects, also known as smart 3D objects. There is an increasing requirement for smarter simulated 3D objects that are attributed mathematically and/or from biological inputs. A systematic approach to plant simulation offers significant advantages to applications in agricultural research, particularly in simulating plant behaviour and the influences of external environmental factors. This approach of 3D plant object visualisation is primarily evident from the visualisation of plants using photographed billboarded images, to more advanced procedural models that come closer to simulating realistic virtual plants. However, few programs model physical reactions of plants to external factors and even fewer are able to grow plants based on mathematical and/or biological parameters. In this paper, we undertake an evaluation of plant-based object simulation programs currently available, with a focus upon the components and techniques involved in producing these objects. Through an analytical review process we consider the strengths and weaknesses of several program packages, the features and use of these programs and the possible opportunities in deploying these for creating smart 3D plant-based objects to support agricultural research and natural resource management. In creating smart 3D objects the model needs to be informed by both plant physiology and phenology. Expert knowledge will frame the parameters and procedures that will attribute the object and allow the simulation of dynamic virtual plants. Ultimately, biologically smart 3D virtual plants that react to changes within an environment could be an effective medium to visually represent landscapes and communicate land management scenarios and practices to planners and decision-makers.

  16. Estimating and validating ground-based timber harvesting production through computer simulation

    Treesearch

    Jingxin Wang; Chris B. LeDoux

    2003-01-01

    Estimating ground-based timber harvesting systems production with an object oriented methodology was investigated. The estimation model developed generates stands of trees, simulates chain saw, drive-to-tree feller-buncher, swing-to-tree single-grip harvester felling, and grapple skidder and forwarder extraction activities, and analyzes costs and productivity. It also...

  17. Background oriented schlieren measurement of the refractive index field of air induced by a hot, cylindrical measurement object.

    PubMed

    Beermann, Rüdiger; Quentin, Lorenz; Pösch, Andreas; Reithmeier, Eduard; Kästner, Markus

    2017-05-10

    To optically capture the topography of a hot measurement object with high precision, the light deflection by the inhomogeneous refractive index field-induced by the heat transfer from the measurement object to the ambient medium-has to be considered. We used the 2D background oriented schlieren method with illuminated wavelet background, an optical flow algorithm, and Ciddor's equation to quantify the refractive index field located directly above a red-glowing, hot measurement object. A heat transfer simulation has been implemented to verify the magnitude and the shape of the measured refractive index field. Provided that no forced external flow is disturbing the shape of the convective flow originating from the hot object, a laminar flow can be observed directly above the object, resulting in a sharply bounded, inhomogeneous refractive index field.

  18. Integrated corridor management analysis, modeling, and simulation for the I–15 corridor in San Diego, California—post-deployment analysis plan.

    DOT National Transportation Integrated Search

    2016-11-01

    Post-Deployment Analysis, Modeling, and Simulation (AMS) activities focus on identifying impacts and benefits of the as-deployed Integrated Corridor Management (ICM) system. The as-deployed ICM strategies may differ from as-planned ...

  19. Integrated corridor management : analysis, modeling, and simulation for the U.S.-15 corridor in Dallas, Texas—post-deployment analysis plan.

    DOT National Transportation Integrated Search

    2016-10-01

    Post-Deployment Analysis, Modeling, and Simulation (AMS) activities focus on identifying impacts and benefits of the as-deployed Integrated Corridor Management (ICM) system. The as-deployed ICM strategies may differ from as-planned ...

  20. Regenerative life support system research

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Sections on modeling, experimental activities during the grant period, and topics under consideration for the future are contained. The sessions contain discussions of: four concurrent modeling approaches that were being integrated near the end of the period (knowledge-based modeling support infrastructure and data base management, object-oriented steady state simulations for three concepts, steady state mass-balance engineering tradeoff studies, and object-oriented time-step, quasidynamic simulations of generic concepts); interdisciplinary research activities, beginning with a discussion of RECON lab development and use, and followed with discussions of waste processing research, algae studies and subsystem modeling, low pressure growth testing of plants, subsystem modeling of plants, control of plant growth using lighting and CO2 supply as variables, search for and development of lunar soil simulants, preliminary design parameters for a lunar base life support system, and research considerations for food processing in space; and appendix materials, including a discussion of the CELSS Conference, detailed analytical equations for mass-balance modeling, plant modeling equations, and parametric data on existing life support systems for use in modeling.

  1. LOOS: an extensible platform for the structural analysis of simulations.

    PubMed

    Romo, Tod D; Grossfield, Alan

    2009-01-01

    We have developed LOOS (Lightweight Object-Oriented Structure-analysis library) as an object-oriented library designed to facilitate the rapid development of tools for the structural analysis of simulations. LOOS supports the native file formats of most common simulation packages including AMBER, CHARMM, CNS, Gromacs, NAMD, Tinker, and X-PLOR. Encapsulation and polymorphism are used to simultaneously provide a stable interface to the programmer and make LOOS easily extensible. A rich atom selection language based on the C expression syntax is included as part of the library. LOOS enables students and casual programmer-scientists to rapidly write their own analytical tools in a compact and expressive manner resembling scripting. LOOS is written in C++ and makes extensive use of the Standard Template Library and Boost, and is freely available under the GNU General Public License (version 3) LOOS has been tested on Linux and MacOS X, but is written to be portable and should work on most Unix-based platforms.

  2. Simulation of reflecting surface deviations of centimeter-band parabolic space radiotelescope (SRT) with the large-size mirror

    NASA Astrophysics Data System (ADS)

    Kotik, A.; Usyukin, V.; Vinogradov, I.; Arkhipov, M.

    2017-11-01

    he realization of astrophysical researches requires the development of high-sensitive centimeterband parabolic space radiotelescopes (SRT) with the large-size mirrors. Constructively such SRT with the mirror size more than 10 m can be realized as deployable rigid structures. Mesh-structures of such size do not provide the reflector reflecting surface accuracy which is necessary for the centimeter band observations. Now such telescope with the 10 m diameter mirror is developed in Russia in the frame of "SPECTR - R" program. External dimensions of the telescope is more than the size of existing thermo-vacuum chambers used to prove SRT reflecting surface accuracy parameters under the action of space environment factors. That's why the numerical simulation turns out to be the basis required to accept the taken designs. Such modeling should be based on experimental working of the basic constructive materials and elements of the future reflector. In the article computational modeling of reflecting surface deviations of a centimeter-band of a large-sized deployable space reflector at a stage of his orbital functioning is considered. The analysis of the factors that determines the deviations - both determined (temperatures fields) and not-determined (telescope manufacturing and installation faults; the deformations caused by features of composite materials behavior in space) is carried out. The finite-element model and complex of methods are developed. They allow to carry out computational modeling of reflecting surface deviations caused by influence of all factors and to take into account the deviations correction by space vehicle orientation system. The results of modeling for two modes of functioning (orientation at the Sun) SRT are presented.

  3. THYME: Toolkit for Hybrid Modeling of Electric Power Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nutaro Kalyan Perumalla, James Joseph

    2011-01-01

    THYME is an object oriented library for building models of wide area control and communications in electric power systems. This software is designed as a module to be used with existing open source simulators for discrete event systems in general and communication systems in particular. THYME consists of a typical model for simulating electro-mechanical transients (e.g., as are used in dynamic stability studies), data handling objects to work with CDF and PTI formatted power flow data, and sample models of discrete sensors and controllers.

  4. Induced Stress, Artificial Environment, Simulated Tactical Operations Center Model

    DTIC Science & Technology

    1973-06-01

    oriented 4 activities or, at best , tre application of dor:trinal i. 14 concepts to command post exercises. Unlike mechanical skills, weapon’s...training model identified as APSTRAT, an acronym indicating aptitude and strategies , be considered as a point of reference. Several instructional...post providing visual and aural sensing tasks and training objective oriented performance tasks. Vintilly, ho concludes that failure should be

  5. Dynamic extension of the Simulation Problem Analysis Kernel (SPANK)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sowell, E.F.; Buhl, W.F.

    1988-07-15

    The Simulation Problem Analysis Kernel (SPANK) is an object-oriented simulation environment for general simulation purposes. Among its unique features is use of the directed graph as the primary data structure, rather than the matrix. This allows straightforward use of graph algorithms for matching variables and equations, and reducing the problem graph for efficient numerical solution. The original prototype implementation demonstrated the principles for systems of algebraic equations, allowing simulation of steady-state, nonlinear systems (Sowell 1986). This paper describes how the same principles can be extended to include dynamic objects, allowing simulation of general dynamic systems. The theory is developed andmore » an implementation is described. An example is taken from the field of building energy system simulation. 2 refs., 9 figs.« less

  6. Advanced software development workstation. Comparison of two object-oriented development methodologies

    NASA Technical Reports Server (NTRS)

    Izygon, Michel E.

    1992-01-01

    This report is an attempt to clarify some of the concerns raised about the OMT method, specifically that OMT is weaker than the Booch method in a few key areas. This interim report specifically addresses the following issues: (1) is OMT object-oriented or only data-driven?; (2) can OMT be used as a front-end to implementation in C++?; (3) the inheritance concept in OMT is in contradiction with the 'pure and real' inheritance concept found in object-oriented (OO) design; (4) low support for software life-cycle issues, for project and risk management; (5) uselessness of functional modeling for the ROSE project; and (6) problems with event-driven and simulation systems. The conclusion of this report is that both Booch's method and Rumbaugh's method are good OO methods, each with strengths and weaknesses in different areas of the development process.

  7. Global nursing in an Ebola viral haemorrhagic fever outbreak: before, during and after deployment

    PubMed Central

    von Strauss, Eva; Paillard-Borg, Stéphanie; Holmgren, Jessica; Saaristo, Panu

    2017-01-01

    ABSTRACT Background: Nurses are on the forefront and play a key role in global disaster responses. Nevertheless, they are often not prepared for the challenges they are facing and research is scarce regarding the nursing skills required for first responders during a disaster situation. Objectives: To investigate how returnee nursing staff experienced deployment before, during and after having worked for the Red Cross at an Ebola Treatment Center in Kenema, West Africa, and to supply knowledge on how to better prepare and support staff for viral haemorrhagic fever outbreaks. Methods: A descriptive, cross-sectional approach. Questionnaires were administered to nurses having worked with patients suffering from Ebola in 2014 and 2015. Data collection covered aspects of pre-, during and post-deployment on clinical training, personal health, stress management, leadership styles, socio-cultural exposure and knowledge transfer, as well as attitudes from others. Data was analysed using both quantitative and qualitative methods. Results: Response-rate was 88%: forty-four nurses from 15 different countries outside West Africa answered the questionnaire. The respondents identified the following needs for improvement: increased mental health and psychosocial support and hands-on coping strategies with focus on pre- and post-deployment; more pre-deployment task-oriented clinical training; and workload reduction, as exhaustion is a risk for safety. Conclusions: This study supplies knowledge on how to better prepare health care staff for future viral haemorrhagic fever outbreaks and other disasters. Participants were satisfied with their pre-deployment physical health preparation, whereas they stressed the importance of mental health support combined with psychosocial support after deployment. Furthermore, additional pre-clinical training was requested. PMID:29017025

  8. SISSY: An example of a multi-threaded, networked, object-oriented databased application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scipioni, B.; Liu, D.; Song, T.

    1993-05-01

    The Systems Integration Support SYstem (SISSY) is presented and its capabilities and techniques are discussed. It is fully automated data collection and analysis system supporting the SSCL`s systems analysis activities as they relate to the Physics Detector and Simulation Facility (PDSF). SISSY itself is a paradigm of effective computing on the PDSF. It uses home-grown code (C++), network programming (RPC, SNMP), relational (SYBASE) and object-oriented (ObjectStore) DBMSs, UNIX operating system services (IRIX threads, cron, system utilities, shells scripts, etc.), and third party software applications (NetCentral Station, Wingz, DataLink) all of which act together as a single application to monitor andmore » analyze the PDSF.« less

  9. Simulation of Physical Experiments in Immersive Virtual Environments

    NASA Technical Reports Server (NTRS)

    Noor, Ahmed K.; Wasfy, Tamer M.

    2001-01-01

    An object-oriented event-driven immersive Virtual environment is described for the creation of virtual labs (VLs) for simulating physical experiments. Discussion focuses on a number of aspects of the VLs, including interface devices, software objects, and various applications. The VLs interface with output devices, including immersive stereoscopic screed(s) and stereo speakers; and a variety of input devices, including body tracking (head and hands), haptic gloves, wand, joystick, mouse, microphone, and keyboard. The VL incorporates the following types of primitive software objects: interface objects, support objects, geometric entities, and finite elements. Each object encapsulates a set of properties, methods, and events that define its behavior, appearance, and functions. A container object allows grouping of several objects. Applications of the VLs include viewing the results of the physical experiment, viewing a computer simulation of the physical experiment, simulation of the experiments procedure, computational steering, and remote control of the physical experiment. In addition, the VL can be used as a risk-free (safe) environment for training. The implementation of virtual structures testing machines, virtual wind tunnels, and a virtual acoustic testing facility is described.

  10. Development of deployable fibre integral-field-units for the E-ELT

    NASA Astrophysics Data System (ADS)

    Kelz, Andreas; Jahn, Thomas; Neumann, Justus; Roth, Martin M.; Rutowska, Monika; Sandin, Christer; Nicklas, Harald; Anwand, Heiko; Schmidt, C.

    2014-07-01

    The use of deployable fibre-bundles plays an increasing role in the design of future Multi-Object-Spectrographs (MOS). Within a research and development project for "Enabling Technologies for the E-ELT", various miniaturized, fibrebundles were designed, built and tested for their suitability for a proposed ELT-MOS instrument. The paper describes the opto-mechanical designs of the bundles and the different manufacture approaches, using glued, stacked and fused optical fibre bundles. The fibre bundles are characterized for performance, using dedicated testbenches in the laboratory and at a telescope simulator. Their performance is measured with respect to geometric accuracy, throughput, FRD behavior and cross-talk between channels.

  11. Juneau Airport Doppler Lidar Deployment: Extraction of Accurate Turbulent Wind Statistics

    NASA Technical Reports Server (NTRS)

    Hannon, Stephen M.; Frehlich, Rod; Cornman, Larry; Goodrich, Robert; Norris, Douglas; Williams, John

    1999-01-01

    A 2 micrometer pulsed Doppler lidar was deployed to the Juneau Airport in 1998 to measure turbulence and wind shear in and around the departure and arrival corridors. The primary objective of the measurement program was to demonstrate and evaluate the capability of a pulsed coherent lidar to remotely and unambiguously measure wind turbulence. Lidar measurements were coordinated with flights of an instrumented research aircraft operated by representatives of the University of North Dakota (UND) under the direction of the National Center for Atmospheric Research (NCAR). The data collected is expected to aid both turbulence characterization as well as airborne turbulence detection algorithm development activities within NASA and the FAA. This paper presents a summary of the deployment and results of analysis and simulation which address important issues regarding the measurement requirements for accurate turbulent wind statistics extraction.

  12. Sample Acquisition and Instrument Deployment (SAID)

    NASA Technical Reports Server (NTRS)

    Boyd, Robert C.

    1994-01-01

    This report details the interim progress for contract NASW-4818, Sample Acquisition and Instrument Deployment (SAID), a robotic system for deploying science instruments and acquiring samples for analysis. The system is a conventional four degree of freedom manipulator 2 meters in length. A baseline design has been achieved through analysis and trade studies. The design considers environmental operating conditions on the surface of Mars, as well as volume constraints on proposed Mars landers. Control issues have also been studied, and simulations of joint and tip movements have been performed. A passively braked shape memory actuator with the ability to measure load has been developed. The wrist also contains a mechanism which locks the lid output to the bucket so that objects can be grasped and released for instrument deployment. The wrist actuator has been tested for operational power and mechanical functionality at Mars environmental conditions. The torque which the actuator can produce has been measured. Also, testing in Mars analogous soils has been performed.

  13. Expected precision of Europa Clipper gravity measurements

    NASA Astrophysics Data System (ADS)

    Verma, Ashok K.; Margot, Jean-Luc

    2018-11-01

    The primary gravity science objective of NASA's Clipper mission to Europa is to confirm the presence or absence of a global subsurface ocean beneath Europa's Icy crust. Gravity field measurements obtained with a radio science investigation can reveal much about Europa's interior structure. Here, we conduct extensive simulations of the radio science measurements with the anticipated spacecraft trajectory and attitude (17F12v2) and assets on the spacecraft and the ground, including antenna orientations and beam patterns, transmitter characteristics, and receiver noise figures. In addition to two-way Doppler measurements, we also include radar altimeter crossover range measurements. We concentrate on ± 2 h intervals centered on the closest approach of each of the 46 flybys. Our covariance analyses reveal the precision with which the tidal Love number k2, second-degree gravity coefficients Cbar20 and Cbar22 , and higher-order gravity coefficients can be determined. The results depend on the Deep Space Network (DSN) assets that are deployed to track the spacecraft. We find that some DSN allocations are sufficient to conclusively confirm the presence or absence of a global ocean. Given adequate crossover range performance, it is also possible to evaluate whether the ice shell is hydrostatic.

  14. Miami Valley ITS : early deployment plan : recommended system architecture and technologies working paper

    DOT National Transportation Integrated Search

    1997-08-01

    This system architecture paper will discuss proposed architectures for the four infrastructure oriented program areas defined by the project team and presented in the Strategic Deployment Plan (August 1997). This report will concentrate on defi...

  15. Design and Evaluation of Wood Processing Facilities Using Object-Oriented Simulation

    Treesearch

    D. Earl Kline; Philip A. Araman

    1992-01-01

    Managers of hardwood processing facilities need timely information on which to base important decisions such as when to add costly equipment or how to improve profitability subject to time-varying demands. The overall purpose of this paper is to introduce a tool that can effectively provide such timely information. A simulation/animation modeling procedure is described...

  16. Dshell++: A Component Based, Reusable Space System Simulation Framework

    NASA Technical Reports Server (NTRS)

    Lim, Christopher S.; Jain, Abhinandan

    2009-01-01

    This paper describes the multi-mission Dshell++ simulation framework for high fidelity, physics-based simulation of spacecraft, robotic manipulation and mobility systems. Dshell++ is a C++/Python library which uses modern script driven object-oriented techniques to allow component reuse and a dynamic run-time interface for complex, high-fidelity simulation of spacecraft and robotic systems. The goal of the Dshell++ architecture is to manage the inherent complexity of physicsbased simulations while supporting component model reuse across missions. The framework provides several features that support a large degree of simulation configurability and usability.

  17. Contextual cloud-based service oriented architecture for clinical workflow.

    PubMed

    Moreno-Conde, Jesús; Moreno-Conde, Alberto; Núñez-Benjumea, Francisco J; Parra-Calderón, Carlos

    2015-01-01

    Given that acceptance of systems within the healthcare domain multiple papers highlighted the importance of integrating tools with the clinical workflow. This paper analyse how clinical context management could be deployed in order to promote the adoption of cloud advanced services and within the clinical workflow. This deployment will be able to be integrated with the eHealth European Interoperability Framework promoted specifications. Throughout this paper, it is proposed a cloud-based service-oriented architecture. This architecture will implement a context management system aligned with the HL7 standard known as CCOW.

  18. High-level context effects on spatial displacement: the effects of body orientation and language on memory

    PubMed Central

    Vinson, David W.; Abney, Drew H.; Dale, Rick; Matlock, Teenie

    2014-01-01

    Three decades of research suggests that cognitive simulation of motion is involved in the comprehension of object location, bodily configuration, and linguistic meaning. For example, the remembered location of an object associated with actual or implied motion is typically displaced in the direction of motion. In this paper, two experiments explore context effects in spatial displacement. They provide a novel approach to estimating the remembered location of an implied motion image by employing a cursor-positioning task. Both experiments examine how the remembered spatial location of a person is influenced by subtle differences in implied motion, specifically, by shifting the orientation of the person’s body to face upward or downward, and by pairing the image with motion language that differed on intentionality, fell versus jumped. The results of Experiment 1, a survey-based experiment, suggest that language and body orientation influenced vertical spatial displacement. Results of Experiment 2, a task that used Adobe Flash and Amazon Mechanical Turk, showed consistent effects of body orientation on vertical spatial displacement but no effect of language. Our findings are in line with previous work on spatial displacement that uses a cursor-positioning task with implied motion stimuli. We discuss how different ways of simulating motion can influence spatial memory. PMID:25071628

  19. High-level context effects on spatial displacement: the effects of body orientation and language on memory.

    PubMed

    Vinson, David W; Abney, Drew H; Dale, Rick; Matlock, Teenie

    2014-01-01

    Three decades of research suggests that cognitive simulation of motion is involved in the comprehension of object location, bodily configuration, and linguistic meaning. For example, the remembered location of an object associated with actual or implied motion is typically displaced in the direction of motion. In this paper, two experiments explore context effects in spatial displacement. They provide a novel approach to estimating the remembered location of an implied motion image by employing a cursor-positioning task. Both experiments examine how the remembered spatial location of a person is influenced by subtle differences in implied motion, specifically, by shifting the orientation of the person's body to face upward or downward, and by pairing the image with motion language that differed on intentionality, fell versus jumped. The results of Experiment 1, a survey-based experiment, suggest that language and body orientation influenced vertical spatial displacement. Results of Experiment 2, a task that used Adobe Flash and Amazon Mechanical Turk, showed consistent effects of body orientation on vertical spatial displacement but no effect of language. Our findings are in line with previous work on spatial displacement that uses a cursor-positioning task with implied motion stimuli. We discuss how different ways of simulating motion can influence spatial memory.

  20. The three-dimensional Event-Driven Graphics Environment (3D-EDGE)

    NASA Technical Reports Server (NTRS)

    Freedman, Jeffrey; Hahn, Roger; Schwartz, David M.

    1993-01-01

    Stanford Telecom developed the Three-Dimensional Event-Driven Graphics Environment (3D-EDGE) for NASA GSFC's (GSFC) Communications Link Analysis and Simulation System (CLASS). 3D-EDGE consists of a library of object-oriented subroutines which allow engineers with little or no computer graphics experience to programmatically manipulate, render, animate, and access complex three-dimensional objects.

  1. Stochastic Optimization for Nuclear Facility Deployment Scenarios

    NASA Astrophysics Data System (ADS)

    Hays, Ross Daniel

    Single-use, low-enriched uranium oxide fuel, consumed through several cycles in a light-water reactor (LWR) before being disposed, has become the dominant source of commercial-scale nuclear electric generation in the United States and throughout the world. However, it is not without its drawbacks and is not the only potential nuclear fuel cycle available. Numerous alternative fuel cycles have been proposed at various times which, through the use of different reactor and recycling technologies, offer to counteract many of the perceived shortcomings with regards to waste management, resource utilization, and proliferation resistance. However, due to the varying maturity levels of these technologies, the complicated material flow feedback interactions their use would require, and the large capital investments in the current technology, one should not deploy these advanced designs without first investigating the potential costs and benefits of so doing. As the interactions among these systems can be complicated, and the ways in which they may be deployed are many, the application of automated numerical optimization to the simulation of the fuel cycle could potentially be of great benefit to researchers and interested policy planners. To investigate the potential of these methods, a computational program has been developed that applies a parallel, multi-objective simulated annealing algorithm to a computational optimization problem defined by a library of relevant objective functions applied to the Ver ifiable Fuel Cycle Simulati on Model (VISION, developed at the Idaho National Laboratory). The VISION model, when given a specified fuel cycle deployment scenario, computes the numbers and types of, and construction, operation, and utilization schedules for, the nuclear facilities required to meet a predetermined electric power demand function. Additionally, it calculates the location and composition of the nuclear fuels within the fuel cycle, from initial mining through to eventual disposal. By varying the specifications of the deployment scenario, the simulated annealing algorithm will seek to either minimize the value of a single objective function, or enumerate the trade-off surface between multiple competing objective functions. The available objective functions represent key stakeholder values, minimizing such important factors as high-level waste disposal burden, required uranium ore supply, relative proliferation potential, and economic cost and uncertainty. The optimization program itself is designed to be modular, allowing for continued expansion and exploration as research needs and curiosity indicate. The utility and functionality of this optimization program are demonstrated through its application to one potential fuel cycle scenario of interest. In this scenario, an existing legacy LWR fleet is assumed at the year 2000. The electric power demand grows exponentially at a rate of 1.8% per year through the year 2100. Initially, new demand is met by the construction of 1-GW(e) LWRs. However, beginning in the year 2040, 600-MW(e) sodium-cooled, fast-spectrum reactors operating in a transuranic burning regime with full recycling of spent fuel become available to meet demand. By varying the fraction of new capacity allocated to each reactor type, the optimization program is able to explicitly show the relationships that exist between uranium utilization, long-term heat for geologic disposal, and cost-of-electricity objective functions. The trends associated with these trade-off surfaces tend to confirm many common expectations about the use of nuclear power, namely that while overall it is quite insensitive to variations in the cost of uranium ore, it is quite sensitive to changes in the capital costs of facilities. The optimization algorithm has shown itself to be robust and extensible, with possible extensions to many further fuel cycle optimization problems of interest.

  2. Advanced Helmet Mounted Display (AHMD) for simulator applications

    NASA Astrophysics Data System (ADS)

    Sisodia, Ashok; Riser, Andrew; Bayer, Michael; McGuire, James P.

    2006-05-01

    The Advanced Helmet Mounted Display (AHMD), augmented reality visual system first presented at last year's Cockpit and Future Displays for Defense and Security conference, has now been evaluated in a number of military simulator applications and by L-3 Link Simulation and Training. This paper presents the preliminary results of these evaluations and describes current and future simulator and training applications for HMD technology. The AHMD blends computer-generated data (symbology, synthetic imagery, enhanced imagery) with the actual and simulated visible environment. The AHMD is designed specifically for highly mobile deployable, minimum resource demanding reconfigurable virtual training systems to satisfy the military's in-theater warrior readiness objective. A description of the innovative AHMD system and future enhancements will be discussed.

  3. National Cycle Program (NCP) Common Analysis Tool for Aeropropulsion

    NASA Technical Reports Server (NTRS)

    Follen, G.; Naiman, C.; Evans, A.

    1999-01-01

    Through the NASA/Industry Cooperative Effort (NICE) agreement, NASA Lewis and industry partners are developing a new engine simulation, called the National Cycle Program (NCP), which is the initial framework of NPSS. NCP is the first phase toward achieving the goal of NPSS. This new software supports the aerothermodynamic system simulation process for the full life cycle of an engine. The National Cycle Program (NCP) was written following the Object Oriented Paradigm (C++, CORBA). The software development process used was also based on the Object Oriented paradigm. Software reviews, configuration management, test plans, requirements, design were all apart of the process used in developing NCP. Due to the many contributors to NCP, the stated software process was mandatory for building a common tool intended for use by so many organizations. The U.S. aircraft and airframe companies recognize NCP as the future industry standard for propulsion system modeling.

  4. Development of a nanosatellite de-orbiting system by reliability based design optimization

    NASA Astrophysics Data System (ADS)

    Nikbay, Melike; Acar, Pınar; Aslan, Alim Rüstem

    2015-12-01

    This paper presents design approaches to develop a reliable and efficient de-orbiting system for the 3USAT nanosatellite to provide a beneficial orbital decay process at the end of a mission. A de-orbiting system is initially designed by employing the aerodynamic drag augmentation principle where the structural constraints of the overall satellite system and the aerodynamic forces are taken into account. Next, an alternative de-orbiting system is designed with new considerations and further optimized using deterministic and reliability based design techniques. For the multi-objective design, the objectives are chosen to maximize the aerodynamic drag force through the maximization of the Kapton surface area while minimizing the de-orbiting system mass. The constraints are related in a deterministic manner to the required deployment force, the height of the solar panel hole and the deployment angle. The length and the number of layers of the deployable Kapton structure are used as optimization variables. In the second stage of this study, uncertainties related to both manufacturing and operating conditions of the deployable structure in space environment are considered. These uncertainties are then incorporated into the design process by using different probabilistic approaches such as Monte Carlo Simulation, the First-Order Reliability Method and the Second-Order Reliability Method. The reliability based design optimization seeks optimal solutions using the former design objectives and constraints with the inclusion of a reliability index. Finally, the de-orbiting system design alternatives generated by different approaches are investigated and the reliability based optimum design is found to yield the best solution since it significantly improves both system reliability and performance requirements.

  5. IMPETUS - Interactive MultiPhysics Environment for Unified Simulations.

    PubMed

    Ha, Vi Q; Lykotrafitis, George

    2016-12-08

    We introduce IMPETUS - Interactive MultiPhysics Environment for Unified Simulations, an object oriented, easy-to-use, high performance, C++ program for three-dimensional simulations of complex physical systems that can benefit a large variety of research areas, especially in cell mechanics. The program implements cross-communication between locally interacting particles and continuum models residing in the same physical space while a network facilitates long-range particle interactions. Message Passing Interface is used for inter-processor communication for all simulations. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Simulation of orientational coherent effects via Geant4

    NASA Astrophysics Data System (ADS)

    Bagli, E.; Asai, M.; Brandt, D.; Dotti, A.; Guidi, V.; Verderi, M.; Wright, D.

    2017-10-01

    Simulation of orientational coherent effects via Geant4 beam manipulation of high-and very-high-energy particle beams is a hot topic in accelerator physics. Coherent effects of ultra-relativistic particles in bent crystals allow the steering of particle trajectories thanks to the strong electrical field generated between atomic planes. Recently, a collimation experiment with bent crystals was carried out at the CERN-LHC, paving the way to the usage of such technology in current and future accelerators. Geant4 is a widely used object-oriented tool-kit for the Monte Carlo simulation of the interaction of particles with matter in high-energy physics. Moreover, its areas of application include also nuclear and accelerator physics, as well as studies in medical and space science. We present the first Geant4 extension for the simulation of orientational effects in straight and bent crystals for high energy charged particles. The model allows the manipulation of particle trajectories by means of straight and bent crystals and the scaling of the cross sections of hadronic and electromagnetic processes for channeled particles. Based on such a model, an extension of the Geant4 toolkit has been developed. The code and the model have been validated by comparison with published experimental data regarding the deflection efficiency via channeling and the variation of the rate of inelastic nuclear interactions.

  7. NanoSail-D: The First Flight Demonstration of Solar Sails for Nanosatellites

    NASA Technical Reports Server (NTRS)

    Whorton, Mark; Heaton, Andy; Pinson, Robin; Laue, Greg; Adams, Charles L.

    2008-01-01

    The NanoSail-D mission is currently scheduled for launch onboard a Falcon Launch Vehicle in the late June 2008 timeframe. The NanoSail-D, a CubeSat-class satellite, will consist of a sail subsystem stowed in a Cubesat 2U volume integrated with a CubeSat 1U volume bus provided by the NASA Ames Research Center (ARC). Shortly after deployment of the NanoSail-D from a Poly Picosatellite Orbital Deployer (P-POD) ejection system, the solar sail will deploy and mission operations will commence. This demonstration flight has two primary mission objectives: 1) to successfully stow and deploy the sail and 2) to demonstrate de-orbit functionality. Given a nearterm opportunity for launch, the project was met with the challenge of delivering the flight hardware in approximately six months, which required a significant constraint on flight system functionality. As a consequence, passive attitude stabilization will be achieved using permanent magnets to de-tumble and orient the body with the magnetic field lines and then rely on atmospheric drag to passively stabilize the sailcraft in an essentially maximum drag attitude. This paper will present an introduction to solar sail propulsion systems, overview the NanoSail-D spacecraft, describe the performance analysis for the passive attitude stabilization, and present a prediction of flight data results from the mission.

  8. Largenet2: an object-oriented programming library for simulating large adaptive networks.

    PubMed

    Zschaler, Gerd; Gross, Thilo

    2013-01-15

    The largenet2 C++ library provides an infrastructure for the simulation of large dynamic and adaptive networks with discrete node and link states. The library is released as free software. It is available at http://biond.github.com/largenet2. Largenet2 is licensed under the Creative Commons Attribution-NonCommercial 3.0 Unported License. gerd@biond.org

  9. Deployment and Alcohol Use in a Military Cohort: Use of Combined Methods to Account for Exposure-Related Covariates and Heterogeneous Response to Exposure.

    PubMed

    Fink, David S; Keyes, Katherine M; Calabrese, Joseph R; Liberzon, Israel; Tamburrino, Marijo B; Cohen, Gregory H; Sampson, Laura; Galea, Sandro

    2017-08-15

    Studies have shown that combat-area deployment is associated with increases in alcohol use; however, studying the influence of deployment on alcohol use faces 2 complications. First, the military considers a confluence of factors before determining whether to deploy a service member, creating a nonignorable exposure and unbalanced comparison groups that inevitably complicate inference about the role of deployment itself. Second, regression analysis assumes that a single effect estimate can approximate the population's change in postdeployment alcohol use, which ignores previous studies that have documented that respondents tend to exhibit heterogeneous postdeployment drinking behaviors. Therefore, we used propensity score matching to balance baseline covariates for the 2 comparison groups (deployed and nondeployed), followed by a variable-oriented difference-in-differences approach to account for the confounding and a person-oriented approach using a latent growth mixture model to account for the heterogeneous response to deployment in this prospective cohort study of the US Army National Guard (2009-2014). We observed a nonsignificant increase in estimated monthly drinks in the first year after deployment that regressed to predeployment drinking levels 2 years after deployment. We found a 4-class model that fit these data best, suggesting that common regression analyses likely conceal substantial interindividual heterogeneity in postdeployment alcohol-use behaviors. © The Author(s) 2017. Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  10. Bee++: An Object-Oriented, Agent-Based Simulator for Honey Bee Colonies

    PubMed Central

    Betti, Matthew; LeClair, Josh; Wahl, Lindi M.; Zamir, Mair

    2017-01-01

    We present a model and associated simulation package (www.beeplusplus.ca) to capture the natural dynamics of a honey bee colony in a spatially-explicit landscape, with temporally-variable, weather-dependent parameters. The simulation tracks bees of different ages and castes, food stores within the colony, pollen and nectar sources and the spatial position of individual foragers outside the hive. We track explicitly the intake of pesticides in individual bees and their ability to metabolize these toxins, such that the impact of sub-lethal doses of pesticides can be explored. Moreover, pathogen populations (in particular, Nosema apis, Nosema cerenae and Varroa mites) have been included in the model and may be introduced at any time or location. The ability to study interactions among pesticides, climate, biodiversity and pathogens in this predictive framework should prove useful to a wide range of researchers studying honey bee populations. To this end, the simulation package is written in open source, object-oriented code (C++) and can be easily modified by the user. Here, we demonstrate the use of the model by exploring the effects of sub-lethal pesticide exposure on the flight behaviour of foragers. PMID:28287445

  11. Age-related differences in orienting attention to sound object representations.

    PubMed

    Alain, Claude; Cusimano, Madeline; Garami, Linda; Backer, Kristina C; Habelt, Bettina; Chan, Vanessa; Hasher, Lynn

    2018-06-01

    We examined the effect of age on listeners' ability to orient attention to an item in auditory short-term memory (ASTM) using high-density electroencephalography, while participants completed a delayed match-to-sample task. During the retention interval, an uninformative or an informative visual retro-cue guided attention to an item in ASTM. Informative cues speeded response times, but only for young adults. In young adults, informative retro-cues generated greater event-related potential amplitude between 450 and 650 ms at parietal sites, and an increased sustained potential over the left central scalp region, thought to index the deployment of attention and maintenance of the cued item in ASTM, respectively. Both modulations were reduced in older adults. Alpha and low beta oscillatory power suppression was greater when the retro-cue was informative than uninformative, especially in young adults. Our results point toward an age-related decline in orienting attention to the cued item in ASTM. Older adults may be dividing their attention between all items in working memory rather than selectively focusing attention on a single cued item. Copyright © 2018 Elsevier Inc. All rights reserved.

  12. Depletion forces on circular and elliptical obstacles induced by active matter

    NASA Astrophysics Data System (ADS)

    Leite, L. R.; Lucena, D.; Potiguar, F. Q.; Ferreira, W. P.

    2016-12-01

    Depletion forces exerted by self-propelled particles on circular and elliptical passive objects are studied using numerical simulations. We show that a bath of active particles can induce repulsive and attractive forces which are sensitive to the shape and orientation of the passive objects (either horizontal or vertical ellipses). The resultant force on the passive objects due to the active particles is studied as a function of the shape and orientation of the passive objects, magnitude of the angular noise, and distance between the passive objects. By increasing the distance between obstacles the magnitude of the repulsive depletion force increases, as long as such a distance is less than one active particle diameter. For longer distances, the magnitude of the force always decreases with increasing distance. We also found that attractive forces may arise for vertical ellipses at high enough area fraction.

  13. A Java application for tissue section image analysis.

    PubMed

    Kamalov, R; Guillaud, M; Haskins, D; Harrison, A; Kemp, R; Chiu, D; Follen, M; MacAulay, C

    2005-02-01

    The medical industry has taken advantage of Java and Java technologies over the past few years, in large part due to the language's platform-independence and object-oriented structure. As such, Java provides powerful and effective tools for developing tissue section analysis software. The background and execution of this development are discussed in this publication. Object-oriented structure allows for the creation of "Slide", "Unit", and "Cell" objects to simulate the corresponding real-world objects. Different functions may then be created to perform various tasks on these objects, thus facilitating the development of the software package as a whole. At the current time, substantial parts of the initially planned functionality have been implemented. Getafics 1.0 is fully operational and currently supports a variety of research projects; however, there are certain features of the software that currently introduce unnecessary complexity and inefficiency. In the future, we hope to include features that obviate these problems.

  14. Depletion forces on circular and elliptical obstacles induced by active matter.

    PubMed

    Leite, L R; Lucena, D; Potiguar, F Q; Ferreira, W P

    2016-12-01

    Depletion forces exerted by self-propelled particles on circular and elliptical passive objects are studied using numerical simulations. We show that a bath of active particles can induce repulsive and attractive forces which are sensitive to the shape and orientation of the passive objects (either horizontal or vertical ellipses). The resultant force on the passive objects due to the active particles is studied as a function of the shape and orientation of the passive objects, magnitude of the angular noise, and distance between the passive objects. By increasing the distance between obstacles the magnitude of the repulsive depletion force increases, as long as such a distance is less than one active particle diameter. For longer distances, the magnitude of the force always decreases with increasing distance. We also found that attractive forces may arise for vertical ellipses at high enough area fraction.

  15. Using Light Curves to Characterize Size and Shape of Pseudo-Debris

    NASA Technical Reports Server (NTRS)

    Rodriquez, Heather M.; Abercromby, Kira J.; Jarvis, Kandy S.; Barker, Edwin

    2006-01-01

    Photometric measurements were collected for a new study aimed at estimating orbital debris sizes based on object brightness. To obtain a size from optical measurements the current practice is to assume an albedo and use a normalized magnitude to calculate optical size. However, assuming a single albedo value may not be valid for all objects or orbit types; material type and orientation can mask an object s true optical cross section. This experiment used a CCD camera to record data, a 300 W Xenon, Ozone Free collimated light source to simulate solar illumination, and a robotic arm with five degrees of freedom to move the piece of simulated debris through various orientations. The pseudo-debris pieces used in this experiment originate from the European Space Operations Centre s ESOC2 ground test explosion of a mock satellite. A uniformly illuminated white ping-pong ball was used as a zero-magnitude reference. Each debris piece was then moved through specific orientations and rotations to generate a light curve. This paper discusses the results of five different object-based light curves as measured through an x-rotation. Intensity measurements, from which each light curve was generated, were recorded in five degree increments from zero to 180 degrees. Comparing light curves of different shaped and sized pieces against their characteristic length establishes the start of a database from which an optical size estimation model will be derived in the future.

  16. Network Communication as a Service-Oriented Capability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnston, William; Johnston, William; Metzger, Joe

    2008-01-08

    In widely distributed systems generally, and in science-oriented Grids in particular, software, CPU time, storage, etc., are treated as"services" -- they can be allocated and used with service guarantees that allows them to be integrated into systems that perform complex tasks. Network communication is currently not a service -- it is provided, in general, as a"best effort" capability with no guarantees and only statistical predictability. In order for Grids (and most types of systems with widely distributed components) to be successful in performing the sustained, complex tasks of large-scale science -- e.g., the multi-disciplinary simulation of next generation climate modelingmore » and management and analysis of the petabytes of data that will come from the next generation of scientific instrument (which is very soon for the LHC at CERN) -- networks must provide communication capability that is service-oriented: That is it must be configurable, schedulable, predictable, and reliable. In order to accomplish this, the research and education network community is undertaking a strategy that involves changes in network architecture to support multiple classes of service; development and deployment of service-oriented communication services, and; monitoring and reporting in a form that is directly useful to the application-oriented system so that it may adapt to communications failures. In this paper we describe ESnet's approach to each of these -- an approach that is part of an international community effort to have intra-distributed system communication be based on a service-oriented capability.« less

  17. An object-oriented simulator for 3D digital breast tomosynthesis imaging system.

    PubMed

    Seyyedi, Saeed; Cengiz, Kubra; Kamasak, Mustafa; Yildirim, Isa

    2013-01-01

    Digital breast tomosynthesis (DBT) is an innovative imaging modality that provides 3D reconstructed images of breast to detect the breast cancer. Projections obtained with an X-ray source moving in a limited angle interval are used to reconstruct 3D image of breast. Several reconstruction algorithms are available for DBT imaging. Filtered back projection algorithm has traditionally been used to reconstruct images from projections. Iterative reconstruction algorithms such as algebraic reconstruction technique (ART) were later developed. Recently, compressed sensing based methods have been proposed in tomosynthesis imaging problem. We have developed an object-oriented simulator for 3D digital breast tomosynthesis (DBT) imaging system using C++ programming language. The simulator is capable of implementing different iterative and compressed sensing based reconstruction methods on 3D digital tomosynthesis data sets and phantom models. A user friendly graphical user interface (GUI) helps users to select and run the desired methods on the designed phantom models or real data sets. The simulator has been tested on a phantom study that simulates breast tomosynthesis imaging problem. Results obtained with various methods including algebraic reconstruction technique (ART) and total variation regularized reconstruction techniques (ART+TV) are presented. Reconstruction results of the methods are compared both visually and quantitatively by evaluating performances of the methods using mean structural similarity (MSSIM) values.

  18. An Object-Oriented Simulator for 3D Digital Breast Tomosynthesis Imaging System

    PubMed Central

    Cengiz, Kubra

    2013-01-01

    Digital breast tomosynthesis (DBT) is an innovative imaging modality that provides 3D reconstructed images of breast to detect the breast cancer. Projections obtained with an X-ray source moving in a limited angle interval are used to reconstruct 3D image of breast. Several reconstruction algorithms are available for DBT imaging. Filtered back projection algorithm has traditionally been used to reconstruct images from projections. Iterative reconstruction algorithms such as algebraic reconstruction technique (ART) were later developed. Recently, compressed sensing based methods have been proposed in tomosynthesis imaging problem. We have developed an object-oriented simulator for 3D digital breast tomosynthesis (DBT) imaging system using C++ programming language. The simulator is capable of implementing different iterative and compressed sensing based reconstruction methods on 3D digital tomosynthesis data sets and phantom models. A user friendly graphical user interface (GUI) helps users to select and run the desired methods on the designed phantom models or real data sets. The simulator has been tested on a phantom study that simulates breast tomosynthesis imaging problem. Results obtained with various methods including algebraic reconstruction technique (ART) and total variation regularized reconstruction techniques (ART+TV) are presented. Reconstruction results of the methods are compared both visually and quantitatively by evaluating performances of the methods using mean structural similarity (MSSIM) values. PMID:24371468

  19. Improved representation of situational awareness within a dismounted small combat unit constructive simulation

    NASA Astrophysics Data System (ADS)

    Lee, K. David; Colony, Mike

    2011-06-01

    Modeling and simulation has been established as a cost-effective means of supporting the development of requirements, exploring doctrinal alternatives, assessing system performance, and performing design trade-off analysis. The Army's constructive simulation for the evaluation of equipment effectiveness in small combat unit operations is currently limited to representation of situation awareness without inclusion of the many uncertainties associated with real world combat environments. The goal of this research is to provide an ability to model situation awareness and decision process uncertainties in order to improve evaluation of the impact of battlefield equipment on ground soldier and small combat unit decision processes. Our Army Probabilistic Inference and Decision Engine (Army-PRIDE) system provides this required uncertainty modeling through the application of two critical techniques that allow Bayesian network technology to be applied to real-time applications. (Object-Oriented Bayesian Network methodology and Object-Oriented Inference technique). In this research, we implement decision process and situation awareness models for a reference scenario using Army-PRIDE and demonstrate its ability to model a variety of uncertainty elements, including: confidence of source, information completeness, and information loss. We also demonstrate that Army-PRIDE improves the realism of the current constructive simulation's decision processes through Monte Carlo simulation.

  20. Design and analysis considerations for deployment mechanisms in a space environment

    NASA Technical Reports Server (NTRS)

    Vorlicek, P. L.; Gore, J. V.; Plescia, C. T.

    1982-01-01

    On the second flight of the INTELSAT V spacecraft the time required for successful deployment of the north solar array was longer than originally predicted. The south solar array deployed as predicted. As a result of the difference in deployment times a series of experiments was conducted to locate the cause of the difference. Deployment rate sensitivity to hinge friction and temperature levels was investigated. A digital computer simulation of the deployment was created to evaluate the effects of parameter changes on deployment. Hinge design was optimized for nominal solar array deployment time for future INTELSAT V satellites. The nominal deployment times of both solar arrays on the third flight of INTELSAT V confirms the validity of the simulation and design optimization.

  1. MUST - An integrated system of support tools for research flight software engineering. [Multipurpose User-oriented Software Technology

    NASA Technical Reports Server (NTRS)

    Straeter, T. A.; Foudriat, E. C.; Will, R. W.

    1977-01-01

    The objectives of NASA's MUST (Multipurpose User-oriented Software Technology) program at Langley Research Center are to cut the cost of producing software which effectively utilizes digital systems for flight research. These objectives will be accomplished by providing an integrated system of support software tools for use throughout the research flight software development process. A description of the overall MUST program and its progress toward the release of a first MUST system will be presented. This release includes: a special interactive user interface, a library of subroutines, assemblers, a compiler, automatic documentation tools, and a test and simulation system.

  2. Effects of Orientation and Weatherproofing on the Detection of Bat Echolocation Calls

    Treesearch

    E. Britzke; B. Slack; M Armstrong; S. Loeb

    2010-01-01

    Ultrasonic detectors are powerful tools for the study of bat ecology. Many options are available for deploying acoustic detectors including various weatherproofing designs and microphone orientations, but the impacts of these options on the quantity and quality of the bat calls that are recorded are unknown. We compared the impacts of three microphone orientations (...

  3. The cloud services innovation platform- enabling service-based environmental modelling using infrastructure-as-a-service cloud computing

    USDA-ARS?s Scientific Manuscript database

    Service oriented architectures allow modelling engines to be hosted over the Internet abstracting physical hardware configuration and software deployments from model users. Many existing environmental models are deployed as desktop applications running on user's personal computers (PCs). Migration ...

  4. Multiphysics Object Oriented Simulation Environment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    The Multiphysics Object Oriented Simulation Environment (MOOSE) software library developed at Idaho National Laboratory is a tool. MOOSE, like other tools, doesn't actually complete a task. Instead, MOOSE seeks to reduce the effort required to create engineering simulation applications. MOOSE itself is a software library: a blank canvas upon which you write equations and then MOOSE can help you solve them. MOOSE is comparable to a spreadsheet application. A spreadsheet, by itself, doesn't do anything. Only once equations are entered into it will a spreadsheet application compute anything. Such is the same for MOOSE. An engineer or scientist can utilizemore » the equation solvers within MOOSE to solve equations related to their area of study. For instance, a geomechanical scientist can input equations related to water flow in underground reservoirs and MOOSE can solve those equations to give the scientist an idea of how water could move over time. An engineer might input equations related to the forces in steel beams in order to understand the load bearing capacity of a bridge. Because MOOSE is a blank canvas it can be useful in many scientific and engineering pursuits.« less

  5. Deployment and retraction of a cable-driven solar array: Testing and simulation

    NASA Technical Reports Server (NTRS)

    Kumar, P.; Pellegrino, S.

    1995-01-01

    The paper investigates three critical areas in cable-driven rigid-panel solar arrays: First, the variation of deployment and retraction cable tensions due to friction at the hinges; Second, the change in deployment dynamics associated with different deployment histories; Third, the relationship between the level of pre-tension in the closed contact loops and the synchronization of deployment. A small scale model array has been made and tested, and its behavior has been compared to numerical simulations.

  6. Three Dimensional Computer Graphics Federates for the 2012 Smackdown Simulation

    NASA Technical Reports Server (NTRS)

    Fordyce, Crystal; Govindaiah, Swetha; Muratet, Sean; O'Neil, Daniel A.; Schricker, Bradley C.

    2012-01-01

    The Simulation Interoperability Standards Organization (SISO) Smackdown is a two-year old annual event held at the 2012 Spring Simulation Interoperability Workshop (SIW). A primary objective of the Smackdown event is to provide college students with hands-on experience in developing distributed simulations using High Level Architecture (HLA). Participating for the second time, the University of Alabama in Huntsville (UAHuntsville) deployed four federates, two federates simulated a communications server and a lunar communications satellite with a radio. The other two federates generated 3D computer graphics displays for the communication satellite constellation and for the surface based lunar resupply mission. Using the Light-Weight Java Graphics Library, the satellite display federate presented a lunar-texture mapped sphere of the moon and four Telemetry Data Relay Satellites (TDRS), which received object attributes from the lunar communications satellite federate to drive their motion. The surface mission display federate was an enhanced version of the federate developed by ForwardSim, Inc. for the 2011 Smackdown simulation. Enhancements included a dead-reckoning algorithm and a visual indication of which communication satellite was in line of sight of Hadley Rille. This paper concentrates on these two federates by describing the functions, algorithms, HLA object attributes received from other federates, development experiences and recommendations for future, participating Smackdown teams.

  7. STS-31 pre-deployment checkout of the Hubble Space Telescope (HST) on OV-103

    NASA Image and Video Library

    1990-04-25

    The Hubble Space Telescope (HST), grappled by Discovery's, Orbiter Vehicle (OV) 103's, remote manipulator system (RMS), is oriented in a 90 degree pitch position during STS-31 pre-deployment checkout procedures. The solar array (SA) panel (center) and high gain antennae (HGA) (on either side) are stowed along the Support System Module (SSM) forward shell prior to deployment. The sun highlights HST against the blackness of space.

  8. Software as a service approach to sensor simulation software deployment

    NASA Astrophysics Data System (ADS)

    Webster, Steven; Miller, Gordon; Mayott, Gregory

    2012-05-01

    Traditionally, military simulation has been problem domain specific. Executing an exercise currently requires multiple simulation software providers to specialize, deploy, and configure their respective implementations, integrate the collection of software to achieve a specific system behavior, and then execute for the purpose at hand. This approach leads to rigid system integrations which require simulation expertise for each deployment due to changes in location, hardware, and software. Our alternative is Software as a Service (SaaS) predicated on the virtualization of Night Vision Electronic Sensors (NVESD) sensor simulations as an exemplary case. Management middleware elements layer self provisioning, configuration, and integration services onto the virtualized sensors to present a system of services at run time. Given an Infrastructure as a Service (IaaS) environment, enabled and managed system of simulations yields a durable SaaS delivery without requiring user simulation expertise. Persistent SaaS simulations would provide on demand availability to connected users, decrease integration costs and timelines, and benefit the domain community from immediate deployment of lessons learned.

  9. Systematic Development of Intelligent Systems for Public Road Transport.

    PubMed

    García, Carmelo R; Quesada-Arencibia, Alexis; Cristóbal, Teresa; Padrón, Gabino; Alayón, Francisco

    2016-07-16

    This paper presents an architecture model for the development of intelligent systems for public passenger transport by road. The main objective of our proposal is to provide a framework for the systematic development and deployment of telematics systems to improve various aspects of this type of transport, such as efficiency, accessibility and safety. The architecture model presented herein is based on international standards on intelligent transport system architectures, ubiquitous computing and service-oriented architecture for distributed systems. To illustrate the utility of the model, we also present a use case of a monitoring system for stops on a public passenger road transport network.

  10. Systematic Development of Intelligent Systems for Public Road Transport

    PubMed Central

    García, Carmelo R.; Quesada-Arencibia, Alexis; Cristóbal, Teresa; Padrón, Gabino; Alayón, Francisco

    2016-01-01

    This paper presents an architecture model for the development of intelligent systems for public passenger transport by road. The main objective of our proposal is to provide a framework for the systematic development and deployment of telematics systems to improve various aspects of this type of transport, such as efficiency, accessibility and safety. The architecture model presented herein is based on international standards on intelligent transport system architectures, ubiquitous computing and service-oriented architecture for distributed systems. To illustrate the utility of the model, we also present a use case of a monitoring system for stops on a public passenger road transport network. PMID:27438836

  11. WMT: The CSDMS Web Modeling Tool

    NASA Astrophysics Data System (ADS)

    Piper, M.; Hutton, E. W. H.; Overeem, I.; Syvitski, J. P.

    2015-12-01

    The Community Surface Dynamics Modeling System (CSDMS) has a mission to enable model use and development for research in earth surface processes. CSDMS strives to expand the use of quantitative modeling techniques, promotes best practices in coding, and advocates for the use of open-source software. To streamline and standardize access to models, CSDMS has developed the Web Modeling Tool (WMT), a RESTful web application with a client-side graphical interface and a server-side database and API that allows users to build coupled surface dynamics models in a web browser on a personal computer or a mobile device, and run them in a high-performance computing (HPC) environment. With WMT, users can: Design a model from a set of components Edit component parameters Save models to a web-accessible server Share saved models with the community Submit runs to an HPC system Download simulation results The WMT client is an Ajax application written in Java with GWT, which allows developers to employ object-oriented design principles and development tools such as Ant, Eclipse and JUnit. For deployment on the web, the GWT compiler translates Java code to optimized and obfuscated JavaScript. The WMT client is supported on Firefox, Chrome, Safari, and Internet Explorer. The WMT server, written in Python and SQLite, is a layered system, with each layer exposing a web service API: wmt-db: database of component, model, and simulation metadata and output wmt-api: configure and connect components wmt-exe: launch simulations on remote execution servers The database server provides, as JSON-encoded messages, the metadata for users to couple model components, including descriptions of component exchange items, uses and provides ports, and input parameters. Execution servers are network-accessible computational resources, ranging from HPC systems to desktop computers, containing the CSDMS software stack for running a simulation. Once a simulation completes, its output, in NetCDF, is packaged and uploaded to a data server where it is stored and from which a user can download it as a single compressed archive file.

  12. A Computer Model for Red Blood Cell Chemistry

    DTIC Science & Technology

    1996-10-01

    5012. 13. ABSTRACT (Maximum 200 There is a growing need for interactive computational tools for medical education and research. The most exciting...paradigm for interactive education is simulation. Fluid Mod is a simulation based computational tool developed in the late sixties and early seventies at...to a modern Windows, object oriented interface. This development will provide students with a useful computational tool for learning . More important

  13. Deployment Simulation of Ultra-Lightweight Inflatable Structures

    NASA Technical Reports Server (NTRS)

    Wang, John T.; Johnson, Arthur R.

    2002-01-01

    Dynamic deployment analyses of folded inflatable tubes are conducted to investigate modeling issues related to the deployment of solar sail booms. The analyses are necessary because ground tests include gravity effects and may poorly represent deployment in space. A control volume approach, available in the LS-DYNA nonlinear dynamic finite element code, and the ideal gas law are used to simulate the dynamic inflation deployment process. Three deployment issues are investigated for a tube packaged in a Z-fold configuration. The issues are the effect of the rate of inflation, the effect of residual air, and the effect of gravity. The results of the deployment analyses reveal that the time and amount of inflation gas required to achieve a full deployment are related to these issues.

  14. The Propulsive Small Expendable Deployer System (ProSEDS)

    NASA Technical Reports Server (NTRS)

    Lorenzini, Enrico C.

    2002-01-01

    This Annual Report covers the following main topics: 1) Updated Reference Mission. The reference ProSEDS (Propulsive Small Expendable Deployer System) mission is evaluated for an updated launch date in the Summer of 2002 and for the new 80-s current operating cycle. Simulations are run for nominal solar activity condition at the time of launch and for extreme conditions of dynamic forcing. Simulations include the dynamics of the system, the electrodynamics of the bare tether, the neutral atmosphere and the thermal response of the tether. 2) Evaluation of power delivered by the tether system. The power delivered by the tethered system during the battery charging mode is computed under the assumption of minimum solar activity for the new launch date. 3) Updated Deployment Control Profiles and Simulations. A number of new deployment profiles were derived based on the latest results of the deployment ground tests. The flight profile is then derived based on the friction characteristics obtained from the deployment tests of the F-1 tether. 4) Analysis/estimation of deployment flight data. A process was developed to estimate the deployment trajectory of the endmass with respect to the Delta and the final libration amplitude from the data of the deployer turn counters. This software was tested successfully during the ProSEDS mission simulation at MSFC (Marshall Space Flight Center) EDAC (Environments Data Analysis Center).

  15. Energy-efficient fault tolerance in multiprocessor real-time systems

    NASA Astrophysics Data System (ADS)

    Guo, Yifeng

    The recent progress in the multiprocessor/multicore systems has important implications for real-time system design and operation. From vehicle navigation to space applications as well as industrial control systems, the trend is to deploy multiple processors in real-time systems: systems with 4 -- 8 processors are common, and it is expected that many-core systems with dozens of processing cores will be available in near future. For such systems, in addition to general temporal requirement common for all real-time systems, two additional operational objectives are seen as critical: energy efficiency and fault tolerance. An intriguing dimension of the problem is that energy efficiency and fault tolerance are typically conflicting objectives, due to the fact that tolerating faults (e.g., permanent/transient) often requires extra resources with high energy consumption potential. In this dissertation, various techniques for energy-efficient fault tolerance in multiprocessor real-time systems have been investigated. First, the Reliability-Aware Power Management (RAPM) framework, which can preserve the system reliability with respect to transient faults when Dynamic Voltage Scaling (DVS) is applied for energy savings, is extended to support parallel real-time applications with precedence constraints. Next, the traditional Standby-Sparing (SS) technique for dual processor systems, which takes both transient and permanent faults into consideration while saving energy, is generalized to support multiprocessor systems with arbitrary number of identical processors. Observing the inefficient usage of slack time in the SS technique, a Preference-Oriented Scheduling Framework is designed to address the problem where tasks are given preferences for being executed as soon as possible (ASAP) or as late as possible (ALAP). A preference-oriented earliest deadline (POED) scheduler is proposed and its application in multiprocessor systems for energy-efficient fault tolerance is investigated, where tasks' main copies are executed ASAP while backup copies ALAP to reduce the overlapped execution of main and backup copies of the same task and thus reduce energy consumption. All proposed techniques are evaluated through extensive simulations and compared with other state-of-the-art approaches. The simulation results confirm that the proposed schemes can preserve the system reliability while still achieving substantial energy savings. Finally, for both SS and POED based Energy-Efficient Fault-Tolerant (EEFT) schemes, a series of recovery strategies are designed when more than one (transient and permanent) faults need to be tolerated.

  16. NASA Tech Briefs, September 2010

    NASA Technical Reports Server (NTRS)

    2010-01-01

    Topics covered include: Instrument for Measuring Thermal Conductivity of Materials at Low Temperatures; Multi-Axis Accelerometer Calibration System; Pupil Alignment Measuring Technique and Alignment Reference for Instruments or Optical Systems; Autonomous System for Monitoring the Integrity of Composite Fan Housings; A Safe, Self-Calibrating, Wireless System for Measuring Volume of Any Fuel at Non-Horizontal Orientation; Adaptation of the Camera Link Interface for Flight-Instrument Applications; High-Performance CCSDS Encapsulation Service Implementation in FPGA; High-Performance CCSDS AOS Protocol Implementation in FPGA; Advanced Flip Chips in Extreme Temperature Environments; Diffuse-Illumination Systems for Growing Plants; Microwave Plasma Hydrogen Recovery System; Producing Hydrogen by Plasma Pyrolysis of Methane; Self-Deployable Membrane Structures; Reactivation of a Tin-Oxide-Containing Catalys; Functionalization of Single-Wall Carbon Nanotubes by Photo-Oxidation; Miniature Piezoelectric Macro-Mass Balance; Acoustic Liner for Turbomachinery Applications; Metering Gas Strut for Separating Rocket Stages; Large-Flow-Area Flow-Selective Liquid/Gas Separator; Counterflowing Jet Subsystem Design; Water Tank with Capillary Air/Liquid Separation; True Shear Parallel Plate Viscometer; Focusing Diffraction Grating Element with Aberration Control; Universal Millimeter-Wave Radar Front End; Mode Selection for a Single-Frequency Fiber Laser; Qualification and Selection of Flight Diode Lasers for Space Applications; Plenoptic Imager for Automated Surface Navigation; Maglev Facility for Simulating Variable Gravity; Hybrid AlGaN-SiC Avalanche Photodiode for Deep-UV Photon Detection; High-Speed Operation of Interband Cascade Lasers; 3D GeoWall Analysis System for Shuttle External Tank Foreign Object Debris Events; Charge-Spot Model for Electrostatic Forces in Simulation of Fine Particulates; Hidden Statistics Approach to Quantum Simulations; Reconstituted Three-Dimensional Interactive Imaging; Determining Atmospheric-Density Profile of Titan; Digital Microfluidics Sample Analyzer; Radiation Protection Using Carbon Nanotube Derivatives; Process to Selectively Distinguish Viable from Non-Viable Bacterial Cells; and TEAMS Model Analyzer.

  17. Marbles for the Imagination

    NASA Technical Reports Server (NTRS)

    Shue, Jack

    2004-01-01

    The end-to-end test would verify the complex sequence of events from lander separation to landing. Due to the large distances involved and the significant delay time in sending a command and receiving verification, the lander needed to operate autonomously after it separated from the orbiter. It had to sense conditions, make decisions, and act accordingly. We were flying into a relatively unknown set of conditions-a Martian atmosphere of unknown pressure, density, and consistency to land on a surface of unknown altitude, and one which had an unknown bearing strength. In order to touch down safely on Mars the lander had to orient itself for descent and entry, modulate itself to maintain proper lift, pop a parachute, jettison its aeroshell, deploy landing legs and radar, ignite a terminal descent engine, and fly a given trajectory to the surface. Once on the surface, it would determine its orientation, raise the high-gain antenna, perform a sweep to locate Earth, and begin transmitting information. It was this complicated, autonomous sequence that the end-to-end test was to simulate.

  18. An Object-oriented Computer Code for Aircraft Engine Weight Estimation

    NASA Technical Reports Server (NTRS)

    Tong, Michael T.; Naylor, Bret A.

    2008-01-01

    Reliable engine-weight estimation at the conceptual design stage is critical to the development of new aircraft engines. It helps to identify the best engine concept amongst several candidates. At NASA Glenn (GRC), the Weight Analysis of Turbine Engines (WATE) computer code, originally developed by Boeing Aircraft, has been used to estimate the engine weight of various conceptual engine designs. The code, written in FORTRAN, was originally developed for NASA in 1979. Since then, substantial improvements have been made to the code to improve the weight calculations for most of the engine components. Most recently, to improve the maintainability and extensibility of WATE, the FORTRAN code has been converted into an object-oriented version. The conversion was done within the NASA s NPSS (Numerical Propulsion System Simulation) framework. This enables WATE to interact seamlessly with the thermodynamic cycle model which provides component flow data such as airflows, temperatures, and pressures, etc. that are required for sizing the components and weight calculations. The tighter integration between the NPSS and WATE would greatly enhance system-level analysis and optimization capabilities. It also would facilitate the enhancement of the WATE code for next-generation aircraft and space propulsion systems. In this paper, the architecture of the object-oriented WATE code (or WATE++) is described. Both the FORTRAN and object-oriented versions of the code are employed to compute the dimensions and weight of a 300- passenger aircraft engine (GE90 class). Both versions of the code produce essentially identical results as should be the case. Keywords: NASA, aircraft engine, weight, object-oriented

  19. Feature-oriented regional modeling and simulations in the Gulf of Maine and Georges Bank

    NASA Astrophysics Data System (ADS)

    Gangopadhyay, Avijit; Robinson, Allan R.; Haley, Patrick J.; Leslie, Wayne G.; Lozano, Carlos J.; Bisagni, James J.; Yu, Zhitao

    2003-03-01

    The multiscale synoptic circulation system in the Gulf of Maine and Georges Bank (GOMGB) region is presented using a feature-oriented approach. Prevalent synoptic circulation structures, or 'features', are identified from previous observational studies. These features include the buoyancy-driven Maine Coastal Current, the Georges Bank anticyclonic frontal circulation system, the basin-scale cyclonic gyres (Jordan, Georges and Wilkinson), the deep inflow through the Northeast Channel (NEC), the shallow outflow via the Great South Channel (GSC), and the shelf-slope front (SSF). Their synoptic water-mass ( T- S) structures are characterized and parameterized in a generalized formulation to develop temperature-salinity feature models. A synoptic initialization scheme for feature-oriented regional modeling and simulation (FORMS) of the circulation in the coastal-to-deep region of the GOMGB system is then developed. First, the temperature and salinity feature-model profiles are placed on a regional circulation template and then objectively analyzed with appropriate background climatology in the coastal region. Furthermore, these fields are melded with adjacent deep-ocean regional circulation (Gulf Stream Meander and Ring region) along and across the SSF. These initialization fields are then used for dynamical simulations via the primitive equation model. Simulation results are analyzed to calibrate the multiparameter feature-oriented modeling system. Experimental short-term synoptic simulations are presented for multiple resolutions in different regions with and without atmospheric forcing. The presented 'generic and portable' methodology demonstrates the potential of applying similar FORMS in many other regions of the Global Coastal Ocean.

  20. Distinct retinal pathways drive spatial orientation behaviors in zebrafish navigation.

    PubMed

    Burgess, Harold A; Schoch, Hannah; Granato, Michael

    2010-02-23

    Navigation requires animals to adjust ongoing movements in response to pertinent features of the environment and select between competing target cues. The neurobiological basis of navigational behavior in vertebrates is hard to analyze, partly because underlying neural circuits are experience dependent. Phototaxis in zebrafish is a hardwired navigational behavior, performed at a stage when larvae swim by using a small repertoire of stereotyped movements. We established conditions to elicit robust phototaxis behavior and found that zebrafish larvae deploy directional orienting maneuvers and regulate forward swimming speed to navigate toward a target light. Using genetic analysis and targeted laser ablations, we show that retinal ON and OFF pathways play distinct roles during phototaxis. The retinal OFF pathway controls turn movements via retinotectal projections and establishes correct orientation by causing larvae to turn away from nontarget areas. In contrast, the retinal ON pathway activates the serotonergic system to trigger rapid forward swimming toward the target. Computational simulation of phototaxis with an OFF-turn, ON-approach algorithm verifies that our model accounts for key features of phototaxis and provides a simple and robust mechanism for behavioral choice between competing targets. Copyright 2010 Elsevier Ltd. All rights reserved.

  1. Research in Presistent Simulation: Development of the Persistent ModSim Object-Oriented Programming Language

    DTIC Science & Technology

    1993-07-01

    version tree is formed that permits users to go back to any previous version. There are methods for traversing the version tree of a particular...workspace. Workspace objects are linked (or nested) hierarchically into a workspace tree . Applications can set the access privileges to parts of this...workspace tree to control access (and hence change). There must be a default global workspace. Workspace objects are then allocated within the context

  2. Bringing Home a Piece of Mars from the Utah Desert: A Canadian Robotic Deployment in Support of Mars Sample Return

    NASA Astrophysics Data System (ADS)

    Haltigin, T.; Hipkin, V.; Picard, M.

    2016-12-01

    Mars Sample Return (MSR) remains one of the highest priorities of the international planetary science community. While the overall mission architecture required for MSR is relatively well defined, there remain a number of open questions regarding its implementation. In preparing for an eventual MSR campaign, simulating portions of the sample collection mission can provide important insight to address existing knowledge gaps. In 2015 and 2016, the Canadian Space Agency (CSA) led robotic deployments to address a variety of technical, scientific, operational, and educational objectives. Here we report on the results. The deployments were conducted at a field site near Hanskville, UT, USA, chosen to satisfy scientific, technical, and logistical considerations. The geology of the region is dominated by Jurassic-aged sandstones and mudstones, indicative of an ancient sedimentary environment. Moreover, a series of linear topographically inverted features are present, similar to morphologies observed in particular Martian landscapes. On both Earth and Mars, these features are interpreted as lithified and exhumed river channels. A science operations center was established in London, ON, Canada, at Western University. Here, a science team of > 30 students and professionals - unaware of the rover's actual location - were responsible for generating daily science plans, requesting observations, and interpreting downloaded data, all while respecting Mars-realistic flight rules and constraints for power, scheduling, and data. Rover commanding was performed by an engineering team at CSA headquarters in St. Hubert, QC, Canada, while a small out-of-simulation field team was present on-site to ensure safe operations of the rover and to provide data transfers. Between the 2015 and 2016 campaigns, nearly five weeks of operations were conducted. The team successfully collected scientifically-selected samples to address the group objectives, and the rover demonstrated system integration and a variety of navigational techniques. Forward work involves laboratory-based validation of the returned samples to evaluate the efficiency of the in-simulation operational decision-making.

  3. Acceleration environment of payloads while being handled by the Shuttle Remote Manipulator System

    NASA Technical Reports Server (NTRS)

    Turnbull, J. F.

    1983-01-01

    Described in this paper is the method used in the Draper Remote Manipulator System (RMS) Simulation to compute linear accelerations at the point on the SPAS01 payload where its accelerometers are mounted. Simulated accelerometer output for representative on-orbit activities is presented. The objectives of post-flight analysis of SPAS01 data are discussed. Finally, the point is made that designers of acceleration-dependent payloads may have an interest in the capability of simulating the acceleration environment of payloads while under the control of the overall Payload Deployment and retrieval System (PDRS) that includes the Orbiter and its attitude control system as well as the Remote Manipulator Arm.

  4. Using object-oriented analysis techniques to support system testing

    NASA Astrophysics Data System (ADS)

    Zucconi, Lin

    1990-03-01

    Testing of real-time control systems can be greatly facilitated by use of object-oriented and structured analysis modeling techniques. This report describes a project where behavior, process and information models built for a real-time control system were used to augment and aid traditional system testing. The modeling techniques used were an adaptation of the Ward/Mellor method for real-time systems analysis and design (Ward85) for object-oriented development. The models were used to simulate system behavior by means of hand execution of the behavior or state model and the associated process (data and control flow) and information (data) models. The information model, which uses an extended entity-relationship modeling technique, is used to identify application domain objects and their attributes (instance variables). The behavioral model uses state-transition diagrams to describe the state-dependent behavior of the object. The process model uses a transformation schema to describe the operations performed on or by the object. Together, these models provide a means of analyzing and specifying a system in terms of the static and dynamic properties of the objects which it manipulates. The various models were used to simultaneously capture knowledge about both the objects in the application domain and the system implementation. Models were constructed, verified against the software as-built and validated through informal reviews with the developer. These models were then hand-executed.

  5. OpenSim: A Flexible Distributed Neural Network Simulator with Automatic Interactive Graphics.

    PubMed

    Jarosch, Andreas; Leber, Jean Francois

    1997-06-01

    An object-oriented simulator called OpenSim is presented that achieves a high degree of flexibility by relying on a small set of building blocks. The state variables and algorithms put in this framework can easily be accessed through a command shell. This allows one to distribute a large-scale simulation over several workstations and to generate the interactive graphics automatically. OpenSim opens new possibilities for cooperation among Neural Network researchers. Copyright 1997 Elsevier Science Ltd.

  6. An object-oriented approach to risk and reliability analysis : methodology and aviation safety applications.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dandini, Vincent John; Duran, Felicia Angelica; Wyss, Gregory Dane

    2003-09-01

    This article describes how features of event tree analysis and Monte Carlo-based discrete event simulation can be combined with concepts from object-oriented analysis to develop a new risk assessment methodology, with some of the best features of each. The resultant object-based event scenario tree (OBEST) methodology enables an analyst to rapidly construct realistic models for scenarios for which an a priori discovery of event ordering is either cumbersome or impossible. Each scenario produced by OBEST is automatically associated with a likelihood estimate because probabilistic branching is integral to the object model definition. The OBEST methodology is then applied to anmore » aviation safety problem that considers mechanisms by which an aircraft might become involved in a runway incursion incident. The resulting OBEST model demonstrates how a close link between human reliability analysis and probabilistic risk assessment methods can provide important insights into aviation safety phenomenology.« less

  7. MOOSE: A parallel computational framework for coupled systems of nonlinear equations.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Derek Gaston; Chris Newman; Glen Hansen

    Systems of coupled, nonlinear partial differential equations (PDEs) often arise in simulation of nuclear processes. MOOSE: Multiphysics Object Oriented Simulation Environment, a parallel computational framework targeted at the solution of such systems, is presented. As opposed to traditional data-flow oriented computational frameworks, MOOSE is instead founded on the mathematical principle of Jacobian-free Newton-Krylov (JFNK) solution methods. Utilizing the mathematical structure present in JFNK, physics expressions are modularized into `Kernels,'' allowing for rapid production of new simulation tools. In addition, systems are solved implicitly and fully coupled, employing physics based preconditioning, which provides great flexibility even with large variance in timemore » scales. A summary of the mathematics, an overview of the structure of MOOSE, and several representative solutions from applications built on the framework are presented.« less

  8. Development of an object-oriented finite element program: application to metal-forming and impact simulations

    NASA Astrophysics Data System (ADS)

    Pantale, O.; Caperaa, S.; Rakotomalala, R.

    2004-07-01

    During the last 50 years, the development of better numerical methods and more powerful computers has been a major enterprise for the scientific community. In the same time, the finite element method has become a widely used tool for researchers and engineers. Recent advances in computational software have made possible to solve more physical and complex problems such as coupled problems, nonlinearities, high strain and high-strain rate problems. In this field, an accurate analysis of large deformation inelastic problems occurring in metal-forming or impact simulations is extremely important as a consequence of high amount of plastic flow. In this presentation, the object-oriented implementation, using the C++ language, of an explicit finite element code called DynELA is presented. The object-oriented programming (OOP) leads to better-structured codes for the finite element method and facilitates the development, the maintainability and the expandability of such codes. The most significant advantage of OOP is in the modeling of complex physical systems such as deformation processing where the overall complex problem is partitioned in individual sub-problems based on physical, mathematical or geometric reasoning. We first focus on the advantages of OOP for the development of scientific programs. Specific aspects of OOP, such as the inheritance mechanism, the operators overload procedure or the use of template classes are detailed. Then we present the approach used for the development of our finite element code through the presentation of the kinematics, conservative and constitutive laws and their respective implementation in C++. Finally, the efficiency and accuracy of our finite element program are investigated using a number of benchmark tests relative to metal forming and impact simulations.

  9. Augmented assessment as a means to augmented reality.

    PubMed

    Bergeron, Bryan

    2006-01-01

    Rigorous scientific assessment of educational technologies typically lags behind the availability of the technologies by years because of the lack of validated instruments and benchmarks. Even when the appropriate assessment instruments are available, they may not be applied because of time and monetary constraints. Work in augmented reality, instrumented mannequins, serious gaming, and similar promising educational technologies that haven't undergone timely, rigorous evaluation, highlights the need for assessment methodologies that address the limitations of traditional approaches. The most promising augmented assessment solutions incorporate elements of rapid prototyping used in the software industry, simulation-based assessment techniques modeled after methods used in bioinformatics, and object-oriented analysis methods borrowed from object oriented programming.

  10. JASMINE simulator

    NASA Astrophysics Data System (ADS)

    Yamada, Yoshiyuki; Gouda, Naoteru; Yano, Taihei; Kobayashi, Yukiyasu; Tsujimoto, Takuji; Suganuma, Masahiro; Niwa, Yoshito; Sako, Nobutada; Hatsutori, Yoichi; Tanaka, Takashi

    2006-06-01

    We explain simulation tools in JASMINE project (JASMINE simulator). The JASMINE project stands at the stage where its basic design will be determined in a few years. Then it is very important to simulate the data stream generated by astrometric fields at JASMINE in order to support investigations into error budgets, sampling strategy, data compression, data analysis, scientific performances, etc. Of course, component simulations are needed, but total simulations which include all components from observation target to satellite system are also very important. We find that new software technologies, such as Object Oriented(OO) methodologies are ideal tools for the simulation system of JASMINE(the JASMINE simulator). In this article, we explain the framework of the JASMINE simulator.

  11. GEMSS: grid-infrastructure for medical service provision.

    PubMed

    Benkner, S; Berti, G; Engelbrecht, G; Fingberg, J; Kohring, G; Middleton, S E; Schmidt, R

    2005-01-01

    The European GEMSS Project is concerned with the creation of medical Grid service prototypes and their evaluation in a secure service-oriented infrastructure for distributed on demand/supercomputing. Key aspects of the GEMSS Grid middleware include negotiable QoS support for time-critical service provision, flexible support for business models, and security at all levels in order to ensure privacy of patient data as well as compliance to EU law. The GEMSS Grid infrastructure is based on a service-oriented architecture and is being built on top of existing standard Grid and Web technologies. The GEMSS infrastructure offers a generic Grid service provision framework that hides the complexity of transforming existing applications into Grid services. For the development of client-side applications or portals, a pluggable component framework has been developed, providing developers with full control over business processes, service discovery, QoS negotiation, and workflow, while keeping their underlying implementation hidden from view. A first version of the GEMSS Grid infrastructure is operational and has been used for the set-up of a Grid test-bed deploying six medical Grid service prototypes including maxillo-facial surgery simulation, neuro-surgery support, radio-surgery planning, inhaled drug-delivery simulation, cardiovascular simulation and advanced image reconstruction. The GEMSS Grid infrastructure is based on standard Web Services technology with an anticipated future transition path towards the OGSA standard proposed by the Global Grid Forum. GEMSS demonstrates that the Grid can be used to provide medical practitioners and researchers with access to advanced simulation and image processing services for improved preoperative planning and near real-time surgical support.

  12. Challenges to Computational Aerothermodynamic Simulation and Validation for Planetary Entry Vehicle Analysis

    NASA Technical Reports Server (NTRS)

    Gnoffo, Peter A.; Johnston, Christopher O.; Kleb, Bil

    2010-01-01

    Challenges to computational aerothermodynamic (CA) simulation and validation of hypersonic flow over planetary entry vehicles are discussed. Entry, descent, and landing (EDL) of high mass to Mars is a significant driver of new simulation requirements. These requirements include simulation of large deployable, flexible structures and interactions with reaction control system (RCS) and retro-thruster jets. Simulation of radiation and ablation coupled to the flow solver continues to be a high priority for planetary entry analyses, especially for return to Earth and outer planet missions. Three research areas addressing these challenges are emphasized. The first addresses the need to obtain accurate heating on unstructured tetrahedral grid systems to take advantage of flexibility in grid generation and grid adaptation. A multi-dimensional inviscid flux reconstruction algorithm is defined that is oriented with local flow topology as opposed to grid. The second addresses coupling of radiation and ablation to the hypersonic flow solver - flight- and ground-based data are used to provide limited validation of these multi-physics simulations. The third addresses the challenges of retro-propulsion simulation and the criticality of grid adaptation in this application. The evolution of CA to become a tool for innovation of EDL systems requires a successful resolution of these challenges.

  13. Simulation for Operational Readiness in a New Freestanding Emergency Department

    PubMed Central

    Kerner, Robert L.; Gallo, Kathleen; Cassara, Michael; D'Angelo, John; Egan, Anthony; Simmons, John Galbraith

    2016-01-01

    Summary Statement Simulation in multiple contexts over the course of a 10-week period served as a core learning strategy to orient experienced clinicians before opening a large new urban freestanding emergency department. To ensure technical and procedural skills of all team members, who would provide care without on-site recourse to specialty backup, we designed a comprehensive interprofessional curriculum to verify and regularize a wide range of competencies and best practices for all clinicians. Formulated under the rubric of systems integration, simulation activities aimed to instill a shared culture of patient safety among the entire cohort of 43 experienced emergency physicians, physician assistants, nurses, and patient technicians, most newly hired to the health system, who had never before worked together. Methods throughout the preoperational term included predominantly hands-on skills review, high-fidelity simulation, and simulation with standardized patients. We also used simulation during instruction in disaster preparedness, sexual assault forensics, and community outreach. Our program culminated with 2 days of in-situ simulation deployed in simultaneous and overlapping timeframes to challenge system response capabilities, resilience, and flexibility; this work revealed latent safety threats, lapses in communication, issues of intake procedure and patient flow, and the persistence of inapt or inapplicable mental models in responding to clinical emergencies. PMID:27607095

  14. Object-Oriented Control System Design Using On-Line Training of Artificial Neural Networks

    NASA Technical Reports Server (NTRS)

    Rubaai, Ahmed

    1997-01-01

    This report deals with the object-oriented model development of a neuro-controller design for permanent magnet (PM) dc motor drives. The system under study is described as a collection of interacting objects. Each object module describes the object behaviors, called methods. The characteristics of the object are included in its variables. The knowledge of the object exists within its variables, and the performance is determined by its methods. This structure maps well to the real world objects that comprise the system being modeled. A dynamic learning architecture that possesses the capabilities of simultaneous on-line identification and control is incorporated to enforce constraints on connections and control the dynamics of the motor. The control action is implemented "on-line", in "real time" in such a way that the predicted trajectory follows a specified reference model. A design example of controlling a PM dc motor drive on-line shows the effectiveness of the design tool. This will therefore be very useful in aerospace applications. It is expected to provide an innovative and noval software model for the rocket engine numerical simulator executive.

  15. Simulation Modeling of Software Development Processes

    NASA Technical Reports Server (NTRS)

    Calavaro, G. F.; Basili, V. R.; Iazeolla, G.

    1996-01-01

    A simulation modeling approach is proposed for the prediction of software process productivity indices, such as cost and time-to-market, and the sensitivity analysis of such indices to changes in the organization parameters and user requirements. The approach uses a timed Petri Net and Object Oriented top-down model specification. Results demonstrate the model representativeness, and its usefulness in verifying process conformance to expectations, and in performing continuous process improvement and optimization.

  16. iTesla Power Systems Library (iPSL): A Modelica library for phasor time-domain simulations

    NASA Astrophysics Data System (ADS)

    Vanfretti, L.; Rabuzin, T.; Baudette, M.; Murad, M.

    The iTesla Power Systems Library (iPSL) is a Modelica package providing a set of power system components for phasor time-domain modeling and simulation. The Modelica language provides a systematic approach to develop models using a formal mathematical description, that uniquely specifies the physical behavior of a component or the entire system. Furthermore, the standardized specification of the Modelica language (Modelica Association [1]) enables unambiguous model exchange by allowing any Modelica-compliant tool to utilize the models for simulation and their analyses without the need of a specific model transformation tool. As the Modelica language is being developed with open specifications, any tool that implements these requirements can be utilized. This gives users the freedom of choosing an Integrated Development Environment (IDE) of their choice. Furthermore, any integration solver can be implemented within a Modelica tool to simulate Modelica models. Additionally, Modelica is an object-oriented language, enabling code factorization and model re-use to improve the readability of a library by structuring it with object-oriented hierarchy. The developed library is released under an open source license to enable a wider distribution and let the user customize it to their specific needs. This paper describes the iPSL and provides illustrative application examples.

  17. Federating Metadata Catalogs

    NASA Astrophysics Data System (ADS)

    Baru, C.; Lin, K.

    2009-04-01

    The Geosciences Network project (www.geongrid.org) has been developing cyberinfrastructure for data sharing in the Earth Science community based on a service-oriented architecture. The project defines a standard "software stack", which includes a standardized set of software modules and corresponding service interfaces. The system employs Grid certificates for distributed user authentication. The GEON Portal provides online access to these services via a set of portlets. This service-oriented approach has enabled the GEON network to easily expand to new sites and deploy the same infrastructure in new projects. To facilitate interoperation with other distributed geoinformatics environments, service standards are being defined and implemented for catalog services and federated search across distributed catalogs. The need arises because there may be multiple metadata catalogs in a distributed system, for example, for each institution, agency, geographic region, and/or country. Ideally, a geoinformatics user should be able to search across all such catalogs by making a single search request. In this paper, we describe our implementation for such a search capability across federated metadata catalogs in the GEON service-oriented architecture. The GEON catalog can be searched using spatial, temporal, and other metadata-based search criteria. The search can be invoked as a Web service and, thus, can be imbedded in any software application. The need for federated catalogs in GEON arises because, (i) GEON collaborators at the University of Hyderabad, India have deployed their own catalog, as part of the iGEON-India effort, to register information about local resources for broader access across the network, (ii) GEON collaborators in the GEO Grid (Global Earth Observations Grid) project at AIST, Japan have implemented a catalog for their ASTER data products, and (iii) we have recently deployed a search service to access all data products from the EarthScope project in the US (http://es-portal.geongrid.org), which are distributed across data archives at IRIS in Seattle, Washington, UNAVCO in Boulder, Colorado, and at the ICDP archives in GFZ, Potsdam, Germany. This service implements a "virtual" catalog--the actual/"physical" catalogs and data are stored at each of the remote locations. A federated search across all these catalogs would enable GEON users to discover data across all of these environments with a single search request. Our objective is to implement this search service via the OGC Catalog Services for the Web (CS-W) standard by providing appropriate CSW "wrappers" for each metadata catalog, as necessary. This paper will discuss technical issues in designing and deploying such a multi-catalog search service in GEON and describe an initial prototype of the federated search capability.

  18. The Propulsive Small Expendable Deployer System (ProSEDS)

    NASA Technical Reports Server (NTRS)

    Lorenzini, Enrico C.; Cosmo, Mario L.; Estes, Robert D.; Sanmartin, Juan; Pelaez, Jesus; Ruiz, Manuel

    2003-01-01

    This Final Report covers the following main topics: 1) Brief Description of ProSEDS; 2) Mission Analysis; 3) Dynamics Reference Mission; 4) Dynamics Stability; 5) Deployment Control; 6) Updated System Performance; 7) Updated Mission Analysis; 8) Updated Dynamics Reference Mission; 9) Updated Deployment Control Profiles and Simulations; 10) Updated Reference Mission; 11) Evaluation of Power Delivered by the Tether; 12) Deployment Control Profile Ref. #78 and Simulations; 13) Kalman Filters for Mission Estimation; 14) Analysis/Estimation of Deployment Flight Data; 15) Comparison of ED Tethers and Electrical Thrusters; 16) Dynamics Analysis for Mission Starting at a Lower Altitude; 17) Deployment Performance at a Lower Altitude; 18) Satellite Orbit after a Tether Cut; 19) Deployment with Shorter Dyneema Tether Length; 20) Interactive Software for ED Tethers.

  19. System-Integrated Finite Element Analysis of a Full-Scale Helicopter Crash Test with Deployable Energy Absorbers

    NASA Technical Reports Server (NTRS)

    Annett, Martin S.; Polanco, Michael A.

    2010-01-01

    A full-scale crash test of an MD-500 helicopter was conducted in December 2009 at NASA Langley's Landing and Impact Research facility (LandIR). The MD-500 helicopter was fitted with a composite honeycomb Deployable Energy Absorber (DEA) and tested under vertical and horizontal impact velocities of 26-ft/sec and 40-ft/sec, respectively. The objectives of the test were to evaluate the performance of the DEA concept under realistic crash conditions and to generate test data for validation of a system integrated finite element model. In preparation for the full-scale crash test, a series of sub-scale and MD-500 mass simulator tests was conducted to evaluate the impact performances of various components, including a new crush tube and the DEA blocks. Parameters defined within the system integrated finite element model were determined from these tests. The objective of this paper is to summarize the finite element models developed and analyses performed, beginning with pre-test predictions and continuing through post-test validation.

  20. Pendulum detector testing device

    DOEpatents

    Gonsalves, J.M.

    1997-09-30

    A detector testing device is described which provides consistent, cost-effective, repeatable results. The testing device is primarily constructed of PVC plastic and other non-metallic materials. Sensitivity of a walk-through detector system can be checked by: (1) providing a standard test object simulating the mass, size and material content of a weapon or other contraband, (2) suspending the test object in successive positions, such as head, waist and ankle levels, simulating where the contraband might be concealed on a person walking through the detector system; and (3) swinging the suspended object through each of the positions, while operating the detector system and observing its response. The test object is retained in a holder in which the orientation of the test device or target can be readily changed, to properly complete the testing requirements. 5 figs.

  1. Pendulum detector testing device

    DOEpatents

    Gonsalves, John M.

    1997-01-01

    A detector testing device which provides consistent, cost-effective, repeatable results. The testing device is primarily constructed of PVC plastic and other non-metallic materials. Sensitivity of a walk-through detector system can be checked by: 1) providing a standard test object simulating the mass, size and material content of a weapon or other contraband, 2) suspending the test object in successive positions, such as head, waist and ankle levels, simulating where the contraband might be concealed on a person walking through the detector system; and 3) swinging the suspended object through each of the positions, while operating the detector system and observing its response. The test object is retained in a holder in which the orientation of the test device or target can be readily changed, to properly complete the testing requirements.

  2. Teaching Cellular Automation Concepts through Interdisciplinary Collaborative Learning.

    ERIC Educational Resources Information Center

    Biernacki, Joseph J.; Ayers, Jerry B.

    2000-01-01

    Reports on the experiences of 12 students--three senior undergraduates majoring in chemical engineering, five master-level, and four doctoral students--in a course titled "Interdisciplinary Studies in Multi-Scale Simulation of Concrete Materials". Course objectives focused on incorporating team-oriented interdisciplinary experiences into the…

  3. Groundwater economics: An object-oriented foundation for integrated studies of irrigated agricultural systems

    USDA-ARS?s Scientific Manuscript database

    An integrated foundation is presented to study the impacts of external forcings on irrigated agricultural systems. Individually, models are presented that simulate groundwater hydrogeology and econometric farm level crop choices and irrigated water use. The natural association between groundwater we...

  4. SMITHERS: An object-oriented modular mapping methodology for MCNP-based neutronic–thermal hydraulic multiphysics

    DOE PAGES

    Richard, Joshua; Galloway, Jack; Fensin, Michael; ...

    2015-04-04

    A novel object-oriented modular mapping methodology for externally coupled neutronics–thermal hydraulics multiphysics simulations was developed. The Simulator using MCNP with Integrated Thermal-Hydraulics for Exploratory Reactor Studies (SMITHERS) code performs on-the-fly mapping of material-wise power distribution tallies implemented by MCNP-based neutron transport/depletion solvers for use in estimating coolant temperature and density distributions with a separate thermal-hydraulic solver. The key development of SMITHERS is that it reconstructs the hierarchical geometry structure of the material-wise power generation tallies from the depletion solver automatically, with only a modicum of additional information required from the user. In addition, it performs the basis mapping from themore » combinatorial geometry of the depletion solver to the required geometry of the thermal-hydraulic solver in a generalizable manner, such that it can transparently accommodate varying levels of thermal-hydraulic solver geometric fidelity, from the nodal geometry of multi-channel analysis solvers to the pin-cell level of discretization for sub-channel analysis solvers.« less

  5. The NASA GPM Iowa Flood Studies Experiment

    NASA Astrophysics Data System (ADS)

    Petersen, W. A.; Krajewski, W. F.; Peters-Lidard, C. D.; Rutledge, S. A.; Wolff, D. B.

    2013-12-01

    The overarching objective of NASA Global Precipitation Measurement Mission (GPM) integrated hydrologic ground validation (GV) is to provide a better understanding of the strengths and limitations of the satellite products, in the context of hydrologic applications. Accordingly, the NASA GPM GV program recently completed the first of several hydrology-oriented field efforts: the Iowa Flood Studies (IFloodS) experiment. IFloodS was conducted in central Iowa during the months of April-June, 2013. IFloodS science objectives focused on: a) The collection of reference multi-parameter radar, rain gauge, disdrometer, soil moisture, and hydrologic network measurements to quantify the physical character and space/time variability of rain (e.g., rates, drop size distributions, processes), land surface- state and hydrologic response; b) Application of the ground reference measurements to assessment of satellite-based rainfall estimation uncertainties; c) Propagation of both ground and satellite rainfall estimation uncertainties in coupled hydrologic prediction models to assess impacts on predictive skill; and d) Evaluation of rainfall properties such as rate and accumulation relative to basin hydrologic characteristics in modeled flood genesis. IFloodS observational objectives were achieved via deployments of the NASA NPOL S-band and D3R Ka/Ku-band dual-polarimetric radars (operating in coordinated scanning modes), four University of Iowa X-band dual-polarimetric radars, four Micro Rain Radars, a network of 25 paired rain gauge platforms with attendant soil moisture and temperature probes, a network of six 2D Video and 14 Parsivel disdrometers, and 15 USDA-ARS rain gauge and soil-moisture stations (collaboration with the USDA-ARS and NASA Soil Moisture Active-Passive mission). The aforementioned platforms complemented existing operational WSR-88D S-band polarimetric radar, USGS streamflow, and Iowa Flood Center-affiliated stream monitoring and rainfall measurements. Coincident low-earth orbiter microwave, geostationary infrared, and derived satellite-algorithm rainfall products were also archived during the experiment. Twice daily NASA Unified Weather Research and Forecasting model simulations were conducted to provide weather forecast guidance and a coupled atmospheric/land-surface model simulation benchmark. During the experiment the IFloodS observational domain experienced heavy rainfall (> 250-300 mm) and significant flooding. Deployed observational assets, especially the research radars performed well throughout the experiment, sampling a broad range of precipitation system types including multi-day mixtures of rain and snow, warm-season mesoscale convective systems, and supercell thunderstorms. The variety of regimes and large rain accumulations sampled creates a rich source of data for testing both satellite products and coupled atmospheric, land system, and hydrologic models. In this study we will provide an overview of the IFloodS experiment, datasets, and preliminary observational results.

  6. A formulation for studying dynamics of N connected flexible deployable members

    NASA Astrophysics Data System (ADS)

    Ibrahim, A. M.; Modi, V. J.

    A relatively general formulation for studying dynamics of a system, consisting of N connected flexible deployable members (beams, plates, shells, membranes, strings) forming a topological tree or a closed configuration, is presented. The mathematical description of the system can be, in general, a combination of discrete and distributed coordinates. Joints, elastic and dissipative, permit relative rotation and translation between bodies. The elastic deformations (lateral, axial, and torsional) can be discretized using admissible functions, finite elements or lumped mass method. Rotations of the members, as well as of the entire system, can be described using a set of orientation angles, Euler parameters or Rodrigues vectors. The formulation accounts for: the presence of momentum or reaction wheels (gimballed or fixed); thrusters distributed over the flexible and rigid portions; and any prescribed forms of energy dissipation mechanisms. Of course, the generalized forces can simulate desired environmental effects. The formulation is valid for orbiting as well as ground based and marine systems. Application of the formulation is illustrated through several examples, in spacecraft dynamics, which are of contemporary interest.

  7. A cross-national study to objectively evaluate the quality of diverse simulation approaches for undergraduate nursing students.

    PubMed

    Kable, Ashley K; Levett-Jones, Tracy L; Arthur, Carol; Reid-Searl, Kerry; Humphreys, Melanie; Morris, Sara; Walsh, Pauline; Witton, Nicola J

    2018-01-01

    The aim of this paper is to report the results of a cross-national study that evaluated a range of simulation sessions using an observation schedule developed from evidence-based quality indicators. Observational data were collected from 17 simulation sessions conducted for undergraduate nursing students at three universities in Australia and the United Kingdom. The observation schedule contained 27 questions that rated simulation quality. Data were collected by direct observation and from video recordings of the simulation sessions. Results indicated that the highest quality scores were for provision of learning objectives prior to the simulation session (90%) and debriefing (72%). Student preparatiosn and orientation (67%) and perceived realism and fidelity (67%) were scored lower than other components of the simulation sessions. This observational study proved to be an effective strategy to identify areas of strength and those needing further development to improve simulation sessions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Deployment Simulation Methods for Ultra-Lightweight Inflatable Structures

    NASA Technical Reports Server (NTRS)

    Wang, John T.; Johnson, Arthur R.

    2003-01-01

    Two dynamic inflation simulation methods are employed for modeling the deployment of folded thin-membrane tubes. The simulations are necessary because ground tests include gravity effects and may poorly represent deployment in space. The two simulation methods are referred to as the Control Volume (CV) method and the Arbitrary Lagrangian Eulerian (ALE) method. They are available in the LS-DYNA nonlinear dynamic finite element code. Both methods are suitable for modeling the interactions between the inflation gas and the thin-membrane tube structures. The CV method only considers the pressure induced by the inflation gas in the simulation, while the ALE method models the actual flow of the inflation gas. Thus, the transient fluid properties at any location within the tube can be predicted by the ALE method. Deployment simulations of three packaged tube models; namely coiled, Z-folded, and telescopically-folded configurations, are performed. Results predicted by both methods for the telescopically-folded configuration are correlated and computational efficiency issues are discussed.

  9. Parachute-deployment-parameter identification based on an analytical simulation of Viking BLDT AV-4

    NASA Technical Reports Server (NTRS)

    Talay, T. A.

    1974-01-01

    A six-degree-of-freedom analytical simulation of parachute deployment dynamics developed at the Langley Research Center is presented. A comparison study was made using flight results from the Viking Balloon Launched Decelerator Test (BLDT) AV-4. Since there are significant voids in the knowledge of vehicle and decelerator aerodynamics and suspension system physical properties, a set of deployment-parameter input has been defined which may be used as a basis for future studies of parachute deployment dynamics. The study indicates the analytical model is sufficiently sophisticated to investigate parachute deployment dynamics with reasonable accuracy.

  10. Modelling Risk to US Military Populations from Stopping Blanket Mandatory Polio Vaccination

    PubMed Central

    Burgess, Andrew

    2017-01-01

    Objectives Transmission of polio poses a threat to military forces when deploying to regions where such viruses are endemic. US-born soldiers generally enter service with immunity resulting from childhood immunization against polio; moreover, new recruits are routinely vaccinated with inactivated poliovirus vaccine (IPV), supplemented based upon deployment circumstances. Given residual protection from childhood vaccination, risk-based vaccination may sufficiently protect troops from polio transmission. Methods This analysis employed a mathematical system for polio transmission within military populations interacting with locals in a polio-endemic region to evaluate changes in vaccination policy. Results Removal of blanket immunization had no effect on simulated polio incidence among deployed military populations when risk-based immunization was employed; however, when these individuals reintegrated with their base populations, risk of transmission to nondeployed personnel increased by 19%. In the absence of both blanket- and risk-based immunization, transmission to nondeployed populations increased by 25%. The overall number of new infections among nondeployed populations was negligible for both scenarios due to high childhood immunization rates, partial protection against transmission conferred by IPV, and low global disease incidence levels. Conclusion Risk-based immunization driven by deployment to polio-endemic regions is sufficient to prevent transmission among both deployed and nondeployed US military populations. PMID:29104608

  11. An experimental predeployment training program improves self-reported patient treatment confidence and preparedness of Army combat medics.

    PubMed

    Gerhardt, Robert T; Hermstad, Erik L; Oakes, Michael; Wiegert, Richard S; Oliver, Jeffrey

    2008-01-01

    To develop and assess impact of a focused review of International Trauma Life Support (ITLS) and combat casualty care with hands-on procedure training for U.S. Army medics deploying to Iraq. The setting was a U.S. Army Medical Department Center and School and Camp Eagle, Iraq. Investigators developed and implemented a command-approved prospective educational intervention with a post hoc survey. Subjects completed a three-day course with simulator and live-tissue procedure laboratories. At deployment's end, medics were surveyed for experience, confidence, and preparedness in treating various casualty severity levels. Investigators used two-tailed t-test with unequal variance for continuous data and chi-square for categorical data. Twenty-nine medics deployed. Eight completed the experimental program. Twenty-one of 25 (84%) available medics completed the survey including six of the eight (75%) experimental medics. The experimental group reported significantly greater levels of preparedness and confidence treating "minimal," "delayed," and "immediate" casualties at arrival in Iraq. These differences dissipated progressively over the time course of the deployment. This experimental program increased combat medic confidence and perceived level of preparedness in treating several patient severity levels. Further research is warranted to determine if the experimental intervention objectively improves patient care quality and translates into lives saved early in deployment.

  12. MCViNE- An object oriented Monte Carlo neutron ray tracing simulation package

    DOE PAGES

    Lin, J. Y. Y.; Smith, Hillary L.; Granroth, Garrett E.; ...

    2015-11-28

    MCViNE (Monte-Carlo VIrtual Neutron Experiment) is an open-source Monte Carlo (MC) neutron ray-tracing software for performing computer modeling and simulations that mirror real neutron scattering experiments. We exploited the close similarity between how instrument components are designed and operated and how such components can be modeled in software. For example we used object oriented programming concepts for representing neutron scatterers and detector systems, and recursive algorithms for implementing multiple scattering. Combining these features together in MCViNE allows one to handle sophisticated neutron scattering problems in modern instruments, including, for example, neutron detection by complex detector systems, and single and multiplemore » scattering events in a variety of samples and sample environments. In addition, MCViNE can use simulation components from linear-chain-based MC ray tracing packages which facilitates porting instrument models from those codes. Furthermore it allows for components written solely in Python, which expedites prototyping of new components. These developments have enabled detailed simulations of neutron scattering experiments, with non-trivial samples, for time-of-flight inelastic instruments at the Spallation Neutron Source. Examples of such simulations for powder and single-crystal samples with various scattering kernels, including kernels for phonon and magnon scattering, are presented. As a result, with simulations that closely reproduce experimental results, scattering mechanisms can be turned on and off to determine how they contribute to the measured scattering intensities, improving our understanding of the underlying physics.« less

  13. A Novel Optical/digital Processing System for Pattern Recognition

    NASA Technical Reports Server (NTRS)

    Boone, Bradley G.; Shukla, Oodaye B.

    1993-01-01

    This paper describes two processing algorithms that can be implemented optically: the Radon transform and angular correlation. These two algorithms can be combined in one optical processor to extract all the basic geometric and amplitude features from objects embedded in video imagery. We show that the internal amplitude structure of objects is recovered by the Radon transform, which is a well-known result, but, in addition, we show simulation results that calculate angular correlation, a simple but unique algorithm that extracts object boundaries from suitably threshold images from which length, width, area, aspect ratio, and orientation can be derived. In addition to circumventing scale and rotation distortions, these simulations indicate that the features derived from the angular correlation algorithm are relatively insensitive to tracking shifts and image noise. Some optical architecture concepts, including one based on micro-optical lenslet arrays, have been developed to implement these algorithms. Simulation test and evaluation using simple synthetic object data will be described, including results of a study that uses object boundaries (derivable from angular correlation) to classify simple objects using a neural network.

  14. Charging of Basic Structural Shapes in a Simulated Lunar Environment

    NASA Technical Reports Server (NTRS)

    Craven, P.; Schneider, T.; Vaughn, J.; Wang, J.; Polansky, J.

    2012-01-01

    In order to understand the effect of the charging environment on and around structures on the lunar surface, we have exposed basic structural shapes to electrons and Vacuum Ultra-Violet (VUV) radiation. The objects were, in separate runs, isolated, grounded, and placed on dielectric surfaces. In this presentation, the effects of electron energy, VUV flux, and sample orientation, on the charging of the objects will be examined. The potential of each of the object surfaces was monitored in order to determine the magnitude of the ram and wake effects under different orientations relative to the incoming beams (solar wind). This is a part of, and complementary to, the study of the group at USC under Dr. J. Wang, the purpose of which is to model the effects of the charging environment on structures on the lunar surface.

  15. X-ray system simulation software tools for radiology and radiography education.

    PubMed

    Kengyelics, Stephen M; Treadgold, Laura A; Davies, Andrew G

    2018-02-01

    To develop x-ray simulation software tools to support delivery of radiological science education for a range of learning environments and audiences including individual study, lectures, and tutorials. Two software tools were developed; one simulated x-ray production for a simple two dimensional radiographic system geometry comprising an x-ray source, beam filter, test object and detector. The other simulated the acquisition and display of two dimensional radiographic images of complex three dimensional objects using a ray casting algorithm through three dimensional mesh objects. Both tools were intended to be simple to use, produce results accurate enough to be useful for educational purposes, and have an acceptable simulation time on modest computer hardware. The radiographic factors and acquisition geometry could be altered in both tools via their graphical user interfaces. A comparison of radiographic contrast measurements of the simulators to a real system was performed. The contrast output of the simulators had excellent agreement with measured results. The software simulators were deployed to 120 computers on campus. The software tools developed are easy-to-use, clearly demonstrate important x-ray physics and imaging principles, are accessible within a standard University setting and could be used to enhance the teaching of x-ray physics to undergraduate students. Current approaches to teaching x-ray physics in radiological science lack immediacy when linking theory with practice. This method of delivery allows students to engage with the subject in an experiential learning environment. Copyright © 2017. Published by Elsevier Ltd.

  16. Saliency Changes Appearance

    PubMed Central

    Kerzel, Dirk; Schönhammer, Josef; Burra, Nicolas; Born, Sabine; Souto, David

    2011-01-01

    Numerous studies have suggested that the deployment of attention is linked to saliency. In contrast, very little is known about how salient objects are perceived. To probe the perception of salient elements, observers compared two horizontally aligned stimuli in an array of eight elements. One of them was salient because of its orientation or direction of motion. We observed that the perceived luminance contrast or color saturation of the salient element increased: the salient stimulus looked even more salient. We explored the possibility that changes in appearance were caused by attention. We chose an event-related potential indexing attentional selection, the N2pc, to answer this question. The absence of an N2pc to the salient object provides preliminary evidence against involuntary attentional capture by the salient element. We suggest that signals from a master saliency map flow back into individual feature maps. These signals boost the perceived feature contrast of salient objects, even on perceptual dimensions different from the one that initially defined saliency. PMID:22162760

  17. Variation Scenarios in System Deployments for the GGOS2020 Space Geodesy Network

    NASA Astrophysics Data System (ADS)

    Pavlis, Erricos C.; Kuzmicz-Cieslak, Magdalena; MacMillan, Daniel S.

    2017-04-01

    Simulation studies have so far determined an approximate size and station density for the Space Geodetic Network that will meet the requirements recommended by the U.S. National Research Council report "Precise Geodetic Infrastructure: National Requirements for a Shared Resource" (2010). A network of about 30 globally distributed "core" observatories with state of the art equipment needs to be deployed over the next decade. Subsequently, GGOS—the Global Geodetic Observing System issued a "Call for Proposals for the expansion and update of the network, to which several countries committed to contribute. The renewal process will not happen instantly and for a long time, the network will comprise legacy and next generation equipment. We conducted a new batch of simulation studies using the proposed site locations and the proposed equipment at each site, to gauge the contribution of specific systems and locations to the global results. The majority of the examined sites are well-established future sites, some of which are even close to completion. Despite the good intentions of the contributing agencies/countries, in some cases we have identified regional gaps in coverage with either SLR or VLBI systems. We have characterized the effect of these gaps on the quality of the final TRF. We present the results of these simulation studies and rank the examined cases according to the likelihood that the designed network will successfully meet the GGOS goals of 1 mm accuracy (decadal scale) and a temporal stability on the order of 0.1 mm/y, with similar numbers for the scale and orientation components of the TRF.

  18. GGOS2020 Space Geodesy Network: Variations in System Deployment Scenarios

    NASA Astrophysics Data System (ADS)

    Pavlis, E. C.; Koenig, D.; Kuzmicz-Cieslak, M.; MacMillan, D. S.

    2016-12-01

    Simulation studies have so far determined an approximate size and station density for the Space Geodetic Network that will meet the requirements recommended by the U.S. National Research Council report "Precise Geodetic Infrastructure: National Requirements for a Shared Resource" (2010). A network of about 30 globally distributed "core" observatories with state of the art equipment needs to be deployed over the next decade. Subsequently, GGOS—the Global Geodetic Observing System issued a "Call for Proposals for the expansion and update of the network, to which several countries committed to contribute. The renewal process will not happen instantly and for a long time, the network will comprise legacy and next generation equipment. We conducted a new batch of simulation studies using the proposed site locations and the proposed equipment at each site, to gauge the contribution of specific systems and locations to the global results. The majority of the examined sites are well-established future sites, some of which are even close to completion. Despite the good intentions of the contributing agencies/countries, in some cases we have identified regional gaps in coverage with either SLR or VLBI systems. We have characterized the effect of these gaps on the quality of the final TRF. We present the results of these simulation studies and rank the examined cases according to the likelihood that the designed network will successfully meet the GGOS goals of 1 mm accuracy (decadal scale) and a temporal stability on the order of 0.1 mm/y, with similar numbers for the scale and orientation components of the TRF.

  19. Parallel Implementation of Triangular Cellular Automata for Computing Two-Dimensional Elastodynamic Response on Arbitrary Domains

    NASA Astrophysics Data System (ADS)

    Leamy, Michael J.; Springer, Adam C.

    In this research we report parallel implementation of a Cellular Automata-based simulation tool for computing elastodynamic response on complex, two-dimensional domains. Elastodynamic simulation using Cellular Automata (CA) has recently been presented as an alternative, inherently object-oriented technique for accurately and efficiently computing linear and nonlinear wave propagation in arbitrarily-shaped geometries. The local, autonomous nature of the method should lead to straight-forward and efficient parallelization. We address this notion on symmetric multiprocessor (SMP) hardware using a Java-based object-oriented CA code implementing triangular state machines (i.e., automata) and the MPI bindings written in Java (MPJ Express). We use MPJ Express to reconfigure our existing CA code to distribute a domain's automata to cores present on a dual quad-core shared-memory system (eight total processors). We note that this message passing parallelization strategy is directly applicable to computer clustered computing, which will be the focus of follow-on research. Results on the shared memory platform indicate nearly-ideal, linear speed-up. We conclude that the CA-based elastodynamic simulator is easily configured to run in parallel, and yields excellent speed-up on SMP hardware.

  20. ARC integration into the NEAMS Workbench

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stauff, N.; Gaughan, N.; Kim, T.

    2017-01-01

    One of the objectives of the Nuclear Energy Advanced Modeling and Simulation (NEAMS) Integration Product Line (IPL) is to facilitate the deployment of the high-fidelity codes developed within the program. The Workbench initiative was launched in FY-2017 by the IPL to facilitate the transition from conventional tools to high fidelity tools. The Workbench provides a common user interface for model creation, real-time validation, execution, output processing, and visualization for integrated codes.

  1. Port-O-Sim Object Simulation Application

    NASA Technical Reports Server (NTRS)

    Lanzi, Raymond J.

    2009-01-01

    Port-O-Sim is a software application that supports engineering modeling and simulation of launch-range systems and subsystems, as well as the vehicles that operate on them. It is flexible, distributed, object-oriented, and realtime. A scripting language is used to configure an array of simulation objects and link them together. The script is contained in a text file, but executed and controlled using a graphical user interface. A set of modules is defined, each with input variables, output variables, and settings. These engineering models can be either linked to each other or run as standalone. The settings can be modified during execution. Since 2001, this application has been used for pre-mission failure mode training for many Range Safety Scenarios. It contains range asset link analysis, develops look-angle data, supports sky-screen site selection, drives GPS (Global Positioning System) and IMU (Inertial Measurement Unit) simulators, and can support conceptual design efforts for multiple flight programs with its capacity for rapid six-degrees-of-freedom model development. Due to the assembly of various object types into one application, the application is applicable across a wide variety of launch range problem domains.

  2. The development and testing of the Lens Antenna Deployment Demonstration (LADD) test article

    NASA Technical Reports Server (NTRS)

    Pugh, Mark L.; Denton, Robert J., Jr.; Strange, Timothy J.

    1993-01-01

    The USAF Rome Laboratory and NASA Marshall Space Flight Center, through contract to Grumman Corporation, have developed a space-qualifiable test article for the Strategic Defense Initiative Organization to demonstrate the critical structural and mechanical elements of single-axis roll-out membrane deployment for Space Based Radar (SBR) applications. The Lens Antenna Deployment Demonstration (LADD) test article, originally designed as a shuttle-attached flight experiment, is a large precision space structure which is representative of operational designs for space-fed lens antennas. Although the flight experiment was cancelled due to funding constraints and major revisions in the Strategic Defense System (SDS) architecture, development of this test article was completed in June 1989. To take full advantage of the existence of this unique structure, a series of ground tests are proposed which include static, dynamic, and thermal measurements in a simulated space environment. An equally important objective of these tests is the verification of the analytical tools used to design and develop large precision space structures.

  3. The Simulation of Vibrations of Railway Beam Bridges in the Object-oriented Environment Delphi

    NASA Astrophysics Data System (ADS)

    Raspopov, Alexander; Artyomov, Vitaly; Rusu, Sergey

    2010-01-01

    The peculiarities of combination of finite-element method and equations of solid dynamics, the basic stages of development of the program complex Belinda for calculation of statics and dynamics of the rods constructions as applied to railway bridges are described.

  4. Thinking on Sichuan-Chongqing gas pipeline transportation system reform under market-oriented conditions

    NASA Astrophysics Data System (ADS)

    Duan, Yanzhi

    2017-01-01

    The gas pipeline networks in Sichuan and Chongqing (Sichuan-Chongqing) region have formed a fully-fledged gas pipeline transportation system in China, which supports and promotes the rapid development of gas market in Sichuan-Chongqing region. In the circumstances of further developed market-oriented economy, it is necessary to carry out further the pipeline system reform in the areas of investment/financing system, operation system and pricing system to lay a solid foundation for improving future gas production and marketing capability and adapting itself to the national gas system reform, and to achieve the objectives of multiparty participated pipeline construction, improved pipeline transportation efficiency and fair and rational pipeline transportation prices. In this article, main thinking on reform in the three areas and major deployment are addressed, and corresponding measures on developing shared pipeline economy, providing financial support to pipeline construction, setting up independent regulatory agency to enhance the industrial supervision for gas pipeline transportation, and promoting the construction of regional gas trade market are recommended.

  5. Implementation of jump-diffusion algorithms for understanding FLIR scenes

    NASA Astrophysics Data System (ADS)

    Lanterman, Aaron D.; Miller, Michael I.; Snyder, Donald L.

    1995-07-01

    Our pattern theoretic approach to the automated understanding of forward-looking infrared (FLIR) images brings the traditionally separate endeavors of detection, tracking, and recognition together into a unified jump-diffusion process. New objects are detected and object types are recognized through discrete jump moves. Between jumps, the location and orientation of objects are estimated via continuous diffusions. An hypothesized scene, simulated from the emissive characteristics of the hypothesized scene elements, is compared with the collected data by a likelihood function based on sensor statistics. This likelihood is combined with a prior distribution defined over the set of possible scenes to form a posterior distribution. The jump-diffusion process empirically generates the posterior distribution. Both the diffusion and jump operations involve the simulation of a scene produced by a hypothesized configuration. Scene simulation is most effectively accomplished by pipelined rendering engines such as silicon graphics. We demonstrate the execution of our algorithm on a silicon graphics onyx/reality engine.

  6. Simulated Engineer Assessment of the Communications Zone Model (SEAC) (Documentation and Users Manual)

    DTIC Science & Technology

    1988-06-01

    became apparent. ESC originally planned to confect a dedicated model, i.e., one specifically designed to address Korea. However, it reconsidered the...s) and should not be construed as an official US Department of the Army position, policy, or decision unless so designated by other official...model based on object-oriented programming design techniques, and uses the process view of simulation to achieve its purpose. As a direct con

  7. BioInt: an integrative biological object-oriented application framework and interpreter.

    PubMed

    Desai, Sanket; Burra, Prasad

    2015-01-01

    BioInt, a biological programming application framework and interpreter, is an attempt to equip the researchers with seamless integration, efficient extraction and effortless analysis of the data from various biological databases and algorithms. Based on the type of biological data, algorithms and related functionalities, a biology-specific framework was developed which has nine modules. The modules are a compilation of numerous reusable BioADTs. This software ecosystem containing more than 450 biological objects underneath the interpreter makes it flexible, integrative and comprehensive. Similar to Python, BioInt eliminates the compilation and linking steps cutting the time significantly. The researcher can write the scripts using available BioADTs (following C++ syntax) and execute them interactively or use as a command line application. It has features that enable automation, extension of the framework with new/external BioADTs/libraries and deployment of complex work flows.

  8. Continual improvement plan

    NASA Technical Reports Server (NTRS)

    1994-01-01

    NASA's approach to continual improvement (CI) is a systems-oriented, agency-wide approach that builds on the past accomplishments of NASA Headquarters and its field installations and helps achieve NASA's vision, mission, and values. The NASA of the future will fully use the principles of continual improvement in every aspect of its operations. This NASA CI plan defines a systematic approach and a model for continual improvement throughout NASA, stressing systems integration and optimization. It demonstrates NASA's constancy of purpose for improvement - a consistent vision of NASA as a worldwide leader in top-quality science, technology, and management practices. The CI plan provides the rationale, structures, methods, and steps, and it defines NASA's short term (1-year) objectives for improvement. The CI plan presents the deployment strategies necessary for cascading the goals and objectives throughout the agency. It also provides guidance on implementing continual improvement with participation from top leadership and all levels of employees.

  9. Full-Scale Crash Test of a MD-500 Helicopter with Deployable Energy Absorbers

    NASA Technical Reports Server (NTRS)

    Kellas, Sotiris; Jackson, Karen E.; Littell, Justin D.

    2010-01-01

    A new externally deployable energy absorbing system was demonstrated during a full-scale crash test of an MD-500 helicopter. The deployable system is a honeycomb structure and utilizes composite materials in its construction. A set of two Deployable Energy Absorbers (DEAs) were fitted on the MD-500 helicopter for the full-scale crash demonstration. Four anthropomorphic dummy occupants were also used to assess human survivability. A demonstration test was performed at NASA Langley's Landing and Impact Research Facility (LandIR). The test involved impacting the helicopter on a concrete surface with combined forward and vertical velocity components of 40-ft/s and 26-ft/s, respectively. The objectives of the test were to evaluate the performance of the DEA concept under realistic crash conditions and to generate test data for validation of dynamic finite element simulations. Descriptions of this test as well as other component and full-scale tests leading to the helicopter test are discussed. Acceleration data from the anthropomorphic dummies showed that dynamic loads were successfully attenuated to within non-injurious levels. Moreover, the airframe itself survived the relatively severe impact and was retested to provide baseline data for comparison for cases with and without DEAs.

  10. JVIEW Visualization for Virtual Airspace Modeling and Simulation

    DTIC Science & Technology

    2009-04-01

    23  4.2.2  Translucency ................................................................................................................. 25  4.3... Translucency Used to Display Multiple Visualization Elements .............................. 26  Figure 26 - Textual Labels Feature...been done by Jason Moore and other AFRL/RISF staff and support personnel developing the JView API. JView relies on concrete Object Oriented Design

  11. Flexibility on storage-release based distributed hydrologic modeling with object-oriented approach

    USDA-ARS?s Scientific Manuscript database

    With the availability of advanced hydrologic data in the public domain such as remotely sensed and climate change scenario data, there is a need for a modeling framework that is capable of using these data to simulate and extend hydrologic processes with multidisciplinary approaches for sustainable ...

  12. Perceived orientation of a runway model in nonpilots during simulated night approaches to landing.

    DOT National Transportation Integrated Search

    1977-07-01

    Illusions due to reduced visual cues at night have long been cited as contributing to the dangerous tendency of pilots to fly too low during night landing approaches. The cue of motion parallax (a difference in rate of apparent movement of objects in...

  13. Fusion of GEDI, ICESAT2 & NISAR data for above ground biomass mapping in Sonoma County, California

    NASA Astrophysics Data System (ADS)

    Duncanson, L.; Simard, M.; Thomas, N. M.; Neuenschwander, A. L.; Hancock, S.; Armston, J.; Dubayah, R.; Hofton, M. A.; Huang, W.; Tang, H.; Marselis, S.; Fatoyinbo, T.

    2017-12-01

    Several upcoming NASA missions will collect data sensitive to forest structure (GEDI, ICESAT-2 & NISAR). The LiDAR and SAR data collected by these missions will be used in coming years to map forest aboveground biomass at various resolutions. This research focuses on developing and testing multi-sensor data fusion approaches in advance of these missions. Here, we present the first case study of a CMS-16 grant with results from Sonoma County, California. We simulate lidar and SAR datasets from GEDI, ICESAT-2 and NISAR using airborne discrete return lidar and UAVSAR data, respectively. GEDI and ICESAT-2 signals are simulated from high point density discrete return lidar that was acquired over the entire county in 2014 through a previous CMS project (Dubayah & Hurtt, CMS-13). NISAR is simulated from L-band UAVSAR data collected in 2014. These simulations are empirically related to 300 field plots of aboveground biomass as well as a 30m biomass map produced from the 2014 airborne lidar data. We model biomass independently for each simulated mission dataset and then test two fusion methods for County-wide mapping 1) a pixel based approach and 2) an object oriented approach. In the pixel-based approach, GEDI and ICESAT-2 biomass models are calibrated over field plots and applied in orbital simulations for a 2-year period of the GEDI and ICESAT-2 missions. These simulated samples are then used to calibrate UAVSAR data to produce a 0.25 ha map. In the object oriented approach, the GEDI and ICESAT-2 data are identical to the pixel-based approach, but calibrate image objects of similar L-band backscatter rather than uniform pixels. The results of this research demonstrate the estimated ability for each of these three missions to independently map biomass in a temperate, high biomass system, as well as the potential improvement expected through combining mission datasets.

  14. Design of Measure and Control System for Precision Pesticide Deploying Dynamic Simulating Device

    NASA Astrophysics Data System (ADS)

    Liang, Yong; Liu, Pingzeng; Wang, Lu; Liu, Jiping; Wang, Lang; Han, Lei; Yang, Xinxin

    A measure and control system for precision deploying pesticide simulating equipment is designed in order to study pesticide deployment technology. The system can simulate every state of practical pesticide deployment, and carry through precise, simultaneous measure to every factor affecting pesticide deployment effects. The hardware and software incorporates a structural design of modularization. The system is divided into many different function modules of hardware and software, and exploder corresponding modules. The modules’ interfaces are uniformly defined, which is convenient for module connection, enhancement of system’s universality, explodes efficiency and systemic reliability, and make the program’s characteristics easily extended and easy maintained. Some relevant hardware and software modules can be adapted to other measures and control systems easily. The paper introduces the design of special numeric control system, the main module of information acquisition system and the speed acquisition module in order to explain the design process of the module.

  15. Simulation of Aircraft Deployment Support

    DTIC Science & Technology

    2003-03-01

    Dassault Aviation Military Customer Support Division 78, Quai Marcel Dassault Cedex 300 92552 St Cloud Cedex France Tel.: 33 147 1163 23 Fax.: 33 147...Deployment Support" (SADS) was developed by the Military Customer Support Division of Dassault Aviation to perform simulations for logistics deployment and...and support Chain Management for the management of the logistics resources (replenishment of consumables and repair of parts, inventory management

  16. Coastal circulation and potential coral-larval dispersal in Maunalua Bay, O'ahu, Hawaii—Measurements of waves, currents, temperature, and salinity, June-September 2010

    USGS Publications Warehouse

    Presto, M. Katherine; Storlazzi, Curt D.; Logan, Joshua B.; Reiss, Thomas E.; Rosenberger, Kurt J.

    2012-01-01

    This report presents a summary of fieldwork conducted in Maunalua Bay, O'ahu, Hawaii to address coral-larval dispersal and recruitment from June through September, 2010. The objectives of this study were to understand the temporal and spatial variations in currents, waves, tides, temperature, and salinity in Maunalua Bay during the summer coral-spawning season of Montipora capitata. Short-term vessel surveys and satellite-tracked drifters were deployed to measure currents during the June 2010 spawning event and to supplement the longer-term measurements of currents and water-column properties by fixed, bottom-mounted instruments deployed in Maunalua Bay. These data show that currents at the surface and just below the surface where coral larvae are found are often oriented in opposite directions due primarily to tidal and trade-winds forcing as the primary mechanisms of circulation in the bay. These data extend our understanding of coral-larvae dispersal patterns due to tidal and wind-driven currents and may be applicable to larvae of other Hawaiian corals.

  17. An object-oriented software approach for a distributed human tracking motion system

    NASA Astrophysics Data System (ADS)

    Micucci, Daniela L.

    2003-06-01

    Tracking is a composite job involving the co-operation of autonomous activities which exploit a complex information model and rely on a distributed architecture. Both information and activities must be classified and related in several dimensions: abstraction levels (what is modelled and how information is processed); topology (where the modelled entities are); time (when entities exist); strategy (why something happens); responsibilities (who is in charge of processing the information). A proper Object-Oriented analysis and design approach leads to a modular architecture where information about conceptual entities is modelled at each abstraction level via classes and intra-level associations, whereas inter-level associations between classes model the abstraction process. Both information and computation are partitioned according to level-specific topological models. They are also placed in a temporal framework modelled by suitable abstractions. Domain-specific strategies control the execution of the computations. Computational components perform both intra-level processing and intra-level information conversion. The paper overviews the phases of the analysis and design process, presents major concepts at each abstraction level, and shows how the resulting design turns into a modular, flexible and adaptive architecture. Finally, the paper sketches how the conceptual architecture can be deployed into a concrete distribute architecture by relying on an experimental framework.

  18. Transformable and Reconfigurable Entry, Descent and Landing Systems and Methods

    NASA Technical Reports Server (NTRS)

    Fernandez, Ian M. (Inventor); Venkatapathy, Ethiraj (Inventor); Hamm, Kenneth R. (Inventor)

    2014-01-01

    A deployable aerodynamic decelerator structure includes a ring member disposed along a central axis of the aerodynamic decelerator, a plurality of jointed rib members extending radially from the ring member and a flexible layer attached to the plurality of rib members. A deployment device is operable to reconfigure the flexible layer from a stowed configuration to a deployed configuration by movement of the rib members and a control device is operable to redirect a lift vector of the decelerator structure by changing an orientation of the flexible layer.

  19. Subsurface Grain Morphology Reconstruction by Differential Aperture X-ray Microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eisenlohr, Philip; Shanthraj, Pratheek; Vande Kieft, Brendan R.

    A multistep, non-destructive grain morphology reconstruction methodology that is applicable to near-surface volumes is developed and tested on synthetic grain structures. This approach probes the subsurface crystal orientation using differential aperture x-ray microscopy on a sparse grid across the microstructure volume of interest. Resulting orientation data are clustered according to proximity in physical and orientation space and used as seed points for an initial Voronoi tessellation to (crudely) approximate the grain morphology. Curvature-driven grain boundary relaxation, simulated by means of the Voronoi implicit interface method, progressively improves the reconstruction accuracy. The similarity between bulk and readily accessible surface reconstruction errormore » provides an objective termination criterion for boundary relaxation.« less

  20. Science Objectives for a Soft X-ray Mission

    NASA Astrophysics Data System (ADS)

    Sibeck, D. G.; Connor, H. K.; Collier, M. R.; Collado-Vega, Y. M.; Walsh, B.

    2016-12-01

    When high charge state solar wind ions exchange electrons with exospheric neutrals, soft X-rays are emitted. In conjunction with flight- proven wide field-of-view soft X-ray imagers employing lobster-eye optics, recent simulations demonstrate the feasibility of imaging magnetospheric density structures such as the bow shock, magnetopause, and cusps. This presentation examines the Heliospheric scientific objectives that such imagers can address. Principal amongst these is the nature of reconnection at the dayside magnetopause: steady or transient, widespread or localized, component or antiparallel as a function of solar wind conditions. However, amongst many other objectives, soft X-ray imagers can provide crucial information concerning the structure of the bow shock as a function of solar wind Mach number and IMF orientation, the presence or absence of a depletion layer, the occurrence of Kelvin-Helmholtz or pressure-pulse driven magnetopause boundary waves, and the effects of radial IMF orientations and the foreshock upon bow shock and magnetopause location.

  1. Facilitating LOS Debriefings: A Training Manual

    NASA Technical Reports Server (NTRS)

    McDonnell, Lori K.; Jobe, Kimberly K.; Dismukes, R. Key

    1997-01-01

    This manual is a practical guide to help airline instructors effectively facilitate debriefings of Line Oriented Simulations (LOS). It is based on a recently completed study of Line Oriented Flight Training (LOFT) debriefings at several U.S. airlines. This manual presents specific facilitation tools instructors can use to achieve debriefing objectives. The approach of the manual is to be flexible so it can be tailored to the individual needs of each airline. Part One clarifies the purpose and objectives of facilitation in the LOS setting. Part Two provides recommendations for clarifying roles and expectations and presents a model for organizing discussion. Part Tree suggests techniques for eliciting active crew participation and in-depth analysis and evaluation. Finally, in Part Four, these techniques are organized according to the facilitation model. Examples of how to effectively use the techniques are provided throughout, including strategies to try when the debriefing objectives are not being fully achieved.

  2. Interactive X-ray and proton therapy training and simulation.

    PubMed

    Hamza-Lup, Felix G; Farrar, Shane; Leon, Erik

    2015-10-01

    External beam X-ray therapy (XRT) and proton therapy (PT) are effective and widely accepted forms of treatment for many types of cancer. However, the procedures require extensive computerized planning. Current planning systems for both XRT and PT have insufficient visual aid to combine real patient data with the treatment device geometry to account for unforeseen collisions among system components and the patient. The 3D surface representation (S-rep) is a widely used scheme to create 3D models of physical objects. 3D S-reps have been successfully used in CAD/CAM and, in conjunction with texture mapping, in the modern gaming industry to customize avatars and improve the gaming realism and sense of presence. We are proposing a cost-effective method to extract patient-specific S-reps in real time and combine them with the treatment system geometry to provide a comprehensive simulation of the XRT/PT treatment room. The X3D standard is used to implement and deploy the simulator on the web, enabling its use not only for remote specialists' collaboration, simulation, and training, but also for patient education. An objective assessment of the accuracy of the S-reps obtained proves the potential of the simulator for clinical use.

  3. Onyx-Advanced Aeropropulsion Simulation Framework Created

    NASA Technical Reports Server (NTRS)

    Reed, John A.

    2001-01-01

    The Numerical Propulsion System Simulation (NPSS) project at the NASA Glenn Research Center is developing a new software environment for analyzing and designing aircraft engines and, eventually, space transportation systems. Its purpose is to dramatically reduce the time, effort, and expense necessary to design and test jet engines by creating sophisticated computer simulations of an aerospace object or system (refs. 1 and 2). Through a university grant as part of that effort, researchers at the University of Toledo have developed Onyx, an extensible Java-based (Sun Micro-systems, Inc.), objectoriented simulation framework, to investigate how advanced software design techniques can be successfully applied to aeropropulsion system simulation (refs. 3 and 4). The design of Onyx's architecture enables users to customize and extend the framework to add new functionality or adapt simulation behavior as required. It exploits object-oriented technologies, such as design patterns, domain frameworks, and software components, to develop a modular system in which users can dynamically replace components with others having different functionality.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zack, J; Natenberg, E J; Knowe, G V

    The overall goal of this multi-phased research project known as WindSENSE is to develop an observation system deployment strategy that would improve wind power generation forecasts. The objective of the deployment strategy is to produce the maximum benefit for 1- to 6-hour ahead forecasts of wind speed at hub-height ({approx}80 m). In this phase of the project the focus is on the Mid-Columbia Basin region, which encompasses the Bonneville Power Administration (BPA) wind generation area (Figure 1) that includes the Klondike, Stateline, and Hopkins Ridge wind plants. There are two tasks in the current project effort designed to validate themore » Ensemble Sensitivity Analysis (ESA) observational system deployment approach in order to move closer to the overall goal: (1) Perform an Observing System Experiment (OSE) using a data denial approach. The results of this task are presented in a separate report. (2) Conduct a set of Observing System Simulation Experiments (OSSE) for the Mid-Colombia basin region. This report presents the results of the OSSE task. The specific objective is to test strategies for future deployment of observing systems in order to suggest the best and most efficient ways to improve wind forecasting at BPA wind farm locations. OSSEs have been used for many years in meteorology to evaluate the potential impact of proposed observing systems, determine tradeoffs in instrument design, and study the most effective data assimilation methodologies to incorporate the new observations into numerical weather prediction (NWP) models (Atlas 1997; Lord 1997). For this project, a series of OSSEs will allow consideration of the impact of new observing systems of various types and in various locations.« less

  5. Simulation Based Studies of Low Latency Teleoperations for NASA Exploration Missions

    NASA Technical Reports Server (NTRS)

    Gernhardt, Michael L.; Crues, Edwin Z.; Bielski, Paul; Dexter, Dan; Litaker, Harry L.; Chappell, Steven P.; Beaton, Kara H.; Bekdash, Omar S.

    2017-01-01

    Human exploration of Mars will involve both crewed and robotic systems. Many mission concepts involve the deployment and assembly of mission support assets prior to crew arrival on the surface. Some of these deployment and assembly activities will be performed autonomously while others will be performed using teleoperations. However, significant communications latencies between the Earth and Mars make teleoperations challenging. Alternatively, low latency teleoperations are possible from locations in Mars orbit like Mars' moons Phobos and Deimos. To explore these latency opportunities, NASA is conducting a series of studies to investigate the effects of latency on telerobotic deployment and assembly activities. These studies are being conducted in laboratory environments at NASA's Johnson Space Center (JSC), the Human Exploration Research Analog (HERA) at JSC and the NASA Extreme Environment Mission Operations (NEEMO) underwater habitat off the coast of Florida. The studies involve two human-in-the-loop interactive simulations developed by the NASA Exploration Systems Simulations (NExSyS) team at JSC. The first simulation investigates manipulation related activities while the second simulation investigates mobility related activities. The first simulation provides a simple real-time operator interface with displays and controls for a simulated 6 degree of freedom end effector. The initial version of the simulation uses a simple control mode to decouple the robotic kinematic constraints and a communications delay to model latency effects. This provides the basis for early testing with more detailed manipulation simulations planned for the future. Subjects are tested using five operating latencies that represent teleoperation conditions from local surface operations to orbital operations at Phobos, Deimos and ultimately high Martian orbit. Subject performance is measured and correlated with three distance-to-target zones of interest. Each zone represents a target distance ranging from beyond 10m in Zone 1, through 1 cm to contact in Zone 5 with a step size factor of 10. Collected data consists of both objective simulation data (time, distance, hand controller inputs, velocity) and subjective questionnaire data. The second simulation provides a simple real-time operator interface with displays and control of a simulated surface rover. The rover traverses a synthetic Mars-like terrain and must be maneuvered to avoid obstacles while progressing to its destination. Like the manipulator simulation, subjects are tested using five operating latencies that represent teleoperation conditions from local surface operations to orbital operations at Phobos, Deimos and ultimately high Martian orbit. The rover is also operated at three different traverse speeds to assess the correlation between latency and speed. Collected data consisted of both objective simulation data (time, distance, hand controller inputs, braking) and subjective questionnaire data. These studies are exploring relationships between task complexity, operating speeds, operator efficiencies, and communications latencies for low latency teleoperations in support of human planetary exploration. This paper presents early results from these studies along with the current observations and conclusions. These and planned future studies will help to inform NASA on the potential for low latency teleoperations to support human exploration of Mars and inform the design of robotic systems and exploration missions.

  6. Validation results of satellite mock-up capturing experiment using nets

    NASA Astrophysics Data System (ADS)

    Medina, Alberto; Cercós, Lorenzo; Stefanescu, Raluca M.; Benvenuto, Riccardo; Pesce, Vincenzo; Marcon, Marco; Lavagna, Michèle; González, Iván; Rodríguez López, Nuria; Wormnes, Kjetil

    2017-05-01

    The PATENDER activity (Net parametric characterization and parabolic flight), funded by the European Space Agency (ESA) via its Clean Space initiative, was aiming to validate a simulation tool for designing nets for capturing space debris. This validation has been performed through a set of different experiments under microgravity conditions where a net was launched capturing and wrapping a satellite mock-up. This paper presents the architecture of the thrown-net dynamics simulator together with the set-up of the deployment experiment and its trajectory reconstruction results on a parabolic flight (Novespace A-310, June 2015). The simulator has been implemented within the Blender framework in order to provide a highly configurable tool, able to reproduce different scenarios for Active Debris Removal missions. The experiment has been performed over thirty parabolas offering around 22 s of zero-g conditions. Flexible meshed fabric structure (the net) ejected from a container and propelled by corner masses (the bullets) arranged around its circumference have been launched at different initial velocities and launching angles using a pneumatic-based dedicated mechanism (representing the chaser satellite) against a target mock-up (the target satellite). High-speed motion cameras were recording the experiment allowing 3D reconstruction of the net motion. The net knots have been coloured to allow the images post-process using colour segmentation, stereo matching and iterative closest point (ICP) for knots tracking. The final objective of the activity was the validation of the net deployment and wrapping simulator using images recorded during the parabolic flight. The high-resolution images acquired have been post-processed to determine accurately the initial conditions and generate the reference data (position and velocity of all knots of the net along its deployment and wrapping of the target mock-up) for the simulator validation. The simulator has been properly configured according to the parabolic flight scenario, and executed in order to generate the validation data. Both datasets have been compared according to different metrics in order to perform the validation of the PATENDER simulator.

  7. Simulation for assessment of bulk cargo berths number

    NASA Astrophysics Data System (ADS)

    Kuznetsov, A. L.; Kirichenko, A. V.; Slitsan, A. E.

    2017-10-01

    The world trade volumes of mineral resources have been growing constantly for decades, notwithstanding any economical crises. At the same time, the proximity of the bulk materials as products to the starting point of the integrated value added or logistic supply chain makes their unit price relatively low. This fact automatically causes a strong economic sensitivity of the supply chain to the level of operational expenses in every link. The core of the integrated logistic supply chain is its maritime segment, with the fleet and terminals (i.e. the cargo transportation system) serving as the base platform for it. In its turn, the terminal berths play a role of the interface between the fleet and the land-transportation sub-system. Current development of the maritime transportation technologies, ships and terminal specialization, vessel size growth, rationalization of route patterns, regionalization of trade etc., has made conventional calculation methods inadequate. The solution of the problem is in using object oriented simulation. At the same time, this approch usually assumes only ad hoc models. Thus, it does not provide the generality of its conventional analytical predecessors. The time and labor consumpting procedure of simulation results in a very narrow application domain of the model. This article describes a new simulation instrument, combining the generality of the analytical technoques with the efficiency of the object-oriented simulation. The approach implemented as a software module, which validity and adequacy are proved. The software was tested on several sea terminal design projects and confirmed its efficiency.

  8. Cluster analysis of molecular simulation trajectories for systems where both conformation and orientation of the sampled states are important.

    PubMed

    Abramyan, Tigran M; Snyder, James A; Thyparambil, Aby A; Stuart, Steven J; Latour, Robert A

    2016-08-05

    Clustering methods have been widely used to group together similar conformational states from molecular simulations of biomolecules in solution. For applications such as the interaction of a protein with a surface, the orientation of the protein relative to the surface is also an important clustering parameter because of its potential effect on adsorbed-state bioactivity. This study presents cluster analysis methods that are specifically designed for systems where both molecular orientation and conformation are important, and the methods are demonstrated using test cases of adsorbed proteins for validation. Additionally, because cluster analysis can be a very subjective process, an objective procedure for identifying both the optimal number of clusters and the best clustering algorithm to be applied to analyze a given dataset is presented. The method is demonstrated for several agglomerative hierarchical clustering algorithms used in conjunction with three cluster validation techniques. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  9. Automatic code generation in SPARK: Applications of computer algebra and compiler-compilers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nataf, J.M.; Winkelmann, F.

    We show how computer algebra and compiler-compilers are used for automatic code generation in the Simulation Problem Analysis and Research Kernel (SPARK), an object oriented environment for modeling complex physical systems that can be described by differential-algebraic equations. After a brief overview of SPARK, we describe the use of computer algebra in SPARK's symbolic interface, which generates solution code for equations that are entered in symbolic form. We also describe how the Lex/Yacc compiler-compiler is used to achieve important extensions to the SPARK simulation language, including parametrized macro objects and steady-state resetting of a dynamic simulation. The application of thesemore » methods to solving the partial differential equations for two-dimensional heat flow is illustrated.« less

  10. Automatic code generation in SPARK: Applications of computer algebra and compiler-compilers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nataf, J.M.; Winkelmann, F.

    We show how computer algebra and compiler-compilers are used for automatic code generation in the Simulation Problem Analysis and Research Kernel (SPARK), an object oriented environment for modeling complex physical systems that can be described by differential-algebraic equations. After a brief overview of SPARK, we describe the use of computer algebra in SPARK`s symbolic interface, which generates solution code for equations that are entered in symbolic form. We also describe how the Lex/Yacc compiler-compiler is used to achieve important extensions to the SPARK simulation language, including parametrized macro objects and steady-state resetting of a dynamic simulation. The application of thesemore » methods to solving the partial differential equations for two-dimensional heat flow is illustrated.« less

  11. PRELIMINARY COUPLING OF THE MONTE CARLO CODE OPENMC AND THE MULTIPHYSICS OBJECT-ORIENTED SIMULATION ENVIRONMENT (MOOSE) FOR ANALYZING DOPPLER FEEDBACK IN MONTE CARLO SIMULATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matthew Ellis; Derek Gaston; Benoit Forget

    In recent years the use of Monte Carlo methods for modeling reactors has become feasible due to the increasing availability of massively parallel computer systems. One of the primary challenges yet to be fully resolved, however, is the efficient and accurate inclusion of multiphysics feedback in Monte Carlo simulations. The research in this paper presents a preliminary coupling of the open source Monte Carlo code OpenMC with the open source Multiphysics Object-Oriented Simulation Environment (MOOSE). The coupling of OpenMC and MOOSE will be used to investigate efficient and accurate numerical methods needed to include multiphysics feedback in Monte Carlo codes.more » An investigation into the sensitivity of Doppler feedback to fuel temperature approximations using a two dimensional 17x17 PWR fuel assembly is presented in this paper. The results show a functioning multiphysics coupling between OpenMC and MOOSE. The coupling utilizes Functional Expansion Tallies to accurately and efficiently transfer pin power distributions tallied in OpenMC to unstructured finite element meshes used in MOOSE. The two dimensional PWR fuel assembly case also demonstrates that for a simplified model the pin-by-pin doppler feedback can be adequately replicated by scaling a representative pin based on pin relative powers.« less

  12. A flexible object-oriented software framework for developing complex multimedia simulations.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sydelko, P. J.; Dolph, J. E.; Christiansen, J. H.

    Decision makers involved in brownfields redevelopment and long-term stewardship must consider environmental conditions, future-use potential, site ownership, area infrastructure, funding resources, cost recovery, regulations, risk and liability management, community relations, and expected return on investment in a comprehensive and integrated fashion to achieve desired results. Successful brownfields redevelopment requires the ability to assess the impacts of redevelopment options on multiple interrelated aspects of the ecosystem, both natural and societal. Computer-based tools, such as simulation models, databases, and geographical information systems (GISs) can be used to address brownfields planning and project execution. The transparent integration of these tools into a comprehensivemore » and dynamic decision support system would greatly enhance the brownfields assessment process. Such a system needs to be able to adapt to shifting and expanding analytical requirements and contexts. The Dynamic Information Architecture System (DIAS) is a flexible, extensible, object-oriented framework for developing and maintaining complex multidisciplinary simulations of a wide variety of application domains. The modeling domain of a specific DIAS-based simulation is determined by (1) software objects that represent the real-world entities that comprise the problem space (atmosphere, watershed, human), and (2) simulation models and other data processing applications that express the dynamic behaviors of the domain entities. Models and applications used to express dynamic behaviors can be either internal or external to DIAS, including existing legacy models written in various languages (FORTRAN, C, etc.). The flexible design framework of DIAS makes the objects adjustable to the context of the problem without a great deal of recoding. The DIAS Spatial Data Set facility allows parameters to vary spatially depending on the simulation context according to any of a number of 1-D, 2-D, or 3-D topologies. DIAS is also capable of interacting with other GIS packages and can import many standard spatial data formats. DIAS simulation capabilities can also be extended by including societal process models. Models that implement societal behaviors of individuals and organizations within larger DIAS-based natural systems simulations allow for interaction and feedback among natural and societal processes. The ability to simulate the complex interplay of multimedia processes makes DIAS a promising tool for constructing applications for comprehensive community planning, including the assessment of multiple development and redevelopment scenarios.« less

  13. Impact of Data Placement on Resilience in Large-Scale Object Storage Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carns, Philip; Harms, Kevin; Jenkins, John

    Distributed object storage architectures have become the de facto standard for high-performance storage in big data, cloud, and HPC computing. Object storage deployments using commodity hardware to reduce costs often employ object replication as a method to achieve data resilience. Repairing object replicas after failure is a daunting task for systems with thousands of servers and billions of objects, however, and it is increasingly difficult to evaluate such scenarios at scale on realworld systems. Resilience and availability are both compromised if objects are not repaired in a timely manner. In this work we leverage a high-fidelity discrete-event simulation model tomore » investigate replica reconstruction on large-scale object storage systems with thousands of servers, billions of objects, and petabytes of data. We evaluate the behavior of CRUSH, a well-known object placement algorithm, and identify configuration scenarios in which aggregate rebuild performance is constrained by object placement policies. After determining the root cause of this bottleneck, we then propose enhancements to CRUSH and the usage policies atop it to enable scalable replica reconstruction. We use these methods to demonstrate a simulated aggregate rebuild rate of 410 GiB/s (within 5% of projected ideal linear scaling) on a 1,024-node commodity storage system. We also uncover an unexpected phenomenon in rebuild performance based on the characteristics of the data stored on the system.« less

  14. Object-Oriented Image Clustering Method Using UAS Photogrammetric Imagery

    NASA Astrophysics Data System (ADS)

    Lin, Y.; Larson, A.; Schultz-Fellenz, E. S.; Sussman, A. J.; Swanson, E.; Coppersmith, R.

    2016-12-01

    Unmanned Aerial Systems (UAS) have been used widely as an imaging modality to obtain remotely sensed multi-band surface imagery, and are growing in popularity due to their efficiency, ease of use, and affordability. Los Alamos National Laboratory (LANL) has employed the use of UAS for geologic site characterization and change detection studies at a variety of field sites. The deployed UAS equipped with a standard visible band camera to collect imagery datasets. Based on the imagery collected, we use deep sparse algorithmic processing to detect and discriminate subtle topographic features created or impacted by subsurface activities. In this work, we develop an object-oriented remote sensing imagery clustering method for land cover classification. To improve the clustering and segmentation accuracy, instead of using conventional pixel-based clustering methods, we integrate the spatial information from neighboring regions to create super-pixels to avoid salt-and-pepper noise and subsequent over-segmentation. To further improve robustness of our clustering method, we also incorporate a custom digital elevation model (DEM) dataset generated using a structure-from-motion (SfM) algorithm together with the red, green, and blue (RGB) band data for clustering. In particular, we first employ an agglomerative clustering to create an initial segmentation map, from where every object is treated as a single (new) pixel. Based on the new pixels obtained, we generate new features to implement another level of clustering. We employ our clustering method to the RGB+DEM datasets collected at the field site. Through binary clustering and multi-object clustering tests, we verify that our method can accurately separate vegetation from non-vegetation regions, and are also able to differentiate object features on the surface.

  15. An Object-Oriented Computer Code for Aircraft Engine Weight Estimation

    NASA Technical Reports Server (NTRS)

    Tong, Michael T.; Naylor, Bret A.

    2009-01-01

    Reliable engine-weight estimation at the conceptual design stage is critical to the development of new aircraft engines. It helps to identify the best engine concept amongst several candidates. At NASA Glenn Research Center (GRC), the Weight Analysis of Turbine Engines (WATE) computer code, originally developed by Boeing Aircraft, has been used to estimate the engine weight of various conceptual engine designs. The code, written in FORTRAN, was originally developed for NASA in 1979. Since then, substantial improvements have been made to the code to improve the weight calculations for most of the engine components. Most recently, to improve the maintainability and extensibility of WATE, the FORTRAN code has been converted into an object-oriented version. The conversion was done within the NASA's NPSS (Numerical Propulsion System Simulation) framework. This enables WATE to interact seamlessly with the thermodynamic cycle model which provides component flow data such as airflows, temperatures, and pressures, etc., that are required for sizing the components and weight calculations. The tighter integration between the NPSS and WATE would greatly enhance system-level analysis and optimization capabilities. It also would facilitate the enhancement of the WATE code for next-generation aircraft and space propulsion systems. In this paper, the architecture of the object-oriented WATE code (or WATE++) is described. Both the FORTRAN and object-oriented versions of the code are employed to compute the dimensions and weight of a 300-passenger aircraft engine (GE90 class). Both versions of the code produce essentially identical results as should be the case.

  16. Mars Exploration Rover Terminal Descent Mission Modeling and Simulation

    NASA Technical Reports Server (NTRS)

    Raiszadeh, Behzad; Queen, Eric M.

    2004-01-01

    Because of NASA's added reliance on simulation for successful interplanetary missions, the MER mission has developed a detailed EDL trajectory modeling and simulation. This paper summarizes how the MER EDL sequence of events are modeled, verification of the methods used, and the inputs. This simulation is built upon a multibody parachute trajectory simulation tool that has been developed in POST I1 that accurately simulates the trajectory of multiple vehicles in flight with interacting forces. In this model the parachute and the suspended bodies are treated as 6 Degree-of-Freedom (6 DOF) bodies. The terminal descent phase of the mission consists of several Entry, Descent, Landing (EDL) events, such as parachute deployment, heatshield separation, deployment of the lander from the backshell, deployment of the airbags, RAD firings, TIRS firings, etc. For an accurate, reliable simulation these events need to be modeled seamlessly and robustly so that the simulations will remain numerically stable during Monte-Carlo simulations. This paper also summarizes how the events have been modeled, the numerical issues, and modeling challenges.

  17. Open Marketplace for Simulation Software on the Basis of a Web Platform

    NASA Astrophysics Data System (ADS)

    Kryukov, A. P.; Demichev, A. P.

    2016-02-01

    The focus in development of a new generation of middleware shifts from the global grid systems to building convenient and efficient web platforms for remote access to individual computing resources. Further line of their development, suggested in this work, is related not only with the quantitative increase in their number and with the expansion of scientific, engineering, and manufacturing areas in which they are used, but also with improved technology for remote deployment of application software on the resources interacting with the web platforms. Currently, the services for providers of application software in the context of scientific-oriented web platforms is not developed enough. The proposed in this work new web platforms of application software market should have all the features of the existing web platforms for submissions of jobs to remote resources plus the provision of specific web services for interaction on market principles between the providers and consumers of application packages. The suggested approach will be approved on the example of simulation applications in the field of nonlinear optics.

  18. Parachute Models Used in the Mars Science Laboratory Entry, Descent, and Landing Simulation

    NASA Technical Reports Server (NTRS)

    Cruz, Juan R.; Way, David W.; Shidner, Jeremy D.; Davis, Jody L.; Powell, Richard W.; Kipp, Devin M.; Adams, Douglas S.; Witkowski, Al; Kandis, Mike

    2013-01-01

    An end-to-end simulation of the Mars Science Laboratory (MSL) entry, descent, and landing (EDL) sequence was created at the NASA Langley Research Center using the Program to Optimize Simulated Trajectories II (POST2). This simulation is capable of providing numerous MSL system and flight software responses, including Monte Carlo-derived statistics of these responses. The MSL POST2 simulation includes models of EDL system elements, including those related to the parachute system. Among these there are models for the parachute geometry, mass properties, deployment, inflation, opening force, area oscillations, aerodynamic coefficients, apparent mass, interaction with the main landing engines, and off-loading. These models were kept as simple as possible, considering the overall objectives of the simulation. The main purpose of this paper is to describe these parachute system models to the extent necessary to understand how they work and some of their limitations. A list of lessons learned during the development of the models and simulation is provided. Future improvements to the parachute system models are proposed.

  19. Simulating Operations at a Spaceport

    NASA Technical Reports Server (NTRS)

    Nevins, Michael R.

    2007-01-01

    SPACESIM is a computer program for detailed simulation of operations at a spaceport. SPACESIM is being developed to greatly improve existing spaceports and to aid in designing, building, and operating future spaceports, given that there is a worldwide trend in spaceport operations from very expensive, research- oriented launches to more frequent commercial launches. From an operational perspective, future spaceports are expected to resemble current airports and seaports, for which it is necessary to resolve issues of safety, security, efficient movement of machinery and people, cost effectiveness, timeliness, and maximizing effectiveness in utilization of resources. Simulations can be performed, for example, to (1) simultaneously analyze launches of reusable and expendable rockets and identify bottlenecks arising from competition for limited resources or (2) perform what-if scenario analyses to identify optimal scenarios prior to making large capital investments. SPACESIM includes an object-oriented discrete-event-simulation engine. (Discrete- event simulation has been used to assess processes at modern seaports.) The simulation engine is built upon the Java programming language for maximum portability. Extensible Markup Language (XML) is used for storage of data to enable industry-standard interchange of data with other software. A graphical user interface facilitates creation of scenarios and analysis of data.

  20. Enhancing Interactivity and Productivity through Object-Oriented Authoring: An Instructional Designer's Perspective.

    ERIC Educational Resources Information Center

    Chapman, Bryan L.

    1994-01-01

    Discusses the effect of object-oriented programming on the evolution of authoring systems. Topics include the definition of an object; examples of object-oriented authoring interfaces; what object-orientation means to an instructional developer; how object orientation increases productivity and enhances interactivity; and the future of courseware…

  1. Planetary surface exploration MESUR/autonomous lunar rover

    NASA Astrophysics Data System (ADS)

    Stauffer, Larry; Dilorenzo, Matt; Austin, Dave; Ayers, Raymond; Burton, David; Gaylord, Joe; Kennedy, Jim; Laux, Richard; Lentz, Dale; Nance, Preston

    Planetary surface exploration micro-rovers for collecting data about the Moon and Mars have been designed by the Department of Mechanical Engineering at the University of Idaho. The goal of both projects was to design a rover concept that best satisfied the project objectives for NASA/Ames. A second goal was to facilitate student learning about the process of design. The first micro-rover is a deployment mechanism for the Mars Environmental Survey (MESUR) Alpha Particle/Proton/X-ray (APX) Instrument. The system is to be launched with the 16 MESUR landers around the turn of the century. A Tubular Deployment System and a spiked-legged walker have been developed to deploy the APX from the lander to the Martian Surface. While on Mars, the walker is designed to take the APX to rocks to obtain elemental composition data of the surface. The second micro-rover is an autonomous, roving vehicle to transport a sensor package over the surface of the moon. The vehicle must negotiate the lunar terrain for a minimum of one year by surviving impacts and withstanding the environmental extremes. The rover is a reliable track-driven unit that operates regardless of orientation that NASA can use for future lunar exploratory missions. This report includes a detailed description of the designs and the methods and procedures which the University of Idaho design teams followed to arrive at the final designs.

  2. Planetary surface exploration: MESUR/autonomous lunar rover

    NASA Astrophysics Data System (ADS)

    Stauffer, Larry; Dilorenzo, Matt; Austin, Dave; Ayers, Raymond; Burton, David; Gaylord, Joe; Kennedy, Jim; Lentz, Dale; Laux, Richard; Nance, Preston

    1992-06-01

    Planetary surface exploration micro-rovers for collecting data about the Moon and Mars was designed by the Department of Mechanical Engineering at the University of Idaho. The goal of both projects was to design a rover concept that best satisfied the project objectives for NASA-Ames. A second goal was to facilitate student learning about the process of design. The first micro-rover is a deployment mechanism for the Mars Environmental SURvey (MESUR) Alpha Particle/Proton/X-ray instruments (APX). The system is to be launched with the sixteen MESUR landers around the turn of the century. A Tubular Deployment System and a spiked-legged walker was developed to deploy the APX from the lander to the Martian surface. While on Mars the walker is designed to take the APX to rocks to obtain elemental composition data of the surface. The second micro-rover is an autonomous, roving vehicle to transport a sensor package over the surface of the moon. The vehicle must negotiate the lunar-terrain for a minimum of one year by surviving impacts and withstanding the environmental extremes. The rover is a reliable track-driven unit that operates regardless of orientation which NASA can use for future lunar exploratory missions. A detailed description of the designs, methods, and procedures which the University of Idaho design teams followed to arrive at the final designs are included.

  3. Planetary surface exploration MESUR/autonomous lunar rover

    NASA Technical Reports Server (NTRS)

    Stauffer, Larry; Dilorenzo, Matt; Austin, Dave; Ayers, Raymond; Burton, David; Gaylord, Joe; Kennedy, Jim; Laux, Richard; Lentz, Dale; Nance, Preston

    1992-01-01

    Planetary surface exploration micro-rovers for collecting data about the Moon and Mars have been designed by the Department of Mechanical Engineering at the University of Idaho. The goal of both projects was to design a rover concept that best satisfied the project objectives for NASA/Ames. A second goal was to facilitate student learning about the process of design. The first micro-rover is a deployment mechanism for the Mars Environmental Survey (MESUR) Alpha Particle/Proton/X-ray (APX) Instrument. The system is to be launched with the 16 MESUR landers around the turn of the century. A Tubular Deployment System and a spiked-legged walker have been developed to deploy the APX from the lander to the Martian Surface. While on Mars, the walker is designed to take the APX to rocks to obtain elemental composition data of the surface. The second micro-rover is an autonomous, roving vehicle to transport a sensor package over the surface of the moon. The vehicle must negotiate the lunar terrain for a minimum of one year by surviving impacts and withstanding the environmental extremes. The rover is a reliable track-driven unit that operates regardless of orientation that NASA can use for future lunar exploratory missions. This report includes a detailed description of the designs and the methods and procedures which the University of Idaho design teams followed to arrive at the final designs.

  4. Planetary surface exploration: MESUR/autonomous lunar rover

    NASA Technical Reports Server (NTRS)

    Stauffer, Larry; Dilorenzo, Matt; Austin, Dave; Ayers, Raymond; Burton, David; Gaylord, Joe; Kennedy, Jim; Lentz, Dale; Laux, Richard; Nance, Preston

    1992-01-01

    Planetary surface exploration micro-rovers for collecting data about the Moon and Mars was designed by the Department of Mechanical Engineering at the University of Idaho. The goal of both projects was to design a rover concept that best satisfied the project objectives for NASA-Ames. A second goal was to facilitate student learning about the process of design. The first micro-rover is a deployment mechanism for the Mars Environmental SURvey (MESUR) Alpha Particle/Proton/X-ray instruments (APX). The system is to be launched with the sixteen MESUR landers around the turn of the century. A Tubular Deployment System and a spiked-legged walker was developed to deploy the APX from the lander to the Martian surface. While on Mars the walker is designed to take the APX to rocks to obtain elemental composition data of the surface. The second micro-rover is an autonomous, roving vehicle to transport a sensor package over the surface of the moon. The vehicle must negotiate the lunar-terrain for a minimum of one year by surviving impacts and withstanding the environmental extremes. The rover is a reliable track-driven unit that operates regardless of orientation which NASA can use for future lunar exploratory missions. A detailed description of the designs, methods, and procedures which the University of Idaho design teams followed to arrive at the final designs are included.

  5. A Business Studies Oriented Taxonomy for Assessing Viewpoint Change through Sustainability Education: Messages, Measures and Moves

    ERIC Educational Resources Information Center

    Woodward, Russell; Hagerup, Clare

    2017-01-01

    This paper explores and deploys a business oriented taxonomy of decisions from which to ascertain change in student viewpoint regarding the study of sustainability modules. A review of conceptual and empirical studies to date on business cohorts' viewpoints regarding sustainability study notes the lack of business contextualization and the…

  6. A Methodological Approach to Encourage the Service-Oriented Learning Systems Development

    ERIC Educational Resources Information Center

    Diez, David; Malizia, Alessio; Aedo, Ignacio; Diaz, Paloma; Fernandez, Camino; Dodero, Juan-Manuel

    2009-01-01

    The basic idea of service-oriented learning is that a learning environment should be conceived as a set of independent units of learning packaged as learning services. The design, development and deployment of a learning system based on integrating different learning services needs both a technological platform to support the system as well as a…

  7. Vision-based overlay of a virtual object into real scene for designing room interior

    NASA Astrophysics Data System (ADS)

    Harasaki, Shunsuke; Saito, Hideo

    2001-10-01

    In this paper, we introduce a geometric registration method for augmented reality (AR) and an application system, interior simulator, in which a virtual (CG) object can be overlaid into a real world space. Interior simulator is developed as an example of an AR application of the proposed method. Using interior simulator, users can visually simulate the location of virtual furniture and articles in the living room so that they can easily design the living room interior without placing real furniture and articles, by viewing from many different locations and orientations in real-time. In our system, two base images of a real world space are captured from two different views for defining a projective coordinate of object 3D space. Then each projective view of a virtual object in the base images are registered interactively. After such coordinate determination, an image sequence of a real world space is captured by hand-held camera with tracking non-metric measured feature points for overlaying a virtual object. Virtual objects can be overlaid onto the image sequence by taking each relationship between the images. With the proposed system, 3D position tracking device, such as magnetic trackers, are not required for the overlay of virtual objects. Experimental results demonstrate that 3D virtual furniture can be overlaid into an image sequence of the scene of a living room nearly at video rate (20 frames per second).

  8. Rich media streaming for just-in-time training of first responders

    NASA Astrophysics Data System (ADS)

    Bandera, Cesar; Marsico, Michael

    2005-05-01

    The diversity of first responders and of asymmetric threats precludes the effectiveness of any single training syllabus. Just-in-time training (JITT) addresses this variability, but requires training content to be quickly tailored to the subject (the threat), the learner (the responder), and the infrastructure (the C2 chain from DHS to the responder"s equipment). We present a distributed system for personalized just-in-time training of first responders. The authoring and delivery of interactive rich media and simulations, and the integration of JITT with C2 centers, are demonstrated. Live and archived video, imagery, 2-D and 3-D models, and simulations are autonomously (1) aggregated from object-oriented databases into SCORM-compliant objects, (2) tailored to the individual learner"s training history, preferences, connectivity and computing platform (from workstations to wireless PDAs), (3) conveyed as secure and reliable MPEG-4 compliant streams with data rights management, and (4) rendered as interactive high-definition rich media that promotes knowledge retention and the refinement of learner skills without the need of special hardware. We review the object-oriented implications of SCORM and the higher level profiles of the MPEG-4 standard, and show how JITT can be integrated into - and improve the ROI of - existing training infrastructures, including COTS content authoring tools, LMS/CMS, man-in-the-loop simulators, and legacy content. Lastly, we compare the audiovisual quality of different streaming platforms under varying connectivity conditions.

  9. Numerical System Solver Developed for the National Cycle Program

    NASA Technical Reports Server (NTRS)

    Binder, Michael P.

    1999-01-01

    As part of the National Cycle Program (NCP), a powerful new numerical solver has been developed to support the simulation of aeropropulsion systems. This software uses a hierarchical object-oriented design. It can provide steady-state and time-dependent solutions to nonlinear and even discontinuous problems typically encountered when aircraft and spacecraft propulsion systems are simulated. It also can handle constrained solutions, in which one or more factors may limit the behavior of the engine system. Timedependent simulation capabilities include adaptive time-stepping and synchronization with digital control elements. The NCP solver is playing an important role in making the NCP a flexible, powerful, and reliable simulation package.

  10. Attention is required for maintenance of feature binding in visual working memory

    PubMed Central

    Heider, Maike; Husain, Masud

    2013-01-01

    Working memory and attention are intimately connected. However, understanding the relationship between the two is challenging. Currently, there is an important controversy about whether objects in working memory are maintained automatically or require resources that are also deployed for visual or auditory attention. Here we investigated the effects of loading attention resources on precision of visual working memory, specifically on correct maintenance of feature-bound objects, using a dual-task paradigm. Participants were presented with a memory array and were asked to remember either direction of motion of random dot kinematograms of different colour, or orientation of coloured bars. During the maintenance period, they performed a secondary visual or auditory task, with varying levels of load. Following a retention period, they adjusted a coloured probe to match either the motion direction or orientation of stimuli with the same colour in the memory array. This allowed us to examine the effects of an attention-demanding task performed during maintenance on precision of recall on the concurrent working memory task. Systematic increase in attention load during maintenance resulted in a significant decrease in overall working memory performance. Changes in overall performance were specifically accompanied by an increase in feature misbinding errors: erroneous reporting of nontarget motion or orientation. Thus in trials where attention resources were taxed, participants were more likely to respond with nontarget values rather than simply making random responses. Our findings suggest that resources used during attention-demanding visual or auditory tasks also contribute to maintaining feature-bound representations in visual working memory—but not necessarily other aspects of working memory. PMID:24266343

  11. Attention is required for maintenance of feature binding in visual working memory.

    PubMed

    Zokaei, Nahid; Heider, Maike; Husain, Masud

    2014-01-01

    Working memory and attention are intimately connected. However, understanding the relationship between the two is challenging. Currently, there is an important controversy about whether objects in working memory are maintained automatically or require resources that are also deployed for visual or auditory attention. Here we investigated the effects of loading attention resources on precision of visual working memory, specifically on correct maintenance of feature-bound objects, using a dual-task paradigm. Participants were presented with a memory array and were asked to remember either direction of motion of random dot kinematograms of different colour, or orientation of coloured bars. During the maintenance period, they performed a secondary visual or auditory task, with varying levels of load. Following a retention period, they adjusted a coloured probe to match either the motion direction or orientation of stimuli with the same colour in the memory array. This allowed us to examine the effects of an attention-demanding task performed during maintenance on precision of recall on the concurrent working memory task. Systematic increase in attention load during maintenance resulted in a significant decrease in overall working memory performance. Changes in overall performance were specifically accompanied by an increase in feature misbinding errors: erroneous reporting of nontarget motion or orientation. Thus in trials where attention resources were taxed, participants were more likely to respond with nontarget values rather than simply making random responses. Our findings suggest that resources used during attention-demanding visual or auditory tasks also contribute to maintaining feature-bound representations in visual working memory-but not necessarily other aspects of working memory.

  12. System analysis through bond graph modeling

    NASA Astrophysics Data System (ADS)

    McBride, Robert Thomas

    2005-07-01

    Modeling and simulation form an integral role in the engineering design process. An accurate mathematical description of a system provides the design engineer the flexibility to perform trade studies quickly and accurately to expedite the design process. Most often, the mathematical model of the system contains components of different engineering disciplines. A modeling methodology that can handle these types of systems might be used in an indirect fashion to extract added information from the model. This research examines the ability of a modeling methodology to provide added insight into system analysis and design. The modeling methodology used is bond graph modeling. An investigation into the creation of a bond graph model using the Lagrangian of the system is provided. Upon creation of the bond graph, system analysis is performed. To aid in the system analysis, an object-oriented approach to bond graph modeling is introduced. A framework is provided to simulate the bond graph directly. Through object-oriented simulation of a bond graph, the information contained within the bond graph can be exploited to create a measurement of system efficiency. A definition of system efficiency is given. This measurement of efficiency is used in the design of different controllers of varying architectures. Optimal control of a missile autopilot is discussed within the framework of the calculated system efficiency.

  13. Pre-simulation orientation for medical trainees: An approach to decrease anxiety and improve confidence and performance.

    PubMed

    Bommer, Cassidy; Sullivan, Sarah; Campbell, Krystle; Ahola, Zachary; Agarwal, Suresh; O'Rourke, Ann; Jung, Hee Soo; Gibson, Angela; Leverson, Glen; Liepert, Amy E

    2018-02-01

    We assessed the effect of basic orientation to the simulation environment on anxiety, confidence, and clinical decision making. Twenty-four graduating medical students participated in a two-week surgery preparatory curriculum, including three simulations. Baseline anxiety was assessed pre-course. Scenarios were completed on day 2 and day 9. Prior to the first simulation, participants were randomly divided into two groups. Only one group received a pre-simulation orientation. Before the second simulation, all students received the same orientation. Learner anxiety was reported immediately preceding and following each simulation. Confidence was assessed post-simulation. Performance was evaluated by surgical faculty. The oriented group experienced decreased anxiety following the first simulation (p = 0.003); the control group did not. Compared to the control group, the oriented group reported less anxiety and greater confidence and received higher performance scores following all three simulations (all p < 0.05). Pre-simulation orientation reduces anxiety while increasing confidence and improving performance. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. A multilevel control approach for a modular structured space platform

    NASA Technical Reports Server (NTRS)

    Chichester, F. D.; Borelli, M. T.

    1981-01-01

    A three axis mathematical representation of a modular assembled space platform consisting of interconnected discrete masses, including a deployable truss module, was derived for digital computer simulation. The platform attitude control system as developed to provide multilevel control utilizing the Gauss-Seidel second level formulation along with an extended form of linear quadratic regulator techniques. The objectives of the multilevel control are to decouple the space platform's spatial axes and to accommodate the modification of the platform's configuration for each of the decoupled axes.

  15. Integration of OpenMC methods into MAMMOTH and Serpent

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kerby, Leslie; DeHart, Mark; Tumulak, Aaron

    OpenMC, a Monte Carlo particle transport simulation code focused on neutron criticality calculations, contains several methods we wish to emulate in MAMMOTH and Serpent. First, research coupling OpenMC and the Multiphysics Object-Oriented Simulation Environment (MOOSE) has shown promising results. Second, the utilization of Functional Expansion Tallies (FETs) allows for a more efficient passing of multiphysics data between OpenMC and MOOSE. Both of these capabilities have been preliminarily implemented into Serpent. Results are discussed and future work recommended.

  16. Towards Citizen Co-Created Public Service Apps.

    PubMed

    Emaldi, Mikel; Aguilera, Unai; López-de-Ipiña, Diego; Pérez-Velasco, Jorge

    2017-06-02

    WeLive project's main objective is about transforming the current e-government approach by providing a new paradigm based on a new open model oriented towards the design, production and deployment of public services and mobile apps based on the collaboration of different stakeholders. These stakeholders form the quadruple helix, i.e., citizens, private companies, research institutes and public administrations. Through the application of open innovation, open data and open services paradigms, the framework developed within the WeLive project enables the co-creation of urban apps. In this paper, we extend the description of the WeLive platform presented at , plus the preliminary results of the first pilot phase. The two-phase evaluation methodology designed and the evaluation results of first pilot sub-phase are also presented.

  17. Parallelization of Rocket Engine Simulator Software (PRESS)

    NASA Technical Reports Server (NTRS)

    Cezzar, Ruknet

    1997-01-01

    Parallelization of Rocket Engine System Software (PRESS) project is part of a collaborative effort with Southern University at Baton Rouge (SUBR), University of West Florida (UWF), and Jackson State University (JSU). The second-year funding, which supports two graduate students enrolled in our new Master's program in Computer Science at Hampton University and the principal investigator, have been obtained for the period from October 19, 1996 through October 18, 1997. The key part of the interim report was new directions for the second year funding. This came about from discussions during Rocket Engine Numeric Simulator (RENS) project meeting in Pensacola on January 17-18, 1997. At that time, a software agreement between Hampton University and NASA Lewis Research Center had already been concluded. That agreement concerns off-NASA-site experimentation with PUMPDES/TURBDES software. Before this agreement, during the first year of the project, another large-scale FORTRAN-based software, Two-Dimensional Kinetics (TDK), was being used for translation to an object-oriented language and parallelization experiments. However, that package proved to be too complex and lacking sufficient documentation for effective translation effort to the object-oriented C + + source code. The focus, this time with better documented and more manageable PUMPDES/TURBDES package, was still on translation to C + + with design improvements. At the RENS Meeting, however, the new impetus for the RENS projects in general, and PRESS in particular, has shifted in two important ways. One was closer alignment with the work on Numerical Propulsion System Simulator (NPSS) through cooperation and collaboration with LERC ACLU organization. The other was to see whether and how NASA's various rocket design software can be run over local and intra nets without any radical efforts for redesign and translation into object-oriented source code. There were also suggestions that the Fortran based code be encapsulated in C + + code thereby facilitating reuse without undue development effort. The details are covered in the aforementioned section of the interim report filed on April 28, 1997.

  18. A Summary of Proceedings for the Advanced Deployable Day/Night Simulation Symposium

    DTIC Science & Technology

    2009-07-01

    initiated to design , develop, and deliver transportable visual simulations that jointly provide night-vision and high-resolution daylight capability. The...Deployable Day/Night Simulation (ADDNS) Technology Demonstration Project was initiated to design , develop, and deliver transportable visual...was Dr. Richard Wildes (York University); Mr. Vitaly Zholudev (Department of Computer Science, York University), Mr. X. Zhu (Neptec Design Group), and

  19. Position estimation and driving of an autonomous vehicle by monocular vision

    NASA Astrophysics Data System (ADS)

    Hanan, Jay C.; Kayathi, Pavan; Hughlett, Casey L.

    2007-04-01

    Automatic adaptive tracking in real-time for target recognition provided autonomous control of a scale model electric truck. The two-wheel drive truck was modified as an autonomous rover test-bed for vision based guidance and navigation. Methods were implemented to monitor tracking error and ensure a safe, accurate arrival at the intended science target. Some methods are situation independent relying only on the confidence error of the target recognition algorithm. Other methods take advantage of the scenario of combined motion and tracking to filter out anomalies. In either case, only a single calibrated camera was needed for position estimation. Results from real-time autonomous driving tests on the JPL simulated Mars yard are presented. Recognition error was often situation dependent. For the rover case, the background was in motion and may be characterized to provide visual cues on rover travel such as rate, pitch, roll, and distance to objects of interest or hazards. Objects in the scene may be used as landmarks, or waypoints, for such estimations. As objects are approached, their scale increases and their orientation may change. In addition, particularly on rough terrain, these orientation and scale changes may be unpredictable. Feature extraction combined with the neural network algorithm was successful in providing visual odometry in the simulated Mars environment.

  20. Dynamic simulation of a reverse Brayton refrigerator

    NASA Astrophysics Data System (ADS)

    Peng, N.; Lei, L. L.; Xiong, L. Y.; Tang, J. C.; Dong, B.; Liu, L. Q.

    2014-01-01

    A test refrigerator based on the modified Reverse Brayton cycle has been developed in the Chinese Academy of Sciences recently. To study the behaviors of this test refrigerator, a dynamic simulation has been carried out. The numerical model comprises the typical components of the test refrigerator: compressor, valves, heat exchangers, expander and heater. This simulator is based on the oriented-object approach and each component is represented by a set of differential and algebraic equations. The control system of the test refrigerator is also simulated, which can be used to optimize the control strategies. This paper describes all the models and shows the simulation results. Comparisons between simulation results and experimental data are also presented. Experimental validation on the test refrigerator gives satisfactory results.

  1. Statistical Trajectory Estimation Program (STEP) implementation for BLDT post flight trajectory simulation

    NASA Technical Reports Server (NTRS)

    Shields, W. E.

    1973-01-01

    Tests were conducted to provide flight conditions for qualifying the Viking Decelerator System in a simulated Mars environment. A balloon launched decelerator test (BLDT) vehicle which has an external shape similar to the actual Mars Viking Lander Capsule was used so that the decelerator would be deployed in the wake of a blunt body. An effort was made to simulate the BLDT vehicle flights from the time they were dropped from the balloon, through decelerator deployment, until stable decelerator conditions were reached. The procedure used to simulate these flights using the Statistical Trajectory Estimation Program (STEP) is discussed. Using primarily ground-based position radar and vehicle onboard rate gyro and accelerometer data, the STEP produces a minimum variance solution of the vehicle trajectory and calculates vehicle attitude histories. Using film from cameras in the vehicle along with a computer program, attitude histories for portions of the flight before and after decelerator deployment were calculated independent of the STEP simulation. With the assumption that the vehicle motions derived from camera data are accurate, a comparison reveals that STEP was able to simulate vehicle motions for all flights both before and after decelerator deployment.

  2. Shadowfax: Moving mesh hydrodynamical integration code

    NASA Astrophysics Data System (ADS)

    Vandenbroucke, Bert

    2016-05-01

    Shadowfax simulates galaxy evolution. Written in object-oriented modular C++, it evolves a mixture of gas, subject to the laws of hydrodynamics and gravity, and any collisionless fluid only subject to gravity, such as cold dark matter or stars. For the hydrodynamical integration, it makes use of a (co-) moving Lagrangian mesh. The code has a 2D and 3D version, contains utility programs to generate initial conditions and visualize simulation snapshots, and its input/output is compatible with a number of other simulation codes, e.g. Gadget2 (ascl:0003.001) and GIZMO (ascl:1410.003).

  3. An expert system for municipal solid waste management simulation analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hsieh, M.C.; Chang, N.B.

    1996-12-31

    Optimization techniques were usually used to model the complicated metropolitan solid waste management system to search for the best dynamic combination of waste recycling, facility siting, and system operation, where sophisticated and well-defined interrelationship are required in the modeling process. But this paper applied the Concurrent Object-Oriented Simulation (COOS), a new simulation software construction method, to bridge the gap between the physical system and its computer representation. The case study of Kaohsiung solid waste management system in Taiwan is prepared for the illustration of the analytical methodology of COOS and its implementation in the creation of an expert system.

  4. Molecular orientation sensitive second harmonic microscopy by radially and azimuthally polarized light

    PubMed Central

    Ehmke, Tobias; Nitzsche, Tim Heiko; Knebl, Andreas; Heisterkamp, Alexander

    2014-01-01

    We demonstrate the possibility to switch the z-polarization component of the illumination in the vicinity of the focus of high-NA objective lenses by applying radially and azimuthally polarized incident light. The influence of the field distribution on nonlinear effects was first investigated by the means of simulations. These were performed for high-NA objective lenses commonly used in nonlinear microscopy. Special attention is paid to the influence of the polarization of the incoming field. For linearly, circularly and radially polarized light a considerable polarization component in z-direction is generated by high NA focusing. Azimuthal polarization is an exceptional case: even for strong focusing no z-component arises. Furthermore, the influence of the input polarization on the intensity contributing to the nonlinear signal generation was computed. No distinct difference between comparable input polarization states was found for chosen thresholds of nonlinear signal generation. Differences in signal generation for radially and azimuthally polarized vortex beams were experimentally evaluated in native collagen tissue (porcine cornea). The findings are in good agreement with the theoretical predictions and display the possibility to probe the molecular orientation along the optical axis of samples with known nonlinear properties. The combination of simulations regarding the nonlinear response of materials and experiments with different sample orientations and present or non present z-polarization could help to increase the understanding of nonlinear signal formation in yet unstudied materials. PMID:25071961

  5. Numerical Propulsion System Simulation Architecture

    NASA Technical Reports Server (NTRS)

    Naiman, Cynthia G.

    2004-01-01

    The Numerical Propulsion System Simulation (NPSS) is a framework for performing analysis of complex systems. Because the NPSS was developed using the object-oriented paradigm, the resulting architecture is an extensible and flexible framework that is currently being used by a diverse set of participants in government, academia, and the aerospace industry. NPSS is being used by over 15 different institutions to support rockets, hypersonics, power and propulsion, fuel cells, ground based power, and aerospace. Full system-level simulations as well as subsystems may be modeled using NPSS. The NPSS architecture enables the coupling of analyses at various levels of detail, which is called numerical zooming. The middleware used to enable zooming and distributed simulations is the Common Object Request Broker Architecture (CORBA). The NPSS Developer's Kit offers tools for the developer to generate CORBA-based components and wrap codes. The Developer's Kit enables distributed multi-fidelity and multi-discipline simulations, preserves proprietary and legacy codes, and facilitates addition of customized codes. The platforms supported are PC, Linux, HP, Sun, and SGI.

  6. Technical support package: Large, easily deployable structures. NASA Tech Briefs, Fall 1982, volume 7, no. 1

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Design and test data for packaging, deploying, and assembling structures for near term space platform systems, were provided by testing light type hardware in the Neutral Buoyancy Simulator. An optimum or near optimum structural configuration for varying degrees of deployment utilizing different levels of EVA and RMS was achieved. The design of joints and connectors and their lock/release mechanisms were refined to improve performance and operational convenience. The incorporation of utilities into structural modules to determine their effects on packaging and deployment was evaluated. By simulation tests, data was obtained for stowage, deployment, and assembly of the final structural system design to determine construction timelines, and evaluate system functioning and techniques.

  7. Post-launch analysis of the deployment dynamics of a space web sounding rocket experiment

    NASA Astrophysics Data System (ADS)

    Mao, Huina; Sinn, Thomas; Vasile, Massimiliano; Tibert, Gunnar

    2016-10-01

    Lightweight deployable space webs have been proposed as platforms or frames for a construction of structures in space where centrifugal forces enable deployment and stabilization. The Suaineadh project was aimed to deploy a 2 × 2m2 space web by centrifugal forces in milli-gravity conditions and act as a test bed for the space web technology. Data from former sounding rocket experiments, ground tests and simulations were used to design the structure, the folding pattern and control parameters. A developed control law and a reaction wheel were used to control the deployment. After ejection from the rocket, the web was deployed but entanglements occurred since the web did not start to deploy at the specified angular velocity. The deployment dynamics was reconstructed from the information recorded in inertial measurement units and cameras. The nonlinear torque of the motor used to drive the reaction wheel was calculated from the results. Simulations show that if the Suaineadh started to deploy at the specified angular velocity, the web would most likely have been deployed and stabilized in space by the motor, reaction wheel and controller used in the experiment.

  8. Determining the orientation of depth-rotated familiar objects.

    PubMed

    Niimi, Ryosuke; Yokosawa, Kazuhiko

    2008-02-01

    How does the human visual system determine the depth-orientation of familiar objects? We examined reaction times and errors in the detection of 15 degrees differences in the depth orientations of two simultaneously presented familiar objects, which were the same objects (Experiment 1) or different objects (Experiment 2). Detection of orientation differences was best for 0 degrees (front) and 180 degrees (back), while 45 degrees and 135 degrees yielded poorer results, and 90 degrees (side) showed intermediate results, suggesting that the visual system is tuned for front, side and back orientations. We further found that those advantages are due to orientation-specific features such as horizontal linear contours and symmetry, since the 90 degrees advantage was absent for objects with curvilinear contours, and asymmetric object diminished the 0 degrees and 180 degrees advantages. We conclude that the efficiency of visually determining object orientation is highly orientation-dependent, and object orientation may be perceived in favor of front-back axes.

  9. A methodology towards virtualisation-based high performance simulation platform supporting multidisciplinary design of complex products

    NASA Astrophysics Data System (ADS)

    Ren, Lei; Zhang, Lin; Tao, Fei; (Luke) Zhang, Xiaolong; Luo, Yongliang; Zhang, Yabin

    2012-08-01

    Multidisciplinary design of complex products leads to an increasing demand for high performance simulation (HPS) platforms. One great challenge is how to achieve high efficient utilisation of large-scale simulation resources in distributed and heterogeneous environments. This article reports a virtualisation-based methodology to realise a HPS platform. This research is driven by the issues concerning large-scale simulation resources deployment and complex simulation environment construction, efficient and transparent utilisation of fine-grained simulation resources and high reliable simulation with fault tolerance. A framework of virtualisation-based simulation platform (VSIM) is first proposed. Then the article investigates and discusses key approaches in VSIM, including simulation resources modelling, a method to automatically deploying simulation resources for dynamic construction of system environment, and a live migration mechanism in case of faults in run-time simulation. Furthermore, the proposed methodology is applied to a multidisciplinary design system for aircraft virtual prototyping and some experiments are conducted. The experimental results show that the proposed methodology can (1) significantly improve the utilisation of fine-grained simulation resources, (2) result in a great reduction in deployment time and an increased flexibility for simulation environment construction and (3)achieve fault tolerant simulation.

  10. Automatic multi-camera calibration for deployable positioning systems

    NASA Astrophysics Data System (ADS)

    Axelsson, Maria; Karlsson, Mikael; Rudner, Staffan

    2012-06-01

    Surveillance with automated positioning and tracking of subjects and vehicles in 3D is desired in many defence and security applications. Camera systems with stereo or multiple cameras are often used for 3D positioning. In such systems, accurate camera calibration is needed to obtain a reliable 3D position estimate. There is also a need for automated camera calibration to facilitate fast deployment of semi-mobile multi-camera 3D positioning systems. In this paper we investigate a method for automatic calibration of the extrinsic camera parameters (relative camera pose and orientation) of a multi-camera positioning system. It is based on estimation of the essential matrix between each camera pair using the 5-point method for intrinsically calibrated cameras. The method is compared to a manual calibration method using real HD video data from a field trial with a multicamera positioning system. The method is also evaluated on simulated data from a stereo camera model. The results show that the reprojection error of the automated camera calibration method is close to or smaller than the error for the manual calibration method and that the automated calibration method can replace the manual calibration.

  11. Investigation of ELF Signals Associated with Mine Warfare: A University of Idaho and Acoustic Research Detachment Collaboration, Phase Three

    DTIC Science & Technology

    2012-07-01

    from the Scow (a self -propelled barge) and rigged to be suspended in the water at various depths up to 500’. The sensor was deployed upside down...Figure 26). This allowed the e-source barge to change orientation as required in the test run plan. This was a “ soft ” moor so weather conditions were...deployed from the Scow (a self -propelled barge) and rigged to be suspended in the water at various depths up to 500’. Deployment of the sensor was in

  12. Simulation of the National Aerospace System for Safety Analysis

    NASA Technical Reports Server (NTRS)

    Pritchett, Amy; Goldsman, Dave; Statler, Irv (Technical Monitor)

    2002-01-01

    Work started on this project on January 1, 1999, the first year of the grant. Following the outline of the grant proposal, a simulator architecture has been established which can incorporate the variety of types of models needed to accurately simulate national airspace dynamics. For the sake of efficiency, this architecture was based on an established single-aircraft flight simulator, the Reconfigurable Flight Simulator (RFS), already developed at Georgia Tech. Likewise, in the first year substantive changes and additions were made to the RFS to convert it into a simulation of the National Airspace System, with the flexibility to incorporate many types of models: aircraft models; controller models; airspace configuration generators; discrete event generators; embedded statistical functions; and display and data outputs. The architecture has been developed with the capability to accept any models of these types; due to its object-oriented structure, individual simulator components can be added and removed during run-time, and can be compiled separately. Simulation objects from other projects should be easy to convert to meet architecture requirements, with the intent that both this project may now be able to incorporate established simulation components from other projects, and that other projects may easily use this simulation without significant time investment.

  13. Subsurface Grain Morphology Reconstruction by Differential Aperture X-ray Microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eisenlohr, Philip; Shanthraj, Pratheek; Vande Kieft, Brendan R.

    A multistep, non-destructive grain morphology reconstruction methodology that is applicable to near-surface volumes is developed and tested on synthetic grain structures. This approach probes the subsurface crystal orientation using differential aperture X-ray microscopy (DAXM) on a sparse grid across the microstructure volume of interest. Resulting orientation data is clustered according to proximity in physical and orientation space and used as seed points for an initial Voronoi tessellation to (crudely) approximate the grain morphology. Curvature-driven grain boundary relaxation, simulated by means of the Voronoi Implicit Interface Method (VIIM), progressively improves the reconstruction accuracy. The similarity between bulk and readily accessible surfacemore » reconstruction error provides an objective termination criterion for boundary relaxation.« less

  14. NPSS on NASA's IPG: Using CORBA and Globus to Coordinate Multidisciplinary Aeroscience Applications

    NASA Technical Reports Server (NTRS)

    Lopez, Isaac; Follen, Gregory J.; Gutierrez, Richard; Naiman, Cynthia G.; Foster, Ian; Ginsburg, Brian; Larsson, Olle; Martin, Stuart; Tuecke, Steven; Woodford, David

    2000-01-01

    Within NASA's High Performance Computing and Communication (HPCC) program, the NASA Glenn Research Center is developing an environment for the analysis/design of aircraft engines called the Numerical Propulsion System Simulation (NPSS). The vision for NPSS is to create a "numerical test cell" enabling full engine simulations overnight on cost-effective computing platforms. To this end, NPSS integrates multiple disciplines such as aerodynamics, structures, and heat transfer and supports "numerical zooming" between O-dimensional to 1-, 2-, and 3-dimensional component engine codes. In order to facilitate the timely and cost-effective capture of complex physical processes, NPSS uses object-oriented technologies such as C++ objects to encapsulate individual engine components and CORBA ORBs for object communication and deployment across heterogeneous computing platforms. Recently, the HPCC program has initiated a concept called the Information Power Grid (IPG), a virtual computing environment that integrates computers and other resources at different sites. IPG implements a range of Grid services such as resource discovery, scheduling, security, instrumentation, and data access, many of which are provided by the Globus toolkit. IPG facilities have the potential to benefit NPSS considerably. For example, NPSS should in principle be able to use Grid services to discover dynamically and then co-schedule the resources required for a particular engine simulation, rather than relying on manual placement of ORBs as at present. Grid services can also be used to initiate simulation components on parallel computers (MPPs) and to address inter-site security issues that currently hinder the coupling of components across multiple sites. These considerations led NASA Glenn and Globus project personnel to formulate a collaborative project designed to evaluate whether and how benefits such as those just listed can be achieved in practice. This project involves firstly development of the basic techniques required to achieve co-existence of commodity object technologies and Grid technologies; and secondly the evaluation of these techniques in the context of NPSS-oriented challenge problems. The work on basic techniques seeks to understand how "commodity" technologies (CORBA, DCOM, Excel, etc.) can be used in concert with specialized "Grid" technologies (for security, MPP scheduling, etc.). In principle, this coordinated use should be straightforward because of the Globus and IPG philosophy of providing low-level Grid mechanisms that can be used to implement a wide variety of application-level programming models. (Globus technologies have previously been used to implement Grid-enabled message-passing libraries, collaborative environments, and parameter study tools, among others.) Results obtained to date are encouraging: we have successfully demonstrated a CORBA to Globus resource manager gateway that allows the use of CORBA RPCs to control submission and execution of programs on workstations and MPPs; a gateway from the CORBA Trader service to the Grid information service; and a preliminary integration of CORBA and Grid security mechanisms. The two challenge problems that we consider are the following: 1) Desktop-controlled parameter study. Here, an Excel spreadsheet is used to define and control a CFD parameter study, via a CORBA interface to a high throughput broker that runs individual cases on different IPG resources. 2) Aviation safety. Here, about 100 near real time jobs running NPSS need to be submitted, run and data returned in near real time. Evaluation will address such issues as time to port, execution time, potential scalability of simulation, and reliability of resources. The full paper will present the following information: 1. A detailed analysis of the requirements that NPSS applications place on IPG. 2. A description of the techniques used to meet these requirements via the coordinated use of CORBA and Globus. 3. A description of results obtained to date in the first two challenge problems.

  15. Node Scheduling Strategies for Achieving Full-View Area Coverage in Camera Sensor Networks.

    PubMed

    Wu, Peng-Fei; Xiao, Fu; Sha, Chao; Huang, Hai-Ping; Wang, Ru-Chuan; Xiong, Nai-Xue

    2017-06-06

    Unlike conventional scalar sensors, camera sensors at different positions can capture a variety of views of an object. Based on this intrinsic property, a novel model called full-view coverage was proposed. We study the problem that how to select the minimum number of sensors to guarantee the full-view coverage for the given region of interest (ROI). To tackle this issue, we derive the constraint condition of the sensor positions for full-view neighborhood coverage with the minimum number of nodes around the point. Next, we prove that the full-view area coverage can be approximately guaranteed, as long as the regular hexagons decided by the virtual grid are seamlessly stitched. Then we present two solutions for camera sensor networks in two different deployment strategies. By computing the theoretically optimal length of the virtual grids, we put forward the deployment pattern algorithm (DPA) in the deterministic implementation. To reduce the redundancy in random deployment, we come up with a local neighboring-optimal selection algorithm (LNSA) for achieving the full-view coverage. Finally, extensive simulation results show the feasibility of our proposed solutions.

  16. Node Scheduling Strategies for Achieving Full-View Area Coverage in Camera Sensor Networks

    PubMed Central

    Wu, Peng-Fei; Xiao, Fu; Sha, Chao; Huang, Hai-Ping; Wang, Ru-Chuan; Xiong, Nai-Xue

    2017-01-01

    Unlike conventional scalar sensors, camera sensors at different positions can capture a variety of views of an object. Based on this intrinsic property, a novel model called full-view coverage was proposed. We study the problem that how to select the minimum number of sensors to guarantee the full-view coverage for the given region of interest (ROI). To tackle this issue, we derive the constraint condition of the sensor positions for full-view neighborhood coverage with the minimum number of nodes around the point. Next, we prove that the full-view area coverage can be approximately guaranteed, as long as the regular hexagons decided by the virtual grid are seamlessly stitched. Then we present two solutions for camera sensor networks in two different deployment strategies. By computing the theoretically optimal length of the virtual grids, we put forward the deployment pattern algorithm (DPA) in the deterministic implementation. To reduce the redundancy in random deployment, we come up with a local neighboring-optimal selection algorithm (LNSA) for achieving the full-view coverage. Finally, extensive simulation results show the feasibility of our proposed solutions. PMID:28587304

  17. A System Trade Study of Remote Infrared Imaging for Space Shuttle Reentry

    NASA Technical Reports Server (NTRS)

    Schwartz, Richard J.; Ross, Martin N.; Baize, Rosemary; Horvath, Thomas J.; Berry, Scott A.; Krasa, Paul W.

    2008-01-01

    A trade study reviewing the primary operational parameters concerning the deployment of imaging assets in support of the Hypersonic Thermodynamic Infrared Measurements (HYTHIRM) project was undertaken. The objective was to determine key variables and constraints for obtaining thermal images of the Space Shuttle orbiter during reentry. The trade study investigated the performance characteristics and operating environment of optical instrumentation that may be deployed during a HYTHIRM data collection mission, and specified contributions to the Point Spread Function. It also investigated the constraints that have to be considered in order to optimize deployment through the use of mission planning tools. These tools simulate the radiance modeling of the vehicle as well as the expected spatial resolution based on the Orbiter trajectory and placement of land based or airborne optical sensors for given Mach numbers. Lastly, this report focused on the tools and methodology that have to be in place for real-time mission planning in order to handle the myriad of variables such as trajectory ground track, weather, and instrumentation availability that may only be known in the hours prior to landing.

  18. The Impact of New Trends in Satellite Launches on Orbital Debris Environment

    NASA Technical Reports Server (NTRS)

    Karacalioglu, Arif Goktug; Stupl, Jan

    2016-01-01

    The main goal of this study is to examine the impact of new trends in satellite launch activities on the orbital debris environment and collision risk. Starting from the launch of the first artificial satellite in 1957, space borne technology has become an indispensable part of our lives. More than 6,000 satellites have been launched into Earth orbit. Though the annual number of satellites launched stayed flat for many decades, the trend has recently changed. The satellite market has been undergoing a major evolution with new space companies replacing the traditional approach of deploying a few large, complex and costly satellites with an approach to use a multitude of smaller, less complex and cheaper satellites. This new approach creates a sharp increase in the number of satellites and so the historic trends are no longer representative. As a foundation for this study, a scenario for satellite deployments based on the publicly announced future satellite missions has been developed. These constellation-deploying companies include, but are not limited to, Blacksky, CICERO, EROS, Landmapper, Leosat, Northstar, O3b, OmniEarth, OneWeb, Orbcomm, OuterNet, PlanetIQ, Planet Labs, Radarsat, RapidEye Next Generation, Sentinel, Skybox, SpaceX, and Spire. Information such as the annual number of launches, the number of orbital planes to be used by the constellation, as well as apogee, perigee, inclination, spacecraft mass and area were included or approximated. Besides the production of satellites, a widespread ongoing effort to enhance orbital injection capabilities will allow delivery of more spacecraft more accurately into Earth orbits. A long list of companies such as Microcosm, Rocket Lab, Firefly Space Systems, Sierra Nevada Corporation and Arca Space Corporation are developing new launch vehicles dedicated for small satellites. There are other projects which intend to develop interstages with propulsive capabilities which will allow the deployment of satellites into their desired orbits beyond the restrictions of the launch vehicle used. These near future orbital injection technologies are also covered in the developed scenario. Using the above-mentioned background information, this study aims to examine how the orbital debris environment will be affected from the new dynamics of the emerging space markets. We developed a simulation tool that is capable of propagating the objects in a given deployment scenario with variable-sized time-steps as small as one second. Over the course of the run, the software also detects collisions; additional debris objects are then created according to the NASA breakup model and are fed back into the simulation framework. Examining the simulation results, the total number of particles to accumulate in different orbits can be monitored and the number of conjunctions can be tracked to assess the collision risks. The simulation makes it possible to follow the short- and long-term effects of a particular satellite or constellation on the space environment. Likewise, the effects of changes in the debris environment on a particular satellite or constellation can be evaluated. It is authors hope that the results of this paper and further utilization of the developed simulation tool will assist in the investigation of more accurate deorbiting metrics to replace the generic 25-year disposal guidelines, as well as to guide future launches toward more sustainable and safe orbits.

  19. An automated methodology development. [software design for combat simulation

    NASA Technical Reports Server (NTRS)

    Hawley, L. R.

    1985-01-01

    The design methodology employed in testing the applicability of Ada in large-scale combat simulations is described. Ada was considered as a substitute for FORTRAN to lower life cycle costs and ease the program development efforts. An object-oriented approach was taken, which featured definitions of military targets, the capability of manipulating their condition in real-time, and one-to-one correlation between the object states and real world states. The simulation design process was automated by the problem statement language (PSL)/problem statement analyzer (PSA). The PSL/PSA system accessed the problem data base directly to enhance the code efficiency by, e.g., eliminating non-used subroutines, and provided for automated report generation, besides allowing for functional and interface descriptions. The ways in which the methodology satisfied the responsiveness, reliability, transportability, modifiability, timeliness and efficiency goals are discussed.

  20. Deployment of Mobile Learning Course Materials to Android Powered Mobile Devices

    ERIC Educational Resources Information Center

    Chao, Lee

    2012-01-01

    The objective of this article is to facilitate mobile teaching and learning by providing an alternative course material deployment method. This article suggests a course material deployment platform for small universities or individual instructors. Different from traditional course material deployment methods, the method discussed deploys course…

  1. Shape Memory Polymer Self-Deploying Membrane Reflectors

    DTIC Science & Technology

    2007-01-30

    stability relative to their [Candidate A] counterparts and very low moisture uptake. Initial attempts to incorporate [this particular constituent] were...specimen (Figure 19). The sample was then reheated and "deployed" (Figure 20) while being held with the bend axis oriented vertically such that gravity...addressed as a separate task for the purposes of describing Statement of Work content, material process development was conducted in parallel with and

  2. PaaS for web applications with OpenShift Origin

    NASA Astrophysics Data System (ADS)

    Lossent, A.; Rodriguez Peon, A.; Wagner, A.

    2017-10-01

    The CERN Web Frameworks team has deployed OpenShift Origin to facilitate deployment of web applications and to improving efficiency in terms of computing resource usage. OpenShift leverages Docker containers and Kubernetes orchestration to provide a Platform-as-a-service solution oriented for web applications. We will review use cases and how OpenShift was integrated with other services such as source control, web site management and authentication services.

  3. Pneumafil casing blower through moving reference frame (MRF) - A CFD simulation

    NASA Astrophysics Data System (ADS)

    Manivel, R.; Vijayanandh, R.; Babin, T.; Sriram, G.

    2018-05-01

    In this analysis work, the ring frame of Pneumafil casing blower of the textile mills with a power rating of 5 kW have been simulated using Computational Fluid Dynamics (CFD) code. The CFD analysis of the blower is carried out in Ansys Workbench 16.2 with Fluent using MRF solver settings. The simulation settings and boundary conditions are based on literature study and field data acquired. The main objective of this work is to reduce the energy consumption of the blower. The flow analysis indicated that the power consumption is influenced by the deflector plate orientation and deflector plate strip situated at the outlet casing of the blower. The energy losses occurred in the blower is due to the recirculation zones formed around the deflector plate strip. The deflector plate orientation is changed and optimized to reduce the energy consumption. The proposed optimized model is based on the simulation results which had relatively lesser power consumption than the existing and other cases. The energy losses in the Pneumafil casing blower are reduced through CFD analysis.

  4. Object-Oriented Modeling of an Energy Harvesting System Based on Thermoelectric Generators

    NASA Astrophysics Data System (ADS)

    Nesarajah, Marco; Frey, Georg

    This paper deals with the modeling of an energy harvesting system based on thermoelectric generators (TEG), and the validation of the model by means of a test bench. TEGs are capable to improve the overall energy efficiency of energy systems, e.g. combustion engines or heating systems, by using the remaining waste heat to generate electrical power. Previously, a component-oriented model of the TEG itself was developed in Modelica® language. With this model any TEG can be described and simulated given the material properties and the physical dimension. Now, this model was extended by the surrounding components to a complete model of a thermoelectric energy harvesting system. In addition to the TEG, the model contains the cooling system, the heat source, and the power electronics. To validate the simulation model, a test bench was built and installed on an oil-fired household heating system. The paper reports results of the measurements and discusses the validity of the developed simulation models. Furthermore, the efficiency of the proposed energy harvesting system is derived and possible improvements based on design variations tested in the simulation model are proposed.

  5. An agent-based hydroeconomic model to evaluate water policies in Jordan

    NASA Astrophysics Data System (ADS)

    Yoon, J.; Gorelick, S.

    2014-12-01

    Modern water systems can be characterized by a complex network of institutional and private actors that represent competing sectors and interests. Identifying solutions to enhance water security in such systems calls for analysis that can adequately account for this level of complexity and interaction. Our work focuses on the development of a hierarchical, multi-agent, hydroeconomic model that attempts to realistically represent complex interactions between hydrologic and multi-faceted human systems. The model is applied to Jordan, one of the most water-poor countries in the world. In recent years, the water crisis in Jordan has escalated due to an ongoing drought and influx of refugees from regional conflicts. We adopt a modular approach in which biophysical modules simulate natural and engineering phenomena, and human modules represent behavior at multiple scales of decision making. The human modules employ agent-based modeling, in which agents act as autonomous decision makers at the transboundary, state, organizational, and user levels. A systematic nomenclature and conceptual framework is used to characterize model agents and modules. Concepts from the Unified Modeling Language (UML) are adopted to promote clear conceptualization of model classes and process sequencing, establishing a foundation for full deployment of the integrated model in a scalable object-oriented programming environment. Although the framework is applied to the Jordanian water context, it is generalizable to other regional human-natural freshwater supply systems.

  6. A new method for recognizing quadric surfaces from range data and its application to telerobotics and automation

    NASA Technical Reports Server (NTRS)

    Alvertos, Nicolas; Dcunha, Ivan

    1992-01-01

    A feature set of two dimensional curves is obtained after intersecting symmetric objects like spheres, cones, cylinders, ellipsoids, paraboloids, and parallelepipeds with two planes. After determining the location and orientation of the objects in space, these objects are aligned so as to lie on a plane parallel to a suitable coordinate system. These objects are then intersected with a horizontal and a vertical plane. Experiments were carried out with range images of sphere and cylinder. The 3-D discriminant approach was used to recognize quadric surfaces made up of simulated data. Its application to real data was also studied.

  7. Rapid Prototyping of an Aircraft Model in an Object-Oriented Simulation

    NASA Technical Reports Server (NTRS)

    Kenney, P. Sean

    2003-01-01

    A team was created to participate in the Mars Scout Opportunity. Trade studies determined that an aircraft provided the best opportunity to complete the science objectives of the team. A high fidelity six degree of freedom flight simulation was required to provide credible evidence that the aircraft design fulfilled mission objectives and to support the aircraft design process by providing performance evaluations. The team created the simulation using the Langley Standard Real-Time Simulation in C++ (LaSRS++) application framework. A rapid prototyping approach was necessary because the team had only three months to both develop the aircraft simulation model and evaluate aircraft performance as the design and mission parameters matured. The design of LaSRS++ enabled rapid-prototyping in several ways. First, the framework allowed component models to be designed, implemented, unit-tested, and integrated quickly. Next, the framework provides a highly reusable infrastructure that allowed developers to maximize code reuse while concentrating on aircraft and mission specific features. Finally, the framework reduces risk by providing reusable components that allow developers to build a quality product with a compressed testing cycle that relies heavily on unit testing of new components.

  8. Ground-plane influences on size estimation in early visual processing.

    PubMed

    Champion, Rebecca A; Warren, Paul A

    2010-07-21

    Ground-planes have an important influence on the perception of 3D space (Gibson, 1950) and it has been shown that the assumption that a ground-plane is present in the scene plays a role in the perception of object distance (Bruno & Cutting, 1988). Here, we investigate whether this influence is exerted at an early stage of processing, to affect the rapid estimation of 3D size. Participants performed a visual search task in which they searched for a target object that was larger or smaller than distracter objects. Objects were presented against a background that contained either a frontoparallel or slanted 3D surface, defined by texture gradient cues. We measured the effect on search performance of target location within the scene (near vs. far) and how this was influenced by scene orientation (which, e.g., might be consistent with a ground or ceiling plane, etc.). In addition, we investigated how scene orientation interacted with texture gradient information (indicating surface slant), to determine how these separate cues to scene layout were combined. We found that the difference in target detection performance between targets at the front and rear of the simulated scene was maximal when the scene was consistent with a ground-plane - consistent with the use of an elevation cue to object distance. In addition, we found a significant increase in the size of this effect when texture gradient information (indicating surface slant) was present, but no interaction between texture gradient and scene orientation information. We conclude that scene orientation plays an important role in the estimation of 3D size at an early stage of processing, and suggest that elevation information is linearly combined with texture gradient information for the rapid estimation of 3D size. Copyright 2010 Elsevier Ltd. All rights reserved.

  9. Analysis of the Lenticular Jointed MARSIS Antenna Deployment

    NASA Technical Reports Server (NTRS)

    Mobrem, Mehran; Adams, Douglas S.

    2006-01-01

    This paper summarizes important milestones in a yearlong comprehensive effort which culminated in successful deployments of the MARSIS antenna booms in May and June of 2005. Experimentally measured straight section and hinge properties are incorporated into specialized modeling techniques that are used to simulate the boom lenticular joints. System level models are exercised to understand the boom deployment dynamics and spacecraft level implications. Discussion includes a comparison of ADAMS simulation results to measured flight data taken during the three boom deployments. Important parameters that govern lenticular joint behavior are outlined and a short summary of lessons learned and recommendations is included to better understand future applications of this technology.

  10. A Polygon Model for Wireless Sensor Network Deployment with Directional Sensing Areas

    PubMed Central

    Wu, Chun-Hsien; Chung, Yeh-Ching

    2009-01-01

    The modeling of the sensing area of a sensor node is essential for the deployment algorithm of wireless sensor networks (WSNs). In this paper, a polygon model is proposed for the sensor node with directional sensing area. In addition, a WSN deployment algorithm is presented with topology control and scoring mechanisms to maintain network connectivity and improve sensing coverage rate. To evaluate the proposed polygon model and WSN deployment algorithm, a simulation is conducted. The simulation results show that the proposed polygon model outperforms the existed disk model and circular sector model in terms of the maximum sensing coverage rate. PMID:22303159

  11. Dynamic Deployment Simulations of Inflatable Space Structures

    NASA Technical Reports Server (NTRS)

    Wang, John T.

    2005-01-01

    The feasibility of using Control Volume (CV) method and the Arbitrary Lagrangian Eulerian (ALE) method in LSDYNA to simulate the dynamic deployment of inflatable space structures is investigated. The CV and ALE methods were used to predict the inflation deployments of three folded tube configurations. The CV method was found to be a simple and computationally efficient method that may be adequate for modeling slow inflation deployment sine the inertia of the inflation gas can be neglected. The ALE method was found to be very computationally intensive since it involves the solving of three conservative equations of fluid as well as dealing with complex fluid structure interactions.

  12. Home | Simulation Research

    Science.gov Websites

    Group specializes in the research, development and deployment of software that support the design and controls design, the Spawn of EnergyPlus next-generation simulation engine, for building and control energy systems tools for OpenBuildingControl to support control design, deployment and verification of building

  13. Investigating the possibility of the CONSERT instrument operating as a bi-static RADAR sounder during the seperation, descent and landing phase of the ROSETTA mission

    NASA Astrophysics Data System (ADS)

    Statz, C.; Hegler, S.; Plettemeier, D.; Berquin, Y. P.; Herique, A.; Kofman, W. W.

    2012-12-01

    The main scientific objective of the Comet Nucleus Sounding Experiment by Radiowave Transmission (CONSERT) is to determine the dielectric properties of comet 67P/Chuyurmov-Gerasimenko's nucleus. This will be achieved by performing a sounding of the comet's core between the lander "Philae" launched on the comet's surface and the orbiter "Rosetta". For the sounding the lander will receive, process and retransmit the radio signal emitted by the CONSERT instrument aboard the orbiter. With data measured during the first science phase, a three-dimensional model of the material distribution with regard to the complex dielectric permittivity of the comet's nucleus is to be reconstructed. In order to increase the scientific outcome of the experiment and to collect data beneficial for the main scientific objective, it may be considered to operate the CONSERT instrument as a bi-static RADAR sounder during the non mission-critical parts of the separation, descent and landing (SDL) phase, i.e. when the lander is launched onto the comet's surface, of the ROSETTA mission. The data measured during this phase will be mainly echoes from the comet's surface and first meters of subsurface. Based on this data, we intent to create an initial dielectric permittivity mapping of the comet's surface at and around the landing site In order to estimate the performance of the instrument in this special operational mode, simulations of a sounding in SDL configuration were performed. The simulations are based on a hybrid method-of-moments physical-optics (EFIE-DPO) approach for large dielectric bodies with consideration of the behavior of the instrument's antennas and coupling with the spacecraft as well as polarization effects. The simulated results are furthermore processed in a system-level-instrument-simulator to include effects such as a realistic sounding signal, pulse-compression and analog digital conversion in the estimation of the sounding capabilities. The main objective of the simulations was to determine the influence of the orientation and position of lander and orbiter with respect to the comet on the received signal as well as the influence of the surfaces dielectric permittivity on the backscattered signal. Further investigations were carried out to determine the effects of different scales of surface roughness. First simulations validate the possibility of a CONSERT operation during the SDL phase. The results indicate the feasibility of a surface permittivity estimation of the landing site from the SDL data as well as the mapping of the surface permittivity and roughness around the landing site. Furthermore, the lander attitude and the deployment state of the lander's legs may also be reconstructed from the SDL measurements. The surface roughness and permittivity estimation and mapping, as well as the determination of the lander state will be subject of further investigations in this context.

  14. A Qualitative Simulation Framework in Smalltalk Based on Fuzzy Arithmetic

    Treesearch

    Richard L. Olson; Daniel L. Schmoldt; David L. Peterson

    1996-01-01

    For many systems, it is not practical to collect and correlate empirical data necessary to formulate a mathematical model. However, it is often sufficient to predict qualitative dynamics effects (as opposed to system quantities), especially for research purposes. In this effort, an object-oriented application framework (AF) was developed for the qualitative modeling of...

  15. General object-oriented software development

    NASA Technical Reports Server (NTRS)

    Seidewitz, Edwin V.; Stark, Mike

    1986-01-01

    Object-oriented design techniques are gaining increasing popularity for use with the Ada programming language. A general approach to object-oriented design which synthesizes the principles of previous object-oriented methods into the overall software life-cycle, providing transitions from specification to design and from design to code. It therefore provides the basis for a general object-oriented development methodology.

  16. The Development and Flight Testing of an Aerially Deployed Unmanned Aerial System

    NASA Astrophysics Data System (ADS)

    Smith, Andrew

    An investigation into the feasibility of aerial deployed unmanned aerial vehicles was completed. The investigation included the development and flight testing of multiple unmanned aerial systems to investigate the different components of potential aerial deployment missions. The project consisted of two main objectives; the first objective dealt with the development of an airframe capable of surviving aerial deployment from a rocket and then self assembling from its stowed configuration into its flight configuration. The second objective focused on the development of an autopilot capable of performing basic guidance, navigation, and control following aerial deployment. To accomplish these two objectives multiple airframes were developed to verify their completion experimentally. The first portion of the project, investigating the feasibility of surviving an aerial deployment, was completed using a fixed wing glider that following a successful deployment had 52 seconds of controlled flight. Before developing the autopilot in the second phase of the project, the glider was significantly upgraded to fix faults discovered in the glider flight testing and to enhance the system capabilities. Unfortunately to conform to outdoor flight restrictions imposed by the university and the Federal Aviation Administration it was required to switch airframes before flight testing of the new fixed wing platform could begin. As a result, an autopilot was developed for a quadrotor and verified experimentally completely indoors to remain within the limits of governing policies.

  17. JASMINE simulator

    NASA Astrophysics Data System (ADS)

    Yamada, Y.; Gouda, N.; Yano, T.; Sako, N.; Hatsutori, Y.; Tanaka, T.; Yamauchi, M.

    We explain simulation tools in JASMINE project(JASMINE simulator). The JASMINE project stands at the stage where its basic design will be determined in a few years. Then it is very important to simulate the data stream generated by astrometric fields at JASMINE in order to support investigations of error budgets, sampling strategy, data compression, data analysis, scientific performances, etc. Of course, component simulations are needed, but total simulations which include all components from observation target to satellite system are also very important. We find that new software technologies, such as Object Oriented(OO) methodologies are ideal tools for the simulation system of JASMINE(the JASMINE simulator). The simulation system should include all objects in JASMINE such as observation techniques, models of instruments and bus design, orbit, data transfer, data analysis etc. in order to resolve all issues which can be expected beforehand and make it easy to cope with some unexpected problems which might occur during the mission of JASMINE. So, the JASMINE Simulator is designed as handling events such as photons from astronomical objects, control signals for devices, disturbances for satellite attitude, by instruments such as mirrors and detectors, successively. The simulator is also applied to the technical demonstration "Nano-JASMINE". The accuracy of ordinary sensor is not enough for initial phase attitude control. Mission instruments may be a good sensor for this purpose. The problem of attitude control in initial phase is a good example of this software because the problem is closely related to both mission instruments and satellite bus systems.

  18. JASMINE Simulator

    NASA Astrophysics Data System (ADS)

    Yamada, Y.; Gouda, N.; Yano, T.; Kobayashi, Y.; Suganuma, M.; Tsujimoto, T.; Sako, N.; Hatsutori, Y.; Tanaka, T.

    2006-08-01

    We explain simulation tools in JASMINE project (JASMINE simulator). The JASMINE project stands at the stage where its basic design will be determined in a few years. Then it is very important to simulate the data stream generated by astrometric fields at JASMINE in order to support investigations of error budgets, sampling strategy, data compression, data analysis, scientific performances, etc. Of course, component simulations are needed, but total simulations which include all components from observation target to satellite system are also very important. We find that new software technologies, such as Object Oriented (OO) methodologies are ideal tools for the simulation system of JASMINE (the JASMINE simulator). The simulation system should include all objects in JASMINE such as observation techniques, models of instruments and bus design, orbit, data transfer, data analysis etc. in order to resolve all issues which can be expected beforehand and make it easy to cope with some unexpected problems which might occur during the mission of JASMINE. So, the JASMINE Simulator is designed as handling events such as photons from astronomical objects, control signals for devices, disturbances for satellite attitude, by instruments such as mirrors and detectors, successively. The simulator is also applied to the technical demonstration "Nano-JASMINE". The accuracy of ordinary sensor is not enough for initial phase attitude control. Mission instruments may be a good sensor for this purpose. The problem of attitude control in initial phase is a good example of this software because the problem is closely related to both mission instruments and satellite bus systems.

  19. A combined vision-inertial fusion approach for 6-DoF object pose estimation

    NASA Astrophysics Data System (ADS)

    Li, Juan; Bernardos, Ana M.; Tarrío, Paula; Casar, José R.

    2015-02-01

    The estimation of the 3D position and orientation of moving objects (`pose' estimation) is a critical process for many applications in robotics, computer vision or mobile services. Although major research efforts have been carried out to design accurate, fast and robust indoor pose estimation systems, it remains as an open challenge to provide a low-cost, easy to deploy and reliable solution. Addressing this issue, this paper describes a hybrid approach for 6 degrees of freedom (6-DoF) pose estimation that fuses acceleration data and stereo vision to overcome the respective weaknesses of single technology approaches. The system relies on COTS technologies (standard webcams, accelerometers) and printable colored markers. It uses a set of infrastructure cameras, located to have the object to be tracked visible most of the operation time; the target object has to include an embedded accelerometer and be tagged with a fiducial marker. This simple marker has been designed for easy detection and segmentation and it may be adapted to different service scenarios (in shape and colors). Experimental results show that the proposed system provides high accuracy, while satisfactorily dealing with the real-time constraints.

  20. Visual Analytics for Law Enforcement: Deploying a Service-Oriented Analytic Framework for Web-based Visualization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dowson, Scott T.; Bruce, Joseph R.; Best, Daniel M.

    2009-04-14

    This paper presents key components of the Law Enforcement Information Framework (LEIF) that provides communications, situational awareness, and visual analytics tools in a service-oriented architecture supporting web-based desktop and handheld device users. LEIF simplifies interfaces and visualizations of well-established visual analytical techniques to improve usability. Advanced analytics capability is maintained by enhancing the underlying processing to support the new interface. LEIF development is driven by real-world user feedback gathered through deployments at three operational law enforcement organizations in the US. LEIF incorporates a robust information ingest pipeline supporting a wide variety of information formats. LEIF also insulates interface and analyticalmore » components from information sources making it easier to adapt the framework for many different data repositories.« less

  1. Open-Source Python Tools for Deploying Interactive GIS Dashboards for a Billion Datapoints on a Laptop

    NASA Astrophysics Data System (ADS)

    Steinberg, P. D.; Bednar, J. A.; Rudiger, P.; Stevens, J. L. R.; Ball, C. E.; Christensen, S. D.; Pothina, D.

    2017-12-01

    The rich variety of software libraries available in the Python scientific ecosystem provides a flexible and powerful alternative to traditional integrated GIS (geographic information system) programs. Each such library focuses on doing a certain set of general-purpose tasks well, and Python makes it relatively simple to glue the libraries together to solve a wide range of complex, open-ended problems in Earth science. However, choosing an appropriate set of libraries can be challenging, and it is difficult to predict how much "glue code" will be needed for any particular combination of libraries and tasks. Here we present a set of libraries that have been designed to work well together to build interactive analyses and visualizations of large geographic datasets, in standard web browsers. The resulting workflows run on ordinary laptops even for billions of data points, and easily scale up to larger compute clusters when available. The declarative top-level interface used in these libraries means that even complex, fully interactive applications can be built and deployed as web services using only a few dozen lines of code, making it simple to create and share custom interactive applications even for datasets too large for most traditional GIS systems. The libraries we will cover include GeoViews (HoloViews extended for geographic applications) for declaring visualizable/plottable objects, Bokeh for building visual web applications from GeoViews objects, Datashader for rendering arbitrarily large datasets faithfully as fixed-size images, Param for specifying user-modifiable parameters that model your domain, Xarray for computing with n-dimensional array data, Dask for flexibly dispatching computational tasks across processors, and Numba for compiling array-based Python code down to fast machine code. We will show how to use the resulting workflow with static datasets and with simulators such as GSSHA or AdH, allowing you to deploy flexible, high-performance web-based dashboards for your GIS data or simulations without needing major investments in code development or maintenance.

  2. Mechanical signals at the base of a rat vibrissa: the effect of intrinsic vibrissa curvature and implications for tactile exploration

    PubMed Central

    Quist, Brian W.

    2012-01-01

    Rats actively tap and sweep their large mystacial vibrissae (whiskers) against objects to tactually explore their surroundings. When a vibrissa makes contact with an object, it bends, and this bending generates forces and bending moments at the vibrissa base. Researchers have only recently begun to quantify these mechanical variables. The present study quantifies the forces and bending moments at the vibrissa base with a quasi-static model of vibrissa deflection. The model was validated with experiments on real vibrissae. Initial simulations demonstrated that almost all vibrissa-object collisions during natural behavior will occur with the concave side of the vibrissa facing the object, and we therefore paid particular attention to the role of the vibrissa's intrinsic curvature in shaping the forces at the base. Both simulations and experiments showed that vibrissae with larger intrinsic curvatures will generate larger axial forces. Simulations also demonstrated that the range of forces and moments at the vibrissal base vary over approximately three orders of magnitude, depending on the location along the vibrissa at which object contact is made. Both simulations and experiments demonstrated that collisions in which the concave side of the vibrissa faces the object generate longer-duration contacts and larger net forces than collisions with the convex side. These results suggest that the orientation of the vibrissa's intrinsic curvature on the mystacial pad may increase forces during object contact and provide increased sensitivity to detailed surface features. PMID:22298834

  3. Object-Oriented MDAO Tool with Aeroservoelastic Model Tuning Capability

    NASA Technical Reports Server (NTRS)

    Pak, Chan-gi; Li, Wesley; Lung, Shun-fat

    2008-01-01

    An object-oriented multi-disciplinary analysis and optimization (MDAO) tool has been developed at the NASA Dryden Flight Research Center to automate the design and analysis process and leverage existing commercial as well as in-house codes to enable true multidisciplinary optimization in the preliminary design stage of subsonic, transonic, supersonic and hypersonic aircraft. Once the structural analysis discipline is finalized and integrated completely into the MDAO process, other disciplines such as aerodynamics and flight controls will be integrated as well. Simple and efficient model tuning capabilities based on optimization problem are successfully integrated with the MDAO tool. More synchronized all phases of experimental testing (ground and flight), analytical model updating, high-fidelity simulations for model validation, and integrated design may result in reduction of uncertainties in the aeroservoelastic model and increase the flight safety.

  4. CE-ACCE: The Cloud Enabled Advanced sCience Compute Environment

    NASA Astrophysics Data System (ADS)

    Cinquini, L.; Freeborn, D. J.; Hardman, S. H.; Wong, C.

    2017-12-01

    Traditionally, Earth Science data from NASA remote sensing instruments has been processed by building custom data processing pipelines (often based on a common workflow engine or framework) which are typically deployed and run on an internal cluster of computing resources. This approach has some intrinsic limitations: it requires each mission to develop and deploy a custom software package on top of the adopted framework; it makes use of dedicated hardware, network and storage resources, which must be specifically purchased, maintained and re-purposed at mission completion; and computing services cannot be scaled on demand beyond the capability of the available servers.More recently, the rise of Cloud computing, coupled with other advances in containerization technology (most prominently, Docker) and micro-services architecture, has enabled a new paradigm, whereby space mission data can be processed through standard system architectures, which can be seamlessly deployed and scaled on demand on either on-premise clusters, or commercial Cloud providers. In this talk, we will present one such architecture named CE-ACCE ("Cloud Enabled Advanced sCience Compute Environment"), which we have been developing at the NASA Jet Propulsion Laboratory over the past year. CE-ACCE is based on the Apache OODT ("Object Oriented Data Technology") suite of services for full data lifecycle management, which are turned into a composable array of Docker images, and complemented by a plug-in model for mission-specific customization. We have applied this infrastructure to both flying and upcoming NASA missions, such as ECOSTRESS and SMAP, and demonstrated deployment on the Amazon Cloud, either using simple EC2 instances, or advanced AWS services such as Amazon Lambda and ECS (EC2 Container Services).

  5. Self-anchoring mast for deploying a high-speed submersible mixer in a tank

    DOEpatents

    Cato, Jr., Joseph E.; Shearer, Paul M [Aiken, SC; Rodwell, Philip O [Evans, GA

    2004-10-12

    A self-anchoring mast for deploying a high-speed submersible mixer in a tank includes operably connected first and second mast members (20, 22) and a foot member 46 operably connected to the second mast member for supporting the mast in a tank. The second mast member includes a track (36, 38) for slidably receiving a bearing of the mixer to change the orientation of the mixer in the tank.

  6. Dynamic Policy-Driven Quality of Service in Service-Oriented Information Management Systems

    DTIC Science & Technology

    2011-01-01

    both DiffServ and IntServ net- work QoS mechanisms. Wang et al [48] provide middleware APIs to shield applications from directly interacting with...complex network QoS mechanism APIs . Middleware frameworks transparently converted the specified application QoS requirements into low- er-level network...QoS mechanism APIs and provided network QoS assurances. Deployment-time resource allocation. Other prior work has focused on deploying ap- plications

  7. Visual Search for Object Orientation Can Be Modulated by Canonical Orientation

    ERIC Educational Resources Information Center

    Ballaz, Cecile; Boutsen, Luc; Peyrin, Carole; Humphreys, Glyn W.; Marendaz, Christian

    2005-01-01

    The authors studied the influence of canonical orientation on visual search for object orientation. Displays consisted of pictures of animals whose axis of elongation was either vertical or tilted in their canonical orientation. Target orientation could be either congruent or incongruent with the object's canonical orientation. In Experiment 1,…

  8. Task-Oriented Gaming for Transfer to Prosthesis Use.

    PubMed

    van Dijk, Ludger; van der Sluis, Corry K; van Dijk, Hylke W; Bongers, Raoul M

    2016-12-01

    The aim of this study is to establish the effect of task-oriented video gaming on using a myoelectric prosthesis in a basic activity of daily life (ADL). Forty-one able-bodied right-handed participants were randomly assigned to one of four groups. In three of these groups the participants trained to control a video game using the myosignals of the flexors and extensors of the wrist: in the Adaptive Catching group participants needed to catch falling objects by opening and closing a grabber and received ADL-relevant feedback during performance. The Free Catching group used the same game, but without augmented feedback. The Interceptive Catching group trained a game where the goal was to intercept a falling object by moving a grabber to the left and right. They received no additional feedback. The control group played a regular Mario computer game. All groups trained 20 minutes a day for four consecutive days. Two tests were conducted before and after training: one level of the training game was performed, and participants grasped objects with a prosthesis simulator. Results showed all groups improved their game performance over controls. In the prosthesis-simulator task, after training the Adaptive Catching group outperformed the other groups in their ability to adjust the hand aperture to the size of the objects and the degree of compression of compressible objects. This study is the first to demonstrate transfer effects from a serious game to a myoelectric prosthesis task. The specificity of the learning effects suggests that research into serious gaming will benefit from placing ADL-specific constraints on game development.

  9. Dynamic ambulance reallocation for the reduction of ambulance response times using system status management.

    PubMed

    Lam, Sean Shao Wei; Zhang, Ji; Zhang, Zhong Cheng; Oh, Hong Choon; Overton, Jerry; Ng, Yih Yng; Ong, Marcus Eng Hock

    2015-02-01

    Dynamically reassigning ambulance deployment locations throughout a day to balance ambulance availability and demands can be effective in reducing response times. The objectives of this study were to model dynamic ambulance allocation plans in Singapore based on the system status management (SSM) strategy and to evaluate the dynamic deployment plans using a discrete event simulation (DES) model. The geographical information system-based analysis and mathematical programming were used to develop the dynamic ambulance deployment plans for SSM based on ambulance calls data from January 1, 2011, to June 30, 2011. A DES model that incorporated these plans was used to compare the performance of the dynamic SSM strategy against static reallocation policies under various demands and travel time uncertainties. When the deployment plans based on the SSM strategy were followed strictly, the DES model showed that the geographical information system-based plans resulted in approximately 13-second reduction in the median response times compared to the static reallocation policy, whereas the mathematical programming-based plans resulted in approximately a 44-second reduction. The response times and coverage performances were still better than the static policy when reallocations happened for only 60% of all the recommended moves. Dynamically reassigning ambulance deployment locations based on the SSM strategy can result in superior response times and coverage performance compared to static reallocation policies even when the dynamic plans were not followed strictly. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. The Watershed and River Systems Management Program: Decision Support for Water- and Environmental-Resource Management

    NASA Astrophysics Data System (ADS)

    Leavesley, G.; Markstrom, S.; Frevert, D.; Fulp, T.; Zagona, E.; Viger, R.

    2004-12-01

    Increasing demands for limited fresh-water supplies, and increasing complexity of water-management issues, present the water-resource manager with the difficult task of achieving an equitable balance of water allocation among a diverse group of water users. The Watershed and River System Management Program (WARSMP) is a cooperative effort between the U.S. Geological Survey (USGS) and the Bureau of Reclamation (BOR) to develop and deploy a database-centered, decision-support system (DSS) to address these multi-objective, resource-management problems. The decision-support system couples the USGS Modular Modeling System (MMS) with the BOR RiverWare tools using a shared relational database. MMS is an integrated system of computer software that provides a research and operational framework to support the development and integration of a wide variety of hydrologic and ecosystem models, and their application to water- and ecosystem-resource management. RiverWare is an object-oriented reservoir and river-system modeling framework developed to provide tools for evaluating and applying water-allocation and management strategies. The modeling capabilities of MMS and Riverware include simulating watershed runoff, reservoir inflows, and the impacts of resource-management decisions on municipal, agricultural, and industrial water users, environmental concerns, power generation, and recreational interests. Forecasts of future climatic conditions are a key component in the application of MMS models to resource-management decisions. Forecast methods applied in MMS include a modified version of the National Weather Service's Extended Streamflow Prediction Program (ESP) and statistical downscaling from atmospheric models. The WARSMP DSS is currently operational in the Gunnison River Basin, Colorado; Yakima River Basin, Washington; Rio Grande Basin in Colorado and New Mexico; and Truckee River Basin in California and Nevada.

  11. An object-oriented and quadrilateral-mesh based solution adaptive algorithm for compressible multi-fluid flows

    NASA Astrophysics Data System (ADS)

    Zheng, H. W.; Shu, C.; Chew, Y. T.

    2008-07-01

    In this paper, an object-oriented and quadrilateral-mesh based solution adaptive algorithm for the simulation of compressible multi-fluid flows is presented. The HLLC scheme (Harten, Lax and van Leer approximate Riemann solver with the Contact wave restored) is extended to adaptively solve the compressible multi-fluid flows under complex geometry on unstructured mesh. It is also extended to the second-order of accuracy by using MUSCL extrapolation. The node, edge and cell are arranged in such an object-oriented manner that each of them inherits from a basic object. A home-made double link list is designed to manage these objects so that the inserting of new objects and removing of the existing objects (nodes, edges and cells) are independent of the number of objects and only of the complexity of O( 1). In addition, the cells with different levels are further stored in different lists. This avoids the recursive calculation of solution of mother (non-leaf) cells. Thus, high efficiency is obtained due to these features. Besides, as compared to other cell-edge adaptive methods, the separation of nodes would reduce the memory requirement of redundant nodes, especially in the cases where the level number is large or the space dimension is three. Five two-dimensional examples are used to examine its performance. These examples include vortex evolution problem, interface only problem under structured mesh and unstructured mesh, bubble explosion under the water, bubble-shock interaction, and shock-interface interaction inside the cylindrical vessel. Numerical results indicate that there is no oscillation of pressure and velocity across the interface and it is feasible to apply it to solve compressible multi-fluid flows with large density ratio (1000) and strong shock wave (the pressure ratio is 10,000) interaction with the interface.

  12. Construct validation of a novel hybrid surgical simulator.

    PubMed

    Broe, D; Ridgway, P F; Johnson, S; Tierney, S; Conlon, K C

    2006-06-01

    Simulated minimal access surgery has improved recently as both a learning and assessment tool. The construct validation of a novel simulator, ProMis, is described for use by residents in training. ProMis is a surgical simulator that can design tasks in both virtual and actual reality. A pilot group of surgical residents ranging from novice to expert completed three standardized tasks: orientation, dissection, and basic suturing. The tasks were tested for construct validity. Two experienced surgeons examined the recorded tasks in a blinded fashion using an objective structured assessment of technical skills format (OSATS: task-specific checklist and global rating score) as well as metrics delivered by the simulator. The findings showed excellent interrater reliability (Cronbach's alpha of 0.88 for the checklist and 0.93 for the global rating). The median scores in the experience groups were statistically different in both the global rating and the task-specific checklists (p < 0.05). The scores for the orientation task alone did not reach significance (p = 0.1), suggesting that modification is required before ProMis could be used in isolation as an assessment tool. The three simulated tasks in combination are construct valid for differentiating experience levels among surgeons in training. This hybrid simulator has potential added benefits of marrying the virtual with actual, and of combining simple box traits and advanced virtual reality simulation.

  13. Packet utilisation definitions for the ESA XMM mission

    NASA Technical Reports Server (NTRS)

    Nye, H. R.

    1994-01-01

    XMM, ESA's X-Ray Multi-Mirror satellite, due for launch at the end of 1999 will be the first ESA scientific spacecraft to implement the ESA packet telecommand and telemetry standards and will be the first ESOC-controlled science mission to take advantage of the new flight control system infrastructure development (based on object-oriented design and distributed-system architecture) due for deployment in 1995. The implementation of the packet standards is well defined at packet transport level. However, the standard relevant to the application level (the ESA Packet Utilization Standard) covers a wide range of on-board 'services' applicable in varying degrees to the needs of XMM. In defining which parts of the ESA PUS to implement, the XMM project first considered the mission objectives and the derived operations concept and went on to identify a minimum set of packet definitions compatible with these aspects. This paper sets the scene as above and then describes the services needed for XMM and the telecommand and telemetry packet types necessary to support each service.

  14. Deployable robotic woven wire structures and joints for space applications

    NASA Technical Reports Server (NTRS)

    Shahinpoor, MO; Smith, Bradford

    1991-01-01

    Deployable robotic structures are basically expandable and contractable structures that may be transported or launched to space in a compact form. These structures may then be intelligently deployed by suitable actuators. The deployment may also be done by means of either airbag or spring-loaded typed mechanisms. The actuators may be pneumatic, hydraulic, ball-screw type, or electromagnetic. The means to trigger actuation may be on-board EPROMS, programmable logic controllers (PLCs) that trigger actuation based on some input caused by the placement of the structure in the space environment. The actuation may also be performed remotely by suitable remote triggering devices. Several deployable woven wire structures are examined. These woven wire structures possess a unique form of joint, the woven wire joint, which is capable of moving and changing its position and orientation with respect to the structure itself. Due to the highly dynamic and articulate nature of these joints the 3-D structures built using them are uniquely and highly expandable, deployable, and dynamic. The 3-D structure naturally gives rise to a new generation of deployable three-dimensional spatial structures.

  15. AMF 1 Site Science

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, Mark Alan

    This report documents progress on DOE Grant# DE-FG02-08ER64531 funded by the Department of Energy’s Atmospheric Systems Research (ASR) program covering the period between its inception in 2008 and its conclusion in 2014. The Atmospheric Radiation Measurement (ARM) Program’s Mobile Facility #1 (AMF#1) is a collection of state-of-the art atmospheric sensing systems including remote and in situ instrumentation designed to characterize the atmospheric column above and in the immediate vicinity of the deployment location. The grant discussed in this report funded the activities of the AMF#1 Site Scientist Team. Broad responsibilities of this team included examining new deployment sites and recommendingmore » instrument deployment configurations; data quality control during the early stages of deployments and for certain instruments through the course of the deployment; scientific outreach in the host country or location (particularly international deployments); scientific research oriented toward basic questions about cloud physics and radiation transfer in the deployment region; and training of Ph.D. students to conduct future research relevant to the Atmospheric Systems Research (ASR) program.« less

  16. Applications of Dynamic Deployment of Services in Industrial Automation

    NASA Astrophysics Data System (ADS)

    Candido, Gonçalo; Barata, José; Jammes, François; Colombo, Armando W.

    Service-oriented Architecture (SOA) is becoming a de facto paradigm for business and enterprise integration. SOA is expanding into several domains of application envisioning a unified solution suitable across all different layers of an enterprise infrastructure. The application of SOA based on open web standards can significantly enhance the interoperability and openness of those devices. By embedding a dynamical deployment service even into small field de- vices, it would be either possible to allow machine builders to place built- in services and still allow the integrator to deploy on-the-run the services that best fit his current application. This approach allows the developer to keep his own preferred development language, but still deliver a SOA- compliant application. A dynamic deployment service is envisaged as a fundamental framework to support more complex applications, reducing deployment delays, while increasing overall system agility. As use-case scenario, a dynamic deployment service was implemented over DPWS and WS-Management specifications allowing designing and programming an automation application using IEC61131 languages, and deploying these components as web services into devices.

  17. Omaha Metropolitan Area, ITS Early Deployment Planning Study, Strategic Deployment Plan, Appendices E: Deployment Scenarios, F: Project Descriptions, G: Support Technologies, H: Cost Estimate Assumptions

    DOT National Transportation Integrated Search

    1995-12-15

    THE OBJECTIVE OF THE OMAHA INTELLIGENT TRANSPORTATION (ITS) EARLY DEPLOYMENT STUDY IS TO DEVELOP A STRATEGIC PLAN FOR THE DEPLOYMENT OF ITS TECHNOLOGIES IN THE OMAHA METROPOLITAN AREA. THE PLAN WILL IDENTIFY THE ITS USER SERVICES THAT WILL BE MOST BE...

  18. Conditioning 3D object-based models to dense well data

    NASA Astrophysics Data System (ADS)

    Wang, Yimin C.; Pyrcz, Michael J.; Catuneanu, Octavian; Boisvert, Jeff B.

    2018-06-01

    Object-based stochastic simulation models are used to generate categorical variable models with a realistic representation of complicated reservoir heterogeneity. A limitation of object-based modeling is the difficulty of conditioning to dense data. One method to achieve data conditioning is to apply optimization techniques. Optimization algorithms can utilize an objective function measuring the conditioning level of each object while also considering the geological realism of the object. Here, an objective function is optimized with implicit filtering which considers constraints on object parameters. Thousands of objects conditioned to data are generated and stored in a database. A set of objects are selected with linear integer programming to generate the final realization and honor all well data, proportions and other desirable geological features. Although any parameterizable object can be considered, objects from fluvial reservoirs are used to illustrate the ability to simultaneously condition multiple types of geologic features. Channels, levees, crevasse splays and oxbow lakes are parameterized based on location, path, orientation and profile shapes. Functions mimicking natural river sinuosity are used for the centerline model. Channel stacking pattern constraints are also included to enhance the geological realism of object interactions. Spatial layout correlations between different types of objects are modeled. Three case studies demonstrate the flexibility of the proposed optimization-simulation method. These examples include multiple channels with high sinuosity, as well as fragmented channels affected by limited preservation. In all cases the proposed method reproduces input parameters for the object geometries and matches the dense well constraints. The proposed methodology expands the applicability of object-based simulation to complex and heterogeneous geological environments with dense sampling.

  19. Controls Astrophysics and Structures Experiment in Space (CASES) advanced studies and planning

    NASA Technical Reports Server (NTRS)

    Wu, S. T.

    1989-01-01

    The CASES (Controls, Astrophysics, and Structures Experiment in Space) program consists of a flight demonstration of CSI (Controls-Structures Interactions) technology on the Space Shuttle. The basis structure consists of a 32 m deployable boom with actuators and sensors distributed along its length. Upon deployment from the Orbiter bay, the CASES structure will be characterized dynamically and its deformations controlled by a series of experimental control laws; and cold gas thrusters at its tip will be used to orient the Orbiter to a fixed celestial reference. The scientific observations will consist of hard x-ray imaging, at high resolution, of the Sun and the Galactic center. The hard x-ray observations require stable (few arc min) pointing at these targets for one or more position-sensitive proportional counters in the Orbiter bay, which view the object to be imaged through an aperture-encoding mask at the boom tip. This report gives the concensus developed at the second CASES Science Working Group meeting, which took place at NASA Marshall Space Flight Center May 16-17, 1990. An earlier paper and scientific summaries are available and form the basis for the present discussion.

  20. Solving Equations of Multibody Dynamics

    NASA Technical Reports Server (NTRS)

    Jain, Abhinandan; Lim, Christopher

    2007-01-01

    Darts++ is a computer program for solving the equations of motion of a multibody system or of a multibody model of a dynamic system. It is intended especially for use in dynamical simulations performed in designing and analyzing, and developing software for the control of, complex mechanical systems. Darts++ is based on the Spatial-Operator- Algebra formulation for multibody dynamics. This software reads a description of a multibody system from a model data file, then constructs and implements an efficient algorithm that solves the dynamical equations of the system. The efficiency and, hence, the computational speed is sufficient to make Darts++ suitable for use in realtime closed-loop simulations. Darts++ features an object-oriented software architecture that enables reconfiguration of system topology at run time; in contrast, in related prior software, system topology is fixed during initialization. Darts++ provides an interface to scripting languages, including Tcl and Python, that enable the user to configure and interact with simulation objects at run time.

  1. Crew station research and development facility training for the light helicopter demonstration/validation program

    NASA Technical Reports Server (NTRS)

    Matsumoto, Joy Hamerman; Rogers, Steven; Mccauley, Michael; Salinas, AL

    1992-01-01

    The U.S. Army Crew Station Research and Development Branch (CSRDB) of the Aircraft Simulation Division (AVSCOM) was tasked by the Light Helicopter Program Manager (LH-PM) to provide training to Army personnel in advanced aircraft simulation technology. The purpose of this training was to prepare different groups of pilots to support and evaluate two contractor simulation efforts during the Demonstration/Validation (DEM/VAL) phase of the LH program. The personnel in the CSRDB developed mission oriented training programs to accomplish the objectives, conduct the programs, and provide guidance to army personnel and support personnel throughout the DEM/VAL phase.

  2. Astronomical Simulations Using Visual Python

    NASA Astrophysics Data System (ADS)

    Cobb, Michael L.

    2007-05-01

    The Physics and Engineering Physics Department at Southeast Missouri State University has adopted the “Matter and Interactions I Modern Mechanics” text by Chabay and Sherwood for our calculus based introductory physics course. We have fully integrated the use of modeling and simulations by using the Visual Python language also know as VPython. This powerful, high level, object orientated language with full three dimensional, stereo graphics has stimulated both my students and myself to find wider applications for our new found skills. We have successfully modeled gravitational resonances in planetary rings, galaxy collisions, and planetary orbits around binary star systems. This talk will provide a quick overview of VPython and demonstrate the various simulations.

  3. The Development and Deployment of a Virtual Unit Operations Laboratory

    ERIC Educational Resources Information Center

    Vaidyanath, Sreeram; Williams, Jason; Hilliard, Marcus; Wiesner, Theodore

    2007-01-01

    Computer-simulated experiments offer many benefits to engineering curricula in the areas of safety, cost, and flexibility. We report our experience in developing and deploying a computer-simulated unit operations laboratory, driven by the guiding principle of maximum fidelity to the physical lab. We find that, while the up-front investment in…

  4. Multi-metric calibration of hydrological model to capture overall flow regimes

    NASA Astrophysics Data System (ADS)

    Zhang, Yongyong; Shao, Quanxi; Zhang, Shifeng; Zhai, Xiaoyan; She, Dunxian

    2016-08-01

    Flow regimes (e.g., magnitude, frequency, variation, duration, timing and rating of change) play a critical role in water supply and flood control, environmental processes, as well as biodiversity and life history patterns in the aquatic ecosystem. The traditional flow magnitude-oriented calibration of hydrological model was usually inadequate to well capture all the characteristics of observed flow regimes. In this study, we simulated multiple flow regime metrics simultaneously by coupling a distributed hydrological model with an equally weighted multi-objective optimization algorithm. Two headwater watersheds in the arid Hexi Corridor were selected for the case study. Sixteen metrics were selected as optimization objectives, which could represent the major characteristics of flow regimes. Model performance was compared with that of the single objective calibration. Results showed that most metrics were better simulated by the multi-objective approach than those of the single objective calibration, especially the low and high flow magnitudes, frequency and variation, duration, maximum flow timing and rating. However, the model performance of middle flow magnitude was not significantly improved because this metric was usually well captured by single objective calibration. The timing of minimum flow was poorly predicted by both the multi-metric and single calibrations due to the uncertainties in model structure and input data. The sensitive parameter values of the hydrological model changed remarkably and the simulated hydrological processes by the multi-metric calibration became more reliable, because more flow characteristics were considered. The study is expected to provide more detailed flow information by hydrological simulation for the integrated water resources management, and to improve the simulation performances of overall flow regimes.

  5. Prototyping and Simulation of Robot Group Intelligence using Kohonen Networks.

    PubMed

    Wang, Zhijun; Mirdamadi, Reza; Wang, Qing

    2016-01-01

    Intelligent agents such as robots can form ad hoc networks and replace human being in many dangerous scenarios such as a complicated disaster relief site. This project prototypes and builds a computer simulator to simulate robot kinetics, unsupervised learning using Kohonen networks, as well as group intelligence when an ad hoc network is formed. Each robot is modeled using an object with a simple set of attributes and methods that define its internal states and possible actions it may take under certain circumstances. As the result, simple, reliable, and affordable robots can be deployed to form the network. The simulator simulates a group of robots as an unsupervised learning unit and tests the learning results under scenarios with different complexities. The simulation results show that a group of robots could demonstrate highly collaborative behavior on a complex terrain. This study could potentially provide a software simulation platform for testing individual and group capability of robots before the design process and manufacturing of robots. Therefore, results of the project have the potential to reduce the cost and improve the efficiency of robot design and building.

  6. Prototyping and Simulation of Robot Group Intelligence using Kohonen Networks

    PubMed Central

    Wang, Zhijun; Mirdamadi, Reza; Wang, Qing

    2016-01-01

    Intelligent agents such as robots can form ad hoc networks and replace human being in many dangerous scenarios such as a complicated disaster relief site. This project prototypes and builds a computer simulator to simulate robot kinetics, unsupervised learning using Kohonen networks, as well as group intelligence when an ad hoc network is formed. Each robot is modeled using an object with a simple set of attributes and methods that define its internal states and possible actions it may take under certain circumstances. As the result, simple, reliable, and affordable robots can be deployed to form the network. The simulator simulates a group of robots as an unsupervised learning unit and tests the learning results under scenarios with different complexities. The simulation results show that a group of robots could demonstrate highly collaborative behavior on a complex terrain. This study could potentially provide a software simulation platform for testing individual and group capability of robots before the design process and manufacturing of robots. Therefore, results of the project have the potential to reduce the cost and improve the efficiency of robot design and building. PMID:28540284

  7. Target-object integration, attention distribution, and object orientation interactively modulate object-based selection.

    PubMed

    Al-Janabi, Shahd; Greenberg, Adam S

    2016-10-01

    The representational basis of attentional selection can be object-based. Various studies have suggested, however, that object-based selection is less robust than spatial selection across experimental paradigms. We sought to examine the manner by which the following factors might explain this variation: Target-Object Integration (targets 'on' vs. part 'of' an object), Attention Distribution (narrow vs. wide), and Object Orientation (horizontal vs. vertical). In Experiment 1, participants discriminated between two targets presented 'on' an object in one session, or presented as a change 'of' an object in another session. There was no spatial cue-thus, attention was initially focused widely-and the objects were horizontal or vertical. We found evidence of object-based selection only when targets constituted a change 'of' an object. Additionally, object orientation modulated the sign of object-based selection: We observed a same-object advantage for horizontal objects, but a same-object cost for vertical objects. In Experiment 2, an informative cue preceded a single target presented 'on' an object or as a change 'of' an object (thus, attention was initially focused narrowly). Unlike in Experiment 1, we found evidence of object-based selection independent of target-object integration. We again found that the sign of selection was modulated by the objects' orientation. This result may reflect a meridian effect, which emerged due to anisotropies in the cortical representations when attention is oriented endogenously. Experiment 3 revealed that object orientation did not modulate object-based selection when attention was oriented exogenously. Our findings suggest that target-object integration, attention distribution, and object orientation modulate object-based selection, but only in combination.

  8. Optimization of MLS receivers for multipath environments

    NASA Technical Reports Server (NTRS)

    Mcalpine, G. A.; Highfill, J. H., III; Tzeng, C. P. J.; Koleyni, G.

    1978-01-01

    Reduced order receiver (suboptimal receiver) analysis in multipath environments is presented. The origin and objective of MLS is described briefly. Signal modeling in MLS the optimum receiver is also included and a description of a computer oriented technique which was used in the simulation study of the suboptimal receiver is provided. Results and conclusion obtained from the research for the suboptimal receiver are reported.

  9. Towards Citizen Co-Created Public Service Apps †

    PubMed Central

    Emaldi, Mikel; Aguilera, Unai; López-de-Ipiña, Diego; Pérez-Velasco, Jorge

    2017-01-01

    WeLive project’s main objective is about transforming the current e-government approach by providing a new paradigm based on a new open model oriented towards the design, production and deployment of public services and mobile apps based on the collaboration of different stakeholders. These stakeholders form the quadruple helix, i.e., citizens, private companies, research institutes and public administrations. Through the application of open innovation, open data and open services paradigms, the framework developed within the WeLive project enables the co-creation of urban apps. In this paper, we extend the description of the WeLive platform presented at , plus the preliminary results of the first pilot phase. The two-phase evaluation methodology designed and the evaluation results of first pilot sub-phase are also presented. PMID:28574460

  10. A Generic Software Architecture For Prognostics

    NASA Technical Reports Server (NTRS)

    Teubert, Christopher; Daigle, Matthew J.; Sankararaman, Shankar; Goebel, Kai; Watkins, Jason

    2017-01-01

    Prognostics is a systems engineering discipline focused on predicting end-of-life of components and systems. As a relatively new and emerging technology, there are few fielded implementations of prognostics, due in part to practitioners perceiving a large hurdle in developing the models, algorithms, architecture, and integration pieces. As a result, no open software frameworks for applying prognostics currently exist. This paper introduces the Generic Software Architecture for Prognostics (GSAP), an open-source, cross-platform, object-oriented software framework and support library for creating prognostics applications. GSAP was designed to make prognostics more accessible and enable faster adoption and implementation by industry, by reducing the effort and investment required to develop, test, and deploy prognostics. This paper describes the requirements, design, and testing of GSAP. Additionally, a detailed case study involving battery prognostics demonstrates its use.

  11. Analysis of orbital perturbations acting on objects in orbits near geosynchronous earth orbit

    NASA Technical Reports Server (NTRS)

    Friesen, Larry J.; Jackson, Albert A., IV; Zook, Herbert A.; Kessler, Donald J.

    1992-01-01

    The paper presents a numerical investigation of orbital evolution for objects started in GEO or in orbits near GEO in order to study potential orbital debris problems in this region. Perturbations simulated include nonspherical terms in the earth's geopotential field, lunar and solar gravity, and solar radiation pressure. Objects simulated include large satellites, for which solar radiation pressure is insignificant, and small particles, for which solar radiation pressure is an important force. Results for large satellites are largely in agreement with previous GEO studies that used classical perturbation techniques. The orbit plane of GEO satellites placed in a stable plane orbit inclined approximately 7.3 deg to the equator experience very little precession, remaining always within 1.2 percent of their initial orientation. Solar radiation pressure generates two major effects on small particles: an orbital eccentricity oscillation anticipated from previous research, and an oscillation in orbital inclination.

  12. Evaluating the More Suitable ISM Frequency Band for IoT-Based Smart Grids: A Quantitative Study of 915 MHz vs. 2400 MHz.

    PubMed

    Sandoval, Ruben M; Garcia-Sanchez, Antonio-Javier; Garcia-Sanchez, Felipe; Garcia-Haro, Joan

    2016-12-31

    IoT has begun to be employed pervasively in industrial environments and critical infrastructures thanks to its positive impact on performance and efficiency. Among these environments, the Smart Grid (SG) excels as the perfect host for this technology, mainly due to its potential to become the motor of the rest of electrically-dependent infrastructures. To make this SG-oriented IoT cost-effective, most deployments employ unlicensed ISM bands, specifically the 2400 MHz one, due to its extended communication bandwidth in comparison with lower bands. This band has been extensively used for years by Wireless Sensor Networks (WSN) and Mobile Ad-hoc Networks (MANET), from which the IoT technologically inherits. However, this work questions and evaluates the suitability of such a "default" communication band in SG environments, compared with the 915 MHz ISM band. A comprehensive quantitative comparison of these bands has been accomplished in terms of: power consumption, average network delay, and packet reception rate. To allow such a study, a dual-band propagation model specifically designed for the SG has been derived, tested, and incorporated into the well-known TOSSIM simulator. Simulation results reveal that only in the absence of other 2400 MHz interfering devices (such as WiFi or Bluetooth) or in small networks, is the 2400 MHz band the best option. In any other case, SG-oriented IoT quantitatively perform better if operating in the 915 MHz band.

  13. Evaluating the More Suitable ISM Frequency Band for IoT-Based Smart Grids: A Quantitative Study of 915 MHz vs. 2400 MHz

    PubMed Central

    Sandoval, Ruben M.; Garcia-Sanchez, Antonio-Javier; Garcia-Sanchez, Felipe; Garcia-Haro, Joan

    2016-01-01

    IoT has begun to be employed pervasively in industrial environments and critical infrastructures thanks to its positive impact on performance and efficiency. Among these environments, the Smart Grid (SG) excels as the perfect host for this technology, mainly due to its potential to become the motor of the rest of electrically-dependent infrastructures. To make this SG-oriented IoT cost-effective, most deployments employ unlicensed ISM bands, specifically the 2400 MHz one, due to its extended communication bandwidth in comparison with lower bands. This band has been extensively used for years by Wireless Sensor Networks (WSN) and Mobile Ad-hoc Networks (MANET), from which the IoT technologically inherits. However, this work questions and evaluates the suitability of such a “default” communication band in SG environments, compared with the 915 MHz ISM band. A comprehensive quantitative comparison of these bands has been accomplished in terms of: power consumption, average network delay, and packet reception rate. To allow such a study, a dual-band propagation model specifically designed for the SG has been derived, tested, and incorporated into the well-known TOSSIM simulator. Simulation results reveal that only in the absence of other 2400 MHz interfering devices (such as WiFi or Bluetooth) or in small networks, is the 2400 MHz band the best option. In any other case, SG-oriented IoT quantitatively perform better if operating in the 915 MHz band. PMID:28042863

  14. Testing technology. A Sandia Technology Bulletin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goetsch, B.; Floyd, H.L.; Doran, L.

    1994-02-01

    This Sandia publication seeks to facilitate technology exchange with industries, universities, and government agencies. It presents brief highlights of four projects. First is a project to simulate the use of airbags to soften the landing of a probe on Mars. Second is the use of a computer simulation system to facilitate the testing of designs for different experiments, both for experimental layout and results analysis. Third is the development of a system for in-house testing of batteries and capacitive energy storage systems, for deployment at the manufacturing sites, as opposed to final use areas. Finally is information on a noncontactmore » measurement system which can be used to determine axes on objects of different shapes, with high precision.« less

  15. Mars Smart Lander Parachute Simulation Model

    NASA Technical Reports Server (NTRS)

    Queen, Eric M.; Raiszadeh, Ben

    2002-01-01

    A multi-body flight simulation for the Mars Smart Lander has been developed that includes six degree-of-freedom rigid-body models for both the supersonically-deployed and subsonically-deployed parachutes. This simulation is designed to be incorporated into a larger simulation of the entire entry, descent and landing (EDL) sequence. The complete end-to-end simulation will provide attitude history predictions of all bodies throughout the flight as well as loads on each of the connecting lines. Other issues such as recontact with jettisoned elements (heat shield, back shield, parachute mortar covers, etc.), design of parachute and attachment points, and desirable line properties can also be addressed readily using this simulation.

  16. Evaluating the Measure of Effectiveness of Using a Deployed Command and Control System on Land Battlefield

    DTIC Science & Technology

    2015-09-01

    SOA Service-Oriented Architecture SOTM Satellite Communications-on-the-Move SoS System of Systems SwCIs Software Criticality Indices TPM Technical...into the C2 system. To manage stakeholders’ expectations, there is a need to evaluate the effectiveness of the deployed C2 system having implemented ...the C2 system. However, there is a need to recognize the limitations and constraints on the land battlefield to implement these requirements. There

  17. A new validation technique for estimations of body segment inertia tensors: Principal axes of inertia do matter.

    PubMed

    Rossi, Marcel M; Alderson, Jacqueline; El-Sallam, Amar; Dowling, James; Reinbolt, Jeffrey; Donnelly, Cyril J

    2016-12-08

    The aims of this study were to: (i) establish a new criterion method to validate inertia tensor estimates by setting the experimental angular velocity data of an airborne objects as ground truth against simulations run with the estimated tensors, and (ii) test the sensitivity of the simulations to changes in the inertia tensor components. A rigid steel cylinder was covered with reflective kinematic markers and projected through a calibrated motion capture volume. Simulations of the airborne motion were run with two models, using inertia tensor estimated with geometric formula or the compound pendulum technique. The deviation angles between experimental (ground truth) and simulated angular velocity vectors and the root mean squared deviation angle were computed for every simulation. Monte Carlo analyses were performed to assess the sensitivity of simulations to changes in magnitude of principal moments of inertia within ±10% and to changes in orientation of principal axes of inertia within ±10° (of the geometric-based inertia tensor). Root mean squared deviation angles ranged between 2.9° and 4.3° for the inertia tensor estimated geometrically, and between 11.7° and 15.2° for the compound pendulum values. Errors up to 10% in magnitude of principal moments of inertia yielded root mean squared deviation angles ranging between 3.2° and 6.6°, and between 5.5° and 7.9° when lumped with errors of 10° in principal axes of inertia orientation. The proposed technique can effectively validate inertia tensors from novel estimation methods of body segment inertial parameter. Principal axes of inertia orientation should not be neglected when modelling human/animal mechanics. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Noncontact orientation of objects in three-dimensional space using magnetic levitation

    PubMed Central

    Subramaniam, Anand Bala; Yang, Dian; Yu, Hai-Dong; Nemiroski, Alex; Tricard, Simon; Ellerbee, Audrey K.; Soh, Siowling; Whitesides, George M.

    2014-01-01

    This paper describes several noncontact methods of orienting objects in 3D space using Magnetic Levitation (MagLev). The methods use two permanent magnets arranged coaxially with like poles facing and a container containing a paramagnetic liquid in which the objects are suspended. Absent external forcing, objects levitating in the device adopt predictable static orientations; the orientation depends on the shape and distribution of mass within the objects. The orientation of objects of uniform density in the MagLev device shows a sharp geometry-dependent transition: an analytical theory rationalizes this transition and predicts the orientation of objects in the MagLev device. Manipulation of the orientation of the levitating objects in space is achieved in two ways: (i) by rotating and/or translating the MagLev device while the objects are suspended in the paramagnetic solution between the magnets; (ii) by moving a small external magnet close to the levitating objects while keeping the device stationary. Unlike mechanical agitation or robotic selection, orienting using MagLev is possible for objects having a range of different physical characteristics (e.g., different shapes, sizes, and mechanical properties from hard polymers to gels and fluids). MagLev thus has the potential to be useful for sorting and positioning components in 3D space, orienting objects for assembly, constructing noncontact devices, and assembling objects composed of soft materials such as hydrogels, elastomers, and jammed granular media. PMID:25157136

  19. Noncontact orientation of objects in three-dimensional space using magnetic levitation.

    PubMed

    Subramaniam, Anand Bala; Yang, Dian; Yu, Hai-Dong; Nemiroski, Alex; Tricard, Simon; Ellerbee, Audrey K; Soh, Siowling; Whitesides, George M

    2014-09-09

    This paper describes several noncontact methods of orienting objects in 3D space using Magnetic Levitation (MagLev). The methods use two permanent magnets arranged coaxially with like poles facing and a container containing a paramagnetic liquid in which the objects are suspended. Absent external forcing, objects levitating in the device adopt predictable static orientations; the orientation depends on the shape and distribution of mass within the objects. The orientation of objects of uniform density in the MagLev device shows a sharp geometry-dependent transition: an analytical theory rationalizes this transition and predicts the orientation of objects in the MagLev device. Manipulation of the orientation of the levitating objects in space is achieved in two ways: (i) by rotating and/or translating the MagLev device while the objects are suspended in the paramagnetic solution between the magnets; (ii) by moving a small external magnet close to the levitating objects while keeping the device stationary. Unlike mechanical agitation or robotic selection, orienting using MagLev is possible for objects having a range of different physical characteristics (e.g., different shapes, sizes, and mechanical properties from hard polymers to gels and fluids). MagLev thus has the potential to be useful for sorting and positioning components in 3D space, orienting objects for assembly, constructing noncontact devices, and assembling objects composed of soft materials such as hydrogels, elastomers, and jammed granular media.

  20. Implementation of object-oriented programming in study of electrical race car

    NASA Astrophysics Data System (ADS)

    Nowak, M.; Baier, M.

    2016-08-01

    The paper covers issue of conducting advanced research of electrical race car participating in international competition called Sileverline Corporate Challenge. Process of designing race cars in Silesian Greenpower team is aided by a professional engine test stand built particularly in purpose of this research. Phase of testing and simulation is an important part of the implementation of new technologies. Properly developed solutions and test procedures are able to significantly shorten development time and reduce design costs. Testing process must be controlled by a modular and flexible application, easy to modify and ensuring safety. This paper describes the concept of object-oriented programming in LabVIEW and exemplary architecture of object-oriented control application designed to control engine test stand of the electrical race car. Eventually, the task of application will be to steer the electromagnetic brake and the engine load torque to perform according to data from the actual race track. During the designing process of the car, minimizing energy losses and maximizing powertrain efficiency are the main aspects taken into consideration. One of the crucial issues to accomplish these goals is to maintain optimal performance of the motor by applying effective cooling. The paper covers the research verifying the effectiveness of the cooling system.

  1. Coverage-guaranteed sensor node deployment strategies for wireless sensor networks.

    PubMed

    Fan, Gaojuan; Wang, Ruchuan; Huang, Haiping; Sun, Lijuan; Sha, Chao

    2010-01-01

    Deployment quality and cost are two conflicting aspects in wireless sensor networks. Random deployment, where the monitored field is covered by randomly and uniformly deployed sensor nodes, is an appropriate approach for large-scale network applications. However, their successful applications depend considerably on the deployment quality that uses the minimum number of sensors to achieve a desired coverage. Currently, the number of sensors required to meet the desired coverage is based on asymptotic analysis, which cannot meet deployment quality due to coverage overestimation in real applications. In this paper, we first investigate the coverage overestimation and address the challenge of designing coverage-guaranteed deployment strategies. To overcome this problem, we propose two deployment strategies, namely, the Expected-area Coverage Deployment (ECD) and BOundary Assistant Deployment (BOAD). The deployment quality of the two strategies is analyzed mathematically. Under the analysis, a lower bound on the number of deployed sensor nodes is given to satisfy the desired deployment quality. We justify the correctness of our analysis through rigorous proof, and validate the effectiveness of the two strategies through extensive simulation experiments. The simulation results show that both strategies alleviate the coverage overestimation significantly. In addition, we also evaluate two proposed strategies in the context of target detection application. The comparison results demonstrate that if the target appears at the boundary of monitored region in a given random deployment, the average intrusion distance of BOAD is considerably shorter than that of ECD with the same desired deployment quality. In contrast, ECD has better performance in terms of the average intrusion distance when the invasion of intruder is from the inside of monitored region.

  2. Software Comparison for Renewable Energy Deployment in a Distribution Network

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, David Wenzhong; Muljadi, Eduard; Tian, Tian

    The main objective of this report is to evaluate different software options for performing robust distributed generation (DG) power system modeling. The features and capabilities of four simulation tools, OpenDSS, GridLAB-D, CYMDIST, and PowerWorld Simulator, are compared to analyze their effectiveness in analyzing distribution networks with DG. OpenDSS and GridLAB-D, two open source software, have the capability to simulate networks with fluctuating data values. These packages allow the running of a simulation each time instant by iterating only the main script file. CYMDIST, a commercial software, allows for time-series simulation to study variations on network controls. PowerWorld Simulator, another commercialmore » tool, has a batch mode simulation function through the 'Time Step Simulation' tool, which obtains solutions for a list of specified time points. PowerWorld Simulator is intended for analysis of transmission-level systems, while the other three are designed for distribution systems. CYMDIST and PowerWorld Simulator feature easy-to-use graphical user interfaces (GUIs). OpenDSS and GridLAB-D, on the other hand, are based on command-line programs, which increase the time necessary to become familiar with the software packages.« less

  3. Evaluating the Special Needs of the Military for Radiation Biodosimetry for Tactical Warfare against Deployed Troops: Comparing Military to Civilian Needs for Biodosimetry Methods

    PubMed Central

    Flood, Ann Barry; Ali, Arif N.; Boyle, Holly K.; Du, Gaixin; Satinsky, Victoria A.; Swarts, Steven G.; Williams, Benjamin B.; Demidenko, Eugene; Schreiber, Wilson; Swartz, Harold M.

    2016-01-01

    Objectives The aim of this paper is to delineate characteristics of biodosimetry most suitable for assessing individuals who have potentially been exposed to significant radiation from a nuclear device explosion, when the primary population targeted by the explosion and needing rapid assessment for triage is civilians vs. deployed military personnel. Methods We first carry out a systematic analysis of the requirements for biodosimetry to meet the military's needs to assess deployed troops in a warfare situation, which include accomplishing the military mission. We then systematically compare and contrast the military's special capabilities to respond and carry out biodosimetry for deployed troops in warfare, in contrast to those available to respond and conduct biodosimetry for civilians who have been targeted, e.g., by terrorists. We then compare the effectiveness of different biodosimetry methods to address military vs. civilian needs and capabilities in these scenarios and, using five representative types of biodosimetry with sufficient published data to be useful for the simulations, we estimate the number of individuals who could be assessed by military vs. civilian responders within the timeframe needed for triage decisions. Conclusions Analyses based on these scenarios indicate that, in comparison to responses for a civilian population, a wartime military response for deployed troops has both more complex requirements for and greater capabilities to utilize different types of biodosimetry to evaluate radiation exposure in a very short timeframe after the exposure occurs. Greater complexity for the deployed military is based on factors such as a greater likelihood of partial or whole body exposure, conditions that include exposure to neutrons, and a greater likelihood of combined injury. Our simulations showed, for both the military and civilian response, that a very fast rate of initiating the processing (24,000 per day) is needed to have at least some methods capable of completing the assessment of 50,000 people within a 2 or 6 day timeframe following exposure. This in turn suggests a very high capacity (i.e., laboratories, devices, supplies and expertise) would be necessary to achieve these rates. These simulations also demonstrated the practical importance of the military's superior capacity to minimize time to transport samples to offsite facilities and utilize the results to carry out triage quickly. Assuming sufficient resources and the fastest daily rate to initiate processing victims, the military scenario revealed that two biodosimetry methods could achieve the necessary throughput to triage 50,000 victims in 2 days (i.e., the timeframe needed for injured victims) and all five achieved the targeted throughput within 6 days. In contrast, simulations based on the civilian scenario revealed that no method could process 50,000 people in 2 days and only two could succeed within 6 days. PMID:27356061

  4. 5-Beam ADCP Deployment Strategy Considerations

    NASA Astrophysics Data System (ADS)

    Moore, T.; Savidge, D. K.; Gargett, A.

    2016-02-01

    With the increasing availability of 5 beam ADCPs and expanding opportunities for their deployment within both observatory and dedicated process study settings, refinements in deployment strategies are needed.Measuring vertical velocities directly with a vertically oriented acoustic beam requires that the instrument be stably mounted and leveled within fractions of a degree. Leveled shallow water deployments to date have utilized divers to jet pipes into the sand for stability, manually mount the instruments on the pipes, and level them. Leveling has been guided by the deployed instrument's pitch and roll output, available in real-time because of the observatory settings in which the deployments occurred. To expand the range of feasible deployments to deeper, perhaps non-real-time capable settings, alternatives to diver deployment and leveling must be considered. To determine stability requirements, mooring motion (heading, pitch and roll) has been sampled at 1Hz by gimballed ADCPs at a range of instrument deployment depths, and in shrouded and unshrouded cages. Conditions under which ADCP cages resting on the bottom experience significant shifts in tilt, roll or heading are assessed using co-located wind and wave measurements. The accuracy of estimating vertical velocities using all five beams relative to a well leveled vertical single beam is assessed from archived high frequency five beam data, to explore whether easing the leveling requirement is feasible.

  5. A flexible computer aid for conceptual design based on constraint propagation and component-modeling. [of aircraft in three dimensions

    NASA Technical Reports Server (NTRS)

    Kolb, Mark A.

    1988-01-01

    The Rubber Airplane program, which combines two symbolic processing techniques with a component-based database of design knowledge, is proposed as a computer aid for conceptual design. Using object-oriented programming, programs are organized around the objects and behavior to be simulated, and using constraint propagation, declarative statements designate mathematical relationships among all the equation variables. It is found that the additional level of organizational structure resulting from the arrangement of the design information in terms of design components provides greater flexibility and convenience.

  6. What makes a good LOFT scenario? Issues in advancing current knowledge of scenario design. [Line Oriented Flight Training

    NASA Technical Reports Server (NTRS)

    Gregorich, Steven E.

    1991-01-01

    An effort is made to ascertain which combinations of technical demands and crew coordination should be incorporated in training scenarios in order to maximize the effectiveness of training for crew members. Such high-fidelity simulation, which has come to be known as 'line-oriented flight training' or LOFT, involves the practice of both technical and crew coordination skills in a realistic setting, in conjunction with periodic reviews of performance via videotaped feedback. Attention is given to the integration of appropriate information, the measurement of objective task demands, the character of information from LOFT students, and the leeway allowed LOFT instructors.

  7. The Role of Graphic Orientations in Children's Drawings of Familiar and Novel Objects at Rest and in Motion.

    ERIC Educational Resources Information Center

    Ives, William; Rovet, Joanne

    1979-01-01

    Reports three experiments which investigate: whether familiar objects have standard graphic orientations (Experiment 1); the relationship between use of object orientations and more conventional methods in depicting familiar objects in motion (Experiment 2); and whether orientations are used differently in novel objects whose only defining feature…

  8. Benefits of object-oriented models and ModeliChart: modern tools and methods for the interdisciplinary research on smart biomedical technology.

    PubMed

    Gesenhues, Jonas; Hein, Marc; Ketelhut, Maike; Habigt, Moriz; Rüschen, Daniel; Mechelinck, Mare; Albin, Thivaharan; Leonhardt, Steffen; Schmitz-Rode, Thomas; Rossaint, Rolf; Autschbach, Rüdiger; Abel, Dirk

    2017-04-01

    Computational models of biophysical systems generally constitute an essential component in the realization of smart biomedical technological applications. Typically, the development process of such models is characterized by a great extent of collaboration between different interdisciplinary parties. Furthermore, due to the fact that many underlying mechanisms and the necessary degree of abstraction of biophysical system models are unknown beforehand, the steps of the development process of the application are iteratively repeated when the model is refined. This paper presents some methods and tools to facilitate the development process. First, the principle of object-oriented (OO) modeling is presented and the advantages over classical signal-oriented modeling are emphasized. Second, our self-developed simulation tool ModeliChart is presented. ModeliChart was designed specifically for clinical users and allows independently performing in silico studies in real time including intuitive interaction with the model. Furthermore, ModeliChart is capable of interacting with hardware such as sensors and actuators. Finally, it is presented how optimal control methods in combination with OO models can be used to realize clinically motivated control applications. All methods presented are illustrated on an exemplary clinically oriented use case of the artificial perfusion of the systemic circulation.

  9. Tension waves in tethered satellite cables

    NASA Technical Reports Server (NTRS)

    Lallman, F. J.

    1984-01-01

    A one-degree-of-freedom simulation of the Tethered Satellite System (TSS) was programmed using a distributed system model of the tether based on the one-dimensional wave equation. This model represents the time varying tension profile along the tether as the sum of two traveling waves of tension moving in opposite directions. A control loop was devised which combines a deployment rate command with the measured tension at the deployer to produce a smooth, stable rate of deployment of the subsatellite. Simulation results show a buildup of periodic bursts of high frequency oscillation in tension. This report covers the mathematical modelling and simulation results and explains the reason for the observed oscillations. The design of a possible vibration damping device is discussed.

  10. Optical ensemble analysis of intraocular lens performance through a simulated clinical trial with ZEMAX.

    PubMed

    Zhao, Huawei

    2009-01-01

    A ZEMAX model was constructed to simulate a clinical trial of intraocular lenses (IOLs) based on a clinically oriented Monte Carlo ensemble analysis using postoperative ocular parameters. The purpose of this model is to test the feasibility of streamlining and optimizing both the design process and the clinical testing of IOLs. This optical ensemble analysis (OEA) is also validated. Simulated pseudophakic eyes were generated by using the tolerancing and programming features of ZEMAX optical design software. OEA methodology was verified by demonstrating that the results of clinical performance simulations were consistent with previously published clinical performance data using the same types of IOLs. From these results we conclude that the OEA method can objectively simulate the potential clinical trial performance of IOLs.

  11. DYNECHARM++: a toolkit to simulate coherent interactions of high-energy charged particles in complex structures

    NASA Astrophysics Data System (ADS)

    Bagli, Enrico; Guidi, Vincenzo

    2013-08-01

    A toolkit for the simulation of coherent interactions between high-energy charged particles and complex crystal structures, called DYNECHARM++ has been developed. The code has been written in C++ language taking advantage of this object-oriented programing method. The code is capable to evaluating the electrical characteristics of complex atomic structures and to simulate and track the particle trajectory within them. Calculation method of electrical characteristics based on their expansion in Fourier series has been adopted. Two different approaches to simulate the interaction have been adopted, relying on the full integration of particle trajectories under the continuum potential approximation and on the definition of cross-sections of coherent processes. Finally, the code has proved to reproduce experimental results and to simulate interaction of charged particles with complex structures.

  12. An object-oriented description method of EPMM process

    NASA Astrophysics Data System (ADS)

    Jiang, Zuo; Yang, Fan

    2017-06-01

    In order to use the object-oriented mature tools and language in software process model, make the software process model more accord with the industrial standard, it’s necessary to study the object-oriented modelling of software process. Based on the formal process definition in EPMM, considering the characteristics that Petri net is mainly formal modelling tool and combining the Petri net modelling with the object-oriented modelling idea, this paper provides this implementation method to convert EPMM based on Petri net into object models based on object-oriented description.

  13. Kaiser Permanente-Sandia National Health Care Model: Phase 1 prototype final report. Part 2 -- Domain analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Edwards, D.; Yoshimura, A.; Butler, D.

    This report describes the results of a Cooperative Research and Development Agreement between Sandia National Laboratories and Kaiser Permanente Southern California to develop a prototype computer model of Kaiser Permanente`s health care delivery system. As a discrete event simulation, SimHCO models for each of 100,000 patients the progression of disease, individual resource usage, and patient choices in a competitive environment. SimHCO is implemented in the object-oriented programming language C{sup 2}, stressing reusable knowledge and reusable software components. The versioned implementation of SimHCO showed that the object-oriented framework allows the program to grow in complexity in an incremental way. Furthermore, timingmore » calculations showed that SimHCO runs in a reasonable time on typical workstations, and that a second phase model will scale proportionally and run within the system constraints of contemporary computer technology.« less

  14. Development of a Coherent Bistatic Vegetation Model for Signal of Opportunity Applications at VHF UHF-Bands

    NASA Technical Reports Server (NTRS)

    Kurum, Mehmet; Deshpande, Manohar; Joseph, Alicia T.; O'Neill, Peggy E.; Lang, Roger H.; Eroglu, Orhan

    2017-01-01

    A coherent bistatic vegetation scattering model, based on a Monte Carlo simulation, is being developed to simulate polarimetric bi-static reflectometry at VHF/UHF-bands (240-270 MHz). The model is aimed to assess the value of geostationary satellite signals of opportunity to enable estimation of the Earth's biomass and root-zone soil moisture. An expression for bistatic scattering from a vegetation canopy is derived for the practical case of a ground-based/low altitude platforms with passive receivers overlooking vegetation. Using analytical wave theory in conjunction with distorted Born approximation (DBA), the transmit and receive antennas effects (i.e., polarization, orientation, height, etc.) are explicitly accounted for. Both the coherency nature of the model (joint phase and amplitude information) and the explicit account of system parameters (antenna, altitude, polarization, etc) enable one to perform various beamforming techniques to evaluate realistic deployment configurations. In this paper, several test scenarios will be presented and the results will be evaluated for feasibility for future biomass and root-zone soil moisture application using geostationary communication satellite signals of opportunity at low frequencies.

  15. Parietal and frontal object areas underlie perception of object orientation in depth.

    PubMed

    Niimi, Ryosuke; Saneyoshi, Ayako; Abe, Reiko; Kaminaga, Tatsuro; Yokosawa, Kazuhiko

    2011-05-27

    Recent studies have shown that the human parietal and frontal cortices are involved in object image perception. We hypothesized that the parietal/frontal object areas play a role in differentiating the orientations (i.e., views) of an object. By using functional magnetic resonance imaging, we compared brain activations while human observers differentiated between two object images in depth-orientation (orientation task) and activations while they differentiated the images in object identity (identity task). The left intraparietal area, right angular gyrus, and right inferior frontal areas were activated more for the orientation task than for the identity task. The occipitotemporal object areas, however, were activated equally for the two tasks. No region showed greater activation for the identity task. These results suggested that the parietal/frontal object areas encode view-dependent visual features and underlie object orientation perception. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  16. Enhancing source location protection in wireless sensor networks

    NASA Astrophysics Data System (ADS)

    Chen, Juan; Lin, Zhengkui; Wu, Di; Wang, Bailing

    2015-12-01

    Wireless sensor networks are widely deployed in the internet of things to monitor valuable objects. Once the object is monitored, the sensor nearest to the object which is known as the source informs the base station about the object's information periodically. It is obvious that attackers can capture the object successfully by localizing the source. Thus, many protocols have been proposed to secure the source location. However, in this paper, we examine that typical source location protection protocols generate not only near but also highly localized phantom locations. As a result, attackers can trace the source easily from these phantom locations. To address these limitations, we propose a protocol to enhance the source location protection (SLE). With phantom locations far away from the source and widely distributed, SLE improves source location anonymity significantly. Theory analysis and simulation results show that our SLE provides strong source location privacy preservation and the average safety period increases by nearly one order of magnitude compared with existing work with low communication cost.

  17. Simulated training in colonoscopic stenting of colonic strictures: validation of a cadaver model.

    PubMed

    Iordache, F; Bucobo, J C; Devlin, D; You, K; Bergamaschi, R

    2015-07-01

    There are currently no available simulation models for training in colonoscopic stent deployment. The aim of this study was to validate a cadaver model for simulation training in colonoscopy with stent deployment for colonic strictures. This was a prospective study enrolling surgeons at a single institution. Participants performed colonoscopic stenting on a cadaver model. Their performance was assessed by two independent observers. Measurements were performed for quantitative analysis (time to identify stenosis, time for deployment, accuracy) and a weighted score was devised for assessment. The Mann-Whitney U-test and Student's t-test were used for nonparametric and parametric data, respectively. Cohen's kappa coefficient was used for reliability. Twenty participants performed a colonoscopy with deployment of a self-expandable metallic stent in two cadavers (groups A and B) with 20 strictures overall. The median time was 206 s. The model was able to differentiate between experts and novices (P = 0. 013). The results showed a good consensus estimate of reliability, with kappa = 0.571 (P < 0.0001). The cadaver model described in this study has content, construct and concurrent validity for simulation training in colonoscopic deployment of self-expandable stents for colonic strictures. Further studies are needed to evaluate the predictive validity of this model in terms of skill transfer to clinical practice. Colorectal Disease © 2014 The Association of Coloproctology of Great Britain and Ireland.

  18. pysimm: A Python Package for Simulation of Molecular Systems

    NASA Astrophysics Data System (ADS)

    Fortunato, Michael; Colina, Coray

    pysimm, short for python simulation interface for molecular modeling, is a python package designed to facilitate the structure generation and simulation of molecular systems through convenient and programmatic access to object-oriented representations of molecular system data. This poster presents core features of pysimm and design philosophies that highlight a generalized methodology for incorporation of third-party software packages through API interfaces. The integration with the LAMMPS simulation package is explained to demonstrate this methodology. pysimm began as a back-end python library that powered a cloud-based application on nanohub.org for amorphous polymer simulation. The extension from a specific application library to general purpose simulation interface is explained. Additionally, this poster highlights the rapid development of new applications to construct polymer chains capable of controlling chain morphology such as molecular weight distribution and monomer composition.

  19. Computational Modeling of Interventions and Protective Thresholds to Prevent Disease Transmission in Deploying Populations

    PubMed Central

    2014-01-01

    Military personnel are deployed abroad for missions ranging from humanitarian relief efforts to combat actions; delay or interruption in these activities due to disease transmission can cause operational disruptions, significant economic loss, and stressed or exceeded military medical resources. Deployed troops function in environments favorable to the rapid and efficient transmission of many viruses particularly when levels of protection are suboptimal. When immunity among deployed military populations is low, the risk of vaccine-preventable disease outbreaks increases, impacting troop readiness and achievement of mission objectives. However, targeted vaccination and the optimization of preexisting immunity among deployed populations can decrease the threat of outbreaks among deployed troops. Here we describe methods for the computational modeling of disease transmission to explore how preexisting immunity compares with vaccination at the time of deployment as a means of preventing outbreaks and protecting troops and mission objectives during extended military deployment actions. These methods are illustrated with five modeling case studies for separate diseases common in many parts of the world, to show different approaches required in varying epidemiological settings. PMID:25009579

  20. Computational modeling of interventions and protective thresholds to prevent disease transmission in deploying populations.

    PubMed

    Burgess, Colleen; Peace, Angela; Everett, Rebecca; Allegri, Buena; Garman, Patrick

    2014-01-01

    Military personnel are deployed abroad for missions ranging from humanitarian relief efforts to combat actions; delay or interruption in these activities due to disease transmission can cause operational disruptions, significant economic loss, and stressed or exceeded military medical resources. Deployed troops function in environments favorable to the rapid and efficient transmission of many viruses particularly when levels of protection are suboptimal. When immunity among deployed military populations is low, the risk of vaccine-preventable disease outbreaks increases, impacting troop readiness and achievement of mission objectives. However, targeted vaccination and the optimization of preexisting immunity among deployed populations can decrease the threat of outbreaks among deployed troops. Here we describe methods for the computational modeling of disease transmission to explore how preexisting immunity compares with vaccination at the time of deployment as a means of preventing outbreaks and protecting troops and mission objectives during extended military deployment actions. These methods are illustrated with five modeling case studies for separate diseases common in many parts of the world, to show different approaches required in varying epidemiological settings.

  1. The nature of an object-oriented program: How do practitioners understand the nature of what they are creating?

    NASA Astrophysics Data System (ADS)

    Thompson, Errol; Kinshuk

    2011-09-01

    Object-oriented programming is seen as a difficult skill to master. There is considerable debate about the most appropriate way to introduce novice programmers to object-oriented concepts. Is it possible to uncover what the critical aspects or features are that enhance the learning of object-oriented programming? Practitioners have differing understandings of the nature of an object-oriented program. Uncovering these different ways of understanding leads to agreater understanding of the critical aspects and their relationship tothe structure of the program produced. A phenomenographic studywas conducted to uncover practitioner understandings of the nature of an object-oriented program. The study identified five levels of understanding and three dimensions of variation within these levels. These levels and dimensions of variation provide a framework for fostering conceptual change with respect to the nature of an object-oriented program.

  2. Space Shuttle to deploy Magellan planetary science mission

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The objectives of Space Shuttle Mission STS-30 are described along with major flight activities, prelaunch and launch operations, trajectory sequence of events, and landing and post-landing operations. The primary objective of STS-30 is to successfully deploy the Magellan spacecraft into low earth orbit. Following deployment, Magellan will be propelled to its Venus trajectory by an Inertial Upper Stage booster. The objectives of the Magellan mission are to obtain radar images of more than 70 percent of Venus' surface, a near-global topographic map, and near-global gravity field data. Secondary STS-30 payloads include the Fluids Experiment Apparatus (FEA) and the Mesoscale Lightning Experiment (MLE).

  3. Object-Oriented Programming in High Schools the Turing Way.

    ERIC Educational Resources Information Center

    Holt, Richard C.

    This paper proposes an approach to introducing object-oriented concepts to high school computer science students using the Object-Oriented Turing (OOT) language. Students can learn about basic object-oriented (OO) principles such as classes and inheritance by using and expanding a collection of classes that draw pictures like circles and happy…

  4. 3D Fiber Orientation Simulation for Plastic Injection Molding

    NASA Astrophysics Data System (ADS)

    Lin, Baojiu; Jin, Xiaoshi; Zheng, Rong; Costa, Franco S.; Fan, Zhiliang

    2004-06-01

    Glass fiber reinforced polymer is widely used in the products made using injection molding processing. The distribution of fiber orientation inside plastic parts has direct effects on quality of molded parts. Using computer simulation to predict fiber orientation distribution is one of most efficient ways to assist engineers to do warpage analysis and to find a good design solution to produce high quality plastic parts. Fiber orientation simulation software based on 2-1/2D (midplane /Dual domain mesh) techniques has been used in industry for a decade. However, the 2-1/2D technique is based on the planar Hele-Shaw approximation and it is not suitable when the geometry has complex three-dimensional features which cannot be well approximated by 2D shells. Recently, a full 3D simulation software for fiber orientation has been developed and integrated into Moldflow Plastics Insight 3D simulation software. The theory for this new 3D fiber orientation calculation module is described in this paper. Several examples are also presented to show the benefit in using 3D fiber orientation simulation.

  5. Imaging, object detection, and change detection with a polarized multistatic GPR array

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beer, N. Reginald; Paglieroni, David W.

    A polarized detection system performs imaging, object detection, and change detection factoring in the orientation of an object relative to the orientation of transceivers. The polarized detection system may operate on one of several modes of operation based on whether the imaging, object detection, or change detection is performed separately for each transceiver orientation. In combined change mode, the polarized detection system performs imaging, object detection, and change detection separately for each transceiver orientation, and then combines changes across polarizations. In combined object mode, the polarized detection system performs imaging and object detection separately for each transceiver orientation, and thenmore » combines objects across polarizations and performs change detection on the result. In combined image mode, the polarized detection system performs imaging separately for each transceiver orientation, and then combines images across polarizations and performs object detection followed by change detection on the result.« less

  6. Monte Carlo Simulation Modeling of a Regional Stroke Team's Use of Telemedicine.

    PubMed

    Torabi, Elham; Froehle, Craig M; Lindsell, Christopher J; Moomaw, Charles J; Kanter, Daniel; Kleindorfer, Dawn; Adeoye, Opeolu

    2016-01-01

    The objective of this study was to evaluate operational policies that may improve the proportion of eligible stroke patients within a population who would receive intravenous recombinant tissue plasminogen activator (rt-PA) and minimize time to treatment in eligible patients. In the context of a regional stroke team, the authors examined the effects of staff location and telemedicine deployment policies on the timeliness of thrombolytic treatment, and estimated the efficacy and cost-effectiveness of six different policies. A process map comprising the steps from recognition of stroke symptoms to intravenous administration of rt-PA was constructed using data from published literature combined with expert opinion. Six scenarios were investigated: telemedicine deployment (none, all, or outer-ring hospitals only) and staff location (center of region or anywhere in region). Physician locations were randomly generated based on their zip codes of residence and work. The outcomes of interest were onset-to-treatment (OTT) time, door-to-needle (DTN) time, and the proportion of patients treated within 3 hours. A Monte Carlo simulation of the stroke team care-delivery system was constructed based on a primary data set of 121 ischemic stroke patients who were potentially eligible for treatment with rt-PA. With the physician located randomly in the region, deploying telemedicine at all hospitals in the region (compared with partial or no telemedicine) would result in the highest rates of treatment within 3 hours (80% vs. 75% vs. 70%) and the shortest OTT (148 vs. 164 vs. 176 minutes) and DTN (45 vs. 61 vs. 73 minutes) times. However, locating the on-call physician centrally coupled with partial telemedicine deployment (five of the 17 hospitals) would be most cost-effective with comparable eligibility and treatment times. Given the potential societal benefits, continued efforts to deploy telemedicine appear warranted. Aligning the incentives between those who would have to fund the up-front technology investments and those who will benefit over time from reduced ongoing health care expenses will be necessary to fully realize the benefits of telemedicine for stroke care. © 2015 by the Society for Academic Emergency Medicine.

  7. CONFIG: Integrated engineering of systems and their operation

    NASA Technical Reports Server (NTRS)

    Malin, Jane T.; Ryan, Dan; Fleming, Land

    1994-01-01

    This article discusses CONFIG 3, a prototype software tool that supports integrated conceptual design evaluation from early in the product life cycle, by supporting isolated or integrated modeling, simulation, and analysis of the function, structure, behavior, failures and operations of system designs. Integration and reuse of models is supported in an object-oriented environment providing capabilities for graph analysis and discrete event simulation. CONFIG supports integration among diverse modeling approaches (component view, configuration or flow path view, and procedure view) and diverse simulation and analysis approaches. CONFIG is designed to support integrated engineering in diverse design domains, including mechanical and electro-mechanical systems, distributed computer systems, and chemical processing and transport systems.

  8. Software framework for automatic learning of telescope operation

    NASA Astrophysics Data System (ADS)

    Rodríguez, Jose A.; Molgó, Jordi; Guerra, Dailos

    2016-07-01

    The "Gran Telescopio de Canarias" (GTC) is an optical-infrared 10-meter segmented mirror telescope at the ORM observatory in Canary Islands (Spain). The GTC Control System (GCS) is a distributed object and component oriented system based on RT-CORBA and it is responsible for the operation of the telescope, including its instrumentation. The current development state of GCS is mature and fully operational. On the one hand telescope users as PI's implement the sequences of observing modes of future scientific instruments that will be installed in the telescope and operators, in turn, design their own sequences for maintenance. On the other hand engineers develop new components that provide new functionality required by the system. This great work effort is possible to minimize so that costs are reduced, especially if one considers that software maintenance is the most expensive phase of the software life cycle. Could we design a system that allows the progressive assimilation of sequences of operation and maintenance of the telescope, through an automatic self-programming system, so that it can evolve from one Component oriented organization to a Service oriented organization? One possible way to achieve this is to use mechanisms of learning and knowledge consolidation to reduce to the minimum expression the effort to transform the specifications of the different telescope users to the operational deployments. This article proposes a framework for solving this problem based on the combination of the following tools: data mining, self-Adaptive software, code generation, refactoring based on metrics, Hierarchical Agglomerative Clustering and Service Oriented Architectures.

  9. Electromagnetic panel deployment and retraction using the geomagnetic field in LEO satellite missions

    NASA Astrophysics Data System (ADS)

    Inamori, Takaya; Sugawara, Yoshiki; Satou, Yasutaka

    2015-12-01

    Increasingly, spacecraft are installed with large-area structures that are extended and deployed post-launch. These extensible structures have been applied in several missions for power generation, thermal radiation, and solar propulsion. Here, we propose a deployment and retraction method using the electromagnetic force generated when the geomagnetic field interacts with electric current flowing on extensible panels. The panels are installed on a satellite in low Earth orbit. Specifically, electrical wires placed on the extensible panels generate magnetic moments, which interfere with the geomagnetic field. The resulting repulsive and retraction forces enable panel deployment and retraction. In the proposed method, a satellite realizes structural deployment using simple electrical wires. Furthermore, the satellite can achieve not only deployment but also retraction for avoiding damage from space debris and for agile attitude maneuvers. Moreover, because the proposed method realizes quasi-static deployment and the retraction of panels by electromagnetic forces, low impulsive force is exerted on fragile panels. The electrical wires can also be used to detect the panel deployment and retraction and generate a large magnetic moment for attitude control. The proposed method was assessed in numerical simulations based on multibody dynamics. Simulation results shows that a small cubic satellite with a wire current of 25 AT deployed 4 panels (20 cm × 20 cm) in 500 s and retracted 4 panels in 100 s.

  10. The Impact of New Trends in Satellite Launches on the Orbital Debris Environment

    NASA Technical Reports Server (NTRS)

    Karacalioglu, Arif Goektug; Stupl, Jan

    2016-01-01

    The main goal of this study is to examine the impact of new trends in satellite launch activities on the orbital debris environment and collision risk. As a foundation for the study, we developed a deployment scenario for satellites and associated rocket bodies based on publicly announced future missions. The upcoming orbital injection technologies, such as the new launch vehicles dedicated for small spacecraft and propulsive interstages, are also considered in this scenario. We then used a simulation tool developed in-house to propagate the objects within this scenario using variable-sized time-steps as small as one second to detect conjunctions between objects. The simulation makes it possible to follow the short- and long-term effects of a particular satellite or constellation in the space environment. Likewise, the effects of changes in the debris environment on a particular satellite or constellation can be evaluated. It is our hope that the results of this paper and further utilization of the developed simulation tool will assist in the investigation of more accurate deorbiting metrics to replace the generic 25-year disposal guidelines, as well as to guide future launches toward more sustainable and safe orbits.

  11. Durham extremely large telescope adaptive optics simulation platform.

    PubMed

    Basden, Alastair; Butterley, Timothy; Myers, Richard; Wilson, Richard

    2007-03-01

    Adaptive optics systems are essential on all large telescopes for which image quality is important. These are complex systems with many design parameters requiring optimization before good performance can be achieved. The simulation of adaptive optics systems is therefore necessary to categorize the expected performance. We describe an adaptive optics simulation platform, developed at Durham University, which can be used to simulate adaptive optics systems on the largest proposed future extremely large telescopes as well as on current systems. This platform is modular, object oriented, and has the benefit of hardware application acceleration that can be used to improve the simulation performance, essential for ensuring that the run time of a given simulation is acceptable. The simulation platform described here can be highly parallelized using parallelization techniques suited for adaptive optics simulation, while still offering the user complete control while the simulation is running. The results from the simulation of a ground layer adaptive optics system are provided as an example to demonstrate the flexibility of this simulation platform.

  12. TRB orientation

    DOT National Transportation Integrated Search

    2010-09-17

    This document reports on the results of a survey conducted in 2002 of each of the 50 states and aimed at gathering data on the deployment of Intelligent Transportation Systems (ITS) in rural and non-urban areas. This statewide survey was carried out ...

  13. The Saale-Project -A multidisciplinary approach towards sustainable integrative catchment management -

    NASA Astrophysics Data System (ADS)

    Bongartz, K.; Flügel, W. A.

    2003-04-01

    In the joint research project “Development of an integrated methodology for the sustainable management of river basins The Saale River Basin example”, coordinated by the Centre of Environmental Research (UFZ), concepts and tools for an integrated management of large river basins are developed and applied for the Saale river basin. The ultimate objective of the project is to contribute to the holistic assessment and benchmarking approaches in water resource planning, as required by the European Water Framework Directive. The study presented here deals (1) with the development of a river basin information and modelling system, (2) with the refinement of a regionalisation approach adapted for integrated basin modelling. The approach combines a user friendly basin disaggregation method preserving the catchment’s physiographic heterogeneity with a process oriented hydrological basin assessment for scale bridging integrated modelling. The well tested regional distribution concept of Response Units (RUs) will be enhanced by landscape metrics and decision support tools for objective, scale independent and problem oriented RU delineation to provide the spatial modelling entities for process oriented and distributed simulation of vertical and lateral hydrological transport processes. On basis of this RUs suitable hydrological modelling approaches will be further developed with strong respect to a more detailed simulation of the lateral surface and subsurface flows as well as the channel flow. This methodical enhancement of the well recognised RU-concept will be applied to the river basin of the Saale (Ac: 23 179 km2) and validated by a nested catchment approach, which allows multi-response-validation and estimation of uncertainties of the modelling results. Integrated modelling of such a complex basin strongly influenced by manifold human activities (reservoirs, agriculture, urban areas and industry) can only be achieved by coupling the various modelling approaches within a well defined model framework system. The latter is interactively linked with a sophisticated geo-relational database (DB) serving all research teams involved in the project. This interactive linkage is a core element comprising an object-oriented, internet-based modelling framework system (MFS) for building interdisciplinary modelling applications and offering different analysis and visualisation tools.

  14. Dynamics of attentional deployment during saccadic programming.

    PubMed

    Castet, Eric; Jeanjean, Sébastien; Montagnini, Anna; Laugier, Danièle; Masson, Guillaume S

    2006-03-03

    The dynamics of attentional deployment before saccade execution was studied with a dual-task paradigm. Observers made a horizontal saccade whose direction was indicated by a symbolic precue and had to discriminate the orientation of a Gabor patch displayed at different delays after the precue (but before saccade onset). The patch location relative to the saccadic target was indicated to observers before each block. Therefore, on each trial, observers were informed simultaneously about the respective absolute locations of the saccadic and perceptual targets. The main result is that orientational acuity improved over a period of 150-200 ms after the precue onset at the saccadic target location, where overall performance is best, and at distant locations. This effect is due to attentional factors rather than to an alerting effect. It is also dependent on the efficiency of the temporal masks displayed before and after the Gabor patches.

  15. A Content Markup Language for Data Services

    NASA Astrophysics Data System (ADS)

    Noviello, C.; Acampa, P.; Mango Furnari, M.

    Network content delivery and documents sharing is possible using a variety of technologies, such as distributed databases, service-oriented applications, and so forth. The development of such systems is a complex job, because document life cycle involves a strong cooperation between domain experts and software developers. Furthermore, the emerging software methodologies, such as the service-oriented architecture and knowledge organization (e.g., semantic web) did not really solve the problems faced in a real distributed and cooperating settlement. In this chapter the authors' efforts to design and deploy a distribute and cooperating content management system are described. The main features of the system are a user configurable document type definition and a management middleware layer. It allows CMS developers to orchestrate the composition of specialized software components around the structure of a document. In this chapter are also reported some of the experiences gained on deploying the developed framework in a cultural heritage dissemination settlement.

  16. Code C# for chaos analysis of relativistic many-body systems with reactions

    NASA Astrophysics Data System (ADS)

    Grossu, I. V.; Besliu, C.; Jipa, Al.; Stan, E.; Esanu, T.; Felea, D.; Bordeianu, C. C.

    2012-04-01

    In this work we present a reaction module for “Chaos Many-Body Engine” (Grossu et al., 2010 [1]). Following our goal of creating a customizable, object oriented code library, the list of all possible reactions, including the corresponding properties (particle types, probability, cross section, particle lifetime, etc.), could be supplied as parameter, using a specific XML input file. Inspired by the Poincaré section, we propose also the “Clusterization Map”, as a new intuitive analysis method of many-body systems. For exemplification, we implemented a numerical toy-model for nuclear relativistic collisions at 4.5 A GeV/c (the SKM200 Collaboration). An encouraging agreement with experimental data was obtained for momentum, energy, rapidity, and angular π distributions. Catalogue identifier: AEGH_v2_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEGH_v2_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 184 628 No. of bytes in distributed program, including test data, etc.: 7 905 425 Distribution format: tar.gz Programming language: Visual C#.NET 2005 Computer: PC Operating system: Net Framework 2.0 running on MS Windows Has the code been vectorized or parallelized?: Each many-body system is simulated on a separate execution thread. One processor used for each many-body system. RAM: 128 Megabytes Classification: 6.2, 6.5 Catalogue identifier of previous version: AEGH_v1_0 Journal reference of previous version: Comput. Phys. Comm. 181 (2010) 1464 External routines: Net Framework 2.0 Library Does the new version supersede the previous version?: Yes Nature of problem: Chaos analysis of three-dimensional, relativistic many-body systems with reactions. Solution method: Second order Runge-Kutta algorithm for simulating relativistic many-body systems with reactions. Object oriented solution, easy to reuse, extend and customize, in any development environment which accepts .Net assemblies or COM components. Treatment of two particles reactions and decays. For each particle, calculation of the time measured in the particle reference frame, according to the instantaneous velocity. Possibility to dynamically add particle properties (spin, isospin, etc.), and reactions/decays, using a specific XML input file. Basic support for Monte Carlo simulations. Implementation of: Lyapunov exponent, “fragmentation level”, “average system radius”, “virial coefficient”, “clusterization map”, and energy conservation precision test. As an example of use, we implemented a toy-model for nuclear relativistic collisions at 4.5 A GeV/c. Reasons for new version: Following our goal of applying chaos theory to nuclear relativistic collisions at 4.5 A GeV/c, we developed a reaction module integrated with the Chaos Many-Body Engine. In the previous version, inheriting the Particle class was the only possibility of implementing more particle properties (spin, isospin, and so on). In the new version, particle properties can be dynamically added using a dictionary object. The application was improved in order to calculate the time measured in the own reference frame of each particle. two particles reactions: a+b→c+d, decays: a→c+d, stimulated decays, more complicated schemas, implemented as various combinations of previous reactions. Following our goal of creating a flexible application, the reactions list, including the corresponding properties (cross sections, particles lifetime, etc.), could be supplied as parameter, using a specific XML configuration file. The simulation output files were modified for systems with reactions, assuring also the backward compatibility. We propose the “Clusterization Map” as a new investigation method of many-body systems. The multi-dimensional Lyapunov Exponent was adapted in order to be used for systems with variable structure. Basic support for Monte Carlo simulations was also added. Additional comments: Windows forms application for testing the engine. Easy copy/paste based deployment method. Running time: Quadratic complexity.

  17. Object-oriented simulation model of a parabolic trough solar collector: Static and dynamic validation

    NASA Astrophysics Data System (ADS)

    Ubieta, Eduardo; Hoyo, Itzal del; Valenzuela, Loreto; Lopez-Martín, Rafael; Peña, Víctor de la; López, Susana

    2017-06-01

    A simulation model of a parabolic-trough solar collector developed in Modelica® language is calibrated and validated. The calibration is performed in order to approximate the behavior of the solar collector model to a real one due to the uncertainty in some of the system parameters, i.e. measured data is used during the calibration process. Afterwards, the validation of this calibrated model is done. During the validation, the results obtained from the model are compared to the ones obtained during real operation in a collector from the Plataforma Solar de Almeria (PSA).

  18. Autonomous atmospheric entry on mars: Performance improvement using a novel adaptive control algorithm

    NASA Astrophysics Data System (ADS)

    Ulrich, Steve; de Lafontaine, Jean

    2007-12-01

    Upcoming landing missions to Mars will require on-board guidance and control systems in order to meet the scientific requirement of landing safely within hundreds of meters to the target of interest. More specifically, in the longitudinal plane, the first objective of the entry guidance and control system is to bring the vehicle to its specified velocity at the specified altitude (as required for safe parachute deployment), while the second objective is to reach the target position in the longitudinal plane. This paper proposes an improvement to the robustness of the constant flight path angle guidance law for achieving the first objective. The improvement consists of combining this guidance law with a novel adaptive control scheme, derived from the so-called Simple Adaptive Control (SAC) technique. Monte-Carlo simulation results are shown to demonstrate the accuracy and the robustness of the proposed guidance and adaptive control system.

  19. The influence of grasping habits and object orientation on motor planning in children and adults.

    PubMed

    Jovanovic, Bianca; Schwarzer, Gudrun

    2017-12-01

    We investigated the influence of habitual grasp strategies and object orientation on motor planning in 3-year-olds and 4- to 5-year-old children and adults. Participants were required to rotate different vertically oriented objects around 180°. Usually, adults perform this task by grasping objects with an awkward grip (thumb and index finger pointing downward) at the beginning of the movement, in order to finish it with a comfortable hand position. This pattern corresponds to the well-known end-state comfort effect (ESC) in grasp planning. The presented objects were associated with different habitual grasp orientations that either corresponded with the grasp direction required to reach end-state comfort (downward) or implied a contrary grasp orientation (upward). Additionally, they were presented either in their usual, canonical orientation (e.g., shovel with the blade oriented downward versus cup with its opening oriented upward) or upside down. As dependent variable we analyzed the number of grips conforming to the end-state comfort principle (ESC score) realized in each object type and orientation condition. The number of grips conforming to ESC strongly increased with age. In addition, the extent to which end-state comfort was considered was influenced by the actual orientation of the objects' functional parts. Thus, in all age-groups the ESC score was highest when the functional parts of the objects were oriented downward (shovel presented canonically with blade pointing downward, cup presented upside down) and corresponded to the hand orientation needed to realize ESC. © 2017 Wiley Periodicals, Inc.

  20. Acoustic positioning and orientation prediction

    NASA Technical Reports Server (NTRS)

    Barmatz, Martin B. (Inventor); Aveni, Glenn (Inventor); Putterman, Seth (Inventor); Rudnick, Joseph (Inventor)

    1990-01-01

    A method is described for use with an acoustic positioner, which enables a determination of the equilibrium position and orientation which an object assumes in a zero gravity environment, as well as restoring forces and torques of an object in an acoustic standing wave field. An acoustic standing wave field is established in the chamber, and the object is held at several different positions near the expected equilibrium position. While the object is held at each position, the center resonant frequency of the chamber is determined, by noting which frequency results in the greatest pressure of the acoustic field. The object position which results in the lowest center resonant frequency is the equilibrium position. The orientation of a nonspherical object is similarly determined, by holding the object in a plurality of different orientations at its equilibrium position, and noting the center resonant frequency for each orientation. The orientation which results in the lowest center resonant frequency is the equilibrium orientation. Where the acoustic frequency is constant, but the chamber length is variable, the equilibrium position or orientation is that which results in the greatest chamber length at the center resonant frequency.

  1. Post-Flight Estimation of Motion of Space Structures: Part 1

    NASA Technical Reports Server (NTRS)

    Brugarolas, Paul; Breckenridge, William

    2008-01-01

    A computer program estimates the relative positions and orientations of two space structures from data on the angular positions and distances of fiducial objects on one structure as measured by a target tracking electronic camera and laser range finders on another structure. The program is written specifically for determining the relative alignments of two antennas, connected by a long truss, deployed in outer space from a space shuttle. The program is based partly on transformations among the various coordinate systems involved in the measurements and on a nonlinear mathematical model of vibrations of the truss. The program implements a Kalman filter that blends the measurement data with data from the model. Using time series of measurement data from the tracking camera and range finders, the program generates time series of data on the relative position and orientation of the antennas. A similar program described in a prior NASA Tech Briefs article was used onboard for monitoring the structures during flight. The present program is more precise and designed for use on Earth in post-flight processing of the measurement data to enable correction, for antenna motions, of scientific data acquired by use of the antennas.

  2. Visualizing Java uncertainty

    NASA Astrophysics Data System (ADS)

    Knight, Claire; Munro, Malcolm

    2001-07-01

    Distributed component based systems seem to be the immediate future for software development. The use of such techniques, object oriented languages, and the combination with ever more powerful higher-level frameworks has led to the rapid creation and deployment of such systems to cater for the demand of internet and service driven business systems. This diversity of solution through both components utilised and the physical/virtual locations of those components can provide powerful resolutions to the new demand. The problem lies in the comprehension and maintenance of such systems because they then have inherent uncertainty. The components combined at any given time for a solution may differ, the messages generated, sent, and/or received may differ, and the physical/virtual locations cannot be guaranteed. Trying to account for this uncertainty and to build in into analysis and comprehension tools is important for both development and maintenance activities.

  3. Modelling multimedia teleservices with OSI upper layers framework: Short paper

    NASA Astrophysics Data System (ADS)

    Widya, I.; Vanrijssen, E.; Michiels, E.

    The paper presents the use of the concepts and modelling principles of the Open Systems Interconnection (OSI) upper layers structure in the modelling of multimedia teleservices. It puts emphasis on the revised Application Layer Structure (OSI/ALS). OSI/ALS is an object based reference model which intends to coordinate the development of application oriented services and protocols in a consistent and modular way. It enables the rapid deployment and integrated use of these services. The paper emphasizes further on the nesting structure defined in OSI/ALS which allows the design of scalable and user tailorable/controllable teleservices. OSI/ALS consistent teleservices are moreover implementable on communication platforms of different capabilities. An analysis of distributed multimedia architectures which can be found in the literature, confirms the ability of the OSI/ALS framework to model the interworking functionalities of teleservices.

  4. Flexible parallel implicit modelling of coupled thermal-hydraulic-mechanical processes in fractured rocks

    NASA Astrophysics Data System (ADS)

    Cacace, Mauro; Jacquey, Antoine B.

    2017-09-01

    Theory and numerical implementation describing groundwater flow and the transport of heat and solute mass in fully saturated fractured rocks with elasto-plastic mechanical feedbacks are developed. In our formulation, fractures are considered as being of lower dimension than the hosting deformable porous rock and we consider their hydraulic and mechanical apertures as scaling parameters to ensure continuous exchange of fluid mass and energy within the fracture-solid matrix system. The coupled system of equations is implemented in a new simulator code that makes use of a Galerkin finite-element technique. The code builds on a flexible, object-oriented numerical framework (MOOSE, Multiphysics Object Oriented Simulation Environment) which provides an extensive scalable parallel and implicit coupling to solve for the multiphysics problem. The governing equations of groundwater flow, heat and mass transport, and rock deformation are solved in a weak sense (either by classical Newton-Raphson or by free Jacobian inexact Newton-Krylow schemes) on an underlying unstructured mesh. Nonlinear feedbacks among the active processes are enforced by considering evolving fluid and rock properties depending on the thermo-hydro-mechanical state of the system and the local structure, i.e. degree of connectivity, of the fracture system. A suite of applications is presented to illustrate the flexibility and capability of the new simulator to address problems of increasing complexity and occurring at different spatial (from centimetres to tens of kilometres) and temporal scales (from minutes to hundreds of years).

  5. Thermal Vacuum Testing of the Crew and Equipment Translation Aid for the International Space Station

    NASA Technical Reports Server (NTRS)

    Blanco, Raul A.; Montz, Michael; Gill, Mark

    1998-01-01

    The Crew and Equipment Translation Aid (CETA) is a human powered cart that will aid astronauts in conducting extra-vehicular activity (EVA) maintenance on the International Space Station (ISS). There are two critical EVA tasks relevant to the successful operation of the CETA. These are the removal of the launch restraint bolts during its initial deployment from the Space Shuttle payload bay and the manual deceleration of the cart, its two onboard astronauts, and a payload. To validate the launch restraint and braking system designs, the hardware engineers needed to verify their performance in an environment similar to that in which it will be used. This environment includes the vacuum of low earth orbit and temperatures as low as -11O F and as high as +200 F. The desire for quantitative data, as opposed to subjective information which could be provided by a suited astronaut, coupled with test scheduling conflicts resulted in an unmanned testing scenario. Accommodating these test objectives in an unmanned test required a solution that would provide remotely actuated thermal vacuum compatible torque sources of up to 25 ft-lbs at four horizontally oriented and four vertically oriented bolts, a variable input force of up to 125 lbs at the four brake actuators, and thermal vacuum compatible torque and force sensors. The test objectives were successfully met in both the thermal Chamber H and the thermal vacuum Chamber B at NASA's Johnson Space Center.

  6. A Study on the Difficulties of Learning Phase Transition in Object-Oriented Analysis and Design from the Viewpoint of Semantic Distance

    ERIC Educational Resources Information Center

    Shin, Shin-Shing

    2015-01-01

    Students in object-oriented analysis and design (OOAD) courses typically encounter difficulties transitioning from object-oriented analysis (OOA) to logical design (OOLD). This study conducted an empirical experiment to examine these learning difficulties by evaluating differences between OOA-to-OOLD and OOLD-to-object-oriented-physical-design…

  7. The Nature of an Object-Oriented Program: How Do Practitioners Understand the Nature of What They Are Creating?

    ERIC Educational Resources Information Center

    Thompson, Errol; Kinshuk

    2011-01-01

    Object-oriented programming is seen as a difficult skill to master. There is considerable debate about the most appropriate way to introduce novice programmers to object-oriented concepts. Is it possible to uncover what the critical aspects or features are that enhance the learning of object-oriented programming? Practitioners have differing…

  8. System and method for disrupting suspect objects

    DOEpatents

    Gladwell, T. Scott; Garretson, Justin R; Hobart, Clinton G; Monda, Mark J

    2013-07-09

    A system and method for disrupting at least one component of a suspect object is provided. The system includes a source for passing radiation through the suspect object, a screen for receiving the radiation passing through the suspect object and generating at least one image therefrom, a weapon having a discharge deployable therefrom, and a targeting unit. The targeting unit displays the image(s) of the suspect object and aims the weapon at a disruption point on the displayed image such that the weapon may be positioned to deploy the discharge at the disruption point whereby the suspect object is disabled.

  9. Monte Carlo simulations in X-ray imaging

    NASA Astrophysics Data System (ADS)

    Giersch, Jürgen; Durst, Jürgen

    2008-06-01

    Monte Carlo simulations have become crucial tools in many fields of X-ray imaging. They help to understand the influence of physical effects such as absorption, scattering and fluorescence of photons in different detector materials on image quality parameters. They allow studying new imaging concepts like photon counting, energy weighting or material reconstruction. Additionally, they can be applied to the fields of nuclear medicine to define virtual setups studying new geometries or image reconstruction algorithms. Furthermore, an implementation of the propagation physics of electrons and photons allows studying the behavior of (novel) X-ray generation concepts. This versatility of Monte Carlo simulations is illustrated with some examples done by the Monte Carlo simulation ROSI. An overview of the structure of ROSI is given as an example of a modern, well-proven, object-oriented, parallel computing Monte Carlo simulation for X-ray imaging.

  10. New Caledonian crows attend to multiple functional properties of complex tools

    PubMed Central

    St Clair, James J. H.; Rutz, Christian

    2013-01-01

    The ability to attend to the functional properties of foraging tools should affect energy-intake rates, fitness components and ultimately the evolutionary dynamics of tool-related behaviour. New Caledonian crows Corvus moneduloides use three distinct tool types for extractive foraging: non-hooked stick tools, hooked stick tools and tools cut from the barbed edges of Pandanus spp. leaves. The latter two types exhibit clear functional polarity, because of (respectively) a single terminal, crow-manufactured hook and natural barbs running along one edge of the leaf strip; in each case, the ‘hooks’ can only aid prey capture if the tool is oriented correctly by the crow during deployment. A previous experimental study of New Caledonian crows found that subjects paid little attention to the barbs of supplied (wide) pandanus tools, resulting in non-functional tool orientation during foraging. This result is puzzling, given the presumed fitness benefits of consistently orienting tools functionally in the wild. We investigated whether the lack of discrimination with respect to (wide) pandanus tool orientation also applies to hooked stick tools. We experimentally provided subjects with naturalistic replica tools in a range of orientations and found that all subjects used these tools correctly, regardless of how they had been presented. In a companion experiment, we explored the extent to which normally co-occurring tool features (terminal hook, curvature of the tool shaft and stripped bark at the hooked end) inform tool-orientation decisions, by forcing birds to deploy ‘unnatural’ tools, which exhibited these traits at opposite ends. Our subjects attended to at least two of the three tool features, although, as expected, the location of the hook was of paramount importance. We discuss these results in the context of earlier research and propose avenues for future work. PMID:24101625

  11. New Caledonian crows attend to multiple functional properties of complex tools.

    PubMed

    St Clair, James J H; Rutz, Christian

    2013-11-19

    The ability to attend to the functional properties of foraging tools should affect energy-intake rates, fitness components and ultimately the evolutionary dynamics of tool-related behaviour. New Caledonian crows Corvus moneduloides use three distinct tool types for extractive foraging: non-hooked stick tools, hooked stick tools and tools cut from the barbed edges of Pandanus spp. leaves. The latter two types exhibit clear functional polarity, because of (respectively) a single terminal, crow-manufactured hook and natural barbs running along one edge of the leaf strip; in each case, the 'hooks' can only aid prey capture if the tool is oriented correctly by the crow during deployment. A previous experimental study of New Caledonian crows found that subjects paid little attention to the barbs of supplied (wide) pandanus tools, resulting in non-functional tool orientation during foraging. This result is puzzling, given the presumed fitness benefits of consistently orienting tools functionally in the wild. We investigated whether the lack of discrimination with respect to (wide) pandanus tool orientation also applies to hooked stick tools. We experimentally provided subjects with naturalistic replica tools in a range of orientations and found that all subjects used these tools correctly, regardless of how they had been presented. In a companion experiment, we explored the extent to which normally co-occurring tool features (terminal hook, curvature of the tool shaft and stripped bark at the hooked end) inform tool-orientation decisions, by forcing birds to deploy 'unnatural' tools, which exhibited these traits at opposite ends. Our subjects attended to at least two of the three tool features, although, as expected, the location of the hook was of paramount importance. We discuss these results in the context of earlier research and propose avenues for future work.

  12. Advanced Nuclear Fuel Cycle Transitions: Optimization, Modeling Choices, and Disruptions

    NASA Astrophysics Data System (ADS)

    Carlsen, Robert W.

    Many nuclear fuel cycle simulators have evolved over time to help understan the nuclear industry/ecosystem at a macroscopic level. Cyclus is one of th first fuel cycle simulators to accommodate larger-scale analysis with it liberal open-source licensing and first-class Linux support. Cyclus also ha features that uniquely enable investigating the effects of modeling choices o fuel cycle simulators and scenarios. This work is divided into thre experiments focusing on optimization, effects of modeling choices, and fue cycle uncertainty. Effective optimization techniques are developed for automatically determinin desirable facility deployment schedules with Cyclus. A novel method fo mapping optimization variables to deployment schedules is developed. Thi allows relationships between reactor types and scenario constraints to b represented implicitly in the variable definitions enabling the usage o optimizers lacking constraint support. It also prevents wasting computationa resources evaluating infeasible deployment schedules. Deployed power capacit over time and deployment of non-reactor facilities are also included a optimization variables There are many fuel cycle simulators built with different combinations o modeling choices. Comparing results between them is often difficult. Cyclus flexibility allows comparing effects of many such modeling choices. Reacto refueling cycle synchronization and inter-facility competition among othe effects are compared in four cases each using combinations of fleet of individually modeled reactors with 1-month or 3-month time steps. There are noticeable differences in results for the different cases. The larges differences occur during periods of constrained reactor fuel availability This and similar work can help improve the quality of fuel cycle analysi generally There is significant uncertainty associated deploying new nuclear technologie such as time-frames for technology availability and the cost of buildin advanced reactors. Historically, fuel cycle analysis has focused on answerin questions of fuel cycle feasibility and optimality. However, there has no been much work done to address uncertainty in fuel cycle analysis helpin answer questions of fuel cycle robustness. This work develops an demonstrates a methodology for evaluating deployment strategies whil accounting for uncertainty. Techniques are developed for measuring th hedging properties of deployment strategies under uncertainty. Additionally methods for using optimization to automatically find good hedging strategie are demonstrated.

  13. ARM Navigation Best Estimate 10 Hz (NAVBE) and 1-min (NAVBE1M) Value Added Products (VAP) for Ship Deployments

    DOE Data Explorer

    Toto, Tami; Jensen, Michael; Bartholomew, Mary Jane

    2012-09-22

    The Navigation Best Estimate (NAVBE) VAP was developed in response to the 2012-2013 Marine ARM GPCI Investigation of Clouds (MAGIC) deployment, the first ship-based deployment of the second ARM Mobile Facility (AMF2). It has since been applied to the 2015 ARM Cloud Aerosol Precipitation EXperiment (ACAPEX) deployment. A number of different instruments on the ships collected Global Positioning System (GPS) and Inertial Navigation System (INS) measurements during the MAGIC campaign. The motivation of the NAVBE VAP is to consolidate many different sources of this information in a single, continuous datastream to be used when information is required about ship location and orientation and to provide a more complete estimate than would be available from any one instrument. The result is 10 Hz and 1-min data streams reporting ship position and attitude

  14. The dynamics and optimal control of spinning spacecraft with movable telescoping appendages. Part C: Effect of flexibility during boom deployment

    NASA Technical Reports Server (NTRS)

    Bainum, P. M.; James, P. K.

    1977-01-01

    The dynamics of a spinning symmetrical spacecraft system during the deployment (or retraction) of flexible boom-type appendages were investigated. The effect of flexibility during boom deployment is treated by modelling the deployable members as compound spherical pendula of varying length (according to a control law). The orientation of the flexible booms with respect to the hub, is described by a sequence of two Euler angles. The boom members contain a flexural stiffness which can be related to an assumed effective restoring linear spring constant, and structural damping which effects the entire system. Linearized equations of motion for this system, when the boom length is constant, involve periodic coefficients with the frequency of the hub spin. A bounded transformation is found which converts this system into a kinematically equivalent one involving only constant coefficients.

  15. Performance of full-sib families of Douglas-fir in pure-family and mixed-family deployments

    Treesearch

    Peter J. Gould; J. Bradley St.Clair; Paul D. Anderson

    2011-01-01

    A major objective of tree improvement programs is to identify genotypes that will perform well in operational deployments. Relatively little is known, however, about how the competitive environment affects performance in different types of deployments. We tested whether the genetic composition and density of deployments affect the performance of full-sib families of...

  16. Polycyclic Aromatic Hydrocarbons and Polychlorinated Dibenzo-p-Dioxins/Dibenzofurans in Microliter Samples of Human Serum as Exposure Indicators

    PubMed Central

    Xia, Xiaoyan; Carroll-Haddad, Alesia; Brown, Nicole; Utell, Mark J.; Mallon, Timothy; Hopke, Philip K.

    2016-01-01

    Objective The objectives were: 1) measure polycyclic aromatic hydrocarbons (PAHs), polychlorinated dibenzo-p-dioxins (PCDDs) and dibenzofurans (PCDFs) in 100 μL of human serum and 2) assess PAH and PCDD/PCDF as markers of burn pit exposures during military deployments. Methods PAHs and PCDDs/PCDFs were analyzed in 100μL serum samples collected pre- and post-deployment from 200 persons deployed to Iraq or Afghanistan (CASE); 200 persons not deployed (CONTROL) with GC/MS. Results Naphthalene was found in ~83% of the samples and was statistically different between post-deployment CASE personnel and pre-deployment. 1,2,3,4,6,7,8-Heptachlorodibenzo-p-dioxin, Octachlorodibenzo-p-dioxin, 1,2,3,7,8,9-Hexachlorodibenzofuran, and 1,2,3,4,6,7,8-Heptachlorodibenzofuran were found in ~38% of samples. Concentrations were significantly different between CASE and CONTROL and between pre- and post-deployment samples. Conclusions PAH and PCDD/PCDF in serum can serve as exposure markers and measurements in small volumes is feasible for quantifying exposure to burn pits. PMID:27501107

  17. Assessment of Deployment-Related Exposures on Risk of Incident Mental Health Diagnoses Among Air Force Critical Care Providers: Nested Case-Control Study

    DTIC Science & Technology

    2014-09-04

    lasers, and use of mission-oriented protective posture (MOPP) overgarments were associated with increased likelihood for a PDMH condition. 15...history of a vehicular accident/crash, exposure to sand/dust, exposure to lasers, and use of mission-oriented protective posture (MOPP) overgarments...Institutional Review Board and in accordance with Federal and USAF regulations on the protection of human subjects in biomedical and behavioral research

  18. MDA-based EHR application security services.

    PubMed

    Blobel, Bernd; Pharow, Peter

    2004-01-01

    Component-oriented, distributed, virtual EHR systems have to meet enhanced security and privacy requirements. In the context of advanced architectural paradigms such as component-orientation, model-driven, and knowledge-based, standardised security services needed have to be specified and implemented in an integrated way following the same paradigm. This concerns the deployment of formal models, meta-languages, reference models such as the ISO RM-ODP, and development as well as implementation tools. International projects' results presented proceed on that streamline.

  19. Analyzing Strategic Business Rules through Simulation Modeling

    NASA Astrophysics Data System (ADS)

    Orta, Elena; Ruiz, Mercedes; Toro, Miguel

    Service Oriented Architecture (SOA) holds promise for business agility since it allows business process to change to meet new customer demands or market needs without causing a cascade effect of changes in the underlying IT systems. Business rules are the instrument chosen to help business and IT to collaborate. In this paper, we propose the utilization of simulation models to model and simulate strategic business rules that are then disaggregated at different levels of an SOA architecture. Our proposal is aimed to help find a good configuration for strategic business objectives and IT parameters. The paper includes a case study where a simulation model is built to help business decision-making in a context where finding a good configuration for different business parameters and performance is too complex to analyze by trial and error.

  20. JASMINE Simulator - construction of framework

    NASA Astrophysics Data System (ADS)

    Yamada, Yoshiyuki; Ueda, Seiji; Kuwabara, Takashi; Yano, Taihei; Gouda, Naoteru

    2004-10-01

    JASMINE is an abbreviation of Japan Astrometry Satellite Mission for INfrared Exploration currently planned at National Astronomical Observatory of Japan. JASMINE stands at a stage where its basic design will be determined in a few years. Then it is very important for JASMINE to simulate the data stream generated by the astrometric fields in order to support investigations of accuracy, sampling strategy, data compression, data analysis, scientific performances, etc. It is found that the new software technologies of Object Oriented methodologies with Unified Modeling Language are ideal for the simulation system of JASMINE (JASMINE Simualtor). In this paper, we briefly introduce some concepts of such technologies and explain the framework of the JASMINE Simulator which is constructed by new technologies. We believe that these technologies are useful also for other future big projects of astronomcial research.

  1. Optimal Robust Matching of Engine Models to Test Data

    DTIC Science & Technology

    2009-02-28

    Monte Carlo process 19 Figure 7: Flowchart of SVD Calculations 22 Figure 8: Schematic Diagram of NPSS Engine Model Components 24 Figure 9: PW2037...System Simulation ( NPSS ). NPSS is an object-oriented modeling environment widely used throughout industry and the USAF. With NPSS , the engine is...34 modifiers are available for adjusting the component representations. The scripting language in NPSS allowed for easy implementation of each solution

  2. Pharmacy practice simulations: performance of senior pharmacy students at a University in southern Brazil

    PubMed Central

    Galato, Dayani; Alano, Graziela M.; Trauthman, Silvana C.; França, Tainã F.

    Objective A simulation process known as objective structured clinical examination (OSCE) was applied to assess pharmacy practice performed by senior pharmacy students. Methods A cross-sectional study was conducted based on documentary analysis of performance evaluation records of pharmacy practice simulations that occurred between 2005 and 2009. These simulations were related to the process of self-medication and dispensing, and were performed with the use of patients simulated. The simulations were filmed to facilitate the evaluation process. It presents the OSCE educational experience performed by pharmacy trainees of the University of Southern Santa Catarina and experienced by two evaluators. The student general performance was analyzed, and the criteria for pharmacy practice assessment often identified trainees in difficulty. Results The results of 291 simulations showed that students have an average yield performance of 70.0%. Several difficulties were encountered, such as the lack of information about the selected/prescribed treatment regimen (65.1%); inadequate communication style (21.9%); lack of identification of patients’ needs (7.7%) and inappropriate drug selection for self-medication (5.3%). Conclusions These data show that there is a need for reorientation of clinical pharmacy students because they need to improve their communication skills, and have a deeper knowledge of medicines and health problems in order to properly orient their patients. PMID:24367467

  3. Current-oriented swimming by jellyfish and its role in bloom maintenance.

    PubMed

    Fossette, Sabrina; Gleiss, Adrian Christopher; Chalumeau, Julien; Bastian, Thomas; Armstrong, Claire Denise; Vandenabeele, Sylvie; Karpytchev, Mikhail; Hays, Graeme Clive

    2015-02-02

    Cross-flows (winds or currents) affect animal movements [1-3]. Animals can temporarily be carried off course or permanently carried away from their preferred habitat by drift depending on their own traveling speed in relation to that of the flow [1]. Animals able to only weakly fly or swim will be the most impacted (e.g., [4]). To circumvent this problem, animals must be able to detect the effects of flow on their movements and respond to it [1, 2]. Here, we show that a weakly swimming organism, the jellyfish Rhizostoma octopus, can orientate its movements with respect to currents and that this behavior is key to the maintenance of blooms and essential to reduce the probability of stranding. We combined in situ observations with first-time deployment of accelerometers on free-ranging jellyfish and simulated the behavior observed in wild jellyfish within a high-resolution hydrodynamic model. Our results show that jellyfish can actively swim countercurrent in response to current drift, leading to significant life-history benefits, i.e., increased chance of survival and facilitated bloom formation. Current-oriented swimming may be achieved by jellyfish either directly detecting current shear across their body surface [5] or indirectly assessing drift direction using other cues (e.g., magnetic, infrasound). Our coupled behavioral-hydrodynamic model provides new evidence that current-oriented swimming contributes to jellyfish being able to form aggregations of hundreds to millions of individuals for up to several months, which may have substantial ecosystem and socioeconomic consequences [6, 7]. It also contributes to improve predictions of jellyfish blooms' magnitude and movements in coastal waters. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Computational dynamics of soft machines

    NASA Astrophysics Data System (ADS)

    Hu, Haiyan; Tian, Qiang; Liu, Cheng

    2017-06-01

    Soft machine refers to a kind of mechanical system made of soft materials to complete sophisticated missions, such as handling a fragile object and crawling along a narrow tunnel corner, under low cost control and actuation. Hence, soft machines have raised great challenges to computational dynamics. In this review article, recent studies of the authors on the dynamic modeling, numerical simulation, and experimental validation of soft machines are summarized in the framework of multibody system dynamics. The dynamic modeling approaches are presented first for the geometric nonlinearities of coupled overall motions and large deformations of a soft component, the physical nonlinearities of a soft component made of hyperelastic or elastoplastic materials, and the frictional contacts/impacts of soft components, respectively. Then the computation approach is outlined for the dynamic simulation of soft machines governed by a set of differential-algebraic equations of very high dimensions, with an emphasis on the efficient computations of the nonlinear elastic force vector of finite elements. The validations of the proposed approaches are given via three case studies, including the locomotion of a soft quadrupedal robot, the spinning deployment of a solar sail of a spacecraft, and the deployment of a mesh reflector of a satellite antenna, as well as the corresponding experimental studies. Finally, some remarks are made for future studies.

  5. Object-oriented knowledge representation for expert systems

    NASA Technical Reports Server (NTRS)

    Scott, Stephen L.

    1991-01-01

    Object oriented techniques have generated considerable interest in the Artificial Intelligence (AI) community in recent years. This paper discusses an approach for representing expert system knowledge using classes, objects, and message passing. The implementation is in version 4.3 of NASA's C Language Integrated Production System (CLIPS), an expert system tool that does not provide direct support for object oriented design. The method uses programmer imposed conventions and keywords to structure facts, and rules to provide object oriented capabilities.

  6. Digimarc Discover on Google Glass

    NASA Astrophysics Data System (ADS)

    Rogers, Eliot; Rodriguez, Tony; Lord, John; Alattar, Adnan

    2015-03-01

    This paper reports on the implementation of the Digimarc® Discover platform on Google Glass, enabling the reading of a watermark embedded in a printed material or audio. The embedded watermark typically contains a unique code that identifies the containing media or object and a synchronization signal that allows the watermark to be read robustly. The Digimarc Discover smartphone application can read the watermark from a small portion of printed image presented at any orientation or reasonable distance. Likewise, Discover can read the recently introduced Digimarc Barcode to identify and manage consumer packaged goods in the retail channel. The Digimarc Barcode has several advantages over the traditional barcode and is expected to save the retail industry millions of dollars when deployed at scale. Discover can also read an audio watermark from ambient audio captured using a microphone. The Digimarc Discover platform has been widely deployed on the iPad, iPhone and many Android-based devices, but it has not yet been implemented on a head-worn wearable device, such as Google Glass. Implementing Discover on Google Glass is a challenging task due to the current hardware and software limitations of the device. This paper identifies the challenges encountered in porting Discover to the Google Glass and reports on the solutions created to deliver a prototype implementation.

  7. The Journey through Grief: Insights from a Qualitative Study of Electronic Health Record Implementation

    PubMed Central

    McAlearney, Ann Scheck; Hefner, Jennifer L; Sieck, Cynthia J; Huerta, Timothy R

    2015-01-01

    Objective To improve understanding of facilitators of EHR system implementation, paying particular attention to opportunities to maximize physician adoption and effective deployment. Data Sources/Study Setting Primary data collected from 47 physician and 35 administrative key informants from six U.S. health care organizations identified because of purported success with EHR implementation. Study Design We conducted interviews and focus groups in an extensive qualitative study. Data Collection/Extraction Methods Verbatim transcripts were analyzed both deductively and inductively using the constant comparative method. Principal Findings Conceptualizing EHR adoption as loss through the lens of Kübler-Ross's five stages of grief model may help individuals and organizations more effectively orient to the challenge of change. Coupled with Kotter's eight-step change management framework, we offer a structure to facilitate organizations' movement through the EHR implementation journey. Combining insights from these frameworks, we identify 10 EHR strategies that can help address EHR implementation barriers. Conclusions Loss is one part of change often overlooked. Addressing it directly and compassionately can potentially facilitate the EHR implementation journey. We offer a summarized list of deployment strategies that are sensitive to these issues to support physician transition to new technologies that will bring value to clinical practice. PMID:25219627

  8. Supporting interoperability of collaborative networks through engineering of a service-based Mediation Information System (MISE 2.0)

    NASA Astrophysics Data System (ADS)

    Benaben, Frederick; Mu, Wenxin; Boissel-Dallier, Nicolas; Barthe-Delanoe, Anne-Marie; Zribi, Sarah; Pingaud, Herve

    2015-08-01

    The Mediation Information System Engineering project is currently finishing its second iteration (MISE 2.0). The main objective of this scientific project is to provide any emerging collaborative situation with methods and tools to deploy a Mediation Information System (MIS). MISE 2.0 aims at defining and designing a service-based platform, dedicated to initiating and supporting the interoperability of collaborative situations among potential partners. This MISE 2.0 platform implements a model-driven engineering approach to the design of a service-oriented MIS dedicated to supporting the collaborative situation. This approach is structured in three layers, each providing their own key innovative points: (i) the gathering of individual and collaborative knowledge to provide appropriate collaborative business behaviour (key point: knowledge management, including semantics, exploitation and capitalisation), (ii) deployment of a mediation information system able to computerise the previously deduced collaborative processes (key point: the automatic generation of collaborative workflows, including connection with existing devices or services) (iii) the management of the agility of the obtained collaborative network of organisations (key point: supervision of collaborative situations and relevant exploitation of the gathered data). MISE covers business issues (through BPM), technical issues (through an SOA) and agility issues of collaborative situations (through EDA).

  9. Radar cross-section measurements and simulation of a tethered satellite. The small expendable deployer system end-mass payload

    NASA Technical Reports Server (NTRS)

    Cravey, Robin L.; Fralick, Dion T.; Vedeler, Erik

    1995-01-01

    The first Small Expendable Deployer System (SEDS-1), a tethered satellite system, was developed by NASA and launched March 29, 1993 as a secondary payload on a United State Air Force (USAF) Delta-2 launch vehicle. The SEDS-1 successfully deployed an instrumented end-mass payload (EMP) on a 20-km nonconducting tether from the second stage of the Delta 2. This paper describes the effort of NASA Langley Research Center's Antenna and Microwave Research Branch to provide assistance to the SEDS Investigators Working Group (IWG) in determining EMP dynamics by analyzing the mission radar skin track data. The radar cross section measurements taken and simulations done for this study are described and comparisons of the measured data with the simulated data for the EMP at 6 GHz are presented.

  10. Virtual evaluation of stent graft deployment: a validated modeling and simulation study.

    PubMed

    De Bock, S; Iannaccone, F; De Santis, G; De Beule, M; Van Loo, D; Devos, D; Vermassen, F; Segers, P; Verhegghe, B

    2012-09-01

    The presented study details the virtual deployment of a bifurcated stent graft (Medtronic Talent) in an Abdominal Aortic Aneurysm model, using the finite element method. The entire deployment procedure is modeled, with the stent graft being crimped and bent according to the vessel geometry, and subsequently released. The finite element results are validated in vitro with placement of the device in a silicone mock aneurysm, using high resolution CT scans to evaluate the result. The presented work confirms the capability of finite element computer simulations to predict the deformed configuration after endovascular aneurysm repair (EVAR). These simulations can be used to quantify mechanical parameters, such as neck dilations, radial forces and stresses in the device, that are difficult or impossible to obtain from medical imaging. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Object-oriented numerical computing C++

    NASA Technical Reports Server (NTRS)

    Vanrosendale, John

    1994-01-01

    An object oriented language is one allowing users to create a set of related types and then intermix and manipulate values of these related types. This paper discusses object oriented numerical computing using C++.

  12. Realizations of highly heterogeneous collagen networks via stochastic reconstruction for micromechanical analysis of tumor cell invasion

    NASA Astrophysics Data System (ADS)

    Nan, Hanqing; Liang, Long; Chen, Guo; Liu, Liyu; Liu, Ruchuan; Jiao, Yang

    2018-03-01

    Three-dimensional (3D) collective cell migration in a collagen-based extracellular matrix (ECM) is among one of the most significant topics in developmental biology, cancer progression, tissue regeneration, and immune response. Recent studies have suggested that collagen-fiber mediated force transmission in cellularized ECM plays an important role in stress homeostasis and regulation of collective cellular behaviors. Motivated by the recent in vitro observation that oriented collagen can significantly enhance the penetration of migrating breast cancer cells into dense Matrigel which mimics the intravasation process in vivo [Han et al. Proc. Natl. Acad. Sci. USA 113, 11208 (2016), 10.1073/pnas.1610347113], we devise a procedure for generating realizations of highly heterogeneous 3D collagen networks with prescribed microstructural statistics via stochastic optimization. Specifically, a collagen network is represented via the graph (node-bond) model and the microstructural statistics considered include the cross-link (node) density, valence distribution, fiber (bond) length distribution, as well as fiber orientation distribution. An optimization problem is formulated in which the objective function is defined as the squared difference between a set of target microstructural statistics and the corresponding statistics for the simulated network. Simulated annealing is employed to solve the optimization problem by evolving an initial network via random perturbations to generate realizations of homogeneous networks with randomly oriented fibers, homogeneous networks with aligned fibers, heterogeneous networks with a continuous variation of fiber orientation along a prescribed direction, as well as a binary system containing a collagen region with aligned fibers and a dense Matrigel region with randomly oriented fibers. The generation and propagation of active forces in the simulated networks due to polarized contraction of an embedded ellipsoidal cell and a small group of cells are analyzed by considering a nonlinear fiber model incorporating strain hardening upon large stretching and buckling upon compression. Our analysis shows that oriented fibers can significantly enhance long-range force transmission in the network. Moreover, in the oriented-collagen-Matrigel system, the forces generated by a polarized cell in collagen can penetrate deeply into the Matrigel region. The stressed Matrigel fibers could provide contact guidance for the migrating cell cells, and thus enhance their penetration into Matrigel. This suggests a possible mechanism for the observed enhanced intravasation by oriented collagen.

  13. Postural and Object-Oriented Experiences Advance Early Reaching, Object Exploration, and Means-End Behavior

    ERIC Educational Resources Information Center

    Lobo, Michele A.; Galloway, James C.

    2008-01-01

    The effects of 3 weeks of social (control), postural, or object-oriented experiences on 9- to 21-week-old infants' (N = 42) reaching, exploration, and means-end behaviors were assessed. Coders recorded object contacts, mouthing, fingering, attention, and affect from video. Postural and object-oriented experiences advanced reaching, haptic…

  14. Object-oriented programming with mixins in Ada

    NASA Technical Reports Server (NTRS)

    Seidewitz, ED

    1992-01-01

    Recently, I wrote a paper discussing the lack of 'true' object-oriented programming language features in Ada 83, why one might desire them in Ada, and how they might be added in Ada 9X. The approach I took in this paper was to build the new object-oriented features of Ada 9X as much as possible on the basic constructs and philosophy of Ada 83. The object-oriented features proposed for Ada 9X, while different in detail, are based on the same kind of approach. Further consideration of this approach led me on a long reflection on the nature of object-oriented programming and its application to Ada. The results of this reflection, presented in this paper, show how a fairly natural object-oriented style can indeed be developed even in Ada 83. The exercise of developing this style is useful for at least three reasons: (1) it provides a useful style for programming object-oriented applications in Ada 83 until new features become available with Ada 9X; (2) it demystifies many of the mechanisms that seem to be 'magic' in most object-oriented programming languages by making them explicit; and (3) it points out areas that are and are not in need of change in Ada 83 to make object-oriented programming more natural in Ada 9X. In the next four sections I will address in turn the issues of object-oriented classes, mixins, self-reference and supertyping. The presentation is through a sequence of examples. This results in some overlap with that paper, but all the examples in the present paper are written entirely in Ada 83. I will return to considerations for Ada 9X in the last section of the paper.

  15. Towards an Object-Oriented Model for the Design and Development of Learning Objects

    ERIC Educational Resources Information Center

    Chrysostomou, Chrysostomos; Papadopoulos, George

    2008-01-01

    This work introduces the concept of an Object-Oriented Learning Object (OOLO) that is developed in a manner similar to the one that software objects are developed through Object-Oriented Software Engineering (OO SWE) techniques. In order to make the application of the OOLO feasible and efficient, an OOLO model needs to be developed based on…

  16. Grid-based precision aim system and method for disrupting suspect objects

    DOEpatents

    Gladwell, Thomas Scott; Garretson, Justin; Hobart, Clinton G.; Monda, Mark J.

    2014-06-10

    A system and method for disrupting at least one component of a suspect object is provided. The system has a source for passing radiation through the suspect object, a grid board positionable adjacent the suspect object (the grid board having a plurality of grid areas, the radiation from the source passing through the grid board), a screen for receiving the radiation passing through the suspect object and generating at least one image, a weapon for deploying a discharge, and a targeting unit for displaying the image of the suspect object and aiming the weapon according to a disruption point on the displayed image and deploying the discharge into the suspect object to disable the suspect object.

  17. mm_par2.0: An object-oriented molecular dynamics simulation program parallelized using a hierarchical scheme with MPI and OPENMP

    NASA Astrophysics Data System (ADS)

    Oh, Kwang Jin; Kang, Ji Hoon; Myung, Hun Joo

    2012-02-01

    We have revised a general purpose parallel molecular dynamics simulation program mm_par using the object-oriented programming. We parallelized the revised version using a hierarchical scheme in order to utilize more processors for a given system size. The benchmark result will be presented here. New version program summaryProgram title: mm_par2.0 Catalogue identifier: ADXP_v2_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADXP_v2_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC license, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 2 390 858 No. of bytes in distributed program, including test data, etc.: 25 068 310 Distribution format: tar.gz Programming language: C++ Computer: Any system operated by Linux or Unix Operating system: Linux Classification: 7.7 External routines: We provide wrappers for FFTW [1], Intel MKL library [2] FFT routine, and Numerical recipes [3] FFT, random number generator, and eigenvalue solver routines, SPRNG [4] random number generator, Mersenne Twister [5] random number generator, space filling curve routine. Catalogue identifier of previous version: ADXP_v1_0 Journal reference of previous version: Comput. Phys. Comm. 174 (2006) 560 Does the new version supersede the previous version?: Yes Nature of problem: Structural, thermodynamic, and dynamical properties of fluids and solids from microscopic scales to mesoscopic scales. Solution method: Molecular dynamics simulation in NVE, NVT, and NPT ensemble, Langevin dynamics simulation, dissipative particle dynamics simulation. Reasons for new version: First, object-oriented programming has been used, which is known to be open for extension and closed for modification. It is also known to be better for maintenance. Second, version 1.0 was based on atom decomposition and domain decomposition scheme [6] for parallelization. However, atom decomposition is not popular due to its poor scalability. On the other hand, domain decomposition scheme is better for scalability. It still has a limitation in utilizing a large number of cores on recent petascale computers due to the requirement that the domain size is larger than the potential cutoff distance. To go beyond such a limitation, a hierarchical parallelization scheme has been adopted in this new version and implemented using MPI [7] and OPENMP [8]. Summary of revisions: (1) Object-oriented programming has been used. (2) A hierarchical parallelization scheme has been adopted. (3) SPME routine has been fully parallelized with parallel 3D FFT using volumetric decomposition scheme [9]. K.J.O. thanks Mr. Seung Min Lee for useful discussion on programming and debugging. Running time: Running time depends on system size and methods used. For test system containing a protein (PDB id: 5DHFR) with CHARMM22 force field [10] and 7023 TIP3P [11] waters in simulation box having dimension 62.23 Å×62.23 Å×62.23 Å, the benchmark results are given in Fig. 1. Here the potential cutoff distance was set to 12 Å and the switching function was applied from 10 Å for the force calculation in real space. For the SPME [12] calculation, K, K, and K were set to 64 and the interpolation order was set to 4. To do the fast Fourier transform, we used Intel MKL library. All bonds including hydrogen atoms were constrained using SHAKE/RATTLE algorithms [13,14]. The code was compiled using Intel compiler version 11.1 and mvapich2 version 1.5. Fig. 2 shows performance gains from using CUDA-enabled version [15] of mm_par for 5DHFR simulation in water on Intel Core2Quad 2.83 GHz and GeForce GTX 580. Even though mm_par2.0 is not ported yet for GPU, its performance data would be useful to expect mm_par2.0 performance on GPU. Timing results for 1000 MD steps. 1, 2, 4, and 8 in the figure mean the number of OPENMP threads. Timing results for 1000 MD steps from double precision simulation on CPU, single precision simulation on GPU, and double precision simulation on GPU.

  18. Advancing Lidar Sensors Technologies for Next Generation Landing Missions

    NASA Technical Reports Server (NTRS)

    Amzajerdian, Farzin; Hines, Glenn D.; Roback, Vincent E.; Petway, Larry B.; Barnes, Bruce W.; Brewster, Paul F.; Pierrottet, Diego F.; Bulyshev, Alexander

    2015-01-01

    Missions to solar systems bodies must meet increasingly ambitious objectives requiring highly reliable "precision landing", and "hazard avoidance" capabilities. Robotic missions to the Moon and Mars demand landing at pre-designated sites of high scientific value near hazardous terrain features, such as escarpments, craters, slopes, and rocks. Missions aimed at paving the path for colonization of the Moon and human landing on Mars need to execute onboard hazard detection and precision maneuvering to ensure safe landing near previously deployed assets. Asteroid missions require precision rendezvous, identification of the landing or sampling site location, and navigation to the highly dynamic object that may be tumbling at a fast rate. To meet these needs, NASA Langley Research Center (LaRC) has developed a set of advanced lidar sensors under the Autonomous Landing and Hazard Avoidance Technology (ALHAT) project. These lidar sensors can provide precision measurement of vehicle relative proximity, velocity, and orientation, and high resolution elevation maps of the surface during the descent to the targeted body. Recent flights onboard Morpheus free-flyer vehicle have demonstrated the viability of ALHAT lidar sensors for future landing missions to solar system bodies.

  19. Putting FLEXPART to REST: The Provision of Atmospheric Transport Modeling Services

    NASA Astrophysics Data System (ADS)

    Morton, Don; Arnold, Dèlia

    2015-04-01

    We are developing a RESTful set of modeling services for the FLEXPART modeling system. FLEXPART (FLEXible PARTicle dispersion model) is a Lagrangian transport and dispersion model used by a growing international community. It has been used to simulate and forecast the atmospheric transport of wildfire smoke, volcanic ash and radionuclides and may be run in backwards mode to provide information for the determination of emission sources such as nuclear emissions and greenhouse gases. This open source software is distributed in source code form, and has several compiler and library dependencies that users need to address. Although well-documented, getting it compiled, set up, running, and post-processed is often tedious, making it difficult for the inexperienced or casual user. Well-designed modeling services lower the entry barrier for scientists to perform simulations, allowing them to create and execute their models from a variety of devices and programming environments. This world of Service Oriented Architectures (SOA) has progressed to a REpresentational State Transfer (REST) paradigm, in which the pervasive and mature HTTP environment is used as a foundation for providing access to model services. With such an approach, sound software engineering practises are adhered to in order to deploy service modules exhibiting very loose coupling with the clients. In short, services are accessed and controlled through the formation of properly-constructed Uniform Resource Identifiers (URI's), processed in an HTTP environment. In this way, any client or combination of clients - whether a bash script, Python program, web GUI, or even Unix command line - that can interact with an HTTP server, can run the modeling environment. This loose coupling allows for the deployment of a variety of front ends, all accessing a common modeling backend system. Furthermore, it is generally accepted in the cloud computing community that RESTful approaches constitute a sound approach towards successful deployment of services. Through the design of a RESTful, cloud-based modeling system, we provide the ubiquitous access to FLEXPART that allows scientists to focus on modeling processes instead of tedious computational details. In this work, we describe the modeling services environment, and provide examples of access via command-line, Python programs, and web GUI interfaces.

  20. Saada: A Generator of Astronomical Database

    NASA Astrophysics Data System (ADS)

    Michel, L.

    2011-11-01

    Saada transforms a set of heterogeneous FITS files or VOtables of various categories (images, tables, spectra, etc.) in a powerful database deployed on the Web. Databases are located on your host and stay independent of any external server. This job doesn’t require writing code. Saada can mix data of various categories in multiple collections. Data collections can be linked each to others making relevant browsing paths and allowing data-mining oriented queries. Saada supports 4 VO services (Spectra, images, sources and TAP) . Data collections can be published immediately after the deployment of the Web interface.

  1. Energy Efficiency Challenges of 5G Small Cell Networks.

    PubMed

    Ge, Xiaohu; Yang, Jing; Gharavi, Hamid; Sun, Yang

    2017-05-01

    The deployment of a large number of small cells poses new challenges to energy efficiency, which has often been ignored in fifth generation (5G) cellular networks. While massive multiple-input multiple outputs (MIMO) will reduce the transmission power at the expense of higher computational cost, the question remains as to which computation or transmission power is more important in the energy efficiency of 5G small cell networks. Thus, the main objective in this paper is to investigate the computation power based on the Landauer principle. Simulation results reveal that more than 50% of the energy is consumed by the computation power at 5G small cell base stations (BSs). Moreover, the computation power of 5G small cell BS can approach 800 watt when the massive MIMO (e.g., 128 antennas) is deployed to transmit high volume traffic. This clearly indicates that computation power optimization can play a major role in the energy efficiency of small cell networks.

  2. Energy Efficiency Challenges of 5G Small Cell Networks

    PubMed Central

    Ge, Xiaohu; Yang, Jing; Gharavi, Hamid; Sun, Yang

    2017-01-01

    The deployment of a large number of small cells poses new challenges to energy efficiency, which has often been ignored in fifth generation (5G) cellular networks. While massive multiple-input multiple outputs (MIMO) will reduce the transmission power at the expense of higher computational cost, the question remains as to which computation or transmission power is more important in the energy efficiency of 5G small cell networks. Thus, the main objective in this paper is to investigate the computation power based on the Landauer principle. Simulation results reveal that more than 50% of the energy is consumed by the computation power at 5G small cell base stations (BSs). Moreover, the computation power of 5G small cell BS can approach 800 watt when the massive MIMO (e.g., 128 antennas) is deployed to transmit high volume traffic. This clearly indicates that computation power optimization can play a major role in the energy efficiency of small cell networks. PMID:28757670

  3. An Object Model for a Rocket Engine Numerical Simulator

    NASA Technical Reports Server (NTRS)

    Mitra, D.; Bhalla, P. N.; Pratap, V.; Reddy, P.

    1998-01-01

    Rocket Engine Numerical Simulator (RENS) is a packet of software which numerically simulates the behavior of a rocket engine. Different parameters of the components of an engine is the input to these programs. Depending on these given parameters the programs output the behaviors of those components. These behavioral values are then used to guide the design of or to diagnose a model of a rocket engine "built" by a composition of these programs simulating different components of the engine system. In order to use this software package effectively one needs to have a flexible model of a rocket engine. These programs simulating different components then should be plugged into this modular representation. Our project is to develop an object based model of such an engine system. We are following an iterative and incremental approach in developing the model, as is the standard practice in the area of object oriented design and analysis of softwares. This process involves three stages: object modeling to represent the components and sub-components of a rocket engine, dynamic modeling to capture the temporal and behavioral aspects of the system, and functional modeling to represent the transformational aspects. This article reports on the first phase of our activity under a grant (RENS) from the NASA Lewis Research center. We have utilized Rambaugh's object modeling technique and the tool UML for this purpose. The classes of a rocket engine propulsion system are developed and some of them are presented in this report. The next step, developing a dynamic model for RENS, is also touched upon here. In this paper we will also discuss the advantages of using object-based modeling for developing this type of an integrated simulator over other tools like an expert systems shell or a procedural language, e.g., FORTRAN. Attempts have been made in the past to use such techniques.

  4. Sleep Quantity and Quality of Ontario Wildland Firefighters Across a Low-Hazard Fire Season

    PubMed Central

    McGillis, Zachary; Dorman, Sandra C.; Robertson, Ayden; Larivière, Michel; Leduc, Caleb; Eger, Tammy; Oddson, Bruce E.; Larivière, Céline

    2017-01-01

    Objective: The aim of the study was to assess the sleep quality, quantity, and fatigue levels of Canadian wildland firefighters while on deployment. Methods: Objective and subjective sleep and fatigue measures were collected using actigraphy and questionnaires during non-fire (Base) and fire (Initial Attack and Project) deployments. Results: Suboptimal sleep quality and quantity were more frequently observed during high-intensity, Initial Attack fire deployments. Suboptimal sleep was also exhibited during non-fire (Base) work periods, which increases the risk of prefire deployment sleep debt. Self-reported, morning fatigue scores were low-to-moderate and highest for Initial Attack fire deployments. Conclusions: The study highlights the incidence of suboptimal sleep patterns in wildland firefighters during non-fire and fire suppression work periods. These results have implications for the health and safety practices of firefighters given the link between sleep and fatigue, in a characteristically hazardous occupation. PMID:29216017

  5. Object-oriented productivity metrics

    NASA Technical Reports Server (NTRS)

    Connell, John L.; Eller, Nancy

    1992-01-01

    Software productivity metrics are useful for sizing and costing proposed software and for measuring development productivity. Estimating and measuring source lines of code (SLOC) has proven to be a bad idea because it encourages writing more lines of code and using lower level languages. Function Point Analysis is an improved software metric system, but it is not compatible with newer rapid prototyping and object-oriented approaches to software development. A process is presented here for counting object-oriented effort points, based on a preliminary object-oriented analysis. It is proposed that this approach is compatible with object-oriented analysis, design, programming, and rapid prototyping. Statistics gathered on actual projects are presented to validate the approach.

  6. Object-oriented analysis and design of an ECG storage and retrieval system integrated with an HIS.

    PubMed

    Wang, C; Ohe, K; Sakurai, T; Nagase, T; Kaihara, S

    1996-03-01

    For a hospital information system, object-oriented methodology plays an increasingly important role, especially for the management of digitized data, e.g., the electrocardiogram, electroencephalogram, electromyogram, spirogram, X-ray, CT and histopathological images, which are not yet computerized in most hospitals. As a first step in an object-oriented approach to hospital information management and storing medical data in an object-oriented database, we connected electrocardiographs to a hospital network and established the integration of ECG storage and retrieval systems with a hospital information system. In this paper, the object-oriented analysis and design of the ECG storage and retrieval systems is reported.

  7. Mixed reality simulation of rasping procedure in artificial cervical disc replacement (ACDR) surgery.

    PubMed

    Halic, Tansel; Kockara, Sinan; Bayrak, Coskun; Rowe, Richard

    2010-10-07

    Until quite recently spinal disorder problems in the U.S. have been operated by fusing cervical vertebrae instead of replacement of the cervical disc with an artificial disc. Cervical disc replacement is a recently approved procedure in the U.S. It is one of the most challenging surgical procedures in the medical field due to the deficiencies in available diagnostic tools and insufficient number of surgical practices For physicians and surgical instrument developers, it is critical to understand how to successfully deploy the new artificial disc replacement systems. Without proper understanding and practice of the deployment procedure, it is possible to injure the vertebral body. Mixed reality (MR) and virtual reality (VR) surgical simulators are becoming an indispensable part of physicians' training, since they offer a risk free training environment. In this study, MR simulation framework and intricacies involved in the development of a MR simulator for the rasping procedure in artificial cervical disc replacement (ACDR) surgery are investigated. The major components that make up the MR surgical simulator with motion tracking system are addressed. A mixed reality surgical simulator that targets rasping procedure in the artificial cervical disc replacement surgery with a VICON motion tracking system was developed. There were several challenges in the development of MR surgical simulator. First, the assembly of different hardware components for surgical simulation development that involves knowledge and application of interdisciplinary fields such as signal processing, computer vision and graphics, along with the design and placements of sensors etc . Second challenge was the creation of a physically correct model of the rasping procedure in order to attain critical forces. This challenge was handled with finite element modeling. The third challenge was minimization of error in mapping movements of an actor in real model to a virtual model in a process called registration. This issue was overcome by a two-way (virtual object to real domain and real domain to virtual object) semi-automatic registration method. The applicability of the VICON MR setting for the ACDR surgical simulator is demonstrated. The main stream problems encountered in MR surgical simulator development are addressed. First, an effective environment for MR surgical development is constructed. Second, the strain and the stress intensities and critical forces are simulated under the various rasp instrument loadings with impacts that are applied on intervertebral surfaces of the anterior vertebrae throughout the rasping procedure. Third, two approaches are introduced to solve the registration problem in MR setting. Results show that our system creates an effective environment for surgical simulation development and solves tedious and time-consuming registration problems caused by misalignments. Further, the MR ACDR surgery simulator was tested by 5 different physicians who found that the MR simulator is effective enough to teach the anatomical details of cervical discs and to grasp the basics of the ACDR surgery and rasping procedure.

  8. Mixed reality simulation of rasping procedure in artificial cervical disc replacement (ACDR) surgery

    PubMed Central

    2010-01-01

    Background Until quite recently spinal disorder problems in the U.S. have been operated by fusing cervical vertebrae instead of replacement of the cervical disc with an artificial disc. Cervical disc replacement is a recently approved procedure in the U.S. It is one of the most challenging surgical procedures in the medical field due to the deficiencies in available diagnostic tools and insufficient number of surgical practices For physicians and surgical instrument developers, it is critical to understand how to successfully deploy the new artificial disc replacement systems. Without proper understanding and practice of the deployment procedure, it is possible to injure the vertebral body. Mixed reality (MR) and virtual reality (VR) surgical simulators are becoming an indispensable part of physicians’ training, since they offer a risk free training environment. In this study, MR simulation framework and intricacies involved in the development of a MR simulator for the rasping procedure in artificial cervical disc replacement (ACDR) surgery are investigated. The major components that make up the MR surgical simulator with motion tracking system are addressed. Findings A mixed reality surgical simulator that targets rasping procedure in the artificial cervical disc replacement surgery with a VICON motion tracking system was developed. There were several challenges in the development of MR surgical simulator. First, the assembly of different hardware components for surgical simulation development that involves knowledge and application of interdisciplinary fields such as signal processing, computer vision and graphics, along with the design and placements of sensors etc . Second challenge was the creation of a physically correct model of the rasping procedure in order to attain critical forces. This challenge was handled with finite element modeling. The third challenge was minimization of error in mapping movements of an actor in real model to a virtual model in a process called registration. This issue was overcome by a two-way (virtual object to real domain and real domain to virtual object) semi-automatic registration method. Conclusions The applicability of the VICON MR setting for the ACDR surgical simulator is demonstrated. The main stream problems encountered in MR surgical simulator development are addressed. First, an effective environment for MR surgical development is constructed. Second, the strain and the stress intensities and critical forces are simulated under the various rasp instrument loadings with impacts that are applied on intervertebral surfaces of the anterior vertebrae throughout the rasping procedure. Third, two approaches are introduced to solve the registration problem in MR setting. Results show that our system creates an effective environment for surgical simulation development and solves tedious and time-consuming registration problems caused by misalignments. Further, the MR ACDR surgery simulator was tested by 5 different physicians who found that the MR simulator is effective enough to teach the anatomical details of cervical discs and to grasp the basics of the ACDR surgery and rasping procedure PMID:20946594

  9. Experiments in cooperative-arm object manipulation with a two-armed free-flying robot. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Koningstein, Ross

    1990-01-01

    Developing computed-torque controllers for complex manipulator systems using current techniques and tools is difficult because they address the issues pertinent to simulation, as opposed to control. A new formulation of computed-torque (CT) control that leads to an automated computer-torque robot controller program is presented. This automated tool is used for simulations and experimental demonstrations of endpoint and object control from a free-flying robot. A new computed-torque formulation states the multibody control problem in an elegant, homogeneous, and practical form. A recursive dynamics algorithm is presented that numerically evaluates kinematics and dynamics terms for multibody systems given a topological description. Manipulators may be free-flying, and may have closed-chain constraints. With the exception of object squeeze-force control, the algorithm does not deal with actuator redundancy. The algorithm is used to implement an automated 2D computed-torque dynamics and control package that allows joint, endpoint, orientation, momentum, and object squeeze-force control. This package obviates the need for hand-derivation of kinematics and dynamics, and is used for both simulation and experimental control. Endpoint control experiments are performed on a laboratory robot that has two arms to manipulate payloads, and uses an air bearing to achieve very-low drag characteristics. Simulations and experimental data for endpoint and object controllers are presented for the experimental robot - a complex dynamic system. There is a certain rather wide set of conditions under which CT endpoint controllers can neglect robot base accelerations (but not motions) and achieve comparable performance including base accelerations in the model. The regime over which this simplification holds is explored by simulation and experiment.

  10. Platform-Independence and Scheduling In a Multi-Threaded Real-Time Simulation

    NASA Technical Reports Server (NTRS)

    Sugden, Paul P.; Rau, Melissa A.; Kenney, P. Sean

    2001-01-01

    Aviation research often relies on real-time, pilot-in-the-loop flight simulation as a means to develop new flight software, flight hardware, or pilot procedures. Often these simulations become so complex that a single processor is incapable of performing the necessary computations within a fixed time-step. Threads are an elegant means to distribute the computational work-load when running on a symmetric multi-processor machine. However, programming with threads often requires operating system specific calls that reduce code portability and maintainability. While a multi-threaded simulation allows a significant increase in the simulation complexity, it also increases the workload of a simulation operator by requiring that the operator determine which models run on which thread. To address these concerns an object-oriented design was implemented in the NASA Langley Standard Real-Time Simulation in C++ (LaSRS++) application framework. The design provides a portable and maintainable means to use threads and also provides a mechanism to automatically load balance the simulation models.

  11. An investigation of constraint-based component-modeling for knowledge representation in computer-aided conceptual design

    NASA Technical Reports Server (NTRS)

    Kolb, Mark A.

    1990-01-01

    Originally, computer programs for engineering design focused on detailed geometric design. Later, computer programs for algorithmically performing the preliminary design of specific well-defined classes of objects became commonplace. However, due to the need for extreme flexibility, it appears unlikely that conventional programming techniques will prove fruitful in developing computer aids for engineering conceptual design. The use of symbolic processing techniques, such as object-oriented programming and constraint propagation, facilitate such flexibility. Object-oriented programming allows programs to be organized around the objects and behavior to be simulated, rather than around fixed sequences of function- and subroutine-calls. Constraint propagation allows declarative statements to be understood as designating multi-directional mathematical relationships among all the variables of an equation, rather than as unidirectional assignments to the variable on the left-hand side of the equation, as in conventional computer programs. The research has concentrated on applying these two techniques to the development of a general-purpose computer aid for engineering conceptual design. Object-oriented programming techniques are utilized to implement a user-extensible database of design components. The mathematical relationships which model both geometry and physics of these components are managed via constraint propagation. In addition, to this component-based hierarchy, special-purpose data structures are provided for describing component interactions and supporting state-dependent parameters. In order to investigate the utility of this approach, a number of sample design problems from the field of aerospace engineering were implemented using the prototype design tool, Rubber Airplane. The additional level of organizational structure obtained by representing design knowledge in terms of components is observed to provide greater convenience to the program user, and to result in a database of engineering information which is easier both to maintain and to extend.

  12. CONFIG - Adapting qualitative modeling and discrete event simulation for design of fault management systems

    NASA Technical Reports Server (NTRS)

    Malin, Jane T.; Basham, Bryan D.

    1989-01-01

    CONFIG is a modeling and simulation tool prototype for analyzing the normal and faulty qualitative behaviors of engineered systems. Qualitative modeling and discrete-event simulation have been adapted and integrated, to support early development, during system design, of software and procedures for management of failures, especially in diagnostic expert systems. Qualitative component models are defined in terms of normal and faulty modes and processes, which are defined by invocation statements and effect statements with time delays. System models are constructed graphically by using instances of components and relations from object-oriented hierarchical model libraries. Extension and reuse of CONFIG models and analysis capabilities in hybrid rule- and model-based expert fault-management support systems are discussed.

  13. ITS strategic deployment plan : Nashville area intelligent transportation systems early deployment study. Technical memorandum no. 8, Final report

    DOT National Transportation Integrated Search

    1997-03-01

    The goal of this study was to develop a Strategic Plan for deployment of ITS technologies within the Nashville Metro Area and to create a long-term coalition of ITS stakeholders, with the objective of expanding the implementation of ITS technologies ...

  14. Through the Lens of Cultural Awareness: A Primer for US Armed Forces Deploying to Arab and Middle Eastern Countries

    DTIC Science & Technology

    2006-01-01

    Willingness to Compromise •Risk Avoidance •Time to Decision •Etc. The “What” ral Variation Behaviors •Context Sensitivity Values •Individualism vs ...Collectivism •Power Distance •Formality vs . informality •Uncertainty Avoidance •Relationship vs . Deal Focus •Long-term vs . Short term orientation •Time...Orientation Cognition •Reasoning Styles Cultural Variations Behaviors •Context Sensitivity Values •Individualism vs . Collectivism •Power Distance •Formality

  15. Services oriented architectures and rapid deployment of ad-hoc health surveillance systems: lessons from Katrina relief efforts.

    PubMed

    Mirhaji, Parsa; Casscells, S Ward; Srinivasan, Arunkumar; Kunapareddy, Narendra; Byrne, Sean; Richards, David Mark; Arafat, Raouf

    2006-01-01

    During the Hurricane Katrina relief efforts, a new city was born overnight within the City of Houston to provide accommodation and health services for thousands of evacuees deprived of food, rest, medical attention, and sanitation. The hurricane victims had been exposed to flood water, toxic materials, physical injury, and mental stress. This scenario was an invitation for a variety of public health hazards, primarily infectious disease outbreaks. Early detection and monitoring of morbidity and mortality among evacuees due to unattended health conditions was an urgent priority and called for deployment of real-time surveillance to collect and analyze data at the scene, and to enable and guide appropriate response and planning activities. The University of Texas Health Science Center at Houston (UTHSC) and the Houston Department of Health and Human Services (HDHHS) deployed an ad hoc surveillance system overnight by leveraging Internet-based technologies and Services Oriented Architecture (SOA). The system was post-coordinated through the orchestration of Web Services such as information integration, natural language processing, syndromic case finding, and online analytical processing (OLAP). Here we will report the use of Internet-based and distributed architectures in providing timely, novel, and customizable solutions on demand for unprecedented events such as natural disasters.

  16. Saccadic eye movements do not disrupt the deployment of feature-based attention.

    PubMed

    Kalogeropoulou, Zampeta; Rolfs, Martin

    2017-07-01

    The tight link of saccades to covert spatial attention has been firmly established, yet their relation to other forms of visual selection remains poorly understood. Here we studied the temporal dynamics of feature-based attention (FBA) during fixation and across saccades. Participants reported the orientation (on a continuous scale) of one of two sets of spatially interspersed Gabors (black or white). We tested performance at different intervals between the onset of a colored cue (black or white, indicating which stimulus was the most probable target; red: neutral condition) and the stimulus. FBA built up after cue onset: Benefits (errors for valid vs. neutral cues), costs (invalid vs. neutral), and the overall cueing effect (valid vs. invalid) increased with the cue-stimulus interval. Critically, we also tested visual performance at different intervals after a saccade, when FBA had been fully deployed before saccade initiation. Cueing effects were evident immediately after the saccade and were predicted most accurately and most precisely by fully deployed FBA, indicating that FBA was continuous throughout saccades. Finally, a decomposition of orientation reports into target reports and random guesses confirmed continuity of report precision and guess rates across the saccade. We discuss the role of FBA in perceptual continuity across saccades.

  17. Object-oriented requirements analysis: A quick tour

    NASA Technical Reports Server (NTRS)

    Berard, Edward V.

    1990-01-01

    Of all the approaches to software development, an object-oriented approach appears to be both the most beneficial and the most popular. The description of the object-oriented approach is presented in the form of the view graphs.

  18. High Performance Object-Oriented Scientific Programming in Fortran 90

    NASA Technical Reports Server (NTRS)

    Norton, Charles D.; Decyk, Viktor K.; Szymanski, Boleslaw K.

    1997-01-01

    We illustrate how Fortran 90 supports object-oriented concepts by example of plasma particle computations on the IBM SP. Our experience shows that Fortran 90 and object-oriented methodology give high performance while providing a bridge from Fortran 77 legacy codes to modern programming principles. All of our object-oriented Fortran 90 codes execute more quickly thatn the equeivalent C++ versions, yet the abstraction modelling capabilities used for scentific programming are comparably powereful.

  19. Analytical investigation of the dynamics of tethered constellations in Earth orbit (phase 2)

    NASA Technical Reports Server (NTRS)

    Lorenzini, E.; Arnold, D. A.; Grossi, M. D.; Gullahorn, G. E.

    1985-01-01

    The deployment maneuver of three axis vertical constellations with elastic tethers is analyzed. The deployment strategy devised previously was improved. Dampers were added to the system. Effective algorithms for damping out the fundamental vibrational modes of the system were implemented. Simulations of a complete deployment and a subsequent station keeping phase of a three mass constellation is shown.

  20. Parallel tempering Monte Carlo simulations of lysozyme orientation on charged surfaces

    NASA Astrophysics Data System (ADS)

    Xie, Yun; Zhou, Jian; Jiang, Shaoyi

    2010-02-01

    In this work, the parallel tempering Monte Carlo (PTMC) algorithm is applied to accurately and efficiently identify the global-minimum-energy orientation of a protein adsorbed on a surface in a single simulation. When applying the PTMC method to simulate lysozyme orientation on charged surfaces, it is found that lysozyme could easily be adsorbed on negatively charged surfaces with "side-on" and "back-on" orientations. When driven by dominant electrostatic interactions, lysozyme tends to be adsorbed on negatively charged surfaces with the side-on orientation for which the active site of lysozyme faces sideways. The side-on orientation agrees well with the experimental results where the adsorbed orientation of lysozyme is determined by electrostatic interactions. As the contribution from van der Waals interactions gradually dominates, the back-on orientation becomes the preferred one. For this orientation, the active site of lysozyme faces outward, which conforms to the experimental results where the orientation of adsorbed lysozyme is co-determined by electrostatic interactions and van der Waals interactions. It is also found that despite of its net positive charge, lysozyme could be adsorbed on positively charged surfaces with both "end-on" and back-on orientations owing to the nonuniform charge distribution over lysozyme surface and the screening effect from ions in solution. The PTMC simulation method provides a way to determine the preferred orientation of proteins on surfaces for biosensor and biomaterial applications.

Top