Sample records for object-oriented particle simulation

  1. Etomica: an object-oriented framework for molecular simulation.

    PubMed

    Schultz, Andrew J; Kofke, David A

    2015-03-30

    We describe the design of an object-oriented library of software components that are suitable for constructing simulations of systems of interacting particles. The emphasis of the discussion is on the general design of the components and how they interact, and less on details of the programming interface or its implementation. Example code is provided as an aid to understanding object-oriented programming structures and to demonstrate how the framework is applied. © 2015 Wiley Periodicals, Inc.

  2. Object-Oriented Scientific Programming with Fortran 90

    NASA Technical Reports Server (NTRS)

    Norton, C.

    1998-01-01

    Fortran 90 is a modern language that introduces many important new features beneficial for scientific programming. We discuss our experiences in plasma particle simulation and unstructured adaptive mesh refinement on supercomputers, illustrating the features of Fortran 90 that support the object-oriented methodology.

  3. Simulation of orientational coherent effects via Geant4

    NASA Astrophysics Data System (ADS)

    Bagli, E.; Asai, M.; Brandt, D.; Dotti, A.; Guidi, V.; Verderi, M.; Wright, D.

    2017-10-01

    Simulation of orientational coherent effects via Geant4 beam manipulation of high-and very-high-energy particle beams is a hot topic in accelerator physics. Coherent effects of ultra-relativistic particles in bent crystals allow the steering of particle trajectories thanks to the strong electrical field generated between atomic planes. Recently, a collimation experiment with bent crystals was carried out at the CERN-LHC, paving the way to the usage of such technology in current and future accelerators. Geant4 is a widely used object-oriented tool-kit for the Monte Carlo simulation of the interaction of particles with matter in high-energy physics. Moreover, its areas of application include also nuclear and accelerator physics, as well as studies in medical and space science. We present the first Geant4 extension for the simulation of orientational effects in straight and bent crystals for high energy charged particles. The model allows the manipulation of particle trajectories by means of straight and bent crystals and the scaling of the cross sections of hadronic and electromagnetic processes for channeled particles. Based on such a model, an extension of the Geant4 toolkit has been developed. The code and the model have been validated by comparison with published experimental data regarding the deflection efficiency via channeling and the variation of the rate of inelastic nuclear interactions.

  4. OSIRIS - an object-oriented parallel 3D PIC code for modeling laser and particle beam-plasma interaction

    NASA Astrophysics Data System (ADS)

    Hemker, Roy

    1999-11-01

    The advances in computational speed make it now possible to do full 3D PIC simulations of laser plasma and beam plasma interactions, but at the same time the increased complexity of these problems makes it necessary to apply modern approaches like object oriented programming to the development of simulation codes. We report here on our progress in developing an object oriented parallel 3D PIC code using Fortran 90. In its current state the code contains algorithms for 1D, 2D, and 3D simulations in cartesian coordinates and for 2D cylindrically-symmetric geometry. For all of these algorithms the code allows for a moving simulation window and arbitrary domain decomposition for any number of dimensions. Recent 3D simulation results on the propagation of intense laser and electron beams through plasmas will be presented.

  5. Depletion forces on circular and elliptical obstacles induced by active matter

    NASA Astrophysics Data System (ADS)

    Leite, L. R.; Lucena, D.; Potiguar, F. Q.; Ferreira, W. P.

    2016-12-01

    Depletion forces exerted by self-propelled particles on circular and elliptical passive objects are studied using numerical simulations. We show that a bath of active particles can induce repulsive and attractive forces which are sensitive to the shape and orientation of the passive objects (either horizontal or vertical ellipses). The resultant force on the passive objects due to the active particles is studied as a function of the shape and orientation of the passive objects, magnitude of the angular noise, and distance between the passive objects. By increasing the distance between obstacles the magnitude of the repulsive depletion force increases, as long as such a distance is less than one active particle diameter. For longer distances, the magnitude of the force always decreases with increasing distance. We also found that attractive forces may arise for vertical ellipses at high enough area fraction.

  6. Depletion forces on circular and elliptical obstacles induced by active matter.

    PubMed

    Leite, L R; Lucena, D; Potiguar, F Q; Ferreira, W P

    2016-12-01

    Depletion forces exerted by self-propelled particles on circular and elliptical passive objects are studied using numerical simulations. We show that a bath of active particles can induce repulsive and attractive forces which are sensitive to the shape and orientation of the passive objects (either horizontal or vertical ellipses). The resultant force on the passive objects due to the active particles is studied as a function of the shape and orientation of the passive objects, magnitude of the angular noise, and distance between the passive objects. By increasing the distance between obstacles the magnitude of the repulsive depletion force increases, as long as such a distance is less than one active particle diameter. For longer distances, the magnitude of the force always decreases with increasing distance. We also found that attractive forces may arise for vertical ellipses at high enough area fraction.

  7. IMPETUS - Interactive MultiPhysics Environment for Unified Simulations.

    PubMed

    Ha, Vi Q; Lykotrafitis, George

    2016-12-08

    We introduce IMPETUS - Interactive MultiPhysics Environment for Unified Simulations, an object oriented, easy-to-use, high performance, C++ program for three-dimensional simulations of complex physical systems that can benefit a large variety of research areas, especially in cell mechanics. The program implements cross-communication between locally interacting particles and continuum models residing in the same physical space while a network facilitates long-range particle interactions. Message Passing Interface is used for inter-processor communication for all simulations. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. DYNECHARM++: a toolkit to simulate coherent interactions of high-energy charged particles in complex structures

    NASA Astrophysics Data System (ADS)

    Bagli, Enrico; Guidi, Vincenzo

    2013-08-01

    A toolkit for the simulation of coherent interactions between high-energy charged particles and complex crystal structures, called DYNECHARM++ has been developed. The code has been written in C++ language taking advantage of this object-oriented programing method. The code is capable to evaluating the electrical characteristics of complex atomic structures and to simulate and track the particle trajectory within them. Calculation method of electrical characteristics based on their expansion in Fourier series has been adopted. Two different approaches to simulate the interaction have been adopted, relying on the full integration of particle trajectories under the continuum potential approximation and on the definition of cross-sections of coherent processes. Finally, the code has proved to reproduce experimental results and to simulate interaction of charged particles with complex structures.

  9. Common arc method for diffraction pattern orientation.

    PubMed

    Bortel, Gábor; Tegze, Miklós

    2011-11-01

    Very short pulses of X-ray free-electron lasers opened the way to obtaining diffraction signal from single particles beyond the radiation dose limit. For three-dimensional structure reconstruction many patterns are recorded in the object's unknown orientation. A method is described for the orientation of continuous diffraction patterns of non-periodic objects, utilizing intensity correlations in the curved intersections of the corresponding Ewald spheres, and hence named the common arc orientation method. The present implementation of the algorithm optionally takes into account Friedel's law, handles missing data and is capable of determining the point group of symmetric objects. Its performance is demonstrated on simulated diffraction data sets and verification of the results indicates a high orientation accuracy even at low signal levels. The common arc method fills a gap in the wide palette of orientation methods. © 2011 International Union of Crystallography

  10. Object-Oriented/Data-Oriented Design of a Direct Simulation Monte Carlo Algorithm

    NASA Technical Reports Server (NTRS)

    Liechty, Derek S.

    2014-01-01

    Over the past decade, there has been much progress towards improved phenomenological modeling and algorithmic updates for the direct simulation Monte Carlo (DSMC) method, which provides a probabilistic physical simulation of gas Rows. These improvements have largely been based on the work of the originator of the DSMC method, Graeme Bird. Of primary importance are improved chemistry, internal energy, and physics modeling and a reduction in time to solution. These allow for an expanded range of possible solutions In altitude and velocity space. NASA's current production code, the DSMC Analysis Code (DAC), is well-established and based on Bird's 1994 algorithms written in Fortran 77 and has proven difficult to upgrade. A new DSMC code is being developed in the C++ programming language using object-oriented and data-oriented design paradigms to facilitate the inclusion of the recent improvements and future development activities. The development efforts on the new code, the Multiphysics Algorithm with Particles (MAP), are described, and performance comparisons are made with DAC.

  11. Design and Computational Fluid Dynamics Investigation of a Personal, High Flow Inhalable Sampler

    PubMed Central

    Anthony, T. Renée; Landázuri, Andrea C.; Van Dyke, Mike; Volckens, John

    2016-01-01

    The objective of this research was to develop an inlet to meet the inhalable sampling criterion at 10 l min−1 flow using the standard, 37-mm cassette. We designed a porous head for this cassette and evaluated its performance using computational fluid dynamics (CFD) modeling. Particle aspiration efficiency was simulated in a wind tunnel environment at 0.4 m s−1 freestream velocity for a facing-the-wind orientation, with sampler oriented at both 0° (horizontal) and 30° down angles. The porous high-flow sampler oriented 30° downward showed reasonable agreement with published mannequin wind tunnel studies and humanoid CFD investigations for solid particle aspiration into the mouth, whereas the horizontal orientation resulted in oversampling. Liquid particles were under-aspirated in all cases, however, with 41–84% lower aspiration efficiencies relative to solid particles. A sampler with a single central 15-mm pore at 10 l min−1 was also investigated and was found to match the porous sampler’s aspiration efficiency for solid particles; the single-pore sampler is expected to be more suitable for liquid particle use. PMID:20418278

  12. Radiation-induced rotation of small celestial bodies

    NASA Technical Reports Server (NTRS)

    Misconi, N. Y.; Oliver, John; Mzariegos, Roberto

    1992-01-01

    The rotation was studied of particles in a simulated space environment via a technique known as Laser Particle Levitation. The combination of both a high vacuum and optical laser levitation to negate the effects of Earth's gravity, simulate the space environment. The rotation mechanism under study is known as the 'Windmill Effect,' which is a spin mechanism that suggests that the interaction of the photon field from a star with the surface irregularities of cosmic dust will cause them to spin due to the imbalance in the directionality of the scattered photons which necessitates a non-zero angular momentum. This conclusion is based on the random nature of the orientation of the sites of surface irregularities. The general object is to study the behavior of particles in orbits around the Earth, both natural and man made, as well as interplanetary and circumstellar particles. To meet this objective, an apparatus was constructed which was designed to allow optical levitation in a vacuum.

  13. Simulation and Digitization of a Gas Electron Multiplier Detector Using Geant4 and an Object-Oriented Digitization Program

    NASA Astrophysics Data System (ADS)

    McMullen, Timothy; Liyanage, Nilanga; Xiong, Weizhi; Zhao, Zhiwen

    2017-01-01

    Our research has focused on simulating the response of a Gas Electron Multiplier (GEM) detector using computational methods. GEM detectors provide a cost effective solution for radiation detection in high rate environments. A detailed simulation of GEM detector response to radiation is essential for the successful adaption of these detectors to different applications. Using Geant4 Monte Carlo (GEMC), a wrapper around Geant4 which has been successfully used to simulate the Solenoidal Large Intensity Device (SoLID) at Jefferson Lab, we are developing a simulation of a GEM chamber similar to the detectors currently used in our lab. We are also refining an object-oriented digitization program, which translates energy deposition information from GEMC into electronic readout which resembles the readout from our physical detectors. We have run the simulation with beta particles produced by the simulated decay of a 90Sr source, as well as with a simulated bremsstrahlung spectrum. Comparing the simulation data with real GEM data taken under similar conditions is used to refine the simulation parameters. Comparisons between results from the simulations and results from detector tests will be presented.

  14. Analysis of orbital perturbations acting on objects in orbits near geosynchronous earth orbit

    NASA Technical Reports Server (NTRS)

    Friesen, Larry J.; Jackson, Albert A., IV; Zook, Herbert A.; Kessler, Donald J.

    1992-01-01

    The paper presents a numerical investigation of orbital evolution for objects started in GEO or in orbits near GEO in order to study potential orbital debris problems in this region. Perturbations simulated include nonspherical terms in the earth's geopotential field, lunar and solar gravity, and solar radiation pressure. Objects simulated include large satellites, for which solar radiation pressure is insignificant, and small particles, for which solar radiation pressure is an important force. Results for large satellites are largely in agreement with previous GEO studies that used classical perturbation techniques. The orbit plane of GEO satellites placed in a stable plane orbit inclined approximately 7.3 deg to the equator experience very little precession, remaining always within 1.2 percent of their initial orientation. Solar radiation pressure generates two major effects on small particles: an orbital eccentricity oscillation anticipated from previous research, and an oscillation in orbital inclination.

  15. Neptune: An astrophysical smooth particle hydrodynamics code for massively parallel computer architectures

    NASA Astrophysics Data System (ADS)

    Sandalski, Stou

    Smooth particle hydrodynamics is an efficient method for modeling the dynamics of fluids. It is commonly used to simulate astrophysical processes such as binary mergers. We present a newly developed GPU accelerated smooth particle hydrodynamics code for astrophysical simulations. The code is named neptune after the Roman god of water. It is written in OpenMP parallelized C++ and OpenCL and includes octree based hydrodynamic and gravitational acceleration. The design relies on object-oriented methodologies in order to provide a flexible and modular framework that can be easily extended and modified by the user. Several pre-built scenarios for simulating collisions of polytropes and black-hole accretion are provided. The code is released under the MIT Open Source license and publicly available at http://code.google.com/p/neptune-sph/.

  16. Dynamic simulations of the inhomogeneous sedimentation of rigid fibres

    NASA Astrophysics Data System (ADS)

    Butler, Jason E.; Shaqfeh, Eric S. G.

    2002-10-01

    We have simulated the dynamics of suspensions of fibres sedimenting in the limit of zero Reynolds number. In these simulations, the dominant inter-particle force arises from hydrodynamic interactions between the rigid, non-Brownian fibres. The simulation algorithm uses slender-body theory to model the linear and rotational velocities of each fibre. To include far-field interactions between the fibres, the line distribution of force on each fibre is approximated by making a Legendre polynomial expansion of the disturbance velocity on the fibre, where only the first two terms of the expansion are retained in the calculation. Thus, the resulting linear force distribution can be specified completely by a centre-of-mass force, a couple, and a stresslet. Short-range interactions between particles are included using a lubrication approximation, and an infinite suspension is simulated by using periodic boundary conditions. Our numerical results confirm that the sedimentation of these non-spherical, orientable particles differs qualitatively from the sedimentation of spherical particles. The simulations demonstrate that an initially homogeneous, settling suspension develops clusters, or streamers, which are particle rich surrounded by clarified fluid. The instability which causes the heterogeneous structure arises solely from hydrodynamic interactions which couple the particle orientation and the sedimentation rate in particle clusters. Depending upon the concentration and aspect ratio, the formation of clusters of particles can enhance the sedimentation rate of the suspension to a value in excess of the maximum settling speed of an isolated particle. The suspension of fibres tends to orient with gravity during the sedimentation process. The average velocities and orientations, as well as their distributions, compare favourably with previous experimental measurements.

  17. Microwave Polarized Signatures Generated within Cloud Systems: SSM/I Observations Interpreted with Radiative Transfer Simulations

    NASA Technical Reports Server (NTRS)

    Prigent, Catherine; Pardo, Juan R.; Mishchenko, Michael I.; Rossow, Willaim B.; Hansen, James E. (Technical Monitor)

    2001-01-01

    Special Sensor Microwave /Imager (SSM/I) observations in cloud systems are studied over the tropics. Over optically thick cloud systems, presence of polarized signatures at 37 and 85 GHz is evidenced and analyzed with the help of cloud top temperature and optical thickness extracted from visible and IR satellite observations. Scattering signatures at 85 GHz (TbV(85) less than or = 250 K) are associated with polarization differences greater than or = 6 K, approx. 50%, of the time over ocean and approx. 40% over land. In addition. over thick clouds the polarization difference at 37 GHz is rarely negligible. The polarization differences at 37 and 85 GHz do not stem from the surface but are generated in regions of relatively homogeneous clouds having high liquid water content. To interpret the observations, a radiative transfer model that includes the scattering by non-spherical particles is developed. based on the T-matrix approach and using the doubling and adding method. In addition to handling randomly and perfectly oriented particles, this model can also simulate the effect of partial orientation of the hydrometeors. Microwave brightness temperatures are simulated at SSM/I frequencies and are compared with the observations. Polarization differences of approx. 2 K can be simulated at 37 GHz over a rain layer, even using spherical drops. The polarization difference is larger for oriented non-spherical particles. The 85 GHz simulations are very sensitive to the ice phase of the cloud. Simulations with spherical particles or with randomly oriented non-spherical ice particles cannot replicate the observed polarization differences. However, with partially oriented non-spherical particles, the observed polarized signatures at 85 GHz are explained, and the sensitivity of the scattering characteristics to the particle size, asphericity, and orientation is analyzed. Implications on rain and ice retrievals are discussed.

  18. Gas turbine system simulation: An object-oriented approach

    NASA Technical Reports Server (NTRS)

    Drummond, Colin K.; Follen, Gregory J.; Putt, Charles W.

    1993-01-01

    A prototype gas turbine engine simulation has been developed that offers a generalized framework for the simulation of engines subject to steady-state and transient operating conditions. The prototype is in preliminary form, but it successfully demonstrates the viability of an object-oriented approach for generalized simulation applications. Although object oriented programming languages are-relative to FORTRAN-somewhat austere, it is proposed that gas turbine simulations of an interdisciplinary nature will benefit significantly in terms of code reliability, maintainability, and manageability. This report elucidates specific gas turbine simulation obstacles that an object-oriented framework can overcome and describes the opportunity for interdisciplinary simulation that the approach offers.

  19. Integration of OpenMC methods into MAMMOTH and Serpent

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kerby, Leslie; DeHart, Mark; Tumulak, Aaron

    OpenMC, a Monte Carlo particle transport simulation code focused on neutron criticality calculations, contains several methods we wish to emulate in MAMMOTH and Serpent. First, research coupling OpenMC and the Multiphysics Object-Oriented Simulation Environment (MOOSE) has shown promising results. Second, the utilization of Functional Expansion Tallies (FETs) allows for a more efficient passing of multiphysics data between OpenMC and MOOSE. Both of these capabilities have been preliminarily implemented into Serpent. Results are discussed and future work recommended.

  20. Density functional theory for hard uniaxial particles: Complex ordering of pear-shaped and spheroidal particles near a substrate

    NASA Astrophysics Data System (ADS)

    Schönhöfer, Philipp W. A.; Schröder-Turk, Gerd E.; Marechal, Matthieu

    2018-03-01

    We develop a density functional for hard particles with a smooth uniaxial shape (including non-inversion-symmetric particles) within the framework of fundamental measure theory. By applying it to a system of tapered, aspherical liquid-crystal formers, reminiscent of pears, we analyse their behaviour near a hard substrate. The theory predicts a complex orientational ordering close to the substrate, which can be directly related to the particle shape, in good agreement with our simulation results. Furthermore, the lack of particle inversion-symmetry implies the possibility of alternating orientations in subsequent layers as found in a smectic/lamellar phase of such particles. Both theory and Monte Carlo simulations confirm that such ordering occurs in our system. Our results are relevant for adsorption processes of asymmetric colloidal particles and molecules at hard interfaces and show once again that tapering strongly affects the properties of orientationally ordered phases.

  1. Kassiopeia: a modern, extensible C++ particle tracking package

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Furse, Daniel; Groh, Stefan; Trost, Nikolaus

    The Kassiopeia particle tracking framework is an object-oriented software package using modern C++ techniques, written originally to meet the needs of the KATRIN collaboration. Kassiopeia features a new algorithmic paradigm for particle tracking simulations which targets experiments containing complex geometries and electromagnetic fields, with high priority put on calculation efficiency, customizability, extensibility, and ease-of-use for novice programmers. To solve Kassiopeia's target physics problem the software is capable of simulating particle trajectories governed by arbitrarily complex differential equations of motion, continuous physics processes that may in part be modeled as terms perturbing that equation of motion, stochastic processes that occur inmore » flight such as bulk scattering and decay, and stochastic surface processes occurring at interfaces, including transmission and reflection effects. This entire set of computations takes place against the backdrop of a rich geometry package which serves a variety of roles, including initialization of electromagnetic field simulations and the support of state-dependent algorithm-swapping and behavioral changes as a particle's state evolves. Thanks to the very general approach taken by Kassiopeia it can be used by other experiments facing similar challenges when calculating particle trajectories in electromagnetic fields. It is publicly available at https://github.com/KATRIN-Experiment/Kassiopeia.« less

  2. Kassiopeia: a modern, extensible C++ particle tracking package

    DOE PAGES

    Furse, Daniel; Groh, Stefan; Trost, Nikolaus; ...

    2017-05-16

    The Kassiopeia particle tracking framework is an object-oriented software package using modern C++ techniques, written originally to meet the needs of the KATRIN collaboration. Kassiopeia features a new algorithmic paradigm for particle tracking simulations which targets experiments containing complex geometries and electromagnetic fields, with high priority put on calculation efficiency, customizability, extensibility, and ease-of-use for novice programmers. To solve Kassiopeia's target physics problem the software is capable of simulating particle trajectories governed by arbitrarily complex differential equations of motion, continuous physics processes that may in part be modeled as terms perturbing that equation of motion, stochastic processes that occur inmore » flight such as bulk scattering and decay, and stochastic surface processes occurring at interfaces, including transmission and reflection effects. This entire set of computations takes place against the backdrop of a rich geometry package which serves a variety of roles, including initialization of electromagnetic field simulations and the support of state-dependent algorithm-swapping and behavioral changes as a particle's state evolves. Thanks to the very general approach taken by Kassiopeia it can be used by other experiments facing similar challenges when calculating particle trajectories in electromagnetic fields. It is publicly available at https://github.com/KATRIN-Experiment/Kassiopeia.« less

  3. A coarse grained protein model with internal degrees of freedom. Application to α-synuclein aggregation

    NASA Astrophysics Data System (ADS)

    Ilie, Ioana M.; den Otter, Wouter K.; Briels, Wim J.

    2016-02-01

    Particles in simulations are traditionally endowed with fixed interactions. While this is appropriate for particles representing atoms or molecules, objects with significant internal dynamics—like sequences of amino acids or even an entire protein—are poorly modelled by invariable particles. We develop a highly coarse grained polymorph patchy particle with the ultimate aim of simulating proteins as chains of particles at the secondary structure level. Conformational changes, e.g., a transition between disordered and β-sheet states, are accommodated by internal coordinates that determine the shape and interaction characteristics of the particles. The internal coordinates, as well as the particle positions and orientations, are propagated by Brownian Dynamics in response to their local environment. As an example of the potential offered by polymorph particles, we model the amyloidogenic intrinsically disordered protein α-synuclein, involved in Parkinson's disease, as a single particle with two internal states. The simulations yield oligomers of particles in the disordered state and fibrils of particles in the "misfolded" cross-β-sheet state. The aggregation dynamics is complex, as aggregates can form by a direct nucleation-and-growth mechanism and by two-step-nucleation through conversions between the two cluster types. The aggregation dynamics is complex, with fibrils formed by direct nucleation-and-growth, by two-step-nucleation through the conversion of an oligomer and by auto-catalysis of this conversion.

  4. Kassiopeia: a modern, extensible C++ particle tracking package

    NASA Astrophysics Data System (ADS)

    Furse, Daniel; Groh, Stefan; Trost, Nikolaus; Babutzka, Martin; Barrett, John P.; Behrens, Jan; Buzinsky, Nicholas; Corona, Thomas; Enomoto, Sanshiro; Erhard, Moritz; Formaggio, Joseph A.; Glück, Ferenc; Harms, Fabian; Heizmann, Florian; Hilk, Daniel; Käfer, Wolfgang; Kleesiek, Marco; Leiber, Benjamin; Mertens, Susanne; Oblath, Noah S.; Renschler, Pascal; Schwarz, Johannes; Slocum, Penny L.; Wandkowsky, Nancy; Wierman, Kevin; Zacher, Michael

    2017-05-01

    The Kassiopeia particle tracking framework is an object-oriented software package using modern C++ techniques, written originally to meet the needs of the KATRIN collaboration. Kassiopeia features a new algorithmic paradigm for particle tracking simulations which targets experiments containing complex geometries and electromagnetic fields, with high priority put on calculation efficiency, customizability, extensibility, and ease-of-use for novice programmers. To solve Kassiopeia's target physics problem the software is capable of simulating particle trajectories governed by arbitrarily complex differential equations of motion, continuous physics processes that may in part be modeled as terms perturbing that equation of motion, stochastic processes that occur in flight such as bulk scattering and decay, and stochastic surface processes occurring at interfaces, including transmission and reflection effects. This entire set of computations takes place against the backdrop of a rich geometry package which serves a variety of roles, including initialization of electromagnetic field simulations and the support of state-dependent algorithm-swapping and behavioral changes as a particle’s state evolves. Thanks to the very general approach taken by Kassiopeia it can be used by other experiments facing similar challenges when calculating particle trajectories in electromagnetic fields. It is publicly available at https://github.com/KATRIN-Experiment/Kassiopeia.

  5. Anisotropic behavior of organic molecules on prepatterned surfaces

    NASA Astrophysics Data System (ADS)

    Hopp, Stefan Frieder; Heuer, Andreas

    2012-04-01

    The nucleation of organic molecules on surfaces, prepatterned with stripes, is investigated with emphasis on anisotropy effects. Representing the molecules as ellipsoids, the related particle-particle interaction is modeled by means of a generalized Gay-Berne potential for similar biaxial particles. The orientation behavior of these ellipsoidal molecules induced by the stripe pattern is studied for the first monolayer by performing kinetic Monte Carlo simulations. It is shown how the properties of the particle alignment depend on energy scales, temperature, and flux. Based on the fact the particles strictly arrange in rows, it is furthermore instructive to analyze the orientation behavior within the different rows. Finally, the transfer of orientation from a preset row of molecules with fixed orientation to other nucleating particles is examined.

  6. Development of a Dynamically Configurable, Object-Oriented Framework for Distributed, Multi-modal Computational Aerospace Systems Simulation

    NASA Technical Reports Server (NTRS)

    Afjeh, Abdollah A.; Reed, John A.

    2003-01-01

    The following reports are presented on this project:A first year progress report on: Development of a Dynamically Configurable,Object-Oriented Framework for Distributed, Multi-modal Computational Aerospace Systems Simulation; A second year progress report on: Development of a Dynamically Configurable, Object-Oriented Framework for Distributed, Multi-modal Computational Aerospace Systems Simulation; An Extensible, Interchangeable and Sharable Database Model for Improving Multidisciplinary Aircraft Design; Interactive, Secure Web-enabled Aircraft Engine Simulation Using XML Databinding Integration; and Improving the Aircraft Design Process Using Web-based Modeling and Simulation.

  7. Unsupervised Cryo-EM Data Clustering through Adaptively Constrained K-Means Algorithm

    PubMed Central

    Xu, Yaofang; Wu, Jiayi; Yin, Chang-Cheng; Mao, Youdong

    2016-01-01

    In single-particle cryo-electron microscopy (cryo-EM), K-means clustering algorithm is widely used in unsupervised 2D classification of projection images of biological macromolecules. 3D ab initio reconstruction requires accurate unsupervised classification in order to separate molecular projections of distinct orientations. Due to background noise in single-particle images and uncertainty of molecular orientations, traditional K-means clustering algorithm may classify images into wrong classes and produce classes with a large variation in membership. Overcoming these limitations requires further development on clustering algorithms for cryo-EM data analysis. We propose a novel unsupervised data clustering method building upon the traditional K-means algorithm. By introducing an adaptive constraint term in the objective function, our algorithm not only avoids a large variation in class sizes but also produces more accurate data clustering. Applications of this approach to both simulated and experimental cryo-EM data demonstrate that our algorithm is a significantly improved alterative to the traditional K-means algorithm in single-particle cryo-EM analysis. PMID:27959895

  8. Unsupervised Cryo-EM Data Clustering through Adaptively Constrained K-Means Algorithm.

    PubMed

    Xu, Yaofang; Wu, Jiayi; Yin, Chang-Cheng; Mao, Youdong

    2016-01-01

    In single-particle cryo-electron microscopy (cryo-EM), K-means clustering algorithm is widely used in unsupervised 2D classification of projection images of biological macromolecules. 3D ab initio reconstruction requires accurate unsupervised classification in order to separate molecular projections of distinct orientations. Due to background noise in single-particle images and uncertainty of molecular orientations, traditional K-means clustering algorithm may classify images into wrong classes and produce classes with a large variation in membership. Overcoming these limitations requires further development on clustering algorithms for cryo-EM data analysis. We propose a novel unsupervised data clustering method building upon the traditional K-means algorithm. By introducing an adaptive constraint term in the objective function, our algorithm not only avoids a large variation in class sizes but also produces more accurate data clustering. Applications of this approach to both simulated and experimental cryo-EM data demonstrate that our algorithm is a significantly improved alterative to the traditional K-means algorithm in single-particle cryo-EM analysis.

  9. High Performance Object-Oriented Scientific Programming in Fortran 90

    NASA Technical Reports Server (NTRS)

    Norton, Charles D.; Decyk, Viktor K.; Szymanski, Boleslaw K.

    1997-01-01

    We illustrate how Fortran 90 supports object-oriented concepts by example of plasma particle computations on the IBM SP. Our experience shows that Fortran 90 and object-oriented methodology give high performance while providing a bridge from Fortran 77 legacy codes to modern programming principles. All of our object-oriented Fortran 90 codes execute more quickly thatn the equeivalent C++ versions, yet the abstraction modelling capabilities used for scentific programming are comparably powereful.

  10. Large eddy simulation of orientation and rotation of ellipsoidal particles in isotropic turbulent flows

    NASA Astrophysics Data System (ADS)

    Chen, Jincai; Jin, Guodong; Zhang, Jian

    2016-03-01

    The rotational motion and orientational distribution of ellipsoidal particles in turbulent flows are of significance in environmental and engineering applications. Whereas the translational motion of an ellipsoidal particle is controlled by the turbulent motions at large scales, its rotational motion is determined by the fluid velocity gradient tensor at small scales, which raises a challenge when predicting the rotational dispersion of ellipsoidal particles using large eddy simulation (LES) method due to the lack of subgrid scale (SGS) fluid motions. We report the effects of the SGS fluid motions on the orientational and rotational statistics, such as the alignment between the long axis of ellipsoidal particles and the vorticity, the mean rotational energy at various aspect ratios against those obtained with direct numerical simulation (DNS) and filtered DNS. The performances of a stochastic differential equation (SDE) model for the SGS velocity gradient seen by the particles and the approximate deconvolution method (ADM) for LES are investigated. It is found that the missing SGS fluid motions in LES flow fields have significant effects on the rotational statistics of ellipsoidal particles. Alignment between the particles and the vorticity is weakened; and the rotational energy of the particles is reduced in LES. The SGS-SDE model leads to a large error in predicting the alignment between the particles and the vorticity and over-predicts the rotational energy of rod-like particles. The ADM significantly improves the rotational energy prediction of particles in LES.

  11. Object-oriented Technology for Compressor Simulation

    NASA Technical Reports Server (NTRS)

    Drummond, C. K.; Follen, G. J.; Cannon, M. R.

    1994-01-01

    An object-oriented basis for interdisciplinary compressor simulation can, in principle, overcome several barriers associated with the traditional structured (procedural) development approach. This paper presents the results of a research effort with the objective to explore the repercussions on design, analysis, and implementation of a compressor model in an object oriented (OO) language, and to examine the ability of the OO system design to accommodate computational fluid dynamics (CFD) code for compressor performance prediction. Three fundamental results are that: (1) the selection of the object oriented language is not the central issue; enhanced (interdisciplinary) analysis capability derives from a broader focus on object-oriented technology; (2) object-oriented designs will produce more effective and reusable computer programs when the technology is applied to issues involving complex system inter-relationships (more so than when addressing the complex physics of an isolated discipline); and (3) the concept of disposable prototypes is effective for exploratory research programs, but this requires organizations to have a commensurate long-term perspective. This work also suggests that interdisciplinary simulation can be effectively accomplished (over several levels of fidelity) with a mixed language treatment (i.e., FORTRAN-C++), reinforcing the notion the OO technology implementation into simulations is a 'journey' in which the syntax can, by design, continuously evolve.

  12. Spatial confinement governs orientational order in patchy particles

    NASA Astrophysics Data System (ADS)

    Iwashita, Yasutaka; Kimura, Yasuyuki

    2016-06-01

    Orientational order in condensed matter plays a key role in determining material properties such as ferromagnetism, viscoelasticity or birefringence. We studied purely orientational ordering in closely-packed one-patch colloidal particles confined between flat substrates, where the particles can only rotate and are ordered via the sticky interaction between the patches. For the first time, we experimentally realized a rich variety of mesoscopic patterns through orientational ordering of colloids by controlling patch size and confinement thickness. The combination of experiment and numerical simulation reveals the decisive role of confinement: An ordered state(s) is selected from the (meta)stable options in bulk when it is commensurate with the system geometry and boundary conditions; otherwise, frustration induces a unique order. Our study offers a new means of systematic control over mesoscopic structures via orientational ordering in patchy particles. The system would also possess unique functionalities through the rotational response of the particles to external stimuli.

  13. Knowledge-based simulation using object-oriented programming

    NASA Technical Reports Server (NTRS)

    Sidoran, Karen M.

    1993-01-01

    Simulations have become a powerful mechanism for understanding and modeling complex phenomena. Their results have had substantial impact on a broad range of decisions in the military, government, and industry. Because of this, new techniques are continually being explored and developed to make them even more useful, understandable, extendable, and efficient. One such area of research is the application of the knowledge-based methods of artificial intelligence (AI) to the computer simulation field. The goal of knowledge-based simulation is to facilitate building simulations of greatly increased power and comprehensibility by making use of deeper knowledge about the behavior of the simulated world. One technique for representing and manipulating knowledge that has been enhanced by the AI community is object-oriented programming. Using this technique, the entities of a discrete-event simulation can be viewed as objects in an object-oriented formulation. Knowledge can be factual (i.e., attributes of an entity) or behavioral (i.e., how the entity is to behave in certain circumstances). Rome Laboratory's Advanced Simulation Environment (RASE) was developed as a research vehicle to provide an enhanced simulation development environment for building more intelligent, interactive, flexible, and realistic simulations. This capability will support current and future battle management research and provide a test of the object-oriented paradigm for use in large scale military applications.

  14. The role of angled-tip microcatheter and microsphere injection velocity in liver radioembolization: A computational particle-hemodynamics study.

    PubMed

    Aramburu, Jorge; Antón, Raúl; Rivas, Alejandro; Ramos, Juan Carlos; Sangro, Bruno; Bilbao, José Ignacio

    2017-12-01

    Liver radioembolization is a promising treatment option for combating liver tumors. It is performed by placing a microcatheter in the hepatic artery and administering radiation-emitting microspheres through the arterial bloodstream so that they get lodged in the tumoral bed. In avoiding nontarget radiation, the standard practice is to conduct a pretreatment, in which the microcatheter location and injection velocity are decided. However, between pretreatment and actual treatment, some of the parameters that influence the particle distribution in the liver can vary, resulting in radiation-induced complications. The present study aims to analyze the influence of a commercially available microcatheter with an angled tip and particle injection velocity in terms of segment-to-segment particle distribution. Specifically, 4 tip orientations and 2 injection velocities are combined to yield a set of 8 numerical simulations of the particle-hemodynamics in a patient-specific truncated hepatic artery. For each simulation, 4 cardiac pulses are simulated. Particles are injected during the first cycle, and the remaining pulses enable the majority of the injected particles to exit the computational domain. Results indicate that, in terms of injection velocity, particles are more spread out in the cross-sectional lumen areas as the injection velocity increases. The tip's orientation also plays a role because it influences the near-tip hemodynamics, therefore altering the particle travel through the hepatic artery. However, results suggest that particle distribution tries to match the blood flow split, therefore particle injection velocity and microcatheter tip orientation playing a minor role in segment-to-segment particle distribution. Copyright © 2017 John Wiley & Sons, Ltd.

  15. Lipid membrane-assisted condensation and assembly of amphiphilic Janus particles

    DOE PAGES

    Chambers, Mariah; Mallory, Stewart Anthony; Malone, Heather; ...

    2016-01-01

    Amphiphilic Janus particles self-assemble into complex metastructures, but little is known about how their assembly might be modified by weak interactions with a nearby biological membrane surface. Here, we report an integrated experimental and molecular dynamics simulation study to investigate the self-assembly of amphiphilic Janus particles on a lipid membrane. We created an experimental system in which Janus particles are allowed to self-assemble in the same medium where zwitterionic lipids form giant unilamellar vesicles (GUVs). Janus particles spontaneously concentrated on the inner leaflet of the GUVs. They exhibited biased orientation and heterogeneous rotational dynamics as revealed by single particle rotationalmore » tracking. The combined experimental and simulation results show that Janus particles concentrate on the lipid membranes due to weak particle–lipid attraction, whereas the biased orientation of particles is driven predominantly by inter-particle interactions. Furthermore, this study demonstrates the potential of using lipid membranes to influence the self-assembly of Janus particles.« less

  16. Modeling ground-based timber harvesting systems using computer simulation

    Treesearch

    Jingxin Wang; Chris B. LeDoux

    2001-01-01

    Modeling ground-based timber harvesting systems with an object-oriented methodology was investigated. Object-oriented modeling and design promote a better understanding of requirements, cleaner designs, and better maintainability of the harvesting simulation system. The model developed simulates chainsaw felling, drive-to-tree feller-buncher, swing-to-tree single-grip...

  17. Synchronous Parallel Emulation and Discrete Event Simulation System with Self-Contained Simulation Objects and Active Event Objects

    NASA Technical Reports Server (NTRS)

    Steinman, Jeffrey S. (Inventor)

    1998-01-01

    The present invention is embodied in a method of performing object-oriented simulation and a system having inter-connected processor nodes operating in parallel to simulate mutual interactions of a set of discrete simulation objects distributed among the nodes as a sequence of discrete events changing state variables of respective simulation objects so as to generate new event-defining messages addressed to respective ones of the nodes. The object-oriented simulation is performed at each one of the nodes by assigning passive self-contained simulation objects to each one of the nodes, responding to messages received at one node by generating corresponding active event objects having user-defined inherent capabilities and individual time stamps and corresponding to respective events affecting one of the passive self-contained simulation objects of the one node, restricting the respective passive self-contained simulation objects to only providing and receiving information from die respective active event objects, requesting information and changing variables within a passive self-contained simulation object by the active event object, and producing corresponding messages specifying events resulting therefrom by the active event objects.

  18. Asymmetric van der Waals Forces Drive Orientation of Compositionally Anisotropic Nanocylinders within Smectic Arrays: Experiment and Simulation

    PubMed Central

    Smith, Benjamin D.; Fichthorn, Kristen A.; Kirby, David J.; Quimby, Lisa M.; Triplett, Derek A.; González, Pedro; Hernández, Darimar; Keating, Christine D.

    2014-01-01

    Understanding how micro- and nanoparticles interact is important for achieving bottom-up assembly of desired structures. Here, we examine the self-assembly of two-component, compositionally asymmetric nanocylinders that sediment from solution onto a solid surface. These particles spontaneously formed smectic arrays. Within the rows of an array, nanocylinders tended to assemble such that neighboring particles had the same orientation of their segments. As a probe of interparticle interactions, we classified nanocylinder alignments by measuring the segment orientations of many sets of neighboring particles. Monte Carlo simulations incorporating an exact expression for the van der Waals (vdW) energy indicate that differences in the vdW interactions, even when small, are the key factor in producing observed segment alignment. These results point to asymmetrical vdW interactions as a potentially powerful means of controlling orientation in multicomponent cylinder arrays, and suggest that designing for these interactions could yield new ways to control self-assembly. PMID:24308771

  19. Simulating complex intracellular processes using object-oriented computational modelling.

    PubMed

    Johnson, Colin G; Goldman, Jacki P; Gullick, William J

    2004-11-01

    The aim of this paper is to give an overview of computer modelling and simulation in cellular biology, in particular as applied to complex biochemical processes within the cell. This is illustrated by the use of the techniques of object-oriented modelling, where the computer is used to construct abstractions of objects in the domain being modelled, and these objects then interact within the computer to simulate the system and allow emergent properties to be observed. The paper also discusses the role of computer simulation in understanding complexity in biological systems, and the kinds of information which can be obtained about biology via simulation.

  20. Object-oriented code SUR for plasma kinetic simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Levchenko, V.D.; Sigov, Y.S.

    1995-12-31

    We have developed a self-consistent simulation code based on object-oriented model of plasma (OOMP) for solving the Vlasov/Poisson (V/P), Vlasov/Maxwell (V/M), Bhatnagar-Gross-Krook (BGK) as well as Fokker-Planck (FP) kinetic equations. The application of an object-oriented approach (OOA) to simulation of plasmas and plasma-like media by means of splitting methods permits to uniformly describe and solve the wide circle of plasma kinetics problems, including those being very complicated: many-dimensional, relativistic, with regard for collisions, specific boundary conditions etc. This paper gives the brief description of possibilities of the SUR code, as a concrete realization of OOMP.

  1. Simulation of Orientation in Injection Molding of High Aspect Ratio Particle Thermoplastic Composites

    NASA Astrophysics Data System (ADS)

    Vélez-García, Gregorio M.; Ortman, Kevin C.; Eberle, Aaron P. R.; Wapperom, Peter; Baird, Donald G.

    2008-07-01

    A 2D coupled Hele-Shaw flow approximation for predicting the flow-induced orientation of high aspect ratio particles in injection molded composite parts is presented. For a highly concentrated short glass fiber PBT suspension, the impact of inter-particle interactions and the orientation at the gate is investigated for a center-gated disk using material parameters determined from rheometry. Experimental orientation is determined from confocal laser micrographs using the methods of ellipses. The constitutive equations are discretized using discontinuous Galerkin Finite Elements. Model predictions are significantly improved by using a localized orientation measured experimentally at the gate region instead of random or averaged gapwise measured orientation assumed in previous studies. The predicted profile in different radial positions can be related to the layered structure along the gapwise direction. Model modifications including interactions have lower impact than the initial conditions.

  2. PHoToNs–A parallel heterogeneous and threads oriented code for cosmological N-body simulation

    NASA Astrophysics Data System (ADS)

    Wang, Qiao; Cao, Zong-Yan; Gao, Liang; Chi, Xue-Bin; Meng, Chen; Wang, Jie; Wang, Long

    2018-06-01

    We introduce a new code for cosmological simulations, PHoToNs, which incorporates features for performing massive cosmological simulations on heterogeneous high performance computer (HPC) systems and threads oriented programming. PHoToNs adopts a hybrid scheme to compute gravitational force, with the conventional Particle-Mesh (PM) algorithm to compute the long-range force, the Tree algorithm to compute the short range force and the direct summation Particle-Particle (PP) algorithm to compute gravity from very close particles. A self-similar space filling a Peano-Hilbert curve is used to decompose the computing domain. Threads programming is advantageously used to more flexibly manage the domain communication, PM calculation and synchronization, as well as Dual Tree Traversal on the CPU+MIC platform. PHoToNs scales well and efficiency of the PP kernel achieves 68.6% of peak performance on MIC and 74.4% on CPU platforms. We also test the accuracy of the code against the much used Gadget-2 in the community and found excellent agreement.

  3. Object oriented studies into artificial space debris

    NASA Technical Reports Server (NTRS)

    Adamson, J. M.; Marshall, G.

    1988-01-01

    A prototype simulation is being developed under contract to the Royal Aerospace Establishment (RAE), Farnborough, England, to assist in the discrimination of artificial space objects/debris. The methodology undertaken has been to link Object Oriented programming, intelligent knowledge based system (IKBS) techniques and advanced computer technology with numeric analysis to provide a graphical, symbolic simulation. The objective is to provide an additional layer of understanding on top of conventional classification methods. Use is being made of object and rule based knowledge representation, multiple reasoning, truth maintenance and uncertainty. Software tools being used include Knowledge Engineering Environment (KEE) and SymTactics for knowledge representation. Hooks are being developed within the SymTactics framework to incorporate mathematical models describing orbital motion and fragmentation. Penetration and structural analysis can also be incorporated. SymTactics is an Object Oriented discrete event simulation tool built as a domain specific extension to the KEE environment. The tool provides facilities for building, debugging and monitoring dynamic (military) simulations.

  4. Orbital Debris Shape and Orientation Effects on Ballistic Limits

    NASA Technical Reports Server (NTRS)

    Evans, Steven W.; Williamsen, Joel E.

    2005-01-01

    The SPHC hydrodynamic code was used to evaluate the effects of orbital debris particle shape and orientation on penetration of a typical spacecraft dual-wall shield. Impacts were simulated at near-normal obliquity at 12 km/sec. Debris cloud characteristics and damage potential are compared with those from impacts by spherical projectiles. Results of these simulations indicate the uncertainties in the predicted ballistic limits due to modeling uncertainty and to uncertainty in the impactor orientation.

  5. Progress in modeling and simulation.

    PubMed

    Kindler, E

    1998-01-01

    For the modeling of systems, the computers are more and more used while the other "media" (including the human intellect) carrying the models are abandoned. For the modeling of knowledges, i.e. of more or less general concepts (possibly used to model systems composed of instances of such concepts), the object-oriented programming is nowadays widely used. For the modeling of processes existing and developing in the time, computer simulation is used, the results of which are often presented by means of animation (graphical pictures moving and changing in time). Unfortunately, the object-oriented programming tools are commonly not designed to be of a great use for simulation while the programming tools for simulation do not enable their users to apply the advantages of the object-oriented programming. Nevertheless, there are exclusions enabling to use general concepts represented at a computer, for constructing simulation models and for their easy modification. They are described in the present paper, together with true definitions of modeling, simulation and object-oriented programming (including cases that do not satisfy the definitions but are dangerous to introduce misunderstanding), an outline of their applications and of their further development. In relation to the fact that computing systems are being introduced to be control components into a large spectrum of (technological, social and biological) systems, the attention is oriented to models of systems containing modeling components.

  6. Code C# for chaos analysis of relativistic many-body systems with reactions

    NASA Astrophysics Data System (ADS)

    Grossu, I. V.; Besliu, C.; Jipa, Al.; Stan, E.; Esanu, T.; Felea, D.; Bordeianu, C. C.

    2012-04-01

    In this work we present a reaction module for “Chaos Many-Body Engine” (Grossu et al., 2010 [1]). Following our goal of creating a customizable, object oriented code library, the list of all possible reactions, including the corresponding properties (particle types, probability, cross section, particle lifetime, etc.), could be supplied as parameter, using a specific XML input file. Inspired by the Poincaré section, we propose also the “Clusterization Map”, as a new intuitive analysis method of many-body systems. For exemplification, we implemented a numerical toy-model for nuclear relativistic collisions at 4.5 A GeV/c (the SKM200 Collaboration). An encouraging agreement with experimental data was obtained for momentum, energy, rapidity, and angular π distributions. Catalogue identifier: AEGH_v2_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEGH_v2_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 184 628 No. of bytes in distributed program, including test data, etc.: 7 905 425 Distribution format: tar.gz Programming language: Visual C#.NET 2005 Computer: PC Operating system: Net Framework 2.0 running on MS Windows Has the code been vectorized or parallelized?: Each many-body system is simulated on a separate execution thread. One processor used for each many-body system. RAM: 128 Megabytes Classification: 6.2, 6.5 Catalogue identifier of previous version: AEGH_v1_0 Journal reference of previous version: Comput. Phys. Comm. 181 (2010) 1464 External routines: Net Framework 2.0 Library Does the new version supersede the previous version?: Yes Nature of problem: Chaos analysis of three-dimensional, relativistic many-body systems with reactions. Solution method: Second order Runge-Kutta algorithm for simulating relativistic many-body systems with reactions. Object oriented solution, easy to reuse, extend and customize, in any development environment which accepts .Net assemblies or COM components. Treatment of two particles reactions and decays. For each particle, calculation of the time measured in the particle reference frame, according to the instantaneous velocity. Possibility to dynamically add particle properties (spin, isospin, etc.), and reactions/decays, using a specific XML input file. Basic support for Monte Carlo simulations. Implementation of: Lyapunov exponent, “fragmentation level”, “average system radius”, “virial coefficient”, “clusterization map”, and energy conservation precision test. As an example of use, we implemented a toy-model for nuclear relativistic collisions at 4.5 A GeV/c. Reasons for new version: Following our goal of applying chaos theory to nuclear relativistic collisions at 4.5 A GeV/c, we developed a reaction module integrated with the Chaos Many-Body Engine. In the previous version, inheriting the Particle class was the only possibility of implementing more particle properties (spin, isospin, and so on). In the new version, particle properties can be dynamically added using a dictionary object. The application was improved in order to calculate the time measured in the own reference frame of each particle. two particles reactions: a+b→c+d, decays: a→c+d, stimulated decays, more complicated schemas, implemented as various combinations of previous reactions. Following our goal of creating a flexible application, the reactions list, including the corresponding properties (cross sections, particles lifetime, etc.), could be supplied as parameter, using a specific XML configuration file. The simulation output files were modified for systems with reactions, assuring also the backward compatibility. We propose the “Clusterization Map” as a new investigation method of many-body systems. The multi-dimensional Lyapunov Exponent was adapted in order to be used for systems with variable structure. Basic support for Monte Carlo simulations was also added. Additional comments: Windows forms application for testing the engine. Easy copy/paste based deployment method. Running time: Quadratic complexity.

  7. A Monte Carlo simulation study of associated liquid crystals

    NASA Astrophysics Data System (ADS)

    Berardi, R.; Fehervari, M.; Zannoni, C.

    We have performed a Monte Carlo simulation study of a system of ellipsoidal particles with donor-acceptor sites modelling complementary hydrogen-bonding groups in real molecules. We have considered elongated Gay-Berne particles with terminal interaction sites allowing particles to associate and form dimers. The changes in the phase transitions and in the molecular organization and the interplay between orientational ordering and dimer formation are discussed. Particle flip and dimer moves have been used to increase the convergency rate of the Monte Carlo (MC) Markov chain.

  8. Problems in obtaining perfect images by single-particle electron cryomicroscopy of biological structures in amorphous ice.

    PubMed

    Henderson, Richard; McMullan, Greg

    2013-02-01

    Theoretical considerations together with simulations of single-particle electron cryomicroscopy images of biological assemblies in ice demonstrate that atomic structures should be obtainable from images of a few thousand asymmetric units, provided the molecular weight of the whole assembly being studied is greater than the minimum needed for accurate position and orientation determination. However, with present methods of specimen preparation and current microscope and detector technologies, many more particles are needed, and the alignment of smaller assemblies is difficult or impossible. Only larger structures, with enough signal to allow good orientation determination and with enough images to allow averaging of many hundreds of thousands or even millions of asymmetric units, have successfully produced high-resolution maps. In this review, we compare the contrast of experimental electron cryomicroscopy images of two smaller molecular assemblies, namely apoferritin and beta-galactosidase, with that expected from perfect simulated images calculated from their known X-ray structures. We show that the contrast and signal-to-noise ratio of experimental images still require significant improvement before it will be possible to realize the full potential of single-particle electron cryomicroscopy. In particular, although reasonably good orientations can be obtained for beta-galactosidase, we have been unable to obtain reliable orientation determination from experimental images of apoferritin. Simulations suggest that at least 2-fold improvement of the contrast in experimental images at ~10 Å resolution is needed and should be possible.

  9. Microscale simulations of shock interaction with large assembly of particles for developing point-particle models

    NASA Astrophysics Data System (ADS)

    Thakur, Siddharth; Neal, Chris; Mehta, Yash; Sridharan, Prasanth; Jackson, Thomas; Balachandar, S.

    2017-01-01

    Micrsoscale simulations are being conducted for developing point-particle and other related models that are needed for the mesoscale and macroscale simulations of explosive dispersal of particles. These particle models are required to compute (a) instantaneous aerodynamic force on the particle and (b) instantaneous net heat transfer between the particle and the surrounding. A strategy for a sequence of microscale simulations has been devised that allows systematic development of the hybrid surrogate models that are applicable at conditions representative of the explosive dispersal application. The ongoing microscale simulations seek to examine particle force dependence on: (a) Mach number, (b) Reynolds number, and (c) volume fraction (different particle arrangements such as cubic, face-centered cubic (FCC), body-centered cubic (BCC) and random). Future plans include investigation of sequences of fully-resolved microscale simulations consisting of an array of particles subjected to more realistic time-dependent flows that progressively better approximate the actual problem of explosive dispersal. Additionally, effects of particle shape, size, and number in simulation as well as the transient particle deformation dependence on various parameters including: (a) particle material, (b) medium material, (c) multiple particles, (d) incoming shock pressure and speed, (e) medium to particle impedance ratio, (f) particle shape and orientation to shock, etc. are being investigated.

  10. Scaling laws in granular flow and pedestrian flow

    NASA Astrophysics Data System (ADS)

    Chen, Shumiao; Alonso-Marroquin, Fernando; Busch, Jonathan; Hidalgo, Raúl Cruz; Sathianandan, Charmila; Ramírez-Gómez, Álvaro; Mora, Peter

    2013-06-01

    We use particle-based simulations to examine the flow of particles through an exit. Simulations involve both gravity-driven particles (representing granular material) and velocity-driven particles (mimicking pedestrian dynamics). Contact forces between particles include elastic, viscous, and frictional forces; and simulations use bunker geometry. Power laws are observed in the relation between flow rate and exit width. Simulations of granular flow showed that the power law has little dependence on the coefficient of friction. Polydisperse granular systems produced higher flow rates than those produced by monodisperse ones. We extend the particle model to include the main features of pedestrian dynamics: thoracic shape, shoulder rotation, and desired velocity oriented towards the exit. Higher desired velocity resulted in higher flow rate. Granular simulations always give higher flow rate than pedestrian simulations, despite the values of aspect ratio of the particles. In terms of force distribution, pedestrians and granulates share similar properties with the non-democratic distribution of forces that poses high risks of injuries in a bottleneck situation.

  11. Experiences in teaching of modeling and simulation with emphasize on equation-based and acausal modeling techniques.

    PubMed

    Kulhánek, Tomáš; Ježek, Filip; Mateják, Marek; Šilar, Jan; Kofránek, Jří

    2015-08-01

    This work introduces experiences of teaching modeling and simulation for graduate students in the field of biomedical engineering. We emphasize the acausal and object-oriented modeling technique and we have moved from teaching block-oriented tool MATLAB Simulink to acausal and object oriented Modelica language, which can express the structure of the system rather than a process of computation. However, block-oriented approach is allowed in Modelica language too and students have tendency to express the process of computation. Usage of the exemplar acausal domains and approach allows students to understand the modeled problems much deeper. The causality of the computation is derived automatically by the simulation tool.

  12. An Ada Object Oriented Missile Flight Simulation

    DTIC Science & Technology

    1991-09-01

    identify by block number) This thesis uses the Ada programming language in the design and development of an air-to-air missile flight simulation with...object oriented techniques and sound software engineering principles. The simulation is designed to be more understandable, modifiable, efficient and...Department of Computer Science ii ABSTRACT This thesis uses the Ada programming language in the design and development of an air-to-air missile flight

  13. Performance Analysis of an Actor-Based Distributed Simulation

    NASA Technical Reports Server (NTRS)

    Schoeffler, James D.

    1998-01-01

    Object-oriented design of simulation programs appears to be very attractive because of the natural association of components in the simulated system with objects. There is great potential in distributing the simulation across several computers for the purpose of parallel computation and its consequent handling of larger problems in less elapsed time. One approach to such a design is to use "actors", that is, active objects with their own thread of control. Because these objects execute concurrently, communication is via messages. This is in contrast to an object-oriented design using passive objects where communication between objects is via method calls (direct calls when they are in the same address space and remote procedure calls when they are in different address spaces or different machines). This paper describes a performance analysis program for the evaluation of a design for distributed simulations based upon actors.

  14. Using adaptive-mesh refinement in SCFT simulations of surfactant adsorption

    NASA Astrophysics Data System (ADS)

    Sides, Scott; Kumar, Rajeev; Jamroz, Ben; Crockett, Robert; Pletzer, Alex

    2013-03-01

    Adsorption of surfactants at interfaces is relevant to many applications such as detergents, adhesives, emulsions and ferrofluids. Atomistic simulations of interface adsorption are challenging due to the difficulty of modeling the wide range of length scales in these problems: the thin interface region in equilibrium with a large bulk region that serves as a reservoir for the adsorbed species. Self-consistent field theory (SCFT) has been extremely useful for studying the morphologies of dense block copolymer melts. Field-theoretic simulations such as these are able to access large length and time scales that are difficult or impossible for particle-based simulations such as molecular dynamics. However, even SCFT methods can be difficult to apply to systems in which small spatial regions might require finer resolution than most of the simulation grid (eg. interface adsorption and confinement). We will present results on interface adsorption simulations using PolySwift++, an object-oriented, polymer SCFT simulation code aided by the Tech-X Chompst library that enables via block-structured AMR calculations with PETSc.

  15. Three-dimensional smoothed particle hydrodynamics simulation for injection molding flow of short fiber-reinforced polymer composites

    NASA Astrophysics Data System (ADS)

    He, Liping; Lu, Gang; Chen, Dachuan; Li, Wenjun; Lu, Chunsheng

    2017-07-01

    This paper investigates the three-dimensional (3D) injection molding flow of short fiber-reinforced polymer composites using a smoothed particle hydrodynamics (SPH) simulation method. The polymer melt was modeled as a power law fluid and the fibers were considered as rigid cylindrical bodies. The filling details and fiber orientation in the injection-molding process were studied. The results indicated that the SPH method could effectively predict the order of filling, fiber accumulation, and heterogeneous distribution of fibers. The SPH simulation also showed that fibers were mainly aligned to the flow direction in the skin layer and inclined to the flow direction in the core layer. Additionally, the fiber-orientation state in the simulation was quantitatively analyzed and found to be consistent with the results calculated by conventional tensor methods.

  16. A Modelling Approach on Fine Particle Spatial Distribution for Street Canyons in Asian Residential Community

    NASA Astrophysics Data System (ADS)

    Ling, Hong; Lung, Shih-Chun Candice; Uhrner, Ulrich

    2016-04-01

    Rapidly increasing urban pollution poses severe health risks.Especially fine particles pollution is considered to be closely related to respiratory and cardiovascular disease. In this work, ambient fine particles are studied in street canyons of a typical Asian residential community using a computational fluid dynamics (CFD) dispersion modelling approach. The community is characterised by an artery road with a busy traffic flow of about 4000 light vehicles (mainly cars and motorcycles) per hour at rush hours, three streets with hundreds light vehicles per hour at rush hours and several small lanes with less traffic. The objective is to study the spatial distribution of the ambient fine particle concentrations within micro-environments, in order to assess fine particle exposure of the people living in the community. The GRAL modelling system is used to simulate and assess the emission and dispersion of the traffic-related fine particles within the community. Traffic emission factors and traffic situation is assigned using both field observation and local emissions inventory data. High resolution digital elevation data (DEM) and building height data are used to resolve the topographical features. Air quality monitoring and mobile monitoring within the community is used to validate the simulation results. By using this modelling approach, the dispersion of fine particles in street canyons is simulated; the impact of wind condition and street orientation are investigated; the contributions of car and motorcycle emissions are quantified respectively; the residents' exposure level of fine particles is assessed. The study is funded by "Taiwan Megacity Environmental Research (II)-chemistry and environmental impacts of boundary layer aerosols (Year 2-3) (103-2111-M-001-001-); Spatial variability and organic markers of aerosols (Year 3)(104-2111-M-001 -005 -)"

  17. Brownian systems with spatially inhomogeneous activity

    NASA Astrophysics Data System (ADS)

    Sharma, A.; Brader, J. M.

    2017-09-01

    We generalize the Green-Kubo approach, previously applied to bulk systems of spherically symmetric active particles [J. Chem. Phys. 145, 161101 (2016), 10.1063/1.4966153], to include spatially inhomogeneous activity. The method is applied to predict the spatial dependence of the average orientation per particle and the density. The average orientation is given by an integral over the self part of the Van Hove function and a simple Gaussian approximation to this quantity yields an accurate analytical expression. Taking this analytical result as input to a dynamic density functional theory approximates the spatial dependence of the density in good agreement with simulation data. All theoretical predictions are validated using Brownian dynamics simulations.

  18. pyCTQW: A continuous-time quantum walk simulator on distributed memory computers

    NASA Astrophysics Data System (ADS)

    Izaac, Josh A.; Wang, Jingbo B.

    2015-01-01

    In the general field of quantum information and computation, quantum walks are playing an increasingly important role in constructing physical models and quantum algorithms. We have recently developed a distributed memory software package pyCTQW, with an object-oriented Python interface, that allows efficient simulation of large multi-particle CTQW (continuous-time quantum walk)-based systems. In this paper, we present an introduction to the Python and Fortran interfaces of pyCTQW, discuss various numerical methods of calculating the matrix exponential, and demonstrate the performance behavior of pyCTQW on a distributed memory cluster. In particular, the Chebyshev and Krylov-subspace methods for calculating the quantum walk propagation are provided, as well as methods for visualization and data analysis.

  19. Particle acceleration magnetic field generation, and emission in Relativistic pair jets

    NASA Technical Reports Server (NTRS)

    Nishikawa, K.-I.; Ramirez-Ruiz, E.; Hardee, P.; Hededal, C.; Kouveliotou, C.; Fishman, G. J.

    2005-01-01

    Plasma waves and their associated instabilities (e.g., the Buneman instability, two-streaming instability, and the Weibel instability) are responsible for particle acceleration in relativistic pair jets. Using a 3-D relativistic electromagnetic particle (REMP) code, we have investigated particle acceleration associated with a relativistic pair jet propagating through a pair plasma. Simulations show that the Weibel instability created in the collisionless shock accelerates particles perpendicular and parallel to the jet propagation direction. Simulation results show that this instability generates and amplifies highly nonuniform, small-scale magnetic fields, which contribute to the electron's transverse deflection behind the jet head. The "jitter' I radiation from deflected electrons can have different properties than synchrotron radiation which is calculated in a uniform magnetic field. This jitter radiation may be important to understanding the complex time evolution and/or spectral structure in gamma-ray bursts, relativistic jets, and supernova remnants. The growth rate of the Weibel instability and the resulting particle acceleration depend on the magnetic field strength and orientation, and on the initial particle distribution function. In this presentation we explore some of the dependencies of the Weibel instability and resulting particle acceleration on the magnetic field strength and orientation, and the particle distribution function.

  20. LEGO - A Class Library for Accelerator Design and Simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cai, Yunhai

    1998-11-19

    An object-oriented class library of accelerator design and simulation is designed and implemented in a simple and modular fashion. All physics of single-particle dynamics is implemented based on the Hamiltonian in the local frame of the component. Symplectic integrators are used to approximate the integration of the Hamiltonian. A differential algebra class is introduced to extract a Taylor map up to arbitrary order. Analysis of optics is done in the same way both for the linear and non-linear cases. Recently, Monte Carlo simulation of synchrotron radiation has been added into the library. The code is used to design and simulatemore » the lattices of the PEP-II and SPEAR3. And it is also used for the commissioning of the PEP-II. Some examples of how to use the library will be given.« less

  1. Mission and Safety Critical (MASC) plans for the MASC Kernel simulation

    NASA Technical Reports Server (NTRS)

    1991-01-01

    This report discusses a prototype for Mission and Safety Critical (MASC) kernel simulation which explains the intended approach and how the simulation will be used. Smalltalk is chosen for the simulation because of usefulness in quickly building working models of the systems and its object-oriented approach to software. A scenario is also introduced to give details about how the simulation works. The eventual system will be a fully object-oriented one implemented in Ada via Dragoon. To implement the simulation, a scenario using elements typical of those in the Space Station, was created.

  2. Simulations of electrically induced particle structuring on spherical drop surface

    NASA Astrophysics Data System (ADS)

    Hu, Yi; Vlahovska, Petia; Miksis, Michael

    2016-11-01

    Recent experiments (Ouriemi and Vlahovska, 2014) show intriguing surface patterns when a uniform electric field is applied to a droplet covered with colloidal particles. Depending on the particle properties and the electrical field intensity, particles organize into an equatorial belt, pole-to-pole chains, or dynamic vortices. Here we present a model to simulate the collective particle dynamics, which accounts for the electrohydrodynamic flow and particle dielectrophoresis due to the non-uniformity of local electrical field. In stronger electric fields, particles are expected to undergo Quincke rotation, inducing rotating clusters through inter-particle hydrodynamical interaction. We discuss how the field intensity influences the width, orientation and periodicity of the particle clusters. Our results provide insight into the various particle assembles discovered in the experiments.

  3. Four-way coupled simulations of small particles in turbulent channel flow: The effects of particle shape and Stokes number

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, F.; Wachem, B. G. M. van, E-mail: berend.van.wachem@gmail.com; George, W. K.

    2015-08-15

    This paper investigates the effects of particle shape and Stokes number on the behaviour of non-spherical particles in turbulent channel flow. Although there are a number of studies concerning spherical particles in turbulent flows, most important applications occurring in process, energy, and pharmaceutical industries deal with non-spherical particles. The computation employs a unique and novel four-way coupling with the Lagrangian point-particle approach. The fluid phase at low Reynolds number (Re{sub τ} = 150) is modelled by direct numerical simulation, while particles are tracked individually. Inter-particle and particle-wall collisions are also taken into account. To explore the effects of particles onmore » the flow turbulence, the statistics of the fluid flow such as the fluid velocity, the terms in the turbulence kinetic energy equation, the slip velocity between the two phases and velocity correlations are analysed considering ellipsoidal particles with different inertia and aspect ratio. The results of the simulations show that the turbulence is considerably attenuated, even in the very dilute regime. The reduction of the turbulence intensity is predominant near the turbulence kinetic energy peak in the near wall region, where particles preferentially accumulate. Moreover, the elongated shape of ellipsoids strengthens the turbulence attenuation. In simulations with ellipsoidal particles, the fluid-particle interactions strongly depend on the orientation of the ellipsoids. In the near wall region, ellipsoids tend to align predominantly within the streamwise (x) and wall-normal (y) planes and perpendicular to the span-wise direction, whereas no preferential orientation in the central region of the channel is observed. Important conclusions from this work include the effective viscosity of the flow is not affected, the direct dissipation by the particles is negligible, and the primary mechanism by which the particles affect the flow is by altering the turbulence structure around the turbulence kinetic energy peak.« less

  4. Dynamics of anisotropic particles under waves

    NASA Astrophysics Data System (ADS)

    Dibenedetto, Michelle; Ouellette, Nicholas; Koseff, Jeffrey

    2017-11-01

    We present results on anisotropic particles in wavy flows in order to gain insight into the transport and mixing of microplastic particles in the near-shore environment. From theory and numerical simulations, we find that the rate of alignment of the particles is not constant and depends strongly on their initial orientation; thus, variations in initial particle orientation result in dispersion of anisotropic-particle plumes. We find that this dispersion is a function of the particle's eccentricity and the ratio of the settling and wave time scales. Experiments in which non-spherical particles of various shapes are released under surface gravity waves were also performed. Our main goal is to explore the effects of particle shape under various wave scenarios. We vary the aspect ratio of the particle in our experiments while holding other variables constant. Our results demonstrate that particle shape can be important when predicting transport.

  5. A point particle model of lightly bound skyrmions

    NASA Astrophysics Data System (ADS)

    Gillard, Mike; Harland, Derek; Kirk, Elliot; Maybee, Ben; Speight, Martin

    2017-04-01

    A simple model of the dynamics of lightly bound skyrmions is developed in which skyrmions are replaced by point particles, each carrying an internal orientation. The model accounts well for the static energy minimizers of baryon number 1 ≤ B ≤ 8 obtained by numerical simulation of the full field theory. For 9 ≤ B ≤ 23, a large number of static solutions of the point particle model are found, all closely resembling size B subsets of a face centred cubic lattice, with the particle orientations dictated by a simple colouring rule. Rigid body quantization of these solutions is performed, and the spin and isospin of the corresponding ground states extracted. As part of the quantization scheme, an algorithm to compute the symmetry group of an oriented point cloud, and to determine its corresponding Finkelstein-Rubinstein constraints, is devised.

  6. Development of a Dynamically Configurable,Object-Oriented Framework for Distributed, Multi-modal Computational Aerospace Systems Simulation

    NASA Technical Reports Server (NTRS)

    Afjeh, Abdollah A.; Reed, John A.

    2003-01-01

    This research is aimed at developing a neiv and advanced simulation framework that will significantly improve the overall efficiency of aerospace systems design and development. This objective will be accomplished through an innovative integration of object-oriented and Web-based technologies ivith both new and proven simulation methodologies. The basic approach involves Ihree major areas of research: Aerospace system and component representation using a hierarchical object-oriented component model which enables the use of multimodels and enforces component interoperability. Collaborative software environment that streamlines the process of developing, sharing and integrating aerospace design and analysis models. . Development of a distributed infrastructure which enables Web-based exchange of models to simplify the collaborative design process, and to support computationally intensive aerospace design and analysis processes. Research for the first year dealt with the design of the basic architecture and supporting infrastructure, an initial implementation of that design, and a demonstration of its application to an example aircraft engine system simulation.

  7. Microstructural characterization of random packings of cubic particles

    PubMed Central

    Malmir, Hessam; Sahimi, Muhammad; Tabar, M. Reza Rahimi

    2016-01-01

    Understanding the properties of random packings of solid objects is of critical importance to a wide variety of fundamental scientific and practical problems. The great majority of the previous works focused, however, on packings of spherical and sphere-like particles. We report the first detailed simulation and characterization of packings of non-overlapping cubic particles. Such packings arise in a variety of problems, ranging from biological materials, to colloids and fabrication of porous scaffolds using salt powders. In addition, packing of cubic salt crystals arise in various problems involving preservation of pavements, paintings, and historical monuments, mineral-fluid interactions, CO2 sequestration in rock, and intrusion of groundwater aquifers by saline water. Not much is known, however, about the structure and statistical descriptors of such packings. We have developed a version of the random sequential addition algorithm to generate such packings, and have computed a variety of microstructural descriptors, including the radial distribution function, two-point probability function, orientational correlation function, specific surface, and mean chord length, and have studied the effect of finite system size and porosity on such characteristics. The results indicate the existence of both spatial and orientational long-range order in the packing, which is more distinctive for higher packing densities. The maximum packing fraction is about 0.57. PMID:27725736

  8. Microstructural characterization of random packings of cubic particles

    DOE PAGES

    Malmir, Hessam; Sahimi, Muhammad; Tabar, M. Reza Rahimi

    2016-10-11

    Understanding the properties of random packings of solid objects is of critical importance to a wide variety of fundamental scientific and practical problems. The great majority of the previous works focused, however, on packings of spherical and sphere-like particles. We report the first detailed simulation and characterization of packings of non-overlapping cubic particles. Such packings arise in a variety of problems, ranging from biological materials, to colloids and fabrication of porous scaffolds using salt powders. In addition, packing of cubic salt crystals arise in various problems involving preservation of pavements, paintings, and historical monuments, mineral-fluid interactions, CO 2 sequestration inmore » rock, and intrusion of groundwater aquifers by saline water. Not much is known, however, about the structure and statistical descriptors of such packings. We have developed a version of the random sequential addition algorithm to generate such packings, and have computed a variety of microstructural descriptors, including the radial distribution function, two-point probability function, orientational correlation function, specific surface, and mean chord length, and have studied the effect of finite system size and porosity on such characteristics. Here, the results indicate the existence of both spatial and orientational long-range order in the packing, which is more distinctive for higher packing densities.« less

  9. An Object-Oriented Finite Element Framework for Multiphysics Phase Field Simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Michael R Tonks; Derek R Gaston; Paul C Millett

    2012-01-01

    The phase field approach is a powerful and popular method for modeling microstructure evolution. In this work, advanced numerical tools are used to create a phase field framework that facilitates rapid model development. This framework, called MARMOT, is based on Idaho National Laboratory's finite element Multiphysics Object-Oriented Simulation Environment. In MARMOT, the system of phase field partial differential equations (PDEs) are solved simultaneously with PDEs describing additional physics, such as solid mechanics and heat conduction, using the Jacobian-Free Newton Krylov Method. An object-oriented architecture is created by taking advantage of commonalities in phase fields models to facilitate development of newmore » models with very little written code. In addition, MARMOT provides access to mesh and time step adaptivity, reducing the cost for performing simulations with large disparities in both spatial and temporal scales. In this work, phase separation simulations are used to show the numerical performance of MARMOT. Deformation-induced grain growth and void growth simulations are included to demonstrate the muliphysics capability.« less

  10. Implementation of an Object-Oriented Flight Simulator D.C. Electrical System on a Hypercube Architecture

    DTIC Science & Technology

    1991-12-01

    abstract data type is, what an object-oriented design is and how to apply "software engineering" principles to the design of both of them. I owe a great... Program (ASVP), a research and development effort by two aerospace contractors to redesign and implement subsets of two existing flight simulators in...effort addresses how to implement a simulator designed using the SEI OOD Paradigm on a distributed, parallel, multiple instruction, multiple data (MIMD

  11. Use of /sup 3/He/sup + +/ ICRF minority heating to simulate alpha particle heating

    DOEpatents

    Post, D.E. Jr.; Hwang, D.Q.; Hovey, J.

    1983-11-16

    It is an object of the present invention to provide a better understanding of alpha particle behavior in a magnetically confined, energetic plasma. Another object of the present invention is to provide an improved means and method for studying and measuring the energy distribution of heated alpha particles in a confined plasma. Yet another object of the present invention is to permit detailed analysis of energetic alpha particle behavior in a magnetically confined plasma for use in near term fusion reactor experiments. A still further object of the present invention is to simulate energetic alpha particle behavior in a deuterium-tritium plasma confined in a fusion reactor without producing the neutron activation associated with the thus produced alpha particles.

  12. Design of object-oriented distributed simulation classes

    NASA Technical Reports Server (NTRS)

    Schoeffler, James D. (Principal Investigator)

    1995-01-01

    Distributed simulation of aircraft engines as part of a computer aided design package is being developed by NASA Lewis Research Center for the aircraft industry. The project is called NPSS, an acronym for 'Numerical Propulsion Simulation System'. NPSS is a flexible object-oriented simulation of aircraft engines requiring high computing speed. It is desirable to run the simulation on a distributed computer system with multiple processors executing portions of the simulation in parallel. The purpose of this research was to investigate object-oriented structures such that individual objects could be distributed. The set of classes used in the simulation must be designed to facilitate parallel computation. Since the portions of the simulation carried out in parallel are not independent of one another, there is the need for communication among the parallel executing processors which in turn implies need for their synchronization. Communication and synchronization can lead to decreased throughput as parallel processors wait for data or synchronization signals from other processors. As a result of this research, the following have been accomplished. The design and implementation of a set of simulation classes which result in a distributed simulation control program have been completed. The design is based upon MIT 'Actor' model of a concurrent object and uses 'connectors' to structure dynamic connections between simulation components. Connectors may be dynamically created according to the distribution of objects among machines at execution time without any programming changes. Measurements of the basic performance have been carried out with the result that communication overhead of the distributed design is swamped by the computation time of modules unless modules have very short execution times per iteration or time step. An analytical performance model based upon queuing network theory has been designed and implemented. Its application to realistic configurations has not been carried out.

  13. Design of Object-Oriented Distributed Simulation Classes

    NASA Technical Reports Server (NTRS)

    Schoeffler, James D.

    1995-01-01

    Distributed simulation of aircraft engines as part of a computer aided design package being developed by NASA Lewis Research Center for the aircraft industry. The project is called NPSS, an acronym for "Numerical Propulsion Simulation System". NPSS is a flexible object-oriented simulation of aircraft engines requiring high computing speed. It is desirable to run the simulation on a distributed computer system with multiple processors executing portions of the simulation in parallel. The purpose of this research was to investigate object-oriented structures such that individual objects could be distributed. The set of classes used in the simulation must be designed to facilitate parallel computation. Since the portions of the simulation carried out in parallel are not independent of one another, there is the need for communication among the parallel executing processors which in turn implies need for their synchronization. Communication and synchronization can lead to decreased throughput as parallel processors wait for data or synchronization signals from other processors. As a result of this research, the following have been accomplished. The design and implementation of a set of simulation classes which result in a distributed simulation control program have been completed. The design is based upon MIT "Actor" model of a concurrent object and uses "connectors" to structure dynamic connections between simulation components. Connectors may be dynamically created according to the distribution of objects among machines at execution time without any programming changes. Measurements of the basic performance have been carried out with the result that communication overhead of the distributed design is swamped by the computation time of modules unless modules have very short execution times per iteration or time step. An analytical performance model based upon queuing network theory has been designed and implemented. Its application to realistic configurations has not been carried out.

  14. The effect of implied orientation derived from verbal context on picture recognition.

    PubMed

    Stanfield, R A; Zwaan, R A

    2001-03-01

    Perceptual symbol systems assume an analogue relationship between a symbol and its referent, whereas amodal symbol systems assume an arbitrary relationship between a symbol and its referent. According to perceptual symbol theories, the complete representation of an object, called a simulation, should reflect physical characteristics of the object. Amodal theories, in contrast, do not make this prediction. We tested the hypothesis, derived from perceptual symbol theories, that people mentally represent the orientation of an object implied by a verbal description. Orientation (vertical-horizontal) was manipulated by having participants read a sentence that implicitly suggested a particular orientation for an object. Then recognition latencies to pictures of the object in each of the two orientations were measured. Pictures matching the orientation of the object implied by the sentence were responded to faster than pictures that did not match the orientation. This finding is interpreted as offering support for theories positing perceptual symbol systems.

  15. UNIPIC code for simulations of high power microwave devices

    NASA Astrophysics Data System (ADS)

    Wang, Jianguo; Zhang, Dianhui; Liu, Chunliang; Li, Yongdong; Wang, Yue; Wang, Hongguang; Qiao, Hailiang; Li, Xiaoze

    2009-03-01

    In this paper, UNIPIC code, a new member in the family of fully electromagnetic particle-in-cell (PIC) codes for simulations of high power microwave (HPM) generation, is introduced. In the UNIPIC code, the electromagnetic fields are updated using the second-order, finite-difference time-domain (FDTD) method, and the particles are moved using the relativistic Newton-Lorentz force equation. The convolutional perfectly matched layer method is used to truncate the open boundaries of HPM devices. To model curved surfaces and avoid the time step reduction in the conformal-path FDTD method, CP weakly conditional-stable FDTD (WCS FDTD) method which combines the WCS FDTD and CP-FDTD methods, is implemented. UNIPIC is two-and-a-half dimensional, is written in the object-oriented C++ language, and can be run on a variety of platforms including WINDOWS, LINUX, and UNIX. Users can use the graphical user's interface to create the geometric structures of the simulated HPM devices, or input the old structures created before. Numerical experiments on some typical HPM devices by using the UNIPIC code are given. The results are compared to those obtained from some well-known PIC codes, which agree well with each other.

  16. PSYCHE: An Object-Oriented Approach to Simulating Medical Education

    PubMed Central

    Mullen, Jamie A.

    1990-01-01

    Traditional approaches to computer-assisted instruction (CAI) do not provide realistic simulations of medical education, in part because they do not utilize heterogeneous knowledge bases for their source of domain knowledge. PSYCHE, a CAI program designed to teach hypothetico-deductive psychiatric decision-making to medical students, uses an object-oriented implementation of an intelligent tutoring system (ITS) to model the student, domain expert, and tutor. It models the transactions between the participants in complex transaction chains, and uses heterogeneous knowledge bases to represent both domain and procedural knowledge in clinical medicine. This object-oriented approach is a flexible and dynamic approach to modeling, and represents a potentially valuable tool for the investigation of medical education and decision-making.

  17. Towards a general object-oriented software development methodology

    NASA Technical Reports Server (NTRS)

    Seidewitz, ED; Stark, Mike

    1986-01-01

    An object is an abstract software model of a problem domain entity. Objects are packages of both data and operations of that data (Goldberg 83, Booch 83). The Ada (tm) package construct is representative of this general notion of an object. Object-oriented design is the technique of using objects as the basic unit of modularity in systems design. The Software Engineering Laboratory at the Goddard Space Flight Center is currently involved in a pilot program to develop a flight dynamics simulator in Ada (approximately 40,000 statements) using object-oriented methods. Several authors have applied object-oriented concepts to Ada (e.g., Booch 83, Cherry 85). It was found that these methodologies are limited. As a result a more general approach was synthesized with allows a designer to apply powerful object-oriented principles to a wide range of applications and at all stages of design. An overview is provided of this approach. Further, how object-oriented design fits into the overall software life-cycle is considered.

  18. SIMOGEN - An Object-Oriented Language for Simulation

    DTIC Science & Technology

    1989-03-01

    program generator must also be written in the same prcgramming languaje . In this case, the C language was chosen, for the following main reasons...3), March 88. 4. PRESTO: A System for Object-Oriented Parallel Programing B N Bershad, E D Lazowska & H M Levy Software Practice and Experience, Vol...U.S. Depare nt of Defence ANSI/ML-STD 1815A. 7. Object-oriented Development Grady Booch Transactions on Software Engineering , February 86. 8. A

  19. GENASIS Basics: Object-oriented utilitarian functionality for large-scale physics simulations (Version 2)

    NASA Astrophysics Data System (ADS)

    Cardall, Christian Y.; Budiardja, Reuben D.

    2017-05-01

    GenASiS Basics provides Fortran 2003 classes furnishing extensible object-oriented utilitarian functionality for large-scale physics simulations on distributed memory supercomputers. This functionality includes physical units and constants; display to the screen or standard output device; message passing; I/O to disk; and runtime parameter management and usage statistics. This revision -Version 2 of Basics - makes mostly minor additions to functionality and includes some simplifying name changes.

  20. Modeling the arrangement of particles in natural swelling-clay porous media using three-dimensional packing of elliptic disks

    NASA Astrophysics Data System (ADS)

    Ferrage, Eric; Hubert, Fabien; Tertre, Emmanuel; Delville, Alfred; Michot, Laurent J.; Levitz, Pierre

    2015-06-01

    Swelling clay minerals play a key role in the control of water and pollutant migration in natural media such as soils. Moreover, swelling clay particles' orientational properties in porous media have significant implications for the directional dependence of fluid transfer. Herein we investigate the ability to mimic the organization of particles in natural swelling-clay porous media using a three-dimensional sequential particle deposition procedure [D. Coelho, J.-F. Thovert, and P. M. Adler, Phys. Rev. E 55, 1959 (1997), 10.1103/PhysRevE.55.1959]. The algorithm considered is first used to simulate disk packings. Porosities of disk packings fall onto a single master curve when plotted against the orientational scalar order parameter value. This relation is used to validate the algorithm used in comparison with existing ones. The ellipticity degree of the particles is shown to have a negligible effect on the packing porosity for ratios ℓa/ℓb less than 1.5, whereas a significant increase in porosity is obtained for higher values. The effect of the distribution of the geometrical parameters (size, aspect ratio, and ellipticity degree) of particles on the final packing properties is also investigated. Finally, the algorithm is used to simulate particle packings for three size fractions of natural swelling-clay mineral powders. Calculated data regarding the distribution of the geometrical parameters and orientation of particles in porous media are successfully compared with experimental data obtained for the same samples. The results indicate that the obtained virtual porous media can be considered representative of natural samples and can be used to extract properties difficult to obtain experimentally, such as the anisotropic features of pore and solid phases in a system.

  1. A Hybrid Parachute Simulation Environment for the Orion Parachute Development Project

    NASA Technical Reports Server (NTRS)

    Moore, James W.

    2011-01-01

    A parachute simulation environment (PSE) has been developed that aims to take advantage of legacy parachute simulation codes and modern object-oriented programming techniques. This hybrid simulation environment provides the parachute analyst with a natural and intuitive way to construct simulation tasks while preserving the pedigree and authority of established parachute simulations. NASA currently employs four simulation tools for developing and analyzing air-drop tests performed by the CEV Parachute Assembly System (CPAS) Project. These tools were developed at different times, in different languages, and with different capabilities in mind. As a result, each tool has a distinct interface and set of inputs and outputs. However, regardless of the simulation code that is most appropriate for the type of test, engineers typically perform similar tasks for each drop test such as prediction of loads, assessment of altitude, and sequencing of disreefs or cut-aways. An object-oriented approach to simulation configuration allows the analyst to choose models of real physical test articles (parachutes, vehicles, etc.) and sequence them to achieve the desired test conditions. Once configured, these objects are translated into traditional input lists and processed by the legacy simulation codes. This approach minimizes the number of sim inputs that the engineer must track while configuring an input file. An object oriented approach to simulation output allows a common set of post-processing functions to perform routine tasks such as plotting and timeline generation with minimal sensitivity to the simulation that generated the data. Flight test data may also be translated into the common output class to simplify test reconstruction and analysis.

  2. Robotic virtual reality simulation plus standard robotic orientation versus standard robotic orientation alone: a randomized controlled trial.

    PubMed

    Vaccaro, Christine M; Crisp, Catrina C; Fellner, Angela N; Jackson, Christopher; Kleeman, Steven D; Pavelka, James

    2013-01-01

    The objective of this study was to compare the effect of virtual reality simulation training plus robotic orientation versus robotic orientation alone on performance of surgical tasks using an inanimate model. Surgical resident physicians were enrolled in this assessor-blinded randomized controlled trial. Residents were randomized to receive either (1) robotic virtual reality simulation training plus standard robotic orientation or (2) standard robotic orientation alone. Performance of surgical tasks was assessed at baseline and after the intervention. Nine of 33 modules from the da Vinci Skills Simulator were chosen. Experts in robotic surgery evaluated each resident's videotaped performance of the inanimate model using the Global Rating Scale (GRS) and Objective Structured Assessment of Technical Skills-modified for robotic-assisted surgery (rOSATS). Nine resident physicians were enrolled in the simulation group and 9 in the control group. As a whole, participants improved their total time, time to incision, and suture time from baseline to repeat testing on the inanimate model (P = 0.001, 0.003, <0.001, respectively). Both groups improved their GRS and rOSATS scores significantly (both P < 0.001); however, the GRS overall pass rate was higher in the simulation group compared with the control group (89% vs 44%, P = 0.066). Standard robotic orientation and/or robotic virtual reality simulation improve surgical skills on an inanimate model, although this may be a function of the initial "practice" on the inanimate model and repeat testing of a known task. However, robotic virtual reality simulation training increases GRS pass rates consistent with improved robotic technical skills learned in a virtual reality environment.

  3. MODELING DISPERSANT INTERACTIONS WITH OIL SPILLS

    EPA Science Inventory

    EPA is developing a model called the EPA Research Object-Oriented Oil Spill Model (ERO3S) and associated databases to simulate the impacts of dispersants on oil slicks. Because there are features of oil slicks that align naturally with major concepts of object-oriented programmi...

  4. Viscosity of dilute suspensions of rodlike particles: A numerical simulation method

    NASA Astrophysics Data System (ADS)

    Yamamoto, Satoru; Matsuoka, Takaaki

    1994-02-01

    The recently developed simulation method, named as the particle simulation method (PSM), is extended to predict the viscosity of dilute suspensions of rodlike particles. In this method a rodlike particle is modeled by bonded spheres. Each bond has three types of springs for stretching, bending, and twisting deformation. The rod model can therefore deform by changing the bond distance, bond angle, and torsion angle between paired spheres. The rod model can represent a variety of rigidity by modifying the bond parameters related to Young's modulus and the shear modulus of the real particle. The time evolution of each constituent sphere of the rod model is followed by molecular-dynamics-type approach. The intrinsic viscosity of a suspension of rodlike particles is derived from calculating an increased energy dissipation for each sphere of the rod model in a viscous fluid. With and without deformation of the particle, the motion of the rodlike particle was numerically simulated in a three-dimensional simple shear flow at a low particle Reynolds number and without Brownian motion of particles. The intrinsic viscosity of the suspension of rodlike particles was investigated on orientation angle, rotation orbit, deformation, and aspect ratio of the particle. For the rigid rodlike particle, the simulated rotation orbit compared extremely well with theoretical one which was obtained for a rigid ellipsoidal particle by use of Jeffery's equation. The simulated dependence of the intrinsic viscosity on various factors was also identical with that of theories for suspensions of rigid rodlike particles. For the flexible rodlike particle, the rotation orbit could be obtained by the particle simulation method and it was also cleared that the intrinsic viscosity decreased as occurring of recoverable deformation of the rodlike particle induced by flow.

  5. Language comprehenders retain implied shape and orientation of objects.

    PubMed

    Pecher, Diane; van Dantzig, Saskia; Zwaan, Rolf A; Zeelenberg, René

    2009-06-01

    According to theories of embodied cognition, language comprehenders simulate sensorimotor experiences to represent the meaning of what they read. Previous studies have shown that picture recognition is better if the object in the picture matches the orientation or shape implied by a preceding sentence. In order to test whether strategic imagery may explain previous findings, language comprehenders first read a list of sentences in which objects were mentioned. Only once the complete list had been read was recognition memory tested with pictures. Recognition performance was better if the orientation or shape of the object matched that implied by the sentence, both immediately after reading the complete list of sentences and after a 45-min delay. These results suggest that previously found match effects were not due to strategic imagery and show that details of sensorimotor simulations are retained over longer periods.

  6. Effect of Coulomb friction on orientational correlation and velocity distribution functions in a sheared dilute granular gas.

    PubMed

    Gayen, Bishakhdatta; Alam, Meheboob

    2011-08-01

    From particle simulations of a sheared frictional granular gas, we show that the Coulomb friction can have dramatic effects on orientational correlation as well as on both the translational and angular velocity distribution functions even in the Boltzmann (dilute) limit. The dependence of orientational correlation on friction coefficient (μ) is found to be nonmonotonic, and the Coulomb friction plays a dual role of enhancing or diminishing the orientational correlation, depending on the value of the tangential restitution coefficient (which characterizes the roughness of particles). From the sticking limit (i.e., with no sliding contact) of rough particles, decreasing the Coulomb friction is found to reduce the density and spatial velocity correlations which, together with diminished orientational correlation for small enough μ, are responsible for the transition from non-gaussian to gaussian distribution functions in the double limit of small friction (μ→0) and nearly elastic particles (e→1). This double limit in fact corresponds to perfectly smooth particles, and hence the maxwellian (gaussian) is indeed a solution of the Boltzmann equation for a frictional granular gas in the limit of elastic collisions and zero Coulomb friction at any roughness. The high-velocity tails of both distribution functions seem to follow stretched exponentials even in the presence of Coulomb friction, and the related velocity exponents deviate strongly from a gaussian with increasing friction.

  7. Towards a general object-oriented software development methodology

    NASA Technical Reports Server (NTRS)

    Seidewitz, ED; Stark, Mike

    1986-01-01

    Object diagrams were used to design a 5000 statement team training exercise and to design the entire dynamics simulator. The object diagrams are also being used to design another 50,000 statement Ada system and a personal computer based system that will be written in Modula II. The design methodology evolves out of these experiences as well as the limitations of other methods that were studied. Object diagrams, abstraction analysis, and associated principles provide a unified framework which encompasses concepts from Yourdin, Booch, and Cherry. This general object-oriented approach handles high level system design, possibly with concurrency, through object-oriented decomposition down to a completely functional level. How object-oriented concepts can be used in other phases of the software life-cycle, such as specification and testing is being studied concurrently.

  8. Relationship between saccadic eye movements and formation of the Krukenberg's spindle-a CFD study.

    PubMed

    Boushehrian, Hamidreza Hajiani; Abouali, Omid; Jafarpur, Khosrow; Ghaffarieh, Alireza; Ahmadi, Goodarz

    2017-09-01

    In this research, a series of numerical simulations for evaluating the effects of saccadic eye movement on the aqueous humour (AH) flow field and movement of pigment particles in the anterior chamber (AC) was performed. To predict the flow field of AH in the AC, the unsteady forms of continuity, momentum balance and conservation of energy equations were solved using the dynamic mesh technique for simulating the saccadic motions. Different orientations of the human eye including horizontal, vertical and angles of 10° and 20° were considered. The Lagrangian particle trajectory analysis approach was used to find the trajectories of pigment particles in the eye. Particular attention was given to the relation between the saccadic eye movement and potential formation of Krukenberg's spindle in the eye. The simulation results revealed that the natural convection flow was an effective mechanism for transferring pigment particles from the iris to near the cornea. In addition, the saccadic eye movement was the dominant mechanism for deposition of pigment particles on the cornea, which could lead to the formation of Krukenberg's spindle. The effect of amplitude of saccade motion angle in addition to the orientation of the eye on the formation of Krukenberg's spindle was investigated. © The authors 2016. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved.

  9. SciDAC Center for Gyrokinetic Particle Simulation of Turbulent Transport in Burning Plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Zhihong

    2013-12-18

    During the first year of the SciDAC gyrokinetic particle simulation (GPS) project, the GPS team (Zhihong Lin, Liu Chen, Yasutaro Nishimura, and Igor Holod) at the University of California, Irvine (UCI) studied the tokamak electron transport driven by electron temperature gradient (ETG) turbulence, and by trapped electron mode (TEM) turbulence and ion temperature gradient (ITG) turbulence with kinetic electron effects, extended our studies of ITG turbulence spreading to core-edge coupling. We have developed and optimized an elliptic solver using finite element method (FEM), which enables the implementation of advanced kinetic electron models (split-weight scheme and hybrid model) in the SciDACmore » GPS production code GTC. The GTC code has been ported and optimized on both scalar and vector parallel computer architectures, and is being transformed into objected-oriented style to facilitate collaborative code development. During this period, the UCI team members presented 11 invited talks at major national and international conferences, published 22 papers in peer-reviewed journals and 10 papers in conference proceedings. The UCI hosted the annual SciDAC Workshop on Plasma Turbulence sponsored by the GPS Center, 2005-2007. The workshop was attended by about fifties US and foreign researchers and financially sponsored several gradual students from MIT, Princeton University, Germany, Switzerland, and Finland. A new SciDAC postdoc, Igor Holod, has arrived at UCI to initiate global particle simulation of magnetohydrodynamics turbulence driven by energetic particle modes. The PI, Z. Lin, has been promoted to the Associate Professor with tenure at UCI.« less

  10. Advances in associated-particle neutron probe diagnostics for substance detection

    NASA Astrophysics Data System (ADS)

    Rhodes, Edgar A.; Dickerman, Charles E.; Frey, Manfred

    1995-09-01

    The development and investigation of a small associated-particle sealed-tube neutron generator (APSTNG) shows potential to allow the associated-particle diagnostic method to be moved out of the laboratory into field applications. The APSTNG interrogates the inspected object with 14-MeV neutrons generated from the deuterium-tritium reaction and detects the alpha-particle associated with each neutron inside a cone encompassing the region of interest. Gamma-ray spectra of resulting neutron reactions identify many nuclides. Flight-times determined from detection times of the gamma-rays and alpha-particles can yield a separate course tomographic image of each identified nuclide, from a single orientation. Chemical substances are identified by comparing relative spectral line intensities with ratios of elements in reference compounds. The high-energy neutrons and gamma-rays penetrate large objects and dense materials. Generally, no collimators or radiation shielding are needed. Proof-of-concept laboratory experiments have been successfully performed for simulated nuclear, chemical warfare, and conventional munitions. Most recently, inspection applications have been investigated for radioactive waste characterization, presence of cocaine in propane tanks, and uranium and plutonium smuggling. Based on lessons learned with the present APSTNG system, an advanced APSTNG tube (along with improved high voltage supply and control units) is being designed and fabricated that will be transportable and rugged, yield a substantial neutron output increase, and provide sufficiently improved lifetime to allow operation at more than an order of magnitude increase in neutron flux.

  11. GenASiS Basics: Object-oriented utilitarian functionality for large-scale physics simulations

    DOE PAGES

    Cardall, Christian Y.; Budiardja, Reuben D.

    2015-06-11

    Aside from numerical algorithms and problem setup, large-scale physics simulations on distributed-memory supercomputers require more basic utilitarian functionality, such as physical units and constants; display to the screen or standard output device; message passing; I/O to disk; and runtime parameter management and usage statistics. Here we describe and make available Fortran 2003 classes furnishing extensible object-oriented implementations of this sort of rudimentary functionality, along with individual `unit test' programs and larger example problems demonstrating their use. Lastly, these classes compose the Basics division of our developing astrophysics simulation code GenASiS (General Astrophysical Simulation System), but their fundamental nature makes themmore » useful for physics simulations in many fields.« less

  12. Interplay between spherical confinement and particle shape on the self-assembly of rounded cubes.

    PubMed

    Wang, Da; Hermes, Michiel; Kotni, Ramakrishna; Wu, Yaoting; Tasios, Nikos; Liu, Yang; de Nijs, Bart; van der Wee, Ernest B; Murray, Christopher B; Dijkstra, Marjolein; van Blaaderen, Alfons

    2018-06-08

    Self-assembly of nanoparticles (NPs) inside drying emulsion droplets provides a general strategy for hierarchical structuring of matter at different length scales. The local orientation of neighboring crystalline NPs can be crucial to optimize for instance the optical and electronic properties of the self-assembled superstructures. By integrating experiments and computer simulations, we demonstrate that the orientational correlations of cubic NPs inside drying emulsion droplets are significantly determined by their flat faces. We analyze the rich interplay of positional and orientational order as the particle shape changes from a sharp cube to a rounded cube. Sharp cubes strongly align to form simple-cubic superstructures whereas rounded cubes assemble into icosahedral clusters with additionally strong local orientational correlations. This demonstrates that the interplay between packing, confinement and shape can be utilized to develop new materials with novel properties.

  13. SIMSAT: An object oriented architecture for real-time satellite simulation

    NASA Technical Reports Server (NTRS)

    Williams, Adam P.

    1993-01-01

    Real-time satellite simulators are vital tools in the support of satellite missions. They are used in the testing of ground control systems, the training of operators, the validation of operational procedures, and the development of contingency plans. The simulators must provide high-fidelity modeling of the satellite, which requires detailed system information, much of which is not available until relatively near launch. The short time-scales and resulting high productivity required of such simulator developments culminates in the need for a reusable infrastructure which can be used as a basis for each simulator. This paper describes a major new simulation infrastructure package, the Software Infrastructure for Modelling Satellites (SIMSAT). It outlines the object oriented design methodology used, describes the resulting design, and discusses the advantages and disadvantages experienced in applying the methodology.

  14. 3D modelling of the flow of self-compacting concrete with or without steel fibres. Part II: L-box test and the assessment of fibre reorientation during the flow

    NASA Astrophysics Data System (ADS)

    Deeb, R.; Kulasegaram, S.; Karihaloo, B. L.

    2014-12-01

    The three-dimensional Lagrangian particle-based smooth particle hydrodynamics method described in Part I of this two-part paper is used to simulate the flow of self-compacting concrete (SCC) with and without steel fibres in the L-box configuration. As in Part I, the simulation of the SCC mixes without fibres emphasises the distribution of large aggregate particles of different sizes throughout the flow, whereas the simulation of high strength SCC mixes which contain steel fibres is focused on the distribution of fibres and their orientation during the flow. The capabilities of this methodology are validated by comparing the simulation results with the L-box test carried out in the laboratory. A simple method is developed to assess the reorientation and distribution of short steel fibres in self-compacting concrete mixes during the flow. The reorientation of the fibres during the flow is used to estimate the fibre orientation factor (FOF) in a cross section perpendicular to the principal direction of flow. This estimation procedure involves the number of fibres cut by the section and their inclination to the cutting plane. This is useful to determine the FOF in practical image analysis on cut sections.

  15. An object-oriented computational model to study cardiopulmonary hemodynamic interactions in humans.

    PubMed

    Ngo, Chuong; Dahlmanns, Stephan; Vollmer, Thomas; Misgeld, Berno; Leonhardt, Steffen

    2018-06-01

    This work introduces an object-oriented computational model to study cardiopulmonary interactions in humans. Modeling was performed in object-oriented programing language Matlab Simscape, where model components are connected with each other through physical connections. Constitutive and phenomenological equations of model elements are implemented based on their non-linear pressure-volume or pressure-flow relationship. The model includes more than 30 physiological compartments, which belong either to the cardiovascular or respiratory system. The model considers non-linear behaviors of veins, pulmonary capillaries, collapsible airways, alveoli, and the chest wall. Model parameters were derisved based on literature values. Model validation was performed by comparing simulation results with clinical and animal data reported in literature. The model is able to provide quantitative values of alveolar, pleural, interstitial, aortic and ventricular pressures, as well as heart and lung volumes during spontaneous breathing and mechanical ventilation. Results of baseline simulation demonstrate the consistency of the assigned parameters. Simulation results during mechanical ventilation with PEEP trials can be directly compared with animal and clinical data given in literature. Object-oriented programming languages can be used to model interconnected systems including model non-linearities. The model provides a useful tool to investigate cardiopulmonary activity during spontaneous breathing and mechanical ventilation. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Ordering of anisotropic nanoparticles in diblock copolymer lamellae: Simulations with dissipative particle dynamics and a molecular theory.

    PubMed

    Berezkin, Anatoly V; Kudryavtsev, Yaroslav V; Gorkunov, Maxim V; Osipov, Mikhail A

    2017-04-14

    Local distribution and orientation of anisotropic nanoparticles in microphase-separated symmetric diblock copolymers has been simulated using dissipative particle dynamics and analyzed with a molecular theory. It has been demonstrated that nanoparticles are characterized by a non-trivial orientational ordering in the lamellar phase due to their anisotropic interactions with isotropic monomer units. In the simulations, the maximum concentration and degree of ordering are attained for non-selective nanorods near the domain boundary. In this case, the nanorods have a certain tendency to align parallel to the interface in the boundary region and perpendicular to it inside the domains. Similar orientation ordering of nanoparticles located at the lamellar interface is predicted by the molecular theory which takes into account that the nanoparticles interact with monomer units via both isotropic and anisotropic potentials. Computer simulations enable one to study the effects of the nanorod concentration, length, stiffness, and selectivity of their interactions with the copolymer components on the phase stability and orientational order of nanoparticles. If the volume fraction of the nanorods is lower than 0.1, they have no effect on the copolymer transition from the disordered state into a lamellar microstructure. Increasing nanorod concentration or nanorod length results in clustering of the nanorods and eventually leads to a macrophase separation, whereas the copolymer preserves its lamellar morphology. Segregated nanorods of length close to the width of the diblock copolymer domains are stacked side by side into smectic layers that fill the domain space. Thus, spontaneous organization and orientation of nanorods leads to a spatial modulation of anisotropic composite properties which may be important for various applications.

  17. Ordering of anisotropic nanoparticles in diblock copolymer lamellae: Simulations with dissipative particle dynamics and a molecular theory

    NASA Astrophysics Data System (ADS)

    Berezkin, Anatoly V.; Kudryavtsev, Yaroslav V.; Gorkunov, Maxim V.; Osipov, Mikhail A.

    2017-04-01

    Local distribution and orientation of anisotropic nanoparticles in microphase-separated symmetric diblock copolymers has been simulated using dissipative particle dynamics and analyzed with a molecular theory. It has been demonstrated that nanoparticles are characterized by a non-trivial orientational ordering in the lamellar phase due to their anisotropic interactions with isotropic monomer units. In the simulations, the maximum concentration and degree of ordering are attained for non-selective nanorods near the domain boundary. In this case, the nanorods have a certain tendency to align parallel to the interface in the boundary region and perpendicular to it inside the domains. Similar orientation ordering of nanoparticles located at the lamellar interface is predicted by the molecular theory which takes into account that the nanoparticles interact with monomer units via both isotropic and anisotropic potentials. Computer simulations enable one to study the effects of the nanorod concentration, length, stiffness, and selectivity of their interactions with the copolymer components on the phase stability and orientational order of nanoparticles. If the volume fraction of the nanorods is lower than 0.1, they have no effect on the copolymer transition from the disordered state into a lamellar microstructure. Increasing nanorod concentration or nanorod length results in clustering of the nanorods and eventually leads to a macrophase separation, whereas the copolymer preserves its lamellar morphology. Segregated nanorods of length close to the width of the diblock copolymer domains are stacked side by side into smectic layers that fill the domain space. Thus, spontaneous organization and orientation of nanorods leads to a spatial modulation of anisotropic composite properties which may be important for various applications.

  18. Self-induced polar order of active Brownian particles in a harmonic trap.

    PubMed

    Hennes, Marc; Wolff, Katrin; Stark, Holger

    2014-06-13

    Hydrodynamically interacting active particles in an external harmonic potential form a self-assembled fluid pump at large enough Péclet numbers. Here, we give a quantitative criterion for the formation of the pump and show that particle orientations align in the self-induced flow field in surprising analogy to ferromagnetic order where the active Péclet number plays the role of inverse temperature. The particle orientations follow a Boltzmann distribution Φ(p) ∼ exp(Ap(z)) where the ordering mean field A scales with the active Péclet number and polar order parameter. The mean flow field in which the particles' swimming directions align corresponds to a regularized Stokeslet with strength proportional to swimming speed. Analytic mean-field results are compared with results from Brownian dynamics simulations with hydrodynamic interactions included and are found to capture the self-induced alignment very well.

  19. Monte Carlo simulation of evaporation-driven self-assembly in suspensions of colloidal rods

    NASA Astrophysics Data System (ADS)

    Lebovka, Nikolai I.; Vygornitskii, Nikolai V.; Gigiberiya, Volodymyr A.; Tarasevich, Yuri Yu.

    2016-12-01

    The vertical drying of a colloidal film containing rodlike particles was studied by means of kinetic Monte Carlo (MC) simulation. The problem was approached using a two-dimensional square lattice, and the rods were represented as linear k -mers (i.e., particles occupying k adjacent sites). The initial state before drying was produced using a model of random sequential adsorption (RSA) with isotropic orientations of the k -mers (orientation of the k -mers along horizontal x and vertical y directions are equiprobable). In the RSA model, overlapping of the k -mers is forbidden. During the evaporation, an upper interface falls with a linear velocity of u in the vertical direction and the k -mers undergo translation Brownian motion. The MC simulations were run at different initial concentrations, pi, (pi∈[0 ,pj] , where pj is the jamming concentration), lengths of k -mers (k ∈[1 ,12 ] ), and solvent evaporation rates, u . For completely dried films, the spatial distributions of k -mers and their electrical conductivities in both x and y directions were examined. Significant evaporation-driven self-assembly and orientation stratification of the k -mers oriented along the x and y directions were observed. The extent of stratification increased with increasing value of k . The anisotropy of the electrical conductivity of the film can be finely regulated by changes in the values of pi, k , and u .

  20. The Self- and Directed Assembly of Nanowires

    NASA Astrophysics Data System (ADS)

    Smith, Benjamin David

    This thesis explores the self- and directed assembly of nanowires. Specifically, we examine the driving forces behind nanowire self-assembly and the macro-structures that are formed. Particle-dense, oriented nanowire structures show promise in the fields of photonics, energy, sensing, catalysis, and electronics. Arrays of spherical particles have already found uses in electronic inks, sensing arrays, and many other commercial applications; but, it is a challenge to create specific arrays of morphologically and/or compositionally anisotropic particles. The following chapters illuminate the interactions that drive the assembly of anisotropic particles in high density solutions in the absence of applied fields or solution drying. Special emphasis is placed on the structures that are formed. The properties of micro- and nanoparticles and their assembly are introduced in Chapter 1. In particular, the properties of shape and material anisotropic particles are highlighted, while challenges in producing desired arrays are discussed. In this thesis, metallic nanowires of increasing complexity were used to examine the self-assembly behavior of both shape and material anisotropic particles. Nanowires were synthesized through templated electrodeposition. In this process, porous alumina membranes served as a template in which metal salts were reduced to form particles. Upon template dissolution, billions of nominally identical particles were released. We specifically focused on segmented, metallic nanowires 2-13 mum in length and 180 to 350 nm in diameter. Since these particles have strong van der Waals (VDWs) attractions, an electrostatically repulsive coating was necessary to prevent aggregation; we used small molecule, DNA, or amorphous silica coatings. Nanowires and their coatings were characterized by electron microscopy. In order to study self-assembly behavior, particle-dense aqueous suspensions were placed within an assembly chamber defined by a silicone spacer. The nanowires rapidly sedimented due to gravity onto a glass cover slip to concentrate and form a dense film. Particles and assemblies were imaged using inverted optical microscopy. We quantitatively analyzed the images and movies captured in order to track and classify particles and classify the overall arrays formed. We then correlated how particle characteristics, e.g., materials, size, segmentation, etc. changed the ordering and alignment observed. With that knowledge, we hope to be able to form new and interesting structures. We began our studies by examining the assembly of single component nanowires. Chapter 2 describes this work, in which solid Au nanowires measuring 2-7 mum in length and 290 nm in diameter self-assembled into smectic rows. By both experiment and theory, we determined that these rows formed due to a balance of electrostatic repulsions and van der Waals attractions. Final assemblies were stable for at least several days. Monte Carlo methods were used to simulate assemblies and showed structures that mirrored those experimentally observed. Simulations indicated that the smectic phase was preferred over others, i.e., nematic, when an additional small charge was added to the ends of the nanowires. Our particles have rough tips, which might create these additional electrostatic repulsions. To increase the particle and array complexity, two-component, metallic nanowire assembly was explored in Chapter 3. We examined numerous types of nanowires by changing the segment length, ratio, and material, the nanowire length, the surface coating, and the presence of small third segments. These segmented nanowires were generally Au-Ag and also ordered into smectic rows. Segmented wires arranged in rows, however, can be aligned in two possible ways with respect to a neighboring particle. The Au segments on neighboring particles can be oriented in the same direction or opposed to each other. Orientation was quantified in terms of an order parameter that took into account alignment with respect to nearest neighbor particles. All experiments showed order parameters indicating a slight preference for orientational ordering that was relatively insensitive to segment size, nanowire size, and nanowire coating. Monte Carlo simulations pointed towards this alignment as a consequence of small differences in the van der Waals attractions between the segments. Experimentally, ordering might to be limited by the large size of the nanowires, which results in kinetically trapped structures. In an attempt to obtain better ordering within rows, silica coated nanowires with partial Au cores were made. The synthesis involved silica-coating the nanowires and selectively etching a Ag segment. These particles have extremely different VDWs attractions between their segments, as the Au cores are much more attractive than the solvent-filled etched ends. The assembly of these partially etched nanowires (PENs) is detailed in Chapters 4, 5, and 6. When allowed to self-assemble, we observed the formation of either vertically or horizontally oriented arrays depending on PEN composition. The formation of vertically oriented arrays of anisotropic particles is important, since not many methods to produce these structures are currently available for particles of this size. We examined the effects of PEN length, PEN diameter, and the size, number, and location of the core segments. Our findings showed a large etched segment at one end (which resulted in a large offset in the center of mass and concentrated the VDWs attractions to one end of the particle) resulted in the best columnar assemblies. These vertically orientated arrays formed in a two part process. First, after PENs sedimented, they fell flat and oriented parallel to the surface. These PENs then sampled many orientations, including rotating out of the surface plane. When higher surface concentrations of particles built as more PENs fell to the surface of the cover slip, neighboring particles stabilized vertical orientations. Second, particles fell oriented vertically and when the surface concentrations were high, they retained this orientation upon reaching the substrate. Since vertically aligned PENs supported each other, assembly into vertical arrays was highly dependent on the surface concentration. But, oriented arrays could be easily formed on larger or smaller substrates, provided a particle concentration scaled to the substrate were used. The mixing of these particles to form heterogeneous arrays was examined. The overall array structure favored that of particles which sedimented more quickly and/or were present in higher amounts. The semi-automated counting of PENs in images by software is used heavily in Chapters 4 and 5. Appendix A describes the use, development, and validation of macros within Image-Pro. The structure, syntax, and use are specifically examined for three nanowire counting macros. The counting results; including: number of particles in an image, number of horizontally vs. vertically oriented PENs, and PENs in microwells; are compared with manual hand counts. Chapter 7 examines the overall conclusions and future directions for this research. By combining our assembly techniques with known directing forces (e.g., electric or magnetic fields) more specific alignment and/or positioning could be achieved. We have also begun to explore directing assembly through lithographic microwells. Further work needs to explore the integration of arrays into devices and the use of functional materials. Then, high density, oriented arrays could be created for photonic, energy, sensing, catalytic, and electronic applications.

  1. Status and future plans for open source QuickPIC

    NASA Astrophysics Data System (ADS)

    An, Weiming; Decyk, Viktor; Mori, Warren

    2017-10-01

    QuickPIC is a three dimensional (3D) quasi-static particle-in-cell (PIC) code developed based on the UPIC framework. It can be used for efficiently modeling plasma based accelerator (PBA) problems. With quasi-static approximation, QuickPIC can use different time scales for calculating the beam (or laser) evolution and the plasma response, and a 3D plasma wake field can be simulated using a two-dimensional (2D) PIC code where the time variable is ξ = ct - z and z is the beam propagation direction. QuickPIC can be thousand times faster than the normal PIC code when simulating the PBA. It uses an MPI/OpenMP hybrid parallel algorithm, which can be run on either a laptop or the largest supercomputer. The open source QuickPIC is an object-oriented program with high level classes written in Fortran 2003. It can be found at https://github.com/UCLA-Plasma-Simulation-Group/QuickPIC-OpenSource.git

  2. MDAnalysis: a toolkit for the analysis of molecular dynamics simulations.

    PubMed

    Michaud-Agrawal, Naveen; Denning, Elizabeth J; Woolf, Thomas B; Beckstein, Oliver

    2011-07-30

    MDAnalysis is an object-oriented library for structural and temporal analysis of molecular dynamics (MD) simulation trajectories and individual protein structures. It is written in the Python language with some performance-critical code in C. It uses the powerful NumPy package to expose trajectory data as fast and efficient NumPy arrays. It has been tested on systems of millions of particles. Many common file formats of simulation packages including CHARMM, Gromacs, Amber, and NAMD and the Protein Data Bank format can be read and written. Atoms can be selected with a syntax similar to CHARMM's powerful selection commands. MDAnalysis enables both novice and experienced programmers to rapidly write their own analytical tools and access data stored in trajectories in an easily accessible manner that facilitates interactive explorative analysis. MDAnalysis has been tested on and works for most Unix-based platforms such as Linux and Mac OS X. It is freely available under the GNU General Public License from http://mdanalysis.googlecode.com. Copyright © 2011 Wiley Periodicals, Inc.

  3. Computational Fluid Dynamics Investigation of Human Aspiration in Low Velocity Air: Orientation Effects on Nose-Breathing Simulations

    PubMed Central

    Anderson, Kimberly R.; Anthony, T. Renée

    2014-01-01

    An understanding of how particles are inhaled into the human nose is important for developing samplers that measure biologically relevant estimates of exposure in the workplace. While previous computational mouth-breathing investigations of particle aspiration have been conducted in slow moving air, nose breathing still required exploration. Computational fluid dynamics was used to estimate nasal aspiration efficiency for an inhaling humanoid form in low velocity wind speeds (0.1–0.4 m s−1). Breathing was simplified as continuous inhalation through the nose. Fluid flow and particle trajectories were simulated over seven discrete orientations relative to the oncoming wind (0, 15, 30, 60, 90, 135, 180°). Sensitivities of the model simplification and methods were assessed, particularly the placement of the recessed nostril surface and the size of the nose. Simulations identified higher aspiration (13% on average) when compared to published experimental wind tunnel data. Significant differences in aspiration were identified between nose geometry, with the smaller nose aspirating an average of 8.6% more than the larger nose. Differences in fluid flow solution methods accounted for 2% average differences, on the order of methodological uncertainty. Similar trends to mouth-breathing simulations were observed including increasing aspiration efficiency with decreasing freestream velocity and decreasing aspiration with increasing rotation away from the oncoming wind. These models indicate nasal aspiration in slow moving air occurs only for particles <100 µm. PMID:24665111

  4. Tomographic active optical trapping of arbitrarily shaped objects by exploiting 3D refractive index maps

    NASA Astrophysics Data System (ADS)

    Kim, Kyoohyun; Park, Yongkeun

    2017-05-01

    Optical trapping can manipulate the three-dimensional (3D) motion of spherical particles based on the simple prediction of optical forces and the responding motion of samples. However, controlling the 3D behaviour of non-spherical particles with arbitrary orientations is extremely challenging, due to experimental difficulties and extensive computations. Here, we achieve the real-time optical control of arbitrarily shaped particles by combining the wavefront shaping of a trapping beam and measurements of the 3D refractive index distribution of samples. Engineering the 3D light field distribution of a trapping beam based on the measured 3D refractive index map of samples generates a light mould, which can manipulate colloidal and biological samples with arbitrary orientations and/or shapes. The present method provides stable control of the orientation and assembly of arbitrarily shaped particles without knowing a priori information about the sample geometry. The proposed method can be directly applied in biophotonics and soft matter physics.

  5. Applicability of effective pair potentials for active Brownian particles.

    PubMed

    Rein, Markus; Speck, Thomas

    2016-09-01

    We have performed a case study investigating a recently proposed scheme to obtain an effective pair potential for active Brownian particles (Farage et al., Phys. Rev. E 91, 042310 (2015)). Applying this scheme to the Lennard-Jones potential, numerical simulations of active Brownian particles are compared to simulations of passive Brownian particles interacting by the effective pair potential. Analyzing the static pair correlations, our results indicate a limited range of activity parameters (speed and orientational correlation time) for which we obtain quantitative, or even qualitative, agreement. Moreover, we find a qualitatively different behavior for the virial pressure even for small propulsion speeds. Combining these findings we conclude that beyond linear response active particles exhibit genuine non-equilibrium properties that cannot be captured by effective pair interaction alone.

  6. Object-oriented approach for gas turbine engine simulation

    NASA Technical Reports Server (NTRS)

    Curlett, Brian P.; Felder, James L.

    1995-01-01

    An object-oriented gas turbine engine simulation program was developed. This program is a prototype for a more complete, commercial grade engine performance program now being proposed as part of the Numerical Propulsion System Simulator (NPSS). This report discusses architectural issues of this complex software system and the lessons learned from developing the prototype code. The prototype code is a fully functional, general purpose engine simulation program, however, only the component models necessary to model a transient compressor test rig have been written. The production system will be capable of steady state and transient modeling of almost any turbine engine configuration. Chief among the architectural considerations for this code was the framework in which the various software modules will interact. These modules include the equation solver, simulation code, data model, event handler, and user interface. Also documented in this report is the component based design of the simulation module and the inter-component communication paradigm. Object class hierarchies for some of the code modules are given.

  7. Generation of dense granular deposits for porosity analysis: assessment and application of large-scale non-smooth granular dynamics

    NASA Astrophysics Data System (ADS)

    Schruff, T.; Liang, R.; Rüde, U.; Schüttrumpf, H.; Frings, R. M.

    2018-01-01

    The knowledge of structural properties of granular materials such as porosity is highly important in many application-oriented and scientific fields. In this paper we present new results of computer-based packing simulations where we use the non-smooth granular dynamics (NSGD) method to simulate gravitational random dense packing of spherical particles with various particle size distributions and two types of depositional conditions. A bin packing scenario was used to compare simulation results to laboratory porosity measurements and to quantify the sensitivity of the NSGD regarding critical simulation parameters such as time step size. The results of the bin packing simulations agree well with laboratory measurements across all particle size distributions with all absolute errors below 1%. A large-scale packing scenario with periodic side walls was used to simulate the packing of up to 855,600 spherical particles with various particle size distributions (PSD). Simulation outcomes are used to quantify the effect of particle-domain-size ratio on the packing compaction. A simple correction model, based on the coordination number, is employed to compensate for this effect on the porosity and to determine the relationship between PSD and porosity. Promising accuracy and stability results paired with excellent computational performance recommend the application of NSGD for large-scale packing simulations, e.g. to further enhance the generation of representative granular deposits.

  8. Formation of collisionless shocks in magnetized plasma interaction with kinetic-scale obstacles

    DOE PAGES

    Cruz, F.; Alves, E. P.; Bamford, R. A.; ...

    2017-02-06

    We investigate the formation of collisionless magnetized shocks triggered by the interaction between magnetized plasma flows and miniature-sized (order of plasma kinetic-scales) magnetic obstacles resorting to massively parallel, full particle-in-cell simulations, including the electron kinetics. The critical obstacle size to generate a compressed plasma region ahead of these objects is determined by independently varying the magnitude of the dipolar magnetic moment and the plasma magnetization. Here we find that the effective size of the obstacle depends on the relative orientation between the dipolar and plasma internal magnetic fields, and we show that this may be critical to form a shockmore » in small-scale structures. We also study the microphysics of the magnetopause in different magnetic field configurations in 2D and compare the results with full 3D simulations. Finally, we evaluate the parameter range where such miniature magnetized shocks can be explored in laboratory experiments.« less

  9. Gaussian theory for spatially distributed self-propelled particles

    NASA Astrophysics Data System (ADS)

    Seyed-Allaei, Hamid; Schimansky-Geier, Lutz; Ejtehadi, Mohammad Reza

    2016-12-01

    Obtaining a reduced description with particle and momentum flux densities outgoing from the microscopic equations of motion of the particles requires approximations. The usual method, we refer to as truncation method, is to zero Fourier modes of the orientation distribution starting from a given number. Here we propose another method to derive continuum equations for interacting self-propelled particles. The derivation is based on a Gaussian approximation (GA) of the distribution of the direction of particles. First, by means of simulation of the microscopic model, we justify that the distribution of individual directions fits well to a wrapped Gaussian distribution. Second, we numerically integrate the continuum equations derived in the GA in order to compare with results of simulations. We obtain that the global polarization in the GA exhibits a hysteresis in dependence on the noise intensity. It shows qualitatively the same behavior as we find in particles simulations. Moreover, both global polarizations agree perfectly for low noise intensities. The spatiotemporal structures of the GA are also in agreement with simulations. We conclude that the GA shows qualitative agreement for a wide range of noise intensities. In particular, for low noise intensities the agreement with simulations is better as other approximations, making the GA to an acceptable candidates of describing spatially distributed self-propelled particles.

  10. Angular and velocity distributions of tungsten sputtered by low energy argon ions

    NASA Astrophysics Data System (ADS)

    Marenkov, E.; Nordlund, K.; Sorokin, I.; Eksaeva, A.; Gutorov, K.; Jussila, J.; Granberg, F.; Borodin, D.

    2017-12-01

    Sputtering by ions with low near-threshold energies is investigated. Experiments and simulations are conducted for tungsten sputtering by low-energy, 85-200 eV Ar atoms. The angular distributions of sputtered particles are measured. A new method for molecular dynamics simulation of sputtering taking into account random crystallographic surface orientation is developed, and applied for the case under consideration. The simulations approximate experimental results well. At low energies the distributions acquire "butterfly-like" shape with lower sputtering yields for close to normal angles comparing to the cosine distribution. The energy distributions of sputtered particles were simulated. The Thompson distribution remains valid down to near-threshold 85 eV case.

  11. The Microwave Properties of Simulated Melting Precipitation Particles: Sensitivity to Initial Melting

    NASA Technical Reports Server (NTRS)

    Johnson, B. T.; Olson, W. S.; Skofronick-Jackson, G.

    2016-01-01

    A simplified approach is presented for assessing the microwave response to the initial melting of realistically shaped ice particles. This paper is divided into two parts: (1) a description of the Single Particle Melting Model (SPMM), a heuristic melting simulation for ice-phase precipitation particles of any shape or size (SPMM is applied to two simulated aggregate snow particles, simulating melting up to 0.15 melt fraction by mass), and (2) the computation of the single-particle microwave scattering and extinction properties of these hydrometeors, using the discrete dipole approximation (via DDSCAT), at the following selected frequencies: 13.4, 35.6, and 94.0GHz for radar applications and 89, 165.0, and 183.31GHz for radiometer applications. These selected frequencies are consistent with current microwave remote-sensing platforms, such as CloudSat and the Global Precipitation Measurement (GPM) mission. Comparisons with calculations using variable-density spheres indicate significant deviations in scattering and extinction properties throughout the initial range of melting (liquid volume fractions less than 0.15). Integration of the single-particle properties over an exponential particle size distribution provides additional insight into idealized radar reflectivity and passive microwave brightness temperature sensitivity to variations in size/mass, shape, melt fraction, and particle orientation.

  12. Implementation of warm-cloud processes in a source-oriented WRF/Chem model to study the effect of aerosol mixing state on fog formation in the Central Valley of California

    NASA Astrophysics Data System (ADS)

    Lee, H.-H.; Chen, S.-H.; Kleeman, M. J.; Zhang, H.; DeNero, S. P.; Joe, D. K.

    2015-11-01

    The source-oriented Weather Research and Forecasting chemistry model (SOWC) was modified to include warm cloud processes and applied to investigate how aerosol mixing states influence fog formation and optical properties in the atmosphere. SOWC tracks a 6-dimensional chemical variable (X, Z, Y, Size Bins, Source Types, Species) through an explicit simulation of atmospheric chemistry and physics. A source-oriented cloud condensation nuclei module was implemented into the SOWC model to simulate warm clouds using the modified two-moment Purdue Lin microphysics scheme. The Goddard shortwave and longwave radiation schemes were modified to interact with source-oriented aerosols and cloud droplets so that aerosol direct and indirect effects could be studied. The enhanced SOWC model was applied to study a fog event that occurred on 17 January 2011, in the Central Valley of California. Tule fog occurred because an atmospheric river effectively advected high moisture into the Central Valley and nighttime drainage flow brought cold air from mountains into the valley. The SOWC model produced reasonable liquid water path, spatial distribution and duration of fog events. The inclusion of aerosol-radiation interaction only slightly modified simulation results since cloud optical thickness dominated the radiation budget in fog events. The source-oriented mixture representation of particles reduced cloud droplet number relative to the internal mixture approach that artificially coats hydrophobic particles with hygroscopic components. The fraction of aerosols activating into CCN at a supersaturation of 0.5 % in the Central Valley decreased from 94 % in the internal mixture model to 80 % in the source-oriented model. This increased surface energy flux by 3-5 W m-2 and surface temperature by as much as 0.25 K in the daytime.

  13. Influence of neighboring particles on the drag of a particle suspended in laminar flows

    NASA Astrophysics Data System (ADS)

    Roig, Adam Vincent

    Understanding particle-fluid flows is very important for the areas of sedimentation in river beds, fluidized bed reactors, and other fields of multiphase flow. The effect of one particle on another in a fluid flow is not very well understood nor does a correlation exist to describe the behavior of the drag coefficient between particles. The use of Proteus was validated by comparison to previous studies to the result obtained through simulations in Proteus, including analysis of the wake structure of a single sphere. Two particles were then analyzed for various Reynolds numbers less than 250 but greater than 5 and for the dimensionless gap of L/D ≥ 2, where L is the distance between the two particle centers and D is the diameter of the particles. Two arrangements were used for simulation, with the particles spaced horizontally or vertically within the fluid flow. Both orientations were evaluated for the effects of the dimensionless gap on the drag coefficient. The wake structure at higher Reynolds numbers were also evaluated for effects due to neighboring particles. A correlation was developed for the case of the horizontal particles at a dimensionless gap, L/D ≥ 2 for the range of Reynolds numbers described. The orientation effect is then studied at a fixed distance for offsets of thirty, forty-five and sixty degrees from the horizontal. Results are also presented to evaluate the effect of the diameter of a neighboring particle. The current results are restricted to the case described in the work. Future studies may build on the current work to extend the work to other effects of neighboring particles and multiple particle influence.

  14. Fast Particle Methods for Multiscale Phenomena Simulations

    NASA Technical Reports Server (NTRS)

    Koumoutsakos, P.; Wray, A.; Shariff, K.; Pohorille, Andrew

    2000-01-01

    We are developing particle methods oriented at improving computational modeling capabilities of multiscale physical phenomena in : (i) high Reynolds number unsteady vortical flows, (ii) particle laden and interfacial flows, (iii)molecular dynamics studies of nanoscale droplets and studies of the structure, functions, and evolution of the earliest living cell. The unifying computational approach involves particle methods implemented in parallel computer architectures. The inherent adaptivity, robustness and efficiency of particle methods makes them a multidisciplinary computational tool capable of bridging the gap of micro-scale and continuum flow simulations. Using efficient tree data structures, multipole expansion algorithms, and improved particle-grid interpolation, particle methods allow for simulations using millions of computational elements, making possible the resolution of a wide range of length and time scales of these important physical phenomena.The current challenges in these simulations are in : [i] the proper formulation of particle methods in the molecular and continuous level for the discretization of the governing equations [ii] the resolution of the wide range of time and length scales governing the phenomena under investigation. [iii] the minimization of numerical artifacts that may interfere with the physics of the systems under consideration. [iv] the parallelization of processes such as tree traversal and grid-particle interpolations We are conducting simulations using vortex methods, molecular dynamics and smooth particle hydrodynamics, exploiting their unifying concepts such as : the solution of the N-body problem in parallel computers, highly accurate particle-particle and grid-particle interpolations, parallel FFT's and the formulation of processes such as diffusion in the context of particle methods. This approach enables us to transcend among seemingly unrelated areas of research.

  15. Influence of particle arrangement on the permittivity of an elastomeric composite

    NASA Astrophysics Data System (ADS)

    Tsai, Peiying J.; Nayak, Suchitra; Ghosh, Suvojit; Puri, Ishwar K.

    2017-01-01

    Elastomers are used as dielectric layers contained between the parallel conductive plates of capacitors. The introduction of filler particles into an elastomer changes its permittivity ɛ. When particle organization in a composite is intentionally varied, this alters its capacitance. Using numerical simulations, we examine how conductive particle chains introduced into polydimethylsiloxane (PDMS) alter ɛ. The effects of filler volume fraction ψ, interparticle d and interchain spacing a, zigzag angle θ between adjacent particles and overall chain orientation, particle size r, and clearance h between particles and the conductive plates are characterized. When filler particles are organized into chainlike structures rather than being just randomly distributed in the elastomer matrix, ɛ increases by as much as 85%. When particles are organized into chainlike forms, ɛ increases with increasing ψ and a, but decreases with increasing d and θ. A composite containing smaller particles has a higher ɛ when ψ <9 % while larger particles provide greater enhancement when ψ is larger than that value. To enhance ɛ, adjacent particles must be interconnected and the overall chain direction should be oriented perpendicular to the conductive plates. These results are useful for additive manufacturing on electrical applications of elastomeric composites.

  16. EMEN2: An Object Oriented Database and Electronic Lab Notebook

    PubMed Central

    Rees, Ian; Langley, Ed; Chiu, Wah; Ludtke, Steven J.

    2013-01-01

    Transmission electron microscopy and associated methods such as single particle analysis, 2-D crystallography, helical reconstruction and tomography, are highly data-intensive experimental sciences, which also have substantial variability in experimental technique. Object-oriented databases present an attractive alternative to traditional relational databases for situations where the experiments themselves are continually evolving. We present EMEN2, an easy to use object-oriented database with a highly flexible infrastructure originally targeted for transmission electron microscopy and tomography, which has been extended to be adaptable for use in virtually any experimental science. It is a pure object-oriented database designed for easy adoption in diverse laboratory environments, and does not require professional database administration. It includes a full featured, dynamic web interface in addition to APIs for programmatic access. EMEN2 installations currently support roughly 800 scientists worldwide with over 1/2 million experimental records and over 20 TB of experimental data. The software is freely available with complete source. PMID:23360752

  17. Grain orientation in lunar soil

    NASA Technical Reports Server (NTRS)

    Mahmood, A.; Mitchell, J. K.; Carrier, W. D., III

    1974-01-01

    Orientation of lunar soil particles in a vertical plane, as seen in the radiographs of core tubes was characterized by preparing orientation diagrams for the different stratigraphic units. Radiographs of double-core drive tubes 64001/64002, 60009/60010, and 60013/60014 were used. The orientation results reinforced the stratigraphic differences. Another source of fabric data was the laboratory-deposited sample 14163,148. The artificial deposition results showed that the grain arrangements were dependent upon the method of deposition. These results from lunar soil and other data from a crushed basalt simulant can be a basis for the inference that lunar soil grain orientation and properties are useful in interpreting lunar surface history.

  18. An object-oriented forest landscape model and its representation of tree species

    Treesearch

    Hong S. He; David J. Mladenoff; Joel Boeder

    1999-01-01

    LANDIS is a forest landscape model that simulates the interaction of large landscape processes and forest successional dynamics at tree species level. We discuss how object-oriented design (OOD) approaches such as modularity, abstraction and encapsulation are integrated into the design of LANDIS. We show that using OOD approaches, model decisions (olden as model...

  19. Strawman Distributed Interactive Simulation Architecture Description Document. Volume 2. Supporting Rationale. Book 2. DIS Architecture Issues

    DTIC Science & Technology

    1992-03-31

    the-loop, interactive training environment. Its primary advantage is that it has a long history of use and a number of experienced users. However...programmer teams. Mazda IsU ADST/WDLPr,-92.OO8O1O 2 The Object Oriented Behavioral Decomposition Approach Object oriented behavioral decomposition is

  20. The development of optical microscopy techniques for the advancement of single-particle studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marchuk, Kyle

    2013-05-15

    Single particle orientation and rotational tracking (SPORT) has recently become a powerful optical microscopy tool that can expose many molecular motions. Unfortunately, there is not yet a single microscopy technique that can decipher all particle motions in all environmental conditions, thus there are limitations to current technologies. Within, the two powerful microscopy tools of total internal reflection and interferometry are advanced to determine the position, orientation, and optical properties of metallic nanoparticles in a variety of environments. Total internal reflection is an optical phenomenon that has been applied to microscopy to produce either fluorescent or scattered light. The non-invasive far-fieldmore » imaging technique is coupled with a near-field illumination scheme that allows for better axial resolution than confocal microscopy and epi-fluorescence microscopy. By controlling the incident illumination angle using total internal reflection fluorescence (TIRF) microscopy, a new type of imaging probe called “non-blinking” quantum dots (NBQDs) were super-localized in the axial direction to sub-10-nm precision. These particles were also used to study the rotational motion of microtubules being propelled by the motor protein kinesin across the substrate surface. The same instrument was modified to function under total internal reflection scattering (TIRS) microscopy to study metallic anisotropic nanoparticles and their dynamic interactions with synthetic lipid bilayers. Utilizing two illumination lasers with opposite polarization directions at wavelengths corresponding to the short and long axis surface plasmon resonance (SPR) of the nanoparticles, both the in-plane and out-of-plane movements of many particles could be tracked simultaneously. When combined with Gaussian point spread function (PSF) fitting for particle super-localization, the binding status and rotational movement could be resolved without degeneracy. TIRS microscopy was also used to find the 3D orientation of stationary metallic anisotropic nanoparticles utilizing only long-axis SPR enhancement. The polarization direction of the illuminating light was rotated causing the relative intensity of p-polarized and s-polarized light within the evanescent field to change. The interaction of the evanescent field with the particles is dependent on the orientation of the particle producing an intensity curve. This curve and the in-plane angle can be compared with simulations to accurately determine the 3D orientation. Differential interference contrast (DIC) microscopy is another non-invasive far-field technique based upon interferometry that does not rely on staining or other contrast enhancing techniques. In addition, high numerical aperture condensers and objectives can be used to give a very narrow depth of field allowing for the optical tomography of samples, which makes it an ideal candidate to study biological systems. DIC microscopy has also proven itself in determining the orientation of gold nanorods in both engineered environments and within cells. Many types of nanoparticles and nanostructures have been synthesized using lithographic techniques on silicon wafer substrates. Traditionally, reflective mode DIC microscopes have been developed and applied to the topographical study of reflective substrates and the imaging of chips on silicon wafers. Herein, a laser-illuminated reflected-mode DIC was developed for studying nanoparticles on reflective surfaces.« less

  1. The development of optical microscopy techniques for the advancement of single-particle studies

    NASA Astrophysics Data System (ADS)

    Marchuk, Kyle

    Single particle orientation and rotational tracking (SPORT) has recently become a powerful optical microscopy tool that can expose many molecular motions. Unfortunately, there is not yet a single microscopy technique that can decipher all particle motions in all environmental conditions, thus there are limitations to current technologies. Within, the two powerful microscopy tools of total internal reflection and interferometry are advanced to determine the position, orientation, and optical properties of metallic nanoparticles in a variety of environments. Total internal reflection is an optical phenomenon that has been applied to microscopy to produce either fluorescent or scattered light. The non-invasive far-field imaging technique is coupled with a near-field illumination scheme that allows for better axial resolution than confocal microscopy and epi-fluorescence microscopy. By controlling the incident illumination angle using total internal reflection fluorescence (TIRF) microscopy, a new type of imaging probe called "non-blinking" quantum dots (NBQDs) were super-localized in the axial direction to sub-10-nm precision. These particles were also used to study the rotational motion of microtubules being propelled by the motor protein kinesin across the substrate surface. The same instrument was modified to function under total internal reflection scattering (TIRS) microscopy to study metallic anisotropic nanoparticles and their dynamic interactions with synthetic lipid bilayers. Utilizing two illumination lasers with opposite polarization directions at wavelengths corresponding to the short and long axis surface plasmon resonance (SPR) of the nanoparticles, both the in-plane and out-of-plane movements of many particles could be tracked simultaneously. When combined with Gaussian point spread function (PSF) fitting for particle super-localization, the binding status and rotational movement could be resolved without degeneracy. TIRS microscopy was also used to find the 3D orientation of stationary metallic anisotropic nanoparticles utilizing only long-axis SPR enhancement. The polarization direction of the illuminating light was rotated causing the relative intensity of p-polarized and s-polarized light within the evanescent field to change. The interaction of the evanescent field with the particles is dependent on the orientation of the particle producing an intensity curve. This curve and the in-plane angle can be compared with simulations to accurately determine the 3D orientation. Differential interference contrast (DIC) microscopy is another non-invasive far-field technique based upon interferometry that does not rely on staining or other contrast enhancing techniques. In addition, high numerical aperture condensers and objectives can be used to give a very narrow depth of field allowing for the optical tomography of samples, which makes it an ideal candidate to study biological systems. DIC microscopy has also proven itself in determining the orientation of gold nanorods in both engineered environments and within cells. Many types of nanoparticles and nanostructures have been synthesized using lithographic techniques on silicon wafer substrates. Traditionally, reflective mode DIC microscopes have been developed and applied to the topographical study of reflective substrates and the imaging of chips on silicon wafers. Herein, a laser-illuminated reflected-mode DIC was developed for studying nanoparticles on reflective surfaces.

  2. Automatic Clustering Using Multi-objective Particle Swarm and Simulated Annealing

    PubMed Central

    Abubaker, Ahmad; Baharum, Adam; Alrefaei, Mahmoud

    2015-01-01

    This paper puts forward a new automatic clustering algorithm based on Multi-Objective Particle Swarm Optimization and Simulated Annealing, “MOPSOSA”. The proposed algorithm is capable of automatic clustering which is appropriate for partitioning datasets to a suitable number of clusters. MOPSOSA combines the features of the multi-objective based particle swarm optimization (PSO) and the Multi-Objective Simulated Annealing (MOSA). Three cluster validity indices were optimized simultaneously to establish the suitable number of clusters and the appropriate clustering for a dataset. The first cluster validity index is centred on Euclidean distance, the second on the point symmetry distance, and the last cluster validity index is based on short distance. A number of algorithms have been compared with the MOPSOSA algorithm in resolving clustering problems by determining the actual number of clusters and optimal clustering. Computational experiments were carried out to study fourteen artificial and five real life datasets. PMID:26132309

  3. An application of object-oriented knowledge representation to engineering expert systems

    NASA Technical Reports Server (NTRS)

    Logie, D. S.; Kamil, H.; Umaretiya, J. R.

    1990-01-01

    The paper describes an object-oriented knowledge representation and its application to engineering expert systems. The object-oriented approach promotes efficient handling of the problem data by allowing knowledge to be encapsulated in objects and organized by defining relationships between the objects. An Object Representation Language (ORL) was implemented as a tool for building and manipulating the object base. Rule-based knowledge representation is then used to simulate engineering design reasoning. Using a common object base, very large expert systems can be developed, comprised of small, individually processed, rule sets. The integration of these two schemes makes it easier to develop practical engineering expert systems. The general approach to applying this technology to the domain of the finite element analysis, design, and optimization of aerospace structures is discussed.

  4. Motion of a Janus particle very near a wall

    NASA Astrophysics Data System (ADS)

    Rashidi, Aidin; Wirth, Christopher L.

    2017-12-01

    This article describes the simulated Brownian motion of a sphere comprising hemispheres of unequal zeta potential (i.e., "Janus" particle) very near a wall. The simulation tool was developed and used to assist in the methodology development for applying Total Internal Reflection Microscopy (TIRM) to anisotropic particles. Simulations of the trajectory of a Janus sphere with cap density matching that of the base particle very near a boundary were used to construct 3D potential energy landscapes that were subsequently used to infer particle and solution properties, as would be done in a TIRM measurement. Results showed that the potential energy landscape of a Janus sphere has a transition region at the location of the boundary between the two Janus halves, which depended on the relative zeta potential magnitude. The potential energy landscape was fit to accurately obtain the zeta potential of each hemisphere, particle size, minimum potential energy position and electrolyte concentration, or Debye length. We also determined the appropriate orientation bin size and regimes over which the potential energy landscape should be fit to obtain system properties. Our simulations showed that an experiment may require more than 106 observations to obtain a suitable potential energy landscape as a consequence of the multivariable nature of observations for an anisotropic particle. These results illustrate important considerations for conducting TIRM for anisotropic particles.

  5. Mean first passage time of active Brownian particle in one dimension

    NASA Astrophysics Data System (ADS)

    Scacchi, A.; Sharma, A.

    2018-02-01

    We investigate the mean first passage time of an active Brownian particle in one dimension using numerical simulations. The activity in one dimension is modelled as a two state model; the particle moves with a constant propulsion strength but its orientation switches from one state to other as in a random telegraphic process. We study the influence of a finite resetting rate r on the mean first passage time to a fixed target of a single free active Brownian particle and map this result using an effective diffusion process. As in the case of a passive Brownian particle, we can find an optimal resetting rate r* for an active Brownian particle for which the target is found with the minimum average time. In the case of the presence of an external potential, we find good agreement between the theory and numerical simulations using an effective potential approach.

  6. Integration of object-oriented knowledge representation with the CLIPS rule based system

    NASA Technical Reports Server (NTRS)

    Logie, David S.; Kamil, Hasan

    1990-01-01

    The paper describes a portion of the work aimed at developing an integrated, knowledge based environment for the development of engineering-oriented applications. An Object Representation Language (ORL) was implemented in C++ which is used to build and modify an object-oriented knowledge base. The ORL was designed in such a way so as to be easily integrated with other representation schemes that could effectively reason with the object base. Specifically, the integration of the ORL with the rule based system C Language Production Systems (CLIPS), developed at the NASA Johnson Space Center, will be discussed. The object-oriented knowledge representation provides a natural means of representing problem data as a collection of related objects. Objects are comprised of descriptive properties and interrelationships. The object-oriented model promotes efficient handling of the problem data by allowing knowledge to be encapsulated in objects. Data is inherited through an object network via the relationship links. Together, the two schemes complement each other in that the object-oriented approach efficiently handles problem data while the rule based knowledge is used to simulate the reasoning process. Alone, the object based knowledge is little more than an object-oriented data storage scheme; however, the CLIPS inference engine adds the mechanism to directly and automatically reason with that knowledge. In this hybrid scheme, the expert system dynamically queries for data and can modify the object base with complete access to all the functionality of the ORL from rules.

  7. Object-Oriented Simulation of EW Systems.

    DTIC Science & Technology

    1987-12-01

    elix.- r’UATO. SY - ~ ow W ." --N I -SEL’ TD DEEICESESEC ETBLISKM - 1Eol~P7 TEST National Defense Deec ationale OBJECT-ORIENTED SIMULATION OF EW...C C- _ _ _4- 0 E (4. I o 0 ~1 . __ _ L c 0 0 i EnE- L-C( 1*c 0~~ N1 Ld 0- E, U, E 0 cu a 0* L L L C:c0 Yc 0 c aja, it) oO -.zz - VV1V 41-4- ia. ca...will retain a simultaneous capability to simulate signal processing at the pulse level. 10 ?1( N 0 .0O Ldk rW% o N1 0 4’-V - 54 - " As discussed

  8. Rotation of a 1-GeV particle beam by a fan system of thin crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Britvich, G. I.; Maisheev, V. A.; Chesnokov, Yu. A., E-mail: Yury.Chesnokov@ihep.ru

    2016-10-15

    The deflection of a 1-GeV charged particle beam by a system formed by fan-oriented thin silicon wafers has been studied theoretically and experimentally. Software has been developed for numerical simulation of a particle beam transmission through a fan crystal system. In the U-70 experiment on a proton beam, the particles were deflected by such a system through an angle exceeding 1 mrad. Thus, a new method has been demonstrated for rotating a particle beam, which can be used for creating accelerator beams for medical purposes.

  9. LEGO: A modular accelerator design code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cai, Y.; Donald, M.; Irwin, J.

    1997-08-01

    An object-oriented accelerator design code has been designed and implemented in a simple and modular fashion. It contains all major features of its predecessors: TRACY and DESPOT. All physics of single-particle dynamics is implemented based on the Hamiltonian in the local frame of the component. Components can be moved arbitrarily in the three dimensional space. Several symplectic integrators are used to approximate the integration of the Hamiltonian. A differential algebra class is introduced to extract a Taylor map up to arbitrary order. Analysis of optics is done in the same way both for the linear and nonlinear case. Currently, themore » code is used to design and simulate the lattices of the PEP-II. It will also be used for the commissioning.« less

  10. A neural network simulating human reach-grasp coordination by continuous updating of vector positioning commands.

    PubMed

    Ulloa, Antonio; Bullock, Daniel

    2003-10-01

    We developed a neural network model to simulate temporal coordination of human reaching and grasping under variable initial grip apertures and perturbations of object size and object location/orientation. The proposed model computes reach-grasp trajectories by continuously updating vector positioning commands. The model hypotheses are (1) hand/wrist transport, grip aperture, and hand orientation control modules are coupled by a gating signal that fosters synchronous completion of the three sub-goals. (2) Coupling from transport and orientation velocities to aperture control causes maximum grip apertures that scale with these velocities and exceed object size. (3) Part of the aperture trajectory is attributable to an aperture-reducing passive biomechanical effect that is stronger for larger apertures. (4) Discrepancies between internal representations of targets partially inhibit the gating signal, leading to movement time increases that compensate for perturbations. Simulations of the model replicate key features of human reach-grasp kinematics observed under three experimental protocols. Our results indicate that no precomputation of component movement times is necessary for online temporal coordination of the components of reaching and grasping.

  11. Software Design for Interactive Graphic Radiation Treatment Simulation Systems*

    PubMed Central

    Kalet, Ira J.; Sweeney, Christine; Jacky, Jonathan

    1990-01-01

    We examine issues in the design of interactive computer graphic simulation programs for radiation treatment planning (RTP), as well as expert system programs that automate parts of the RTP process, in light of ten years of experience at designing, building and using such programs. An experiment in object-oriented design using standard Pascal shows that while some advantage is gained from the design, it is still difficult to achieve modularity and to integrate expert system components. A new design based on the Common LISP Object System (CLOS) is described. This series of designs for RTP software shows that this application benefits in specific ways from object-oriented design methods and appropriate languages and tools.

  12. Coalescence and Collisions of Gold Nanoparticles

    PubMed Central

    Antúnez-García, Joel; Mejía-Rosales, Sergio; Pérez-Tijerina, Eduardo; Montejano-Carrizales, Juan Martín; José-Yacamán, Miguel

    2011-01-01

    We study the assembling of small gold clusters subject to collisions and close contact coalescence by using molecular dynamics simulations to simulate events that occur typically in the sputtering process of synthesis. Our results support the notion that the kinetics of coalescence processes strongly determine the geometry and structure of the final particle. While impact velocities, relative orientations, and the initial shape of the interacting particles are unlikely to strictly determine the structural details of the newly formed particle, we found that high initial temperatures and/or impact velocities increase the probability of appearance of icosahedral-like structures, Wulff polyhedra are likely to be formed as a product of the interactions between nanospheres, while the appearance of fcc particles of approximately cuboctahedral shape is mainly due to the interaction between icosahedra. PMID:28879995

  13. Coalescence and Collisions of Gold Nanoparticles.

    PubMed

    Antúnez-García, Joel; Mejía-Rosales, Sergio; Pérez-Tijerina, Eduardo; Montejano-Carrizales, Juan Martín; José-Yacamán, Miguel

    2011-01-28

    We study the assembling of small gold clusters subject to collisions and close contact coalescence by using molecular dynamics simulations to simulate events that occur typically in the sputtering process of synthesis. Our results support the notion that the kinetics of coalescence processes strongly determine the geometry and structure of the final particle. While impact velocities, relative orientations, and the initial shape of the interacting particles are unlikely to strictly determine the structural details of the newly formed particle, we found that high initial temperatures and/or impact velocities increase the probability of appearance of icosahedral-like structures, Wulff polyhedra are likely to be formed as a product of the interactions between nanospheres, while the appearance of fcc particles of approximately cuboctahedral shape is mainly due to the interaction between icosahedra.

  14. Development of a software framework for data assimilation and its applications for streamflow forecasting in Japan

    NASA Astrophysics Data System (ADS)

    Noh, S. J.; Tachikawa, Y.; Shiiba, M.; Yorozu, K.; Kim, S.

    2012-04-01

    Data assimilation methods have received increased attention to accomplish uncertainty assessment and enhancement of forecasting capability in various areas. Despite of their potentials, applicable software frameworks to probabilistic approaches and data assimilation are still limited because the most of hydrologic modeling software are based on a deterministic approach. In this study, we developed a hydrological modeling framework for sequential data assimilation, so called MPI-OHyMoS. MPI-OHyMoS allows user to develop his/her own element models and to easily build a total simulation system model for hydrological simulations. Unlike process-based modeling framework, this software framework benefits from its object-oriented feature to flexibly represent hydrological processes without any change of the main library. Sequential data assimilation based on the particle filters is available for any hydrologic models based on MPI-OHyMoS considering various sources of uncertainty originated from input forcing, parameters and observations. The particle filters are a Bayesian learning process in which the propagation of all uncertainties is carried out by a suitable selection of randomly generated particles without any assumptions about the nature of the distributions. In MPI-OHyMoS, ensemble simulations are parallelized, which can take advantage of high performance computing (HPC) system. We applied this software framework for short-term streamflow forecasting of several catchments in Japan using a distributed hydrologic model. Uncertainty of model parameters and remotely-sensed rainfall data such as X-band or C-band radar is estimated and mitigated in the sequential data assimilation.

  15. Effect of Melt Convection at Various Gravity Levels and Orientations on the Forces Acting on a Large Spherical Particle in the Vicinity of a Solidification Interface

    NASA Technical Reports Server (NTRS)

    Bune, Andris V.; Sen, Subhayu; Mukherjee, Sundeep; Catalina, Adrian; Stefanescu, Doru M.

    2000-01-01

    Numerical modeling was Undertaken to analyze the influence of both radial and axial thermal gradients on convection patterns and velocities claiming solidification of pure Al and an Al-4 wt% Cu alloy. The objective of the numerical task was to predict the influence of convective velocity on an insoluble particle near a solid/liquid (s/l) interface. These predictions were then be used to define the minimum gravity level (q) required to investigate the fundamental physics of interactions between a particle and a s/l interface. This is an ongoing NASA founded flight experiment entitled "particle engulfment and pushing by solidifying interfaces (PEP)". Steady-state calculations were performed for different gravity levels and orientations with respect to the gravity vector The furnace configuration used in this analysis is the quench module insert (QMI-1) proposed for the Material Science Research Facility (MSRF) on board the International Space Station (ISS). The general model of binary alloy solidification was based on the finite element code FIDAP. At a low g level of 10(exp -4) g(sub o) (g(sub o) = 9.8 m/square s) maximum melt convection was obtained for an orientation of 90 deg. Calculations showed that even for this worst case orientation the dominant forces acting on the particle are the fundamental drag and interfacial forces.

  16. Orientational ordering of lamellar structures on closed surfaces

    NASA Astrophysics Data System (ADS)

    Pȩkalski, J.; Ciach, A.

    2018-05-01

    Self-assembly of particles with short-range attraction and long-range repulsion interactions on a flat and on a spherical surface is compared. Molecular dynamics simulations are performed for the two systems having the same area and the density optimal for formation of stripes of particles. Structural characteristics, e.g., a cluster size distribution, a number of defects, and an orientational order parameter (OP), as well as the specific heat, are obtained for a range of temperatures. In both cases, the cluster size distribution becomes bimodal and elongated clusters appear at the temperature corresponding to the maximum of the specific heat. When the temperature decreases, orientational ordering of the stripes takes place and the number of particles per cluster or stripe increases in both cases. However, only on the flat surface, the specific heat has another maximum at the temperature corresponding to a rapid change of the OP. On the sphere, the crossover between the isotropic and anisotropic structures occur in a much broader temperature interval; the orientational order is weaker and occurs at significantly lower temperature. At low temperature, the stripes on the sphere form spirals and the defects resemble defects in the nematic phase of rods adsorbed at a sphere.

  17. Orientation-dependent integral equation theory for a two-dimensional model of water

    NASA Astrophysics Data System (ADS)

    Urbič, T.; Vlachy, V.; Kalyuzhnyi, Yu. V.; Dill, K. A.

    2003-03-01

    We develop an integral equation theory that applies to strongly associating orientation-dependent liquids, such as water. In an earlier treatment, we developed a Wertheim integral equation theory (IET) that we tested against NPT Monte Carlo simulations of the two-dimensional Mercedes Benz model of water. The main approximation in the earlier calculation was an orientational averaging in the multidensity Ornstein-Zernike equation. Here we improve the theory by explicit introduction of an orientation dependence in the IET, based upon expanding the two-particle angular correlation function in orthogonal basis functions. We find that the new orientation-dependent IET (ODIET) yields a considerable improvement of the predicted structure of water, when compared to the Monte Carlo simulations. In particular, ODIET predicts more long-range order than the original IET, with hexagonal symmetry, as expected for the hydrogen bonded ice in this model. The new theoretical approximation still errs in some subtle properties; for example, it does not predict liquid water's density maximum with temperature or the negative thermal expansion coefficient.

  18. Application of randomly oriented spheroids for retrieval of dust particle parameters from multiwavelength lidar measurements

    NASA Astrophysics Data System (ADS)

    Veselovskii, I.; Dubovik, O.; Kolgotin, A.; Lapyonok, T.; di Girolamo, P.; Summa, D.; Whiteman, D. N.; Mishchenko, M.; Tanré, D.

    2010-11-01

    Multiwavelength (MW) Raman lidars have demonstrated their potential to profile particle parameters; however, until now, the physical models used in retrieval algorithms for processing MW lidar data have been predominantly based on the Mie theory. This approach is applicable to the modeling of light scattering by spherically symmetric particles only and does not adequately reproduce the scattering by generally nonspherical desert dust particles. Here we present an algorithm based on a model of randomly oriented spheroids for the inversion of multiwavelength lidar data. The aerosols are modeled as a mixture of two aerosol components: one composed only of spherical and the second composed of nonspherical particles. The nonspherical component is an ensemble of randomly oriented spheroids with size-independent shape distribution. This approach has been integrated into an algorithm retrieving aerosol properties from the observations with a Raman lidar based on a tripled Nd:YAG laser. Such a lidar provides three backscattering coefficients, two extinction coefficients, and the particle depolarization ratio at a single or multiple wavelengths. Simulations were performed for a bimodal particle size distribution typical of desert dust particles. The uncertainty of the retrieved particle surface, volume concentration, and effective radius for 10% measurement errors is estimated to be below 30%. We show that if the effect of particle nonsphericity is not accounted for, the errors in the retrieved aerosol parameters increase notably. The algorithm was tested with experimental data from a Saharan dust outbreak episode, measured with the BASIL multiwavelength Raman lidar in August 2007. The vertical profiles of particle parameters as well as the particle size distributions at different heights were retrieved. It was shown that the algorithm developed provided substantially reasonable results consistent with the available independent information about the observed aerosol event.

  19. Monte Carlo simulations of the properties and structure of hexadecyltrimethylammonium chloride micelles of various shapes in aqueous-salt solutions

    NASA Astrophysics Data System (ADS)

    Burov, S. V.; Piotrovskaya, E. M.

    2006-08-01

    The thermodynamic and structural properties of spherical and cylindrical hexadecyltrimethylammonium chloride micelles in water and a solution of sodium benzoate were studied by the Monte Carlo method. The local densities of particles in the systems, orientations of benzoate ions, two-particle distribution functions, and the influence of sodium benzoate admixtures on the properties and structure of micellar solutions were studied.

  20. Three-dimensional simulation and auto-stereoscopic 3D display of the battlefield environment based on the particle system algorithm

    NASA Astrophysics Data System (ADS)

    Ning, Jiwei; Sang, Xinzhu; Xing, Shujun; Cui, Huilong; Yan, Binbin; Yu, Chongxiu; Dou, Wenhua; Xiao, Liquan

    2016-10-01

    The army's combat training is very important now, and the simulation of the real battlefield environment is of great significance. Two-dimensional information has been unable to meet the demand at present. With the development of virtual reality technology, three-dimensional (3D) simulation of the battlefield environment is possible. In the simulation of 3D battlefield environment, in addition to the terrain, combat personnel and the combat tool ,the simulation of explosions, fire, smoke and other effects is also very important, since these effects can enhance senses of realism and immersion of the 3D scene. However, these special effects are irregular objects, which make it difficult to simulate with the general geometry. Therefore, the simulation of irregular objects is always a hot and difficult research topic in computer graphics. Here, the particle system algorithm is used for simulating irregular objects. We design the simulation of the explosion, fire, smoke based on the particle system and applied it to the battlefield 3D scene. Besides, the battlefield 3D scene simulation with the glasses-free 3D display is carried out with an algorithm based on GPU 4K super-multiview 3D video real-time transformation method. At the same time, with the human-computer interaction function, we ultimately realized glasses-free 3D display of the simulated more realistic and immersed 3D battlefield environment.

  1. A stochastic vortex structure method for interacting particles in turbulent shear flows

    NASA Astrophysics Data System (ADS)

    Dizaji, Farzad F.; Marshall, Jeffrey S.; Grant, John R.

    2018-01-01

    In a recent study, we have proposed a new synthetic turbulence method based on stochastic vortex structures (SVSs), and we have demonstrated that this method can accurately predict particle transport, collision, and agglomeration in homogeneous, isotropic turbulence in comparison to direct numerical simulation results. The current paper extends the SVS method to non-homogeneous, anisotropic turbulence. The key element of this extension is a new inversion procedure, by which the vortex initial orientation can be set so as to generate a prescribed Reynolds stress field. After validating this inversion procedure for simple problems, we apply the SVS method to the problem of interacting particle transport by a turbulent planar jet. Measures of the turbulent flow and of particle dispersion, clustering, and collision obtained by the new SVS simulations are shown to compare well with direct numerical simulation results. The influence of different numerical parameters, such as number of vortices and vortex lifetime, on the accuracy of the SVS predictions is also examined.

  2. A software bus for thread objects

    NASA Technical Reports Server (NTRS)

    Callahan, John R.; Li, Dehuai

    1995-01-01

    The authors have implemented a software bus for lightweight threads in an object-oriented programming environment that allows for rapid reconfiguration and reuse of thread objects in discrete-event simulation experiments. While previous research in object-oriented, parallel programming environments has focused on direct communication between threads, our lightweight software bus, called the MiniBus, provides a means to isolate threads from their contexts of execution by restricting communications between threads to message-passing via their local ports only. The software bus maintains a topology of connections between these ports. It routes, queues, and delivers messages according to this topology. This approach allows for rapid reconfiguration and reuse of thread objects in other systems without making changes to the specifications or source code. A layered approach that provides the needed transparency to developers is presented. Examples of using the MiniBus are given, and the value of bus architectures in building and conducting simulations of discrete-event systems is discussed.

  3. GPU-Accelerated Molecular Dynamics Simulation to Study Liquid Crystal Phase Transition Using Coarse-Grained Gay-Berne Anisotropic Potential.

    PubMed

    Chen, Wenduo; Zhu, Youliang; Cui, Fengchao; Liu, Lunyang; Sun, Zhaoyan; Chen, Jizhong; Li, Yunqi

    2016-01-01

    Gay-Berne (GB) potential is regarded as an accurate model in the simulation of anisotropic particles, especially for liquid crystal (LC) mesogens. However, its computational complexity leads to an extremely time-consuming process for large systems. Here, we developed a GPU-accelerated molecular dynamics (MD) simulation with coarse-grained GB potential implemented in GALAMOST package to investigate the LC phase transitions for mesogens in small molecules, main-chain or side-chain polymers. For identical mesogens in three different molecules, on cooling from fully isotropic melts, the small molecules form a single-domain smectic-B phase, while the main-chain LC polymers prefer a single-domain nematic phase as a result of connective restraints in neighboring mesogens. The phase transition of side-chain LC polymers undergoes a two-step process: nucleation of nematic islands and formation of multi-domain nematic texture. The particular behavior originates in the fact that the rotational orientation of the mesogenes is hindered by the polymer backbones. Both the global distribution and the local orientation of mesogens are critical for the phase transition of anisotropic particles. Furthermore, compared with the MD simulation in LAMMPS, our GPU-accelerated code is about 4 times faster than the GPU version of LAMMPS and at least 200 times faster than the CPU version of LAMMPS. This study clearly shows that GPU-accelerated MD simulation with GB potential in GALAMOST can efficiently handle systems with anisotropic particles and interactions, and accurately explore phase differences originated from molecular structures.

  4. GPU-Accelerated Molecular Dynamics Simulation to Study Liquid Crystal Phase Transition Using Coarse-Grained Gay-Berne Anisotropic Potential

    PubMed Central

    Cui, Fengchao; Liu, Lunyang; Sun, Zhaoyan; Chen, Jizhong; Li, Yunqi

    2016-01-01

    Gay-Berne (GB) potential is regarded as an accurate model in the simulation of anisotropic particles, especially for liquid crystal (LC) mesogens. However, its computational complexity leads to an extremely time-consuming process for large systems. Here, we developed a GPU-accelerated molecular dynamics (MD) simulation with coarse-grained GB potential implemented in GALAMOST package to investigate the LC phase transitions for mesogens in small molecules, main-chain or side-chain polymers. For identical mesogens in three different molecules, on cooling from fully isotropic melts, the small molecules form a single-domain smectic-B phase, while the main-chain LC polymers prefer a single-domain nematic phase as a result of connective restraints in neighboring mesogens. The phase transition of side-chain LC polymers undergoes a two-step process: nucleation of nematic islands and formation of multi-domain nematic texture. The particular behavior originates in the fact that the rotational orientation of the mesogenes is hindered by the polymer backbones. Both the global distribution and the local orientation of mesogens are critical for the phase transition of anisotropic particles. Furthermore, compared with the MD simulation in LAMMPS, our GPU-accelerated code is about 4 times faster than the GPU version of LAMMPS and at least 200 times faster than the CPU version of LAMMPS. This study clearly shows that GPU-accelerated MD simulation with GB potential in GALAMOST can efficiently handle systems with anisotropic particles and interactions, and accurately explore phase differences originated from molecular structures. PMID:26986851

  5. Electrostatic interactions in soft particle systems: mesoscale simulations of ionic liquids.

    PubMed

    Wang, Yong-Lei; Zhu, You-Liang; Lu, Zhong-Yuan; Laaksonen, Aatto

    2018-05-21

    Computer simulations provide a unique insight into the microscopic details, molecular interactions and dynamic behavior responsible for many distinct physicochemical properties of ionic liquids. Due to the sluggish and heterogeneous dynamics and the long-ranged nanostructured nature of ionic liquids, coarse-grained meso-scale simulations provide an indispensable complement to detailed first-principles calculations and atomistic simulations allowing studies over extended length and time scales with a modest computational cost. Here, we present extensive coarse-grained simulations on a series of ionic liquids of the 1-alkyl-3-methylimidazolium (alkyl = butyl, heptyl-, and decyl-) family with Cl, [BF4], and [PF6] counterions. Liquid densities, microstructures, translational diffusion coefficients, and re-orientational motion of these model ionic liquid systems have been systematically studied over a wide temperature range. The addition of neutral beads in cationic models leads to a transition of liquid morphologies from dispersed apolar beads in a polar framework to that characterized by bi-continuous sponge-like interpenetrating networks in liquid matrices. Translational diffusion coefficients of both cations and anions decrease upon lengthening of the neutral chains in the cationic models and by enlarging molecular sizes of the anionic groups. Similar features are observed in re-orientational motion and time scales of different cationic models within the studied temperature range. The comparison of the liquid properties of the ionic systems with their neutral counterparts indicates that the distinctive microstructures and dynamical quantities of the model ionic liquid systems are intrinsically related to Coulombic interactions. Finally, we compared the computational efficiencies of three linearly scaling O(N log N) Ewald summation methods, the particle-particle particle-mesh method, the particle-mesh Ewald summation method, and the Ewald summation method based on a non-uniform fast Fourier transform technique, to calculate electrostatic interactions. Coarse-grained simulations were performed using the GALAMOST and the GROMACS packages and hardware efficiently utilizing graphics processing units on a set of extended [1-decyl-3-methylimidazolium][BF4] ionic liquid systems of up to 131 072 ion pairs.

  6. Implementation of warm-cloud processes in a source-oriented WRF/Chem model to study the effect of aerosol mixing state on fog formation in the Central Valley of California

    NASA Astrophysics Data System (ADS)

    Lee, Hsiang-He; Chen, Shu-Hua; Kleeman, Michael J.; Zhang, Hongliang; DeNero, Steven P.; Joe, David K.

    2016-07-01

    The source-oriented Weather Research and Forecasting chemistry model (SOWC) was modified to include warm cloud processes and was applied to investigate how aerosol mixing states influence fog formation and optical properties in the atmosphere. SOWC tracks a 6-D chemical variable (X, Z, Y, size bins, source types, species) through an explicit simulation of atmospheric chemistry and physics. A source-oriented cloud condensation nuclei module was implemented into the SOWC model to simulate warm clouds using the modified two-moment Purdue Lin microphysics scheme. The Goddard shortwave and long-wave radiation schemes were modified to interact with source-oriented aerosols and cloud droplets so that aerosol direct and indirect effects could be studied. The enhanced SOWC model was applied to study a fog event that occurred on 17 January 2011, in the Central Valley of California. Tule fog occurred because an atmospheric river effectively advected high moisture into the Central Valley and nighttime drainage flow brought cold air from mountains into the valley. The SOWC model produced reasonable liquid water path, spatial distribution and duration of fog events. The inclusion of aerosol-radiation interaction only slightly modified simulation results since cloud optical thickness dominated the radiation budget in fog events. The source-oriented mixture representation of particles reduced cloud droplet number relative to the internal mixture approach that artificially coats hydrophobic particles with hygroscopic components. The fraction of aerosols activating into cloud condensation nuclei (CCN) at a supersaturation of 0.5 % in the Central Valley decreased from 94 % in the internal mixture model to 80 % in the source-oriented model. This increased surface energy flux by 3-5 W m-2 and surface temperature by as much as 0.25 K in the daytime.

  7. Modelling and simulation of particle-particle interaction in a magnetophoretic bio-separation chip

    NASA Astrophysics Data System (ADS)

    Alam, Manjurul; Golozar, Matin; Darabi, Jeff

    2018-04-01

    A Lagrangian particle trajectory model is developed to predict the interaction between cell-bead particle complexes and to track their trajectories in a magnetophoretic bio-separation chip. Magnetic flux gradients are simulated in the OpenFOAM CFD software and imported into MATLAB to obtain the trapping lengths and trajectories of the particles. A connector vector is introduced to calculate the interaction force between cell-bead complexes as they flow through a microfluidic device. The interaction force calculations are performed for cases where the connector vector is parallel, perpendicular, and at an angle of 45° with the applied magnetic field. The trajectories of the particles are simulated by solving a system of eight ordinary differential equations using a fourth order Runge-Kutta method. The model is then used to study the effects of geometric positions and angles of the connector vector between the particles as well as the cell size, number of beads per cell, and flow rate on the interaction force and trajectories of the particles. The results show that the interaction forces may be attractive or repulsive, depending on the orientation of the connector vector distance between the particle complexes and the applied magnetic field. When the interaction force is attractive, the particles are observed to merge and trap sooner than a single particle, whereas a repulsive interaction force has little or no effect on the trapping length.

  8. Anisotropic Stochastic Vortex Structure Method for Simulating Particle Collision in Turbulent Shear Flows

    NASA Astrophysics Data System (ADS)

    Dizaji, Farzad; Marshall, Jeffrey; Grant, John; Jin, Xing

    2017-11-01

    Accounting for the effect of subgrid-scale turbulence on interacting particles remains a challenge when using Reynolds-Averaged Navier Stokes (RANS) or Large Eddy Simulation (LES) approaches for simulation of turbulent particulate flows. The standard stochastic Lagrangian method for introducing turbulence into particulate flow computations is not effective when the particles interact via collisions, contact electrification, etc., since this method is not intended to accurately model relative motion between particles. We have recently developed the stochastic vortex structure (SVS) method and demonstrated its use for accurate simulation of particle collision in homogeneous turbulence; the current work presents an extension of the SVS method to turbulent shear flows. The SVS method simulates subgrid-scale turbulence using a set of randomly-positioned, finite-length vortices to generate a synthetic fluctuating velocity field. It has been shown to accurately reproduce the turbulence inertial-range spectrum and the probability density functions for the velocity and acceleration fields. In order to extend SVS to turbulent shear flows, a new inversion method has been developed to orient the vortices in order to generate a specified Reynolds stress field. The extended SVS method is validated in the present study with comparison to direct numerical simulations for a planar turbulent jet flow. This research was supported by the U.S. National Science Foundation under Grant CBET-1332472.

  9. Equivalence of Brownian dynamics and dynamic Monte Carlo simulations in multicomponent colloidal suspensions.

    PubMed

    Cuetos, Alejandro; Patti, Alessandro

    2015-08-01

    We propose a simple but powerful theoretical framework to quantitatively compare Brownian dynamics (BD) and dynamic Monte Carlo (DMC) simulations of multicomponent colloidal suspensions. By extending our previous study focusing on monodisperse systems of rodlike colloids, here we generalize the formalism described there to multicomponent colloidal mixtures and validate it by investigating the dynamics in isotropic and liquid crystalline phases containing spherical and rodlike particles. In order to investigate the dynamics of multicomponent colloidal systems by DMC simulations, it is key to determine the elementary time step of each species and establish a unique timescale. This is crucial to consistently study the dynamics of colloidal particles with different geometry. By analyzing the mean-square displacement, the orientation autocorrelation functions, and the self part of the van Hove correlation functions, we show that DMC simulation is a very convenient and reliable technique to describe the stochastic dynamics of any multicomponent colloidal system. Our theoretical formalism can be easily extended to any colloidal system containing size and/or shape polydisperse particles.

  10. Simulation and Gaming: Directions, Issues, Ponderables.

    ERIC Educational Resources Information Center

    Uretsky, Michael

    1995-01-01

    Discusses the current use of simulation and gaming in a variety of settings. Describes advances in technology that facilitate the use of simulation and gaming, including computer power, computer networks, software, object-oriented programming, video, multimedia, virtual reality, and artificial intelligence. Considers the future use of simulation…

  11. A Geometric Approach to Modeling Microstructurally Small Fatigue Crack Formation. 2; Simulation and Prediction of Crack Nucleation in AA 7075-T651

    NASA Technical Reports Server (NTRS)

    Hochhalter, Jake D.; Littlewood, David J.; Christ, Robert J., Jr.; Veilleux, M. G.; Bozek, J. E.; Ingraffea, A. R.; Maniatty, Antionette M.

    2010-01-01

    The objective of this paper is to develop further a framework for computationally modeling microstructurally small fatigue crack growth in AA 7075-T651 [1]. The focus is on the nucleation event, when a crack extends from within a second-phase particle into a surrounding grain, since this has been observed to be an initiating mechanism for fatigue crack growth in this alloy. It is hypothesized that nucleation can be predicted by computing a non-local nucleation metric near the crack front. The hypothesis is tested by employing a combination of experimentation and nite element modeling in which various slip-based and energy-based nucleation metrics are tested for validity, where each metric is derived from a continuum crystal plasticity formulation. To investigate each metric, a non-local procedure is developed for the calculation of nucleation metrics in the neighborhood of a crack front. Initially, an idealized baseline model consisting of a single grain containing a semi-ellipsoidal surface particle is studied to investigate the dependence of each nucleation metric on lattice orientation, number of load cycles, and non-local regularization method. This is followed by a comparison of experimental observations and computational results for microstructural models constructed by replicating the observed microstructural geometry near second-phase particles in fatigue specimens. It is found that orientation strongly influences the direction of slip localization and, as a result, in uences the nucleation mechanism. Also, the baseline models, replication models, and past experimental observation consistently suggest that a set of particular grain orientations is most likely to nucleate fatigue cracks. It is found that a continuum crystal plasticity model and a non-local nucleation metric can be used to predict the nucleation event in AA 7075-T651. However, nucleation metric threshold values that correspond to various nucleation governing mechanisms must be calibrated.

  12. Simulation of enhanced deposition due to magnetic field alignment of ellipsoidal particles in a lung bifurcation.

    PubMed

    Martinez, R C; Roshchenko, A; Minev, P; Finlay, W H

    2013-02-01

    Aerosolized chemotherapy has been recognized as a potential treatment for lung cancer. The challenge of providing sufficient therapeutic effects without reaching dose-limiting toxicity levels hinders the development of aerosolized chemotherapy. This could be mitigated by increasing drug-delivery efficiency with a noninvasive drug-targeting delivery method. The purpose of this study is to use direct numerical simulations to study the resulting local enhancement of deposition due to magnetic field alignment of high aspect ratio particles. High aspect ratio particles were approximated by a rigid ellipsoid with a minor diameter of 0.5 μm and fluid particle density ratio of 1,000. Particle trajectories were calculated by solving the coupled fluid particle equations using an in-house micro-macro grid finite element algorithm based on a previously developed fictitious domain approach. Particle trajectories were simulated in a morphologically realistic geometry modeling a symmetrical terminal bronchiole bifurcation. Flow conditions were steady inspiratory air flow due to typical breathing at 18 L/min. Deposition efficiency was estimated for two different cases: [1] particles aligned with the streamlines and [2] particles with fixed angular orientation simulating the magnetic field alignment of our previous in vitro study. The local enhancement factor defined as the ratio between deposition efficiency of Case [1] and Case [2] was found to be 1.43 and 3.46 for particles with an aspect ratio of 6 and 20, respectively. Results indicate that externally forcing local alignment of high aspect ratio particles can increase local deposition considerably.

  13. Charged patchy particle models in explicit salt: Ion distributions, electrostatic potentials, and effective interactions.

    PubMed

    Yigit, Cemil; Heyda, Jan; Dzubiella, Joachim

    2015-08-14

    We introduce a set of charged patchy particle models (CPPMs) in order to systematically study the influence of electrostatic charge patchiness and multipolarity on macromolecular interactions by means of implicit-solvent, explicit-ion Langevin dynamics simulations employing the Gromacs software. We consider well-defined zero-, one-, and two-patched spherical globules each of the same net charge and (nanometer) size which are composed of discrete atoms. The studied mono- and multipole moments of the CPPMs are comparable to those of globular proteins with similar size. We first characterize ion distributions and electrostatic potentials around a single CPPM. Although angle-resolved radial distribution functions reveal the expected local accumulation and depletion of counter- and co-ions around the patches, respectively, the orientation-averaged electrostatic potential shows only a small variation among the various CPPMs due to space charge cancellations. Furthermore, we study the orientation-averaged potential of mean force (PMF), the number of accumulated ions on the patches, as well as the CPPM orientations along the center-to-center distance of a pair of CPPMs. We compare the PMFs to the classical Derjaguin-Verwey-Landau-Overbeek theory and previously introduced orientation-averaged Debye-Hückel pair potentials including dipolar interactions. Our simulations confirm the adequacy of the theories in their respective regimes of validity, while low salt concentrations and large multipolar interactions remain a challenge for tractable theoretical descriptions.

  14. An Integrated Centroid Finding and Particle Overlap Decomposition Algorithm for Stereo Imaging Velocimetry

    NASA Technical Reports Server (NTRS)

    McDowell, Mark

    2004-01-01

    An integrated algorithm for decomposing overlapping particle images (multi-particle objects) along with determining each object s constituent particle centroid(s) has been developed using image analysis techniques. The centroid finding algorithm uses a modified eight-direction search method for finding the perimeter of any enclosed object. The centroid is calculated using the intensity-weighted center of mass of the object. The overlap decomposition algorithm further analyzes the object data and breaks it down into its constituent particle centroid(s). This is accomplished with an artificial neural network, feature based technique and provides an efficient way of decomposing overlapping particles. Combining the centroid finding and overlap decomposition routines into a single algorithm allows us to accurately predict the error associated with finding the centroid(s) of particles in our experiments. This algorithm has been tested using real, simulated, and synthetic data and the results are presented and discussed.

  15. AN/SLQ-32 EW System Model: and Expandable, Object-Oriented, Process- Based Simulation

    DTIC Science & Technology

    1992-09-01

    CONST threshold = 0.1; timetol = 0.01; orientol = 5.8; VAR rec, recLast :BufferBeamRecType; time,power : REAL; powerl,orientation : REAL; BEGIN NEW...PulseGroup); rec:-ASK BufferBeam Removed; time: =rec. time; orientation: =rec. orientation; OUTPUT ( "ORIENREFI, orientation); recLast :=ASK BufferBeam Last...TO Add(rec); IF (rec= recLast ) EXIT; END IF; rec :=ASK BufferBeam Remove o; ELSE ASK BufferBeam TO Add(rec); IF (rec = recLast ) EXIT; END IF; rec

  16. Phase behavior and orientational ordering in block copolymers doped with anisotropic nanoparticles

    NASA Astrophysics Data System (ADS)

    Osipov, M. A.; Gorkunov, M. V.; Berezkin, A. V.; Kudryavtsev, Y. V.

    2018-04-01

    A molecular field theory and coarse-grained computer simulations with dissipative particle dynamics have been used to study the spontaneous orientational ordering of anisotropic nanoparticles in the lamellar and hexagonal phases of diblock copolymers and the effect of nanoparticles on the phase behavior of these systems. Both the molecular theory and computer simulations indicate that strongly anisotropic nanoparticles are ordered orientationally mainly in the boundary region between the domains and the nematic order parameter possesses opposite signs in adjacent domains. The orientational order is induced by the boundary and by the interaction between nanoparticles and the monomer units in different domains. In simulations, sufficiently long and strongly selective nanoparticles are ordered also inside the domains. The nematic order parameter and local concentration profiles of nanoparticles have been calculated numerically using the model of a nanoparticle with two interaction centers and also determined using the results of computer simulations. A number of phase diagrams have been obtained which illustrate the effect of nanoparticle selectivity and molar fraction of the stability ranges of various phases. Different morphologies have been identified by analyzing the static structure factor and a phase diagram has been constructed in coordinates' nanoparticle concentration-copolymer composition. Orientational ordering of even a small fraction of nanoparticles may result in a significant increase of the dielectric anisotropy of a polymer nanocomposite, which is important for various applications.

  17. EFFECTS OF TUMORS ON INHALED PHARMACOLOGIC DRUGS: II. PARTICLE MOTION

    EPA Science Inventory

    ABSTRACT

    Computer simulations were conducted to describe drug particle motion in human lung bifurcations with tumors. The computations used FIDAP with a Cray T90 supercomputer. The objective was to better understand particle behavior as affected by particle characteristics...

  18. Multiscale simulations of patchy particle systems combining Molecular Dynamics, Path Sampling and Green's Function Reaction Dynamics

    NASA Astrophysics Data System (ADS)

    Bolhuis, Peter

    Important reaction-diffusion processes, such as biochemical networks in living cells, or self-assembling soft matter, span many orders in length and time scales. In these systems, the reactants' spatial dynamics at mesoscopic length and time scales of microns and seconds is coupled to the reactions between the molecules at microscopic length and time scales of nanometers and milliseconds. This wide range of length and time scales makes these systems notoriously difficult to simulate. While mean-field rate equations cannot describe such processes, the mesoscopic Green's Function Reaction Dynamics (GFRD) method enables efficient simulation at the particle level provided the microscopic dynamics can be integrated out. Yet, many processes exhibit non-trivial microscopic dynamics that can qualitatively change the macroscopic behavior, calling for an atomistic, microscopic description. The recently developed multiscale Molecular Dynamics Green's Function Reaction Dynamics (MD-GFRD) approach combines GFRD for simulating the system at the mesocopic scale where particles are far apart, with microscopic Molecular (or Brownian) Dynamics, for simulating the system at the microscopic scale where reactants are in close proximity. The association and dissociation of particles are treated with rare event path sampling techniques. I will illustrate the efficiency of this method for patchy particle systems. Replacing the microscopic regime with a Markov State Model avoids the microscopic regime completely. The MSM is then pre-computed using advanced path-sampling techniques such as multistate transition interface sampling. I illustrate this approach on patchy particle systems that show multiple modes of binding. MD-GFRD is generic, and can be used to efficiently simulate reaction-diffusion systems at the particle level, including the orientational dynamics, opening up the possibility for large-scale simulations of e.g. protein signaling networks.

  19. An object oriented Python interface for atomistic simulations

    NASA Astrophysics Data System (ADS)

    Hynninen, T.; Himanen, L.; Parkkinen, V.; Musso, T.; Corander, J.; Foster, A. S.

    2016-01-01

    Programmable simulation environments allow one to monitor and control calculations efficiently and automatically before, during, and after runtime. Environments directly accessible in a programming environment can be interfaced with powerful external analysis tools and extensions to enhance the functionality of the core program, and by incorporating a flexible object based structure, the environments make building and analysing computational setups intuitive. In this work, we present a classical atomistic force field with an interface written in Python language. The program is an extension for an existing object based atomistic simulation environment.

  20. Lightweight Object Oriented Structure analysis: Tools for building Tools to Analyze Molecular Dynamics Simulations

    PubMed Central

    Romo, Tod D.; Leioatts, Nicholas; Grossfield, Alan

    2014-01-01

    LOOS (Lightweight Object-Oriented Structure-analysis) is a C++ library designed to facilitate making novel tools for analyzing molecular dynamics simulations by abstracting out the repetitive tasks, allowing developers to focus on the scientifically relevant part of the problem. LOOS supports input using the native file formats of most common biomolecular simulation packages, including CHARMM, NAMD, Amber, Tinker, and Gromacs. A dynamic atom selection language based on the C expression syntax is included and is easily accessible to the tool-writer. In addition, LOOS is bundled with over 120 pre-built tools, including suites of tools for analyzing simulation convergence, 3D histograms, and elastic network models. Through modern C++ design, LOOS is both simple to develop with (requiring knowledge of only 4 core classes and a few utility functions) and is easily extensible. A python interface to the core classes is also provided, further facilitating tool development. PMID:25327784

  1. Lightweight object oriented structure analysis: tools for building tools to analyze molecular dynamics simulations.

    PubMed

    Romo, Tod D; Leioatts, Nicholas; Grossfield, Alan

    2014-12-15

    LOOS (Lightweight Object Oriented Structure-analysis) is a C++ library designed to facilitate making novel tools for analyzing molecular dynamics simulations by abstracting out the repetitive tasks, allowing developers to focus on the scientifically relevant part of the problem. LOOS supports input using the native file formats of most common biomolecular simulation packages, including CHARMM, NAMD, Amber, Tinker, and Gromacs. A dynamic atom selection language based on the C expression syntax is included and is easily accessible to the tool-writer. In addition, LOOS is bundled with over 140 prebuilt tools, including suites of tools for analyzing simulation convergence, three-dimensional histograms, and elastic network models. Through modern C++ design, LOOS is both simple to develop with (requiring knowledge of only four core classes and a few utility functions) and is easily extensible. A python interface to the core classes is also provided, further facilitating tool development. © 2014 Wiley Periodicals, Inc.

  2. Hexatic smectic phase with algebraically decaying bond-orientational order

    NASA Astrophysics Data System (ADS)

    Agosta, Lorenzo; Metere, Alfredo; Dzugutov, Mikhail

    2018-05-01

    The hexatic phase predicted by the theories of two-dimensional melting is characterized by the power-law decay of the orientational correlations, whereas the in-layer bond orientational order in all the hexatic smectic phases observed so far was found to be long range. We report a hexatic smectic phase where the in-layer bond orientational correlations decay algebraically, in quantitative agreement with the hexatic ordering predicted by the theory for two dimensions. The phase was formed in a molecular dynamics simulation of a one-component system of particles interacting via a spherically symmetric potential. The present results thus demonstrate that the theoretically predicted two-dimensional hexatic order can exist in a three-dimensional system.

  3. Dust and nutrient enrichment by wind erosion from Danish soils in dependence of tillage direction

    NASA Astrophysics Data System (ADS)

    Mohammadian Behbahani, Ali; Fister, Wolfgang; Heckrath, Goswin; Kuhn, Nikolaus J.

    2016-04-01

    Wind erosion is a selective process, which promotes erosion of fine particles. Therefore, it can be assumed that increasing erosion rates are generally associated with increasing loss of dust sized particles and nutrients. However, this selective process is strongly affected by the orientation and respective trapping efficiency of tillage ridges and furrows. Since tillage ridges are often the only protection measure available on poorly aggregated soils in absence of a protective vegetation cover, it is very important to know which orientation respective to the dominant wind direction provides best protection. This knowledge could be very helpful for planning erosion protection measures on fields with high wind erosion susceptibility. The main objective of this study, therefore, was to determine the effect of tillage direction on dust and nutrient mobilization by wind, using wind tunnel simulations. In order to assess the relationship between the enrichment ratio of specific particle sizes and the amount of eroded nutrients, three soils with loamy sand texture, but varying amounts of sand-sized particles, were selected. In addition, a soil with slightly less sand, but much higher organic matter content was chosen. The soils were tested with three different soil surface scenarios - flat surface, parallel tillage, perpendicular tillage. The parallel tillage operation experienced the greatest erosion rates, independent of soil type. Particles with D50 between 100-155 μm showed the greatest risk of erosion. However, due to a greater loss of dust sized particles from perpendicularly tilled surfaces, this wind-surface arrangement showed a significant increase in nutrient enrichment ratio compared to parallel tillage and flat surfaces. The main reason for this phenomenon is most probably the trapping of larger particles in the perpendicular furrows. This indicates that the highest rate of soil protection does not necessarily coincide with lowest soil nutrient losses and dust emissions. For the evaluation of protection measures on these soil types in Denmark it is, therefore, important to differentiate between their effectivity to reduce total soil erosion amount, dust emission, and nutrient loss.

  4. Comparison of 3D ion velocity distribution measurements and models in the vicinity of an absorbing boundary oriented obliquely to a magnetic field

    NASA Astrophysics Data System (ADS)

    Henriquez, Miguel F.; Thompson, Derek S.; Kenily, Shane; Khaziev, Rinat; Good, Timothy N.; McIlvain, Julianne; Siddiqui, M. Umair; Curreli, Davide; Scime, Earl E.

    2016-10-01

    Understanding particle distributions in plasma boundary regions is critical to predicting plasma-surface interactions. Ions in the presheath exhibit complex behavior because of collisions and due to the presence of boundary-localized electric fields. Complete understanding of particle dynamics is necessary for understanding the critical problems of tokamak wall loading and Hall thruster channel wall erosion. We report measurements of 3D argon ion velocity distribution functions (IVDFs) in the vicinity of an absorbing boundary oriented obliquely to a background magnetic field. Measurements were obtained via argon ion laser induced fluorescence throughout a spatial volume upstream of the boundary. These distribution functions reveal kinetic details that provide a point-to-point check on particle-in-cell and 1D3V Boltzmann simulations. We present the results of this comparison and discuss some implications for plasma boundary interaction physics.

  5. Transit Time and Normal Orientation of ICME-driven Shocks

    NASA Astrophysics Data System (ADS)

    Case, A. W.; Spence, H.; Owens, M.; Riley, P.; Linker, J.; Odstrcil, D.

    2006-12-01

    Interplanetary Coronal Mass Ejections (ICMEs) can drive shocks that accelerate particles to great energies. It is important to understand the acceleration, transport, and spectra of these particles in order to quantify this fundamental physical process operating throughout the cosmos. This understanding also helps to better protect astronauts and spacecraft in upcoming missions. We show that the ambient solar wind is crucial in determining characteristics of ICME-driven shocks, which in turn affect energetic particle production. We use a coupled 3-D MHD code of the corona and heliosphere to simulate ICME propagation from 30 solar radii to 1AU. ICMEs of different velocities are injected into a realistic solar wind to determine how the initial speed affects the shape and deceleration of the ICME-driven shock. We use shock transit time and shock normal orientation to quantify these dependencies. We also inject identical ICMEs into different ambient solar winds to quantify the effective drag force on an ICME.

  6. Design of a Model Execution Framework: Repetitive Object-Oriented Simulation Environment (ROSE)

    NASA Technical Reports Server (NTRS)

    Gray, Justin S.; Briggs, Jeffery L.

    2008-01-01

    The ROSE framework was designed to facilitate complex system analyses. It completely divorces the model execution process from the model itself. By doing so ROSE frees the modeler to develop a library of standard modeling processes such as Design of Experiments, optimizers, parameter studies, and sensitivity studies which can then be applied to any of their available models. The ROSE framework accomplishes this by means of a well defined API and object structure. Both the API and object structure are presented here with enough detail to implement ROSE in any object-oriented language or modeling tool.

  7. Computer simulation of ion beam analysis of laterally inhomogeneous materials

    NASA Astrophysics Data System (ADS)

    Mayer, M.

    2016-03-01

    The program STRUCTNRA for the simulation of ion beam analysis charged particle spectra from arbitrary two-dimensional distributions of materials is described. The code is validated by comparison to experimental backscattering data from a silicon grating on tantalum at different orientations and incident angles. Simulated spectra for several types of rough thin layers and a chessboard-like arrangement of materials as example for a multi-phase agglomerate material are presented. Ambiguities between back-scattering spectra from two-dimensional and one-dimensional sample structures are discussed.

  8. Modelling of the mechanical behaviour of the single-crystal turbine alloy CMSX-4 during thermomechanical loading

    NASA Astrophysics Data System (ADS)

    Schubert, F.; Fleury, G.; Steinhaus, T.

    2000-11-01

    Turbine blades in gas turbine engines are subjected during operation to triaxial stress fields. For the description of the deformation behaviour of anisotropic single-crystal blades, constitutive equations are required which take account of modifications to the deformation processes caused by evolution of the γ/γ' microstructure during service (γ' rafting). A microstructure-dependent, orthotropic Hills potential, whose anisotropy coefficients are connected to the edge length of γ' particles, has been applied. The shape of γ' particles remains cubic below exposures at 700 °C. At high temperatures (above 850 °C) the γ' particles coalesce to rafts, and the viscoplastic response of the superalloy is continuously modified. This reduces the creep resistance of <001> orientated specimen. After tensile loading of the <001>-orientated specimens at 1000 °C, the rafting of γ' in the (100) plane was observed as expected, whereas the <111> specimens did not reveal γ' rafting. Torsionally loaded specimens exhibited rafting only in the near <100>-orientated surface regions of the specimen. The deformation in the <111> tensile and <001> torsion specimens occurred by octahedral slip of dislocations and not by cubic slip, as expected from theoretical considerations. Rafting did not occur in the <111>-orientated specimens. This anisotropy change is simulated successfully by the microstructure-dependent model.

  9. Petascale self-consistent electromagnetic computations using scalable and accurate algorithms for complex structures

    NASA Astrophysics Data System (ADS)

    Cary, John R.; Abell, D.; Amundson, J.; Bruhwiler, D. L.; Busby, R.; Carlsson, J. A.; Dimitrov, D. A.; Kashdan, E.; Messmer, P.; Nieter, C.; Smithe, D. N.; Spentzouris, P.; Stoltz, P.; Trines, R. M.; Wang, H.; Werner, G. R.

    2006-09-01

    As the size and cost of particle accelerators escalate, high-performance computing plays an increasingly important role; optimization through accurate, detailed computermodeling increases performance and reduces costs. But consequently, computer simulations face enormous challenges. Early approximation methods, such as expansions in distance from the design orbit, were unable to supply detailed accurate results, such as in the computation of wake fields in complex cavities. Since the advent of message-passing supercomputers with thousands of processors, earlier approximations are no longer necessary, and it is now possible to compute wake fields, the effects of dampers, and self-consistent dynamics in cavities accurately. In this environment, the focus has shifted towards the development and implementation of algorithms that scale to large numbers of processors. So-called charge-conserving algorithms evolve the electromagnetic fields without the need for any global solves (which are difficult to scale up to many processors). Using cut-cell (or embedded) boundaries, these algorithms can simulate the fields in complex accelerator cavities with curved walls. New implicit algorithms, which are stable for any time-step, conserve charge as well, allowing faster simulation of structures with details small compared to the characteristic wavelength. These algorithmic and computational advances have been implemented in the VORPAL7 Framework, a flexible, object-oriented, massively parallel computational application that allows run-time assembly of algorithms and objects, thus composing an application on the fly.

  10. Lattice Boltzmann simulations of settling behaviors of irregularly shaped particles

    NASA Astrophysics Data System (ADS)

    Zhang, Pei; Galindo-Torres, S. A.; Tang, Hongwu; Jin, Guangqiu; Scheuermann, A.; Li, Ling

    2016-06-01

    We investigated the settling dynamics of irregularly shaped particles in a still fluid under a wide range of conditions with Reynolds numbers Re varying between 1 and 2000, sphericity ϕ and circularity c both greater than 0.5, and Corey shape factor (CSF) less than 1. To simulate the particle settling process, a modified lattice Boltzmann model combined with a turbulence module was adopted. This model was first validated using experimental data for particles of spherical and cubic shapes. For irregularly shaped particles, two different types of settling behaviors were observed prior to particles reaching a steady state: accelerating and accelerating-decelerating, which could be distinguished by a critical CSF value of approximately 0.7. The settling dynamics were analyzed with a focus on the projected areas and angular velocities of particles. It was found that a minor change in the starting projected area, an indicator of the initial particle orientation, would not strongly affect the settling velocity for low Re. Periodic oscillations developed for all simulated particles when Re>100 . The amplitude of these oscillations increased with Re. However, the periods were not sensitive to Re. The critical Re that defined the transition between the steady and periodically oscillating behaviors depended on the inertia tensor. In particular, the maximum eigenvalue of the inertia tensor played a major role in signaling this transition in comparison to the intermediate and minimum eigenvalues.

  11. A conditioned visual orientation requires the ellipsoid body in Drosophila

    PubMed Central

    Guo, Chao; Du, Yifei; Yuan, Deliang; Li, Meixia; Gong, Haiyun; Gong, Zhefeng

    2015-01-01

    Orientation, the spatial organization of animal behavior, is an essential faculty of animals. Bacteria and lower animals such as insects exhibit taxis, innate orientation behavior, directly toward or away from a directional cue. Organisms can also orient themselves at a specific angle relative to the cues. In this study, using Drosophila as a model system, we established a visual orientation conditioning paradigm based on a flight simulator in which a stationary flying fly could control the rotation of a visual object. By coupling aversive heat shocks to a fly's orientation toward one side of the visual object, we found that the fly could be conditioned to orientate toward the left or right side of the frontal visual object and retain this conditioned visual orientation. The lower and upper visual fields have different roles in conditioned visual orientation. Transfer experiments showed that conditioned visual orientation could generalize between visual targets of different sizes, compactness, or vertical positions, but not of contour orientation. Rut—Type I adenylyl cyclase and Dnc—phosphodiesterase were dispensable for visual orientation conditioning. Normal activity and scb signaling in R3/R4d neurons of the ellipsoid body were required for visual orientation conditioning. Our studies established a visual orientation conditioning paradigm and examined the behavioral properties and neural circuitry of visual orientation, an important component of the insect's spatial navigation. PMID:25512578

  12. Using Google SketchUp to simulate tree row azimuth effects on alley shading

    USDA-ARS?s Scientific Manuscript database

    Effect of row azimuth on alley crop illumination is difficult to determine empirically. Our objective was to determine if Google SketchUp (Trimble Inc., Sunnyvale, CA) could be used to simulate effect of azimuth orientation on illumination of loblolly pine (Pinus taeda L.) alleys. Simulations were...

  13. Overview of Computer Simulation Modeling Approaches and Methods

    Treesearch

    Robert E. Manning; Robert M. Itami; David N. Cole; Randy Gimblett

    2005-01-01

    The field of simulation modeling has grown greatly with recent advances in computer hardware and software. Much of this work has involved large scientific and industrial applications for which substantial financial resources are available. However, advances in object-oriented programming and simulation methodology, concurrent with dramatic increases in computer...

  14. Modelling and Simulation as a Recognizing Method in Education

    ERIC Educational Resources Information Center

    Stoffa, Veronika

    2004-01-01

    Computer animation-simulation models of complex processes and events, which are the method of instruction, can be an effective didactic device. Gaining deeper knowledge about objects modelled helps to plan simulation experiments oriented on processes and events researched. Animation experiments realized on multimedia computers can aid easier…

  15. JGromacs: a Java package for analyzing protein simulations.

    PubMed

    Münz, Márton; Biggin, Philip C

    2012-01-23

    In this paper, we introduce JGromacs, a Java API (Application Programming Interface) that facilitates the development of cross-platform data analysis applications for Molecular Dynamics (MD) simulations. The API supports parsing and writing file formats applied by GROMACS (GROningen MAchine for Chemical Simulations), one of the most widely used MD simulation packages. JGromacs builds on the strengths of object-oriented programming in Java by providing a multilevel object-oriented representation of simulation data to integrate and interconvert sequence, structure, and dynamics information. The easy-to-learn, easy-to-use, and easy-to-extend framework is intended to simplify and accelerate the implementation and development of complex data analysis algorithms. Furthermore, a basic analysis toolkit is included in the package. The programmer is also provided with simple tools (e.g., XML-based configuration) to create applications with a user interface resembling the command-line interface of GROMACS applications. JGromacs and detailed documentation is freely available from http://sbcb.bioch.ox.ac.uk/jgromacs under a GPLv3 license .

  16. JGromacs: A Java Package for Analyzing Protein Simulations

    PubMed Central

    2011-01-01

    In this paper, we introduce JGromacs, a Java API (Application Programming Interface) that facilitates the development of cross-platform data analysis applications for Molecular Dynamics (MD) simulations. The API supports parsing and writing file formats applied by GROMACS (GROningen MAchine for Chemical Simulations), one of the most widely used MD simulation packages. JGromacs builds on the strengths of object-oriented programming in Java by providing a multilevel object-oriented representation of simulation data to integrate and interconvert sequence, structure, and dynamics information. The easy-to-learn, easy-to-use, and easy-to-extend framework is intended to simplify and accelerate the implementation and development of complex data analysis algorithms. Furthermore, a basic analysis toolkit is included in the package. The programmer is also provided with simple tools (e.g., XML-based configuration) to create applications with a user interface resembling the command-line interface of GROMACS applications. Availability: JGromacs and detailed documentation is freely available from http://sbcb.bioch.ox.ac.uk/jgromacs under a GPLv3 license. PMID:22191855

  17. Interplanetary Magnetic Field Control of the Entry of Solar Energetic Particles into the Magnetosphere

    NASA Technical Reports Server (NTRS)

    Richard, R. L.; El-Alaoui, M.; Ashour-Abdalla, M.; Walker, R. J.

    2002-01-01

    We have investigated the entry of energetic ions of solar origin into the magnetosphere as a function of the interplanetary magnetic field orientation. We have modeled this entry by following high energy particles (protons and 3 He ions) ranging from 0.1 to 50 MeV in electric and magnetic fields from a global magnetohydrodynamic (MHD) model of the magnetosphere and its interaction with the solar wind. For the most part these particles entered the magnetosphere on or near open field lines except for some above 10 MeV that could enter directly by crossing field lines due to their large gyroradii. The MHD simulation was driven by a series of idealized solar wind and interplanetary magnetic field (IMF) conditions. It was found that the flux of particles in the magnetosphere and transport into the inner magnetosphere varied widely according to the IMF orientation for a constant upstream particle source, with the most efficient entry occurring under southward IMF conditions. The flux inside the magnetosphere could approach that in the solar wind implying that SEPs can contribute significantly to the magnetospheric energetic particle population during typical SEP events depending on the state of the magnetosphere.

  18. Laboratory Measurements of Single-Particle Polarimetric Spectrum

    NASA Astrophysics Data System (ADS)

    Gritsevich, M.; Penttila, A.; Maconi, G.; Kassamakov, I.; Helander, P.; Puranen, T.; Salmi, A.; Hæggström, E.; Muinonen, K.

    2017-12-01

    Measuring scattering properties of different targets is important for material characterization, remote sensing applications, and for verifying theoretical results. Furthermore, there are usually simplifications made when we model targets and compute the scattering properties, e.g., ideal shape or constant optical parameters throughout the target material. Experimental studies help in understanding the link between the observed properties and computed results. Experimentally derived Mueller matrices of studied particles can be used as input for larger-scale scattering simulations, e.g., radiative transfer computations. This method allows to bypass the problem of using an idealized model for single-particle optical properties. While existing approaches offer ensemble- and orientation-averaged particle properties, our aim is to measure individual particles with controlled or known orientation. With the newly developed scatterometer, we aim to offer novel possibility to measure single, small (down to μm-scale) targets and their polarimetric spectra. This work presents an experimental setup that measures light scattered by a fixed small particle with dimensions ranging between micrometer and millimeter sizes. The goal of our setup is nondestructive characterization of such particles by measuring light of multiple wavelengths scattered in 360° in a horizontal plane by an ultrasonically levitating sample, whilst simultaneously controlling its 3D position and orientation. We describe the principles and design of our instrument and its calibration. We also present example measurements of real samples. This study was conducted under the support from the European Research Council, in the frame of the Advanced Grant project No. 320773 `Scattering and Absorption of Electromagnetic Waves in Particulate Media' (SAEMPL).

  19. Shear alignment and orientational order of shape-anisotropic grains

    NASA Astrophysics Data System (ADS)

    Stannarius, Ralf; Wegner, Sandra; Szabó, Balázs; Börzsönyi, Tamás

    2014-03-01

    Granular matter research was focused for a long time mainly on ensembles of spherical or irregularly shaped grains. In recent years, interest has grown in the study of anisometric, i.e. elongated or flattened particles [see e. g. Börzsönyi, Soft Matter 9, 7401 (2013)]. However, many related phenomena are still only little understood, quantitative experiments are scarce. We investigate shear induced order and alignment of macroscopic shape-anisotropic particles by means of X-ray computed tomography. Packing and orientation of individual grains in sheared ensembles of prolate and oblate objects (ellipsoids, cylinders and similar) are resolved non-invasively [T. Börzsönyi PRL 108, 228302 (2012)]. The experiments show that many observations are qualitatively and even quantitatively comparable to the behavior of well-understood molecular liquid crystals. We establish quantitative relations between aspect ratios and shear alignment. The induced orientational order influences local packing as well as macroscopic friction properties.

  20. Multiphysics Object-Oriented Simulation Environment (MOOSE)

    ScienceCinema

    None

    2017-12-09

    Nuclear reactor operators can expand safety margins with more precise information about how materials behave inside operating reactors. INL's new simulation platform makes such studies easier & more informative by letting researchers "plug-n-play" their mathematical models, skipping years of computer code development.

  1. ORBIT: A Code for Collective Beam Dynamics in High-Intensity Rings

    NASA Astrophysics Data System (ADS)

    Holmes, J. A.; Danilov, V.; Galambos, J.; Shishlo, A.; Cousineau, S.; Chou, W.; Michelotti, L.; Ostiguy, J.-F.; Wei, J.

    2002-12-01

    We are developing a computer code, ORBIT, specifically for beam dynamics calculations in high-intensity rings. Our approach allows detailed simulation of realistic accelerator problems. ORBIT is a particle-in-cell tracking code that transports bunches of interacting particles through a series of nodes representing elements, effects, or diagnostics that occur in the accelerator lattice. At present, ORBIT contains detailed models for strip-foil injection, including painting and foil scattering; rf focusing and acceleration; transport through various magnetic elements; longitudinal and transverse impedances; longitudinal, transverse, and three-dimensional space charge forces; collimation and limiting apertures; and the calculation of many useful diagnostic quantities. ORBIT is an object-oriented code, written in C++ and utilizing a scripting interface for the convenience of the user. Ongoing improvements include the addition of a library of accelerator maps, BEAMLINE/MXYZPTLK; the introduction of a treatment of magnet errors and fringe fields; the conversion of the scripting interface to the standard scripting language, Python; and the parallelization of the computations using MPI. The ORBIT code is an open source, powerful, and convenient tool for studying beam dynamics in high-intensity rings.

  2. Dislocation mediated alignment during metal nanoparticle coalescence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lange, A. P.; Samanta, A.; Majidi, H.

    2016-09-13

    Dislocation mediated alignment processes during gold nanoparticle coalescence were studied at low and high temperatures using molecular dynamics simulations and transmission electron microscopy. Particles underwent rigid body rotations immediately following attachment in both low temperature (500 K) simulated coalescence events and low temperature (~315 K) transmission electron microscopy beam heating experiments. In many low temperature simulations, some degree of misorientation between particles remained after rigid body rotations, which was accommodated by grain boundary dislocation nodes. These dislocations were either sessile and remained at the interface for the duration of the simulation or dissociated and cross-slipped through the adjacent particles, leadingmore » to improved co-alignment. Minimal rigid body rotations were observed during or immediately following attachment in high temperature (1100 K) simulations, which is attributed to enhanced diffusion at the particles' interface. However, rotation was eventually induced by {111} slip on planes parallel to the neck groove. These deformation modes led to the formation of single and multi-fold twins whose structures depended on the initial orientation of the particles. The driving force for {111} slip is attributed to high surface stresses near the intersection of low energy {111} facets in the neck region. The details of this twinning process were examined in detail using simulated trajectories, and the results reveal possible mechanisms for the nucleation and propagation of Shockley partials on consecutive planes. Deformation twinning was also observed in-situ using transmission electron microscopy, which resulted in the co-alignment of a set of the particles' {111} planes across their grain boundary and an increase in their dihedral angle. As a result, this constitutes the first detailed experimental observation of deformation twinning during nanoparticle coalescence, validating simulation results presented here and elsewhere.« less

  3. On Characterizing Particle Shape

    NASA Technical Reports Server (NTRS)

    Ennis, Bryan J.; Rickman, Douglas; Rollins, A. Brent; Ennis, Brandon

    2014-01-01

    It is well known that particle shape affects flow characteristics of granular materials, as well as a variety of other solids processing issues such as compaction, rheology, filtration and other two-phase flow problems. The impact of shape crosses many diverse and commercially important applications, including pharmaceuticals, civil engineering, metallurgy, health, and food processing. Two applications studied here include the dry solids flow of lunar simulants (e.g. JSC-1, NU-LHT-2M, OB-1), and the flow properties of wet concrete, including final compressive strength. A multi-dimensional generalized, engineering method to quantitatively characterize particle shapes has been developed, applicable to both single particle orientation and multi-particle assemblies. The two-dimension, three dimension inversion problem is also treated, and the application of these methods to DEM model particles will be discussed. In the case of lunar simulants, flow properties of six lunar simulants have been measured, and the impact of particle shape on flowability - as characterized by the shape method developed here -- is discussed, especially in the context of three simulants of similar size range. In the context of concrete processing, concrete construction is a major contributor to greenhouse gas production, of which the major contributor is cement binding loading. Any optimization in concrete rheology and packing that can reduce cement loading and improve strength loading can also reduce currently required construction safety factors. The characterization approach here is also demonstrated for the impact of rock aggregate shape on concrete slump rheology and dry compressive strength.

  4. Parallel and Perpendicular Alignment of Anisotropic Particles in Free Liquid Microjets and Emerging Microdroplets.

    PubMed

    Schlenk, Mathias; Hofmann, Eddie; Seibt, Susanne; Rosenfeldt, Sabine; Schrack, Lukas; Drechsler, Markus; Rothkirch, Andre; Ohm, Wiebke; Breu, Josef; Gekle, Stephan; Förster, Stephan

    2018-04-24

    Liquid microjets play a key role in fiber spinning, inkjet printing, and coating processes. In all of these applications, the liquid jets carry dispersed particles whose spatial and orientational distributions within the jet critically influence the properties of the fabricated structures. Despite its importance, there is currently no knowledge about the orientational distribution of particles within microjets and droplets. Here, we demonstrate a microfluidic device that allows to determine the local particle distribution and orientation by X-ray scattering. Using this methodology, we discovered unexpected changes in the particle orientation upon exiting the nozzle to form a free jet, and upon jet break-up into droplets, causing an unusual biaxial particle orientation. We show how flow and aspect ratio determine the flow orientation of anisotropic particles. Furthermore, we demonstrate that the observed phenomena are a general characteristic of anisotropic particles. Our findings greatly enhance our understanding of particle orientation in free jets and droplets and provide a rationale for controlling particle alignment in liquid jet-based fabrication methodologies.

  5. An orientation analysis method for protein immobilized on quantum dot particles

    NASA Astrophysics Data System (ADS)

    Aoyagi, Satoka; Inoue, Masae

    2009-11-01

    The evaluation of orientation of biomolecules immobilized on nanodevices is crucial for the development of high performance devices. Such analysis requires ultra high sensitivity so as to be able to detect less than one molecular layer on a device. Time-of-flight secondary ion mass spectrometry (TOF-SIMS) has sufficient sensitivity to evaluate the uppermost surface structure of a single molecular layer. The objective of this study is to develop an orientation analysis method for proteins immobilized on nanomaterials such as quantum dot particles, and to evaluate the orientation of streptavidin immobilized on quantum dot particles by means of TOF-SIMS. In order to detect fragment ions specific to the protein surface, a monoatomic primary ion source (Ga +) and a cluster ion source (Au 3+) were employed. Streptavidin-immobilized quantum dot particles were immobilized on aminosilanized ITO glass plates at amino groups by covalent bonding. The reference samples streptavidin directly immobilized on ITO plates were also prepared. All samples were dried with a freeze dryer before TOF-SIMS measurement. The positive secondary ion spectra of each sample were obtained using TOF-SIMS with Ga + and Au 3+, respectively, and then they were compared so as to characterize each sample and detect the surface structure of the streptavidin immobilized with the biotin-immobilized quantum dots. The chemical structures of the upper surface of the streptavidin molecules immobilized on the quantum dot particles were evaluated with TOF-SIMS spectra analysis. The indicated surface side of the streptavidin molecules immobilized on the quantum dots includes the biotin binding site.

  6. Multi-Objective Bidding Strategy for Genco Using Non-Dominated Sorting Particle Swarm Optimization

    NASA Astrophysics Data System (ADS)

    Saksinchai, Apinat; Boonchuay, Chanwit; Ongsakul, Weerakorn

    2010-06-01

    This paper proposes a multi-objective bidding strategy for a generation company (GenCo) in uniform price spot market using non-dominated sorting particle swarm optimization (NSPSO). Instead of using a tradeoff technique, NSPSO is introduced to solve the multi-objective strategic bidding problem considering expected profit maximization and risk (profit variation) minimization. Monte Carlo simulation is employed to simulate rivals' bidding behavior. Test results indicate that the proposed approach can provide the efficient non-dominated solution front effectively. In addition, it can be used as a decision making tool for a GenCo compromising between expected profit and price risk in spot market.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Challabotla, Niranjan Reddy; Zhao, Lihao; Andersson, Helge I.

    The rotational motion of inertia-free spheroids has been studied in a numerically simulated turbulent channel flow. Although inertia-free spheroids were translated as tracers with the flow, neither the disk-like nor the rod-like particles adapted to the fluid rotation. The flattest disks preferentially aligned their symmetry axes normal to the wall, whereas the longest rods were parallel with the wall. The shape-dependence of the particle orientations carried over to the particle rotation such that the mean spin was reduced with increasing departure from sphericity. The streamwise spin fluctuations were enhanced due to asphericity, but substantially more for prolate than for oblatemore » spheroids.« less

  8. A Level-set based framework for viscous simulation of particle-laden supersonic flows

    NASA Astrophysics Data System (ADS)

    Das, Pratik; Sen, Oishik; Jacobs, Gustaaf; Udaykumar, H. S.

    2017-06-01

    Particle-laden supersonic flows are important in natural and industrial processes, such as, volcanic eruptions, explosions, pneumatic conveyance of particle in material processing etc. Numerical study of such high-speed particle laden flows at the mesoscale calls for a numerical framework which allows simulation of supersonic flow around multiple moving solid objects. Only a few efforts have been made toward development of numerical frameworks for viscous simulation of particle-fluid interaction in supersonic flow regime. The current work presents a Cartesian grid based sharp-interface method for viscous simulations of interaction between supersonic flow with moving rigid particles. The no-slip boundary condition is imposed at the solid-fluid interfaces using a modified ghost fluid method (GFM). The current method is validated against the similarity solution of compressible boundary layer over flat-plate and benchmark numerical solution for steady supersonic flow over cylinder. Further validation is carried out against benchmark numerical results for shock induced lift-off of a cylinder in a shock tube. 3D simulation of steady supersonic flow over sphere is performed to compare the numerically obtained drag co-efficient with experimental results. A particle-resolved viscous simulation of shock interaction with a cloud of particles is performed to demonstrate that the current method is suitable for large-scale particle resolved simulations of particle-laden supersonic flows.

  9. Particle flow oriented electromagnetic calorimeter optimization for the circular electron positron collider

    NASA Astrophysics Data System (ADS)

    Zhao, H.; Fu, C.; Yu, D.; Wang, Z.; Hu, T.; Ruan, M.

    2018-03-01

    The design and optimization of the Electromagnetic Calorimeter (ECAL) are crucial for the Circular Electron Positron Collider (CEPC) project, a proposed future Higgs/Z factory. Following the reference design of the International Large Detector (ILD), a set of silicon-tungsten sampling ECAL geometries are implemented into the Geant4 simulation, whose performance is then scanned using Arbor algorithm. The photon energy response at different ECAL longitudinal structures is analyzed, and the separation performance between nearby photon showers with different ECAL transverse cell sizes is investigated and parametrized. The overall performance is characterized by a set of physics benchmarks, including νν H events where Higgs boson decays into a pair of photons (EM objects) or gluons (jets) and Z→τ+τ- events. Based on these results, we propose an optimized ECAL geometry for the CEPC project.

  10. Monte Carlo simulation of Hamaker nanospheres coated with dipolar particles

    NASA Astrophysics Data System (ADS)

    Meyra, Ariel G.; Zarragoicoechea, Guillermo J.; Kuz, Victor A.

    2012-01-01

    Parallel tempering Monte Carlo simulation is carried out in systems of N attractive Hamaker spheres dressed with n dipolar particles, able to move on the surface of the spheres. Different cluster configurations emerge for given values of the control parameters. Energy per sphere, pair distribution functions of spheres and dipoles as function of temperature, density, external electric field, and/or the angular orientation of dipoles are used to analyse the state of aggregation of the system. As a consequence of the non-central interaction, the model predicts complex structures like self-assembly of spheres by a double crown of dipoles. This interesting result could be of help in understanding some recent experiments in colloidal science and biology.

  11. Pseudochemotaxis in inhomogeneous active Brownian systems

    NASA Astrophysics Data System (ADS)

    Vuijk, Hidde D.; Sharma, Abhinav; Mondal, Debasish; Sommer, Jens-Uwe; Merlitz, Holger

    2018-04-01

    We study dynamical properties of confined, self-propelled Brownian particles in an inhomogeneous activity profile. Using Brownian dynamics simulations, we calculate the probability to reach a fixed target and the mean first passage time to the target of an active particle. We show that both these quantities are strongly influenced by the inhomogeneous activity. When the activity is distributed such that high-activity zone is located between the target and the starting location, the target finding probability is increased and the passage time is decreased in comparison to a uniformly active system. Moreover, for a continuously distributed profile, the activity gradient results in a drift of active particle up the gradient bearing resemblance to chemotaxis. Integrating out the orientational degrees of freedom, we derive an approximate Fokker-Planck equation and show that the theoretical predictions are in very good agreement with the Brownian dynamics simulations.

  12. Applying machine learning methods for characterization of hexagonal prisms from their 2D scattering patterns - an investigation using modelled scattering data

    NASA Astrophysics Data System (ADS)

    Salawu, Emmanuel Oluwatobi; Hesse, Evelyn; Stopford, Chris; Davey, Neil; Sun, Yi

    2017-11-01

    Better understanding and characterization of cloud particles, whose properties and distributions affect climate and weather, are essential for the understanding of present climate and climate change. Since imaging cloud probes have limitations of optical resolution, especially for small particles (with diameter < 25 μm), instruments like the Small Ice Detector (SID) probes, which capture high-resolution spatial light scattering patterns from individual particles down to 1 μm in size, have been developed. In this work, we have proposed a method using Machine Learning techniques to estimate simulated particles' orientation-averaged projected sizes (PAD) and aspect ratio from their 2D scattering patterns. The two-dimensional light scattering patterns (2DLSP) of hexagonal prisms are computed using the Ray Tracing with Diffraction on Facets (RTDF) model. The 2DLSP cover the same angular range as the SID probes. We generated 2DLSP for 162 hexagonal prisms at 133 orientations for each. In a first step, the 2DLSP were transformed into rotation-invariant Zernike moments (ZMs), which are particularly suitable for analyses of pattern symmetry. Then we used ZMs, summed intensities, and root mean square contrast as inputs to the advanced Machine Learning methods. We created one random forests classifier for predicting prism orientation, 133 orientation-specific (OS) support vector classification models for predicting the prism aspect-ratios, 133 OS support vector regression models for estimating prism sizes, and another 133 OS Support Vector Regression (SVR) models for estimating the size PADs. We have achieved a high accuracy of 0.99 in predicting prism aspect ratios, and a low value of normalized mean square error of 0.004 for estimating the particle's size and size PADs.

  13. UmUTracker: A versatile MATLAB program for automated particle tracking of 2D light microscopy or 3D digital holography data

    NASA Astrophysics Data System (ADS)

    Zhang, Hanqing; Stangner, Tim; Wiklund, Krister; Rodriguez, Alvaro; Andersson, Magnus

    2017-10-01

    We present a versatile and fast MATLAB program (UmUTracker) that automatically detects and tracks particles by analyzing video sequences acquired by either light microscopy or digital in-line holographic microscopy. Our program detects the 2D lateral positions of particles with an algorithm based on the isosceles triangle transform, and reconstructs their 3D axial positions by a fast implementation of the Rayleigh-Sommerfeld model using a radial intensity profile. To validate the accuracy and performance of our program, we first track the 2D position of polystyrene particles using bright field and digital holographic microscopy. Second, we determine the 3D particle position by analyzing synthetic and experimentally acquired holograms. Finally, to highlight the full program features, we profile the microfluidic flow in a 100 μm high flow chamber. This result agrees with computational fluid dynamic simulations. On a regular desktop computer UmUTracker can detect, analyze, and track multiple particles at 5 frames per second for a template size of 201 ×201 in a 1024 × 1024 image. To enhance usability and to make it easy to implement new functions we used object-oriented programming. UmUTracker is suitable for studies related to: particle dynamics, cell localization, colloids and microfluidic flow measurement. Program Files doi : http://dx.doi.org/10.17632/fkprs4s6xp.1 Licensing provisions : Creative Commons by 4.0 (CC by 4.0) Programming language : MATLAB Nature of problem: 3D multi-particle tracking is a common technique in physics, chemistry and biology. However, in terms of accuracy, reliable particle tracking is a challenging task since results depend on sample illumination, particle overlap, motion blur and noise from recording sensors. Additionally, the computational performance is also an issue if, for example, a computationally expensive process is executed, such as axial particle position reconstruction from digital holographic microscopy data. Versatile robust tracking programs handling these concerns and providing a powerful post-processing option are significantly limited. Solution method: UmUTracker is a multi-functional tool to extract particle positions from long video sequences acquired with either light microscopy or digital holographic microscopy. The program provides an easy-to-use graphical user interface (GUI) for both tracking and post-processing that does not require any programming skills to analyze data from particle tracking experiments. UmUTracker first conduct automatic 2D particle detection even under noisy conditions using a novel circle detector based on the isosceles triangle sampling technique with a multi-scale strategy. To reduce the computational load for 3D tracking, it uses an efficient implementation of the Rayleigh-Sommerfeld light propagation model. To analyze and visualize the data, an efficient data analysis step, which can for example show 4D flow visualization using 3D trajectories, is included. Additionally, UmUTracker is easy to modify with user-customized modules due to the object-oriented programming style Additional comments: Program obtainable from https://sourceforge.net/projects/umutracker/

  14. Ferromagnetic resonance and transverse susceptibility measurements on particulate recording media (abstract)

    NASA Astrophysics Data System (ADS)

    Orth, Th.; Pelzl, J.; Chantrell, R. W.; Veitch, R.; Jakusch, H.

    1993-05-01

    The FMR absorption of different particulate recording tapes was investigated at microwave frequencies in the X band and Q band using temperatures from 70 to 400 K. The FMR spectra as a function of the external magnetic field were recorded for four different orientations of the static and high frequency magnetic fields with respect to the tape. Particular interest of the experimental and theoretical study was devoted to the interaction fields between the particles, texture effects within the tape sample and the effective anisotropy fields. Tape samples with different particle materials, varying packing densities and orientation ratios were prepared. The shape and line position of the FMR spectra obtained are strongly dependent on the pigment material and the tape parameters mentioned above. The experimental data are compared with theoretical calculations, based on a phenomenological model and a computer simulation. This comparison gives information on the orientational distribution of the particles, which is the most important source for inhomogeneous line broadening, the mean interaction, and anisotropy fields which govern the line position, the effective magnetization of the tape, and the relaxation time. The influence of the crystalline anisotropy can be investigated via temperature dependent measurements. The results are proved by additional transverse susceptibility measurements.

  15. Active and Passive Radiative Transfer Modeling with Preferentially-Aligned Particles

    NASA Technical Reports Server (NTRS)

    Adams, Ian Stuart

    2017-01-01

    The fluid dynamics of falling hydrometeors often results in preferential orientations that can affect both the intensity and polarization of electromagnetic radiation. In order to properly interpret remote sensing observations of ice and snow, such alignments should be considered when constructing databases of scattering particles; however, the inclusion of aligned particles increases the complexity of the scattering data. To demonstrate the use of scattering properties of preferentially-aligned particles, millimeter-wave brightness temperatures and radar observables, including reflectivity and linear depolarization ratio, are modeled using the Atmospheric Radiative Transfer Simulator (ARTS). The necessary scattering parameters for vector radiative transfer, particularly with respect to ARTS, are reviewed, and the exploitation of particle symmetries, as well as scattering reciprocity relationships, are detailed.

  16. Initial development of goCMC: a GPU-oriented fast cross-platform Monte Carlo engine for carbon ion therapy

    PubMed Central

    Qin, Nan; Pinto, Marco; Tian, Zhen; Dedes, Georgios; Pompos, Arnold; Jiang, Steve B.; Parodi, Katia; Jia, Xun

    2017-01-01

    Monte Carlo (MC) simulation is considered as the most accurate method for calculation of absorbed dose and fundamental physics quantities related to biological effects in carbon ion therapy. To improve its computational efficiency, we have developed a GPU-oriented fast MC package named goCMC, for carbon therapy. goCMC simulates particle transport in voxelized geometry with kinetic energy up to 450 MeV/u. Class II condensed history simulation scheme with a continuous slowing down approximation was employed. Energy straggling and multiple scattering were modeled. δ-electrons were terminated with their energy locally deposited. Four types of nuclear interactions were implemented in goCMC, i.e., carbon-hydrogen, carbon-carbon, carbon-oxygen and carbon-calcium inelastic collisions. Total cross section data from Geant4 were used. Secondary particles produced in these interactions were sampled according to particle yield with energy and directional distribution data derived from Geant4 simulation results. Secondary charged particles were transported following the condensed history scheme, whereas secondary neutral particles were ignored. goCMC was developed under OpenCL framework and is executable on different platforms, e.g. GPU and multi-core CPU. We have validated goCMC with Geant4 in cases with different beam energy and phantoms including four homogeneous phantoms, one heterogeneous half-slab phantom, and one patient case. For each case 3 × 107 carbon ions were simulated, such that in the region with dose greater than 10% of maximum dose, the mean relative statistical uncertainty was less than 1%. Good agreements for dose distributions and range estimations between goCMC and Geant4 were observed. 3D gamma passing rates with 1%/1 mm criterion were over 90% within 10%) isodose line except in two extreme cases, and those with 2%/1 mm criterion were all over 96%. Efficiency and code portability were tested with different GPUs and CPUs. Depending on the beam energy and voxel size, the computation time to simulate 107 carbons was 9.9–125 sec, 2.5–50 sec and 60–612 sec on an AMD Radeon GPU card, an NVidia GeForce GTX 1080 GPU card and an Intel Xeon E5-2640 CPU, respectively. The combined accuracy, efficiency and portability make goCMC attractive for research and clinical applications in carbon ion therapy. PMID:28140352

  17. Initial development of goCMC: a GPU-oriented fast cross-platform Monte Carlo engine for carbon ion therapy

    NASA Astrophysics Data System (ADS)

    Qin, Nan; Pinto, Marco; Tian, Zhen; Dedes, Georgios; Pompos, Arnold; Jiang, Steve B.; Parodi, Katia; Jia, Xun

    2017-05-01

    Monte Carlo (MC) simulation is considered as the most accurate method for calculation of absorbed dose and fundamental physics quantities related to biological effects in carbon ion therapy. To improve its computational efficiency, we have developed a GPU-oriented fast MC package named goCMC, for carbon therapy. goCMC simulates particle transport in voxelized geometry with kinetic energy up to 450 MeV u-1. Class II condensed history simulation scheme with a continuous slowing down approximation was employed. Energy straggling and multiple scattering were modeled. δ-electrons were terminated with their energy locally deposited. Four types of nuclear interactions were implemented in goCMC, i.e. carbon-hydrogen, carbon-carbon, carbon-oxygen and carbon-calcium inelastic collisions. Total cross section data from Geant4 were used. Secondary particles produced in these interactions were sampled according to particle yield with energy and directional distribution data derived from Geant4 simulation results. Secondary charged particles were transported following the condensed history scheme, whereas secondary neutral particles were ignored. goCMC was developed under OpenCL framework and is executable on different platforms, e.g. GPU and multi-core CPU. We have validated goCMC with Geant4 in cases with different beam energy and phantoms including four homogeneous phantoms, one heterogeneous half-slab phantom, and one patient case. For each case 3× {{10}7} carbon ions were simulated, such that in the region with dose greater than 10% of maximum dose, the mean relative statistical uncertainty was less than 1%. Good agreements for dose distributions and range estimations between goCMC and Geant4 were observed. 3D gamma passing rates with 1%/1 mm criterion were over 90% within 10% isodose line except in two extreme cases, and those with 2%/1 mm criterion were all over 96%. Efficiency and code portability were tested with different GPUs and CPUs. Depending on the beam energy and voxel size, the computation time to simulate {{10}7} carbons was 9.9-125 s, 2.5-50 s and 60-612 s on an AMD Radeon GPU card, an NVidia GeForce GTX 1080 GPU card and an Intel Xeon E5-2640 CPU, respectively. The combined accuracy, efficiency and portability make goCMC attractive for research and clinical applications in carbon ion therapy.

  18. Initial development of goCMC: a GPU-oriented fast cross-platform Monte Carlo engine for carbon ion therapy.

    PubMed

    Qin, Nan; Pinto, Marco; Tian, Zhen; Dedes, Georgios; Pompos, Arnold; Jiang, Steve B; Parodi, Katia; Jia, Xun

    2017-05-07

    Monte Carlo (MC) simulation is considered as the most accurate method for calculation of absorbed dose and fundamental physics quantities related to biological effects in carbon ion therapy. To improve its computational efficiency, we have developed a GPU-oriented fast MC package named goCMC, for carbon therapy. goCMC simulates particle transport in voxelized geometry with kinetic energy up to 450 MeV u -1 . Class II condensed history simulation scheme with a continuous slowing down approximation was employed. Energy straggling and multiple scattering were modeled. δ-electrons were terminated with their energy locally deposited. Four types of nuclear interactions were implemented in goCMC, i.e. carbon-hydrogen, carbon-carbon, carbon-oxygen and carbon-calcium inelastic collisions. Total cross section data from Geant4 were used. Secondary particles produced in these interactions were sampled according to particle yield with energy and directional distribution data derived from Geant4 simulation results. Secondary charged particles were transported following the condensed history scheme, whereas secondary neutral particles were ignored. goCMC was developed under OpenCL framework and is executable on different platforms, e.g. GPU and multi-core CPU. We have validated goCMC with Geant4 in cases with different beam energy and phantoms including four homogeneous phantoms, one heterogeneous half-slab phantom, and one patient case. For each case [Formula: see text] carbon ions were simulated, such that in the region with dose greater than 10% of maximum dose, the mean relative statistical uncertainty was less than 1%. Good agreements for dose distributions and range estimations between goCMC and Geant4 were observed. 3D gamma passing rates with 1%/1 mm criterion were over 90% within 10% isodose line except in two extreme cases, and those with 2%/1 mm criterion were all over 96%. Efficiency and code portability were tested with different GPUs and CPUs. Depending on the beam energy and voxel size, the computation time to simulate [Formula: see text] carbons was 9.9-125 s, 2.5-50 s and 60-612 s on an AMD Radeon GPU card, an NVidia GeForce GTX 1080 GPU card and an Intel Xeon E5-2640 CPU, respectively. The combined accuracy, efficiency and portability make goCMC attractive for research and clinical applications in carbon ion therapy.

  19. Modelling robot construction systems

    NASA Technical Reports Server (NTRS)

    Grasso, Chris

    1990-01-01

    TROTER's are small, inexpensive robots that can work together to accomplish sophisticated construction tasks. To understand the issues involved in designing and operating a team of TROTER's, the robots and their components are being modeled. A TROTER system that features standardized component behavior is introduced. An object-oriented model implemented in the Smalltalk programming language is described and the advantages of the object-oriented approach for simulating robot and component interactions are discussed. The presentation includes preliminary results and a discussion of outstanding issues.

  20. Hysteretic dynamics of active particles in a periodic orienting field

    PubMed Central

    Romensky, Maksym; Scholz, Dimitri; Lobaskin, Vladimir

    2015-01-01

    Active motion of living organisms and artificial self-propelling particles has been an area of intense research at the interface of biology, chemistry and physics. Significant progress in understanding these phenomena has been related to the observation that dynamic self-organization in active systems has much in common with ordering in equilibrium condensed matter such as spontaneous magnetization in ferromagnets. The velocities of active particles may behave similar to magnetic dipoles and develop global alignment, although interactions between the individuals might be completely different. In this work, we show that the dynamics of active particles in external fields can also be described in a way that resembles equilibrium condensed matter. It follows simple general laws, which are independent of the microscopic details of the system. The dynamics is revealed through hysteresis of the mean velocity of active particles subjected to a periodic orienting field. The hysteresis is measured in computer simulations and experiments on unicellular organisms. We find that the ability of the particles to follow the field scales with the ratio of the field variation period to the particles' orientational relaxation time, which, in turn, is related to the particle self-propulsion power and the energy dissipation rate. The collective behaviour of the particles due to aligning interactions manifests itself at low frequencies via increased persistence of the swarm motion when compared with motion of an individual. By contrast, at high field frequencies, the active group fails to develop the alignment and tends to behave like a set of independent individuals even in the presence of interactions. We also report on asymptotic laws for the hysteretic dynamics of active particles, which resemble those in magnetic systems. The generality of the assumptions in the underlying model suggests that the observed laws might apply to a variety of dynamic phenomena from the motion of synthetic active particles to crowd or opinion dynamics. PMID:26040594

  1. A disk of scattered icy objects and the origin of Jupiter-family comets.

    PubMed

    Duncan, M J; Levison, H F

    1997-06-13

    Orbital integrations carried out for 4 billion years produced a disk of scattered objects beyond the orbit of Neptune. Objects in this disk can be distinguished from Kuiper belt objects by a greater range of eccentricities and inclinations. This disk was formed in the simulations by encounters with Neptune during the early evolution of the outer solar system. After particles first encountered Neptune, the simulations show that about 1 percent of the particles survive in this disk for the age of the solar system. A disk currently containing as few as approximately 6 x 10(8) objects could supply all of the observed Jupiter-family comets. Two recently discovered objects, 1996 RQ20 and 1996 TL66, have orbital elements similar to those predicted for objects in this disk, suggesting that they are thus far the only members of this disk to be identified.

  2. New hybrid voxelized/analytical primitive in Monte Carlo simulations for medical applications

    NASA Astrophysics Data System (ADS)

    Bert, Julien; Lemaréchal, Yannick; Visvikis, Dimitris

    2016-05-01

    Monte Carlo simulations (MCS) applied in particle physics play a key role in medical imaging and particle therapy. In such simulations, particles are transported through voxelized phantoms derived from predominantly patient CT images. However, such voxelized object representation limits the incorporation of fine elements, such as artificial implants from CAD modeling or anatomical and functional details extracted from other imaging modalities. In this work we propose a new hYbrid Voxelized/ANalytical primitive (YVAN) that combines both voxelized and analytical object descriptions within the same MCS, without the need to simultaneously run two parallel simulations, which is the current gold standard methodology. Given that YVAN is simply a new primitive object, it does not require any modifications on the underlying MC navigation code. The new proposed primitive was assessed through a first simple MCS. Results from the YVAN primitive were compared against an MCS using a pure analytical geometry and the layer mass geometry concept. A perfect agreement was found between these simulations, leading to the conclusion that the new hybrid primitive is able to accurately and efficiently handle phantoms defined by a mixture of voxelized and analytical objects. In addition, two application-based evaluation studies in coronary angiography and intra-operative radiotherapy showed that the use of YVAN was 6.5% and 12.2% faster than the layered mass geometry method, respectively, without any associated loss of accuracy. However, the simplification advantages and differences in computational time improvements obtained with YVAN depend on the relative proportion of the analytical and voxelized structures used in the simulation as well as the size and number of triangles used in the description of the analytical object meshes.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Springer, H K; Miller, W O; Levatin, J L

    Satellite collision debris poses risks to existing space assets and future space missions. Predictive models of debris generated from these hypervelocity collisions are critical for developing accurate space situational awareness tools and effective mitigation strategies. Hypervelocity collisions involve complex phenomenon that spans several time- and length-scales. We have developed a satellite collision debris modeling approach consisting of a Lagrangian hydrocode enriched with smooth particle hydrodynamics (SPH), advanced material failure models, detailed satellite mesh models, and massively parallel computers. These computational studies enable us to investigate the influence of satellite center-of-mass (CM) overlap and orientation, relative velocity, and material composition onmore » the size, velocity, and material type distributions of collision debris. We have applied our debris modeling capability to the recent Iridium 33-Cosmos 2251 collision event. While the relative velocity was well understood in this event, the degree of satellite CM overlap and orientation was ill-defined. In our simulations, we varied the collision CM overlap and orientation of the satellites from nearly maximum overlap to partial overlap on the outermost extents of the satellites (i.e, solar panels and gravity boom). As expected, we found that with increased satellite overlap, the overall debris cloud mass and momentum (transfer) increases, the average debris size decreases, and the debris velocity increases. The largest predicted debris can also provide insight into which satellite components were further removed from the impact location. A significant fraction of the momentum transfer is imparted to the smallest debris (< 1-5mm, dependent on mesh resolution), especially in large CM overlap simulations. While the inclusion of the smallest debris is critical to enforcing mass and momentum conservation in hydrocode simulations, there seems to be relatively little interest in their disposition. Based on comparing our results to observations, it is unlikely that the Iridium 33-Cosmos 2251 collision event was a large mass-overlap collision. We also performed separate simulations studying the debris generated by the collision of 5 and 10 cm spherical projectiles on the Iridium 33 satellite at closing velocities of 5, 10, and 15 km/s. It is important to understand the vulnerability of satellites to small debris threats, given their pervasiveness in orbit. These studies can also be merged with probabilistic conjunction analysis to better understand the risk to space assets. In these computational studies, we found that momentum transfer, kinetic energy losses due to dissipative mechanisms (e.g., fracture), fragment number, and fragment velocity increases with increasing velocity for a fixed projectile size. For a fixed velocity, we found that the smaller projectile size more efficiently transfers momentum to the satellite. This latter point has an important implication: Eight (spaced) 5 cm debris objects can impart more momentum to the satellite, and likely cause more damage, than a single 10 cm debris object at the same velocity. Further studies are required to assess the satellite damage induced by 1-5 cm sized debris objects, as well as multiple debris objects, in this velocity range.« less

  4. A Performance-Based Comparison of Object-Oriented Simulation Tools

    DTIC Science & Technology

    1992-04-01

    simulation" [Belanger 90a, 90b]. CACI Products Company markets MODSIM II as the commercial version of ModSim, which was created on a US Army contract...aim fprintf (report_file, "Line Statistics\\ nLine teller repoirt.cust interrupts; Lengt~is\

  5. A particle swarm optimization variant with an inner variable learning strategy.

    PubMed

    Wu, Guohua; Pedrycz, Witold; Ma, Manhao; Qiu, Dishan; Li, Haifeng; Liu, Jin

    2014-01-01

    Although Particle Swarm Optimization (PSO) has demonstrated competitive performance in solving global optimization problems, it exhibits some limitations when dealing with optimization problems with high dimensionality and complex landscape. In this paper, we integrate some problem-oriented knowledge into the design of a certain PSO variant. The resulting novel PSO algorithm with an inner variable learning strategy (PSO-IVL) is particularly efficient for optimizing functions with symmetric variables. Symmetric variables of the optimized function have to satisfy a certain quantitative relation. Based on this knowledge, the inner variable learning (IVL) strategy helps the particle to inspect the relation among its inner variables, determine the exemplar variable for all other variables, and then make each variable learn from the exemplar variable in terms of their quantitative relations. In addition, we design a new trap detection and jumping out strategy to help particles escape from local optima. The trap detection operation is employed at the level of individual particles whereas the trap jumping out strategy is adaptive in its nature. Experimental simulations completed for some representative optimization functions demonstrate the excellent performance of PSO-IVL. The effectiveness of the PSO-IVL stresses a usefulness of augmenting evolutionary algorithms by problem-oriented domain knowledge.

  6. Object oriented design (OOD) in real-time hardware-in-the-loop (HWIL) simulations

    NASA Astrophysics Data System (ADS)

    Morris, Joe; Richard, Henri; Lowman, Alan; Youngren, Rob

    2006-05-01

    Using Object Oriented Design (OOD) concepts in AMRDEC's Hardware-in-the Loop (HWIL) real-time simulations allows the user to interchange parts of the simulation to meet test requirements. A large-scale three-spectral band simulator connected via a high speed reflective memory ring for time-critical data transfers to PC controllers connected by non real-time Ethernet protocols is used to separate software objects from logical entities close to their respective controlled hardware. Each standalone object does its own dynamic initialization, real-time processing, and end of run processing; therefore it can be easily maintained and updated. A Resource Allocation Program (RAP) is also utilized along with a device table to allocate, organize, and document the communication protocol between the software and hardware components. A GUI display program lists all allocations and deallocations of HWIL memory and hardware resources. This interactive program is also used to clean up defunct allocations of dead processes. Three examples are presented using the OOD and RAP concepts. The first is the control of an ACUTRONICS built three-axis flight table using the same control for calibration and real-time functions. The second is the transportability of a six-degree-of-freedom (6-DOF) simulation from an Onyx residence to a Linux-PC. The third is the replacement of the 6-DOF simulation with a replay program to drive the facility with archived run data for demonstration or analysis purposes.

  7. An Object-Oriented Graphical User Interface for a Reusable Rocket Engine Intelligent Control System

    NASA Technical Reports Server (NTRS)

    Litt, Jonathan S.; Musgrave, Jeffrey L.; Guo, Ten-Huei; Paxson, Daniel E.; Wong, Edmond; Saus, Joseph R.; Merrill, Walter C.

    1994-01-01

    An intelligent control system for reusable rocket engines under development at NASA Lewis Research Center requires a graphical user interface to allow observation of the closed-loop system in operation. The simulation testbed consists of a real-time engine simulation computer, a controls computer, and several auxiliary computers for diagnostics and coordination. The system is set up so that the simulation computer could be replaced by the real engine and the change would be transparent to the control system. Because of the hard real-time requirement of the control computer, putting a graphical user interface on it was not an option. Thus, a separate computer used strictly for the graphical user interface was warranted. An object-oriented LISP-based graphical user interface has been developed on a Texas Instruments Explorer 2+ to indicate the condition of the engine to the observer through plots, animation, interactive graphics, and text.

  8. Molecular Dynamic Simulations of Interaction of an AFM Probe with the Surface of an SCN Sample

    NASA Technical Reports Server (NTRS)

    Bune, Adris; Kaukler, William; Rose, M. Franklin (Technical Monitor)

    2001-01-01

    Molecular dynamic (MD) simulations is conducted in order to estimate forces of probe-substrate interaction in the Atomic Force Microscope (AFM). First a review of available molecular dynamic techniques is given. Implementation of MD simulation is based on an object-oriented code developed at the University of Delft. Modeling of the sample material - succinonitrile (SCN) - is based on the Lennard-Jones potentials. For the polystyrene probe an atomic interaction potential is used. Due to object-oriented structure of the code modification of an atomic interaction potential is straight forward. Calculation of melting temperature is used for validation of the code and of the interaction potentials. Various fitting parameters of the probe-substrate interaction potentials are considered, as potentials fitted to certain properties and temperature ranges may not be reliable for the others. This research provides theoretical foundation for an interpretation of actual measurements of an interaction forces using AFM.

  9. MAGE (M-file/Mif Automatic GEnerator): A graphical interface tool for automatic generation of Object Oriented Micromagnetic Framework configuration files and Matlab scripts for results analysis

    NASA Astrophysics Data System (ADS)

    Chęciński, Jakub; Frankowski, Marek

    2016-10-01

    We present a tool for fully-automated generation of both simulations configuration files (Mif) and Matlab scripts for automated data analysis, dedicated for Object Oriented Micromagnetic Framework (OOMMF). We introduce extended graphical user interface (GUI) that allows for fast, error-proof and easy creation of Mifs, without any programming skills usually required for manual Mif writing necessary. With MAGE we provide OOMMF extensions for complementing it by mangetoresistance and spin-transfer-torque calculations, as well as local magnetization data selection for output. Our software allows for creation of advanced simulations conditions like simultaneous parameters sweeps and synchronic excitation application. Furthermore, since output of such simulation could be long and complicated we provide another GUI allowing for automated creation of Matlab scripts suitable for analysis of such data with Fourier and wavelet transforms as well as user-defined operations.

  10. Faunus: An object oriented framework for molecular simulation

    PubMed Central

    Lund, Mikael; Trulsson, Martin; Persson, Björn

    2008-01-01

    Background We present a C++ class library for Monte Carlo simulation of molecular systems, including proteins in solution. The design is generic and highly modular, enabling multiple developers to easily implement additional features. The statistical mechanical methods are documented by extensive use of code comments that – subsequently – are collected to automatically build a web-based manual. Results We show how an object oriented design can be used to create an intuitively appealing coding framework for molecular simulation. This is exemplified in a minimalistic C++ program that can calculate protein protonation states. We further discuss performance issues related to high level coding abstraction. Conclusion C++ and the Standard Template Library (STL) provide a high-performance platform for generic molecular modeling. Automatic generation of code documentation from inline comments has proven particularly useful in that no separate manual needs to be maintained. PMID:18241331

  11. GENASIS Mathematics : Object-oriented manifolds, operations, and solvers for large-scale physics simulations

    NASA Astrophysics Data System (ADS)

    Cardall, Christian Y.; Budiardja, Reuben D.

    2018-01-01

    The large-scale computer simulation of a system of physical fields governed by partial differential equations requires some means of approximating the mathematical limit of continuity. For example, conservation laws are often treated with a 'finite-volume' approach in which space is partitioned into a large number of small 'cells,' with fluxes through cell faces providing an intuitive discretization modeled on the mathematical definition of the divergence operator. Here we describe and make available Fortran 2003 classes furnishing extensible object-oriented implementations of simple meshes and the evolution of generic conserved currents thereon, along with individual 'unit test' programs and larger example problems demonstrating their use. These classes inaugurate the Mathematics division of our developing astrophysics simulation code GENASIS (Gen eral A strophysical Si mulation S ystem), which will be expanded over time to include additional meshing options, mathematical operations, solver types, and solver variations appropriate for many multiphysics applications.

  12. Precursor Wave Emission Enhanced by Weibel Instability in Relativistic Shocks

    NASA Astrophysics Data System (ADS)

    Iwamoto, Masanori; Amano, Takanobu; Hoshino, Masahiro; Matsumoto, Yosuke

    2018-05-01

    We investigated the precursor wave emission efficiency in magnetized purely perpendicular relativistic shocks in pair plasmas. We extended our previous study to include the dependence of upstream magnetic field orientations. We performed two-dimensional particle-in-cell simulations and focused on two magnetic field orientations: the magnetic field in the simulation plane (i.e., in-plane configuration) and that perpendicular to the simulation plane (i.e., out-of-plane configuration). Our simulations in the in-plane configuration demonstrated that not only extraordinary but also ordinary mode waves are excited. We quantified the emission efficiency as a function of the magnetization parameter σ e and found that the large-amplitude precursor waves are emitted for a wide range of σ e . We found that especially at low σ e , the magnetic field generated by Weibel instability amplifies the ordinary mode wave power. The amplitude is large enough to perturb the upstream plasma, and transverse density filaments are generated as in the case of the out-of-plane configuration investigated in the previous study. We confirmed that our previous conclusion holds regardless of upstream magnetic field orientations with respect to the two-dimensional simulation plane. We discuss the precursor wave emission in three dimensions and the feasibility of wakefield acceleration in relativistic shocks based on our results.

  13. Estimation of heat transfer coefficients for biomass particles by direct numerical simulation using microstructured particle models in the Laminar regime

    DOE PAGES

    Pecha, M. Brennan; Garcia-Perez, Manuel; Foust, Thomas D.; ...

    2016-11-08

    Here, direct numerical simulation of convective heat transfer from hot gas to isolated biomass particle models with realistic morphology and explicit microstructure was performed over a range of conditions with laminar flow of hot gas (500 degrees C). Steady-state results demonstrated that convective interfacial heat transfer is dependent on the wood species. The computed heat transfer coefficients were shown to vary between the pine and aspen models by nearly 20%. These differences are attributed to the species-specific variations in the exterior surface morphology of the biomass particles. We also quantify variations in heat transfer experienced by the particle when positionedmore » in different orientations with respect to the direction of fluid flow. These results are compared to previously reported heat transfer coefficient correlations in the range of 0.1 < Pr < 1.5 and 10 < Re < 500. Comparison of these simulation results to correlations commonly used in the literature (Gunn, Ranz-Marshall, and Bird-Stewart-Lightfoot) shows that the Ranz-Marshall (sphere) correlation gave the closest h values to our steady-state simulations for both wood species, though no existing correlation was within 20% of both species at all conditions studied. In general, this work exemplifies the fact that all biomass feedstocks are not created equal, and that their species-specific characteristics must be appreciated in order to facilitate accurate simulations of conversion processes.« less

  14. Estimation of heat transfer coefficients for biomass particles by direct numerical simulation using microstructured particle models in the Laminar regime

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pecha, M. Brennan; Garcia-Perez, Manuel; Foust, Thomas D.

    Here, direct numerical simulation of convective heat transfer from hot gas to isolated biomass particle models with realistic morphology and explicit microstructure was performed over a range of conditions with laminar flow of hot gas (500 degrees C). Steady-state results demonstrated that convective interfacial heat transfer is dependent on the wood species. The computed heat transfer coefficients were shown to vary between the pine and aspen models by nearly 20%. These differences are attributed to the species-specific variations in the exterior surface morphology of the biomass particles. We also quantify variations in heat transfer experienced by the particle when positionedmore » in different orientations with respect to the direction of fluid flow. These results are compared to previously reported heat transfer coefficient correlations in the range of 0.1 < Pr < 1.5 and 10 < Re < 500. Comparison of these simulation results to correlations commonly used in the literature (Gunn, Ranz-Marshall, and Bird-Stewart-Lightfoot) shows that the Ranz-Marshall (sphere) correlation gave the closest h values to our steady-state simulations for both wood species, though no existing correlation was within 20% of both species at all conditions studied. In general, this work exemplifies the fact that all biomass feedstocks are not created equal, and that their species-specific characteristics must be appreciated in order to facilitate accurate simulations of conversion processes.« less

  15. Object Orientated Simulation on Transputer Arrays Using Time Warp

    DTIC Science & Technology

    1989-12-01

    Transputer based Machines, Grenoble, Sept 14-16 1987, Ed. Traian Muntean. [ 3 ] Muntean T., "PARX operating system kernal; application to Minix ", Esprit P1085...Simulation 3 Time Warp Simulation 8 3.1 Rollback Mechanism ........ ............................. 8 3.2 Simulation Outp,,t...23 4.3.* Importan Noc .......... ............................ 23 5 Low Level Operations 24 • 3 IIiI 5.1 Global Virtual Timne Estimiation

  16. Direction-specific interaction forces underlying zinc oxide crystal growth by oriented attachment

    DOE PAGES

    Zhang, X.; Shen, Z.; Liu, J.; ...

    2017-10-10

    Here, crystallization by particle attachment is impacting our understanding of natural mineralization processes and holds promise for novel materials design. When particles assemble in crystallographic registry, expulsion of the intervening solvent and particle coalescence is enabled by near-perfect co-alignment via interparticle forces that remain poorly quantified. Here we report measurement and simulation of these nanoscale aligning forces for the ZnO(0001)-ZnO(000¯1) system in aqueous solution. Dynamic force spectroscopy using nanoengineered single crystal probes reveals an attractive force with 60o rotational periodicity. Calculated distance and orientation-dependent potentials of mean force show several attractive free energy wells distinguished by numbers of intervening watermore » layers, which reach a minimum when aligned. The calculated activation energy to separate the attractively bound solvated interfaces perfectly reproduces the measured 60o periodicity, revealing the key role of intervening water structuring as a basis to generate the interparticle torque that completes alignment and enables coalescence.« less

  17. Direction-specific interaction forces underlying zinc oxide crystal growth by oriented attachment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, X.; Shen, Z.; Liu, J.

    Here, crystallization by particle attachment is impacting our understanding of natural mineralization processes and holds promise for novel materials design. When particles assemble in crystallographic registry, expulsion of the intervening solvent and particle coalescence is enabled by near-perfect co-alignment via interparticle forces that remain poorly quantified. Here we report measurement and simulation of these nanoscale aligning forces for the ZnO(0001)-ZnO(000¯1) system in aqueous solution. Dynamic force spectroscopy using nanoengineered single crystal probes reveals an attractive force with 60o rotational periodicity. Calculated distance and orientation-dependent potentials of mean force show several attractive free energy wells distinguished by numbers of intervening watermore » layers, which reach a minimum when aligned. The calculated activation energy to separate the attractively bound solvated interfaces perfectly reproduces the measured 60o periodicity, revealing the key role of intervening water structuring as a basis to generate the interparticle torque that completes alignment and enables coalescence.« less

  18. Results in orbital evolution of objects in the geosynchronous region

    NASA Technical Reports Server (NTRS)

    Friesen, Larry Jay; Jackson, Albert A., IV; Zook, Herbert A.; Kessler, Donald J.

    1990-01-01

    The orbital evolution of objects at or near geosynchronous orbit (GEO) has been simulated to investigate possible hazards to working geosynchronous satellites. Orbits of both large satellites and small particles have been simulated, subject to perturbations by nonspherical geopotential terms, lunar and solar gravity, and solar radiation pressure. Large satellites in initially circular orbits show an expected cycle of inclination change driven by lunar and solar gravity, but very little altitude change. They thus have little chance of colliding with objects at other altitudes. However, if such a satellite is disrupted, debris can reach thousands of kilometers above or below the initial satellite altitude. Small particles in GEO experience two cycles driven by solar radiation: an expected eccentricity cycle and an inclination cycle not expected. Particles generated by GEO insertion stage solid rocket motors typically hit the earth or escape promptly; a small fraction appear to remain in persistent orbits.

  19. Trajectory of Charged Particle in Combined Electric and Magnetic Fields Using Interactive Spreadsheets

    ERIC Educational Resources Information Center

    Tambade, Popat S.

    2011-01-01

    The objective of this article is to graphically illustrate to the students the physical phenomenon of motion of charged particle under the action of simultaneous electric and magnetic fields by simulating particle motion on a computer. Differential equations of motions are solved analytically and path of particle in three-dimensional space are…

  20. mm_par2.0: An object-oriented molecular dynamics simulation program parallelized using a hierarchical scheme with MPI and OPENMP

    NASA Astrophysics Data System (ADS)

    Oh, Kwang Jin; Kang, Ji Hoon; Myung, Hun Joo

    2012-02-01

    We have revised a general purpose parallel molecular dynamics simulation program mm_par using the object-oriented programming. We parallelized the revised version using a hierarchical scheme in order to utilize more processors for a given system size. The benchmark result will be presented here. New version program summaryProgram title: mm_par2.0 Catalogue identifier: ADXP_v2_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADXP_v2_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC license, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 2 390 858 No. of bytes in distributed program, including test data, etc.: 25 068 310 Distribution format: tar.gz Programming language: C++ Computer: Any system operated by Linux or Unix Operating system: Linux Classification: 7.7 External routines: We provide wrappers for FFTW [1], Intel MKL library [2] FFT routine, and Numerical recipes [3] FFT, random number generator, and eigenvalue solver routines, SPRNG [4] random number generator, Mersenne Twister [5] random number generator, space filling curve routine. Catalogue identifier of previous version: ADXP_v1_0 Journal reference of previous version: Comput. Phys. Comm. 174 (2006) 560 Does the new version supersede the previous version?: Yes Nature of problem: Structural, thermodynamic, and dynamical properties of fluids and solids from microscopic scales to mesoscopic scales. Solution method: Molecular dynamics simulation in NVE, NVT, and NPT ensemble, Langevin dynamics simulation, dissipative particle dynamics simulation. Reasons for new version: First, object-oriented programming has been used, which is known to be open for extension and closed for modification. It is also known to be better for maintenance. Second, version 1.0 was based on atom decomposition and domain decomposition scheme [6] for parallelization. However, atom decomposition is not popular due to its poor scalability. On the other hand, domain decomposition scheme is better for scalability. It still has a limitation in utilizing a large number of cores on recent petascale computers due to the requirement that the domain size is larger than the potential cutoff distance. To go beyond such a limitation, a hierarchical parallelization scheme has been adopted in this new version and implemented using MPI [7] and OPENMP [8]. Summary of revisions: (1) Object-oriented programming has been used. (2) A hierarchical parallelization scheme has been adopted. (3) SPME routine has been fully parallelized with parallel 3D FFT using volumetric decomposition scheme [9]. K.J.O. thanks Mr. Seung Min Lee for useful discussion on programming and debugging. Running time: Running time depends on system size and methods used. For test system containing a protein (PDB id: 5DHFR) with CHARMM22 force field [10] and 7023 TIP3P [11] waters in simulation box having dimension 62.23 Å×62.23 Å×62.23 Å, the benchmark results are given in Fig. 1. Here the potential cutoff distance was set to 12 Å and the switching function was applied from 10 Å for the force calculation in real space. For the SPME [12] calculation, K, K, and K were set to 64 and the interpolation order was set to 4. To do the fast Fourier transform, we used Intel MKL library. All bonds including hydrogen atoms were constrained using SHAKE/RATTLE algorithms [13,14]. The code was compiled using Intel compiler version 11.1 and mvapich2 version 1.5. Fig. 2 shows performance gains from using CUDA-enabled version [15] of mm_par for 5DHFR simulation in water on Intel Core2Quad 2.83 GHz and GeForce GTX 580. Even though mm_par2.0 is not ported yet for GPU, its performance data would be useful to expect mm_par2.0 performance on GPU. Timing results for 1000 MD steps. 1, 2, 4, and 8 in the figure mean the number of OPENMP threads. Timing results for 1000 MD steps from double precision simulation on CPU, single precision simulation on GPU, and double precision simulation on GPU.

  1. FabricS: A user-friendly, complete and robust software for particle shape-fabric analysis

    NASA Astrophysics Data System (ADS)

    Moreno Chávez, G.; Castillo Rivera, F.; Sarocchi, D.; Borselli, L.; Rodríguez-Sedano, L. A.

    2018-06-01

    Shape-fabric is a textural parameter related to the spatial arrangement of elongated particles in geological samples. Its usefulness spans a range from sedimentary petrology to igneous and metamorphic petrology. Independently of the process being studied, when a material flows, the elongated particles are oriented with the major axis in the direction of flow. In sedimentary petrology this information has been used for studies of paleo-flow direction of turbidites, the origin of quartz sediments, and locating ignimbrite vents, among others. In addition to flow direction and its polarity, the method enables flow rheology to be inferred. The use of shape-fabric has been limited due to the difficulties of automatically measuring particles and analyzing them with reliable circular statistics programs. This has dampened interest in the method for a long time. Shape-fabric measurement has increased in popularity since the 1980s thanks to the development of new image analysis techniques and circular statistics software. However, the programs currently available are unreliable, old and are incompatible with newer operating systems, or require programming skills. The goal of our work is to develop a user-friendly program, in the MATLAB environment, with a graphical user interface, that can process images and includes editing functions, and thresholds (elongation and size) for selecting a particle population and analyzing it with reliable circular statistics algorithms. Moreover, the method also has to produce rose diagrams, orientation vectors, and a complete series of statistical parameters. All these requirements are met by our new software. In this paper, we briefly explain the methodology from collection of oriented samples in the field to the minimum number of particles needed to obtain reliable fabric data. We obtained the data using specific statistical tests and taking into account the degree of iso-orientation of the samples and the required degree of reliability. The program has been verified by means of several simulations performed using appropriately designed features and by analyzing real samples.

  2. Modeling the effects of small turbulent scales on the drag force for particles below and above the Kolmogorov scale

    NASA Astrophysics Data System (ADS)

    Gorokhovski, Mikhael; Zamansky, Rémi

    2018-03-01

    Consistently with observations from recent experiments and DNS, we focus on the effects of strong velocity increments at small spatial scales for the simulation of the drag force on particles in high Reynolds number flows. In this paper, we decompose the instantaneous particle acceleration in its systematic and residual parts. The first part is given by the steady-drag force obtained from the large-scale energy-containing motions, explicitly resolved by the simulation, while the second denotes the random contribution due to small unresolved turbulent scales. This is in contrast with standard drag models in which the turbulent microstructures advected by the large-scale eddies are deemed to be filtered by the particle inertia. In our paper, the residual term is introduced as the particle acceleration conditionally averaged on the instantaneous dissipation rate along the particle path. The latter is modeled from a log-normal stochastic process with locally defined parameters obtained from the resolved field. The residual term is supplemented by an orientation model which is given by a random walk on the unit sphere. We propose specific models for particles with diameter smaller and larger size than the Kolmogorov scale. In the case of the small particles, the model is assessed by comparison with direct numerical simulation (DNS). Results showed that by introducing this modeling, the particle acceleration statistics from DNS is predicted fairly well, in contrast with the standard LES approach. For the particles bigger than the Kolmogorov scale, we propose a fluctuating particle response time, based on an eddy viscosity estimated at the particle scale. This model gives stretched tails of the particle acceleration distribution and dependence of its variance consistent with experiments.

  3. Crystal water dynamics of guanosine dihydrate: analysis of atomic displacement parameters, time profile of hydrogen-bonding probability, and translocation of water by MD simulation.

    PubMed

    Yoneda, Shigetaka; Sugawara, Yoko; Urabe, Hisako

    2005-01-27

    The dynamics of crystal water molecules of guanosine dihydrate are investigated in detail by molecular dynamics (MD) simulation. A 2 ns simulation is performed using a periodic boundary box composed of 4 x 5 x 8 crystallographic unit cells and using the particle-mesh Ewald method for calculation of electrostatic energy. The simulated average atomic positions and atomic displacement parameters are remarkably coincident with the experimental values determined by X-ray analysis, confirming the high accuracy of this simulation. The dynamics of crystal water are analyzed in terms of atomic displacement parameters, orientation vectors, order parameters, self-correlation functions of the orientation vectors, time profiles of hydrogen-bonding probability, and translocations. The simulation clarifies that the average structure is composed of various stable and transient structures of the molecules. The simulated guanosine crystal forms a layered structure, with four water sites per asymmetric unit, classified as either interlayer water or intralayer water. From a detailed analysis of the translocations of water molecules in the simulation, columns of intralayer water molecules along the c axis appear to represent a pathway for hydration and dehydration by a kind of molecular valve mechanism.

  4. Assembly of Nanowire Arrays: Exploring Interparticle Interactions, Particle Orientation, and Mixed Particle Arrays

    NASA Astrophysics Data System (ADS)

    Kirby, David J.

    This dissertation explores the fundamental interparticle and particle-substrate forces that contribute to nanowire assembly. Nanowires have a large aspect ratio which has made them favorable materials for applications in energy and sensing technologies. However, this anisotropy means that nanowires must be positioned and oriented during an assembly process. Within this work, the roles of gravity, van der Waals (VDW) attractions, and electrostatic repulsions are explored when different nanowire assemblies are created. Particles were synthesized by the template electrodeposition process so that stripes of different materials and therefore different VDW interactions could be patterned along the particle length. Electrostatic repulsions were provided by a small molecule coating or a porous silica shell to prevent aggregation during the assembly process. Chapters 2, 3, 5, 6, and 8 all used particles whose asymmetry was further adjusted by removal of a sacrificial segment to leave a partially etched nanowire (PEN), a rigid silica shell partially filled with a metal core. For these particles, the role of gravity was amplified due to the drastic density differences between the two segments. Topographic and high VDW surface interactions were patterned onto assembly substrates using photolithographic processing. These forces served as a passive template to direct nanowire assembly. The segment anisotropy of PENs allowed gravity to drive their sedimentation with the long axis perpendicular to the surface. The density difference between the two ends allowed them to convert between the horizontal and vertical orientation as they diffused on the substrate. Vertical arrays formed as particle concentrations increased while VDW attractions from neighboring PENs or the physical barrier of a microwell wall supported this structure. While vertical arrays were typically PENs, microwell walls were also able to enforce a vertical orientation on solid Au nanowires. These particles typically formed horizontal arrays on planar surfaces, but careful design of the microwell and nanowire dimensions enabled these particles to take on the vertical orientation. Solid nanowires and PENs with greater segment symmetry aligned parallel to the surface as gravity did not allow a conversion to the vertical orientation. When concentrated, these particles formed smectic row arrangements which were previously shown to originate from a balance of VDW attractions and electrostatic repulsions. Within rows of segmented particles, a preference was observed for like orientation of nearest neighbor particles (Chapter 6). With the aid of Monte Carlo simulations, it was determined that this observation was the result of small differences in VDW attractions between the two nanowire ends. Differences in VDW attraction were also applied to patterned surfaces (Chapter 7). Stripes of high VDW material (Au) were placed on a silica surface (a low VDW material). When relatively low surface concentrations were used, the high VDW regions collected Au nanowires and organized them into rows that were reminiscent of those observed on un-patterned surfaces at high particle concentrations. VDW and the gravitational force were explored as they combined to influence array orientation in binary PEN mixtures. Depending on the geometries of the particles combined, the contributions of gravity and interparticle interactions exhibited different balance in creating the final array. VDW and gravitational forces could also act as a force for reconfigurable nanowire assembly. In chapter 8, fluid flow was used to concentrate PENs and force them into horizontal arrangements. When fluid flow was stopped, van der Waals forces and gravity were responsible for a reorientation of the assembled particles into a standing array. These studies represent early steps into the future of nanowire assembly methods. I conclude this dissertation by discussing the implications of my work and providing perspective on their importance to the scientific community. I also offer suggestions for future work in nanowire assembly. These areas focus on the development of assembled nanowire devices, mixed nanowire assembly techniques, and potential stimuli responsive reconfigurable assemblies.

  5. NeuroManager: a workflow analysis based simulation management engine for computational neuroscience

    PubMed Central

    Stockton, David B.; Santamaria, Fidel

    2015-01-01

    We developed NeuroManager, an object-oriented simulation management software engine for computational neuroscience. NeuroManager automates the workflow of simulation job submissions when using heterogeneous computational resources, simulators, and simulation tasks. The object-oriented approach (1) provides flexibility to adapt to a variety of neuroscience simulators, (2) simplifies the use of heterogeneous computational resources, from desktops to super computer clusters, and (3) improves tracking of simulator/simulation evolution. We implemented NeuroManager in MATLAB, a widely used engineering and scientific language, for its signal and image processing tools, prevalence in electrophysiology analysis, and increasing use in college Biology education. To design and develop NeuroManager we analyzed the workflow of simulation submission for a variety of simulators, operating systems, and computational resources, including the handling of input parameters, data, models, results, and analyses. This resulted in 22 stages of simulation submission workflow. The software incorporates progress notification, automatic organization, labeling, and time-stamping of data and results, and integrated access to MATLAB's analysis and visualization tools. NeuroManager provides users with the tools to automate daily tasks, and assists principal investigators in tracking and recreating the evolution of research projects performed by multiple people. Overall, NeuroManager provides the infrastructure needed to improve workflow, manage multiple simultaneous simulations, and maintain provenance of the potentially large amounts of data produced during the course of a research project. PMID:26528175

  6. NeuroManager: a workflow analysis based simulation management engine for computational neuroscience.

    PubMed

    Stockton, David B; Santamaria, Fidel

    2015-01-01

    We developed NeuroManager, an object-oriented simulation management software engine for computational neuroscience. NeuroManager automates the workflow of simulation job submissions when using heterogeneous computational resources, simulators, and simulation tasks. The object-oriented approach (1) provides flexibility to adapt to a variety of neuroscience simulators, (2) simplifies the use of heterogeneous computational resources, from desktops to super computer clusters, and (3) improves tracking of simulator/simulation evolution. We implemented NeuroManager in MATLAB, a widely used engineering and scientific language, for its signal and image processing tools, prevalence in electrophysiology analysis, and increasing use in college Biology education. To design and develop NeuroManager we analyzed the workflow of simulation submission for a variety of simulators, operating systems, and computational resources, including the handling of input parameters, data, models, results, and analyses. This resulted in 22 stages of simulation submission workflow. The software incorporates progress notification, automatic organization, labeling, and time-stamping of data and results, and integrated access to MATLAB's analysis and visualization tools. NeuroManager provides users with the tools to automate daily tasks, and assists principal investigators in tracking and recreating the evolution of research projects performed by multiple people. Overall, NeuroManager provides the infrastructure needed to improve workflow, manage multiple simultaneous simulations, and maintain provenance of the potentially large amounts of data produced during the course of a research project.

  7. A mean-field theory for self-propelled particles interacting by velocity alignment mechanisms

    NASA Astrophysics Data System (ADS)

    Peruani, F.; Deutsch, A.; Bär, M.

    2008-04-01

    A mean-field approach (MFA) is proposed for the analysis of orientational order in a two-dimensional system of stochastic self-propelled particles interacting by local velocity alignment mechanism. The treatment is applied to the cases of ferromagnetic (F) and liquid-crystal (LC) alignment. In both cases, MFA yields a second order phase transition for a critical noise strength and a scaling exponent of 1/2 for the respective order parameters. We find that the critical noise amplitude ηc at which orientational order emerges in the LC case is smaller than in the F-alignment case, i.e. ηLC C<ηF C. A comparison with simulations of individual-based models with F- resp. LC-alignment shows that the predictions about the critical behavior and the qualitative relation between the respective critical noise amplitudes are correct.

  8. DoD Modeling and Simulation (M&S) Glossary

    DTIC Science & Technology

    1998-01-01

    modeling and simulation. It is the group responsible for establishing the need for the ...logical data grouping (in the logical data model ) to which it belongs. (DoD Publication 8320.1-M-l and NBS Pub 500-149, (references (q) and (u)) 399...Department of the Navy Modeling and Simulation Technical Support Group Demonstration of Dynamic Object Oriented Requirements System Disk

  9. Liquid crystals and their interactions with colloidal particles and phospholipid membranes: Molecular simulation studies

    NASA Astrophysics Data System (ADS)

    Kim, Evelina B.

    Experimentally, liquid crystals (LC) can be used as the basis for optical biomolecular sensors that rely on LC ordering. Recently, the use of LC as a reporting medium has been extended to investigations of molecular scale processes at lipid laden aqueous-LC interfaces and at biological cell membranes. In this thesis, we present two related studies where liquid crystals are modelled at different length scales. We examine (a) the behavior of nanoscopic colloidal particles in LC systems, using Monte Carlo (MC) molecular simulations and a mesoscopic dynamic field theory (DyFT); and (b) specific interactions of two types of mesogens with a model phospholipid bilayer, using atomistic molecular dynamics (MD) at the A-nm scale. In (a), we consider colloidal particles suspended in a LC, confined between two walls. We calculate the colloid-substrate and colloid-colloid potentials of mean force (PMF). For the MC simulations, we developed a new technique (ExEDOS or Expanded Ensemble Density Of States) that ensures good sampling of phase space without prior knowledge of the energy landscape of the system. Both results, simulation and DyFT, indicate a repulsive force acting between a colloid and a wall. In contrast, both techniques indicate an overall colloid-colloid attraction and predict a new topology of the disclination lines that arises when the particles approach each other. In (b), we find that mesogens (pentylcyanobiphenyl [5CB] or difluorophenyl-pentylbicyclohexyl [5CF]) preferentially partition from the aqueous phase into a dipalmitoylphosphatidylcholine (DPPC) bilayer. We find highly favorable free energy differences for partitioning (-18kBT for 5CB, -26k BT for 5CF). We also simulated fully hydrated bilayers with embedded 5CB or 5CF at concentrations used in recent experiments (6 mol% and 20 mol%). The presence of mesogens in the bilayer enhances the order of lipid acyl tails and changes the spatial and orientational arrangement of lipid headgroup atoms. A stronger spatial correlation and larger ranges of molecular orientations and positions are observed for 5CB molecules compared to 5CF. At the same time, 5CF molecules were found to bind more strongly to lipid headgroups, thereby slowing the lateral motion of lipid molecules.

  10. Using semantic data modeling techniques to organize an object-oriented database for extending the mass storage model

    NASA Technical Reports Server (NTRS)

    Campbell, William J.; Short, Nicholas M., Jr.; Roelofs, Larry H.; Dorfman, Erik

    1991-01-01

    A methodology for optimizing organization of data obtained by NASA earth and space missions is discussed. The methodology uses a concept based on semantic data modeling techniques implemented in a hierarchical storage model. The modeling is used to organize objects in mass storage devices, relational database systems, and object-oriented databases. The semantic data modeling at the metadata record level is examined, including the simulation of a knowledge base and semantic metadata storage issues. The semantic data model hierarchy and its application for efficient data storage is addressed, as is the mapping of the application structure to the mass storage.

  11. Modeling of magnetic particle orientation in magnetic powder injection molding

    NASA Astrophysics Data System (ADS)

    Doo Jung, Im; Kang, Tae Gon; Seul Shin, Da; Park, Seong Jin

    2018-03-01

    The magnetic micro powder orientation under viscous shear flow has been analytically understood and characterized into a new analytical orientation model for a powder injection molding process. The effects of hydrodynamic force from the viscous flow, external magnetic force and internal dipole-dipole interaction were considered to predict the orientation under given process conditions. Comparative studies with a finite element method proved the calculation validity with a partial differential form of the model. The angular motion, agglomeration and magnetic chain formation have been simulated, which shows that the effect of dipole-dipole interaction among powders on the orientation state becomes negligible at a high Mason number condition and at a low λ condition (the ratio of external magnetic field strength and internal magnetic moment of powder). Our developed model can be very usefully employed in the process analysis and design of magnetic powder injection molding.

  12. Multi-point objective-oriented sequential sampling strategy for constrained robust design

    NASA Astrophysics Data System (ADS)

    Zhu, Ping; Zhang, Siliang; Chen, Wei

    2015-03-01

    Metamodelling techniques are widely used to approximate system responses of expensive simulation models. In association with the use of metamodels, objective-oriented sequential sampling methods have been demonstrated to be effective in balancing the need for searching an optimal solution versus reducing the metamodelling uncertainty. However, existing infilling criteria are developed for deterministic problems and restricted to one sampling point in one iteration. To exploit the use of multiple samples and identify the true robust solution in fewer iterations, a multi-point objective-oriented sequential sampling strategy is proposed for constrained robust design problems. In this article, earlier development of objective-oriented sequential sampling strategy for unconstrained robust design is first extended to constrained problems. Next, a double-loop multi-point sequential sampling strategy is developed. The proposed methods are validated using two mathematical examples followed by a highly nonlinear automotive crashworthiness design example. The results show that the proposed method can mitigate the effect of both metamodelling uncertainty and design uncertainty, and identify the robust design solution more efficiently than the single-point sequential sampling approach.

  13. Modelling of long-term and short-term mechanisms of arterial pressure control in the cardiovascular system: an object-oriented approach.

    PubMed

    Fernandez de Canete, J; Luque, J; Barbancho, J; Munoz, V

    2014-04-01

    A mathematical model that provides an overall description of both the short- and long-term mechanisms of arterial pressure regulation is presented. Short-term control is exerted through the baroreceptor reflex while renal elimination plays a role in long-term control. Both mechanisms operate in an integrated way over the compartmental model of the cardiovascular system. The whole system was modelled in MODELICA, which uses a hierarchical object-oriented modelling strategy, under the DYMOLA simulation environment. The performance of the controlled system was analysed by simulation in light of the existing hypothesis and validation tests previously performed with physiological data, demonstrating the effectiveness of both regulation mechanisms under physiological and pathological conditions. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Simulation of Regionally Ecological Land Based on a Cellular Automation Model: A Case Study of Beijing, China

    PubMed Central

    Xie, Hualin; Kung, Chih-Chun; Zhang, Yanting; Li, Xiubin

    2012-01-01

    Ecological land is like the “liver” of a city and is very useful to public health. Ecological land change is a spatially dynamic non-linear process under the interaction between natural and anthropogenic factors at different scales. In this study, by setting up natural development scenario, object orientation scenario and ecosystem priority scenario, a Cellular Automation (CA) model has been established to simulate the evolution pattern of ecological land in Beijing in the year 2020. Under the natural development scenario, most of ecological land will be replaced by construction land and crop land. But under the scenarios of object orientation and ecosystem priority, the ecological land area will increase, especially under the scenario of ecosystem priority. When considering the factors such as total area of ecological land, loss of key ecological land and spatial patterns of land use, the scenarios from priority to inferiority are ecosystem priority, object orientation and natural development, so future land management policies in Beijing should be focused on conversion of cropland to forest, wetland protection and prohibition of exploitation of natural protection zones, water source areas and forest parks to maintain the safety of the regional ecosystem. PMID:23066410

  15. Simulation of regionally ecological land based on a cellular automation model: a case study of Beijing, China.

    PubMed

    Xie, Hualin; Kung, Chih-Chun; Zhang, Yanting; Li, Xiubin

    2012-08-01

    Ecological land is like the "liver" of a city and is very useful to public health. Ecological land change is a spatially dynamic non-linear process under the interaction between natural and anthropogenic factors at different scales. In this study, by setting up natural development scenario, object orientation scenario and ecosystem priority scenario, a Cellular Automation (CA) model has been established to simulate the evolution pattern of ecological land in Beijing in the year 2020. Under the natural development scenario, most of ecological land will be replaced by construction land and crop land. But under the scenarios of object orientation and ecosystem priority, the ecological land area will increase, especially under the scenario of ecosystem priority. When considering the factors such as total area of ecological land, loss of key ecological land and spatial patterns of land use, the scenarios from priority to inferiority are ecosystem priority, object orientation and natural development, so future land management policies in Beijing should be focused on conversion of cropland to forest, wetland protection and prohibition of exploitation of natural protection zones, water source areas and forest parks to maintain the safety of the regional ecosystem.

  16. Reliability database development for use with an object-oriented fault tree evaluation program

    NASA Technical Reports Server (NTRS)

    Heger, A. Sharif; Harringtton, Robert J.; Koen, Billy V.; Patterson-Hine, F. Ann

    1989-01-01

    A description is given of the development of a fault-tree analysis method using object-oriented programming. In addition, the authors discuss the programs that have been developed or are under development to connect a fault-tree analysis routine to a reliability database. To assess the performance of the routines, a relational database simulating one of the nuclear power industry databases has been constructed. For a realistic assessment of the results of this project, the use of one of existing nuclear power reliability databases is planned.

  17. An object-oriented software for fate and exposure assessments.

    PubMed

    Scheil, S; Baumgarten, G; Reiter, B; Schwartz, S; Wagner, J O; Trapp, S; Matthies, M

    1995-07-01

    The model system CemoS(1) (Chemical Exposure Model System) was developed for the exposure prediction of hazardous chemicals released to the environment. Eight different models were implemented involving chemicals fate simulation in air, water, soil and plants after continuous or single emissions from point and diffuse sources. Scenario studies are supported by a substance and an environmental data base. All input data are checked on their plausibility. Substance and environmental process estimation functions facilitate generic model calculations. CemoS is implemented in a modular structure using object-oriented programming.

  18. Improved Object Localization Using Accurate Distance Estimation in Wireless Multimedia Sensor Networks

    PubMed Central

    Ur Rehman, Yasar Abbas; Tariq, Muhammad; Khan, Omar Usman

    2015-01-01

    Object localization plays a key role in many popular applications of Wireless Multimedia Sensor Networks (WMSN) and as a result, it has acquired a significant status for the research community. A significant body of research performs this task without considering node orientation, object geometry and environmental variations. As a result, the localized object does not reflect the real world scenarios. In this paper, a novel object localization scheme for WMSN has been proposed that utilizes range free localization, computer vision, and principle component analysis based algorithms. The proposed approach provides the best possible approximation of distance between a wmsn sink and an object, and the orientation of the object using image based information. Simulation results report 99% efficiency and an error ratio of 0.01 (around 1 ft) when compared to other popular techniques. PMID:26528919

  19. Simulation study of charged nanoparticles confined in a rectangular tube with discrete wall charges.

    PubMed

    Yuet, Pak K

    2006-03-28

    The development of novel nanomaterials has been a subject of intense interest in recent years. An interesting structure among these materials is the so-called "pea pods" (i.e., nanoparticles confined in nanotubes). To facilitate the development and commercialization of these materials, it is important that we have an in-depth understanding of their behavior. The study of confined charged particles is particularly challenging because of the long-ranged nature of electrostatic interaction, and both interparticle and particle-confinement interactions are likely to play a role in determining the system behavior. The primary objective of this study is to develop a better understanding of the behavior of charged nanoparticles in a charged tubular confinement using Monte Carlo simulation, with particular focus on the effect of electrostatic interactions on the structure of the particles. Simulation results have shown that (i) the structuring of confined particles is associated with the asymmetry of the long-ranged interaction and (ii) factors such as confinement geometry and particle charge and size asymmetry can be manipulated to produce different particle structures. The present study represents the first step in an attempt to gain further insight into the behavior of confined nanosystems, with the ultimate objective of exploiting these characteristics, particularly the interactions between the confined particles and their external environment, in developing novel nanomaterials.

  20. Optical Forces on Non-Spherical Nanoparticles Trapped by Optical Waveguides

    NASA Astrophysics Data System (ADS)

    Hasan Ahmed, Dewan; Sung, Hyung Jin

    2011-07-01

    Numerical simulations of a solid-core polymer waveguide structure were performed to calculate the trapping efficiencies of particles with nanoscale dimensions smaller than the wavelength of the trapping beam. A three-dimensional (3-D) finite element method was employed to calculate the electromagnetic field. The inlet and outlet boundary conditions were obtained using an eigenvalue solver to determine the guided and evanescent mode profiles. The Maxwell stress tensor was considered for the calculation of the transverse and downward trapping efficiencies. A particle at the center of the waveguide showed minimal transverse trapping efficiency and maximal downward trapping efficiency. This trend gradually reversed as the particle moved away from the center of the waveguide. Particles with larger surface areas exhibited higher trapping efficiencies and tended to be trapped near the waveguide. Particles displaced from the wave input tended to be trapped at the waveguide surface. Simulation of an ellipsoidal particle showed that the orientation of the major axis along the waveguide's lateral z-coordinate significantly influenced the trapping efficiency. The particle dimensions along the z-coordinate were more critical than the gap distance (vertical displacement from the floor of the waveguide) between the ellipsoid particle and the waveguide. The present model was validated using the available results reported in the literature for different trapping efficiencies.

  1. Atomistic Simulation Studies of Cholesteryl Oleates: Model for the Core of Lipoprotein Particles

    PubMed Central

    Heikelä, Mikko; Vattulainen, Ilpo; Hyvönen, Marja T.

    2006-01-01

    We have conducted molecular dynamics simulations to gain insight into the atomic-scale properties of an isotropic system of cholesteryl oleate (CO) molecules. Cholesteryl esters are major constituents of low density lipoprotein particles, the key players in the formation of atherosclerosis, as well as the storage form of cholesterol. Here the aim is to clarify structural and dynamical properties of CO molecules under conditions, which are suggestive of those in the core of low density lipoprotein particles. The simulations in the fluid phase indicate that the system of CO molecules is characterized by an absence of translational order, as expected, while the orientational order between distinct CO molecules is significant at short distances, persisting over a molecular size. As for intramolecular properties, the bonds along the oleate chain are observed to be weakly ordered with respect to the sterol structure, unlike the bonds along the short hydrocarbon chain of cholesterol where the ordering is significant. The orientational distribution of the oleate chain as a whole with respect to the sterol moiety is of broad nature, having a major amount of extended and a less considerable proportion of bended structures. Distinct transient peaks at specific angles also appear. The diffusion of CO molecules is found to be a slow process and characterized by a diffusion coefficient of the order of 2 × 10−9 cm2/s. This is considerably slower than diffusion, e.g., in ordered domains of lipid membranes rich in sphingomyelin and cholesterol. Analysis of the rotational diffusion rates and trans-to-gauche transition rates yield results consistent with experiments. PMID:16399839

  2. Disc-halo interactions in ΛCDM

    NASA Astrophysics Data System (ADS)

    Bauer, Jacob S.; Widrow, Lawrence M.; Erkal, Denis

    2018-05-01

    We present a new method for embedding a stellar disc in a cosmological dark matter halo and provide a worked example from a Λ cold dark matter zoom-in simulation. The disc is inserted into the halo at a redshift z = 3 as a zero-mass rigid body. Its mass and size are then increased adiabatically while its position, velocity, and orientation are determined from rigid-body dynamics. At z = 1, the rigid disc (RD) is replaced by an N-body disc whose particles sample a three-integral distribution function (DF). The simulation then proceeds to z = 0 with live disc (LD) and halo particles. By comparison, other methods assume one or more of the following: the centre of the RD during the growth phase is pinned to the minimum of the halo potential, the orientation of the RD is fixed, or the live N-body disc is constructed from a two rather than three-integral DF. In general, the presence of a disc makes the halo rounder, more centrally concentrated, and smoother, especially in the innermost regions. We find that methods in which the disc is pinned to the minimum of the halo potential tend to overestimate the amount of adiabatic contraction. Additionally, the effect of the disc on the subhalo distribution appears to be rather insensitive to the disc insertion method. The LD in our simulation develops a bar that is consistent with the bars seen in late-type spiral galaxies. In addition, particles from the disc are launched or `kicked up' to high galactic latitudes.

  3. Global Village as Virtual Community (On Writing, Thinking, and Teacher Education).

    ERIC Educational Resources Information Center

    Polin, Linda

    1993-01-01

    Describes virtual communities known as Multi-User Simulated Environment (MUSE) or Multi-User Object Oriented environment (MOO), text-based computer "communities" whose inhabitants are a combination of the real people and constructed objects that people agree to treat as real. Describes their uses in the classroom. (SR)

  4. Numerical Analysis of Temperature Gradients and Interface Shape During Directional Solidification of Al and Al-Cu Alloy Under Microgravity Conditions

    NASA Technical Reports Server (NTRS)

    Bune, Andris V.; Sen, Subhayu; Mukherjee, Sundeep; Catalina, Adrian; Stefanescu, Doru M.

    1999-01-01

    Numerical modeling was undertaken to analyze the influence of radial thermal gradient on solid/liquid (s/1) interface shape and convection patterns during solidification of pure Al and Al-4 wt% Cu alloy. The objective of the numerical task was to predict the influence of convective velocity on an insoluble particle near a s/l interface. These predictions would then be used to define the minimum gravity level (g) required to investigate the fundamental physics of interaction between a particle and a s/I interface. To satisfy this objective, steady state calculations were performed for different gravity levels and orientations with the gravity vector. ne furnace configuration used in this analysis is the proposed International Space Station Furnace, Quench Module Insert (QMI) 1. Results from a thermal model of the furnace core were used as initial boundary conditions for solidification modeling. General model of binary alloy solidification was based on the finite element code FIDAP. It was found that for the worst case orientation of 90 degrees with the gravity vector and a g level of 10(exp -4)g(sub o) (g(sub o) = 9.8 m/s(exp 2)) the dominant forces acting on the particle would be the fundamental drag and interfacial forces.

  5. Label-free, single-object sensing with a microring resonator: FDTD simulation.

    PubMed

    Nguyen, Dan T; Norwood, Robert A

    2013-01-14

    Label-free, single-object sensing with a microring resonator is investigated numerically using the finite difference time-domain (FDTD) method. A pulse with ultra-wide bandwidth that spans over several resonant modes of the ring and of the sensing object is used for simulation, enabling a single-shot simulation of the microring sensing. The FDTD simulation not only can describe the circulation of the light in a whispering-gallery-mode (WGM) microring and multiple interactions between the light and the sensing object, but also other important factors of the sensing system, such as scattering and radiation losses. The FDTD results show that the simulation can yield a resonant shift of the WGM cavity modes. Furthermore, it can also extract eigenmodes of the sensing object, and therefore information from deep inside the object. The simulation method is not only suitable for a single object (single molecule, nano-, micro-scale particle) but can be extended to the problem of multiple objects as well.

  6. Flow and dispersion in anisotropic porous media: A lattice-Boltzmann study

    NASA Astrophysics Data System (ADS)

    Maggiolo, D.; Picano, F.; Guarnieri, M.

    2016-10-01

    Given their capability of spreading active chemical species and collecting electricity, porous media made of carbon fibers are extensively used as diffusion layers in energy storage systems, such as redox flow batteries. In spite of this, the dispersion dynamics of species inside porous media is still not well understood and often lends itself to different interpretations. Actually, the microscopic design of efficient porous media, which can potentially and effectively improve the performances of flow batteries, is still an open challenge. The present study aims to investigate the effect of fibrous media micro-structure on dispersion, in particular the effect of fiber orientation on drag and dispersion dynamics. Several lattice-Boltzmann simulations of flows through differently oriented fibrous media coupled with Lagrangian simulations of particle tracers have been performed. Results show that orienting fibers preferentially along the streamwise direction minimizes the drag and maximizes the dispersion, which is the most desirable condition for diffusion layers in flow batteries' applications.

  7. Depth profiling of high energy nitrogen ions implanted in the <1 0 0>, <1 1 0> and randomly oriented silicon crystals

    NASA Astrophysics Data System (ADS)

    Erić, M.; Petrović, S.; Kokkoris, M.; Lagoyannis, A.; Paneta, V.; Harissopulos, S.; Telečki, I.

    2012-03-01

    This work reports on the experimentally obtained depth profiles of 4 MeV 14N2+ ions implanted in the <1 0 0>, <1 1 0> and randomly oriented silicon crystals. The ion fluence was 1017 particles/cm2. The nitrogen depth profiling has been performed using the Nuclear Reaction Analysis (NRA) method, via the study of 14N(d,α0)12C and 14N(d,α1)12C nuclear reactions, and with the implementation of SRIM 2010 and SIMNRA computer simulation codes. For the randomly oriented silicon crystal, change of the density of silicon matrix and the nitrogen "bubble" formation have been proposed as the explanation for the difference between the experimental and simulated nitrogen depth profiles. During the implantation, the RBS/C spectra were measured on the nitrogen implanted and on the virgin crystal spots. These spectra provide information on the amorphization of the silicon crystals induced by the ion implantation.

  8. Fully-resolved prolate spheroids in turbulent channel flows: A lattice Boltzmann study

    NASA Astrophysics Data System (ADS)

    Eshghinejadfard, Amir; Hosseini, Seyed Ali; Thévenin, Dominique

    2017-09-01

    Particles are present in many natural and industrial multiphase flows. In most practical cases, particle shape is not spherical, leading to additional difficulties for numerical studies. In this paper, DNS of turbulent channel flows with finite-size prolate spheroids is performed. The geometry includes a straight wall-bounded channel at a frictional Reynolds number of 180 seeded with particles. Three different particle shapes are considered, either spheroidal (aspect ratio λ =2 or 4) or spherical (λ =1 ). Solid-phase volume fraction has been varied between 0.75% and 1.5%. Lattice Boltzmann method (LBM) is used to model the fluid flow. The influence of the particles on the flow field is simulated by immersed boundary method (IBM). In this Eulerian-Lagrangian framework, the trajectory of each particle is computed individually. All particle-particle and particle-fluid interactions are considered (four-way coupling). Results show that, in the range of examined volume fractions, mean fluid velocity is reduced by addition of particles. However, velocity reduction by spheroids is much lower than that by spheres; 2% and 1.6%, compared to 4.6%. Maximum streamwise velocity fluctuations are reduced by addition of particle. By comparing particle and fluid velocities, it is seen that spheroids move faster than the fluid before reaching the same speed in the channel center. Spheres, on the other hand, move slower than the fluid in the buffer layer. Close to the wall, all particle types move faster than the fluid. Moreover, prolate spheroids show a preferential orientation in the streamwise direction, which is stronger close to the wall. Far from the wall, the orientation of spheroidal particles tends to isotropy.

  9. Properties of Hermean plasma belt: Numerical simulations and comparison with MESSENGER data

    NASA Astrophysics Data System (ADS)

    Herčík, David; Trávníček, Pavel M.; Å tverák, Å. těpán.; Hellinger, Petr

    2016-01-01

    Using a global hybrid model and test particle simulations we present a detailed analysis of the Hermean plasma belt structure. We investigate characteristic properties of quasi-trapped particle population characteristics and its behavior under different orientations of the interplanetary magnetic field. The plasma belt region is constantly supplied with solar wind protons via magnetospheric flanks and tail current sheet region. Protons inside the plasma belt region are quasi-trapped in the magnetic field of Mercury and perform westward drift along the planet. This region is well separated by a magnetic shell and has higher average temperatures and lower bulk proton current densities than the surrounding area. On the dayside the population exhibits loss cone distribution function matching the theoretical loss cone angle. The simulation results are in good agreement with in situ observations of MESSENGER's (MErcury Surface Space ENvironment GEochemistry, and Ranging) MAG and FIPS instruments.

  10. Perceptual Simulations and Linguistic Representations Have Differential Effects on Speeded Relatedness Judgments and Recognition Memory

    PubMed Central

    Tse, Chi-Shing; Kurby, Christopher A.; Du, Feng

    2010-01-01

    We examined the effect of spatial iconicity (a perceptual simulation of canonical locations of objects) and word-order frequency on language processing and episodic memory of orientation. Participants made speeded relatedness judgments to pairs of words presented in locations typical to their real world arrangements (e.g., ceiling on top and floor on bottom). They then engaged in a surprise orientation recognition task for the word pairs. We replicated Louwerse’s finding (2008) that word-order frequency has a stronger effect on semantic relatedness judgments than spatial iconicity. This is consistent with recent suggestions that linguistic representations have a stronger impact on immediate decisions about verbal materials than perceptual simulations. In contrast, spatial iconicity enhanced episodic memory of orientation to a greater extent than word-order frequency did. This new finding indicates that perceptual simulations have an important role in episodic memory. Results are discussed with respect to theories of perceptual representation and linguistic processing. PMID:19742388

  11. Multigrid contact detection method

    NASA Astrophysics Data System (ADS)

    He, Kejing; Dong, Shoubin; Zhou, Zhaoyao

    2007-03-01

    Contact detection is a general problem of many physical simulations. This work presents a O(N) multigrid method for general contact detection problems (MGCD). The multigrid idea is integrated with contact detection problems. Both the time complexity and memory consumption of the MGCD are O(N) . Unlike other methods, whose efficiencies are influenced strongly by the object size distribution, the performance of MGCD is insensitive to the object size distribution. We compare the MGCD with the no binary search (NBS) method and the multilevel boxing method in three dimensions for both time complexity and memory consumption. For objects with similar size, the MGCD is as good as the NBS method, both of which outperform the multilevel boxing method regarding memory consumption. For objects with diverse size, the MGCD outperform both the NBS method and the multilevel boxing method. We use the MGCD to solve the contact detection problem for a granular simulation system based on the discrete element method. From this granular simulation, we get the density property of monosize packing and binary packing with size ratio equal to 10. The packing density for monosize particles is 0.636. For binary packing with size ratio equal to 10, when the number of small particles is 300 times as the number of big particles, the maximal packing density 0.824 is achieved.

  12. A Large-Particle Monte Carlo Code for Simulating Non-Linear High-Energy Processes Near Compact Objects

    NASA Technical Reports Server (NTRS)

    Stern, Boris E.; Svensson, Roland; Begelman, Mitchell C.; Sikora, Marek

    1995-01-01

    High-energy radiation processes in compact cosmic objects are often expected to have a strongly non-linear behavior. Such behavior is shown, for example, by electron-positron pair cascades and the time evolution of relativistic proton distributions in dense radiation fields. Three independent techniques have been developed to simulate these non-linear problems: the kinetic equation approach; the phase-space density (PSD) Monte Carlo method; and the large-particle (LP) Monte Carlo method. In this paper, we present the latest version of the LP method and compare it with the other methods. The efficiency of the method in treating geometrically complex problems is illustrated by showing results of simulations of 1D, 2D and 3D systems. The method is shown to be powerful enough to treat non-spherical geometries, including such effects as bulk motion of the background plasma, reflection of radiation from cold matter, and anisotropic distributions of radiating particles. It can therefore be applied to simulate high-energy processes in such astrophysical systems as accretion discs with coronae, relativistic jets, pulsar magnetospheres and gamma-ray bursts.

  13. Estimating and validating ground-based timber harvesting production through computer simulation

    Treesearch

    Jingxin Wang; Chris B. LeDoux

    2003-01-01

    Estimating ground-based timber harvesting systems production with an object oriented methodology was investigated. The estimation model developed generates stands of trees, simulates chain saw, drive-to-tree feller-buncher, swing-to-tree single-grip harvester felling, and grapple skidder and forwarder extraction activities, and analyzes costs and productivity. It also...

  14. Background oriented schlieren measurement of the refractive index field of air induced by a hot, cylindrical measurement object.

    PubMed

    Beermann, Rüdiger; Quentin, Lorenz; Pösch, Andreas; Reithmeier, Eduard; Kästner, Markus

    2017-05-10

    To optically capture the topography of a hot measurement object with high precision, the light deflection by the inhomogeneous refractive index field-induced by the heat transfer from the measurement object to the ambient medium-has to be considered. We used the 2D background oriented schlieren method with illuminated wavelet background, an optical flow algorithm, and Ciddor's equation to quantify the refractive index field located directly above a red-glowing, hot measurement object. A heat transfer simulation has been implemented to verify the magnitude and the shape of the measured refractive index field. Provided that no forced external flow is disturbing the shape of the convective flow originating from the hot object, a laminar flow can be observed directly above the object, resulting in a sharply bounded, inhomogeneous refractive index field.

  15. Theoretical Technology Research for ISTP/SOLARMAX

    NASA Technical Reports Server (NTRS)

    Ashour-Abdalla, Maha; Acuna, Mario (Technical Monitor)

    2000-01-01

    During the last decade, we have been developing theoretical tools to support the scientific objectives of the International Solar Terrestrial Physics (ISTP) program. Results from our mission-oriented theory program have contributed significantly to the development of predictive capabilities by using real upstream solar wind conditions as input to our models and forecasting events observed downstream near Earth. We also developed the capability to unravel the complex information contained in ion velocity distribution functions measured near the Earth to determine their origin and energization process. During solar maximum, solar flares and coronal mass ejections (CMEs) dominate the sun's activity. It is now widely accepted that the impact of CMEs (or magnetic clouds) with the Earth's magnetosphere is the cause of most magnetic storms during solar maximum. One important aspect of a CME is the occurrence of solar energetic particle (SEP) events. During these events, protons, electrons, and heavy ions of solar origin are accelerated to very high energies by shock waves driven out from the sun. We carried out a series of large-scale kinetic (LSK) simulations to model the effect of SEPs on the near-Earth environment and the accessibility of these high-energy particles to the inner magnetosphere. We present the results of these studies.

  16. Object tracking with adaptive HOG detector and adaptive Rao-Blackwellised particle filter

    NASA Astrophysics Data System (ADS)

    Rosa, Stefano; Paleari, Marco; Ariano, Paolo; Bona, Basilio

    2012-01-01

    Scenarios for a manned mission to the Moon or Mars call for astronaut teams to be accompanied by semiautonomous robots. A prerequisite for human-robot interaction is the capability of successfully tracking humans and objects in the environment. In this paper we present a system for real-time visual object tracking in 2D images for mobile robotic systems. The proposed algorithm is able to specialize to individual objects and to adapt to substantial changes in illumination and object appearance during tracking. The algorithm is composed by two main blocks: a detector based on Histogram of Oriented Gradient (HOG) descriptors and linear Support Vector Machines (SVM), and a tracker which is implemented by an adaptive Rao-Blackwellised particle filter (RBPF). The SVM is re-trained online on new samples taken from previous predicted positions. We use the effective sample size to decide when the classifier needs to be re-trained. Position hypotheses for the tracked object are the result of a clustering procedure applied on the set of particles. The algorithm has been tested on challenging video sequences presenting strong changes in object appearance, illumination, and occlusion. Experimental tests show that the presented method is able to achieve near real-time performances with a precision of about 7 pixels on standard video sequences of dimensions 320 × 240.

  17. Numerical investigation of the dynamics of Janus magnetic particles in a rotating magnetic field

    NASA Astrophysics Data System (ADS)

    Kim, Hui Eun; Kim, Kyoungbeom; Ma, Tae Yeong; Kang, Tae Gon

    2017-02-01

    We investigated the rotational dynamics of Janus magnetic particles suspended in a viscous liquid, in the presence of an externally applied rotating magnetic field. A previously developed two-dimensional direct simulation method, based on the finite element method and a fictitious domain method, is employed to solve the magnetic particulate flow. As for the magnetic problem, the two Maxwell equations are converted to a differential equation using the magnetic potential. The magnetic forces acting on the particles are treated by a Maxwell stress tensor formulation, enabling us to consider the magnetic interactions among the particles without any approximation. The dynamics of a single particle in the rotating field is studied to elucidate the effect of the Mason number and the magnetic susceptibility on the particle motions. Then, we extended our interest to a two-particle problem, focusing on the effect of the initial configuration of the particles on the particle motions. In three-particle interaction problems, the particle dynamics and the fluid flow induced by the particle motions are significantly affected by the particle configuration and the orientation of each particle.

  18. Regenerative life support system research

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Sections on modeling, experimental activities during the grant period, and topics under consideration for the future are contained. The sessions contain discussions of: four concurrent modeling approaches that were being integrated near the end of the period (knowledge-based modeling support infrastructure and data base management, object-oriented steady state simulations for three concepts, steady state mass-balance engineering tradeoff studies, and object-oriented time-step, quasidynamic simulations of generic concepts); interdisciplinary research activities, beginning with a discussion of RECON lab development and use, and followed with discussions of waste processing research, algae studies and subsystem modeling, low pressure growth testing of plants, subsystem modeling of plants, control of plant growth using lighting and CO2 supply as variables, search for and development of lunar soil simulants, preliminary design parameters for a lunar base life support system, and research considerations for food processing in space; and appendix materials, including a discussion of the CELSS Conference, detailed analytical equations for mass-balance modeling, plant modeling equations, and parametric data on existing life support systems for use in modeling.

  19. LOOS: an extensible platform for the structural analysis of simulations.

    PubMed

    Romo, Tod D; Grossfield, Alan

    2009-01-01

    We have developed LOOS (Lightweight Object-Oriented Structure-analysis library) as an object-oriented library designed to facilitate the rapid development of tools for the structural analysis of simulations. LOOS supports the native file formats of most common simulation packages including AMBER, CHARMM, CNS, Gromacs, NAMD, Tinker, and X-PLOR. Encapsulation and polymorphism are used to simultaneously provide a stable interface to the programmer and make LOOS easily extensible. A rich atom selection language based on the C expression syntax is included as part of the library. LOOS enables students and casual programmer-scientists to rapidly write their own analytical tools in a compact and expressive manner resembling scripting. LOOS is written in C++ and makes extensive use of the Standard Template Library and Boost, and is freely available under the GNU General Public License (version 3) LOOS has been tested on Linux and MacOS X, but is written to be portable and should work on most Unix-based platforms.

  20. Spacer geometry and particle deposition in spiral wound membrane feed channels.

    PubMed

    Radu, A I; van Steen, M S H; Vrouwenvelder, J S; van Loosdrecht, M C M; Picioreanu, C

    2014-11-01

    Deposition of microspheres mimicking bacterial cells was studied experimentally and with a numerical model in feed spacer membrane channels, as used in spiral wound nanofiltration (NF) and reverse osmosis (RO) membrane systems. In-situ microscopic observations in membrane fouling simulators revealed formation of specific particle deposition patterns for different diamond and ladder feed spacer orientations. A three-dimensional numerical model combining fluid flow with a Lagrangian approach for particle trajectory calculations could describe very well the in-situ observations on particle deposition in flow cells. Feed spacer geometry, positioning and cross-flow velocity sensitively influenced the particle transport and deposition patterns. The deposition patterns were not influenced by permeate production. This combined experimental-modeling approach could be used for feed spacer geometry optimization studies for reduced (bio)fouling. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. The effect of shear flow on the rotational diffusivity of a single axisymmetric particle

    NASA Astrophysics Data System (ADS)

    Leahy, Brian; Koch, Donald; Cohen, Itai

    2014-11-01

    Colloidal suspensions of nonspherical particles abound in the world around us, from red blood cells in arteries to kaolinite discs in clay. Understanding the orientation dynamics of these particles is important for suspension rheology and particle self-assembly. However, even for the simplest case of dilute suspensions in simple shear flow, the orientation dynamics of Brownian nonspherical particles are poorly understood at large shear rates. Here, we analytically calculate the time-dependent orientation distributions of particles confined to the flow-gradient plane when the rotary diffusion is small but nonzero. For both startup and oscillatory shear flows, we find a coordinate change that maps the convection-diffusion equation to a simple diffusion equation with an enhanced diffusion constant, simplifying the orientation dynamics. For oscillatory shear, this enhanced diffusion drastically alters the quasi-steady orientation distributions. Our theory of the unsteady orientation dynamics provides an understanding of a nonspherical particle suspension's rheology for a large class of unsteady flows. For particles with aspect ratio 10 under oscillatory shear, the rotary diffusion and intrinsic viscosity vary with amplitude by a factor of ~ 40 and ~ 2 , respectively.

  2. THYME: Toolkit for Hybrid Modeling of Electric Power Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nutaro Kalyan Perumalla, James Joseph

    2011-01-01

    THYME is an object oriented library for building models of wide area control and communications in electric power systems. This software is designed as a module to be used with existing open source simulators for discrete event systems in general and communication systems in particular. THYME consists of a typical model for simulating electro-mechanical transients (e.g., as are used in dynamic stability studies), data handling objects to work with CDF and PTI formatted power flow data, and sample models of discrete sensors and controllers.

  3. Applications of Density Functional Theory in Soft Condensed Matter

    NASA Astrophysics Data System (ADS)

    Löwen, Hartmut

    Applications of classical density functional theory (DFT) to soft matter systems like colloids, liquid crystals and polymer solutions are discussed with a focus on the freezing transition and on nonequilibrium Brownian dynamics. First, after a brief reminder of equilibrium density functional theory, DFT is applied to the freezing transition of liquids into crystalline lattices. In particular, spherical particles with radially symmetric pair potentials will be treated (like hard spheres, the classical one-component plasma or Gaussian-core particles). Second, the DFT will be generalized towards Brownian dynamics in order to tackle nonequilibrium problems. After a general introduction to Brownian dynamics using the complementary Smoluchowski and Langevin pictures appropriate for the dynamics of colloidal suspensions, the dynamical density functional theory (DDFT) will be derived from the Smoluchowski equation. This will be done first for spherical particles (e.g. hard spheres or Gaussian-cores) without hydrodynamic interactions. Then we show how to incorporate hydrodynamic interactions between the colloidal particles into the DDFT framework and compare to Brownian dynamics computer simulations. Third orientational degrees of freedom (rod-like particles) will be considered as well. In the latter case, the stability of intermediate liquid crystalline phases (isotropic, nematic, smectic-A, plastic crystals etc) can be predicted. Finally, the corresponding dynamical extension of density functional theory towards orientational degrees of freedom is proposed and the collective behaviour of "active" (self-propelled) Brownian particles is briefly discussed.

  4. Tidal Distortion and Disruption of Earth-Crossing Asteriods

    NASA Technical Reports Server (NTRS)

    Love, Stanley G.; Bottke, William, Jr.

    1997-01-01

    We represent results of numerical simulations that show Earth's tidal forces can both distort and disrupt Earth-crossing asteriods (ECAs) that have weak rubble-pile structures. Building on previous studies, we consider more realistic asteriod shapes and trajectories, test a variety of spin and rates and axis orientations, and employ a dissipation algorithm to more accurately treat collisions between particles.

  5. Induced Stress, Artificial Environment, Simulated Tactical Operations Center Model

    DTIC Science & Technology

    1973-06-01

    oriented 4 activities or, at best , tre application of dor:trinal i. 14 concepts to command post exercises. Unlike mechanical skills, weapon’s...training model identified as APSTRAT, an acronym indicating aptitude and strategies , be considered as a point of reference. Several instructional...post providing visual and aural sensing tasks and training objective oriented performance tasks. Vintilly, ho concludes that failure should be

  6. Dynamic extension of the Simulation Problem Analysis Kernel (SPANK)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sowell, E.F.; Buhl, W.F.

    1988-07-15

    The Simulation Problem Analysis Kernel (SPANK) is an object-oriented simulation environment for general simulation purposes. Among its unique features is use of the directed graph as the primary data structure, rather than the matrix. This allows straightforward use of graph algorithms for matching variables and equations, and reducing the problem graph for efficient numerical solution. The original prototype implementation demonstrated the principles for systems of algebraic equations, allowing simulation of steady-state, nonlinear systems (Sowell 1986). This paper describes how the same principles can be extended to include dynamic objects, allowing simulation of general dynamic systems. The theory is developed andmore » an implementation is described. An example is taken from the field of building energy system simulation. 2 refs., 9 figs.« less

  7. Vectorization of a particle code used in the simulation of rarefied hypersonic flow

    NASA Technical Reports Server (NTRS)

    Baganoff, D.

    1990-01-01

    A limitation of the direct simulation Monte Carlo (DSMC) method is that it does not allow efficient use of vector architectures that predominate in current supercomputers. Consequently, the problems that can be handled are limited to those of one- and two-dimensional flows. This work focuses on a reformulation of the DSMC method with the objective of designing a procedure that is optimized to the vector architectures found on machines such as the Cray-2. In addition, it focuses on finding a better balance between algorithmic complexity and the total number of particles employed in a simulation so that the overall performance of a particle simulation scheme can be greatly improved. Simulations of the flow about a 3D blunt body are performed with 10 to the 7th particles and 4 x 10 to the 5th mesh cells. Good statistics are obtained with time averaging over 800 time steps using 4.5 h of Cray-2 single-processor CPU time.

  8. Advanced software development workstation. Comparison of two object-oriented development methodologies

    NASA Technical Reports Server (NTRS)

    Izygon, Michel E.

    1992-01-01

    This report is an attempt to clarify some of the concerns raised about the OMT method, specifically that OMT is weaker than the Booch method in a few key areas. This interim report specifically addresses the following issues: (1) is OMT object-oriented or only data-driven?; (2) can OMT be used as a front-end to implementation in C++?; (3) the inheritance concept in OMT is in contradiction with the 'pure and real' inheritance concept found in object-oriented (OO) design; (4) low support for software life-cycle issues, for project and risk management; (5) uselessness of functional modeling for the ROSE project; and (6) problems with event-driven and simulation systems. The conclusion of this report is that both Booch's method and Rumbaugh's method are good OO methods, each with strengths and weaknesses in different areas of the development process.

  9. SISSY: An example of a multi-threaded, networked, object-oriented databased application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scipioni, B.; Liu, D.; Song, T.

    1993-05-01

    The Systems Integration Support SYstem (SISSY) is presented and its capabilities and techniques are discussed. It is fully automated data collection and analysis system supporting the SSCL`s systems analysis activities as they relate to the Physics Detector and Simulation Facility (PDSF). SISSY itself is a paradigm of effective computing on the PDSF. It uses home-grown code (C++), network programming (RPC, SNMP), relational (SYBASE) and object-oriented (ObjectStore) DBMSs, UNIX operating system services (IRIX threads, cron, system utilities, shells scripts, etc.), and third party software applications (NetCentral Station, Wingz, DataLink) all of which act together as a single application to monitor andmore » analyze the PDSF.« less

  10. Simulation of Physical Experiments in Immersive Virtual Environments

    NASA Technical Reports Server (NTRS)

    Noor, Ahmed K.; Wasfy, Tamer M.

    2001-01-01

    An object-oriented event-driven immersive Virtual environment is described for the creation of virtual labs (VLs) for simulating physical experiments. Discussion focuses on a number of aspects of the VLs, including interface devices, software objects, and various applications. The VLs interface with output devices, including immersive stereoscopic screed(s) and stereo speakers; and a variety of input devices, including body tracking (head and hands), haptic gloves, wand, joystick, mouse, microphone, and keyboard. The VL incorporates the following types of primitive software objects: interface objects, support objects, geometric entities, and finite elements. Each object encapsulates a set of properties, methods, and events that define its behavior, appearance, and functions. A container object allows grouping of several objects. Applications of the VLs include viewing the results of the physical experiment, viewing a computer simulation of the physical experiment, simulation of the experiments procedure, computational steering, and remote control of the physical experiment. In addition, the VL can be used as a risk-free (safe) environment for training. The implementation of virtual structures testing machines, virtual wind tunnels, and a virtual acoustic testing facility is described.

  11. Smooth Particle Hydrodynamics-based Wind Representation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prescott, Steven; Smith, Curtis; Hess, Stephen

    2016-12-01

    As a result of the 2011 accident at the Fukushima Dai-ichi NPP and other operational NPP experience, there is an identified need to better characterize and evaluate the potential impacts of externally generated hazards on NPP safety. Due to the ubiquitous occurrence of high winds around the world and the possible extreme magnitude of the hazard that has been observed, the assessment of the impact of the high-winds hazard has been identified as an important activity by both NPP owner-operators and regulatory authorities. However, recent experience obtained from the conduct of high-winds risk assessments indicates that such activities have beenmore » both labor-intensive and expensive to perform. Additionally, the existing suite of methods and tools to conduct such assessments (which were developed decades ago) do not make use of modern computational architectures (e.g., parallel processing, object-oriented programming techniques, or simple user interfaces) or methods (e.g., efficient and robust numerical-solution schemes). As a result, the current suite of methods and tools will rapidly become obsolete. Physics-based 3D simulation methods can provide information to assist in the RISMC PRA methodology. This research is intended to determine what benefits SPH methods could bring to high-winds simulations for the purposes of assessing their potential impact on NPP safety. The initial investigation has determined that SPH can simulate key areas of high-wind events with reasonable accuracy, compared to other methods. Some problems, such as simulation voids, need to be addressed, but possible solutions have been identified and will be tested with continued work. This work also demonstrated that SPH simulations can provide a means for simulating debris movement; however, further investigations into the capability to determine the impact of high winds and the impacts of wind-driven debris that lead to SSC failures need to be done. SPH simulations alone would be limited in size and computation time. An advanced method of combing results from grid-based methods with SPH through a data-driven model is proposed. This method could allow for more accurate simulation of particle movement near rigid bodies even with larger SPH particle sizes. If successful, the data-driven model would eliminate the need for a SPH turbulence model and increase the simulation domain size. Continued research beyond the scope of this project will be needed in order to determine the viability of a data-driven model.« less

  12. Satellite Collision Modeling with Physics-Based Hydrocodes: Debris Generation Predictions of the Iridium-Cosmos Collision Event and Other Impact Events

    NASA Astrophysics Data System (ADS)

    Springer, H.; Miller, W.; Levatin, J.; Pertica, A.; Olivier, S.

    2010-09-01

    Satellite collision debris poses risks to existing space assets and future space missions. Predictive models of debris generated from these hypervelocity collisions are critical for developing accurate space situational awareness tools and effective mitigation strategies. Hypervelocity collisions involve complex phenomenon that spans several time and length-scales. We have developed a satellite collision debris modeling approach consisting of a Lagrangian hydrocode enriched with smooth particle hydrodynamics (SPH), advanced material failure models, detailed satellite mesh models, and massively parallel computers. These computational studies enable us to investigate the influence of satellite center-of-mass (CM) overlap and orientation, relative velocity, and material composition on the size, velocity, and material type distributions of collision debris. We have applied our debris modeling capability to the recent Iridium 33-Cosmos 2251 collision event. While the relative velocity was well understood in this event, the degree of satellite CM overlap and orientation was ill-defined. In our simulations, we varied the collision CM overlap and orientation of the satellites from nearly maximum overlap to partial overlap on the outermost extents of the satellites (i.e, solar panels and gravity boom). As expected, we found that with increased satellite overlap, the overall debris cloud mass and momentum (transfer) increases, the average debris size decreases, and the debris velocity increases. The largest predicted debris can also provide insight into which satellite components were further removed from the impact location. A significant fraction of the momentum transfer is imparted to the smallest debris (< 1-5mm, dependent on mesh resolution), especially in large CM overlap simulations. While the inclusion of the smallest debris is critical to enforcing mass and momentum conservation in hydrocode simulations, there seems to be relatively little interest in their disposition. Based on comparing our results to observations, it is unlikely that the Iridium 33-Cosmos 2251 collision event was a large mass-overlap collision. We also performed separate simulations studying the debris generated by the collision of 5 and 10 cm spherical projectiles on the Iridium 33 satellite at closing velocities of 5, 10, and 15 km/s. It is important to understand the vulnerability of satellites to small debris threats, given their pervasiveness in orbit. These studies can also be merged with probabilistic conjunction analysis to better understand the risk to space assets. In these computational studies, we found that momentum transfer, kinetic energy losses due to dissipative mechanisms (e.g., fracture), fragment number, and fragment velocity increases with increasing velocity for a fixed projectile size. For a fixed velocity, we found that the smaller projectile size more efficiently transfers momentum to the satellite. This latter point has an important implication: Eight (spaced) 5 cm debris objects can impart more momentum to the satellite, and likely cause more damage, than a single 10 cm debris object at the same velocity. Further studies are required to assess the satellite damage induced by 1-5 cm sized debris objects, as well as multiple debris objects, in this velocity range.

  13. Mesoscale simulations of hydrodynamic squirmer interactions.

    PubMed

    Götze, Ingo O; Gompper, Gerhard

    2010-10-01

    The swimming behavior of self-propelled microorganisms is studied by particle-based mesoscale simulations. The simulation technique includes both hydrodynamics and thermal fluctuations that are both essential for the dynamics of microswimmers. The swimmers are modeled as squirmers, i.e., spherical objects with a prescribed tangential surface velocity, where the focus of thrust generation can be tuned from pushers to pullers. For passive squirmers (colloids), we show that the velocity autocorrelation function agrees quantitatively with the Boussinesq approximation. Single active squirmers show a persistent random-walk behavior, determined by forward motion, lateral diffusion, and orientational fluctuations, in agreement with theoretical predictions. For pairs of squirmers, which are initially swimming in parallel, we find an attraction for pushers and a repulsion for pullers, as expected. The hydrodynamic force between squirmer pairs is calculated as a function of the center-to-center distances d(cm) and is found to be consistent with a logarithmic distance dependence for d(cm) less than about two sphere diameters; here, the force is considerably stronger than expected from the far-field expansion. The dependence of the force strength on the asymmetry of the polar surface velocity is obtained. During the collision process, thermal fluctuations turn out to be very important and to strongly affect the postcollision velocity directions of both squirmers.

  14. Measurements of orientation, sedimentation, and dispersal of ramified particles in isotropic turbulence

    NASA Astrophysics Data System (ADS)

    Voth, Greg A.; Kramel, Stefan; Menon, Udayshankar K.; Koch, Donald L.

    2017-11-01

    We experimentally measure the sedimentation of non-spherical particles in isotropic turbulence. We obtain time-resolved 3D orientations of the particles along with the fluid velocity field around them in a vertical water tunnel. An active jet array with 40 individually controllable jets enables us to adjust the turbulence intensity and observe the transition from strongly aligned to randomized particle orientations. We focus on the orientation statistics of ramified particles formed from several slender arms, including fibers and particles with three arms in planar symmetry (triads), which allows us to study alignment of both fibers and disk-like particles. We can predict the turbulent intensity at which the transition from aligned to randomized particle orientations occurs using a non-dimensional settling factor given by the ratio of rotation timescale of the turbulence at the scale of the particle to the rotation timescale of a particles in quiescent flow due to inertial torques. A model of ramified particle motion based on slender body theory provides accurate predictions of the vertical and horizontal particle velocities relative to the turbulent fluid. Supported by Army Research Office Grant W911NF1510205.

  15. Alignment of cell division axes in directed epithelial cell migration

    NASA Astrophysics Data System (ADS)

    Marel, Anna-Kristina; Podewitz, Nils; Zorn, Matthias; Oskar Rädler, Joachim; Elgeti, Jens

    2014-11-01

    Cell division is an essential dynamic event in tissue remodeling during wound healing, cancer and embryogenesis. In collective migration, tensile stresses affect cell shape and polarity, hence, the orientation of the cell division axis is expected to depend on cellular flow patterns. Here, we study the degree of orientation of cell division axes in migrating and resting epithelial cell sheets. We use microstructured channels to create a defined scenario of directed cell invasion and compare this situation to resting but proliferating cell monolayers. In experiments, we find a strong alignment of the axis due to directed flow while resting sheets show very weak global order, but local flow gradients still correlate strongly with the cell division axis. We compare experimental results with a previously published mesoscopic particle based simulation model. Most of the observed effects are reproduced by the simulations.

  16. Reconstruction From Multiple Particles for 3D Isotropic Resolution in Fluorescence Microscopy.

    PubMed

    Fortun, Denis; Guichard, Paul; Hamel, Virginie; Sorzano, Carlos Oscar S; Banterle, Niccolo; Gonczy, Pierre; Unser, Michael

    2018-05-01

    The imaging of proteins within macromolecular complexes has been limited by the low axial resolution of optical microscopes. To overcome this problem, we propose a novel computational reconstruction method that yields isotropic resolution in fluorescence imaging. The guiding principle is to reconstruct a single volume from the observations of multiple rotated particles. Our new operational framework detects particles, estimates their orientation, and reconstructs the final volume. The main challenge comes from the absence of initial template and a priori knowledge about the orientations. We formulate the estimation as a blind inverse problem, and propose a block-coordinate stochastic approach to solve the associated non-convex optimization problem. The reconstruction is performed jointly in multiple channels. We demonstrate that our method is able to reconstruct volumes with 3D isotropic resolution on simulated data. We also perform isotropic reconstructions from real experimental data of doubly labeled purified human centrioles. Our approach revealed the precise localization of the centriolar protein Cep63 around the centriole microtubule barrel. Overall, our method offers new perspectives for applications in biology that require the isotropic mapping of proteins within macromolecular assemblies.

  17. Self-assembly of triangular particles via capillary interactions

    NASA Astrophysics Data System (ADS)

    Bedi, Deshpreet; Zhou, Shangnan; Ferrar, Joseph; Solomon, Michael; Mao, Xiaoming

    Colloidal particles adsorbed to a fluid interface deform the interface around them, resulting in either attractive or repulsive forces mediated by the interface. In particular, particle shape and surface roughness can produce an undulating contact line, such that the particles will assume energetically-favorable relative orientations and inter-particle distances to minimize the excess interfacial surface area. By expediently selecting specific particle shapes and associated design parameters, capillary interactions can be utilized to promote self-assembly of these particles into extended regular open structures, such as the kagome lattice, which have novel mechanical properties. We present the results of numerical simulations of equilateral triangle microprisms at an interface, including individually and in pairs. We show how particle bowing can yield two distinct binding events and connect it to theory in terms of a capillary multipole expansion and also to experiment, as presented in an accompanying talk. We also discuss and suggest design principles that can be used to create desirable open structures.

  18. Kinetic attractor phase diagrams of active nematic suspensions: the dilute regime.

    PubMed

    Forest, M Gregory; Wang, Qi; Zhou, Ruhai

    2015-08-28

    Large-scale simulations by the authors of the kinetic-hydrodynamic equations for active polar nematics revealed a variety of spatio-temporal attractors, including steady and unsteady, banded (1d) and cellular (2d) spatial patterns. These particle scale activation-induced attractors arise at dilute nanorod volume fractions where the passive equilibrium phase is isotropic, whereas all previous model simulations have focused on the semi-dilute, nematic equilibrium regime and mostly on low-moment orientation tensor and polarity vector models. Here we extend our previous results to complete attractor phase diagrams for active nematics, with and without an explicit polar potential, to map out novel spatial and dynamic transitions, and to identify some new attractors, over the parameter space of dilute nanorod volume fraction and nanorod activation strength. The particle-scale activation parameter corresponds experimentally to a tunable force dipole strength (so-called pushers with propulsion from the rod tail) generated by active rod macromolecules, e.g., catalysis with the solvent phase, ATP-induced propulsion, or light-activated propulsion. The simulations allow 2d spatial variations in all flow and orientational variables and full spherical orientational degrees of freedom; the attractors correspond to numerical integration of a coupled system of 125 nonlinear PDEs in 2d plus time. The phase diagrams with and without the polar interaction potential are remarkably similar, implying that polar interactions among the rodlike particles are not essential to long-range spatial and temporal correlations in flow, polarity, and nematic order. As a general rule, above a threshold, low volume fractions induce 1d banded patterns, whereas higher yet still dilute volume fractions yield 2d patterns. Again as a general rule, varying activation strength at fixed volume fraction induces novel dynamic transitions. First, stationary patterns saturate the instability of the isotropic state, consisting of discrete 1d banded or 2d cellular patterns depending on nanorod volume fraction. Increasing activation strength further induces a sequence of attractor bifurcations, including oscillations superimposed on the 1d and 2d stationary patterns, a uniform translational motion of 1d and 2d oscillating patterns, and periodic switching between 1d and 2d patterns. These results imply that active macromolecular suspensions are capable of long-range spatial and dynamic organization at isotropic equilibrium concentrations, provided particle-scale activation is sufficiently strong.

  19. Full Eulerian simulations of biconcave neo-Hookean particles in a Poiseuille flow

    NASA Astrophysics Data System (ADS)

    Sugiyama, Kazuyasu; , Satoshi, II; Takeuchi, Shintaro; Takagi, Shu; Matsumoto, Yoichiro

    2010-03-01

    For a given initial configuration of a multi-component geometry represented by voxel-based data on a fixed Cartesian mesh, a full Eulerian finite difference method facilitates solution of dynamic interaction problems between Newtonian fluid and hyperelastic material. The solid volume fraction, and the left Cauchy-Green deformation tensor are temporally updated on the Eulerian frame, respectively, to distinguish the fluid and solid phases, and to describe the solid deformation. The simulation method is applied to two- and three-dimensional motions of two biconcave neo-Hookean particles in a Poiseuille flow. Similar to the numerical study on the red blood cell motion in a circular pipe (Gong et al. in J Biomech Eng 131:074504, 2009), in which Skalak’s constitutive laws of the membrane are considered, the deformation, the relative position and orientation of a pair of particles are strongly dependent upon the initial configuration. The increase in the apparent viscosity is dependent upon the developed arrangement of the particles. The present Eulerian approach is demonstrated that it has the potential to be easily extended to larger system problems involving a large number of particles of complicated geometries.

  20. Design and Evaluation of Wood Processing Facilities Using Object-Oriented Simulation

    Treesearch

    D. Earl Kline; Philip A. Araman

    1992-01-01

    Managers of hardwood processing facilities need timely information on which to base important decisions such as when to add costly equipment or how to improve profitability subject to time-varying demands. The overall purpose of this paper is to introduce a tool that can effectively provide such timely information. A simulation/animation modeling procedure is described...

  1. Swim stress, motion, and deformation of active matter: effect of an external field.

    PubMed

    Takatori, Sho C; Brady, John F

    2014-12-21

    We analyze the stress, dispersion, and average swimming speed of self-propelled particles subjected to an external field that affects their orientation and speed. The swimming trajectory is governed by a competition between the orienting influence (i.e., taxis) associated with the external (e.g., magnetic, gravitational, thermal, nutrient concentration) field versus the effects that randomize the particle orientations (e.g., rotary Brownian motion and/or an intrinsic tumbling mechanism like the flagella of bacteria). The swimmers' motion is characterized by a mean drift velocity and an effective translational diffusivity that becomes anisotropic in the presence of the orienting field. Since the diffusivity yields information about the micromechanical stress, the anisotropy generated by the external field creates a normal stress difference in the recently developed "swim stress" tensor [Takatori, Yan, and Brady, Phys. Rev. Lett., 2014]. This property can be exploited in the design of soft, compressible materials in which their size, shape, and motion can be manipulated and tuned by loading the material with active swimmers. Since the swimmers exert different normal stresses in different directions, the material can compress/expand, elongate, and translate depending on the external field strength. Such an active system can be used as nano/micromechanical devices and motors. Analytical solutions are corroborated by Brownian dynamics simulations.

  2. Comparison of particle swarm optimization and simulated annealing for locating additional boreholes considering combined variance minimization

    NASA Astrophysics Data System (ADS)

    Soltani-Mohammadi, Saeed; Safa, Mohammad; Mokhtari, Hadi

    2016-10-01

    One of the most important stages in complementary exploration is optimal designing the additional drilling pattern or defining the optimum number and location of additional boreholes. Quite a lot research has been carried out in this regard in which for most of the proposed algorithms, kriging variance minimization as a criterion for uncertainty assessment is defined as objective function and the problem could be solved through optimization methods. Although kriging variance implementation is known to have many advantages in objective function definition, it is not sensitive to local variability. As a result, the only factors evaluated for locating the additional boreholes are initial data configuration and variogram model parameters and the effects of local variability are omitted. In this paper, with the goal of considering the local variability in boundaries uncertainty assessment, the application of combined variance is investigated to define the objective function. Thus in order to verify the applicability of the proposed objective function, it is used to locate the additional boreholes in Esfordi phosphate mine through the implementation of metaheuristic optimization methods such as simulated annealing and particle swarm optimization. Comparison of results from the proposed objective function and conventional methods indicates that the new changes imposed on the objective function has caused the algorithm output to be sensitive to the variations of grade, domain's boundaries and the thickness of mineralization domain. The comparison between the results of different optimization algorithms proved that for the presented case the application of particle swarm optimization is more appropriate than simulated annealing.

  3. Dshell++: A Component Based, Reusable Space System Simulation Framework

    NASA Technical Reports Server (NTRS)

    Lim, Christopher S.; Jain, Abhinandan

    2009-01-01

    This paper describes the multi-mission Dshell++ simulation framework for high fidelity, physics-based simulation of spacecraft, robotic manipulation and mobility systems. Dshell++ is a C++/Python library which uses modern script driven object-oriented techniques to allow component reuse and a dynamic run-time interface for complex, high-fidelity simulation of spacecraft and robotic systems. The goal of the Dshell++ architecture is to manage the inherent complexity of physicsbased simulations while supporting component model reuse across missions. The framework provides several features that support a large degree of simulation configurability and usability.

  4. Tunneling effects in electromagnetic wave scattering by nonspherical particles: A comparison of the Debye series and physical-geometric optics approximations

    NASA Astrophysics Data System (ADS)

    Bi, Lei; Yang, Ping

    2016-07-01

    The accuracy of the physical-geometric optics (PG-O) approximation is examined for the simulation of electromagnetic scattering by nonspherical dielectric particles. This study seeks a better understanding of the tunneling effect on the phase matrix by employing the invariant imbedding method to rigorously compute the zeroth-order Debye series, from which the tunneling efficiency and the phase matrix corresponding to the diffraction and external reflection are obtained. The tunneling efficiency is shown to be a factor quantifying the relative importance of the tunneling effect over the Fraunhofer diffraction near the forward scattering direction. Due to the tunneling effect, different geometries with the same projected cross section might have different diffraction patterns, which are traditionally assumed to be identical according to the Babinet principle. For particles with a fixed orientation, the PG-O approximation yields the external reflection pattern with reasonable accuracy, but ordinarily fails to predict the locations of peaks and minima in the diffraction pattern. The larger the tunneling efficiency, the worse the PG-O accuracy is at scattering angles less than 90°. If the particles are assumed to be randomly oriented, the PG-O approximation yields the phase matrix close to the rigorous counterpart, primarily due to error cancellations in the orientation-average process. Furthermore, the PG-O approximation based on an electric field volume-integral equation is shown to usually be much more accurate than the Kirchhoff surface integral equation at side-scattering angles, particularly when the modulus of the complex refractive index is close to unity. Finally, tunneling efficiencies are tabulated for representative faceted particles.

  5. Adaptive Morphological Feature-Based Object Classifier for a Color Imaging System

    NASA Technical Reports Server (NTRS)

    McDowell, Mark; Gray, Elizabeth

    2009-01-01

    Utilizing a Compact Color Microscope Imaging System (CCMIS), a unique algorithm has been developed that combines human intelligence along with machine vision techniques to produce an autonomous microscope tool for biomedical, industrial, and space applications. This technique is based on an adaptive, morphological, feature-based mapping function comprising 24 mutually inclusive feature metrics that are used to determine the metrics for complex cell/objects derived from color image analysis. Some of the features include: Area (total numbers of non-background pixels inside and including the perimeter), Bounding Box (smallest rectangle that bounds and object), centerX (x-coordinate of intensity-weighted, center-of-mass of an entire object or multi-object blob), centerY (y-coordinate of intensity-weighted, center-of-mass, of an entire object or multi-object blob), Circumference (a measure of circumference that takes into account whether neighboring pixels are diagonal, which is a longer distance than horizontally or vertically joined pixels), . Elongation (measure of particle elongation given as a number between 0 and 1. If equal to 1, the particle bounding box is square. As the elongation decreases from 1, the particle becomes more elongated), . Ext_vector (extremal vector), . Major Axis (the length of a major axis of a smallest ellipse encompassing an object), . Minor Axis (the length of a minor axis of a smallest ellipse encompassing an object), . Partial (indicates if the particle extends beyond the field of view), . Perimeter Points (points that make up a particle perimeter), . Roundness [(4(pi) x area)/perimeter(squared)) the result is a measure of object roundness, or compactness, given as a value between 0 and 1. The greater the ratio, the rounder the object.], . Thin in center (determines if an object becomes thin in the center, (figure-eight-shaped), . Theta (orientation of the major axis), . Smoothness and color metrics for each component (red, green, blue) the minimum, maximum, average, and standard deviation within the particle are tracked. These metrics can be used for autonomous analysis of color images from a microscope, video camera, or digital, still image. It can also automatically identify tumor morphology of stained images and has been used to detect stained cell phenomena (see figure).

  6. Data Acquisition Visualization Development for the MAJORANA DEMONSTRATOR

    NASA Astrophysics Data System (ADS)

    Wendlandt, Laura; Howe, Mark; Wilkerson, John; Majorana Collaboration

    2013-10-01

    The MAJORANA Project is building an array of germanium detectors with very low backgrounds in order to search for neutrinoless double-beta decay, a rare process that, if detected, would give us information about neutrinos. This decay would prove that neutrinos are their own anti-particles, would show that lepton number is not conserved, and would help determine absolute neutrino mass. An object-oriented, data acquisition software program known as ORCA (Object-oriented Real-time Control and Acquisition) will be used to collect data from the array. This paper describes the implementation of computer visualizations for detector calibrations, as well as tools for more general computer modeling in ORCA. Specifically, it details software that converts a CAD file to OpenGL, which can be used in ORCA. This paper also contains information about using a barium-133 source to take measurements from various locations around the detector, to better understand how data varies with detector crystal orientation. Work made possible by National Science Foundation Award OCI-1155614.

  7. High-level context effects on spatial displacement: the effects of body orientation and language on memory

    PubMed Central

    Vinson, David W.; Abney, Drew H.; Dale, Rick; Matlock, Teenie

    2014-01-01

    Three decades of research suggests that cognitive simulation of motion is involved in the comprehension of object location, bodily configuration, and linguistic meaning. For example, the remembered location of an object associated with actual or implied motion is typically displaced in the direction of motion. In this paper, two experiments explore context effects in spatial displacement. They provide a novel approach to estimating the remembered location of an implied motion image by employing a cursor-positioning task. Both experiments examine how the remembered spatial location of a person is influenced by subtle differences in implied motion, specifically, by shifting the orientation of the person’s body to face upward or downward, and by pairing the image with motion language that differed on intentionality, fell versus jumped. The results of Experiment 1, a survey-based experiment, suggest that language and body orientation influenced vertical spatial displacement. Results of Experiment 2, a task that used Adobe Flash and Amazon Mechanical Turk, showed consistent effects of body orientation on vertical spatial displacement but no effect of language. Our findings are in line with previous work on spatial displacement that uses a cursor-positioning task with implied motion stimuli. We discuss how different ways of simulating motion can influence spatial memory. PMID:25071628

  8. High-level context effects on spatial displacement: the effects of body orientation and language on memory.

    PubMed

    Vinson, David W; Abney, Drew H; Dale, Rick; Matlock, Teenie

    2014-01-01

    Three decades of research suggests that cognitive simulation of motion is involved in the comprehension of object location, bodily configuration, and linguistic meaning. For example, the remembered location of an object associated with actual or implied motion is typically displaced in the direction of motion. In this paper, two experiments explore context effects in spatial displacement. They provide a novel approach to estimating the remembered location of an implied motion image by employing a cursor-positioning task. Both experiments examine how the remembered spatial location of a person is influenced by subtle differences in implied motion, specifically, by shifting the orientation of the person's body to face upward or downward, and by pairing the image with motion language that differed on intentionality, fell versus jumped. The results of Experiment 1, a survey-based experiment, suggest that language and body orientation influenced vertical spatial displacement. Results of Experiment 2, a task that used Adobe Flash and Amazon Mechanical Turk, showed consistent effects of body orientation on vertical spatial displacement but no effect of language. Our findings are in line with previous work on spatial displacement that uses a cursor-positioning task with implied motion stimuli. We discuss how different ways of simulating motion can influence spatial memory.

  9. The effects of particle loading on turbulence structure and modelling

    NASA Technical Reports Server (NTRS)

    Squires, Kyle D.; Eaton, J. K.

    1989-01-01

    The objective of the present research was to extend the Direct Numerical Simulation (DNS) approach to particle-laden turbulent flows using a simple model of particle/flow interaction. The program addressed the simplest type of flow, homogeneous, isotropic turbulence, and examined interactions between the particles and gas phase turbulence. The specific range of problems examined include those in which the particle is much smaller than the smallest length scales of the turbulence yet heavy enough to slip relative to the flow. The particle mass loading is large enough to have a significant impact on the turbulence, while the volume loading was small enough such that particle-particle interactions could be neglected. Therefore, these simulations are relevant to practical problems involving small, dense particles conveyed by turbulent gas flows at moderate loadings. A sample of the results illustrating modifications of the particle concentration field caused by the turbulence structure is presented and attenuation of turbulence by the particle cloud is also illustrated.

  10. On the Concept of Random Orientation in Far-Field Electromagnetic Scattering by Nonspherical Particles

    NASA Technical Reports Server (NTRS)

    Mishchenko, Michael I.; Yurkin, Maxim A.

    2017-01-01

    Although the model of randomly oriented nonspherical particles has been used in a great variety of applications of far-field electromagnetic scattering, it has never been defined in strict mathematical terms. In this Letter we use the formalism of Euler rigid-body rotations to clarify the concept of statistically random particle orientations and derive its immediate corollaries in the form of most general mathematical properties of the orientation-averaged extinction and scattering matrices. Our results serve to provide a rigorous mathematical foundation for numerous publications in which the notion of randomly oriented particles and its light-scattering implications have been considered intuitively obvious.

  11. The three-dimensional Event-Driven Graphics Environment (3D-EDGE)

    NASA Technical Reports Server (NTRS)

    Freedman, Jeffrey; Hahn, Roger; Schwartz, David M.

    1993-01-01

    Stanford Telecom developed the Three-Dimensional Event-Driven Graphics Environment (3D-EDGE) for NASA GSFC's (GSFC) Communications Link Analysis and Simulation System (CLASS). 3D-EDGE consists of a library of object-oriented subroutines which allow engineers with little or no computer graphics experience to programmatically manipulate, render, animate, and access complex three-dimensional objects.

  12. Spatio-Temporal Process Simulation of Dam-Break Flood Based on SPH

    NASA Astrophysics Data System (ADS)

    Wang, H.; Ye, F.; Ouyang, S.; Li, Z.

    2018-04-01

    On the basis of introducing the SPH (Smooth Particle Hydrodynamics) simulation method, the key research problems were given solutions in this paper, which ere the spatial scale and temporal scale adapting to the GIS(Geographical Information System) application, the boundary condition equations combined with the underlying surface, and the kernel function and parameters applicable to dam-break flood simulation. In this regards, a calculation method of spatio-temporal process emulation with elaborate particles for dam-break flood was proposed. Moreover the spatio-temporal process was dynamic simulated by using GIS modelling and visualization. The results show that the method gets more information, objectiveness and real situations.

  13. A future Outlook: Web based Simulation of Hydrodynamic models

    NASA Astrophysics Data System (ADS)

    Islam, A. S.; Piasecki, M.

    2003-12-01

    Despite recent advances to present simulation results as 3D graphs or animation contours, the modeling user community still faces some shortcomings when trying to move around and analyze data. Typical problems include the lack of common platforms with standard vocabulary to exchange simulation results from different numerical models, insufficient descriptions about data (metadata), lack of robust search and retrieval tools for data, and difficulties to reuse simulation domain knowledge. This research demonstrates how to create a shared simulation domain in the WWW and run a number of models through multi-user interfaces. Firstly, meta-datasets have been developed to describe hydrodynamic model data based on geographic metadata standard (ISO 19115) that has been extended to satisfy the need of the hydrodynamic modeling community. The Extended Markup Language (XML) is used to publish this metadata by the Resource Description Framework (RDF). Specific domain ontology for Web Based Simulation (WBS) has been developed to explicitly define vocabulary for the knowledge based simulation system. Subsequently, this knowledge based system is converted into an object model using Meta Object Family (MOF). The knowledge based system acts as a Meta model for the object oriented system, which aids in reusing the domain knowledge. Specific simulation software has been developed based on the object oriented model. Finally, all model data is stored in an object relational database. Database back-ends help store, retrieve and query information efficiently. This research uses open source software and technology such as Java Servlet and JSP, Apache web server, Tomcat Servlet Engine, PostgresSQL databases, Protégé ontology editor, RDQL and RQL for querying RDF in semantic level, Jena Java API for RDF. Also, we use international standards such as the ISO 19115 metadata standard, and specifications such as XML, RDF, OWL, XMI, and UML. The final web based simulation product is deployed as Web Archive (WAR) files which is platform and OS independent and can be used by Windows, UNIX, or Linux. Keywords: Apache, ISO 19115, Java Servlet, Jena, JSP, Metadata, MOF, Linux, Ontology, OWL, PostgresSQL, Protégé, RDF, RDQL, RQL, Tomcat, UML, UNIX, Windows, WAR, XML

  14. Temperature effects on drift of suspended single-domain particles induced by the Magnus force

    NASA Astrophysics Data System (ADS)

    Denisov, S. I.; Lyutyy, T. V.; Reva, V. V.; Yermolenko, A. S.

    2018-03-01

    We study the temperature dependence of the drift velocity of single-domain ferromagnetic particles induced by the Magnus force in a dilute suspension. A set of stochastic equations describing the translational and rotational dynamics of particles is derived, and the particle drift velocity that depends on components of the average particle magnetization is introduced. The Fokker-Planck equation for the probability density of magnetization orientations is solved analytically in the limit of strong thermal fluctuations for both the planar rotor and general models. Using these solutions, we calculate the drift velocity and show that the out-of-plane fluctuations of magnetization, which are not accounted for in the planar rotor model, play an important role. In the general case of arbitrary fluctuations, we investigate the temperature dependence of the drift velocity by numerically simulating a set of effective stochastic differential equations for the magnetization dynamics.

  15. An integral equation formulation for rigid bodies in Stokes flow in three dimensions

    NASA Astrophysics Data System (ADS)

    Corona, Eduardo; Greengard, Leslie; Rachh, Manas; Veerapaneni, Shravan

    2017-03-01

    We present a new derivation of a boundary integral equation (BIE) for simulating the three-dimensional dynamics of arbitrarily-shaped rigid particles of genus zero immersed in a Stokes fluid, on which are prescribed forces and torques. Our method is based on a single-layer representation and leads to a simple second-kind integral equation. It avoids the use of auxiliary sources within each particle that play a role in some classical formulations. We use a spectrally accurate quadrature scheme to evaluate the corresponding layer potentials, so that only a small number of spatial discretization points per particle are required. The resulting discrete sums are computed in O (n) time, where n denotes the number of particles, using the fast multipole method (FMM). The particle positions and orientations are updated by a high-order time-stepping scheme. We illustrate the accuracy, conditioning and scaling of our solvers with several numerical examples.

  16. Measuring the light scattering and orientation of a spheroidal particle using in-line holography.

    PubMed

    Seo, Kyung Won; Byeon, Hyeok Jun; Lee, Sang Joon

    2014-07-01

    The light scattering properties of a horizontally and vertically oriented spheroidal particle under laser illumination are experimentally investigated using digital in-line holography. The reconstructed wave field shows the bright singular points as a result of the condensed beam formed by a transparent spheroidal particle acting as a lens. The in-plane (θ) and out-of-plane (ϕ) rotating angles of an arbitrarily oriented spheroidal particle are measured by using these scattering properties. As a feasibility test, the 3D orientation of a transparent spheroidal particle suspended in a microscale pipe flow is successfully reconstructed by adapting the proposed method.

  17. National Cycle Program (NCP) Common Analysis Tool for Aeropropulsion

    NASA Technical Reports Server (NTRS)

    Follen, G.; Naiman, C.; Evans, A.

    1999-01-01

    Through the NASA/Industry Cooperative Effort (NICE) agreement, NASA Lewis and industry partners are developing a new engine simulation, called the National Cycle Program (NCP), which is the initial framework of NPSS. NCP is the first phase toward achieving the goal of NPSS. This new software supports the aerothermodynamic system simulation process for the full life cycle of an engine. The National Cycle Program (NCP) was written following the Object Oriented Paradigm (C++, CORBA). The software development process used was also based on the Object Oriented paradigm. Software reviews, configuration management, test plans, requirements, design were all apart of the process used in developing NCP. Due to the many contributors to NCP, the stated software process was mandatory for building a common tool intended for use by so many organizations. The U.S. aircraft and airframe companies recognize NCP as the future industry standard for propulsion system modeling.

  18. A collision model for grain-resolving simulations of flows over dense, mobile, polydisperse granular sediment beds

    DOE PAGES

    Biegert, Edward; Vowinckel, Bernhard; Meiburg, Eckart

    2017-03-21

    We present a collision model for phase-resolved Direct Numerical Simulations of sediment transport that couple the fluid and particles by the Immersed Boundary Method. Typically, a contact model for these types of simulations comprises a lubrication force for particles in close proximity to another solid object, a normal contact force to prevent particles from overlapping, and a tangential contact force to account for friction. Our model extends the work of previous authors to improve upon the time integration scheme to obtain consistent results for particle-wall collisions. Furthermore, we account for polydisperse spherical particles and introduce new criteria to account formore » enduring contact, which occurs in many sediment transport situations. This is done without using arbitrary values for physically-defined parameters and by maintaining the full momentum balance of a particle in enduring contact. Lastly, we validate our model against several test cases for binary particle-wall collisions as well as the collective motion of a sediment bed sheared by a viscous flow, yielding satisfactory agreement with experimental data by various authors.« less

  19. A collision model for grain-resolving simulations of flows over dense, mobile, polydisperse granular sediment beds

    NASA Astrophysics Data System (ADS)

    Biegert, Edward; Vowinckel, Bernhard; Meiburg, Eckart

    2017-07-01

    We present a collision model for phase-resolved Direct Numerical Simulations of sediment transport that couple the fluid and particles by the Immersed Boundary Method. Typically, a contact model for these types of simulations comprises a lubrication force for particles in close proximity to another solid object, a normal contact force to prevent particles from overlapping, and a tangential contact force to account for friction. Our model extends the work of previous authors to improve upon the time integration scheme to obtain consistent results for particle-wall collisions. Furthermore, we account for polydisperse spherical particles and introduce new criteria to account for enduring contact, which occurs in many sediment transport situations. This is done without using arbitrary values for physically-defined parameters and by maintaining the full momentum balance of a particle in enduring contact. We validate our model against several test cases for binary particle-wall collisions as well as the collective motion of a sediment bed sheared by a viscous flow, yielding satisfactory agreement with experimental data by various authors.

  20. Theory for an order-driven disruption of the liquid state in water.

    PubMed

    England, Jeremy L; Park, Sanghyun; Pande, Vijay S

    2008-01-28

    Water is known to exhibit a number of peculiar physical properties because of the strong orientational dependence of the intermolecular hydrogen bonding interactions that dominate its liquid state. Recent full-atom simulations of water in a nanolayer between graphite plates submersed in an aqueous medium have raised the possibility of a new addition to this list of peculiarities: they show that application of a strong, uniform electric field normal to and between the plates can cause a pronounced decrease in particle density, rather than the increase expected from electrostriction theory for polarizable fluids [Vaitheeswaran et al., J. Phys. Chem. B 70, 6629 (2005)]. However, in seeming contradiction to this result, another study that simulated a range of similar systems has reported a less surprising electrostrictive increase in particle density upon application of the field [Bratko et al., J. Am. Chem. Soc. 129, 2504 (2007)]. In this work, we attempt to reconcile these conflicting simulation phenomena using a statistical mechanical lattice liquid model of water in an applied field. By solving the model using mean-field theory, we show that a field-induced transition to a markedly lower-density phase such as that observed in recent simulations is possible within a certain parameter regime, but that outside of this regime, the more conventional electrostrictive result should be obtained. Upon modifying the model to treat the case of bulk water under constant pressure in an applied field, we predict a density drop with rising field, and subsequently observe the predicted behavior in our own molecular dynamics simulations of liquid water. Our findings lead us to propose that the model considered here may be useful in a variety of contexts for describing the trade-off between orientational ordering of water molecules and their participation in the liquid phase.

  1. Simulation of bipolar charge transport in nanocomposite polymer films

    NASA Astrophysics Data System (ADS)

    Lean, Meng H.; Chu, Wei-Ping L.

    2015-03-01

    This paper describes 3D particle-in-cell simulation of bipolar charge injection and transport through nanocomposite film comprised of ferroelectric ceramic nanofillers in an amorphous polymer matrix. The classical electrical double layer (EDL) model for a monopolar core is extended (eEDL) to represent the nanofiller by replacing it with a dipolar core. Charge injection at the electrodes assumes metal-polymer Schottky emission at low to moderate fields and Fowler-Nordheim tunneling at high fields. Injected particles migrate via field-dependent Poole-Frenkel mobility and recombine with Monte Carlo selection. The simulation algorithm uses a boundary integral equation method for solution of the Poisson equation coupled with a second-order predictor-corrector scheme for robust time integration of the equations of motion. The stability criterion of the explicit algorithm conforms to the Courant-Friedrichs-Levy limit assuring robust and rapid convergence. The model is capable of simulating a wide dynamic range spanning leakage current to pre-breakdown. Simulation results for BaTiO3 nanofiller in amorphous polymer matrix indicate that charge transport behavior depend on nanoparticle polarization with anti-parallel orientation showing the highest leakage conduction and therefore lowest level of charge trapping in the interaction zone. Charge recombination is also highest, at the cost of reduced leakage conduction charge. The eEDL model predicts the meandering pathways of charge particle trajectories.

  2. Multimaterial magnetically assisted 3D printing of composite materials.

    PubMed

    Kokkinis, Dimitri; Schaffner, Manuel; Studart, André R

    2015-10-23

    3D printing has become commonplace for the manufacturing of objects with unusual geometries. Recent developments that enabled printing of multiple materials indicate that the technology can potentially offer a much wider design space beyond unusual shaping. Here we show that a new dimension in this design space can be exploited through the control of the orientation of anisotropic particles used as building blocks during a direct ink-writing process. Particle orientation control is demonstrated by applying low magnetic fields on deposited inks pre-loaded with magnetized stiff platelets. Multimaterial dispensers and a two-component mixing unit provide additional control over the local composition of the printed material. The five-dimensional design space covered by the proposed multimaterial magnetically assisted 3D printing platform (MM-3D printing) opens the way towards the manufacturing of functional heterogeneous materials with exquisite microstructural features thus far only accessible by biological materials grown in nature.

  3. Multimaterial magnetically assisted 3D printing of composite materials

    NASA Astrophysics Data System (ADS)

    Kokkinis, Dimitri; Schaffner, Manuel; Studart, André R.

    2015-10-01

    3D printing has become commonplace for the manufacturing of objects with unusual geometries. Recent developments that enabled printing of multiple materials indicate that the technology can potentially offer a much wider design space beyond unusual shaping. Here we show that a new dimension in this design space can be exploited through the control of the orientation of anisotropic particles used as building blocks during a direct ink-writing process. Particle orientation control is demonstrated by applying low magnetic fields on deposited inks pre-loaded with magnetized stiff platelets. Multimaterial dispensers and a two-component mixing unit provide additional control over the local composition of the printed material. The five-dimensional design space covered by the proposed multimaterial magnetically assisted 3D printing platform (MM-3D printing) opens the way towards the manufacturing of functional heterogeneous materials with exquisite microstructural features thus far only accessible by biological materials grown in nature.

  4. Largenet2: an object-oriented programming library for simulating large adaptive networks.

    PubMed

    Zschaler, Gerd; Gross, Thilo

    2013-01-15

    The largenet2 C++ library provides an infrastructure for the simulation of large dynamic and adaptive networks with discrete node and link states. The library is released as free software. It is available at http://biond.github.com/largenet2. Largenet2 is licensed under the Creative Commons Attribution-NonCommercial 3.0 Unported License. gerd@biond.org

  5. A comprehensive study of MPI parallelism in three-dimensional discrete element method (DEM) simulation of complex-shaped granular particles

    NASA Astrophysics Data System (ADS)

    Yan, Beichuan; Regueiro, Richard A.

    2018-02-01

    A three-dimensional (3D) DEM code for simulating complex-shaped granular particles is parallelized using message-passing interface (MPI). The concepts of link-block, ghost/border layer, and migration layer are put forward for design of the parallel algorithm, and theoretical scalability function of 3-D DEM scalability and memory usage is derived. Many performance-critical implementation details are managed optimally to achieve high performance and scalability, such as: minimizing communication overhead, maintaining dynamic load balance, handling particle migrations across block borders, transmitting C++ dynamic objects of particles between MPI processes efficiently, eliminating redundant contact information between adjacent MPI processes. The code executes on multiple US Department of Defense (DoD) supercomputers and tests up to 2048 compute nodes for simulating 10 million three-axis ellipsoidal particles. Performance analyses of the code including speedup, efficiency, scalability, and granularity across five orders of magnitude of simulation scale (number of particles) are provided, and they demonstrate high speedup and excellent scalability. It is also discovered that communication time is a decreasing function of the number of compute nodes in strong scaling measurements. The code's capability of simulating a large number of complex-shaped particles on modern supercomputers will be of value in both laboratory studies on micromechanical properties of granular materials and many realistic engineering applications involving granular materials.

  6. Bee++: An Object-Oriented, Agent-Based Simulator for Honey Bee Colonies

    PubMed Central

    Betti, Matthew; LeClair, Josh; Wahl, Lindi M.; Zamir, Mair

    2017-01-01

    We present a model and associated simulation package (www.beeplusplus.ca) to capture the natural dynamics of a honey bee colony in a spatially-explicit landscape, with temporally-variable, weather-dependent parameters. The simulation tracks bees of different ages and castes, food stores within the colony, pollen and nectar sources and the spatial position of individual foragers outside the hive. We track explicitly the intake of pesticides in individual bees and their ability to metabolize these toxins, such that the impact of sub-lethal doses of pesticides can be explored. Moreover, pathogen populations (in particular, Nosema apis, Nosema cerenae and Varroa mites) have been included in the model and may be introduced at any time or location. The ability to study interactions among pesticides, climate, biodiversity and pathogens in this predictive framework should prove useful to a wide range of researchers studying honey bee populations. To this end, the simulation package is written in open source, object-oriented code (C++) and can be easily modified by the user. Here, we demonstrate the use of the model by exploring the effects of sub-lethal pesticide exposure on the flight behaviour of foragers. PMID:28287445

  7. An Object Oriented Extensible Architecture for Affordable Aerospace Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Follen, Gregory J.; Lytle, John K. (Technical Monitor)

    2002-01-01

    Driven by a need to explore and develop propulsion systems that exceeded current computing capabilities, NASA Glenn embarked on a novel strategy leading to the development of an architecture that enables propulsion simulations never thought possible before. Full engine 3 Dimensional Computational Fluid Dynamic propulsion system simulations were deemed impossible due to the impracticality of the hardware and software computing systems required. However, with a software paradigm shift and an embracing of parallel and distributed processing, an architecture was designed to meet the needs of future propulsion system modeling. The author suggests that the architecture designed at the NASA Glenn Research Center for propulsion system modeling has potential for impacting the direction of development of affordable weapons systems currently under consideration by the Applied Vehicle Technology Panel (AVT). This paper discusses the salient features of the NPSS Architecture including its interface layer, object layer, implementation for accessing legacy codes, numerical zooming infrastructure and its computing layer. The computing layer focuses on the use and deployment of these propulsion simulations on parallel and distributed computing platforms which has been the focus of NASA Ames. Additional features of the object oriented architecture that support MultiDisciplinary (MD) Coupling, computer aided design (CAD) access and MD coupling objects will be discussed. Included will be a discussion of the successes, challenges and benefits of implementing this architecture.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parlinski, K.; Hashi, Y.; Tsunekawa, S.

    A model of lanthanum orthoniobate which possesses a ferroelastic tetragonal-monoclinic phase transition is proposed. It contains only one particle per unit cell, but it is constructed consistently with symmetry changes at the phase transition. The model parameters are chosen to reproduce the bare soft mode, degree of deformation of the tetragonal unit cell to monoclinic one, and the phase transition temperature. The ferroelastic system with free boundary conditions was simulated by the molecular dynamics technique, and the second order phase transition was reproduced. The studied annealing process shows formation of the stripe lenticular domain pattern, which has been interrupted bymore » appearance of a temporary band of perpendicularly oriented lenticular domains. The maps contain W{sup {prime}}-type domain walls whose orientations are fixed only by interplay of potential parameters and not by symmetry elements. The simulated domain pattern has the same features as those observed by transmission electron microscopy. {copyright} {ital 1997 Materials Research Society.}« less

  9. A Java application for tissue section image analysis.

    PubMed

    Kamalov, R; Guillaud, M; Haskins, D; Harrison, A; Kemp, R; Chiu, D; Follen, M; MacAulay, C

    2005-02-01

    The medical industry has taken advantage of Java and Java technologies over the past few years, in large part due to the language's platform-independence and object-oriented structure. As such, Java provides powerful and effective tools for developing tissue section analysis software. The background and execution of this development are discussed in this publication. Object-oriented structure allows for the creation of "Slide", "Unit", and "Cell" objects to simulate the corresponding real-world objects. Different functions may then be created to perform various tasks on these objects, thus facilitating the development of the software package as a whole. At the current time, substantial parts of the initially planned functionality have been implemented. Getafics 1.0 is fully operational and currently supports a variety of research projects; however, there are certain features of the software that currently introduce unnecessary complexity and inefficiency. In the future, we hope to include features that obviate these problems.

  10. Using Light Curves to Characterize Size and Shape of Pseudo-Debris

    NASA Technical Reports Server (NTRS)

    Rodriquez, Heather M.; Abercromby, Kira J.; Jarvis, Kandy S.; Barker, Edwin

    2006-01-01

    Photometric measurements were collected for a new study aimed at estimating orbital debris sizes based on object brightness. To obtain a size from optical measurements the current practice is to assume an albedo and use a normalized magnitude to calculate optical size. However, assuming a single albedo value may not be valid for all objects or orbit types; material type and orientation can mask an object s true optical cross section. This experiment used a CCD camera to record data, a 300 W Xenon, Ozone Free collimated light source to simulate solar illumination, and a robotic arm with five degrees of freedom to move the piece of simulated debris through various orientations. The pseudo-debris pieces used in this experiment originate from the European Space Operations Centre s ESOC2 ground test explosion of a mock satellite. A uniformly illuminated white ping-pong ball was used as a zero-magnitude reference. Each debris piece was then moved through specific orientations and rotations to generate a light curve. This paper discusses the results of five different object-based light curves as measured through an x-rotation. Intensity measurements, from which each light curve was generated, were recorded in five degree increments from zero to 180 degrees. Comparing light curves of different shaped and sized pieces against their characteristic length establishes the start of a database from which an optical size estimation model will be derived in the future.

  11. Scientific Visualization and Simulation for Multi-dimensional Marine Environment Data

    NASA Astrophysics Data System (ADS)

    Su, T.; Liu, H.; Wang, W.; Song, Z.; Jia, Z.

    2017-12-01

    As higher attention on the ocean and rapid development of marine detection, there are increasingly demands for realistic simulation and interactive visualization of marine environment in real time. Based on advanced technology such as GPU rendering, CUDA parallel computing and rapid grid oriented strategy, a series of efficient and high-quality visualization methods, which can deal with large-scale and multi-dimensional marine data in different environmental circumstances, has been proposed in this paper. Firstly, a high-quality seawater simulation is realized by FFT algorithm, bump mapping and texture animation technology. Secondly, large-scale multi-dimensional marine hydrological environmental data is virtualized by 3d interactive technologies and volume rendering techniques. Thirdly, seabed terrain data is simulated with improved Delaunay algorithm, surface reconstruction algorithm, dynamic LOD algorithm and GPU programming techniques. Fourthly, seamless modelling in real time for both ocean and land based on digital globe is achieved by the WebGL technique to meet the requirement of web-based application. The experiments suggest that these methods can not only have a satisfying marine environment simulation effect, but also meet the rendering requirements of global multi-dimension marine data. Additionally, a simulation system for underwater oil spill is established by OSG 3D-rendering engine. It is integrated with the marine visualization method mentioned above, which shows movement processes, physical parameters, current velocity and direction for different types of deep water oil spill particle (oil spill particles, hydrates particles, gas particles, etc.) dynamically and simultaneously in multi-dimension. With such application, valuable reference and decision-making information can be provided for understanding the progress of oil spill in deep water, which is helpful for ocean disaster forecasting, warning and emergency response.

  12. Rheology of granular materials composed of crushable particles.

    PubMed

    Nguyen, Duc-Hanh; Azéma, Émilien; Sornay, Philippe; Radjaï, Farhang

    2018-04-11

    We investigate sheared granular materials composed of crushable particles by means of contact dynamics simulations and the bonded-cell model for particle breakage. Each particle is paved by irregular cells interacting via cohesive forces. In each simulation, the ratio of the internal cohesion of particles to the confining pressure, the relative cohesion, is kept constant and the packing is subjected to biaxial shearing. The particles can break into two or more fragments when the internal cohesive forces are overcome by the action of compressive force chains between particles. The particle size distribution evolves during shear as the particles continue to break. We find that the breakage process is highly inhomogeneous both in the fragment sizes and their locations inside the packing. In particular, a number of large particles never break whereas a large number of particles are fully shattered. As a result, the packing keeps the memory of its initial particle size distribution, whereas a power-law distribution is observed for particles of intermediate size due to consecutive fragmentation events whereby the memory of the initial state is lost. Due to growing polydispersity, dense shear bands are formed inside the packings and the usual dilatant behavior is reduced or cancelled. Hence, the stress-strain curve no longer passes through a peak stress, and a progressive monotonic evolution towards a pseudo-steady state is observed instead. We find that the crushing rate is controlled by the confining pressure. We also show that the shear strength of the packing is well expressed in terms of contact anisotropies and force anisotropies. The force anisotropy increases while the contact orientation anisotropy declines for increasing internal cohesion of the particles. These two effects compensate each other so that the shear strength is nearly independent of the internal cohesion of particles.

  13. An object-oriented simulator for 3D digital breast tomosynthesis imaging system.

    PubMed

    Seyyedi, Saeed; Cengiz, Kubra; Kamasak, Mustafa; Yildirim, Isa

    2013-01-01

    Digital breast tomosynthesis (DBT) is an innovative imaging modality that provides 3D reconstructed images of breast to detect the breast cancer. Projections obtained with an X-ray source moving in a limited angle interval are used to reconstruct 3D image of breast. Several reconstruction algorithms are available for DBT imaging. Filtered back projection algorithm has traditionally been used to reconstruct images from projections. Iterative reconstruction algorithms such as algebraic reconstruction technique (ART) were later developed. Recently, compressed sensing based methods have been proposed in tomosynthesis imaging problem. We have developed an object-oriented simulator for 3D digital breast tomosynthesis (DBT) imaging system using C++ programming language. The simulator is capable of implementing different iterative and compressed sensing based reconstruction methods on 3D digital tomosynthesis data sets and phantom models. A user friendly graphical user interface (GUI) helps users to select and run the desired methods on the designed phantom models or real data sets. The simulator has been tested on a phantom study that simulates breast tomosynthesis imaging problem. Results obtained with various methods including algebraic reconstruction technique (ART) and total variation regularized reconstruction techniques (ART+TV) are presented. Reconstruction results of the methods are compared both visually and quantitatively by evaluating performances of the methods using mean structural similarity (MSSIM) values.

  14. An Object-Oriented Simulator for 3D Digital Breast Tomosynthesis Imaging System

    PubMed Central

    Cengiz, Kubra

    2013-01-01

    Digital breast tomosynthesis (DBT) is an innovative imaging modality that provides 3D reconstructed images of breast to detect the breast cancer. Projections obtained with an X-ray source moving in a limited angle interval are used to reconstruct 3D image of breast. Several reconstruction algorithms are available for DBT imaging. Filtered back projection algorithm has traditionally been used to reconstruct images from projections. Iterative reconstruction algorithms such as algebraic reconstruction technique (ART) were later developed. Recently, compressed sensing based methods have been proposed in tomosynthesis imaging problem. We have developed an object-oriented simulator for 3D digital breast tomosynthesis (DBT) imaging system using C++ programming language. The simulator is capable of implementing different iterative and compressed sensing based reconstruction methods on 3D digital tomosynthesis data sets and phantom models. A user friendly graphical user interface (GUI) helps users to select and run the desired methods on the designed phantom models or real data sets. The simulator has been tested on a phantom study that simulates breast tomosynthesis imaging problem. Results obtained with various methods including algebraic reconstruction technique (ART) and total variation regularized reconstruction techniques (ART+TV) are presented. Reconstruction results of the methods are compared both visually and quantitatively by evaluating performances of the methods using mean structural similarity (MSSIM) values. PMID:24371468

  15. Improved representation of situational awareness within a dismounted small combat unit constructive simulation

    NASA Astrophysics Data System (ADS)

    Lee, K. David; Colony, Mike

    2011-06-01

    Modeling and simulation has been established as a cost-effective means of supporting the development of requirements, exploring doctrinal alternatives, assessing system performance, and performing design trade-off analysis. The Army's constructive simulation for the evaluation of equipment effectiveness in small combat unit operations is currently limited to representation of situation awareness without inclusion of the many uncertainties associated with real world combat environments. The goal of this research is to provide an ability to model situation awareness and decision process uncertainties in order to improve evaluation of the impact of battlefield equipment on ground soldier and small combat unit decision processes. Our Army Probabilistic Inference and Decision Engine (Army-PRIDE) system provides this required uncertainty modeling through the application of two critical techniques that allow Bayesian network technology to be applied to real-time applications. (Object-Oriented Bayesian Network methodology and Object-Oriented Inference technique). In this research, we implement decision process and situation awareness models for a reference scenario using Army-PRIDE and demonstrate its ability to model a variety of uncertainty elements, including: confidence of source, information completeness, and information loss. We also demonstrate that Army-PRIDE improves the realism of the current constructive simulation's decision processes through Monte Carlo simulation.

  16. Effect of alignment of easy axes on dynamic magnetization of immobilized magnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Yoshida, Takashi; Matsugi, Yuki; Tsujimura, Naotaka; Sasayama, Teruyoshi; Enpuku, Keiji; Viereck, Thilo; Schilling, Meinhard; Ludwig, Frank

    2017-04-01

    In some biomedical applications of magnetic nanoparticles (MNPs), the particles are physically immobilized. In this study, we explore the effect of the alignment of the magnetic easy axes on the dynamic magnetization of immobilized MNPs under an AC excitation field. We prepared three immobilized MNP samples: (1) a sample in which easy axes are randomly oriented, (2) a parallel-aligned sample in which easy axes are parallel to the AC field, and (3) an orthogonally aligned sample in which easy axes are perpendicular to the AC field. First, we show that the parallel-aligned sample has the largest hysteresis in the magnetization curve and the largest harmonic magnetization spectra, followed by the randomly oriented and orthogonally aligned samples. For example, 1.6-fold increase was observed in the area of the hysteresis loop of the parallel-aligned sample compared to that of the randomly oriented sample. To quantitatively discuss the experimental results, we perform a numerical simulation based on a Fokker-Planck equation, in which probability distributions for the directions of the easy axes are taken into account in simulating the prepared MNP samples. We obtained quantitative agreement between experiment and simulation. These results indicate that the dynamic magnetization of immobilized MNPs is significantly affected by the alignment of the easy axes.

  17. MUST - An integrated system of support tools for research flight software engineering. [Multipurpose User-oriented Software Technology

    NASA Technical Reports Server (NTRS)

    Straeter, T. A.; Foudriat, E. C.; Will, R. W.

    1977-01-01

    The objectives of NASA's MUST (Multipurpose User-oriented Software Technology) program at Langley Research Center are to cut the cost of producing software which effectively utilizes digital systems for flight research. These objectives will be accomplished by providing an integrated system of support software tools for use throughout the research flight software development process. A description of the overall MUST program and its progress toward the release of a first MUST system will be presented. This release includes: a special interactive user interface, a library of subroutines, assemblers, a compiler, automatic documentation tools, and a test and simulation system.

  18. Numerical simulations of particle orbits around 2060 Chiron

    NASA Technical Reports Server (NTRS)

    Stern, S. A.; Jackson, A. A.; Boice, D. C.

    1994-01-01

    Scattered light from orbiting or coorbiting dust is a primary signature by which Earth-based observers study the activity and atmosphere of the unusual outer solar system object 2060 Chiron. Therefore, it is important to understand the lifetime, dynamics, and loss rates of dust in its coma. We report here dynamical simulations of particles in Chiron's collisionless coma. The orbits of 17,920 dust particles were numerically integrated under the gravitational influence of Chiron, the Sun, and solar radiation pressure. These simulations show that particles ejected from Chiron are more likely to follow suborbital trajectories, or to escape altogether, than to enter quasistable orbits. Significant orbital lifetimes can only be achieved for very specific launch conditions. These results call into question models of a long-term, bound coma generated by discrete outbursts, and instead suggest that Chiron's coma state is closely coupled to the nearly instantaneous level of Chiron's surface activity.

  19. Scattering Properties of Lunar Dust Analogs

    NASA Technical Reports Server (NTRS)

    Davis, S.; Marshall, J.; Richard, D.; Adler, D.; Adler, B.

    2013-01-01

    A number of space missions are planned to explore the lunar exosphere which may contain a small population of dust particles. The objective of this paper is to present preliminary results from scattering experiments on a suspension of lunar simulants to support one such mission. The intensity of the light scattered from a lunar simulant is measured with a commercial version of the spectrometer used in the forthcoming LADEE mission. Physical properties of the lunar simulant are described along with two similarly-sized reference microspheres. We confirm that micron-sized particles tend to form agglomerates rather than remaining isolated entities and that certain general characteristic of the target particles can be predicted from intensity measurements alone. These results can be used directly to assess general features of the lunar exosphere from LADEE instrument data. Further analysis of particle properties from such remote sensing data will require measurements of polarization signatures.

  20. Multiphysics Object Oriented Simulation Environment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    The Multiphysics Object Oriented Simulation Environment (MOOSE) software library developed at Idaho National Laboratory is a tool. MOOSE, like other tools, doesn't actually complete a task. Instead, MOOSE seeks to reduce the effort required to create engineering simulation applications. MOOSE itself is a software library: a blank canvas upon which you write equations and then MOOSE can help you solve them. MOOSE is comparable to a spreadsheet application. A spreadsheet, by itself, doesn't do anything. Only once equations are entered into it will a spreadsheet application compute anything. Such is the same for MOOSE. An engineer or scientist can utilizemore » the equation solvers within MOOSE to solve equations related to their area of study. For instance, a geomechanical scientist can input equations related to water flow in underground reservoirs and MOOSE can solve those equations to give the scientist an idea of how water could move over time. An engineer might input equations related to the forces in steel beams in order to understand the load bearing capacity of a bridge. Because MOOSE is a blank canvas it can be useful in many scientific and engineering pursuits.« less

  1. Information Environments

    NASA Technical Reports Server (NTRS)

    Follen, Gregory J.; Naiman, Cynthia

    2003-01-01

    The objective of GRC CNIS/IE work is to build a plug-n-play infrastructure that provides the Grand Challenge Applications with a suite of tools for coupling codes together, numerical zooming between fidelity of codes and gaining deployment of these simulations onto the Information Power Grid. The GRC CNIS/IE work will streamline and improve this process by providing tighter integration of various tools through the use of object oriented design of component models and data objects and through the use of CORBA (Common Object Request Broker Architecture).

  2. Interaction of Land Management Intensity and Micro-topography Controls on Geochemistry of Raindrop-Liberated/Mobilized Soil Particles

    NASA Astrophysics Data System (ADS)

    Hou, T.; Filley, T. R.; Berry, T.; Singh, S.; Hughes, M.; Tong, Y.; Papanicolaou, T.; Wacha, K.; Wilson, C. G.; Chaubey, I.

    2017-12-01

    The dynamics of raindrop-induced breakdown of soil aggregates, a critical factor in the initial process of surface erosion and lateral redistribution of soil, are strongly tied to land use intensity. What is unclear however is the relative control of rain and mechanical disturbance on the development of landscape-level heterogeneity in surface soil geochemistry. We used artificial rainfall simulated experiments including an aggregate stability test and time course rainfall-erosional test to evaluate the role of management intensity and micro-topography on the geochemistry of raindrop-liberated/mobilized particles from landscapes in southeastern Iowa. Comparing restored prairie, conservation tillage, and conventional tillage sites we found, and with a trend toward increasing tillage intensity, a decrease in aggregate stability and raindrop-liberated particles that were lower in organic carbon, nitrogen, and plant-derived biopolymers, while containing higher proportions of microbially-processed nitrogen than the raindrop stable aggregates. Time evolution of the geochemistry (e.g. elemental, stable isotope, and biopolymer composition) of transported soil particles exhibited distinct patterns based upon both position of the hillslope and oriented soil roughness. Additionally, in the restored prairie, raindrop liberated particles had identical geochemical composition to the raindrop stable aggregates. Our results demonstrate that agricultural sites under intensive tillage have not only a greater potential to liberate and mobilize soil particles during storms, but the mobilized particles will have a distinct chemical character based on tillage intensity, hillslope position and oriented roughness thus lead to a greater potential for landscape level heterogeneity in surface and buried soil chemistry upon mobilization and burial.

  3. Simulation study on the structural properties of colloidal particles with offset dipoles.

    PubMed

    Rutkowski, David M; Velev, Orlin D; Klapp, Sabine H L; Hall, Carol K

    2017-05-03

    A major research theme in materials science is determining how the self-assembly of new generations of colloidal particles of complex shape and surface charge is guided by their interparticle interactions. In this paper, we describe results from quasi-2D Monte Carlo simulations of systems of colloidal particles with offset transversely-oriented extended dipole-like charge distributions interacting via an intermediate-ranged Yukawa potential. The systems are cooled slowly through an annealing procedure during which the temperature is lowered in discrete steps, allowing the system to equilibrate. We perform ground state calculations for two, three and four particles at several shifts of the dipole vector from the particle center. We create state diagrams in the plane spanned by the temperature and the area fraction outlining the boundaries between fluid, string-fluid and percolated states at various values of the shift. Remarkably we find that the effective cooling rate in our simulations has an impact on the structures formed, with chains being more prevalent if the system is cooled quickly and cyclic structures more prevalent if the system is cooled slowly. As the dipole is further shifted from the center, there is an increased tendency to assemble into small cyclic structures at intermediate temperatures. These systems further self-assemble into open lattice-like arrangements at very low temperatures. The novel structures identified might be useful for photonic applications, new types of porous media for filtration and catalysis, and gel matrices with unusual properties.

  4. Flocking ferromagnetic colloids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaiser, Andreas; Snezhko, Alexey; Aranson, Igor S.

    Assemblages of microscopic colloidal particles exhibit fascinating collective motion when energized by electric or magnetic fields. The behaviors range from coherent vortical motion to phase separation and dynamic self-assembly. While colloidal systems are relatively simple, understanding their collective response, especially in out of equilibrium conditions, remains elusive. Here, we report on the emergence of flocking and global rotation in the system of rolling ferromagnetic microparticles energized by a vertical alternating magnetic field. By combing experiments and discrete particle simulations, we have identified primary physical mechanisms leading to the emergence of largescale collective motion: spontaneous symmetry breaking of the clock /more » counterclockwise particle rotation, collisional alignment of particle velocities, and random particle re-orientations due to shape imperfections. We have also shown that hydrodynamic interactions between the particles do not have a qualitative effect on the collective dynamics. Lastly, our findings shed light on the onset of spatial and temporal coherence in a large class of active systems, both synthetic (colloids, swarms of robots, biopolymers) and living (suspensions of bacteria, cell colonies, bird flocks).« less

  5. Flocking ferromagnetic colloids

    DOE PAGES

    Kaiser, Andreas; Snezhko, Alexey; Aranson, Igor S.

    2017-02-15

    Assemblages of microscopic colloidal particles exhibit fascinating collective motion when energized by electric or magnetic fields. The behaviors range from coherent vortical motion to phase separation and dynamic self-assembly. While colloidal systems are relatively simple, understanding their collective response, especially in out of equilibrium conditions, remains elusive. Here, we report on the emergence of flocking and global rotation in the system of rolling ferromagnetic microparticles energized by a vertical alternating magnetic field. By combing experiments and discrete particle simulations, we have identified primary physical mechanisms leading to the emergence of largescale collective motion: spontaneous symmetry breaking of the clock /more » counterclockwise particle rotation, collisional alignment of particle velocities, and random particle re-orientations due to shape imperfections. We have also shown that hydrodynamic interactions between the particles do not have a qualitative effect on the collective dynamics. Lastly, our findings shed light on the onset of spatial and temporal coherence in a large class of active systems, both synthetic (colloids, swarms of robots, biopolymers) and living (suspensions of bacteria, cell colonies, bird flocks).« less

  6. Theoretical investigation on nanoparticle concentrations in optoelectrofluidic chip based on diffusion, convection, and migration

    NASA Astrophysics Data System (ADS)

    Hu, Sheng; Lv, Jiangtao; Si, Guangyuan

    2016-10-01

    A numerical model and simulation relative to an optoelectrofluidic chip has been presented in this article. Both dielectrophoretic and electroosmotic force attracting the nano-sized particles could be studied by the diffusion, convection, and migration equations. For the nano-sized particles, the protein with radius 3.6 nm is considered as the objective particle. The electroosmosis dependent upon applied frequency is calculated, which range 102 Hz from 108 Hz, and provides the much stronger force to enrich proteins than dielectrophoresis (DEP). Meanwhile, the induced light pattern size significantly affecting the concentration distribution is simulated. In this end, the concentration curve has verified that the optoelectrofluidic chip can be capable of manipulating and assembling the suspended submicron particles.

  7. Coulomb interactions in charged fluids.

    PubMed

    Vernizzi, Graziano; Guerrero-García, Guillermo Iván; de la Cruz, Monica Olvera

    2011-07-01

    The use of Ewald summation schemes for calculating long-range Coulomb interactions, originally applied to ionic crystalline solids, is a very common practice in molecular simulations of charged fluids at present. Such a choice imposes an artificial periodicity which is generally absent in the liquid state. In this paper we propose a simple analytical O(N(2)) method which is based on Gauss's law for computing exactly the Coulomb interaction between charged particles in a simulation box, when it is averaged over all possible orientations of a surrounding infinite lattice. This method mitigates the periodicity typical of crystalline systems and it is suitable for numerical studies of ionic liquids, charged molecular fluids, and colloidal systems with Monte Carlo and molecular dynamics simulations.

  8. Heating-freezing effects on the orientation of kaolin clay particles

    DOE PAGES

    Jaradat, Karam A.; Darbari, Zubin; Elbakhshwan, Mohamed; ...

    2017-09-29

    The effects of temperature changes on the particle orientation of a consolidated kaolin are studied using XRD experiments. Here, two sets of equipment were utilized in this study: a benchtop equipment, and a synchrotron beamline at the National Synchrotron Light Source II (NSLS-II) at Brookhaven National Laboratory. The kaolin specimens tested in the benchtop XRD were subjected to elevated and freezing temperatures ex-situ, while those used for the NSLS-II experiment were exposed to the temperature changes in-situ. The temperatures considered in this study range from freezing (-10 °C) to elevated temperature below boiling (90 °C). The thermally-induced reorientation of claymore » mineral particles is highly dependent on the relative orientation of the clay mineral particles with respect to the applied thermal gradient. For example, kaolin samples with kaolinite particles oriented perpendicular to the thermal gradient, and to the expected thermally-induced pore water flow, experience much higher particles reorientations compared to samples with particles initially oriented parallel to the thermal gradient. Lastly, freezing kaolin preserved its microstructure as ice crystals form.« less

  9. Heating-freezing effects on the orientation of kaolin clay particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jaradat, Karam A.; Darbari, Zubin; Elbakhshwan, Mohamed

    The effects of temperature changes on the particle orientation of a consolidated kaolin are studied using XRD experiments. Here, two sets of equipment were utilized in this study: a benchtop equipment, and a synchrotron beamline at the National Synchrotron Light Source II (NSLS-II) at Brookhaven National Laboratory. The kaolin specimens tested in the benchtop XRD were subjected to elevated and freezing temperatures ex-situ, while those used for the NSLS-II experiment were exposed to the temperature changes in-situ. The temperatures considered in this study range from freezing (-10 °C) to elevated temperature below boiling (90 °C). The thermally-induced reorientation of claymore » mineral particles is highly dependent on the relative orientation of the clay mineral particles with respect to the applied thermal gradient. For example, kaolin samples with kaolinite particles oriented perpendicular to the thermal gradient, and to the expected thermally-induced pore water flow, experience much higher particles reorientations compared to samples with particles initially oriented parallel to the thermal gradient. Lastly, freezing kaolin preserved its microstructure as ice crystals form.« less

  10. Boundaries Control Collective Dynamics of Inertial Self-Propelled Robots.

    PubMed

    Deblais, A; Barois, T; Guerin, T; Delville, P H; Vaudaine, R; Lintuvuori, J S; Boudet, J F; Baret, J C; Kellay, H

    2018-05-04

    Simple ingredients, such as well-defined interactions and couplings for the velocity and orientation of self-propelled objects, are sufficient to produce complex collective behavior in assemblies of such entities. Here, we use assemblies of rodlike robots made motile through self-vibration. When confined in circular arenas, dilute assemblies of these rods act as a gas. Increasing the surface fraction leads to a collective behavior near the boundaries: polar clusters emerge while, in the bulk, gaslike behavior is retained. The coexistence between a gas and surface clusters is a direct consequence of inertial effects as shown by our simulations. A theoretical model, based on surface mediated transport accounts for this coexistence and illustrates the exact role of the boundaries. Our study paves the way towards the control of collective behavior: By using deformable but free to move arenas, we demonstrate that the surface induced clusters can lead to directed motion, while the topology of the surface states can be controlled by biasing the motility of the particles.

  11. Boundaries Control Collective Dynamics of Inertial Self-Propelled Robots

    NASA Astrophysics Data System (ADS)

    Deblais, A.; Barois, T.; Guerin, T.; Delville, P. H.; Vaudaine, R.; Lintuvuori, J. S.; Boudet, J. F.; Baret, J. C.; Kellay, H.

    2018-05-01

    Simple ingredients, such as well-defined interactions and couplings for the velocity and orientation of self-propelled objects, are sufficient to produce complex collective behavior in assemblies of such entities. Here, we use assemblies of rodlike robots made motile through self-vibration. When confined in circular arenas, dilute assemblies of these rods act as a gas. Increasing the surface fraction leads to a collective behavior near the boundaries: polar clusters emerge while, in the bulk, gaslike behavior is retained. The coexistence between a gas and surface clusters is a direct consequence of inertial effects as shown by our simulations. A theoretical model, based on surface mediated transport accounts for this coexistence and illustrates the exact role of the boundaries. Our study paves the way towards the control of collective behavior: By using deformable but free to move arenas, we demonstrate that the surface induced clusters can lead to directed motion, while the topology of the surface states can be controlled by biasing the motility of the particles.

  12. Understanding bulk behavior of particulate materials from particle scale simulations

    NASA Astrophysics Data System (ADS)

    Deng, Xiaoliang

    Particulate materials play an increasingly significant role in various industries, such as pharmaceutical manufacturing, food, mining, and civil engineering. The objective of this research is to better understand bulk behaviors of particulate materials from particle scale simulations. Packing properties of assembly of particles are investigated first, focusing on the effects of particle size, surface energy, and aspect ratio on the coordination number, porosity, and packing structures. The simulation results show that particle sizes, surface energy, and aspect ratio all influence the porosity of packing to various degrees. The heterogeneous force networks within particle assembly under external compressive loading are investigated as well. The results show that coarse-coarse contacts dominate the strong network and coarse-fine contacts dominate the total network. Next, DEM models are developed to simulate the particle dynamics inside a conical screen mill (comil) and magnetically assisted impaction mixer (MAIM), both are important particle processing devices. For comil, the mean residence time (MRT), spatial distribution of particles, along with the collision dynamics between particles as well as particle and vessel geometries are examined as a function of the various operating parameters such as impeller speed, screen hole size, open area, and feed rate. The simulation results can help better understand dry coating experimental results using comil. For MAIM system, the magnetic force is incorporated into the contact model, allowing to describe the interactions between magnets. The simulation results reveal the connections between homogeneity of mixture and particle scale variables such as size of magnets and surface energy of non-magnets. In particular, at the fixed mass ratio of magnets to non-magnets and surface energy the smaller magnets lead to better homogeneity of mixing, which is in good agreement with previously published experimental results. Last but not least, numerical simulations, along with theoretical analysis, are performed to investigate the interparticle force of dry coated particles. A model is derived and can be used to predict the probabilities of hose-host (HH), host-guest (HG), and guest-guest (GG) contacts. The results indicate that there are three different regions dominated by HH, HG, and GG contacts, respectively. Moreover, the critical SAC for the transition of HG to GG contacts is lower than previously estimated value. In summary, particle packing, particle dynamics associated with various particle processing devices, and interparticle force of dry coated particles are investigated in this thesis. The results show that particle scale information such as coordination number, collision dynamics, and contact force between particles from simulation results can help better understand bulk properties of assembly of individual particles.

  13. Monte Carlo Simulation of Spacecraft Particle Detectors to Assess the True Human Risk

    NASA Technical Reports Server (NTRS)

    O'Neill, Patrick M.

    2002-01-01

    Particle detectors (DOSTEL, CPDS, and TEPC) measure the energy deposition spectrum inside earth orbiting - manned spacecraft (shuttle, space station). These instruments attempt to emulate the deposition of energy in human tissue to evaluate the health risk. However, the measurements are often difficult to relate to tissue equivalent because nuclear fragmentation (internuclear cascade/evaporation), energy-loss straggling, heavy ions, spacecraft shielding and detector geometry/orientation, and coincidence thresholds significantly affect the measured spectrum. 'A le have developed a high fidelity Monte Carlo model addressing each of these effects that significantly improves interpretation of these instruments and the resulting assessment of radiation risk to humans.

  14. Reliability analysis of dispersion nuclear fuel elements

    NASA Astrophysics Data System (ADS)

    Ding, Shurong; Jiang, Xin; Huo, Yongzhong; Li, Lin an

    2008-03-01

    Taking a dispersion fuel element as a special particle composite, the representative volume element is chosen to act as the research object. The fuel swelling is simulated through temperature increase. The large strain elastoplastic analysis is carried out for the mechanical behaviors using FEM. The results indicate that the fission swelling is simulated successfully; the thickness increments grow linearly with burnup; with increasing of burnup: (1) the first principal stresses at fuel particles change from tensile ones to compression ones, (2) the maximum Mises stresses at the particles transfer from the centers of fuel particles to the location close to the interfaces between the matrix and the particles, their values increase with burnup; the maximum Mises stresses at the matrix exist in the middle location between the two particles near the mid-plane along the length (or width) direction, and the maximum plastic strains are also at the above region.

  15. SIMULATION OF ION CONDUCTION IN α-HEMOLYSIN NANOPORES WITH COVALENTLY ATTACHED β-CYCLODEXTRIN BASED ON BOLTZMANN TRANSPORT MONTE CARLO MODEL

    PubMed Central

    Toghraee, Reza; Lee, Kyu-Il; Papke, David; Chiu, See-Wing; Jakobsson, Eric; Ravaioli, Umberto

    2009-01-01

    Ion channels, as natures’ solution to regulating biological environments, are particularly interesting to device engineers seeking to understand how natural molecular systems realize device-like functions, such as stochastic sensing of organic analytes. What’s more, attaching molecular adaptors in desired orientations inside genetically engineered ion channels, enhances the system functionality as a biosensor. In general, a hierarchy of simulation methodologies is needed to study different aspects of a biological system like ion channels. Biology Monte Carlo (BioMOCA), a three-dimensional coarse-grained particle ion channel simulator, offers a powerful and general approach to study ion channel permeation. BioMOCA is based on the Boltzmann Transport Monte Carlo (BTMC) and Particle-Particle-Particle-Mesh (P3M) methodologies developed at the University of Illinois at Urbana-Champaign. In this paper, we have employed BioMOCA to study two engineered mutations of α-HL, namely (M113F)6(M113C-D8RL2)1-β-CD and (M113N)6(T117C-D8RL3)1-β-CD. The channel conductance calculated by BioMOCA is slightly higher than experimental values. Permanent charge distributions and the geometrical shape of the channels gives rise to selectivity towards anions and also an asymmetry in I-V curves, promoting a rectification largely for cations. PMID:20938493

  16. Computational Modeling and Experimental Characterization of Martensitic Transformations in Nicoal for Self-Sensing Materials

    NASA Technical Reports Server (NTRS)

    Wallace, T. A.; Yamakov, V. I.; Hochhalter, J. D.; Leser, W. P.; Warner, J. E.; Newman, J. A.; Purja Pun, G. P.; Mishin, Y.

    2015-01-01

    Fundamental changes to aero-vehicle management require the utilization of automated health monitoring of vehicle structural components. A novel method is the use of self-sensing materials, which contain embedded sensory particles (SP). SPs are micron-sized pieces of shape-memory alloy that undergo transformation when the local strain reaches a prescribed threshold. The transformation is a result of a spontaneous rearrangement of the atoms in the crystal lattice under intensified stress near damaged locations, generating acoustic waves of a specific spectrum that can be detected by a suitably placed sensor. The sensitivity of the method depends on the strength of the emitted signal and its propagation through the material. To study the transition behavior of the sensory particle inside a metal matrix under load, a simulation approach based on a coupled atomistic-continuum model is used. The simulation results indicate a strong dependence of the particle's pseudoelastic response on its crystallographic orientation with respect to the loading direction and suggest possible ways of optimizing particle sensitivity. The technology of embedded sensory particles will serve as the key element in an autonomous structural health monitoring system that will constantly monitor for damage initiation in service, which will enable quick detection of unforeseen damage initiation in real-time and during onground inspections.

  17. A Computer Model for Red Blood Cell Chemistry

    DTIC Science & Technology

    1996-10-01

    5012. 13. ABSTRACT (Maximum 200 There is a growing need for interactive computational tools for medical education and research. The most exciting...paradigm for interactive education is simulation. Fluid Mod is a simulation based computational tool developed in the late sixties and early seventies at...to a modern Windows, object oriented interface. This development will provide students with a useful computational tool for learning . More important

  18. Friction fluctuations of gold nanoparticles in the superlubric regime

    NASA Astrophysics Data System (ADS)

    Dietzel, Dirk; de Wijn, Astrid S.; Vorholzer, Matthias; Schirmeisen, Andre

    2018-04-01

    Superlubricity, or alternatively termed structural (super)lubrictiy, is a concept where ultra-low friction is expected at the interface between sliding surfaces if these surfaces are incommensurate and thus unable to interlock. In this work, we now report on sudden, reversible, friction changes that have been observed during AFM-based nanomanipulation experiments of gold nanoparticles sliding on highly oriented pyrolythic graphite. These effects can be explained by rotations of the gold nanoparticles within the concept of structural superlubricity, where the occurrence of ultra-low friction can depend extremely sensitively on the relative orientation between the slider and the substrate. From our theoretical simulations it will become apparent how even miniscule magnitudes of rotation are compatible to the observed effects and how size and shape of the particles can influence the dependence between friction and relative orientation.

  19. Orbitals for classical arbitrary anisotropic colloidal potentials

    NASA Astrophysics Data System (ADS)

    Girard, Martin; Nguyen, Trung Dac; de la Cruz, Monica Olvera

    2017-11-01

    Coarse-grained potentials are ubiquitous in mesoscale simulations. While various methods to compute effective interactions for spherically symmetric particles exist, anisotropic interactions are seldom used, due to their complexity. Here we describe a general formulation, based on a spatial decomposition of the density fields around the particles, akin to atomic orbitals. We show that anisotropic potentials can be efficiently computed in numerical simulations using Fourier-based methods. We validate the field formulation and characterize its computational efficiency with a system of colloids that have Gaussian surface charge distributions. We also investigate the phase behavior of charged Janus colloids immersed in screened media, with screening lengths comparable to the colloid size. The system shows rich behaviors, exhibiting vapor, liquid, gel, and crystalline morphologies, depending on temperature and screening length. The crystalline phase only appears for symmetric Janus particles. For very short screening lengths, the system undergoes a direct transition from a vapor to a crystal on cooling; while, for longer screening lengths, a vapor-liquid-crystal transition is observed. The proposed formulation can be extended to model force fields that are time or orientation dependent, such as those in systems of polymer-grafted particles and magnetic colloids.

  20. Three-dimensional computational fluid dynamics modeling of particle uptake by an occupational air sampler using manually-scaled and adaptive grids

    PubMed Central

    Landázuri, Andrea C.; Sáez, A. Eduardo; Anthony, T. Renée

    2016-01-01

    This work presents fluid flow and particle trajectory simulation studies to determine the aspiration efficiency of a horizontally oriented occupational air sampler using computational fluid dynamics (CFD). Grid adaption and manual scaling of the grids were applied to two sampler prototypes based on a 37-mm cassette. The standard k–ε model was used to simulate the turbulent air flow and a second order streamline-upwind discretization scheme was used to stabilize convective terms of the Navier–Stokes equations. Successively scaled grids for each configuration were created manually and by means of grid adaption using the velocity gradient in the main flow direction. Solutions were verified to assess iterative convergence, grid independence and monotonic convergence. Particle aspiration efficiencies determined for both prototype samplers were undistinguishable, indicating that the porous filter does not play a noticeable role in particle aspiration. Results conclude that grid adaption is a powerful tool that allows to refine specific regions that require lots of detail and therefore better resolve flow detail. It was verified that adaptive grids provided a higher number of locations with monotonic convergence than the manual grids and required the least computational effort. PMID:26949268

  1. Computational Fluid Dynamics Simulation of Transport and Retention of Nanoparticle in Saturated Sand Filters

    EPA Science Inventory

    Experimental and computational investigation of the transport parameters of nano particles flowing through porous media has been made. The objective of this work was to develop a simulation capability applicable to the transport and retention of nanoparticles (NPs) in saturated p...

  2. Morphology and orientational behavior of silica-coated spindle-type hematite particles in a magnetic field probed by small-angle X-ray scattering.

    PubMed

    Reufer, Mathias; Dietsch, Hervé; Gasser, Urs; Hirt, Ann; Menzel, Andreas; Schurtenberger, Peter

    2010-04-15

    Form factor and magnetic properties of silica-coated spindle-type hematite nanoparticles are determined from SAXS measurements with applied magnetic field and magnetometry measurements. The particle size, polydispersity and porosity are determined using a core-shell model for the form factor. The particles are found to align with their long axis perpendicular to the applied field. The orientational order is determined from the SAXS data and compared to the orientational order obtained from magnetometry. The direct access to both, the orientational order of the particles, and the magnetic moments allow one to determine the magnetic properties of the individual spindle-type hematite particles. We study the influence of the silica coating on the magnetic properties and find a fundamentally different behavior of silica-coated particles. The silica coating reduces the effective magnetic moment of the particles. This effect is enhanced with field strength and can be explained by superparamagnetic relaxation in the highly porous particles.

  3. A Chaotic Particle Swarm Optimization-Based Heuristic for Market-Oriented Task-Level Scheduling in Cloud Workflow Systems.

    PubMed

    Li, Xuejun; Xu, Jia; Yang, Yun

    2015-01-01

    Cloud workflow system is a kind of platform service based on cloud computing. It facilitates the automation of workflow applications. Between cloud workflow system and its counterparts, market-oriented business model is one of the most prominent factors. The optimization of task-level scheduling in cloud workflow system is a hot topic. As the scheduling is a NP problem, Ant Colony Optimization (ACO) and Particle Swarm Optimization (PSO) have been proposed to optimize the cost. However, they have the characteristic of premature convergence in optimization process and therefore cannot effectively reduce the cost. To solve these problems, Chaotic Particle Swarm Optimization (CPSO) algorithm with chaotic sequence and adaptive inertia weight factor is applied to present the task-level scheduling. Chaotic sequence with high randomness improves the diversity of solutions, and its regularity assures a good global convergence. Adaptive inertia weight factor depends on the estimate value of cost. It makes the scheduling avoid premature convergence by properly balancing between global and local exploration. The experimental simulation shows that the cost obtained by our scheduling is always lower than the other two representative counterparts.

  4. Driven assembly with multiaxial fields: Creating a soft mode in assemblies of anisometric induced dipoles

    DOE PAGES

    Martin, James E.; Swol, Frank Van

    2015-07-10

    We show that multiaxial fields can induce time-averaged, noncentrosymmetric interactions between particles having polarization anisotropy, yet the multiaxial field itself does not exert either a force or a torque on an isolated particle. These induced interactions lead to particle assemblies whose energy is strongly dependent on both the translational and orientational degrees of freedom of the system. The situation is similar to a collection of permanent dipoles, but the symmetry of the time-averaged interaction is quite distinct, and the scale of the system energy can be dynamically controlled by the magnitude of the applied multiaxial field. In our paper, themore » case of polarizable rods is considered in detail, and it is suggested that collections of rods embedded in spheres can be used to create a material with a dynamically tunable magnetic permeability or dielectric permittivity. We report on Monte Carlo simulations performed to investigate the behavior of assemblies of both multiaxial-field induced dipoles and permanent dipoles arranged onto two-dimensional lattices. Lastly, the ground state of the induced dipoles is an orientational soft mode of aligned dipoles, whereas that of the permanent dipoles is a vortex state.« less

  5. A Chaotic Particle Swarm Optimization-Based Heuristic for Market-Oriented Task-Level Scheduling in Cloud Workflow Systems

    PubMed Central

    Li, Xuejun; Xu, Jia; Yang, Yun

    2015-01-01

    Cloud workflow system is a kind of platform service based on cloud computing. It facilitates the automation of workflow applications. Between cloud workflow system and its counterparts, market-oriented business model is one of the most prominent factors. The optimization of task-level scheduling in cloud workflow system is a hot topic. As the scheduling is a NP problem, Ant Colony Optimization (ACO) and Particle Swarm Optimization (PSO) have been proposed to optimize the cost. However, they have the characteristic of premature convergence in optimization process and therefore cannot effectively reduce the cost. To solve these problems, Chaotic Particle Swarm Optimization (CPSO) algorithm with chaotic sequence and adaptive inertia weight factor is applied to present the task-level scheduling. Chaotic sequence with high randomness improves the diversity of solutions, and its regularity assures a good global convergence. Adaptive inertia weight factor depends on the estimate value of cost. It makes the scheduling avoid premature convergence by properly balancing between global and local exploration. The experimental simulation shows that the cost obtained by our scheduling is always lower than the other two representative counterparts. PMID:26357510

  6. Channeling by Proximity: The Catalytic Advantages of Active Site Colocalization Using Brownian Dynamics.

    PubMed

    Bauler, Patricia; Huber, Gary; Leyh, Thomas; McCammon, J Andrew

    2010-05-06

    Nature often colocalizes successive steps in a metabolic pathway. Such organization is predicted to increase the effective concentration of pathway intermediates near their recipient active sites and to enhance catalytic efficiency. Here, the pathway of a two-step reaction is modeled using a simple spherical approximation for the enzymes and substrate particles. Brownian dynamics are used to simulate the trajectory of a substrate particle as it diffuses between the active site zones of two different enzyme spheres. The results approximate distances for the most effective reaction pathways, indicating that the most effective reaction pathway is one in which the active sites are closely aligned. However, when the active sites are too close, the ability of the substrate to react with the first enzyme was hindered, suggesting that even the most efficient orientations can be improved for a system that is allowed to rotate or change orientation to optimize the likelihood of reaction at both sites.

  7. PROPERTIES IMPORTANT TO MIXING FOR WTP LARGE SCALE INTEGRATED TESTING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koopman, D.; Martino, C.; Poirier, M.

    2012-04-26

    Large Scale Integrated Testing (LSIT) is being planned by Bechtel National, Inc. to address uncertainties in the full scale mixing performance of the Hanford Waste Treatment and Immobilization Plant (WTP). Testing will use simulated waste rather than actual Hanford waste. Therefore, the use of suitable simulants is critical to achieving the goals of the test program. External review boards have raised questions regarding the overall representativeness of simulants used in previous mixing tests. Accordingly, WTP requested the Savannah River National Laboratory (SRNL) to assist with development of simulants for use in LSIT. Among the first tasks assigned to SRNL wasmore » to develop a list of waste properties that matter to pulse-jet mixer (PJM) mixing of WTP tanks. This report satisfies Commitment 5.2.3.1 of the Department of Energy Implementation Plan for Defense Nuclear Facilities Safety Board Recommendation 2010-2: physical properties important to mixing and scaling. In support of waste simulant development, the following two objectives are the focus of this report: (1) Assess physical and chemical properties important to the testing and development of mixing scaling relationships; (2) Identify the governing properties and associated ranges for LSIT to achieve the Newtonian and non-Newtonian test objectives. This includes the properties to support testing of sampling and heel management systems. The test objectives for LSIT relate to transfer and pump out of solid particles, prototypic integrated operations, sparger operation, PJM controllability, vessel level/density measurement accuracy, sampling, heel management, PJM restart, design and safety margin, Computational Fluid Dynamics (CFD) Verification and Validation (V and V) and comparison, performance testing and scaling, and high temperature operation. The slurry properties that are most important to Performance Testing and Scaling depend on the test objective and rheological classification of the slurry (i.e., Newtonian or non-Newtonian). The most important properties for testing with Newtonian slurries are the Archimedes number distribution and the particle concentration. For some test objectives, the shear strength is important. In the testing to collect data for CFD V and V and CFD comparison, the liquid density and liquid viscosity are important. In the high temperature testing, the liquid density and liquid viscosity are important. The Archimedes number distribution combines effects of particle size distribution, solid-liquid density difference, and kinematic viscosity. The most important properties for testing with non-Newtonian slurries are the slurry yield stress, the slurry consistency, and the shear strength. The solid-liquid density difference and the particle size are also important. It is also important to match multiple properties within the same simulant to achieve behavior representative of the waste. Other properties such as particle shape, concentration, surface charge, and size distribution breadth, as well as slurry cohesiveness and adhesiveness, liquid pH and ionic strength also influence the simulant properties either directly or through other physical properties such as yield stress.« less

  8. Synchrotron and Synchrotron Self-Compton Spectral Signatures and Blazar Emission Models

    NASA Technical Reports Server (NTRS)

    Chiang, James; Boettcher, Markus; White, Nicholas E. (Technical Monitor)

    2002-01-01

    We find that energy losses due to synchrotron self-Compton (BBC) emission in Blazar jets can produce distinctive signatures in the time-averaged synchrotron and SSC spectra of these objects. For a fairly broad range of particle injection distributions, SSC-loss-dominated synchrotron emission exhibits a spectral dependence Fv approximately v (exp -3/2). The presence or absence of this dependence in the optical and ultraviolet spectra of flat-spectrum radio quasars such as PC 279 and in the soft X-ray spectra of high-frequency BL Lac objects such as Mark 501 gives a robust measure of the importance of SSC losses. Furthermore, for partially cooled particle distributions, spectral breaks of varying sizes can appear in the synchrotron and SSC spectra and will be related to the spectral indices of the emission below the break. These spectral signatures place constraints on the size scale and the nonthermal particle content of the emitting plasma, as well as the observer orientation relative to the jet axis.

  9. Bespoke optical springs and passive force clamps from shaped dielectric particles

    NASA Astrophysics Data System (ADS)

    Simpson, S. H.; Phillips, D. B.; Carberry, D. M.; Hanna, S.

    2013-09-01

    By moulding optical fields, holographic optical tweezers are able to generate structured force fields with magnitudes and length scales of great utility for experiments in soft matter and biological physics. It has recently been noted that optically induced force fields are determined not only by the incident optical field, but by the shape and composition of the particles involved [Gluckstad J. Optical manipulation: sculpting the object. Nat Photonics 2011;5:7-8]. Indeed, there are desirable but simple attributes of a force field, such as orientational control, that cannot be introduced by sculpting optical fields alone. With this insight in mind, we show, theoretically, how relationships between force and displacement can be controlled by optimizing particle shapes. We exhibit a constant force optical spring, made from a tapered microrod and discuss methods by which it could be fabricated. In addition, we investigate the optical analogue of streamlining, and show how objects can be shaped so as to reduce the effects of radiation pressure, and hence switch from non-trapping to trapping regimes.

  10. Micromechanical investigation of ductile failure in Al 5083-H116 via 3D unit cell modeling

    NASA Astrophysics Data System (ADS)

    Bomarito, G. F.; Warner, D. H.

    2015-01-01

    Ductile failure is governed by the evolution of micro-voids within a material. The micro-voids, which commonly initiate at second phase particles within metal alloys, grow and interact with each other until failure occurs. The evolution of the micro-voids, and therefore ductile failure, depends on many parameters (e.g., stress state, temperature, strain rate, void and particle volume fraction, etc.). In this study, the stress state dependence of the ductile failure of Al 5083-H116 is investigated by means of 3-D Finite Element (FE) periodic cell models. The cell models require only two pieces of information as inputs: (1) the initial particle volume fraction of the alloy and (2) the constitutive behavior of the matrix material. Based on this information, cell models are subjected to a given stress state, defined by the stress triaxiality and the Lode parameter. For each stress state, the cells are loaded in many loading orientations until failure. Material failure is assumed to occur in the weakest orientation, and so the orientation in which failure occurs first is considered as the critical orientation. The result is a description of material failure that is derived from basic principles and requires no fitting parameters. Subsequently, the results of the simulations are used to construct a homogenized material model, which is used in a component-scale FE model. The component-scale FE model is compared to experiments and is shown to over predict ductility. By excluding smaller nucleation events and load path non-proportionality, it is concluded that accuracy could be gained by including more information about the true microstructure in the model; emphasizing that its incorporation into micromechanical models is critical to developing quantitatively accurate physics-based ductile failure models.

  11. An Object-oriented Computer Code for Aircraft Engine Weight Estimation

    NASA Technical Reports Server (NTRS)

    Tong, Michael T.; Naylor, Bret A.

    2008-01-01

    Reliable engine-weight estimation at the conceptual design stage is critical to the development of new aircraft engines. It helps to identify the best engine concept amongst several candidates. At NASA Glenn (GRC), the Weight Analysis of Turbine Engines (WATE) computer code, originally developed by Boeing Aircraft, has been used to estimate the engine weight of various conceptual engine designs. The code, written in FORTRAN, was originally developed for NASA in 1979. Since then, substantial improvements have been made to the code to improve the weight calculations for most of the engine components. Most recently, to improve the maintainability and extensibility of WATE, the FORTRAN code has been converted into an object-oriented version. The conversion was done within the NASA s NPSS (Numerical Propulsion System Simulation) framework. This enables WATE to interact seamlessly with the thermodynamic cycle model which provides component flow data such as airflows, temperatures, and pressures, etc. that are required for sizing the components and weight calculations. The tighter integration between the NPSS and WATE would greatly enhance system-level analysis and optimization capabilities. It also would facilitate the enhancement of the WATE code for next-generation aircraft and space propulsion systems. In this paper, the architecture of the object-oriented WATE code (or WATE++) is described. Both the FORTRAN and object-oriented versions of the code are employed to compute the dimensions and weight of a 300- passenger aircraft engine (GE90 class). Both versions of the code produce essentially identical results as should be the case. Keywords: NASA, aircraft engine, weight, object-oriented

  12. Feature-oriented regional modeling and simulations in the Gulf of Maine and Georges Bank

    NASA Astrophysics Data System (ADS)

    Gangopadhyay, Avijit; Robinson, Allan R.; Haley, Patrick J.; Leslie, Wayne G.; Lozano, Carlos J.; Bisagni, James J.; Yu, Zhitao

    2003-03-01

    The multiscale synoptic circulation system in the Gulf of Maine and Georges Bank (GOMGB) region is presented using a feature-oriented approach. Prevalent synoptic circulation structures, or 'features', are identified from previous observational studies. These features include the buoyancy-driven Maine Coastal Current, the Georges Bank anticyclonic frontal circulation system, the basin-scale cyclonic gyres (Jordan, Georges and Wilkinson), the deep inflow through the Northeast Channel (NEC), the shallow outflow via the Great South Channel (GSC), and the shelf-slope front (SSF). Their synoptic water-mass ( T- S) structures are characterized and parameterized in a generalized formulation to develop temperature-salinity feature models. A synoptic initialization scheme for feature-oriented regional modeling and simulation (FORMS) of the circulation in the coastal-to-deep region of the GOMGB system is then developed. First, the temperature and salinity feature-model profiles are placed on a regional circulation template and then objectively analyzed with appropriate background climatology in the coastal region. Furthermore, these fields are melded with adjacent deep-ocean regional circulation (Gulf Stream Meander and Ring region) along and across the SSF. These initialization fields are then used for dynamical simulations via the primitive equation model. Simulation results are analyzed to calibrate the multiparameter feature-oriented modeling system. Experimental short-term synoptic simulations are presented for multiple resolutions in different regions with and without atmospheric forcing. The presented 'generic and portable' methodology demonstrates the potential of applying similar FORMS in many other regions of the Global Coastal Ocean.

  13. Powder agglomeration in a microgravity environment

    NASA Technical Reports Server (NTRS)

    Cawley, James D.

    1994-01-01

    This is the final report for NASA Grant NAG3-755 entitled 'Powder Agglomeration in a Microgravity Environment.' The research program included both two types of numerical models and two types of experiments. The numerical modeling included the use of Monte Carlo type simulations of agglomerate growth including hydrodynamic screening and molecular dynamics type simulations of the rearrangement of particles within an agglomerate under a gravitational field. Experiments included direct observation of the agglomeration of submicron alumina and indirect observation, using small angle light scattering, of the agglomeration of colloidal silica and aluminum monohydroxide. In the former class of experiments, the powders were constrained to move on a two-dimensional surface oriented to minimize the effect of gravity. In the latter, some experiments involved mixture of suspensions containing particles of opposite charge which resulted in agglomeration on a very short time scale relative to settling under gravity.

  14. Multiscale simulations of anisotropic particles combining molecular dynamics and Green's function reaction dynamics

    NASA Astrophysics Data System (ADS)

    Vijaykumar, Adithya; Ouldridge, Thomas E.; ten Wolde, Pieter Rein; Bolhuis, Peter G.

    2017-03-01

    The modeling of complex reaction-diffusion processes in, for instance, cellular biochemical networks or self-assembling soft matter can be tremendously sped up by employing a multiscale algorithm which combines the mesoscopic Green's Function Reaction Dynamics (GFRD) method with explicit stochastic Brownian, Langevin, or deterministic molecular dynamics to treat reactants at the microscopic scale [A. Vijaykumar, P. G. Bolhuis, and P. R. ten Wolde, J. Chem. Phys. 143, 214102 (2015)]. Here we extend this multiscale MD-GFRD approach to include the orientational dynamics that is crucial to describe the anisotropic interactions often prevalent in biomolecular systems. We present the novel algorithm focusing on Brownian dynamics only, although the methodology is generic. We illustrate the novel algorithm using a simple patchy particle model. After validation of the algorithm, we discuss its performance. The rotational Brownian dynamics MD-GFRD multiscale method will open up the possibility for large scale simulations of protein signalling networks.

  15. Research in Presistent Simulation: Development of the Persistent ModSim Object-Oriented Programming Language

    DTIC Science & Technology

    1993-07-01

    version tree is formed that permits users to go back to any previous version. There are methods for traversing the version tree of a particular...workspace. Workspace objects are linked (or nested) hierarchically into a workspace tree . Applications can set the access privileges to parts of this...workspace tree to control access (and hence change). There must be a default global workspace. Workspace objects are then allocated within the context

  16. Low frequency electromagnetic fluctuations in Kappa magnetized plasmas

    NASA Astrophysics Data System (ADS)

    Kim, Sunjung; Lazar, M.; Schlickeiser, R.; López, R. A.; Yoon, P. H.

    2018-07-01

    The present paper provides a theoretical approach for the evaluation of the low frequency spontaneously emitted electromagnetic (EM) fluctuations in Kappa magnetized plasmas, which include the kinetic Alfvén, fast magnetosonic/whistler, kinetic slow mode, ion Bernstein cyclotron modes, and higher-order modes. The model predictions are consistent with particle-in-cell simulations. Effects of suprathermal particles on low frequency fluctuations are studied by varying the power index, either for ions (κ i) or for electrons (κ e). Computations for an arbitrary wave vector orientation and wave polarization provide the intensity of spontaneous emissions to be enhanced in the presence of suprathermal populations. These results strongly suggest that spontaneous fluctuations may significantly contribute to the EM fluctuations observed in space plasmas, where suprathermal Kappa distributed particles are ubiquitous.

  17. From cell extracts to fish schools to granular layers: the universal hydrodynamics of self-driven systems

    NASA Astrophysics Data System (ADS)

    Ramaswamy, Sriram

    2007-03-01

    Collections of self-driven or ``active'' particles are now recognised as a distinct kind of nonequilibrium matter, and an understanding of their phases, hydrodynamics, mechanical response, and correlations is a vital and rapidly developing part of the statistical physics of soft-matter systems far from equilibrium. My talk will review our recent results, from theory, simulation and experiment, on order, fluctuations, and flow instabilities in collections of active particles, in suspension or on a solid surface. Our work, which began by adapting theories of flocking to include the hydrodynamics of the ambient fluid, provides the theoretical framework for understanding active matter in all its diversity: contractile filaments in cell extracts, crawling or dividing cells, collectively swimming bacteria, fish schools, and agitated monolayers of orientable granular particles.

  18. Fully resolved simulations of expansion waves propagating into particle beds

    NASA Astrophysics Data System (ADS)

    Marjanovic, Goran; Hackl, Jason; Annamalai, Subramanian; Jackson, Thomas; Balachandar, S.

    2017-11-01

    There is a tremendous amount of research that has been done on compression waves and shock waves moving over particles but very little concerning expansion waves. Using 3-D direct numerical simulations, this study will explore expansion waves propagating into fully resolved particle beds of varying volume fractions and geometric arrangements. The objectives of these simulations are as follows: 1) To fully resolve all (1-way coupled) forces on the particles in a time varying flow and 2) to verify state-of-the-art drag models for such complex flows. We will explore a range of volume fractions, from very low ones that are similar to single particle flows, to higher ones where nozzling effects are observed between neighboring particles. Further, we will explore two geometric arrangements: body centered cubic and face centered cubic. We will quantify the effects that volume fraction and geometric arrangement plays on the drag forces and flow fields experienced by the particles. These results will then be compared to theoretical predictions from a model based on the generalized Faxen's theorem. This work was supported in part by the U.S. Department of Energy under the Predictive Science Academic Alliance Program, under Contract No. DE-NA0002378.

  19. Coherent Structures and Extreme Events in Rotating Multiphase Turbulent Flows

    NASA Astrophysics Data System (ADS)

    Biferale, L.; Bonaccorso, F.; Mazzitelli, I. M.; van Hinsberg, M. A. T.; Lanotte, A. S.; Musacchio, S.; Perlekar, P.; Toschi, F.

    2016-10-01

    By using direct numerical simulations (DNS) at unprecedented resolution, we study turbulence under rotation in the presence of simultaneous direct and inverse cascades. The accumulation of energy at large scale leads to the formation of vertical coherent regions with high vorticity oriented along the rotation axis. By seeding the flow with millions of inertial particles, we quantify—for the first time—the effects of those coherent vertical structures on the preferential concentration of light and heavy particles. Furthermore, we quantitatively show that extreme fluctuations, leading to deviations from a normal-distributed statistics, result from the entangled interaction of the vertical structures with the turbulent background. Finally, we present the first-ever measurement of the relative importance between Stokes drag, Coriolis force, and centripetal force along the trajectories of inertial particles. We discover that vortical coherent structures lead to unexpected diffusion properties for heavy and light particles in the directions parallel and perpendicular to the rotation axis.

  20. Shock-Induced phase transition of single crystal copper

    NASA Astrophysics Data System (ADS)

    Neogi, Anupam; Mitra, Nilanjan

    2017-05-01

    We have carried out a series of multi-million atoms non-equilibrium molecular dynamics simulations to investigate the effect of crystal orientation over the shock induced plasticity and phase transformation in single crystal copper. Crystallographic orientation of [100], [110] and [111] has been studied for various intensity of shock ranging from 1.0 km/s to 3.0 km/s. During shock wave propagation along <100> and <110>, a FCC-to-BCC phase transformation has been observed to occur behind the shock front at higher intensity of shock. Nucleated body centered phase is identified through common neighbor analysis, polyhedral matching template method, radial distribution function and also from the energetic of the particles.

  1. Using object-oriented analysis techniques to support system testing

    NASA Astrophysics Data System (ADS)

    Zucconi, Lin

    1990-03-01

    Testing of real-time control systems can be greatly facilitated by use of object-oriented and structured analysis modeling techniques. This report describes a project where behavior, process and information models built for a real-time control system were used to augment and aid traditional system testing. The modeling techniques used were an adaptation of the Ward/Mellor method for real-time systems analysis and design (Ward85) for object-oriented development. The models were used to simulate system behavior by means of hand execution of the behavior or state model and the associated process (data and control flow) and information (data) models. The information model, which uses an extended entity-relationship modeling technique, is used to identify application domain objects and their attributes (instance variables). The behavioral model uses state-transition diagrams to describe the state-dependent behavior of the object. The process model uses a transformation schema to describe the operations performed on or by the object. Together, these models provide a means of analyzing and specifying a system in terms of the static and dynamic properties of the objects which it manipulates. The various models were used to simultaneously capture knowledge about both the objects in the application domain and the system implementation. Models were constructed, verified against the software as-built and validated through informal reviews with the developer. These models were then hand-executed.

  2. OpenSim: A Flexible Distributed Neural Network Simulator with Automatic Interactive Graphics.

    PubMed

    Jarosch, Andreas; Leber, Jean Francois

    1997-06-01

    An object-oriented simulator called OpenSim is presented that achieves a high degree of flexibility by relying on a small set of building blocks. The state variables and algorithms put in this framework can easily be accessed through a command shell. This allows one to distribute a large-scale simulation over several workstations and to generate the interactive graphics automatically. OpenSim opens new possibilities for cooperation among Neural Network researchers. Copyright 1997 Elsevier Science Ltd.

  3. An object-oriented approach to risk and reliability analysis : methodology and aviation safety applications.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dandini, Vincent John; Duran, Felicia Angelica; Wyss, Gregory Dane

    2003-09-01

    This article describes how features of event tree analysis and Monte Carlo-based discrete event simulation can be combined with concepts from object-oriented analysis to develop a new risk assessment methodology, with some of the best features of each. The resultant object-based event scenario tree (OBEST) methodology enables an analyst to rapidly construct realistic models for scenarios for which an a priori discovery of event ordering is either cumbersome or impossible. Each scenario produced by OBEST is automatically associated with a likelihood estimate because probabilistic branching is integral to the object model definition. The OBEST methodology is then applied to anmore » aviation safety problem that considers mechanisms by which an aircraft might become involved in a runway incursion incident. The resulting OBEST model demonstrates how a close link between human reliability analysis and probabilistic risk assessment methods can provide important insights into aviation safety phenomenology.« less

  4. Orientation specific deposition of mesoporous particles

    NASA Astrophysics Data System (ADS)

    Kjellman, Tomas; Bodén, Niklas; Wennerström, Hâkan; Edler, Karen J.; Alfredsson, Viveka

    2014-11-01

    We present a protocol for a facile orientation specific deposition of plate-like mesoporous SBA-15 silica particles onto a surface (mesopores oriented normal to surface). A drop of an aqueous dispersion of particles is placed on the surface and water vaporizes under controlled relative humidity. Three requirements are essential for uniform coverage: particle dispersion should not contain aggregates, a weak attraction between particles and surface is needed, and evaporation rate should be low. Aggregates are removed by stirring/sonication. Weak attraction is realized by introducing cationic groups to the surface. Insight into the mechanisms of the so-called coffee stain effect is also provided.

  5. Effect of flexibility on the growth of concentration fluctuations in a suspension of sedimenting fibers: Particle simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Manikantan, Harishankar; Saintillan, David

    2016-01-15

    Three-dimensional numerical simulations are performed to study the stability of a sedimenting suspension of weakly flexible fibers. It is well known that a suspension of rigid rods sedimenting under gravity at low Reynolds number is unstable to concentration fluctuations owing to hydrodynamic interactions. Flexible fibers, however, reorient while settling and even weak flexibility can alter their collective dynamics. In our recent work [Manikantan et al., “The instability of a sedimenting suspension of weakly flexible fibres,” J. Fluid Mech. 756, 935–964 (2014)], we developed a mean-field theory to predict the linear stability of such a system. Here, we verify these predictionsmore » using accurate and efficient particle simulations based on a slender-body model. We also demonstrate the mechanisms by which flexibility-induced reorientation alters suspension microstructure, and through it, its stability. Specifically, we first show that the anisotropy of the base state in the case of a suspension of flexible fibers has a destabilizing effect compared to a suspension of rigid rods. Second, a conflicting effect of flexibility is also shown to suppress particle clustering and slow down the growth of the instability. The relative magnitude of filament flexibility and rotational Brownian motion dictates which effect dominates, and our simulations qualitatively follow theoretically predicted trends. The mechanism for either effects is tied to the flexibility-induced reorientation of particles, which we illustrate using velocity and orientation statistics from our simulations. Finally, we also show that, in the case of an initially homogeneous and isotropic suspension, flexibility always acts to suppress the growth of the instability.« less

  6. Particle Image Velocimetry During Injection Molding

    NASA Astrophysics Data System (ADS)

    Bress, Thomas; Dowling, David

    2012-11-01

    Injection molding involves the unsteady non-isothermal flow of a non-Newtonian polymer melt. An optical-access mold has been used to perform particle image velocimetry (PIV) on molten polystyrene during injection molding. Velocimetry data of the mold-filling flow will be presented. Statistical assessments of the velocimetry data and scaled residuals of the continuity equation suggest that PIV can be conducted in molten plastics with an uncertainty of +/-2 percent. Simulations are often used to model polymer flow during injection molding to design molds and select processing parameters but it is difficult to determine the accuracy of these simulations due to a lack of in-mold velocimetry and melt-front progression data. Moldflow was used to simulate the filling of the optical-access mold, and these simulated results are compared to the appropriately-averaged time-varying velocity field measurements. Simulated results for melt-front progression are also compared with the experimentally observed flow fronts. The ratio of the experimentally measured average velocity magnitudes to the simulation magnitudes was found on average to be 0.99 with a standard deviation of 0.25, and the difference in velocity orientations was found to be 0.9 degree with a standard deviation of 3.2 degrees. formerly at the University of Michigan.

  7. Microtubule self-organisation by reaction-diffusion processes causes collective transport and organisation of cellular particles

    PubMed Central

    Glade, Nicolas; Demongeot, Jacques; Tabony, James

    2004-01-01

    Background The transport of intra-cellular particles by microtubules is a major biological function. Under appropriate in vitro conditions, microtubule preparations behave as a 'complex' system and show 'emergent' phenomena. In particular, they form dissipative structures that self-organise over macroscopic distances by a combination of reaction and diffusion. Results Here, we show that self-organisation also gives rise to a collective transport of colloidal particles along a specific direction. Particles, such as polystyrene beads, chromosomes, nuclei, and vesicles are carried at speeds of several microns per minute. The process also results in the macroscopic self-organisation of these particles. After self-organisation is completed, they show the same pattern of organisation as the microtubules. Numerical simulations of a population of growing and shrinking microtubules, incorporating experimentally realistic reaction dynamics, predict self-organisation. They forecast that during self-organisation, macroscopic parallel arrays of oriented microtubules form which cross the reaction space in successive waves. Such travelling waves are capable of transporting colloidal particles. The fact that in the simulations, the aligned arrays move along the same direction and at the same speed as the particles move, suggest that this process forms the underlying mechanism for the observed transport properties. Conclusions This process constitutes a novel physical chemical mechanism by which chemical energy is converted into collective transport of colloidal particles along a given direction. Self-organisation of this type provides a new mechanism by which intra cellular particles such as chromosomes and vesicles can be displaced and simultaneously organised by microtubules. It is plausible that processes of this type occur in vivo. PMID:15176973

  8. MOOSE: A parallel computational framework for coupled systems of nonlinear equations.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Derek Gaston; Chris Newman; Glen Hansen

    Systems of coupled, nonlinear partial differential equations (PDEs) often arise in simulation of nuclear processes. MOOSE: Multiphysics Object Oriented Simulation Environment, a parallel computational framework targeted at the solution of such systems, is presented. As opposed to traditional data-flow oriented computational frameworks, MOOSE is instead founded on the mathematical principle of Jacobian-free Newton-Krylov (JFNK) solution methods. Utilizing the mathematical structure present in JFNK, physics expressions are modularized into `Kernels,'' allowing for rapid production of new simulation tools. In addition, systems are solved implicitly and fully coupled, employing physics based preconditioning, which provides great flexibility even with large variance in timemore » scales. A summary of the mathematics, an overview of the structure of MOOSE, and several representative solutions from applications built on the framework are presented.« less

  9. Development of an object-oriented finite element program: application to metal-forming and impact simulations

    NASA Astrophysics Data System (ADS)

    Pantale, O.; Caperaa, S.; Rakotomalala, R.

    2004-07-01

    During the last 50 years, the development of better numerical methods and more powerful computers has been a major enterprise for the scientific community. In the same time, the finite element method has become a widely used tool for researchers and engineers. Recent advances in computational software have made possible to solve more physical and complex problems such as coupled problems, nonlinearities, high strain and high-strain rate problems. In this field, an accurate analysis of large deformation inelastic problems occurring in metal-forming or impact simulations is extremely important as a consequence of high amount of plastic flow. In this presentation, the object-oriented implementation, using the C++ language, of an explicit finite element code called DynELA is presented. The object-oriented programming (OOP) leads to better-structured codes for the finite element method and facilitates the development, the maintainability and the expandability of such codes. The most significant advantage of OOP is in the modeling of complex physical systems such as deformation processing where the overall complex problem is partitioned in individual sub-problems based on physical, mathematical or geometric reasoning. We first focus on the advantages of OOP for the development of scientific programs. Specific aspects of OOP, such as the inheritance mechanism, the operators overload procedure or the use of template classes are detailed. Then we present the approach used for the development of our finite element code through the presentation of the kinematics, conservative and constitutive laws and their respective implementation in C++. Finally, the efficiency and accuracy of our finite element program are investigated using a number of benchmark tests relative to metal forming and impact simulations.

  10. Dynamics of Small Inertia-Free Spheroidal Particles in a Turbulent Channel Flow

    NASA Astrophysics Data System (ADS)

    Challabotla, Niranjan Reddy; Zhao, Lihao; Andersson, Helge I.; Department of Energy; Process Engineering Team

    2015-11-01

    The study of small non-spherical particles suspended in turbulent fluid flows is of interest in view of the potential applications in industry and the environment. In the present work, we investigated the dynamics of inertia-free spheroidal particles suspended in fully-developed turbulent channel flow at Re τ = 180 by using the direct numerical simulations (DNS) for the Eulerian fluid phase coupled with the Lagrangian point-particle tracking. We considered inertia-free spheroidal particles with a wide range of aspect ratios from 0.01 to 50, i.e. from flat disks to long rods. Although the spheroids passively translate along with the fluid, the particle orientation and rotation strongly depend on the particle shape. The flattest disks were preferentially aligned with their symmetry axis normal to the wall, whereas the longest rods aligned parallel to the wall. Strong mean rotational spin was observed for spherical particles and this has been damped with increasing asphericity both for rod-like and disk-like spheroids. The anisotropic mean and fluctuating fluid vorticity resulted in particle spin anisotropies which exhibited a complex dependence on the particle asphericty. The Research Council of Norway, Notur and COST Action FP1005 are gratefully acknowledged.

  11. Dual-modality single particle orientation and rotational tracking of intracellular transport of nanocargos.

    PubMed

    Sun, Wei; Gu, Yan; Wang, Gufeng; Fang, Ning

    2012-01-17

    The single particle orientation and rotational tracking (SPORT) technique was introduced recently to follow the rotational motion of plasmonic gold nanorod under a differential interference contrast (DIC) microscope. In biological studies, however, cellular activities usually involve a multiplicity of molecules; thus, tracking the motion of a single molecule/object is insufficient. Fluorescence-based techniques have long been used to follow the spatial and temporal distributions of biomolecules of interest thanks to the availability of multiplexing fluorescent probes. To know the type and number of molecules and the timing of their involvement in a biological process under investigation by SPORT, we constructed a dual-modality DIC/fluorescence microscope to simultaneously image fluorescently tagged biomolecules and plasmonic nanoprobes in living cells. With the dual-modality SPORT technique, the microtubule-based intracellular transport can be unambiguously identified while the dynamic orientation of nanometer-sized cargos can be monitored at video rate. Furthermore, the active transport on the microtubule can be easily separated from the diffusion before the nanocargo docks on the microtubule or after it undocks from the microtubule. The potential of dual-modality SPORT is demonstrated for shedding new light on unresolved questions in intracellular transport.

  12. Augmented assessment as a means to augmented reality.

    PubMed

    Bergeron, Bryan

    2006-01-01

    Rigorous scientific assessment of educational technologies typically lags behind the availability of the technologies by years because of the lack of validated instruments and benchmarks. Even when the appropriate assessment instruments are available, they may not be applied because of time and monetary constraints. Work in augmented reality, instrumented mannequins, serious gaming, and similar promising educational technologies that haven't undergone timely, rigorous evaluation, highlights the need for assessment methodologies that address the limitations of traditional approaches. The most promising augmented assessment solutions incorporate elements of rapid prototyping used in the software industry, simulation-based assessment techniques modeled after methods used in bioinformatics, and object-oriented analysis methods borrowed from object oriented programming.

  13. JASMINE simulator

    NASA Astrophysics Data System (ADS)

    Yamada, Yoshiyuki; Gouda, Naoteru; Yano, Taihei; Kobayashi, Yukiyasu; Tsujimoto, Takuji; Suganuma, Masahiro; Niwa, Yoshito; Sako, Nobutada; Hatsutori, Yoichi; Tanaka, Takashi

    2006-06-01

    We explain simulation tools in JASMINE project (JASMINE simulator). The JASMINE project stands at the stage where its basic design will be determined in a few years. Then it is very important to simulate the data stream generated by astrometric fields at JASMINE in order to support investigations into error budgets, sampling strategy, data compression, data analysis, scientific performances, etc. Of course, component simulations are needed, but total simulations which include all components from observation target to satellite system are also very important. We find that new software technologies, such as Object Oriented(OO) methodologies are ideal tools for the simulation system of JASMINE(the JASMINE simulator). In this article, we explain the framework of the JASMINE simulator.

  14. Exact Hybrid Particle/Population Simulation of Rule-Based Models of Biochemical Systems

    PubMed Central

    Stover, Lori J.; Nair, Niketh S.; Faeder, James R.

    2014-01-01

    Detailed modeling and simulation of biochemical systems is complicated by the problem of combinatorial complexity, an explosion in the number of species and reactions due to myriad protein-protein interactions and post-translational modifications. Rule-based modeling overcomes this problem by representing molecules as structured objects and encoding their interactions as pattern-based rules. This greatly simplifies the process of model specification, avoiding the tedious and error prone task of manually enumerating all species and reactions that can potentially exist in a system. From a simulation perspective, rule-based models can be expanded algorithmically into fully-enumerated reaction networks and simulated using a variety of network-based simulation methods, such as ordinary differential equations or Gillespie's algorithm, provided that the network is not exceedingly large. Alternatively, rule-based models can be simulated directly using particle-based kinetic Monte Carlo methods. This “network-free” approach produces exact stochastic trajectories with a computational cost that is independent of network size. However, memory and run time costs increase with the number of particles, limiting the size of system that can be feasibly simulated. Here, we present a hybrid particle/population simulation method that combines the best attributes of both the network-based and network-free approaches. The method takes as input a rule-based model and a user-specified subset of species to treat as population variables rather than as particles. The model is then transformed by a process of “partial network expansion” into a dynamically equivalent form that can be simulated using a population-adapted network-free simulator. The transformation method has been implemented within the open-source rule-based modeling platform BioNetGen, and resulting hybrid models can be simulated using the particle-based simulator NFsim. Performance tests show that significant memory savings can be achieved using the new approach and a monetary cost analysis provides a practical measure of its utility. PMID:24699269

  15. Exact hybrid particle/population simulation of rule-based models of biochemical systems.

    PubMed

    Hogg, Justin S; Harris, Leonard A; Stover, Lori J; Nair, Niketh S; Faeder, James R

    2014-04-01

    Detailed modeling and simulation of biochemical systems is complicated by the problem of combinatorial complexity, an explosion in the number of species and reactions due to myriad protein-protein interactions and post-translational modifications. Rule-based modeling overcomes this problem by representing molecules as structured objects and encoding their interactions as pattern-based rules. This greatly simplifies the process of model specification, avoiding the tedious and error prone task of manually enumerating all species and reactions that can potentially exist in a system. From a simulation perspective, rule-based models can be expanded algorithmically into fully-enumerated reaction networks and simulated using a variety of network-based simulation methods, such as ordinary differential equations or Gillespie's algorithm, provided that the network is not exceedingly large. Alternatively, rule-based models can be simulated directly using particle-based kinetic Monte Carlo methods. This "network-free" approach produces exact stochastic trajectories with a computational cost that is independent of network size. However, memory and run time costs increase with the number of particles, limiting the size of system that can be feasibly simulated. Here, we present a hybrid particle/population simulation method that combines the best attributes of both the network-based and network-free approaches. The method takes as input a rule-based model and a user-specified subset of species to treat as population variables rather than as particles. The model is then transformed by a process of "partial network expansion" into a dynamically equivalent form that can be simulated using a population-adapted network-free simulator. The transformation method has been implemented within the open-source rule-based modeling platform BioNetGen, and resulting hybrid models can be simulated using the particle-based simulator NFsim. Performance tests show that significant memory savings can be achieved using the new approach and a monetary cost analysis provides a practical measure of its utility.

  16. Simulation of mixture microstructures via particle packing models and their direct comparison with real mixtures

    NASA Astrophysics Data System (ADS)

    Gulliver, Eric A.

    The objective of this thesis to identify and develop techniques providing direct comparison between simulated and real packed particle mixture microstructures containing submicron-sized particles. This entailed devising techniques for simulating powder mixtures, producing real mixtures with known powder characteristics, sectioning real mixtures, interrogating mixture cross-sections, evaluating and quantifying the mixture interrogation process and for comparing interrogation results between mixtures. A drop and roll-type particle-packing model was used to generate simulations of random mixtures. The simulated mixtures were then evaluated to establish that they were not segregated and free from gross defects. A powder processing protocol was established to provide real mixtures for direct comparison and for use in evaluating the simulation. The powder processing protocol was designed to minimize differences between measured particle size distributions and the particle size distributions in the mixture. A sectioning technique was developed that was capable of producing distortion free cross-sections of fine scale particulate mixtures. Tessellation analysis was used to interrogate mixture cross sections and statistical quality control charts were used to evaluate different types of tessellation analysis and to establish the importance of differences between simulated and real mixtures. The particle-packing program generated crescent shaped pores below large particles but realistic looking mixture microstructures otherwise. Focused ion beam milling was the only technique capable of sectioning particle compacts in a manner suitable for stereological analysis. Johnson-Mehl and Voronoi tessellation of the same cross-sections produced tessellation tiles with different the-area populations. Control charts analysis showed Johnson-Mehl tessellation measurements are superior to Voronoi tessellation measurements for detecting variations in mixture microstructure, such as altered particle-size distributions or mixture composition. Control charts based on tessellation measurements were used for direct, quantitative comparisons between real and simulated mixtures. Four sets of simulated and real mixtures were examined. Data from real mixture was matched with simulated data when the samples were well mixed and the particle size distributions and volume fractions of the components were identical. Analysis of mixture components that occupied less than approximately 10 vol% of the mixture was not practical unless the particle size of the component was extremely small and excellent quality high-resolution compositional micrographs of the real sample are available. These methods of analysis should allow future researchers to systematically evaluate and predict the impact and importance of variables such as component volume fraction and component particle size distribution as they pertain to the uniformity of powder mixture microstructures.

  17. Statistical properties of swarms of self-propelled particles with repulsions across the order-disorder transition

    NASA Astrophysics Data System (ADS)

    Romenskyy, Maksym; Lobaskin, Vladimir

    2013-03-01

    We study dynamic self-organisation and order-disorder transitions in a two-dimensional system of self-propelled particles. Our model is a variation of the Vicsek model, where particles align the motion to their neighbours but repel each other at short distances. We use computer simulations to measure the orientational order parameter for particle velocities as a function of intensity of internal noise or particle density. We show that in addition to the transition to an ordered state on increasing the particle density, as reported previously, there exists a transition into a disordered phase at the higher densities, which can be attributed to the destructive action of the repulsions. We demonstrate that the transition into the ordered phase is accompanied by the onset of algebraic behaviour of the two-point velocity correlation function and by a non-monotonous variation of the velocity relaxation time. The critical exponent for the decay of the velocity correlation function in the ordered phase depends on particle concentration at low densities but assumes a universal value in more dense systems.

  18. Gas-Grain Simulation Facility: Fundamental studies of particle formation and interactions. Volume 2: Abstracts, candidate experiments and feasibility study

    NASA Technical Reports Server (NTRS)

    Fogleman, Guy (Editor); Huntington, Judith L. (Editor); Schwartz, Deborah E. (Editor); Fonda, Mark L. (Editor)

    1989-01-01

    An overview of the Gas-Grain Simulation Facility (GGSF) project and its current status is provided. The proceedings of the Gas-Grain Simulation Facility Experiments Workshop are recorded. The goal of the workshop was to define experiments for the GGSF--a small particle microgravity research facility. The workshop addressed the opportunity for performing, in Earth orbit, a wide variety of experiments that involve single small particles (grains) or clouds of particles. Twenty experiments from the fields of exobiology, planetary science, astrophysics, atmospheric science, biology, physics, and chemistry were described at the workshop and are outlined in Volume 2. Each experiment description included specific scientific objectives, an outline of the experimental procedure, and the anticipated GGSF performance requirements. Since these experiments represent the types of studies that will ultimately be proposed for the facility, they will be used to define the general science requirements of the GGSF. Also included in the second volume is a physics feasibility study and abstracts of example Gas-Grain Simulation Facility experiments and related experiments in progress.

  19. Gravity-induced dynamics of a squirmer microswimmer in wall proximity

    NASA Astrophysics Data System (ADS)

    Rühle, Felix; Blaschke, Johannes; Kuhr, Jan-Timm; Stark, Holger

    2018-02-01

    We perform hydrodynamic simulations using the method of multi-particle collision dynamics and a theoretical analysis to study a single squirmer microswimmer at high Péclet number, which moves in a low Reynolds number fluid and under gravity. The relevant parameters are the ratio α of swimming to bulk sedimentation velocity and the squirmer type β. The combination of self-propulsion, gravitational force, hydrodynamic interactions with the wall, and thermal noise leads to a surprisingly diverse behavior. At α > 1 we observe cruising states, while for α < 1 the squirmer resides close to the bottom wall with the motional state determined by stable fixed points in height and orientation. They strongly depend on the squirmer type β. While neutral squirmers permanently float above the wall with upright orientation, pullers float for α larger than a threshold value {α }th} and are pinned to the wall below {α }th}. In contrast, pushers slide along the wall at lower heights, from which thermal orientational fluctuations drive them into a recurrent floating state with upright orientation, where they remain on the timescale of orientational persistence.

  20. On Babinet's principle and diffraction associated with an arbitrary particle.

    PubMed

    Sun, Bingqiang; Yang, Ping; Kattawar, George W; Mishchenko, Michael I

    2017-12-01

    Babinet's principle is widely used to compute the diffraction by a particle. However, the diffraction by a 3-D object is not totally the same as that simulated with Babinet's principle. This Letter uses a surface integral equation to exactly formulate the diffraction by an arbitrary particle and illustrate the condition for the applicability of Babinet's principle. The present results may serve to close the debate on the diffraction formalism.

  1. Nanotomography and Micromagnetic Modelling of Remanence Carriers in the Semarkona LL3.0 Chondrite: A New View of the Vortex State

    NASA Astrophysics Data System (ADS)

    Harrison, R. J.; Einsle, J. F.; Williams, W.; Ó Conbhuí, P.; Fu, R. R.; Weiss, B. P.; Kasama, T.

    2015-12-01

    Dusty-olivine chondrules are carriers of stable pre-accretionary remanence, and have recently been used to obtain the first reliable estimate of the magnetic field of the early solar nebula. Here we show how the magnetic architecture of a single dusty olivine grain from the Semarkona LL3.0 ordinary chondrite meteorite can be fully characterised in three-dimensions, using a combination of Focussed-Ion-Beam nanotomography (FIB-nt), electron tomography and finite-element micromagnetic modelling. We present a 3D volume reconstruction of a dusty olivine grain, obtained by selective milling through a region of interest in a series of sequential 20 nm slices, which are then imaged using scanning electron microscopy. The data provide a quantitative description of the iron particle ensemble, including the distribution of particle sizes, shapes, interparticle spacings and preferred orientations. Iron particles are predominantly oblate ellipoids. Particles nucleate on dislocation networks and are loosely arranged in a series of parallel sheets with their shortest dimension oriented normal to the sheets and their longest dimensions preferentially aligned within the sheets. Individual particle geometries are converted to a finite-element mesh and used to perform micromagnetic simulations. The majority of particles adopt a single vortex state, with 'bulk' spins that rotate around a central vortex core. The results challenge pre-conceived ideas about the remanence carrying properties of vortex states. We find that remanence is carried by bulk spins rather than the vortex core. Although the orientation of the core is determined by the ellipsoidal geometry (parallel to the major axis for prolate ellipsoids; parallel to the minor axis for oblate ellipsoids), the remanence vectors generally lie at large angles (and in many cases antiparallel) to the core magnetisation. Even in the case of prolate particles, the resulting remanence vector can make a large angle of ~50° to the expected easy axis. The results reconcile the predicted and observed directions of remanence anisotropy, and demonstrate how this combination of nanotomography and micromagnetics will become an essential component of future single-crystal paleomagnetic studies.

  2. Migration of finite sized particles in a laminar square channel flow from low to high Reynolds numbers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abbas, M., E-mail: micheline.abbas@ensiacet.fr; CNRS, Fédération de recherche FERMaT, CNRS, 31400, Toulouse; Magaud, P.

    2014-12-15

    The migration of neutrally buoyant finite sized particles in a Newtonian square channel flow is investigated in the limit of very low solid volumetric concentration, within a wide range of channel Reynolds numbers Re = [0.07-120]. In situ microscope measurements of particle distributions, taken far from the channel inlet (at a distance several thousand times the channel height), revealed that particles are preferentially located near the channel walls at Re > 10 and near the channel center at Re < 1. Whereas the cross-streamline particle motion is governed by inertia-induced lift forces at high inertia, it seems to be controlledmore » by shear-induced particle interactions at low (but finite) Reynolds numbers, despite the low solid volume fraction (<1%). The transition between both regimes is observed in the range Re = [1-10]. In order to exclude the effect of multi-body interactions, the trajectories of single freely moving particles are calculated thanks to numerical simulations based on the force coupling method. With the deployed numerical tool, the complete particle trajectories are accessible within a reasonable computational time only in the inertial regime (Re > 10). In this regime, we show that (i) the particle undergoes cross-streamline migration followed by a cross-lateral migration (parallel to the wall) in agreement with previous observations, and (ii) the stable equilibrium positions are located at the midline of the channel faces while the diagonal equilibrium positions are unstable. At low flow inertia, the first instants of the numerical simulations (carried at Re = O(1)) reveal that the cross-streamline migration of a single particle is oriented towards the channel wall, suggesting that the particle preferential positions around the channel center, observed in the experiments, are rather due to multi-body interactions.« less

  3. Object-Oriented Control System Design Using On-Line Training of Artificial Neural Networks

    NASA Technical Reports Server (NTRS)

    Rubaai, Ahmed

    1997-01-01

    This report deals with the object-oriented model development of a neuro-controller design for permanent magnet (PM) dc motor drives. The system under study is described as a collection of interacting objects. Each object module describes the object behaviors, called methods. The characteristics of the object are included in its variables. The knowledge of the object exists within its variables, and the performance is determined by its methods. This structure maps well to the real world objects that comprise the system being modeled. A dynamic learning architecture that possesses the capabilities of simultaneous on-line identification and control is incorporated to enforce constraints on connections and control the dynamics of the motor. The control action is implemented "on-line", in "real time" in such a way that the predicted trajectory follows a specified reference model. A design example of controlling a PM dc motor drive on-line shows the effectiveness of the design tool. This will therefore be very useful in aerospace applications. It is expected to provide an innovative and noval software model for the rocket engine numerical simulator executive.

  4. Simulation Modeling of Software Development Processes

    NASA Technical Reports Server (NTRS)

    Calavaro, G. F.; Basili, V. R.; Iazeolla, G.

    1996-01-01

    A simulation modeling approach is proposed for the prediction of software process productivity indices, such as cost and time-to-market, and the sensitivity analysis of such indices to changes in the organization parameters and user requirements. The approach uses a timed Petri Net and Object Oriented top-down model specification. Results demonstrate the model representativeness, and its usefulness in verifying process conformance to expectations, and in performing continuous process improvement and optimization.

  5. Implication of surface modified NZVI particle retention in the porous media: Assessment with the help of 1-D transport model

    NASA Astrophysics Data System (ADS)

    Raychoudhury, Trishikhi; Surasani, Vikranth Kumar

    2017-06-01

    Retention of surface-modified nanoscale zero-valent iron (NZVI) particles in the porous media near the point of injection has been reported in the recent studies. Retention of excess particles in porous media can alter the media properties. The main objectives of this study are, therefore, to evaluate the effect of particle retention on the porous media properties and its implication on further NZVI particle transport under different flow conditions. To achieve the objectives, a one-dimensional transport model is developed by considering particle deposition, detachment, and straining mechanisms along with the effect of changes in porosity resulting from retention of NZVI particles. Two different flow conditions are considered for simulations. The first is a constant Darcy's flow rate condition, which assumes a change in porosity, causes a change in pore water velocity and the second, is a constant head condition, which assumes the change in porosity, influence the permeability and hydraulic conductivity (thus Darcy's flow rate). Overall a rapid decrease in porosity was observed as a result of high particle retention near the injection points resulting in a spatial distribution of deposition rate coefficient. In the case of constant head condition, the spatial distribution of Darcy's velocities is predicted due to variation in porosity and hydraulic conductivity. The simulation results are compared with the data reported from the field studies; which suggests straining is likely to happen in the real field condition.

  6. iTesla Power Systems Library (iPSL): A Modelica library for phasor time-domain simulations

    NASA Astrophysics Data System (ADS)

    Vanfretti, L.; Rabuzin, T.; Baudette, M.; Murad, M.

    The iTesla Power Systems Library (iPSL) is a Modelica package providing a set of power system components for phasor time-domain modeling and simulation. The Modelica language provides a systematic approach to develop models using a formal mathematical description, that uniquely specifies the physical behavior of a component or the entire system. Furthermore, the standardized specification of the Modelica language (Modelica Association [1]) enables unambiguous model exchange by allowing any Modelica-compliant tool to utilize the models for simulation and their analyses without the need of a specific model transformation tool. As the Modelica language is being developed with open specifications, any tool that implements these requirements can be utilized. This gives users the freedom of choosing an Integrated Development Environment (IDE) of their choice. Furthermore, any integration solver can be implemented within a Modelica tool to simulate Modelica models. Additionally, Modelica is an object-oriented language, enabling code factorization and model re-use to improve the readability of a library by structuring it with object-oriented hierarchy. The developed library is released under an open source license to enable a wider distribution and let the user customize it to their specific needs. This paper describes the iPSL and provides illustrative application examples.

  7. Allowing for crystalline structure effects in Geant4

    DOE PAGES

    Bagli, Enrico; Asai, Makoto; Dotti, Andrea; ...

    2017-03-24

    In recent years, the Geant4 toolkit for the Monte Carlo simulation of radiation with matter has seen large growth in its divers user community. A fundamental aspect of a successful physics experiment is the availability of a reliable and precise simulation code. Geant4 currently does not allow for the simulation of particle interactions with anything other than amorphous matter. To overcome this limitation, the GECO (GEant4 Crystal Objects) project developed a general framework for managing solid-state structures in the Geant4 kernel and validate it against experimental data. As a result, accounting for detailed geometrical structures allows, for example, simulation ofmore » diffraction from crystal planes or the channeling of charged particle.« less

  8. Pendulum detector testing device

    DOEpatents

    Gonsalves, J.M.

    1997-09-30

    A detector testing device is described which provides consistent, cost-effective, repeatable results. The testing device is primarily constructed of PVC plastic and other non-metallic materials. Sensitivity of a walk-through detector system can be checked by: (1) providing a standard test object simulating the mass, size and material content of a weapon or other contraband, (2) suspending the test object in successive positions, such as head, waist and ankle levels, simulating where the contraband might be concealed on a person walking through the detector system; and (3) swinging the suspended object through each of the positions, while operating the detector system and observing its response. The test object is retained in a holder in which the orientation of the test device or target can be readily changed, to properly complete the testing requirements. 5 figs.

  9. Pendulum detector testing device

    DOEpatents

    Gonsalves, John M.

    1997-01-01

    A detector testing device which provides consistent, cost-effective, repeatable results. The testing device is primarily constructed of PVC plastic and other non-metallic materials. Sensitivity of a walk-through detector system can be checked by: 1) providing a standard test object simulating the mass, size and material content of a weapon or other contraband, 2) suspending the test object in successive positions, such as head, waist and ankle levels, simulating where the contraband might be concealed on a person walking through the detector system; and 3) swinging the suspended object through each of the positions, while operating the detector system and observing its response. The test object is retained in a holder in which the orientation of the test device or target can be readily changed, to properly complete the testing requirements.

  10. Localization switching of a large object in a crowded cavity: A rigid/soft object prefers surface/inner positioning.

    PubMed

    Shew, Chwen-Yang; Oda, Soutaro; Yoshikawa, Kenichi

    2017-11-28

    For living cells in the real world, a large organelle is commonly positioned in the inner region away from membranes, such as the nucleus of eukaryotic cells, the nucleolus of nuclei, mitochondria, chloroplast, Golgi body, etc. It contradicts the expectation by the current depletion-force theory in that the larger particle should be excluded from the inner cell space onto cell boundaries in a crowding media. Here we simply model a sizable organelle as a soft-boundary large particle allowing crowders, which are smaller hard spheres in the model, to intrude across its boundary. The results of Monte Carlo simulation indicate that the preferential location of the larger particle switches from the periphery into the inner region of the cavity by increasing its softness. An integral equation theory is further developed to account for the structural features of the model, and the theoretical predictions are found consistent with our simulation results.

  11. Localization switching of a large object in a crowded cavity: A rigid/soft object prefers surface/inner positioning

    NASA Astrophysics Data System (ADS)

    Shew, Chwen-Yang; Oda, Soutaro; Yoshikawa, Kenichi

    2017-11-01

    For living cells in the real world, a large organelle is commonly positioned in the inner region away from membranes, such as the nucleus of eukaryotic cells, the nucleolus of nuclei, mitochondria, chloroplast, Golgi body, etc. It contradicts the expectation by the current depletion-force theory in that the larger particle should be excluded from the inner cell space onto cell boundaries in a crowding media. Here we simply model a sizable organelle as a soft-boundary large particle allowing crowders, which are smaller hard spheres in the model, to intrude across its boundary. The results of Monte Carlo simulation indicate that the preferential location of the larger particle switches from the periphery into the inner region of the cavity by increasing its softness. An integral equation theory is further developed to account for the structural features of the model, and the theoretical predictions are found consistent with our simulation results.

  12. Rapid Optimal SPH Particle Distributions in Spherical Geometries For Creating Astrophysical Initial Conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raskin, Cody; Owen, J. Michael

    Creating spherical initial conditions in smoothed particle hydrodynamics simulations that are spherically conformal is a difficult task. Here in this paper, we describe two algorithmic methods for evenly distributing points on surfaces that when paired can be used to build three-dimensional spherical objects with optimal equipartition of volume between particles, commensurate with an arbitrary radial density function. We demonstrate the efficacy of our method against stretched lattice arrangements on the metrics of hydrodynamic stability, spherical conformity, and the harmonic power distribution of gravitational settling oscillations. We further demonstrate how our method is highly optimized for simulating multi-material spheres, such asmore » planets with core–mantle boundaries.« less

  13. Rapid Optimal SPH Particle Distributions in Spherical Geometries For Creating Astrophysical Initial Conditions

    DOE PAGES

    Raskin, Cody; Owen, J. Michael

    2016-03-24

    Creating spherical initial conditions in smoothed particle hydrodynamics simulations that are spherically conformal is a difficult task. Here in this paper, we describe two algorithmic methods for evenly distributing points on surfaces that when paired can be used to build three-dimensional spherical objects with optimal equipartition of volume between particles, commensurate with an arbitrary radial density function. We demonstrate the efficacy of our method against stretched lattice arrangements on the metrics of hydrodynamic stability, spherical conformity, and the harmonic power distribution of gravitational settling oscillations. We further demonstrate how our method is highly optimized for simulating multi-material spheres, such asmore » planets with core–mantle boundaries.« less

  14. RAPID OPTIMAL SPH PARTICLE DISTRIBUTIONS IN SPHERICAL GEOMETRIES FOR CREATING ASTROPHYSICAL INITIAL CONDITIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raskin, Cody; Owen, J. Michael

    2016-04-01

    Creating spherical initial conditions in smoothed particle hydrodynamics simulations that are spherically conformal is a difficult task. Here, we describe two algorithmic methods for evenly distributing points on surfaces that when paired can be used to build three-dimensional spherical objects with optimal equipartition of volume between particles, commensurate with an arbitrary radial density function. We demonstrate the efficacy of our method against stretched lattice arrangements on the metrics of hydrodynamic stability, spherical conformity, and the harmonic power distribution of gravitational settling oscillations. We further demonstrate how our method is highly optimized for simulating multi-material spheres, such as planets with core–mantlemore » boundaries.« less

  15. Numerical investigation of compaction of deformable particles with bonded-particle model

    NASA Astrophysics Data System (ADS)

    Dosta, Maksym; Costa, Clara; Al-Qureshi, Hazim

    2017-06-01

    In this contribution, a novel approach developed for the microscale modelling of particles which undergo large deformations is presented. The proposed method is based on the bonded-particle model (BPM) and multi-stage strategy to adjust material and model parameters. By the BPM, modelled objects are represented as agglomerates which consist of smaller ideally spherical particles and are connected with cylindrical solid bonds. Each bond is considered as a separate object and in each time step the forces and moments acting in them are calculated. The developed approach has been applied to simulate the compaction of elastomeric rubber particles as single particles or in a random packing. To describe the complex mechanical behaviour of the particles, the solid bonds were modelled as ideally elastic beams. The functional parameters of solid bonds as well as material parameters of bonds and primary particles were estimated based on the experimental data for rubber spheres. Obtained results for acting force and for particle deformations during uniaxial compression are in good agreement with experimental data at higher strains.

  16. Teaching Cellular Automation Concepts through Interdisciplinary Collaborative Learning.

    ERIC Educational Resources Information Center

    Biernacki, Joseph J.; Ayers, Jerry B.

    2000-01-01

    Reports on the experiences of 12 students--three senior undergraduates majoring in chemical engineering, five master-level, and four doctoral students--in a course titled "Interdisciplinary Studies in Multi-Scale Simulation of Concrete Materials". Course objectives focused on incorporating team-oriented interdisciplinary experiences into the…

  17. Groundwater economics: An object-oriented foundation for integrated studies of irrigated agricultural systems

    USDA-ARS?s Scientific Manuscript database

    An integrated foundation is presented to study the impacts of external forcings on irrigated agricultural systems. Individually, models are presented that simulate groundwater hydrogeology and econometric farm level crop choices and irrigated water use. The natural association between groundwater we...

  18. SMITHERS: An object-oriented modular mapping methodology for MCNP-based neutronic–thermal hydraulic multiphysics

    DOE PAGES

    Richard, Joshua; Galloway, Jack; Fensin, Michael; ...

    2015-04-04

    A novel object-oriented modular mapping methodology for externally coupled neutronics–thermal hydraulics multiphysics simulations was developed. The Simulator using MCNP with Integrated Thermal-Hydraulics for Exploratory Reactor Studies (SMITHERS) code performs on-the-fly mapping of material-wise power distribution tallies implemented by MCNP-based neutron transport/depletion solvers for use in estimating coolant temperature and density distributions with a separate thermal-hydraulic solver. The key development of SMITHERS is that it reconstructs the hierarchical geometry structure of the material-wise power generation tallies from the depletion solver automatically, with only a modicum of additional information required from the user. In addition, it performs the basis mapping from themore » combinatorial geometry of the depletion solver to the required geometry of the thermal-hydraulic solver in a generalizable manner, such that it can transparently accommodate varying levels of thermal-hydraulic solver geometric fidelity, from the nodal geometry of multi-channel analysis solvers to the pin-cell level of discretization for sub-channel analysis solvers.« less

  19. Designing a Wien Filter Model with General Particle Tracer

    NASA Astrophysics Data System (ADS)

    Mitchell, John; Hofler, Alicia

    2017-09-01

    The Continuous Electron Beam Accelerator Facility injector employs a beamline component called a Wien filter which is typically used to select charged particles of a certain velocity. The Wien filter is also used to rotate the polarization of a beam for parity violation experiments. The Wien filter consists of perpendicular electric and magnetic fields. The electric field changes the spin orientation, but also imposes a transverse kick which is compensated for by the magnetic field. The focus of this project was to create a simulation of the Wien filter using General Particle Tracer. The results from these simulations were vetted against machine data to analyze the accuracy of the Wien model. Due to the close agreement between simulation and experiment, the data suggest that the Wien filter model is accurate. The model allows a user to input either the desired electric or magnetic field of the Wien filter along with the beam energy as parameters, and is able to calculate the perpendicular field strength required to keep the beam on axis. The updated model will aid in future diagnostic tests of any beamline component downstream of the Wien filter, and allow users to easily calculate the electric and magnetic fields needed for the filter to function properly. Funding support provided by DOE Office of Science's Student Undergraduate Laboratory Internship program.

  20. A cross-national study to objectively evaluate the quality of diverse simulation approaches for undergraduate nursing students.

    PubMed

    Kable, Ashley K; Levett-Jones, Tracy L; Arthur, Carol; Reid-Searl, Kerry; Humphreys, Melanie; Morris, Sara; Walsh, Pauline; Witton, Nicola J

    2018-01-01

    The aim of this paper is to report the results of a cross-national study that evaluated a range of simulation sessions using an observation schedule developed from evidence-based quality indicators. Observational data were collected from 17 simulation sessions conducted for undergraduate nursing students at three universities in Australia and the United Kingdom. The observation schedule contained 27 questions that rated simulation quality. Data were collected by direct observation and from video recordings of the simulation sessions. Results indicated that the highest quality scores were for provision of learning objectives prior to the simulation session (90%) and debriefing (72%). Student preparatiosn and orientation (67%) and perceived realism and fidelity (67%) were scored lower than other components of the simulation sessions. This observational study proved to be an effective strategy to identify areas of strength and those needing further development to improve simulation sessions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Monte Carlo computer simulation of sedimentation of charged hard spherocylinders.

    PubMed

    Viveros-Méndez, P X; Gil-Villegas, Alejandro; Aranda-Espinoza, S

    2014-07-28

    In this article we present a NVT Monte Carlo computer simulation study of sedimentation of an electroneutral mixture of oppositely charged hard spherocylinders (CHSC) with aspect ratio L/σ = 5, where L and σ are the length and diameter of the cylinder and hemispherical caps, respectively, for each particle. This system is an extension of the restricted primitive model for spherical particles, where L/σ = 0, and it is assumed that the ions are immersed in an structureless solvent, i.e., a continuum with dielectric constant D. The system consisted of N = 2000 particles and the Wolf method was implemented to handle the coulombic interactions of the inhomogeneous system. Results are presented for different values of the strength ratio between the gravitational and electrostatic interactions, Γ = (mgσ)/(e(2)/Dσ), where m is the mass per particle, e is the electron's charge and g is the gravitational acceleration value. A semi-infinite simulation cell was used with dimensions Lx ≈ Ly and Lz = 5Lx, where Lx, Ly, and Lz are the box dimensions in Cartesian coordinates, and the gravitational force acts along the z-direction. Sedimentation effects were studied by looking at every layer formed by the CHSC along the gravitational field. By increasing Γ, particles tend to get more packed at each layer and to arrange in local domains with an orientational ordering along two perpendicular axis, a feature not observed in the uncharged system with the same hard-body geometry. This type of arrangement, known as tetratic phase, has been observed in two-dimensional systems of hard-rectangles and rounded hard-squares. In this way, the coupling of gravitational and electric interactions in the CHSC system induces the arrangement of particles in layers, with the formation of quasi-two dimensional tetratic phases near the surface.

  2. Development of test methods for scale model simulation of aerial applications in the NASA Langley Vortex Research Facility. [agricultural aircraft

    NASA Technical Reports Server (NTRS)

    Jordan, F. L., Jr.

    1980-01-01

    As part of basic research to improve aerial applications technology, methods were developed at the Langley Vortex Research Facility to simulate and measure deposition patterns of aerially-applied sprays and granular materials by means of tests with small-scale models of agricultural aircraft and dynamically-scaled test particles. Interactions between the aircraft wake and the dispersed particles are being studied with the objective of modifying wake characteristics and dispersal techniques to increase swath width, improve deposition pattern uniformity, and minimize drift. The particle scaling analysis, test methods for particle dispersal from the model aircraft, visualization of particle trajectories, and measurement and computer analysis of test deposition patterns are described. An experimental validation of the scaling analysis and test results that indicate improved control of chemical drift by use of winglets are presented to demonstrate test methods.

  3. High-throughput flow alignment of barcoded hydrogel microparticles†

    PubMed Central

    Chapin, Stephen C.; Pregibon, Daniel C.

    2010-01-01

    Suspension (particle-based) arrays offer several advantages over conventional planar arrays in the detection and quantification of biomolecules, including the use of smaller sample volumes, more favorable probe-target binding kinetics, and rapid probe-set modification. We present a microfluidic system for the rapid alignment of multifunctional hydrogel microparticles designed to bear one or several biomolecule probe regions, as well as a graphical code to identify the embedded probes. Using high-speed imaging, we have developed and optimized a flow-through system that (1) allows for a high particle throughput, (2) ensures proper particle alignment for decoding and target quantification, and (3) can be reliably operated continuously without clogging. A tapered channel flanked by side focusing streams is used to orient the flexible, tablet-shaped particles into a well-ordered flow in the center of the channel. The effects of channel geometry, particle geometry, particle composition, particle loading density, and barcode design are explored to determine the best combination for eventual use in biological assays. Particles in the optimized system move at velocities of ~50 cm s−1 and with throughputs of ~40 particles s−1. Simple physical models and CFD simulations have been used to investigate flow behavior in the device. PMID:19823726

  4. Interaction between like-charged polyelectrolyte-colloid complexes in electrolyte solutions: a Monte Carlo simulation study in the Debye-Hückel approximation.

    PubMed

    Truzzolillo, D; Bordi, F; Sciortino, F; Sennato, S

    2010-07-14

    We study the effective interaction between differently charged polyelectrolyte-colloid complexes in electrolyte solutions via Monte Carlo simulations. These complexes are formed when short and flexible polyelectrolyte chains adsorb onto oppositely charged colloidal spheres, dispersed in an electrolyte solution. In our simulations the bending energy between adjacent monomers is small compared to the electrostatic energy, and the chains, once adsorbed, do not exchange with the solution, although they rearrange on the particles surface to accommodate further adsorbing chains or due to the electrostatic interaction with neighbor complexes. Rather unexpectedly, when two interacting particles approach each other, the rearrangement of the surface charge distribution invariably produces antiparallel dipolar doublets that invert their orientation at the isoelectric point. These findings clearly rule out a contribution of dipole-dipole interactions to the observed attractive interaction between the complexes, pointing out that such suspensions cannot be considered dipolar fluids. On varying the ionic strength of the electrolyte, we find that a screening length kappa(-1), short compared with the size of the colloidal particles, is required in order to observe the attraction between like-charged complexes due to the nonuniform distribution of the electric charge on their surface ("patch attraction"). On the other hand, by changing the polyelectrolyte/particle charge ratio xi(s), the interaction between like-charged polyelectrolyte-decorated particles, at short separations, evolves from purely repulsive to strongly attractive. Hence, the effective interaction between the complexes is characterized by a potential barrier, whose height depends on the net charge and on the nonuniformity of their surface charge distribution.

  5. Acceleration in Perpendicular Relativistic Shocks for Plasmas Consisting of Leptons and Hadrons

    NASA Astrophysics Data System (ADS)

    Stockem, A.; Fiúza, F.; Fonseca, R. A.; Silva, L. O.

    2012-08-01

    We investigate the acceleration of light particles in perpendicular shocks for plasmas consisting of a mixture of leptonic and hadronic particles. Starting from the full set of conservation equations for the mixed plasma constituents, we generalize the magnetohydrodynamical jump conditions for a multi-component plasma, including information about the specific adiabatic constants for the different species. The impact of deviations from the standard model of an ideal gas is compared in theory and particle-in-cell simulations, showing that the standard MHD model is a good approximation. The simulations of shocks in electron-positron-ion plasmas are for the first time multi-dimensional, transverse effects are small in this configuration, and one-dimensional (1D) simulations are a good representation if the initial magnetization is chosen high. 1D runs with a mass ratio of 1836 are performed, which identify the Larmor frequency ω ci as the dominant frequency that determines the shock physics in mixed component plasmas. The maximum energy in the non-thermal tail of the particle spectra evolves in time according to a power law vpropt α with α in the range 1/3 < α < 1, depending on the initial parameters. A connection is made with transport theoretical models by Drury and Gargaté & Spitkovsky, which predict an acceleration time vpropγ and the theory for small wavelength scattering by Kirk & Reville, which predicts a behavior rather as vpropγ2. Furthermore, we compare different magnetic field orientations with B 0 inside and out of the plane, observing qualitatively different particle spectra than in pure electron-ion shocks.

  6. Modeling the electrophoretic separation of short biological molecules in nanofluidic devices

    NASA Astrophysics Data System (ADS)

    Fayad, Ghassan; Hadjiconstantinou, Nicolas

    2010-11-01

    Via comparisons with Brownian Dynamics simulations of the worm-like-chain and rigid-rod models, and the experimental results of Fu et al. [Phys. Rev. Lett., 97, 018103 (2006)], we demonstrate that, for the purposes of low-to-medium field electrophoretic separation in periodic nanofilter arrays, sufficiently short biomolecules can be modeled as point particles, with their orientational degrees of freedom accounted for using partition coefficients. This observation is used in the present work to build a particularly simple and efficient Brownian Dynamics simulation method. Particular attention is paid to the model's ability to quantitatively capture experimental results using realistic values of all physical parameters. A variance-reduction method is developed for efficiently simulating arbitrarily small forcing electric fields.

  7. High microwave attenuation performance of planar carbonyl iron particles with orientation of shape anisotropy field

    NASA Astrophysics Data System (ADS)

    Guo, Cheng; Yang, Zhihong; Shen, Shile; Liang, Juan; Xu, Guoyue

    2018-05-01

    Planar anisotropy carbonyl iron (PACI) particles were prepared from commercial spherical carbonyl iron particles through a high performance ball-milling technique. The paraffin composites with orientation of shape anisotropy field for these PACI particles were obtained by applying an external magnetic field during the fabrication process. The frequency-dependent complex permeability values of these prepared paraffin composites have been investigated in the frequency range of 1-18 GHz. The results demonstrate that the orientation of shape anisotropy field for these PACI particles can effectively increase the complex permeability and decrease the complex permittivity values. Benefit from the enhancement in the complex permeability and reduction in the complex permittivity, the better impedance matching condition can be obtained and thus the good microwave absorption performance can be achieved for the samples with enough magnetic field orientation time.

  8. MCViNE- An object oriented Monte Carlo neutron ray tracing simulation package

    DOE PAGES

    Lin, J. Y. Y.; Smith, Hillary L.; Granroth, Garrett E.; ...

    2015-11-28

    MCViNE (Monte-Carlo VIrtual Neutron Experiment) is an open-source Monte Carlo (MC) neutron ray-tracing software for performing computer modeling and simulations that mirror real neutron scattering experiments. We exploited the close similarity between how instrument components are designed and operated and how such components can be modeled in software. For example we used object oriented programming concepts for representing neutron scatterers and detector systems, and recursive algorithms for implementing multiple scattering. Combining these features together in MCViNE allows one to handle sophisticated neutron scattering problems in modern instruments, including, for example, neutron detection by complex detector systems, and single and multiplemore » scattering events in a variety of samples and sample environments. In addition, MCViNE can use simulation components from linear-chain-based MC ray tracing packages which facilitates porting instrument models from those codes. Furthermore it allows for components written solely in Python, which expedites prototyping of new components. These developments have enabled detailed simulations of neutron scattering experiments, with non-trivial samples, for time-of-flight inelastic instruments at the Spallation Neutron Source. Examples of such simulations for powder and single-crystal samples with various scattering kernels, including kernels for phonon and magnon scattering, are presented. As a result, with simulations that closely reproduce experimental results, scattering mechanisms can be turned on and off to determine how they contribute to the measured scattering intensities, improving our understanding of the underlying physics.« less

  9. Monte Carlo Methods in Materials Science Based on FLUKA and ROOT

    NASA Technical Reports Server (NTRS)

    Pinsky, Lawrence; Wilson, Thomas; Empl, Anton; Andersen, Victor

    2003-01-01

    A comprehensive understanding of mitigation measures for space radiation protection necessarily involves the relevant fields of nuclear physics and particle transport modeling. One method of modeling the interaction of radiation traversing matter is Monte Carlo analysis, a subject that has been evolving since the very advent of nuclear reactors and particle accelerators in experimental physics. Countermeasures for radiation protection from neutrons near nuclear reactors, for example, were an early application and Monte Carlo methods were quickly adapted to this general field of investigation. The project discussed here is concerned with taking the latest tools and technology in Monte Carlo analysis and adapting them to space applications such as radiation shielding design for spacecraft, as well as investigating how next-generation Monte Carlos can complement the existing analytical methods currently used by NASA. We have chosen to employ the Monte Carlo program known as FLUKA (A legacy acronym based on the German for FLUctuating KAscade) used to simulate all of the particle transport, and the CERN developed graphical-interface object-oriented analysis software called ROOT. One aspect of space radiation analysis for which the Monte Carlo s are particularly suited is the study of secondary radiation produced as albedoes in the vicinity of the structural geometry involved. This broad goal of simulating space radiation transport through the relevant materials employing the FLUKA code necessarily requires the addition of the capability to simulate all heavy-ion interactions from 10 MeV/A up to the highest conceivable energies. For all energies above 3 GeV/A the Dual Parton Model (DPM) is currently used, although the possible improvement of the DPMJET event generator for energies 3-30 GeV/A is being considered. One of the major tasks still facing us is the provision for heavy ion interactions below 3 GeV/A. The ROOT interface is being developed in conjunction with the CERN ALICE (A Large Ion Collisions Experiment) software team through an adaptation of their existing AliROOT (ALICE Using ROOT) architecture. In order to check our progress against actual data, we have chosen to simulate the ATIC14 (Advanced Thin Ionization Calorimeter) cosmic-ray astrophysics balloon payload as well as neutron fluences in the Mir spacecraft. This paper contains a summary of status of this project, and a roadmap to its successful completion.

  10. A Novel Optical/digital Processing System for Pattern Recognition

    NASA Technical Reports Server (NTRS)

    Boone, Bradley G.; Shukla, Oodaye B.

    1993-01-01

    This paper describes two processing algorithms that can be implemented optically: the Radon transform and angular correlation. These two algorithms can be combined in one optical processor to extract all the basic geometric and amplitude features from objects embedded in video imagery. We show that the internal amplitude structure of objects is recovered by the Radon transform, which is a well-known result, but, in addition, we show simulation results that calculate angular correlation, a simple but unique algorithm that extracts object boundaries from suitably threshold images from which length, width, area, aspect ratio, and orientation can be derived. In addition to circumventing scale and rotation distortions, these simulations indicate that the features derived from the angular correlation algorithm are relatively insensitive to tracking shifts and image noise. Some optical architecture concepts, including one based on micro-optical lenslet arrays, have been developed to implement these algorithms. Simulation test and evaluation using simple synthetic object data will be described, including results of a study that uses object boundaries (derivable from angular correlation) to classify simple objects using a neural network.

  11. Charging of Basic Structural Shapes in a Simulated Lunar Environment

    NASA Technical Reports Server (NTRS)

    Craven, P.; Schneider, T.; Vaughn, J.; Wang, J.; Polansky, J.

    2012-01-01

    In order to understand the effect of the charging environment on and around structures on the lunar surface, we have exposed basic structural shapes to electrons and Vacuum Ultra-Violet (VUV) radiation. The objects were, in separate runs, isolated, grounded, and placed on dielectric surfaces. In this presentation, the effects of electron energy, VUV flux, and sample orientation, on the charging of the objects will be examined. The potential of each of the object surfaces was monitored in order to determine the magnitude of the ram and wake effects under different orientations relative to the incoming beams (solar wind). This is a part of, and complementary to, the study of the group at USC under Dr. J. Wang, the purpose of which is to model the effects of the charging environment on structures on the lunar surface.

  12. Parallel and Portable Monte Carlo Particle Transport

    NASA Astrophysics Data System (ADS)

    Lee, S. R.; Cummings, J. C.; Nolen, S. D.; Keen, N. D.

    1997-08-01

    We have developed a multi-group, Monte Carlo neutron transport code in C++ using object-oriented methods and the Parallel Object-Oriented Methods and Applications (POOMA) class library. This transport code, called MC++, currently computes k and α eigenvalues of the neutron transport equation on a rectilinear computational mesh. It is portable to and runs in parallel on a wide variety of platforms, including MPPs, clustered SMPs, and individual workstations. It contains appropriate classes and abstractions for particle transport and, through the use of POOMA, for portable parallelism. Current capabilities are discussed, along with physics and performance results for several test problems on a variety of hardware, including all three Accelerated Strategic Computing Initiative (ASCI) platforms. Current parallel performance indicates the ability to compute α-eigenvalues in seconds or minutes rather than days or weeks. Current and future work on the implementation of a general transport physics framework (TPF) is also described. This TPF employs modern C++ programming techniques to provide simplified user interfaces, generic STL-style programming, and compile-time performance optimization. Physics capabilities of the TPF will be extended to include continuous energy treatments, implicit Monte Carlo algorithms, and a variety of convergence acceleration techniques such as importance combing.

  13. Environmental Degradation of Materials: Surface Chemistry Related to Stress Corrosion Cracking

    NASA Technical Reports Server (NTRS)

    Schwarz, J. A.

    1985-01-01

    Parallel experiments have been performed in order to develop a comprehensive model for stress cracking (SCC) in structural materials. The central objective is to determine the relationship between the activity and selectivity of the microstructure of structural materials to their dissolution kinetics and experimentally measured SCC kinetics. Zinc was chosen as a prototype metal system. The SCC behavior of two oriented single-crystal disks of zinc in a chromic oxide/sodium sulfate solution (Palmerton solution) were determined. It was found that: (1) the dissolution rate is strongly (hkil)-dependent and proportional to the exposure time in the aggressive environment; and (2) a specific slip system is selectively active to dissolution under applied stress and this slip line controls crack initiation and propagation. As a precursor to potential microgrvity experiments, electrophoretic mobility measurements of zinc particles were obtained in solutions of sodium sulfate (0.0033 M) with concentrations of dissolved oxygen from 2 to 8 ppm. The equilibrium distribution of exposed oriented planes as well as their correlation will determine the particle mobility.

  14. Useful oriented immobilization of antibodies on chimeric magnetic particles: direct correlation of biomacromolecule orientation with biological activity by AFM studies.

    PubMed

    Marciello, Marzia; Filice, Marco; Olea, David; Velez, Marisela; Guisan, José M; Mateo, Cesar

    2014-12-16

    The preparation and performance of a suitable chimeric biosensor based on antibodies (Abs) immobilized on lipase-coated magnetic particles by means of a standing orienting strategy are presented. This novel system is based on hydrophobic magnetic particles coated with modified lipase molecules able to orient and further immobilize different Abs in a covalent way without any previous site-selective chemical modification of biomacromolecules. Different key parameters attending the process were studied and optimized. The optimal preparation was performed using a controlled loading (1 nmol Ab g(-1) chimeric support) at pH 9 and a short reaction time to recover a biological activity of about 80%. AFM microscopy was used to study and confirm the Abs-oriented immobilization on lipase-coated magnetic particles and the final achievement of a highly active and recyclable chimeric immune sensor. This direct technique was demonstrated to be a powerful alternative to the indirect immunoactivity assay methods for the study of biomacromolecule-oriented immobilizations.

  15. Parallel Implementation of Triangular Cellular Automata for Computing Two-Dimensional Elastodynamic Response on Arbitrary Domains

    NASA Astrophysics Data System (ADS)

    Leamy, Michael J.; Springer, Adam C.

    In this research we report parallel implementation of a Cellular Automata-based simulation tool for computing elastodynamic response on complex, two-dimensional domains. Elastodynamic simulation using Cellular Automata (CA) has recently been presented as an alternative, inherently object-oriented technique for accurately and efficiently computing linear and nonlinear wave propagation in arbitrarily-shaped geometries. The local, autonomous nature of the method should lead to straight-forward and efficient parallelization. We address this notion on symmetric multiprocessor (SMP) hardware using a Java-based object-oriented CA code implementing triangular state machines (i.e., automata) and the MPI bindings written in Java (MPJ Express). We use MPJ Express to reconfigure our existing CA code to distribute a domain's automata to cores present on a dual quad-core shared-memory system (eight total processors). We note that this message passing parallelization strategy is directly applicable to computer clustered computing, which will be the focus of follow-on research. Results on the shared memory platform indicate nearly-ideal, linear speed-up. We conclude that the CA-based elastodynamic simulator is easily configured to run in parallel, and yields excellent speed-up on SMP hardware.

  16. Phase diagram of two-dimensional hard rods from fundamental mixed measure density functional theory

    NASA Astrophysics Data System (ADS)

    Wittmann, René; Sitta, Christoph E.; Smallenburg, Frank; Löwen, Hartmut

    2017-10-01

    A density functional theory for the bulk phase diagram of two-dimensional orientable hard rods is proposed and tested against Monte Carlo computer simulation data. In detail, an explicit density functional is derived from fundamental mixed measure theory and freely minimized numerically for hard discorectangles. The phase diagram, which involves stable isotropic, nematic, smectic, and crystalline phases, is obtained and shows good agreement with the simulation data. Our functional is valid for a multicomponent mixture of hard particles with arbitrary convex shapes and provides a reliable starting point to explore various inhomogeneous situations of two-dimensional hard rods and their Brownian dynamics.

  17. Accurate Orientation Estimation Using AHRS under Conditions of Magnetic Distortion

    PubMed Central

    Yadav, Nagesh; Bleakley, Chris

    2014-01-01

    Low cost, compact attitude heading reference systems (AHRS) are now being used to track human body movements in indoor environments by estimation of the 3D orientation of body segments. In many of these systems, heading estimation is achieved by monitoring the strength of the Earth's magnetic field. However, the Earth's magnetic field can be locally distorted due to the proximity of ferrous and/or magnetic objects. Herein, we propose a novel method for accurate 3D orientation estimation using an AHRS, comprised of an accelerometer, gyroscope and magnetometer, under conditions of magnetic field distortion. The system performs online detection and compensation for magnetic disturbances, due to, for example, the presence of ferrous objects. The magnetic distortions are detected by exploiting variations in magnetic dip angle, relative to the gravity vector, and in magnetic strength. We investigate and show the advantages of using both magnetic strength and magnetic dip angle for detecting the presence of magnetic distortions. The correction method is based on a particle filter, which performs the correction using an adaptive cost function and by adapting the variance during particle resampling, so as to place more emphasis on the results of dead reckoning of the gyroscope measurements and less on the magnetometer readings. The proposed method was tested in an indoor environment in the presence of various magnetic distortions and under various accelerations (up to 3 g). In the experiments, the proposed algorithm achieves <2° static peak-to-peak error and <5° dynamic peak-to-peak error, significantly outperforming previous methods. PMID:25347584

  18. Particle-in-cell simulations of collisionless shock formation via head-on merging of two laboratory supersonic plasma jets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thoma, C.; Welch, D. R.; Hsu, S. C.

    2013-08-15

    We describe numerical simulations, using the particle-in-cell (PIC) and hybrid-PIC code lsp[T. P. Hughes et al., Phys. Rev. ST Accel. Beams 2, 110401 (1999)], of the head-on merging of two laboratory supersonic plasma jets. The goals of these experiments are to form and study astrophysically relevant collisionless shocks in the laboratory. Using the plasma jet initial conditions (density ∼10{sup 14}–10{sup 16} cm{sup −3}, temperature ∼ few eV, and propagation speed ∼20–150 km/s), large-scale simulations of jet propagation demonstrate that interactions between the two jets are essentially collisionless at the merge region. In highly resolved one- and two-dimensional simulations, we showmore » that collisionless shocks are generated by the merging jets when immersed in applied magnetic fields (B∼0.1–1 T). At expected plasma jet speeds of up to 150 km/s, our simulations do not give rise to unmagnetized collisionless shocks, which require much higher velocities. The orientation of the magnetic field and the axial and transverse density gradients of the jets have a strong effect on the nature of the interaction. We compare some of our simulation results with those of previously published PIC simulation studies of collisionless shock formation.« less

  19. Port-O-Sim Object Simulation Application

    NASA Technical Reports Server (NTRS)

    Lanzi, Raymond J.

    2009-01-01

    Port-O-Sim is a software application that supports engineering modeling and simulation of launch-range systems and subsystems, as well as the vehicles that operate on them. It is flexible, distributed, object-oriented, and realtime. A scripting language is used to configure an array of simulation objects and link them together. The script is contained in a text file, but executed and controlled using a graphical user interface. A set of modules is defined, each with input variables, output variables, and settings. These engineering models can be either linked to each other or run as standalone. The settings can be modified during execution. Since 2001, this application has been used for pre-mission failure mode training for many Range Safety Scenarios. It contains range asset link analysis, develops look-angle data, supports sky-screen site selection, drives GPS (Global Positioning System) and IMU (Inertial Measurement Unit) simulators, and can support conceptual design efforts for multiple flight programs with its capacity for rapid six-degrees-of-freedom model development. Due to the assembly of various object types into one application, the application is applicable across a wide variety of launch range problem domains.

  20. The Simulation of Vibrations of Railway Beam Bridges in the Object-oriented Environment Delphi

    NASA Astrophysics Data System (ADS)

    Raspopov, Alexander; Artyomov, Vitaly; Rusu, Sergey

    2010-01-01

    The peculiarities of combination of finite-element method and equations of solid dynamics, the basic stages of development of the program complex Belinda for calculation of statics and dynamics of the rods constructions as applied to railway bridges are described.

  1. Progress on H5Part: A Portable High Performance Parallel DataInterface for Electromagnetics Simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adelmann, Andreas; Gsell, Achim; Oswald, Benedikt

    Significant problems facing all experimental andcomputationalsciences arise from growing data size and complexity. Commonto allthese problems is the need to perform efficient data I/O ondiversecomputer architectures. In our scientific application, thelargestparallel particle simulations generate vast quantitiesofsix-dimensional data. Such a simulation run produces data foranaggregate data size up to several TB per run. Motived by the needtoaddress data I/O and access challenges, we have implemented H5Part,anopen source data I/O API that simplifies the use of the HierarchicalDataFormat v5 library (HDF5). HDF5 is an industry standard forhighperformance, cross-platform data storage and retrieval that runsonall contemporary architectures from large parallel supercomputerstolaptops. H5Part, whichmore » is oriented to the needs of the particlephysicsand cosmology communities, provides support for parallelstorage andretrieval of particles, structured and in the future unstructuredmeshes.In this paper, we describe recent work focusing on I/O supportforparticles and structured meshes and provide data showing performance onmodernsupercomputer architectures like the IBM POWER 5.« less

  2. Particle Acceleration in a Statistically Modeled Solar Active-Region Corona

    NASA Astrophysics Data System (ADS)

    Toutounzi, A.; Vlahos, L.; Isliker, H.; Dimitropoulou, M.; Anastasiadis, A.; Georgoulis, M.

    2013-09-01

    Elaborating a statistical approach to describe the spatiotemporally intermittent electric field structures formed inside a flaring solar active region, we investigate the efficiency of such structures in accelerating charged particles (electrons). The large-scale magnetic configuration in the solar atmosphere responds to the strong turbulent flows that convey perturbations across the active region by initiating avalanche-type processes. The resulting unstable structures correspond to small-scale dissipation regions hosting strong electric fields. Previous research on particle acceleration in strongly turbulent plasmas provides a general framework for addressing such a problem. This framework combines various electromagnetic field configurations obtained by magnetohydrodynamical (MHD) or cellular automata (CA) simulations, or by employing a statistical description of the field's strength and configuration with test particle simulations. Our objective is to complement previous work done on the subject. As in previous efforts, a set of three probability distribution functions describes our ad-hoc electromagnetic field configurations. In addition, we work on data-driven 3D magnetic field extrapolations. A collisional relativistic test-particle simulation traces each particle's guiding center within these configurations. We also find that an interplay between different electron populations (thermal/non-thermal, ambient/injected) in our simulations may also address, via a re-acceleration mechanism, the so called `number problem'. Using the simulated particle-energy distributions at different heights of the cylinder we test our results against observations, in the framework of the collisional thick target model (CTTM) of solar hard X-ray (HXR) emission. The above work is supported by the Hellenic National Space Weather Research Network (HNSWRN) via the THALIS Programme.

  3. Numerical study on trapping and guiding of nanoparticles in a flow using scattering field of laser light

    NASA Astrophysics Data System (ADS)

    Yokoi, Naomichi; Aizu, Yoshihisa

    2018-01-01

    Optical trapping and guiding using laser have been proven to be useful for non-contact and non-invasive manipulation of small objects such as biological cells, organelles within cells, and dielectric particles. We have numerically investigated so far the motion of a Brownian particle suspended in still water under the illumination of a speckle pattern generated by the interference of coherent light scattered by a rough object. In the present study, we investigate numerically the motion of a particle in a water flow under the illumination of a speckle pattern that is at rest or in motion. Trajectory of the particle is simulated in relation with its size, flow velocity, maximum irradiance, and moving velocity of the speckle pattern to confirm the feasibility of the present method for performing optical trapping and guiding of the particle in the flow.

  4. Numerical study on trapping and guiding of nanoparticles in a flow using scattering field of laser light

    NASA Astrophysics Data System (ADS)

    Yokoi, Naomichi; Aizu, Yoshihisa

    2018-06-01

    Optical trapping and guiding using laser have been proven to be useful for non-contact and non-invasive manipulation of small objects such as biological cells, organelles within cells, and dielectric particles. We have numerically investigated so far the motion of a Brownian particle suspended in still water under the illumination of a speckle pattern generated by the interference of coherent light scattered by a rough object. In the present study, we investigate numerically the motion of a particle in a water flow under the illumination of a speckle pattern that is at rest or in motion. Trajectory of the particle is simulated in relation with its size, flow velocity, maximum irradiance, and moving velocity of the speckle pattern to confirm the feasibility of the present method for performing optical trapping and guiding of the particle in the flow.

  5. Crystallography of decahedral and icosahedral particles. II - High symmetry orientations

    NASA Technical Reports Server (NTRS)

    Yang, C. Y.; Yacaman, M. J.; Heinemann, K.

    1979-01-01

    Based on the exact crystal structure of decahedral and icosahedral particles, high energy electron diffraction patterns and image profiles have been derived for various high symmetry orientations of the particles with respect to the incident beam. These results form a basis for the identification of small metal particle structures with advanced methods of transmission electron microscopy.

  6. Multi-scale analysis of collective behavior in 2D self-propelled particle models of swarms: An Advection-Diffusion with Memory Approach

    NASA Astrophysics Data System (ADS)

    Raghib, Michael; Levin, Simon; Kevrekidis, Ioannis

    2010-05-01

    Self-propelled particle models (SPP's) are a class of agent-based simulations that have been successfully used to explore questions related to various flavors of collective motion, including flocking, swarming, and milling. These models typically consist of particle configurations, where each particle moves with constant speed, but changes its orientation in response to local averages of the positions and orientations of its neighbors found within some interaction region. These local averages are based on `social interactions', which include avoidance of collisions, attraction, and polarization, that are designed to generate configurations that move as a single object. Errors made by the individuals in the estimates of the state of the local configuration are modeled as a random rotation of the updated orientation resulting from the social rules. More recently, SPP's have been introduced in the context of collective decision-making, where the main innovation consists of dividing the population into naïve and `informed' individuals. Whereas naïve individuals follow the classical collective motion rules, members of the informed sub-population update their orientations according to a weighted average of the social rules and a fixed `preferred' direction, shared by all the informed individuals. Collective decision-making is then understood in terms of the ability of the informed sub-population to steer the whole group along the preferred direction. Summary statistics of collective decision-making are defined in terms of the stochastic properties of the random walk followed by the centroid of the configuration as the particles move about, in particular the scaling behavior of the mean squared displacement (msd). For the region of parameters where the group remains coherent , we note that there are two characteristic time scales, first there is an anomalous transient shared by both purely naïve and informed configurations, i.e. the scaling exponent lies between 1 and 2. The long-time behavior of the msd of the centroid walk scales linearly with time for naïve groups (diffusion), but shows a sharp transition to quadratic scaling (advection) for informed ones. These observations suggest that the mesoscopic variables of interest are the magnitude of the drift, the diffusion coefficient and the time-scales at which the anomalous and the asymptotic behavior respectively dominate transport, the latter being linked to the time scale at which the group reaches a decision. In order to estimate these summary statistics from the msd, we assumed that the configuration centroid follows an uncoupled Continuous Time Random Walk (CTRW) with smooth jump and waiting time pdf's. The mesoscopic transport equation for this type of random walk corresponds to an Advection-Diffusion Equation with Memory (ADEM). The introduction of the memory, and thus non-Markovian effects, is necessary in order to correctly account for the two time scales present. Although we were not able to calculate the memory directly from the individual-level rules, we show that it can estimated from a single, relatively short, simulation run using a Mittag-Leffler function as template. With this function it is possible to predict accurately the behavior of the msd, as well as the full pdf for the position of the centroid. The resulting ADEM is self-consistent in the sense that transport parameters estimated from the memory via a Kubo relationship coincide with those estimated from the moments of the jump size pdf of the associated CTRW for a large number of group sizes, proportions of informed individuals, and degrees of bias along the preferred direction. We also discuss the phase diagrams for the transport coefficients estimated from this method, where we notice velocity-precision trade-offs, where precision is a measure of the deviation of realized group orientations with respect to the informed direction. We also note that the time scale to collective decision is invariant with respect to group size, and depends only on the proportion of informed individuals and the strength of the coupling along the informed direction.

  7. Collisionless plasma interpenetration in a strong magnetic field for laboratory astrophysics experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Korneev, Ph., E-mail: korneev@theor.mephi.ru; National Research Nuclear University “MEPhI”, 115409, Moscow; D'Humières, E.

    A theoretical analysis for astrophysics-oriented laser-matter interaction experiments in the presence of a strong ambient magnetic field is presented. It is shown that the plasma collision in the ambient magnetic field implies significant perturbations in the electron density and magnetic field distribution. This transient stage is difficult to observe in astrophysical phenomena, but it could be investigated in laboratory experiments. Analytic models are presented, which are supported by particles-in-cell simulations.

  8. Implementation of jump-diffusion algorithms for understanding FLIR scenes

    NASA Astrophysics Data System (ADS)

    Lanterman, Aaron D.; Miller, Michael I.; Snyder, Donald L.

    1995-07-01

    Our pattern theoretic approach to the automated understanding of forward-looking infrared (FLIR) images brings the traditionally separate endeavors of detection, tracking, and recognition together into a unified jump-diffusion process. New objects are detected and object types are recognized through discrete jump moves. Between jumps, the location and orientation of objects are estimated via continuous diffusions. An hypothesized scene, simulated from the emissive characteristics of the hypothesized scene elements, is compared with the collected data by a likelihood function based on sensor statistics. This likelihood is combined with a prior distribution defined over the set of possible scenes to form a posterior distribution. The jump-diffusion process empirically generates the posterior distribution. Both the diffusion and jump operations involve the simulation of a scene produced by a hypothesized configuration. Scene simulation is most effectively accomplished by pipelined rendering engines such as silicon graphics. We demonstrate the execution of our algorithm on a silicon graphics onyx/reality engine.

  9. Evaluating simulant materials for understanding cranial backspatter from a ballistic projectile.

    PubMed

    Das, Raj; Collins, Alistair; Verma, Anurag; Fernandez, Justin; Taylor, Michael

    2015-05-01

    In cranial wounds resulting from a gunshot, the study of backspatter patterns can provide information about the actual incidents by linking material to surrounding objects. This study investigates the physics of backspatter from a high-speed projectile impact and evaluates a range of simulant materials using impact tests. Next, we evaluate a mesh-free method called smoothed particle hydrodynamics (SPH) to model the splashing mechanism during backspatter. The study has shown that a projectile impact causes fragmentation at the impact site, while transferring momentum to fragmented particles. The particles travel along the path of least resistance, leading to partial material movement in the reverse direction of the projectile motion causing backspatter. Medium-density fiberboard is a better simulant for a human skull than polycarbonate, and lorica leather is a better simulant for a human skin than natural rubber. SPH is an effective numerical method for modeling the high-speed impact fracture and fragmentations. © 2015 American Academy of Forensic Sciences.

  10. Simulated Engineer Assessment of the Communications Zone Model (SEAC) (Documentation and Users Manual)

    DTIC Science & Technology

    1988-06-01

    became apparent. ESC originally planned to confect a dedicated model, i.e., one specifically designed to address Korea. However, it reconsidered the...s) and should not be construed as an official US Department of the Army position, policy, or decision unless so designated by other official...model based on object-oriented programming design techniques, and uses the process view of simulation to achieve its purpose. As a direct con

  11. Synthesis of Cubic-Shaped Pt Particles with (100) Preferential Orientation by a Quick, One-Step and Clean Electrochemical Method.

    PubMed

    Liu, Jie; Fan, Xiayue; Liu, Xiaorui; Song, Zhishuang; Deng, Yida; Han, Xiaopeng; Hu, Wenbin; Zhong, Cheng

    2017-06-07

    A new approach has been developed for in situ preparing cubic-shaped Pt particles with (100) preferential orientation on the surface of the conductive support by using a quick, one-step, and clean electrochemical method with periodic square-wave potential. The whole electrochemical deposition process is very quick (only 6 min is required to produce cubic Pt particles), without the use of particular capping agents. The shape and the surface structure of deposited Pt particles can be controlled by the lower and upper potential limits of the square-wave potential. For a frequency of 5 Hz and an upper potential limit of 1.0 V (vs saturated calomel electrode), as the lower potential limit decreases to the H adsorption potential region, the Pt deposits are changed from nearly spherical particles to cubic-shaped (100)-oriented Pt particles. High-resolution transmission electron microscopy and selected-area electron diffraction reveal that the formed cubic Pt particles are single-crystalline and enclosed by (100) facets. Cubic Pt particles exhibit characteristic H adsorption/desorption peaks corresponding to the (100) preferential orientation. Ge irreversible adsorption indicates that the fraction of wide Pt(100) surface domains is 47.8%. The electrocatalytic activities of different Pt particles are investigated by ammonia electro-oxidation, which is particularly sensitive to the amount of Pt(100) sites, especially larger (100) domains. The specific activity of cubic Pt particles is 3.6 times as high as that of polycrystalline spherical Pt particles, again confirming the (100) preferential orientation of Pt cubes. The formation of cubic-shaped Pt particles is related with the preferential electrochemical deposition and dissolution processes of Pt, which are coupled with the periodic desorption and adsorption processes of O-containing species and H adatoms.

  12. 3D structural fluctuation of IgG1 antibody revealed by individual particle electron tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Xing; Zhang, Lei; Tong, Huimin

    2015-05-05

    Commonly used methods for determining protein structure, including X-ray crystallography and single-particle reconstruction, often provide a single and unique three-dimensional (3D) structure. However, in these methods, the protein dynamics and flexibility/fluctuation remain mostly unknown. Here, we utilized advances in electron tomography (ET) to study the antibody flexibility and fluctuation through structural determination of individual antibody particles rather than averaging multiple antibody particles together. Through individual-particle electron tomography (IPET) 3D reconstruction from negatively-stained ET images, we obtained 120 ab-initio 3D density maps at an intermediate resolution (~1–3 nm) from 120 individual IgG1 antibody particles. Using these maps as a constraint, wemore » derived 120 conformations of the antibody via structural flexible docking of the crystal structure to these maps by targeted molecular dynamics simulations. Statistical analysis of the various conformations disclosed the antibody 3D conformational flexibility through the distribution of its domain distances and orientations. This blueprint approach, if extended to other flexible proteins, may serve as a useful methodology towards understanding protein dynamics and functions.« less

  13. Physical foundation of the fluid particle dynamics method for colloid dynamics simulation.

    PubMed

    Furukawa, Akira; Tateno, Michio; Tanaka, Hajime

    2018-05-16

    Colloid dynamics is significantly influenced by many-body hydrodynamic interactions mediated by a suspending fluid. However, theoretical and numerical treatments of such interactions are extremely difficult. To overcome this situation, we developed a fluid particle dynamics (FPD) method [H. Tanaka and T. Araki, Phys. Rev. Lett., 2000, 35, 3523], which is based on two key approximations: (i) a colloidal particle is treated as a highly viscous particle and (ii) the viscosity profile is described by a smooth interfacial profile function. Approximation (i) makes our method free from the solid-fluid boundary condition, significantly simplifying the treatment of many-body hydrodynamic interactions while satisfying the incompressible condition without the Stokes approximation. Approximation (ii) allows us to incorporate an extra degree of freedom in a fluid, e.g., orientational order and concentration, as an additional field variable. Here, we consider two fundamental problems associated with these approximations. One is the introduction of thermal noise and the other is the incorporation of coupling of the colloid surface with an order parameter introduced into a fluid component, which is crucial when considering colloidal particles suspended in a complex fluid. Here, we show that our FPD method makes it possible to simulate colloid dynamics properly while including full hydrodynamic interactions, inertia effects, incompressibility, thermal noise, and additional degrees of freedom of a fluid, which may be relevant for wide applications in colloidal and soft matter science.

  14. Synthesis of Platelike {100} SrTiO3 Particles by Topochemical Microcrystal Conversion and Fabrication of Grain-Oriented Ceramics

    NASA Astrophysics Data System (ADS)

    Saito, Yasuyoshi; Takao, Hisaaki

    2006-09-01

    Platelike SrTiO3 particles with a cubic perovskite structure were synthesized by topochemical microcrystal conversion (TMC) from platelike precursor particles of layer-structured SrBi4Ti4O15 at 950 °C. SrTiO3 particles preserved the shape of precursor particles, and had a thickness of approximately 0.5 μm and a width of 5-10 μm. X-ray diffraction analysis revealed that in the TMC reaction, the crystallographic {001} plane of SrBi4Ti4O15 is converted into the {100} plane of SrTiO3. Using the platelike SrTiO3 particles as a template in templated grain growth method, dense {100} grain-oriented SrTiO3 ceramics having a {100} orientation degree (Lotgering’s factor) higher than 91% could be fabricated at sintering temperatures between 1350 and 1550 °C. The maximum orientation factor reached 99.3%.

  15. Direction-dependent force-induced dissociation dynamics of an entropic-driven lock-and-key assembly.

    PubMed

    Chen, Yen-Fu; Chen, Hsuan-Yi; Sheng, Yu-Jane; Tsao, Heng-Kwong

    2017-09-01

    The unbinding dynamics of a nanosized sphere-and-cavity assembly under the pulling of constant force and constant loading rate is explored by dissipative particle dynamics simulations. The formation of this matched lock-and-key pair in a polymer solution is driven by the depletion attraction. The two-dimensional free energy landscape U(x,z) associated with this assembly is constructed. Our results indicate that the unbinding pathway along the orientation of the assembly is unfavorable due to the relatively high energy barrier compared to that along the tortuous minimum path whose energy barrier is not high. It is also found that the dissociation rate depends on the direction of the external force (θ) with respect to the assembly orientation. The presence of the force component perpendicular to the assembly orientation can reduce the bond lifetime significantly by driving the key particle to approach the minimum path. Moreover, the dissociation dynamics can be facilitated even by a pushing force compared to the spontaneous dissociation (without forces). To elucidate the effective pathway under pulling, the escaping position is analyzed and its mean direction with respect to the assembly orientation rises generally with increasing θ, revealing that the presence of the force component along the minimum pathway is helpful. The importance of the direction of the external pulling has been demonstrated in our simple system. Therefore, this effect should be considered in more complicated unbinding experiments.

  16. Computational Approaches to Spatial Orientation: From Transfer Functions to Dynamic Bayesian Inference

    PubMed Central

    MacNeilage, Paul R.; Ganesan, Narayan; Angelaki, Dora E.

    2008-01-01

    Spatial orientation is the sense of body orientation and self-motion relative to the stationary environment, fundamental to normal waking behavior and control of everyday motor actions including eye movements, postural control, and locomotion. The brain achieves spatial orientation by integrating visual, vestibular, and somatosensory signals. Over the past years, considerable progress has been made toward understanding how these signals are processed by the brain using multiple computational approaches that include frequency domain analysis, the concept of internal models, observer theory, Bayesian theory, and Kalman filtering. Here we put these approaches in context by examining the specific questions that can be addressed by each technique and some of the scientific insights that have resulted. We conclude with a recent application of particle filtering, a probabilistic simulation technique that aims to generate the most likely state estimates by incorporating internal models of sensor dynamics and physical laws and noise associated with sensory processing as well as prior knowledge or experience. In this framework, priors for low angular velocity and linear acceleration can explain the phenomena of velocity storage and frequency segregation, both of which have been modeled previously using arbitrary low-pass filtering. How Kalman and particle filters may be implemented by the brain is an emerging field. Unlike past neurophysiological research that has aimed to characterize mean responses of single neurons, investigations of dynamic Bayesian inference should attempt to characterize population activities that constitute probabilistic representations of sensory and prior information. PMID:18842952

  17. Direction-dependent force-induced dissociation dynamics of an entropic-driven lock-and-key assembly

    NASA Astrophysics Data System (ADS)

    Chen, Yen-Fu; Chen, Hsuan-Yi; Sheng, Yu-Jane; Tsao, Heng-Kwong

    2017-09-01

    The unbinding dynamics of a nanosized sphere-and-cavity assembly under the pulling of constant force and constant loading rate is explored by dissipative particle dynamics simulations. The formation of this matched lock-and-key pair in a polymer solution is driven by the depletion attraction. The two-dimensional free energy landscape U (x ,z ) associated with this assembly is constructed. Our results indicate that the unbinding pathway along the orientation of the assembly is unfavorable due to the relatively high energy barrier compared to that along the tortuous minimum path whose energy barrier is not high. It is also found that the dissociation rate depends on the direction of the external force (θ ) with respect to the assembly orientation. The presence of the force component perpendicular to the assembly orientation can reduce the bond lifetime significantly by driving the key particle to approach the minimum path. Moreover, the dissociation dynamics can be facilitated even by a pushing force compared to the spontaneous dissociation (without forces). To elucidate the effective pathway under pulling, the escaping position is analyzed and its mean direction with respect to the assembly orientation rises generally with increasing θ , revealing that the presence of the force component along the minimum pathway is helpful. The importance of the direction of the external pulling has been demonstrated in our simple system. Therefore, this effect should be considered in more complicated unbinding experiments.

  18. UCLA IGPP Space Plasma Simulation Group

    NASA Technical Reports Server (NTRS)

    1998-01-01

    During the past 10 years the UCLA IGPP Space Plasma Simulation Group has pursued its theoretical effort to develop a Mission Oriented Theory (MOT) for the International Solar Terrestrial Physics (ISTP) program. This effort has been based on a combination of approaches: analytical theory, large scale kinetic (LSK) calculations, global magnetohydrodynamic (MHD) simulations and self-consistent plasma kinetic (SCK) simulations. These models have been used to formulate a global interpretation of local measurements made by the ISTP spacecraft. The regions of applications of the MOT cover most of the magnetosphere: the solar wind, the low- and high-latitude magnetospheric boundary, the near-Earth and distant magnetotail, and the auroral region. Most recent investigations include: plasma processes in the electron foreshock, response of the magnetospheric cusp, particle entry in the magnetosphere, sources of observed distribution functions in the magnetotail, transport of oxygen ions, self-consistent evolution of the magnetotail, substorm studies, effects of explosive reconnection, and auroral acceleration simulations.

  19. Fictitious domain method for fully resolved reacting gas-solid flow simulation

    NASA Astrophysics Data System (ADS)

    Zhang, Longhui; Liu, Kai; You, Changfu

    2015-10-01

    Fully resolved simulation (FRS) for gas-solid multiphase flow considers solid objects as finite sized regions in flow fields and their behaviours are predicted by solving equations in both fluid and solid regions directly. Fixed mesh numerical methods, such as fictitious domain method, are preferred in solving FRS problems and have been widely researched. However, for reacting gas-solid flows no suitable fictitious domain numerical method has been developed. This work presents a new fictitious domain finite element method for FRS of reacting particulate flows. Low Mach number reacting flow governing equations are solved sequentially on a regular background mesh. Particles are immersed in the mesh and driven by their surface forces and torques integrated on immersed interfaces. Additional treatments on energy and surface reactions are developed. Several numerical test cases validated the method and a burning carbon particles array falling simulation proved the capability for solving moving reacting particle cluster problems.

  20. Self-organization and stability of magnetosome chains—A simulation study

    PubMed Central

    Faivre, Damien; Klumpp, Stefan

    2018-01-01

    Magnetotactic bacteria orient in magnetic fields with the help of their magnetosome chain, a linear structure of membrane enclosed magnetic nanoparticles (magnetosomes) anchored to a cytoskeletal filament. Here, we use simulations to study the assembly and the stability of magnetosome chains. We introduce a computational model describing the attachment of the magnetosomes to the filament and their magnetic interactions. We show that the filamentous backbone is crucial for the robust assembly of the magnetic particles into a linear chain, which in turn is key for the functionality of the chain in cellular orientation and magnetically directed swimming. In addition, we simulate the response to an external magnetic field that is rotated away from the axis of the filament, an experimental method used to probe the mechanical stability of the chain. The competition between alignment along the filament and alignment with the external fields leads to the rupture of a chain if the applied field exceeeds a threshold value. These observations are in agreement with previous experiments at the population level. Beyond that, our simulations provide a detailed picture of chain rupture at the single cell level, which is found to happen through two abrupt events, which both depend on the field strength and orientation. The re-formation of the chain structure after such rupture is found to be strongly sped up in the presence of a magnetic field parallel to the filament, an observation that may also be of interest for the design of self-healing materials. Our simulations underline the dynamic nature of the magnetosome chain. More generally, they show the rich complexity of self-assembly in systems with competing driving forces for alignment. PMID:29315342

  1. JVIEW Visualization for Virtual Airspace Modeling and Simulation

    DTIC Science & Technology

    2009-04-01

    23  4.2.2  Translucency ................................................................................................................. 25  4.3... Translucency Used to Display Multiple Visualization Elements .............................. 26  Figure 26 - Textual Labels Feature...been done by Jason Moore and other AFRL/RISF staff and support personnel developing the JView API. JView relies on concrete Object Oriented Design

  2. Flexibility on storage-release based distributed hydrologic modeling with object-oriented approach

    USDA-ARS?s Scientific Manuscript database

    With the availability of advanced hydrologic data in the public domain such as remotely sensed and climate change scenario data, there is a need for a modeling framework that is capable of using these data to simulate and extend hydrologic processes with multidisciplinary approaches for sustainable ...

  3. Perceived orientation of a runway model in nonpilots during simulated night approaches to landing.

    DOT National Transportation Integrated Search

    1977-07-01

    Illusions due to reduced visual cues at night have long been cited as contributing to the dangerous tendency of pilots to fly too low during night landing approaches. The cue of motion parallax (a difference in rate of apparent movement of objects in...

  4. Distribution of Dust from Kuiper Belt Objects

    NASA Technical Reports Server (NTRS)

    Gorkavyi, Nick N.; Ozernoy, Leonid; Taidakova, Tanya; Mather, John C.; Fisher, Richard (Technical Monitor)

    2000-01-01

    Using an efficient computational approach, we have reconstructed the structure of the dust cloud in the Solar system between 0.5 and 100 AU produced by the Kuiper belt objects. Our simulations offer a 3-D physical model of the 'kuiperoidal' dust cloud based on the distribution of 280 dust particle trajectories produced by 100 known Kuiper belt objects; the resulting 3-D grid consists of 1.9 x 10' cells containing 1.2 x 10" particle positions. The following processes that influence the dust particle dynamics are taken into account: 1) gravitational scattering on the eight planets (neglecting Pluto); 2) planetary resonances; 3) radiation pressure; and 4) the Poynting-Robertson (P-R) and solar wind drags. We find the dust distribution highly non-uniform: there is a minimum in the kuiperoidal dust between Mars and Jupiter, after which both the column and number densities of kuiperoidal dust sharply increase with heliocentric distance between 5 and 10 AU, and then form a plateau between 10 and 50 AU. Between 25 and 45 AU, there is an appreciable concentration of kuiperoidal dust in the form of a broad belt of mostly resonant particles associated with Neptune. In fact, each giant planet possesses its own circumsolar dust belt consisting of both resonant and gravitationally scattered particles. As with the cometary belts simulated in our related papers, we reveal a rich and sophisticated resonant structure of the dust belts containing families of resonant peaks and gaps. An important result is that both the column and number dust density are more or less flat between 10 and 50 AU, which might explain the surprising data obtained by Pioneers 10 & 11 and Voyager that the dust number density remains approximately distance-independent in this region. The simulated kuiperoidal dust, in addition to asteroidal and cometary dust, might represent a third possible source of the zodiacal light in the Solar system.

  5. Fusion of GEDI, ICESAT2 & NISAR data for above ground biomass mapping in Sonoma County, California

    NASA Astrophysics Data System (ADS)

    Duncanson, L.; Simard, M.; Thomas, N. M.; Neuenschwander, A. L.; Hancock, S.; Armston, J.; Dubayah, R.; Hofton, M. A.; Huang, W.; Tang, H.; Marselis, S.; Fatoyinbo, T.

    2017-12-01

    Several upcoming NASA missions will collect data sensitive to forest structure (GEDI, ICESAT-2 & NISAR). The LiDAR and SAR data collected by these missions will be used in coming years to map forest aboveground biomass at various resolutions. This research focuses on developing and testing multi-sensor data fusion approaches in advance of these missions. Here, we present the first case study of a CMS-16 grant with results from Sonoma County, California. We simulate lidar and SAR datasets from GEDI, ICESAT-2 and NISAR using airborne discrete return lidar and UAVSAR data, respectively. GEDI and ICESAT-2 signals are simulated from high point density discrete return lidar that was acquired over the entire county in 2014 through a previous CMS project (Dubayah & Hurtt, CMS-13). NISAR is simulated from L-band UAVSAR data collected in 2014. These simulations are empirically related to 300 field plots of aboveground biomass as well as a 30m biomass map produced from the 2014 airborne lidar data. We model biomass independently for each simulated mission dataset and then test two fusion methods for County-wide mapping 1) a pixel based approach and 2) an object oriented approach. In the pixel-based approach, GEDI and ICESAT-2 biomass models are calibrated over field plots and applied in orbital simulations for a 2-year period of the GEDI and ICESAT-2 missions. These simulated samples are then used to calibrate UAVSAR data to produce a 0.25 ha map. In the object oriented approach, the GEDI and ICESAT-2 data are identical to the pixel-based approach, but calibrate image objects of similar L-band backscatter rather than uniform pixels. The results of this research demonstrate the estimated ability for each of these three missions to independently map biomass in a temperate, high biomass system, as well as the potential improvement expected through combining mission datasets.

  6. Simulating Electrophoresis with Discrete Charge and Drag

    NASA Astrophysics Data System (ADS)

    Mowitz, Aaron J.; Witten, Thomas A.

    A charged asymmetric rigid cluster of colloidal particles in saline solution can respond in exotic ways to an electric field: it may spin or move transversely. These distinctive motions arise from the drag force of the neutralizing countercharge surrounding the cluster. Because of this drag, calculating the motion of arbitrary asymmetric objects with nonuniform charge is impractical by conventional methods. Here we present a new method of simulating electrophoresis, in which we replace the continuous object and the surrounding countercharge with discrete point-draggers, called Stokeslets. The balance of forces imposes a linear, self-consistent relation among the drag and Coulomb forces on the Stokeslets, which allows us to easily determine the object's motion via matrix inversion. By explicitly enforcing charge+countercharge neutrality, the simulation recovers the distinctive features of electrophoretic motion to few-percent accuracy using as few as 1000 Stokeslets. In particular, for uniformly charged objects, we observe the characteristic Smoluchowski independence of mobility on object size and shape. We then discuss electrophoretic motion of asymmetric objects, where our simulation method is particularly advantageous. This work is supported by a Grant from the US-Israel Binational Science Foundation.

  7. Bondi-Hoyle accretion in an isothermal magnetized plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Aaron T.; McKee, Christopher F.; Klein, Richard I.

    2014-03-01

    In regions of star formation, protostars and newborn stars will accrete mass from their natal clouds. These clouds are threaded by magnetic fields with a strength characterized by the plasma β—the ratio of thermal and magnetic pressures. Observations show that molecular clouds have β ≲ 1, so magnetic fields have the potential to play a significant role in the accretion process. We have carried out a numerical study of the effect of large-scale magnetic fields on the rate of accretion onto a uniformly moving point particle from a uniform, non-self-gravitating, isothermal gas. We consider gas moving with sonic Mach numbersmore » of up to M≈45; magnetic fields that are either parallel, perpendicular, or oriented 45° to the flow; and β as low as 0.01. Our simulations utilize adaptive mesh refinement in order to obtain high spatial resolution where it is needed; this also allows the boundaries to be far from the accreting object to avoid unphysical effects arising from boundary conditions. Additionally, we show that our results are independent of our exact prescription for accreting mass in the sink particle. We give simple expressions for the steady-state accretion rate as a function of β and M for the parallel and perpendicular orientations. Using typical molecular cloud values of M∼5 and β ∼ 0.04 from the literature, our fits suggest that a 0.4 M {sub ☉} star accretes ∼4 × 10{sup –9} M {sub ☉} yr{sup –1}, almost a factor of two less than accretion rates predicted by hydrodynamic models. This disparity can grow to orders of magnitude for stronger fields and lower Mach numbers. We also discuss the applicability of these accretion rates versus accretion rates expected from gravitational collapse, and under what conditions a steady state is possible. The reduction in the accretion rate in a magnetized medium leads to an increase in the time required to form stars in competitive accretion models, making such models less efficient than predicted by Bondi-Hoyle rates. Our results should find application in numerical codes, enabling accurate sub-grid models of sink particles accreting from magnetized media.« less

  8. The Vertical Distribution of Buried Volatiles at the Moon revealed by Thermal and Epithermal Neutron Fluxes from LEND Observations

    NASA Astrophysics Data System (ADS)

    Chin, G.; Sagdeev, R.; Su, J. J.; Murray, J.; Livengood, T. A.

    2015-12-01

    Determining the quantity and vertical distribution of volatile species on and below the surface of planetary bodies is vital to understand the primordial chemical inventory and subsequent evolution of planets. Volatiles may provide resources to support future human exploration. This is particularly true for the Moon, which is well observed by many methods from ground-based, lunar orbit, and in situ, and is an accessible destination or way station for human exploration. We present Geant4 models of relative fluxes of Fast, Epithermal, and Thermal neutron emission generated in a planetary regolith by galactic cosmic rays to reveal the first 1-2 meters vertical structure of embedded hydrogen or water. Varying ratios of Thermal versus Epithermal, low-energy-Epithermal versus high-energy-Epithermal, and Thermal versus Fast neutron emissions are diagnostics of the depth in which hydrogen/water layers are buried within the top 1-2 meters of the regolith. In addition, we apply model calculations to Lunar Exploration Neutron Detector (LEND) thermal and epithermal data, acquired on the Lunar Reconnaissance Orbiter (LRO), in specific regions of the Moon to retrieve the vertical distribution of buried ice from the remote sensing information. GEANT4 is a set of particle physics transport simulation codes that exploits object-oriented software methods to deliver a comprehensive and flexible toolkit that is modular and extensible, based on a free open-source development model. GEANT4 has become a standard tool to simulate applications as diverse as particle telescope and detector response, space radiation shielding and optimization, total ionizing dose in spacecraft components, and biological effects of radiation.

  9. Active matter beyond mean-field: ring-kinetic theory for self-propelled particles.

    PubMed

    Chou, Yen-Liang; Ihle, Thomas

    2015-02-01

    Recently, Hanke et al. [Phys. Rev. E 88, 052309 (2013)] showed that mean-field kinetic theory fails to describe collective motion in soft active colloids and that correlations must not be neglected. Correlation effects are also expected to be essential in systems of biofilaments driven by molecular motors and in swarms of midges. To obtain correlations in an active matter system from first principles, we derive a ring-kinetic theory for Vicsek-style models of self-propelled agents from the exact N-particle evolution equation in phase space. The theory goes beyond mean-field and does not rely on Boltzmann's approximation of molecular chaos. It can handle precollisional correlations and cluster formation, which are both important to understand the phase transition to collective motion. We propose a diagrammatic technique to perform a small-density expansion of the collision operator and derive the first two equations of the Bogoliubov-Born-Green-Kirkwood-Yvon (BBGKY) hierarchy. An algorithm is presented that numerically solves the evolution equation for the two-particle correlations on a lattice. Agent-based simulations are performed and informative quantities such as orientational and density correlation functions are compared with those obtained by ring-kinetic theory. Excellent quantitative agreement between simulations and theory is found at not-too-small noises and mean free paths. This shows that there are parameter ranges in Vicsek-like models where the correlated closure of the BBGKY hierarchy gives correct and nontrivial results. We calculate the dependence of the orientational correlations on distance in the disordered phase and find that it seems to be consistent with a power law with an exponent around -1.8, followed by an exponential decay. General limitations of the kinetic theory and its numerical solution are discussed.

  10. Digital holographic microscopy combined with optical tweezers

    NASA Astrophysics Data System (ADS)

    Cardenas, Nelson; Yu, Lingfeng; Mohanty, Samarendra K.

    2011-02-01

    While optical tweezers have been widely used for the manipulation and organization of microscopic objects in three dimensions, observing the manipulated objects along axial direction has been quite challenging. In order to visualize organization and orientation of objects along axial direction, we report development of a Digital holographic microscopy combined with optical tweezers. Digital holography is achieved by use of a modified Mach-Zehnder interferometer with digital recording of interference pattern of the reference and sample laser beams by use of a single CCD camera. In this method, quantitative phase information is retrieved dynamically with high temporal resolution, only limited by frame rate of the CCD. Digital focusing, phase-unwrapping as well as online analysis and display of the quantitative phase images was performed on a software developed on LabView platform. Since phase changes observed in DHOT is very sensitive to optical thickness of trapped volume, estimation of number of particles trapped in the axial direction as well as orientation of non-spherical objects could be achieved with high precision. Since in diseases such as malaria and diabetics, change in refractive index of red blood cells occurs, this system can be employed to map such disease-specific changes in biological samples upon immobilization with optical tweezers.

  11. Flow above and within granular media composed of spherical and non-spherical particles - using a 3D numerical model

    NASA Astrophysics Data System (ADS)

    Bartzke, Gerhard; Kuhlmann, Jannis; Huhn, Katrin

    2016-04-01

    The entrainment of single grains and, hence, their erosion characteristics are dependent on fluid forcing, grain size and density, but also shape variations. To quantitatively describe and capture the hydrodynamic conditions around individual grains, researchers commonly use empirical approaches such as laboratory flume tanks. Nonetheless, it is difficult with such physical experiments to measure the flow velocities in the direct vicinity or within the pore spaces of sediments, at a sufficient resolution and in a non-invasive way. As a result, the hydrodynamic conditions in the water column, at the fluid-porous interface and within pore spaces of a granular medium of various grain shapes is not yet fully understood. For that reason, there is a strong need for numerical models, since these are capable of quantifying fluid speeds within a granular medium. A 3D-SPH (Smooth Particle Hydrodynamics) numerical wave tank model was set up to provide quantitative evidence on the flow velocities in the direct vicinity and in the interior of granular beds composed of two shapes as a complementary method to the difficult task of in situ measurement. On the basis of previous successful numerical wave tank models with SPH, the model geometry was chosen in dimensions of X=2.68 [m], Y=0.48 [m], and Z=0.8 [m]. Three suites of experiments were designed with a range of particle shape models: (1) ellipsoids with the long axis oriented in the across-stream direction, (2) ellipsoids with the long axis oriented in the along-stream direction, and (3) spheres. Particle diameters ranged from 0.04 [m] to 0.08 [m]. A wave was introduced by a vertical paddle that accelerated to 0.8 [m/s] perpendicular to the granular bed. Flow measurements showed that the flow velocity values into the beds were highest when the grains were oriented across the stream direction and lowest in case when the grains were oriented parallel to the stream, indicating that the model was capable to simulate simultaneously the flow into and within a granular medium composed of spherical and non-spherical shapes under wave forcing. It is concluded that variations in grain shape orientation within a bed appear to control the amount of flow that can be accumulated by the pores, which was illustrated in a conceptual model.

  12. Status of MAPA (Modular Accelerator Physics Analysis) and the Tech-X Object-Oriented Accelerator Library

    NASA Astrophysics Data System (ADS)

    Cary, J. R.; Shasharina, S.; Bruhwiler, D. L.

    1998-04-01

    The MAPA code is a fully interactive accelerator modeling and design tool consisting of a GUI and two object-oriented C++ libraries: a general library suitable for treatment of any dynamical system, and an accelerator library including many element types plus an accelerator class. The accelerator library inherits directly from the system library, which uses hash tables to store any relevant parameters or strings. The GUI can access these hash tables in a general way, allowing the user to invoke a window displaying all relevant parameters for a particular element type or for the accelerator class, with the option to change those parameters. The system library can advance an arbitrary number of dynamical variables through an arbitrary mapping. The accelerator class inherits this capability and overloads the relevant functions to advance the phase space variables of a charged particle through a string of elements. Among other things, the GUI makes phase space plots and finds fixed points of the map. We discuss the object hierarchy of the two libraries and use of the code.

  13. Particle detection for patterned wafers of 100nm design rule by evanescent light illumination: analysis of evanescent light scattering using Finite-Difference Time-Domain (FDTD) method

    NASA Astrophysics Data System (ADS)

    Yoshioka, Toshie; Miyoshi, Takashi; Takaya, Yasuhiro

    2005-12-01

    To realize high productivity and reliability of the semiconductor, patterned wafers inspection technology to maintain high yield becomes essential in modern semiconductor manufacturing processes. As circuit feature is scaled below 100nm, the conventional imaging and light scattering methods are impossible to apply to the patterned wafers inspection technique, because of diffraction limit and lower S/N ratio. So, we propose a new particle detection method using annular evanescent light illumination. In this method, a converging annular light used as a light source is incident on a micro-hemispherical lens. When the converging angle is larger than critical angle, annular evanescent light is generated under the bottom surface of the hemispherical lens. Evanescent light is localized near by the bottom surface and decays exponentially away from the bottom surface. So, the evanescent light selectively illuminates the particles on the patterned wafer surface, because it can't illuminate the patterned wafer surface. The proposed method evaluates particles on a patterned wafer surface by detecting scattered evanescent light distribution from particles. To analyze the fundamental characteristics of the proposed method, the computer simulation was performed using FDTD method. The simulation results show that the proposed method is effective for detecting 100nm size particle on patterned wafer of 100nm lines and spaces, particularly under the condition that the evanescent light illumination with p-polarization and parallel incident to the line orientation. Finally, the experiment results suggest that 220nm size particle on patterned wafer of about 200nm lines and spaces can be detected.

  14. Subsurface Grain Morphology Reconstruction by Differential Aperture X-ray Microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eisenlohr, Philip; Shanthraj, Pratheek; Vande Kieft, Brendan R.

    A multistep, non-destructive grain morphology reconstruction methodology that is applicable to near-surface volumes is developed and tested on synthetic grain structures. This approach probes the subsurface crystal orientation using differential aperture x-ray microscopy on a sparse grid across the microstructure volume of interest. Resulting orientation data are clustered according to proximity in physical and orientation space and used as seed points for an initial Voronoi tessellation to (crudely) approximate the grain morphology. Curvature-driven grain boundary relaxation, simulated by means of the Voronoi implicit interface method, progressively improves the reconstruction accuracy. The similarity between bulk and readily accessible surface reconstruction errormore » provides an objective termination criterion for boundary relaxation.« less

  15. Science Objectives for a Soft X-ray Mission

    NASA Astrophysics Data System (ADS)

    Sibeck, D. G.; Connor, H. K.; Collier, M. R.; Collado-Vega, Y. M.; Walsh, B.

    2016-12-01

    When high charge state solar wind ions exchange electrons with exospheric neutrals, soft X-rays are emitted. In conjunction with flight- proven wide field-of-view soft X-ray imagers employing lobster-eye optics, recent simulations demonstrate the feasibility of imaging magnetospheric density structures such as the bow shock, magnetopause, and cusps. This presentation examines the Heliospheric scientific objectives that such imagers can address. Principal amongst these is the nature of reconnection at the dayside magnetopause: steady or transient, widespread or localized, component or antiparallel as a function of solar wind conditions. However, amongst many other objectives, soft X-ray imagers can provide crucial information concerning the structure of the bow shock as a function of solar wind Mach number and IMF orientation, the presence or absence of a depletion layer, the occurrence of Kelvin-Helmholtz or pressure-pulse driven magnetopause boundary waves, and the effects of radial IMF orientations and the foreshock upon bow shock and magnetopause location.

  16. Facilitating LOS Debriefings: A Training Manual

    NASA Technical Reports Server (NTRS)

    McDonnell, Lori K.; Jobe, Kimberly K.; Dismukes, R. Key

    1997-01-01

    This manual is a practical guide to help airline instructors effectively facilitate debriefings of Line Oriented Simulations (LOS). It is based on a recently completed study of Line Oriented Flight Training (LOFT) debriefings at several U.S. airlines. This manual presents specific facilitation tools instructors can use to achieve debriefing objectives. The approach of the manual is to be flexible so it can be tailored to the individual needs of each airline. Part One clarifies the purpose and objectives of facilitation in the LOS setting. Part Two provides recommendations for clarifying roles and expectations and presents a model for organizing discussion. Part Tree suggests techniques for eliciting active crew participation and in-depth analysis and evaluation. Finally, in Part Four, these techniques are organized according to the facilitation model. Examples of how to effectively use the techniques are provided throughout, including strategies to try when the debriefing objectives are not being fully achieved.

  17. Measurement of Anisotropic Particle Interactions with Nonuniform ac Electric Fields.

    PubMed

    Rupp, Bradley; Torres-Díaz, Isaac; Hua, Xiaoqing; Bevan, Michael A

    2018-02-20

    Optical microscopy measurements are reported for single anisotropic polymer particles interacting with nonuniform ac electric fields. The present study is limited to conditions where gravity confines particles with their long axis parallel to the substrate such that particles can be treated using quasi-2D analysis. Field parameters are investigated that result in particles residing at either electric field maxima or minima and with long axes oriented either parallel or perpendicular to the electric field direction. By nonintrusively observing thermally sampled positions and orientations at different field frequencies and amplitudes, a Boltzmann inversion of the time-averaged probability of states yields kT-scale energy landscapes (including dipole-field, particle-substrate, and gravitational potentials). The measured energy landscapes show agreement with theoretical potentials using particle conductivity as the sole adjustable material property. Understanding anisotropic particle-field energy landscapes vs field parameters enables quantitative control of local forces and torques on single anisotropic particles to manipulate their position and orientation within nonuniform fields.

  18. Onyx-Advanced Aeropropulsion Simulation Framework Created

    NASA Technical Reports Server (NTRS)

    Reed, John A.

    2001-01-01

    The Numerical Propulsion System Simulation (NPSS) project at the NASA Glenn Research Center is developing a new software environment for analyzing and designing aircraft engines and, eventually, space transportation systems. Its purpose is to dramatically reduce the time, effort, and expense necessary to design and test jet engines by creating sophisticated computer simulations of an aerospace object or system (refs. 1 and 2). Through a university grant as part of that effort, researchers at the University of Toledo have developed Onyx, an extensible Java-based (Sun Micro-systems, Inc.), objectoriented simulation framework, to investigate how advanced software design techniques can be successfully applied to aeropropulsion system simulation (refs. 3 and 4). The design of Onyx's architecture enables users to customize and extend the framework to add new functionality or adapt simulation behavior as required. It exploits object-oriented technologies, such as design patterns, domain frameworks, and software components, to develop a modular system in which users can dynamically replace components with others having different functionality.

  19. Evolution of a beam dynamics model for the transport line in a proton therapy facility

    NASA Astrophysics Data System (ADS)

    Rizzoglio, V.; Adelmann, A.; Baumgarten, C.; Frey, M.; Gerbershagen, A.; Meer, D.; Schippers, J. M.

    2017-12-01

    During the conceptual design of an accelerator or beamline, first-order beam dynamics models are essential for studying beam properties. However, they can only produce approximate results. During commissioning, these approximate results are compared to measurements, which will rarely coincide if the model does not include the relevant physics. It is therefore essential that this linear model is extended to include higher-order effects. In this paper, the effects of particle-matter interaction have been included in the model of the transport lines in the proton therapy facility at the Paul Scherrer Institut (PSI) in Switzerland. The first-order models of these beamlines provide an approximated estimation of beam size, energy loss and transmission. To improve the performance of the facility, a more precise model was required and has been developed with opal (Object Oriented Parallel Accelerator Library), a multiparticle open source beam dynamics code. In opal, the Monte Carlo simulations of Coulomb scattering and energy loss are performed seamless with the particle tracking. Beside the linear optics, the influence of the passive elements (e.g., degrader, collimators, scattering foils, and air gaps) on the beam emittance and energy spread can be analyzed in the new model. This allows for a significantly improved precision in the prediction of beam transmission and beam properties. The accuracy of the opal model has been confirmed by numerous measurements.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haslam, J J; Wall, M A; Johnson, D L

    We have measured and modeled the change in electrical resistivity due to partial transformation to the martensitic {alpha}{prime}-phase in a {delta}-phase Pu-Ga matrix. The primary objective is to relate the change in resistance, measured with a 4-probe technique during the transformation, to the volume fraction of the {alpha}{prime} phase created in the microstructure. Analysis by finite element methods suggests that considerable differences in the resistivity may be anticipated depending on the orientational and morphological configurations of the {alpha}{prime} particles. Finite element analysis of the computed resistance of an assembly of lenticular shaped particles indicates that series resistor or parallel resistormore » approximations are inaccurate and can lead to an underestimation of the predicted amount of {alpha}{prime} in the sample by 15% or more. Comparison of the resistivity of a simulated network of partially transformed grains or portions of grains suggests that a correction to the measured resistivity allows quantification of the amount of {alpha}{prime} phase in the microstructure with minimal consideration of how the {alpha}{prime} morphology may evolve. It is found that the average of the series and parallel resistor approximations provide the most accurate relationship between the measured resistivity and the amount of {alpha}{prime} phase. The methods described here are applicable to any evolving two-phase microstructure in which the resistance difference between the two phases is measurable.« less

  1. Effects of Hot Streak and Phantom Cooling on Heat Transfer in a Cooled Turbine Stage Including Particulate Deposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bons, Jeffrey; Ameri, Ali

    2016-01-08

    The objective of this research effort was to develop a validated computational modeling capability for the characterization of the effects of hot streaks and particulate deposition on the heat load of modern gas turbines. This was accomplished with a multi-faceted approach including analytical, experimental, and computational components. A 1-year no cost extension request was approved for this effort, so the total duration was 4 years. The research effort succeeded in its ultimate objective by leveraging extensive experimental deposition studies complemented by computational modeling. Experiments were conducted with hot streaks, vane cooling, and combinations of hot streaks with vane cooling. Thesemore » studies contributed to a significant body of corporate knowledge of deposition, in combination with particle rebound and deposition studies funded by other agencies, to provide suitable conditions for the development of a new model. The model includes the following physical phenomena: elastic deformation, plastic deformation, adhesion, and shear removal. It also incorporates material property sensitivity to temperature and tangential-normal velocity rebound cross-dependencies observed in experiments. The model is well-suited for incorporation in CFD simulations of complex gas turbine flows due to its algebraic (explicit) formulation. This report contains model predictions compared to coefficient of restitution data available in the open literature as well as deposition results from two different high temperature turbine deposition facilities. While the model comparisons with experiments are in many cases promising, several key aspects of particle deposition remain elusive. The simple phenomenological nature of the model allows for parametric dependencies to be evaluated in a straightforward manner. This effort also included the first-ever full turbine stage deposition model published in the open literature. The simulations included hot streaks and simulated vane cooling. The new deposition model was implemented into the CFD model as a wall boundary condition, with various particle sizes investigated in the simulation. Simulations utilizing a steady mixing plane formulation and an unsteady sliding mesh were conducted and the flow solution of each was validated against experimental data. Results from each of these simulations, including impact and capture distributions and efficiencies, were compared and potential reasons for differences discussed in detail. The inclusion of a large range of particle sizes allowed investigation of trends with particle size, such as increased radial migration and reduced sticking efficiency at the larger particle sizes. The unsteady simulation predicted lower sticking efficiencies on the rotor blades than the mixing plane simulation for the majority of particle sizes. This is postulated to be due to the preservation of the hot streak and cool vane wake through the vane-rotor interface (which are smeared out circumferentially in the mixing-plane simulation). The results reported here represent the successful implementation of a novel deposition model into validated vane-rotor flow solutions that include a non-uniform inlet temperature profile and simulated vane cooling.« less

  2. A database of microwave and sub-millimetre ice particle single scattering properties

    NASA Astrophysics Data System (ADS)

    Ekelund, Robin; Eriksson, Patrick

    2016-04-01

    Ice crystal particles are today a large contributing factor as to why cold-type clouds such as cirrus remain a large uncertainty in global climate models and measurements. The reason for this is the complex and varied morphology in which ice particles appear, as compared to liquid droplets with an in general spheroidal shape, thus making the description of electromagnetic properties of ice particles more complicated. Single scattering properties of frozen hydrometers have traditionally been approximated by representing the particles as spheres using Mie theory. While such practices may work well in radio applications, where the size parameter of the particles is generally low, comparisons with measurements and simulations show that this assumption is insufficient when observing tropospheric cloud ice in the microwave or sub-millimetre regions. In order to assist the radiative transfer and remote sensing communities, a database of single scattering properties of semi-realistic particles is being produced. The data is being produced using DDA (Discrete Dipole Approximation) code which can treat arbitrarily shaped particles, and Tmatrix code for simpler shapes when found sufficiently accurate. The aim has been to mainly cover frequencies used by the upcoming ICI (Ice Cloud Imager) mission with launch in 2022. Examples of particles to be included are columns, plates, bullet rosettes, sector snowflakes and aggregates. The idea is to treat particles with good average optical properties with respect to the multitude of particles and aggregate types appearing in nature. The database will initially only cover macroscopically isotropic orientation, but will eventually also include horizontally aligned particles. Databases of DDA particles do already exist with varying accessibility. The goal of this database is to complement existing data. Regarding the distribution of the data, the plan is that the database shall be available in conjunction with the ARTS (Atmospheric Radiative Transfer Simulator) project.

  3. Simulation for assessment of bulk cargo berths number

    NASA Astrophysics Data System (ADS)

    Kuznetsov, A. L.; Kirichenko, A. V.; Slitsan, A. E.

    2017-10-01

    The world trade volumes of mineral resources have been growing constantly for decades, notwithstanding any economical crises. At the same time, the proximity of the bulk materials as products to the starting point of the integrated value added or logistic supply chain makes their unit price relatively low. This fact automatically causes a strong economic sensitivity of the supply chain to the level of operational expenses in every link. The core of the integrated logistic supply chain is its maritime segment, with the fleet and terminals (i.e. the cargo transportation system) serving as the base platform for it. In its turn, the terminal berths play a role of the interface between the fleet and the land-transportation sub-system. Current development of the maritime transportation technologies, ships and terminal specialization, vessel size growth, rationalization of route patterns, regionalization of trade etc., has made conventional calculation methods inadequate. The solution of the problem is in using object oriented simulation. At the same time, this approch usually assumes only ad hoc models. Thus, it does not provide the generality of its conventional analytical predecessors. The time and labor consumpting procedure of simulation results in a very narrow application domain of the model. This article describes a new simulation instrument, combining the generality of the analytical technoques with the efficiency of the object-oriented simulation. The approach implemented as a software module, which validity and adequacy are proved. The software was tested on several sea terminal design projects and confirmed its efficiency.

  4. Particle Swarm Social Adaptive Model for Multi-Agent Based Insurgency Warfare Simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cui, Xiaohui; Potok, Thomas E

    2009-12-01

    To better understand insurgent activities and asymmetric warfare, a social adaptive model for modeling multiple insurgent groups attacking multiple military and civilian targets is proposed and investigated. This report presents a pilot study using the particle swarm modeling, a widely used non-linear optimal tool to model the emergence of insurgency campaign. The objective of this research is to apply the particle swarm metaphor as a model of insurgent social adaptation for the dynamically changing environment and to provide insight and understanding of insurgency warfare. Our results show that unified leadership, strategic planning, and effective communication between insurgent groups are notmore » the necessary requirements for insurgents to efficiently attain their objective.« less

  5. Cluster analysis of molecular simulation trajectories for systems where both conformation and orientation of the sampled states are important.

    PubMed

    Abramyan, Tigran M; Snyder, James A; Thyparambil, Aby A; Stuart, Steven J; Latour, Robert A

    2016-08-05

    Clustering methods have been widely used to group together similar conformational states from molecular simulations of biomolecules in solution. For applications such as the interaction of a protein with a surface, the orientation of the protein relative to the surface is also an important clustering parameter because of its potential effect on adsorbed-state bioactivity. This study presents cluster analysis methods that are specifically designed for systems where both molecular orientation and conformation are important, and the methods are demonstrated using test cases of adsorbed proteins for validation. Additionally, because cluster analysis can be a very subjective process, an objective procedure for identifying both the optimal number of clusters and the best clustering algorithm to be applied to analyze a given dataset is presented. The method is demonstrated for several agglomerative hierarchical clustering algorithms used in conjunction with three cluster validation techniques. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  6. Automatic code generation in SPARK: Applications of computer algebra and compiler-compilers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nataf, J.M.; Winkelmann, F.

    We show how computer algebra and compiler-compilers are used for automatic code generation in the Simulation Problem Analysis and Research Kernel (SPARK), an object oriented environment for modeling complex physical systems that can be described by differential-algebraic equations. After a brief overview of SPARK, we describe the use of computer algebra in SPARK's symbolic interface, which generates solution code for equations that are entered in symbolic form. We also describe how the Lex/Yacc compiler-compiler is used to achieve important extensions to the SPARK simulation language, including parametrized macro objects and steady-state resetting of a dynamic simulation. The application of thesemore » methods to solving the partial differential equations for two-dimensional heat flow is illustrated.« less

  7. Automatic code generation in SPARK: Applications of computer algebra and compiler-compilers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nataf, J.M.; Winkelmann, F.

    We show how computer algebra and compiler-compilers are used for automatic code generation in the Simulation Problem Analysis and Research Kernel (SPARK), an object oriented environment for modeling complex physical systems that can be described by differential-algebraic equations. After a brief overview of SPARK, we describe the use of computer algebra in SPARK`s symbolic interface, which generates solution code for equations that are entered in symbolic form. We also describe how the Lex/Yacc compiler-compiler is used to achieve important extensions to the SPARK simulation language, including parametrized macro objects and steady-state resetting of a dynamic simulation. The application of thesemore » methods to solving the partial differential equations for two-dimensional heat flow is illustrated.« less

  8. SU-E-T-58: A Novel Monte Carlo Photon Transport Simulation Scheme and Its Application in Cone Beam CT Projection Simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Y; Southern Medical University, Guangzhou; Tian, Z

    Purpose: Monte Carlo (MC) simulation is an important tool to solve radiotherapy and medical imaging problems. Low computational efficiency hinders its wide applications. Conventionally, MC is performed in a particle-by -particle fashion. The lack of control on particle trajectory is a main cause of low efficiency in some applications. Take cone beam CT (CBCT) projection simulation as an example, significant amount of computations were wasted on transporting photons that do not reach the detector. To solve this problem, we propose an innovative MC simulation scheme with a path-by-path sampling method. Methods: Consider a photon path starting at the x-ray source.more » After going through a set of interactions, it ends at the detector. In the proposed scheme, we sampled an entire photon path each time. Metropolis-Hasting algorithm was employed to accept/reject a sampled path based on a calculated acceptance probability, in order to maintain correct relative probabilities among different paths, which are governed by photon transport physics. We developed a package gMMC on GPU with this new scheme implemented. The performance of gMMC was tested in a sample problem of CBCT projection simulation for a homogeneous object. The results were compared to those obtained using gMCDRR, a GPU-based MC tool with the conventional particle-by-particle simulation scheme. Results: Calculated scattered photon signals in gMMC agreed with those from gMCDRR with a relative difference of 3%. It took 3.1 hr. for gMCDRR to simulate 7.8e11 photons and 246.5 sec for gMMC to simulate 1.4e10 paths. Under this setting, both results attained the same ∼2% statistical uncertainty. Hence, a speed-up factor of ∼45.3 was achieved by this new path-by-path simulation scheme, where all the computations were spent on those photons contributing to the detector signal. Conclusion: We innovatively proposed a novel path-by-path simulation scheme that enabled a significant efficiency enhancement for MC particle transport simulations.« less

  9. PRELIMINARY COUPLING OF THE MONTE CARLO CODE OPENMC AND THE MULTIPHYSICS OBJECT-ORIENTED SIMULATION ENVIRONMENT (MOOSE) FOR ANALYZING DOPPLER FEEDBACK IN MONTE CARLO SIMULATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matthew Ellis; Derek Gaston; Benoit Forget

    In recent years the use of Monte Carlo methods for modeling reactors has become feasible due to the increasing availability of massively parallel computer systems. One of the primary challenges yet to be fully resolved, however, is the efficient and accurate inclusion of multiphysics feedback in Monte Carlo simulations. The research in this paper presents a preliminary coupling of the open source Monte Carlo code OpenMC with the open source Multiphysics Object-Oriented Simulation Environment (MOOSE). The coupling of OpenMC and MOOSE will be used to investigate efficient and accurate numerical methods needed to include multiphysics feedback in Monte Carlo codes.more » An investigation into the sensitivity of Doppler feedback to fuel temperature approximations using a two dimensional 17x17 PWR fuel assembly is presented in this paper. The results show a functioning multiphysics coupling between OpenMC and MOOSE. The coupling utilizes Functional Expansion Tallies to accurately and efficiently transfer pin power distributions tallied in OpenMC to unstructured finite element meshes used in MOOSE. The two dimensional PWR fuel assembly case also demonstrates that for a simplified model the pin-by-pin doppler feedback can be adequately replicated by scaling a representative pin based on pin relative powers.« less

  10. A flexible object-oriented software framework for developing complex multimedia simulations.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sydelko, P. J.; Dolph, J. E.; Christiansen, J. H.

    Decision makers involved in brownfields redevelopment and long-term stewardship must consider environmental conditions, future-use potential, site ownership, area infrastructure, funding resources, cost recovery, regulations, risk and liability management, community relations, and expected return on investment in a comprehensive and integrated fashion to achieve desired results. Successful brownfields redevelopment requires the ability to assess the impacts of redevelopment options on multiple interrelated aspects of the ecosystem, both natural and societal. Computer-based tools, such as simulation models, databases, and geographical information systems (GISs) can be used to address brownfields planning and project execution. The transparent integration of these tools into a comprehensivemore » and dynamic decision support system would greatly enhance the brownfields assessment process. Such a system needs to be able to adapt to shifting and expanding analytical requirements and contexts. The Dynamic Information Architecture System (DIAS) is a flexible, extensible, object-oriented framework for developing and maintaining complex multidisciplinary simulations of a wide variety of application domains. The modeling domain of a specific DIAS-based simulation is determined by (1) software objects that represent the real-world entities that comprise the problem space (atmosphere, watershed, human), and (2) simulation models and other data processing applications that express the dynamic behaviors of the domain entities. Models and applications used to express dynamic behaviors can be either internal or external to DIAS, including existing legacy models written in various languages (FORTRAN, C, etc.). The flexible design framework of DIAS makes the objects adjustable to the context of the problem without a great deal of recoding. The DIAS Spatial Data Set facility allows parameters to vary spatially depending on the simulation context according to any of a number of 1-D, 2-D, or 3-D topologies. DIAS is also capable of interacting with other GIS packages and can import many standard spatial data formats. DIAS simulation capabilities can also be extended by including societal process models. Models that implement societal behaviors of individuals and organizations within larger DIAS-based natural systems simulations allow for interaction and feedback among natural and societal processes. The ability to simulate the complex interplay of multimedia processes makes DIAS a promising tool for constructing applications for comprehensive community planning, including the assessment of multiple development and redevelopment scenarios.« less

  11. ZENO: N-body and SPH Simulation Codes

    NASA Astrophysics Data System (ADS)

    Barnes, Joshua E.

    2011-02-01

    The ZENO software package integrates N-body and SPH simulation codes with a large array of programs to generate initial conditions and analyze numerical simulations. Written in C, the ZENO system is portable between Mac, Linux, and Unix platforms. It is in active use at the Institute for Astronomy (IfA), at NRAO, and possibly elsewhere. Zeno programs can perform a wide range of simulation and analysis tasks. While many of these programs were first created for specific projects, they embody algorithms of general applicability and embrace a modular design strategy, so existing code is easily applied to new tasks. Major elements of the system include: Structured data file utilities facilitate basic operations on binary data, including import/export of ZENO data to other systems.Snapshot generation routines create particle distributions with various properties. Systems with user-specified density profiles can be realized in collisionless or gaseous form; multiple spherical and disk components may be set up in mutual equilibrium.Snapshot manipulation routines permit the user to sift, sort, and combine particle arrays, translate and rotate particle configurations, and assign new values to data fields associated with each particle.Simulation codes include both pure N-body and combined N-body/SPH programs: Pure N-body codes are available in both uniprocessor and parallel versions.SPH codes offer a wide range of options for gas physics, including isothermal, adiabatic, and radiating models. Snapshot analysis programs calculate temporal averages, evaluate particle statistics, measure shapes and density profiles, compute kinematic properties, and identify and track objects in particle distributions.Visualization programs generate interactive displays and produce still images and videos of particle distributions; the user may specify arbitrary color schemes and viewing transformations.

  12. Chaotic Dynamics of Trans-Neptunian Objects Perturbed by Planet Nine

    NASA Astrophysics Data System (ADS)

    Hadden, Sam; Li, Gongjie; Payne, Matthew J.; Holman, Matthew J.

    2018-06-01

    Observations of clustering among the orbits of the most distant trans-Neptunian objects (TNOs) has inspired interest in the possibility of an undiscovered ninth planet lurking in the outskirts of the solar system. Numerical simulations by a number of authors have demonstrated that, with appropriate choices of planet mass and orbit, such a planet can maintain clustering in the orbital elements of the population of distant TNOs, similar to the observed sample. However, many aspects of the rich underlying dynamical processes induced by such a distant eccentric perturber have not been fully explored. We report the results of our investigation of the dynamics of coplanar test-particles that interact with a massive body on an circular orbit (Neptune) and a massive body on a more distant, highly eccentric orbit (the putative Planet Nine). We find that a detailed examination of our idealized simulations affords tremendous insight into the rich test-particle dynamics that are possible. In particular, we find that chaos and resonance overlap plays an important role in particles’ dynamical evolution. We develop a simple mapping model that allows us to understand, in detail, the web of overlapped mean-motion resonances explored by chaotically evolving particles. We also demonstrate that gravitational interactions with Neptune can have profound effects on the orbital evolution of particles. Our results serve as a starting point for a better understanding of the dynamical behavior observed in more complicated simulations that can be used to constrain the mass and orbit of Planet Nine.

  13. Lepton identification at particle flow oriented detector for the future e+e- Higgs factories

    NASA Astrophysics Data System (ADS)

    Yu, Dan; Ruan, Manqi; Boudry, Vincent; Videau, Henri

    2017-09-01

    The lepton identification is essential for the physics programs at high-energy frontier, especially for the precise measurement of the Higgs boson. For this purpose, a toolkit for multivariate data analysis (TMVA) based lepton identification (LICH) has been developed for detectors using high granularity calorimeters. Using the conceptual detector geometry for the Circular Electron-Positron Collider (CEPC) and single charged particle samples with energy larger than 2 GeV, LICH identifies electrons/muons with efficiencies higher than 99.5% and controls the mis-identification rate of hadron to muons/electrons to better than 1/0.5%. Reducing the calorimeter granularity by 1-2 orders of magnitude, the lepton identification performance is stable for particles with E > 2 GeV. Applied to fully simulated eeH/μ μ H events, the lepton identification performance is consistent with the single particle case: the efficiency of identifying all the high energy leptons in an event, is 95.5-98.5%.

  14. Tilt-Pair Analysis of Images from a Range of Different Specimens in Single-Particle Electron Cryomicroscopy

    PubMed Central

    Henderson, Richard; Chen, Shaoxia; Chen, James Z.; Grigorieff, Nikolaus; Passmore, Lori A.; Ciccarelli, Luciano; Rubinstein, John L.; Crowther, R. Anthony; Stewart, Phoebe L.; Rosenthal, Peter B.

    2011-01-01

    The comparison of a pair of electron microscope images recorded at different specimen tilt angles provides a powerful approach for evaluating the quality of images, image-processing procedures, or three-dimensional structures. Here, we analyze tilt-pair images recorded from a range of specimens with different symmetries and molecular masses and show how the analysis can produce valuable information not easily obtained otherwise. We show that the accuracy of orientation determination of individual single particles depends on molecular mass, as expected theoretically since the information in each particle image increases with molecular mass. The angular uncertainty is less than 1° for particles of high molecular mass (∼ 50 MDa), several degrees for particles in the range 1–5 MDa, and tens of degrees for particles below 1 MDa. Orientational uncertainty may be the major contributor to the effective temperature factor (B-factor) describing contrast loss and therefore the maximum resolution of a structure determination. We also made two unexpected observations. Single particles that are known to be flexible showed a wider spread in orientation accuracy, and the orientations of the largest particles examined changed by several degrees during typical low-dose exposures. Smaller particles presumably also reorient during the exposure; hence, specimen movement is a second major factor that limits resolution. Tilt pairs thus enable assessment of orientation accuracy, map quality, specimen motion, and conformational heterogeneity. A convincing tilt-pair parameter plot, where 60% of the particles show a single cluster around the expected tilt axis and tilt angle, provides confidence in a structure determined using electron cryomicroscopy. PMID:21939668

  15. Resolution enhancement in coherent x-ray diffraction imaging by overcoming instrumental noise.

    PubMed

    Kim, Chan; Kim, Yoonhee; Song, Changyong; Kim, Sang Soo; Kim, Sunam; Kang, Hyon Chol; Hwu, Yeukuang; Tsuei, Ku-Ding; Liang, Keng San; Noh, Do Young

    2014-11-17

    We report that reference objects, strong scatterers neighboring weak phase objects, enhance the phase retrieval and spatial resolution in coherent x-ray diffraction imaging (CDI). A CDI experiment with Au nano-particles exhibited that the reference objects amplified the signal-to-noise ratio in the diffraction intensity at large diffraction angles, which significantly enhanced the image resolution. The interference between the diffracted x-ray from reference objects and a specimen also improved the retrieval of the phase of the diffraction signal. The enhancement was applied to image NiO nano-particles and a mitochondrion and confirmed in a simulation with a bacteria phantom. We expect that the proposed method will be of great help in imaging weakly scattering soft matters using coherent x-ray sources including x-ray free electron lasers.

  16. Torque undergone by assemblies of single-domain magnetic nanoparticles submitted to a rotating magnetic field

    NASA Astrophysics Data System (ADS)

    Carrey, J.; Hallali, N.

    2016-11-01

    In the last 10 years, it has been shown in various types of experiments that it is possible to induce biological effects in cells using the torque generated by magnetic nanoparticles submitted to an alternating or a rotating magnetic field. In biological systems, particles are generally found under the form of assemblies because they accumulate at the cell membrane, are internalized inside lysosomes, or are synthesized under the form of beads containing several particles. The torque undergone by assemblies of single-domain magnetic nanoparticles has not been addressed theoretically so far and is the subject of the present article. The results shown in the present article have been obtained using kinetic Monte Carlo simulations, in which thermal activation is taken into account, so the torque undergone by ferromagnetic and superparamagnetic nanoparticles could both be simulated. The first system under study is a single ferromagnetic particle with its easy axis in the plane of the rotating magnetic field. Then, elements adding complexity to the problem are introduced progressively and the properties of the resulting system presented and analyzed: random anisotropy axes, thermal activation, assemblies, and finally magnetic interactions. The most complex studied systems are particularly relevant for applications and are assemblies of interacting superparamagnetic nanoparticles with randomly oriented anisotropy axes. Whenever it is possible, analytical equations describing the torque properties are provided, as well as their domain of validity. Although the properties of an assembly naturally derive from those of single particles, it is shown here that several of them were unexpected and are particularly interesting with regard to the maximization of torque amplitude in biological applications. In particular, it is shown that, in a given range of parameters, the torque of an assembly increases dramatically in the direction perpendicular to the plane of the rotating magnetic field. This effect results from a breaking of time reversal symmetry when the field is rotated and is comprehensively explained. This strong enhancement occurs only if the magnetic field rotates, not if it oscillates. When this enhancement does not occur, the total torque of an assembly scales with the square root of the number of particles in the assembly. In the enhancement regime, the total torque scales with a power exponent larger than 1/2. It is also found that, in superparamagnetic nanoparticles, this enhancement is induced by the presence of magnetic interactions so that, in a rather large range of parameters, interacting superparamagnetic particles display a much larger torque than otherwise identical ferromagnetic particles. In all cases studied, the conditions required to obtain this enhancement are provided. The concepts presented in this article should help chemists and biologists in synthesizing nano-objects with optimized torque properties. For physicists, it would be interesting to test experimentally the results described in this article. For this purpose, torque measurements on well-characterized assemblies of nanoparticles should be performed and compared with numerical simulations.

  17. A particle filter for ammonia coverage ratio and input simultaneous estimations in Diesel-engine SCR system.

    PubMed

    Sun, Kangfeng; Ji, Fenzhu; Yan, Xiaoyu; Jiang, Kai; Yang, Shichun

    2018-01-01

    As NOx emissions legislation for Diesel-engines is becoming more stringent than ever before, an aftertreatment system has been widely used in many countries. Specifically, to reduce the NOx emissions, a selective catalytic reduction(SCR) system has become one of the most promising techniques for Diesel-engine vehicle applications. In the SCR system, input ammonia concentration and ammonia coverage ratio are regarded as essential states in the control-oriental model. Currently, an ammonia sensor placed before the SCR Can is a good strategy for the input ammonia concentration value. However, physical sensor would increase the SCR system cost and the ammonia coverage ratio information cannot be directly measured by physical sensor. Aiming to tackle this problem, an observer based on particle filter(PF) is investigated to estimate the input ammonia concentration and ammonia coverage ratio. Simulation results through the experimentally-validated full vehicle simulator cX-Emission show that the performance of observer based on PF is outstanding, and the estimation error is very small.

  18. A particle filter for ammonia coverage ratio and input simultaneous estimations in Diesel-engine SCR system

    PubMed Central

    Ji, Fenzhu; Yan, Xiaoyu; Jiang, Kai

    2018-01-01

    As NOx emissions legislation for Diesel-engines is becoming more stringent than ever before, an aftertreatment system has been widely used in many countries. Specifically, to reduce the NOx emissions, a selective catalytic reduction(SCR) system has become one of the most promising techniques for Diesel-engine vehicle applications. In the SCR system, input ammonia concentration and ammonia coverage ratio are regarded as essential states in the control-oriental model. Currently, an ammonia sensor placed before the SCR Can is a good strategy for the input ammonia concentration value. However, physical sensor would increase the SCR system cost and the ammonia coverage ratio information cannot be directly measured by physical sensor. Aiming to tackle this problem, an observer based on particle filter(PF) is investigated to estimate the input ammonia concentration and ammonia coverage ratio. Simulation results through the experimentally-validated full vehicle simulator cX-Emission show that the performance of observer based on PF is outstanding, and the estimation error is very small. PMID:29408924

  19. Extended Magnetohydrodynamics with Embedded Particle-in-Cell Simulation of Ganymede's Magnetosphere

    NASA Technical Reports Server (NTRS)

    Toth, Gabor; Jia, Xianzhe; Markidis, Stefano; Peng, Ivy Bo; Chen, Yuxi; Daldorff, Lars K. S.; Tenishev, Valeriy M.; Borovikov, Dmitry; Haiducek, John D.; Gombosi, Tamas I.; hide

    2016-01-01

    We have recently developed a new modeling capability to embed the implicit particle-in-cell (PIC) model iPIC3D into the Block-Adaptive-Tree-Solarwind-Roe-Upwind-Scheme magnetohydrodynamic (MHD) model. The MHD with embedded PIC domains (MHO-EPIC) algorithm Is a two-way coupled kinetic-fluid model. As one of the very first applications of the MHD-EPIC algorithm, we simulate the Interaction between Jupiter's magnetospherlc plasma and Ganymede's magnetosphere. We compare the MHO-EPIC simulations with pure Hall MHD simulations and compare both model results with Galileo observations to assess the Importance of kinetic effects In controlling the configuration and dynamics of Ganymede's magnetosphere. We find that the Hall MHD and MHO-EPIC solutions are qualitatively similar, but there are significant quantitative differences. In particular. the density and pressure inside the magnetosphere show different distributions. For our baseline grid resolution the PIC solution is more dynamic than the Hall MHD simulation and it compares significantly better with the Galileo magnetic measurements than the Hall MHD solution. The power spectra of the observed and simulated magnetic field fluctuations agree extremely well for the MHD-EPIC model. The MHO-EPIC simulation also produced a few flux transfer events (FTEs) that have magnetic signatures very similar to an observed event. The simulation shows that the FTEs often exhibit complex 3-0 structures with their orientations changing substantially between the equatorial plane and the Galileo trajectory, which explains the magnetic signatures observed during the magnetopause crossings. The computational cost of the MHO-EPIC simulation was only about 4 times more than that of the Hall MHD simulation.

  20. Optimal configuration of power grid sources based on optimal particle swarm algorithm

    NASA Astrophysics Data System (ADS)

    Wen, Yuanhua

    2018-04-01

    In order to optimize the distribution problem of power grid sources, an optimized particle swarm optimization algorithm is proposed. First, the concept of multi-objective optimization and the Pareto solution set are enumerated. Then, the performance of the classical genetic algorithm, the classical particle swarm optimization algorithm and the improved particle swarm optimization algorithm are analyzed. The three algorithms are simulated respectively. Compared with the test results of each algorithm, the superiority of the algorithm in convergence and optimization performance is proved, which lays the foundation for subsequent micro-grid power optimization configuration solution.

  1. On the macroscopic modeling of dilute emulsions under flow in the presence of particle inertia

    NASA Astrophysics Data System (ADS)

    Mwasame, Paul M.; Wagner, Norman J.; Beris, Antony N.

    2018-03-01

    Recently, Mwasame et al. ["On the macroscopic modeling of dilute emulsions under flow," J. Fluid Mech. 831, 433 (2017)] developed a macroscopic model for the dynamics and rheology of a dilute emulsion with droplet morphology in the limit of negligible particle inertia using the bracket formulation of non-equilibrium thermodynamics of Beris and Edwards [Thermodynamics of Flowing Systems: With Internal Microstructure (Oxford University Press on Demand, 1994)]. Here, we improve upon that work to also account for particle inertia effects. This advance is facilitated by using the bracket formalism in its inertial form that allows for the natural incorporation of particle inertia effects into macroscopic level constitutive equations, while preserving consistency to the previous inertialess approximation in the limit of zero inertia. The parameters in the resultant Particle Inertia Thermodynamically Consistent Ellipsoidal Emulsion (PITCEE) model are selected by utilizing literature-available mesoscopic theory for the rheology at small capillary and particle Reynolds numbers. At steady state, the lowest level particle inertia effects can be described by including an additional non-affine inertial term into the evolution equation for the conformation tensor, thereby generalizing the Gordon-Schowalter time derivative. This additional term couples the conformation and vorticity tensors and is a function of the Ohnesorge number. The rheological and microstructural predictions arising from the PITCEE model are compared against steady-shear simulation results from the literature. They show a change in the signs of the normal stress differences that is accompanied by a change in the orientation of the major axis of the emulsion droplet toward the velocity gradient direction with increasing Reynolds number, capturing the two main signatures of particle inertia reported in simulations.

  2. An Object-Oriented Computer Code for Aircraft Engine Weight Estimation

    NASA Technical Reports Server (NTRS)

    Tong, Michael T.; Naylor, Bret A.

    2009-01-01

    Reliable engine-weight estimation at the conceptual design stage is critical to the development of new aircraft engines. It helps to identify the best engine concept amongst several candidates. At NASA Glenn Research Center (GRC), the Weight Analysis of Turbine Engines (WATE) computer code, originally developed by Boeing Aircraft, has been used to estimate the engine weight of various conceptual engine designs. The code, written in FORTRAN, was originally developed for NASA in 1979. Since then, substantial improvements have been made to the code to improve the weight calculations for most of the engine components. Most recently, to improve the maintainability and extensibility of WATE, the FORTRAN code has been converted into an object-oriented version. The conversion was done within the NASA's NPSS (Numerical Propulsion System Simulation) framework. This enables WATE to interact seamlessly with the thermodynamic cycle model which provides component flow data such as airflows, temperatures, and pressures, etc., that are required for sizing the components and weight calculations. The tighter integration between the NPSS and WATE would greatly enhance system-level analysis and optimization capabilities. It also would facilitate the enhancement of the WATE code for next-generation aircraft and space propulsion systems. In this paper, the architecture of the object-oriented WATE code (or WATE++) is described. Both the FORTRAN and object-oriented versions of the code are employed to compute the dimensions and weight of a 300-passenger aircraft engine (GE90 class). Both versions of the code produce essentially identical results as should be the case.

  3. Influence of the interplanetary magnetic field orientation on polar cap ion trajectories - Energy gain and drift effects

    NASA Technical Reports Server (NTRS)

    Delcourt, D. C.; Horwitz, J. L.; Swinney, K. R.

    1988-01-01

    The influence of the interplanetary magnetic field (IMF) orientation on the transport of low-energy ions injected from the ionosphere is investigated using three-dimensional particle codes. It is shown that, unlike the auroral zone outflow, the ions originating from the polar cap region exhibit drastically different drift paths during southward and northward IMF. During southward IMF orientation, a 'two-cell' convection pattern prevails in the ionosphere, and three-dimensional simulations of ion trajectories indicate a preferential trapping of the light ions H(+) in the central plasma sheet, due to the wide azimuthal dispersion of the heavy ions, O(+). In contrast, for northward IMF orientation, the 'four-cell' potential distribution predicted in the ionosphere imposes a temporary ion drift toward higher L shells in the central polar cap. In this case, while the light ions can escape into the magnetotail, the heavy ions can remain trapped, featuring more intense acceleration (from a few electron volts up to the keV range) followed by precipitation at high invariant latitudes, as a consequence of their further travel into the tail.

  4. Analytical modeling for heat transfer in sheared flows of nanofluids.

    PubMed

    Ferrari, Claudio; Kaoui, Badr; L'vov, Victor S; Procaccia, Itamar; Rudenko, Oleksii; ten Thije Boonkkamp, J H M; Toschi, Federico

    2012-07-01

    We developed a model for the enhancement of the heat flux by spherical and elongated nanoparticles in sheared laminar flows of nanofluids. Besides the heat flux carried by the nanoparticles, the model accounts for the contribution of their rotation to the heat flux inside and outside the particles. The rotation of the nanoparticles has a twofold effect: it induces a fluid advection around the particle and it strongly influences the statistical distribution of particle orientations. These dynamical effects, which were not included in existing thermal models, are responsible for changing the thermal properties of flowing fluids as compared to quiescent fluids. The proposed model is strongly supported by extensive numerical simulations, demonstrating a potential increase of the heat flux far beyond the Maxwell-Garnett limit for the spherical nanoparticles. The road ahead, which should lead toward robust predictive models of heat flux enhancement, is discussed.

  5. Modeling cometary photopolarimetric characteristics with Sh-matrix method

    NASA Astrophysics Data System (ADS)

    Kolokolova, L.; Petrov, D.

    2017-12-01

    Cometary dust is dominated by particles of complex shape and structure, which are often considered as fractal aggregates. Rigorous modeling of light scattering by such particles, even using parallelized codes and NASA supercomputer resources, is very computer time and memory consuming. We are presenting a new approach to modeling cometary dust that is based on the Sh-matrix technique (e.g., Petrov et al., JQSRT, 112, 2012). This method is based on the T-matrix technique (e.g., Mishchenko et al., JQSRT, 55, 1996) and was developed after it had been found that the shape-dependent factors could be separated from the size- and refractive-index-dependent factors and presented as a shape matrix, or Sh-matrix. Size and refractive index dependences are incorporated through analytical operations on the Sh-matrix to produce the elements of T-matrix. Sh-matrix method keeps all advantages of the T-matrix method, including analytical averaging over particle orientation. Moreover, the surface integrals describing the Sh-matrix elements themselves can be solvable analytically for particles of any shape. This makes Sh-matrix approach an effective technique to simulate light scattering by particles of complex shape and surface structure. In this paper, we present cometary dust as an ensemble of Gaussian random particles. The shape of these particles is described by a log-normal distribution of their radius length and direction (Muinonen, EMP, 72, 1996). Changing one of the parameters of this distribution, the correlation angle, from 0 to 90 deg., we can model a variety of particles from spheres to particles of a random complex shape. We survey the angular and spectral dependencies of intensity and polarization resulted from light scattering by such particles, studying how they depend on the particle shape, size, and composition (including porous particles to simulate aggregates) to find the best fit to the cometary observations.

  6. Effects of Inert Dust Clouds on the Extinction of Strained, Laminar Flames at Normal and Micro Gravity

    NASA Technical Reports Server (NTRS)

    Andac, M. Gurhan; Egolfopoulos, Fokion N.; Campbell, Charles S.; Lauvergne, Romain; Wu, Ming-Shin (Technical Monitor)

    2000-01-01

    A combined experimental and detailed numerical study was conducted on the interaction between chemically inert solid particles and strained, atmospheric methane/air and propane/air laminar flames, both premixed and non-premixed. Experimentally, the opposed jet configuration was used with the addition of a particle seeder capable of operating in conditions of varying gravity. The particle seeding system was calibrated under both normal and micro gravity and a noticeable gravitational effect was observed. Flame extinction experiments were conducted at normal gravity by seeding inert particles at various number densities and sizes into the reacting gas phase. Experimental data were taken for 20 and 37 (mu) nickel alloy and 25 and 60 (mu) aluminum oxide particles. The experiments were simulated by solving along the stagnation streamline the conservation equations of mass, momentum, energy, and species conservation for both phases, with detailed descriptions of chemical kinetics, molecular transport, and thermal radiation. The experimental data were compared with numerical simulations, and insight was provided into the effects on extinction of the fuel type, equivalence ratio, flame configuration, strain rate. particle type. particle size. particle mass, delivery rate. the orientation of particle injection with respect to the flame and gravity. It was found that for the same injected solid mass, larger particles can result in more effective flame cooling compared to smaller particles, despite the fact that equivalent masses of the larger particles have smaller total surface area to volume ratio. This counter-intuitive finding resulted from the fact that the heat exchange between the two phases is controlled by the synergistic effect of the total contact area and the temperature difference between the two phases. Results also demonstrate that meaningful scaling of interactions between the two phases may not be possible due to the complexity of the couplings between the dynamic and thermal parameters of the problem.

  7. Finding Interstellar Particle Impacts on Stardust Aluminium Foils: The Safe Handling, Imaging, and Analysis of Samples Containing Femtogram Residues

    NASA Technical Reports Server (NTRS)

    Kearsley, A. T.; Westphal, A. J.; Stadermann, F. J.; Armes, S. P.; Ball, A. D.; Borg, J.; Bridges, J. C.; Brownlee, D. E.; Burchell, M. J.; Chater, R. J.; hide

    2010-01-01

    Impact ionisation detectors on a suite of spacecraft have shown the direction, velocity, flux and mass distribution of smaller ISP entering the Solar System. During the aphelion segments of the Stardust flight, a dedicated collector surface was oriented to intercept ISP of beta = 1, and returned to Earth in January 2006. In this paper we describe the probable appeareance and size of IS particle craters from initial results of experimental impacts and numerical simulation, explain how foils are being prepared and mounted for crater searching by automated acquisition of high magnification electron images (whilst avoiding contamination of the foils) and comment on appropriate analytical techniques for Preliminary Examination (PE).

  8. Active Brownian particles near straight or curved walls: Pressure and boundary layers

    NASA Astrophysics Data System (ADS)

    Duzgun, Ayhan; Selinger, Jonathan V.

    2018-03-01

    Unlike equilibrium systems, active matter is not governed by the conventional laws of thermodynamics. Through a series of analytic calculations and Langevin dynamics simulations, we explore how systems cross over from equilibrium to active behavior as the activity is increased. In particular, we calculate the profiles of density and orientational order near straight or circular walls and show the characteristic width of the boundary layers. We find a simple relationship between the enhancements of density and pressure near a wall. Based on these results, we determine how the pressure depends on wall curvature and hence make approximate analytic predictions for the motion of curved tracers, as well as the rectification of active particles around small openings in confined geometries.

  9. Simulating Operations at a Spaceport

    NASA Technical Reports Server (NTRS)

    Nevins, Michael R.

    2007-01-01

    SPACESIM is a computer program for detailed simulation of operations at a spaceport. SPACESIM is being developed to greatly improve existing spaceports and to aid in designing, building, and operating future spaceports, given that there is a worldwide trend in spaceport operations from very expensive, research- oriented launches to more frequent commercial launches. From an operational perspective, future spaceports are expected to resemble current airports and seaports, for which it is necessary to resolve issues of safety, security, efficient movement of machinery and people, cost effectiveness, timeliness, and maximizing effectiveness in utilization of resources. Simulations can be performed, for example, to (1) simultaneously analyze launches of reusable and expendable rockets and identify bottlenecks arising from competition for limited resources or (2) perform what-if scenario analyses to identify optimal scenarios prior to making large capital investments. SPACESIM includes an object-oriented discrete-event-simulation engine. (Discrete- event simulation has been used to assess processes at modern seaports.) The simulation engine is built upon the Java programming language for maximum portability. Extensible Markup Language (XML) is used for storage of data to enable industry-standard interchange of data with other software. A graphical user interface facilitates creation of scenarios and analysis of data.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Calero, C.; Knorowski, C.; Travesset, A.

    We investigate a general method to calculate the free energy of crystalline solids by considering the harmonic approximation and quasistatically switching the anharmonic contribution. The advantage of this method is that the harmonic approximation provides an already very accurate estimate of the free energy, and therefore the anharmonic term is numerically very small and can be determined to high accuracy. We further show that the anharmonic contribution to the free energy satisfies a number of exact inequalities that place constraints on its magnitude and allows approximate but fast and accurate estimates. The method is implemented into a readily available generalmore » software by combining the code HOODLT (Highly Optimized Object Oriented Dynamic Lattice Theory) for the harmonic part and the molecular dynamics (MD) simulation package HOOMD-blue for the anharmonic part. We use the method to calculate the low temperature phase diagram for Lennard-Jones particles. We demonstrate that hcp is the equilibrium phase at low temperature and pressure and obtain the coexistence curve with the fcc phase, which exhibits reentrant behavior. Furthermore, several implications of the method are discussed.« less

  11. Determination of anharmonic free energy contributions: Low temperature phases of the Lennard-Jones system

    DOE PAGES

    Calero, C.; Knorowski, C.; Travesset, A.

    2016-03-22

    We investigate a general method to calculate the free energy of crystalline solids by considering the harmonic approximation and quasistatically switching the anharmonic contribution. The advantage of this method is that the harmonic approximation provides an already very accurate estimate of the free energy, and therefore the anharmonic term is numerically very small and can be determined to high accuracy. We further show that the anharmonic contribution to the free energy satisfies a number of exact inequalities that place constraints on its magnitude and allows approximate but fast and accurate estimates. The method is implemented into a readily available generalmore » software by combining the code HOODLT (Highly Optimized Object Oriented Dynamic Lattice Theory) for the harmonic part and the molecular dynamics (MD) simulation package HOOMD-blue for the anharmonic part. We use the method to calculate the low temperature phase diagram for Lennard-Jones particles. We demonstrate that hcp is the equilibrium phase at low temperature and pressure and obtain the coexistence curve with the fcc phase, which exhibits reentrant behavior. Furthermore, several implications of the method are discussed.« less

  12. Using Python as a first programming environment for computational physics in developing countries

    NASA Astrophysics Data System (ADS)

    Akpojotor, Godfrey; Ehwerhemuepha, Louis; Echenim, Myron; Akpojotor, Famous

    2011-03-01

    Python unique features such its interpretative, multiplatform and object oriented nature as well as being a free and open source software creates the possibility that any user connected to the internet can download the entire package into any platform, install it and immediately begin to use it. Thus Python is gaining reputation as a preferred environment for introducing students and new beginners to programming. Therefore in Africa, the Python African Tour project has been launched and we are coordinating its use in computational science. We examine here the challenges and prospects of using Python for computational physics (CP) education in developing countries (DC). Then we present our project on using Python to simulate and aid the learning of laboratory experiments illustrated here by modeling of the simple pendulum and also to visualize phenomena in physics illustrated here by demonstrating the wave motion of a particle in a varying potential. This project which is to train both the teachers and our students on CP using Python can easily be adopted in other DC.

  13. Molecular modeling studies of interactions between sodium polyacrylate polymer and calcite surface

    NASA Astrophysics Data System (ADS)

    Ylikantola, A.; Linnanto, J.; Knuutinen, J.; Oravilahti, A.; Toivakka, M.

    2013-07-01

    The interactions between calcite pigment and sodium polyacrylate dispersing agent, widely used in papermaking as paper coating components, were investigated using classical force field and quantum chemical approaches. The objective was to understand interactions between the calcite surface and sodium polyacrylate polymer at 300 K using molecular dynamics simulations. A quantum mechanical ab initio Hartree-Fock method was also used to obtain detailed information about the sodium polyacrylate polymer structure. The effect of water molecules (moisture) on the interactions was also examined. Calculations showed that molecular weight, branching and the orientation of sodium polyacrylate polymers influence the interactions between the calcite surface and the polymer. The force field applied, and also water molecules, were found to have an impact on all systems studied. Ab initio Hartree-Fock calculations indicated that there are two types of coordination between sodium atoms and carboxylate groups of the sodium polyacrylate polymer, inter- and intra-carboxylate group coordination. In addition, ab initio Hartree-Fock calculations of the structure of the sodium polyacrylate polymer produced important information regarding interactions between the polymers and carboxylated styrene-butadiene latex particles.

  14. Enhancing Interactivity and Productivity through Object-Oriented Authoring: An Instructional Designer's Perspective.

    ERIC Educational Resources Information Center

    Chapman, Bryan L.

    1994-01-01

    Discusses the effect of object-oriented programming on the evolution of authoring systems. Topics include the definition of an object; examples of object-oriented authoring interfaces; what object-orientation means to an instructional developer; how object orientation increases productivity and enhances interactivity; and the future of courseware…

  15. Two-dimensional melting of colloids with long-range attractive interactions.

    PubMed

    Du, Di; Doxastakis, Manolis; Hilou, Elaa; Biswal, Sibani Lisa

    2017-02-22

    The solid-liquid melting transition in a two-dimensional (2-D) attractive colloidal system is visualized using superparamagnetic colloids that interact through a long-range isotropic attractive interaction potential, which is induced using a high-frequency rotating magnetic field. Various experiments, supported by Monte Carlo simulations, are carried out over a range of interaction potentials and densities to determine structure factors, Lindermann parameters, and translational and orientational order parameters. The system shows a first-order solid-liquid melting transition. Simulations and experiments suggest that dislocations and disclinations simultaneously unbind during melting. This is in direct contrast with reports of 2-D melting of paramagnetic particles that interact with a repulsive interaction potential.

  16. The effect of simulated air conditions on N95 filtering facepiece respirators performance.

    PubMed

    Ramirez, Joel A; O'Shaughnessy, Patrick T

    2016-07-01

    The objective of this study was to determine the effect of several simulated air environmental conditions on the particle penetration and the breathing resistance of two N95 filtering facepiece respirator (FFR) models. The particle penetration and breathing resistance of the respirators were evaluated in a test system developed to mimic inhalation and exhalation breathing while relative humidity and temperature were modified. Breathing resistance was measured over 120 min using a calibrated pressure transducer under four different temperature and relative humidity conditions without aerosol loading. Particle penetration was evaluated before and after the breathing resistance test at room conditions using a sodium chloride aerosol measured with a scanning mobility particle sizer. Results demonstrated that increasing relative humidity and lowering external temperature caused significant increases in breathing resistance (p < 0.001). However, these same conditions did not influence the penetration or most penetrating particle size of the tested FFRs. The increase in breathing resistance varied by FFR model suggesting that some FFR media are less influenced by high relative humidity.

  17. Stochastic localization of microswimmers by photon nudging.

    PubMed

    Bregulla, Andreas P; Yang, Haw; Cichos, Frank

    2014-07-22

    Force-free trapping and steering of single photophoretically self-propelled Janus-type particles using a feedback mechanism is experimentally demonstrated. Realtime information on particle position and orientation is used to switch the self-propulsion mechanism of the particle optically. The orientational Brownian motion of the particle thereby provides the reorientation mechanism for the microswimmer. The particle size dependence of the photophoretic propulsion velocity reveals that photon nudging provides an increased position accuracy for decreasing particle radius. The explored steering mechanism is suitable for navigation in complex biological environments and in-depth studies of collective swimming effects.

  18. Vision-based overlay of a virtual object into real scene for designing room interior

    NASA Astrophysics Data System (ADS)

    Harasaki, Shunsuke; Saito, Hideo

    2001-10-01

    In this paper, we introduce a geometric registration method for augmented reality (AR) and an application system, interior simulator, in which a virtual (CG) object can be overlaid into a real world space. Interior simulator is developed as an example of an AR application of the proposed method. Using interior simulator, users can visually simulate the location of virtual furniture and articles in the living room so that they can easily design the living room interior without placing real furniture and articles, by viewing from many different locations and orientations in real-time. In our system, two base images of a real world space are captured from two different views for defining a projective coordinate of object 3D space. Then each projective view of a virtual object in the base images are registered interactively. After such coordinate determination, an image sequence of a real world space is captured by hand-held camera with tracking non-metric measured feature points for overlaying a virtual object. Virtual objects can be overlaid onto the image sequence by taking each relationship between the images. With the proposed system, 3D position tracking device, such as magnetic trackers, are not required for the overlay of virtual objects. Experimental results demonstrate that 3D virtual furniture can be overlaid into an image sequence of the scene of a living room nearly at video rate (20 frames per second).

  19. Evidence for ubiquitous preferential particle orientation in representative oceanic shear flows.

    PubMed

    Nayak, Aditya R; McFarland, Malcolm N; Sullivan, James M; Twardowski, Michael S

    2018-01-01

    In situ measurements were undertaken to characterize particle fields in undisturbed oceanic environments. Simultaneous, co-located depth profiles of particle fields and flow characteristics were recorded using a submersible holographic imaging system and an acoustic Doppler velocimeter, under different flow conditions and varying particle concentration loads, typical of those found in coastal oceans and lakes. Nearly one million particles with major axis lengths ranging from ∼14 μm to 11.6 mm, representing diverse shapes, sizes, and aspect ratios were characterized as part of this study. The particle field consisted of marine snow, detrital matter, and phytoplankton, including colonial diatoms, which sometimes formed "thin layers" of high particle abundance. Clear evidence of preferential alignment of particles was seen at all sampling stations, where the orientation probability density function (PDF) peaked at near horizontal angles and coincided with regions of low velocity shear and weak turbulent dissipation rates. Furthermore, PDF values increased with increasing particle aspect ratios, in excellent agreement with models of spheroidal particle motion in simple shear flows. To the best of our knowledge, although preferential particle orientation in the ocean has been reported in two prior cases, our findings represent the first comprehensive field study examining this phenomenon. Evidence of nonrandom particle alignment in aquatic systems has significant consequences to aquatic optics theory and remote sensing, where perfectly random particle orientation and thus isotropic symmetry in optical parameters is assumed. Ecologically, chain-forming phytoplankton may have evolved to form large aspect ratio chains as a strategy to optimize light harvesting.

  20. Evidence for ubiquitous preferential particle orientation in representative oceanic shear flows

    PubMed Central

    McFarland, Malcolm N.; Sullivan, James M.; Twardowski, Michael S.

    2017-01-01

    Abstract In situ measurements were undertaken to characterize particle fields in undisturbed oceanic environments. Simultaneous, co‐located depth profiles of particle fields and flow characteristics were recorded using a submersible holographic imaging system and an acoustic Doppler velocimeter, under different flow conditions and varying particle concentration loads, typical of those found in coastal oceans and lakes. Nearly one million particles with major axis lengths ranging from ∼14 μm to 11.6 mm, representing diverse shapes, sizes, and aspect ratios were characterized as part of this study. The particle field consisted of marine snow, detrital matter, and phytoplankton, including colonial diatoms, which sometimes formed “thin layers” of high particle abundance. Clear evidence of preferential alignment of particles was seen at all sampling stations, where the orientation probability density function (PDF) peaked at near horizontal angles and coincided with regions of low velocity shear and weak turbulent dissipation rates. Furthermore, PDF values increased with increasing particle aspect ratios, in excellent agreement with models of spheroidal particle motion in simple shear flows. To the best of our knowledge, although preferential particle orientation in the ocean has been reported in two prior cases, our findings represent the first comprehensive field study examining this phenomenon. Evidence of nonrandom particle alignment in aquatic systems has significant consequences to aquatic optics theory and remote sensing, where perfectly random particle orientation and thus isotropic symmetry in optical parameters is assumed. Ecologically, chain‐forming phytoplankton may have evolved to form large aspect ratio chains as a strategy to optimize light harvesting. PMID:29456268

Top